NASA Astrophysics Data System (ADS)
Sheidaii, Mohammad Reza; TahamouliRoudsari, Mehrzad; Gordini, Mehrdad
2016-06-01
In knee braced frames, the braces are attached to the knee element rather than the intersection of beams and columns. This bracing system is widely used and preferred over the other commonly used systems for reasons such as having lateral stiffness while having adequate ductility, damage concentration on the second degree convenience of repairing and replacing of these elements after Earthquake. The lateral stiffness of this system is supplied by the bracing member and the ductility of the frame attached to the knee length is supplied through the bending or shear yield of the knee member. In this paper, the nonlinear seismic behavior of knee braced frame systems has been investigated using incremental dynamic analysis (IDA) and the effects of the number of stories in a building, length and the moment of inertia of the knee member on the seismic behavior, elastic stiffness, ductility and the probability of failure of these systems has been determined. In the incremental dynamic analysis, after plotting the IDA diagrams of the accelerograms, the collapse diagrams in the limit states are determined. These diagrams yield that for a constant knee length with reduced moment of inertia, the probability of collapse in limit states heightens and also for a constant knee moment of inertia with increasing length, the probability of collapse in limit states increases.
Incremental dynamic analysis of concrete gravity dams including base and lift joints
NASA Astrophysics Data System (ADS)
Alembagheri, Mohammad; Ghaemian, Mohsen
2013-03-01
The growth in computer processing power has made it possible to use time-consuming analysis methods such as incremental dynamic analysis (IDA) with higher accuracy in less time. In an IDA study, a series of earthquake records are applied to a structure at successively increasing intensity levels, which causes the structure to shift from the elastic state into the inelastic state and finally into collapse. In this way, the limit-states and capacity of a structure can be determined. In the present research, the IDA of a concrete gravity dam considering a nonlinear concrete behavior, and sliding planes within the dam body and at the dam-foundation interface, is performed. The influence of the friction angle and lift joint slope on the response parameters are investigated and the various limit-states of the dam are recognized. It is observed that by introducing a lift joint, the tensile damage can be avoided for the dam structure. The lift joint sliding is essentially independent of the base joint friction angle and the upper ligament over the inclined lift joint slides into the upstream direction in strong earthquakes.
NASA Astrophysics Data System (ADS)
Zafar, Adeel; Andrawes, Bassem
2012-02-01
Fiber reinforced polymer (FRP) reinforcing bars have been used in concrete structures as an alternative to conventional steel reinforcement, in order to overcome corrosion problems. However, due to the linear behavior of the commonly used reinforcing fibers, they are not considered in structures which require ductility and damping characteristics. The use of superelastic shape memory alloy (SMA) fibers with their nonlinear elastic behavior as reinforcement in the composite could potentially provide a solution for this problem. Small diameter SMA wires are coupled with polymer matrix to produce SMA-FRP composite, which is sought in this research as reinforcing bars. SMA-FRP bars are sought in this study to enhance the seismic performance of reinforced concrete (RC) moment resisting frames (MRFs) in terms of reducing their residual inter-story drifts while still maintaining the elastic characteristics associated with conventional FRP. Three story one bay and six story two bay RC MRF prototype structures are designed with steel, SMA-FRP and glass-FRP reinforcement. The incremental dynamic analysis technique is used to investigate the behaviors of the two frames with the three different reinforcement types under a suite of ground motion records. It is found that the frames with SMA-FRP composite reinforcement exhibit higher performance levels including lower residual inter-story drifts, high energy dissipation and thus lower damage, which are important for structures in highly seismic zones.
Asgarian, Behrouz; Shokrgozar, Hamed R.; Talarposhti, Ali Shakeri
2008-07-08
Of great interest in Performance-Based Earthquake Engineering (PBEE) is the accurate estimation of the seismic performance of structures. A performance prediction and evaluation procedure is based on nonlinear dynamics and reliability theory. In this method, a full integration over the three key stochastic models is as follow: ground motion hazard curve, nonlinear dynamic displacement demand, and displacement capacity. Further, both epistemic and aleatory uncertainties are evaluated and carried through the analysis.In this paper, jacket and soil-pile system have been modeled using Finite Element program (OpenSees) and the incremental dynamic analysis (IDA) are performed to investigate nonlinear behavior of offshore platforms. The system demand is determined by performing time history response analyses of the jacket under a suite of FEMA/SAC uniform hazard ground motions. The system capacity in terms of the drift ratio against incipient collapse is generally difficult to predict since the structural response goes into nonlinear range before collapse. All the analyses are performed in two directions and the results are compared with each others. The confidence level of a jacket in each direction for a given hazard level is calculated using the procedure described.
Incremental Discriminant Analysis in Tensor Space
Chang, Liu; Weidong, Zhao; Tao, Yan; Qiang, Pu; Xiaodan, Du
2015-01-01
To study incremental machine learning in tensor space, this paper proposes incremental tensor discriminant analysis. The algorithm employs tensor representation to carry on discriminant analysis and combine incremental learning to alleviate the computational cost. This paper proves that the algorithm can be unified into the graph framework theoretically and analyzes the time and space complexity in detail. The experiments on facial image detection have shown that the algorithm not only achieves sound performance compared with other algorithms, but also reduces the computational issues apparently. PMID:26339229
Incremental exercise in dynamic visual acuity.
Millslagle, Duane; DeLaRosby, Anna; VonBank, Sara
2005-10-01
As research is limited the purpose of this study was to investigate dynamic visual acuity while cycling at different exercise loads. Accuracy of dynamic visual acuity scores of 20 college-age participants was analyzed by a repeated-measures analysis of variance which indicated improved dynamic visual acuity during cycling as the intensity of exercise increased. A retention test conducted two days after testing yielded evidence of trainability of dynamic visual acuity. In the discussion findings were compared to other visual functions associated with exercise.
Targeted revision: A learning-based approach for incremental community detection in dynamic networks
NASA Astrophysics Data System (ADS)
Shang, Jiaxing; Liu, Lianchen; Li, Xin; Xie, Feng; Wu, Cheng
2016-02-01
Community detection is a fundamental task in network analysis. Applications on massive dynamic networks require more efficient solutions and lead to incremental community detection, which revises the community assignments of new or changed vertices during network updates. In this paper, we propose to use machine learning classifiers to predict the vertices that need to be inspected for community assignment revision. This learning-based targeted revision (LBTR) approach aims to improve community detection efficiency by filtering out the unchanged vertices from unnecessary processing. In this paper, we design features that can be used for efficient target classification and analyze the time complexity of our framework. We conduct experiments on two real-world datasets, which show our LBTR approach significantly reduces the computational time while keeping a high community detection quality. Furthermore, as compared with the benchmarks, we find our approach's performance is stable on both growing networks and networks with vertex/edge removals. Experiments suggest that one should increase the target classification precision while keeping recall at a reasonable level when implementing our proposed approach. The study provides a unique perspective in incremental community detection.
Bryan-Jones, Katherine; Chapman, Simon
2006-01-01
Background The history of governmental responses to the accumulation of scientific evidence about the harms of secondhand smoke (SHS) presents an intriguing case study of incremental public health policy development. Australia has long been considered a world-leader in progressive tobacco control policies, but in the last decade has fallen behind other jurisdictions in introducing SHS legislation that protects all workers. Bars, clubs and pubs remain the only public indoor spaces where smoking is legally permitted, despite SHS exposure in the hospitality industry being higher and affecting more people than in any other setting after domestic exposure. This paper examines the political dynamics that have shaped this incremental approach to SHS. Methods In-depth interviews with 21 key stakeholders in the state of New South Wales (NSW), including politicians, their advisors, health officials and tobacco control advocates, were conducted and subjected to thematic content analysis. Interviewees' comments provided insights into the dynamics surrounding the debates and outcomes of SHS legislative attempts and the current political environment, and about how to progress SHS legislation. Results SHS restrictions have been delayed by several broad factors: the influence of industry groups successfully opposing regulation; issue wear-out; and political perceptions that there is not a salient constituency demanding that smoking be banned in bars and clubs. Interviewees also provided suggestions of strategies that advocates might utilise to best overcome the current political inertia of incremental compromises and achieve timely comprehensive smoking bans. Conclusion Advocates concerned to shorten the duration of incremental endgames must continue to insist that governments address SHS fundamentally as a health issue rather than making political concessions to industry groups, and should broaden and amplify community voices calling on governments to finish the job. Publicity to
Dynamically Incremental K-means++ Clustering Algorithm Based on Fuzzy Rough Set Theory
NASA Astrophysics Data System (ADS)
Li, Wei; Wang, Rujing; Jia, Xiufang; Jiang, Qing
Being classic K-means++ clustering algorithm only for static data, dynamically incremental K-means++ clustering algorithm (DK-Means++) is presented based on fuzzy rough set theory in this paper. Firstly, in DK-Means++ clustering algorithm, the formula of similar degree is improved by weights computed by using of the important degree of attributes which are reduced on the basis of rough fuzzy set theory. Secondly, new data only need match granular which was clustered by K-means++ algorithm or seldom new data is clustered by classic K-means++ algorithm in global data. In this way, that all data is re-clustered each time in dynamic data set is avoided, so the efficiency of clustering is improved. Throughout our experiments showing, DK-Means++ algorithm can objectively and efficiently deal with clustering problem of dynamically incremental data.
Kukona, Anuenue; Tabor, Whitney
2011-01-01
The visual world paradigm presents listeners with a challenging problem: they must integrate two disparate signals, the spoken language and the visual context, in support of action (e.g., complex movements of the eyes across a scene). We present Impulse Processing, a dynamical systems approach to incremental eye movements in the visual world that suggests a framework for integrating language, vision, and action generally. Our approach assumes that impulses driven by the language and the visual context impinge minutely on a dynamical landscape of attractors corresponding to the potential eye-movement behaviors of the system. We test three unique predictions of our approach in an empirical study in the visual world paradigm, and describe an implementation in an artificial neural network. We discuss the Impulse Processing framework in relation to other models of the visual world paradigm. PMID:21609355
Temperature Humidity and Sea Level Pressure Increments Induced by 1DVAR Analysis of GPS Refractivity
NASA Technical Reports Server (NTRS)
Poli, Paul; Joiner, Joanna; Kursinski, Emil Robert; Einaudi, Franco (Technical Monitor)
2001-01-01
The Global Positioning System (GPS) transmitted signals are affected by the atmosphere. Using the radio occultation technique, where a receiver is placed on a low-Earth-orbiting platform. it is possible to perform soundings. by measuring the bending angles of the rays. The information can be converted into atmospheric refractivity. We have developed a one dimensional variational (1DVAR) analysis that uses GPS/MET 1995 refractivity and 6-hour FVDAS (Finite Volume Data Assimilation System) forecasts as background information to constrain the retrievals. The analysis increments are defined as 1DVAR minus background temperature, humidity and sea level pressure. Before assimilating the 1DVAR profiles into the FVDAS. the increments need to be understood. First, some bias could be induced in the retrievals when confronted with actual biased data: second. bias in the back-round could create undesired bias in the retrievals. Anv bias in the analyses will ultimately change the climatology of the model the retrievals will be assimilated into. We relate the increments to the reduction of the difference between observed minus computed refractivity profiles. We also point out the difference in the mean increments using backgrounds which have assimilated either NESDIS TIROS Operational Vertical Sounder (TOVS) operational retrievals or Data Assimilation Office (DAO) TOVS interactive retrievals. The climatology of the model in terms of refractivity is significantly different and this impacts the GPS 1DVAR increments. This testifies that changing the basic load of assimilated data has an influence on the impact the GPS data may have in a DAS.
Pfister, Thorsten; Guenther, Philipp; Dreier, Florian; Czarske, Juergen
2010-05-28
Monitoring rotor deformations and vibrations dynamically is an important task for improving the safety and the lifetime as well as the energy efficiency of motors and turbo machines. However, due to the high rotor speed encountered in particular at turbo machines, this requires concurrently a high measurement rate and high accuracy, which can not be fulfilled by most commercially available sensors. To solve this problem, we developed a non-incremental laser Doppler distance sensor (LDDS), which is able to measure simultaneously the in-plane velocity and the out-of-plane position of moving rough solid objects with micrometer precision. In addition, this sensor concurrently offers a high temporal resolution in the microsecond range, because its position uncertainty is in principle independent of the object velocity in contrast to conventional distance sensors, which is a unique feature of the LDDS. Consequently, this novel sensor enables precise and dynamic in-process deformation and vibration measurements on rotating objects, such as turbo machine rotors, even at very high speed. In order to evidence the capability of the LDDS, measurements of rotor deformations (radial expansion), vibrations and wobbling motions are presented at up to 50,000 rpm rotor speed.
Chen, Pin Yu; Finkelstein, Eric A; Ng, Mor Jack; Yap, Fabian; Yeo, George S H; Rajadurai, Victor Samuel; Chong, Yap Seng; Gluckman, Peter D; Saw, Seang Mei; Kwek, Kenneth Y C; Tan, Kok Hian
2016-01-01
The objective of this study was to conduct an incremental cost-effectiveness analysis from the payer's perspective in Singapore of 3 gestational diabetes mellitus screening strategies: universal, targeted, or no screening. A decision tree model assessed the primary outcome: incremental cost per quality-adjusted life year (QALY) gained. Probabilities, costs, and utilities were derived from the literature, the Growing Up in Singapore Towards healthy Outcomes (GUSTO) birth cohort study, and the KK Women's and Children's Hospital's database. Relative to targeted screening using risk factors, universal screening generates an incremental cost-effectiveness ratio (ICER) of $USD10,630/QALY gained. Sensitivity analyses show that disease prevalence rates and intervention effectiveness of glycemic management have the biggest impacts on the ICERs. Based on the model and best available data, universal screening is a cost-effective approach for reducing the complications of gestational diabetes mellitus in Singapore as compared with the targeted screening approach or no screening. PMID:26512030
Chen, Pin Yu; Finkelstein, Eric A; Ng, Mor Jack; Yap, Fabian; Yeo, George S H; Rajadurai, Victor Samuel; Chong, Yap Seng; Gluckman, Peter D; Saw, Seang Mei; Kwek, Kenneth Y C; Tan, Kok Hian
2016-01-01
The objective of this study was to conduct an incremental cost-effectiveness analysis from the payer's perspective in Singapore of 3 gestational diabetes mellitus screening strategies: universal, targeted, or no screening. A decision tree model assessed the primary outcome: incremental cost per quality-adjusted life year (QALY) gained. Probabilities, costs, and utilities were derived from the literature, the Growing Up in Singapore Towards healthy Outcomes (GUSTO) birth cohort study, and the KK Women's and Children's Hospital's database. Relative to targeted screening using risk factors, universal screening generates an incremental cost-effectiveness ratio (ICER) of $USD10,630/QALY gained. Sensitivity analyses show that disease prevalence rates and intervention effectiveness of glycemic management have the biggest impacts on the ICERs. Based on the model and best available data, universal screening is a cost-effective approach for reducing the complications of gestational diabetes mellitus in Singapore as compared with the targeted screening approach or no screening.
Regional Differences of Metabolic Response During Dynamic Incremental Exercise by (31)P-CSI.
Kaneko, Yasuhisa; Kime, Ryotaro; Hongo, Yoshinori; Ohno, Yusuke; Sakamoto, Ayumi; Katsumura, Toshihito
2016-01-01
The aim of this study was to detect the differences in muscle metabolic response of the quadriceps during incremental dynamic knee exercise using regional (31)Phosphorus Chemical Shift Imaging ((31)P-CSI). Sixteen healthy men participated in this study (age 28 ± 5 years, height 171.4 ± 3.9 cm, weight 67.1 ± 9.8 kg). The experiments were carried out with a 1.5-T superconducting magnet with a 5-in. diameter circular surface coil. The subjects performed isometric unilateral knee extension exercise to detect their maximum voluntary contraction (MVC) in prone position. Then they performed dynamic unilateral knee extension exercise in the magnet at 10, 20, 30 and 40 % of their MVC with the transmit-receive coil placed under the right quadriceps. The subjects pulled down a rope with the adjusted weight attached to the ankle at a frequency of 0.5 Hz for 380 s. Intracellular pH (pHi) was calculated from the median chemical shift of the inorganic phosphate (Pi) peak relative to phosphocreatine (PCr). The quadriceps were divided into three regions, (1) medial, (2) anterior, (3) lateral, and in comparison, there was no significant difference in Pi/PCr nor in pHi between regions, except Pi/PCr of the medial region was significantly higher than the anterior region at maximum intensity (p < 0.05). These results suggest that regional muscle metabolic response is similar in the quadriceps except at maximum intensity. PMID:27526153
Mendonca, Goncalo V; Teixeira, Micael S; Heffernan, Kevin S; Fernhall, Bo
2013-06-01
Ingestion of water attenuates the chronotropic response to submaximal exercise. However, it is not known whether this effect is equally manifested during dynamic exercise below and above the ventilatory threshold (VT). We explored the effects of water ingestion on the heart rate response to an incremental cycle-ergometer protocol. In a randomized fashion, 19 healthy adults (10 men and nine women, age 20.9 ± 1.8 years) ingested 50 and 500 ml of water before completing a cycle-ergometer protocol on two separate days. The heart rate and oxygen uptake ( ) responses to water ingestion were analysed both at rest and during exercise performed below and above the VT. The effects of water intake on brachial blood pressure were measured only at rest. Resting mean arterial pressure increased and resting heart rate decreased, but only after 500 ml of water (P < 0.05). Compared with that seen after 50 ml of water, the 500 ml volume elicited an overall decrease in submaximal heart rate (P < 0.05). In contrast, drinking 500 ml of water did not affect submaximal . The participants' maximal heart rate, maximal and VT were similar between conditions. Our results therefore indicate that, owing to its effects on submaximal heart rate over a broad spectrum of intensities, the drinking of water should be recognized as a potential confounder in cardiovascular exercise studies. However, by showing no differences between conditions for submaximal , they also suggest that the magnitude of heart rate reduction after drinking 500 ml of water may be of minimal physiological significance for exercise cardiorespiratory capacity.
On the use of two hardening rules of plasticity in incremental and pseudo force analysis
NASA Technical Reports Server (NTRS)
Hunsaker, B., Jr.; Haisler, W. E.; Stricklin, J. A.
1976-01-01
The tangent stiffness and pseudo force forms of the equations of motion are first derived within the context of a total Lagrangian formulation. After a brief discussion of available incremental theory plasticity models, the small strain formulations and computational procedures of the mechanical sublayer model and combined kinematic-isotropic hardening as used in the general purpose structural analysis program AGGIE I are presented. Several sample problems are then presented along with recommended guidelines for use of the two plasticity models.
Multiscale Analysis of Surface Topography from Single Point Incremental Forming using an Acetal Tool
NASA Astrophysics Data System (ADS)
Ham, M.; Powers, B. M.; Loiselle, J.
2014-03-01
Single point incremental forming (SPIF) is a sheet metal manufacturing process that forms a part by incrementally applying point loads to the material to achieve the desired deformations and final part geometry. This paper investigates the differences in surface topography between a carbide tool and an acetal-tipped tool. Area-scale analysis is performed on the confocal areal surface measurements per ASME B46. The objective of this paper is to determine at which scales surfaces formed by two different tool materials can be differentiated. It is found that the surfaces in contact with the acetal forming tool have greater relative areas at all scales greater than 5 × 104 μm2 than the surfaces in contact with the carbide tools. The surfaces not in contact with the tools during forming, also referred to as the free surface, are unaffected by the tool material.
An application of the J-integral to an incremental analysis of blunting crack behavior
Merkle, J.G. )
1989-01-01
This paper describes an analytical approach to estimating the elastic-plastic stresses and strains near the tip of a blunting crack with a finite root radius. Rice's original derivation of the path independent J-integral considered the possibility of a finite crack tip root radius. For this problem Creager's elastic analysis gives the relation between the stress intensity factor K{sub I} and the near tip stresses. It can be shown that the relation K{sub I}{sup 2} = E{prime}J holds when the root radius is finite. Recognizing that elastic-plastic behavior is incrementally linear then allows a derivation to be performed for a bielastic specimen having a crack tip region of reduced modulus, and the result differentiated to estimate elastic-plastic behavior. The result is the incremental form of Neuber's equation. This result does not require the assumption of any particular stress-strain relation. However by assuming a pure power law stress-strain relation and using Ilyushin's principle, the ordinary deformation theory form of Neuber's equation, K{sub {sigma}} K{sub {var epsilon}} = K{sub t}{sup 2}, is obtained. Applications of the incremental form of Neuber's equation have already been made to fatigue and fracture analysis. This paper helps to provide a theoretical basis for these methods previously considered semiempirical. 26 refs., 4 figs.
Rosic, Mirko; Ilic, V; Obradovic, Z; Pantovic, S; Rosic, G
2011-12-01
This paper describes a new mathematical approach for the analysis of HR (heart rate) and BL (blood lactate) curves during incremental exercise testing using a HR/BL curve and its derivatives, taking into account the native shape of all curves, without any linear approximation. Using this approach the results indicate the appearance of three characteristic points (A, B and C) on the HR/BL curve. The point A on the HR/BL curve which is the value that corresponds to the load (12.73 ± 0.46 km h-1) at which BL starts to increase above the resting levels (0.9 ± 0.06 mM), and is analogous to Lactate Turn Point 1 (LTP1). The point C on the HR/BL curve which corresponds to a BL of approximately 4mM, and is analogous to LTP2. The point B on the HR/BL curve, which corresponds to the load (16.32 ± 0.49 km h-1) at which the moderate increase turns into a more pronounced increase in BL. This point has not been previously recognized in literature. We speculate this point represents attenuation of left ventricular ejection fraction (LVEF) increase, accompanied by the decrease in diastolic time duration during incremental exercise testing. Proposed mathematical approach allows precise determination of lactate turnpoints during incremental exercise testing.
Lai, Xue-Cheng; Ge, Shuzhi Sam; Al Mamun, Abdullah
2007-12-01
This paper studies a hierarchical approach for incrementally driving a nonholonomic mobile robot to its destination in unknown environments. The A* algorithm is modified to handle a map containing unknown information. Based on it, optimal (discrete) paths are incrementally generated with a periodically updated map. Next, accelerations in varying velocities are taken into account in predicting the robot pose and the robot trajectory resulting from a motion command. Obstacle constraints are transformed to suitable velocity limits so that the robot can move as fast as possible while avoiding collisions when needed. Then, to trace the discrete path, the system searches for a waypoint-directed optimized motion in a reduced 1-D translation or rotation velocity space. Various situations of navigation are dealt with by using different strategies rather than a single objective function. Extensive simulations and experiments verified the efficacy of the proposed approach.
Functional data analysis on ground reaction force of military load carriage increment
NASA Astrophysics Data System (ADS)
Din, Wan Rozita Wan; Rambely, Azmin Sham
2014-06-01
Analysis of ground reaction force on military load carriage is done through functional data analysis (FDA) statistical technique. The main objective of the research is to investigate the effect of 10% load increment and to find the maximum suitable load for the Malaysian military. Ten military soldiers age 31 ± 6.2 years, weigh 71.6 ± 10.4 kg and height of 166.3 ± 5.9 cm carrying different military load range from 0% body weight (BW) up to 40% BW participated in an experiment to gather the GRF and kinematic data using Vicon Motion Analysis System, Kirstler force plates and thirty nine body markers. The analysis is conducted in sagittal, medial lateral and anterior posterior planes. The results show that 10% BW load increment has an effect when heel strike and toe-off for all the three planes analyzed with P-value less than 0.001 at 0.05 significant levels. FDA proves to be one of the best statistical techniques in analyzing the functional data. It has the ability to handle filtering, smoothing and curve aligning according to curve features and points of interest.
Poot, L; Snippe, H P; van Hateren, J H
1997-09-01
As is well known, dark adaptation in the human visual system is much slower than is recovery from darkness. We show that at high photopic luminances the situation is exactly opposite. First, we study detection thresholds for a small light flash, at various delays from decrement and increment steps in background luminance. Light adaptation is nearly complete within 100 ms after luminance decrements but takes much longer after luminance increments. Second, we compare sensitivity after equally visible pulses or steps in the adaptation luminance and find that detectability is initially the same but recovers much faster for pulses than for increment steps. This suggests that, whereas any residual threshold elevation after a step shows the incomplete luminance adaptation, the initial threshold elevation is caused by the temporal contrast of the background steps and pulses. This hypothesis is further substantiated in a third experiment, whereby we show that manipulating the contrast of a transition between luminances affects only the initial part of the threshold curve, and not later stages.
NASA Astrophysics Data System (ADS)
Bhushan, A.; Sharker, M. H.; Karimi, H. A.
2015-07-01
In this paper, we address outliers in spatiotemporal data streams obtained from sensors placed across geographically distributed locations. Outliers may appear in such sensor data due to various reasons such as instrumental error and environmental change. Real-time detection of these outliers is essential to prevent propagation of errors in subsequent analyses and results. Incremental Principal Component Analysis (IPCA) is one possible approach for detecting outliers in such type of spatiotemporal data streams. IPCA has been widely used in many real-time applications such as credit card fraud detection, pattern recognition, and image analysis. However, the suitability of applying IPCA for outlier detection in spatiotemporal data streams is unknown and needs to be investigated. To fill this research gap, this paper contributes by presenting two new IPCA-based outlier detection methods and performing a comparative analysis with the existing IPCA-based outlier detection methods to assess their suitability for spatiotemporal sensor data streams.
NASA Astrophysics Data System (ADS)
Shimizu, Kuniyasu; Inaba, Naohiko
2016-03-01
This study investigates mixed-mode oscillations (MMOs) generated by weakly driven piecewise-linear Bonhoeffer-van der Pol and Fitzhugh-Nagumo dynamics. Such a simple piecewise-linear oscillator can generate extremely complex MMO bifurcations such as mixed-mode oscillation-incrementing bifurcations (MMOIBs) and intermittently chaotic MMOs. These remarkable bifurcations are confirmed using explicit solutions of the piecewise-linear differential equation. Moreover, Lorenz plots are introduced, which strongly suggest that MMOIBs occur successively many times, and show that each MMO sequence is surrounded by chaos.
Willan, A R
2001-06-01
Stinnett and Mullahy recently introduced the concept of net health benefit as an alternative to cost-effectiveness ratios for the statistical analysis of patient-level data on the costs and health effects of competing interventions. Net health benefit addresses a number of problems associated with cost-effectiveness ratios by assuming a value for the willingness-to-pay for a unit of effectiveness. We extend the concept of net health benefit to demonstrate that standard statistical procedures can be used for the analysis, power, and sample size determinations of cost-effectiveness data. We also show that by varying the value of the willingness-to-pay, the point estimate and confidence interval for the incremental cost-effectiveness ratio can be determined. An example is provided.
NASA Astrophysics Data System (ADS)
Beyer, Hans Georg; Chougule, Abhijit
2016-04-01
While wind energy industry growing rapidly and siting of wind turbines onshore as well as offshore is increasing, many wind engineering model tools have been developed for the assessment of loads on wind turbines due to varying wind speeds. In order to have proper wind turbine design and performance analysis, it is important to have an accurate representation of the incoming wind field. To ease the analysis, tools for the generation of synthetic wind fields have been developed, e.g the widely used TurbSim procedure. We analyse respective synthetic data sets on one hand in view of the similarity of the spectral characteristics of measured and synthetic sets. In addition, second order characteristics with direct relevance to load assessment as given by the statistics of increments and rainflow count results are inspected.
NASA Astrophysics Data System (ADS)
Ney, Richard A.
There are many scales that can be employed to calculate net greenhouse gas emissions from bioenergy systems, ranging from single point source (stack gas) measurement, to full, multi-layered life cycle analyses considering all of the inputs and outputs throughout the economy. At an appropriate scale within these extremes, a method can be selected to support verification activities related to project-based trading of greenhouse gas emissions. The boundaries of the analysis must be carefully selected in order to meet the twin goals of the verification activity: (1) to meet scientific standards for emission balance quantification; and (2) to meet cost-effectiveness criteria of the emission trading community. The Incremental Life Cycle Analysis (ILCA) methodology is proposed and implemented for the quantification of greenhouse gas emission reductions arising from substitution of switchgrass for coal in electricity generation. The method utilizes an incremental progression through the fuel life cycle, evaluating each level of the life cycle for the quality the emission estimate produced. The method also reviews the scientific uncertainty underlying emission estimation procedures so that areas of relative weakness can be targeted and improved. The ILCA methodology is applied to the Chariton Valley Biomass Project (CVBP) for case study and evaluation. The CVBP is seeking to replace coal combustion in an existing 650-MW generation facility with switchgrass, cofired at a rate of 5 percent switchgrass to 95 percent coal. When the project reaches full capacity, the ILCA estimates that 239 pounds of carbon dioxide-equivalent (CO2-eq) emissions will be reduced and/or removed from the atmosphere for every million Btu of switchgrass utilized, generating annual greenhouse gas reductions of 305,000 tons CO2-eq, leading to revenue for the project totaling over $1.5 million annually through trading of greenhouse gas emission reduction credits.
Muhlbaier, Michael D; Topalis, Apostolos; Polikar, Robi
2009-01-01
We have previously introduced an incremental learning algorithm Learn(++), which learns novel information from consecutive data sets by generating an ensemble of classifiers with each data set, and combining them by weighted majority voting. However, Learn(++) suffers from an inherent "outvoting" problem when asked to learn a new class omega(new) introduced by a subsequent data set, as earlier classifiers not trained on this class are guaranteed to misclassify omega(new) instances. The collective votes of earlier classifiers, for an inevitably incorrect decision, then outweigh the votes of the new classifiers' correct decision on omega(new) instances--until there are enough new classifiers to counteract the unfair outvoting. This forces Learn(++) to generate an unnecessarily large number of classifiers. This paper describes Learn(++).NC, specifically designed for efficient incremental learning of multiple new classes using significantly fewer classifiers. To do so, Learn (++).NC introduces dynamically weighted consult and vote (DW-CAV), a novel voting mechanism for combining classifiers: individual classifiers consult with each other to determine which ones are most qualified to classify a given instance, and decide how much weight, if any, each classifier's decision should carry. Experiments on real-world problems indicate that the new algorithm performs remarkably well with substantially fewer classifiers, not only as compared to its predecessor Learn(++), but also as compared to several other algorithms recently proposed for similar problems. PMID:19109088
Muhlbaier, Michael D; Topalis, Apostolos; Polikar, Robi
2009-01-01
We have previously introduced an incremental learning algorithm Learn(++), which learns novel information from consecutive data sets by generating an ensemble of classifiers with each data set, and combining them by weighted majority voting. However, Learn(++) suffers from an inherent "outvoting" problem when asked to learn a new class omega(new) introduced by a subsequent data set, as earlier classifiers not trained on this class are guaranteed to misclassify omega(new) instances. The collective votes of earlier classifiers, for an inevitably incorrect decision, then outweigh the votes of the new classifiers' correct decision on omega(new) instances--until there are enough new classifiers to counteract the unfair outvoting. This forces Learn(++) to generate an unnecessarily large number of classifiers. This paper describes Learn(++).NC, specifically designed for efficient incremental learning of multiple new classes using significantly fewer classifiers. To do so, Learn (++).NC introduces dynamically weighted consult and vote (DW-CAV), a novel voting mechanism for combining classifiers: individual classifiers consult with each other to determine which ones are most qualified to classify a given instance, and decide how much weight, if any, each classifier's decision should carry. Experiments on real-world problems indicate that the new algorithm performs remarkably well with substantially fewer classifiers, not only as compared to its predecessor Learn(++), but also as compared to several other algorithms recently proposed for similar problems.
The p-version of the finite element method in incremental elasto-plastic analysis
NASA Technical Reports Server (NTRS)
Holzer, Stefan M.; Yosibash, Zohar
1993-01-01
Whereas the higher-order versions of the finite elements method (the p- and hp-version) are fairly well established as highly efficient methods for monitoring and controlling the discretization error in linear problems, little has been done to exploit their benefits in elasto-plastic structural analysis. Aspects of incremental elasto-plastic finite element analysis which are particularly amenable to improvements by the p-version is discussed. These theoretical considerations are supported by several numerical experiments. First, an example for which an analytical solution is available is studied. It is demonstrated that the p-version performs very well even in cycles of elasto-plastic loading and unloading, not only as compared to the traditional h-version but also in respect to the exact solution. Finally, an example of considerable practical importance - the analysis of a cold-worked lug - is presented which demonstrates how the modeling tools offered by higher-order finite element techniques can contribute to an improved approximation of practical problems.
Buryakov, Igor A
2004-02-01
Description of a gas chromatograph designed for express analysis of explosives (2,4-dinitrotoluene, 2,4,6-trinitrotoluene, pentaerythritol tetranitrate), chemical warfare agents (mustard gas, lewisite, sarin) and drugs (heroin, cocaine hydrochloride, crack) is given. The devices comprises a multicapillary chromatographic column and an ion mobility increment spectrometer (MCC-IMIS). The main analytical characteristics of an IMIS (estimated detection limit (DL), linear dynamic range (LDR), speed of response) and a chromatographic column (separation power, degree of separation, a number of possible peaks at a chromatogram section, divided by analysis time) are determined. The maximum value of DL equal to 5 pg/ml was registered for cis-alpha-LW, and the lowest one of 0.001 pg/ml was for cocaine. The maximum value of LDR equal to 1000 was registered for sarin and the lowest one of 150 was for the ions of lewisite. Speed of response of one compound detection with the IMIS was 0.7 s. PMID:14698239
NASA Astrophysics Data System (ADS)
ul Hassan, H.; Güner, A.; Khalifa, N. Ben; Tekkaya, A. E.
2013-12-01
Springback is considered as one of the major problems in sheet metal forming. It leads to assembly defects and cause a huge amount of cost for tool modifications. In this work a tool for incremental analysis of springback analysis has been presented. Development of springback with punch travel has been analyzed for the simple U draw-bend geometry, tunnel geometry with open base and modified tunnel geometry with closed base and variable flange height. The effect of tension variation in the sheet with punch travel has been considered as the steering parameter for the springback and various profiles of varying tension are studied, which would generate different tensile forces in sheet. It is found that the tension in the part in the last quarter of punch travel has a profound effect on the springback reduction as compared to the traditionally applied constant BHF. Two selected kinematic hardening models, namely Yoshida-Uemori(YU) model and Armstrong-Frederick(AF) model are used to study the coupled effects of tension and material hardening.
Gaspar, Héléna A; Baskin, Igor I; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre
2015-01-26
This paper is devoted to the analysis and visualization in 2-dimensional space of large data sets of millions of compounds using the incremental version of generative topographic mapping (iGTM). The iGTM algorithm implemented in the in-house ISIDA-GTM program was applied to a database of more than 2 million compounds combining data sets of 36 chemicals suppliers and the NCI collection, encoded either by MOE descriptors or by MACCS keys. Taking advantage of the probabilistic nature of GTM, several approaches to data analysis were proposed. The chemical space coverage was evaluated using the normalized Shannon entropy. Different views of the data (property landscapes) were obtained by mapping various physical and chemical properties (molecular weight, aqueous solubility, LogP, etc.) onto the iGTM map. The superposition of these views helped to identify the regions in the chemical space populated by compounds with desirable physicochemical profiles and the suppliers providing them. The data sets similarity in the latent space was assessed by applying several metrics (Euclidean distance, Tanimoto and Bhattacharyya coefficients) to data probability distributions based on cumulated responsibility vectors. As a complementary approach, data sets were compared by considering them as individual objects on a meta-GTM map, built on cumulated responsibility vectors or property landscapes produced with iGTM. We believe that the iGTM methodology described in this article represents a fast and reliable way to analyze and visualize large chemical databases.
Bryan, S; Brown, J; Warren, R
1995-01-01
STUDY OBJECTIVE--To compare the costs and effects of routine mammography screening by a single mediolateral-oblique view and two views (mediolateral-oblique plus craniocaudal) of each breast. DESIGN--A cost effectiveness analysis of a prospective non-randomised trial comparing one and two view mammography screening was carried out at St Margaret's Hospital, Epping. All women in the study had two view mammography. The mediolateral-oblique view was always the first image read by the radiologist. After reading the films for a clinic session, the same radiologist then went back and read both the mediolateral-oblique and craniocaudal views together. Each set of films was read by two radiologists. The main outcome measures were recall rates, number of cancers detected, screening and assessment costs, and cost effectiveness ratios. SUBJECTS--A total of 26,430 women who attended for breast screening using both one and two view mammography participated. A sample of 132 women attending for assessment provided data on the private costs incurred in attending for assessment. RESULTS--There was a reduction in the recall rate from 9.1% (2404 of 26,430) after one view screening to 6.7% (1760 of 26,430) after two view screening. The results also suggest that for every 10,000 women screened an additional five cancers would be detected earlier with two view screening. The additional health service screening cost associated with two view screening was estimated to be 3.63 pounds: the costs associated with one and two view screening policies were estimated to be 41.49 pounds and 32.99 pounds respectively. Private costs incurred were estimated to be 0.35 pounds per woman screened and 32.75 pounds per woman assessed. Two cost effectiveness ratios were calculated: an incremental health service cost per additional cancer detected of 4129 pounds and an incremental health service plus private cost per additional cancer detected of 2742 pounds. The sensitivity analysis suggested that the
Mathematical analysis of the heart rate performance curve during incremental exercise testing.
Rosic, G; Pantovic, S; Niciforovic, J; Colovic, V; Rankovic, V; Obradovic, Z; Rosic, Mirko
2011-03-01
In this study we performed laboratory treadmill protocols of increasing load. Heart rate was continuously recorded and blood lactate concentration was measured for determination of lactate threshold by means of LTD-max and LT4.0 methods.Our results indicate that the shape of heart rate performance curve (HRPC) during incremental testing depends on the applied exercise protocol (change of initial speed and the step of running speed increase, with the constant stage duration). Depending on the applied protocol, the HRPC can be described by linear, polynomial (S-shaped), and exponential mathematical expression.We presented mathematical procedure for estimation of heart rate threshold points at the level of LTD-max and LT4.0, by means of exponential curve and its relative deflection from the initial trend line (tangent line to exponential curve at the point of starting heart rate). The relative deflection of exponential curve from the initial trend line at the level of LTD-max and/or LT4.0 can be defined, based on the slope of the initial trend line. Using originally developed software that allows mathematical analysis of heart rate-load relation, LTD-max and/or LT4.0 can be estimated without direct measurement of blood lactate concentration.
Tortajada, Salvador; Fuster-Garcia, Elies; Vicente, Javier; Wesseling, Pieter; Howe, Franklyn A; Julià-Sapé, Margarida; Candiota, Ana-Paula; Monleón, Daniel; Moreno-Torres, Angel; Pujol, Jesús; Griffiths, John R; Wright, Alan; Peet, Andrew C; Martínez-Bisbal, M Carmen; Celda, Bernardo; Arús, Carles; Robles, Montserrat; García-Gómez, Juan Miguel
2011-08-01
In the last decade, machine learning (ML) techniques have been used for developing classifiers for automatic brain tumour diagnosis. However, the development of these ML models rely on a unique training set and learning stops once this set has been processed. Training these classifiers requires a representative amount of data, but the gathering, preprocess, and validation of samples is expensive and time-consuming. Therefore, for a classical, non-incremental approach to ML, it is necessary to wait long enough to collect all the required data. In contrast, an incremental learning approach may allow us to build an initial classifier with a smaller number of samples and update it incrementally when new data are collected. In this study, an incremental learning algorithm for Gaussian Discriminant Analysis (iGDA) based on the Graybill and Deal weighted combination of estimators is introduced. Each time a new set of data becomes available, a new estimation is carried out and a combination with a previous estimation is performed. iGDA does not require access to the previously used data and is able to include new classes that were not in the original analysis, thus allowing the customization of the models to the distribution of data at a particular clinical center. An evaluation using five benchmark databases has been used to evaluate the behaviour of the iGDA algorithm in terms of stability-plasticity, class inclusion and order effect. Finally, the iGDA algorithm has been applied to automatic brain tumour classification with magnetic resonance spectroscopy, and compared with two state-of-the-art incremental algorithms. The empirical results obtained show the ability of the algorithm to learn in an incremental fashion, improving the performance of the models when new information is available, and converging in the course of time. Furthermore, the algorithm shows a negligible instance and concept order effect, avoiding the bias that such effects could introduce. PMID
Yücesan, Zafer; Ozçelik, Sevilay; Oktan, Ercan
2015-09-01
In the present study, the effects of release cuttings on stand structures and increment and growth relations were investigated in afforested oriental beech (Fagus orientalis Lipsky) stands. To maximize spatial variation in dataset, stratified random sampling was used to layout transects. 24 sampling plots were determined which reflects average characteristics of actual stand structure. 8 sampling plots were selected from unthinned stands, 8 sampling plots were selected from lightly thinned (19% of the total basal area removed) stand and 8 sampling plots were selected from heavily thinned (40% of the total basal area removed) stand. Light thinning was done in the year 2008 and heavy thinning in 2009. Stem analyses were carried out and pre- and post-treatment height, diameter, basal area and volume increments were examined according to thinning intensities. Obtained results showed that removal of 40% of the basal area does not contribute to stand increment and growth more positively than those in stands treated by removal of 19% of the basal area. Expected increase in height and diameter increment did not occurr post-treatment in 2008 and 2009. However, in only lightly thinned stands mean basal area increment increased after treatment. Release cuttings in beech stand needs to be practiced at least twice every 5 to 6 years, provided that peculiar characteristics of every habitat are considered.
Andrei, Federica; Siegling, A B; Aloe, Ariel M; Baldaro, Bruno; Petrides, K V
2016-01-01
A criticism leveled against the conceptualization of emotional intelligence (EI) as a personality trait is that it overlaps considerably with the higher order personality dimensions and, therefore, has weak utility. To investigate this criticism, a systematic review and meta-analysis were conducted to synthesize the literature examining the incremental validity of the 2 adult self-report forms of the Trait Emotional Intelligence Questionnaire (TEIQue). Twenty-four articles reporting 114 incremental validity analyses of the TEIQue were reviewed according to the studies' methodological features. Additionally, data from 18 studies (providing 105 effect sizes) were pooled in a meta-analysis. Results suggest that the TEIQue consistently explains incremental variance in criteria pertaining to different areas of functioning, beyond higher order personality dimensions and other emotion-related variables. The pooled effect size was relatively small, but statistically and practically significant (ΔR(2) = .06, SE = .0116; 95% CI [.03, .08]). The number of covariates controlled for, the form of the TEIQue, and the focus on higher order personality dimensions versus other individual-difference constructs as baseline predictors did not affect the effect size. Analyses conducted at the factor level indicated that the incremental contribution is mainly due to the well-being and self-control factors of trait EI. Methodological issues and directions for future research are discussed. PMID:26457443
Perdue, E M; Hertkorn, N; Kettrup, A
2007-02-01
The aromatic region of two-dimensional heteronuclear 1H, 13C NMR spectra of natural organic matter and related materials (e.g., 1H and 13C chemical shifts ranging from approximately 5 to 10 and 80 to 140 ppm, respectively) is highly complex and difficult to interpret using conventional approaches. In principle, this region of the NMR spectrum should be amenable to detailed analysis, because the effects of many common substituents on the chemical shifts of aromatic carbon and hydrogen are well documented. This paper describes the development of a model for prediction of substitution patterns in aromatic rings by increment analysis (SPARIA). In the forward mode, SPARIA is used to predict the chemical shifts of 1H and 13C on aromatic moieties containing every possible combination of eight common substituents that are likely to be representative of substituents on aromatic moieties in natural organic matter. The accuracy of SPARIA in the forward mode is evaluated for 29 aromatic compounds (100 peaks) by comparison of predicted chemical shifts for 1H and 13C with experimental values and with predictions of commercially available software for prediction of NMR spectra. The most important development in this paper is the inverse mode that is built into SPARIA. Given chemical shifts for 1H and 13C (such as may be obtained from a two-dimensional, heteronuclear NMR spectrum), the inverse mode of SPARIA calculates all possible combinations of the eight selected substituents that yield chemical shifts within a specified window of chemical shift for both 1H and 13C. Both the distribution of possible substitution patterns and simple descriptive statistics of the distribution are thus obtained. The inverse mode of SPARIA has been tested on the 29 aromatic compounds (100 peaks) that were used to evaluate its forward mode, and the dependence of the inverse process on the size of the chemical shift window has been evaluated. Finally, the inverse mode of SPARIA has been applied to
NASA Astrophysics Data System (ADS)
Yokoi, S.
2014-12-01
This study conducts a comparison of three reanalysis products (JRA-55, JRA-25, and ERA-Interim) in representation of Madden-Julian Oscillation (MJO), focusing on column-integrated water vapor (CWV) that is considered as an essential variable for discussing MJO dynamics. Besides the analysis fields of CWV, which exhibit spatio-temporal distributions that are quite similar to satellite observations, CWV tendency simulated by forecast models and analysis increment calculated by data assimilation are examined. For JRA-55, it is revealed that, while its forecast model is able to simulate eastward propagation of the CWV anomaly, it tends to weaken the amplitude, and data assimilation process sustains the amplitude. The multi-reanalysis comparison of the analysis increment further reveals that this weakening bias is probably caused by excessively weak cloud-radiative feedback represented by the model. This bias in the feedback strength makes anomalous moisture supply by the vertical advection term in the CWV budget equation too insensitive to precipitation anomaly, resulting in reduction of the amplitude of CWV anomaly. ERA-Interim has a nearly opposite feature; the forecast model represents excessively strong feedback and unrealistically strengthens the amplitude, while the data assimilation weakens it. These results imply the necessity of accurate representation of the cloud-radiative feedback strength for a short-term MJO forecast, and may be evidence to support the argument that this feedback is essential for the existence of MJO. Furthermore, this study demonstrates that the multi-reanalysis comparison of the analysis increment will provide useful information for identifying model biases and, potentially, for estimating parameters that are difficult to estimate solely from observation data, such as gross moist stability.
Wong, Jonathan; Vilar, Enric; Davenport, Andrew; Farrington, Ken
2015-10-01
Thrice-weekly haemodialysis schedules have become the standard default haemodialysis prescription worldwide. Whereas the measurement of residual renal function is accepted practice for peritoneal dialysis patients and the importance of residual renal function in determining technique success is well established, few centres routinely assess residual renal function in haemodialysis patients. Although intradialytic hypotension and episodes of acute kidney injury may predispose to an earlier loss of residual renal function, a significant proportion of haemodialysis patients maintain some residual function long after dialysis initiation. As such, an incremental approach to the initiation of dialysis with careful monitoring of residual renal function may potentially provide some haemodialysis patients with an improved quality of life and greater preservation of residual renal function whilst fewer dialysis sessions may reduce health care costs. Prospective trials are required to determine the optimum approach to the initiation of haemodialysis for the oliguric patient. Once residual renal function has been lost, then dialysis prescriptions should be re-examined to consider the use of longer or more frequent treatment sessions and switching from low-flux to high-flux dialysis or haemodiafiltration to offset retention of middle sized molecules and protein-bound azotaemic solutes.
NASA Astrophysics Data System (ADS)
Hertel, Dirk
2010-01-01
Mobile applications present new image quality challenges. Automotive vision requires reliable capture of scene detail. Photospace measurements have shown that the extremely wide intrascene dynamic range of traffic scenes necessitates wide-dynamic-range (WDR) technology. Multiple-slope complementary metal-oxide semiconductor (CMOS) technology adaptively extends dynamic range by partially resetting the pixel, resulting in a response curve with piecewise linear slopes of progressively increasing compression. As compression and thus dynamic range increase, a trade-off against detail loss is observed. Incremental signal-to-noise ratio (iSNR) has been proposed in ISO/TC42 standards for determining dynamic range, and this work describes how to adapt these to WDR. Measurements and computer simulations reveal that the observed trade-off between WDR extension and the loss of local detail can be explained by a drop in iSNR at each reset point. If a reset is not timed optimally, then iSNR may drop below the detection limit causing an iSNR hole to appear within the dynamic range. Thus iSNR has extended utility: it not only determines the dynamic range limits but also defines dynamic range as the luminance range where detail detection is reliable. It has become the critical criterion when maximizing dynamic range to maintain the minimum necessary level of detection reliability.
Palczewski, Ari D.; Tian, Hui; Trofimova, Olga; Reece, Charles E.
2011-07-01
We performed Centrifugal Barrel Polishing (CBP) on single crystal niobium samples/coupons housed in a stainless steel sample holder following the polishing recipe developed at Fermi Lab (FNAL) in 2011 \\cite{C. A. Cooper 2011}. Post CBP, the sample coupons were analyzed for surface roughness, crystal composition and structure, and particle contamination. Following the initial analysis each coupon was high pressure rinsed (HRP) and analyzed for the effectiveness of contamination removal. We were able to obtain the mirror like surface finish after the final stage of tumbling, although some defects and embedded particles remained. In addition, standard HPR appears to have little effect on removing embedded particles which remain after each tumbling step, although final polishing media removal was partially affected by standard/extended HPR.
NASA Astrophysics Data System (ADS)
Hertel, Dirk
2009-01-01
In the emerging field of automotive vision, video capture is the critical front-end of driver assistance and active safety systems. Previous photospace measurements have shown that light levels in natural traffic scenes may contain an extremely wide intra-scene intensity range. This requires the camera to have a wide dynamic range (WDR) for it to adapt quickly to changing lighting conditions and to reliably capture all scene detail. Multiple-slope CMOS technology offers a cost-effective way of adaptively extending dynamic range by partially resetting (recharging) the CMOS pixel once or more often within each frame time. This avoids saturation and leads to a response curve with piecewise linear slopes of progressively increasing compression. It was observed that the image quality from multiple-slope image capture is strongly dependent on the control (height and time) of each reset barrier. As compression and thus dynamic range increase there is a trade-off against contrast and detail loss. Incremental signal-to-noise ratio (iSNR) is proposed in ISO 15739 for determining dynamic range. Measurements and computer simulations revealed that the observed trade-off between WDR extension and the loss of local detail could be explained by a drop in iSNR at each reset point. If a reset barrier is not optimally placed then iSNR may drop below the detection limit so that an 'iSNR hole' appears in the dynamic range. Thus ISO 15739 iSNR has gained extended utility: it not only measures the dynamic range limits but also defines dynamic range as the intensity range where detail detection is reliable. It has become a critical criterion when designing adaptive barrier control algorithms that maximize dynamic range while maintaining the minimum necessary level of detection reliability.
Flight Dynamics Analysis Branch
NASA Technical Reports Server (NTRS)
Stengle, Tom; Flores-Amaya, Felipe
2000-01-01
This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 572, in support of flight projects and technology development initiatives in fiscal year 2000. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics, spacecraft trajectory, attitude analysis, and attitude determination and control. The FDAB currently provides support for missions and technology development projects involving NASA, government, university, and private industry.
2013-01-01
Background A smartcard is an integrated circuit card that provides identification, authentication, data storage, and application processing. Among other functions, smartcards can serve as credit and ATM cards and can be used to pay various invoices using a ‘reader’. This study looks at the unit cost and activity time of both a traditional cash billing service and a newly introduced smartcard billing service in an outpatient department in a hospital in Taipei, Taiwan. Methods The activity time required in using the cash billing service was determined via a time and motion study. A cost analysis was used to compare the unit costs of the two services. A sensitivity analysis was also performed to determine the effect of smartcard use and number of cashier windows on incremental cost and waiting time. Results Overall, the smartcard system had a higher unit cost because of the additional service fees and business tax, but it reduced patient waiting time by at least 8 minutes. Thus, it is a convenient service for patients. In addition, if half of all outpatients used smartcards to pay their invoices, along with four cashier windows for cash payments, then the waiting time of cash service users could be reduced by approximately 3 minutes and the incremental cost would be close to breaking even (even though it has a higher overall unit cost that the traditional service). Conclusions Traditional cash billing services are time consuming and require patients to carry large sums of money. Smartcard services enable patients to pay their bill immediately in the outpatient clinic and offer greater security and convenience. The idle time of nurses could also be reduced as they help to process smartcard payments. A reduction in idle time reduces hospital costs. However, the cost of the smartcard service is higher than the cash service and, as such, hospital administrators must weigh the costs and benefits of introducing a smartcard service. In addition to the obvious benefits
NASA Technical Reports Server (NTRS)
Housner, J. M.; Anderson, M.; Belvin, W.; Horner, G.
1985-01-01
Dynamic analysis of large space antenna systems must treat the deployment as well as vibration and control of the deployed antenna. Candidate computer programs for deployment dynamics, and issues and needs for future program developments are reviewed. Some results for mast and hoop deployment are also presented. Modeling of complex antenna geometry with conventional finite element methods and with repetitive exact elements is considered. Analytical comparisons with experimental results for a 15 meter hoop/column antenna revealed the importance of accurate structural properties including nonlinear joints. Slackening of cables in this antenna is also a consideration. The technology of designing actively damped structures through analytical optimization is discussed and results are presented.
Pollock, B.H.
1988-01-01
Tests analyzed include stress electrocardiography (ECG), thallium myocardial perfusion scintigraphy, and technetium wall motion scintigraphy. The incremental value of each test was evaluated using staged survival regression and was measured as the area under the receiver operating characteristic (ROC) curve. This approach is preferable to one based on sensitivity and specificity derived from heterogeneous populations, or from approaches that report the most powerful predictor obtained from stepwise regression. Cost-effectiveness for each test was assessed as the increment of ROC area divided by the marginal cost. Three populations were studied. In the thallium population, a significant increment in ROC area was added at each stage of testing; more prognostic information was added by ECG than by thallium. In the technetium population, ECG added a significant increment of ROC area, but technetium did not. In the population receiving both nuclear, more incremental information was added by thallium than by technetium. Thallium was found to be more cost-effective than technetium; thus, it is preferred for assessing prognosis in patients with suspected disease.
Directed Incremental Symbolic Execution
NASA Technical Reports Server (NTRS)
Person, Suzette; Yang, Guowei; Rungta, Neha; Khurshid, Sarfraz
2011-01-01
The last few years have seen a resurgence of interest in the use of symbolic execution -- a program analysis technique developed more than three decades ago to analyze program execution paths. Scaling symbolic execution and other path-sensitive analysis techniques to large systems remains challenging despite recent algorithmic and technological advances. An alternative to solving the problem of scalability is to reduce the scope of the analysis. One approach that is widely studied in the context of regression analysis is to analyze the differences between two related program versions. While such an approach is intuitive in theory, finding efficient and precise ways to identify program differences, and characterize their effects on how the program executes has proved challenging in practice. In this paper, we present Directed Incremental Symbolic Execution (DiSE), a novel technique for detecting and characterizing the effects of program changes. The novelty of DiSE is to combine the efficiencies of static analysis techniques to compute program difference information with the precision of symbolic execution to explore program execution paths and generate path conditions affected by the differences. DiSE is a complementary technique to other reduction or bounding techniques developed to improve symbolic execution. Furthermore, DiSE does not require analysis results to be carried forward as the software evolves -- only the source code for two related program versions is required. A case-study of our implementation of DiSE illustrates its effectiveness at detecting and characterizing the effects of program changes.
Motorcycle dynamics by multibody dynamics analysis
Imaizumi, Hirohide; Fujioka, Takehiko
1995-12-31
The purpose of this paper is to construct simulation models of a motorcycle with a rider by use of multibody dynamics analysis (MDA). Three types of MDA models are developed for evaluation of the effectiveness of MDA for motorcycle dynamics. Impulse responses with parameter study and lane change maneuvers are calculated. The results of simulations agree with that of experiments well and effectiveness of MDA to the motorcycle dynamics field is shown.
Incremental k-core decomposition: Algorithms and evaluation
Sariyuce, Ahmet Erdem; Gedik, Bugra; Jacques-SIlva, Gabriela; Wu, Kun -Lung; Catalyurek, Umit V.
2016-02-01
A k-core of a graph is a maximal connected subgraph in which every vertex is connected to at least k vertices in the subgraph. k-core decomposition is often used in large-scale network analysis, such as community detection, protein function prediction, visualization, and solving NP-hard problems on real networks efficiently, like maximal clique finding. In many real-world applications, networks change over time. As a result, it is essential to develop efficient incremental algorithms for dynamic graph data. In this paper, we propose a suite of incremental k-core decomposition algorithms for dynamic graph data. These algorithms locate a small subgraph that ismore » guaranteed to contain the list of vertices whose maximum k-core values have changed and efficiently process this subgraph to update the k-core decomposition. We present incremental algorithms for both insertion and deletion operations, and propose auxiliary vertex state maintenance techniques that can further accelerate these operations. Our results show a significant reduction in runtime compared to non-incremental alternatives. We illustrate the efficiency of our algorithms on different types of real and synthetic graphs, at varying scales. Furthermore, for a graph of 16 million vertices, we observe relative throughputs reaching a million times, relative to the non-incremental algorithms.« less
Discriminant and Incremental Validity of Self-Concept and Academic Self-Efficacy: A Meta-Analysis
ERIC Educational Resources Information Center
Huang, Chiungjung
2012-01-01
Two studies examined the discriminant and incremental validity of self-concept and academic self-efficacy. Study 1, which meta-analysed 64 studies comprising 74 independent samples (N = 24,773), found a strong mean correlation of 0.43 between self-concept and academic self-efficacy. The domains of self-concept and self-efficacy, and the domain…
Latasa, Iban; Cordova, Alfredo; Malanda, Armando; Navallas, Javier; Lavilla-Oiz, Ana; Rodriguez-Falces, Javier
2016-01-01
Recently, a new method has been proposed to detect the onset of neuromuscular fatigue during an incremental cycling test by assessing the changes in spectral electromyographic (sEMG) frequencies within individual exercise periods of the test. The method consists on determining the highest power output that can be sustained without a significant decrease in spectral frequencies. This study evaluated the validity of the new approach by assessing the changes in spectral indicators both throughout the whole test and within individual exercise periods of the test. Fourteen cyclists performed incremental cycle ergometer rides to exhaustion with bipolar surface EMG signals recorded from the vastus lateralis. The mean and median frequencies (Fmean and Fmedian, respectively) of the sEMG power spectrum were calculated. The main findings were: (1) Examination of spectral indicators within individual exercise periods of the test showed that neither Fmean nor Fmedian decreased significantly during the last (most fatiguing) exercise periods. (2) Examination of the whole incremental test showed that the behaviour of Fmean and Fmedian with increasing power output was highly inconsistent and varied greatly among subjects. (3) Over the whole incremental test, half of the participants exhibited a positive relation between spectral indicators and workload, whereas the other half demonstrated the opposite behavior. Collectively, these findings indicate that spectral sEMG indexes do not provide a reliable measure of the fatigue state of the muscle during an incremental cycling test. Moreover, it is concluded that it is not possible to determine the onset of neuromuscular fatigue during an incremental cycling test by examining spectral indicators within individual exercise periods of the test. Key points The behaviour of spectral EMG indicators during the incremental test exhibited a high heterogeneity among individuals, with approximately half of the participants showing a positive
Latasa, Iban; Cordova, Alfredo; Malanda, Armando; Navallas, Javier; Lavilla-Oiz, Ana; Rodriguez-Falces, Javier
2016-03-01
Recently, a new method has been proposed to detect the onset of neuromuscular fatigue during an incremental cycling test by assessing the changes in spectral electromyographic (sEMG) frequencies within individual exercise periods of the test. The method consists on determining the highest power output that can be sustained without a significant decrease in spectral frequencies. This study evaluated the validity of the new approach by assessing the changes in spectral indicators both throughout the whole test and within individual exercise periods of the test. Fourteen cyclists performed incremental cycle ergometer rides to exhaustion with bipolar surface EMG signals recorded from the vastus lateralis. The mean and median frequencies (Fmean and Fmedian, respectively) of the sEMG power spectrum were calculated. The main findings were: (1) Examination of spectral indicators within individual exercise periods of the test showed that neither Fmean nor Fmedian decreased significantly during the last (most fatiguing) exercise periods. (2) Examination of the whole incremental test showed that the behaviour of Fmean and Fmedian with increasing power output was highly inconsistent and varied greatly among subjects. (3) Over the whole incremental test, half of the participants exhibited a positive relation between spectral indicators and workload, whereas the other half demonstrated the opposite behavior. Collectively, these findings indicate that spectral sEMG indexes do not provide a reliable measure of the fatigue state of the muscle during an incremental cycling test. Moreover, it is concluded that it is not possible to determine the onset of neuromuscular fatigue during an incremental cycling test by examining spectral indicators within individual exercise periods of the test. Key pointsThe behaviour of spectral EMG indicators during the incremental test exhibited a high heterogeneity among individuals, with approximately half of the participants showing a positive
Confinement Vessel Dynamic Analysis
R. Robert Stevens; Stephen P. Rojas
1999-08-01
A series of hydrodynamic and structural analyses of a spherical confinement vessel has been performed. The analyses used a hydrodynamic code to estimate the dynamic blast pressures at the vessel's internal surfaces caused by the detonation of a mass of high explosive, then used those blast pressures as applied loads in an explicit finite element model to simulate the vessel's structural response. Numerous load cases were considered. Particular attention was paid to the bolted port connections and the O-ring pressure seals. The analysis methods and results are discussed, and comparisons to experimental results are made.
Lahey, R.T. Jr.; Dim, D.
1986-01-01
The analytical modeling of the dynamics of a hydraulic siphon is important in many applications, including the safety analysis of hypothetical nuclear reactor accidents. In particular, during certain postulated pressurized water reactor (PWR) small-break loss-of-coolant accident (SBLOCA) events, reflux condensation on the primary side of a U-tube steam generator can represent an important mode of core cooling. Due to the relatively large amount of vapor produced in the core, a countercurrent flow limitation can be established at the inlet of the steam generator tubes. As a consequence, countercurrent liquid flow back into the core may be severely limited, and the steam that condenses in the tubes on the primary side can cause the inlet leg of the U-tubes to fill with condensate. Naturally, as long as this condensate is trapped in the steam generators, it will be unavailable for core cooling. When the condensate level reaches the top of the U-bend, spillover is initiated into the outlet bank of the U-tubes. This may cause the remaining condensate in the inlet legs to be siphoned off and delivered to the downcomer and then the core. Subsequently, the cycle may be repeated. The dynamics of the siphoning process must be accurately modeled if the delivery of coolant to the core is to be predicted. It is the purpose of this paper to present a simple closed-form analytical solution that may be useful in the analysis of a wide range of problems involving siphoning dynamics, such as may occur during a PWR SBLOCA.
Dynamic recurrent neural networks: a dynamical analysis.
Draye, J S; Pavisic, D A; Cheron, G A; Libert, G A
1996-01-01
In this paper, we explore the dynamical features of a neural network model which presents two types of adaptative parameters: the classical weights between the units and the time constants associated with each artificial neuron. The purpose of this study is to provide a strong theoretical basis for modeling and simulating dynamic recurrent neural networks. In order to achieve this, we study the effect of the statistical distribution of the weights and of the time constants on the network dynamics and we make a statistical analysis of the neural transformation. We examine the network power spectra (to draw some conclusions over the frequential behaviour of the network) and we compute the stability regions to explore the stability of the model. We show that the network is sensitive to the variations of the mean values of the weights and the time constants (because of the temporal aspects of the learned tasks). Nevertheless, our results highlight the improvements in the network dynamics due to the introduction of adaptative time constants and indicate that dynamic recurrent neural networks can bring new powerful features in the field of neural computing.
Toward Capturing Momentary Changes of Heart Rate Variability by a Dynamic Analysis Method
Zhang, Haoshi; Zhu, Mingxing; Zheng, Yue; Li, Guanglin
2015-01-01
The analysis of heart rate variability (HRV) has been performed on long-term electrocardiography (ECG) recordings (12~24 hours) and short-term recordings (2~5 minutes), which may not capture momentary change of HRV. In this study, we present a new method to analyze the momentary HRV (mHRV). The ECG recordings were segmented into a series of overlapped HRV analysis windows with a window length of 5 minutes and different time increments. The performance of the proposed method in delineating the dynamics of momentary HRV measurement was evaluated with four commonly used time courses of HRV measures on both synthetic time series and real ECG recordings from human subjects and dogs. Our results showed that a smaller time increment could capture more dynamical information on transient changes. Considering a too short increment such as 10 s would cause the indented time courses of the four measures, a 1-min time increment (4-min overlapping) was suggested in the analysis of mHRV in the study. ECG recordings from human subjects and dogs were used to further assess the effectiveness of the proposed method. The pilot study demonstrated that the proposed analysis of mHRV could provide more accurate assessment of the dynamical changes in cardiac activity than the conventional measures of HRV (without time overlapping). The proposed method may provide an efficient means in delineating the dynamics of momentary HRV and it would be worthy performing more investigations. PMID:26172953
Operational Dynamic Configuration Analysis
NASA Technical Reports Server (NTRS)
Lai, Chok Fung; Zelinski, Shannon
2010-01-01
Sectors may combine or split within areas of specialization in response to changing traffic patterns. This method of managing capacity and controller workload could be made more flexible by dynamically modifying sector boundaries. Much work has been done on methods for dynamically creating new sector boundaries [1-5]. Many assessments of dynamic configuration methods assume the current day baseline configuration remains fixed [6-7]. A challenging question is how to select a dynamic configuration baseline to assess potential benefits of proposed dynamic configuration concepts. Bloem used operational sector reconfigurations as a baseline [8]. The main difficulty is that operational reconfiguration data is noisy. Reconfigurations often occur frequently to accommodate staff training or breaks, or to complete a more complicated reconfiguration through a rapid sequence of simpler reconfigurations. Gupta quantified a few aspects of airspace boundary changes from this data [9]. Most of these metrics are unique to sector combining operations and not applicable to more flexible dynamic configuration concepts. To better understand what sort of reconfigurations are acceptable or beneficial, more configuration change metrics should be developed and their distribution in current practice should be computed. This paper proposes a method to select a simple sequence of configurations among operational configurations to serve as a dynamic configuration baseline for future dynamic configuration concept assessments. New configuration change metrics are applied to the operational data to establish current day thresholds for these metrics. These thresholds are then corroborated, refined, or dismissed based on airspace practitioner feedback. The dynamic configuration baseline selection method uses a k-means clustering algorithm to select the sequence of configurations and trigger times from a given day of operational sector combination data. The clustering algorithm selects a simplified
Varotsos, P. A.; Sarlis, N. V.; Lazaridou, M. S.; Skordas, E. S.; Tanaka, H. K.
2006-08-15
Self-similarity may originate from two origins: i.e., the process memory and the process' increments 'infinite' variance. A distinction is attempted by employing the natural time {chi}. Concerning the first origin, we analyze recent data on seismic electric signals, which support the view that they exhibit infinitely ranged temporal correlations. Concerning the second, slowly driven systems that emit bursts of various energies E obeying the power-law distribution--i.e., P(E){approx}E{sup -{gamma}}--are studied. An interrelation between the exponent {gamma} and the variance {kappa}{sub 1}({identical_to}<{chi}{sup 2}>-<{chi}>{sup 2}) is obtained for the shuffled (randomized) data. For real earthquake data, the most probable value of {kappa}{sub 1} of the shuffled data is found to be approximately equal to that of the original data, the difference most likely arising from temporal correlation. Finally, it is found that the differential entropy associated with the probability P({kappa}{sub 1}) maximizes for {gamma} around {gamma}{approx_equal}1.6-1.7, which is comparable to the value determined experimentally in diverse phenomena: e.g., solar flares, icequakes, dislocation glide in stressed single crystals of ice, etc. It also agrees with the b value in the Gutenberg-Richter law of earthquakes. In addition, the case of multiplicative cascades is studied in the natural time domain.
Xiong, Hao; Choe, Yoonsuck
2008-01-01
Background Although a great deal is known about one gene or protein and its functions under different environmental conditions, little information is available about the complex behaviour of biological networks subject to different environmental perturbations. Observing differential expressions of one or more genes between normal and abnormal cells has been a mainstream method of discovering pertinent genes in diseases and therefore valuable drug targets. However, to date, no such method exists for elucidating and quantifying the differential dynamical behaviour of genetic regulatory networks, which can have greater impact on phenotypes than individual genes. Results We propose to redress the deficiency by formulating the functional study of biological networks as a control problem of dynamical systems. We developed mathematical methods to study the stability, the controllability, and the steady-state behaviour, as well as the transient responses of biological networks under different environmental perturbations. We applied our framework to three real-world datasets: the SOS DNA repair network in E. coli under different dosages of radiation, the GSH redox cycle in mice lung exposed to either poisonous air or normal air, and the MAPK pathway in mammalian cell lines exposed to three types of HIV type I Vpr, a wild type and two mutant types; and we found that the three genetic networks exhibited fundamentally different dynamical properties in normal and abnormal cells. Conclusion Difference in stability, relative stability, degrees of controllability, and transient responses between normal and abnormal cells means considerable difference in dynamical behaviours and different functioning of cells. Therefore differential dynamical properties can be a valuable tool in biomedical research. PMID:18221557
Lucia, A.; Sanchez, O.; Carvajal, A.; Chicharro, J. L.
1999-01-01
OBJECTIVES: To investigate the validity and reliability of surface electromyography (EMG) as a new non-invasive determinant of the metabolic response to incremental exercise in elite cyclists. The relation between EMG activity and other more conventional methods for analysing the aerobic-anaerobic transition such as blood lactate measurements (lactate threshold (LT) and onset of blood lactate accumulation (OBLA)) and ventilatory parameters (ventilatory thresholds 1 and 2 (VT1 and VT2)) was studied. METHODS: Twenty eight elite road cyclists (age 24 (4) years; VO2MAX 69.9 (6.4) ml/kg/min; values mean (SD)) were selected as subjects. Each of them performed a ramp protocol (starting at 0 W, with increases of 5 W every 12 seconds) on a cycle ergometer (validity study). In addition, 15 of them performed the same test twice (reliability study). During the tests, data on gas exchange and blood lactate levels were collected to determine VT1, VT2, LT, and OBLA. The root mean squares of EMG signals (rms-EMG) were recorded from both the vastus lateralis and the rectus femoris at each intensity using surface electrodes. RESULTS: A two threshold response was detected in the rms-EMG recordings from both muscles in 90% of subjects, with two breakpoints, EMGT1 and EMGT2, at around 60-70% and 80-90% of VO2MAX respectively. The results of the reliability study showed no significant differences (p > 0.05) between mean values of EMGT1 and EMGT2 obtained in both tests. Furthermore, no significant differences (p > 0.05) existed between mean values of EMGT1, in the vastus lateralis and rectus femoris, and VT1 and LT (62.8 (14.5) and 69.0 (6.2) and 64.6 (6.4) and 68.7 (8.2)% of VO2MAX respectively), or between mean values of EMGT2, in the vastus lateralis and rectus femoris, and VT2 and OBLA (86.9 (9.0) and 88.0 (6.2) and 84.6 (6.5) and 87.7 (6.4)% of VO2MAX respectively). CONCLUSION: rms-EMG may be a useful complementary non-invasive method for analysing the aerobic- anaerobic transition
Dynamic Analysis of Event Histories.
ERIC Educational Resources Information Center
Tuma, Nancy Brandon; And Others
1979-01-01
Demonstrates the value of dynamic analysis of event-history data for the sociological study of change in categorical variables. An event history records dates of events that occur for some unit of analysis (i.e., an individual's marital or employment status, or outbreaks of riots or wars). (Author/AV)
Dynamic analysis of process reactors
Shadle, L.J.; Lawson, L.O.; Noel, S.D.
1995-06-01
The approach and methodology of conducting a dynamic analysis is presented in this poster session in order to describe how this type of analysis can be used to evaluate the operation and control of process reactors. Dynamic analysis of the PyGas{trademark} gasification process is used to illustrate the utility of this approach. PyGas{trademark} is the gasifier being developed for the Gasification Product Improvement Facility (GPIF) by Jacobs-Siffine Engineering and Riley Stoker. In the first step of the analysis, process models are used to calculate the steady-state conditions and associated sensitivities for the process. For the PyGas{trademark} gasifier, the process models are non-linear mechanistic models of the jetting fluidized-bed pyrolyzer and the fixed-bed gasifier. These process sensitivities are key input, in the form of gain parameters or transfer functions, to the dynamic engineering models.
Braun, Sabine; Schindler, Christian; Rihm, Beat
2014-09-01
The estimate of growth losses by ozone exposure of forest trees is a significant part in current C sequestration calculations and will also be important in future modeling. It is therefore important to know if the relationship between ozone flux and growth reduction of young trees, used to derive a Critical Level for ozone, is also valid for mature trees. Epidemiological analysis of stem increment data from Fagus sylvatica L. and Picea abies Karst. observed in Swiss forest plots was used to test this hypothesis. The results confirm the validity of the flux-response relationship at least for beech and therefore enable estimating forest growth losses by ozone on a country-wide scale. For Switzerland, these estimates amount to 19.5% growth reduction for deciduous forests, 6.6% for coniferous forests and 11.0% for all forested areas based on annual ozone stomatal uptake during the time period 1991-2011.
Flexible rotor dynamics analysis
NASA Technical Reports Server (NTRS)
Shen, F. A.
1973-01-01
A digital computer program was developed to analyze the general nonaxisymmetric and nonsynchronous transient and steady-state rotor dynamic performance of a bending- and shear-wise flexible rotor-bearing system under various operating conditions. The effects of rotor material mechanical hysteresis, rotor torsion flexibility, transverse effects of rotor axial and torsional loading and the anisotropic, in-phase and out-of-phase bearing stiffness and damping force and moment coefficients were included in the program to broaden its capability. An optimum solution method was found and incorporated in the computer program. Computer simulation of experimental data was made and qualitative agreements observed. The mathematical formulations, computer program verification, test data simulation, and user instruction was presented and discussed.
Analysis for dynamic metrology
NASA Astrophysics Data System (ADS)
Dienstfrey, Andrew; Hale, Paul D.
2014-03-01
Diverse measurement contexts require estimates of time-varying quantities. Ideally the measurement device responds to signal variations more rapidly than the modulation of the signal itself. If so, then well-developed techniques may be used for the calibration and analysis of the measurement system. By contrast, as the characteristic timescales for signal modulation and measurement response become commensurate, the situation becomes more complicated; directly measured quantities may require correction for the finite bandwidth of the measurement system response. Toward this goal heuristic estimation rules have evolved over time and are now widely used. We rederive these common rules of thumb, and present sufficient conditions for their validity. Furthermore, we investigate their quantitative performance in cases for which these conditions are violated and encounter surprisingly poor results. As an alternative, we demonstrate that regularized deconvolution analysis exhibits more general quantitative utility at the expense of increased measurement burden and analytical complexity.
An incremental strategy for calculating consistent discrete CFD sensitivity derivatives
NASA Technical Reports Server (NTRS)
Korivi, Vamshi Mohan; Taylor, Arthur C., III; Newman, Perry A.; Hou, Gene W.; Jones, Henry E.
1992-01-01
In this preliminary study involving advanced computational fluid dynamic (CFD) codes, an incremental formulation, also known as the 'delta' or 'correction' form, is presented for solving the very large sparse systems of linear equations which are associated with aerodynamic sensitivity analysis. For typical problems in 2D, a direct solution method can be applied to these linear equations which are associated with aerodynamic sensitivity analysis. For typical problems in 2D, a direct solution method can be applied to these linear equations in either the standard or the incremental form, in which case the two are equivalent. Iterative methods appear to be needed for future 3D applications; however, because direct solver methods require much more computer memory than is currently available. Iterative methods for solving these equations in the standard form result in certain difficulties, such as ill-conditioning of the coefficient matrix, which can be overcome when these equations are cast in the incremental form; these and other benefits are discussed. The methodology is successfully implemented and tested in 2D using an upwind, cell-centered, finite volume formulation applied to the thin-layer Navier-Stokes equations. Results are presented for two laminar sample problems: (1) transonic flow through a double-throat nozzle; and (2) flow over an isolated airfoil.
International Space Station Increment Operations Services
NASA Astrophysics Data System (ADS)
Michaelis, Horst; Sielaff, Christian
2002-01-01
The Industrial Operator (IO) has defined End-to-End services to perform efficiently all required operations tasks for the Manned Space Program (MSP) as agreed during the Ministerial Council in Edinburgh in November 2001. Those services are the result of a detailed task analysis based on the operations processes as derived from the Space Station Program Implementation Plans (SPIP) and defined in the Operations Processes Documents (OPD). These services are related to ISS Increment Operations and ATV Mission Operations. Each of these End-to-End services is typically characterised by the following properties: It has a clearly defined starting point, where all requirements on the end-product are fixed and associated performance metrics of the customer are well defined. It has a clearly defined ending point, when the product or service is delivered to the customer and accepted by him, according to the performance metrics defined at the start point. The implementation of the process might be restricted by external boundary conditions and constraints mutually agreed with the customer. As far as those are respected the IO has the free choice to select methods and means of implementation. The ISS Increment Operations Service (IOS) activities required for the MSP Exploitation program cover the complete increment specific cycle starting with the support to strategic planning and ending with the post increment evaluation. These activities are divided into sub-services including the following tasks: - ISS Planning Support covering the support to strategic and tactical planning up to the generation - Development &Payload Integration Support - ISS Increment Preparation - ISS Increment Execution These processes are tight together by the Increment Integration Management, which provides the planning and scheduling of all activities as well as the technical management of the overall process . The paper describes the entire End-to-End ISS Increment Operations service and the
Soria, Marisol; Anson, Miguel; Escanero, Jesús F
2016-03-01
This study analyzes the relationship between hormonal changes induced by exercise and variations in trace elements associated with oxidative stress during incremental exercise. Nineteen well-trained endurance athletes performed a cycle ergometer test: after a warm-up of 10 min at 2.0 W kg(-1), workload increased by 0.5 W kg(-1) every 10 min until exhaustion. The analysis was controlled for prior diet and activity patterns, levels of exercise training, and time of day (circadian rhythms). Whole blood lactate concentration and plasma concentrations of ions (Zn, Se, Mn, and Co), insulin, glucagon, aldosterone, thyroid stimulating hormone (TSH), calcitonin, and parathyroid hormone (PTH) were measured at rest; at the end of each stage; and 3, 5, and 7 min post-exercise. The statistical analysis involved paired non-parametric tests and correlation coefficients. No significant differences were found in Mn or Co levels as a function of exercise intensity. Zn and Se levels at the end of the exercise protocol and over the recovery time were significantly different to baseline. Further, Zn levels were significantly correlated with aldosterone, calcitonin, and PTH levels, while Se levels were associated with aldosterone, calcitonin, and TSH levels. Our results indicate several different patterns of association between acute changes in hormone concentrations and variations in trace element concentrations related to oxidative stress during submaximal exercise.
Incremental Contingency Planning
NASA Technical Reports Server (NTRS)
Dearden, Richard; Meuleau, Nicolas; Ramakrishnan, Sailesh; Smith, David E.; Washington, Rich
2003-01-01
There has been considerable work in AI on planning under uncertainty. However, this work generally assumes an extremely simple model of action that does not consider continuous time and resources. These assumptions are not reasonable for a Mars rover, which must cope with uncertainty about the duration of tasks, the energy required, the data storage necessary, and its current position and orientation. In this paper, we outline an approach to generating contingency plans when the sources of uncertainty involve continuous quantities such as time and resources. The approach involves first constructing a "seed" plan, and then incrementally adding contingent branches to this plan in order to improve utility. The challenge is to figure out the best places to insert contingency branches. This requires an estimate of how much utility could be gained by building a contingent branch at any given place in the seed plan. Computing this utility exactly is intractable, but we outline an approximation method that back propagates utility distributions through a graph structure similar to that of a plan graph.
Dynamic analysis of process reactors
Shadle, L.J.; Lawson, L.O.; Noel, S.D.
1996-12-31
The process design for integration of advanced gasifiers for combined-cycle facilities requires a dynamic analysis tool for predicting the gasifier performance and stability. Such a tool provides an understanding of both process reactions and the interaction of process components. To illustrate the utility of the process dynamic tool, a Gasifier Dynamic Model (GDM) was developed at the Morgantown Energy Technology Center (METC) to investigate alternative designs and operational scenarios during process design development. Empirical data and first principles were combined into steady-state process models to develop sensitivity parameters around a nominal process design condition. These gain factors were then coupled with time-dependent functions for process mass and energy inventories to develop the dynamic model (GDM). Engineering calculations performed in the GDM were used to predict process responses such as gas make, flow, pressure, and temperature. Small research facilities were constructed and operated to validate both the steady-state process and dynamic models. GDM predictions provided engineers insights into the design integrity and operational safety of the reactions, components, and control elements.
Variable Dynamic Testbed Vehicle: Dynamics Analysis
NASA Technical Reports Server (NTRS)
Lee, A. Y.; Le, N. T.; Marriott, A. T.
1997-01-01
The Variable Dynamic Testbed Vehicle (VDTV) concept has been proposed as a tool to evaluate collision avoidance systems and to perform driving-related human factors research. The goal of this study is to analytically investigate to what extent a VDTV with adjustable front and rear anti-roll bar stiffnesses, programmable damping rates, and four-wheel-steering can emulate the lateral dynamics of a broad range of passenger vehicles.
Complex dynamics of text analysis
NASA Astrophysics Data System (ADS)
Ke, Xiaohua; Zeng, Yongqiang; Ma, Qinghua; Zhu, Lin
2014-12-01
This paper presents a novel method for the analysis of nonlinear text quality in Chinese language. Texts produced by university students in China were represented as scale-free networks (word adjacency model), from which typical network features such as the in/outdegree, clustering coefficient and network dynamics were obtained. The method integrates the classical concepts of network feature representation and text quality series variation. The analytical and numerical scheme leads to a parameter space representation that constitutes a valid alternative to represent the network features. The results reveal that complex network features of different text qualities can be clearly revealed and applied to potential applications in other instances of text analysis.
Dynamical analysis of anisotropic inflation
NASA Astrophysics Data System (ADS)
Karčiauskas, Mindaugas
2016-06-01
The inflaton coupling to a vector field via the f(φ)2F μνFμν term is used in several contexts in the literature, such as to generate primordial magnetic fields, to produce statistically anisotropic curvature perturbation, to support anisotropic inflation, and to circumvent the η-problem. In this work, I perform dynamical analysis of this system allowing for the most general Bianchi I initial conditions. I also confirm the stability of attractor fixed points along phase-space directions that had not been investigated before.
Nonlinear analysis of pupillary dynamics.
Onorati, Francesco; Mainardi, Luca Tommaso; Sirca, Fabiola; Russo, Vincenzo; Barbieri, Riccardo
2016-02-01
Pupil size reflects autonomic response to different environmental and behavioral stimuli, and its dynamics have been linked to other autonomic correlates such as cardiac and respiratory rhythms. The aim of this study is to assess the nonlinear characteristics of pupil size of 25 normal subjects who participated in a psychophysiological experimental protocol with four experimental conditions, namely “baseline”, “anger”, “joy”, and “sadness”. Nonlinear measures, such as sample entropy, correlation dimension, and largest Lyapunov exponent, were computed on reconstructed signals of spontaneous fluctuations of pupil dilation. Nonparametric statistical tests were performed on surrogate data to verify that the nonlinear measures are an intrinsic characteristic of the signals. We then developed and applied a piecewise linear regression model to detrended fluctuation analysis (DFA). Two joinpoints and three scaling intervals were identified: slope α0, at slow time scales, represents a persistent nonstationary long-range correlation, whereas α1 and α2, at middle and fast time scales, respectively, represent long-range power-law correlations, similarly to DFA applied to heart rate variability signals. Of the computed complexity measures, α0 showed statistically significant differences among experimental conditions (p<0.001). Our results suggest that (a) pupil size at constant light condition is characterized by nonlinear dynamics, (b) three well-defined and distinct long-memory processes exist at different time scales, and (c) autonomic stimulation is partially reflected in nonlinear dynamics. PMID:26351899
Nonlinear analysis of drought dynamics
NASA Astrophysics Data System (ADS)
Ma, M.
2015-12-01
Drought is an extreme natural hazard and becomes a severe problem in the world. It arises as a result of interactions between climate input and human activity, displaying the nonlinearity and complexity. Nonlinear time series analyses open a way to study the underlying dynamic characteristics of drought, and then provide the forward knowledge to understanding the physical mechanism of drought event. The rationale behind this idea is that information about the representation of nonlinear properties could be used as an additional quality indicator. To that end, the correlation dimension method, a powerful nonlinear time series analysis method based on the chaos theory, has been suggested to assess the intrinsic dimensionality or degree of freedom of time series according to Takens (1981). It can provide an assessment of the dominant processes that is required to map the observed dynamics. In this study, daily discharge and hourly groundwater level data of 63 catchments in Germany and China were investigated with correlation dimension method. The results indicated that the correlation dimension values of studied discharge exhibited none clear spatial patterns, but showed significant correlations with the spatial heterogeneity within the catchments. In contrast, the correlation dimension values of groundwater level displayed spatial patterns due to the different aquifer conditions (confined or unconfined). High correlation dimension values indicate partly confined conditions. In addition, Hurst analysis was involved to qualify the persistence of drought. It seems that drought mechanisms can be learnt from the data themselves in an inverse manner.
Parallel incremental compilation. Doctoral thesis
Gafter, N.M.
1990-06-01
The time it takes to compile a large program has been a bottleneck in the software development process. When an interactive programming environment with an incremental compiler is used, compilation speed becomes even more important, but existing incremental compilers are very slow for some types of program changes. We describe a set of techniques that enable incremental compilation to exploit fine-grained concurrency in a shared-memory multi-processor and achieve asymptotic improvement over sequential algorithms. Because parallel non-incremental compilation is a special case of parallel incremental compilation, the design of a parallel compiler is a corollary of our result. Instead of running the individual phases concurrently, our design specifies compiler phases that are mutually sequential. However, each phase is designed to exploit fine-grained parallelism. By allowing each phase to present its output as a complete structure rather than as a stream of data, we can apply techniques such as parallel prefix and parallel divide-and-conquer, and we can construct applicative data structures to achieve sublinear execution time. Parallel algorithms for each phase of a compiler are presented to demonstrate that a complete incremental compiler can achieve execution time that is asymptotically less than sequential algorithms.
Incremental learning for automated knowledge capture.
Benz, Zachary O.; Basilico, Justin Derrick; Davis, Warren Leon,; Dixon, Kevin R.; Jones, Brian S.; Martin, Nathaniel; Wendt, Jeremy Daniel
2013-12-01
People responding to high-consequence national-security situations need tools to help them make the right decision quickly. The dynamic, time-critical, and ever-changing nature of these situations, especially those involving an adversary, require models of decision support that can dynamically react as a situation unfolds and changes. Automated knowledge capture is a key part of creating individualized models of decision making in many situations because it has been demonstrated as a very robust way to populate computational models of cognition. However, existing automated knowledge capture techniques only populate a knowledge model with data prior to its use, after which the knowledge model is static and unchanging. In contrast, humans, including our national-security adversaries, continually learn, adapt, and create new knowledge as they make decisions and witness their effect. This artificial dichotomy between creation and use exists because the majority of automated knowledge capture techniques are based on traditional batch machine-learning and statistical algorithms. These algorithms are primarily designed to optimize the accuracy of their predictions and only secondarily, if at all, concerned with issues such as speed, memory use, or ability to be incrementally updated. Thus, when new data arrives, batch algorithms used for automated knowledge capture currently require significant recomputation, frequently from scratch, which makes them ill suited for use in dynamic, timecritical, high-consequence decision making environments. In this work we seek to explore and expand upon the capabilities of dynamic, incremental models that can adapt to an ever-changing feature space.
Haacker, Markus; Gorgens, Marelize
2016-01-01
Background Empirical studies and population-level policy simulations show the importance of voluntary medical male circumcision (VMMC) in generalized epidemics. This paper complements available scenario-based studies (projecting costs and outcomes over some policy period, typically spanning decades) by adopting an incremental approach—analyzing the expected consequences of circumcising one male individual with specific characteristics in a specific year. This approach yields more precise estimates of VMMC’s cost-effectiveness and identifies the outcomes of current investments in VMMC (e.g., within a fiscal budget period) rather than of investments spread over the entire policy period. Methods/Findings The model has three components. We adapted the ASSA2008 model, a demographic and epidemiological model of the HIV epidemic in South Africa, to analyze the impact of one VMMC on HIV incidence over time and across the population. A costing module tracked the costs of VMMC and the resulting financial savings owing to reduced HIV incidence over time. Then, we used several financial indicators to assess the cost-effectiveness of and financial return on investments in VMMC. One circumcision of a young man up to age 20 prevents on average over 0.2 HIV infections, but this effect declines steeply with age, e.g., to 0.08 by age 30. Net financial savings from one VMMC at age 20 are estimated at US$617 at a discount rate of 5% and are lower for circumcisions both at younger ages (because the savings occur later and are discounted more) and at older ages (because male circumcision becomes less effective). Investments in male circumcision carry a financial rate of return of up to 14.5% (for circumcisions at age 20). The cost of a male circumcision is refinanced fastest, after 13 y, for circumcisions at ages 20 to 25. Principal limitations of the analysis arise from the long time (decades) over which the effects of VMMC unfold—the results are therefore sensitive to the
Dynamical analysis of highly excited molecular spectra
Kellman, M.E.
1993-12-01
The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.
Vehicle systems: coupled and interactive dynamics analysis
NASA Astrophysics Data System (ADS)
Vantsevich, Vladimir V.
2014-11-01
This article formulates a new direction in vehicle dynamics, described as coupled and interactive vehicle system dynamics. Formalised procedures and analysis of case studies are presented. An analytical consideration, which explains the physics of coupled system dynamics and its consequences for dynamics of a vehicle, is given for several sets of systems including: (i) driveline and suspension of a 6×6 truck, (ii) a brake mechanism and a limited slip differential of a drive axle and (iii) a 4×4 vehicle steering system and driveline system. The article introduces a formal procedure to turn coupled system dynamics into interactive dynamics of systems. A new research direction in interactive dynamics of an active steering and a hybrid-electric power transmitting unit is presented and analysed to control power distribution between the drive axles of a 4×4 vehicle. A control strategy integrates energy efficiency and lateral dynamics by decoupling dynamics of the two systems thus forming their interactive dynamics.
Dynamic Hurricane Data Analysis Tool
NASA Technical Reports Server (NTRS)
Knosp, Brian W.; Li, Peggy; Vu, Quoc A.
2009-01-01
A dynamic hurricane data analysis tool allows users of the JPL Tropical Cyclone Information System (TCIS) to analyze data over a Web medium. The TCIS software is described in the previous article, Tropical Cyclone Information System (TCIS) (NPO-45748). This tool interfaces with the TCIS database to pull in data from several different atmospheric and oceanic data sets, both observed by instruments. Users can use this information to generate histograms, maps, and profile plots for specific storms. The tool also displays statistical values for the user-selected parameter for the mean, standard deviation, median, minimum, and maximum values. There is little wait time, allowing for fast data plots over date and spatial ranges. Users may also zoom-in for a closer look at a particular spatial range. This is version 1 of the software. Researchers will use the data and tools on the TCIS to understand hurricane processes, improve hurricane forecast models and identify what types of measurements the next generation of instruments will need to collect.
Systems-Dynamic Analysis for Neighborhood Study
Systems-dynamic analysis (or system dynamics (SD)) helps planners identify interrelated impacts of transportation and land-use policies on neighborhood-scale economic outcomes for households and businesses, among other applications. This form of analysis can show benefits and tr...
Bayesian Analysis of Individual Level Personality Dynamics.
Cripps, Edward; Wood, Robert E; Beckmann, Nadin; Lau, John; Beckmann, Jens F; Cripps, Sally Ann
2016-01-01
A Bayesian technique with analyses of within-person processes at the level of the individual is presented. The approach is used to examine whether the patterns of within-person responses on a 12-trial simulation task are consistent with the predictions of ITA theory (Dweck, 1999). ITA theory states that the performance of an individual with an entity theory of ability is more likely to spiral down following a failure experience than the performance of an individual with an incremental theory of ability. This is because entity theorists interpret failure experiences as evidence of a lack of ability which they believe is largely innate and therefore relatively fixed; whilst incremental theorists believe in the malleability of abilities and interpret failure experiences as evidence of more controllable factors such as poor strategy or lack of effort. The results of our analyses support ITA theory at both the within- and between-person levels of analyses and demonstrate the benefits of Bayesian techniques for the analysis of within-person processes. These include more formal specification of the theory and the ability to draw inferences about each individual, which allows for more nuanced interpretations of individuals within a personality category, such as differences in the individual probabilities of spiraling. While Bayesian techniques have many potential advantages for the analyses of processes at the level of the individual, ease of use is not one of them for psychologists trained in traditional frequentist statistical techniques.
Bayesian Analysis of Individual Level Personality Dynamics.
Cripps, Edward; Wood, Robert E; Beckmann, Nadin; Lau, John; Beckmann, Jens F; Cripps, Sally Ann
2016-01-01
A Bayesian technique with analyses of within-person processes at the level of the individual is presented. The approach is used to examine whether the patterns of within-person responses on a 12-trial simulation task are consistent with the predictions of ITA theory (Dweck, 1999). ITA theory states that the performance of an individual with an entity theory of ability is more likely to spiral down following a failure experience than the performance of an individual with an incremental theory of ability. This is because entity theorists interpret failure experiences as evidence of a lack of ability which they believe is largely innate and therefore relatively fixed; whilst incremental theorists believe in the malleability of abilities and interpret failure experiences as evidence of more controllable factors such as poor strategy or lack of effort. The results of our analyses support ITA theory at both the within- and between-person levels of analyses and demonstrate the benefits of Bayesian techniques for the analysis of within-person processes. These include more formal specification of the theory and the ability to draw inferences about each individual, which allows for more nuanced interpretations of individuals within a personality category, such as differences in the individual probabilities of spiraling. While Bayesian techniques have many potential advantages for the analyses of processes at the level of the individual, ease of use is not one of them for psychologists trained in traditional frequentist statistical techniques. PMID:27486415
Bayesian Analysis of Individual Level Personality Dynamics
Cripps, Edward; Wood, Robert E.; Beckmann, Nadin; Lau, John; Beckmann, Jens F.; Cripps, Sally Ann
2016-01-01
A Bayesian technique with analyses of within-person processes at the level of the individual is presented. The approach is used to examine whether the patterns of within-person responses on a 12-trial simulation task are consistent with the predictions of ITA theory (Dweck, 1999). ITA theory states that the performance of an individual with an entity theory of ability is more likely to spiral down following a failure experience than the performance of an individual with an incremental theory of ability. This is because entity theorists interpret failure experiences as evidence of a lack of ability which they believe is largely innate and therefore relatively fixed; whilst incremental theorists believe in the malleability of abilities and interpret failure experiences as evidence of more controllable factors such as poor strategy or lack of effort. The results of our analyses support ITA theory at both the within- and between-person levels of analyses and demonstrate the benefits of Bayesian techniques for the analysis of within-person processes. These include more formal specification of the theory and the ability to draw inferences about each individual, which allows for more nuanced interpretations of individuals within a personality category, such as differences in the individual probabilities of spiraling. While Bayesian techniques have many potential advantages for the analyses of processes at the level of the individual, ease of use is not one of them for psychologists trained in traditional frequentist statistical techniques. PMID:27486415
Newspaper Subscribing: A Dynamic Analysis.
ERIC Educational Resources Information Center
Zhu, Jian-Hua; Weaver, David
1989-01-01
Uses a dynamic modelling procedure to show that newspaper subscribing behavior is more complex than static perspectives have suggested. Argues that a dynamic model, tested with longitudinal data, improves understanding of the complexity of the stopping and restarting processes in newspaper subscribing. (RS)
Detection of increments in noise intensity by monkeys.
Clopton, B M
1972-05-01
Monkeys were trained to detect 100-msec increments in the intensity of continuous white noise. A response on one of two bars was reinforced with some probability if it conformed to the presence or absence of the increment on that trial. Stimulus parameters of background intensity, increment size, and probability of increment presentation were varied, and response probabilities and latencies were recorded. The task was analogous to the "yes-no" task used in human psychophysics. Data analysis within the context of signal-detection theory revealed response biasing toward one bar or the other to be related to the probability of increment presentation, whereas sensitivity depended on the combination of increment size and background noise intensity. Weber's law was found to hold for a large range of background intensities in that the sensitivity to relative intensity increments varied little. Performance was compared to that of an ideal observer that uses samples of the envelope of the noise waveform on which to base its responses.
Guidelines for dynamic data acquisition and analysis
NASA Technical Reports Server (NTRS)
Piersol, Allan G.
1992-01-01
The recommendations concerning pyroshock data presented in the final draft of a proposed military handbook on Guidelines for Dynamic Data Acquisition and Analysis are reviewed. The structural responses produced by pyroshocks are considered to be one of the most difficult types of dynamic data to accurately measure and analyze.
Dynamic analysis of moored tankers
Dercksen, A.
1995-12-31
A loaded 200 kDWT tanker moored, in shallow water, by means of a single bow anchor chain is subjected to wind and waves. Wind loads on the tanker were measured in a stiff mooring arrangement. The measured wind loads together with the calibrated wave train were used as input to a numerical model to predict the dynamic behavior of the anchored tanker. A good correlation with the measured tanker motions and mooring loads was found. The model can be used in the design of mooring systems and anchoring equipment for arbitrary water depths. Important features which are accounted for include bottom friction, low and high frequency tanker motions and chain dynamics.
Finite-element analysis and multibody dynamics issues in rotorcraft dynamic analysis
NASA Technical Reports Server (NTRS)
Ruzicka, Gene C.; Ormiston, Robert A.
1991-01-01
There is general agreement that the development of effective rotorcraft analysis software will require the use of modern computational mechanics methodologies, especially finite element analysis and multibody dynamics. This paper examines the analysis of rotorcraft dynamics from the perspective of these methodologies. First, a general discussion of rotorcraft analysis and modeling is presented. Then, a hierarchy of rotorcraft analyses is presented, ranging from simple to complex kinematics, where it is shown that in comprehensive rotorcraft software, finite element analysis must be augmented by multibody dynamics in order to properly analyze large motions of rotorcraft components. Finally, a review of multibody dynamics is presented to further familiarize the rotorcraft community with this technology.
Bimolecular dynamics by computer analysis
Eilbeck, J.C.; Lomdahl, P.S.; Scott, A.C.
1984-01-01
As numerical tools (computers and display equipment) become more powerful and the atomic structures of important biological molecules become known, the importance of detailed computation of nonequilibrium biomolecular dynamics increases. In this manuscript we report results from a well developed study of the hydrogen bonded polypeptide crystal acetanilide, a model protein. Directions for future research are suggested. 9 references, 6 figures.
A New Sheet Metal Forming System Based on Incremental Punching
NASA Astrophysics Data System (ADS)
Luo, Yuanxin
Stamping is one of the most commonly used manufacturing processes. Everyday, millions of parts are formed by this process. The conventional stamping is to form a part in one or several operations with a press machine and a set/sets of dies. It is very efficient but is not cost effective for small batch production parts and prototypes as the dies are expensive and time consuming to make. Recently, with the increasing demands for low-volume and customer-made products, a die-less forming method, Incremental Sheet Metal Forming (ISMF), has become one of the leading R&D topics in the industry. ISMF uses a small generic tool to apply a sequence of operations along the given path to deform the sheet incrementally. These small deformations accumulate to form the final shape of the part. As a result, different parts can be made by the same setup. Despite of some 30 years of research and development, however, ISMF technology is still premature for industrial applications due to the following reasons: The accuracy of the part is limited; the surface roughness is poor; and the productivity is low. This motivates the presented research. In this research, a new incremental forming system based on incremental punching is designed and built. The system consists of a 3-axes CNC platform, a high speed hydraulic cylinder with a hemispherical forming tool, and a PC-based CNC control system. The hydraulic system provides the forming force to deform the sheet metal with constant stokes, while the CNC system positions the part. When forming a part, the forming tool punches the sheet metal along the given contour of the part punch by punch; when one layer of the part is completed, the forming tool moves down to the next layer; and the process is finished till all layers are completed. The CNC control system works with standard NC code, and hence, is easy to use. In order to ensure the desirable performance of the machine, dynamic analysis of the machine is necessary. The analysis is
Coupled dynamics analysis of wind energy systems
NASA Technical Reports Server (NTRS)
Hoffman, J. A.
1977-01-01
A qualitative description of all key elements of a complete wind energy system computer analysis code is presented. The analysis system addresses the coupled dynamics characteristics of wind energy systems, including the interactions of the rotor, tower, nacelle, power train, control system, and electrical network. The coupled dynamics are analyzed in both the frequency and time domain to provide the basic motions and loads data required for design, performance verification and operations analysis activities. Elements of the coupled analysis code were used to design and analyze candidate rotor articulation concepts. Fundamental results and conclusions derived from these studies are presented.
Session 6: Dynamic Modeling and Systems Analysis
NASA Technical Reports Server (NTRS)
Csank, Jeffrey; Chapman, Jeffryes; May, Ryan
2013-01-01
These presentations cover some of the ongoing work in dynamic modeling and dynamic systems analysis. The first presentation discusses dynamic systems analysis and how to integrate dynamic performance information into the systems analysis. The ability to evaluate the dynamic performance of an engine design may allow tradeoffs between the dynamic performance and operability of a design resulting in a more efficient engine design. The second presentation discusses the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a Simulation system with a library containing the basic building blocks that can be used to create dynamic Thermodynamic Systems. Some of the key features include Turbo machinery components, such as turbines, compressors, etc., and basic control system blocks. T-MAT is written in the Matlab-Simulink environment and is open source software. The third presentation focuses on getting additional performance from the engine by allowing the limit regulators only to be active when a limit is danger of being violated. Typical aircraft engine control architecture is based on MINMAX scheme, which is designed to keep engine operating within prescribed mechanical/operational safety limits. Using a conditionally active min-max limit regulator scheme, additional performance can be gained by disabling non-relevant limit regulators
Dynamic sensitivity analysis of biological systems
Wu, Wu Hsiung; Wang, Feng Sheng; Chang, Maw Shang
2008-01-01
Background A mathematical model to understand, predict, control, or even design a real biological system is a central theme in systems biology. A dynamic biological system is always modeled as a nonlinear ordinary differential equation (ODE) system. How to simulate the dynamic behavior and dynamic parameter sensitivities of systems described by ODEs efficiently and accurately is a critical job. In many practical applications, e.g., the fed-batch fermentation systems, the system admissible input (corresponding to independent variables of the system) can be time-dependent. The main difficulty for investigating the dynamic log gains of these systems is the infinite dimension due to the time-dependent input. The classical dynamic sensitivity analysis does not take into account this case for the dynamic log gains. Results We present an algorithm with an adaptive step size control that can be used for computing the solution and dynamic sensitivities of an autonomous ODE system simultaneously. Although our algorithm is one of the decouple direct methods in computing dynamic sensitivities of an ODE system, the step size determined by model equations can be used on the computations of the time profile and dynamic sensitivities with moderate accuracy even when sensitivity equations are more stiff than model equations. To show this algorithm can perform the dynamic sensitivity analysis on very stiff ODE systems with moderate accuracy, it is implemented and applied to two sets of chemical reactions: pyrolysis of ethane and oxidation of formaldehyde. The accuracy of this algorithm is demonstrated by comparing the dynamic parameter sensitivities obtained from this new algorithm and from the direct method with Rosenbrock stiff integrator based on the indirect method. The same dynamic sensitivity analysis was performed on an ethanol fed-batch fermentation system with a time-varying feed rate to evaluate the applicability of the algorithm to realistic models with time
Dynamical analysis of strongly nonlinear fractional-order Mathieu-Duffing equation.
Wen, Shao-Fang; Shen, Yong-Jun; Wang, Xiao-Na; Yang, Shao-Pu; Xing, Hai-Jun
2016-08-01
In this paper, the computation schemes for periodic solutions of the forced fractional-order Mathieu-Duffing equation are derived based on incremental harmonic balance (IHB) method. The general forms of periodic solutions are founded by the IHB method, which could be useful to obtain the periodic solutions with higher precision. The comparisons of the approximate analytical solutions by the IHB method and numerical integration are fulfilled, and the results certify the correctness and higher precision of the solutions by the IHB method. The dynamical analysis of strongly nonlinear fractional-order Mathieu-Duffing equation is investigated by the IHB method. Then, the effects of the excitation frequency, fractional order, fractional coefficient, and nonlinear stiffness coefficient on the complex dynamical behaviors are analyzed. At last, the detailed results are summarized and the conclusions are made, which present some useful information to analyze and/or control the dynamical response of this kind of system. PMID:27586626
Dynamical analysis of strongly nonlinear fractional-order Mathieu-Duffing equation
NASA Astrophysics Data System (ADS)
Wen, Shao-Fang; Shen, Yong-Jun; Wang, Xiao-Na; Yang, Shao-Pu; Xing, Hai-Jun
2016-08-01
In this paper, the computation schemes for periodic solutions of the forced fractional-order Mathieu-Duffing equation are derived based on incremental harmonic balance (IHB) method. The general forms of periodic solutions are founded by the IHB method, which could be useful to obtain the periodic solutions with higher precision. The comparisons of the approximate analytical solutions by the IHB method and numerical integration are fulfilled, and the results certify the correctness and higher precision of the solutions by the IHB method. The dynamical analysis of strongly nonlinear fractional-order Mathieu-Duffing equation is investigated by the IHB method. Then, the effects of the excitation frequency, fractional order, fractional coefficient, and nonlinear stiffness coefficient on the complex dynamical behaviors are analyzed. At last, the detailed results are summarized and the conclusions are made, which present some useful information to analyze and/or control the dynamical response of this kind of system.
14 CFR 1260.53 - Incremental funding.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Incremental funding. 1260.53 Section 1260.53 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.53 Incremental funding. Incremental Funding October 2000...
14 CFR 1260.53 - Incremental funding.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Incremental funding. 1260.53 Section 1260.53 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.53 Incremental funding. Incremental Funding October 2000 (a) Only $___ of...
14 CFR 1274.918 - Incremental funding.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Incremental funding. 1274.918 Section 1274... COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.918 Incremental funding. Incremental Funding... Agreement, as required, until it is fully funded. Any work beyond the funding limit will be at the...
14 CFR 1274.918 - Incremental funding.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Incremental funding. 1274.918 Section 1274... COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.918 Incremental funding. Incremental Funding... Agreement, as required, until it is fully funded. Any work beyond the funding limit will be at the...
14 CFR 1274.918 - Incremental funding.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Incremental funding. 1274.918 Section 1274... COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.918 Incremental funding. Incremental Funding... Agreement, as required, until it is fully funded. Any work beyond the funding limit will be at the...
14 CFR 1274.918 - Incremental funding.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Incremental funding. 1274.918 Section 1274... COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.918 Incremental funding. Incremental Funding... Agreement, as required, until it is fully funded. Any work beyond the funding limit will be at the...
14 CFR 1260.53 - Incremental funding.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Incremental funding. 1260.53 Section 1260.53 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.53 Incremental funding. Incremental Funding October 2000...
14 CFR 1260.53 - Incremental funding.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Incremental funding. 1260.53 Section 1260.53 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.53 Incremental funding. Incremental Funding October 2000...
18 CFR 154.309 - Incremental expansions.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Incremental expansions... Changes § 154.309 Incremental expansions. (a) For every expansion for which incremental rates are charged... costs and revenues associated with the expansion, until the Commission authorizes the costs of...
18 CFR 154.309 - Incremental expansions.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Incremental expansions... Changes § 154.309 Incremental expansions. (a) For every expansion for which incremental rates are charged... costs and revenues associated with the expansion, until the Commission authorizes the costs of...
18 CFR 154.309 - Incremental expansions.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Incremental expansions... Changes § 154.309 Incremental expansions. (a) For every expansion for which incremental rates are charged... costs and revenues associated with the expansion, until the Commission authorizes the costs of...
18 CFR 154.309 - Incremental expansions.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Incremental expansions... Changes § 154.309 Incremental expansions. (a) For every expansion for which incremental rates are charged... costs and revenues associated with the expansion, until the Commission authorizes the costs of...
18 CFR 154.309 - Incremental expansions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Incremental expansions... Changes § 154.309 Incremental expansions. (a) For every expansion for which incremental rates are charged... costs and revenues associated with the expansion, until the Commission authorizes the costs of...
Nonlinear Dynamical Analysis of Fibrillation
NASA Astrophysics Data System (ADS)
Kerin, John A.; Sporrer, Justin M.; Egolf, David A.
2013-03-01
The development of spatiotemporal chaotic behavior in heart tissue, termed fibrillation, is a devastating, life-threatening condition. The chaotic behavior of electrochemical signals, in the form of spiral waves, causes the muscles of the heart to contract in an incoherent manner, hindering the heart's ability to pump blood. We have applied the mathematical tools of nonlinear dynamics to large-scale simulations of a model of fibrillating heart tissue to uncover the dynamical modes driving this chaos. By studying the evolution of Lyapunov vectors and exponents over short times, we have found that the fibrillating tissue is sensitive to electrical perturbations only in narrow regions immediately in front of the leading edges of spiral waves, especially when these waves collide, break apart, or hit the edges of the tissue sample. Using this knowledge, we have applied small stimuli to areas of varying sensitivity. By studying the evolution of the effects of these perturbations, we have made progress toward controlling the electrochemical patterns associated with heart fibrillation. This work was supported by the U.S. National Science Foundation (DMR-0094178) and Research Corporation.
Contextual analysis framework for bursty dynamics
NASA Astrophysics Data System (ADS)
Jo, Hang-Hyun; Pan, Raj Kumar; Perotti, Juan I.; Kaski, Kimmo
2013-06-01
To understand the origin of bursty dynamics in natural and social processes we provide a general analysis framework in which the temporal process is decomposed into subprocesses and then the bursts in subprocesses, called contextual bursts, are combined to collective bursts in the original process. For the combination of subprocesses, it is required to consider the distribution of different contexts over the original process. Based on minimal assumptions for interevent time statistics, we present a theoretical analysis for the relationship between contextual and collective interevent time distributions. Our analysis framework helps to exploit contextual information available in decomposable bursty dynamics.
Visual Analysis of Dynamic Data Streams
Chin, George; Singhal, Mudita; Nakamura, Grant C.; Gurumoorthi, Vidhya; Freeman-Cadoret, Natalie A.
2009-09-01
For scientific data visualizations, real-time data streams present many interesting challenges when compared to static data. Real-time data are dynamic, transient, high-volume, and temporal. Effective visualizations need to be able to accommodate dynamic data behavior as well as abstract and present the data in ways that make sense to and are usable by humans. The Visual Content Analysis of Real-Time Data Streams project at the Pacific Northwest National Laboratory is researching and prototyping dynamic visualization techniques and tools to help facilitate human understanding and comprehension of high-volume, real-time data. The general strategy of the project is to develop and evolve visual contexts that will organize and orient complex dynamic data in conceptual and perceptive views. The goal is to allow users to quickly grasp dynamic data in forms that are intuitive and natural without requiring intensive training in the use of specific visualization or analysis tools and methods. Thus far, the project has prototyped four different visualization prototypes that represents and convey dynamic data through human-recognizable contexts and paradigms such as hierarchies, relationships, time, and geography. We describe the design considerations and unique features of these dynamic visualization prototypes as well as our findings in the exploration and evaluation of their use.
Post Flight Dynamic Analysis Simulation
NASA Technical Reports Server (NTRS)
Gregory, B. R.
1970-01-01
Digital six-degrees-of-freedom, open loop Saturn 5 first stage flight evaluation simulation program obtains post flight simulation of the launch vehicle using actual flight data as input. Results are compared with measured data. For preflight analysis, the program uses predicted flight data as input.
Analytical signal analysis of strange nonchaotic dynamics.
Gupta, Kopal; Prasad, Awadhesh; Singh, Harinder P; Ramaswamy, Ramakrishna
2008-04-01
We apply an analytical signal analysis to strange nonchaotic dynamics. Through this technique it is possible to obtain the spectrum of instantaneous intrinsic mode frequencies that are present in a given signal. We find that the second-mode frequency and its variance are good order parameters for dynamical transitions from quasiperiodic tori to strange nonchaotic attractors (SNAs) and from SNAs to chaotic attractors. Phase fluctuation analysis shows that SNAs and chaotic attractors behave identically within short time windows as a consequence of local instabilities in the dynamics. In longer time windows, however, the globally stable character of SNAs becomes apparent. This methodology can be of great utility in the analysis of experimental time series, and representative applications are made to signals obtained from Rössler and Duffing oscillators. PMID:18517723
Property Differencing for Incremental Checking
NASA Technical Reports Server (NTRS)
Yang, Guowei; Khurshid, Sarfraz; Person, Suzette; Rungta, Neha
2014-01-01
This paper introduces iProperty, a novel approach that facilitates incremental checking of programs based on a property di erencing technique. Speci cally, iProperty aims to reduce the cost of checking properties as they are initially developed and as they co-evolve with the program. The key novelty of iProperty is to compute the di erences between the new and old versions of expected properties to reduce the number and size of the properties that need to be checked during the initial development of the properties. Furthermore, property di erencing is used in synergy with program behavior di erencing techniques to optimize common regression scenarios, such as detecting regression errors or checking feature additions for conformance to new expected properties. Experimental results in the context of symbolic execution of Java programs annotated with properties written as assertions show the e ectiveness of iProperty in utilizing change information to enable more ecient checking.
Dynamic analysis of a surface towed riser
Garrett, D.L.; Watters, A.J.
1995-12-31
An investigation of the dynamic response of a slightly buoyant, surface towed riser (or pipeline) to waves is presented. A time domain numerical model is described. Analysis results for response to regular and random waves are discussed and compared to published experimental data. Response is examined in some detail for a 2m diameter riser. The dynamic response to waves is described in terms of the response to regular waves. Analysis results for random waves are presented and compared to the regular wave response. Fatigue damage estimates are calculated for a riser subjected to a severe summer storm and found to be acceptable for a tow of several days duration.
Incremental visual text analytics of news story development
NASA Astrophysics Data System (ADS)
Krstajic, Milos; Najm-Araghi, Mohammad; Mansmann, Florian; Keim, Daniel A.
2012-01-01
Online news sources produce thousands of news articles every day, reporting on local and global real-world events. New information quickly replaces the old, making it difficult for readers to put current events in the context of the past. Additionally, the stories have very complex relationships and characteristics that are difficult to model: they can be weakly or strongly connected, or they can merge or split over time. In this paper, we present a visual analytics system for exploration of news topics in dynamic information streams, which combines interactive visualization and text mining techniques to facilitate the analysis of similar topics that split and merge over time. We employ text clustering techniques to automatically extract stories from online news streams and present a visualization that: 1) shows temporal characteristics of stories in different time frames with different level of detail; 2) allows incremental updates of the display without recalculating the visual features of the past data; 3) sorts the stories by minimizing clutter and overlap from edge crossings. By using interaction, stories can be filtered based on their duration and characteristics in order to be explored in full detail with details on demand. To demonstrate the usefulness of our system, case studies with real news data are presented and show the capabilities for detailed dynamic text stream exploration.
Structural Dynamics and Data Analysis
NASA Technical Reports Server (NTRS)
Luthman, Briana L.
2013-01-01
This project consists of two parts, the first will be the post-flight analysis of data from a Delta IV launch vehicle, and the second will be a Finite Element Analysis of a CubeSat. Shock and vibration data was collected on WGS-5 (Wideband Global SATCOM- 5) which was launched on a Delta IV launch vehicle. Using CAM (CAlculation with Matrices) software, the data is to be plotted into Time History, Shock Response Spectrum, and SPL (Sound Pressure Level) curves. In this format the data is to be reviewed and compared to flight instrumentation data from previous flights of the same launch vehicle. This is done to ensure the current mission environments, such as shock, random vibration, and acoustics, are not out of family with existing flight experience. In family means the peaks on the SRS curve for WGS-5 are similar to the peaks from the previous flights and there are no major outliers. The curves from the data will then be compiled into a useful format so that is can be peer reviewed then presented before an engineering review board if required. Also, the reviewed data will be uploaded to the Engineering Review Board Information System (ERBIS) to archive. The second part of this project is conducting Finite Element Analysis of a CubeSat. In 2010, Merritt Island High School partnered with NASA to design, build and launch a CubeSat. The team is now called StangSat in honor of their mascot, the mustang. Over the past few years, the StangSat team has built a satellite and has now been manifested for flight on a SpaceX Falcon 9 launch in 2014. To prepare for the final launch, a test flight was conducted in Mojave, California. StangSat was launched on a Prospector 18D, a high altitude rocket made by Garvey Spacecraft Corporation, along with their sister satellite CP9 built by California Polytechnic University. However, StangSat was damaged during an off nominal landing and this project will give beneficial insights into what loads the CubeSat experienced during the crash
Dynamic Event Tree Analysis Through RAVEN
A. Alfonsi; C. Rabiti; D. Mandelli; J. Cogliati; R. A. Kinoshita; A. Naviglio
2013-09-01
Conventional Event-Tree (ET) based methodologies are extensively used as tools to perform reliability and safety assessment of complex and critical engineering systems. One of the disadvantages of these methods is that timing/sequencing of events and system dynamics is not explicitly accounted for in the analysis. In order to overcome these limitations several techniques, also know as Dynamic Probabilistic Risk Assessment (D-PRA), have been developed. Monte-Carlo (MC) and Dynamic Event Tree (DET) are two of the most widely used D-PRA methodologies to perform safety assessment of Nuclear Power Plants (NPP). In the past two years, the Idaho National Laboratory (INL) has developed its own tool to perform Dynamic PRA: RAVEN (Reactor Analysis and Virtual control ENvironment). RAVEN has been designed in a high modular and pluggable way in order to enable easy integration of different programming languages (i.e., C++, Python) and coupling with other application including the ones based on the MOOSE framework, developed by INL as well. RAVEN performs two main tasks: 1) control logic driver for the new Thermo-Hydraulic code RELAP-7 and 2) post-processing tool. In the first task, RAVEN acts as a deterministic controller in which the set of control logic laws (user defined) monitors the RELAP-7 simulation and controls the activation of specific systems. Moreover, RAVEN also models stochastic events, such as components failures, and performs uncertainty quantification. Such stochastic modeling is employed by using both MC and DET algorithms. In the second task, RAVEN processes the large amount of data generated by RELAP-7 using data-mining based algorithms. This paper focuses on the first task and shows how it is possible to perform the analysis of dynamic stochastic systems using the newly developed RAVEN DET capability. As an example, the Dynamic PRA analysis, using Dynamic Event Tree, of a simplified pressurized water reactor for a Station Black-Out scenario is presented.
Dynamic Analysis of Nuclear Energy System Strategies
Den Durpel, Luc Van
2004-06-17
DANESS is an integrated process model for nuclear energy systems allowing the simulation of multiple reactors and fuel cycles in a continuously changing nuclear reactor park configuration. The model is energy demand driven and simulates all nuclear fuel cycle facilites, up to 10 reactors and fuels. Reactor and fuel cycle facility history are traced and the cost of generating energy is calculated per reactor and for total nuclear energy system. The DANESS model aims at performing dynamic systems analysis of nuclear energy development used for integrated analysis of development paths for nuclear energy, parameter scoping for new nuclear energy systems, economic analysis of nuclear energy, government role analysis, and education.
Dynamic analysis for shuttle design verification
NASA Technical Reports Server (NTRS)
Fralich, R. W.; Green, C. E.; Rheinfurth, M. H.
1972-01-01
Two approaches that are used for determining the modes and frequencies of space shuttle structures are discussed. The first method, direct numerical analysis, involves finite element mathematical modeling of the space shuttle structure in order to use computer programs for dynamic structural analysis. The second method utilizes modal-coupling techniques of experimental verification made by vibrating only spacecraft components and by deducing modes and frequencies of the complete vehicle from results obtained in the component tests.
Final Report Computational Analysis of Dynamical Systems
Guckenheimer, John
2012-05-08
This is the final report for DOE Grant DE-FG02-93ER25164, initiated in 1993. This grant supported research of John Guckenheimer on computational analysis of dynamical systems. During that period, seventeen individuals received PhD degrees under the supervision of Guckenheimer and over fifty publications related to the grant were produced. This document contains copies of these publications.
Chen, Zhi; Hu, Kun; Stanley, H. Eugene; Novak, Vera; Ivanov, Plamen Ch.
2007-01-01
We investigate the relationship between the blood flow velocities (BFV) in the middle cerebral arteries and beat-to-beat blood pressure (BP) recorded from a finger in healthy and post-stroke subjects during the quasisteady state after perturbation for four different physiologic conditions: supine rest, head-up tilt, hyperventilation, and CO2 rebreathing in upright position. To evaluate whether instantaneous BP changes in the steady state are coupled with instantaneous changes in the BFV, we compare dynamical patterns in the instantaneous phases of these signals, obtained from the Hilbert transform, as a function of time. We find that in post-stroke subjects the instantaneous phase increments of BP and BFV exhibit well-pronounced patterns that remain stable in time for all four physiologic conditions, while in healthy subjects these patterns are different, less pronounced, and more variable. We propose an approach based on the cross-correlation of the instantaneous phase increments to quantify the coupling between BP and BFV signals. We find that the maximum correlation strength is different for the two groups and for the different conditions. For healthy subjects the amplitude of the cross-correlation between the instantaneous phase increments of BP and BFV is small and attenuates within 3−5 heartbeats. In contrast, for post-stroke subjects, this amplitude is significantly larger and cross-correlations persist up to 20 heartbeats. Further, we show that the instantaneous phase increments of BP and BFV are cross-correlated even within a single heartbeat cycle. We compare the results of our approach with three complementary methods: direct BP-BFV cross-correlation, transfer function analysis, and phase synchronization analysis. Our findings provide insight into the mechanism of cerebral vascular control in healthy subjects, suggesting that this control mechanism may involve rapid adjustments (within a heartbeat) of the cerebral vessels, so that BFV remains steady in
Flight Dynamics Analysis Branch 2005 Technical Highlights
NASA Technical Reports Server (NTRS)
2005-01-01
This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 595, in support of flight projects and technology development initiatives in Fiscal Year (FY) 2005. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics including spacecraft navigation (autonomous and ground based); spacecraft trajectory design and maneuver planning; attitude analysis; attitude determination and sensor calibration; and attitude control subsystem (ACS) analysis and design. The FDAB currently provides support for missions and technology development projects involving NASA, other government agencies, academia, and private industry.
Nonlinear dynamic analysis of sandwich panels
NASA Technical Reports Server (NTRS)
Lush, A. M.
1984-01-01
Two analytical techniques applicable to large deflection dynamic response calculations for pressure loaded composite sandwich panels are demonstrated. One technique utilizes finite element modeling with a single equivalent layer representing the face sheets and core. The other technique utilizes the modal analysis computer code DEPROP which was recently modified to include transverse shear deformation in a core layer. The example problem consists of a simply supported rectangular sandwich panel. Included are comparisons of linear and nonlinear static response calculations, in addition to dynamic response calculations.
Dynamic analysis: a new point of view
NASA Astrophysics Data System (ADS)
Chaves, Eduardo W. V.
2016-05-01
In this article, an alternative to the classical dynamic equation formulation is presented. To achieve this goal, we need to derive the reciprocal theorem in rates and the principle of virtual work in rates, in a small deformation regime, with which we will be able to obtain an expression for damping force. In this new formulation, some terms that are not commonly considered in the classical formulation appear, e.g., the term that is function of jerk (the rate of change of acceleration). Moreover, in this formulation the term that characterizes material nonlinearity, in dynamic analysis, appears naturally.
Dynamical analysis of generalized Galileon cosmology
Leon, Genly; Saridakis, Emmanuel N. E-mail: Emmanuel_Saridakis@baylor.edu
2013-03-01
We perform a detailed dynamical analysis of generalized Galileon cosmology, incorporating also the requirements of ghost and instabilities absence. We find that there are not any new stable late-time solutions apart from those of standard quintessence. Furthermore, depending on the model parameters the Galileons may survive at late times or they may completely disappear by the dynamics, however the corresponding observables are always independent of the Galileon terms, determined only by the usual action terms. Thus, although the Galileons can play an important role at inflationary or at recent times, in the future, when the universe will asymptotically reach its stable state, they will not have any effect on its evolution.
Cluster analysis of word frequency dynamics
NASA Astrophysics Data System (ADS)
Maslennikova, Yu S.; Bochkarev, V. V.; Belashova, I. A.
2015-01-01
This paper describes the analysis and modelling of word usage frequency time series. During one of previous studies, an assumption was put forward that all word usage frequencies have uniform dynamics approaching the shape of a Gaussian function. This assumption can be checked using the frequency dictionaries of the Google Books Ngram database. This database includes 5.2 million books published between 1500 and 2008. The corpus contains over 500 billion words in American English, British English, French, German, Spanish, Russian, Hebrew, and Chinese. We clustered time series of word usage frequencies using a Kohonen neural network. The similarity between input vectors was estimated using several algorithms. As a result of the neural network training procedure, more than ten different forms of time series were found. They describe the dynamics of word usage frequencies from birth to death of individual words. Different groups of word forms were found to have different dynamics of word usage frequency variations.
Retroactive Operations: On "Increments" in Mandarin Chinese Conversations
ERIC Educational Resources Information Center
Lim, Ni Eng
2014-01-01
Conversation Analysis (CA) has established repair (Schegloff, Jefferson & Sacks 1977; Schegloff 1979; Kitzinger 2013) as a conversational mechanism for managing contingencies of talk-in-interaction. In this dissertation, I look at a particular sort of "repair" termed TCU-continuations (or otherwise known increments in other…
Precise Analysis of Polymer Rotational Dynamics
Kim, Jun Mo; Baig, Chunggi
2016-01-01
Through the analysis of individual chain dynamics alongside the corresponding molecular structures under shear via nonequilibrium molecular dynamics simulations of C178H358 linear and short-chain branched polyethylene melts under shear flow, we observed that the conventional method based on the chain end-to-end vector (and/or the gyration tensor of chain) is susceptible to quantitatively inaccurate measurements and often misleading information in describing the rotational dynamics of polymers. Identifying the flaw as attributed to strong irregular Brownian fluctuations inherent to the chain ends associated with their large free volume and strong molecular collisions, we propose a simple, robust way based on the chain center-to-center vector connecting the two centers of mass of the bisected chain, which is shown to adequately describe polymer rotational dynamics without such shortcomings. We present further consideration that the proposed method can be useful in accurately measuring the overall chain structure and dynamics of polymeric materials with various molecular architectures, including branched and ring polymers. PMID:26743689
Precise Analysis of Polymer Rotational Dynamics
NASA Astrophysics Data System (ADS)
Kim, Jun Mo; Baig, Chunggi
2016-01-01
Through the analysis of individual chain dynamics alongside the corresponding molecular structures under shear via nonequilibrium molecular dynamics simulations of C178H358 linear and short-chain branched polyethylene melts under shear flow, we observed that the conventional method based on the chain end-to-end vector (and/or the gyration tensor of chain) is susceptible to quantitatively inaccurate measurements and often misleading information in describing the rotational dynamics of polymers. Identifying the flaw as attributed to strong irregular Brownian fluctuations inherent to the chain ends associated with their large free volume and strong molecular collisions, we propose a simple, robust way based on the chain center-to-center vector connecting the two centers of mass of the bisected chain, which is shown to adequately describe polymer rotational dynamics without such shortcomings. We present further consideration that the proposed method can be useful in accurately measuring the overall chain structure and dynamics of polymeric materials with various molecular architectures, including branched and ring polymers.
Epock: rapid analysis of protein pocket dynamics
Laurent, Benoist; Chavent, Matthieu; Cragnolini, Tristan; Dahl, Anna Caroline E.; Pasquali, Samuela; Derreumaux, Philippe; Sansom, Mark S.P.; Baaden, Marc
2015-01-01
Summary: The volume of an internal protein pocket is fundamental to ligand accessibility. Few programs that compute such volumes manage dynamic data from molecular dynamics (MD) simulations. Limited performance often prohibits analysis of large datasets. We present Epock, an efficient command-line tool that calculates pocket volumes from MD trajectories. A plugin for the VMD program provides a graphical user interface to facilitate input creation, run Epock and analyse the results. Availability and implementation: Epock C++ source code, Python analysis scripts, VMD Tcl plugin, documentation and installation instructions are freely available at http://epock.bitbucket.org. Contact: benoist.laurent@gmail.com or baaden@smplinux.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25505095
Analysis of integral lift-fan engine dynamics
NASA Technical Reports Server (NTRS)
Szuch, J. R.
1973-01-01
An integral lift-fan engine being considered for VTOL applications was simulated using the hybrid computer. A contractor-proposed fuel control and a simple model of the roll dynamics of a hovering VTOL airplane were used in the simulation. Both steady-state and transient data were generated. The desired engine time constant of 0.20 second was achieved for thrust increments less than 10 precent of the design thrust. For roll angle demands less than 10 deg, roll angle overshoot was acceptable with more than 84 percent of the demand achieved in 1 second.
Simplified Dynamic Analysis of Grinders Spindle Node
NASA Astrophysics Data System (ADS)
Demec, Peter
2014-12-01
The contribution deals with the simplified dynamic analysis of surface grinding machine spindle node. Dynamic analysis is based on the use of the transfer matrix method, which is essentially a matrix form of method of initial parameters. The advantage of the described method, despite the seemingly complex mathematical apparatus, is primarily, that it does not require for solve the problem of costly commercial software using finite element method. All calculations can be made for example in MS Excel, which is advantageous especially in the initial stages of constructing of spindle node for the rapid assessment of the suitability its design. After detailing the entire structure of spindle node is then also necessary to perform the refined dynamic analysis in the environment of FEM, which it requires the necessary skills and experience and it is therefore economically difficult. This work was developed within grant project KEGA No. 023TUKE-4/2012 Creation of a comprehensive educational - teaching material for the article Production technique using a combination of traditional and modern information technology and e-learning.
Dynamic analysis of plunger lift operations
Lea, J.F.
1981-01-01
Presented is a description of a dynamic model of plunger lift operations which, as opposed to previous methods of analysis. includes calculation of the plunger velocity as the plunger and liquid slug travel up the tubing. Also an analysis of plunger cycles in a high gas-liquid ratio well is presented to indicate the maximum rate of slug buildup, and the maximum casing pressure necessary to lift the plunger and accumulated liquids. The information presented allows a more detailed engineering approach to analyzing the performance of a plunger lifted well. Refs.
Dynamic Analysis of Nuclear Energy System Strategies
2004-06-17
DANESS is an integrated process model for nuclear energy systems allowing the simulation of multiple reactors and fuel cycles in a continuously changing nuclear reactor park configuration. The model is energy demand driven and simulates all nuclear fuel cycle facilites, up to 10 reactors and fuels. Reactor and fuel cycle facility history are traced and the cost of generating energy is calculated per reactor and for total nuclear energy system. The DANESS model aims atmore » performing dynamic systems analysis of nuclear energy development used for integrated analysis of development paths for nuclear energy, parameter scoping for new nuclear energy systems, economic analysis of nuclear energy, government role analysis, and education.« less
Vehicle dynamic analysis using neuronal network algorithms
NASA Astrophysics Data System (ADS)
Oloeriu, Florin; Mocian, Oana
2014-06-01
Theoretical developments of certain engineering areas, the emergence of new investigation tools, which are better and more precise and their implementation on-board the everyday vehicles, all these represent main influence factors that impact the theoretical and experimental study of vehicle's dynamic behavior. Once the implementation of these new technologies onto the vehicle's construction had been achieved, it had led to more and more complex systems. Some of the most important, such as the electronic control of engine, transmission, suspension, steering, braking and traction had a positive impact onto the vehicle's dynamic behavior. The existence of CPU on-board vehicles allows data acquisition and storage and it leads to a more accurate and better experimental and theoretical study of vehicle dynamics. It uses the information offered directly by the already on-board built-in elements of electronic control systems. The technical literature that studies vehicle dynamics is entirely focused onto parametric analysis. This kind of approach adopts two simplifying assumptions. Functional parameters obey certain distribution laws, which are known in classical statistics theory. The second assumption states that the mathematical models are previously known and have coefficients that are not time-dependent. Both the mentioned assumptions are not confirmed in real situations: the functional parameters do not follow any known statistical repartition laws and the mathematical laws aren't previously known and contain families of parameters and are mostly time-dependent. The purpose of the paper is to present a more accurate analysis methodology that can be applied when studying vehicle's dynamic behavior. A method that provides the setting of non-parametrical mathematical models for vehicle's dynamic behavior is relying on neuronal networks. This method contains coefficients that are time-dependent. Neuronal networks are mostly used in various types' system controls, thus
Expansion of epicyclic gear dynamic analysis program
NASA Technical Reports Server (NTRS)
Boyd, Linda Smith; Pike, James A.
1987-01-01
The multiple mesh/single stage dynamics program is a gear tooth analysis program which determines detailed geometry, dynamic loads, stresses, and surface damage factors. The program can analyze a variety of both epicyclic and single mesh systems with spur or helical gear teeth including internal, external, and buttress tooth forms. The modifications refine the options for the flexible carrier and flexible ring gear rim and adds three options: a floating Sun gear option; a natural frequency option; and a finite element compliance formulation for helical gear teeth. The option for a floating Sun incorporates two additional degrees of freedom at the Sun center. The natural frequency option evaluates the frequencies of planetary, star, or differential systems as well as the effect of additional springs at the Sun center and those due to a flexible carrier and/or ring gear rim. The helical tooth pair finite element calculated compliance is obtained from an automated element breakup of the helical teeth and then is used with the basic gear dynamic solution and stress postprocessing routines. The flexible carrier or ring gear rim option for planetary and star spur gear systems allows the output torque per carrier and ring gear rim segment to vary based on the dynamic response of the entire system, while the total output torque remains constant.
DynaMod: dynamic functional modularity analysis
Sun, Choong-Hyun; Hwang, Taeho; Oh, Kimin; Yi, Gwan-Su
2010-01-01
A comprehensive analysis of enriched functional categories in differentially expressed genes is important to extract the underlying biological processes of genome-wide expression profiles. Moreover, identification of the network of significant functional modules in these dynamic processes is an interesting challenge. This study introduces DynaMod, a web-based application that identifies significant functional modules reflecting the change of modularity and differential expressions that are correlated with gene expression profiles under different conditions. DynaMod allows the inspection of a wide variety of functional modules such as the biological pathways, transcriptional factor–target gene groups, microRNA–target gene groups, protein complexes and hub networks involved in protein interactome. The statistical significance of dynamic functional modularity is scored based on Z-statistics from the average of mutual information (MI) changes of involved gene pairs under different conditions. Significantly correlated gene pairs among the functional modules are used to generate a correlated network of functional categories. In addition to these main goals, this scoring strategy supports better performance to detect significant genes in microarray analyses, as the scores of correlated genes show the superior characteristics of the significance analysis compared with those of individual genes. DynaMod also offers cross-comparison between different analysis outputs. DynaMod is freely accessible at http://piech.kaist.ac.kr/dynamod. PMID:20460468
Architectural Analysis of Dynamically Reconfigurable Systems
NASA Technical Reports Server (NTRS)
Lindvall, Mikael; Godfrey, Sally; Ackermann, Chris; Ray, Arnab; Yonkwa, Lyly
2010-01-01
oTpics include: the problem (increased flexibility of architectural styles decrease analyzability, behavior emerges and varies depending on the configuration, does the resulting system run according to the intended design, and architectural decisions can impede or facilitate testing); top down approach to architecture analysis, detection of defects and deviations, and architecture and its testability; currently targeted projects GMSEC and CFS; analyzing software architectures; analyzing runtime events; actual architecture recognition; GMPUB in Dynamic SAVE; sample output from new approach; taking message timing delays into account; CFS examples of architecture and testability; some recommendations for improved testablity; and CFS examples of abstract interfaces and testability; CFS example of opening some internal details.
Lile, Joshua A; Wesley, Michael J; Kelly, Thomas H; Hays, Lon R
2016-04-01
The aim of the present study was to examine a potential mechanism of action of gabapentin to manage cannabis-use disorders by determining the interoceptive effects of gabapentin in cannabis users discriminating [INCREMENT]-tetrahydrocannabinol ([INCREMENT]-THC) using a pharmacologically selective drug-discrimination procedure. Eight cannabis users learned to discriminate 30 mg oral [INCREMENT]-THC from placebo and then received gabapentin (600 and 1200 mg), [INCREMENT]-THC (5, 15, and 30 mg), and placebo alone and in combination. Self-report, task performance, and physiological measures were also collected. [INCREMENT]-THC served as a discriminative stimulus, produced positive subjective effects, elevated heart rate, and impaired psychomotor performance. Both doses of gabapentin substituted for the [INCREMENT]-THC discriminative stimulus and engendered subjective and performance-impairing effects that overlapped with those of [INCREMENT]-THC when administered alone. When administered concurrently, gabapentin shifted the discriminative-stimulus effects of [INCREMENT]-THC leftward/upward, and combinations of [INCREMENT]-THC and gabapentin generally produced larger effects on cannabinoid-sensitive outcomes relative to [INCREMENT]-THC alone. These results suggest that one mechanism by which gabapentin might facilitate cannabis abstinence is by producing effects that overlap with those of cannabinoids.
Lile, Joshua A; Wesley, Michael J; Kelly, Thomas H; Hays, Lon R
2016-04-01
The aim of the present study was to examine a potential mechanism of action of gabapentin to manage cannabis-use disorders by determining the interoceptive effects of gabapentin in cannabis users discriminating [INCREMENT]-tetrahydrocannabinol ([INCREMENT]-THC) using a pharmacologically selective drug-discrimination procedure. Eight cannabis users learned to discriminate 30 mg oral [INCREMENT]-THC from placebo and then received gabapentin (600 and 1200 mg), [INCREMENT]-THC (5, 15, and 30 mg), and placebo alone and in combination. Self-report, task performance, and physiological measures were also collected. [INCREMENT]-THC served as a discriminative stimulus, produced positive subjective effects, elevated heart rate, and impaired psychomotor performance. Both doses of gabapentin substituted for the [INCREMENT]-THC discriminative stimulus and engendered subjective and performance-impairing effects that overlapped with those of [INCREMENT]-THC when administered alone. When administered concurrently, gabapentin shifted the discriminative-stimulus effects of [INCREMENT]-THC leftward/upward, and combinations of [INCREMENT]-THC and gabapentin generally produced larger effects on cannabinoid-sensitive outcomes relative to [INCREMENT]-THC alone. These results suggest that one mechanism by which gabapentin might facilitate cannabis abstinence is by producing effects that overlap with those of cannabinoids. PMID:26313650
Dynamical Analysis of the SHIELD Galaxies
NASA Astrophysics Data System (ADS)
McNichols, Andrew Thomas; Teich, Yaron G.; Cannon, John M.
2015-08-01
We present a dynamical analysis of the 12 extremely low-mass dwarf galaxies that comprise SHIELD, a product of the Arecibo Legacy Fast ALFA survey (ALFALFA). We use multi-configuration, high spatial (˜ 150 - 350 pc) and spectral (0.82 - 2.46 km s-1 ch-1) resolution data obtained from 21 cm observations conducted with the Karl G. Jansky Very Large Array. For each source, we attempt to derive an inclination-corrected rotation curve, to calculate the maximum rotation velocity (≤ 30 km s-1 for the survey population), and to further constrain the H I mass. For sources from which a sufficiently precise rotation curve can be derived, we use spatially resolved Spitzer Space Telescope 3.6 and 4.5 μm images to determine the stellar mass as a function of radius. The gaseous and stellar mass estimates are then used to decompose the total dynamical mass values and to obtain neutral gas fractions and relative baryonic content. Characterizing the kinematics of the SHIELD galaxies allows us to draw more general conclusions about the structure and dynamical evolution of low mass dwarf galaxies in the local universe.This work is a result of collaboration with the SHIELD Team and is supported by NSF grant 1211683.
Dynamic analysis of optical microfiber coil resonators.
Kowsari, A; Ahmadi, V; Darvish, G; Moravvej-Farshi, M K
2016-08-20
We present transient time analysis of a two-turn optical microfiber coil resonator (MCR). Our dynamic model is based on two sets of equations, coupled mode and nonlinear Schrödinger equations. The pulse response of this device is obtained by numerically solving the modified sets of equations in a dynamic regime. The results show that if the input pulse of the MCR is set at an off-resonance wavelength, this resonator operates as an all-pass filter with neither loss nor time delay. But in the case of resonance, the output pulse may have loss and a relatively long time delay, according to the continuous rotation of light between the first and the second turns of the MCR. Tunable time delays up to t_{d}=320 ps are obtained by choosing different values of the coupling coefficients. Furthermore, the material and structural dispersions of the MCR are studied, and it is shown that strong dispersive effects can occur even in this millimeter dimensions photonic device. Pulse broadening and distortion effects of the MCR are studied in the dynamic regime. The results show that, for high bit rate applications, the dispersion effects of the MCR should be carefully considered. Finally, fundamental soliton solution and its conditions in the MCR are investigated. PMID:27556989
Perturbation analysis for patch occupancy dynamics
Martin, Julien; Nichols, James D.; McIntyre, Carol L.; Ferraz, Goncalo; Hines, James E.
2009-01-01
Perturbation analysis is a powerful tool to study population and community dynamics. This article describes expressions for sensitivity metrics reflecting changes in equilibrium occupancy resulting from small changes in the vital rates of patch occupancy dynamics (i.e., probabilities of local patch colonization and extinction). We illustrate our approach with a case study of occupancy dynamics of Golden Eagle (Aquila chrysaetos) nesting territories. Examination of the hypothesis of system equilibrium suggests that the system satisfies equilibrium conditions. Estimates of vital rates obtained using patch occupancy models are used to estimate equilibrium patch occupancy of eagles. We then compute estimates of sensitivity metrics and discuss their implications for eagle population ecology and management. Finally, we discuss the intuition underlying our sensitivity metrics and then provide examples of ecological questions that can be addressed using perturbation analyses. For instance, the sensitivity metrics lead to predictions about the relative importance of local colonization and local extinction probabilities in influencing equilibrium occupancy for rare and common species.
Perturbation analysis for patch occupancy dynamics.
Martin, Julien; Nichols, James D; McIntyre, Carol L; Ferraz, Gonçalo; Hines, James E
2009-01-01
Perturbation analysis is a powerful tool to study population and community dynamics. This article describes expressions for sensitivity metrics reflecting changes in equilibrium occupancy resulting from small changes in the vital rates of patch occupancy dynamics (i.e., probabilities of local patch colonization and extinction). We illustrate our approach with a case study of occupancy dynamics of Golden Eagle (Aquila chrysaetos) nesting territories. Examination of the hypothesis of system equilibrium suggests that the system satisfies equilibrium conditions. Estimates of vital rates obtained using patch occupancy models are used to estimate equilibrium patch occupancy of eagles. We then compute estimates of sensitivity metrics and discuss their implications for eagle population ecology and management. Finally, we discuss the intuition underlying our sensitivity metrics and then provide examples of ecological questions that can be addressed using perturbation analyses. For instance, the sensitivity metrics lead to predictions about the relative importance of local colonization and local extinction probabilities in influencing equilibrium occupancy for rare and common species. PMID:19294907
Dynamic Factor Analysis Models with Time-Varying Parameters
ERIC Educational Resources Information Center
Chow, Sy-Miin; Zu, Jiyun; Shifren, Kim; Zhang, Guangjian
2011-01-01
Dynamic factor analysis models with time-varying parameters offer a valuable tool for evaluating multivariate time series data with time-varying dynamics and/or measurement properties. We use the Dynamic Model of Activation proposed by Zautra and colleagues (Zautra, Potter, & Reich, 1997) as a motivating example to construct a dynamic factor model…
Dynamic analysis of plunger lift operations
Lea, J.F.
1982-11-01
Plunger lift is a method of artificial lift that uses a free piston traveling up and down inside the tubing in a cyclic manner. The piston serves to increase the efficiency of lifting liquids in gas/liquid production by reducing liquid fallback through the gas. Presented here is a description of a dynamic model of plunger lift operations that, as opposed to previous methods of analysis, includes calculation of the plunger velocity as the plunger and liquid slug travel up the tubing. Also, an analysis of plunger cycles in a high gas/liquid ratio (GLR) well is presented to indicate the maximum rate of slug buildup and the maximum casing pressure necessary to lift the plunger and accumulated liquids. The information presented allows a more detailed engineering approach to analyzing the performance of a plunger-lifted well.
Dynamic analysis of the Milad Tower
NASA Astrophysics Data System (ADS)
Wilhelm, Edwin; Ford, Mitchell; Coelho, Darren; Lawler, Lachlan; Ansourian, Peter; Alonso-Marroquin, Fernando; Tahmasebinia, Faham
2016-08-01
This report involves the modelling of the Milad Tower using the finite element analysis program Strand7. A dynamic analysis was performed on the structure in order to understand the deflections and stresses as a result of earthquake and wind loading. In particular, Linear Static as well as Natural Frequency and Spectral Response solvers were used to determine the behaviour of the structure under loading. The findings of the report highlight that the structure was modelled accurately with the outputs representing realistic values. The report suggests that the design of the beams, columns, slabs and all structural members was sufficient enough to support the tower during maximum loading cases. The governing load case was earthquake loading.
Comparative Sensitivity Analysis of Muscle Activation Dynamics.
Rockenfeller, Robert; Günther, Michael; Schmitt, Syn; Götz, Thomas
2015-01-01
We mathematically compared two models of mammalian striated muscle activation dynamics proposed by Hatze and Zajac. Both models are representative for a broad variety of biomechanical models formulated as ordinary differential equations (ODEs). These models incorporate parameters that directly represent known physiological properties. Other parameters have been introduced to reproduce empirical observations. We used sensitivity analysis to investigate the influence of model parameters on the ODE solutions. In addition, we expanded an existing approach to treating initial conditions as parameters and to calculating second-order sensitivities. Furthermore, we used a global sensitivity analysis approach to include finite ranges of parameter values. Hence, a theoretician striving for model reduction could use the method for identifying particularly low sensitivities to detect superfluous parameters. An experimenter could use it for identifying particularly high sensitivities to improve parameter estimation. Hatze's nonlinear model incorporates some parameters to which activation dynamics is clearly more sensitive than to any parameter in Zajac's linear model. Other than Zajac's model, Hatze's model can, however, reproduce measured shifts in optimal muscle length with varied muscle activity. Accordingly we extracted a specific parameter set for Hatze's model that combines best with a particular muscle force-length relation. PMID:26417379
Aero-Thermo-Dynamic Mass Analysis
NASA Astrophysics Data System (ADS)
Shiba, Kota; Yoshikawa, Genki
2016-07-01
Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis.
Aero-Thermo-Dynamic Mass Analysis.
Shiba, Kota; Yoshikawa, Genki
2016-07-14
Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis.
Aero-Thermo-Dynamic Mass Analysis.
Shiba, Kota; Yoshikawa, Genki
2016-01-01
Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis. PMID:27412335
Aero-Thermo-Dynamic Mass Analysis
Shiba, Kota; Yoshikawa, Genki
2016-01-01
Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis. PMID:27412335
Dynamic characterization and analysis of space shuttle SRM solid propellant
NASA Technical Reports Server (NTRS)
Hufferd, W. L.
1979-01-01
The dynamic response properties of the space shuttle solid rocket moter (TP-H1148) propellant were characterized and the expected limits of propellant variability were established. Dynamic shear modulus tests conducted on six production batches of TP-H1148 at various static and dynamic strain levels over the temperature range from 40 F to 90 F. A heat conduction analysis and dynamic response analysis of the space shuttle solid rocket motor (SRM) were also conducted. The dynamic test results show significant dependence on static and dynamic strain levels and considerable batch-to-batch and within-batch variability. However, the results of the SRM dynamic response analyses clearly demonstrate that the stiffness of the propellant has no consequential on the overall SRM dynamic response. Only the mass of the propellant needs to be considered in the dynamic analysis of the space shuttle SRM.
A Novel Classification Algorithm Based on Incremental Semi-Supervised Support Vector Machine
Gao, Fei; Mei, Jingyuan; Sun, Jinping; Wang, Jun; Yang, Erfu; Hussain, Amir
2015-01-01
For current computational intelligence techniques, a major challenge is how to learn new concepts in changing environment. Traditional learning schemes could not adequately address this problem due to a lack of dynamic data selection mechanism. In this paper, inspired by human learning process, a novel classification algorithm based on incremental semi-supervised support vector machine (SVM) is proposed. Through the analysis of prediction confidence of samples and data distribution in a changing environment, a “soft-start” approach, a data selection mechanism and a data cleaning mechanism are designed, which complete the construction of our incremental semi-supervised learning system. Noticeably, with the ingenious design procedure of our proposed algorithm, the computation complexity is reduced effectively. In addition, for the possible appearance of some new labeled samples in the learning process, a detailed analysis is also carried out. The results show that our algorithm does not rely on the model of sample distribution, has an extremely low rate of introducing wrong semi-labeled samples and can effectively make use of the unlabeled samples to enrich the knowledge system of classifier and improve the accuracy rate. Moreover, our method also has outstanding generalization performance and the ability to overcome the concept drift in a changing environment. PMID:26275294
de Lara-Castells, María Pilar; Stoll, Hermann; Civalleri, Bartolomeo; Causà, Mauro; Voloshina, Elena; Mitrushchenkov, Alexander O; Pi, Martí
2014-10-21
In this work we propose a general strategy to calculate accurate He-surface interaction potentials. It extends the dispersionless density functional approach recently developed by Pernal et al. [Phys. Rev. Lett. 103, 263201 (2009)] to adsorbate-surface interactions by including periodic boundary conditions. We also introduce a scheme to parametrize the dispersion interaction by calculating two- and three-body dispersion terms at coupled cluster singles and doubles and perturbative triples (CCSD(T)) level via the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)]. The performance of the composite approach is tested on (4)He/graphene by determining the energies of the low-lying selective adsorption states, finding an excellent agreement with the best available theoretical data. Second, the capability of the approach to describe dispersionless correlation effects realistically is used to extract dispersion effects in time-dependent density functional simulations on the collision of (4)He droplets with a single graphene sheet. It is found that dispersion effects play a key role in the fast spreading of the (4)He nanodroplet, the evaporation-like process of helium atoms, and the formation of solid-like helium structures. These characteristics are expected to be quite general and highly relevant to explain experimental measurements with the newly developed helium droplet mediated deposition technique.
Lara-Castells, María Pilar de; Stoll, Hermann; Civalleri, Bartolomeo; Causà, Mauro; Voloshina, Elena; Mitrushchenkov, Alexander O.; Pi, Martí
2014-10-21
In this work we propose a general strategy to calculate accurate He–surface interaction potentials. It extends the dispersionless density functional approach recently developed by Pernal et al. [Phys. Rev. Lett. 103, 263201 (2009)] to adsorbate-surface interactions by including periodic boundary conditions. We also introduce a scheme to parametrize the dispersion interaction by calculating two- and three-body dispersion terms at coupled cluster singles and doubles and perturbative triples (CCSD(T)) level via the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)]. The performance of the composite approach is tested on {sup 4}He/graphene by determining the energies of the low-lying selective adsorption states, finding an excellent agreement with the best available theoretical data. Second, the capability of the approach to describe dispersionless correlation effects realistically is used to extract dispersion effects in time-dependent density functional simulations on the collision of {sup 4}He droplets with a single graphene sheet. It is found that dispersion effects play a key role in the fast spreading of the {sup 4}He nanodroplet, the evaporation-like process of helium atoms, and the formation of solid-like helium structures. These characteristics are expected to be quite general and highly relevant to explain experimental measurements with the newly developed helium droplet mediated deposition technique.
Atmospheric response to Saharan dust deduced from ECMWF reanalysis increments
NASA Astrophysics Data System (ADS)
Kishcha, P.; Alpert, P.; Barkan, J.; Kirchner, I.; Machenhauer, B.
2003-04-01
This study focuses on the atmospheric temperature response to dust deduced from a new source of data - the European Reanalysis (ERA) increments. These increments are the systematic errors of global climate models, generated in reanalysis procedure. The model errors result not only from the lack of desert dust but also from a complex combination of many kinds of model errors. Over the Sahara desert the dust radiative effect is believed to be a predominant model defect which should significantly affect the increments. This dust effect was examined by considering correlation between the increments and remotely-sensed dust. Comparisons were made between April temporal variations of the ERA analysis increments and the variations of the Total Ozone Mapping Spectrometer aerosol index (AI) between 1979 and 1993. The distinctive structure was identified in the distribution of correlation composed of three nested areas with high positive correlation (> 0.5), low correlation, and high negative correlation (<-0.5). The innermost positive correlation area (PCA) is a large area near the center of the Sahara desert. For some local maxima inside this area the correlation even exceeds 0.8. The outermost negative correlation area (NCA) is not uniform. It consists of some areas over the eastern and western parts of North Africa with a relatively small amount of dust. Inside those areas both positive and negative high correlations exist at pressure levels ranging from 850 to 700 hPa, with the peak values near 775 hPa. Dust-forced heating (cooling) inside the PCA (NCA) is accompanied by changes in the static stability of the atmosphere above the dust layer. The reanalysis data of the European Center for Medium Range Weather Forecast(ECMWF) suggests that the PCA (NCA) corresponds mainly to anticyclonic (cyclonic) flow, negative (positive) vorticity, and downward (upward) airflow. These facts indicate an interaction between dust-forced heating /cooling and atmospheric circulation. The
Dynamic analysis of flexible multibody structures
NASA Technical Reports Server (NTRS)
Hernried, Alan G.
1989-01-01
A system composed of several interconnected elastic components that may experience large angular motion relative to each other during operation is referred to as a flexible multibody structure. Several formulations were proposed for the determination of the dynamic response of controlled flexible multibody structures. In general, these formulations consist of superposing elastic deformations of the component body onto the large rigid body motion of the component. It was shown that this particular methodology for combining linear structural deformations with nonlinear kinematics can lead to erroneous response predictions when either the beam member is very flexible or the rotational speed is high. In addition, previous formulations introduce constraint equations to define the interrelations among system components. This approach increases the number of equations that must be solved, and may result in contraint violation when numerical error accumulates during the integration process. In order to overcome the difficulties, a new approach was suggested. The approach is essentially a finite element formulation which takes advantage of the fact that many multibody structures are joint dominated. The Large Angle Transient Dynamic Analysis (LATDYN) program for clarity of documentation, ease of use, user friendliness, modeling generality, and accuracy of results was evaluated. This required gaining a working familiarity with the code and performing several case studies.
Pixel Dynamics Analysis of Photospheric Spectral Data
NASA Astrophysics Data System (ADS)
Rasca, Anthony P.; Chen, James; Pevtsov, Alexei A.
2015-04-01
Recent advances in solar observations have led to higher-resolution surface (photosphere) images that reveal bipolar magnetic features operating near the resolution limit during emerging flux events. Further improvements in resolution are expected to reveal even smaller dynamic features. Such photospheric features provide observable indications of what is happening before, during, and after flux emergence, eruptions in the corona, and other phenomena. Visible changes in photospheric active regions also play a major role in predicting eruptions that are responsible for geomagnetic plasma disturbances. A new method has been developed to extract physical information from photospheric data (e.g., SOLIS Stokes parameters) based on the statistics of pixel-by-pixel variations in spectral (absorption or emission) line quantities such as line profile Doppler shift, width, asymmetry, and flatness. Such properties are determined by the last interaction between detected photons and optically thick photospheric plasmas, and may contain extractable information on local plasma properties at sub-pixel scales. Applying the method to photospheric data with high spectral resolution, our pixel-by-pixel analysis is performed for various regions on the solar disk, ranging from quiet-Sun regions to active regions exhibiting eruptions, characterizing photospheric dynamics using spectral profiles. In particular, the method quantitatively characterizes the time profile of changes in spectral properties in photospheric features and provides improved physical constraints on observed quantities.
Dynamic Analysis of Mobile Device Applications
Corey Thuen
2013-01-01
The On-Device Dynamic Analysis of Mobile Applications (ODAMA) project was started in an effort to protect mobile devices used in Industrial Control Systems (ICS) from cyber attack. Because mobile devices hide as much of the “computer” as possible, the user’s ability to assess the software running on their system is limited. The research team chose Google’s Android platform for this initial research because it is open source and it would give us freedom in our approach, including the ability to modify the mobile device’s operating system itself. The research team concluded that a Privileged Application was the right approach, and the result was ODAMA. This project is an important piece of the work to secure the expanding use of mobile devices with our nation’s critical infrastructure.
Interval prediction in structural dynamic analysis
NASA Technical Reports Server (NTRS)
Hasselman, Timothy K.; Chrostowski, Jon D.; Ross, Timothy J.
1992-01-01
Methods for assessing the predictive accuracy of structural dynamic models are examined with attention given to the effects of modal mass, stiffness, and damping uncertainties. The methods are based on a nondeterministic analysis called 'interval prediction' in which interval variables are used to describe parameters and responses that are unknown. Statistical databases for generic modeling uncertainties are derived from experimental data and incorporated analytically to evaluate responses. Covariance matrices of modal mass, stiffness, and damping parameters are propagated numerically in models of large space structures by means of three methods. The test data tend to fall within the predicted intervals of uncertainty determined by the statistical databases. The present findings demonstrate the suitability of using data from previously analyzed and tested space structures for assessing the predictive accuracy of an analytical model.
Dynamic analysis of truss-beam system
NASA Technical Reports Server (NTRS)
Abu-Saba, Elias G.; Mcginley, William M.; Montgomery, Raymond C.
1991-01-01
A simple truss-beam method for determining the dynamic characteristics of the space structures intended to perform various tasks in orbit is presented. Algorithms are provided to determine the flexibility matrix of the truss beam for use in the equation of motion. The natural frequencies obtained through this method are compared with those obtained through the finite element method. An experimental procedure for verifying the theoretical results is described. It is concluded that the truss-beam method is a simple analysis technique that yields reasonably accurate results with a minimum of computational effort, especially for the critical lower bending modes of flexible structures. The method takes less computer time than more conventional methods and can be programed in both BASIC and FORTRAN for use in micro- and mainframe computers.
Dynamic modelling and analysis of space webs
NASA Astrophysics Data System (ADS)
Yu, Yang; Baoyin, HeXi; Li, JunFeng
2011-04-01
Future space missions demand operations on large flexible structures, for example, space webs, the lightweight cable nets deployable in space, which can serve as platforms for very large structures or be used to capture orbital objects. The interest in research on space webs is likely to increase in the future with the development of promising applications such as Furoshiki sat-ellite of JAXA, Robotic Geostationary Orbit Restorer (ROGER) of ESA and Grapple, Retrieve And Secure Payload (GRASP) of NASA. Unlike high-tensioned nets in civil engineering, space webs may be low-tensioned or tensionless, and extremely flexible, owing to the microgravity in the orbit and the lack of support components, which may cause computational difficulties. Mathematical models are necessary in the analysis of space webs, especially in the conceptual design and evaluation for prototypes. A full three-dimensional finite element (FE) model was developed in this work. Trivial truss elements were adopted to reduce the computational complexity. Considering cable is a compression-free material and its tensile stiffness is also variable, we introduced the cable material constitutive relationship to work out an accurate and feasible model for prototype analysis and design. In the static analysis, the stress distribution and global deformation of the webs were discussed to get access to the knowledge of strength of webs with different types of meshes. In the dynamic analysis, special attention was paid to the impact problem. The max stress and global deformation were investigated. The simulation results indicate the interesting phenomenon which may be worth further research.
Passivhaus: indoor comfort and energy dynamic analysis.
NASA Astrophysics Data System (ADS)
Guida, Antonella; Pagliuca, Antonello; Cardinale, Nicola; Rospi, Gianluca
2013-04-01
The research aims to verify the energy performance as well as the indoor comfort of an energy class A+ building, built so that the sum of the heat passive contributions of solar radiation, transmitted through the windows, and the heat generated inside the building, are adeguate to compensate for the envelope loss during the cold season. The building, located in Emilia Romagna (Italy), was built using a wooden structure, an envelope realized using a pinewood sandwich panels (transmittance U = 0.250 W/m2K) and, inside, a wool flax insulation layer and thermal window frame with low-emissivity glass (U = 0524 W/m2K). The building design and construction process has followed the guidelines set by "CasaClima". The building has been modeled in the code of dynamic calculation "Energy Plus" by the Design Builder application and divided it into homogenous thermal zones, characterized by winter indoor temperature set at 20 ° (+ / - 1 °) and summer indoor temperature set at 26 ° (+ / - 1 °). It has modeled: the envelope, as described above, the "free" heat contributions, the air conditioning system, the Mechanical Ventilation system as well as home automation solutions. The air conditioning system is an heat pump, able to guarantee an optimization of energy consumption (in fact, it uses the "free" heat offered by the external environment for conditioning indoor environment). As regards the air recirculation system, it has been used a mechanical ventilation system with internal heat cross-flow exchanger, with an efficiency equal to 50%. The domotic solutions, instead, regard a system for the control of windows external screening using reeds, adjustable as a function of incident solar radiation and a lighting management system adjusted automatically using a dimmer. A so realized building meets the requirement imposed from Italian standard UNI/TS 11300 1, UNI/TS 11300 2 and UNI/TS 11300 3. The analysis was performed according to two different configurations: in "spontaneous
Coupling analysis of transient cardiovascular dynamics.
Müller, Andreas; Riedl, Maik; Penzel, Thomas; Bonnemeier, Hendrik; Kurths, Jürgen; Wessel, Niels
2013-04-01
The analysis of effects from coupling in and between systems is important in data-driven investigations as practiced in many scientific fields. It allows deeper insights into the mechanisms of interaction emerging among individual smaller systems when forming complex systems as in the human circulatory system. For systems featuring various regimes, usually only the epochs before and after a transition between different regimes are analyzed, although relevant information might be hidden within these transitions. Transient behavior of cardiovascular variables may emerge, on the one hand, from the recovery of the system after a severe disturbance or, on the other hand, from adaptive behavior throughout changes of states. It contains important information about the processes involved and the relations between state variables such as heart rate, blood pressure, and respiration. Therefore, we apply an ensemble approach to extend the method of symbolic coupling traces to time-variant coupling analysis. These new ensemble symbolic coupling traces are capable of determining coupling direction, strength, and time offset τ from transient dynamics in multivariate cardiovascular data. We use this method to analyze data recorded during an orthostatic test to reveal a transient structure that cannot be detected by classic methods.
Tang, Y; Stephenson, J L; Othmer, H G
1996-01-01
We study the models for calcium (Ca) dynamics developed in earlier studies, in each of which the key component is the kinetics of intracellular inositol-1,4,5-trisphosphate-sensitive Ca channels. After rapidly equilibrating steps are eliminated, the channel kinetics in these models are represented by a single differential equation that is linear in the state of the channel. In the reduced kinetic model, the graph of the steady-state fraction of conducting channels as a function of log10(Ca) is a bell-shaped curve. Dynamically, a step increase in inositol-1,4,5-trisphosphate induces an incremental increase in the fraction of conducting channels, whereas a step increase in Ca can either potentiate or inhibit channel activation, depending on the Ca level before and after the increase. The relationships among these models are discussed, and experimental tests to distinguish between them are given. Under certain conditions the models for intracellular calcium dynamics are reduced to the singular perturbed form epsilon dx/d tau = f(x, y, p), dy/d tau = g(x, y, p). Phase-plane analysis is applied to a generic form of these simplified models to show how different types of Ca response, such as excitability, oscillations, and a sustained elevation of Ca, can arise. The generic model can also be used to study frequency encoding of hormonal stimuli, to determine the conditions for stable traveling Ca waves, and to understand the effect of channel properties on the wave speed.
The Space Station decision - Incremental politics and technological choice
NASA Technical Reports Server (NTRS)
Mccurdy, Howard E.
1990-01-01
Using primary documents and interviews with participants, this book describes the events that led up to the 1984 decision that NASA should build a permanently occupied, international space station in low earth orbit. The role that civil servants in NASA played in initiating the program is highlighted. The trail of the Space Station proposal as its advocates devised strategies to push it through the White House policy review process is followed. The critical analysis focuses on the way in which 'incrementalism' (the tendency of policy makers to introduce incremental changes once projects are under way) operated in connection with the Space Station program. The book calls for a commitment to a long-range space policy.
Insights to urban dynamics through landscape spatial pattern analysis
NASA Astrophysics Data System (ADS)
TV, Ramachandra; Aithal, Bharath H.; Sanna, Durgappa D.
2012-08-01
Urbanisation is a dynamic complex phenomenon involving large scale changes in the land uses at local levels. Analyses of changes in land uses in urban environments provide a historical perspective of land use and give an opportunity to assess the spatial patterns, correlation, trends, rate and impacts of the change, which would help in better regional planning and good governance of the region. Main objective of this research is to quantify the urban dynamics using temporal remote sensing data with the help of well-established landscape metrics. Bangalore being one of the rapidly urbanising landscapes in India has been chosen for this investigation. Complex process of urban sprawl was modelled using spatio temporal analysis. Land use analyses show 584% growth in built-up area during the last four decades with the decline of vegetation by 66% and water bodies by 74%. Analyses of the temporal data reveals an increase in urban built up area of 342.83% (during 1973-1992), 129.56% (during 1992-1999), 106.7% (1999-2002), 114.51% (2002-2006) and 126.19% from 2006 to 2010. The Study area was divided into four zones and each zone is further divided into 17 concentric circles of 1 km incrementing radius to understand the patterns and extent of the urbanisation at local levels. The urban density gradient illustrates radial pattern of urbanisation for the period 1973-2010. Bangalore grew radially from 1973 to 2010 indicating that the urbanisation is intensifying from the central core and has reached the periphery of the Greater Bangalore. Shannon's entropy, alpha and beta population densities were computed to understand the level of urbanisation at local levels. Shannon's entropy values of recent time confirms dispersed haphazard urban growth in the city, particularly in the outskirts of the city. This also illustrates the extent of influence of drivers of urbanisation in various directions. Landscape metrics provided in depth knowledge about the sprawl. Principal component
Global dynamics analysis of nappe oscillation
NASA Astrophysics Data System (ADS)
De Rosa, Fortunato; Girfoglio, Michele; de Luca, Luigi
2014-12-01
The unsteady global dynamics of a gravitational liquid sheet interacting with a one-sided adjacent air enclosure, typically referred to as nappe oscillation, is addressed, under the assumptions of potential flow and absence of surface tension effects. To the purpose of shedding physical insights, the investigation examines both the dynamics and the energy aspects. An interesting re-formulation of the problem consists of recasting the nappe global behavior as a driven damped spring-mass oscillator, where the inertial effects are linked to the liquid sheet mass and the spring is represented by the equivalent stiffness of the air enclosure acting on the average displacement of the compliant nappe centerline. The investigation is carried out through a modal (i.e., time asymptotic) and a non-modal (i.e., short-time transient) linear approach, which are corroborated by direct numerical simulations of the governing equation. The modal analysis shows that the flow system is characterized by low-frequency and high-frequency oscillations, the former related to the crossing time of the perturbations over the whole domain and the latter related to the spring-mass oscillator. The low-frequency oscillations, observed in real life systems, are produced by the (linear) combination of multiple modes. The non-normality of the operator is responsible for short-time energy amplifications even in asymptotically stable configurations, which are confirmed by numerical simulations and justified by energy budget considerations. Strong analogies with the edge-tone problem are encountered; in particular, the integer-plus-one-quarter resonance criterion is uncovered, where the basic frequency to be multiplied by n + /1 4 is just the one related to the spacing among the imaginary parts of the eigenvalues.
Two numerical models for landslide dynamic analysis
NASA Astrophysics Data System (ADS)
Hungr, Oldrich; McDougall, Scott
2009-05-01
Two microcomputer-based numerical models (Dynamic ANalysis (DAN) and three-dimensional model DAN (DAN3D)) have been developed and extensively used for analysis of landslide runout, specifically for the purposes of practical landslide hazard and risk assessment. The theoretical basis of both models is a system of depth-averaged governing equations derived from the principles of continuum mechanics. Original features developed specifically during this work include: an open rheological kernel; explicit use of tangential strain to determine the tangential stress state within the flowing sheet, which is both more realistic and beneficial to the stability of the model; orientation of principal tangential stresses parallel with the direction of motion; inclusion of the centripetal forces corresponding to the true curvature of the path in the motion direction and; the use of very simple and highly efficient free surface interpolation methods. Both models yield similar results when applied to the same sets of input data. Both algorithms are designed to work within the semi-empirical framework of the "equivalent fluid" approach. This approach requires selection of material rheology and calibration of input parameters through back-analysis of real events. Although approximate, it facilitates simple and efficient operation while accounting for the most important characteristics of extremely rapid landslides. The two models have been verified against several controlled laboratory experiments with known physical basis. A large number of back-analyses of real landslides of various types have also been carried out. One example is presented. Calibration patterns are emerging, which give a promise of predictive capability.
Introducing Dynamic Analysis Using Malthus's Principle of Population.
ERIC Educational Resources Information Center
Pingle, Mark
2003-01-01
Declares the use of dynamic models is increasing in macroeconomics. Explains how to introduce dynamic models to students whose technical skills are modest or varied. Chooses Malthus's Principle of Population as a natural context for introducing dynamic analysis because it provides a method for reviewing the mathematical tools and theoretical…
International Space Station Increment-2 Microgravity Environment Summary Report
NASA Technical Reports Server (NTRS)
Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy
2002-01-01
This summary report presents the results of some of the processed acceleration data, collected aboard the International Space Station during the period of May to August 2001, the Increment-2 phase of the station. Two accelerometer systems were used to measure the acceleration levels during activities that took place during the Increment-2 segment. However, not all of the activities were analyzed for this report due to time constraints, lack of precise information regarding some payload operations and other station activities. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments, which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of vehicle microgravity requirements verification. The International Space Station Increment-2 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: 1) The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and the vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. 2) The Space
48 CFR 3452.232-71 - Incremental funding.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 7 2014-10-01 2014-10-01 false Incremental funding. 3452....232-71 Incremental funding. As prescribed in 3432.705-2, insert the following provision in solicitations if a cost-reimbursement contract using incremental funding is contemplated: Incremental...
48 CFR 3452.232-71 - Incremental funding.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 7 2012-10-01 2012-10-01 false Incremental funding. 3452....232-71 Incremental funding. As prescribed in 3432.705-2, insert the following provision in solicitations if a cost-reimbursement contract using incremental funding is contemplated: Incremental...
48 CFR 3452.232-71 - Incremental funding.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 7 2013-10-01 2012-10-01 true Incremental funding. 3452....232-71 Incremental funding. As prescribed in 3432.705-2, insert the following provision in solicitations if a cost-reimbursement contract using incremental funding is contemplated: Incremental...
48 CFR 3452.232-71 - Incremental funding.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 7 2011-10-01 2011-10-01 false Incremental funding. 3452....232-71 Incremental funding. As prescribed in 3432.705-2, insert the following provision in solicitations if a cost-reimbursement contract using incremental funding is contemplated: Incremental...
Surface tension increment due to solute addition
NASA Astrophysics Data System (ADS)
Hsin, Wei Lun; Sheng, Yu-Jane; Lin, Shi-Yow; Tsao, Heng-Kwong
2004-03-01
Addition of solute into solvent may lead to an increase in surface tension, such as salt in water and water in alcohol, due to solute depletion at the interface. The repulsion of the solute from the interface may originate from electrostatic forces or solute-solvent attraction. On the basis of the square-well model for the interface-solute interaction, we derive the surface tension increment Δγ by both canonical and grand-canonical routes (Gibbs adsorption isotherm) for a spherical droplet. The surface tension is increased linearly with the bulk concentration of the solute cb and the interaction range λ. The theoretical results are consistent with those obtained by experiments and Monte Carlo simulations up to a few molarity. For weak repulsion, the increment is internal energy driven. When the repulsion is large enough, the surface tension increment is entropy driven and approaches the asymptotic limit, Δγ≃cbkBTλ, due to the nearly complete depletion of the solute at the interface. Our result may shed some light on the surface tension increment for electrolyte solutions with concentration above 0.2M.
Input-Based Incremental Vocabulary Instruction
ERIC Educational Resources Information Center
Barcroft, Joe
2012-01-01
This fascinating presentation of current research undoes numerous myths about how we most effectively learn new words in a second language. In clear, reader-friendly text, the author details the successful approach of IBI vocabulary instruction, which emphasizes the presentation of target vocabulary as input early on and the incremental (gradual)…
Incremental social learning in particle swarms.
de Oca, Marco A Montes; Stutzle, Thomas; Van den Enden, Ken; Dorigo, Marco
2011-04-01
Incremental social learning (ISL) was proposed as a way to improve the scalability of systems composed of multiple learning agents. In this paper, we show that ISL can be very useful to improve the performance of population-based optimization algorithms. Our study focuses on two particle swarm optimization (PSO) algorithms: a) the incremental particle swarm optimizer (IPSO), which is a PSO algorithm with a growing population size in which the initial position of new particles is biased toward the best-so-far solution, and b) the incremental particle swarm optimizer with local search (IPSOLS), in which solutions are further improved through a local search procedure. We first derive analytically the probability density function induced by the proposed initialization rule applied to new particles. Then, we compare the performance of IPSO and IPSOLS on a set of benchmark functions with that of other PSO algorithms (with and without local search) and a random restart local search algorithm. Finally, we measure the benefits of using incremental social learning on PSO algorithms by running IPSO and IPSOLS on problems with different fitness distance correlations. PMID:20875976
Dynamic analysis of news streams: institutional versus environmental effects.
Dooley, Kevin; Corman, Steven
2004-07-01
Many societal phenomena are studied through analysis of their representation in media-related texts, such as news articles. The dynamics of such data reflect the phenomenon's underlying generative mechanism. Media artifacts are assumed to mirror the social activity occurring in the environment, thus observed dynamics are assumed to reflect environmental dynamics. The institutional mechanics of media production also affect the observed dynamics however. In this study we examine the extent to which institutional versus environmental effects explain the observed dynamics of media content, in particular focusing on semi-continuous "news streams". We examine the dynamics of news streams produced by the electronic news organization Reuters, immediately following the events of September 11, 2001. We find that many of the observed dynamics appear institutionally generated. We conclude with methodological suggestions concerning the dynamic analysis of media content.
GRUBER, Andreas; ZIMMERMANN, Jolanda; WIESER, Gerhard; OBERHUBER, Walter
2011-01-01
Within the alpine treeline ecotone tree growth is increasingly restricted by extreme climate conditions. Although intra-annual stem growth recorded by dendrometers can be linked to climate, stem diameter increments in slow-growing subalpine trees are masked by changes in tree water status. We tested the hypothesis that intra-annual radial stem growth in Pinus cembra is influenced by different climate variables along the treeline ecotone in the Austrian Alps. Dendrometer traces were compared with dynamics of xylem cell development to date onset of cambial activity and radial stem growth in spring. Daily fluctuations in stem radius reflected changes in tree water status throughout the treeline ecotone. Extracted daily radial increments were significantly correlated with air temperature at the timberline and treeline only, where budburst, cambial activity and enlargement of first tracheids also occurred quite similarly. A close relationship was detected between radial increment and number of enlarging tracheids throughout the treeline ecotone. We conclude that (i) the relationship between climate and radial stem growth within the treeline ecotone is dependent on a close coupling to atmospheric climate conditions and (ii) initiation of cambial activity and radial growth in spring can be distinguished from stem re-hydration by histological analysis. PMID:21423861
Gruber, Andreas; Zimmermann, Jolanda; Wieser, Gerhard; Oberhuber, Walter
2009-08-01
Within the alpine treeline ecotone tree growth is increasingly restricted by extreme climate conditions. Although intra-annual stem growth recorded by dendrometers can be linked to climate, stem diameter increments in slow-growing subalpine trees are masked by changes in tree water status.We tested the hypothesis that intra-annual radial stem growth in Pinus cembra is influenced by different climate variables along the treeline ecotone in the Austrian Alps. Dendrometer traces were compared with dynamics of xylem cell development to date onset of cambial activity and radial stem growth in spring.Daily fluctuations in stem radius reflected changes in tree water status throughout the treeline ecotone. Extracted daily radial increments were significantly correlated with air temperature at the timberline and treeline only, where budburst, cambial activity and enlargement of first tracheids also occurred quite similarly. A close relationship was detected between radial increment and number of enlarging tracheids throughout the treeline ecotone.We conclude that (i) the relationship between climate and radial stem growth within the treeline ecotone is dependent on a close coupling to atmospheric climate conditions and (ii) initiation of cambial activity and radial growth in spring can be distinguished from stem re-hydration by histological analysis. PMID:21423861
Engine dynamic analysis with general nonlinear finite element codes
NASA Technical Reports Server (NTRS)
Adams, M. L.; Padovan, J.; Fertis, D. G.
1991-01-01
A general engine dynamic analysis as a standard design study computational tool is described for the prediction and understanding of complex engine dynamic behavior. Improved definition of engine dynamic response provides valuable information and insights leading to reduced maintenance and overhaul costs on existing engine configurations. Application of advanced engine dynamic simulation methods provides a considerable cost reduction in the development of new engine designs by eliminating some of the trial and error process done with engine hardware development.
Characterization of sleep stages by correlations in the magnitude and sign of heartbeat increments
NASA Astrophysics Data System (ADS)
Kantelhardt, Jan W.; Ashkenazy, Yosef; Ivanov, Plamen Ch.; Bunde, Armin; Havlin, Shlomo; Penzel, Thomas; Peter, Jörg-Hermann; Stanley, H. Eugene
2002-05-01
We study correlation properties of the magnitude and the sign of the increments in the time intervals between successive heartbeats during light sleep, deep sleep, and rapid eye movement (REM) sleep using the detrended fluctuation analysis method. We find short-range anticorrelations in the sign time series, which are strong during deep sleep, weaker during light sleep, and even weaker during REM sleep. In contrast, we find long-range positive correlations in the magnitude time series, which are strong during REM sleep and weaker during light sleep. We observe uncorrelated behavior for the magnitude during deep sleep. Since the magnitude series relates to the nonlinear properties of the original time series, while the sign series relates to the linear properties, our findings suggest that the nonlinear properties of the heartbeat dynamics are more pronounced during REM sleep. Thus, the sign and the magnitude series provide information which is useful in distinguishing between the sleep stages.
A dynamic human motion: coordination analysis.
Pchelkin, Stepan; Shiriaev, Anton S; Freidovich, Leonid B; Mettin, Uwe; Gusev, Sergei V; Kwon, Woong; Paramonov, Leonid
2015-02-01
This article is concerned with the generic structure of the motion coordination system resulting from the application of the method of virtual holonomic constraints (VHCs) to the problem of the generation and robust execution of a dynamic humanlike motion by a humanoid robot. The motion coordination developed using VHCs is based on a motion generator equation, which is a scalar nonlinear differential equation of second order. It can be considered equivalent in function to a central pattern generator in living organisms. The relative time evolution of the degrees of freedom of a humanoid robot during a typical motion are specified by a set of coordination functions that uniquely define the overall pattern of the motion. This is comparable to a hypothesis on the existence of motion patterns in biomechanics. A robust control is derived based on a transverse linearization along the configuration manifold defined by the coordination functions. It is shown that the derived coordination and control architecture possesses excellent robustness properties. The analysis is performed on an example of a real human motion recorded in test experiments.
Dynamic analysis of the large deployable reflector
NASA Technical Reports Server (NTRS)
Calleson, Robert E.; Scott, A. Don
1987-01-01
The Large Deployable Reflector (LDR) is to be an astronomical observatory orbiting above Earth's obscuring atmosphere and operating in the spectral range between 30 microns and 1000 microns wavelength. The LDR will be used to study such astronomical phenomena as stellar and galactic formation, cosmology, and planetary atmospheres. The LDR will be the first observatory to be erected and assembled in space. This distinction brings with it several major technological challenges such as the development of ultra-lightweight deployable mirrors, advanced mirror fabrication techniques, advanced structures, and control of vibrations due to various sources of excitation. The purpose of this analysis is to provide an assessment of the vibrational response due to secondary mirror chopping and LDR slewing. The dynamic response of two 20-m LDR configurations was studied. Two mirror support configurations were investigated for the Ames concept, the first employs a six-strut secondary mirror support structure, while the second uses a triple-bipod support design. All three configurations were modeled using a tetrahedral truss design for the primary mirror support structure. Response resulting from secondary mirror chopping was obtained for the two Ames configurations, and the response of the primary mirror from slewing was obtained for all three configurations.
DYNAMIC MECHANICAL ANALYSIS CHARACTERIZATION OF GLOVEBOX GLOVES
Korinko, P.
2012-02-29
As part of the characterization of various glovebox glove material from four vendors, the permeability of gas through each type as a function of temperature was determined and a discontinuity in the permeability with temperature was revealed. A series of tests to determine the viscoelastic properties of the glove materials as a function of temperature using Dynamic Mechanical Analysis (DMA) was initiated. The glass transition temperature and the elastic and viscoelastic properties as a function of temperature up to maximum use temperature were determined for each glove material. The glass transition temperatures of the gloves were -60 C for butyl, -30 C for polyurethane, -16 C Hypalon{reg_sign}, - 16 C for Viton{reg_sign}, and -24 C for polyurethane-Hypalon{reg_sign}. The glass transition was too complex for the butyl-Hypalon{reg_sign} and butyl-Viton{reg_sign} composite gloves to be characterized by a single glass transition temperature. All of the glass transition temperatures exceed the vendor projected use temperatures.
Modal combination in response spectrum modal dynamic analysis
Hammond, C.R.; Singhal, M.K.
1993-09-01
UCRL-15910 does not give explicit requirements for combining the values of the resonse of individual modes in a response spectrum modal dynamic analysis. Since UCRL-15910 references ASE 4-86, modal combination methods given in ASCE 4-86 are described in this paper. Efficient use of typical dynamic analysis computer programs while complying with ASCE 4-86 is also described.
Incremental learning for ν-Support Vector Regression.
Gu, Bin; Sheng, Victor S; Wang, Zhijie; Ho, Derek; Osman, Said; Li, Shuo
2015-07-01
The ν-Support Vector Regression (ν-SVR) is an effective regression learning algorithm, which has the advantage of using a parameter ν on controlling the number of support vectors and adjusting the width of the tube automatically. However, compared to ν-Support Vector Classification (ν-SVC) (Schölkopf et al., 2000), ν-SVR introduces an additional linear term into its objective function. Thus, directly applying the accurate on-line ν-SVC algorithm (AONSVM) to ν-SVR will not generate an effective initial solution. It is the main challenge to design an incremental ν-SVR learning algorithm. To overcome this challenge, we propose a special procedure called initial adjustments in this paper. This procedure adjusts the weights of ν-SVC based on the Karush-Kuhn-Tucker (KKT) conditions to prepare an initial solution for the incremental learning. Combining the initial adjustments with the two steps of AONSVM produces an exact and effective incremental ν-SVR learning algorithm (INSVR). Theoretical analysis has proven the existence of the three key inverse matrices, which are the cornerstones of the three steps of INSVR (including the initial adjustments), respectively. The experiments on benchmark datasets demonstrate that INSVR can avoid the infeasible updating paths as far as possible, and successfully converges to the optimal solution. The results also show that INSVR is faster than batch ν-SVR algorithms with both cold and warm starts.
SAMS Acceleration Measurements on Mir (NASA Increment 4)
NASA Technical Reports Server (NTRS)
DeLombard, Richard
1998-01-01
During NASA Increment 4 (January to May 1997), about 5 gigabytes of acceleration data were collected by the Space Acceleration Measurements System (SAMS) onboard the Russian Space Station, Mir. The data were recorded on 28 optical disks which were returned to Earth on STS-84. During this increment, SAMS data were collected in the Priroda module to support the Mir Structural Dynamics Experiment (MiSDE), the Binary Colloidal Alloy Tests (BCAT), Angular Liquid Bridge (ALB), Candle Flames in Microgravity (CFM), Diffusion Controlled Apparatus Module (DCAM), Enhanced Dynamic Load Sensors (EDLS), Forced Flow Flame Spreading Test (FFFr), Liquid Metal Diffusion (LMD), Protein Crystal Growth in Dewar (PCG/Dewar), Queen's University Experiments in Liquid Diffusion (QUELD), and Technical Evaluation of MIM (TEM). This report points out some of the salient features of the microgravity environment to which these experiments were exposed. Also documented are mission events of interest such as the docked phase of STS-84 operations, a Progress engine bum, Soyuz vehicle docking and undocking, and Progress vehicle docking. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. The analyses included herein complement those presented in previous summary reports prepared by the Principal Investigator Microgravity Services (PIMS) group.
Incremental learning of skill collections based on intrinsic motivation.
Metzen, Jan H; Kirchner, Frank
2013-01-01
Life-long learning of reusable, versatile skills is a key prerequisite for embodied agents that act in a complex, dynamic environment and are faced with different tasks over their lifetime. We address the question of how an agent can learn useful skills efficiently during a developmental period, i.e., when no task is imposed on him and no external reward signal is provided. Learning of skills in a developmental period needs to be incremental and self-motivated. We propose a new incremental, task-independent skill discovery approach that is suited for continuous domains. Furthermore, the agent learns specific skills based on intrinsic motivation mechanisms that determine on which skills learning is focused at a given point in time. We evaluate the approach in a reinforcement learning setup in two continuous domains with complex dynamics. We show that an intrinsically motivated, skill learning agent outperforms an agent which learns task solutions from scratch. Furthermore, we compare different intrinsic motivation mechanisms and how efficiently they make use of the agent's developmental period.
Incremental learning of skill collections based on intrinsic motivation
Metzen, Jan H.; Kirchner, Frank
2013-01-01
Life-long learning of reusable, versatile skills is a key prerequisite for embodied agents that act in a complex, dynamic environment and are faced with different tasks over their lifetime. We address the question of how an agent can learn useful skills efficiently during a developmental period, i.e., when no task is imposed on him and no external reward signal is provided. Learning of skills in a developmental period needs to be incremental and self-motivated. We propose a new incremental, task-independent skill discovery approach that is suited for continuous domains. Furthermore, the agent learns specific skills based on intrinsic motivation mechanisms that determine on which skills learning is focused at a given point in time. We evaluate the approach in a reinforcement learning setup in two continuous domains with complex dynamics. We show that an intrinsically motivated, skill learning agent outperforms an agent which learns task solutions from scratch. Furthermore, we compare different intrinsic motivation mechanisms and how efficiently they make use of the agent's developmental period. PMID:23898265
Genetic analysis for dynamic changes of egg weight in 2 chicken lines.
Yi, Guoqiang; Liu, Wenbo; Li, Junying; Zheng, Jiangxia; Qu, Lujiang; Xu, Guiyun; Yang, Ning
2014-12-01
One of the main concerns for poultry producers is how to maintain egg uniformity and stability in size and weight following the rapid growth during the early laying period. In this study, we aimed to investigate the increase in egg weight with advancing hen age, and to estimate genetic parameters of these increment traits in 2 pure lines of chickens (i.e., 2,010 White Leghorn and 1,200 brown-egg dwarf hens), using the restricted maximum likelihood method with the DMU procedure. We collected age at first egg (AFE), first egg weight (FEW) and kept records of egg weight per 10 wk from 30 to 60 wk of age. Meanwhile, the increments of egg weight were calculated for the evaluation of age-dependent dynamic changes. The increment of egg weight gained dramatically before 30 wk of age and became slower with the advance of age. Heritability estimates of AFE were larger than 0.32, and the low to moderate genetic correlations between AFE and FEW were observed in the 2 lines. The FEW showed high variation level compared with egg weights at later ages in the 2 lines, and had moderate heritability estimates in White Leghorns (0.20) and dwarf hens (0.33). Egg weights at different ages were highly heritable in the 2 lines (h(2) ≥ 0.35), and had strong genetic and phenotypic correlations among different ages. The estimates of heritability for most increment traits were low to moderate, especially those increments for 10-wk intervals ranging from 0.00 to 0.14. The genetic correlations among 3 consecutive egg weight increments for 10-wk intervals were low to moderate. Our results in the 2 lines should provide important insights into the genetic architecture of increment traits and offer some suggestions for producing uniform and stable eggs in response to advancing age. PMID:25306454
International Space Station Increment-2 Quick Look Report
NASA Technical Reports Server (NTRS)
Jules, Kenol; Hrovat, Kenneth; Kelly, Eric
2001-01-01
The objective of this quick look report is to disseminate the International Space Station (ISS) Increment-2 reduced gravity environment preliminary analysis in a timely manner to the microgravity scientific community. This report is a quick look at the processed acceleration data collected by the Microgravity Acceleration Measurement System (MAMS) during the period of May 3 to June 8, 2001. The report is by no means an exhaustive examination of all the relevant activities, which occurred during the time span mentioned above for two reasons. First, the time span being considered in this report is rather short since the MAMS was not active throughout the time span being considered to allow a detailed characterization. Second, as the name of the report implied, it is a quick look at the acceleration data. Consequently, a more comprehensive report, the ISS Increment-2 report, will be published following the conclusion of the Increment-2 tour of duty. NASA sponsors the MAMS and the Space Acceleration Microgravity System (SAMS) to support microgravity science experiments, which require microgravity acceleration measurements. On April 19, 2001, both the MAMS and the SAMS units were launched on STS-100 from the Kennedy Space Center for installation on the ISS. The MAMS unit was flown to the station in support of science experiments requiring quasisteady acceleration data measurements, while the SAMS unit was flown to support experiments requiring vibratory acceleration data measurement. Both acceleration systems are also used in support of the vehicle microgravity requirements verification. The ISS reduced gravity environment analysis presented in this report uses mostly the MAMS acceleration data measurements (the Increment-2 report will cover both systems). The MAMS has two sensors. The MAMS Orbital Acceleration Research Experiment Sensor Subsystem, which is a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and
Dynamic Analysis of Fuel Cycle Transitioning
Brent Dixon; Steve Piet; David Shropshire; Gretchen Matthern
2009-09-01
This paper examines the time-dependent dynamics of transitioning from a once-through fuel cycle to a closed fuel cycle. The once-through system involves only Light Water Reactors (LWRs) operating on uranium oxide fuel UOX), while the closed cycle includes both LWRs and fast spectrum reactors (FRs) in either a single-tier system or two-tier fuel system. The single-tier system includes full transuranic recycle in FRs while the two-tier system adds one pass of mixed oxide uranium-plutonium (MOX U-Pu) fuel in the LWR. While the analysis primarily focuses on burner fast reactors, transuranic conversion ratios up to 1.0 are assessed and many of the findings apply to any fuel cycle transitioning from a thermal once-through system to a synergistic thermal-fast recycle system. These findings include uranium requirements for a range of nuclear electricity growth rates, the importance of back end fuel cycle facility timing and magnitude, the impact of employing a range of fast reactor conversion ratios, system sensitivity to used fuel cooling time prior to recycle, impacts on a range of waste management indicators, and projected electricity cost ranges for once-through, single-tier and two-tier systems. The study confirmed that significant waste management benefits can be realized as soon as recycling is initiated, but natural uranium savings are minimal in this century. The use of MOX in LWRs decouples the development of recycle facilities from fast reactor fielding, but also significantly delays and limits fast reactor deployment. In all cases, fast reactor deployment was significantly below than predicted by static equilibrium analyses.
A Fast Incremental Gaussian Mixture Model
Pinto, Rafael Coimbra; Engel, Paulo Martins
2015-01-01
This work builds upon previous efforts in online incremental learning, namely the Incremental Gaussian Mixture Network (IGMN). The IGMN is capable of learning from data streams in a single-pass by improving its model after analyzing each data point and discarding it thereafter. Nevertheless, it suffers from the scalability point-of-view, due to its asymptotic time complexity of O(NKD3) for N data points, K Gaussian components and D dimensions, rendering it inadequate for high-dimensional data. In this work, we manage to reduce this complexity to O(NKD2) by deriving formulas for working directly with precision matrices instead of covariance matrices. The final result is a much faster and scalable algorithm which can be applied to high dimensional tasks. This is confirmed by applying the modified algorithm to high-dimensional classification datasets. PMID:26444880
Specific mass increment and nonequilibrium crystal growth
NASA Astrophysics Data System (ADS)
Martyushev, Leonid M.; Terentiev, Pavel S.
2013-09-01
Unsteady nonequilibrium crystallization of ammonium chloride from an aqueous solution resulting in the formation of irregular, so-called seaweed, structures is experimentally investigated. It is shown that specific increment of mass for the coexisting structures (or parts thereof) is the same and changes with time (t) according to the power law a/t-b, where the factor a=1.87±0.09 and the factor b is determined by the system relaxation time. The normalization of the power law to the total time of structure growth allows obtaining a universal law that describes the specific mass increment with time for both seaweed and dendrite structures (including the non-coexisting ones).
Application of a shear-modified GTN model to incremental sheet forming
NASA Astrophysics Data System (ADS)
Smith, Jacob; Malhotra, Rajiv; Liu, W. K.; Cao, Jian
2013-12-01
This paper investigates the effects of using a shear-modified Gurson-Tvergaard-Needleman model, which is based on the mechanics of voids, for simulating material behavior in the incremental forming process. The problem chosen for analysis is a simplified version of the NUMISHEET 2014 incremental forming benchmark test. The implications of the shear-modification of the model specifically for incremental sheet forming processes are confirmed using finite element analysis. It is shown that including the shear term has a significant effect on fracture timing in incremental forming, which is not well reflected in the observed tensile test simulations for calibration. The numerical implementation and the need for comprehensive calibration of the model are briefly discussed.
Achieving incremental semantic interpretation through contextual representation.
Sedivy, J C; Tanenhaus, M K; Chambers, C G; Carlson, G N
1999-06-22
While much work has been done investigating the role of context in the incremental processing of syntactic indeterminacies, relatively little is known about online semantic interpretation. The experiments in this article made use of the eye-tracking paradigm with spoken language and visual contexts in order to examine how, and when listeners make use of contextually-defined contrast in interpreting simple prenominal adjectives. Experiment 1 focused on intersective adjectives. Experiment 1A provided further evidence that intersective adjectives are processed incrementally. Experiment 1B compared response times to follow instructions such as 'Pick up the blue comb' under conditions where there were two blue objects (e.g. a blue pen and a blue comb), but only one of these objects had a contrasting member in the display. Responses were faster to objects with a contrasting member, establishing that the listeners initially assume a contrastive interpretation for intersective adjectives. Experiments 2 and 3 focused on vague scalar adjectives examining the time course with which listeners establish contrast for scalar adjectives such as tall using information provided by the head noun (e.g. glass) and information provided by the visual context. Use of head-based information was examined by manipulating the typicality of the target object (e.g. whether it was a good or poor example of a tall glass. Use of context-dependent contrast was examined by either having only a single glass in the display (the no contrast condition) or a contrasting object (e.g. a smaller glass). The pattern of results indicated that listeners interpreted the scalar adjective incrementally taking into account context-specific contrast prior to encountering the head. Moreover, the presence of a contrasting object, sharply reduced, and in some conditions completely eliminated, typicality effects. The results suggest a language processing system in which semantic interpretation, as well as syntactic
Do otolith increments allow correct inferences about age and growth of coral reef fishes?
NASA Astrophysics Data System (ADS)
Booth, D. J.
2014-03-01
Otolith increment structure is widely used to estimate age and growth of marine fishes. Here, I test the accuracy of the long-term otolith increment analysis of the lemon damselfish Pomacentrus moluccensis to describe age and growth characteristics. I compare the number of putative annual otolith increments (as a proxy for actual age) and widths of these increments (as proxies for somatic growth) with actual tagged fish-length data, based on a 6-year dataset, the longest time course for a coral reef fish. Estimated age from otoliths corresponded closely with actual age in all cases, confirming annual increment formation. However, otolith increment widths were poor proxies for actual growth in length [linear regression r 2 = 0.44-0.90, n = 6 fish] and were clearly of limited value in estimating annual growth. Up to 60 % of the annual growth variation was missed using otolith increments, suggesting the long-term back calculations of otolith growth characteristics of reef fish populations should be interpreted with caution.
Energy System Contributions During Incremental Exercise Test
Bertuzzi, Rômulo; Nascimento, Eduardo M.F.; Urso, Rodrigo P.; Damasceno, Mayara; Lima-Silva, Adriano E.
2013-01-01
The main purpose of this study was to determine the relative contributions of the aerobic and glycolytic systems during an incremental exercise test (IET). Ten male recreational long-distance runners performed an IET consisting of three-minute incremental stages on a treadmill. The fractions of the contributions of the aerobic and glycolytic systems were calculated for each stage based on the oxygen uptake and the oxygen energy equivalents derived by blood lactate accumulation, respectively. Total metabolic demand (WTOTAL) was considered as the sum of these two energy systems. The aerobic (WAER) and glycolytic (WGLYCOL) system contributions were expressed as a percentage of the WTOTAL. The results indicated that WAER (86-95%) was significantly higher than WGLYCOL (5-14%) throughout the IET (p < 0.05). In addition, there was no evidence of the sudden increase in WGLYCOL that has been previously reported to support to the “anaerobic threshold” concept. These data suggest that the aerobic metabolism is predominant throughout the IET and that energy system contributions undergo a slow transition from low to high intensity. Key Points The aerobic metabolism contribution is the predominant throughout the maximal incremental test. The speed corresponding to the aerobic threshold can be considered the point in which aerobic metabolism reaches its maximal contribution. Glycolytic metabolism did not contribute largely to the energy expenditure at intensities above the anaerobic threshold. PMID:24149151
Visibility graph analysis on heartbeat dynamics of meditation training
NASA Astrophysics Data System (ADS)
Jiang, Sen; Bian, Chunhua; Ning, Xinbao; Ma, Qianli D. Y.
2013-06-01
We apply the visibility graph analysis to human heartbeat dynamics by constructing the complex networks of heartbeat interval time series and investigating the statistical properties of the network before and during chi and yoga meditation. The experiment results show that visibility graph analysis can reveal the dynamical changes caused by meditation training manifested as regular heartbeat, which is closely related to the adjustment of autonomous neural system, and visibility graph analysis is effective to evaluate the effect of meditation.
Ubiquity of, and geostatistics for, nonstationary increment random fields
NASA Astrophysics Data System (ADS)
O'Malley, Daniel; Cushman, John H.
2013-07-01
Nonstationary random fields such as fractional Brownian motion and fractional Lévy motion have been studied extensively in the hydrology literature. On the other hand, random fields that have nonstationary increments have seen little study. A mathematical argument is presented that demonstrates processes with stationary increments are the exception and processes with nonstationary increments are far more abundant. The abundance of nonstationary increment processes has important implications, e.g., in kriging where a translation-invariant variogram implicitly assumes stationarity of the increments. An approach to kriging for processes with nonstationary increments is presented and accompanied by some numerical results.
Dynamic deformation analysis of light-weight mirror
NASA Astrophysics Data System (ADS)
Zhang, Yingtao; Cao, Xuedong; Kuang, Long; Yang, Wei
2012-10-01
In the process of optical dynamic target work, under the effort of the arm of dynamic target, the mirror needs to do circular motion, additional accelerated motion and uniform motion. The maximum acceleration is 10°/s2 and the maximum velocity is 30°/s. In this paper, we mostly analyze the dynamic deformation of a 600 mm honeycomb light-weight mirror of a certain dynamic target. Using the FEA (finite element analysis) method, first of all, we analyze the deformation of the light-weight mirror induced in gravity at different position; later, the dynamic deformation of light-weight mirror is analyzed in detailed. The analysis results indicate that, when the maximum acceleration is 10°/s2 and the maximum velocity is 30°/s, the centripetal force is 5% of the gravity at the equal mass, and the dynamic deformation of the mirror is 6.1% of the deformation induced by gravity.
Aeroservoelastic and Flight Dynamics Analysis Using Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Arena, Andrew S., Jr.
1999-01-01
This document in large part is based on the Masters Thesis of Cole Stephens. The document encompasses a variety of technical and practical issues involved when using the STARS codes for Aeroservoelastic analysis of vehicles. The document covers in great detail a number of technical issues and step-by-step details involved in the simulation of a system where aerodynamics, structures and controls are tightly coupled. Comparisons are made to a benchmark experimental program conducted at NASA Langley. One of the significant advantages of the methodology detailed is that as a result of the technique used to accelerate the CFD-based simulation, a systems model is produced which is very useful for developing the control law strategy, and subsequent high-speed simulations.
Incremental learning of concept drift in nonstationary environments.
Elwell, Ryan; Polikar, Robi
2011-10-01
We introduce an ensemble of classifiers-based approach for incremental learning of concept drift, characterized by nonstationary environments (NSEs), where the underlying data distributions change over time. The proposed algorithm, named Learn(++). NSE, learns from consecutive batches of data without making any assumptions on the nature or rate of drift; it can learn from such environments that experience constant or variable rate of drift, addition or deletion of concept classes, as well as cyclical drift. The algorithm learns incrementally, as other members of the Learn(++) family of algorithms, that is, without requiring access to previously seen data. Learn(++). NSE trains one new classifier for each batch of data it receives, and combines these classifiers using a dynamically weighted majority voting. The novelty of the approach is in determining the voting weights, based on each classifier's time-adjusted accuracy on current and past environments. This approach allows the algorithm to recognize, and act accordingly, to the changes in underlying data distributions, as well as to a possible reoccurrence of an earlier distribution. We evaluate the algorithm on several synthetic datasets designed to simulate a variety of nonstationary environments, as well as a real-world weather prediction dataset. Comparisons with several other approaches are also included. Results indicate that Learn(++). NSE can track the changing environments very closely, regardless of the type of concept drift. To allow future use, comparison and benchmarking by interested researchers, we also release our data used in this paper.
Dynamic fuzzy hierarchy analysis for evaluation of professionalization degree
NASA Astrophysics Data System (ADS)
Jin, Lin; Min, Luo; Ma, Jingxi
2016-06-01
This paper presents the model of dynamic fuzzy hierarchy analysis for evaluation of professionalization degree, as a combination of the dynamic fuzzy theory and the AHP, which can show the changes and trends of the value of each index of professionalization.
Overview af MSFC's Applied Fluid Dynamics Analysis Group Activities
NASA Technical Reports Server (NTRS)
Garcia, Roberto; Griffin, Lisa; Williams, Robert
2004-01-01
This paper presents viewgraphs on NASA Marshall Space Flight Center's Applied Fluid Dynamics Analysis Group Activities. The topics include: 1) Status of programs at MSFC; 2) Fluid Mechanics at MSFC; 3) Relevant Fluid Dynamics Activities at MSFC; and 4) Shuttle Return to Flight.
DynamicBC: a MATLAB toolbox for dynamic brain connectome analysis.
Liao, Wei; Wu, Guo-Rong; Xu, Qiang; Ji, Gong-Jun; Zhang, Zhiqiang; Zang, Yu-Feng; Lu, Guangming
2014-12-01
The brain connectome collects the complex network architectures, looking at both static and dynamic functional connectivity. The former normally requires stationary signals and connections. However, the human brain activity and connections are most likely time dependent and dynamic, and related to ongoing rhythmic activity. We developed an open-source MATLAB toolbox DynamicBC with user-friendly graphical user interfaces, implementing both dynamic functional and effective connectivity for tracking brain dynamics from functional MRI. We provided two strategies for dynamic analysis: (1) the commonly utilized sliding-window analysis and (2) the flexible least squares based time-varying parameter regression strategy. The toolbox also implements multiple functional measures including seed-to-voxel analysis, region of interest (ROI)-to-ROI analysis, and voxel-to-voxel analysis. We describe the principles of the implemented algorithms, and then present representative results from simulations and empirical data applications. We believe that this toolbox will help neuroscientists and neurologists to easily map dynamic brain connectomics.
International Space Station Increment-3 Microgravity Environment Summary Report
NASA Technical Reports Server (NTRS)
Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy; Grodsinksy, Carlos
2002-01-01
This summary report presents the results of some of the processed acceleration data measured aboard the International Space Station during the period of August to December 2001. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-3. However, not all of the activities were analyzed for this report due to time constraint and lack of precise timeline information regarding some payload operations and station activities. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of the vehicle microgravity requirements verification. The International Space Station Increment-3 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: (1) The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. (2) The Space Acceleration Measurement System, which is
Collecting, preparing, crossdating, and measuring tree increment cores
Phipps, R.L.
1985-01-01
Techniques for collecting and handling increment tree cores are described. Procedures include those for cleaning and caring for increment borers, extracting the sample from a tree, core surfacing, crossdating, and measuring. (USGS)
Dynamic analysis of noncontacting face seals
NASA Technical Reports Server (NTRS)
Etsion, I.
1980-01-01
The dynamic behavior of a noncontacting coned face seal is analyzed taking into account various design parameters and operating conditions. The primary seal ring motion is expressed by a set of nonlinear equations for three degrees of freedom. These equations, which are solved numerically, allow identification of two dimensionless groups of parameters that affect the seal dynamic behavior. Stability maps for various seals are presented. These maps contain a stable-to-unstable transition region in which the ring wobbles at half the shaft frequency. The effect of various parameters on seal stability is discussed and an empirical expression for critical stability is offered.
Dynamical scaling analysis of plant callus growth
NASA Astrophysics Data System (ADS)
Galeano, J.; Buceta, J.; Juarez, K.; Pumariño, B.; de la Torre, J.; Iriondo, J. M.
2003-07-01
We present experimental results for the dynamical scaling properties of the development of plant calli. We have assayed two different species of plant calli, Brassica oleracea and Brassica rapa, under different growth conditions, and show that their dynamical scalings share a universality class. From a theoretical point of view, we introduce a scaling hypothesis for systems whose size evolves in time. We expect our work to be relevant for the understanding and characterization of other systems that undergo growth due to cell division and differentiation, such as, for example, tumor development.
Theoretical and software considerations for nonlinear dynamic analysis
NASA Technical Reports Server (NTRS)
Schmidt, R. J.; Dodds, R. H., Jr.
1983-01-01
In the finite element method for structural analysis, it is generally necessary to discretize the structural model into a very large number of elements to accurately evaluate displacements, strains, and stresses. As the complexity of the model increases, the number of degrees of freedom can easily exceed the capacity of present-day software system. Improvements of structural analysis software including more efficient use of existing hardware and improved structural modeling techniques are discussed. One modeling technique that is used successfully in static linear and nonlinear analysis is multilevel substructuring. This research extends the use of multilevel substructure modeling to include dynamic analysis and defines the requirements for a general purpose software system capable of efficient nonlinear dynamic analysis. The multilevel substructuring technique is presented, the analytical formulations and computational procedures for dynamic analysis and nonlinear mechanics are reviewed, and an approach to the design and implementation of a general purpose structural software system is presented.
Discussion Dynamics: An Analysis of Classroom Teaching.
ERIC Educational Resources Information Center
Johnson, Mary Canice
Dynamics of discussion in the classroom are analyzed based on data from 64 classrooms in Georgia, Alabama, and Florida. Among the discourse problems considered are the separation of answers from questions, the relationship between the presupposition of an utterance and the speaker/hearer assumptions, and the relationship between utterance form and…
Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities
NASA Technical Reports Server (NTRS)
Garcia, Roberto; Wang, Tee-See; Griffin, Lisa; Turner, James E. (Technical Monitor)
2001-01-01
This document is a presentation graphic which reviews the activities of the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center (i.e., Code TD64). The work of this group focused on supporting the space transportation programs. The work of the group is in Computational Fluid Dynamic tool development. This development is driven by hardware design needs. The major applications for the design and analysis tools are: turbines, pumps, propulsion-to-airframe integration, and combustion devices.
Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities
NASA Technical Reports Server (NTRS)
Garcia, Roberto; Griffin, Lisa; Williams, Robert
2002-01-01
This viewgraph report presents an overview of activities and accomplishments of NASA's Marshall Space Flight Center's Applied Fluid Dynamics Analysis Group. Expertise in this group focuses on high-fidelity fluids design and analysis with application to space shuttle propulsion and next generation launch technologies. Topics covered include: computational fluid dynamics research and goals, turbomachinery research and activities, nozzle research and activities, combustion devices, engine systems, MDA development and CFD process improvements.
Using Dynamic Sensitivity Analysis to Assess Testability
NASA Technical Reports Server (NTRS)
Voas, Jeffrey; Morell, Larry; Miller, Keith
1990-01-01
This paper discusses sensitivity analysis and its relationship to random black box testing. Sensitivity analysis estimates the impact that a programming fault at a particular location would have on the program's input/output behavior. Locations that are relatively \\"insensitive" to faults can render random black box testing unlikely to uncover programming faults. Therefore, sensitivity analysis gives new insight when interpreting random black box testing results. Although sensitivity analysis is computationally intensive, it requires no oracle and no human intervention.
Dynamic Analysis of Capture Devices for Momentum Exchange with Tethers
NASA Technical Reports Server (NTRS)
Canfield, Stephen
2002-01-01
One of the significant challenges in developing a momentum exchange / electrodynamic reboost tether system is in the analysis and design of the capture device and its effects on the overall dynamics of the system. The goal of this work is to develop appropriate tether momentum exchange models that can simulate and evaluate the requirements of such a system, and be used to create specifications on the design of a capture device. This report briefly describes dynamic model development, simulation of the momentum exchange process, evaluation of dynamic effects of errors in the momentum exchange process, and the development of guidelines in selecting dynamic properties in the design of a capture device.
Papaleo, Elena
2015-01-01
In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations. PMID:26075210
Papaleo, Elena
2015-01-01
In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations.
14 CFR § 1274.918 - Incremental funding.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Incremental funding. Â§ 1274.918 Section Â... WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.918 Incremental funding. Incremental Funding July 2002 (a) Of the award amount indicated on the cover page of this Agreement, only...
48 CFR 3452.232-71 - Incremental funding.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Incremental funding. 3452... 3452.232-71 Incremental funding. As prescribed in 3452.771, insert the following provision in solicitations: Incremental Funding (AUG 1987) (a) Sufficient funds are not presently available to cover...
14 CFR § 1260.53 - Incremental funding.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Incremental funding. Â§ 1260.53 Section Â§ 1260.53 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.53 Incremental funding. Incremental Funding October 2000...
High-frequency incremental methods for electromagnetic complex source points
NASA Astrophysics Data System (ADS)
Canta, Stefano Mihai
This dissertation advances knowledge in field-based High-Frequency (HF) incremental methods for electromagnetic Complex Source Points (CSP), and its most immediate impact is a significantly faster analysis and design of reflector antennas. HF incremental methods overcome many difficulties encountered in other ray-tracing techniques, mostly when crossing shadow boundaries in the electromagnetic (EM) field predictions. The combination of HF methods with CSPs allows to speed up EM computations. CSPs are obtained by locating real electric or magnetic dipole sources in complex space. EM field patterns are derived through analytical continuation of the geometrical quantities associated with the source position; the continuation provides an exact Maxwellian description of a Gaussian Beam. When CSPs are used as basis functions, they can represent any radiated field pattern. Then, by truncating negligible beams in the direction of observation, computations are sped up compared to a plane- or spherical-wave based expansion. Because of these facts, CSPs can be used with Physical Optics (PO) based HF methods for the efficient analysis of electrically large reflectors. However, PO does not always provide accurate field predictions, especially in regions of greatest shadowing or at grazing incidence. Therefore, I developed a HF Incremental Fringe Formulation (IFF) for CSPs to provide a correction term for PO that, when added to the total PO field, recovers an accurate estimate of the scattered field at the first asymptotic order. In addition, since PO does not have caustic problems, the new fringe asymptotic recovery is free of caustics for any geometrical configuration, too. Moreover, I also introduced a double diffraction formulation for CSPs, using the Incremental Theory of Diffraction, yielding simulation results very close to those obtained with a Method of Moments (MoM) approach. Unlike ray-based methods, no tracing in complex space is necessary, and no caustics are
Structural dynamic analysis of the Space Shuttle Main Engine
NASA Technical Reports Server (NTRS)
Scott, L. P.; Jamison, G. T.; Mccutcheon, W. A.; Price, J. M.
1981-01-01
This structural dynamic analysis supports development of the SSME by evaluating components subjected to critical dynamic loads, identifying significant parameters, and evaluating solution methods. Engine operating parameters at both rated and full power levels are considered. Detailed structural dynamic analyses of operationally critical and life limited components support the assessment of engine design modifications and environmental changes. Engine system test results are utilized to verify analytic model simulations. The SSME main chamber injector assembly is an assembly of 600 injector elements which are called LOX posts. The overall LOX post analysis procedure is shown.
Error Analysis of Modified Langevin Dynamics
NASA Astrophysics Data System (ADS)
Redon, Stephane; Stoltz, Gabriel; Trstanova, Zofia
2016-08-01
We consider Langevin dynamics associated with a modified kinetic energy vanishing for small momenta. This allows us to freeze slow particles, and hence avoid the re-computation of inter-particle forces, which leads to computational gains. On the other hand, the statistical error may increase since there are a priori more correlations in time. The aim of this work is first to prove the ergodicity of the modified Langevin dynamics (which fails to be hypoelliptic), and next to analyze how the asymptotic variance on ergodic averages depends on the parameters of the modified kinetic energy. Numerical results illustrate the approach, both for low-dimensional systems where we resort to a Galerkin approximation of the generator, and for more realistic systems using Monte Carlo simulations.
Network analysis of human heartbeat dynamics
NASA Astrophysics Data System (ADS)
Shao, Zhi-Gang
2010-02-01
We construct the complex networks of human heartbeat dynamics and investigate their statistical properties, using the visibility algorithm proposed by Lacasa and co-workers [Proc. Natl. Acad. Sci. U.S.A. 105, 4972 (2008)]. Our results show that the associated networks for the time series of heartbeat interval are always scale-free, high clustering, hierarchy, and assortative mixing. In particular, the assortative coefficient of associated networks could distinguish between healthy subjects and patients with congestive heart failure.
Incremental Scheduling Engines: Cost Savings through Automation
NASA Technical Reports Server (NTRS)
Jaap, John; Phillips, Shaun
2005-01-01
As humankind embarks on longer space missions farther from home, the requirements and environments for scheduling the activities performed on these missions are changing. As we begin to prepare for these missions it is appropriate to evaluate the merits and applicability of the different types of scheduling engines. Scheduling engines temporally arrange tasks onto a timeline so that all constraints and ob.jectives are met and resources are not over-booked. Scheduling engines used to schedule space missions fall into three general categories: batch, mixed-initiative, and incremental. This paper, presents an assessment of the engine types, a discussion of the impact of human exploration of the moon and Mars on planning and scheduling, and the applicability of the different types of scheduling engines. This paper will pursue the hypothesis that incremental scheduling engines may have a place in the new environment; they have the potential to reduce cost, to improve the satisfaction of those who execute or benefit from a particular timeline (the customers), and to allow astronauts to plan their own tasks and those of their companion robots.
Dynamic analysis of a parasite population model
NASA Astrophysics Data System (ADS)
Sibona, G. J.; Condat, C. A.
2002-03-01
We study the dynamics of a model that describes the competitive interaction between an invading species (a parasite) and its antibodies in an living being. This model was recently used to examine the dynamical competition between Tripanosoma cruzi and its antibodies during the acute phase of Chagas' disease. Depending on the antibody properties, the model yields three types of outcomes, corresponding, respectively, to healing, chronic disease, and host death. Here, we study the dynamics of the parasite-antibody interaction with the help of simulations, obtaining phase trajectories and phase diagrams for the system. We show that, under certain conditions, the size of the parasite inoculation can be crucial for the infection outcome and that a retardation in the stimulated production of an antibody species may result in the parasite gaining a definitive advantage. We also find a criterion for the relative sizes of the parameters that are required if parasite-generated decoys are indeed to help the invasion. Decoys may also induce a qualitatively different outcome: a limit cycle for the antibody-parasite population phase trajectories.
Evaluation of incremental reactivity and its uncertainty in Southern California.
Martien, Philip T; Harley, Robert A; Milford, Jana B; Russell, Armistead G
2003-04-15
The incremental reactivity (IR) and relative incremental reactivity (RIR) of carbon monoxide and 30 individual volatile organic compounds (VOC) were estimated for the South Coast Air Basin using two photochemical air quality models: a 3-D, grid-based model and a vertically resolved trajectory model. Both models include an extended version of the SAPRC99 chemical mechanism. For the 3-D modeling, the decoupled direct method (DDM-3D) was used to assess reactivities. The trajectory model was applied to estimate uncertainties in reactivities due to uncertainties in chemical rate parameters, deposition parameters, and emission rates using Monte Carlo analysis with Latin hypercube sampling. For most VOC, RIRs were found to be consistent in rankings with those produced by Carter using a box model. However, 3-D simulations show that coastal regions, upwind of most of the emissions, have comparatively low IR but higher RIR than predicted by box models for C4-C5 alkenes and carbonyls that initiate the production of HOx radicals. Biogenic VOC emissions were found to have a lower RIR than predicted by box model estimates, because emissions of these VOC were mostly downwind of the areas of primary ozone production. Uncertainties in RIR of individual VOC were found to be dominated by uncertainties in the rate parameters of their primary oxidation reactions. The coefficient of variation (COV) of most RIR values ranged from 20% to 30%, whereas the COV of absolute incremental reactivity ranged from about 30% to 40%. In general, uncertainty and variability both decreased when relative rather than absolute reactivity metrics were used.
Evaluation of incremental reactivity and its uncertainty in Southern California.
Martien, Philip T; Harley, Robert A; Milford, Jana B; Russell, Armistead G
2003-04-15
The incremental reactivity (IR) and relative incremental reactivity (RIR) of carbon monoxide and 30 individual volatile organic compounds (VOC) were estimated for the South Coast Air Basin using two photochemical air quality models: a 3-D, grid-based model and a vertically resolved trajectory model. Both models include an extended version of the SAPRC99 chemical mechanism. For the 3-D modeling, the decoupled direct method (DDM-3D) was used to assess reactivities. The trajectory model was applied to estimate uncertainties in reactivities due to uncertainties in chemical rate parameters, deposition parameters, and emission rates using Monte Carlo analysis with Latin hypercube sampling. For most VOC, RIRs were found to be consistent in rankings with those produced by Carter using a box model. However, 3-D simulations show that coastal regions, upwind of most of the emissions, have comparatively low IR but higher RIR than predicted by box models for C4-C5 alkenes and carbonyls that initiate the production of HOx radicals. Biogenic VOC emissions were found to have a lower RIR than predicted by box model estimates, because emissions of these VOC were mostly downwind of the areas of primary ozone production. Uncertainties in RIR of individual VOC were found to be dominated by uncertainties in the rate parameters of their primary oxidation reactions. The coefficient of variation (COV) of most RIR values ranged from 20% to 30%, whereas the COV of absolute incremental reactivity ranged from about 30% to 40%. In general, uncertainty and variability both decreased when relative rather than absolute reactivity metrics were used. PMID:12731843
Unsupervised analysis of small animal dynamic Cerenkov luminescence imaging
NASA Astrophysics Data System (ADS)
Spinelli, Antonello E.; Boschi, Federico
2011-12-01
Clustering analysis (CA) and principal component analysis (PCA) were applied to dynamic Cerenkov luminescence images (dCLI). In order to investigate the performances of the proposed approaches, two distinct dynamic data sets obtained by injecting mice with 32P-ATP and 18F-FDG were acquired using the IVIS 200 optical imager. The k-means clustering algorithm has been applied to dCLI and was implemented using interactive data language 8.1. We show that cluster analysis allows us to obtain good agreement between the clustered and the corresponding emission regions like the bladder, the liver, and the tumor. We also show a good correspondence between the time activity curves of the different regions obtained by using CA and manual region of interest analysis on dCLIT and PCA images. We conclude that CA provides an automatic unsupervised method for the analysis of preclinical dynamic Cerenkov luminescence image data.
Literal algebra for satellite dynamics. [perturbation analysis
NASA Technical Reports Server (NTRS)
Gaposchkin, E. M.
1975-01-01
A description of the rather general class of operations available is given and the operations are related to problems in satellite dynamics. The implementation of an algebra processor is discussed. The four main categories of symbol processors are related to list processing, string manipulation, symbol manipulation, and formula manipulation. Fundamental required operations for an algebra processor are considered. It is pointed out that algebra programs have been used for a number of problems in celestial mechanics with great success. The advantage of computer algebra is its accuracy and speed.
Analytical analysis of particle-core dynamics
Batygin, Yuri K
2010-01-01
Particle-core interaction is a well-developed model of halo formation in high-intensity beams. In this paper, we present an analytical solution for averaged, single particle dynamics, around a uniformly charged beam. The problem is analyzed through a sequence of canonical transformations of the Hamiltonian, which describes nonlinear particle oscillations. A closed form expression for maximum particle deviation from the axis is obtained. The results of this study are in good agreement with numerical simulations and with previously obtained data.
Stability analysis of dynamic thin shells
NASA Astrophysics Data System (ADS)
Lobo, Francisco S. N.; Crawford, Paulo
2005-11-01
We analyse the stability of generic spherically symmetric thin shells to linearized perturbations around static solutions. We include the momentum flux term in the conservation identity, deduced from the 'ADM' constraint and the Lanczos equations. Following the Ishak Lake analysis, we deduce a master equation which dictates the stable equilibrium configurations. Considering the transparency condition, we study the stability of thin shells around black holes, showing that our analysis is in agreement with previous results. Applying the analysis to traversable wormhole geometries, by considering specific choices for the form function, we deduce stability regions and find that the latter may be significantly increased by considering appropriate choices for the redshift function.
Conducting Qualitative Data Analysis: Managing Dynamic Tensions within
ERIC Educational Resources Information Center
Chenail, Ronald J.
2012-01-01
In the third of a series of "how-to" essays on conducting qualitative data analysis, Ron Chenail examines the dynamic tensions within the process of qualitative data analysis that qualitative researchers must manage in order to produce credible and creative results. These tensions include (a) the qualities of the data and the qualitative data…
Bootstrap Standard Error Estimates in Dynamic Factor Analysis
ERIC Educational Resources Information Center
Zhang, Guangjian; Browne, Michael W.
2010-01-01
Dynamic factor analysis summarizes changes in scores on a battery of manifest variables over repeated measurements in terms of a time series in a substantially smaller number of latent factors. Algebraic formulae for standard errors of parameter estimates are more difficult to obtain than in the usual intersubject factor analysis because of the…
Brisson, Marc; van de Velde, Nicolas; Franco, Eduardo L; Drolet, Mélanie; Boily, Marie-Claude
2011-08-01
Our aim was to examine the potential incremental impact of vaccinating boys against human papillomavirus (HPV) on vaccine-type infection in females and males, using an individual-based HPV transmission-dynamic model. Under base assumptions (vaccine efficacy = 99%, duration of protection = 20 years, coverage = 70%), vaccinating 12-year-old boys, in addition to girls, resulted in an incremental reduction in HPV-16/18 (HPV-6/11) incidence over 70 years of 16% (3%) in females and 23% (4%) in males. The benefit of vaccinating boys decreased with improved vaccination coverage in girls. Given the important predicted herd immunity impact of vaccinating girls under moderate to high vaccine coverage, the potential incremental gains of vaccinating boys are limited.
Equations simplify dynamic analysis of deepwater drilling risers
Huagui, Li )
1993-12-13
A set of nonlinear equations with practical simplifying assumptions on the governing motion equations and operational boundary conditions can improve the dynamic analysis of marine drilling risers. The dynamic analysis of marine drilling risers includes time domain and frequency domain analyses. This article simplifies the four-order nonlinear partial differential equation and boundary conditions used to describe marine drilling riser motion. The nonlinear dynamic analysis is numerically simulated by using a finite difference method. The top tension on marine risers was studied using four sea states that correspond to increasingly difficult drilling modes. The results from this numerical method are consistent with those from an analysis of a riser in operation. The paper describes the mathematical model, the numerical method, and drilling limitations, and gives an example calculation.
A NASTRAN-based computer program for structural dynamic analysis of Horizontal Axis Wind Turbines
NASA Technical Reports Server (NTRS)
Lobitz, Don W.
1995-01-01
This paper describes a computer program developed for structural dynamic analysis of horizontal axis wind turbines (HAWT's). It is based on the finite element method through its reliance on NASTRAN for the development of mass, stiffness, and damping matrices of the tower end rotor, which are treated in NASTRAN as separate structures. The tower is modeled in a stationary frame and the rotor in one rotating at a constant angular velocity. The two structures are subsequently joined together (external to NASTRAN) using a time-dependent transformation consistent with the hub configuration. Aerodynamic loads are computed with an established flow model based on strip theory. Aeroelastic effects are included by incorporating the local velocity and twisting deformation of the blade in the load computation. The turbulent nature of the wind, both in space and time, is modeled by adding in stochastic wind increments. The resulting equations of motion are solved in the time domain using the implicit Newmark-Beta integrator. Preliminary comparisons with data from the Boeing/NASA MOD2 HAWT indicate that the code is capable of accurately and efficiently predicting the response of HAWT's driven by turbulent winds.
A NASTRAN-based computer program for structural dynamic analysis of Horizontal Axis Wind Turbines
NASA Astrophysics Data System (ADS)
Lobitz, Don W.
1995-05-01
This paper describes a computer program developed for structural dynamic analysis of horizontal axis wind turbines (HAWT's). It is based on the finite element method through its reliance on NASTRAN for the development of mass, stiffness, and damping matrices of the tower end rotor, which are treated in NASTRAN as separate structures. The tower is modeled in a stationary frame and the rotor in one rotating at a constant angular velocity. The two structures are subsequently joined together (external to NASTRAN) using a time-dependent transformation consistent with the hub configuration. Aerodynamic loads are computed with an established flow model based on strip theory. Aeroelastic effects are included by incorporating the local velocity and twisting deformation of the blade in the load computation. The turbulent nature of the wind, both in space and time, is modeled by adding in stochastic wind increments. The resulting equations of motion are solved in the time domain using the implicit Newmark-Beta integrator. Preliminary comparisons with data from the Boeing/NASA MOD2 HAWT indicate that the code is capable of accurately and efficiently predicting the response of HAWT's driven by turbulent winds.
Analysis of dynamic brain imaging data.
Mitra, P P; Pesaran, B
1999-01-01
Modern imaging techniques for probing brain function, including functional magnetic resonance imaging, intrinsic and extrinsic contrast optical imaging, and magnetoencephalography, generate large data sets with complex content. In this paper we develop appropriate techniques for analysis and visualization of such imaging data to separate the signal from the noise and characterize the signal. The techniques developed fall into the general category of multivariate time series analysis, and in particular we extensively use the multitaper framework of spectral analysis. We develop specific protocols for the analysis of fMRI, optical imaging, and MEG data, and illustrate the techniques by applications to real data sets generated by these imaging modalities. In general, the analysis protocols involve two distinct stages: "noise" characterization and suppression, and "signal" characterization and visualization. An important general conclusion of our study is the utility of a frequency-based representation, with short, moving analysis windows to account for nonstationarity in the data. Of particular note are 1) the development of a decomposition technique (space-frequency singular value decomposition) that is shown to be a useful means of characterizing the image data, and 2) the development of an algorithm, based on multitaper methods, for the removal of approximately periodic physiological artifacts arising from cardiac and respiratory sources. PMID:9929474
Health care reform? An American obsession with prescriptive incrementalism.
Broyles, R W; Falcone, D J
1996-01-01
A rounded evaluation of the national health insurance proposals that now seem to be taken seriously by political elites requires conceptual organization. This article adopts a typology that describes each major proposal as a social, mixed or a private insurance scheme depending on the source(s) of funding, method of compensating hospitals and physicians, the unit of payment, and mechanism for financing capital. Not surprisingly, the analysis suggests that the social insurance model, closely resembling the Canadian system, is more likely to control inflation and redress distributional inequities than are other approaches. Why, then, has this approach not been adopted? The answer may be found in the widespread acceptance of disjointed incrementalism as a valid description of the policy process which yields an ideological orientation that can be termed "prescriptive incrementalism." This orientation is closely related to a belief in an "American exceptionalism," a belief that is not warranted by a cross-sectional examination of the political culture infusing issues about the proper role of government in health care financing and delivery. Unfortunately for advocates, the truly exceptional factor restricting the United States' ability to effect national health reform is a quite delberately obstruction-oriented political structure.
Increment of specific heat capacity of solar salt with SiO2 nanoparticles
2014-01-01
Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable. PACS 65.: Thermal properties of condensed matter; 65.20.-w: Thermal properties of liquids; 65.20.Jk: Studies of thermodynamic properties of specific liquids PMID:25346648
Improved VSM for Incremental Text Classification
NASA Astrophysics Data System (ADS)
Yang, Zhen; Lei, Jianjun; Wang, Jian; Zhang, Xing; Guo, Jim
2008-11-01
As a simple classification method VSM has been widely applied in text information processing field. There are some problems for traditional VSM to select a refined vector model representation, which can make a good tradeoff between complexity and performance, especially for incremental text mining. To solve these problems, in this paper, several improvements, such as VSM based on improved TF, TFIDF and BM25, are discussed. And then maximum mutual information feature selection is introduced to achieve a low dimension VSM with less complexity, and at the same time keep an acceptable precision. The experimental results of spam filtering and short messages classification shows that the algorithm can achieve higher precision than existing algorithms under same conditions.
Compiler-Enhanced Incremental Checkpointing for OpenMP Applications
Bronevetsky, G; Marques, D; Pingali, K; Rugina, R; McKee, S A
2008-01-21
As modern supercomputing systems reach the peta-flop performance range, they grow in both size and complexity. This makes them increasingly vulnerable to failures from a variety of causes. Checkpointing is a popular technique for tolerating such failures, enabling applications to periodically save their state and restart computation after a failure. Although a variety of automated system-level checkpointing solutions are currently available to HPC users, manual application-level checkpointing remains more popular due to its superior performance. This paper improves performance of automated checkpointing via a compiler analysis for incremental checkpointing. This analysis, which works with both sequential and OpenMP applications, reduces checkpoint sizes by as much as 80% and enables asynchronous checkpointing.
Compiler-Enhanced Incremental Checkpointing for OpenMP Applications
Bronevetsky, G; Marques, D; Pingali, K; McKee, S; Rugina, R
2009-02-18
As modern supercomputing systems reach the peta-flop performance range, they grow in both size and complexity. This makes them increasingly vulnerable to failures from a variety of causes. Checkpointing is a popular technique for tolerating such failures, enabling applications to periodically save their state and restart computation after a failure. Although a variety of automated system-level checkpointing solutions are currently available to HPC users, manual application-level checkpointing remains more popular due to its superior performance. This paper improves performance of automated checkpointing via a compiler analysis for incremental checkpointing. This analysis, which works with both sequential and OpenMP applications, significantly reduces checkpoint sizes and enables asynchronous checkpointing.
Nonlinear dynamic analysis of flexible multibody systems
NASA Technical Reports Server (NTRS)
Bauchau, Olivier A.; Kang, Nam Kook
1991-01-01
Two approaches are developed to analyze the dynamic behavior of flexible multibody systems. In the first approach each body is modeled with a modal methodology in a local non-inertial frame of reference, whereas in the second approach, each body is modeled with a finite element methodology in the inertial frame. In both cases, the interaction among the various elastic bodies is represented by constraint equations. The two approaches were compared for accuracy and efficiency: the first approach is preferable when the nonlinearities are not too strong but it becomes cumbersome and expensive to use when many modes must be used. The second approach is more general and easier to implement but could result in high computation costs for a large system. The constraints should be enforced in a time derivative fashion for better accuracy and stability.
Dynamic asset trees and portfolio analysis
NASA Astrophysics Data System (ADS)
Onnela, J.-P.; Chakraborti, A.; Kaski, K.; Kertiész, J.
2002-12-01
The minimum spanning tree, based on the concept of ultrametricity, is constructed from the correlation matrix of stock returns and provides a meaningful economic taxonomy of the stock market. In order to study the dynamics of this asset tree we characterise it by its normalised length and by the mean occupation layer, as measured from an appropriately chosen centre called the `central node'. We show how the tree evolves over time, and how it shrinks strongly, in particular, during a stock market crisis. We then demonstrate that the assets of the optimal Markowitz portfolio lie practically at all times on the outskirts of the tree. We also show that the normalised tree length and the investment diversification potential are very strongly correlated.
Baryon Spectrum Analysis using Covariant Constraint Dynamics
NASA Astrophysics Data System (ADS)
Whitney, Joshua; Crater, Horace
2012-03-01
The energy spectrum of the baryons is determined by treating each of them as a three-body system with the interacting forces coming from a set of two-body potentials that depend on both the distance between the quarks and the spin and orbital angular momentum coupling terms. The Two Body Dirac equations of constraint dynamics derived by Crater and Van Alstine, matched with the quasipotential formalism of Todorov as the underlying two-body formalism are used, as well as the three-body constraint formalism of Sazdjian to integrate the three two-body equations into a single relativistically covariant three body equation for the bound state energies. The results are analyzed and compared to experiment using a best fit method and several different algorithms, including a gradient approach, and Monte Carlo method. Results for all well-known baryons are presented and compared to experiment, with good accuracy.
Crustal Dynamics Project data analysis, 1990
NASA Technical Reports Server (NTRS)
Caprette, D. S.; Ma, C.; Ryan, J. W.
1990-01-01
The Goddard Very Long Baseline Interferometry (VLBI) group reports the results of analyzing 1073 Mark 3 data sets acquired from fixed and mobile observing sites through the end of 1989 and available to the Crustal Dynamics Project. Two large solutions, GLB656 and GLB657, were used to establish a VLBI reference frame with an origin coincident with the ITRF89. Another large solution, GLB658, was used to obtain Earth rotation parameters, nutation offsets, and global source positions. Site velocities were obtained from another large solution, GLB659. A fifth large solution, GLB660, was used to obtain baseline evolution. Site positions are tabulated on a yearly basis from 1979 through 1992. Site velocities are presented in both Cartesian and topocentric coordinates. The results include 76 sources, 80 sites, and 422 baselines.
Decision Analysis of Dynamic Spectrum Access Rules
Juan D. Deaton; Luiz A. DaSilva; Christian Wernz
2011-12-01
A current trend in spectrum regulation is to incorporate spectrum sharing through the design of spectrum access rules that support Dynamic Spectrum Access (DSA). This paper develops a decision-theoretic framework for regulators to assess the impacts of different decision rules on both primary and secondary operators. We analyze access rules based on sensing and exclusion areas, which in practice can be enforced through geolocation databases. Our results show that receiver-only sensing provides insufficient protection for primary and co-existing secondary users and overall low social welfare. On the other hand, using sensing information between the transmitter and receiver of a communication link, provides dramatic increases in system performance. The performance of using these link end points is relatively close to that of using many cooperative sensing nodes associated to the same access point and large link exclusion areas. These results are useful to regulators and network developers in understanding in developing rules for future DSA regulation.
Condensed Antenna Structural Models for Dynamics Analysis
NASA Technical Reports Server (NTRS)
Levy, R.
1985-01-01
Condensed degree-of-freedom models are compared with large degree-of-freedom finite-element models of a representative antenna-tipping and alidade structure, for both locked and free-rotor configurations. It is shown that: (1) the effective-mass models accurately reproduce the lower-mode natural frequencies of the finite element model; (2) frequency responses for the two types of models are in agreement up to at least 16 rad/s for specific points; and (3) transient responses computed for the same points are in good agreement. It is concluded that the effective-mass model, which best represents the five lower modes of the finite-element model, is a sufficient representation of the structure for future incorporation with a total servo control structure dynamic simulation.
Spectrum analysis with quantum dynamical systems
NASA Astrophysics Data System (ADS)
Ng, Shilin; Ang, Shan Zheng; Wheatley, Trevor A.; Yonezawa, Hidehiro; Furusawa, Akira; Huntington, Elanor H.; Tsang, Mankei
2016-04-01
Measuring the power spectral density of a stochastic process, such as a stochastic force or magnetic field, is a fundamental task in many sensing applications. Quantum noise is becoming a major limiting factor to such a task in future technology, especially in optomechanics for temperature, stochastic gravitational wave, and decoherence measurements. Motivated by this concern, here we prove a measurement-independent quantum limit to the accuracy of estimating the spectrum parameters of a classical stochastic process coupled to a quantum dynamical system. We demonstrate our results by analyzing the data from a continuous-optical-phase-estimation experiment and showing that the experimental performance with homodyne detection is close to the quantum limit. We further propose a spectral photon-counting method that can attain quantum-optimal performance for weak modulation and a coherent-state input, with an error scaling superior to that of homodyne detection at low signal-to-noise ratios.
Dynamic mechanical analysis of fiber reinforced composites
NASA Technical Reports Server (NTRS)
Reed, K. E.
1979-01-01
Dynamic mechanical and thermal properties were determined for unidirectional epoxy/glass composites at various fiber orientation angles. Resonant frequency and relative logarithmic decrement were measured as functions of temperature. In low angle and longitudinal specimens a transition was observed above the resin glass transition temperature which was manifested mechanically as an additional damping peak and thermally as a change in the coefficient of thermal expansion. The new transition was attributed to a heterogeneous resin matrix induced by the fiber. The temperature span of the glass-rubber relaxation was found to broaden with decreasing orientation angle, reflecting the growth of fiber contribution and exhibiting behavior similar to that of Young's modulus. The change in resonant frequency through the glass transition was greatest for samples of intermediate fiber angle, demonstrating behavior similar to that of the longitudinal shear modulus.
Analysis & Simulation of Dynamics in Supercooled Liquids
NASA Astrophysics Data System (ADS)
Elmatad, Yael Sarah
2011-12-01
The nature of supercooled liquids and the glass transition has been debated by many scientists. Several theories have been put forth to describe the remarkable properties of this out-of-equilibrium material. Each of these theories makes specific predictions as to how the scaling of various transport properties in supercooled materials should behave. Given access to a large pool of high-quality supercooled liquid data we seek to compare these theories to one another. Moreover, we explore properties of a pair of models which are the basis for one particularly attractive theory---Chandler-Garrahan theory---and discuss the models' behavior in space-time and possible implications to the behavior of experimental supercooled liquids. Here we investigate the nature of dynamics in supercooled liquids using a two pronged approach. First we analyze the transport properties found in experiments and simulations of supercooled liquids. Then, we analyze simulation trajectories for lattice models which reproduce many of the interesting properties of supercooled liquids. In doing so, we illuminate several glass universalities, common properties of a wide variety of glass formers. By analyzing relaxation time and viscosity data for over 50 data sets and 1200 points, we find that relaxation time can be collapsed onto a single, parabolic curve. This collapse supports a theory of universal glass behavior based on facilitated models proposed by David Chandler and Juan Garrahan in 2003. We then show that the parabolic fit parameters for any particular liquid are a material property: they converge fast and are capable of predicting behavior in regions beyond the included data sets. We compare this property to other popular fitting schemes such as the Vogel-Fulcher, double exponential, and fractional exponential forms and conclude that these three forms result in parameters which are non predictive and therefore not material properties. Additionally, we examine the role of attractive
Blade loss transient dynamic analysis of turbomachinery
NASA Technical Reports Server (NTRS)
Stallone, M. J.; Gallardo, V.; Storace, A. F.; Bach, L. J.; Black, G.; Gaffney, E. F.
1982-01-01
This paper reports on work completed to develop an analytical method for predicting the transient non-linear response of a complete aircraft engine system due to the loss of a fan blade, and to validate the analysis by comparing the results against actual blade loss test data. The solution, which is based on the component element method, accounts for rotor-to-casing rubs, high damping and rapid deceleration rates associated with the blade loss event. A comparison of test results and predicted response show good agreement except for an initial overshoot spike not observed in test. The method is effective for analysis of large systems.
Dynamic fracture mechanics analysis for an edge delamination crack
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Doyle, James F.
1994-01-01
A global/local analysis is applied to the problem of a panel with an edge delamination crack subject to an impulse loading to ascertain the dynamic J integral. The approach uses the spectral element method to obtain the global dynamic response and local resultants to obtain the J integral. The variation of J integral along the crack front is shown. The crack behavior is mixed mode (Mode 2 and Mode 3), but is dominated by the Mode 2 behavior.
Factorial Structure of the Career Decision Scale: Incremental Validity of the Five-Factor Domains
ERIC Educational Resources Information Center
Feldt, Ronald C.; Ferry, Ashley; Bullock, Melinda; Camarotti-Carvalho, Ana; Collingwood, Melinda; Eilers, Scott; Meyer, Luke; Nurre, Emily; Woelfel, Cheryl
2010-01-01
For comparison of one-, three-, and four-factor structures of the Indecision scale of the Career Decision Scale, results of confirmatory factor analysis (N = 686) indicated the best fit for the three-factor structure. Multiple regression analysis results indicated incremental validity of the five-factor model for predicting dimensions of career…
Machine analysis of facial behaviour: naturalistic and dynamic behaviour
Pantic, Maja
2009-01-01
This article introduces recent advances in the machine analysis of facial expressions. It describes the problem space, surveys the problem domain and examines the state of the art. Two recent research topics are discussed with particular attention: analysis of facial dynamics and analysis of naturalistic (spontaneously displayed) facial behaviour. Scientific and engineering challenges in the field in general, and in these specific subproblem areas in particular, are discussed and recommendations for accomplishing a better facial expression measurement technology are outlined. PMID:19884145
SLM-based optical simulator for dynamic speckle analysis
NASA Astrophysics Data System (ADS)
Berberova, Nataliya; Stoykova, Elena; Ivanov, Branimir
2014-08-01
The phenomenon of dynamic speckle allows for non-invasive whole-field detection of physical or biological activity in objects through statistical description of laser speckle dynamics. Effective way to improve the statistical analysis is generation of controlled speckle patterns. SLM implementation of an optical simulator of dynamic speckle patterns is proposed by feeding a correlated sequence of 2D random phase distributions to the phase-only SLM. Atthevarying in space correlation radius of the phase fluctuations in the successive frames, the SLM produces regions of different activity on a screen under laser illumination. Feasibility of the proposed approach is proved both by simulation and experiment.
DANPOS: dynamic analysis of nucleosome position and occupancy by sequencing.
Chen, Kaifu; Xi, Yuanxin; Pan, Xuewen; Li, Zhaoyu; Kaestner, Klaus; Tyler, Jessica; Dent, Sharon; He, Xiangwei; Li, Wei
2013-02-01
Recent developments in next-generation sequencing have enabled whole-genome profiling of nucleosome organizations. Although several algorithms for inferring nucleosome position from a single experimental condition have been available, it remains a challenge to accurately define dynamic nucleosomes associated with environmental changes. Here, we report a comprehensive bioinformatics pipeline, DANPOS, explicitly designed for dynamic nucleosome analysis at single-nucleotide resolution. Using both simulated and real nucleosome data, we demonstrated that bias correction in preliminary data processing and optimal statistical testing significantly enhances the functional interpretation of dynamic nucleosomes. The single-nucleotide resolution analysis of DANPOS allows us to detect all three categories of nucleosome dynamics, such as position shift, fuzziness change, and occupancy change, using a uniform statistical framework. Pathway analysis indicates that each category is involved in distinct biological functions. We also analyzed the influence of sequencing depth and suggest that even 200-fold coverage is probably not enough to identify all the dynamic nucleosomes. Finally, based on nucleosome data from the human hematopoietic stem cells (HSCs) and mouse embryonic stem cells (ESCs), we demonstrated that DANPOS is also robust in defining functional dynamic nucleosomes, not only in promoters, but also in distal regulatory regions in the mammalian genome. PMID:23193179
Traffic chaotic dynamics modeling and analysis of deterministic network
NASA Astrophysics Data System (ADS)
Wu, Weiqiang; Huang, Ning; Wu, Zhitao
2016-07-01
Network traffic is an important and direct acting factor of network reliability and performance. To understand the behaviors of network traffic, chaotic dynamics models were proposed and helped to analyze nondeterministic network a lot. The previous research thought that the chaotic dynamics behavior was caused by random factors, and the deterministic networks would not exhibit chaotic dynamics behavior because of lacking of random factors. In this paper, we first adopted chaos theory to analyze traffic data collected from a typical deterministic network testbed — avionics full duplex switched Ethernet (AFDX, a typical deterministic network) testbed, and found that the chaotic dynamics behavior also existed in deterministic network. Then in order to explore the chaos generating mechanism, we applied the mean field theory to construct the traffic dynamics equation (TDE) for deterministic network traffic modeling without any network random factors. Through studying the derived TDE, we proposed that chaotic dynamics was one of the nature properties of network traffic, and it also could be looked as the action effect of TDE control parameters. A network simulation was performed and the results verified that the network congestion resulted in the chaotic dynamics for a deterministic network, which was identical with expectation of TDE. Our research will be helpful to analyze the traffic complicated dynamics behavior for deterministic network and contribute to network reliability designing and analysis.
The dynamic analysis of an asymmetric rotary system
Huang, Y.M.; Wang, C.M.
1996-12-01
This study presents the transient dynamic analysis of an asymmetric rotary system which consists of a disk-supported by two identical bearings. Because the maximum displacements of components often occur during the transient state, the transient dynamic analysis becomes important. The combined methodologies of the finite element, transfer matrix, time marching numerical integration and the Houbolt numerical integration methods are developed for this analysis. The effects of rotary inertia, gyroscopics, shear deformation and internal damping on the dynamic behavior of a rotor-bearing system are included. After the system is linearized, the results of the transient and the steady displacements of the disk at various rotational speeds are compared and show good agreement with the available data.
Dynamical analysis in scalar field cosmology
NASA Astrophysics Data System (ADS)
Paliathanasis, Andronikos; Tsamparlis, Michael; Basilakos, Spyros; Barrow, John D.
2015-06-01
We give a general method to find exact cosmological solutions for scalar-field dark energy in the presence of perfect fluids. We use the existence of invariant transformations for the Wheeler De Witt (WdW) equation. We show that the existence of a point transformation under which the WdW equation is invariant is equivalent to the existence of conservation laws for the field equations, which indicates the existence of analytical solutions. We extend previous work by providing exact solutions for the Hubble parameter and the effective dark-energy equation of state parameter for cosmologies containing a combination of perfect fluid and a scalar field whose self-interaction potential is a power of hyperbolic functions. We find solutions explicitly when the perfect fluid is radiation or cold dark matter and determine the effects of nonzero spatial curvature. Using the Planck 2015 data, we determine the evolution of the effective equation of state of the dark energy. Finally, we study the global dynamics using dimensionless variables. We find that if the current cosmological model is Liouville integrable (admits conservation laws) then there is a unique stable point which describes the de-Sitter phase of the universe.
Rocketdyne automated dynamics data analysis and management system
NASA Technical Reports Server (NTRS)
Tarn, Robert B.
1988-01-01
An automated dynamics data analysis and management systems implemented on a DEC VAX minicomputer cluster is described. Multichannel acquisition, Fast Fourier Transformation analysis, and an online database have significantly improved the analysis of wideband transducer responses from Space Shuttle Main Engine testing. Leakage error correction to recover sinusoid amplitudes and correct for frequency slewing is described. The phase errors caused by FM recorder/playback head misalignment are automatically measured and used to correct the data. Data compression methods are described and compared. The system hardware is described. Applications using the data base are introduced, including software for power spectral density, instantaneous time history, amplitude histogram, fatigue analysis, and rotordynamics expert system analysis.
Solar Dynamic Power System Stability Analysis and Control
NASA Technical Reports Server (NTRS)
Momoh, James A.; Wang, Yanchun
1996-01-01
The objective of this research is to conduct dynamic analysis, control design, and control performance test of solar power system. Solar power system consists of generation system and distribution network system. A bench mark system is used in this research, which includes a generator with excitation system and governor, an ac/dc converter, six DDCU's and forty-eight loads. A detailed model is used for modeling generator. Excitation system is represented by a third order model. DDCU is represented by a seventh order system. The load is modeled by the combination of constant power and constant impedance. Eigen-analysis and eigen-sensitivity analysis are used for system dynamic analysis. The effects of excitation system, governor, ac/dc converter control, and the type of load on system stability are discussed. In order to improve system transient stability, nonlinear ac/dc converter control is introduced. The direct linearization method is used for control design. The dynamic analysis results show that these controls affect system stability in different ways. The parameter coordination of controllers are recommended based on the dynamic analysis. It is concluded from the present studies that system stability is improved by the coordination of control parameters and the nonlinear ac/dc converter control stabilize system oscillation caused by the load change and system fault efficiently.
Structural dynamic analysis of a ball joint
NASA Astrophysics Data System (ADS)
Hwang, Seok-Cheol; Lee, Kwon-Hee
2012-11-01
Ball joint is a rotating and swiveling element that is typically installed at the interface between two parts. In an automobile, the ball joint is the component that connects the control arms to the steering knuckle. The ball joint can also be installed in linkage systems for motion control applications. This paper describes the simulation strategy for a ball joint analysis, considering manufacturing process. Its manufacturing process can be divided into plugging and spinning. Then, the interested responses is selected as the stress distribution generated between its ball and bearing. In this paper, a commercial code of NX DAFUL using an implicit integration method is introduced to calculate the response. In addition, the gap analysis is performed to investigate the fitness, focusing on the response of the displacement of a ball stud. Also, the optimum design is suggested through case studies.
Dynamic competitive probabilistic principal components analysis.
López-Rubio, Ezequiel; Ortiz-DE-Lazcano-Lobato, Juan Miguel
2009-04-01
We present a new neural model which extends the classical competitive learning (CL) by performing a Probabilistic Principal Components Analysis (PPCA) at each neuron. The model also has the ability to learn the number of basis vectors required to represent the principal directions of each cluster, so it overcomes a drawback of most local PCA models, where the dimensionality of a cluster must be fixed a priori. Experimental results are presented to show the performance of the network with multispectral image data.
Phase transition analysis of the dynamic instability of microtubules
NASA Astrophysics Data System (ADS)
Yarahmadian, Shantia; Yari, Masoud
2014-09-01
This paper provides the phase transition analysis of a reaction diffusion equations system modelling the dynamic instability of microtubules (MTs). For this purpose, we have generalized the macroscopic model studied by Mourão et al (2011 Comput. Biol. Chem. 35 269-81). This model investigates the interaction between the MT nucleation, the essential dynamics parameters and extinction, and their impact on the stability of the system. The considered framework encompasses a system of partial differential equations for the elongation and shortening of MTs, where the rates of elongation as well as the lifetimes of the elongating shortening phases are linear functions of GTP-tubulin concentration. In a novel way, this paper investigates the stability analysis and provides a bifurcation analysis for the dynamic instability of MTs in the presence of diffusion and all of the fundamental dynamics parameters. Our stability analysis introduces the phase transition method as a new mathematical tool in the study of MT dynamics. The mathematical tools introduced to handle the problem should be of general use.
Dynamic Network-Based Epistasis Analysis: Boolean Examples
Azpeitia, Eugenio; Benítez, Mariana; Padilla-Longoria, Pablo; Espinosa-Soto, Carlos; Alvarez-Buylla, Elena R.
2011-01-01
In this article we focus on how the hierarchical and single-path assumptions of epistasis analysis can bias the inference of gene regulatory networks. Here we emphasize the critical importance of dynamic analyses, and specifically illustrate the use of Boolean network models. Epistasis in a broad sense refers to gene interactions, however, as originally proposed by Bateson, epistasis is defined as the blocking of a particular allelic effect due to the effect of another allele at a different locus (herein, classical epistasis). Classical epistasis analysis has proven powerful and useful, allowing researchers to infer and assign directionality to gene interactions. As larger data sets are becoming available, the analysis of classical epistasis is being complemented with computer science tools and system biology approaches. We show that when the hierarchical and single-path assumptions are not met in classical epistasis analysis, the access to relevant information and the correct inference of gene interaction topologies is hindered, and it becomes necessary to consider the temporal dynamics of gene interactions. The use of dynamical networks can overcome these limitations. We particularly focus on the use of Boolean networks that, like classical epistasis analysis, relies on logical formalisms, and hence can complement classical epistasis analysis and relax its assumptions. We develop a couple of theoretical examples and analyze them from a dynamic Boolean network model perspective. Boolean networks could help to guide additional experiments and discern among alternative regulatory schemes that would be impossible or difficult to infer without the elimination of these assumption from the classical epistasis analysis. We also use examples from the literature to show how a Boolean network-based approach has resolved ambiguities and guided epistasis analysis. Our article complements previous accounts, not only by focusing on the implications of the hierarchical and
AIR INGRESS ANALYSIS: COMPUTATIONAL FLUID DYNAMIC MODELS
Chang H. Oh; Eung S. Kim; Richard Schultz; Hans Gougar; David Petti; Hyung S. Kang
2010-08-01
The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in very high temperature reactors (VHTRs). Phenomena Identification and Ranking Studies to date have ranked an air ingress event, following on the heels of a VHTR depressurization, as important with regard to core safety. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority. Following a loss of coolant and system depressurization incident, air will enter the core of the High Temperature Gas Cooled Reactor through the break, possibly causing oxidation of the in-the core and reflector graphite structure. Simple core and plant models indicate that, under certain circumstances, the oxidation may proceed at an elevated rate with additional heat generated from the oxidation reaction itself. Under postulated conditions of fluid flow and temperature, excessive degradation of the lower plenum graphite can lead to a loss of structural support. Excessive oxidation of core graphite can also lead to the release of fission products into the confinement, which could be detrimental to a reactor safety. Computational fluid dynamic model developed in this study will improve our understanding of this phenomenon. This paper presents two-dimensional and three-dimensional CFD results for the quantitative assessment of the air ingress phenomena. A portion of results of the density-driven stratified flow in the inlet pipe will be compared with results of the experimental results.
COMPUTATIONAL FLUID DYNAMICS MODELING ANALYSIS OF COMBUSTORS
Mathur, M.P.; Freeman, Mark; Gera, Dinesh
2001-11-06
In the current fiscal year FY01, several CFD simulations were conducted to investigate the effects of moisture in biomass/coal, particle injection locations, and flow parameters on carbon burnout and NO{sub x} inside a 150 MW GEEZER industrial boiler. Various simulations were designed to predict the suitability of biomass cofiring in coal combustors, and to explore the possibility of using biomass as a reburning fuel to reduce NO{sub x}. Some additional CFD simulations were also conducted on CERF combustor to examine the combustion characteristics of pulverized coal in enriched O{sub 2}/CO{sub 2} environments. Most of the CFD models available in the literature treat particles to be point masses with uniform temperature inside the particles. This isothermal condition may not be suitable for larger biomass particles. To this end, a stand alone program was developed from the first principles to account for heat conduction from the surface of the particle to its center. It is envisaged that the recently developed non-isothermal stand alone module will be integrated with the Fluent solver during next fiscal year to accurately predict the carbon burnout from larger biomass particles. Anisotropy in heat transfer in radial and axial will be explored using different conductivities in radial and axial directions. The above models will be validated/tested on various fullscale industrial boilers. The current NO{sub x} modules will be modified to account for local CH, CH{sub 2}, and CH{sub 3} radicals chemistry, currently it is based on global chemistry. It may also be worth exploring the effect of enriched O{sub 2}/CO{sub 2} environment on carbon burnout and NO{sub x} concentration. The research objective of this study is to develop a 3-Dimensional Combustor Model for Biomass Co-firing and reburning applications using the Fluent Computational Fluid Dynamics Code.
Dynamical analysis for a vector-like dark energy
NASA Astrophysics Data System (ADS)
Landim, Ricardo C. G.
2016-09-01
In this paper we perform a dynamical analysis for a vector field as a candidate for the dark energy, in the presence of a barotropic fluid. The vector is one component of the so-called cosmic triad, which is a set of three identical copies of an abelian field pointing mutually in orthogonal directions. In order to generalize the analysis, we also assumed the interaction between dark energy and the barotropic fluid, with a phenomenological coupling. Both matter and dark energy eras can be successfully described by the critical points, indicating that the dynamical system theory is a viable tool to analyze asymptotic states of such cosmological models.
Validation of daily increments in otoliths of northern squawfish larvae
Wertheimer, R.H.; Barfoot, C.A.
1998-01-01
Otoliths from laboratory-reared northern squawfish, Ptychocheilus oregonensis, larvae were examined to determine the periodicity of increment deposition. Increment deposition began in both sagittae and lapilli after hatching. Reader counts indicated that increment formation was daily in sagittae of 1-29-day-old larvae. However, increment counts from lapilli were significantly less than the known ages of northern squawfish larvae, possibly because some increments were not detectable. Otolith readability and age agreement among readers were greatest for young (<11 days) northern squawfish larvae. This was primarily because a transitional zone of low-contrast material began forming in otoliths of 8-11-day-old larvae and persisted until approximately 20 days after hatching. Formation of the transition zone appeared to coincide with the onset of exogenous feeding and continued through yolk sac absorption. Our results indicate that aging wild-caught northern squawfish larvae using daily otolith increment counts is possible.
Flight Dynamics Analysis Branch End of Fiscal Year 1999 Report
NASA Technical Reports Server (NTRS)
Stengle, Thomas; Flores-Amaya, Felipe
1999-01-01
This document summarizes the major activities and accomplishments carried out by the Goddard Space Flight Center (GSFC)'s Flight Dynamics Analysis Branch (FDAB), Code 572, in support of flight projects and technology development initiatives in Fiscal Year (FY) 1999. The document is intended to serve as both an introduction to the type of support carried out by the FDAB (Flight Dynamics Analysis Branch), as well as a concise reference summarizing key analysis results and mission experience derived from the various mission support roles assumed over the past year. The major accomplishments in the FDAB in FY99 were: 1) Provided flight dynamics support to the Lunar Prospector and TRIANA missions among a variety of spacecraft missions; 2) Sponsored the Flight Mechanics Symposium; 3) Supported the Consultative Committee for Space Data Systems (CCSDS) workshops; 4) Performed numerous analyses and studies for future missions; 5) Started the Flight Dynamics Analysis Branch Lab for in-house mission analysis and support; and 6) Complied with all requirements in support of GSFC IS09000 certification.
Dynamic performances analysis of a real vehicle driving
NASA Astrophysics Data System (ADS)
Abdullah, M. A.; Jamil, J. F.; Salim, M. A.
2015-12-01
Vehicle dynamic is the effects of movement of a vehicle generated from the acceleration, braking, ride and handling activities. The dynamic behaviours are determined by the forces from tire, gravity and aerodynamic which acting on the vehicle. This paper emphasizes the analysis of vehicle dynamic performance of a real vehicle. Real driving experiment on the vehicle is conducted to determine the effect of vehicle based on roll, pitch, and yaw, longitudinal, lateral and vertical acceleration. The experiment is done using the accelerometer to record the reading of the vehicle dynamic performance when the vehicle is driven on the road. The experiment starts with weighing a car model to get the center of gravity (COG) to place the accelerometer sensor for data acquisition (DAQ). The COG of the vehicle is determined by using the weight of the vehicle. A rural route is set to launch the experiment and the road conditions are determined for the test. The dynamic performance of the vehicle are depends on the road conditions and driving maneuver. The stability of a vehicle can be controlled by the dynamic performance analysis.
NASA Astrophysics Data System (ADS)
Stocco, Gabriel; Savell, Robert; Cybenko, George
2010-04-01
In many security environments, the textual content of communications may be unavailable. In these instances, it is often desirable to infer the status of the network and its component entities from patterns of communication flow. Conversational dynamics among entities in the network may provide insight into important aspects of the underlying social network such as the formational dynamics of group structures, the active state of these groups, individuals' roles within groups, and the likelihood of individual participation in conversations. To gain insight into the use of conversational dynamics to facilitate Dynamic Social Network Analysis, we explore the use of interevent timings to associate entities in the Twitter social networking and micro-blogging environment. Specifically, we use message timings to establish inter-nodal relationships among participants. In addition, we demonstrate a new visualization technique for tracking levels of coordination or synchronization within the community via measures of socio-temporal coherence of the participants.
Low-Rank Incremental Methods for Computing Dominant Singular Subspaces
Baker, Christopher G; Gallivan, Dr. Kyle A; Van Dooren, Dr. Paul
2012-01-01
Computing the singular values and vectors of a matrix is a crucial kernel in numerous scientific and industrial applications. As such, numerous methods have been proposed to handle this problem in a computationally efficient way. This paper considers a family of methods for incrementally computing the dominant SVD of a large matrix A. Specifically, we describe a unification of a number of previously disparate methods for approximating the dominant SVD via a single pass through A. We tie the behavior of these methods to that of a class of optimization-based iterative eigensolvers on A'*A. An iterative procedure is proposed which allows the computation of an accurate dominant SVD via multiple passes through A. We present an analysis of the convergence of this iteration, and provide empirical demonstration of the proposed method on both synthetic and benchmark data.
Jarisch, Justin; Lien, Wen; Guevara, Peter H; Greenwood, William J; Dunn, William J
2016-01-01
Sonication technology has recently been touted to decrease composite viscosity during delivery and may allow better cavity preparation adaptation and minimize voids. The purpose of this investigation was to evaluate the difference between conventional, hand-placed, incremental application of a standard hybrid resin-based composite (RBC) and sonicated application of a bulk-fill RBC in box-type and cylindrical cavity preparations. Experimental restorations were fabricated using molds of box-type or cylindrical preparations. For bulk-filled specimens, a single compule of bulk-fill composite was dispensed with a sonic handpiece. The conventional hybrid material was placed in 3 increments (2 mm, 2 mm, and 1 mm). Microfocus x-ray computed tomography was used to analyze voids for percentage and total volume porosity as well as number of actual pores. An analysis of variance indicated that RBC restorations that were applied to cylindrical cavities using a sonicated bulk-filled application method exhibited significantly less porosity (1.42%; P < 0.001) than incrementally placed cylindrical restorations (2.87%); sonicated bulk-filled, cube-shaped restorations (3.12%); and incrementally placed cube-shaped restorations (5.16%). When the groups were subcategorized into the specific characteristics of shape (cube vs cylinder) and application method (bulk vs incremental), the cylindrical group, which included both bulk-filled and incrementally placed specimens, demonstrated significantly less porosity (2.00%; P < 0.001) than other groups. Restorations that were incrementally placed into cube-shaped cavities produced the largest amount of porosity. PMID:27599276
Influence of Pedaling Cadence and Incremental Protocol on the Estimation of EMGFT.
Duff, Timothy M; Fournier, Hallie; Hopp, Orie B; Ochshorn, Eli; Sanders, Eric S; Stevens, Rachel E; Malek, Moh H
2016-08-01
Duff, TM, Fournier, H, Hopp, OB, Ochshorn, E, Sanders, ES, Stevens, RE, and Malek, MH. Influence of pedaling cadence and incremental protocol on the estimation of EMGFT. J Strength Cond Res 30(8): 2206-2211, 2016-Theoretically, the electromyographic fatigue threshold (EMGFT) is the highest exercise intensity that an individual can exercise at indefinitely without an increase in electromyography (EMG) amplitude. This index is estimated from a single incremental test. There are, however, factors that may influence EMG amplitude such as pedaling cadence or the incremental protocol used. The purposes of this study were to determine whether different pedaling cadences and/or incremental protocols influence the estimation of the EMGFT. Eight healthy college-aged men performed incremental cycle ergometry on three separate visits. The participants exercised using the following combinations of pedaling cadences and incremental protocols in random order: 25 W at 70 RPM; 13 W at 70 RPM; and 25 W at 100 RPM. The EMGFT value was determined from the vastus lateralis muscle of each participant for each of the three conditions. Separate 1-way repeated measures analysis of variances were performed to determine mean differences for various outcome indices. The mean maximal power output for the 13 W at 70 RPM condition was significantly lower than the two other conditions. There were, however, no significant mean differences (F (2,14) = 2.03; p = 0.169) for EMGFT between the three conditions. The findings of this study indicated that different pedaling cadences and incremental protocols did not influence the estimation of the EMGFT. PMID:26677833
Digital data processing system dynamic loading analysis
NASA Technical Reports Server (NTRS)
Lagas, J. J.; Peterka, J. J.; Tucker, A. E.
1976-01-01
Simulation and analysis of the Space Shuttle Orbiter Digital Data Processing System (DDPS) are reported. The mated flight and postseparation flight phases of the space shuttle's approach and landing test configuration were modeled utilizing the Information Management System Interpretative Model (IMSIM) in a computerized simulation modeling of the ALT hardware, software, and workload. System requirements simulated for the ALT configuration were defined. Sensitivity analyses determined areas of potential data flow problems in DDPS operation. Based on the defined system requirements and the sensitivity analyses, a test design is described for adapting, parameterizing, and executing the IMSIM. Varying load and stress conditions for the model execution are given. The analyses of the computer simulation runs were documented as results, conclusions, and recommendations for DDPS improvements.
Preliminary analysis of turbochargers rotors dynamic behaviour
NASA Astrophysics Data System (ADS)
Monoranu, R.; Ştirbu, C.; Bujoreanu, C.
2016-08-01
Turbocharger rotors for the spark and compression ignition engines are resistant steels manufactured in order to support the exhaust gas temperatures exceeding 1200 K. In fact, the mechanical stress is not large as the power consumption of these systems is up to 10 kW, but the operating speeds are high, ranging between 30000 ÷ 250000 rpm. Therefore, the correct turbochargers functioning involves, even from the design stage, the accurate evaluation of the temperature effects, of the turbine torque due to the engine exhaust gases and of the vibration system behaviour caused by very high operating speeds. In addition, the turbocharger lubrication complicates the model, because the classical hydrodynamic theory cannot be applied to evaluate the floating bush bearings. The paper proposes a FEM study using CATIA environment, both as modeling medium and as tool for the numerical analysis, in order to highlight the turbocharger complex behaviour. An accurate design may prevent some major issues which can occur during its operation.
Molecular dynamics analysis on impact behavior of carbon nanotubes
NASA Astrophysics Data System (ADS)
Seifoori, Sajjad
2015-01-01
Dynamic analysis of impact of a nanoparticle on carbon nanotubes is investigated based on two degree of freedom model. The accuracy and stability of the present methods are verified by molecular dynamics (MD) simulations. The effect of different types of boundary condition on the maximum dynamic deflections is studied for zigzag and armchair SWCNTs with various aspect ratios (length/diameter). Besides, the influences of velocity of impactor on the dynamic deflections are studied. It is shown that the dynamic behavior on the armchair and zigzag single-walled carbon nanotubes are almost similar. Finally, by making use of the above MD simulation and theoretical results some insight has been obtained about the dynamic characteristics of the impact problems of nanobeam structures. Nonlocal Timoshenko beam models TBT2 should be employed for an accurate prediction of the dynamic deflection rather than nonlocal Euler-Bernoulli beam models EBT2 which ignores the effects of transverse shear deformation and rotary inertia that is especially significant for short beams. The results from nonlocal EBT2 and TBT2 models demonstrated good agreement with MD simulation. The EBT2 and TBT2 models also account for the relative motion between the nanoparticle and the nanobeam that is due to local indentation as can be seen in MD simulation.
Patient-adaptive lesion metabolism analysis by dynamic PET images.
Gao, Fei; Liu, Huafeng; Shi, Pengcheng
2012-01-01
Dynamic PET imaging provides important spatial-temporal information for metabolism analysis of organs and tissues, and generates a great reference for clinical diagnosis and pharmacokinetic analysis. Due to poor statistical properties of the measurement data in low count dynamic PET acquisition and disturbances from surrounding tissues, identifying small lesions inside the human body is still a challenging issue. The uncertainties in estimating the arterial input function will also limit the accuracy and reliability of the metabolism analysis of lesions. Furthermore, the sizes of the patients and the motions during PET acquisition will yield mismatch against general purpose reconstruction system matrix, this will also affect the quantitative accuracy of metabolism analyses of lesions. In this paper, we present a dynamic PET metabolism analysis framework by defining a patient adaptive system matrix to improve the lesion metabolism analysis. Both patient size information and potential small lesions are incorporated by simulations of phantoms of different sizes and individual point source responses. The new framework improves the quantitative accuracy of lesion metabolism analysis, and makes the lesion identification more precisely. The requirement of accurate input functions is also reduced. Experiments are conducted on Monte Carlo simulated data set for quantitative analysis and validation, and on real patient scans for assessment of clinical potential. PMID:23286175
Dynamic response analysis procedure for landfills with geosynthetic liners
Yegian, M.K.; Harb, J.N.; Kadakal, U.
1998-10-01
The dynamic response of geosynthetic interfaces commonly encountered in municipal solid waste landfills were investigated using a shaking table facility. The force-slip relationships for the tested interfaces showed almost rigid and then plastic deformation where the maximum shear force transmitted through the interface increases slightly with increasing slip. The force-slip relationships were modeled with equivalent stiffness and damping ratios. These equivalent parameters were established as a function of slip displacements to account for the nonlinear behavior of the interfaces. Using the equivalent stiffness and damping, the dynamic properties of an equivalent soil layer were established such that the dynamic response of the equivalent soil layer is similar to that of the geosynthetic interface it represents. The purpose of this representation was to allow the modeling of geosynthetic interfaces in wave propagation analysis, such as SHAKE analysis. The properties of the equivalent soil layer were validated by comparing the measured dynamic response of a rigid block placed on geosynthetics with that computed using the SHAKEW program and the properties of the equivalent soil layer developed. A procedure for analysis of the dynamic response of landfills with geosynthetic liners is proposed.
Operationalizing sustainability in urban coastal systems: a system dynamics analysis.
Mavrommati, Georgia; Bithas, Kostas; Panayiotidis, Panayiotis
2013-12-15
We propose a system dynamics approach for Ecologically Sustainable Development (ESD) in urban coastal systems. A systematic analysis based on theoretical considerations, policy analysis and experts' knowledge is followed in order to define the concept of ESD. The principles underlying ESD feed the development of a System Dynamics Model (SDM) that connects the pollutant loads produced by urban systems' socioeconomic activities with the ecological condition of the coastal ecosystem that it is delineated in operational terms through key biological elements defined by the EU Water Framework Directive. The receiving waters of the Athens Metropolitan area, which bears the elements of typical high population density Mediterranean coastal city but which currently has also new dynamics induced by the ongoing financial crisis, are used as an experimental system for testing a system dynamics approach to apply the concept of ESD. Systems' thinking is employed to represent the complex relationships among the components of the system. Interconnections and dependencies that determine the potentials for achieving ESD are revealed. The proposed system dynamics analysis can facilitate decision makers to define paths of development that comply with the principles of ESD. PMID:24200010
Trajectory analysis of the rotational dynamics of molecules
Petrov, S. V. Lokshtanov, S. E.
2015-08-15
A method for analysis of the rotational dynamics of molecular systems has been proposed on the basis of the calculation of the set of exact classical vibrational–rotational trajectories. It has been proposed to compose and to numerically solve the complete system of dynamic equations consisting of Hamilton’s equations and generalized Euler equations for an arbitrary system. The computer algebra system can be applied to automatize the process of derivation and subsequent solution of dynamic equations. The variation of the picture of known bifurcation in the rotational dynamics of symmetric triatomic hydride molecules with an increase in vibrational excitation has been studied within the proposed approach. It has been shown that manifestations of bifurcation completely disappear at a quite high level of vibrational excitations.
Dynamic speciation analysis and bioavailability of metals in aquatic systems.
van Leeuwen, Herman P; Town, Raewyn M; Buffle, Jacques; Cleven, Rob F M J; Davison, William; Puy, Jaume; van Riemsdijk, Willem H; Sigg, Laura
2005-11-15
Dynamic metal speciation analysis in aquatic ecosystems is emerging as a powerful basis for development of predictions of bioavailability and reliable risk assessment strategies. A given speciation sensor is characterized by an effective time scale or kinetic window that defines the measurable metal species via their labilities. Here we review the current state of the art for the theory and application of dynamic speciation sensors. We show that a common dynamic interpretation framework, based on rigorous flux expressions incorporating the relevant diffusion and reaction steps, is applicable for a suite of sensors that span a range of time scales. Interpolation from a kinetic spectrum of speciation data is proposed as a practical strategy for addressing questions of bioavailability. Case studies illustrate the practical significance of knowledge on the dynamic features of metal complex species in relation to biouptake, and highlight the limitations of equilibrium-based models. PMID:16323747
Recoupling pulse sequences with constant phase increments
NASA Astrophysics Data System (ADS)
Khaneja, Navin; Kumar, Ashutosh
2016-10-01
The paper studies a family of recoupling pulse sequences in magic angle spinning (MAS) solid state NMR, that are characterized by constant phase increments at regular intervals. These pulse sequences can be employed for both homonuclear and heteronuclear recoupling experiments and are robust to dispersion in chemical shifts and rf-inhomogeneity. The homonuclear pulse sequence consists of a building block (2 π) ϕp , where ϕp =p (n - 1) π/n, where n is number of blocks in a rotor period and p = 0, 1, 2, … . The pulse sequence repeats itself every rotor period when n is odd and every two rotor period when n is even. The heteronuclear recoupling pulse sequence consists of a building block (2 π) ϕ1p and (2 π) ϕ2p on channel I and S, where ϕ1p = p (2 n - 3) π/2 n, ϕ2p = p (2 n - 1) π/2 n and n is number of blocks in a rotor period. The recoupling pulse sequences mix the z magnetization. Experimental quantification of this method is shown for 13Cα -13CO , homonuclear recoupling in a sample of Glycine and 15N -13Cα , heteronuclear recoupling in Alanine. Application of this method is demonstrated on a sample of tripeptide N-formyl-[U-13C ,15N ]- Met-Leu-Phe-OH (MLF).
Recoupling pulse sequences with constant phase increments.
Khaneja, Navin; Kumar, Ashutosh
2016-10-01
The paper studies a family of recoupling pulse sequences in magic angle spinning (MAS) solid state NMR, that are characterized by constant phase increments at regular intervals. These pulse sequences can be employed for both homonuclear and heteronuclear recoupling experiments and are robust to dispersion in chemical shifts and rf-inhomogeneity. The homonuclear pulse sequence consists of a building block [Formula: see text] , where ϕ(p)=p(n-1)πn, where n is number of blocks in a rotor period and p=0,1,2,…. The pulse sequence repeats itself every rotor period when n is odd and every two rotor period when n is even. The heteronuclear recoupling pulse sequence consists of a building block [Formula: see text] and [Formula: see text] on channel I and S, where ϕ1(p)=p(2n-3)π2n,ϕ2(p)=p(2n-1)π2n and n is number of blocks in a rotor period. The recoupling pulse sequences mix the z magnetization. Experimental quantification of this method is shown for (13)Cα-(13)CO, homonuclear recoupling in a sample of Glycine and (15)N-(13)Cα, heteronuclear recoupling in Alanine. Application of this method is demonstrated on a sample of tripeptide N-formyl-[U-(13)C,(15)N]- Met-Leu-Phe-OH (MLF). PMID:27569693
Incremental fusion of partial biometric information
NASA Astrophysics Data System (ADS)
Abboud, Ali J.; Jassim, Sabah A.
2012-06-01
Existing face recognition schemes are mostly based on extracting biometric feature vectors either from whole face images, or from a fixed facial region (e.g., eyes, nose, and mouth). Extreme variation in quality conditions between biometric enrolment and verification stages badly affects the performance of face recognition systems. Such problems have partly motivated several investigations into the use of partial facial features for face recognition. Nevertheless, partial face recognition is potentially useful in several applications, for instance, it used in forensics for detectives to identify individuals after some accidents such as fire or explosion. In this paper, we propose a scheme to fuse the biometric information of partial face images incrementally based on their recognition accuracy (or discriminative power) ranks. Such fusion scheme uses the optimal ratio of full/partial face images in each different quality condition. We found that such scheme is also useful for full face images to enhance authentication accuracy significantly. Nevertheless, it reduces the required storage requirements and processing time of the biometric system. Our experiments show that the required ratio of full/partial facial images to achieve optimal performance varies from (5%) to (80%) according to the quality conditions whereas the authentication accuracy improves significantly for low quality biometric samples.
Evolution of cooperation driven by incremental learning
NASA Astrophysics Data System (ADS)
Li, Pei; Duan, Haibin
2015-02-01
It has been shown that the details of microscopic rules in structured populations can have a crucial impact on the ultimate outcome in evolutionary games. So alternative formulations of strategies and their revision processes exploring how strategies are actually adopted and spread within the interaction network need to be studied. In the present work, we formulate the strategy update rule as an incremental learning process, wherein knowledge is refreshed according to one's own experience learned from the past (self-learning) and that gained from social interaction (social-learning). More precisely, we propose a continuous version of strategy update rules, by introducing the willingness to cooperate W, to better capture the flexibility of decision making behavior. Importantly, the newly gained knowledge including self-learning and social learning is weighted by the parameter ω, establishing a strategy update rule involving innovative element. Moreover, we quantify the macroscopic features of the emerging patterns to inspect the underlying mechanisms of the evolutionary process using six cluster characteristics. In order to further support our results, we examine the time evolution course for these characteristics. Our results might provide insights for understanding cooperative behaviors and have several important implications for understanding how individuals adjust their strategies under real-life conditions.
Dynamic analysis of a gear drive system in aeroengine
NASA Astrophysics Data System (ADS)
Yuan, Xiangdong; Zhou, Chuanrong
1993-04-01
A new technique of structural dynamic analysis especially for analysis of a gear drive system has been developed, which combines the principle of substructure analysis with the idea of structure modification. A gear stiffness model of the degrees of the freedom of the structure node in which the gear relation exists has also been developed. It has the advantages of both the method of substructure analysis and vibration reanalysis of modified structure. The natural frequencies and modes calculated by the present program are in quite good agreement with the results calculated by FEM.
Dynamic response and stability analysis of flexible, multibody systems. [spacecraft
NASA Technical Reports Server (NTRS)
Bodley, C. S.; Park, A. C.; Devers, A. D.; Frisch, H. P.
1977-01-01
A general version of Lagrange's equations, including auxiliary nonholonomic, rheonomic conditions of constraint, is used in the dynamic simulation and stability analysis of interconnected flexible bodies. Modeling of the nonlinear flexible/rigid dynamic coupling effects, the interaction forces/torques, and the elastic deformation effects is discussed. A digital computer program is developed to obtain time-domain solution for the nonlinear response of systems represented as a collection of individual bodies, numerical linearization of system-governing equations, time-domain solution for the perturbation response about a nominal state, and a frequency-domain stability analysis corresponding to the linearization. The digital simulation code is employed to study the dynamic behavior of a typical satellite and a spacecraft with deployable experiment booms.
Dynamic analysis of spur gears using computer program DANST
NASA Technical Reports Server (NTRS)
Oswald, Fred B.; Lin, Hsiang H.; Liou, Chuen-Huei; Valco, Mark J.
1993-01-01
DANST is a computer program for static and dynamic analysis of spur gear systems. The program can be used for parametric studies to predict the effect on dynamic load and tooth bending stress of spur gears due to operating speed, torque, stiffness, damping, inertia, and tooth profile. DANST performs geometric modeling and dynamic analysis for low- or high-contact-ratio spur gears. DANST can simulate gear systems with contact ratio ranging from one to three. It was designed to be easy to use, and it is extensively documented by comments in the source code. This report describes the installation and use of DANST. It covers input data requirements and presents examples. The report also compares DANST predictions for gear tooth loads and bending stress to experimental and finite element results.
Dynamic analysis of spur gears using computer program DANST
Oswald, F.B.; Lin, H.H.; Liou, Chuenheui; Valco, M.J.
1993-06-01
DANST is a computer program for static and dynamic analysis of spur gear systems. The program can be used for parametric studies to predict the effect on dynamic load and tooth bending stress of spur gears due to operating speed, torque, stiffness, damping, inertia, and tooth profile. DANST performs geometric modeling and dynamic analysis for low- or high-contact-ratio spur gears. DANST can simulate gear systems with contact ratio ranging from one to three. It was designed to be easy to use, and it is extensively documented by comments in the source code. This report describes the installation and use of DANST. It covers input data requirements and presents examples. The report also compares DANST predictions for gear tooth loads and bending stress to experimental and finite element results. 14 refs.
Bifurcation analysis of bubble dynamics in fluidized beds
Blomgren, Peter; Palacios, Antonio; Zhu, Bing; Daw, C Stuart; FINNEY, Charles E A; Halow, John; Pannala, Sreekanth
2007-01-01
We use a low-dimensional, agent-based bubble model to study the changes in the global dynamics of fluidized beds in response to changes in the frequency of the rising bubbles. The computationally based bifurcation analysis shows that at low frequencies, the global dynamics is attracted towards a fixed point since the bubbles interact very little with one another. As the frequency of injection increases, however, the global dynamics undergoes a series of bifurcations to new behaviors that include highly periodic orbits, chaotic attractors, and intermittent behavior between periodic orbits and chaotic sets. Using methods from time-series analysis, we are able to approximate nonlinear models that allow for long-term predictions and the possibility of developing control algorithms.
SENSITIVITY ANALYSIS FOR OSCILLATING DYNAMICAL SYSTEMS
WILKINS, A. KATHARINA; TIDOR, BRUCE; WHITE, JACOB; BARTON, PAUL I.
2012-01-01
Boundary value formulations are presented for exact and efficient sensitivity analysis, with respect to model parameters and initial conditions, of different classes of oscillating systems. Methods for the computation of sensitivities of derived quantities of oscillations such as period, amplitude and different types of phases are first developed for limit-cycle oscillators. In particular, a novel decomposition of the state sensitivities into three parts is proposed to provide an intuitive classification of the influence of parameter changes on period, amplitude and relative phase. The importance of the choice of time reference, i.e., the phase locking condition, is demonstrated and discussed, and its influence on the sensitivity solution is quantified. The methods are then extended to other classes of oscillatory systems in a general formulation. Numerical techniques are presented to facilitate the solution of the boundary value problem, and the computation of different types of sensitivities. Numerical results are verified by demonstrating consistency with finite difference approximations and are superior both in computational efficiency and in numerical precision to existing partial methods. PMID:23296349
Empirical analysis of online human dynamics
NASA Astrophysics Data System (ADS)
Zhao, Zhi-Dan; Zhou, Tao
2012-06-01
Patterns of human activities have attracted increasing academic interests, since the quantitative understanding of human behavior is helpful to uncover the origins of many socioeconomic phenomena. This paper focuses on behaviors of Internet users. Six large-scale systems are studied in our experiments, including the movie-watching in Netflix and MovieLens, the transaction in Ebay, the bookmark-collecting in Delicious, and the posting in FreindFeed and Twitter. Empirical analysis reveals some common statistical features of online human behavior: (1) The total number of user's actions, the user's activity, and the interevent time all follow heavy-tailed distributions. (2) There exists a strongly positive correlation between user's activity and the total number of user's actions, and a significantly negative correlation between the user's activity and the width of the interevent time distribution. We further study the rescaling method and show that this method could to some extent eliminate the different statistics among users caused by the different activities, yet the effectiveness depends on the data sets.
Wavelet analysis and applications to some dynamical systems
NASA Astrophysics Data System (ADS)
Bendjoya, Ph.; Slezak, E.
1993-05-01
The main properties of the wavelet transform as a new time-frequency method which is particularly well suited for detecting and localizing discontinuities and scaling behavior in signals are reviewed. Particular attention is given to first applications of the wavelet transform to dynamical systems including solution of partial differential equations, fractal and turbulence characterization, and asteroid family determination from cluster analysis. Advantages of the wavelet transform over classical analysis methods are summarized.
Onsite analysis of data from the Dynamics Explorer (DE) spacecraft
NASA Technical Reports Server (NTRS)
Fung, Shing F.; Candey, Robert M.; Humphreys, Josephine N.
1992-01-01
The tasks performed by ARC Professional Services Group, Inc. fell into five parts: (1) dynamics explorer (DE) data analysis and modeling; (2) DE project support; (3) chemical release observations support; (4) VLF emissions and plasma instability studies; and (5) modeling of planetary radio emissions. Some recommendations for future considerations are also addressed.
Dynamic Analysis of Education Policies: Extending Cost-Benefit Studies
ERIC Educational Resources Information Center
Morris, Jon R.; Ammentorp, William
1977-01-01
Dynamic analysis offers a comprehensive view of the cost benefit and cost effective dimensions of policy problems. It also provides the computational power to investigate the long term effects of policy decisions on the flow of resources in organizations and government agencies. (Author/MV)
A generalized shell for dynamic security analysis in operations planning
Marceau, R.J.; Mailhot, R.; Galiana, F.D. )
1993-08-01
This paper introduces the concept of a generalized shell for performing power-system dynamic security analysis. The generalized shell mechanizes routines traditionally carried out by human experts and that are essential to power-system dynamic security analysis, thereby greatly accelerating the realization of complex processes. The shell semantics express high-level goals and tasks using a friendly, highly compact syntax which closely matches the language of operations planners. Typically, the shell will execute appropriate load-flow and transient-stability simulations (i.e. using commercially available simulation software), perform result analysis, make input changes and repeat this process until a user-defined goal has been achieved. A working shell prototype for performing key algorithmic processes is described and results of a typical sensitivity study are presented using a 700-bus model of the Hydro-Quebec network. It is expected that the prototype will reduce study-cycle time, improve the accuracy of dynamic security limits and, indeed, transform the working environment of operations and system planners. Eventually, it can be foreseen that the approach will gravitate towards supporting on-line dynamic security analysis.
An Efficient Crankshaft Dynamic Analysis Using Substructuring with Ritz Vectors
NASA Astrophysics Data System (ADS)
MOURELATOS, Z. P.
2000-11-01
A structural analysis using dynamic substructuring with Ritz vectors is presented for predicting the dynamic response of an engine crankshaft, based on the finite-element method. A two-level dynamic substructuring is performed using a set of load-dependent Ritz vectors. The rotating crankshaft is properly coupled with the non-rotating, compliant engine block. The block compliance is represented by a distributed linear elastic foundation at each main bearing location. The stiffness of the elastic foundation can be different in the vertical and horizontal planes, thereby considering the anisotropy of the engine block compliance with respect to the crankshaft rotation. The analysis accounts for the kinematic non-linearity resulting from the crankangle-dependent circumferential contact location between each journal and the corresponding bore of the engine block. Crankshaft “bent” and block “misboring” effects due to manufacturing imperfections are considered in the analysis. The superior accuracy and reduced computational effort of the present method as compared with the equivalent superelement analysis in MSC/NASTRAN, are demonstrated using the free and forced vibrations of a slender cylindrical beam and free vibrations of a four-cylinder engine crankshaft. Subsequently, the accuracy of the present method in calculating the dynamic response of engine crankshafts is shown through comparisons between the analytical predictions and experimental results for the torsional vibrations of an in-line five cylinder engine and the bending vibrations of the crankshaft-flywheel assembly of a V6 engine.
Potential applications of computational fluid dynamics to biofluid analysis
NASA Technical Reports Server (NTRS)
Kwak, D.; Chang, J. L. C.; Rogers, S. E.; Rosenfeld, M.; Kwak, D.
1988-01-01
Computational fluid dynamics was developed to the stage where it has become an indispensable part of aerospace research and design. In view of advances made in aerospace applications, the computational approach can be used for biofluid mechanics research. Several flow simulation methods developed for aerospace problems are briefly discussed for potential applications to biofluids, especially to blood flow analysis.
Static and dynamic analysis of the APT superconducting cavities
Schrage, D.; Swensen, E.; Rusnak, B.
1995-09-01
Static and dynamic analysis of 4-, 6-, and 12-cell {beta}=0.428 niobium cavities proposed for the superconducting linac for the Accelerator Production of Tritium were carried out using COSMOS/M{copyright}, a commercial finite-element code. The benefits of external stiffeners, the tuning sensitivities, and the mechanical resonant frequencies are reported.
A Model of Practice in Special Education: Dynamic Ecological Analysis
ERIC Educational Resources Information Center
Hannant, Barbara; Lim, Eng Leong; McAllum, Ruth
2010-01-01
Dynamic Ecological Analysis (DEA) is a model of practice which increases a teams' efficacy by enabling the development of more effective interventions through collaboration and collective reflection. This process has proved to be useful in: a) clarifying thinking and problem-solving, b) transferring knowledge and thinking to significant parties,…
Incremental triangulation by way of edge swapping and local optimization
NASA Technical Reports Server (NTRS)
Wiltberger, N. Lyn
1994-01-01
This document is intended to serve as an installation, usage, and basic theory guide for the two dimensional triangulation software 'HARLEY' written for the Silicon Graphics IRIS workstation. This code consists of an incremental triangulation algorithm based on point insertion and local edge swapping. Using this basic strategy, several types of triangulations can be produced depending on user selected options. For example, local edge swapping criteria can be chosen which minimizes the maximum interior angle (a MinMax triangulation) or which maximizes the minimum interior angle (a MaxMin or Delaunay triangulation). It should be noted that the MinMax triangulation is generally only locally optical (not globally optimal) in this measure. The MaxMin triangulation, however, is both locally and globally optical. In addition, Steiner triangulations can be constructed by inserting new sites at triangle circumcenters followed by edge swapping based on the MaxMin criteria. Incremental insertion of sites also provides flexibility in choosing cell refinement criteria. A dynamic heap structure has been implemented in the code so that once a refinement measure is specified (i.e., maximum aspect ratio or some measure of a solution gradient for the solution adaptive grid generation) the cell with the largest value of this measure is continually removed from the top of the heap and refined. The heap refinement strategy allows the user to specify either the number of cells desired or refine the mesh until all cell refinement measures satisfy a user specified tolerance level. Since the dynamic heap structure is constantly updated, the algorithm always refines the particular cell in the mesh with the largest refinement criteria value. The code allows the user to: triangulate a cloud of prespecified points (sites), triangulate a set of prespecified interior points constrained by prespecified boundary curve(s), Steiner triangulate the interior/exterior of prespecified boundary curve
The balanced scorecard: an incremental approach model to health care management.
Pineno, Charles J
2002-01-01
The balanced scorecard represents a technique used in strategic management to translate an organization's mission and strategy into a comprehensive set of performance measures that provide the framework for implementation of strategic management. This article develops an incremental approach for decision making by formulating a specific balanced scorecard model with an index of nonfinancial as well as financial measures. The incremental approach to costs, including profit contribution analysis and probabilities, allows decisionmakers to assess, for example, how their desire to meet different health care needs will cause changes in service design. This incremental approach to the balanced scorecard may prove to be useful in evaluating the existence of causality relationships between different objective and subjective measures to be included within the balanced scorecard.
Acceleration of dynamic fluorescence molecular tomography with principal component analysis
Zhang, Guanglei; He, Wei; Pu, Huangsheng; Liu, Fei; Chen, Maomao; Bai, Jing; Luo, Jianwen
2015-01-01
Dynamic fluorescence molecular tomography (FMT) is an attractive imaging technique for three-dimensionally resolving the metabolic process of fluorescent biomarkers in small animal. When combined with compartmental modeling, dynamic FMT can be used to obtain parametric images which can provide quantitative pharmacokinetic information for drug development and metabolic research. However, the computational burden of dynamic FMT is extremely huge due to its large data sets arising from the long measurement process and the densely sampling device. In this work, we propose to accelerate the reconstruction process of dynamic FMT based on principal component analysis (PCA). Taking advantage of the compression property of PCA, the dimension of the sub weight matrix used for solving the inverse problem is reduced by retaining only a few principal components which can retain most of the effective information of the sub weight matrix. Therefore, the reconstruction process of dynamic FMT can be accelerated by solving the smaller scale inverse problem. Numerical simulation and mouse experiment are performed to validate the performance of the proposed method. Results show that the proposed method can greatly accelerate the reconstruction of parametric images in dynamic FMT almost without degradation in image quality. PMID:26114027
Major component analysis of dynamic networks of physiologic organ interactions
NASA Astrophysics Data System (ADS)
Liu, Kang K. L.; Bartsch, Ronny P.; Ma, Qianli D. Y.; Ivanov, Plamen Ch
2015-09-01
The human organism is a complex network of interconnected organ systems, where the behavior of one system affects the dynamics of other systems. Identifying and quantifying dynamical networks of diverse physiologic systems under varied conditions is a challenge due to the complexity in the output dynamics of the individual systems and the transient and nonlinear characteristics of their coupling. We introduce a novel computational method based on the concept of time delay stability and major component analysis to investigate how organ systems interact as a network to coordinate their functions. We analyze a large database of continuously recorded multi-channel physiologic signals from healthy young subjects during night-time sleep. We identify a network of dynamic interactions between key physiologic systems in the human organism. Further, we find that each physiologic state is characterized by a distinct network structure with different relative contribution from individual organ systems to the global network dynamics. Specifically, we observe a gradual decrease in the strength of coupling of heart and respiration to the rest of the network with transition from wake to deep sleep, and in contrast, an increased relative contribution to network dynamics from chin and leg muscle tone and eye movement, demonstrating a robust association between network topology and physiologic function.
ERIC Educational Resources Information Center
Andrei, Federica; Smith, Martin M.; Surcinelli, Paola; Baldaro, Bruno; Saklofske, Donald H.
2016-01-01
This study investigated the structure and validity of the Italian translation of the Trait Emotional Intelligence Questionnaire. Data were self-reported from 227 participants. Confirmatory factor analysis supported the four-factor structure of the scale. Hierarchical regressions also demonstrated its incremental validity beyond demographics, the…
Improved dynamic analysis method using load-dependent Ritz vectors
NASA Technical Reports Server (NTRS)
Escobedo-Torres, J.; Ricles, J. M.
1993-01-01
The dynamic analysis of large space structures is important in order to predict their behavior under operating conditions. Computer models of large space structures are characterized by having a large number of degrees of freedom, and the computational effort required to carry out the analysis is very large. Conventional methods of solution utilize a subset of the eigenvectors of the system, but for systems with many degrees of freedom, the solution of the eigenproblem is in many cases the most costly phase of the analysis. For this reason, alternate solution methods need to be considered. It is important that the method chosen for the analysis be efficient and that accurate results be obtainable. It is important that the method chosen for the analysis be efficient and that accurate results be obtainable. The load dependent Ritz vector method is presented as an alternative to the classical normal mode methods for obtaining dynamic responses of large space structures. A simplified model of a space station is used to compare results. Results show that the load dependent Ritz vector method predicts the dynamic response better than the classical normal mode method. Even though this alternate method is very promising, further studies are necessary to fully understand its attributes and limitations.
Dynamic Systems Analysis for Turbine Based Aero Propulsion Systems
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.
2016-01-01
The aircraft engine design process seeks to optimize the overall system-level performance, weight, and cost for a given concept. Steady-state simulations and data are used to identify trade-offs that should be balanced to optimize the system in a process known as systems analysis. These systems analysis simulations and data may not adequately capture the true performance trade-offs that exist during transient operation. Dynamic systems analysis provides the capability for assessing the dynamic tradeoffs at an earlier stage of the engine design process. The dynamic systems analysis concept, developed tools, and potential benefit are presented in this paper. To provide this capability, the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) was developed to provide the user with an estimate of the closed-loop performance (response time) and operability (high pressure compressor surge margin) for a given engine design and set of control design requirements. TTECTrA along with engine deterioration information, can be used to develop a more generic relationship between performance and operability that can impact the engine design constraints and potentially lead to a more efficient engine.
Integrative Analysis of Metabolic Models – from Structure to Dynamics
Hartmann, Anja; Schreiber, Falk
2015-01-01
The characterization of biological systems with respect to their behavior and functionality based on versatile biochemical interactions is a major challenge. To understand these complex mechanisms at systems level modeling approaches are investigated. Different modeling formalisms allow metabolic models to be analyzed depending on the question to be solved, the biochemical knowledge and the availability of experimental data. Here, we describe a method for an integrative analysis of the structure and dynamics represented by qualitative and quantitative metabolic models. Using various formalisms, the metabolic model is analyzed from different perspectives. Determined structural and dynamic properties are visualized in the context of the metabolic model. Interaction techniques allow the exploration and visual analysis thereby leading to a broader understanding of the behavior and functionality of the underlying biological system. The System Biology Metabolic Model Framework (SBM2 – Framework) implements the developed method and, as an example, is applied for the integrative analysis of the crop plant potato. PMID:25674560
Flight Dynamics Analysis Branch End of Fiscal Year 2004 Report
NASA Technical Reports Server (NTRS)
DeLion, Anne (Editor); Stengle, Thomas
2005-01-01
This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 595, in support of flight projects and technology development initiatives in Fiscal Year (FY) 2004. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics including spacecraft navigation (autonomous and ground based); spacecraft trajectory design and maneuver planning; attitude analysis; attitude determination and sensor calibration; and attitude control subsystem (ACS) analysis and design. The FDAB currently provides support for missions and technology development projects involving NASA, other government agencies, academia, and private industry.
Flight Dynamics Analysis Branch End of Fiscal Year 1999 Report
NASA Technical Reports Server (NTRS)
Stengle, T.; Flores-Amaya, F.
2000-01-01
This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 572, in support of flight projects and technology development initiatives in Fiscal Year (FY) 1999. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key analysis results and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the discipline of flight dynamics, which involves spacecraft trajectory (orbit) and attitude analysis, as well as orbit and attitude determination and control. The FDAB currently provides support for missions involving NASA, government, university, and commercial space missions, at various stages in the mission life cycle.
Flight Dynamics Analysis Branch End of Fiscal Year 2005 Report
NASA Technical Reports Server (NTRS)
2006-01-01
This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 595, in support of flight projects and technology development initiatives in Fiscal Year (FY) 2005. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics including spacecraft navigation (autonomous and ground based), spacecraft trajectory design and maneuver planning, attitude analysis, attitude determination and sensor calibration, and attitude control subsystem (ACS) analysis and design. The FDAB currently provides support for missions and technology development projects involving NASA, other government agencies, academia, and private industry.
ERIC Educational Resources Information Center
Tuma, Nancy Brandon; Hannan, Michael T.
The document, part of a series of chapters described in SO 011 759, examines sociological research methods for the study of change. The advantages and procedures for dynamic analysis of event-history data (data giving the number, timing, and sequence of changes in a categorical dependent variable) are considered. The authors argue for grounding…
Incremental Seismic Rehabilitation of School Buildings (K-12).
ERIC Educational Resources Information Center
Krimgold, Frederick; Hattis, David; Green, Melvyn
Asserting that the strategy of incremental seismic rehabilitation makes it possible for schools to get started now on improving earthquake safety, this manual provides school administrators with the information necessary to assess the seismic vulnerability of their buildings and to implement a program of incremental seismic rehabilitation for…
Dynamical analysis of sea-breeze hodograph rotation in Sardinia
NASA Astrophysics Data System (ADS)
Moisseeva, N.; Steyn, D. G.
2014-12-01
This study investigates the diurnal evolution of sea-breeze (SB) rotation over an island at the middle latitudes. Earlier research on sea breezes in Sardinia shows that the onshore winds around various coasts of the island exhibit both the theoretically predicted clockwise rotation as well as seemingly anomalous anticlockwise rotation. A non-hydrostatic fully compressible numerical model (WRF) is used to simulate wind fields on and around the island on previously studied sea-breeze days, and is shown to capture the circulation on all coasts accurately. Diurnal rotation of wind is examined, and patterns of clockwise and anticlockwise rotation are identified. A dynamical analysis is performed by extracting individual forcing terms from the horizontal momentum equations. Analysis of several regions around the island shows that the direction of rotation is a result of a complex interaction between near-surface and synoptic pressure gradient, Coriolis and advection forcings. An idealized simulation is performed over an artificial island with dramatically simplified topography yet similar dimensions and latitude to Sardinia. Dynamical analysis of the idealized case reveals a rather different pattern of hodograph rotation to the real Sardinia, yet similar underlying dynamics. The research provides new insights into the dynamics underlying sea-breeze hodograph rotation, especially in coastal zones with a complex topography and/or coastline.
Dynamical analysis of sea-breeze hodograph rotation in Sardinia
NASA Astrophysics Data System (ADS)
Moisseeva, N.; Steyn, D. G.
2014-09-01
This study investigates the diurnal evolution of sea-breeze rotation over an island in the mid-latitudes. Earlier research on sea-breezes in Sardinia shows that the onshore winds around various coasts of the island exhibit both the theoretically predicted clockwise rotation as well as seemingly anomalous anti-clockwise rotation. A non-hydrostatic fully compressible numerical model (WRF) is used to simulate wind fields on and around the island on previously-studied sea-breeze days and is shown to accurately capture the circulation on all coasts. Diurnal rotation of wind is examined and patterns of clockwise and anti-clockwise rotation are identified. A dynamical analysis is performed by extracting individual forcing terms from the horizontal momentum equations. Analysis of several regions around the island shows that the direction of rotation is a result of a complex interaction between near-surface and synoptic pressure gradient, Coriolis and advection forcings. An idealized simulation is performed over an artificial island with dramatically simplified topography, yet similar dimensions and latitude to Sardinia. Dynamical analysis of the idealized case reveals a rather different pattern of hodograph rotation to the real Sardinia, yet similar underlying dynamics. The research provides new insights into the dynamics underlying sea-breeze hodograph rotation, especially in coastal zones with complex topography and/or coastline.
Propellant Slosh Analysis for the Solar Dynamics Observatory
NASA Technical Reports Server (NTRS)
Mason, Paul A. C.; Starin, Scott R.
2005-01-01
The Solar Dynamics Observatory (SDO) mission, part of the Living With a Star program, is a geosynchronous satellite with tight pointing requirements. Due to a large amount of liquid propellant, a detailed slosh analysis is required to ensure the tight pointing budget can be satisfied. Much of the high fidelity slosh analysis and simulation has been performed via computational fluid dynamics. Even though this method of simulation is very accurate, it requires significant computational effort and specialized knowledge, limiting the ability of the SDO project to access fluid dynamics simulations at will. Furthermore, it is very difficult to incorporate most of these models into simulations of the overall spacecraft and its environment. Ultimately, the effects of the propellant slosh on the attitude stability and pointing performance of the entire spacecraft are of great interest to attitude control engineers. Equivalent mechanical models, such as models that approximate the fluid slosh effects by analogy to the movements of a point-mass pendulum, are important tools in simulating propellant slosh dynamics as part of the entire attitude determination and control system. This paper describes some of the current methods used to analyze and model slosh. It focuses on equivalent mechanical models and their incorporation into control-based analysis tools such as Simulink. The SDO mission is used as the case study for this work.
Interactive Finite Elements for General Engine Dynamics Analysis
NASA Technical Reports Server (NTRS)
Adams, M. L.; Padovan, J.; Fertis, D. G.
1984-01-01
General nonlinear finite element codes were adapted for the purpose of analyzing the dynamics of gas turbine engines. In particular, this adaptation required the development of a squeeze-film damper element software package and its implantation into a representative current generation code. The ADINA code was selected because of prior use of it and familiarity with its internal structure and logic. This objective was met and the results indicate that such use of general purpose codes is viable alternative to specialized codes for general dynamics analysis of engines.
Multifractal analysis of dynamic infrared imaging of breast cancer
NASA Astrophysics Data System (ADS)
Gerasimova, E.; Audit, B.; Roux, S. G.; Khalil, A.; Argoul, F.; Naimark, O.; Arneodo, A.
2013-12-01
The wavelet transform modulus maxima (WTMM) method was used in a multifractal analysis of skin breast temperature time-series recorded using dynamic infrared (IR) thermography. Multifractal scaling was found for healthy breasts as the signature of a continuous change in the shape of the probability density function (pdf) of temperature fluctuations across time scales from \\sim0.3 to 3 s. In contrast, temperature time-series from breasts with malignant tumors showed homogeneous monofractal temperature fluctuations statistics. These results highlight dynamic IR imaging as a very valuable non-invasive technique for preliminary screening in asymptomatic women to identify those with risk of breast cancer.
Dynamic analysis using superelements for a large helicopter model
NASA Technical Reports Server (NTRS)
Patel, M. P.; Shah, L. C.
1978-01-01
Using superelements (substructures), modal and frequency response analysis was performed for a large model of the Advanced Attack Helicopter developed for the U.S. Army. Whiffletree concept was employed so that the residual structure along with the various superelements could be represented as beam-like structures for economical and accurate dynamic analysis. A very large DMAP alter to the rigid format was developed so that the modal analysis, the frequency response, and the strain energy in each component could be computed in the same run.
LSH-RANSAC: Incremental Matching of Large-Size Maps
NASA Astrophysics Data System (ADS)
Tanaka, Kanji; Saeki, Ken-Ichi; Minami, Mamoru; Ueda, Takeshi
This paper presents a novel approach for robot localization using landmark maps. With recent progress in SLAM researches, it has become crucial for a robot to obtain and use large-size maps that are incrementally built by other mapper robots. Our localization approach successfully works with such incremental and large-size maps. In literature, RANSAC map-matching has been a promising approach for large-size maps. We extend the RANSAC map-matching so as to deal with incremental maps. We combine the incremental RANSAC with an incremental LSH database and develop a hybrid of the position-based and the appearance-based approaches. A series of experiments using radish dataset show promising results.
An aeroelastic analysis with a generalized dynamic wake
NASA Technical Reports Server (NTRS)
He, Cheng J.; Peters, David A.
1991-01-01
An aeroelastic model with generalized dynamic wake is developed for application in the integration of aerodynamic, dynamic, and structural optimization of a rotor blade. The investigation is carried out with special attention to efficiency and accuracy of aeroelastic modeling. Each blade is assumed to be an elastic beam undergoing flap bending, lead-lag bending, elastic twist and axial deflections. The nonuniform blade is discretized into finite beam elements, each of which consists of twelve degrees of freedom. Such important blade design variables as pretwist, and chordwise offsets of the blade center of gravity and of the aerodynamic center from the elastic axis have been included in the analysis. Aerodynamic loads are computed from unsteady blade element theory where the rotor three-dimensional unsteady wake is modeled using a generalized dynamic wake theory. The noncirculatory loads based on unsteady thin airfoil theory are also included.
Dynamic Mechanical Thermal Analysis of Virgin TR-55 Silicone Rubber
Small IV, W; Wilson, T S
2009-10-09
Dynamic mechanical thermal analysis (DMTA) of virgin TR-55 silicone rubber specimens was conducted. Dynamic frequency/temperature sweep tests were conducted over the ranges 0.1-100 rad/s and 30-100 C using a parallel plate test geometry. A strain of 0.2% was used, which was near the upper limit of the linear viscoelastic region of the material based on initial dynamic strain sweep tests. Master curves of G{prime} and G{double_prime} as a function of frequency were generated using time-temperature superposition (horizontal shift with initial vertical correction). The activation energy calculated from an Arrhenius fit to the horizontal shift factors was 178-355 kJ/mol. The calculated percent load retention at {approx}50 years was 61-68%.
Undersampled dynamic magnetic resonance imaging using kernel principal component analysis.
Wang, Yanhua; Ying, Leslie
2014-01-01
Compressed sensing (CS) is a promising approach to accelerate dynamic magnetic resonance imaging (MRI). Most existing CS methods employ linear sparsifying transforms. The recent developments in non-linear or kernel-based sparse representations have been shown to outperform the linear transforms. In this paper, we present an iterative non-linear CS dynamic MRI reconstruction framework that uses the kernel principal component analysis (KPCA) to exploit the sparseness of the dynamic image sequence in the feature space. Specifically, we apply KPCA to represent the temporal profiles of each spatial location and reconstruct the images through a modified pre-image problem. The underlying optimization algorithm is based on variable splitting and fixed-point iteration method. Simulation results show that the proposed method outperforms conventional CS method in terms of aliasing artifact reduction and kinetic information preservation. PMID:25570262
Theoretical Analysis of Dynamic Processes for Interacting Molecular Motors
Teimouri, Hamid; Kolomeisky, Anatoly B.; Mehrabiani, Kareem
2015-01-01
Biological transport is supported by collective dynamics of enzymatic molecules that are called motor proteins or molecular motors. Experiments suggest that motor proteins interact locally via short-range potentials. We investigate the fundamental role of these interactions by analyzing a new class of totally asymmetric exclusion processes where interactions are accounted for in a thermodynamically consistent fashion. It allows us to connect explicitly microscopic features of motor proteins with their collective dynamic properties. Theoretical analysis that combines various mean-field calculations and computer simulations suggests that dynamic properties of molecular motors strongly depend on interactions, and correlations are stronger for interacting motor proteins. Surprisingly, it is found that there is an optimal strength of interactions (weak repulsion) that leads to a maximal particle flux. It is also argued that molecular motors transport is more sensitive to attractive interactions. Applications of these results for kinesin motor proteins are discussed. PMID:25688287
Noise masking of S-cone increments and decrements
Wang, Quanhong; Richters, David P.; Eskew, Rhea T.
2014-01-01
S-cone increment and decrement detection thresholds were measured in the presence of bipolar, dynamic noise masks. Noise chromaticities were the L-, M-, and S-cone directions, as well as L−M, L+M, and achromatic (L+M+S) directions. Noise contrast power was varied to measure threshold Energy versus Noise (EvN) functions. S+ and S− thresholds were similarly, and weakly, raised by achromatic noise. However, S+ thresholds were much more elevated by S, L+M, L–M, L- and M-cone noises than were S− thresholds, even though the noises consisted of two symmetric chromatic polarities of equal contrast power. A linear cone combination model accounts for the overall pattern of masking of a single test polarity well. L and M cones have opposite signs in their effects upon raising S+ and S− thresholds. The results strongly indicate that the psychophysical mechanisms responsible for S+ and S− detection, presumably based on S-ON and S-OFF pathways, are distinct, unipolar mechanisms, and that they have different spatiotemporal sampling characteristics, or contrast gains, or both. PMID:25391300
Incremental Knowledge Discovery in Social Media
ERIC Educational Resources Information Center
Tang, Xuning
2013-01-01
In light of the prosperity of online social media, Web users are shifting from data consumers to data producers. To catch the pulse of this rapidly changing world, it is critical to transform online social media data to information and to knowledge. This dissertation centers on the issue of modeling the dynamics of user communities, trending…
International Space Station Increment-4/5 Microgravity Environment Summary Report
NASA Technical Reports Server (NTRS)
Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy
2003-01-01
This summary report presents the results of some of the processed acceleration data measured aboard the International Space Station during the period of December 2001 to December 2002. Unlike the past two ISS Increment reports, which were increment specific, this summary report covers two increments: Increments 4 and 5, hereafter referred to as Increment-4/5. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-4/5. Due to time constraint and lack of precise timeline information regarding some payload operations and station activities, not a11 of the activities were analyzed for this report. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System supports science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit supports experiments requiring vibratory acceleration measurement. The International Space Station Increment-4/5 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: The Microgravity Acceleration Measurement System, which consists of two sensors: the low-frequency Orbital Acceleration Research Experiment Sensor Subsystem and the higher frequency High Resolution Accelerometer Package. The low frequency sensor measures up to 1 Hz, but is routinely trimmean filtered to yield much lower frequency acceleration data up to 0.01 Hz. This filtered data can be mapped to arbitrary
Effective field theory of dark energy: a dynamical analysis
Frusciante, Noemi; Raveri, Marco; Silvestri, Alessandra E-mail: mraveri@sissa.it
2014-02-01
The effective field theory (EFT) of dark energy relies on three functions of time to describe the dynamics of background cosmology. The viability of these functions is investigated here by means of a thorough dynamical analysis. While the system is underdetermined, and one can always find a set of functions reproducing any expansion history, we are able to determine general compatibility conditions for these functions by requiring a viable background cosmology. In particular, we identify a set of variables that allows us to transform the non-autonomous system of equations into an infinite-dimensional one characterized by a significant recursive structure. We then analyze several autonomous sub-systems, obtained truncating the original one at increasingly higher dimension, that correspond to increasingly general models of dark energy and modified gravity. Furthermore, we exploit the recursive nature of the system to draw some general conclusions on the different cosmologies that can be recovered within the EFT formalism and the corresponding compatibility requirements for the EFT functions. The machinery that we set up serves different purposes. It offers a general scheme for performing dynamical analysis of dark energy and modified gravity models within the model independent framework of EFT; the general results, obtained with this technique, can be projected into specific models, as we show in one example. It also can be used to determine appropriate ansätze for the three EFT background functions when studying the dynamics of cosmological perturbations in the context of large scale structure tests of gravity.
Structural Dynamics Verification of Rotorcraft Comprehensive Analysis System (RCAS)
Bir, G. S.
2005-02-01
The Rotorcraft Comprehensive Analysis System (RCAS) was acquired and evaluated as part of an ongoing effort by the U.S Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) to provide state-of-the-art wind turbine modeling and analysis technology for Government and industry. RCAS is an interdisciplinary tool offering aeroelastic modeling and analysis options not supported by current codes. RCAS was developed during a 4-year joint effort among the U.S. Army's Aeroflightdynamics Directorate, Advanced Rotorcraft Technology Inc., and the helicopter industry. The code draws heavily from its predecessor 2GCHAS (Second Generation Comprehensive Helicopter Analysis System), which required an additional 14 years to develop. Though developed for the rotorcraft industry, its general-purpose features allow it to model or analyze a general dynamic system. Its key feature is a specialized finite element that can model spinning flexible parts. The code, therefore, appears particularly suited for wind turbines whose dynamics is dominated by massive flexible spinning rotors. In addition to the simulation capability of the existing codes, RCAS [1-3] offers a range of unique capabilities, including aeroelastic stability analysis, trim, state-space modeling, operating modes, modal reduction, multi-blade coordinate transformation, periodic-system-specific analysis, choice of aerodynamic models, and a controls design/implementation graphical interface.
Transient analysis techniques in performing impact and crash dynamic studies
NASA Technical Reports Server (NTRS)
Pifko, A. B.; Winter, R.
1989-01-01
Because of the emphasis being placed on crashworthiness as a design requirement, increasing demands are being made by various organizations to analyze a wide range of complex structures that must perform safely when subjected to severe impact loads, such as those generated in a crash event. The ultimate goal of crashworthiness design and analysis is to produce vehicles with the ability to reduce the dynamic forces experienced by the occupants to specified levels, while maintaining a survivable envelope around them during a specified crash event. DYCAST is a nonlinear structural dynamic finite element computer code that started from the plans systems of a finite element program for static nonlinear structural analysis. The essential features of DYCAST are outlined.
Musical structure analysis using similarity matrix and dynamic programming
NASA Astrophysics Data System (ADS)
Shiu, Yu; Jeong, Hong; Kuo, C.-C. Jay
2005-10-01
Automatic music segmentation and structure analysis from audio waveforms based on a three-level hierarchy is examined in this research, where the three-level hierarchy includes notes, measures and parts. The pitch class profile (PCP) feature is first extracted at the note level. Then, a similarity matrix is constructed at the measure level, where a dynamic time warping (DTW) technique is used to enhance the similarity computation by taking the temporal distortion of similar audio segments into account. By processing the similarity matrix, we can obtain a coarse-grain music segmentation result. Finally, dynamic programming is applied to the coarse-grain segments so that a song can be decomposed into several major parts such as intro, verse, chorus, bridge and outro. The performance of the proposed music structure analysis system is demonstrated for pop and rock music.
Dynamic Analysis of Communication and Collaboration in OSS Projects
NASA Astrophysics Data System (ADS)
Pinzger, Martin; Gall, Harald C.
Software repositories, such as versioning, bug reporting, and developer mailing list archives contain valuable data for analyzing the history of software projects and its dynamics. In this chapter, we focus on the analysis of the communication and collaboration in software projects and present an approach that works on software archives with social network analysis techniques. Our tool called
Dynamic Analysis of Large In-Space Deployable Membrane Antennas
NASA Technical Reports Server (NTRS)
Fang, Houfei; Yang, Bingen; Ding, Hongli; Hah, John; Quijano, Ubaldo; Huang, John
2006-01-01
This paper presents a vibration analysis of an eight-meter diameter membrane reflectarray antenna, which is composed of a thin membrane and a deployable frame. This analysis process has two main steps. In the first step, a two-variable-parameter (2-VP) membrane model is developed to determine the in-plane stress distribution of the membrane due to pre-tensioning, which eventually yields the differential stiffness of the membrane. In the second step, the obtained differential stiffness is incorporated in a dynamic equation governing the transverse vibration of the membrane-frame assembly. This dynamic equation is then solved by a semi-analytical method, called the Distributed Transfer Function Method (DTFM), which produces the natural frequencies and mode shapes of the antenna. The combination of the 2-VP model and the DTFM provides an accurate prediction of the in-plane stress distribution and modes of vibration for the antenna.
RAVEN, a New Software for Dynamic Risk Analysis
Cristian Rabiti; Andrea Alfonsi; Joshua Cogliati; Diego Mandelli; Robert Kinoshita
2014-06-01
RAVEN is a generic software driver to perform parametric and probabilistic analysis of code simulating complex systems. Initially developed to provide dynamic risk analysis capabilities to the RELAP-7 code [1] is currently being generalized with the addition of Application Programming Interfaces (APIs). These interfaces are used to extend RAVEN capabilities to any software as long as all the parameters that need to be perturbed are accessible by inputs files or directly via python interfaces. RAVEN is capable to investigate the system response probing the input space using Monte Carlo, grid strategies, or Latin Hyper Cube schemes, but its strength is its focus toward system feature discovery like limit surfaces separating regions of the input space leading to system failure using dynamic supervised learning techniques. The paper will present an overview of the software capabilities and their implementation schemes followed by same application examples.
Dynamic Analysis of Geared Rotors by Finite Elements
NASA Technical Reports Server (NTRS)
Kahraman, A.; Ozguven, H. Nevzat; Houser, D. R.; Zakrajsek, J. J.
1992-01-01
A finite element model of a geared rotor system on flexible bearings has been developed. The model includes the rotary inertia of on shaft elements, the axial loading on shafts, flexibility and damping of bearings, material damping of shafts and the stiffness and the damping of gear mesh. The coupling between the torsional and transverse vibrations of gears were considered in the model. A constant mesh stiffness was assumed. The analysis procedure can be used for forced vibration analysis geared rotors by calculating the critical speeds and determining the response of any point on the shafts to mass unbalances, geometric eccentricities of gears, and displacement transmission error excitation at the mesh point. The dynamic mesh forces due to these excitations can also be calculated. The model has been applied to several systems for the demonstration of its accuracy and for studying the effect of bearing compliances on system dynamics.
DYNAMIC NON LINEAR IMPACT ANALYSIS OF FUEL CASK CONTAINMENT VESSELS
Leduc, D
2008-06-10
Large fuel casks present challenges when evaluating their performance in the accident sequence specified in 10CFR 71. Testing is often limited because of cost, difficulty in preparing test units and the limited availability of facilities which can carry out such tests. In the past, many casks were evaluated without testing using simplified analytical methods. This paper details the use of dynamic non-linear analysis of large fuel casks using advanced computational techniques. Results from the dynamic analysis of two casks, the T-3 Spent Fuel Cask and the Hanford Un-irradiated Fuel Package are examined in detail. These analyses are used to fully evaluate containment vessel stresses and strains resulting from complex loads experienced by cask components during impacts. Importantly, these advanced analytical analyses are capable of examining stresses in key regions of the cask including the cask closure. This paper compares these advanced analytical results with the results of simplified cask analyses like those detailed in NUREG 3966.
Dynamic analysis of a structure with Coulomb friction
Shah, V.N.; Gilmore, C.B.
1982-01-01
A modal superposition method for the dynamic analysis of a structure with Coulomb friction is presented. The finite element method is used to derive the equations of motion, and the nonlinearities due to friction are represented by a pseudoforce vector. A structure standing freely on the ground may slide during a seismic event. The relative displacement response may be divided into two parts: elastic deformation and rigid body motion. The presence of rigid body motion necessitates the inclusion of the higher modes in the transient analysis. Three single degree-of-freedom problems are solved to verify this method. In a fourth problem, the dynamic response of a platform standing freely on the ground is analyzed during a seismic event.
Dynamic analysis of a structure with Coulomb friction
Shah, V.N.; Gilmore, C.B.
1982-01-01
A modal superposition method for the dynamic analysis of a structure with Coulomb friction is presented. The finite element method is used to derive the equations of motion, and the nonlinearities due to friction are represented by pseudo-force vector. A structure standing freely on the ground may slide during a seismic event. The relative displacement response may be divided into two parts: elastic deformation and rigid body motion. The presence of rigid body motion necessitates the inclusion of the higher modes in the transient analysis. Three single degree-of-freedom problems are solved to verify this method. In a fourth problem, the dynamic response of a platform standing freely on the ground is analyzed during a seismic event.
Flight Dynamics Analysis Branch End of Fiscal Year 2002 Report
NASA Technical Reports Server (NTRS)
Mangus, David (Editor); Mendelsohn, Chad (Editor); Starin, Scott (Editor); Stengle, Tom (Editor); Truong, Son (Editor)
2002-01-01
This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 572, in support of flight projects and technology development initiatives in Fiscal Year (FY) 2002. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics including navigation, spacecraft trajectory design, attitude analysis, attitude determination and attitude control. The FDAB currently provides support for missions and technology development projects involving NASA, government, university, and private industry.
Dynamic analysis of geared rotors by finite elements
NASA Technical Reports Server (NTRS)
Kahraman, Ahmet; Ozguven, H. Nevzat; Houser, Donald R.; Zakrajsek, James J.
1990-01-01
A finite-element model of a geared rotor system on flexible bearings was developed. The model includes the rotary inertia of shaft elements, the axial loading on shafts, flexibility and damping of bearings, material damping of shafts and the stiffness and the damping of gear mesh. The coupling between the torsional and transverse vibrations of gears were considered in the model. A constant mesh stiffness was assumed. The analysis procedure can be used for forced vibration analysis of geared rotors by calculating the critical speeds and determining the response of any point on the shaft to mass unbalances, geometric eccentricities of gears and displacement transmission error excitation at the mesh point. The dynamic mesh forces due to these excitations can also be calculated. The model has been applied to several systems for the demonstration of its accuracy and for studying the effect of bearing compliances on system dynamics.
Random dynamic analysis of multi-body offshore structures
Langley, R.S.
1984-01-01
A general method for the dynamic analysis of multi-body offshore structures is presented, based on a constraint matrix approach. A method of deriving the constraint matrix for a general structure is given, and used to derive the equations of motion of a whole system from those of it's component parts. The response of the system to both first and second order random wave forces is found and used to calculate the forces and moments in the connecting mechanisms.
Sensitivity analysis of dynamic biological systems with time-delays
2010-01-01
Background Mathematical modeling has been applied to the study and analysis of complex biological systems for a long time. Some processes in biological systems, such as the gene expression and feedback control in signal transduction networks, involve a time delay. These systems are represented as delay differential equation (DDE) models. Numerical sensitivity analysis of a DDE model by the direct method requires the solutions of model and sensitivity equations with time-delays. The major effort is the computation of Jacobian matrix when computing the solution of sensitivity equations. The computation of partial derivatives of complex equations either by the analytic method or by symbolic manipulation is time consuming, inconvenient, and prone to introduce human errors. To address this problem, an automatic approach to obtain the derivatives of complex functions efficiently and accurately is necessary. Results We have proposed an efficient algorithm with an adaptive step size control to compute the solution and dynamic sensitivities of biological systems described by ordinal differential equations (ODEs). The adaptive direct-decoupled algorithm is extended to solve the solution and dynamic sensitivities of time-delay systems describing by DDEs. To save the human effort and avoid the human errors in the computation of partial derivatives, an automatic differentiation technique is embedded in the extended algorithm to evaluate the Jacobian matrix. The extended algorithm is implemented and applied to two realistic models with time-delays: the cardiovascular control system and the TNF-α signal transduction network. The results show that the extended algorithm is a good tool for dynamic sensitivity analysis on DDE models with less user intervention. Conclusions By comparing with direct-coupled methods in theory, the extended algorithm is efficient, accurate, and easy to use for end users without programming background to do dynamic sensitivity analysis on complex
Nonlinear dynamic analysis of quasi-symmetric anisotropic structures
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Peters, Jeanne M.
1987-01-01
An efficient computational method for the nonlinear dynamic analysis of quasi-symmetric anisotropic structures is proposed. The application of mixed models simplifies the analytical development and improves the accuracy of the response predictions, and operator splitting allows the reduction of the analysis model of the quasi-symmetric structure to that of the corresponding symmetric structure. The preconditoned conjugate gradient provides a stable and effective technique for generating the unsymmetric response of the structure as the sum of a symmetrized response plus correction modes. The effectiveness of the strategy is demonstrated with the example of a laminated anisotropic shallow shell of quadrilateral planform subjected to uniform normal loading.
Dynamic analysis of evolutive conservative systems. Discussion of eigenmode crossings
NASA Technical Reports Server (NTRS)
Morand, H. J. P.
1984-01-01
After an analysis of the close connection between the symmetries of a dynamical system and the multiplicity of its vibrational natural frequencies, it is proved by variational arguments that for a system of invariable symmetry the eigenfrequencies associated with the eigenmodes of a given symmetry type do not cross, in general, during the evolution of this system. The theory is implemented by some numerical calculations applied to the analysis of the evolution of the axisymmetric hydroelastic modes of the Ariane launch vehicle during burning of the first stage.
Computational Fluid Dynamics Analysis of Thoracic Aortic Dissection
NASA Astrophysics Data System (ADS)
Tang, Yik; Fan, Yi; Cheng, Stephen; Chow, Kwok
2011-11-01
Thoracic Aortic Dissection (TAD) is a cardiovascular disease with high mortality. An aortic dissection is formed when blood infiltrates the layers of the vascular wall, and a new artificial channel, the false lumen, is created. The expansion of the blood vessel due to the weakened wall enhances the risk of rupture. Computational fluid dynamics analysis is performed to study the hemodynamics of this pathological condition. Both idealized geometry and realistic patient configurations from computed tomography (CT) images are investigated. Physiological boundary conditions from in vivo measurements are employed. Flow configuration and biomechanical forces are studied. Quantitative analysis allows clinicians to assess the risk of rupture in making decision regarding surgical intervention.
Dynamic analysis of piping using the structural overlap method
Curreri, J.; Bezler, P.; Hartzman, M.
1981-03-01
The structural overlap method is a procedure for analyzing the dynamic response of a piping system by performing a separate analysis on subsystems of the complete structure. Specific cases were investigated to obtain an estimate of the validity and application of the method. The case studies were increased in complexity in order to examine some of the problems involved in implementing the method. It is concluded that the overlap method should not be substituted for a complete analysis of a full system. However, if a sufficiently high natural frequency is associated with the overlap section or the overlap section is a substantial portion of the system, acceptable results could be obtained.
Transmission noise identification using two-dimensional dynamic signal analysis
NASA Astrophysics Data System (ADS)
Pan, Min-Chun; Chen, Jeng-Xin
2003-04-01
This study aims at identifying transmission noise of two types of electrical vehicles with different transmission systems using the developed two-dimensional dynamic signal analysis (2DSA). Two electrical scooters, more specifically, with a gear transmission system and a continuous variable transmission (CVT) system, respectively, have been taken as test benches due to the whistle-like noise emitting from their transmission systems. To effectively process dynamic signatures measured from rotary machinery with varying speed, and even varying orders during operation, such as a machine with a CVT system or gear-shifting operation, the 2DSA approaches including the order analysis (OA) and the time-frequency analysis have been developed and implemented as processing tools. The specifications of vehicle transmission systems, especially the ratio of each speed reduction, and the tooth (cog, blade, etc.) number of transmission elements, i.e., geometric analysis, are firstly to be examined. After the 2DSA processes the noise measured from test vehicles during wide-open-throttle operation, dominant annoying transmission noise components can be extracted, and their sources can be identified through comparing feature orders obtained from geometric analysis. The procedure can not only identify noise sources but conclude transmission components to be further modified in respect of annoying noise.
VIEWCACHE: An incremental database access method for autonomous interoperable databases
NASA Technical Reports Server (NTRS)
Roussopoulos, Nick; Sellis, Timoleon
1991-01-01
The objective is to illustrate the concept of incremental access to distributed databases. An experimental database management system, ADMS, which has been developed at the University of Maryland, in College Park, uses VIEWCACHE, a database access method based on incremental search. VIEWCACHE is a pointer-based access method that provides a uniform interface for accessing distributed databases and catalogues. The compactness of the pointer structures formed during database browsing and the incremental access method allow the user to search and do inter-database cross-referencing with no actual data movement between database sites. Once the search is complete, the set of collected pointers pointing to the desired data are dereferenced.
Benefits Analysis of Multi-Center Dynamic Weather Routes
NASA Technical Reports Server (NTRS)
Sheth, Kapil; McNally, David; Morando, Alexander; Clymer, Alexis; Lock, Jennifer; Petersen, Julien
2014-01-01
Dynamic weather routes are flight plan corrections that can provide airborne flights more than user-specified minutes of flying-time savings, compared to their current flight plan. These routes are computed from the aircraft's current location to a flight plan fix downstream (within a predefined limit region), while avoiding forecasted convective weather regions. The Dynamic Weather Routes automation has been continuously running with live air traffic data for a field evaluation at the American Airlines Integrated Operations Center in Fort Worth, TX since July 31, 2012, where flights within the Fort Worth Air Route Traffic Control Center are evaluated for time savings. This paper extends the methodology to all Centers in United States and presents benefits analysis of Dynamic Weather Routes automation, if it was implemented in multiple airspace Centers individually and concurrently. The current computation of dynamic weather routes requires a limit rectangle so that a downstream capture fix can be selected, preventing very large route changes spanning several Centers. In this paper, first, a method of computing a limit polygon (as opposed to a rectangle used for Fort Worth Center) is described for each of the 20 Centers in the National Airspace System. The Future ATM Concepts Evaluation Tool, a nationwide simulation and analysis tool, is used for this purpose. After a comparison of results with the Center-based Dynamic Weather Routes automation in Fort Worth Center, results are presented for 11 Centers in the contiguous United States. These Centers are generally most impacted by convective weather. A breakdown of individual Center and airline savings is presented and the results indicate an overall average savings of about 10 minutes of flying time are obtained per flight.
Dynamic-Mechanical Analysis of Monodomain Nematic Liquid Crystalline Elastomers
NASA Astrophysics Data System (ADS)
Hotta, Atsushi; Terentjev, Eugene
2003-03-01
Dynamic-mechanical analysis was performed in the glassy, nematic and isotropic states of several monodomain nematic liquid crystalline elastomers (LCE) which differ in their degrees of anisotropy and internal microstructure. It was found that the type of network crosslinker makes a significant difference in the equilibrium properties of these elastomers, in particular, in their effective anisotropy. In spite of these differences, the observed dynamic-mechanical behaviour was very similar. The fact that there is a consistently high and wide loss over the whole nematic region, where storage modulus G' behaves non-monotonically, is most likely an indicator of the fact that the dynamic-mechanical response is not linear. Master curves have been built between the glassy state and the nematic-isotropic phase transition, where the modulus reaches a low-level soft plateau. Above the nematic-isotropic transition temperature Tni, the modulus rises substantially, since internal relaxation is no longer able to reduce the elastic response - and further time-temperature superposition fails. The dynamics of these elastomers are dominated by power laws, which was confirmed by the successful procedure of the master curve inversion (time-frequency inversion) to describe the static stress relaxation. Interestingly, it was found that mechanical properties characterized by power laws (in time) of stress relaxation match very well with the dynamic properties, where power laws (in frequency) were also observed in the dynamic modulus in the appropriate range of temperatures. The work demonstrates the potential for the use of nematic liquid crystalline elastomers in many acoustic and vibration damping applications.
GPU accelerated dynamic functional connectivity analysis for functional MRI data.
Akgün, Devrim; Sakoğlu, Ünal; Esquivel, Johnny; Adinoff, Bryon; Mete, Mutlu
2015-07-01
Recent advances in multi-core processors and graphics card based computational technologies have paved the way for an improved and dynamic utilization of parallel computing techniques. Numerous applications have been implemented for the acceleration of computationally-intensive problems in various computational science fields including bioinformatics, in which big data problems are prevalent. In neuroimaging, dynamic functional connectivity (DFC) analysis is a computationally demanding method used to investigate dynamic functional interactions among different brain regions or networks identified with functional magnetic resonance imaging (fMRI) data. In this study, we implemented and analyzed a parallel DFC algorithm based on thread-based and block-based approaches. The thread-based approach was designed to parallelize DFC computations and was implemented in both Open Multi-Processing (OpenMP) and Compute Unified Device Architecture (CUDA) programming platforms. Another approach developed in this study to better utilize CUDA architecture is the block-based approach, where parallelization involves smaller parts of fMRI time-courses obtained by sliding-windows. Experimental results showed that the proposed parallel design solutions enabled by the GPUs significantly reduce the computation time for DFC analysis. Multicore implementation using OpenMP on 8-core processor provides up to 7.7× speed-up. GPU implementation using CUDA yielded substantial accelerations ranging from 18.5× to 157× speed-up once thread-based and block-based approaches were combined in the analysis. Proposed parallel programming solutions showed that multi-core processor and CUDA-supported GPU implementations accelerated the DFC analyses significantly. Developed algorithms make the DFC analyses more practical for multi-subject studies with more dynamic analyses. PMID:25805449
Nonlinear dynamic analysis of hydrodynamically-coupled stainless steel structures
Zhao, Y.
1996-12-01
Spent nuclear fuel is usually stored temporarily on the site of nuclear power plants. The spent fuel storage racks are nuclear-safety-related stainless steel structures required to be analyzed for seismic loads. When the storage pool is subjected to three-dimensional (3-D) floor seismic excitations, rack modules, stored fuel bundles, adjacent racks and pool walls, and surrounding water are hydrodynamically coupled. Hydrodynamic coupling (HC) significantly affects the dynamic responses of the racks that are free-standing and submerged in water within the pool. A nonlinear time-history dynamic analysis is usually needed to describe the motion behavior of the racks that are both geometrically nonlinear and material nonlinear in nature. The nonlinearities include the friction resistance between the rack supporting legs and the pool floor, and various potential impacts of fuel-rack, rack-rack, and rack-pool wall. The HC induced should be included in the nonlinear dynamic analysis using the added-hydrodynamic-mass concept based on potential theory per the US Nuclear Regulatory Commission (USNRC) acceptance criteria. To this end, a finite element analysis constitutes a feasible and effective tool. However, most people perform somewhat simplified 1-D, or 2-D, or 3-D single rack and 2-D multiple rack analyses. These analyses are incomplete because a 3-D single rack model behaves quite differently from a 2-D mode. Furthermore, a 3-D whole pool multi-rack model behaves differently than a 3-D single rack model, especially when the strong HC effects are unsymmetrical. In this paper 3-D nonlinear dynamic time-history analyses were performed in a more quantitative manner using sophisticated finite element models developed for a single rack as well as all twelve racks in the whole-pool. Typical response results due to different HC effects are determined and discussed.
Dynamical modeling and analysis of large cellular regulatory networks
NASA Astrophysics Data System (ADS)
Bérenguier, D.; Chaouiya, C.; Monteiro, P. T.; Naldi, A.; Remy, E.; Thieffry, D.; Tichit, L.
2013-06-01
The dynamical analysis of large biological regulatory networks requires the development of scalable methods for mathematical modeling. Following the approach initially introduced by Thomas, we formalize the interactions between the components of a network in terms of discrete variables, functions, and parameters. Model simulations result in directed graphs, called state transition graphs. We are particularly interested in reachability properties and asymptotic behaviors, which correspond to terminal strongly connected components (or "attractors") in the state transition graph. A well-known problem is the exponential increase of the size of state transition graphs with the number of network components, in particular when using the biologically realistic asynchronous updating assumption. To address this problem, we have developed several complementary methods enabling the analysis of the behavior of large and complex logical models: (i) the definition of transition priority classes to simplify the dynamics; (ii) a model reduction method preserving essential dynamical properties, (iii) a novel algorithm to compact state transition graphs and directly generate compressed representations, emphasizing relevant transient and asymptotic dynamical properties. The power of an approach combining these different methods is demonstrated by applying them to a recent multilevel logical model for the network controlling CD4+ T helper cell response to antigen presentation and to a dozen cytokines. This model accounts for the differentiation of canonical Th1 and Th2 lymphocytes, as well as of inflammatory Th17 and regulatory T cells, along with many hybrid subtypes. All these methods have been implemented into the software GINsim, which enables the definition, the analysis, and the simulation of logical regulatory graphs.
Cheng, Yung-Chang; Lin, Deng-Huei; Jiang, Cho-Pei; Lee, Shyh-Yuan
2015-01-01
The main aim of this article was to introduce the application of a uniform design for experimental methods to drop the micromotion of a novel ITI dental implant model under the dynamic loads. Combining the characteristics of the traditional ITI and Nano-Tite implants, a new implant with concave holes has been constructed. Compared to the traditional ITI dental implant model, the micromotion of the new dental implant model was significantly reduced by explicit dynamic finite element analysis. From uniform design of experiments, the dynamic finite element analysis method was applied to caluculated the maximum micromotion of the full model. Finally, the chief design in all the experiment simulations which cause the minimum micromotion is picked as the advanced model of the design. Related to the original design, which was associated with a micromotion of 45.11 μm, the micromotion of the improved version was 31.37 μm, for an improvement rate of 30.5%. PMID:26406049
Applications of analysis of dynamic adaptations in parameter trajectories
van Riel, Natal A. W.; Tiemann, Christian A.; Vanlier, Joep; Hilbers, Peter A. J.
2013-01-01
Metabolic profiling in combination with pathway-based analyses and computational modelling are becoming increasingly important in clinical and preclinical research. Modelling multi-factorial, progressive diseases requires the integration of molecular data at the metabolome, proteome and transcriptome levels. Also the dynamic interaction of organs and tissues needs to be considered. The processes involved cover time scales that are several orders of magnitude different. We report applications of a computational approach to bridge the scales and different levels of biological detail. Analysis of dynamic adaptations in parameter trajectories (ADAPTs) aims to investigate phenotype transitions during disease development and after a therapeutic intervention. ADAPT is based on a time-dependent evolution of model parameters to describe the dynamics of metabolic adaptations. The progression of metabolic adaptations is predicted by identifying necessary dynamic changes in the model parameters to describe the transition between experimental data obtained during different stages. To get a better understanding of the concept, the ADAPT approach is illustrated in a theoretical study. Its application in research on progressive changes in lipoprotein metabolism is also discussed. PMID:23853705
48 CFR 3432.771 - Provision for incremental funding.
Code of Federal Regulations, 2010 CFR
2010-10-01
... funding. 3432.771 Section 3432.771 Federal Acquisition Regulations System DEPARTMENT OF EDUCATION ACQUISITION REGULATION GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Contract Funding 3432.771 Provision for incremental funding. The contracting officer shall insert the provision in...
Analysis of Dynamic Stall Through Chirp Signal Pitch Excursions
NASA Astrophysics Data System (ADS)
Heintz, Kyle; Coleman, Dustin; Wicks, Michael; Corke, Thomas; Thomas, Flint
2013-11-01
An augmentation of the typical pitching airfoil experiment has been performed where the pitching frequency and amplitude are dynamically varied in a short-time event to produce a ``chirp'' trajectory, α (t) =α0 +α1 (t) sin (tω (t)) . The frequency evolution followed a Schroeder-phase relation, ω (t) =ωmin + K (ωmax -ωmin) . The frequencies ranged from 0.5 Hz to 30 Hz, resulting in reduced frequencies from 0.02 to 0.1. The free-stream Mach number ranged from Mach 0.4 to 0.6, giving chord Reynolds numbers from 5 ×105 to 3 ×106 . The airfoil was a NACA 23012 section shape that was fully instrumented with 31 flush-mounted high-bandwidth pressure transducers. The pressure transducer outputs were simultaneously sampled with the instantaneous angle of attack, α (t) . The motivation for this study was to compare dynamic stall under non-equilibrium conditions. A particular interest is on the flow features that occur when dynamically passing between light and deep stall regimes. The results include phase analysis of aerodynamic loads, wavelet-based spectral analysis, and the determination of the intra-cycle aerodynamic damping factors.
Dynamic analysis of bi-stable composite plates
NASA Astrophysics Data System (ADS)
Diaconu, Cezar G.; Weaver, Paul M.; Arrieta, Andres F.
2009-05-01
The static and dynamic transitions between stable states for rectangular bi-stable laminated composite plates are considered. The laminated composite plates have nonsymmetric laminate configurations and are subjected to thermal curing in order to introduce residual stresses and to achieve bi-stability. As geometrically nonlinear effects occur, after curing, the plates are able to take multiple stable shapes at service or room temperature. A simple model for dynamic analysis of the snap-through phenomena is proposed based on strain field approximations for the plates. Hamilton's principle is applied in conjunction with the Rayleigh-Ritz method in order to achieve fast results. The model is used to evaluate the initial displacements for the stable states and also to investigate the static and dynamic transitions from one stable state to another. Parametric studies are carried out for various aspect ratios, laminate configurations and actuation loads and the results are compared with those obtained with finite element analysis in order to evaluate the accuracy of the model.
Dynamic self-guiding analysis of Alzheimer's disease
Kurakin, Alexei; Bredesen, Dale E.
2015-01-01
We applied a self-guiding evolutionary algorithm to initiate the synthesis of the Alzheimer's disease-related data and literature. A protein interaction network associated with amyloid-beta precursor protein (APP) and a seed model that treats Alzheimer's disease as progressive dysregulation of APP-associated signaling were used as dynamic “guides” and structural “filters” in the recursive search, analysis, and assimilation of data to drive the evolution of the seed model in size, detail, and complexity. Analysis of data and literature across sub-disciplines and system-scale discovery platforms suggests a key role of dynamic cytoskeletal connectivity in the stability, plasticity, and performance of multicellular networks and architectures. Chronic impairment and/or dysregulation of cell adhesions/synapses, cytoskeletal networks, and/or reversible epithelial-to-mesenchymal-like transitions, which enable and mediate the stable and coherent yet dynamic and reconfigurable multicellular architectures, may lead to the emergence and persistence of the disordered, wound-like pockets/microenvironments of chronically disconnected cells. Such wound-like microenvironments support and are supported by pro-inflammatory, pro-secretion, de-differentiated cellular phenotypes with altered metabolism and signaling. The co-evolution of wound-like microenvironments and their inhabitants may lead to the selection and stabilization of degenerated cellular phenotypes, via acquisition of epigenetic modifications and mutations, which eventually result in degenerative disorders such as cancer and Alzheimer's disease. PMID:26041885
Dynamical glucometry: Use of multiscale entropy analysis in diabetes
NASA Astrophysics Data System (ADS)
Costa, Madalena D.; Henriques, Teresa; Munshi, Medha N.; Segal, Alissa R.; Goldberger, Ary L.
2014-09-01
Diabetes mellitus (DM) is one of the world's most prevalent medical conditions. Contemporary management focuses on lowering mean blood glucose values toward a normal range, but largely ignores the dynamics of glucose fluctuations. We probed analyte time series obtained from continuous glucose monitor (CGM) sensors. We show that the fluctuations in CGM values sampled every 5 min are not uncorrelated noise. Next, using multiscale entropy analysis, we quantified the complexity of the temporal structure of the CGM time series from a group of elderly subjects with type 2 DM and age-matched controls. We further probed the structure of these CGM time series using detrended fluctuation analysis. Our findings indicate that the dynamics of glucose fluctuations from control subjects are more complex than those of subjects with type 2 DM over time scales ranging from about 5 min to 5 h. These findings support consideration of a new framework, dynamical glucometry, to guide mechanistic research and to help assess and compare therapeutic interventions, which should enhance complexity of glucose fluctuations and not just lower mean and variance of blood glucose levels.
Selecting Earthquake Records for Nonlinear Dynamic Analysis of Structures
Rodriguez, Mario E.
2008-07-08
An area in earthquake risk reduction that needs an urgent examination is the selection of earthquake records for nonlinear dynamic analysis of structures. An often-mentioned shortcoming from results of nonlinear dynamic analyses of structures is that these results are limited to the type of records that these analyses use as input data. This paper proposes a procedure for selecting earthquake records for nonlinear dynamic analysis of structures. This procedure uses a seismic damage index evaluated using the hysteretic energy dissipated by a Single Degree of Freedom System (SDOF) representing a multi-degree-of freedom structure responding to an earthquake record, and the plastic work capacity of the system at collapse. The type of structural system is considered using simple parameters. The proposed method is based on the evaluation of the damage index for a suite of earthquake records and a selected type of structural system. A set of 10 strong ground motion records is analyzed to show an application of the proposed procedure for selecting earthquake records for structural design.
NASA Technical Reports Server (NTRS)
Korivi, Vamshi Mohan; Taylor, Arthur C., III; Newman, Perry A.; Jones, Henry E.
1994-01-01
In a recent work, an incremental strategy was proposed to iteratively solve the very large systems of linear equations that are required to obtain quasianalytical sensitivity derivatives from advanced computational fluid dynamics (CFD) codes. The technique was sucessfully demonstrated for two large two-dimensional problems: a subsonic and a transonic airfoil. The principal feature of this incremental iterative stategy is that it allows the use of the identical approximate coefficient matrix operator and algorithm to solve the nonlinear flow and the linear sensitivity equations; at convergence, the accuracy of the sensitivity derivatives is not compromised. This feature allows a comparatively straightforward extension of the methodology to three-dimensional problems; this extension is successfully demonstrated in the present study for a space-marching solution of the three-dimensional Euler equations over a Mach 2.4 blended wing-body configuration.
Situation model updating in young and older adults: Global versus incremental mechanisms.
Bailey, Heather R; Zacks, Jeffrey M
2015-06-01
Readers construct mental models of situations described by text. Activity in narrative text is dynamic, so readers must frequently update their situation models when dimensions of the situation change. Updating can be incremental, such that a change leads to updating just the dimension that changed, or global, such that the entire model is updated. Here, we asked whether older and young adults make differential use of incremental and global updating. Participants read narratives containing changes in characters and spatial location and responded to recognition probes throughout the texts. Responses were slower when probes followed a change, suggesting that situation models were updated at changes. When either dimension changed, responses to probes for both dimensions were slowed; this provides evidence for global updating. Moreover, older adults showed stronger evidence of global updating than did young adults. One possibility is that older adults perform more global updating to offset reduced ability to manipulate information in working memory.
Situation Model Updating in Young and Older Adults: Global versus Incremental Mechanisms
Bailey, Heather R.; Zacks, Jeffrey M.
2015-01-01
Readers construct mental models of situations described by text. Activity in narrative text is dynamic, so readers must frequently update their situation models when dimensions of the situation change. Updating can be incremental, such that a change leads to updating just the dimension that changed, or global, such that the entire model is updated. Here, we asked whether older and young adults make differential use of incremental and global updating. Participants read narratives containing changes in characters and spatial location and responded to recognition probes throughout the texts. Responses were slower when probes followed a change, suggesting that situation models were updated at changes. When either dimension changed, responses to probes for both dimensions were slowed; this provides evidence for global updating. Moreover, older adults showed stronger evidence of global updating than did young adults. One possibility is that older adults perform more global updating to offset reduced ability to manipulate information in working memory. PMID:25938248
26 CFR 1.41-8 - Alternative incremental credit.
Code of Federal Regulations, 2010 CFR
2010-04-01
....41-8T(b)(5) as contained in 26 CFR part 1, revised April 1, 2006. Paragraphs (b)(3) and (b)(4)(ii) of... 26 Internal Revenue 1 2010-04-01 2010-04-01 true Alternative incremental credit. 1.41-8 Section 1... Credits Against Tax § 1.41-8 Alternative incremental credit. (a) Determination of credit. At the...
26 CFR 1.41-8 - Alternative incremental credit.
Code of Federal Regulations, 2011 CFR
2011-04-01
....41-8T(b)(5) as contained in 26 CFR part 1, revised April 1, 2006. Paragraphs (b)(3) and (b)(4)(ii) of... 26 Internal Revenue 1 2011-04-01 2009-04-01 true Alternative incremental credit. 1.41-8 Section 1... Credits Against Tax § 1.41-8 Alternative incremental credit. (a) Determination of credit. At the...
An incremental clustering algorithm based on Mahalanobis distance
NASA Astrophysics Data System (ADS)
Aik, Lim Eng; Choon, Tan Wee
2014-12-01
Classical fuzzy c-means clustering algorithm is insufficient to cluster non-spherical or elliptical distributed datasets. The paper replaces classical fuzzy c-means clustering euclidean distance with Mahalanobis distance. It applies Mahalanobis distance to incremental learning for its merits. A Mahalanobis distance based fuzzy incremental clustering learning algorithm is proposed. Experimental results show the algorithm is an effective remedy for the defect in fuzzy c-means algorithm but also increase training accuracy.
Analysis of a model for the dynamics of prions II
NASA Astrophysics Data System (ADS)
Engler, Hans; Pruss, Jan; Webb, Glenn F.
2006-12-01
A new mathematical model for the dynamics of prion proliferation involving an ordinary differential equation coupled with a partial integro-differential equation is analyzed, continuing the work in [J. Pruss, L. Pujo-Menjouet, G.F. Webb, R. Zacher, Analysis of a model for the dynamics of prions, Discrete Contin. Dyn. Syst. 6 (2006) 225-235]. We show the well-posedness of this problem in its natural phase space , i.e., there is a unique global semiflow on Z+ associated to the problem. A theorem of threshold type is derived for this model which is typical for mathematical epidemics. If a certain combination of kinetic parameters is below or at the threshold, there is a unique steady state, the disease-free equilibrium, which is globally asymptotically stable in Z+; above the threshold it is unstable, and there is another unique steady state, the disease equilibrium, which inherits that property.
Analysis methods for wind turbine control and electrical system dynamics
NASA Astrophysics Data System (ADS)
Hinrichsen, E. N.
1995-05-01
The integration of new energy technologies into electric power systems requires methods which recognize the full range of dynamic events in both the new generating unit and the power system. Since new energy technologies are initially perceived as small contributors to large systems, little attention is generally paid to system integration, i.e. dynamic events in the power system are ignored. As a result, most new energy sources are only capable of base-load operation, i.e. they have no load following or cycling capability. Wind turbines are no exception. Greater awareness of this implicit (and often unnecessary) limitation is needed. Analysis methods are recommended which include very low penetration (infinite bus) as well as very high penetration (stand-alone) scenarios.
Behavioural analysis of the pull-in dynamic transition
NASA Astrophysics Data System (ADS)
Rocha, L. A.; Cretu, E.; Wolffenbuttel, R. F.
2004-09-01
A careful analysis of the dynamics of the pull-in displacement reveals a metastable transient interval for devices with a Q factor lower than 1.2. The duration of this metastable regime could be up to 20 ms for the structure used in this work, depending on the damping. For typical device dimensions this regime dominates pull-in dynamics. This paper explicitly focuses on the metastable regime. The results of numerical simulations are confirmed with measurement results with the purpose of providing a better understanding of the underlying mechanisms. This may contribute to both improved actuator design and enhanced sensitivity of pressure sensors and accelerometers operating on pull-in time interval measurement. The sensitivity of the pull-in time to external accelerations is 6 × 10-2 s/ms-2 (~0.6 ms mg-1) for current devices and can be increased by design.
Lumped mass modelling for the dynamic analysis of aircraft structures
NASA Technical Reports Server (NTRS)
Abu-Saba, Elias G.; Shen, Ji Yao; Mcginley, William M.; Montgomery, Raymond C.
1992-01-01
Aircraft structures may be modelled by lumping the masses at particular strategic points and the flexibility or stiffness of the structure is obtained with reference to these points. Equivalent moments of inertia for the section at these positions are determined. The lumped masses are calculated based on the assumption that each point will represent the mass spread on one half of the space on each side. Then these parameters are used in the differential equation of motion and the eigen characteristics are determined. A comparison is made with results obtained by other established methods. The lumped mass approach in the dynamic analysis of complicated structures provides an easier means of predicting the dynamic characteristics of these structures. It involves less computer time and avoids computational errors that are inherent in the numerical solution of complicated systems.
Analysis methods for wind turbine control and electrical system dynamics
NASA Technical Reports Server (NTRS)
Hinrichsen, E. N.
1995-01-01
The integration of new energy technologies into electric power systems requires methods which recognize the full range of dynamic events in both the new generating unit and the power system. Since new energy technologies are initially perceived as small contributors to large systems, little attention is generally paid to system integration, i.e. dynamic events in the power system are ignored. As a result, most new energy sources are only capable of base-load operation, i.e. they have no load following or cycling capability. Wind turbines are no exception. Greater awareness of this implicit (and often unnecessary) limitation is needed. Analysis methods are recommended which include very low penetration (infinite bus) as well as very high penetration (stand-alone) scenarios.
Numerical analysis of the dynamics of distributed vortex configurations
NASA Astrophysics Data System (ADS)
Govorukhin, V. N.
2016-08-01
A numerical algorithm is proposed for analyzing the dynamics of distributed plane vortex configurations in an inviscid incompressible fluid. At every time step, the algorithm involves the computation of unsteady vortex flows, an analysis of the configuration structure with the help of heuristic criteria, the visualization of the distribution of marked particles and vorticity, the construction of streamlines of fluid particles, and the computation of the field of local Lyapunov exponents. The inviscid incompressible fluid dynamic equations are solved by applying a meshless vortex method. The algorithm is used to investigate the interaction of two and three identical distributed vortices with various initial positions in the flow region with and without the Coriolis force.
Application of Control Volume Analysis to Cerebrospinal Fluid Dynamics
NASA Astrophysics Data System (ADS)
Wei, Timothy; Cohen, Benjamin; Anor, Tomer; Madsen, Joseph
2011-11-01
Hydrocephalus is among the most common birth defects and may not be prevented nor cured. Afflicted individuals face serious issues, which at present are too complicated and not well enough understood to treat via systematic therapies. This talk outlines the framework and application of a control volume methodology to clinical Phase Contrast MRI data. Specifically, integral control volume analysis utilizes a fundamental, fluid dynamics methodology to quantify intracranial dynamics within a precise, direct, and physically meaningful framework. A chronically shunted, hydrocephalic patient in need of a revision procedure was used as an in vivo case study. Magnetic resonance velocity measurements within the patient's aqueduct were obtained in four biomedical state and were analyzed using the methods presented in this dissertation. Pressure force estimates were obtained, showing distinct differences in amplitude, phase, and waveform shape for different intracranial states within the same individual. Thoughts on the physiological and diagnostic research and development implications/opportunities will be presented.
Selection of degrees of freedom for dynamic analysis
Matta, K.
1984-06-01
A technique for the selection of dynamic degrees of freedom of large, complex structures for dynamic analysis is described and the formulation of Ritz basis vectors for component mode synthesis is presented. Generally, the selection of DDOF is left to the judgement of engineers. For large, complex structures, however, a danger of poor or improper selection of DDOF exists. An improper selection may result in singularity of the eigenvalue problem, or in missing some of the lower frequencies. This technique can be used to select the DDOF to reduce the size of large eigenproblems and to select the DDOF to eliminate the singularities of the assembled eigenvalue problem of components mode synthesis. The execution of this technique is discussed in this paper. Examples of using this technique in conjunction with a general purpose finite element computer program are given.
Nonlinear analysis of anesthesia dynamics by Fractal Scaling Exponent.
Gifani, P; Rabiee, H R; Hashemi, M R; Taslimi, P; Ghanbari, M
2006-01-01
The depth of anesthesia estimation has been one of the most research interests in the field of EEG signal processing in recent decades. In this paper we present a new methodology to quantify the depth of anesthesia by quantifying the dynamic fluctuation of the EEG signal. Extraction of useful information about the nonlinear dynamic of the brain during anesthesia has been proposed with the optimum Fractal Scaling Exponent. This optimum solution is based on the best box sizes in the Detrended Fluctuation Analysis (DFA) algorithm which have meaningful changes at different depth of anesthesia. The Fractal Scaling Exponent (FSE) Index as a new criterion has been proposed. The experimental results confirm that our new Index can clearly discriminate between aware to moderate and deep anesthesia levels. Moreover, it significantly reduces the computational complexity and results in a faster reaction to the transients in patients' consciousness levels in relations with the other algorithms.
Dispersion analysis techniques within the space vehicle dynamics simulation program
NASA Technical Reports Server (NTRS)
Snow, L. S.; Kuhn, A. E.
1975-01-01
The Space Vehicle Dynamics Simulation (SVDS) program was evaluated as a dispersion analysis tool. The Linear Error Analysis (LEA) post processor was examined in detail and simulation techniques relative to conducting a dispersion analysis using the SVDS were considered. The LEA processor is a tool for correlating trajectory dispersion data developed by simulating 3 sigma uncertainties as single error source cases. The processor combines trajectory and performance deviations by a root-sum-square (RSS process) and develops a covariance matrix for the deviations. Results are used in dispersion analyses for the baseline reference and orbiter flight test missions. As a part of this study, LEA results were verified as follows: (A) Hand calculating the RSS data and the elements of the covariance matrix for comparison with the LEA processor computed data. (B) Comparing results with previous error analyses. The LEA comparisons and verification are made at main engine cutoff (MECO).
Application of tire dynamics to aircraft landing gear design analysis
NASA Technical Reports Server (NTRS)
Black, R. J.
1983-01-01
The tire plays a key part in many analyses used for design of aircraft landing gear. Examples include structural design of wheels, landing gear shimmy, brake whirl, chatter and squeal, complex combination of chatter and shimmy on main landing gear (MLG) systems, anti-skid performance, gear walk, and rough terrain loads and performance. Tire parameters needed in the various analyses are discussed. Two tire models are discussed for shimmy analysis, the modified Moreland approach and the von Schlippe-Dietrich approach. It is shown that the Moreland model can be derived from the Von Schlippe-Dietrich model by certain approximations. The remaining analysis areas are discussed in general terms and the tire parameters needed for each are identified. Accurate tire data allows more accurate design analysis and the correct prediction of dynamic performance of aircraft landing gear.
Entity versus incremental theories predict older adults' memory performance.
Plaks, Jason E; Chasteen, Alison L
2013-12-01
The authors examined whether older adults' implicit theories regarding the modifiability of memory in particular (Studies 1 and 3) and abilities in general (Study 2) would predict memory performance. In Study 1, individual differences in older adults' endorsement of the "entity theory" (a belief that one's ability is fixed) or "incremental theory" (a belief that one's ability is malleable) of memory were measured using a version of the Implicit Theories Measure (Dweck, 1999). Memory performance was assessed with a free-recall task. Results indicated that the higher the endorsement of the incremental theory, the better the free recall. In Study 2, older and younger adults' theories were measured using a more general version of the Implicit Theories Measure that focused on the modifiability of abilities in general. Again, for older adults, the higher the incremental endorsement, the better the free recall. Moreover, as predicted, implicit theories did not predict younger adults' memory performance. In Study 3, participants read mock news articles reporting evidence in favor of either the entity or incremental theory. Those in the incremental condition outperformed those in the entity condition on reading span and free-recall tasks. These effects were mediated by pretask worry such that, for those in the entity condition, higher worry was associated with lower performance. Taken together, these studies suggest that variation in entity versus incremental endorsement represents a key predictor of older adults' memory performance. PMID:24128076
Entity versus incremental theories predict older adults' memory performance.
Plaks, Jason E; Chasteen, Alison L
2013-12-01
The authors examined whether older adults' implicit theories regarding the modifiability of memory in particular (Studies 1 and 3) and abilities in general (Study 2) would predict memory performance. In Study 1, individual differences in older adults' endorsement of the "entity theory" (a belief that one's ability is fixed) or "incremental theory" (a belief that one's ability is malleable) of memory were measured using a version of the Implicit Theories Measure (Dweck, 1999). Memory performance was assessed with a free-recall task. Results indicated that the higher the endorsement of the incremental theory, the better the free recall. In Study 2, older and younger adults' theories were measured using a more general version of the Implicit Theories Measure that focused on the modifiability of abilities in general. Again, for older adults, the higher the incremental endorsement, the better the free recall. Moreover, as predicted, implicit theories did not predict younger adults' memory performance. In Study 3, participants read mock news articles reporting evidence in favor of either the entity or incremental theory. Those in the incremental condition outperformed those in the entity condition on reading span and free-recall tasks. These effects were mediated by pretask worry such that, for those in the entity condition, higher worry was associated with lower performance. Taken together, these studies suggest that variation in entity versus incremental endorsement represents a key predictor of older adults' memory performance.
Analysis of dynamic deformation processes with adaptive KALMAN-filtering
NASA Astrophysics Data System (ADS)
Eichhorn, Andreas
2007-05-01
In this paper the approach of a full system analysis is shown quantifying a dynamic structural ("white-box"-) model for the calculation of thermal deformations of bar-shaped machine elements. The task was motivated from mechanical engineering searching new methods for the precise prediction and computational compensation of thermal influences in the heating and cooling phases of machine tools (i.e. robot arms, etc.). The quantification of thermal deformations under variable dynamic loads requires the modelling of the non-stationary spatial temperature distribution inside the object. Based upon FOURIERS law of heat flow the high-grade non-linear temperature gradient is represented by a system of partial differential equations within the framework of a dynamic Finite Element topology. It is shown that adaptive KALMAN-filtering is suitable to quantify relevant disturbance influences and to identify thermal parameters (i.e. thermal diffusivity) with a deviation of only 0,2%. As result an identified (and verified) parametric model for the realistic prediction respectively simulation of dynamic temperature processes is presented. Classifying the thermal bend as the main deformation quantity of bar-shaped machine tools, the temperature model is extended to a temperature deformation model. In lab tests thermal load steps are applied to an aluminum column. Independent control measurements show that the identified model can be used to predict the columns bend with a mean deviation (
Simple models for quorum sensing: Nonlinear dynamical analysis
NASA Astrophysics Data System (ADS)
Chiang, Wei-Yin; Li, Yue-Xian; Lai, Pik-Yin
2011-10-01
Quorum sensing refers to the change in the cooperative behavior of a collection of elements in response to the change in their population size or density. This behavior can be observed in chemical and biological systems. These elements or cells are coupled via chemicals in the surrounding environment. Here we focus on the change of dynamical behavior, in particular from quiescent to oscillatory, as the cell population changes. For instance, the silent behavior of the elements can become oscillatory as the system concentration or population increases. In this work, two simple models are constructed that can produce the essential representative properties in quorum sensing. The first is an excitable or oscillatory phase model, which is probably the simplest model one can construct to describe quorum sensing. Using the mean-field approximation, the parameter regime for quorum sensing behavior can be identified, and analytical results for the detailed dynamical properties, including the phase diagrams, are obtained and verified numerically. The second model consists of FitzHugh-Nagumo elements coupled to the signaling chemicals in the environment. Nonlinear dynamical analysis of this mean-field model exhibits rich dynamical behaviors, such as infinite period bifurcation, supercritical Hopf, fold bifurcation, and subcritical Hopf bifurcations as the population parameter changes for different coupling strengths. Analytical result is obtained for the Hopf bifurcation phase boundary. Furthermore, two elements coupled via the environment and their synchronization behavior for these two models are also investigated. For both models, it is found that the onset of oscillations is accompanied by the synchronized dynamics of the two elements. Possible applications and extension of these models are also discussed.
Unveiling Hidden Dynamics of Hippo Signalling: A Systems Analysis.
Shin, Sung-Young; Nguyen, Lan K
2016-01-01
The Hippo signalling pathway has recently emerged as an important regulator of cell apoptosis and proliferation with significant implications in human diseases. In mammals, the pathway contains the core kinases MST1/2, which phosphorylate and activate LATS1/2 kinases. The pro-apoptotic function of the MST/LATS signalling axis was previously linked to the Akt and ERK MAPK pathways, demonstrating that the Hippo pathway does not act alone but crosstalks with other signalling pathways to coordinate network dynamics and cellular outcomes. These crosstalks were characterised by a multitude of complex regulatory mechanisms involving competitive protein-protein interactions and phosphorylation mediated feedback loops. However, how these different mechanisms interplay in different cellular contexts to drive the context-specific network dynamics of Hippo-ERK signalling remains elusive. Using mathematical modelling and computational analysis, we uncovered that the Hippo-ERK network can generate highly diverse dynamical profiles that can be clustered into distinct dose-response patterns. For each pattern, we offered mechanistic explanation that defines when and how the observed phenomenon can arise. We demonstrated that Akt displays opposing, dose-dependent functions towards ERK, which are mediated by the balance between the Raf-1/MST2 protein interaction module and the LATS1 mediated feedback regulation. Moreover, Ras displays a multi-functional role and drives biphasic responses of both MST2 and ERK activities; which are critically governed by the competitive protein interaction between MST2 and Raf-1. Our study represents the first in-depth and systematic analysis of the Hippo-ERK network dynamics and provides a concrete foundation for future studies. PMID:27527217
Unveiling Hidden Dynamics of Hippo Signalling: A Systems Analysis
Shin, Sung-Young; Nguyen, Lan K.
2016-01-01
The Hippo signalling pathway has recently emerged as an important regulator of cell apoptosis and proliferation with significant implications in human diseases. In mammals, the pathway contains the core kinases MST1/2, which phosphorylate and activate LATS1/2 kinases. The pro-apoptotic function of the MST/LATS signalling axis was previously linked to the Akt and ERK MAPK pathways, demonstrating that the Hippo pathway does not act alone but crosstalks with other signalling pathways to coordinate network dynamics and cellular outcomes. These crosstalks were characterised by a multitude of complex regulatory mechanisms involving competitive protein-protein interactions and phosphorylation mediated feedback loops. However, how these different mechanisms interplay in different cellular contexts to drive the context-specific network dynamics of Hippo-ERK signalling remains elusive. Using mathematical modelling and computational analysis, we uncovered that the Hippo-ERK network can generate highly diverse dynamical profiles that can be clustered into distinct dose-response patterns. For each pattern, we offered mechanistic explanation that defines when and how the observed phenomenon can arise. We demonstrated that Akt displays opposing, dose-dependent functions towards ERK, which are mediated by the balance between the Raf-1/MST2 protein interaction module and the LATS1 mediated feedback regulation. Moreover, Ras displays a multi-functional role and drives biphasic responses of both MST2 and ERK activities; which are critically governed by the competitive protein interaction between MST2 and Raf-1. Our study represents the first in-depth and systematic analysis of the Hippo-ERK network dynamics and provides a concrete foundation for future studies. PMID:27527217
Relating annual increments of the endangered Blanding's turtle plastron growth to climate.
Richard, Monik G; Laroque, Colin P; Herman, Thomas B
2014-05-01
This research is the first published study to report a relationship between climate variables and plastron growth increments of turtles, in this case the endangered Nova Scotia Blanding's turtle (Emydoidea blandingii). We used techniques and software common to the discipline of dendrochronology to successfully cross-date our growth increment data series, to detrend and average our series of 80 immature Blanding's turtles into one common chronology, and to seek correlations between the chronology and environmental temperature and precipitation variables. Our cross-dated chronology had a series intercorrelation of 0.441 (above 99% confidence interval), an average mean sensitivity of 0.293, and an average unfiltered autocorrelation of 0.377. Our master chronology represented increments from 1975 to 2007 (33 years), with index values ranging from a low of 0.688 in 2006 to a high of 1.303 in 1977. Univariate climate response function analysis on mean monthly air temperature and precipitation values revealed a positive correlation with the previous year's May temperature and current year's August temperature; a negative correlation with the previous year's October temperature; and no significant correlation with precipitation. These techniques for determining growth increment response to environmental variables should be applicable to other turtle species and merit further exploration.
Relating annual increments of the endangered Blanding's turtle plastron growth to climate
Richard, Monik G; Laroque, Colin P; Herman, Thomas B
2014-01-01
This research is the first published study to report a relationship between climate variables and plastron growth increments of turtles, in this case the endangered Nova Scotia Blanding's turtle (Emydoidea blandingii). We used techniques and software common to the discipline of dendrochronology to successfully cross-date our growth increment data series, to detrend and average our series of 80 immature Blanding's turtles into one common chronology, and to seek correlations between the chronology and environmental temperature and precipitation variables. Our cross-dated chronology had a series intercorrelation of 0.441 (above 99% confidence interval), an average mean sensitivity of 0.293, and an average unfiltered autocorrelation of 0.377. Our master chronology represented increments from 1975 to 2007 (33 years), with index values ranging from a low of 0.688 in 2006 to a high of 1.303 in 1977. Univariate climate response function analysis on mean monthly air temperature and precipitation values revealed a positive correlation with the previous year's May temperature and current year's August temperature; a negative correlation with the previous year's October temperature; and no significant correlation with precipitation. These techniques for determining growth increment response to environmental variables should be applicable to other turtle species and merit further exploration. PMID:24963390
Relating annual increments of the endangered Blanding's turtle plastron growth to climate.
Richard, Monik G; Laroque, Colin P; Herman, Thomas B
2014-05-01
This research is the first published study to report a relationship between climate variables and plastron growth increments of turtles, in this case the endangered Nova Scotia Blanding's turtle (Emydoidea blandingii). We used techniques and software common to the discipline of dendrochronology to successfully cross-date our growth increment data series, to detrend and average our series of 80 immature Blanding's turtles into one common chronology, and to seek correlations between the chronology and environmental temperature and precipitation variables. Our cross-dated chronology had a series intercorrelation of 0.441 (above 99% confidence interval), an average mean sensitivity of 0.293, and an average unfiltered autocorrelation of 0.377. Our master chronology represented increments from 1975 to 2007 (33 years), with index values ranging from a low of 0.688 in 2006 to a high of 1.303 in 1977. Univariate climate response function analysis on mean monthly air temperature and precipitation values revealed a positive correlation with the previous year's May temperature and current year's August temperature; a negative correlation with the previous year's October temperature; and no significant correlation with precipitation. These techniques for determining growth increment response to environmental variables should be applicable to other turtle species and merit further exploration. PMID:24963390
Probing cytoskeleton dynamics by intracellular particle transport analysis
NASA Astrophysics Data System (ADS)
Götz, M.; Hodeck, K. F.; Witzel, P.; Nandi, A.; Lindner, B.; Heinrich, D.
2015-07-01
All cellular functions arise from the transport of molecules through a heterogeneous, highly dynamic cell interior for intracellular signaling. Here, the impact of intracellular architecture and cytoskeleton dynamics on transport processes is revealed by high-resolution single particle tracking within living cells, in combination with time-resolved local mean squared displacement (I-MSD) analysis. We apply the I-MSD analysis to trajectories of 200 nm silica particles within living cells of Dictyostelium discoideum obtained by high resolution spinning disc confocal microscopy with a frame rate of 100 fps and imaging in one fixed focal plane. We investigate phases of motor-driven active transport and subdiffusion, normal diffusion, as well as superdiffusion with high spatial and temporal resolution. Active directed intracellular motion is attributed to microtubule associated molecular motor driven transport with average absolute velocities of 2.8 μm s-1 for 200 nm diameter particles. Diffusion processes of these particles within wild-type cells are found to exhibit diffusion constants ranging across two orders of magnitude from subdiffusive to superdiffusive behavior. This type of analysis might prove of ample importance for medical applications, like targeted drug treatment of cells by nano-sized carriers or innovative diagnostic assays.
Susceptibility-Based Analysis Of Dynamic Gadolinium Bolus Perfusion MRI
Bonekamp, David; Barker, Peter B.; Leigh, Richard; van Zijl, Peter C.M.; Li, Xu
2014-01-01
Purpose An algorithm is developed for the reconstruction of dynamic, gadolinium (Gd) bolus MR perfusion images of the human brain, based on quantitative susceptibility mapping (QSM). Methods The method is evaluated in 5 perfusion scans obtained from 4 different patients scanned at 3T, and compared to the conventional analysis based on changes in the transverse relaxation rate ΔR2* and to theoretical predictions. QSM images were referenced to ventricular CSF for each dynamic of the perfusion sequence. Results Images of cerebral blood flow and blood volume were successfully reconstructed from the QSM-analysis, and were comparable to those reconstructed using ΔR2*. The magnitudes of the Gd-associated susceptibility effects in gray and white matter were consistent with theoretical predictions. Conclusion QSM-based analysis may have some theoretical advantages compared to ΔR2*, including a simpler relationship between signal change and Gd concentration. However, disadvantages are its much lower contrast-to-noise ratio, artifacts due to respiration and other effects, and more complicated reconstruction methods. More work is required to optimize data acquisition protocols for QSM-based perfusion imaging. PMID:24604343
Enhancement of the robustness on dynamic speckle laser numerical analysis
NASA Astrophysics Data System (ADS)
Cardoso, R. R.; Braga, R. A.
2014-12-01
When a dynamic process occurs in a material under laser illumination the phenomenon that appears is named dynamic laser speckle, or biospeckle laser (BSL) if we have a biological material. The work with biological material and its dispersion of light brings considerable complexity, and the way we can deal with that complex outputs is based on a sophisticated analysis of the images associated to statistical approaches. One of the most known numerical analysis of the BSL has been applied in many applications, and it is named Inertia Moment, however its outputs have great coefficients of variation, most of the time attributed to the variability of the biological material. A change in the inertia moment method was done and the Absolute Value of the Differences (AVD) was presented as an alternative to reduce the variations and to follow a broader range of frequencies than before. However, it was not enough concerning with the variability of the outputs. This study aimed to improve the BSL technique in order to enhance the robustness of the numerical method known as Inertia Moment (IM) and improve the absolute value of the differences reducing even more its coefficient of variation by means of changes in the normalization provided in both methods. The new normalization was tested in simulated data, as well as in real data. The results showed the improvements of the methods, IM and AVD, with the reduction of the coefficients of variation of the activity in the outputs, increasing the robustness of the analysis.
Bootstrap Standard Error Estimates in Dynamic Factor Analysis.
Zhang, Guangjian; Browne, Michael W
2010-05-28
Dynamic factor analysis summarizes changes in scores on a battery of manifest variables over repeated measurements in terms of a time series in a substantially smaller number of latent factors. Algebraic formulae for standard errors of parameter estimates are more difficult to obtain than in the usual intersubject factor analysis because of the interdependence of successive observations. Bootstrap methods can fill this need, however. The standard bootstrap of individual timepoints is not appropriate because it destroys their order in time and consequently gives incorrect standard error estimates. Two bootstrap procedures that are appropriate for dynamic factor analysis are described. The moving block bootstrap breaks down the original time series into blocks and draws samples of blocks instead of individual timepoints. A parametric bootstrap is essentially a Monte Carlo study in which the population parameters are taken to be estimates obtained from the available sample. These bootstrap procedures are demonstrated using 103 days of affective mood self-ratings from a pregnant woman, 90 days of personality self-ratings from a psychology freshman, and a simulation study.
SIMA: Python software for analysis of dynamic fluorescence imaging data
Kaifosh, Patrick; Zaremba, Jeffrey D.; Danielson, Nathan B.; Losonczy, Attila
2014-01-01
Fluorescence imaging is a powerful method for monitoring dynamic signals in the nervous system. However, analysis of dynamic fluorescence imaging data remains burdensome, in part due to the shortage of available software tools. To address this need, we have developed SIMA, an open source Python package that facilitates common analysis tasks related to fluorescence imaging. Functionality of this package includes correction of motion artifacts occurring during in vivo imaging with laser-scanning microscopy, segmentation of imaged fields into regions of interest (ROIs), and extraction of signals from the segmented ROIs. We have also developed a graphical user interface (GUI) for manual editing of the automatically segmented ROIs and automated registration of ROIs across multiple imaging datasets. This software has been designed with flexibility in mind to allow for future extension with different analysis methods and potential integration with other packages. Software, documentation, and source code for the SIMA package and ROI Buddy GUI are freely available at http://www.losonczylab.org/sima/. PMID:25295002
SIMA: Python software for analysis of dynamic fluorescence imaging data.
Kaifosh, Patrick; Zaremba, Jeffrey D; Danielson, Nathan B; Losonczy, Attila
2014-01-01
Fluorescence imaging is a powerful method for monitoring dynamic signals in the nervous system. However, analysis of dynamic fluorescence imaging data remains burdensome, in part due to the shortage of available software tools. To address this need, we have developed SIMA, an open source Python package that facilitates common analysis tasks related to fluorescence imaging. Functionality of this package includes correction of motion artifacts occurring during in vivo imaging with laser-scanning microscopy, segmentation of imaged fields into regions of interest (ROIs), and extraction of signals from the segmented ROIs. We have also developed a graphical user interface (GUI) for manual editing of the automatically segmented ROIs and automated registration of ROIs across multiple imaging datasets. This software has been designed with flexibility in mind to allow for future extension with different analysis methods and potential integration with other packages. Software, documentation, and source code for the SIMA package and ROI Buddy GUI are freely available at http://www.losonczylab.org/sima/.
A hybrid incremental projection method for thermal-hydraulics applications
NASA Astrophysics Data System (ADS)
Christon, Mark A.; Bakosi, Jozsef; Nadiga, Balasubramanya T.; Berndt, Markus; Francois, Marianne M.; Stagg, Alan K.; Xia, Yidong; Luo, Hong
2016-07-01
A new second-order accurate, hybrid, incremental projection method for time-dependent incompressible viscous flow is introduced in this paper. The hybrid finite-element/finite-volume discretization circumvents the well-known Ladyzhenskaya-Babuška-Brezzi conditions for stability, and does not require special treatment to filter pressure modes by either Rhie-Chow interpolation or by using a Petrov-Galerkin finite element formulation. The use of a co-velocity with a high-resolution advection method and a linearly consistent edge-based treatment of viscous/diffusive terms yields a robust algorithm for a broad spectrum of incompressible flows. The high-resolution advection method is shown to deliver second-order spatial convergence on mixed element topology meshes, and the implicit advective treatment significantly increases the stable time-step size. The algorithm is robust and extensible, permitting the incorporation of features such as porous media flow, RANS and LES turbulence models, and semi-/fully-implicit time stepping. A series of verification and validation problems are used to illustrate the convergence properties of the algorithm. The temporal stability properties are demonstrated on a range of problems with 2 ≤ CFL ≤ 100. The new flow solver is built using the Hydra multiphysics toolkit. The Hydra toolkit is written in C++ and provides a rich suite of extensible and fully-parallel components that permit rapid application development, supports multiple discretization techniques, provides I/O interfaces, dynamic run-time load balancing and data migration, and interfaces to scalable popular linear solvers, e.g., in open-source packages such as HYPRE, PETSc, and Trilinos.
A hybrid incremental projection method for thermal-hydraulics applications
Christon, Mark A.; Bakosi, Jozsef; Nadiga, Balasubramanya T.; Berndt, Markus; Francois, Marianne M.; Stagg, Alan K.; Xia, Yidong; Luo, Hong
2016-05-04
In this paper, a new second-order accurate, hybrid, incremental projection method for time-dependent incompressible viscous flow is introduced in this paper. The hybrid finite-element/finite-volume discretization circumvents the well-known Ladyzhenskaya–Babuška–Brezzi conditions for stability, and does not require special treatment to filter pressure modes by either Rhie–Chow interpolation or by using a Petrov–Galerkin finite element formulation. The use of a co-velocity with a high-resolution advection method and a linearly consistent edge-based treatment of viscous/diffusive terms yields a robust algorithm for a broad spectrum of incompressible flows. The high-resolution advection method is shown to deliver second-order spatial convergence on mixed element topology meshes,more » and the implicit advective treatment significantly increases the stable time-step size. The algorithm is robust and extensible, permitting the incorporation of features such as porous media flow, RANS and LES turbulence models, and semi-/fully-implicit time stepping. A series of verification and validation problems are used to illustrate the convergence properties of the algorithm. The temporal stability properties are demonstrated on a range of problems with 2 ≤ CFL ≤ 100. The new flow solver is built using the Hydra multiphysics toolkit. The Hydra toolkit is written in C++ and provides a rich suite of extensible and fully-parallel components that permit rapid application development, supports multiple discretization techniques, provides I/O interfaces, dynamic run-time load balancing and data migration, and interfaces to scalable popular linear solvers, e.g., in open-source packages such as HYPRE, PETSc, and Trilinos.« less
Incremental Net Effects in Multiple Regression
ERIC Educational Resources Information Center
Lipovetsky, Stan; Conklin, Michael
2005-01-01
A regular problem in regression analysis is estimating the comparative importance of the predictors in the model. This work considers the 'net effects', or shares of the predictors in the coefficient of the multiple determination, which is a widely used characteristic of the quality of a regression model. Estimation of the net effects can be a…
Stress analysis of the subsea dynamic riser baseprocess piping
NASA Astrophysics Data System (ADS)
Ju, Xuanze; Fang, Wei; Yin, Hanjun; Jiang, Ying
2014-09-01
Thesubsea dynamic riser base (SDRB) is an important piece of equipment for the floating production platform mooring system. One end is connected to the rigid pipeline, carrying a rigid pipeline thermal expansion load and the other end is connected to a flexible riser, carrying the dynamic load of the flexible riser, so its function is a transition connection between the flexible riser and the rigid pipeline which fixes the flexible riser on the seabed. On the other hand, as a typical subsea product, the design will satisfy the requirements of the standards for subsea products. By studying the stress analysisphilosophy of the topside piping and subsea pipeline, a physical model and procedure for piping stress analysis of the SDRB have been established. The conditions of the adverse design load have been considered, and a combination of the static load from the rigid pipeline and the dynamic load flexibility has also been optimized. And a comparative analysis between the AMSE, DNV and API standards for piping stress with the checking rules has been done. Because the SDRB belongs to the subsea pipeline terminal product, the use of DNV standards to check its process piping stress is recommended. Finally, the process piping stress of the SDRB has been calculated, and the results show that the jacket pipe and the carrier pipe stress of the SDRB process piping satisfy the DNV standards as a whole.The bulkhead cannot be accurately simulated by the AutoPIPE software which uses the FEA software ANSYS in the detailed analysis, but the checking results will still meet the requirements of the DNV standards.
Dynamic Analysis of Darrieus Vertical Axis Wind Turbine Rotors
NASA Technical Reports Server (NTRS)
Lobitz, D. W.
1981-01-01
The dynamic response characteristics of the vertical axis wind turbine (VAWT) rotor are important factors governing the safety and fatigue life of VAWT systems. The principal problems are the determination of critical rotor speeds (resonances) and the assessment of forced vibration response amplitudes. The solution to these problems is complicated by centrifugal and Coriolis effects which can have substantial influence on rotor resonant frequencies and mode shapes. The primary tools now in use for rotor analysis are described and discussed. These tools include a lumped spring mass model (VAWTDYN) and also finite-element based approaches. The accuracy and completeness of current capabilities are also discussed.
Nonstationary Dynamics Data Analysis with Wavelet-SVD Filtering
NASA Technical Reports Server (NTRS)
Brenner, Marty; Groutage, Dale; Bessette, Denis (Technical Monitor)
2001-01-01
Nonstationary time-frequency analysis is used for identification and classification of aeroelastic and aeroservoelastic dynamics. Time-frequency multiscale wavelet processing generates discrete energy density distributions. The distributions are processed using the singular value decomposition (SVD). Discrete density functions derived from the SVD generate moments that detect the principal features in the data. The SVD standard basis vectors are applied and then compared with a transformed-SVD, or TSVD, which reduces the number of features into more compact energy density concentrations. Finally, from the feature extraction, wavelet-based modal parameter estimation is applied.
Dynamic dielectric analysis for nondestructive cure monitoring and process control
NASA Technical Reports Server (NTRS)
Kranbuehl, D. E.; Delos, S. E.; Hoff, M. S.; Whitham, M. E.; Weller, L. W.
1986-01-01
Dynamic dielectric analysis (DDA) is an effective in situ NDE method that can monitor the reaction status in thermosets and the phase changes in thermoplastics, including slow reactions occuring late in the cure cycle and recrystallization during annealing. The effects of moisture and resin history on reaction rate can also be determined, as can ionic and dipolar contributions. The ionic mobility parameter is noted to be an excellent monitor of viscosity above the glass transition temperature. The ability of DDA to monitor cure rate variations in a thick section during autoclaving has been demonstrated.
Fluid Dynamic and Stability Analysis of a Thin Liquid Sheet
NASA Technical Reports Server (NTRS)
McMaster, Matthew S.
1992-01-01
Interest in thin sheet flows has recently been renewed due to their potential application in space radiators. Theoretical and experimental studies of the fluid dynamics and stability of thin liquid sheet flows have been carried out in this thesis. A computer program was developed to determine the cross-sectional shape of the edge cylinder given the cross-sectional area of the edge cylinder. A stability analysis was performed on a non-planer liquid sheet. A study was conducted to determine the effects of air resistance on the sheet.
SPAR improved structure/fluid dynamic analysis capability
NASA Technical Reports Server (NTRS)
Oden, J. T.; Pearson, M. L.
1983-01-01
The capability of analyzing a coupled dynamic system of flowing fluid and elastic structure was added to the SPAR computer code. A method, developed and adopted for use in SPAR utilizes the existing assumed stress hybrid plan element in SPAR. An operational mode was incorporated in SPAR which provides the capability for analyzing the flaw of a two dimensional, incompressible, viscous fluid within rigid boundaries. Equations were developed to provide for the eventual analysis of the interaction of such fluids with an elastic solid.
Motion analysis of knee joint using dynamic volume images
NASA Astrophysics Data System (ADS)
Haneishi, Hideaki; Kohno, Takahiro; Suzuki, Masahiko; Moriya, Hideshige; Mori, Sin-ichiro; Endo, Masahiro
2006-03-01
Acquisition and analysis of three-dimensional movement of knee joint is desired in orthopedic surgery. We have developed two methods to obtain dynamic volume images of knee joint. One is a 2D/3D registration method combining a bi-plane dynamic X-ray fluoroscopy and a static three-dimensional CT, the other is a method using so-called 4D-CT that uses a cone-beam and a wide 2D detector. In this paper, we present two analyses of knee joint movement obtained by these methods: (1) transition of the nearest points between femur and tibia (2) principal component analysis (PCA) of six parameters representing the three dimensional movement of knee. As a preprocessing for the analysis, at first the femur and tibia regions are extracted from volume data at each time frame and then the registration of the tibia between different frames by an affine transformation consisting of rotation and translation are performed. The same transformation is applied femur as well. Using those image data, the movement of femur relative to tibia can be analyzed. Six movement parameters of femur consisting of three translation parameters and three rotation parameters are obtained from those images. In the analysis (1), axis of each bone is first found and then the flexion angle of the knee joint is calculated. For each flexion angle, the minimum distance between femur and tibia and the location giving the minimum distance are found in both lateral condyle and medial condyle. As a result, it was observed that the movement of lateral condyle is larger than medial condyle. In the analysis (2), it was found that the movement of the knee can be represented by the first three principal components with precision of 99.58% and those three components seem to strongly relate to three major movements of femur in the knee bend known in orthopedic surgery.
Perturbation and Nonlinear Dynamic Analysis of Different Singing Styles
Butte, Caitlin J.; Zhang, Yu; Song, Huangqiang; Jiang, Jack J.
2012-01-01
Summary Previous research has used perturbation analysis methods to study the singing voice. Using perturbation and nonlinear dynamic analysis (NDA) methods in conjunction may provide more accurate information on the singing voice and may distinguish vocal usage in different styles. Acoustic samples from different styles of singing were compared using nonlinear dynamic and perturbation measures. Twenty-six songs from different musical styles were obtained from an online music database (Rhapsody, RealNetworks, Inc., Seattle, WA). One-second samples were selected from each song for analysis. Perturbation analyses of jitter, shimmer, and signal-to-noise ratio and NDA of correlation dimension (D2) were performed on samples from each singing style. Percent jitter and shimmer median values were low normal for country (0.32% and 3.82%), musical theater (MT) (0.280% and 2.80%), jazz (0.440% and 2.34%), and soul (0.430% and 6.42%). The popular style had slightly higher median jitter and shimmer values (1.13% and 6.78%) than other singing styles, although this was not statistically significant. The opera singing style had median jitter of 0.520%, and yielded significantly high shimmer (P = 0.001) of 7.72%. All six singing styles were measured reliably using NDA, indicating that operatic singing is notably more chaotic than other singing styles. Median correlation dimension values were low to normal, compared to healthy voices, in country (median D2 = 2.14), jazz (median D2 = 2.24), pop (median D2 = 2.60), MT (median D2 = 2.73), and soul (mean D2 = 3.26). Correlation dimension was significantly higher in opera (P < 0.001) with median D2 = 6.19. In this study, acoustic analysis in opera singing gave significantly high values for shimmer and D2, suggesting that it is more irregular than other singing styles; a previously unknown quality of opera singing. Perturbation analysis also suggested significant differences in vocal output in different singing styles. This preliminary
NASA Technical Reports Server (NTRS)
Waszak, M. R.; Schmidt, D. S.
1985-01-01
As aircraft become larger and lighter due to design requirements for increased payload and improved fuel efficiency, they will also become more flexible. For highly flexible vehicles, the handling qualities may not be accurately predicted by conventional methods. This study applies two analysis methods to a family of flexible aircraft in order to investigate how and when structural (especially dynamic aeroelastic) effects affect the dynamic characteristics of aircraft. The first type of analysis is an open loop model analysis technique. This method considers the effects of modal residue magnitudes on determining vehicle handling qualities. The second method is a pilot in the loop analysis procedure that considers several closed loop system characteristics. Volume 1 consists of the development and application of the two analysis methods described above.
Analysis of in situ measurements of cirrus anvil outflow dynamics
NASA Astrophysics Data System (ADS)
Lederman, J. I.; Whiteway, J. A.
2012-12-01
The airborne campaign, EMERALD 2 (Egrett Microphysics Experiment with Radiation, Lidar, and Dynamics,) was conducted out of Darwin, Australia in 2002. Objectives included characterization of the dynamics in the cirrus anvil outflow from tropical deep convection. Two aircraft, the Egrett and King Air, were flown in tandem in the upper troposphere (7 km - 15 km) to collect in situ measurements in the anvil outflow from a storm named "Hector" that occurs on a regular basis over the Tiwi Islands north of Darwin during November and December. Turbulence probes mounted on the wings of the Egrett aircraft were used to measure the wind fluctuations across the anvil and along its length with a spatial resolution of 2 meters. The in situ measurements from the Egrett were coincident with lidar measurements of the cloud structure from the King Air aircraft flying directly below. The presentation will show results of the analysis of the measurements with an emphasis on the turbulence, gravity waves, and coherent structures that are particular to the cirrus anvil outflow environment. Emphasis is placed on the dynamics associated with the generation of mammatus formations at the base of the anvil clouds.
Dynamic heart rate estimation using principal component analysis.
Yu, Yong-Poh; Raveendran, P; Lim, Chern-Loon; Kwan, Ban-Hoe
2015-11-01
In this paper, facial images from various video sequences are used to obtain a heart rate reading. In this study, a video camera is used to capture the facial images of eight subjects whose heart rates vary dynamically, between 81 and 153 BPM. Principal component analysis (PCA) is used to recover the blood volume pulses (BVP) which can be used for the heart rate estimation. An important consideration for accuracy of the dynamic heart rate estimation is to determine the shortest video duration that realizes it. This video duration is chosen when the six principal components (PC) are least correlated amongst them. When this is achieved, the first PC is used to obtain the heart rate. The results obtained from the proposed method are compared to the readings obtained from the Polar heart rate monitor. Experimental results show the proposed method is able to estimate the dynamic heart rate readings using less computational requirements when compared to the existing method. The mean absolute error and the standard deviation of the absolute errors between experimental readings and actual readings are 2.18 BPM and 1.71 BPM respectively.
Functional Data Analysis for Dynamical System Identification of Behavioral Processes
Trail, Jessica B.; Collins, Linda M.; Rivera, Daniel E.; Li, Runze; Piper, Megan E.; Baker, Timothy B.
2014-01-01
Efficient new technology has made it straightforward for behavioral scientists to collect anywhere from several dozen to several thousand dense, repeated measurements on one or more time-varying variables. These intensive longitudinal data (ILD) are ideal for examining complex change over time, but present new challenges that illustrate the need for more advanced analytic methods. For example, in ILD the temporal spacing of observations may be irregular, and individuals may be sampled at different times. Also, it is important to assess both how the outcome changes over time and the variation between participants' time-varying processes to make inferences about a particular intervention's effectiveness within the population of interest. The methods presented in this article integrate two innovative ILD analytic techniques: functional data analysis and dynamical systems modeling. An empirical application is presented using data from a smoking cessation clinical trial. Study participants provided 42 daily assessments of pre-quit and post-quit withdrawal symptoms. Regression splines were used to approximate smooth functions of craving and negative affect and to estimate the variables' derivatives for each participant. We then modeled the dynamics of nicotine craving using standard input-output dynamical systems models. These models provide a more detailed characterization of the post-quit craving process than do traditional longitudinal models, including information regarding the type, magnitude, and speed of the response to an input. The results, in conjunction with standard engineering control theory techniques, could potentially be used by tobacco researchers to develop a more effective smoking intervention. PMID:24079929
Finite Element Transient Dynamic Analysis of Laminated Stiffened Shells
NASA Astrophysics Data System (ADS)
PRUSTY, B. GANGADHARA; SATSANGI, S. K.
2001-11-01
The present work describes the transient dynamic response of unstiffened/stiffened composite plates/shells using finite element method. Composite panels find wide applications in aerospace, marine and other engineering because of its high strength to weight ratios. These structures are often subjected to air-blast loading, underwater shock etc., which requires a thorough dynamic response analysis under such loading. A modified approach of shell and stiffener modelling is adopted here using an eight-noded isoparametric quadratic element for the shell and a three-noded curved stiffener element for the stiffeners on the concept of equal displacements at the shell-stiffener interface. The present formulation obviates the need for imposing the mesh line along the stiffeners; rather it accommodates the stiffeners elegantly anywhere placed arbitrarily inside the element with computational efficiency. Newmarks method for direct time integration has been adopted for the solution of the governing equation for undamped motion. The transient dynamic response of stiffened and unstiffened structures subjected to various kinds of time variant loading has been studied and the results are compared with the published ones.
Pixel Analysis and Plasma Dynamics Characterized by Photospheric Spectral Data
NASA Astrophysics Data System (ADS)
Rasca, Anthony P.; Chen, James; Pevtsov, Alexei A.
2016-05-01
Recent observations of the photosphere using high spatial and temporal resolutions show small dynamic features at the resolving limit during emerging flux events. However, line-of-sight (LOS) magnetogram pixels only contain the net uncanceled magnetic flux, which is expected to increase for fixed regions as resolution limits improve. A new pixel dynamics method uses spectrographic images to characterize photospheric absorption line profiles by variations in line displacement, width, asymmetry, and peakedness and is applied to quiet-sun regions, active regions with no eruption, and an active region with an ongoing eruption. Using Stokes I images from SOLIS/VSM on 2012 March 13, variations in line width and peakedness of Fe I 6301.5 Å are shown to have a strong spatial and temporal relationship with an M7.9 X-ray flare originating from NOAA 11429. This relationship is observed as a flattening in the line profile as the X-ray flare approaches peak intensity and was not present in area scans of a non-eruptive active region on 2011 April 14. These results are used to estimate dynamic plasma properties on sub-pixel scales and provide both spatial and temporal information of sub-pixel activity at the photosphere. The analysis can be extended to include the full Stokes parameters and study signatures of magnetic fields and coupled plasma properties.
Pixel Analysis and Plasma Dynamics Characterized by Photospheric Spectral Data
NASA Astrophysics Data System (ADS)
Rasca, A.; Chen, J.; Pevtsov, A. A.
2015-12-01
Continued advances in solar observations have led to higher-resolution magnetograms and surface (photospheric) images, revealing bipolar magnetic features operating near the resolution limit during emerging flux events and other phenomena used to predict solar eruptions responsible for geomagnetic plasma disturbances. However, line of sight (LOS) magnetogram pixels only contain the net uncanceled magnetic flux, which is expected to increase for fixed regions as resolution limits improve. A pixel dynamics model utilizing Stokes I spectral profiles was previously-used to quantify changes in the Doppler shift, width, asymmetry, and tail flatness of Fe I lines at 6301.5 and 6302.5 Å and used pixel-by-pixel line profile fluctuations to characterize quiet and active regions on the Sun. We use this pixel dynamics model with circularly polarized photospheric data (e.g., SOLIS data) to estimate plasma dynamic properties at a sub-pixel level. The analysis can be extended to include the full Stokes parameters and study signatures of magnetic fields and coupled plasma properties on sub-pixel scales.
Dynamic heart rate estimation using principal component analysis
Yu, Yong-Poh; Raveendran, P.; Lim, Chern-Loon; Kwan, Ban-Hoe
2015-01-01
In this paper, facial images from various video sequences are used to obtain a heart rate reading. In this study, a video camera is used to capture the facial images of eight subjects whose heart rates vary dynamically, between 81 and 153 BPM. Principal component analysis (PCA) is used to recover the blood volume pulses (BVP) which can be used for the heart rate estimation. An important consideration for accuracy of the dynamic heart rate estimation is to determine the shortest video duration that realizes it. This video duration is chosen when the six principal components (PC) are least correlated amongst them. When this is achieved, the first PC is used to obtain the heart rate. The results obtained from the proposed method are compared to the readings obtained from the Polar heart rate monitor. Experimental results show the proposed method is able to estimate the dynamic heart rate readings using less computational requirements when compared to the existing method. The mean absolute error and the standard deviation of the absolute errors between experimental readings and actual readings are 2.18 BPM and 1.71 BPM respectively. PMID:26601022
Uncertain structural dynamics of aircraft panels and fuzzy structures analysis
NASA Astrophysics Data System (ADS)
Sparrow, Victor W.; Buehrle, Ralph D.
2002-11-01
Aircraft fuselage panels, seemingly simple structures, are actually complex because of the uncertainty of the attachments of the frame stiffeners and longitudinal stringers. It is clearly important to understand the dynamics of these panels because of the subsequent radiation into the passenger cabin, even when complete information is not available for all portions of the finite-element model. Over the last few years a fuzzy structures analysis (FSA) approach has been undertaken at Penn State and NASA Langley to quantify the uncertainty in modeling aircraft panels. A new MSC.Nastran [MSC.Software Corp. (Santa Ana, CA)] Direct Matrix Abstraction Program (DMAP) code was written and tested [AIAA paper 2001-1320, 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf., Seattle, WA, 16 April 2001] and was applied to simple fuselage panel models [J. Acoust. Soc. Am. 109, 2410(A) (2001)]. Recently the work has focused on understanding the dynamics of a realistic aluminum fuselage panel, typical of today's aircraft construction. This presentation will provide an overview of the research and recent results will be given for the fuselage panel. Comparison between experiments and the FSA results will be shown for different fuzzy input parameters. [Work supported by NASA Research Cooperative Agreement NCC-1-382.
Dynamic analysis and trajectory tracking of a tethered space robot
NASA Astrophysics Data System (ADS)
Soltani, Mehrzad; Keshmiri, Mehdi; Misra, Arun K.
2016-11-01
Dynamic analysis and trajectory tracking of a Tethered Space Robot (TSR) is investigated in this paper. A hybrid controller is used to perform the control task. It consists of two components, the first one deals with librational motion of the tether, while the second one takes care of the manipulator motion. A Nonlinear Model Predictive Control (NMPC) approach is used to control the tether libration; for this purpose, the libration is described by a single degree of freedom and the tether length rate is employed as the input to suppress the librational motion. A modified Computed Torque Method (CTM) is used to control the manipulator motion. The dynamic interaction between the manipulator motion and the librational motion is considered both in the system dynamics and control of the system. Using numerical simulations, performance of the proposed control system is evaluated for end-effector positioning as well as for trajectory tracking for two cases: a Low Earth Orbit (LEO) and the Geostationary Earth Orbit (GEO).
Equation-free analysis of a dynamically evolving multigraph
NASA Astrophysics Data System (ADS)
Holiday, A.; Kevrekidis, I. G.
2016-09-01
In order to illustrate the adaptation of traditional continuum numerical techniques to the study of complex network systems, we use the equation-free framework to analyze a dynamically evolving multigraph. This approach is based on coupling short intervals of direct dynamic network simulation with appropriately-defined lifting and restriction operators, mapping the detailed network description to suitable macroscopic (coarse-grained) variables and back. This enables the acceleration of direct simulations through Coarse Projective Integration (CPI), as well as the identification of coarse stationary states via a Newton-GMRES method. We also demonstrate the use of data-mining, both linear (principal component analysis, PCA) and nonlinear (diffusion maps, DMAPS) to determine good macroscopic variables (observables) through which one can coarse-grain the model. These results suggest methods for decreasing simulation times of dynamic real-world systems such as epidemiological network models. Additionally, the data-mining techniques could be applied to a diverse class of problems to search for a succint, low-dimensional description of the system in a small number of variables.
Dynamic criteria: a longitudinal analysis of professional basketball players' outcomes.
García-Izquierdo, Antonio León; Ramos-Villagrasa, Pedro José; Navarro, José
2012-11-01
This paper describes the fluctuations of temporal criteria dynamics in the context of professional sport. Specifically, we try to verify the underlying deterministic patterns in the outcomes of professional basketball players. We use a longitudinal approach based on the analysis of the outcomes of 94 basketball players over ten years, covering practically players' entire career development. Time series were analyzed with techniques derived from nonlinear dynamical systems theory. These techniques analyze the underlying patterns in outcomes without previous shape assumptions (linear or nonlinear). These techniques are capable of detecting an intermediate situation between randomness and determinism, called chaos. So they are very useful for the study of dynamic criteria in organizations. We have found most players (88.30%) have a deterministic pattern in their outcomes, and most cases are chaotic (81.92%). Players with chaotic patterns have higher outcomes than players with linear patterns. Moreover, players with power forward and center positions achieve better results than other players. The high number of chaotic patterns found suggests caution when appraising individual outcomes, when coaches try to find the appropriate combination of players to design a competitive team, and other personnel decisions. Management efforts must be made to assume this uncertainty.
NASA Technical Reports Server (NTRS)
Snow, L. S.; Kuhn, A. E.
1975-01-01
Previous error analyses conducted by the Guidance and Dynamics Branch of NASA have used the Guidance Analysis Program (GAP) as the trajectory simulation tool. Plans are made to conduct all future error analyses using the Space Vehicle Dynamics Simulation (SVDS) program. A study was conducted to compare the inertial measurement unit (IMU) error simulations of the two programs. Results of the GAP/SVDS comparison are presented and problem areas encountered while attempting to simulate IMU errors, vehicle performance uncertainties and environmental uncertainties using SVDS are defined. An evaluation of the SVDS linear error analysis capability is also included.
Finite element dynamic analysis on CDC STAR-100 computer
NASA Technical Reports Server (NTRS)
Noor, A. K.; Lambiotte, J. J., Jr.
1978-01-01
Computational algorithms are presented for the finite element dynamic analysis of structures on the CDC STAR-100 computer. The spatial behavior is described using higher-order finite elements. The temporal behavior is approximated by using either the central difference explicit scheme or Newmark's implicit scheme. In each case the analysis is broken up into a number of basic macro-operations. Discussion is focused on the organization of the computation and the mode of storage of different arrays to take advantage of the STAR pipeline capability. The potential of the proposed algorithms is discussed and CPU times are given for performing the different macro-operations for a shell modeled by higher order composite shallow shell elements having 80 degrees of freedom.
Analysis of proteome dynamics in mice by isotopic labeling.
Price, John C; Ghaemmaghami, Sina
2014-01-01
Recent advances in mass spectrometry and in vivo isotopic labeling have enabled proteome-wide analyses of protein turnover in complex organisms. Here, we describe a protocol for analyzing protein turnover rates in mouse tissues by comprehensive (15)N labeling. The procedure involves the complete isotopic labeling of blue green algae (Spirulina platensis) with (15)N and utilizing it as a source of dietary nitrogen for mice. We outline a detailed protocol for in-house production of (15)N-labeled algae, labeling of mice, and analysis of isotope incorporation kinetics by mass spectrometry. The methodology can be adapted to analyze proteome dynamics in most murine tissues and may be particularly useful in the analysis of proteostatic disruptions in mouse models of disease. PMID:24791984
Logical Modeling and Dynamical Analysis of Cellular Networks
Abou-Jaoudé, Wassim; Traynard, Pauline; Monteiro, Pedro T.; Saez-Rodriguez, Julio; Helikar, Tomáš; Thieffry, Denis; Chaouiya, Claudine
2016-01-01
The logical (or logic) formalism is increasingly used to model regulatory and signaling networks. Complementing these applications, several groups contributed various methods and tools to support the definition and analysis of logical models. After an introduction to the logical modeling framework and to several of its variants, we review here a number of recent methodological advances to ease the analysis of large and intricate networks. In particular, we survey approaches to determine model attractors and their reachability properties, to assess the dynamical impact of variations of external signals, and to consistently reduce large models. To illustrate these developments, we further consider several published logical models for two important biological processes, namely the differentiation of T helper cells and the control of mammalian cell cycle. PMID:27303434
Logical Modeling and Dynamical Analysis of Cellular Networks.
Abou-Jaoudé, Wassim; Traynard, Pauline; Monteiro, Pedro T; Saez-Rodriguez, Julio; Helikar, Tomáš; Thieffry, Denis; Chaouiya, Claudine
2016-01-01
The logical (or logic) formalism is increasingly used to model regulatory and signaling networks. Complementing these applications, several groups contributed various methods and tools to support the definition and analysis of logical models. After an introduction to the logical modeling framework and to several of its variants, we review here a number of recent methodological advances to ease the analysis of large and intricate networks. In particular, we survey approaches to determine model attractors and their reachability properties, to assess the dynamical impact of variations of external signals, and to consistently reduce large models. To illustrate these developments, we further consider several published logical models for two important biological processes, namely the differentiation of T helper cells and the control of mammalian cell cycle.
A dynamic analysis of rotary combustion engine seals
NASA Technical Reports Server (NTRS)
Knoll, J.; Vilmann, C. R.; Schock, H. J.; Stumpf, R. P.
1984-01-01
Real time work cell pressures are incorporated into a dynamic analysis of the gas sealing grid in Rotary Combustion Engines. The analysis which utilizes only first principal concepts accounts for apex seal separation from the crochoidal bore, apex seal shifting between the sides of its restraining channel, and apex seal rotation within the restraining channel. The results predict that apex seals do separate from the trochoidal bore and shift between the sides of their channels. The results also show that these two motions are regularly initiated by a seal rotation. The predicted motion of the apex seals compares favorably with experimental results. Frictional losses associated with the sealing grid are also calculated and compare well with measurements obtained in a similar engine. A comparison of frictional losses when using steel and carbon apex seals has also been made as well as friction losses for single and dual side sealing.
Sensitivity analysis of the critical speed in railway vehicle dynamics
NASA Astrophysics Data System (ADS)
Bigoni, D.; True, H.; Engsig-Karup, A. P.
2014-05-01
We present an approach to global sensitivity analysis aiming at the reduction of its computational cost without compromising the results. The method is based on sampling methods, cubature rules, high-dimensional model representation and total sensitivity indices. It is applied to a half car with a two-axle Cooperrider bogie, in order to study the sensitivity of the critical speed with respect to the suspension parameters. The importance of a certain suspension component is expressed by the variance in critical speed that is ascribable to it. This proves to be useful in the identification of parameters for which the accuracy of their values is critically important. The approach has a general applicability in many engineering fields and does not require the knowledge of the particular solver of the dynamical system. This analysis can be used as part of the virtual homologation procedure and to help engineers during the design phase of complex systems.
Preliminary analysis of the dynamic heliosphere by MHD simulations
Washimi, H.; Zank, G. P.; Tanaka, T.
2006-09-26
A preliminary analysis of the dynamic heliosphere to estimate the termination shock (TS) distance from the sun around the time when Voyager 1 passed the termination shock at December 16, 2004 is performed by using MHD simulations. For input to this simulation, we use the Voyager 2 solar-wind data. We first find a stationary solution of the 3-D outer heliosphere by assigning a set of LISM parameters as our outer boundary conditions and then the dynamical analysis is performed. The model TS crossing is within 6 months of the observed date. The TS is pushed outward every time a high ram-pressure solar wind pulse arrives. After the end of the high ram-pressure wind, the TS shock shrinks inward. When the last Halloween event passed through the TS at DOY 250, 2004, the TS began to shrink inward very quickly and the TS crossed V1. The highest inward speed of the TS is over 400 km/s. The high ram-pressure solar wind transmitted through the TS becomes a high thermal-pressure plasma in the heliosheath, acting to push the TS inward. This suggests that the position of the TS is determined not only by the steady-state pressure balance condition between the solar wind ram-pressure and the LISM pressure, but by the dynamical ram pressure too. The period when the high ram-pressure solar wind arrives at the TS shock seems to correspond to the period of the TS particle event (Stone et al, 2005, Decker et al., 2005). The TS crossing date will be revised in future simulations using a more appropriate set of parameters for the LISM. This will enable us to undertake a detailed comparison of the simulation results with the TS particle events.
Two-photon imaging and analysis of neural network dynamics
NASA Astrophysics Data System (ADS)
Lütcke, Henry; Helmchen, Fritjof
2011-08-01
The glow of a starry night sky, the smell of a freshly brewed cup of coffee or the sound of ocean waves breaking on the beach are representations of the physical world that have been created by the dynamic interactions of thousands of neurons in our brains. How the brain mediates perceptions, creates thoughts, stores memories and initiates actions remains one of the most profound puzzles in biology, if not all of science. A key to a mechanistic understanding of how the nervous system works is the ability to measure and analyze the dynamics of neuronal networks in the living organism in the context of sensory stimulation and behavior. Dynamic brain properties have been fairly well characterized on the microscopic level of individual neurons and on the macroscopic level of whole brain areas largely with the help of various electrophysiological techniques. However, our understanding of the mesoscopic level comprising local populations of hundreds to thousands of neurons (so-called 'microcircuits') remains comparably poor. Predominantly, this has been due to the technical difficulties involved in recording from large networks of neurons with single-cell spatial resolution and near-millisecond temporal resolution in the brain of living animals. In recent years, two-photon microscopy has emerged as a technique which meets many of these requirements and thus has become the method of choice for the interrogation of local neural circuits. Here, we review the state-of-research in the field of two-photon imaging of neuronal populations, covering the topics of microscope technology, suitable fluorescent indicator dyes, staining techniques, and in particular analysis techniques for extracting relevant information from the fluorescence data. We expect that functional analysis of neural networks using two-photon imaging will help to decipher fundamental operational principles of neural microcircuits.
Characterization of treated porcelain surfaces via dynamic contact angle analysis.
Phoenix, R D; Shen, C
1995-01-01
Successful porcelain repair requires conditioning of porcelain surfaces. Conditioning is intended to facilitate wetting by repair materials and improve interfacial bonding. The objective of this investigation was to determine the effects of selected surface treatments upon the wettability of a representative feldspathic porcelain. Dynamic contact angle analysis and scanning electron microscopy were used to characterize the effects of such treatments. Standardized porcelain specimens were subjected to the following five treatment regimens: (1) control (no treatment); (2) airborne particle abrasion using 50 microns aluminum oxide; (3) etching with ammonium bifluoride gel; (4) etching with acidulated phosphate fluoride gel; and (5) etching with hydrofluoric acid gel. Following treatment, specimens were cleansed and dried. Advancing contact angles were quantified using dynamic contact angle analysis. Mean values and 95% confidence intervals were (in degrees): control, 63.8 +/- 2.7; ammonium bifluoride, 39.4 +/- 2.0; airborne particle abrading, 29.1 +/- 2.9; acidulated phosphate fluoride, 24.9 +/- 1.7; and hydrofluoric acid, 16.5 +/- 1.2. Significant differences were found between all treatment groups (P = .05). Subsequent scanning electron microscopy examination of treated surfaces indicated lesser contact angles were associated with surfaces displaying deeper and wider grooves. Apparently, the resultant increase in surface area produces increased wettability. It is inferred that an increase in surface area may correspond to enhanced resin-porcelain bonding.
Equilibrium analysis of a yellow Fever dynamical model with vaccination.
Martorano Raimundo, Silvia; Amaku, Marcos; Massad, Eduardo
2015-01-01
We propose an equilibrium analysis of a dynamical model of yellow fever transmission in the presence of a vaccine. The model considers both human and vector populations. We found thresholds parameters that affect the development of the disease and the infectious status of the human population in the presence of a vaccine whose protection may wane over time. In particular, we derived a threshold vaccination rate, above which the disease would be eradicated from the human population. We show that if the mortality rate of the mosquitoes is greater than a given threshold, then the disease is naturally (without intervention) eradicated from the population. In contrast, if the mortality rate of the mosquitoes is less than that threshold, then the disease is eradicated from the populations only when the growing rate of humans is less than another threshold; otherwise, the disease is eradicated only if the reproduction number of the infection after vaccination is less than 1. When this reproduction number is greater than 1, the disease will be eradicated from the human population if the vaccination rate is greater than a given threshold; otherwise, the disease will establish itself among humans, reaching a stable endemic equilibrium. The analysis presented in this paper can be useful, both to the better understanding of the disease dynamics and also for the planning of vaccination strategies. PMID:25834634
Liu, Shi-Liang; Dong, Yu-Hong; An, Nan-Nan; Wang, Jun; Zhao, Hai-Di
2014-11-01
The west part of Jilin Province is one of the most salinization regions in China and much attention has been paid to the dynamics and monitoring of the salinization land. Based on the land use data derived from TM images in 2000, 2005 and 2010 and the enhanced vegetation index (EVI) series data from 2000 to 2012 of Da'an City as a typical salinization region, we used landscape pattern analysis to elucidate the dynamics of salinization land, and used gray incidence method to analyze the main driving factors for the dynamics of land salinization. The results showed that the dominant land use types in Da'an City were cultivated land, grassland and salinization land. From 2000 to 2010, the area of salinization land and construction land showed an increasing trend, while that of grassland tended to decrease. Salinization land, which showed increased connectivity and integrity, was mainly transformed from grassland, swamp land and water area. Annual EVI values in Da'an City showed an overall increasing trend while the average values showed obvious spatial differences with the lowest EVI level in salinization land. From 2000 to 2012, the increment of vegetation cover area was larger than that of the degraded area. Landscape transformation affected the changing trends of EVI. Both natural factors and human activities affected the dynamics of salinization land, and human activities showed a greater impact on land salinization than climate factors.
Modeling Sustained Educational Change with Panel Data: The Case for Dynamic Multiplier Analysis.
ERIC Educational Resources Information Center
Kaplan, David
2002-01-01
Considers the problem of modeling sustained educational change through the use of dynamic multipliers applied to panel data and attempts to develop and advocate dynamic multiplier analysis for educational research. Presents three examples to illustrate the approach and closes with a discussion of the implications of dynamic multiplier analysis for…
Incremental training intensities increases loads on the lower back of elite female rowers.
Buckeridge, Erica M; Bull, Anthony M J; McGregor, Alison H
2016-01-01
Lumbar-pelvic kinematics change in response to increasing rowing stroke rates, but little is known about the effect of incremental stroke rates on changes in joint kinetics and their implications for injury. The purpose of this study was to quantify the effects of incremental rowing intensities on lower limb and lumbar-pelvic kinetics. Twelve female rowers performed an incremental test on a rowing ergometer. Kinematic data of rowers' ankle, knee, hip and lumbar-pelvic joints, as well as external forces at the handle, seat and foot-stretchers of the rowing machine were recorded. Inter-segmental moments and forces were calculated using inverse dynamics and were compared across stroke rates using repeated measures ANOVA. Rowers exhibited increases in peak ankle and L5/S1 extensor moments, reductions in peak knee moments and no change in peak hip moments, with respect to stroke rate. Large shear and compressive forces were seen at L5/S1 and increased with stroke rate (P < 0.05). This coincided with increased levels of lumbar-pelvic flexion. High levels of lumbar-pelvic loading at higher stroke rates have implications with respect to injury and indicated that technique was declining, leading to increased lumbar-pelvic flexion. Such changes are not advantageous to performance and can potentially increase the risk of developing injuries.
Incremental training intensities increases loads on the lower back of elite female rowers.
Buckeridge, Erica M; Bull, Anthony M J; McGregor, Alison H
2016-01-01
Lumbar-pelvic kinematics change in response to increasing rowing stroke rates, but little is known about the effect of incremental stroke rates on changes in joint kinetics and their implications for injury. The purpose of this study was to quantify the effects of incremental rowing intensities on lower limb and lumbar-pelvic kinetics. Twelve female rowers performed an incremental test on a rowing ergometer. Kinematic data of rowers' ankle, knee, hip and lumbar-pelvic joints, as well as external forces at the handle, seat and foot-stretchers of the rowing machine were recorded. Inter-segmental moments and forces were calculated using inverse dynamics and were compared across stroke rates using repeated measures ANOVA. Rowers exhibited increases in peak ankle and L5/S1 extensor moments, reductions in peak knee moments and no change in peak hip moments, with respect to stroke rate. Large shear and compressive forces were seen at L5/S1 and increased with stroke rate (P < 0.05). This coincided with increased levels of lumbar-pelvic flexion. High levels of lumbar-pelvic loading at higher stroke rates have implications with respect to injury and indicated that technique was declining, leading to increased lumbar-pelvic flexion. Such changes are not advantageous to performance and can potentially increase the risk of developing injuries. PMID:26090702
An Incremental Target-Adapted Strategy for Active Geometric Calibration of Projector-Camera Systems
Chen, Chia-Yen; Chien, Hsiang-Jen
2013-01-01
The calibration of a projector-camera system is an essential step toward accurate 3-D measurement and environment-aware data projection applications, such as augmented reality. In this paper we present a two-stage easy-to-deploy strategy for robust calibration of both intrinsic and extrinsic parameters of a projector. Two key components of the system are the automatic generation of projected light patterns and the incremental calibration process. Based on the incremental strategy, the calibration process first establishes a set of initial parameters, and then it upgrades these parameters incrementally using the projection and captured images of dynamically-generated calibration patterns. The scene-driven light patterns allow the system to adapt itself to the pose of the calibration target, such that the difficulty in feature detection is greatly lowered. The strategy forms a closed-loop system that performs self-correction as more and more observations become available. Compared to the conventional method, which requires a time-consuming process for the acquisition of dense pixel correspondences, the proposed method deploys a homography-based coordinate computation, allowing the calibration time to be dramatically reduced. The experimental results indicate that an improvement of 70% in reprojection errors is achievable and 95% of the calibration time can be saved. PMID:23435056
Soil dynamics and accelerated erosion: a sensitivity analysis of the LPJ Dynamic vegetation model
NASA Astrophysics Data System (ADS)
Bouchoms, Samuel; Van Oost, Kristof; Vanacker, Veerle; Kaplan, Jed O.; Vanwalleghem, Tom
2013-04-01
It is widely accepted that humans have become a major geomorphic force by disturbing natural vegetation patterns. Land conversion for agriculture purposes removes the protection of soils by the natural vegetation and leads to increased soil erosion by one to two orders of magnitude, breaking the balance that exists between the loss of soils and its production. Accelerated erosion and deposition have a strong influence on evolution and heterogeneity of basic soil characteristics (soil thickness, hydrology, horizon development,…) as well as on organic matter storage and cycling. Yet, since they are operating at a long time scale, those processes are not represented in state-of-art Dynamic Global Vegetation Models, which is a clear lack when exploring vegetation dynamics over past centuries. The main objectives of this paper are (i) to test the sensitivity of a Dynamic Global Vegetation Model, in terms of NPP and organic matter turnover, variations in state variables in response to accelerated erosion and (ii) to assess the performance of the model under the impact of erosion for a case-study in Central Spain. We evaluated the Lund-Postdam-Jena Dynamic Vegetation Model (LPJ DVGM) (Sitch et al, 2003) which simulates vegetation growth and carbon pools at the surface and in the soil based on climatic, pedologic and topographic variables. We assessed its reactions to changes in key soil properties that are affected by erosion such as texture and soil depth. We present the results of where we manipulated soil texture and bulk density while keeping the environmental drivers of climate, slope and altitude constant. For parameters exhibiting a strong control on NPP or SOM, a factorial analysis was conducted to test for interaction effects. The simulations show an important dependence on the clay content, especially for the slow cycling carbon pools and the biomass production, though the underground litter seems to be mostly influenced by the silt content. The fast cycling C
Dynamic network data envelopment analysis for university hospitals evaluation
Lobo, Maria Stella de Castro; Rodrigues, Henrique de Castro; André, Edgard Caires Gazzola; de Azeredo, Jônatas Almeida; Lins, Marcos Pereira Estellita
2016-01-01
ABSTRACT OBJECTIVE To develop an assessment tool to evaluate the efficiency of federal university general hospitals. METHODS Data envelopment analysis, a linear programming technique, creates a best practice frontier by comparing observed production given the amount of resources used. The model is output-oriented and considers variable returns to scale. Network data envelopment analysis considers link variables belonging to more than one dimension (in the model, medical residents, adjusted admissions, and research projects). Dynamic network data envelopment analysis uses carry-over variables (in the model, financing budget) to analyze frontier shift in subsequent years. Data were gathered from the information system of the Brazilian Ministry of Education (MEC), 2010-2013. RESULTS The mean scores for health care, teaching and research over the period were 58.0%, 86.0%, and 61.0%, respectively. In 2012, the best performance year, for all units to reach the frontier it would be necessary to have a mean increase of 65.0% in outpatient visits; 34.0% in admissions; 12.0% in undergraduate students; 13.0% in multi-professional residents; 48.0% in graduate students; 7.0% in research projects; besides a decrease of 9.0% in medical residents. In the same year, an increase of 0.9% in financing budget would be necessary to improve the care output frontier. In the dynamic evaluation, there was progress in teaching efficiency, oscillation in medical care and no variation in research. CONCLUSIONS The proposed model generates public health planning and programming parameters by estimating efficiency scores and making projections to reach the best practice frontier. PMID:27191158
Criterion and incremental validity of the emotion regulation questionnaire
Ioannidis, Christos A.; Siegling, A. B.
2015-01-01
Although research on emotion regulation (ER) is developing, little attention has been paid to the predictive power of ER strategies beyond established constructs. The present study examined the incremental validity of the Emotion Regulation Questionnaire (ERQ; Gross and John, 2003), which measures cognitive reappraisal and expressive suppression, over and above the Big Five personality factors. It also extended the evidence for the measure's criterion validity to yet unexamined criteria. A university student sample (N = 203) completed the ERQ, a measure of the Big Five, and relevant cognitive and emotion-laden criteria. Cognitive reappraisal predicted positive affect beyond personality, as well as experiential flexibility and constructive self-assertion beyond personality and affect. Expressive suppression explained incremental variance in negative affect beyond personality and in experiential flexibility beyond personality and general affect. No incremental effects were found for worry, social anxiety, rumination, reflection, and preventing negative emotions. Implications for the construct validity and utility of the ERQ are discussed. PMID:25814967
A heuristic approach to incremental and reactive scheduling
NASA Technical Reports Server (NTRS)
Odubiyi, Jide B.; Zoch, David R.
1989-01-01
An heuristic approach to incremental and reactive scheduling is described. Incremental scheduling is the process of modifying an existing schedule if the initial schedule does not meet its stated initial goals. Reactive scheduling occurs in near real-time in response to changes in available resources or the occurrence of targets of opportunity. Only minor changes are made during both incremental and reactive scheduling because a goal of re-scheduling procedures is to minimally impact the schedule. The described heuristic search techniques, which are employed by the Request Oriented Scheduling Engine (ROSE), a prototype generic scheduler, efficiently approximate the cost of reaching a goal from a given state and effective mechanisms for controlling search.
Incremental comprehension of spoken quantifier sentences: Evidence from brain potentials.
Freunberger, Dominik; Nieuwland, Mante S
2016-09-01
Do people incrementally incorporate the meaning of quantifier expressions to understand an unfolding sentence? Most previous studies concluded that quantifiers do not immediately influence how a sentence is understood based on the observation that online N400-effects differed from offline plausibility judgments. Those studies, however, used serial visual presentation (SVP), which involves unnatural reading. In the current ERP-experiment, we presented spoken positive and negative quantifier sentences ("Practically all/practically no postmen prefer delivering mail, when the weather is good/bad during the day"). Different from results obtained in a previously reported SVP-study (Nieuwland, 2016) sentence truth-value N400 effects occurred in positive and negative quantifier sentences alike, reflecting fully incremental quantifier comprehension. This suggests that the prosodic information available during spoken language comprehension supports the generation of online predictions for upcoming words and that, at least for quantifier sentences, comprehension of spoken language may proceed more incrementally than comprehension during SVP reading. PMID:27346365
Dynamic analysis method of offshore jack-up platforms in regular and random waves
NASA Astrophysics Data System (ADS)
Yu, Hao; Li, Xiaoyu; Yang, Shuguang
2012-03-01
A jack-up platform, with its particular structure, showed obvious dynamic characteristics under complex environmental loads in extreme conditions. In this paper, taking a simplified 3-D finite element dynamic model in extreme storm conditions as research object, a transient dynamic analysis method was proposed, which was under both regular and irregular wave loads. The steps of dynamic analysis under extreme conditions were illustrated with an applied case, and the dynamic amplification factor (DAF) was calculated for each response parameter of base shear, overturning moment and hull sway. Finally, the structural response results of dynamic and static were compared and analyzed. The results indicated that the static strength analysis of the Jack-up Platforms was not enough under the dynamic loads including wave and current, further dynamic response analysis considering both computational efficiency and accuracy was necessary.
Wu, Zhenyu; Zou, Ming
2014-10-01
An increasing number of users interact, collaborate, and share information through social networks. Unprecedented growth in social networks is generating a significant amount of unstructured social data. From such data, distilling communities where users have common interests and tracking variations of users' interests over time are important research tracks in fields such as opinion mining, trend prediction, and personalized services. However, these tasks are extremely difficult considering the highly dynamic characteristics of the data. Existing community detection methods are time consuming, making it difficult to process data in real time. In this paper, dynamic unstructured data is modeled as a stream. Tag assignments stream clustering (TASC), an incremental scalable community detection method, is proposed based on locality-sensitive hashing. Both tags and latent interactions among users are incorporated in the method. In our experiments, the social dynamic behaviors of users are first analyzed. The proposed TASC method is then compared with state-of-the-art clustering methods such as StreamKmeans and incremental k-clique; results indicate that TASC can detect communities more efficiently and effectively. PMID:24930583
Factors for radical creativity, incremental creativity, and routine, noncreative performance.
Madjar, Nora; Greenberg, Ellen; Chen, Zheng
2011-07-01
This study extends theory and research by differentiating between routine, noncreative performance and 2 distinct types of creativity: radical and incremental. We also use a sensemaking perspective to examine the interplay of social and personal factors that may influence a person's engagement in a certain level of creative action versus routine, noncreative work. Results demonstrate that willingness to take risks, resources for creativity, and career commitment are associated primarily with radical creativity; that the presence of creative coworkers and organizational identification are associated with incremental creativity; and that conformity and organizational identification are linked with routine performance. Theoretical and managerial implications are discussed.
Lubrication study for Single Point Incremental Forming of Copper
NASA Astrophysics Data System (ADS)
Jawale, Kishore; Ferreira Duarte, José; Reis, Ana; Silva, M. B.
2016-08-01
In conventional machining and sheet metal forming processes, in general, lubrication assists to increase the quality of the final product. Similarly it is observed that there is a positive effect of the use of lubrication in Single point incremental forming, namely in the surface roughness. This study is focused on the investigation of the most appropriate lubricant for incremental forming of copper sheet. The study involves the selection of the best lubricant from a range of several lubricants that provides the best surface finishing. The influence of the lubrication on other parameters such as the maximum forming angle, the fracture strains and the deformed profile are also studied for Copper.
An incremental algorithm based on rough set for concept hierarchy tree
NASA Astrophysics Data System (ADS)
Yuan, Junpeng; Su, Jie
2013-03-01
In an open dynamic concept hierarchy tree of technological terms, universe keeps changing and then leads to changes in the system's structure and size characteristics. This study presents an efficient incremental algorithm based on rough set for maintaining the concept hierarchy tree in dynamic datasets. While taking into account the relationship between the new terms and the original concept hierarchy tree, the paper focus on when the condition attributes is known and the decision attributes is unknown, how to add a new term into the original concept hierarchy tree. The paper proposes a novel algorithm which can be used for updating concept hierarchy tree dynamically and proves the rationality of the algorithm theoretically. The paper has furthermore proved its efficiency and reliability with an empirical study of the Micro-Electro-Mechanical System, MEMS.
Dynamic Range Size Analysis of Territorial Animals: An Optimality Approach.
Tao, Yun; Börger, Luca; Hastings, Alan
2016-10-01
Home range sizes of territorial animals are often observed to vary periodically in response to seasonal changes in foraging opportunities. Here we develop the first mechanistic model focused on the temporal dynamics of home range expansion and contraction in territorial animals. We demonstrate how simple movement principles can lead to a rich suite of range size dynamics, by balancing foraging activity with defensive requirements and incorporating optimal behavioral rules into mechanistic home range analysis. Our heuristic model predicts three general temporal patterns that have been observed in empirical studies across multiple taxa. First, a positive correlation between age and territory quality promotes shrinking home ranges over an individual's lifetime, with maximal range size variability shortly before the adult stage. Second, poor sensory information, low population density, and large resource heterogeneity may all independently facilitate range size instability. Finally, aggregation behavior toward forage-rich areas helps produce divergent home range responses between individuals from different age classes. This model has broad applications for addressing important unknowns in animal space use, with potential applications also in conservation and health management strategies. PMID:27622879
A Lagrangian analysis of sea ice dynamics in the Arctic
NASA Astrophysics Data System (ADS)
Szanyi, S.; Lukovich, J. V.; Haller, G.; Barber, D. G.
2014-12-01
Recent studies have highlighted acceleration in sea ice drift and deformation in the Arctic over the last several decades, underlining the need for improved understanding of sea ice dynamics and dispersion. In this study we present Lagrangian diagnostics to quantify changes in the dynamical characteristics of the Arctic sea ice cover from 1979 to 2012 during the transition from a predominantly multi-year to a first-year ice regime. Examined in particular is the evolution in finite-time Lyapunov exponents (FTLEs), which monitor the rate at which neighboring particle trajectories diverge, and stretching rates throughout the Arctic. In this analysis we compute FTLEs for the Arctic ice drift field using National Snow and Ice Data Centre (NSIDC) Polar Pathfinder Daily 25 km EASE-Grid weekly sea ice motion vectors for the annual cycle beginning both from the sea ice minimum in September, and maximum in March. Sensitivity analyses show that maximal FTLEs, or ridges, are robust even with the introduction of significant noise. Probability density functions and mean values of FTLEs show a trend towards higher FTLE values characteristic of increased mixing in the Arctic in the last decade, in keeping with a transition to a weaker, thinner ice cover.
Analysis of strawberry ripening by dynamic speckle measurements
NASA Astrophysics Data System (ADS)
Mulone, C.; Budini, N.; Vincitorio, F. M.; Freyre, C.; López Díaz, A. J.; Ramil Rego, A.
2013-11-01
This work seeks to determine the age of a fruit from observation of its dynamic speckle pattern. A mobile speckle pattern originates on the fruit's surface due to the interference of the wavefronts reflected from moving scatterers. For this work we analyzed two series of photographs of a strawberry speckle pattern, at different stages of ripening, acquired with a CMOS camera. The first day, we took ten photographs at an interval of one second. The same procedure was repeated the next day. From each series of images we extracted several statistical descriptors of pixel-to-pixel gray level variation during the observation time. By comparing these values from the first to the second day we noticed a diminution of the speckle activity. This decay demonstrated that after only one day the ripening process of the strawberry can be detected by dynamic speckle pattern analysis. For this study we employed a simple new algorithm to process the data obtained from the photographs. This algorithm allows defining a global mobility index that indicates the evolution of the fruit's ripening.
Dynamical Analysis of bantam-Regulated Drosophila Circadian Rhythm Model
NASA Astrophysics Data System (ADS)
Li, Ying; Liu, Zengrong
MicroRNAs (miRNAs) interact with 3‧untranslated region (UTR) elements of target genes to regulate mRNA stability or translation, and play a crucial role in regulating many different biological processes. bantam, a conserved miRNA, is involved in several functions, such as regulating Drosophila growth and circadian rhythm. Recently, it has been discovered that bantam plays a crucial role in the core circadian pacemaker. In this paper, based on experimental observations, a detailed dynamical model of bantam-regulated circadian clock system is developed to show the post-transcriptional behaviors in the modulation of Drosophila circadian rhythm, in which the regulation of bantam is incorporated into a classical model. The dynamical behaviors of the model are consistent with the experimental observations, which shows that bantam is an important regulator of Drosophila circadian rhythm. The sensitivity analysis of parameters demonstrates that with the regulation of bantam the system is more sensitive to perturbations, indicating that bantam regulation makes it easier for the organism to modulate its period against the environmental perturbations. The effectiveness in rescuing locomotor activity rhythms of mutated flies shows that bantam is necessary for strong and sustained rhythms. In addition, the biological mechanisms of bantam regulation are analyzed, which may help us more clearly understand Drosophila circadian rhythm regulated by other miRNAs.
Dynamical Systems Analysis of Fully 3D Ocean Features
NASA Astrophysics Data System (ADS)
Pratt, L. J.
2011-12-01
Dynamical systems analysis of transport and stirring processes has been developed most thoroughly for 2D flow fields. The calculation of manifolds, turnstile lobes, transport barriers, etc. based on observations of the ocean is most often conducted near the sea surface, whereas analyses at depth, usually carried out with model output, is normally confined to constant-z surfaces. At the meoscale and larger, ocean flows are quasi 2D, but smaller scale (submesoscale) motions, including mixed layer phenomena with significant vertical velocity, may be predominantly 3D. The zoology of hyperbolic trajectories becomes richer in such cases and their attendant manifolds are much more difficult to calculate. I will describe some of the basic geometrical features and corresponding Lagrangian Coherent Features expected to arise in upper ocean fronts, eddies, and Langmuir circulations. Traditional GFD models such as the rotating can flow may capture the important generic features. The dynamical systems approach is most helpful when these features are coherent and persistent and the implications and difficulties for this requirement in fully 3D flows will also be discussed.
Dynamic analysis of multimesh-gear helicopter transmissions
NASA Technical Reports Server (NTRS)
Choy, Fred K.; Townsend, Dennis P.; Oswald, Fred B.
1988-01-01
A dynamic analysis of multimesh-gear helicopter transmission systems was performed by correlating analytical simulations with experimental investigations. The two computer programs used in this study, GRDYNMLT and PGT, were developed under NASA/Army sponsorship. Parametric studies of the numerical model with variations on mesh damping ratios, operating speeds, tip-relief tooth modifications, and tooth-spacing errors were performed to investigate the accuracy, application, and limitations of the two computer programs. Although similar levels of dynamic loading were predicted by both programs, the computer code GRDYNMLT was found to be superior and broader in scope. Results from analytical work were also compared with experimental data obtained from the U.S. Army's UH-60A Black Hawk 2240-kW (3000-hp) class, twin-engine helicopter transmission tested at the NASA Lewis Research Center. Good correlation in gear stresses was obtained between the analytical model simulated by GRDYNMLT and the experimental measurements. More realistic mesh damping can be predicted through experimental data correlation.
Dynamic Visco-elastic Buckling Analysis for Airway Model
NASA Astrophysics Data System (ADS)
Bando, Kiyoshi; Ohba, Kenkichi; Yamanoi, Yuta
In order to clarify the mechanism by which the lung airway narrows during an asthma attack, dynamic buckling analysis of the wall was conducted. The wall was modeled using a visco-elastic thin-walled circular cylinder of the Voigt model for the planestress state. A governing equation for dynamic buckling was derived, and in the equation, the contraction of smooth muscle was replaced by uniform inward transmural pressure. The non-dimensional parameters for the buckling wave number n were nondimensional retardation time τ, non-dimensional increasing velocity of inward transmural pressure β, thickness radius ratio α2, radius length ratio η, density ratio ζ, and Poisson's ratio ν. The validity of the theoretical model was confirmed by comparing the calculated wave number with that obtained from the experiment, in which a silicone rubber tube blended with silicone potting gel was used as the in vitro airway model. In addition, the wave number n increased with β. It was necessary to consider the damping effect of the tube model or the airway wall, and n increased by 1.5 to 2 due to the additional mass effect of surrounding tissues of the basement membrane in the airway wall.
Dynamic analysis of the BMW tower in Munich
NASA Astrophysics Data System (ADS)
Indacochea-Beltran, Joaquin; Elgindy, Pearl; Lee, Elaine; Vignesh, Thiviya; Ansourian, Peter; Tahmasebinia, Faham; Marroquín, Fernando Alonso
2016-08-01
In the 1970s, world famous Austrian architect Karl Schwanzer designed an avant-garde suspended skyscraper for the new BMW headquarters. The BMW Tower was envisioned to resemble a four-cylinder motor and become a symbol for the recent flourishing success of BMW. Throughout its four decades, the BMW Tower has become the main architectural feature of modern Munich and a pride for one of the World leading car manufacturers. The structural design of the BMW Tower represented a major challenge to Germany's finest engineers because the suspended 99.5m-high structure had to whitstand not only static loading but large wind dynamic loading while having deflections within appropriate serviceability limits. Strand7 has been used to determine the stresses and deflections the structure is subjected to in order to analyse its behavior under static and dynamic loadings. Ultimately, this analysis helps to understand the nature of suspended structures in relation to the Eurocode building standards. Finally, thermal resistance has also been analysed using Strand7 to simulate a fire scenario and analyse the behaviour of the cable structure, which is the most critical building component.
Dynamic mechanical analysis of hydrogen purification substrates and membranes
NASA Astrophysics Data System (ADS)
Steinborn, Brandon
Porous 420 stainless steel hydrogen purification substrates were fabricated using an ExOne R2 printer and sintered at temperatures of 1075 °C and 1100 °C for times ranging from 15 minutes to 240 minutes. Coatings of 1 micron silica beads, silica sol-gel, and palladium were applied to the sintered structure. Mechanical properties/degradation of each substrate/coating combination were evaluated using a cyclic 3-point loading condition imposed by a TA Q800 dynamic mechanical analysis unit (DMA). A constant deformation procedure was used while the required drive force for deformation and the elasticity (tan delta) were recorded throughout the cycle. Findings with respect to coating additions include: drive force increases with the addition of each coating, tan delta decreases with ceramic additions and increases with palladium addition (eventually decreases when membrane fails), and tan delta values become comparable with the addition of palladium regardless of other parameters. Findings with respect to sintering time and temperature include: drive force increases with increased sintering time and temperature, tan delta increases with increased sintering time at 1075 °C, and tan delta decreases with increased sintering time at 1100 °C. Overall, the palladium layer would likely remain intact in service due to actual force oscillations not being as extreme in service, poisoning would likely be the life limiting factor. Keywords: Sintering, dynamic mechanical properties, porous stainless steel, hydrogen purification, sol-gel.
NASA Technical Reports Server (NTRS)
Ozguven, H. Nevzat
1991-01-01
A six-degree-of-freedom nonlinear semi-definite model with time varying mesh stiffness has been developed for the dynamic analysis of spur gears. The model includes a spur gear pair, two shafts, two inertias representing load and prime mover, and bearings. As the shaft and bearing dynamics have also been considered in the model, the effect of lateral-torsional vibration coupling on the dynamics of gears can be studied. In the nonlinear model developed several factors such as time varying mesh stiffness and damping, separation of teeth, backlash, single- and double-sided impacts, various gear errors and profile modifications have been considered. The dynamic response to internal excitation has been calculated by using the 'static transmission error method' developed. The software prepared (DYTEM) employs the digital simulation technique for the solution, and is capable of calculating dynamic tooth and mesh forces, dynamic factors for pinion and gear, dynamic transmission error, dynamic bearing forces and torsions of shafts. Numerical examples are given in order to demonstrate the effect of shaft and bearing dynamics on gear dynamics.
Dynamic analysis of the human brain with complex cerebral sulci.
Tseng, Jung-Ge; Huang, Bo-Wun; Ou, Yi-Wen; Yen, Ke-Tien; Wu, Yi-Te
2016-07-01
The brain is one of the most vulnerable organs inside the human body. Head accidents often appear in daily life and are easy to cause different level of brain damage inside the skull. Once the brain suffered intense locomotive impact, external injuries, falls, or other accidents, it will result in different degrees of concussion. This study employs finite element analysis to compare the dynamic characteristics between the geometric models of an assumed simple brain tissue and a brain tissue with complex cerebral sulci. It is aimed to understand the free vibration of the internal brain tissue and then to protect the brain from injury caused by external influences. Reverse engineering method is used for a Classic 5-Part Brain (C18) model produced by 3B Scientific Corporation. 3D optical scanner is employed to scan the human brain structure model with complex cerebral sulci and imported into 3D graphics software to construct a solid brain model to simulate the real complex brain tissue. Obtaining the normal mode analysis by inputting the material properties of the true human brain into finite element analysis software, and then to compare the simplified and the complex of brain models. PMID:27459595
Dynamic behavior of ground for seismic analysis of lifeline systems
NASA Astrophysics Data System (ADS)
Sato, T.; Derkiurgehian, A.
1982-01-01
A mathematical formula is derived for the general wave transfer function in multilayered media with inhomogeneous and nonlinear properties of soil. It is assumed that the ground consists of horizontally stratified layers overlying a homogeneous half space which is excited by vertically incident, plane shear waves. To formulate the nonlinear harmonic wave solution, the surface layer is regarded as a multilayered system consisting of infinite numbers of sublayers with infinitesimal thicknesses. The mode superposition procedure based on response spectrum provides an expedient tool for dynamic analysis of surficial ground. The characteristic equation for obtaining natural frequencies and free vibration modes is derived by using the proposed wave transfer function. To use the modal analysis for nonlinear systems, a repetition scheme for calculating the model stiffness and damping is proposed which is an adaptation of the equivalent linearization technique. The estimation of intensity of ground shaking is based on a response spectrum for stationary random vibration analysis. The results in conjunction with fatigue theory are used to study the liquefaction problem in soil layers with general topography. Application of the proposed methods in seismic reliability assessment of lifeline systems is discussed.
Contact stresses in meshing spur gear teeth: Use of an incremental finite element procedure
NASA Technical Reports Server (NTRS)
Hsieh, Chih-Ming; Huston, Ronald L.; Oswald, Fred B.
1992-01-01
Contact stresses in meshing spur gear teeth are examined. The analysis is based upon an incremental finite element procedure that simultaneously determines the stresses in the contact region between the meshing teeth. The teeth themselves are modeled by two dimensional plain strain elements. Friction effects are included, with the friction forces assumed to obey Coulomb's law. The analysis assumes that the displacements are small and that the tooth materials are linearly elastic. The analysis procedure is validated by comparing its results with those for the classical two contacting semicylinders obtained from the Hertz method. Agreement is excellent.
State machine analysis of sensor data from dynamic processes
Cook, William R.; Brabson, John M.; Deland, Sharon M.
2003-12-23
A state machine model analyzes sensor data from dynamic processes at a facility to identify the actual processes that were performed at the facility during a period of interest for the purpose of remote facility inspection. An inspector can further input the expected operations into the state machine model and compare the expected, or declared, processes to the actual processes to identify undeclared processes at the facility. The state machine analysis enables the generation of knowledge about the state of the facility at all levels, from location of physical objects to complex operational concepts. Therefore, the state machine method and apparatus may benefit any agency or business with sensored facilities that stores or manipulates expensive, dangerous, or controlled materials or information.
Analysis of utilization of desert habitats with dynamic simulation
Williams, B.K.
1986-01-01
The effects of climate and herbivores on cool desert shrubs in north-western Utah were investigated with a dynamic simulation model. Cool desert shrublands are extensively managed as grazing lands, and are defoliated annually by domestic livestock. A primary production model was used to simulate harvest yields and shrub responses under a variety of climatic regimes and defoliation patterns. The model consists of six plant components, and it is based on equations of growth analysis. Plant responses were simulated under various combinations of 20 annual weather patterns and 14 defoliation strategies. Results of the simulations exhibit some unexpected linearities in model behavior, and emphasize the importance of both the pattern of climate and the level of plant vigor in determining optimal harvest strategies. Model behaviors are interpreted in terms of shrub morphology, physiology and ecology.
Bifurcation techniques for nonlinear dynamic analysis of compressor stall phenomena
NASA Technical Reports Server (NTRS)
Razavi, H. C.; Mehra, R. K.
1985-01-01
Compressor stall phenomena is analyzed from nonlinear control theory viewpoint, based on bifurcation-catastrophe techniques. This new approach appears promising and offers insight into such well known compressor instability problems as surge and rotating stall; furthermore it suggests strategies for recovery from stall. Three interlocking dynamic nonlinear state space models are developed. It is shown that the problem of rotating stall can be viewed as an (induced) bifurcation of solution of the unstalled model. Hysteresis effect is shown to exist in the stall/recovery process. Surge cycles are observed to develop for some critical parameter values. It is shown that the oscillatory behavior is due to development of limit cycles, generated by Hopf bifurcation of solutions. Both stable and unstable limit cycles are observed. To further illustrate the usefulness of the methodology some partial computation of domains of attraction of equilibria is carried out, and parameter sensitivity analysis is performed.
Metagenomics meets time series analysis: unraveling microbial community dynamics.
Faust, Karoline; Lahti, Leo; Gonze, Didier; de Vos, Willem M; Raes, Jeroen
2015-06-01
The recent increase in the number of microbial time series studies offers new insights into the stability and dynamics of microbial communities, from the world's oceans to human microbiota. Dedicated time series analysis tools allow taking full advantage of these data. Such tools can reveal periodic patterns, help to build predictive models or, on the contrary, quantify irregularities that make community behavior unpredictable. Microbial communities can change abruptly in response to small perturbations, linked to changing conditions or the presence of multiple stable states. With sufficient samples or time points, such alternative states can be detected. In addition, temporal variation of microbial interactions can be captured with time-varying networks. Here, we apply these techniques on multiple longitudinal datasets to illustrate their potential for microbiome research.
Parallel computation of meshless methods for explicit dynamic analysis.
Danielson, K. T.; Hao, S.; Liu, W. K.; Uras, R. A.; Li, S.; Reactor Engineering; Northwestern Univ.; Waterways Experiment Station
2000-03-10
A parallel computational implementation of modern meshless methods is presented for explicit dynamic analysis. The procedures are demonstrated by application of the Reproducing Kernel Particle Method (RKPM). Aspects of a coarse grain parallel paradigm are detailed for a Lagrangian formulation using model partitioning. Integration points are uniquely defined on separate processors and particle definitions are duplicated, as necessary, so that all support particles for each point are defined locally on the corresponding processor. Several partitioning schemes are considered and a reduced graph-based procedure is presented. Partitioning issues are discussed and procedures to accommodate essential boundary conditions in parallel are presented. Explicit MPI message passing statements are used for all communications among partitions on different processors. The effectiveness of the procedure is demonstrated by highly deformable inelastic example problems.
A random rotor molecule: Vibrational analysis and molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Li, Yu; Zhang, Rui-Qin; Shi, Xing-Qiang; Lin, Zijing; Van Hove, Michel A.
2012-12-01
Molecular structures that permit intramolecular rotational motion have the potential to function as molecular rotors. We have employed density functional theory and vibrational frequency analysis to study the characteristic structure and vibrational behavior of the molecule (4',4″″-(bicyclo[2,2,2]octane-1,4-diyldi-4,1-phenylene)-bis-2,2':6',2″-terpyridine. IR active vibrational modes were found that favor intramolecular rotation. To demonstrate the rotor behavior of the isolated single molecule, ab initio molecular dynamics simulations at various temperatures were carried out. This molecular rotor is expected to be thermally triggered via excitation of specific vibrational modes, which implies randomness in its direction of rotation.
Modeling Illicit Drug Use Dynamics and Its Optimal Control Analysis
2015-01-01
The global burden of death and disability attributable to illicit drug use, remains a significant threat to public health for both developed and developing nations. This paper presents a new mathematical modeling framework to investigate the effects of illicit drug use in the community. In our model the transmission process is captured as a social “contact” process between the susceptible individuals and illicit drug users. We conduct both epidemic and endemic analysis, with a focus on the threshold dynamics characterized by the basic reproduction number. Using our model, we present illustrative numerical results with a case study in Cape Town, Gauteng, Mpumalanga and Durban communities of South Africa. In addition, the basic model is extended to incorporate time dependent intervention strategies. PMID:26819625
Modeling Illicit Drug Use Dynamics and Its Optimal Control Analysis.
Mushayabasa, Steady; Tapedzesa, Gift
2015-01-01
The global burden of death and disability attributable to illicit drug use, remains a significant threat to public health for both developed and developing nations. This paper presents a new mathematical modeling framework to investigate the effects of illicit drug use in the community. In our model the transmission process is captured as a social "contact" process between the susceptible individuals and illicit drug users. We conduct both epidemic and endemic analysis, with a focus on the threshold dynamics characterized by the basic reproduction number. Using our model, we present illustrative numerical results with a case study in Cape Town, Gauteng, Mpumalanga and Durban communities of South Africa. In addition, the basic model is extended to incorporate time dependent intervention strategies. PMID:26819625
Development of test methodology for dynamic mechanical analysis instrumentation
NASA Technical Reports Server (NTRS)
Allen, V. R.
1982-01-01
Dynamic mechanical analysis instrumentation was used for the development of specific test methodology in the determination of engineering parameters of selected materials, esp. plastics and elastomers, over a broad range of temperature with selected environment. The methodology for routine procedures was established with specific attention given to sample geometry, sample size, and mounting techniques. The basic software of the duPont 1090 thermal analyzer was used for data reduction which simplify the theoretical interpretation. Clamps were developed which allowed 'relative' damping during the cure cycle to be measured for the fiber-glass supported resin. The correlation of fracture energy 'toughness' (or impact strength) with the low temperature (glassy) relaxation responses for a 'rubber-modified' epoxy system was negative in result because the low-temperature dispersion mode (-80 C) of the modifier coincided with that of the epoxy matrix, making quantitative comparison unrealistic.
Comparative dynamic analysis of the full Grossman model.
Ried, W
1998-08-01
The paper applies the method of comparative dynamic analysis to the full Grossman model. For a particular class of solutions, it derives the equations implicitly defining the complete trajectories of the endogenous variables. Relying on the concept of Frisch decision functions, the impact of any parametric change on an endogenous variable can be decomposed into a direct and an indirect effect. The focus of the paper is on marginal changes in the rate of health capital depreciation. It also analyses the impact of either initial financial wealth or the initial stock of health capital. While the direction of most effects remains ambiguous in the full model, the assumption of a zero consumption benefit of health is sufficient to obtain a definite for any direct or indirect effect.
Shadlen, Kenneth C
2011-01-01
Neodevelopmental patent regimes aim to facilitate local actors’ access to knowledge and also encourage incremental innovations. The case of pharmaceutical patent examination in Brazil illustrates political contradictions between these objectives. Brazil’s patent law includes the Ministry of Health in the examination of pharmaceutical patent applications. Though widely celebrated as a health-oriented policy, the Brazilian experience has become fraught with tensions and subject to decreasing levels of both stability and enforcement. I show how one pillar of the neodevelopmental regime, the array of initiatives to encourage incremental innovations, has fostered the acquisition of innovative capabilities in the Brazilian pharmaceutical sector, and how these new capabilities have altered actors’ policy preferences and thus contributed to the erosion of the coalition in support of the other pillar of the neodevelopmental regime, the health-oriented approach to examining pharmaceutical patents. The analysis of capability-derived preference formation points to an endogenous process of coalitional change.
Nasir, Hina; Javaid, Nadeem; Sher, Muhammad; Qasim, Umar; Khan, Zahoor Ali; Alrajeh, Nabil; Niaz, Iftikhar Azim
2016-01-01
This paper embeds a bi-fold contribution for Underwater Wireless Sensor Networks (UWSNs); performance analysis of incremental relaying in terms of outage and error probability, and based on the analysis proposition of two new cooperative routing protocols. Subject to the first contribution, a three step procedure is carried out; a system model is presented, the number of available relays are determined, and based on cooperative incremental retransmission methodology, closed-form expressions for outage and error probability are derived. Subject to the second contribution, Adaptive Cooperation in Energy (ACE) efficient depth based routing and Enhanced-ACE (E-ACE) are presented. In the proposed model, feedback mechanism indicates success or failure of data transmission. If direct transmission is successful, there is no need for relaying by cooperative relay nodes. In case of failure, all the available relays retransmit the data one by one till the desired signal quality is achieved at destination. Simulation results show that the ACE and E-ACE significantly improves network performance, i.e., throughput, when compared with other incremental relaying protocols like Cooperative Automatic Repeat reQuest (CARQ). E-ACE and ACE achieve 69% and 63% more throughput respectively as compared to CARQ in hard underwater environment. PMID:27420061
Nasir, Hina; Javaid, Nadeem; Sher, Muhammad; Qasim, Umar; Khan, Zahoor Ali; Alrajeh, Nabil; Niaz, Iftikhar Azim
2016-01-01
This paper embeds a bi-fold contribution for Underwater Wireless Sensor Networks (UWSNs); performance analysis of incremental relaying in terms of outage and error probability, and based on the analysis proposition of two new cooperative routing protocols. Subject to the first contribution, a three step procedure is carried out; a system model is presented, the number of available relays are determined, and based on cooperative incremental retransmission methodology, closed-form expressions for outage and error probability are derived. Subject to the second contribution, Adaptive Cooperation in Energy (ACE) efficient depth based routing and Enhanced-ACE (E-ACE) are presented. In the proposed model, feedback mechanism indicates success or failure of data transmission. If direct transmission is successful, there is no need for relaying by cooperative relay nodes. In case of failure, all the available relays retransmit the data one by one till the desired signal quality is achieved at destination. Simulation results show that the ACE and E-ACE significantly improves network performance, i.e., throughput, when compared with other incremental relaying protocols like Cooperative Automatic Repeat reQuest (CARQ). E-ACE and ACE achieve 69% and 63% more throughput respectively as compared to CARQ in hard underwater environment. PMID:27420061
Eucb: A C++ program for molecular dynamics trajectory analysis
NASA Astrophysics Data System (ADS)
Tsoulos, Ioannis G.; Stavrakoudis, Athanassios
2011-03-01
Eucb is a standalone program for geometrical analysis of molecular dynamics trajectories of protein systems. The program is written in GNU C++ and it can be installed in any operating system running a C++ compiler. The program performs its analytical tasks based on user supplied keywords. The source code is freely available from http://stavrakoudis.econ.uoi.gr/eucb under LGPL 3 license. Program summaryProgram title:Eucb Catalogue identifier: AEIC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 31 169 No. of bytes in distributed program, including test data, etc.: 297 364 Distribution format: tar.gz Programming language: GNU C++ Computer: The tool is designed and tested on GNU/Linux systems Operating system: Unix/Linux systems RAM: 2 MB Supplementary material: Sample data files are available Classification: 3 Nature of problem: Analysis of molecular dynamics trajectories. Solution method: The program finds all possible interactions according to input files and the user instructions. Then it reads all the trajectory frames and finds those frames in which these interactions occur, under certain geometrical criteria. This is a blind search, without a priori knowledge if a certain interaction occurs or not. The program exports time series of these quantities (distance, angles, etc.) and appropriate descriptive statistics. Running time: Depends on the input data and the required options.
Inferring gene expression dynamics via functional regression analysis
Müller, Hans-Georg; Chiou, Jeng-Min; Leng, Xiaoyan
2008-01-01
Background Temporal gene expression profiles characterize the time-dynamics of expression of specific genes and are increasingly collected in current gene expression experiments. In the analysis of experiments where gene expression is obtained over the life cycle, it is of interest to relate temporal patterns of gene expression associated with different developmental stages to each other to study patterns of long-term developmental gene regulation. We use tools from functional data analysis to study dynamic changes by relating temporal gene expression profiles of different developmental stages to each other. Results We demonstrate that functional regression methodology can pinpoint relationships that exist between temporary gene expression profiles for different life cycle phases and incorporates dimension reduction as needed for these high-dimensional data. By applying these tools, gene expression profiles for pupa and adult phases are found to be strongly related to the profiles of the same genes obtained during the embryo phase. Moreover, one can distinguish between gene groups that exhibit relationships with positive and others with negative associations between later life and embryonal expression profiles. Specifically, we find a positive relationship in expression for muscle development related genes, and a negative relationship for strictly maternal genes for Drosophila, using temporal gene expression profiles. Conclusion Our findings point to specific reactivation patterns of gene expression during the Drosophila life cycle which differ in characteristic ways between various gene groups. Functional regression emerges as a useful tool for relating gene expression patterns from different developmental stages, and avoids the problems with large numbers of parameters and multiple testing that affect alternative approaches. PMID:18226220
Humberto E. Garcia; Amit Mohanty; Wen-Chiao Lin; Robert S. Cherry
2013-04-01
Dynamic analysis of hybrid energy systems (HES) under flexible operation and variable renewable generation is considered in order to better understand various challenges and opportunities associated with the high system variability arising from the integration of renewable energy into the power grid. Unique consequences are addressed by devising advanced HES solutions in which multiple forms of energy commodities, such as electricity and chemical products, may be exchanged. Dynamic models of various unit operations are developed and integrated within two different HES options. One HES option, termed traditional, produces electricity only and consists of a primary heat generator (PHG) (e.g., a small modular reactor), a steam turbine generator, a wind farm, and a battery storage. The other HES option, termed advanced, includes not only the components present in the traditional option but also a chemical plant complex to repurpose excess energy for non-electricity services, such as for the production of chemical goods (e.g., transportation fuel). In either case, a given HES is connected to the power grid at a point of common coupling and requested to deliver a certain electricity generation profile as dictated by a regional power grid operator based on a predicted demand curve. Dynamic analysis of these highly-coupled HES are performed to identify their key dynamical properties and limitations and to prescribe solutions for best managing and mitigating the high variability introduced from incorporating renewable energy into the energy mix. A comparative dynamic cost analysis is also conducted to determine best HES options. The cost function includes a set of metrics for computing fixed costs, such as fixed operations and maintenance (O&M) and overnight capital costs, and also variable operational costs, such as cost of variability, variable O&M cost, and cost of environmental impact, together with revenues. Assuming different options for implementing PHG (e
Stream habitat analysis using the instream flow incremental methodology
Bovee, Ken D.; Lamb, Berton L.; Bartholow, John M.; Stalnaker, Clair B.; Taylor, Jonathan; Henriksen, Jim
1998-01-01
This document describes the Instream Flow Methodology in its entirety. This also is to serve as a comprehensive introductory textbook on IFIM for training courses as it contains the most complete and comprehensive description of IFIM in existence today. This should also serve as an official guide to IFIM in publication to counteract the misconceptions about the methodology that have pervaded the professional literature since the mid-1980's as this describes IFIM as it is envisioned by its developers. The document is aimed at the decisionmakers of management and allocation of natural resources in providing them an overview; and to those who design and implement studies to inform the decisionmakers. There should be enough background on model concepts, data requirements, calibration techniques, and quality assurance to help the technical user design and implement a cost-effective application of IFIM that will provide policy-relevant information. Some of the chapters deal with basic organization of IFIM, procedural sequence of applying IFIM starting with problem identification, study planning and implementation, and problem resolution.
ERIC Educational Resources Information Center
Jung, Kwanghee; Takane, Yoshio; Hwang, Heungsun; Woodward, Todd S.
2012-01-01
We propose a new method of structural equation modeling (SEM) for longitudinal and time series data, named Dynamic GSCA (Generalized Structured Component Analysis). The proposed method extends the original GSCA by incorporating a multivariate autoregressive model to account for the dynamic nature of data taken over time. Dynamic GSCA also…
Modes of embayed beach dynamics: analysis reveals emergent timescales
NASA Astrophysics Data System (ADS)
Murray, K. T.; Murray, A.; Limber, P. W.; Ells, K. D.
2013-12-01
Embayed beaches, or beaches positioned between rocky headlands, exhibit morphologic changes over many length and time scales. Beach sediment is transported as a result of the day-to-day wave forcing, causing patterns of erosion and accretion. We use the Rocky Coastline Evolution Model (RCEM) to investigate how patterns of shoreline change depend on wave climate (the distribution of wave-approach angles) and beach characteristics. Measuring changes in beach width through time allows us to track the evolution of the shape of the beach and the movement of sand within it. By using Principle Component Analysis (PCA), these changes can be categorized into modes, where the first few modes explain the majority of the variation in the time series. We analyze these modes and how they vary as a function of wave climate and headland/bay aspect ratio. In the purposefully simple RCEM, sediment transport is wave-driven and affected by wave shadowing behind the headlands. The rock elements in our model experiments (including the headlands) are fixed and unerodable so that this analysis can focus purely on sand dynamics between the headlands, without a sand contribution from the headlands or cliffs behind the beach. The wave climate is characterized by dictating the percentage of offshore waves arriving from the left and the percentage of waves arriving from high angles (very oblique to the coastline orientation). A high-angle dominated wave climate tends to amplify coastline perturbations, whereas a lower-angle wave climate is diffusive. By changing the headland/bay aspect ratio and wave climate, we can perform PCA analysis of generalized embayed beaches with differing anatomy and wave climate forcings. Previous work using PCA analysis of embayed beaches focused on specific locations and shorter timescales (<30 years; Short and Trembanis, 2004). By using the RCEM, we can more broadly characterize beach dynamics over longer timescales. The first two PCA modes, which explain a
Benzo, Maurizio; Gilardoni, Gianluca; Gandini, Carlo; Caccialanza, Gabriele; Vita Finzi, Paola; Vidari, Giovanni; Abdo, Susana; Layedra, Patricia
2007-05-25
An essential oil, obtained by steam distillation of Clinopodium tomentosum (Kunth) Govaerts (Lamiaceae), collected in Ecuador, was analyzed by gas chromatography-olfactometry (GC-O) and GC-MS techniques. To our knowledge, the composition of this essential oil is described here for the first time, both from the chemical and olfactometric viewpoints. A preliminary analysis by GC-MS and using Kovats' retention indexes, lead to characterize and quantify the oil constituents, while GC-O was then applied for the identification of the main odorants. By the incremental dilution method (AEDA, CHARM Analysis), applied to the GC-O technique, the flavor dilution (FD) chromatogram was obtained. In order to calculate the TOC values of the main odorants, the relationship between the odorant concentration at the sniffing port and that one in the injected solution was established. This relationship was calculated by comparing the injected amount with the TOC value of a reference compound (limonene), obtained by dynamic dilution olfactometry. A good agreement was found between calculated and measured TOC values of few odorants.
Assessing the Incremental Algorithm: A Response to Krahmer et al.
ERIC Educational Resources Information Center
van Deemter, Kees; Gatt, Albert; van der Sluis, Ielka; Power, Richard
2012-01-01
This response discusses the experiment reported in Krahmer et al.'s Letter to the Editor of "Cognitive Science". We observe that their results do not tell us whether the Incremental Algorithm is better or worse than its competitors, and we speculate about implications for reference in complex domains, and for learning from "normal" (i.e.,…
Against the Odds: Academic Underdogs Benefit from Incremental Theories
ERIC Educational Resources Information Center
Davis, Jody L.; Burnette, Jeni L.; Allison, Scott T.; Stone, Heather
2011-01-01
An implicit theory of ability approach to motivation argues that students who believe traits to be malleable (incremental theorists), relative to those who believe traits to be fixed (entity theorists), cope more effectively when academic challenges arise. In the current work, we integrated the implicit theory literature with research on top dog…
17 CFR 242.612 - Minimum pricing increment.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Minimum pricing increment. 242.612 Section 242.612 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) REGULATIONS M, SHO, ATS, AC, AND NMS AND CUSTOMER MARGIN REQUIREMENTS FOR SECURITY FUTURES Regulation...
76 FR 53763 - Immigration Benefits Business Transformation, Increment I
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-29
... Benefits Business Transformation, Increment I AGENCY: U.S. Citizenship and Immigration Services, DHS... its regulations to enable U.S. Citizenship and Immigration Services (USCIS) to migrate from a paper file-based, non-integrated systems environment to an electronic customer-focused, centralized...
Incremental Validity in the Clinical Assessment of Early Childhood Development
ERIC Educational Resources Information Center
Liu, Xin; Zhou, Xiaobin; Lackaff, Julie
2013-01-01
The authors demonstrate the increment of clinical validity in early childhood assessment of physical impairment (PI), developmental delay (DD), and autism (AUT) using multiple standardized developmental screening measures such as performance measures and parent and teacher rating scales. Hierarchical regression and sensitivity/specificity analyses…
Generation of Referring Expressions: Assessing the Incremental Algorithm
ERIC Educational Resources Information Center
van Deemter, Kees; Gatt, Albert; van der Sluis, Ielka; Power, Richard
2012-01-01
A substantial amount of recent work in natural language generation has focused on the generation of "one-shot" referring expressions whose only aim is to identify a target referent. Dale and Reiter's Incremental Algorithm (IA) is often thought to be the best algorithm for maximizing the similarity to referring expressions produced by people. We…
Tax Increment Financing and Education Expenditures: The Case of Iowa
ERIC Educational Resources Information Center
Nguyen-Hoang, Phuong
2014-01-01
This is the first study to directly examine the relationship between tax increment financing (TIF) and education expenditures, using the state of Iowa as a case study. I find that greater use of TIF is associated with reduced education expenditures. I also find little evidence to support the commonly held proposition that school spending increases…
Predicting Robust Vocabulary Growth from Measures of Incremental Learning
ERIC Educational Resources Information Center
Frishkoff, Gwen A.; Perfetti, Charles A.; Collins-Thompson, Kevyn
2011-01-01
We report a study of incremental learning of new word meanings over multiple episodes. A new method called MESA (Markov Estimation of Semantic Association) tracked this learning through the automated assessment of learner-generated definitions. The multiple word learning episodes varied in the strength of contextual constraint provided by…
76 FR 73475 - Immigration Benefits Business Transformation, Increment I; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-29
.... Correction of Publication Accordingly, the publication on August 29, 2011 (76 FR 53764) of the final rule that was the subject of FR Doc. 2011-20990 is corrected as follows: PART 103--IMMIGRATION BENEFITS... Benefits Business Transformation, Increment I, 76 FR 53764 (Aug. 29, 2011). The final rule removed...
Incremental logistic regression for customizing automatic diagnostic models.
Tortajada, Salvador; Robles, Montserrat; García-Gómez, Juan Miguel
2015-01-01
In the last decades, and following the new trends in medicine, statistical learning techniques have been used for developing automatic diagnostic models for aiding the clinical experts throughout the use of Clinical Decision Support Systems. The development of these models requires a large, representative amount of data, which is commonly obtained from one hospital or a group of hospitals after an expensive and time-consuming gathering, preprocess, and validation of cases. After the model development, it has to overcome an external validation that is often carried out in a different hospital or health center. The experience is that the models show underperformed expectations. Furthermore, patient data needs ethical approval and patient consent to send and store data. For these reasons, we introduce an incremental learning algorithm base on the Bayesian inference approach that may allow us to build an initial model with a smaller number of cases and update it incrementally when new data are collected or even perform a new calibration of a model from a different center by using a reduced number of cases. The performance of our algorithm is demonstrated by employing different benchmark datasets and a real brain tumor dataset; and we compare its performance to a previous incremental algorithm and a non-incremental Bayesian model, showing that the algorithm is independent of the data model, iterative, and has a good convergence. PMID:25417079