Atypical incus necrosis: a case report and literature review.
Choudhury, N; Kumar, G; Krishnan, M; Gatland, D J
2008-10-01
We report an atypical case of ossicular necrosis affecting the incus, in the absence of any history of chronic serous otitis media. We also discuss the current theories of incus necrosis. A male patient presented with a history of right unilateral hearing loss and tinnitus. Audiometry confirmed right conductive deafness; tympanometry was normal bilaterally. He underwent a right exploratory tympanotomy, which revealed atypical erosion of the proximal long process of the incus. Middle-ear examination was otherwise normal, with a mobile stapes footplate. The redundant long process of the incus was excised and a partial ossicular replacement prosthesis was inserted, resulting in improved hearing. Ossicular pathologies most commonly affect the incus. The commonest defect is an absent lenticular and distal long process of the incus, which is most commonly associated with chronic otitis media. This is the first reported case of ossicular necrosis, particularly of the proximal long process of the incus, in the absence of chronic middle-ear pathology.
The lenticular process of the incus.
Graboyes, Evan M; Hullar, Timothy E; Chole, Richard A
2011-12-01
Seventeenth century anatomists, including Franciscus Sylvius, identified a small bony structure between the distal end of the incus and the stapes that they believed was a separate and thus additional ossicle. The existence of the ossicle at the distal end of the long process of the incus was controversial for the next 200 years. In the 19 th century, anatomists including Johann Friedrich Blumenbach, Samuel Thomas Soemmerring, Henry Jones Shrapnell, Eduard Hagenbach, and Joseph Hyrtl provided numerous arguments to demonstrate why the so-called additional ossicle was actually attached to the incus by a thin strut, and thus not a separate bone. The objective of this study was to review the history of the discovery and description of the lenticular process of the incus. Data sources included original published manuscripts and monographs obtained from the historical collections at Washington University in St. Louis and photographs of original materials from cooperating libraries. A detailed study of the published evidence revealed that the lenticular process of the incus was originally thought to be a separate, or fourth, ossicle. Later studies revealed that the lenticular "ossicle" was actually attached to the incus by a thin strut. The ovoid end of the incus should be referred to as the "lenticular process" of the incus, attached to the long process by a thin strut or pedicle. The best nomenclature for the bony connection between the lenticular process and the long process of the incus remains uncertain.
The Lenticular Process of the Incus
Graboyes, Evan M.; Hullar, Timothy E.; Chole, Richard A.
2011-01-01
17th century anatomists, including Franciscus Sylvius, identified a small bony structure between the distal end of the incus and the stapes that they believed was a separate and thus additional ossicle. The existence of the ossicle at the distal portion of the long process of the incus was controversial for the next two hundred years. In the 19th century, anatomists including Johann Friedrich Blumenbach, Henry Jones Shrapnell, Eduard Hagenbach, and Joseph Hyrtl provided numerous arguments to demonstrate why the so-called additional ossicle was actually attached to the incus by a thin strut, and thus not a separate bone. Since then, the ovoid end of the incus has been referred to as the “lenticular process” of the incus. The best nomenclature for the bony connection between the lenticular process and the rest of the incus remains uncertain, but the term “lenticular process” should not include its connecting pedicle. PMID:21986927
Dislocation of the incus into the external auditory canal after mountain-biking accident.
Saito, T; Kono, Y; Fukuoka, Y; Yamamoto, H; Saito, H
2001-01-01
We report a rare case of incus dislocation to the external auditory canal after a mountain-biking accident. Otoscopy showed ossicular protrusion in the upper part of the left external auditory canal. CT indicated the disappearance of the incus, and an incus-like bone was found in the left external auditory canal. There was another bony and board-like structure in the attic. During the surgery, a square-shaped bony plate (1 x 1 cm) was found in the attic. It was determined that the bony plate had fallen from the tegmen of the attic. The fracture line in the posterosuperior auditory canal extending to the fossa incudis was identified. According to these findings, it was considered that the incus was pushed into the external auditory canal by the impact of skull injury through the fractured posterosuperior auditory canal, which opened widely enough for incus dislocation. Copyright 2001 S. Karger AG, Basel
Kwok, Pingling; Fisch, Ugo; Strutz, Jürgen; May, John
2002-05-01
The goal of this study was to compare the attachment of stapes prostheses with differently shaped loops to the long process of the incus. In stapes surgery, the attachment of the prosthesis to the long process of the incus plays an important role concerning the gain in hearing and the development of late complications such as incus erosion and necrosis. Band-shaped and spiral loops have been developed to achieve a broad, firm attachment to the long process of the incus. During stapes surgery, the view at the prosthesis is restricted, making it impossible to evaluate the effects of the differently shaped loops. Gold, steel/Teflon, platinum/Teflon, and two different titanium stapes prostheses were inserted in 30 specially prepared temporal bones by three experienced surgeons using the Fisch technique with the McGee and straight alligator forceps for the crimping of the loops. Photographs were taken with 0- and 70-degree rod lens telescopes at defined views. In all prostheses, a sufficiently firm attachment to the long process of the incus was achieved. The attachment of band-shaped loops proved to be better with the straight alligator forceps. The band-shaped loops showed a better contact with the incus than did the wire loops. However, the broad spiral-shaped loops led to a loss of the perpendicular axis of the piston to the long incus process. The geometry of the loop affects the final length of the piston in the vestibule and its angle to the long process of the incus.
The crimping problem in stapes surgery.
Kwok, Pingling; Fisch, Ugo; Strutz, Jürgen
2007-01-01
The goal of this study was to compare the attachment of stapes prostheses with differently shaped loops to the long process of the incus. Gold, steel/Teflon, platinum/Teflon, and two different titanium stapes prostheses were inserted in 30 specially prepared temporal bones by three experienced surgeons using the Fisch technique with the McGee crimper and straight alligator forceps for the crimping of the loops. In all prostheses, a sufficiently firm attachment of the long process of the incus was achieved. The band-shaped loops showed a better contact with the incus than did the wire loops. However, the broad spiral-shaped loops led to a loss of the perpendicular axis of the piston to the long incus process. The geometry of the loop affects the final length of the piston in the vestibule and its angle to the long process of the incus.
Biomechanics of the incudo-malleolar-joint - Experimental investigations for quasi-static loads.
Ihrle, S; Gerig, R; Dobrev, I; Röösli, C; Sim, J H; Huber, A M; Eiber, A
2016-10-01
Under large quasi-static loads, the incudo-malleolar joint (IMJ), connecting the malleus and the incus, is highly mobile. It can be classified as a mechanical filter decoupling large quasi-static motions while transferring small dynamic excitations. This is presumed to be due to the complex geometry of the joint inducing a spatial decoupling between the malleus and incus under large quasi-static loads. Spatial Laser Doppler Vibrometer (LDV) displacement measurements on isolated malleus-incus-complexes (MICs) were performed. With the malleus firmly attached to a probe holder, the incus was excited by applying quasi-static forces at different points. For each force application point the resulting displacement was measured subsequently at different points on the incus. The location of the force application point and the LDV measurement points were calculated in a post-processing step combining the position of the LDV points with geometric data of the MIC. The rigid body motion of the incus was then calculated from the multiple displacement measurements for each force application point. The contact regions of the articular surfaces for different load configurations were calculated by applying the reconstructed motion to the geometry model of the MIC and calculate the minimal distance of the articular surfaces. The reconstructed motion has a complex spatial characteristic and varies for different force application points. The motion changed with increasing load caused by the kinematic guidance of the articular surfaces of the joint. The IMJ permits a relative large rotation around the anterior-posterior axis through the joint when a force is applied at the lenticularis in lateral direction before impeding the motion. This is part of the decoupling of the malleus motion from the incus motion in case of large quasi-static loads. Copyright © 2015 Elsevier B.V. All rights reserved.
Incudomalleal joint formation: the roles of apoptosis, migration and downregulation
Amin, Susan; Matalova, Eva; Simpson, Carol; Yoshida, Hiroki; Tucker, Abigail S
2007-01-01
Background The middle ear of mammals is composed of three endochondrial ossicles, the stapes, incus and malleus. Joints link the malleus to the incus and the incus to the stapes. In the mouse the first arch derived malleus and incus are formed from a single Sox9 and Type II collagen expressing condensation that later subdivides to give rise to two separate ossicles. In contrast the stapes forms from a separate condensation derived from the second branchial arch. Fusion of the malleus and incus is observed in a number of human syndromes and results in conductive hearing loss. Understanding how this joint forms during normal development is thus an important step in furthering our understanding of such defects. Results We show that the developing incudomalleal joint is characterised by a lack of proliferation and discrete areas of apoptosis. Apoptosis has been suggested to aid in the removal of pre-cartilaginous cells from the joint region, allowing for the physical separation of the cartilaginous elements, however, we show that joint initiation is unaffected by blocking apoptosis. There is also no evidence of cell migration out of the presumptive joint region, as observed by labelling of joint and ossicle cells in culture. Using Type II collagen lacZ reporter mice, however, it is evident that cells in the presumptive joint region remain in place and downregulate cartilage markers. Conclusion The malleus and incus first appear as a single united condensation expressing early cartilage markers. The incudomalleal joint region forms by cells in the presumptive joint region switching off cartilage markers and turning on joint markers. Failure in this process may result in fusion of this joint, as observed in human syndromes such as Branchio-Oto-Renal Syndrome or Treacher Collins Syndrome. PMID:18053235
Measurement of the Three-Dimensional Vibration Motion of the Ossicular Chain in the Living Gerbil
NASA Astrophysics Data System (ADS)
Decraemer, Willem F.; de La Rochefoucauld, Ombeline; Olson, Elizabeth S.
2011-11-01
In previous studies 3D motion of the middle-ear ossicles in cat and human temporal bone were explored but models for hearing research has shifted in the last decades to smaller mammals and gerbil in particular has become a hearing model of first choice. In the present study we have measured with an optical interferometer the 3D motion of the malleus and incus in anesthetized gerbil for sound of moderate intensity (90 dB SPL) in a broad frequency range. To access the malleus and incus the pars flaccida was completely removed exposing the neck and head of the malleus and the incus from the malleus-incus joint to the long process of the incus and the plate of the lenticular process. In a previous study an approach through a hole in the bullar wall was used to study the stapes motion so that we now have a complete picture of the middle ear motion. In both approaches vibration measurements were done at 6 to 7 points per ossicle while the angle of observation was varied over approximately 30 degrees to enable calculation of the 3D velocity components. Knowledge of middle ear motion is of great importance in understanding how the middle ear transforms the acoustical input from the ear canal to the cochlea.
Origin of underwater hearing in whales.
Thewissen, J G; Hussain, S T
1993-02-04
All described fossil and Recent cetaceans have relatively similar ear bones (malleus, incus and stapes) that strongly diverge from those of land mammals. Here we report that the hearing organ of the oldest whale, Pakicetus, is the only known intermediate between that of land mammals and aquatic cetaceans (whales, dolphins and porpoises). The incus of Pakicetus is intermediate with respect to inflation, crural proportions, and position of the mallear joint. The incus and mandible of Pakicetus indicate that the path of soundwaves to its ear resembled that of land mammals. These fossils suggest that the first whale was amphibious, and corroborate the hypothesis that artiodactyls (for example, pigs, camels and ruminants) are the closest extant relatives of cetaceans.
Ghonim, Mohamed; Shabana, Yousef; Ashraf, Bassem; Salem, Mohamed
2017-04-01
To discuss the different modalities for managing necrosis of the long process of the incus in revision stapedectomy on the basis of the degree of necrosis and compare the results with those reported in the literature. Thirty-six patients underwent revision stapedectomy with the necrosis of the long process of the incus from 2009 to 2016. The patients were divided into three groups on the basis of the degree of necrosis. For group A (minimal necrosis), augmentation technique with bone cement was performed. For group B (partial necrosis), the cement plug technique was performed. For group C (sever necrosis), malleus relocation with malleovestibulopexy was performed using reshaped necrosed incus. Air and bone conduction thresholds at frequencies of 500-3000 Hz were reviewed pre- and postoperatively using conventional audiometry. The air-bone gap (ABG) and bone conduction thresholds were measured. Postoperative ABG was reduced to <10 dB in 28 cases (77.8%) and <20 dB in all cases (100%). There was no significant change in postoperative bone conduction thresholds. The mean patient follow-up duration was 23 (range, 18-36) months. The cement plug technique was used in 75% of cases. Managing necrosis of the long process of the incus in revision stapedectomy should be considered according to the degree of necrosis. The cement plug technique is considered to be a reasonable option in most cases. Malleus relocation with malleovestibulopexy is an effective alternative to prosthesis.
Visualization of Middle Ear Ossicles in Elder Subjects with Ultra-short Echo Time MR Imaging.
Naganawa, Shinji; Nakane, Toshiki; Kawai, Hisashi; Taoka, Toshiaki; Suzuki, Kojiro; Iwano, Shingo; Satake, Hiroko; Grodzki, David
2017-04-10
To evaluate the visualization of middle ear ossicles by ultra-short echo time magnetic resonance (MR) imaging at 3T in subjects over 50 years old. Sixty ears from 30 elder patients that underwent surgical or interventional treatment for neurovascular diseases were included (ages: 50-82, median age: 65; 10 men, 20 women). Patients received follow-up MR imaging including routine T 1 - and T 2 -weighted images, time-of-flight MR angiography, and ultra-short echo time imaging (PETRA, pointwise encoding time reduction with radial acquisition). All patients underwent computed tomography (CT) angiography before treatment. Thin-section source CT images were correlated with PETRA images. Scan parameters for PETRA were: TR 3.13, TE 0.07, flip angle 6 degrees, 0.83 × 0.83 × 0.83 mm resolution, 3 min 43 s scan time. Two radiologists retrospectively evaluated the visibility of each ossicular structure as positive or negative using PETRA images. The structures evaluated included the head of the malleus, manubrium of the malleus, body of the incus, long process of the incus, and the stapes. Signal intensity of the ossicles was classified as: between labyrinthine fluid and air, similar to labyrinthine fluid, between labyrinthine fluid and cerebellar parenchyma, or higher than cerebellar parenchyma. In all ears, the body of the incus was visible. The head of the malleus was visualized in 36/60 ears. The manubrium of the malleus and long process of the incus was visualized in 1/60 and 4/60 ears, respectively. The stapes were not visualized in any ear. Signal intensity of the visible structures was between labyrinthine fluid and air in all ears. The body of the incus was consistently visualized with intensity between air and labyrinthine fluid on PETRA images in aged subjects. Poor visualization of the manubrium of the malleus, long process of the incus, and the stapes limits clinical significance of middle ear imaging with current PETRA methods.
[Observation of bridging operation by an autogenous incus in the ossiculoplasty].
Li, Hao-zhun; Gong, Shu-sheng
2008-10-01
To study the clinical effects of bridging operation by an autogenous incus in the ossiculoplasty. All the postoperative follow-up data of the 68 patients were analyzed retrospectively, who underwent bridging operation by an autogenous incus in the ossiculoplasty and were followed up for 6-28 months with an average of 19.75 months. The autogenous incus which had been reshaped was implanted between the intact malleus and the intact mobile stapes. The preoperative and postoperative pure tone average (PTA) air-conduction, bone-conduction and air-bone gap on four frequencies (0.5, 1, 2 and 4 kHz) were calculated and analyzed. No postoperative autogenous includes were extruded with only two cases displaced. The pure tone air conduction improved from a preoperative average of (46.69 +/- 18.32) dB to a postoperative average of (30.21 +/- 9.46) dB, while bone conduction improved from a preoperative average of (24.72 +/- 10.63) dB to a postoperative average of (18.15 +/- 8.91) dB, as well as air-bone gap closed from a preoperative average of 21.97 +/- 10.32 dB to a postoperative average of (12.06 +/- 9.46) dB. The success rate (postoperative PTA-ABG < or = 20 dB) occurred in 75% of all the cases. The improvement of the bone conduction occurred in 66% of all the cases, at least with 10 dB occurred in at least two frequencies. Because of low expenses, high convenience in an operation, high stability in effects, very low complications and excellent hearing results for the patients, the bridging operation as stated in the above was worthy of choice. The autogenous incus could be utilized if the defects between the intact, mobile stapes and the intact malleus could be well repaired.
Faye, M B; Martin, C; Schmerber, S
2013-01-01
We report two surgical techniques devised to restore a disrupted incudostapedial joint. Thirty patients underwent rebridging of distal portion of incus long process in the ENT Department of University of Grenoble and Saint-Etienne, between October 1998 and September 2002. Two types of ossicular prostheses were used: A titanium-gold angle prosthesis according to Plester Winkel Kurz (n = 16 patients), and a hydroxylapatite prosthesis as Martin Incudo Prosthesis (n = 14 patients). The average hearing gain in short term is of 8.30 dB for the Martin-Incudo group. It is of 5.23 dB in the Winkel group. Seven and three cases of failures (Residual Rinne > 20 dB) were noticed respectively in the groups Martin-Incudo and Winkel. Seven and four cases of labyrinthisation were observed respectively in the groups Martin-Incudo and Winkel. The average hearing gain in long term is 3.43 dB in the Martin-Incudo group; and 2.85 dB among patients with Winkel Kurz prosthesis. Average residual Rinne is higher than 20 dB in the Winkel group. The hearing gain is not statistically significant between the two groups (p > 0.05). The titanium partial prosthesis did not give good functional results. In the case of a limited lysis (< 2 mm) of the distal portion of incus, we use the cement or cartilage interposition. When ossicular chain cannot be preserved entirely, we privilege incus transposition or a titanium PORP. The Martin-Incudo prosthesis seems interesting in the event of lysis of 2 mm of the long process of incus, nevertheless engineering changes are necessary in order to make rigid the incudostapedial joint.
Early hominin auditory ossicles from South Africa
Quam, Rolf M.; de Ruiter, Darryl J.; Masali, Melchiorre; Arsuaga, Juan-Luis; Martínez, Ignacio; Moggi-Cecchi, Jacopo
2013-01-01
The middle ear ossicles are only rarely preserved in fossil hominins. Here, we report the discovery of a complete ossicular chain (malleus, incus, and stapes) of Paranthropus robustus as well as additional ear ossicles from Australopithecus africanus. The malleus in both early hominin taxa is clearly human-like in the proportions of the manubrium and corpus, whereas the incus and stapes resemble African and Asian great apes more closely. A deep phylogenetic origin is proposed for the derived malleus morphology, and this may represent one of the earliest human-like features to appear in the fossil record. The anatomical differences found in the early hominin incus and stapes, along with other aspects of the outer, middle, and inner ear, are consistent with the suggestion of different auditory capacities in these early hominin taxa compared with modern humans. PMID:23671079
The "boomerang" malleus-incus complex in congenital aural atresia.
Mukherjee, S; Kesser, B W; Raghavan, P
2014-01-01
"Boomerang" malleus-incus fusion deformity is identified on axial high-resolution CT in a subset of patients with congenital aural atresia, and it is associated with an absent incudostapedial joint and stapes capitulum and attachment of the incus to the tympanic segment of the facial nerve canal. Twelve patients with this deformity were identified on a retrospective review of imaging from a cohort of 673 patients with congenital aural atresia, with surgical confirmation in 9 of these patients. Eight of 9 patients underwent partial ossicular replacement prosthesis reconstruction with improvement in hearing outcome. We hypothesize that the boomerang anomaly represents a more severe ossicular anomaly than is normally seen in congenital aural atresia, arising from an arrest earlier in the embryonic development of the first and second branchial arch. This has potentially important implications for surgical planning because hearing outcomes with placement of prosthesis may not be as good as with conventional atresia surgery, in which reconstruction is performed with the patient's native ossicular chain. © 2014 by American Journal of Neuroradiology.
Sequential motion of the ossicular chain measured by laser Doppler vibrometry.
Kunimoto, Yasuomi; Hasegawa, Kensaku; Arii, Shiro; Kataoka, Hideyuki; Yazama, Hiroaki; Kuya, Junko; Fujiwara, Kazunori; Takeuchi, Hiromi
2017-12-01
In order to help a surgeon make the best decision, a more objective method of measuring ossicular motion is required. A laser Doppler vibrometer was mounted on a surgical microscope. To measure ossicular chain vibrations, eight patients with cochlear implants were investigated. To assess the motions of the ossicular chain, velocities at five points were measured with tonal stimuli of 1 and 3 kHz, which yielded reproducible results. The sequential amplitude change at each point was calculated with phase shifting from the tonal stimulus. Motion of the ossicular chain was visualized from the averaged results using the graphics application. The head of the malleus and the body of the incus showed synchronized movement as one unit. In contrast, the stapes (incudostapedial joint and posterior crus) moved synchronously in opposite phase to the malleus and incus. The amplitudes at 1 kHz were almost twice those at 3 kHz. Our results show that the malleus and incus unit and the stapes move with a phase difference.
Modifications to a 3D-printed temporal bone model for augmented stapes fixation surgery teaching.
Nguyen, Yann; Mamelle, Elisabeth; De Seta, Daniele; Sterkers, Olivier; Bernardeschi, Daniele; Torres, Renato
2017-07-01
Functional outcomes and complications in otosclerosis surgery are governed by the surgeon's experience. Thus, teaching the procedure to residents to guide them through the learning process as quickly as possible is challenging. Artificial 3D-printed temporal bones are replacing cadaver specimens in many institutions to learn mastoidectomy, but these are not suitable for middle ear surgery training. The goal of this work was to adapt such an artificial temporal bone to aid the teaching of otosclerosis surgery and to evaluate this tool. We have modified a commercially available 3D-printed temporal bone by replacing the incus and stapes of the model with in-house 3D-printed ossicles. The incus could be attached to a 6-axis force sensor. The stapes footplate was fenestrated and attached to a 1-axis force sensor. Six junior surgeons (residents) and seven senior surgeons (fellows or consultants) were enrolled to perform piston prosthesis placement and crimping as performed during otosclerosis surgery. The time required to perform the tasks and the forces applied to the incus and stapes were collected and analyzed. No statistically significant differences were observed between the junior and senior groups for time taken to perform the tasks and the forces applied to the incus during crimping and placement of the prosthesis. However, significantly lower forces were applied to the stapes by the senior surgeons in comparison with the junior surgeons during prosthesis placement (junior vs senior group, 328 ± 202.9 vs 80 ± 99.6 mN, p = 0.008) and during prosthesis crimping (junior vs senior group, 565 ± 233 vs 66 ± 48.6 mN, p = 0.02). We have described a new teaching tool for otosclerosis surgery based on the modification of a 3D-printed temporal bone to implement force sensors on the incus and stapes. This tool could be used as a training tool to help the residents to self-evaluate their progress with recording of objective measurements.
Traumatic dislocation of the incudostapedial joint repaired with fibrin tissue adhesive.
Nikolaidis, Vasilios
2011-03-01
We present a case of traumatic dislocation of the incudostapedial joint (ISJ) and a simple method for controlled application of the glue using commercial fibrin tissue adhesive. A 26-year-old female presented to our ENT clinic for hearing impairment to her left ear 2 months after a head trauma due to a motorcycle accident. The audiogram revealed a 40- to 50-dB HL conductive hearing loss with a notch configuration in bone conduction curve on the left ear. Computed tomography of the left temporal bone revealed a longitudinal fracture line. An exploratory tympanotomy was performed under general anesthesia. The ISJ was found dislocated while the incus was trapped by the edges of the bony lateral attic wall fracture. A small bony edge that impeded incus movement was removed and a small amount of the glue was precisely applied to the lenticular process of the incus with an angled incision knife. The long process of the incus was firmly pressed over the stapes for 30 seconds with a 90° hook and 60 seconds after the application of the glue the ISJ was repaired. One year after our patient achieved full airbone gap (ABG) closure (ABG, ≤10 dB HL), while she demonstrated overclosure in frequencies 2 and 4 kHz. Fibrin tissue glue allowed safe, rapid, and accurate repair of the ISJ and resulted in an anatomically normal articulation as the mass and shape of the ossicles was preserved. Moreover, our patient achieved full ABG closure. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.
On the Coupling Between the Incus and the Stapes in the Cat
Heng Siah, T.; McKee, Marc D.; Daniel, Sam J.; Decraemer, Willem F.
2005-01-01
The connection between the long process and the lenticular process of the incus is extremely fine, so much so that some authors have treated the lenticular process as a separate bone. We review descriptions of the lenticular process that have appeared in the literature, and present some new histological observations. We discuss the dimensions and composition of the lenticular process and of the incudostapedial joint, and present estimates of the material properties for the bone, cartilage, and ligament of which they are composed. We present a preliminary finite-element model which includes the lenticular plate, the bony pedicle connecting the lenticular plate to the long process, the head of the stapes, and the incudostapedial joint. The model has a much simplified geometry. We present simulation results for ranges of values for the material properties. We then present simulation results for this model when it is incorporated into an overall model of the middle ear of the cat. For the geometries and material properties used here, the bony pedicle is found to contribute significant flexibility to the coupling between the incus and the stapes. PMID:15735938
Integrating optical fiber force sensors into microforceps for ORL microsurgery.
Bell, Brett; Stankowski, Stefan; Moser, Benjamin; Oliva, Vidina; Stieger, Christof; Nolte, Lutz-Peter; Caversaccio, Marco; Weber, Stefan
2010-01-01
The delicate anatomy of the ear require surgeons to use great care when operating on its internal structures. One example for such an intervention is the stapedectomy, where a small crook shaped piston is placed in the oval window of the cochlea and connected to the incus through crimping thus bypassing the diseased stapes. Performing the crimp process with the correct force is necessary since loose crimps poorly transmit sound whereas tight crimps will eventually result in necrosis of the incus. Clinically, demand is high to reproducibly conduct the crimp process through a precise force measurement. For this reason, we have developed a fiber Bragg grating (FBG) integrated microforceps for use in such interventions. This device was calibrated, and tested in cadaver preparations. With this instrument we were able to measure for the first time forces involved in crimping a stapes prosthesis to the incus. We also discuss a method of attaching and actuating such forceps in conjunction with a robot currently under development in our group. Each component of this system can be used separately or combined to improve surgical accuracy, confidence and outcome.
Auditory ossicles from southwest Asian Mousterian sites.
Quam, Rolf; Rak, Yoel
2008-03-01
The present study describes and analyzes new Neandertal and early modern human auditory ossicles from the sites of Qafzeh and Amud in southwest Asia. Some methodological issues in the measurement of these bones are considered, and a set of standardized measurement protocols is proposed. Evidence of erosive pathological processes, most likely attributed to otitis media, is present on the ossicles of Qafzeh 12 and Amud 7 but none can be detected in the other Qafzeh specimens. Qafzeh 12 and 15 extend the known range of variation in the fossil H. sapiens sample in some metric variables, but morphologically, the new specimens do not differ in any meaningful way from living humans. In most metric dimensions, the Amud 7 incus falls within our modern human range of variation, but the more closed angle between the short and long processes stands out. Morphologically, all the Neandertal incudi described to date show a very straight long process. Several tentative hypotheses can be suggested regarding the evolution of the ear ossicles in the genus Homo. First, the degree of metric and morphological variation seems greater among the fossil H. sapiens sample than in Neandertals. Second, there is a real difference in the size of the malleus between Neandertals and fossil H. sapiens, with Neandertals showing larger values in most dimensions. Third, the wider malleus head implies a larger articular facet in the Neandertals, and this also appears to be reflected in the larger (taller) incus articular facet. Fourth, there is limited evidence for a potential temporal trend toward reduction of the long process within the Neandertal lineage. Fifth, a combination of features in the malleus, incus, and stapes may indicate a slightly different relative positioning of either the tip of the incus long process or stapes footplate within the tympanic cavity in the Neandertal lineage.
Otosclerosis: Temporal Bone Pathology.
Quesnel, Alicia M; Ishai, Reuven; McKenna, Michael J
2018-04-01
Otosclerosis is pathologically characterized by abnormal bony remodeling, which includes bone resorption, new bone deposition, and vascular proliferation in the temporal bone. Sensorineural hearing loss in otosclerosis is associated with extension of otosclerosis to the cochlear endosteum and deposition of collagen throughout the spiral ligament. Persistent or recurrent conductive hearing loss after stapedectomy has been associated with incomplete footplate fenestration, poor incus-prosthesis connection, and incus resorption in temporal bone specimens. Human temporal bone pathology has helped to define the role of computed tomography imaging for otosclerosis, confirming that computed tomography is highly sensitive for diagnosis, yet limited in assessing cochlear endosteal involvement. Copyright © 2017 Elsevier Inc. All rights reserved.
Incus replacement prostheses of hydroxylapatite in middle ear reconstruction.
Wehrs, R E
1989-05-01
Hydroxylapatite is a calcium bioceramic that has the same chemical composition as living bone, Ca10 (PO4) 6 (OH) 2. Since 1970 it has been used as a material in reconstructive prostheses and augmentation of lost tissues in various surgical specialties including maxillofacial surgery, plastic surgery, otolaryngology, and orthopedics. For over 20 years the author has used autograft and homograft ossicles in tympanoplasty. These incudi have been modified into prostheses that were utilized in ossicular reconstruction. During this time two principle prostheses have evolved, the notched incus with short and long processes. The short process prosthesis is used with an intact stapes, whereas the notched incus with long process carries the sound pressure directly to the stapedial footplate. These prostheses have been successful in improving and maintaining hearing following tympanoplasty. Unfortunately, however, the use of human tissue has certain limitations: it is not readily accessible and has a limited shelf life. Furthermore, clinicians are wary of using homograft tissue as concern over the AIDS virus spreads. Therefore it was felt prudent to develop a manmade prosthesis that would as nearly as possible match the advantages of living bone. Hydroxylapetite most nearly met those qualifications.
Evolution of the auditory ossicles in extant hominids: metric variation in African apes and humans.
Quam, Rolf M; Coleman, Mark N; Martínez, Ignacio
2014-08-01
The auditory ossicles in primates have proven to be a reliable source of phylogenetic information. Nevertheless, to date, very little data have been published on the metric dimensions of the ear ossicles in African apes and humans. The present study relies on the largest samples of African ape ear ossicles studied to date to address questions of taxonomic differences and the evolutionary transformation of the ossicles in gorillas, chimpanzees and humans. Both African ape taxa show a malleus that is characterized by a long and slender manubrium and relatively short corpus, whereas humans show the opposite constellation of a short and thick manubrium and relatively long corpus. These changes in the manubrium are plausibly linked with changes in the size of the tympanic membrane. The main difference between the incus in African apes and humans seems to be related to changes in the functional length. Compared with chimpanzees, human incudes are larger in nearly all dimensions, except articular facet height, and show a more open angle between the axes. The gorilla incus resembles humans more closely in its metric dimensions, including functional length, perhaps as a result of the dramatically larger body size compared with chimpanzees. The differences between the stapedes of humans and African apes are primarily size-related, with humans being larger in nearly all dimensions. Nevertheless, some distinctions between the African apes were found in the obturator foramen and head height. Although correlations between metric variables in different ossicles were generally lower than those between variables in the same bone, variables of the malleus/incus complex appear to be more strongly correlated than those of the incus/stapes complex, perhaps reflecting the different embryological and evolutionary origins of the ossicles. The middle ear lever ratio for the African apes is similar to other haplorhines, but humans show the lowest lever ratio within primates. Very low levels of sexual dimorphism were found in the ossicles within each taxon, but some relationship with body size and several dimensions of the ear bones was found. Several of the metric distinctions in the incus and stapes imply a slightly different articulation of the ossicular chain within the tympanic cavity in African apes compared with humans. The limited auditory implications of these metric differences in the ossicles are also discussed. Finally, the results of this study suggest that several plesiomorphic features for apes may be retained in the ear bones of the early hominin taxa Australopithecus and Paranthropus as well as in the Neandertals. © 2014 Anatomical Society.
Evolution of the auditory ossicles in extant hominids: metric variation in African apes and humans
Quam, Rolf M; Coleman, Mark N; Martínez, Ignacio
2014-01-01
The auditory ossicles in primates have proven to be a reliable source of phylogenetic information. Nevertheless, to date, very little data have been published on the metric dimensions of the ear ossicles in African apes and humans. The present study relies on the largest samples of African ape ear ossicles studied to date to address questions of taxonomic differences and the evolutionary transformation of the ossicles in gorillas, chimpanzees and humans. Both African ape taxa show a malleus that is characterized by a long and slender manubrium and relatively short corpus, whereas humans show the opposite constellation of a short and thick manubrium and relatively long corpus. These changes in the manubrium are plausibly linked with changes in the size of the tympanic membrane. The main difference between the incus in African apes and humans seems to be related to changes in the functional length. Compared with chimpanzees, human incudes are larger in nearly all dimensions, except articular facet height, and show a more open angle between the axes. The gorilla incus resembles humans more closely in its metric dimensions, including functional length, perhaps as a result of the dramatically larger body size compared with chimpanzees. The differences between the stapedes of humans and African apes are primarily size-related, with humans being larger in nearly all dimensions. Nevertheless, some distinctions between the African apes were found in the obturator foramen and head height. Although correlations between metric variables in different ossicles were generally lower than those between variables in the same bone, variables of the malleus/incus complex appear to be more strongly correlated than those of the incus/stapes complex, perhaps reflecting the different embryological and evolutionary origins of the ossicles. The middle ear lever ratio for the African apes is similar to other haplorhines, but humans show the lowest lever ratio within primates. Very low levels of sexual dimorphism were found in the ossicles within each taxon, but some relationship with body size and several dimensions of the ear bones was found. Several of the metric distinctions in the incus and stapes imply a slightly different articulation of the ossicular chain within the tympanic cavity in African apes compared with humans. The limited auditory implications of these metric differences in the ossicles are also discussed. Finally, the results of this study suggest that several plesiomorphic features for apes may be retained in the ear bones of the early hominin taxa Australopithecus and Paranthropus as well as in the Neandertals. PMID:24845949
[Applied anatomy of facial recess and posterior tympanum related to cochlear implantation].
Zou, Tuanming; Xie, Nanping; Guo, Menghe; Shu, Fan; Zhang, Hongzheng
2012-05-01
To investigate the related parameters of temporal bone structure in the surgery of cochlear implantation through facial recess approach so as to offer a theoretical reference for the avoidance of facial nerve injury and the accurate localization. In a surgical simulation experiment, twenty human temporal bones were studied. The correlation parameters were measured under surgical microscope. Distance between suprameatal spine and short process of incus was (12.44 +/- 0.51) mm. Width from crotch of chorda tympani nerve to stylomastoid foramen was (2.67 +/- 0.51) mm. Distance between short process of incus and crotch of chorda tympani nerve was (15.22 +/- 0.83) mm. The location of maximal width of the facial recess into short process of incus, crotch of chorda tympani nerve were (6.28 +/- 0.41) mm, (9.81 +/- 0.71) mm, respectively. The maximal width of the facial recess was (2.73 +/- 0.20) mm. The value at level of stapes and round window were (2.48 +/- 0.20 mm) and (2.24 +/- 0.18) mm, respectively. Distance between pyramidalis eminence and anterior round window was (2.22 +/- 0.21) mm. Width from stapes to underneath round window was (2.16 +/- 0.14) mm. These parameters provide a reference value to determine the position of cochlear inserting the electrode array into the scale tympani and opening facial recess firstly to avoid potential damage to facial nerve in surgery.
Effect of middle ear fluid on sound transmission and auditory brainstem response in guinea pigs.
Guan, Xiying; Gan, Rong Z
2011-07-01
Combined measurements of middle ear transfer function and auditory brainstem response (ABR) in live guinea pigs with middle ear effusion (MEE) are reported in this paper. The MEE model was created by injecting saline into the middle ear cavity. Vibrations of the tympanic membrane (TM), the tip of the incus, and the round window membrane (RWM) were measured with a laser vibrometer at frequencies of 0.2-40 kHz when the middle ear fluid increased from 0 to 0.2 ml (i.e., full fill of the cavity). The click and pure tone ABRs were recorded as the middle ear fluid increased. Fluid introduction reduced mobility of the TM, incus and RWM mainly at high frequencies (f > 1 kHz). The magnitude of this reduction was related to the volume of fluid. The displacement transmission ratio of the TM to incus varied with frequency and fluid level. The volume displacement ratio of the oval window to round window was approximately 1.0 over most frequencies. Elevation of ABR thresholds and prolongation of ABR latencies were observed as fluid level increased. Reduction of TM displacement correlated well with elevation of ABR threshold at 0.5-8 kHz. Alterations in the ratio of ossicular displacements before and after fluid induction are consistent with fluid-induced changes in complex ossicular motions. Copyright © 2011 Elsevier B.V. All rights reserved.
Anatomical measurement of the ossicles in patients with congenital aural atresia and stenosis.
Li, Jieying; Chen, Keguang; Li, Chenlong; Yin, Dongming; Zhang, Tianyu; Dai, Peidong
2017-10-01
Our aims were to measure and compare anatomical parameters of the ossicles in normal, congenital aural stenosis (CAS), and congenital aural atresia (CAA) ears. This retrospective study was performed using three-dimensional reconstructed images derived from computed tomography scans of 20 normal subjects, 20 CAS patients, and 20 CAA patients. The lengths of the malleus handle and long process of the incus were greater in normal ears than in CAS and CAA ears (all P < 0.05). The angles of the incudostapedial joint and between the short and long processes of the incus were smaller in normal ears than in CAS and CAA ears (all P < 0.05). There were no significant differences in the positions of the malleus head and incudomalleolar joint, the size of the malleus head, the length of the short process of the incus, or the angle of the incudomalleolar joint (P > 0.05). Anatomical parameters of the lower part, but not of the upper part, of the ossicular chain in CAS and CAA ears differed from those in normal ears. Different branchial arch origins of the upper and lower parts of the ossicular chain may explain these findings. Dysplasia of the second arch, which develops into the lower part of the ossicular chain, may contribute to ossicular malformation in CAA and CAS. Accurate radiographic measurement of malformed ossicles may be useful for reconstructive surgery of CAA and CAS using the patient's native ossicular chain and for choosing an appropriate place for active middle ear implants. Copyright © 2017. Published by Elsevier B.V.
Experimental measurement and modeling analysis on mechanical properties of incudostapedial joint
Zhang, Xiangming
2011-01-01
The incudostapedial (IS) joint between the incus and stapes is a synovial joint consisting of joint capsule, cartilage, and synovial fluid. The mechanical properties of the IS joint directly affect the middle ear transfer function for sound transmission. However, due to the complexity and small size of the joint, the mechanical properties of the IS joint have not been reported in the literature. In this paper, we report our current study on mechanical properties of human IS joint using both experimental measurement and finite element (FE) modeling analysis. Eight IS joint samples with the incus and stapes attached were harvested from human cadaver temporal bones. Tension, compression, stress relaxation and failure tests were performed on those samples in a micro-material testing system. An analytical approach with the hyperelastic Ogden model and a 3D FE model of the IS joint including the cartilage, joint capsule, and synovial fluid were employed to derive mechanical parameters of the IS joint. The comparison of measurements and modeling results reveals the relationship between the mechanical properties and structure of the IS joint. PMID:21061141
Experimental measurement and modeling analysis on mechanical properties of incudostapedial joint.
Zhang, Xiangming; Gan, Rong Z
2011-10-01
The incudostapedial (IS) joint between the incus and stapes is a synovial joint consisting of joint capsule, cartilage, and synovial fluid. The mechanical properties of the IS joint directly affect the middle ear transfer function for sound transmission. However, due to the complexity and small size of the joint, the mechanical properties of the IS joint have not been reported in the literature. In this paper, we report our current study on mechanical properties of human IS joint using both experimental measurement and finite element (FE) modeling analysis. Eight IS joint samples with the incus and stapes attached were harvested from human cadaver temporal bones. Tension, compression, stress relaxation and failure tests were performed on those samples in a micro-material testing system. An analytical approach with the hyperelastic Ogden model and a 3D FE model of the IS joint including the cartilage, joint capsule, and synovial fluid were employed to derive mechanical parameters of the IS joint. The comparison of measurements and modeling results reveals the relationship between the mechanical properties and structure of the IS joint.
[The use of palisade technique in tympanoplasties after Heermann].
Wielgosz, Romuald; Mroczkowski, Edward
2006-01-01
The palisade tympanoplasties-technique with using of tragal and conchal autografts for reconstruction of the tympanic membrane and the auditory canal wall was described. The operation started with the endaural incision. Tragal and conchal autograft palisade fragments with perichondrium for reconstruction of the tympanic membrane and the auditory canal wall have been used up to 1996 in 15,300 cases. We placed palisaded cartilage fragments parallel to the manubrium of the malleus in type I tympanoplasties and in type II or III procedures parallel to the long process of the incus. The "tunnel plasty" in the eustachian tubal entrance is performed with "simmering", "architrave" and "anti-architrave" to keep the tubal entrance open. This "tunnel plasty" results in a nice reconstruction of the tympano-meatal niche. The "annulus-stapes plate" in type III tympanoplasties replaces the function of the incus, crossing the promontory and reducing adhesions. This annulus-stapes bridge is fixed with a further palisade cartilage, "step plasty", which connects the "tunnel-plasty" with "annulus-stapes plate". The palisade-epitympanum-antrum plasty allows ventilation of the antrum via a tunnel constructed of well-fitting parallel pieces of cartilage fixed by self-tension (no glue) and replacing the bony canal wall. The "columella-tunnel plasty" has an L-shaped notch in the "annulus-stapes plate" fixing a columella of cartilage, placed in the oval window. Only in a case with a narrow oval window niche, a type IV palisade plasty can be performed or a prosthesis placed. The "annulus-stapes cartilage plate" is more stable reconstruction in type III tympanoplasties than are incus of foreign body interpositions. Adhesions on the promontory are found more often with fascia than with cartilage fragments. Histologic study of autograft cartilage showed good preservation of cartilage cells even 26 years after transplantation. The use of palisade cartilage technique brings very good functional and better long-term results.
Reassessment of the La Ferrassie 3 Neandertal ossicular chain.
Quam, Rolf; Martínez, Ignacio; Arsuaga, Juan Luis
2013-04-01
The ossicular chain in La Ferrassie 3 was briefly described in the monograph on the La Ferrassie Neandertal children, but to date has not been the subject of detailed study. We provide new data on these important fossils and re-examine some previous suggestions of derived Neandertal features in the middle ear ossicles based on more limited evidence. The malleus shows a curved lateral margin of the manubrium and a relatively large head. The incus shows a tall articular facet, a depressed area on the medial surface of the body, a straight anterior border of the long process and a more closed angle between the processes. The stapes shows an asymmetrical configuration of the crura, with an anteriorly skewed head, and generally small dimensions, including a smaller and relatively wider stapedial footplate. These same features can also be seen in the few other Neandertal ear ossicles known, suggesting that a consistent anatomical pattern characterizes the Neandertal ossicular chain. While the phylogenetic polarity of many of these features remains to be clarified, the asymmetrical stapes and anteriorly skewed stapedial head appear to be derived Neandertal features. In addition, while the larger malleus head and incus articular facet in La Ferrassie 3 might reflect larger body mass in Neandertals, the larger stapes footplates in Homo sapiens cannot be explained by changes in body mass. Indeed, H. sapiens seems to depart from the general mammalian pattern in combining an increase in stapes footplate size with a decrease in body mass. Although the malleus/incus lever ratio in La Ferrassie 3 is similar to that in H. sapiens, Neandertals appear to be characterized by a slightly different spatial relationship and articulation of the ossicular chain within the tympanic cavity. While only limited inferences can be drawn regarding hearing ability based on the ossicles, the few physiologically relevant dimensions in the La Ferrassie 3 ear bones are similar to H. sapiens. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hato, Naohito; Kohno, Hisashi; Okada, Masahiro; Hakuba, Nobuhiro; Gyo, Kiyofumi; Iwakura, Takashi; Tateno, Makoto
2006-08-01
We developed an ossicular vibration tester for the objective and quantitative assessment of ossicular mobility, which is one of the most critical factors affecting postoperative hearing after tympanoplasty. Our device consists of three components: a probe shaft with a curved tip to be attached to the target ossicle, a vibration exciter to activate the probe, and a piezoelectric sensor to detect vibrations of the probe. These components are encased in a stainless steel holder, allowing easy hand manipulation during ear surgery. The probe is activated with an electric signal at around 1,600 Hz. The system is controlled with a laptop computer, and the results are presented as the ratio of the ossicular resistance (ROR) to a reference value as a percentage. One measurement takes 10 ms. The device was applied in four selected patients during ear surgery. Several measurements in two of the cochlear implantees showed a greater difference in the RORs of the stapes (15-20% in Case 1 and 35-45% in Case 2), whereas the RORs of the malleus and incus were within the same range. This was thought to correspond to the partial cochlear calcification noted in Case 2. In Case 3, who underwent surgery because of otosclerosis, the ROR of the stapes was high, ranging from 70 to 80%. When measured for the malleus-incus fixation anomaly (Case 4), the ROR of the malleus and incus was in the range of 60 to 70%. Owing to the limited surgical view, the ROR of the stapes could not be measured. No problems related to the measurements with this device were noted. The design, principles, measuring procedures, and preliminary results of our new tool for testing ossicular mobility are reported. Measuring the ossicular mobility during surgery may provide important information for deciding the surgical procedures.
Müller, J; Schön, F; Helms, J
1998-04-01
There is a reported 1% incidence of delayed migration of extrusions of the electrode arrays out of the cochlea. A titanium clip to fix the electrode array of the MED EL Combi 40 Cochlear Implant System is described. The clip is designed and shaped in a double U configuration. The clip material allows easy adaption to the individual anatomical situation. The clip is fixed to a bony bridge at the incus bar and fixes the electrode in a plane parallel to the chorda facial angle. It is closed around the electrode similarly to a stapes piston around the incus. Additional tests which examined the possible risk of damaging the electrode carrier and clinical findings are described. The clip was used in 23 cases with a follow-up period up to 1 year. No signs for dislocation of the electrode were found. In one revision case the clip was covered with a thin mucosal layer. The electrode array showed no signs of damage. Intraoperative findings confirmed the experimental tests on the electrode fixation. The titanium clip facilitates safe and quick fixation of the electrode array and prevents dislocation. its flexibility and shape minimizes the risk of damage.
Journal of Special Operations Medicine. Volume 2, Edition 1, Winter 2002
2002-01-01
regarding clean surgi- cal procedures that an antibiotic treatment regime must be based upon the expected pathogens, appro- priate pharmacokinetic properties...conduction apparatus toDiagram of ear Auricle Epitympanic recess Malleus (head) Incus Crura of stapes Tegmen tympani Cochlear nerve Vesibular nerve Facial...Prominence of lateral semicircular canal Scala vestibuli Cochlear duct containing spiral organ (of Corti) Scala tympaniAuditory (Eustachian) tube Round
Gao, Ruzhen; Wang, Yun; Fan, Yue; Ai, Xing; Zhang, Xiaona; Xue, Huadan; Chen, Xiaowei; Jin, Zhengyu
2012-12-01
To determine the anatomic differences in patients of atresia by using high-resolution computed tomography (HRCT) and 3D volume rendered (VR) CT. High-resolution computed tomography (HRCT) was performed in 43 atresia patients including 34 unilateral atresia patients (n=34, 26 males, 8 females, mean age 13.82 years, range 8-19 years) and 9 bilateral atresia patients (6 males, 3 females, mean age 13.2 years, range 9-19 years). HRCT and 3D VR findings were compared with those in 43 normal ears of the unilateral atresia patients with normal PTA results (n=34, 26 males, 8 females, mean age 13.82 years, range 8-19 years) and 11 patients with sensorineural hearing loss but with no associated aplasia of the middle and inner ear (n=22, 7 males and 4 females, range 8-20.8 years, median age of 13.4 years) by using the independent one sample T test. On the HRCT images, the angle between the basic line and the tympanic segment of the facial nerve is more acute. And the area of the malleus-incus-joint or the malleus-incus-complex in the diseased ears is smaller than that in the control subjects (P<0.05). The tympanic segment is shorter and the area of the tympanic cavity is smaller in the atresia group, while the diameter of the oval window is also smaller in atresia group than that in the control group (P<0.05). The morphologic differences of the small ossicles and the entire length of the tympanic and mastoid segments can be depicted on a single 3D VR CT image. The facial nerve demonstrates abnormal lateral and anterior displacement in the CAA patients and the area of the Malleus-incus-joint and the tympanic cavity are significantly smaller, and the oval window is much narrower in the control group. HRCT and 3D VR CT provide valuable information about preoperative planning of patients with CAA. Measurements of all the angles and length serve as useful adjunct measurements in determining surgical candidacy. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
A dynamic and harmonic damped finite element analysis model of stapedotomy.
Blayney, A W; Williams, K R; Rice, H J
1997-03-01
This study was undertaken in an attempt to better understand the mechanics of sound transmission at the footplate following stapedotomy. The insertion of a Teflon (polytetrafluoroethylene) stapes prosthesis introduces new constraints within the reconstructed ossicular chain which have an effect on the normal vibration patterns of the tympanic membrane. In a finite element model of the ear, constraints have been reproduced as a series of spring constants in the incus/prosthesis/footplate interfaces incorporating damping to simulate the impedance of the inner ear. At zero damping, the frequency response at the pseudo stapes footplate exhibit several maxima and minima between 800 Hz and 2.5 Hz. At higher damping values, these maxima and minima become smoothened out with two or three naturals occurring over the same frequency range. Severe ankylosis of a diseased footplate is reproduced by over-damped conditions. The umbo, incus and stapes footplate vibrate in phase with similar frequencies at light damping levels. The movement of the prosthesis at the pseudo-footplate can be large in the out of plane axis of the ossicular chain, unless sufficient support is provided at the reconstructed footplate. Clinically, this would suggest the vein graft interposed between the piston and stapedotomy hole should endow resistance and elasticity to the system.
Koch, Martin; Seidler, Hannes; Hellmuth, Alexander; Bornitz, Matthias; Lasurashvili, Nikoloz; Zahnert, Thomas
2013-07-01
There is a great demand for implantable microphones for future generations of implantable hearing aids, especially Cochlea Implants. An implantable middle ear microphone based on a piezoelectric membrane sensor for insertion into the incudostapedial gap is investigated. The sensor is designed to measure the sound-induced forces acting on the center of the membrane. The sensor mechanically couples to the adjacent ossicles via two contact areas, the sensor membrane and the sensor housing. The sensing element is a piezoelectric single crystal bonded on a titanium membrane. The sensor allows a minimally invasive and reversible implantation without removal of ossicles and without additional sensor fixation in the tympanic cavity. This study investigates the implantable microphone sensor and its implantation concept. It intends to quantify the influence of the sensor's insertion position on the achievable microphone sensitivity. The investigation considers anatomical and pathological variations of the middle ear geometry and its space limitations. Temporal bone experiments on a laboratory model show that anatomical and pathological variations of the middle ear geometry can prevent the sensor from being placed optimally within the incudostapedial joint. Beyond scattering of transfer functions due to anatomic variations of individual middle ears there is the impact of variations in the sensor position within the ossicular chain that has a considerable effect on the transfer characteristics of the middle ear microphone. The centering of the sensor between incus and stapes, the direction of insertion (membrane to stapes or to incus) and the effect of additional contact points with surrounding anatomic structures affect the signal yield of the implanted sensor. The presence of additional contact points has a considerably impact on the sensitivity, yet the microphone sensitivity is quite robust against small changes in the positioning of the incus on the sensor. Signal losses can be avoided by adjusting the position of the sensor within the joint. The findings allow the development of an improved surgical insertion technique to ensure maximally achievable signal yield of the membrane sensor in the ISJ and provides valuable knowledge for a future design considerations including sensor miniaturization and geometry. Measurements of the implanted sensor in temporal bone specimens showed a microphone sensitivity in the order of 1 mV/Pa. This article is part of a special issue entitled "MEMRO 2012". Copyright © 2012 Elsevier B.V. All rights reserved.
Stapedotomy in osteogenesis imperfecta: a prospective study of 32 consecutive cases.
Vincent, Robert; Wegner, Inge; Stegeman, Inge; Grolman, Wilko
2014-12-01
To prospectively evaluate hearing outcomes in patients with osteogenesis imperfecta undergoing primary stapes surgery and to isolate prognostic factors for success. A nonrandomized, open, prospective case series. A tertiary referral center. Twenty-five consecutive patients who underwent 32 primary stapedotomies for osteogenesis imperfecta with evidence of stapes fixation and available postoperative pure-tone audiometry. Primary stapedotomy with vein graft interposition and reconstruction with a regular Teflon piston or bucket handle-type piston. Preoperative and postoperative audiometric evaluation using conventional 4-frequency (0.5, 1, 2, and 4 kHz) audiometry. Air-conduction thresholds, bone-conduction thresholds, and air-bone gap were measured. The overall audiometric results as well as the results of audiometric evaluation at 3 months and at least 1 year after surgery were used. Overall, postoperative air-bone gap closure to within 10 dB was achieved in 88% of cases. Mean (standard deviation) gain in air-conduction threshold was 22 (9.4) dB for the entire case series, and mean (standard deviation) air-bone gap closure was 22 (9.0) dB. Backward multivariate logistic regression showed that a model with preoperative air-bone gap closure and intraoperatively established incus length accurately predicts success after primary stapes surgery. Stapes surgery is a feasible and safe treatment option in patients with osteogenesis imperfecta. Success is associated with preoperative air-bone gap and intraoperatively established incus length.
Requirement for Jagged1-Notch2 signaling in patterning the bones of the mouse and human middle ear.
Teng, Camilla S; Yen, Hai-Yun; Barske, Lindsey; Smith, Bea; Llamas, Juan; Segil, Neil; Go, John; Sanchez-Lara, Pedro A; Maxson, Robert E; Crump, J Gage
2017-05-31
Whereas Jagged1-Notch2 signaling is known to pattern the sensorineural components of the inner ear, its role in middle ear development has been less clear. We previously reported a role for Jagged-Notch signaling in shaping skeletal elements derived from the first two pharyngeal arches of zebrafish. Here we show a conserved requirement for Jagged1-Notch2 signaling in patterning the stapes and incus middle ear bones derived from the equivalent pharyngeal arches of mammals. Mice lacking Jagged1 or Notch2 in neural crest-derived cells (NCCs) of the pharyngeal arches display a malformed stapes. Heterozygous Jagged1 knockout mice, a model for Alagille Syndrome (AGS), also display stapes and incus defects. We find that Jagged1-Notch2 signaling functions early to pattern the stapes cartilage template, with stapes malformations correlating with hearing loss across all frequencies. We observe similar stapes defects and hearing loss in one patient with heterozygous JAGGED1 loss, and a diversity of conductive and sensorineural hearing loss in nearly half of AGS patients, many of which carry JAGGED1 mutations. Our findings reveal deep conservation of Jagged1-Notch2 signaling in patterning the pharyngeal arches from fish to mouse to man, despite the very different functions of their skeletal derivatives in jaw support and sound transduction.
[Computerized study of perioperative difficulties of stapedectomy].
Cadavid Zink, R; Ballivian, H; Gamboa, F J; Olaizola, F
1993-01-01
A retrospective study of 1035 stapedectomies was performed to assess the incidence of intraoperative complications between 1972-1990. We found 45.89% of complications. We divided this alterations in 6 groups: 1) hemorrhage (20.67%), 2) stapes, foot plate, oval window (8.40%), 3) alterations in the middle ear (6.85%), 4) alterations in the incus (3.76%), 5) alterations in the external ear canal (3.57%) and 6) problems with protesis or graf (2.60%). We have analyzed these complications. We propose to carry out the solutions.
Kamrava, Brandon; Roehm, Pamela C
2017-08-01
Objective To systematically review the anatomy of the ossicular chain. Data Sources Google Scholar, PubMed, and otologic textbooks. Review Methods A systematic literature search was performed on January 26, 2015. Search terms used to discover articles consisted of combinations of 2 keywords. One keyword from both groups was used: [ ossicular, ossicle, malleus, incus, stapes] and [ morphology, morphometric, anatomy, variation, physiology], yielding more than 50,000 hits. Articles were then screened by title and abstract if they did not contain information relevant to human ossicular chain anatomy. In addition to this search, references of selected articles were studied as well as suggested relevant articles from publication databases. Standard otologic textbooks were screened using the search criteria. Results Thirty-three sources were selected for use in this review. From these studies, data on the composition, physiology, morphology, and morphometrics were acquired. In addition, any correlations or lack of correlations between features of the ossicular chain and other features of the ossicular chain or patient were noted, with bilateral symmetry between ossicles being the only important correlation reported. Conclusion There was significant variation in all dimensions of each ossicle between individuals, given that degree of variation, custom fitting, or custom manufacturing of prostheses for each patient could optimize prosthesis fit. From published data, an accurate 3-dimensional model of the malleus, incus, and stapes can be created, which can then be further modified for each patient's individual anatomy.
Hearing Outcome With the Use of Glass Ionomer Cement as an Alternative to Crimping in Stapedotomy.
Elzayat, Saad; Younes, Ahmed; Fouad, Ayman; Erfan, Fatthe; Mahrous, Ali
2017-10-01
To evaluate early hearing outcomes using glass ionomer cement to fix the Teflon piston prosthesis onto the long process of incus to minimize residual conductive hearing loss after stapedotomy. Original report of prospective randomized control study. Tertiary referral center. A total of 80 consecutive patients with otosclerosis were randomized into two groups. Group A is a control group in which 40 patients underwent small fenestra stapedotomy using the classic technique. Group B included 40 patients who were subjected to small fenestra stapedotomy with fixation of the incus-prosthesis junction with glass ionomer bone cement. Stapedotomy with the classical technique in group A and the alternative technique in group B. The audiometric results before and after surgery. Analysis of the results was performed using the paired t test to compare between pre and postoperative results. χ test was used to compare the results of the two groups. A p value less than 0.05 was considered significant from the statistical standpoint. Significant postoperative improvement of both pure-tone air conduction thresholds and air-bone gaps were reported in the two studied groups. The postoperative average residual air-bone gap and hearing gain were statistically significant in group B (p < 0.05) compared with group A. The use of glass ionomer bone cement in primary otosclerosis surgery using the aforementioned prosthesis and the surgical technique is of significant value in producing maximal closure of the air-bone gap and better audiological outcomes.
Lavender, Danielle; Taraskin, Sergei N; Mason, Matthew J
2011-12-01
The middle ears of seven species of rodents, including four hamster species, were examined under light microscopy and through micro-CT imaging. Hamsters were found to possess a spectrum of ossicular morphologies ranging from something approaching "freely mobile" (Mesocricetus) to something nearer the "microtype" (Cricetulus), although no hamster has an orbicular apophysis of the malleus. Rats, mice and Calomyscus were found to have typically microtype ossicles. To explore the functional effects of these morphological differences, CT scan data were used to calculate the magnitudes of the moments of inertia and positions of the centres of mass and principal rotational axes for the malleus-incus complexes. Microtype species were found to have much greater ossicular inertias, relative to size, about the "anatomical axis" extending between anterior process of the malleus and short process of the incus; ossicular centres of mass were displaced further from this axis. Calculated inertial values were then put into an existing model of middle ear function (Hemilä et al., 1995), in order to see whether the more accurate data would improve predictions of upper hearing limits. For the rat and mouse they did, but this was not so for the hamster Mesocricetus. This might indicate that the inner rather than the middle ear limits hearing in this species, or might simply reflect other shortcomings of the model. Functional differences appear to exist even among rodent ears of the same general type, but the adaptive significance of these differences remains enigmatic. Copyright © 2011 Elsevier B.V. All rights reserved.
Mason, Matthew J.; Cornwall, Hannah L.; Smith, Ewan St. J.
2016-01-01
Although increasingly popular as a laboratory species, very little is known about the peripheral auditory system of the naked mole-rat, Heterocephalus glaber. In this study, middle and inner ears of naked mole-rats of a range of ages were examined using micro-computed tomography and dissection. The ears of five other bathyergid species (Bathyergus suillus, Cryptomys hottentotus, Fukomys micklemi, Georychus capensis and Heliophobius argenteocinereus) were examined for comparative purposes. The middle ears of bathyergids show features commonly found in other members of the Ctenohystrica rodent clade, including a fused malleus and incus, a synovial stapedio-vestibular articulation and the loss of the stapedius muscle. Heterocephalus deviates morphologically from the other bathyergids examined in that it has a more complex mastoid cavity structure, poorly-ossified processes of the malleus and incus, a ‘columelliform’ stapes and fewer cochlear turns. Bathyergids have semicircular canals with unusually wide diameters relative to their radii of curvature. How the lateral semicircular canal reaches the vestibule differs between species. Heterocephalus has much more limited high-frequency hearing than would be predicted from its small ear structures. The spongy bone forming its ossicular processes, the weak incudo-stapedial articulation, the columelliform stapes and (compared to other bathyergids) reduced cochlear coiling are all potentially degenerate features which might reflect a lack of selective pressure on its peripheral auditory system. Substantial intraspecific differences were found in certain middle and inner ear structures, which might also result from relaxed selective pressures. However, such interpretations must be treated with caution in the absence of experimental evidence. PMID:27926945
Middle ear bones of a mid-gestation ruminant foetus extracted from x-ray computed tomography
NASA Astrophysics Data System (ADS)
Costeur, Loic; Mennecart, Bastien; Müller, Bert; Schulz, Georg
2016-10-01
The timing of ossification of middle ear ossicles has been extensively studied in humans. This is an exception since it is vastly unknown in the +5000 extant species of placentals. As a preliminary approach, a cow foetus (around 115 days of gestation) was visualized using X-ray microtomography (μCT) and the ossicles including stapes, incus, and malleus could be extracted from the data set. All three bones have already undergone substantial ossification, which allow comparison to adult middle ear bones. Their ossification at this stage parallels ossification in humans at a comparable stage of gestation. While full ossification is not yet achieved almost all the morphological characters of the ossicles are observed. Bone tissue is still very porous, the stapes does not have the characteristic plate-like footplate, the lenticular process of the incus is missing and the manubrium of the malleus is very thin and not yet complete. Despite all this, the ossicles are articulate with each other and perfectly with the bony labyrinth. The stapes footplate is positioned on the oval window but is smaller than the latter while it should perfectly fit to transmit sound vibrations to the cochlea. All ossicles, especially the stapes, have not yet reached adult size, while the bony labyrinth already has. This is the first detailed description of a set of middle ear bones in a placental at mid-gestation based on high-resolution μCT. Similarities in ossification timing with humans encourage more work to be done on foetuses to understand if a general rule for placental mammals exists.
[High-resolution computed tomography in stapes surgery].
Oberascher, G; Grobovschek, M
1987-06-01
Early and delayed complications in the inner or middle ear may follow stapedectomy or stapedotomy and may require revision surgery. Nowadays high resolution middle ear computed tomography (HR-MCT) using a special interpolation technique can demonstrate the smallest structures of the middle ear space, such as the long process of the incus and stapes. Stapes prostheses can also be seen in this way, but to identify the prothesis exactly it is necessary to determine the position of the piston hook in relation to the incus and of the piston shaft to the foot plate and scala vestibuli. Two points were of particular interest to us: HR-MCT identification of various metal and plastic pistons. Clinical significance of HR-MCT in complications following surgery. As the result of our experimental research on cadaver temporal bones, pistons must still be divided into four groups based on their demonstration by HR-MCT: Group I (e.g. Stainless Steel Cup Piston): whole piston visible. Group II (e.g. McGee Stainless Steel Piston): only piston shaft. Group III (Fisch Teflon-Platinum Piston): only hook visible. Group IV (e.g. Fisch Teflon-Wire Piston): piston hardly visible or not at all. In groups I-III it is possible to discover whether the piston is too long or too short, whether it is dislocated or has slipped. Group IV pistons, hooks from group II and the shaft from group III must be changed to allow detection by x-rays. With plastic pistons it might be possible to add an x-ray agent.2+ improvements in manufacture appear to be necessary, dislocation of various prostheses can now be shown.(ABSTRACT TRUNCATED AT 250 WORDS)
Anatomy, Physiology and Function of the Auditory System
NASA Astrophysics Data System (ADS)
Kollmeier, Birger
The human ear consists of the outer ear (pinna or concha, outer ear canal, tympanic membrane), the middle ear (middle ear cavity with the three ossicles malleus, incus and stapes) and the inner ear (cochlea which is connected to the three semicircular canals by the vestibule, which provides the sense of balance). The cochlea is connected to the brain stem via the eighth brain nerve, i.e. the vestibular cochlear nerve or nervus statoacusticus. Subsequently, the acoustical information is processed by the brain at various levels of the auditory system. An overview about the anatomy of the auditory system is provided by Figure 1.
Numerical analysis of ossicular chain lesion of human ear
NASA Astrophysics Data System (ADS)
Liu, Yingxi; Li, Sheng; Sun, Xiuzhen
2009-04-01
Lesion of ossicular chain is a common ear disease impairing the sense of hearing. A comprehensive numerical model of human ear can provide better understanding of sound transmission. In this study, we propose a three-dimensional finite element model of human ear that incorporates the canal, tympanic membrane, ossicular bones, middle ear suspensory ligaments/muscles, middle ear cavity and inner ear fluid. Numerical analysis is conducted and employed to predict the effects of middle ear cavity, malleus handle defect, hypoplasia of the long process of incus, and stapedial crus defect on sound transmission. The present finite element model is shown to be reasonable in predicting the ossicular mechanics of human ear.
Floating-Harbor syndrome associated with middle ear abnormalities.
Hendrickx, Jan-Jaap; Keymolen, Kathelijn; Desprechins, Brigitte; Casselman, Jan; Gordts, Frans
2010-01-01
Floating-Harbor syndrome is a rare syndrome of unknown etiology, which was first described in 1973. A triad of main features characterizes Floating-Harbor syndrome: short stature, characteristic face, and an expressive speech delay. We present a patient in whom the hearing thresholds improved insufficiently after placement of grommets. High-resolution CT scan of the temporal bone showed a prominent soft-tissue thickening suspected of causing fixation of the malleus, and fusion of the malleus head with the body of the incus. To our knowledge this is the first reported abnormal middle ear anatomy in a patient with Floating-Harbor syndrome. A conservative treatment with hearing aids was preferred as an initial treatment in favor of a surgical exploration.
HRCT Correlation with Round Window Identification during Cochlear Implantation in Children.
Pendem, Sai Kiran; Rangasami, Rajeswaran; Arunachalam, Ravi Kumar; Mohanarangam, Venkata Sai Pulivadulu; Natarajan, Paarthipan
2014-01-01
To determine the accuracy of High Resolution Computer Tomography (HRCT) temporal bone measurements in predicting the actual visualization of round window niche as viewed through posterior tympanotomy (i.e. facial recess). This is a prospective study of 37 cochlear implant candidates, aged between 1and 6 years, who were referred for HRCT temporal bone during the period December 2013 to July 2014. Cochlear implantation was done in 37 children (25 in the right ear and 12 in the left ear). The distance between the short process of incus and the round window niche and the distance between the oval window and the round window niche were measured preoperatively on sub-millimeter (0.7 mm) HRCT images. We classified the visibility of round window niche based on the surgical view (i.e. through posterior tympanotomy) during surgery into three types: 1) Type 1- fully visible, 2) Type 2- partially visible, and 3) Type 3- difficult to visualize. The preoperative HRCT measurements were used to predict the type of visualization of round window niche before surgery and correlated with the findings during surgery. The mean and standard deviation for the distance between the short process of incus and the round window niche and for the distance between the oval window and the round window niche for Types 1, 2, and 3 were 8.5 ± 0.2 mm and 3.2 ± 0.2 mm, 8.0 ± 0.4 mm and 3.8 ± 0.2 mm, 7.5 ± 0.2 mm and 4.4 ± 0.2 mm respectively, and showed statistically significant difference (P < 0.01) between them. The preoperative HRCT measurements had a sensitivity and specificity of 92.3% and 96.2%, respectively, in determining the actual visualization of round window niche. This study shows preoperative HRCT temporal bone measurements are useful in predicting the actual visualization of round window niche as viewed through posterior tympanotomy.
Birk, Stephanie; Brase, Christoph; Hornung, Joachim
2014-08-01
In the further development of alloplastic prostheses for use in middle ear surgery, the Dresden and Cologne University Hospitals, working together with a company, introduced a new partial ossicular replacement prosthesis in 2011. The ball-and-socket joint between the prosthesis and the shaft mimics the natural articulations between the malleus and incus and between the incus and stapes, allowing reaction to movements of the tympanic membrane graft, particularly during the healing process. Retrospective evaluation To reconstruct sound conduction as part of a type III tympanoplasty, partial ossicular replacement prosthesis with a ball-and-socket joint between the plate and the shaft was implanted in 60 patients, with other standard partial ossicular replacement prosthesis implanted in 40 patients and 64 patients. Pure-tone audiometry was carried out, on average, 19 and 213 days after surgery. Results of the partial ossicular replacement prosthesis with a ball-and-socket joint between the plate and the shaft were compared with those of the standard prostheses. Early measurements showed a mean improvement of 3.3 dB in the air-bone gap (ABG) with the partial ossicular replacement prosthesis with a ball-and-socket joint between the plate and the shaft, giving similar results than the standard implants (6.6 and 6.0 dB, respectively), but the differences were not statistically significant. Later measurements showed a statistically significant improvement in the mean ABG, 11.5 dB, compared with 4.4 dB for one of the standard partial ossicular replacement prosthesis and a tendency of better results to 6.9 dB of the other standard prosthesis. In our patients, we achieved similarly good audiometric results to those already published for the partial ossicular replacement prosthesis with a ball-and-socket joint between the plate and the shaft. Intraoperative fixation posed no problems, and the postoperative complication rate was low.
Gyo, K; Yanagihara, N
1986-01-01
Ossicular mobility was assessed by direct coupling of a piezoelectric ceramic vibrator to the ossicles during middle ear surgery. The sites excited were body of the incus, head of the stapes, and footplate of the stapes through a hydroxyapatite ceramic strut. The threshold of the vibratory hearing was determined by the patient's response as a minimum audition, and the vibration threshold was obtained by subtracting the preoperative bone conduction threshold from the vibratory hearing threshold. The results were analyzed by the state of hearing after the operation, which revealed that a patient with a good vibration threshold during the operation had a tendency to get good postoperative hearing. This may mean that postoperative hearing can be predicted to some extent during the operation by the measurement of ossicular mobility.
Chapla, Marie E; Nowacek, Douglas P; Rommel, Sentiel A; Sadler, Valerie M
2007-06-01
The auditory anatomy of the Florida manatee (Trichechus manatus latirostris) was investigated using computerized tomography (CT), three-dimensional reconstructions, and traditional dissection of heads removed during necropsy. The densities (kg/m3) of the soft tissues of the head were measured directly using the displacement method and those of the soft tissues and bone were calculated from CT measurements (Hounsfield units). The manatee's fatty tissue was significantly less dense than the other soft tissues within the head (p<0.05). The squamosal bone was significantly less dense than the other bones of the head (p<0.05). Measurements of the ear bones (tympanic, periotic, malleus, incus, and stapes) collected during dissection revealed that the ossicular chain was overly massive for the mass of the tympanoperiotic complex.
Modeling microstructure of incudostapedial joint and the effect on cochlear input
NASA Astrophysics Data System (ADS)
Gan, Rong Z.; Wang, Xuelin
2015-12-01
The incudostapedial joint (ISJ) connects the incus to stapes in human ear and plays an important role for sound transmission from the tympanic membrane (TM) to cochlea. ISJ is a synovial joint composed of articular cartilage on the lenticular process and stapes head with the synovial fluid between them. However, there is no study on how the synovial ISJ affects the middle ear and cochlear functions. Recently, we have developed a 3-dimensinal finite element (FE) model of synovial ISJ and connected the model to our comprehensive FE model of the human ear. The motions of TM, stapes footplate, and basilar membrane and the pressures in scala vestibule and scala tympani were derived over frequencies and compared with experimental measurements. Results show that the synovial ISJ affects sound transmission into cochlea and the frequency-dependent viscoelastic behavior of ISJ provides protection for cochlea from high intensity sound.
Biomechanical Analysis of Hearing in Whales Using Nanoindentation and the Finite Element Method
NASA Astrophysics Data System (ADS)
Tubelli, Andrew A.; Zosuls, Aleks; Ketten, Darlene R.; Mountain, David C.
2011-11-01
The detailed biomechanics of hearing in baleen whales are almost entirely unknown. As a first step to predicting the audiogram for these species, a linear three-dimensional finite-element model of the minke whale (Balaenoptera acutorostrata) middle ear was developed. A reconstruction of the ear was made from CT scans and imported into a finite element solver. Young's modulus of the bone was estimated via nanoindentation. The middle-ear transfer function was estimated by applying a pressure to the glove finger (the thick, everted equivalent of the tympanic membrane) with velocity calculated at the stapes footplate. It was found that the most sensitive frequencies corresponded with vocalization frequencies. For all frequencies tested, the malleus-incus complex flexed about the anterior process of the malleus and the stapes rotated within the oval window. Results indictae that finite element modeling is a useful approach for studying the mechanics of hearing in species that are difficult to study in vivo.
Application of the Vibrant Soundbridge in bilateral congenital atresia in toddlers.
Frenzel, Henning; Hanke, Frauke; Beltrame, Millo; Wollenberg, Barbara
2010-08-01
The Vibrant Soundbridge offers an excellent audiologic rehabilitation for toddlers with microtia and atresia. It provides direct stimulation of the cochlea and straightforward adaption to the given anatomical structures. The 'posterior atresia incision' preserves the physical integrity of the tissue layers around the ear remnant, which is essential for an aesthetic auricular reconstruction. Patients with bilateral aural atresia require immediate auditory stimulation to ensure normal speech development. We present an operative technique that allows safe restoration of hearing before aesthetic reconstruction. A 6-year-old boy presented with bilateral microtia and osseous atresia. A hairline incision was performed through all layers and was followed by a subperiostal preparation towards the atresia plane. The fused malleus-incus-complex was removed and the transducer was crimped to the stapes suprastructure on both sides. Speech performance is nearly normal in both quiet and noise conditions. The surgery did not affect the tissues that are important for the later ear reconstruction.
Flexibility in the mouse middle ear: A finite element study of the frequency response
NASA Astrophysics Data System (ADS)
Gottlieb, Peter; Puria, Sunil
2018-05-01
The mammalian middle ear is comprised of three distinct ossicles, connected by joints, and suspended in an air-filled cavity. In most mammals, the ossicular joints are mobile synovial joints, which introduce flexibility into the ossicular chain. In some smaller rodents, however, these joints are less mobile, and in the mouse in particular, the malleus is additionally characterized by a large, thin plate known as the transversal lamina, which connects the manubrium to the incus-malleus joint (IMJ). We hypothesize that this feature acts as a functional joint, maintaining the benefits of a flexible ossicular chain despite a less-mobile IMJ, and tested this hypothesis with a finite element model of the mouse middle ear. The results showed that while fusing the ossicular joints had a negligible effect on sound transmission, stiffening the ossicular bone significantly reduced sound transmission, implying that bone flexibility plays a critical role in the normal function of the mouse middle ear.
Can you hear me now? Understanding vertebrate middle ear development
Chapman, Susan Caroline
2010-01-01
The middle ear is a composite organ formed from all three germ layers and the neural crest. It provides the link between the outside world and the inner ear, where sound is transduced and routed to the brain for processing. Extensive classical and modern studies have described the complex morphology and origin of the middle ear. Non-mammalian vertebrates have a single ossicle, the columella. Mammals have three functionally equivalent ossicles, designated the malleus, incus and stapes. In this review, I focus on the role of genes known to function in the middle ear. Genetic studies are beginning to unravel the induction and patterning of the multiple middle ear elements including the tympanum, skeletal elements, the air-filled cavity, and the insertion point into the inner ear oval window. Future studies that elucidate the integrated spatio-temporal signaling mechanisms required to pattern the middle ear organ system are needed. The longer-term translational benefits of understanding normal and abnormal ear development will have a direct impact on human health outcomes. PMID:21196256
A Jurassic gliding euharamiyidan mammal with an ear of five auditory bones
NASA Astrophysics Data System (ADS)
Han, Gang; Mao, Fangyuan; Bi, Shundong; Wang, Yuanqing; Meng, Jin
2017-11-01
Gliding is a distinctive locomotion type that has been identified in only three mammal species from the Mesozoic era. Here we describe another Jurassic glider that belongs to the euharamiyidan mammals and shows hair details on its gliding membrane that are highly similar to those of extant gliding mammals. This species possesses a five-boned auditory apparatus consisting of the stapes, incus, malleus, ectotympanic and surangular, representing, to our knowledge, the earliest known definitive mammalian middle ear. The surangular has not been previously identified in any mammalian middle ear, and the morphology of each auditory bone differs from those of known mammals and their kin. We conclude that gliding locomotion was probably common in euharamiyidans, which lends support to idea that there was a major adaptive radiation of mammals in the mid-Jurassic period. The acquisition of the auditory bones in euharamiyidans was related to the formation of the dentary-squamosal jaw joint, which allows a posterior chewing movement, and must have evolved independently from the middle ear structures of monotremes and therian mammals.
Kataoka, Yuko; Ikezono, Tetsuo; Fukushima, Kunihiro; Yuen, Koji; Maeda, Yukihide; Sugaya, Akiko; Nishizaki, Kazunori
2013-08-01
Perilymphatic fistula (PLF) is defined as an abnormal leakage between perilymph from the labyrinth to the middle ear. Symptoms include hearing loss, tinnitus, and vertigo. The standard mode of PLF detection is intraoperative visualization of perilymph leakage and fistula, which ostensibly confirms the existence of PLF. Other possible methods of diagnosis include confirmation of pneumolabyrinth via diagnostic imaging. Recently, a cochlin-tomoprotein (CTP) detection test has been developed that allows definitive diagnosis of PLF-related hearing loss. We report the case of a 45-year-old man who presented with right-sided tinnitus, hearing loss, and dizziness 30 years after stapes surgery. Middle ear lavage was performed after myringotomy. A preoperative diagnosis of PLF was reached using the CTP detection test. Intraoperative observations included a necrotic long process of the incus, displaced wire piston, and fibrous tissue in the oval window. Perilymph leakage was not evident. The oval window was closed with fascia, and vertigo disappeared within 2 weeks postoperatively. When PLF is suspected after stapes surgery, the CTP detection test can be a useful, highly sensitive, and less invasive method for preoperative diagnosis. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
The influence of the mechanical behaviour of the middle ear ligaments: a finite element analysis.
Gentil, F; Parente, M; Martins, P; Garbe, C; Jorge, R N; Ferreira, A; Tavares, João Manuel R S
2011-01-01
The interest in computer modelling of biomechanical systems, mainly by using the finite element method (FEM), has been increasing, in particular for analysis of the mechanical behaviour of the human ear. In this work, a finite element model of the middle ear was developed to study the dynamic structural response to harmonic vibrations for distinct sound pressure levels applied on the eardrum. The model includes different ligaments and muscle tendons with elastic and hyperelastic behaviour for these supportive structures. Additionally, the nonlinear behaviour of the ligaments and muscle tendons was investigated, as they are the connection between ossicles by contact formulation. Harmonic responses of the umbo and stapes footplate displacements, between 100 Hz and 10 kHz, were obtained and compared with previously published work. The stress state of ligaments (superior, lateral, and anterior of malleus and superior and posterior of incus) was analysed, with the focus on balance of the supportive structures of the middle ear, as ligaments make the link between the ossicular chain and the walls of the tympanic cavity. The results obtained in this work highlight the importance of using hyperelastic models to simulate the mechanical behaviour for the ligaments and tendons.
Choristoma of the middle ear: a component of a new syndrome?
Buckmiller, L M; Brodie, H A; Doyle, K J; Nemzek, W
2001-05-01
Salivary choristoma of the middle ear is a rare entity. The authors report the 26th known case, which is unique in several respects: the patient had abnormalities of the first and second branchial arches, as well as the otic capsule and facial nerve in ways not yet reported. Our patient presented with bilateral preauricular pits, conchal bands, an ipsilateral facial palsy, and bilateral Mondini-type deformities. A review of the literature revealed salivary choristomas of the middle ear to be frequently associated with branchial arch abnormalities, most commonly the second, as well as abnormalities of the facial nerve. All 25 cases were reviewed and the results reported with respect to clinical presentation, associated abnormalities, operative findings, and hearing results. It has been proposed that choristoma of the middle ear may represent a component of a syndrome along with unilateral hearing loss, abnormalities of the incus and/or stapes, and anomalies of the facial nerve. Eighty-six percent of the reported patients with choristoma have three or four of the four criteria listed to designate middle ear salivary choristoma as part of a syndrome. In the remaining four patients, all of the structures were not assessed.
Into the dark: patterns of middle ear adaptations in subterranean eulipotyphlan mammals
NASA Astrophysics Data System (ADS)
Koyabu, Daisuke; Hosojima, Misato; Endo, Hideki
2017-09-01
Evolution of the middle ear ossicles was a key innovation for mammals, enhancing the transmission of airborne sound. Radiation into various habitats from a terrestrial environment resulted in diversification of the auditory mechanisms among mammals. However, due to the paucity of phylogenetically controlled investigations, how middle ear traits have diversified with functional specialization remains unclear. In order to identify the respective patterns for various lifestyles and to gain insights into fossil forms, we employed a high-resolution tomography technique and compared the middle ear morphology of eulipotyphlan species (moles, shrews and hedgehogs), a group that has radiated into various environments, such as terrestrial, aquatic and subterranean habitats. Three-dimensional geometric morphometric analysis was conducted within a phylogenetically controlled framework. Quantitative shapes were found to strongly reflect the degree of subterranean lifestyle and weakly involve phylogeny. Our analyses demonstrate that subterranean adaptation should include a relatively shorter anterior process of the malleus, an enlarged incus, an enlarged stapes footplate and a reduction of the orbicular apophysis. These traits arguably allow improving low-frequency sound transmission at low frequencies and inhibiting the low-frequency noise which disturbs the subterranean animals in hearing airborne sounds.
Bone cement: how effective is it at restoring hearing in isolated incudostapedial erosion?
Watson, G J; Narayan, S
2014-08-01
To determine the effectiveness of biocements in rebridging isolated incudostapedial erosion. A review of the use of biocements for isolated incudostapedial joint erosion was performed on publications from 1998 to 2012 available from Medline, Embase and Pubmed. Inclusion criteria were papers published in English, case series or comparative studies with more than 10 patients, isolated incudostapedial erosion through chronic ear disease, minimal air-bone gap less than 20 dB (or air-bone gap less than 10 dB) and follow up for at least one year. In 108 patients, rebridging ossiculoplasty was performed using hydroxyapatite cement. Closure of air-bone gaps less than 20 dB and less than 10 dB was achieved in 80-94.4 per cent and 29-75 per cent, respectively. Glass ionomer cement was used in 318 patients. Closure of air-bone gaps less than 20 dB and less than 10 dB was achieved in 74-94 per cent and 40-76 per cent, respectively. Biocements can be successfully used to close isolated incudostapedial erosions. Larger comparative prospective studies documenting the length of eroded incus and types of reformation of the incudostapedial joint, with standardised reporting, are needed in the future.
Snik, A; Cremers, C
2004-02-01
Typically, an implantable hearing device consists of a transducer that is coupled to the ossicular chain and electronics. The coupling is of major importance. The Vibrant Soundbridge (VSB) is such an implantable device; normally, the VSB transducer is fixed to the ossicular chain by means of a special clip that is crimped around the long process of the incus. In addition to crimping, bone cement was used to optimize the fixation in six patients. Long-term results were compared to those of five controls with crimp fixation alone. To assess the effect of bone cement (SerenoCem, Corinthian Medical Ltd, Nottingham, UK) on hearing thresholds, long-term post-surgery thresholds were compared to pre-surgery thresholds. Bone cement did not have any negative effect. Next, to test the hypothesis that aided thresholds might be better with the use of bone cement, aided thresholds were studied. After correction for the severity of hearing loss, only a small difference was found between the two groups at one frequency, viz. 2 kHz. It was concluded that there was no negative effect of using bone cement; however, there is also no reason to use bone cement in VSB users on a regular basis.
Razavi, Payam; Ravicz, Michael E; Dobrev, Ivo; Cheng, Jeffrey Tao; Furlong, Cosme; Rosowski, John J
2016-10-01
The response of the tympanic membrane (TM) to transient environmental sounds and the contributions of different parts of the TM to middle-ear sound transmission were investigated by measuring the TM response to global transients (acoustic clicks) and to local transients (mechanical impulses) applied to the umbo and various locations on the TM. A lightly-fixed human temporal bone was prepared by removing the ear canal, inner ear, and stapes, leaving the incus, malleus, and TM intact. Motion of nearly the entire TM was measured by a digital holography system with a high speed camera at a rate of 42 000 frames per second, giving a temporal resolution of <24 μs for the duration of the TM response. The entire TM responded nearly instantaneously to acoustic transient stimuli, though the peak displacement and decay time constant varied with location. With local mechanical transients, the TM responded first locally at the site of stimulation, and the response spread approximately symmetrically and circumferentially around the umbo and manubrium. Acoustic and mechanical transients provide distinct and complementary stimuli for the study of TM response. Spatial variations in decay and rate of spread of response imply local variations in TM stiffness, mass, and damping. Copyright © 2016 Elsevier B.V. All rights reserved.
Development of a finite element model of the middle ear.
Williams, K R; Blayney, A W; Rice, H J
1996-01-01
A representative finite element model of the healthy ear is developed commencing with a description of the decoupled isotropic tympanic membrane. This model was shown to vibrate in a manner similar to that found both numerically (1, 2) and experimentally (8). The introduction of a fibre system into the membrane matrix significantly altered the modes of vibration. The first mode "remains as a piston like movement as for the isotropic membrane. However, higher modes show a simpler vibration pattern similar to the second mode but with a varying axis of movement and lower amplitudes. The introduction of a malleus and incus does not change the natural frequencies or mode shapes of the membrane for certain support conditions. When constraints are imposed along the ossicular chain by simulation of a cochlear impedance term then significantly altered modes can occur. More recently a revised model of the ear has been developed by the inclusion of the outer ear canal. This discretisation uses geometries extracted from a Nuclear Magnetic resonance scan of a healthy subject and a crude inner ear model using stiffness parameters ultimately fixed through a parameter tuning process. The subsequently tuned model showed behaviour consistent with previous findings and should provide a good basis for subsequent modelling of diseased ears and assessment of the performance of middle ear prostheses.
Impaired Vibration of Auditory Ossicles in Osteopetrotic Mice
Kanzaki, Sho; Takada, Yasunari; Niida, Shumpei; Takeda, Yoshihiro; Udagawa, Nobuyuki; Ogawa, Kaoru; Nango, Nobuhito; Momose, Atsushi; Matsuo, Koichi
2011-01-01
In the middle ear, a chain of three tiny bones (ie, malleus, incus, and stapes) vibrates to transmit sound from the tympanic membrane to the inner ear. Little is known about whether and how bone-resorbing osteoclasts play a role in the vibration of auditory ossicles. We analyzed hearing function and morphological features of auditory ossicles in osteopetrotic mice, which lack osteoclasts because of the deficiency of either cytokine RANKL or transcription factor c-Fos. The auditory brainstem response showed that mice of both genotypes experienced hearing loss, and laser Doppler vibrometry revealed that the malleus behind the tympanic membrane failed to vibrate. Histological analysis and X-ray tomographic microscopy using synchrotron radiation showed that auditory ossicles in osteopetrotic mice were thicker and more cartilaginous than those in control mice. Most interestingly, the malleal processus brevis touched the medial wall of the tympanic cavity in osteopetrotic mice, which was also the case for c-Src kinase–deficient mice (with normal numbers of nonresorbing osteoclasts). Osteopetrotic mice showed a smaller volume of the tympanic cavity but had larger auditory ossicles compared with controls. These data suggest that osteoclastic bone resorption is required for thinning of auditory ossicles and enlargement of the tympanic cavity so that auditory ossicles vibrate freely. PMID:21356377
Zhang, Jing; Tian, Jiabin; Ta, Na; Huang, Xinsheng; Rao, Zhushi
2016-08-01
Finite element method was employed in this study to analyze the change in performance of implantable hearing devices due to the consideration of soft tissues' viscoelasticity. An integrated finite element model of human ear including the external ear, middle ear and inner ear was first developed via reverse engineering and analyzed by acoustic-structure-fluid coupling. Viscoelastic properties of soft tissues in the middle ear were taken into consideration in this model. The model-derived dynamic responses including middle ear and cochlea functions showed a better agreement with experimental data at high frequencies above 3000 Hz than the Rayleigh-type damping. On this basis, a coupled finite element model consisting of the human ear and a piezoelectric actuator attached to the long process of incus was further constructed. Based on the electromechanical coupling analysis, equivalent sound pressure and power consumption of the actuator corresponding to viscoelasticity and Rayleigh damping were calculated using this model. The analytical results showed that the implant performance of the actuator evaluated using a finite element model considering viscoelastic properties gives a lower output above about 3 kHz than does Rayleigh damping model. Finite element model considering viscoelastic properties was more accurate to numerically evaluate implantable hearing devices. © IMechE 2016.
Sound pressure gain produced by the human middle ear.
Kurokawa, H; Goode, R L
1995-10-01
The acoustic function of the middle ear is to match sound passing from the low impedance of air to the high impedance of cochlear fluid. Little information is available on the actual middle ear pressure gain in human beings. This article describes experiments on middle ear pressure gain in six fresh human temporal bones. Stapes footplate displacement and phase were measured with a laser Doppler vibrometer before and after removal of the tympanic membrane, malleus, and incus. Acoustic insulation of the round window with clay was performed. Umbo displacement was also measured before tympanic membrane removal to assess baseline tympanic membrane function. The middle ear has its major gain in the lower frequencies, with a peak near 0.9 kHz. The mean gain was 23.0 dB below 1.0 kHz, the resonant frequency of the middle ear; the mean peak gain was 26.6 dB. Above 1.0 kHz, the second pressure gain decreased at a rate of -8.6 dB/octave, with a mean gain of 6.5 dB at 4.0 kHz. Only a small amount of gain was present above 7.0 kHz. Significant individual differences in pressure gain were found between ears that appeared related to variations in tympanic membrane function and not to variations in cochlear impedance.
[First experiences with a new nickel-titanium piston with a shape memory feature].
Hornung, J; Zenk, J; Schick, B; Wurm, J; Iro, H
2007-02-01
The aim of this study was to describe a new stapes prosthesis with memory characteristics for wire crimping (SMart-Piston). This technique was used in 15 patients (mean age 43.4 years; range 28-71) undergoing routine stapes surgery. SMart-Piston prostheses with a shaft diameter of 0.5 mm and length ranging from 4.25-4.5 mm were used. Heat induced wire crimping was performed by CO2 laser in five patients, and by bipolar diathermy forceps in ten patients. In 15 patients, postoperative audiological testing was performed at an average 21.9 days and in another 10 again after 435 days following surgery. The median observed air-bone-gap (ABG) postoperatively was 8.7 dB+/-7.7 dB. A total of 73% of all patients had an ABG of 10 dB or less, and all patients had less than 20 dB. In the ten patients controlled after 435 days, the ABG was 4.4 dB+/-2.4 dB. It was lower than 10 dB in all individuals. A critical point in every stapes surgery, the prosthesis fixation to the incus, is greatly facilitated by this novel technique. Long-term results in a larger group of patients are pending.
Razavi, Payam; Ravicz, Michael E.; Dobrev, Ivo; Cheng, Jeffrey Tao; Furlong, Cosme; Rosowski, John J.
2016-01-01
The response of the tympanic membrane (TM) to transient environmental sounds and the contributions of different parts of the TM to middle-ear sound transmission were investigated by measuring the TM response to global transients (acoustic clicks) and to local transients (mechanical impulses) applied to the umbo and various locations on the TM. A lightly-fixed human temporal bone was prepared by removing the ear canal, inner ear, and stapes, leaving the incus, malleus, and TM intact. Motion of nearly the entire TM was measured by a digital holography system with a high speed camera at a rate of 42 000 frames per second, giving a temporal resolution of <24 μs for the duration of the TM response. The entire TM responded nearly instantaneously to acoustic transient stimuli, though the peak displacement and decay time constant varied with location. With local mechanical transients, the TM responded first locally at the site of stimulation, and the response spread approximately symmetrically and circumferentially around the umbo and manubrium. Acoustic and mechanical transients provide distinct and complementary stimuli for the study of TM response. Spatial variations in decay and rate of spread of response imply local variations in TM stiffness, mass, and damping. PMID:26880098
Creation of a 3D printed temporal bone model from clinical CT data.
Cohen, Joss; Reyes, Samuel A
2015-01-01
Generate and describe the process of creating a 3D printed, rapid prototype temporal bone model from clinical quality CT images. We describe a technique to create an accurate, alterable, and reproducible rapid prototype temporal bone model using freely available software to segment clinical CT data and generate three different 3D models composed of ABS plastic. Each model was evaluated based on the appearance and size of anatomical structures and response to surgical drilling. Mastoid air cells had retained scaffolding material in the initial versions. This required modifying the model to allow drainage of the scaffolding material. External auditory canal dimensions were similar to those measured from the clinical data. Malleus, incus, oval window, round window, promontory, horizontal semicircular canal, and mastoid segment of the facial nerve canal were identified in all models. The stapes was only partially formed in two models and absent in the third. Qualitative feel of the ABS plastic was softer than bone. The pate produced by drilling was similar to bone dust when appropriate irrigation was used. We present a rapid prototype temporal bone model made based on clinical CT data using 3D printing technology. The model can be made quickly and inexpensively enough to have potential applications for educational training. Copyright © 2015 Elsevier Inc. All rights reserved.
Cordas, Emily A.; Ng, Lily; Hernandez, Arturo; Kaneshige, Masahiro; Cheng, Sheue-Yann
2012-01-01
Thyroid hormone is critical for auditory development and has well-known actions in the inner ear. However, less is known of thyroid hormone functions in the middle ear, which contains the ossicles (malleus, incus, stapes) that relay mechanical sound vibrations from the outer ear to the inner ear. During the later stages of middle ear development, prior to the onset of hearing, middle ear cavitation occurs, involving clearance of mesenchyme from the middle ear cavity while the immature cartilaginous ossicles attain appropriate size and ossify. Using in situ hybridization, we detected expression of Thra and Thrb genes encoding thyroid hormone receptors α1 and β (TRα1 and TRβ, respectively) in the immature ossicles, surrounding mesenchyme and tympanic membrane in the mouse. Thra+/PV mice that express a dominant-negative TRα1 protein exhibited deafness with elevated auditory thresholds and a range of middle ear abnormalities including chronic persistence of mesenchyme in the middle ear into adulthood, markedly enlarged ossicles, and delayed ossification of the ossicles. Congenitally hypothyroid Tshr−/− mice and TR-deficient Thra1−/−;Thrb−/− mice displayed similar abnormalities. These findings demonstrate that middle ear maturation is TR dependent and suggest that the middle ear is a sensitive target for thyroid hormone in development. PMID:22253431
Laser stapedotomy: a comparative study of prostheses and seals.
Perkins, R; Curto, F S
1992-12-01
During the past 13 years, a number of prostheses of differing design and tissue seals have been used in laser stapedotomy for otosclerosis. This study compares the results of three different configurations of prostheses and tissue seals in a series of 53 patients. In 19, a platinum wire Teflon piston was placed in the laser stapedotomy fenestra and crimped on the long process of the incus; autologous venous blood was infiltrated into the oval window niche as a sealing mechanism. In 8 patients, a stainless steel bucket-handle-type prosthesis was used with a blood tissue seal. In 26 patients, a segment of autogenous vein was clad onto the bucket-handle-type prosthesis and placed into the laser fenestra. Two tissue seals (blood and vein) were also compared. The results were compared with regard to several audiometric parameters. It would appear that the bucket handle/vein configuration improves air-bone gap closure in the low- and mid-frequency speech range and also shows an advantage for air-bone gap closure to 10 dB or less compared to the other configurations in this study. Mean postoperative gaps were significantly less for vein compared to the blood tissue seal. Physiologic and surgical implications are discussed, and the vein-clad technique is illustrated.
Majdani, Omid; Bartling, Soenke H; Leinung, Martin; Stöver, Timo; Lenarz, Minoo; Dullin, Christian; Lenarz, Thomas
2008-02-01
High-precision intraoperative navigation using high-resolution flat-panel volume computed tomography makes feasible the possibility of minimally invasive cochlear implant surgery, including cochleostomy. Conventional cochlear implant surgery is typically performed via mastoidectomy with facial recess to identify and avoid damage to vital anatomic landmarks. To accomplish this procedure via a minimally invasive approach--without performing mastoidectomy--in a precise fashion, image-guided technology is necessary. With such an approach, surgical time and expertise may be reduced, and hearing preservation may be improved. Flat-panel volume computed tomography was used to scan 4 human temporal bones. A drilling channel was planned preoperatively from the mastoid surface to the round window niche, providing a margin of safety to all functional important structures (e.g., facial nerve, chorda tympani, incus). Postoperatively, computed tomographic imaging and conventional surgical exploration of the drilled route to the cochlea were performed. All 4 specimens showed a cochleostomy located at the scala tympani anterior inferior to the round window. The chorda tympani was damaged in 1 specimen--this was preoperatively planned as a narrow facial recess was encountered. Using flat-panel volume computed tomography for image-guided surgical navigation, we were able to perform minimally invasive cochlear implant surgery defined as a narrow, single-channel mastoidotomy with cochleostomy. Although this finding is preliminary, it is technologically achievable.
Jiang, Shangyuan; Gan, Rong Z
2018-04-01
The incudostapedial joint (ISJ) is a synovial joint connecting the incus and stapes in the middle ear. Mechanical properties of the ISJ directly affect sound transmission from the tympanic membrane to the cochlea. However, how ISJ properties change with frequency has not been investigated. In this paper, we report the dynamic properties of the human ISJ measured in eight samples using a dynamic mechanical analyzer (DMA) for frequencies from 1 to 80 Hz at three temperatures of 5, 25 and 37 °C. The frequency-temperature superposition (FTS) principle was used to extrapolate the results to 8 kHz. The complex modulus of ISJ was measured with a mean storage modulus of 1.14 MPa at 1 Hz that increased to 3.01 MPa at 8 kHz, and a loss modulus that increased from 0.07 to 0.47 MPa. A 3-dimensional finite element (FE) model consisting of the articular cartilage, joint capsule and synovial fluid was then constructed to derive mechanical properties of ISJ components by matching the model results to experimental data. Modeling results showed that mechanical properties of the joint capsule and synovial fluid affected the dynamic behavior of the joint. This study contributes to a better understanding of the structure-function relationship of the ISJ for sound transmission. Copyright © 2018. Published by Elsevier Ltd.
Malformations of the middle and inner ear on CT imaging in 22q11 deletion syndrome.
Loos, Elke; Verhaert, Nicolas; Willaert, Annelore; Devriendt, Koenraad; Swillen, Ann; Hermans, Robert; Op de Beeck, Katya; Hens, Greet
2016-11-01
The 22q11 deletion syndrome (22q11DS), the most frequent microdeletion syndrome in humans, presents with a large variety of abnormalities. A common abnormality is hearing impairment. The exact pathophysiological explanation of the observed hearing loss remains largely unknown. The aim of this study was to analyze the middle and inner ear malformations as seen on computer tomographic imaging in patients with 22q11DS. We retrospectively reviewed the charts of 11 22q11DS patients who had undergone a CT of the temporal bone in the past. Of the 22 examined ears, two showed an abnormal malleus and incus, 10 presented with a dense stapes superstructure, and three ears had an abnormal orientation of the stapes. With regard to the inner ear, 12 ears showed an incomplete partition type II with a normal vestibular aqueduct. In four ears the vestibule and lateral semicircular canal were composed of a single cavity, in 14 ears the vestibule was too wide, and three ears had a broadened lateral semicircular canal. These findings suggest that malformations of the stapes, cochlea, vestibule, and lateral semicircular canal are frequent in 22q11DS. To our knowledge, the current study involves the largest case series describing middle and inner ear malformations in 22q11DS. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Surgical Management and Hearing Outcome of Traumatic Ossicular Injuries.
Delrue, Stefan; Verhaert, Nicolas; Dinther, Joost van; Zarowski, Andrzej; Somers, Thomas; Desloovere, Christian; Offeciers, Erwin
2016-12-01
The purpose of this study was to investigate etiological, clinical, and pathological characteristics of traumatic injuries of the middle ear ossicular chain and to evaluate hearing outcome after surgery. Thirty consecutive patients (31 ears) with traumatic ossicular injuries operated on between 2004 and 2015 in two tertiary referral otologic centers were retrospectively analyzed. Traumatic events, clinical features, ossicular lesions, treatment procedures, and audiometric results were evaluated. Air conduction (AC), bone conduction (BC), and air-bone gap (ABG) were analyzed preoperatively and postoperatively. Amsterdam Hearing Evaluation Plots (AHEPs) were used to visualize the individual hearing results. The mean age at the moment of trauma was 27.9±17.1 years (range, 2-75 years) and the mean age at surgery was 33.2±16.3 years (range, 5-75 years). In 10 cases (32.3%), the injury occurred by a fall on the head and in 9 (29.0%) by a traffic accident. Isolated luxation of the incus was observed in 8 cases (25.8%). Dislocation of the stapes footplate was seen in 4 cases (12.9%). The postoperative ABG closure to within 10 and 20 dB was 30% and 76.7%, respectively. Ossicular chain injury by direct or indirect trauma can provoke hearing loss, tinnitus, and vertigo. As injuries are heterogeneous, they require a tailored surgical approach. In this study, the overall hearing outcome after surgical repair was favorable.
[Applied anatomy of scala tympani inlet related to cochlear implantation].
Zou, Tuanming; Guo, Menghe; Zhang, Hongzheng; Shu, Fan; Xie, Nanping
2012-06-01
To investigate the related parameters of the temporal bone structure for determining the position of implanting electrode into the scala tympani in cochlear implantation surgery through the facial recess and epitympanum approach. In a surgical simulation experiment, 20 human temporal bones were studied and measured to determine the related parameters of the temporal bone structure. The distance 5.91∓0.29 mm between the short process of the incus and the round window niche, 2.11∓0.18 mm between the stapes and the round window niche, 6.70∓0.19 mm between the facial nerve in the perpendicular paragraph and the round window niche, 2.22∓0.21 mm from the pyramidal eminence to the round window, and 2.16∓0.14 mm between the stapes and the round window. The minimal distance between the implanting electrode and the vestibular window was 2.12∓0.19 mm. The distance between the cochleariform process and the round window niche was 3.79∓0.17 mm. The position of the cochlear electrode array insertion into the second cochlear turn was 2.25∓0.13 mm under the stapes. The location of the cochlear electrode array insertion into the second cochlear turn was 2.28∓0.20 mm inferior to the pyramidal eminence. These parameters provide a reference value to determine the different positions of cochlear electrode array insertion into the scale tympani in different patients.
Morphology and function of Neandertal and modern human ear ossicles
David, Romain; Gunz, Philipp; Schmidt, Tobias; Spoor, Fred; Hublin, Jean-Jacques
2016-01-01
The diminutive middle ear ossicles (malleus, incus, stapes) housed in the tympanic cavity of the temporal bone play an important role in audition. The few known ossicles of Neandertals are distinctly different from those of anatomically modern humans (AMHs), despite the close relationship between both human species. Although not mutually exclusive, these differences may affect hearing capacity or could reflect covariation with the surrounding temporal bone. Until now, detailed comparisons were hampered by the small sample of Neandertal ossicles and the unavailability of methods combining analyses of ossicles with surrounding structures. Here, we present an analysis of the largest sample of Neandertal ossicles to date, including many previously unknown specimens, covering a wide geographic and temporal range. Microcomputed tomography scans and 3D geometric morphometrics were used to quantify shape and functional properties of the ossicles and the tympanic cavity and make comparisons with recent and extinct AMHs as well as African apes. We find striking morphological differences between ossicles of AMHs and Neandertals. Ossicles of both Neandertals and AMHs appear derived compared with the inferred ancestral morphology, albeit in different ways. Brain size increase evolved separately in AMHs and Neandertals, leading to differences in the tympanic cavity and, consequently, the shape and spatial configuration of the ossicles. Despite these different evolutionary trajectories, functional properties of the middle ear of AMHs and Neandertals are largely similar. The relevance of these functionally equivalent solutions is likely to conserve a similar auditory sensitivity level inherited from their last common ancestor. PMID:27671643
Was Cheselden's One-Century-Long Otological Writings Concordant With His Time?
Corrales, C Eduardo; Mudry, Albert
2015-08-01
William Cheselden's famous anatomical treatise spanned the entire 18th century period with its 15 editions. The aim of this study is to analyze the otological knowledge described in all these editions, to identify key 18th century otological advancements, and to study their concordance.In the first edition (1713), Cheselden notably mentioned four middle ear ossicles: malleus, incus, fourth ossicle, and stapes; four auditory muscles: "external tympani," "external oblique," tensor tympani, and stapedial; and a small opening in the tympanic membrane. In subsequent editions, minimal changes appeared, except for nomenclature changes and the proposal of an artificial opening of the tympanic membrane. Virtually no changes were performed up to the last edition (1806). All Cheselden's Editions confirm the uncertain presence of a fourth ossicle, the disputable presence of a tympanic membrane opening and the "usual" accepted presence of three muscles to the malleus. Key otologic advancements, not found in any of Cheselden's writings, were catherization of the Eustachian tube, presence of fluid in the inner ear, and the surgical opening of the mastoid.This study demonstrates that Cheselden, and his subsequent editors, were unaware of some important otologic developments that revolutionized the field of otology. Description of key advancements lacking in his treatise includes catherization of the Eustachian tube, the presence of fluid in the inner ear, and the surgical opening of the mastoid. Nevertheless, Cheselden is first in proposing to artificially open the tympanic membrane in humans.
Caremans, Jeroen; Hamans, Evert; Muylle, Ludo; Van de Heyning, Paul; Van Rompaey, Vincent
2016-06-01
Allograft tympano-ossicular systems (ATOS) have proven their use over many decades in tympanoplasty and reconstruction after resection of cholesteatoma. The transcranial bone plug technique has been used in the past 50 years to procure en bloc ATOS (tympanic membrane with malleus, incus and stapes attached). Recently, our group reported the feasibility of the endoscopic procurement technique. The aim of this study was to assess whether clinical outcome is equivalent in ATOS acquired by using the endoscopic procurement technique compared to ATOS acquired by using the transcranial technique. A double-blind randomized controlled audit was performed in a tertiary referral center in patients that underwent allograft tympanoplasty because of chronic otitis media with and without cholesteatoma. Allograft epithelialisation was evaluated at the short-term postoperative visit by microscopic examination. Failures were reported if reperforation was observed. Fifty patients underwent allograft tympanoplasty: 34 received endoscopically procured ATOS and 16 received transcranially procured ATOS. One failed case was observed, in the endoscopic procurement group. We did not observe a statistically significant difference between the two groups in failure rate. This study demonstrates equivalence of the clinical outcome of allograft tympanoplasty using either endoscopic or transcranial procured ATOS and therefore indicates that the endoscopic technique can be considered the new standard procurement technique. Especially because the endoscopic procurement technique has several advantages compared to the former transcranial procurement technique: it avoids risk of prion transmission and it is faster while lacking any noticeable incision.
Malleus-to-footplate prosthetic interposition: experience with 265 patients.
Colletti, V; Fiorino, F G
1999-03-01
Absence of the long process of the incus with or without absence of the stapes head accounts for more than 80% of ossicular discontinuities. Total or partial replacement prostheses, made of various materials, are interposed to restore the transfer function of the middle ear. To simplify ossicular reconstruction, reduce operative times and costs, improve functional outcomes, and avoid the risk of infections, we have adopted, during the past 10 years, a technique that makes use of a personally designed alloplastic prosthetic device. The prosthesis connects the malleus to the footplate, even in the presence of the stapes superstructure. This malleus-to-footplate prosthesis consists in a plastipore-coated steel piston and hydroxyapatite head, complete with a groove. The groove is placed beneath the malleus neck after dissection of the tensor tympani tendon and the shaft of the piston on the footplate. Two hundred ninety primary ossiculoplasties with the malleus-to-footplate prostheses were performed in 265 patients from 1986 to 1995 in the ENT Department of the University of Verona. The average postoperative air-bone gap at 0.5 to 3 kHz was 11 dB at 1 year and 14 dB at 5 years. These outcomes are significantly better than those personally obtained previously with ossicular or alloplastic prostheses. No extrusions occurred. The structural characteristics of the malleus-to-foot-plate prosthesis endow the prosthesis with a high degree of biocompatibility and stability and optimal sound-transfer function. The rationale for this particular ossiculoplasty procedure is discussed.
Hirakuri, Ayaka; Numasawa, Kanako; Takeishi, Hideki; Satomura, Minato; Takeda, Hiromitsu; Harada, Kuniaki; Asanuma, Osamu; Sakata, Motomichi
2012-01-01
The exposure of the eye lens caused by multi-detector row computed tomography (MDCT) of the temporal bone is a serious problem. Our aim was to evaluate the radiation dose to the eye lens by different scan baselines (orbitomeatal line; OML, acanthiomeatal line; AML) and examine the difference of the depiction of the temporal bone structures. Measurement of the exposure to the eye lens was performed by means of MDCT of the temporal bone with a radio-photoluminescence glass dosimeter using a rand phantom. Moreover, we studied only one volunteer (58-year-old male) who had no symptom and was not suspected of having any ear abnormalities with a two scan baseline. Visualization of the major anatomical structures of the temporal bone (the tympanic portion of the facial nerve canal, the body of the incus, stapes superstructures, vestibule etc.) was performed on the volunteer. The average absorbed dose was 6.42 mGy by the OML and 1.59 mGy by the AML, respectively. With regard to visualization of the temporal bone structures, all structures were of equal quality with the two scan baseline. With the AML line, the radiation dose to the eye lens was reduced to 75%. Therefore, the authors recommended an AML for use for MDCT of the temporal bone. In clinical practice, the optimization of scanning factor (kVp, mAs etc.) and the use of the radio-protection should be implemented for radiation dose reduction of the eye lens by MDCT of the temporal bone.
Optical Coherence Tomography of the Tympanic Membrane and Middle Ear: A Review.
Tan, Hsern Ern Ivan; Santa Maria, Peter Luke; Wijesinghe, Philip; Francis Kennedy, Brendan; Allardyce, Benjamin James; Eikelboom, Robert Henry; Atlas, Marcus David; Dilley, Rodney James
2018-05-01
Objective To evaluate the recent developments in optical coherence tomography (OCT) for tympanic membrane (TM) and middle ear (ME) imaging and to identify what further development is required for the technology to be integrated into common clinical use. Data Sources PubMed, Embase, Google Scholar, Scopus, and Web of Science. Review Methods A comprehensive literature search was performed for English language articles published from January 1966 to January 2018 with the keywords "tympanic membrane or middle ear,"optical coherence tomography," and "imaging." Conclusion Conventional imaging techniques cannot adequately resolve the microscale features of TM and ME, sometimes necessitating diagnostic exploratory surgery in challenging otologic pathology. As a high-resolution noninvasive imaging technique, OCT offers promise as a diagnostic aid for otologic conditions, such as otitis media, cholesteatoma, and conductive hearing loss. Using OCT vibrometry to image the nanoscale vibrations of the TM and ME as they conduct acoustic waves may detect the location of ossicular chain dysfunction and differentiate between stapes fixation and incus-stapes discontinuity. The capacity of OCT to image depth and thickness at high resolution allows 3-dimensional volumetric reconstruction of the ME and has potential use for reconstructive tympanoplasty planning and the follow-up of ossicular prostheses. Implications for Practice To achieve common clinical use beyond these initial discoveries, future in vivo imaging devices must feature low-cost probe or endoscopic designs and faster imaging speeds and demonstrate superior diagnostic utility to computed tomography and magnetic resonance imaging. While such technology has been available for OCT, its translation requires focused development through a close collaboration between engineers and clinicians.
Hush puppy: a new mouse mutant with pinna, ossicle, and inner ear defects.
Pau, Henry; Fuchs, Helmut; de Angelis, Martin Hrabé; Steel, Karen P
2005-01-01
Deafness can be associated with abnormalities of the pinna, ossicles, and cochlea. The authors studied a newly generated mouse mutant with pinna defects and asked whether these defects are associated with peripheral auditory or facial skeletal abnormalities, or both. Furthermore, the authors investigated where the mutation responsible for these defects was located in the mouse genome. The hearing of hush puppy mutants was assessed by Preyer reflex and electrophysiological measurement. The morphological features of their middle and inner ears were investigated by microdissection, paint-filling of the labyrinth, and scanning electron microscopy. Skeletal staining of skulls was performed to assess the craniofacial dimensions. Genome scanning was performed using microsatellite markers to localize the mutation to a chromosomal region. Some hush puppy mutants showed early onset of hearing impairment. They had small, bat-like pinnae and normal malleus but abnormal incus and stapes. Some mutants had asymmetrical defects and showed reduced penetrance of the ear abnormalities. Paint-filling of newborns' inner ears revealed no morphological abnormality, although half of the mice studied were expected to carry the mutation. Reduced numbers of outer hair cells were demonstrated in mutants' cochlea on scanning electron microscopy. Skeletal staining showed that the mutants have significantly shorter snouts and mandibles. Genome scan revealed that the mutation lies on chromosome 8 between markers D8Mit58 and D8Mit289. The study results indicate developmental problems of the first and second branchial arches and otocyst as a result of a single gene mutation. Similar defects are found in humans, and hush puppy provides a mouse model for investigation of such defects.
La Ferrassie 1: New perspectives on a "classic" Neandertal.
Gómez-Olivencia, Asier; Quam, Rolf; Sala, Nohemi; Bardey, Morgane; Ohman, James C; Balzeau, Antoine
2018-04-01
The La Ferrassie 1 (LF1) skeleton, discovered over a century ago, is one of the most important Neandertal individuals both for its completeness and due to the role it has played historically in the interpretation of Neandertal anatomy and lifeways. Here we present new skeletal remains from this individual, which include a complete right middle ear ossicular chain (malleus, incus, and stapes), three vertebral fragments, and two costal remains. Additionally, the study of the skeleton has allowed us to identify new pathological lesions, including a congenital variant in the atlas, a greenstick fracture of the left clavicle, and a lesion in a mid-thoracic rib of unknown etiology. In addition, we have quantified the amount of vertebral pathology, which is greater than previously appreciated. We have complemented the paleopathological analysis with a taphonomic analysis to identify any potential perimortem fractures. The taphonomic analysis indicates that no surface alteration is present in the LF1 skeleton and that the breakage pattern is that of bone that has lost collagen, which would be consistent with the intentional burial of this individual proposed by previous researchers. In this study, we used CT and microCT scans in order to discover new skeletal elements to better characterize the pathological lesions and to quantify the fracture orientation of those bones in which the current plaster reconstruction did not allow its direct visualization, which underlines the broad potential of imaging technologies in paleoanthropological research. A century after its discovery, LF1 is still providing new insights into Neandertal anatomy and behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.
Schmidt, Jodi L; Cole, Theodore M; Silcox, Mary T
2011-08-01
Previous study of the ear ossicles in Primates has demonstrated that they vary on both functional and phylogenetic bases. Such studies have generally employed two-dimensional linear measurements rather than three-dimensional data. The availability of Ultra- high-resolution X-ray computed tomography (UhrCT) has made it possible to accurately image the ossicles so that broadly accepted methodologies for acquiring and studying morphometric data can be applied. Using UhrCT data also allows for the ossicular chain to be studied in anatomical position, so that it is possible to consider the spatial and size relationships of all three bones. One issue impeding the morphometric study of the ear ossicles is a lack of broadly recognized landmarks. Distinguishing landmarks on the ossicles is difficult in part because there are only two areas of articulation in the ossicular chain, one of which (the malleus/incus articulation) has a complex three-dimensional form. A measurement error study is presented demonstrating that a suite of 16 landmarks can be precisely located on reconstructions of the ossicles from UhrCT data. Estimates of measurement error showed that most landmarks were highly replicable, with an average CV for associated interlandmark distances of less than 3%. The positions of these landmarks are chosen to reflect not only the overall shape of the bones in the chain and their relative positions, but also functional parameters. This study should provide a basis for further examination of the smallest bones in the body in three dimensions. Copyright © 2011 Wiley-Liss, Inc.
Bathla, Meeta; Doshi, Hiren; Kansara, Atul
2018-03-01
Role of high resolution computerized tomography (HRCT) of temporal bone is established in cases of atticoantral chronic suppurative otitis media (CSOM) with intracranial complications. Routine use of HRCT in management of patients of atticoantral CSOM without intracranial complications has been an issue of debate. The aim of this study was to evaluate the routine use of HRCT of temporal bone in such cases. This study was a prospective study done at LG hospital, AMC MET Medical College, Ahmedabad to evaluate and compare the temporal bone findings in HRCT and intraoperative findings in 100 patients with atticoantral CSOM. All patients underwent HRCT screening followed by surgical exploration of middle ear cleft. In extent of disease HRCT showed very high sensitivity and specificity for epitympanum (100, 94%) and mesotympanum (98, 98%) areas. It gave valuable information of disease extent in hidden areas like sinus tympani and facial recess of mesotympanum. HRCT satisfactorily delineated malleus and incus erosion but had 75% sensitivity for detecting erosion of stapes suprastructure, though specificity was of 97%. For bony anatomical landmarks HRCT showed very high sensitivity and specificity for detecting erosion of lateral semicircular canal, tegmen tympani and sinus plate. Detection of facial canal erosion on HRCT had moderate sensitivity of 75%. We concluded that routine use of HRCT is justified as a reliable preoperative tool in patients with atticoantral CSOM without intracranial complications and it helps to plan type of surgical intervention. HRCT has limited role to distinguish between granulations and cholesteatoma and also to delineate stapes supra structure and facial nerve canal.
[The length of the piston in otosclerosis surgery].
Portmann, D; Alcantara, M; Vianna, M
2007-01-01
The measurement of the piston is always described as a significant stage of the surgery but its length is never clearly defined. The goal of this work is to determine the length of the prosthesis. From May 2003 to May 2005, 128 patients with otosclerosis, diagnosed on the basis of their clinical history and their audiogram, were included in this prospective study. Some of them were revision surgeries. The prosthesis generally used was the Portmann piston clip (Medtronic Xomed Inc Portmann Piston Clip Stainless Steel/Fluoroplastic). In stapedectomies, a Teflon piston of 0.6 mm of diameter was used (Pouret Company Fluoroplastic Stapes Prosthesis). These prostheses must be trimmed before their installation. The measurement technique is described. The length of the prosthesis was increased by 0.5 mm to include the thickness of the footplate. The Portmann piston clip was used 116 times (100 initial surgeries and 16 revisions surgeries) and the Teflon prosthesis of 0.6 mm of diameter only 13 times (6 primary stapedectomies and 7 revisions stapedectomies). The length of the prosthesis was between 3,5 mm and 5 mm. In the majority of cases, the length of the prosthesis was 4.75 mm (62 patients, 48.1%), followed by 4.5 mm (29 patients, 22.5%) and 5 mm (27 patients, 20.9%). In eleven cases (8.5%) the prosthesis measured less than 4,5 mm. None of the patients in this study experienced a postoperative sensorineural hearing loss. The measurement of the length of the piston is very significant, and in our study the majority of the pistons were cut at 4.75 mm which indicates an incus-footplate measurement of 4.25 mm.
Human cochlear hydrodynamics: A high-resolution μCT-based finite element study.
De Paolis, Annalisa; Watanabe, Hirobumi; Nelson, Jeremy T; Bikson, Marom; Packer, Mark; Cardoso, Luis
2017-01-04
Measurements of perilymph hydrodynamics in the human cochlea are scarce, being mostly limited to the fluid pressure at the basal or apical turn of the scalae vestibuli and tympani. Indeed, measurements of fluid pressure or volumetric flow rate have only been reported in animal models. In this study we imaged the human ear at 6.7 and 3-µm resolution using µCT scanning to produce highly accurate 3D models of the entire ear and particularly the cochlea scalae. We used a contrast agent to better distinguish soft from hard tissues, including the auditory canal, tympanic membrane, malleus, incus, stapes, ligaments, oval and round window, scalae vestibule and tympani. Using a Computational Fluid Dynamics (CFD) approach and this anatomically correct 3D model of the human cochlea, we examined the pressure and perilymph flow velocity as a function of location, time and frequency within the auditory range. Perimeter, surface, hydraulic diameter, Womersley and Reynolds numbers were computed every 45° of rotation around the central axis of the cochlear spiral. CFD results showed both spatial and temporal pressure gradients along the cochlea. Small Reynolds number and large Womersley values indicate that the perilymph fluid flow at auditory frequencies is laminar and its velocity profile is plug-like. The pressure was found 102-106° out of phase with the fluid flow velocity at the scalae vestibule and tympani, respectively. The average flow velocity was found in the sub-µm/s to nm/s range at 20-100Hz, and below the nm/s range at 1-20kHz. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sheep as a large animal ear model: Middle-ear ossicular velocities and intracochlear sound pressure.
Péus, Dominik; Dobrev, Ivo; Prochazka, Lukas; Thoele, Konrad; Dalbert, Adrian; Boss, Andreas; Newcomb, Nicolas; Probst, Rudolf; Röösli, Christof; Sim, Jae Hoon; Huber, Alexander; Pfiffner, Flurin
2017-08-01
Animals are frequently used for the development and testing of new hearing devices. Dimensions of the middle ear and cochlea differ significantly between humans and commonly used animals, such as rodents or cats. The sheep cochlea is anatomically more like the human cochlea in size and number of turns. This study investigated the middle-ear ossicular velocities and intracochlear sound pressure (ICSP) in sheep temporal bones, with the aim of characterizing the sheep as an experimental model for implantable hearing devices. Measurements were made on fresh sheep temporal bones. Velocity responses of the middle ear ossicles at the umbo, long process of the incus and stapes footplate were measured in the frequency range of 0.25-8 kHz using a laser Doppler vibrometer system. Results were normalized by the corresponding sound pressure level in the external ear canal (P EC ). Sequentially, ICSPs at the scala vestibuli and tympani were then recorded with custom MEMS-based hydrophones, while presenting identical acoustic stimuli. The sheep middle ear transmitted most effectively around 4.8 kHz, with a maximum stapes velocity of 0.2 mm/s/Pa. At the same frequency, the ICSP measurements in the scala vestibuli and tympani showed the maximum gain relative to the P EC (24 dB and 5 dB, respectively). The greatest pressure difference across the cochlear partition occurred between 4 and 6 kHz. A comparison between the results of this study and human reference data showed middle-ear resonance and best cochlear sensitivity at higher frequencies in sheep. In summary, sheep can be an appropriate large animal model for research and development of implantable hearing devices. Copyright © 2017 Elsevier B.V. All rights reserved.
Laser-assisted fixation of a nitinol stapes prosthesis.
Schrötzlmair, Florian; Suchan, Fabian; Pongratz, Thomas; Krause, Eike; Müller, Joachim; Sroka, Ronald
2018-02-01
Otosclerosis is an inner ear bone disease characterized by fixation of the stapes and consequently progressive hearing loss. One treatment option is the surgical replacement of the stapes by a prosthesis. When so called "smart materials" like nitinol are used, prosthesis fixation can be performed using a laser without manual crimping on the incus. However, specific laser-prosthesis interactions have not been described yet. The aim of the present study was to elucidate the thermo-mechanical properties of the NiTiBOND® prosthesis as a basis for handling instructions for laser-assisted prosthesis fixation. Closure of the NiTiBOND® prosthesis was induced ex vivo by either a diode laser emitting at λ = 940 nm or a CO 2 laser (λ = 10,600 nm). Total energy for closure was determined. Suitable laser parameters (pulse duration, power per pulse, distance between tip of the laser fiber and prosthesis) were assessed. Specific laser-prosthesis interactions were recorded. Especially the diode laser was found to be an appropriate energy source. A total energy deposit of 60 mJ by pulses in near contact application was found to be sufficient for prosthesis closure ex vivo. Energy should be transmitted through a laser fiber equipollent to the prosthesis band diameter. Specific deformation characteristics due to the zonal prosthesis composition have to be taken into account. NiTiBOND® stapes prosthesis can be closed by very little energy when appropriate energy sources like diode lasers are used, suggesting a relatively safe application in vivo. Lasers Surg. Med. 50:153-157, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Karki, S; Pokharel, M; Suwal, S; Poudel, R
Background The exact role of High resolution computed tomography (HRCT) temporal bone in preoperative assessment of Chronic suppurative otitis media atticoantral disease still remains controversial. Objective To evaluate the role of high resolution computed tomography temporal bone in Chronic suppurative otitis media atticoantral disease and to compare preoperative computed tomographic findings with intra-operative findings. Method Prospective, analytical study conducted among 65 patients with chronic suppurative otitis media atticoantral disease in Department of Radiodiagnosis, Kathmandu University Dhulikhel Hospital between January 2015 to July 2016. The operative findings were compared with results of imaging. The parameters of comparison were erosion of ossicles, scutum, facial canal, lateral semicircular canal, sigmoid and tegmen plate along with extension of disease to sinus tympani and facial recess. Sensitivity, specificity, negative predictive value, positive predictive values were calculated. Result High resolution computed tomography temporal bone offered sensitivity (Se) and specificity (Sp) of 100% for visualization of sigmoid and tegmen plate erosion. The performance of HRCT in detecting malleus (Se=100%, Sp=95.23%), incus (Se=100%,Sp=80.48%) and stapes (Se=96.55%, Sp=71.42%) erosion was excellent. It offered precise information about facial canal erosion (Se=100%, Sp=75%), scutum erosion (Se=100%, Sp=96.87%) and extension of disease to facial recess and sinus tympani (Se=83.33%,Sp=100%). high resolution computed tomography showed specificity of 100% for lateral semicircular canal erosion (Sp=100%) but with low sensitivity (Se=53.84%). Conclusion The findings of high resolution computed tomography and intra-operative findings were well comparable except for lateral semicircular canal erosion. high resolution computed tomography temporal bone acts as a road map for surgeon to identify the extent of disease, plan for appropriate procedure that is required and prepare for potential complications that can be encountered during surgery.
Tian, Cong; Harris, Belinda S; Johnson, Kenneth R
2016-01-01
Otitis media (OM), inflammation of the middle ear, is a common cause of hearing loss in children and in patients with many different syndromic diseases. Studies of the human population and mouse models have revealed that OM is a multifactorial disease with many environmental and genetic contributing factors. Here, we report on otitis media-related hearing loss in asj (ages with stiffened joints) mutant mice, which bear a point mutation in the Enpp1 gene. Auditory-evoked brainstem response (ABR) measurements revealed that around 90% of the mutant mice (Enpp1asj/asj) tested had moderate to severe hearing impairment in at least one ear. The ABR thresholds were variable and generally elevated with age. We found otitis media with effusion (OME) in all of the hearing-impaired Enpp1asj/asj mice by anatomic and histological examinations. The volume and inflammatory cell content of the effusion varied among the asj mutant mice, but all mutants exhibited a thickened middle ear epithelium with fibrous polyps and more mucin-secreting goblet cells than controls. Other abnormalities observed in the Enpp1 mutant mice include over-ossification at the round window ridge, thickened and over-calcified stapedial artery, fusion of malleus and incus, and white patches on the inside of tympanic membrane, some of which are typical symptoms of tympanosclerosis. An excessive yellow discharge was detected in the outer ear canal of older asj mutant mice, with 100% penetrance by 5 months of age, and contributes to the progressive nature of the hearing loss. This is the first report of hearing loss and ear pathology associated with an Enpp1 mutation in mice. The Enpp1asj mutant mouse provides a new animal model for studying tympanosclerotic otitis and otitis media with effusion, and also provides a specific model for the hearing loss recently reported to be associated with human ENPP1 mutations causing generalized arterial calcification of infancy and hypophosphatemic rickets.
Tian, Cong; Harris, Belinda S.; Johnson, Kenneth R.
2016-01-01
Otitis media (OM), inflammation of the middle ear, is a common cause of hearing loss in children and in patients with many different syndromic diseases. Studies of the human population and mouse models have revealed that OM is a multifactorial disease with many environmental and genetic contributing factors. Here, we report on otitis media-related hearing loss in asj (ages with stiffened joints) mutant mice, which bear a point mutation in the Enpp1 gene. Auditory-evoked brainstem response (ABR) measurements revealed that around 90% of the mutant mice (Enpp1asj/asj) tested had moderate to severe hearing impairment in at least one ear. The ABR thresholds were variable and generally elevated with age. We found otitis media with effusion (OME) in all of the hearing-impaired Enpp1asj/asj mice by anatomic and histological examinations. The volume and inflammatory cell content of the effusion varied among the asj mutant mice, but all mutants exhibited a thickened middle ear epithelium with fibrous polyps and more mucin-secreting goblet cells than controls. Other abnormalities observed in the Enpp1 mutant mice include over-ossification at the round window ridge, thickened and over-calcified stapedial artery, fusion of malleus and incus, and white patches on the inside of tympanic membrane, some of which are typical symptoms of tympanosclerosis. An excessive yellow discharge was detected in the outer ear canal of older asj mutant mice, with 100% penetrance by 5 months of age, and contributes to the progressive nature of the hearing loss. This is the first report of hearing loss and ear pathology associated with an Enpp1 mutation in mice. The Enpp1asj mutant mouse provides a new animal model for studying tympanosclerotic otitis and otitis media with effusion, and also provides a specific model for the hearing loss recently reported to be associated with human ENPP1 mutations causing generalized arterial calcification of infancy and hypophosphatemic rickets. PMID:27959908
Of mice, moles and guinea pigs: functional morphology of the middle ear in living mammals.
Mason, Matthew J
2013-07-01
The middle ear apparatus varies considerably among living mammals. Body size, phylogeny and acoustic environment all play roles in shaping ear structure and function, but experimental studies aimed ultimately at improving our understanding of human hearing can sometimes overlook these important species differences. This review focuses on three groups of mammals, bringing together anatomical, zoological and physiological information in order to highlight unusual features of their middle ears and attempt to interpret their function. "Microtype" ears, found in species such as mice and bats, are associated with high-frequency hearing. The orbicular apophysis, the focus of some recent developmental studies on mouse ears, is characteristic of microtype mallei but is not found in humans or other "freely mobile" species. The apophysis increases ossicular inertia about the anatomical axis of rotation: its adaptive purpose in a high-frequency ear is still not clear. Subterranean mammals have convergently evolved a "freely mobile" ossicular morphology which appears to favour lower-frequency sound transmission. More unusual features found in some of these animals include acoustically coupled middle ear cavities, the loss of middle ear muscles and hypertrophied ossicles which are believed to subserve a form of inertial bone conduction. Middle ears of the rodent group Ctenohystrica (which includes guinea pigs and chinchillas, important models in hearing research) show some striking characteristics which together comprise a unique type of auditory apparatus requiring a classification of its own, referred to here as the "Ctenohystrica type". These characteristics include a distinctive malleus morphology, fusion of the malleus and incus, reduction or loss of the stapedius muscle, a synovial stapedio-vestibular articulation and, in chinchillas, enormously expanded middle ear cavities. These characteristics may be functionally linked and associated with the excellent low-frequency hearing found in these animals. The application of new experimental and imaging data into increasingly sophisticated models continues to improve our understanding of middle ear function. However, a more rigorous comparative approach and a better appreciation of the complex patterns of convergent and divergent evolution reflected in the middle ear structures of living mammals are also needed, in order to put findings from different species into the appropriate context. This article is part of a special issue entitled "MEMRO 2012". Copyright © 2012 Elsevier B.V. All rights reserved.
The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
Maier, Hannes; Salcher, Rolf; Schwab, Burkard; Lenarz, Thomas
2013-07-01
The Direct Acoustic Cochlea Stimulator Partial Implant (DACS PI, Phonak Acoustic Implants SA, Switzerland) is intended to stimulate the cochlea by a conventional stapedotomy piston that is crimped onto the DACS PI artificial incus. An alternative approach to the round window (RW) is successfully done with other devices, having the advantage of being also independent of the existence of middle ear structure (e.g. ossicles). Here the possibility of stimulating the RW with the DACS actuator is investigated including the impact of static force on sound transmission to the cochlea. The maximum equivalent sound pressure output with RW stimulation was determined experimentally in fresh human temporal bones. Experiments were performed in analogy to the ASTM standard (F2504.24930-1) method for the output determination of implantable middle ear hearing devices (IMEHDs) in human cadaveric temporal bones (TBs). ASTM compliant temporal bones were stimulated with a prosthesis having a spherical tip (∅0.5 mm) attached to the actuator. The stimulation was performed perpendicular to the round window membrane (RWM) at varying position relative to the RW and the resulting static force on the RW membrane was determined. At each position the displacement output of the DACS PI actuator and the stapes footplate (SFP) vibration in response to actuator stimulation was measured with a Laser Doppler Velocimeter (LDV). By comparison of the achieved output at the stapes footplate in response to sound and transducer stimulation the equivalent sound pressure level at the tympanic membrane at 1Vrms input voltage was calculated assuming that the SFP displacement in both conditions is a measure of perceived loudness, as it is done in the ASTM standard. Ten TB preparations within the acceptance range of the ASTM standard were used for analysis. The actuator driven stapes footplate displacement amplitude as well as the resulting equivalent sound pressure level was highly dependent on the static force applied to the RW. The sound transfer efficiency from the RW to the stapes footplate increased monotonically with increasing static load. At a moderate static force load (approx. 3.9 mN) the obtained average sound equivalent sound pressure level was 102-120 eq. dB SPL @ nominally 1Vrms input for frequencies ≤4 kHz. At higher frequencies (6-10 kHz) the achieved output dropped to ∼90 dB SPL. This output was obtained at loading conditions compatible with the actuator safe operating range, although it was possible to increase the output further by increasing the static force load. Our results demonstrate for a first time that static force applied to the RW is crucial for sound transmission efficiency. Further we could show that RW stimulation with the DACS PI actuator is possible having a maximum output that is sufficient to treat moderate and pronounced sensorineural hearing losses (SNHL). This article is part of a Special Issue entitled "MEMRO 2012". Copyright © 2013 Elsevier B.V. All rights reserved.
Dobrev, Ivo; Sim, Jae Hoon; Aqtashi, Baktash; Huber, Alexander M; Linder, Thomas; Röösli, Christof
2018-01-01
Intra-operative quantification of the ossicle mobility could provide valuable feedback for the current status of the patient's conductive hearing. However, current methods for evaluation of middle ear mobility are mostly limited to the surgeon's subjective impression through manual palpation of the ossicles. This study investigates how middle ear transfer function is affected by stapes quasi-static stiffness of the ossicular chain. The stiffness of the middle ear is induced by a) using a novel fiber-optic 3-axis force sensor to quantify the quasi-static stiffness of the middle ear, and b) by artificial reduction of stapes mobility due to drying of the middle ear. Middle ear transfer function, defined as the ratio of the stapes footplate velocity versus the ear canal sound pressure, was measured with a single point LDV in two conditions. First, a controlled palpation force was applied at the stapes head in two in-plane (superior-inferior or posterior-anterior) directions, and at the incus lenticular process near the incudostapedial joint in the piston (lateral-medial) direction with a novel 3-axis PalpEar force sensor (Sensoptic, Losone, Switzerland), while the corresponding quasi-static displacement of the contact point was measured via a 3-axis micrometer stage. The palpation force was applied sequentially, step-wise in the range of 0.1-20 gF (1-200 mN). Second, measurements were repeated with various stages of stapes fixation, simulated by pre-load on the stapes head or drying of the temporal bone, and with severe ossicle immobilization, simulated by gluing of the stapes footplate. Simulated stapes fixation (forced drying of 5-15 min) severely decreases (20-30 dB) the low frequency (<1 kHz) response of the middle ear, while increasing (5-10 dB) the high frequency (>4 kHz) response. Stapes immobilization (gluing of the footplate) severely reduces (20-40 dB) the low and mid frequency response (<4 kHz) but has lesser effect (<10 dB) at higher frequencies. Even moderate levels of palpation force (<3gF, <30 mN), regardless of direction, have negative effect (10-20 dB) on the low frequency (<2 kHz) response, but with less significant (5-10 dB) effect at higher frequencies. Force-displacement measurements around the incudostapedial joint showed quasi-static stiffness in the range of 200-500 N/m for normal middle ears, and 1000-2500 N/m (5-8-fold increase) after artificially (through forced drying) reducing the middle ear transfer function with 10-25 dB at 1 kHz. Effects of the palpation force level and direction, as well as stapes fixation and immobilization have been analyzed based on the measurement of the stapes footplate motion, and controlled application of 3D force and displacement. Copyright © 2017 Elsevier B.V. All rights reserved.
Initial evaluation of airborne water vapour measurements by the IAGOS-GHG CRDS system
NASA Astrophysics Data System (ADS)
Filges, Annette; Gerbig, Christoph; Smit, Herman G. J.; Krämer, Martina; Spelten, Nicole
2013-04-01
Accurate and reliable airborne measurements of water vapour are still a challenge. Presently, no airborne humidity sensor exists that covers the entire range of water vapour content between the surface and the upper troposphere/lower stratosphere (UT/LS) region with sufficient accuracy and time resolution. Nevertheless , these data are a pre-requisite to study the underlying processes in the chemistry and physics of the atmosphere. The DENCHAR project (Development and Evaluation of Novel Compact Hygrometer for Airborne Research) addresses this deficit by developing and characterizing novel or improved compact airborne hygrometers for different airborne applications within EUFAR (European Facility for Airborne Research). As part of the DENCHAR inter-comparison campaign in Hohn (Germany), 23 May - 1 June 2011, a commercial gas analyzer (G2401-m, Picarro Inc.,US), based on cavity ring-down spectroscopy (CRDS), was installed on a Learjet to measure water vapour, CO2, CH4 and CO. The CRDS components are identical to those chosen for integration aboard commercial airliner within IAGOS (In-service Aircraft for a Global Observing System). Thus the campaign allowed for the initial assessment validation of the long-term IAGOS H2O measurements by CRDS against reference instruments with a long performance record (FISH, the Fast In-situ Stratospheric Hygrometer, and CR2 frostpoint hygrometer, both research centre Juelich). The inlet system, a one meter long 1/8" FEP-tube connected to a Rosemount TAT housing (model 102BX, deiced) installed on a window plate of the aircraft, was designed to eliminate sampling of larger aerosols, ice particles, and water droplets, and provides about 90% of ram-pressure. In combination with a lowered sample flow of 0.1 slpm (corresponding to a 4 second response time), this ensured a fully controlled sample pressure in the cavity of 140 torr throughout an aircraft altitude operating range up to 12.5 km without the need of an upstream sampling pump. This setup ensures full compatibility with the future deployment of the analyser within IAGOS. For the initial water calibration of the instrument, a calibration of a similar instrument performed at MPI-BGC Jena against a dew point mirror (Dewmet, Michell instruments Ltd., UK) in the range from 0.7 to 3.0% was transferred to all subsequently manufactured CRDS instruments by Picarro. During the campaign the analyzer was compared against a reference frost point hygrometer, which is also used for calibration of the reference instrument FISH. The dew point mirror calibration was within 0.7 % of the FISH calibrator, but showed an offset of 14.45 ppm, which is consistent with the H2O content of dry tank air and diffusion effects through the inlet line (FEP). Furthermore, a new independent calibration method, based on the dilution effect of water vapour on CO2, was tested. It showed a 9 % low bias compared to the dew point mirror calibration. Comparison of the in-flight data against the reference systems showed that the analyzer is reliable and has a good long-term stability. Flight data from the DENCHAR campaign suggest a conservative precision estimate for measurements made at 0.4 Hz of 4 ppm for H2O < 100 ppm, and 4 % (relative) for H2O > 100 ppm. Accuracy at mixing ratios below 50 ppm was difficult to assess, as the reference instruments suffered from lack of stability. We present the results of the campaign flights and comparison with the reference instruments. The different calibration methods will be discussed.