Science.gov

Sample records for indelayed coking units

  1. 76 FR 14987 - United States v. Graftech International Ltd. and Seadrift Coke, L.P.; Public Comments and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... competitive effects of the transaction on the production and sale of petroleum needle coke used to manufacture... development, production and sale of petroleum needle coke in the United States, leading to higher prices... the goods to Europe and the USA and uses petroleum needle coke in the production. ENERGOPROM...

  2. Coking-coal deposits of the western United States

    USGS Publications Warehouse

    Berryhill, Louise R.; Averitt, Paul

    1951-01-01

    Geohydrologic systems in the Anadarko basin in the central United States are controlled by topography, climate, geologic structures, and aquifer hydraulic properties, all of which are the result of past geologic and hydrologic processes, including tectonics and diagenesis. From Late Cambrian through Middle Ordovician time, a generally transgressive but cyclic sea covered the area. The first deposits were permeable sand, followed by calcareous mud. During periods of sea transgression, burial diagenesis decreased porosity and permeability. During Pennsylvanian time, rapid sedimentation accompanied rapid subsidence in the Anadarko basin. A geopressure zone probably resulted when sediments with little permeability trapped depositional water in Lower Pennsylvanian sands. Burial diagenesis included compaction and thermal alteration of deeply buried organic material, which released carbon dioxide, water, and hydrocarbons. By Middle Pennsylvanian time, the sea had submerged most of the central United States, including the Ozarks, as tectonic activity reached its maximum. During Late Pennsylvanian and Early Permian time, the Ouachita uplift had been formed and was higher than the Ozarks. Uplift was accompanied by a regional upward tilt toward the Ouachita-Ozarks area; the sea receded westward, depositing large quantities of calcareous mud and clay, and precipitating evaporitic material in the restricted-circulation environment. By the end of Permian time, > 20,000 ft of Pennsylvanian and Permian sediments had been deposited in the Anadarko basin. These thick sediments caused rapid and extreme burial diagensis, including alteration of organic material During Permian time in the Ozarks area, development of the Ozark Plateau aquifer system commenced in the permeable Cambrian-Mississippian rocks near the St. Francois Mountains as the Pennsylvanian confining material was removed. Since Permian time, uplift diagenesis has been more active than burial diagenesis in the Anadarko

  3. Clean Production of Coke from Carbonaceous Fines

    SciTech Connect

    Craig N. Eatough

    2004-11-16

    In order to produce steel (a necessary commodity in developed nations) using conventional technologies, you must have metallurgical coke. Current coke-making technology pyrolyzes high-quality coking coals in a slot oven, but prime coking coals are becoming more expensive and slot ovens are being shut-down because of age and environmental problems. The United States typically imports about 4 million tons of coke per year, but because of a world-wide coke scarcity, metallurgical coke costs have risen from about $77 per tonne to more than $225. This coke shortage is a long-term challenge driving up the price of steel and is forcing steel makers to search for alternatives. Combustion Resources (CR) has developed a technology to produce metallurgical coke from alternative feedstocks in an environmentally clean manner. The purpose of the current project was to refine material and process requirements in order to achieve improved economic benefits and to expand upon prior work on the proposed technology through successful prototype testing of coke products. The ultimate objective of this project is commercialization of the proposed technology. During this project period, CR developed coke from over thirty different formulations that meet the strength and reactivity requirements for use as metallurgical coke. The technology has been termed CR Clean Coke because it utilizes waste materials as feedstocks and is produced in a continuous process where pollutant emissions can be significantly reduced compared to current practice. The proposed feed material and operating costs for a CR Clean Coke plant are significantly less than conventional coke plants. Even the capital costs for the proposed coke plant are about half that of current plants. The remaining barrier for CR Clean Coke to overcome prior to commercialization is full-scale testing in a blast furnace. These tests will require a significant quantity of product (tens of thousands of tons) necessitating the construction

  4. 61. INTERIOR VIEW OF THE COKE DRYER BUILDING, LOOKING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. INTERIOR VIEW OF THE COKE DRYER BUILDING, LOOKING AT FIRE BOXES AND SILOS FOR COKE DRYERS. APRIL 22, 1919. - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  5. Coke dust enhances coke plant wastewater treatment.

    PubMed

    Burmistrz, Piotr; Rozwadowski, Andrzej; Burmistrz, Michał; Karcz, Aleksander

    2014-12-01

    Coke plant wastewater contain many toxic pollutants. Despite physico-chemical and biological treatment this specific type of wastewater has a significant impact on environment and human health. This article presents results of research on industrial adsorptive coke plant wastewater treatment. As a sorbent the coke dust, dozen times less expensive than pulverized activated carbon, was used. Treatment was conducted in three scenarios: adsorptive after full treatment with coke dust at 15 g L(-1), biological treatment enhanced with coke dust at 0.3-0.5 g L(-1) and addition of coke dust at 0.3 g L(-1) prior to the biological treatment. The enhanced biological treatment proved the most effective. It allowed additional removal of 147-178 mg COD kg(-1) of coke dust.

  6. Cocaine (Coke, Crack) Facts

    MedlinePlus

    ... That People Abuse » Cocaine (Coke, Crack) Facts Cocaine (Coke, Crack) Facts Listen Cocaine is a white ... Version Download "My life was built around getting cocaine and getting high." Stacey is recovering from her ...

  7. Coking of distallate feed with added paraffin wax

    SciTech Connect

    Mimun, K.; Zaitseva, N.P.; Smidovich, E.V.

    1987-09-01

    The effects of adding paraffin wax to fluid and delayed coking distillates on the yield, microstructure, and physicochemical properties of the cokes were investigated. It was established that by adding optimal amounts of wax to a distillate feed with a high stability factor, the coke yield can be increased by 2.5 to 5.8 percent by weight. The wax should be injected into the feedstock between the furnace and chamber in delayed coking units. The addition of wax to the feed in order to increase the stability factor could be used as a method for reducing tube coking in cracking furnaces.

  8. Reclamation of coking wastes

    SciTech Connect

    Mraovich, G.

    1981-04-28

    Waste products derived from coking coal, such as coal tar decanter wastes and wash oil muck, are processed to recover an oil fraction and a granular coke breeze residue. The wastes are mixed with a diluent oil, preferably having a saponification number of about 100 or more, are subjected to agitation and mixing and are thereafter filtered to produce a granular, coke breeze cake and a filtrate comprising water and oil which separate easily by decantation.

  9. Pipeline charging entry into coke ovens

    SciTech Connect

    Davis, R.F. Jr.; Auvil, H.S.; Marting, D.G.

    1984-07-31

    A method and apparatus for conveying preheated coal particles to a coking chamber through an enclosed pipeline by means of a pressurized inert carrier gas, wherein the coal particles are charged into the top of the coking chamber through a portion of the pipeline wherein at least the end of which is disposed vertically or not more than 30/sup 0/ from vertical. The advantages of the top charging technique include one or more of the following: reduced carryover of fine coal during charging, increased density of the charge of coal to be coked, reduced weight of carrier gas per unit weight of coal, improved uniformity of coal bed level throughout the coking chamber, and reduced carbon deposits on surfaces of the chamber above the coal charge and in the gas off-takes.

  10. Fundamentals of Delayed Coking Joint Industry Project

    SciTech Connect

    Michael Volk; Keith Wisecarver

    2003-09-26

    is 2,937,439 barrels/calendar day. These cokers produce 154,607 tons of coke per day and delayed coking accounts for 88% of the world capacity. The delayed coking charge capacity in the United States is 1,787,860 b/cd. Despite its wide commercial use, only relatively few contractors and refiners are truly knowledgeable in delayed-coking design, so that this process carries with it a ''black art'' connotation. Until recently, the expected yield from cokers was determined by a simple laboratory test on the feedstock. As a result of Tulsa University's prior related research, a process model was developed that with additional work could be used to optimize existing delayed cokers over a wide range of potential feedstocks and operating conditions. The objectives of this research program are to: utilize the current micro, batch and pilot unit facilities at The University of Tulsa to enhance the understanding of the coking process; conduct additional micro and pilot unit tests with new and in-house resids and recycles to make current optimization models more robust; conduct focused kinetic experiments to enhance the furnace tube model and to enhance liquid production while minimizing sulfur in the products; conduct detailed foaming studies to optimize the process and minimize process upsets; quantify the parameters that affect coke morphology; and to utilize the knowledge gained from the experimental and modeling studies to enhance the computer programs developed in the previous JIP for optimization of the coking process. These refined computer models will then be tested against refinery data provided by the member companies. Novel concepts will also be explored for hydrogen sulfide removal of furnace gases as well as gas injection studies to reduce over-cracking.

  11. Fundamentals of Delayed Coking Joint Industry Project

    SciTech Connect

    Michael Volk; Keith Wisecarver

    2004-09-26

    is 2,937,439 barrels/calendar day. These cokers produce 154,607 tons of coke per day and delayed coking accounts for 88% of the world capacity. The delayed coking charge capacity in the United States is 1,787,860 b/cd. Despite its wide commercial use, only relatively few contractors and refiners are truly knowledgeable in delayed-coking design, so that this process carries with it a ''black art'' connotation. Until recently, the expected yield from cokers was determined by a simple laboratory test on the feedstock. As a result of Tulsa University's prior related research, a process model was developed that with additional work could be used to optimize existing delayed cokers over a wide range of potential feedstocks and operating conditions. The objectives of this research program are to: utilize the current micro, batch and pilot unit facilities at The University of Tulsa to enhance the understanding of the coking process; conduct additional micro and pilot unit tests with new and in-house resids and recycles to make current optimization models more robust; conduct focused kinetic experiments to enhance the furnace tube model and to enhance liquid production while minimizing sulfur in the products; conduct detailed foaming studies to optimize the process and minimize process upsets; quantify the parameters that affect coke morphology; and to utilize the knowledge gained from the experimental and modeling studies to enhance the computer programs developed in the previous JIP for optimization of the coking process. These refined computer models will then be tested against refinery data provided by the member companies. Novel concepts will also be explored for hydrogen sulfide removal of furnace gases as well as gas injection studies to reduce over-cracking.

  12. Western Canadian coking coals -- Thermal rheology and coking quality

    SciTech Connect

    Leeder, W.R.; Price, J.T.; Gransden, J.F.

    1997-12-31

    Methods of predicting coke strength developed from the thermal rheological properties of Carboniferous coals frequently indicate that Cretaceous coals would not make high quality coke -- yet both types of coals produce coke suitable for the iron blast furnace. This paper will discuss the reasons why Western Canadian coals exhibit lower rheological values and how to predict the strength of coke produced from them.

  13. Delayed coking process

    SciTech Connect

    Dabkowski, M.J.; Malladi, M.

    1987-04-28

    This patent describes a delayed cooking process in which a heavy oil coker feedstock is heated to an elevated coking temperature in a furnace and the heated feedstock is subsequently subjected to delayed coking in a coker drum under superatmospheric pressure and the vaporous coking products are removed from the drum and passed to a coker fractionator from which a bottoms fraction is removed. The improvement comprises coking a feed without the addition of the bottoms fraction from the fractionator and adding to the feed to the coker drum a lower boiling hydrocarbon diluent having an end boiling point of not more than 450/sup 0/C, the lower boiling hydrocarbon diluent being added to the heated feedstock after the feedstock has passed through the furnace.

  14. Asphalt coking method

    SciTech Connect

    Bonilla, J.A.; Elliott, J.D.

    1987-08-11

    A process is described for treating a heavy hydrocarbon fluid containing asphaltenes comprising: contacting the heavy hydrocarbon fluid with a solvent, wherein the solvent is light naphtha, C/sub 4/ hydrocarbons, C/sub 5/ hydrocarbons, C/sub 6/ hydrocarbons, or a mixture of any of light naphtha and C/sub 4/, C/sub 5/ and C/sub 6/ hydrocarbons, to obtain an asphalt mix, containing asphalt and the solvent, and deasphalted oil mix, containing deasphalted oil and the solvent; feeding the asphalt mix to a delayed coking process to form coke, wherein the asphalt mix is heated by passing the asphalt mix through conduit means in a heater in the delayed coking process. The flow of the asphalt mix through the conduit means is assisted by vaporization in the heater of the solvent in the asphalt mix, and the asphalt mix includes sufficient solvent to provide a residence time of the asphalt mix in the heater adequate for heating the asphalt mix for coking while reducing the formation of coke in the heater; separating the solvent in the deasphalted oil mix from the deasphalted oil mix to yield deasphalted oil; and recovering the deasphalted oil, bypassing the delayed coking process.

  15. Met coke world summit 2005

    SciTech Connect

    2005-07-01

    Papers are presented under the following session headings: industry overview and market outlook; coke in the Americas; the global coke industry; and new developments. All the papers (except one) only consist of a copy of the overheads/viewgraphs.

  16. Coking and gasification process

    DOEpatents

    Billimoria, Rustom M.; Tao, Frank F.

    1986-01-01

    An improved coking process for normally solid carbonaceous materials wherein the yield of liquid product from the coker is increased by adding ammonia or an ammonia precursor to the coker. The invention is particularly useful in a process wherein coal liquefaction bottoms are coked to produce both a liquid and a gaseous product. Broadly, ammonia or an ammonia precursor is added to the coker ranging from about 1 to about 60 weight percent based on normally solid carbonaceous material and is preferably added in an amount from about 2 to about 15 weight percent.

  17. Coke oven emissions

    Integrated Risk Information System (IRIS)

    Coke oven emissions ; CASRN NA Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  18. High coking value pitch

    SciTech Connect

    Miller, Douglas J.; Chang, Ching-Feng; Lewis, Irwin C.; Lewis, Richard T.

    2014-06-10

    A high coking value pitch prepared from coal tar distillate and has a low softening point and a high carbon value while containing substantially no quinoline insolubles is disclosed. The pitch can be used as an impregnant or binder for producing carbon and graphite articles.

  19. Fundamentals of Delayed Coking Joint Industry Project

    SciTech Connect

    Michael Volk Jr; Keith Wisecarver

    2005-10-01

    is 2,937,439 barrels/calendar day. These cokers produce 154,607 tons of coke per day and delayed coking accounts for 88% of the world capacity. The delayed coking charge capacity in the United States is 1,787,860 b/cd. Despite its wide commercial use, only relatively few contractors and refiners are truly knowledgeable in delayed-coking design, so that this process carries with it a ''black art'' connotation. Until recently, the expected yield from cokers was determined by a simple laboratory test on the feedstock. As a result of Tulsa University's prior related research, a process model was developed that with additional work could be used to optimize existing delayed cokers over a wide range of potential feedstocks and operating conditions. The objectives of this research program are to: utilize the current micro, batch and pilot unit facilities at The University of Tulsa to enhance the understanding of the coking process; conduct additional micro and pilot unit tests with new and in-house resids and recycles to make current optimization models more robust; conduct focused kinetic experiments to enhance the furnace tube model and to enhance liquid production while minimizing sulfur in the products; conduct detailed foaming studies to optimize the process and minimize process upsets; quantify the parameters that affect coke morphology; and to utilize the knowledge gained from the experimental and modeling studies to enhance the computer programs developed in the previous JIP for optimization of the coking process. These refined computer models will then be tested against refinery data provided by the member companies. Novel concepts will also be explored for hydrogen sulfide removal of furnace gases as well as gas injection studies to reduce over-cracking. The following deliverables are scheduled from the two projects of the three-year JIP: (1) A novel method for enhancing liquid yields from delayed cokers and data that provide insight as to the optimum temperature

  20. Organic pollution removal from coke plant wastewater using coking coal.

    PubMed

    Gao, Lihui; Li, Shulei; Wang, Yongtian; Sun, Hao

    2015-01-01

    Coke plant wastewater (CPW) is an intractable chemical wastewater, and it contains many toxic pollutants. This article presents the results of research on a semi-industrial adsorption method of coking wastewater treatment. As a sorbent, the coking coal (CC) was a dozen times less expensive than active carbon. The treatment was conducted within two scenarios, as follows: (1) adsorption after biological treatment of CPW with CC at 40 g L(-1); the chemical oxygen demand (COD) removal was 75.66%, and the concentration was reduced from 178.99 to 43.56 mg L(-1); (2) given an adsorption by CC of 250 g L(-1) prior to the biological treatment of CPW, the eliminations of COD and phenol were 58.08% and 67.12%, respectively. The CC that adsorbed organic pollution and was returned to the coking system might have no effect on both coke oven gas and coke.

  1. Organic pollution removal from coke plant wastewater using coking coal.

    PubMed

    Gao, Lihui; Li, Shulei; Wang, Yongtian; Sun, Hao

    2015-01-01

    Coke plant wastewater (CPW) is an intractable chemical wastewater, and it contains many toxic pollutants. This article presents the results of research on a semi-industrial adsorption method of coking wastewater treatment. As a sorbent, the coking coal (CC) was a dozen times less expensive than active carbon. The treatment was conducted within two scenarios, as follows: (1) adsorption after biological treatment of CPW with CC at 40 g L(-1); the chemical oxygen demand (COD) removal was 75.66%, and the concentration was reduced from 178.99 to 43.56 mg L(-1); (2) given an adsorption by CC of 250 g L(-1) prior to the biological treatment of CPW, the eliminations of COD and phenol were 58.08% and 67.12%, respectively. The CC that adsorbed organic pollution and was returned to the coking system might have no effect on both coke oven gas and coke. PMID:26114284

  2. Design and construction of coke battery 1A at Radlin coke plant, Poland

    SciTech Connect

    A.M. Kravchenko; D.P. Yarmoshik; V.B. Kamenyuka; G.E. Kos'kova; N.I. Shkol'naya; V.V. Derevich; A.S. Grankin

    2009-07-15

    In the design and construction of coke battery 1A at Radlin coke plant (Poland), coking of rammed coke with a stationary system was employed for the first time. The coke batteries are grouped in blocks. Safety railings are provided on the coke and machine sides of the maintenance areas.

  3. Method for calcining delayed coke

    SciTech Connect

    Smith, J.H.

    1981-02-17

    Delayed petroleum coke is calcined in an internally-fired vertical shaft kiln. A downwardly-moving bed of green coke is preheated in the top of the kiln by rising combustion gases, then heat soaked at calcining temperatures in the intermediate section of the kiln, and finally cooled by recycle gas moving upwardly from the lower part of the kiln. Partially cooled calcined coke is recovered from the bottom of the kiln.

  4. COKEMASTER: Coke plant management system

    SciTech Connect

    Johanning, J.; Reinke, M.

    1996-12-31

    To keep coke utilization in ironmaking as competitive as possible, the potential to improve the economics of coke production has to be utilized. As one measure to meet this need of its customers, Krupp Koppers has expanded its existing ECOTROL computer system for battery heating control to a comprehensive Coke Plant Management System. Increased capacity utilization, lower energy consumption, stabilization of plant operation and ease of operation are the main targets.

  5. Coke from coal and petroleum

    DOEpatents

    Wynne, Jr., Francis E.; Lopez, Jaime; Zaborowsky, Edward J.

    1981-01-01

    A carbonaceous coke is manufactured by the delayed coking of a slurry mixture of from about 10 to about 30 weight percent of caking or non-caking coal and the remainder a petroleum resid blended at below 50.degree. C.

  6. 77 FR 15123 - Foundry Coke From China; Scheduling of an Expedited Five-Year Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-14

    ... its notice of institution (76 FR 74810, December 1, 2011) of the subject five-year review was adequate... COMMISSION Foundry Coke From China; Scheduling of an Expedited Five-Year Review AGENCY: United States...)) (the Act) to determine whether revocation of the antidumping duty order on foundry coke from...

  7. New coke-sorting system at OAO Koks

    SciTech Connect

    B.Kh. Bulaevskii; V.S. Shved; Yu.V. Kalimin; S.D. Filippov

    2009-05-15

    A new coke-sorting system has been introduced at OAO Koks. It differs from the existing system in that it has no bunkers for all-purpose coke but only bunkers for commercial coke. In using this system with coke from battery 4, the crushing of the coke on conveyer belts, at roller screens, and in the commercial-coke bunkers is studied. After installing braking elements in the coke path, their effectiveness in reducing coke disintegration and improving coke screening is investigated. The granulometric composition and strength of the commercial coke from coke battery 3, with the new coke-sorting system, is evaluated.

  8. Characteristics of coking coal burnout

    SciTech Connect

    Nakamura, M.; Bailey, J.G.

    1996-12-31

    An attempt was made to clarify the characteristics of coking coal burnout by the morphological analysis of char and fly ash samples. Laboratory-scale combustion testing, simulating an ignition process, was carried out for three kinds of coal (two coking coals and one non-coking coal for reference), and sampled chars were analyzed for size, shape and type by image analysis. The full combustion process was examined in industrial-scale combustion testing for the same kinds of coal. Char sampled at the burner outlet and fly ash at the furnace exit were also analyzed. The difference between the char type, swelling properties, agglomeration, anisotropy and carbon burnout were compared at laboratory scale and at industrial scale. As a result, it was found that coking coals produced chars with relatively thicker walls, which mainly impeded char burnout, especially for low volatile coals.

  9. 46 CFR 148.04-15 - Petroleum coke, uncalcined; petroleum coke, uncalcined and calcined (mixture).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Petroleum coke, uncalcined; petroleum coke, uncalcined and calcined (mixture). 148.04-15 Section 148.04-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... Requirements for Certain Material § 148.04-15 Petroleum coke, uncalcined; petroleum coke, uncalcined...

  10. Zinc Accumulation and Behavior in Tuyere Coke

    NASA Astrophysics Data System (ADS)

    Li, Kejiang; Zhang, Jianliang; Liu, Zhengjian; Wang, Tianqiu; Ning, Xiaojun; Zhong, Jianbo; Xu, Runsheng; Wang, Guangwei; Ren, Shan; Yang, Tianjun

    2014-10-01

    A case study of zinc oxide, which represents the first report on the occurrence, crystalline features, formation mechanism, and influence of this mineral in tuyere coke, was conducted in this study. A number of zinc oxides, some of which were in hexagonal wurtzite habit, were observed to distribute mainly in coke pores, cracks, surfaces, and around coke minerals. The accumulation of zinc in tuyere coke may enhance the degradation of coke and increase the generation and accumulation of coke fine in a blast furnace, which would cause bad effect on blast furnace operation. Investigations into zinc behavior in tuyere coke can be important for further interpretations of coke degradation in the high temperature zone of a blast furnace.

  11. Effect of the hydraulic regime of dry quencher forechambers on coke quality

    SciTech Connect

    Sytenko, I.V.; Lobov, A.A.; Shreider, S.A.; Nazarov, V.V.

    1982-01-01

    A discussion of the effects of the operation of a dry quenching unit on the quality of coke produced was presented. The pressure under the forechamber arch of the quenching unit was discussed. Also, the composition of the circulation and emission gas and the quantity of emission gas were also included in the investigation. It was concluded that the operation of the dry quencher can effect the burnup and chemical and mechanical properties of the coke.

  12. Effects of atamp-charging coke making on strength and high temperature thermal properties of coke.

    PubMed

    Zhang, Yaru; Bai, Jinfeng; Xu, Jun; Zhong, Xiangyun; Zhao, Zhenning; Liu, Hongchun

    2013-12-01

    The stamp-charging coke making process has some advantages of improving the operation environment, decreasing fugitive emission, higher gas collection efficiency as well as less environmental pollution. This article describes the different structure strength and high temperature thermal properties of 4 different types of coke manufactured using a conventional coking process and the stamp-charging coke making process. The 4 kinds of cokes were prepared from the mixture of five feed coals blended by the petrography blending method. The results showed that the structure strength indices of coke prepared using the stamp-charging coke method increase sharply. In contrast with conventional coking process, the stamp-charging process improved the coke strength after reaction but had little impact on the coke reactivity index.

  13. Trends in the automation of coke production

    SciTech Connect

    R.I. Rudyka; Y.E. Zingerman; K.G. Lavrov

    2009-07-15

    Up-to-date mathematical methods, such as correlation analysis and expert systems, are employed in creating a model of the coking process. Automatic coking-control systems developed by Giprokoks rule out human error. At an existing coke battery, after introducing automatic control, the heating-gas consumption is reduced by {>=}5%.

  14. Coking oven with horizontal chambers for producing coke

    SciTech Connect

    Jakobi, W.

    1984-06-26

    In a coking oven with a horizontal chamber the chamber is provided with a filling hole having a cylindrical portion with the diameter D and a reduced portion downwardly extending therefrom into the chamber over the height H. The ratio between D and H 1.5.

  15. Coke from small-diameter tubes analyzed

    SciTech Connect

    Albright, L.F.

    1988-08-29

    The mechanism for coke deposit formation and the nature of the coke itself can vary with the design of the ethylene furnace tube bank. In this article, coke deposits from furnaces with small-diameter pyrolysis tubes are examined. The samples were taken from four furnaces of identical design (Plant B). As in both the first and second installments of the series, the coke deposits were examined using a scanning electron microscope (SEM) and an energy dispersive X-ray analyzer (EDAX). The deposits from the small-diameter tubes are compared with the coke deposits from the furnace discussed in earlier articles. Analysis of the coke in both sets of samples are then used to offer recommendations for improved decoking procedures, operating procedures, better feed selection, and better selection of the metallurgy used in furnace tubes, to extend the operating time of the furnace tubes by reducing the amount and type of coke build up.

  16. Selecting the optimum coke pushing sequence

    SciTech Connect

    V.T. Krivoshein; A.V. Makarov

    2007-01-15

    The sequence of pushing coke ovens is one of the most important aspects of battery operation. The sequence must satisfy a number of technical and process conditions: (1) achieve maximum heating-wall life by avoiding destructive expansion pressure in freshly charged ovens and during pushing of the finished coke; (2) ensure uniform brickwork temperature and prevent overheating by compensating for the high thermal flux in freshly charged ovens due to accumulated heat in adjacent ovens that are in the second half of the coking cycle; (3) ensure the most favorable working conditions and safety for operating personnel; (4) provide additional opportunities for repair personnel to perform various types of work, such as replacing coke-machine rails, without interrupting coal production; (5) perform the maximum number of coke-machine operations simultaneously: pushing, charging, and cleaning doors, frames, and standpipe elbows; and (6) reduce electricity consumption by minimizing idle travel of coke machines.

  17. K2CO3 catalysis on the reactivity of top charged coke and stamp charged coke

    NASA Astrophysics Data System (ADS)

    Pang, Qing-hai; Zhang, Jian-liang; Qi, Cheng-lin; Ma, Chao; Kong, De-wen; Mao, Rui

    2013-01-01

    The catalysis of K2CO3 on the reactivity of top charged coke and stamp charged coke from Pansteel in China was studied. The coke reaction index of the stamp charged coke was 1%-2% higher than that of the top charged coke. Under the catalysis of K2CO3, the coke reaction index of both cokes approximately increased by 4%, 6%, 10% and 6% at 900, 1000, 1100 and 1200°C, respectively. The reactivity of the K-enriched stamp charged coke was 1%-2% higher than that of the K-enriched top charged coke below 1100°C. However, only negligible differences were found in the temperature zone between 1100 and 1200°C. Scanning electron microscopy images illustrated that pores in the top charged coke were smaller and equally distributed, while relatively more big pores exist non-homogenously in stamp charged coke. Due to the different processes in production, the stamp charged coke was more porous and most of the pores tended to be applanate. Cracks were observed in the microstructure of the stamp charged coke during the carbon solution reaction, implying the inferior quality of the stamp charged coke to the top charged coke at high temperature. Diffusion of K during the carbon solution reaction was studied by the energy dispersive spectrometry. It is found that K gradually spreads into the center of lumpy coke with the rising of temperature and is equally distributed on the edges of pores at 1200°C. Besides, oxidation reactions of functional groups become faster with the catalysis of K.content

  18. EXTERIOR VIEW, BEE HIVE COKE OVEN DOOR. Pratt Coal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW, BEE HIVE COKE OVEN DOOR. - Pratt Coal & Coke Company, Pratt Mines, Coke Ovens & Railroad, Bounded by First Street, Avenue G, Third Place, Birmingham Southern Railroad, Birmingham, Jefferson County, AL

  19. Method and apparatus for producing active coke

    SciTech Connect

    Wolfrum, E.

    1980-12-30

    At least a portion of coke produced in a hearth-type furnace is fed into an activation reactor, and at least a portion of the waste gas from the hearth-type furnace is fed to the activation reactor to act as a heating gas and/or an activation gas for the coke feed. Hot waste gas from the activation reactor is passed to a waste-heat boiler. Active coke which has at least partially lost its adsorption capacity may be fed into the furnace in mixture with the coal or alone, or it may be fed directly into the activation reactor for re-activation of the coke.

  20. Coke cake behavior under compressive forces

    SciTech Connect

    Watakabe, S.; Takeda, T.; Itaya, H.; Suginobe, H.

    1997-12-31

    The deformation of the coke cake and load on the side wall during pushing were studied using an electric furnace equipped with a movable wall. Coke cake was found to deform in three stages under compressive forces. The coke cake was shortened in the pushing direction in the cake deformation stage, and load was generated on the side walls in the high wall load stage. Secondary cracks in the coke cake were found to prevent load transmission on the wall. The maximum load transmission rate was controlled by adjusting the maximum fluidity and mean reflectance of the blended coal.

  1. New designs in the reconstruction of coke-sorting systems

    SciTech Connect

    A.S. Larin; V.V. Demenko; V.L. Voitanik

    2009-07-15

    In recent Giprokoks designs for the reconstruction of coke-sorting systems, high-productivity vibrational-inertial screens have been employed. This permits single-stage screening and reduction in capital and especially operating expenditures, without loss of coke quality. In two-stage screening, >80 mm coke (for foundry needs) is additionally separated, with significant improvement in quality of the metallurgical coke (25-80 mm). New designs for the reconstruction of coke-sorting systems employ mechanical treatment of the coke outside the furnace, which offers new scope for stabilization of coke quality and permits considerable improvement in mechanical strength and granulometric composition of the coke by mechanical crushing.

  2. Regeneration of coked catalysts: The effect of aging upon the characteristics of the coke deposits

    SciTech Connect

    Royo, C.; Ibarra, J.V.; Monzon, A.; Santamaria, J. . Dept. de Ingenieria Quimica y Tecnologias del Medio Ambiente)

    1994-11-01

    The effect of aging in nitrogen upon the regeneration characteristics of the coke deposits on chromia-alumina catalysts has been investigated. To this end, the coked catalysts have been subjected to various treatments in nitrogen, and the chemical composition and reactivity of the deposits have been investigated. The results show that the process of aging in nitrogen gives rise to significant changes in both the composition and reactivity of the coke deposits, due to the stripping of the coke fractions with a higher volatility. This obviously has important consequences upon the subsequent regeneration, which are also discussed and tested in regeneration experiments using coked catalyst of different ages.

  3. Determination of electrical resistivity of dry coke beds

    SciTech Connect

    Eidem, P.A.; Tangstad, M.; Bakken, J.A.

    2008-02-15

    The electrical resistivity of the coke bed is of great importance when producing FeMn, SiMn, and FeCr in a submerged arc furnace. In these processes, a coke bed is situated below and around the electrode tip and consists of metallurgical coke, slag, gas, and metal droplets. Since the basic mechanisms determining the electrical resistivity of a coke bed is not yet fully understood, this investigation is focused on the resistivity of dry coke beds consisting of different carbonaceous materials, i.e., coke beds containing no slag or metal. A method that reliably compares the electrical bulk resistivity of different metallurgical cokes at 1500{sup o} C to 1600{sup o}C is developed. The apparatus is dimensioned for industrial sized materials, and the electrical resistivity of anthracite, charcoal, petroleum coke, and metallurgical coke has been measured. The resistivity at high temperatures of the Magnitogorsk coke, which has the highest resistivity of the metallurgical cokes investigated, is twice the resistivity of the Corus coke, which has the lowest electrical resistivity. Zdzieszowice and SSAB coke sort in between with decreasing resistivities in the respective order. The electrical resistivity of anthracite, charcoal, and petroleum coke is generally higher than the resistivity of the metallurgical cokes, ranging from about two to about eight times the resistivity of the Corus coke at 1450{sup o}C. The general trend is that the bulk resistivity of carbon materials decreases with increasing temperature and increasing particle size.

  4. Transport and preparation of coke for the blast furnace

    SciTech Connect

    Kotov, A.P.; Ulakhovich, V.A.; Solodkov, V.I.; Mishin, E.N.; Chuparev, E.F.; Veshchezerov, M.M.; Shkodkin, K.K.

    1982-01-01

    In order to develop specifications for coke qualaity for large blast furnaces and measures matching the coke quality to the blast furnace volume, a series of investigations were conducted on the change in the physical and mechanical properties of coke in the process of its transport to the blast furnace, with a comparative evalution of the individual coke fractions. It was determined that the 60-40 and 80-60 mm coke classes were most suitable for blast furnace smelting. The 40-25 mm coke fraction is inferior in its physical and mechanical properties to these classes, but preferable to the over 80 mm coke. (JMT)

  5. 16. Coke 'fines' bin at Furnace D. After delivery to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Coke 'fines' bin at Furnace D. After delivery to the trestle bins, the coke was screened and the coke 'fines' or breeze, were transported by conveyor to the coke fines bins where it was collected and leaded into dump trucks. The coke fines were then sold for fuel to a sinter plant in Lorain, Ohio. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  6. Developing an accelerated test of coking tendencies of alternative fuels

    SciTech Connect

    Clevenger, M.D.; Bagby, M.O.; Schwab, A.W.; Goering, C.E.; Savage, L.D.

    1988-07-01

    Burning vegetable oils in direct-injected diesel engines leads to nozzle and combustion chamber coking and eventually to engine damage. Because typical durability tests to detect coking tendencies of fuels are expensive, a one-cylinder diesel engine was instrumented and automated to enable external detection of engine coking in only 5 h. The heat release pattern revealed shifts to later burning as coke accumulated in the engine, but exhaust emissions showed little correlation with coke accumulation.

  7. Heteroatom incorporated coke for electrochemical cell electrode

    DOEpatents

    Lewis, Irwin Charles; Greinke, Ronald Alfred

    1997-01-01

    This invention relates to an electrode for a coke/alkali metal electrochemical cell comprising: (a) calcined coke particles: (i) that contain at least 0.5 weight percent of nitrogen heteroatoms and at least 1.0 weight percent sulfur heteroatoms, and (ii) that have an average particle size from 2 microns to 40 microns with essentially no particles being greater than 50 microns. (b) a binder This invention also relates to a coke/alkali metal electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrically conductive salt, and (c) a counterelectrode.

  8. Heteroatom incorporated coke for electrochemical cell electrode

    DOEpatents

    Lewis, I.C.; Greinke, R.A.

    1997-06-17

    This invention relates to an electrode for a coke/alkali metal electrochemical cell comprising: (a) calcined coke particles: (1) that contain at least 0.5 weight percent of nitrogen heteroatoms and at least 1.0 weight percent sulfur heteroatoms, and (2) that have an average particle size from 2 microns to 40 microns with essentially no particles being greater than 50 microns and (b) a binder. This invention also relates to a coke/alkali metal electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrically conductive salt, and (c) a counterelectrode. 5 figs.

  9. Heat treatment of exchangers to remove coke

    SciTech Connect

    Turner, J.D.

    1990-02-20

    This patent describes a process for preparing furfural coke for removal from metallic surfaces. It comprises: heating the furfural coke without causing an evolution of heat capable of undesirably altering metallurgical properties of the surfaces in the presence of a gas containing molecular oxygen at a sufficient temperature below 800{degrees}F (427{degrees}C) for a sufficient time to change the crush strength of the coke so as to permit removal with a water jet at a pressure of five thousand pounds per square inch.

  10. Prospects for use of lean coking coal from the Kuznetsk coalfield for coking

    SciTech Connect

    Sulimov, G.I.; Agafonov, A.A.; Ol'shanetskii, L.G.

    1983-06-01

    Coals suitable for opencast working in the southern Kuzbass form a transitional stage between low-volatile caking and lean coal and have been incorporated satisfactorily in layer coking charges together with conventional coking coal. Strength tests showed a reasonably strong metallurgical product. Two collieries in particular offered promising coals with a narrow range of vitrinite contents and varying only in rank. These have been blended with a fat coal from Pechora to produce an exceptional metallurgical coke.

  11. New and revised standards for coke production

    SciTech Connect

    G.A. Kotsyuba; M.I. Alpatov; Y.G. Shapoval

    2009-07-15

    The need for new and revised standards for coke production in Ukraine and Russia is outlined. Such standards should address improvements in plant operation, working conditions, environmental protection, energy conservation, fire and explosion safety, and economic indices.

  12. Demand for superpremium needle cokes on upswing

    SciTech Connect

    Acciarri, J.A.; Stockman, G.H. )

    1989-12-01

    The authors discuss how recent supply shortages of super-premium quality needle cokes, plus the expectation of increased shortfalls in the future, indicate that refiners should consider upgrading their operations to fill these demands. Calcined, super-premium needle cokes are currently selling for as much as $550/metric ton, fob producer, and increasing demand will continue the upward push of the past year. Needle coke, in its calcined form, is the major raw material in the manufacture of graphite electrodes. Used in steelmaking, graphite electrodes are the electrical conductors that supply the heat source, through arcing electrode column tips, to electric arc steel furnaces. Needle coke is commercially available in three grades - super premium, premium, and intermediate. Super premium is used to produce electrodes for the most severe electric arc furnace steelmaking applications, premium for electrodes destined to less severe operations, and intermediate for even less critical needs.

  13. Cascaded coal dryer for a coking plant

    SciTech Connect

    Petrovic, V.; Heinz, R.; Jokisch, F.; Schmid, K.

    1984-02-07

    In a coking process, coal to be coked is preheated in a cascaded whirling bed dryer into which the coal is charged from above and exposed to an indirect heat transfer while whirling in a coal-steam mixture. Hot gas applied to the heating pipes in respective cascades of the dryer is branched off from the total amount of hot gases discharged from a dry cooler in which hot coke from the coke oven is cooled by recirculating cooler gas constituted by a partial gas stream discharged from the cascades of the dryer and reunited with the other partial stream subject to a heat exchange for generating steam. Steam from the whirling beds is discharged from the cascaded dryer, separated from the entrained dust particles, and then the excessive steam is drained in a branch conduit and the remaining steam is compressed and reintroduced into the lowermost whirling bed in the dryer.

  14. Method for drying coal and cooling coke

    SciTech Connect

    Petrovic, V.; Jokisch, F.; Rotthaus, H.; Schmid, K.

    1984-09-11

    In a coking process, coal to be coked is preheated in a cascaded whirling bed drier into which the coal is charged from above and exposed to an indirect heat transfer while whirling in a coal-stream mixture. Hot gas applied to the heating pipes in respective cascades of the drier is branched off from the total amount of hot gases discharged from a dry cooler in which hot coke from the coke oven is cooled by recirculating cooler gas constituted by a partial gas stream discharged from the cascades of the drier and reunited with the other partial stream subject to a heat exchange for generating steam. Steam from the whirling beds is discharged from the cascaded drier, separated from the entrained dust particles, and then the excessive steam is drained in a branch conduit and the remaining steam is compressed and reintroduced into the lowermost whirling bed in the drier.

  15. Final environmental information volume for the coke oven gas cleaning project at the Bethlehem Steel Corporation Sparrows Point Plant

    SciTech Connect

    Not Available

    1990-04-24

    Bethelehem Steel Corporation (BSC) is planning to conduct a demonstration project involving an integrated system that can be retrofitted into coke oven gas handling systems to address a variety of environmental and operational factors in a more cost-effective manner. Successful application of this technology to existing US coke plants could: (1) reduce emissions of sulfur dioxide, cyanide, and volatile organic compounds (including benzene) (2) reduce the cost and handling of processing feed chemicals, (3) disposal costs of nuisance by-products and (4) increase reliability and reduce operation/maintenance requirements for coke oven gas desulfurization systems. The proposed system will remove sulfur from the coke oven gas in the form of hydrogen sulfide using the ammonia indigenous to the gas as the primary reactive chemical. Ammonia and hydrogen cyanide are also removed in this process. The hydrogen sulfide removed from the coke oven gas in routed to a modified Claus plant for conversion to a saleable sulfur by-product. Ammonia and hydrogen cyanide will be catalytically converted to hydrogen, nitrogen, carbon dioxide, and carbon monoxide. The tail gas from the sulfur recovery unit is recycled to the coke oven gas stream, upstream of the new gas cleaning system. The proposed demonstration project will be installed at the existing coke oven facilities at BSC's Sparrows Point Plant. This volume describes the proposed actions and the resulting environmental impacts. 21 refs., 19 figs., 9 tabs.

  16. Method of pretreating coal for coking plant

    SciTech Connect

    Petrovic, V.; Rotthaus, H.

    1984-03-13

    Coal is pretreated for a coking plant so that it is passed in two stages through two throughflow driers successively connected with one another, the driers are supplied with a heat carrier formed by steam superheated to a temperature between 400/sup 0/ and 600/sup 0/ C., dust is removed from the steam after passing the throughflow driers, and the steam is heated after the dust removal in a heat exchange with a circulating gas of a coke dry cooler.

  17. Special analyses reveal coke-deposit structure

    SciTech Connect

    Albright, L.F.

    1988-08-01

    A scanning electron microscope (SEM) and an energy dispersive X-ray analyzer (EDAX) have been used to obtain information that clarifies the three mechanisms of coke formation in ethylene furnaces, and to analyze the metal condition at the exit of furnace. The results can be used to examine furnace operations and develop improved ethylene plant practices. In this first of four articles on the analyses of coke and metal samples, the coking mechanisms and coke deposits in a section of tube from an actual ethylene furnace (Furnace A) from a plant on the Texas Gulf Coast are discussed. The second articles in the series will analyze the condition of the tube metal in the same furnace. To show how coke deposition and metal condition dependent on the operating parameters of an ethylene furnace, the third article in the series will show the coke deposition in a Texas Gulf Coast furnace tube (Furnace B) that operated at shorter residence time. The fourth article discusses the metal condition in that furnace. Some recommendations, based on the analyses and findings, are offered in the fourth article that could help extend the life of ethylene furnace tubes, and also improve overall ethylene plant operations.

  18. Characterization of tuyere-level core-drill coke samples from blast furnace operation

    SciTech Connect

    S. Dong; N. Paterson; S.G. Kazarian; D.R. Dugwell; R. Kandiyoti

    2007-12-15

    A suite of tuyere-level coke samples have been withdrawn from a working blast furnace during coal injection, using the core-drilling technique. The samples have been characterized by size exclusion chromatography (SEC), Fourier transform Raman spectroscopy (FT-RS), and X-ray powder diffraction (XRD) spectroscopy. The 1-methyl-2-pyrrolidinone (NMP) extracts of the cokes sampled from the 'bosh', the rear of the 'bird's nest', and the 'dead man' zones were found by SEC to contain heavy soot-like materials (ca. 10{sup 7}-10{sup 8} apparent mass units). In contrast, NMP extracts of cokes taken from the raceway and the front of the 'bird's nest' only contained a small amount of material of relatively lower apparent molecular mass (up to ca. 10{sup 5} u). Since the feed coke contained no materials extractable by the present method, the soot-like materials are thought to have formed during the reactions of volatile matter released from the injectant coal, probably via dehydrogenation and repolymerization of the tars. The Raman spectra of the NMP-extracted core-drilled coke samples showed variations reflecting their temperature histories. Area ratios of D-band to G-band decreased as the exposure temperature increased, while intensity ratios of D to G band and those of 2D to G bands increased with temperature. The graphitic (G), defect (D), and random (R) fractions of the carbon structure of the cokes were also derived from the Raman spectra. The R fractions decreased with increasing temperature, whereas G fractions increased, while the D fractions showed a more complex variation with temperature. These data appear to give clues regarding the graphitization mechanism of tuyere-level cokes in the blast furnace. 41 refs., 9 figs., 6 tabs.

  19. Giprokoks proposals for improvement in air quality at coke battery 1A of Radlin coke plant

    SciTech Connect

    T.F. Trembach; A.G. Klimenko

    2009-07-15

    Coke battery 1A, which uses rammed batch, has gone into production at Radlin coke plant (Poland), on the basis of Giprokoks designs. Up-to-date dust-trapping methods are used for the first time within the aspiration systems in the coal-preparation shop and in improving dust collection within the production buildings.

  20. Innovative coke-oven repair techniques

    SciTech Connect

    Emish, G.J.; Ramani, R.V.

    1995-10-01

    Certain innovative coke-oven repair techniques are reviewed that represent an engineered approach to a successful rehabilitation of all types of coke-oven batteries. These techniques have been developed during the last 10 years and experience gained on a number of repair projects has shown that these techniques operate as a cohesive and comprehensive method of end flue and through-wall repairs to gain additional years of operating life to coke-oven batteries. Extended operations approaching 10 to 15 additional years of service at lower costs than a pad-up rebuild and, while meeting the environmental emission regulations, are attainable using the techniques of: Proper tie-in joint preparation; Improved bricking up methodology; Preheating refractory during bricking up; Installation of spring-loaded bracing system; and installation of flexible coke-oven doors. Repair methods that do not incorporate the above techniques are subject to premature failure of the refractory. The old methods of wall cool down and installing refractory as if the battery was brand new are outdated technology. A technology supplier, with new techniques, can coordinate the construction contractor and the battery heating to obtain a successful coke-oven and flue or through-wall repair.

  1. 2. GENERAL VIEW LOOKING NORTHEAST, SHOWING COKE MACHINE (CENTER), INTERMEDIATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL VIEW LOOKING NORTHEAST, SHOWING COKE MACHINE (CENTER), INTERMEDIATE TIPPLE (RIGHT), AND OVENS - Shoaf Mine & Coke Works, East side of Shoaf, off Township Route 472, Shoaf, Fayette County, PA

  2. GENERAL OVERVIEW, LOOKING NORTH FROM BEE HIVE COKE OVEN SITE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL OVERVIEW, LOOKING NORTH FROM BEE HIVE COKE OVEN SITE. - Pratt Coal & Coke Company, Pratt Mines, Tailings Pile, Bounded by First Street, Avenue G, Third Place, Birmingham Southern Railroad, Birmingham, Jefferson County, AL

  3. 2. Left to right: coke ovens, wharf with belt conveyor, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Left to right: coke ovens, wharf with belt conveyor, coal bunker, coke stack, brick quencher, gas holder, view framed by bracing for overhead conveyor. Looking south/southeast - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  4. VIEW OF EIGHT COKE OVENS ON EAST SIDE OF TOWN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF EIGHT COKE OVENS ON EAST SIDE OF TOWN OF ALVERTON, CONSTRUCTED OF YELLOW REFRACTORY BRICK. "WOODLAND M2" AND "BENEZETT - Alverton Coke Works, State Route 981, Alverton, Westmoreland County, PA

  5. 1. GENERAL VIEW OF COKE WORKS LOOKING WEST, SHOWING OVENS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF COKE WORKS LOOKING WEST, SHOWING OVENS IN FOREGROUND, LARRY CAR TIPPLE TO THE RIGHT, AND COAL TIPPLE IN CENTERGROUND - Lucernemines Coke Works, 0.2 mile East of Lucerne, Lucerne Mines, Indiana County, PA

  6. GENERAL OVERVIEW, LOOKING NORTH FROM COKE OVEN SITE, HEIGHT C. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL OVERVIEW, LOOKING NORTH FROM COKE OVEN SITE, HEIGHT C. 20 FEET. - Pratt Coal & Coke Company, Pratt Mines, Tailings Pile, Bounded by First Street, Avenue G, Third Place, Birmingham Southern Railroad, Birmingham, Jefferson County, AL

  7. Development of coke strength after reaction (CSR) at Dofasco

    SciTech Connect

    T.W. Todoschuk; J.P. Price; J.F. Gransden

    2004-03-01

    In order to prevent coke degradation without detrimentally affecting blast furnace service life, Dofasco initiated a project to improve coke strength after reaction. The results of the program and Dofasco's prediction model are presented. 9 refs., 12 figs., 9 tabs.

  8. 23. Brick coke quencher, brick stack, metal stack to right, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Brick coke quencher, brick stack, metal stack to right, coke gas pipe to left; in background, BOF building, limestone piles, Levy's Slag Dump. Looking north/northwest - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  9. DETAIL OF BEEHIVE COKE OVEN DOOR, LOOKING NORTH; NOTE FIREBRICK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF BEEHIVE COKE OVEN DOOR, LOOKING NORTH; NOTE FIRE-BRICK ARCH AND IRON JAMB AND SILL - Nuttallburg Mine Complex, Coke Ovens, North side of New River, 2.7 miles upstream from Fayette Landing, Lookout, Fayette County, WV

  10. VIEW LOOKING NORTHEAST SHOWING TIPPLE FOR LOADING COKED COAL INTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW LOOKING NORTHEAST SHOWING TIPPLE FOR LOADING COKED COAL INTO RAILROAD CARS (FRONT), COAL STORAGE BIN AND TIPPLE FOR COAL TO BE CHARGED IN FURNACES (BACK) - Alverton Coke Works, State Route 981, Alverton, Westmoreland County, PA

  11. Seizures and hyponatremia after excessive intake of diet coke.

    PubMed

    Mortelmans, Luc J M; Van Loo, Michel; De Cauwer, Harald G; Merlevede, Karen

    2008-02-01

    We describe a case of epileptic seizures after a massive intake of diet coke. Apart from the hyponatremia due to water intoxication the convulsions can be potentiated by the high dose of caffeine and aspartame from the diet coke. To our knowledge this is the first report of seizures due to excessive diet coke intake.

  12. Fundamentals of Delayed Coking Joint Industry Project

    SciTech Connect

    Volk Jr., Michael; Wisecarver, Keith D.; Sheppard, Charles M.

    2003-02-07

    The coking test facilities include three reactors (or cokers) and ten utilities. Experiments were conducted using the micro-coker, pilot-coker, and stirred-batch coker. Gas products were analyzed using an on-line gas chromatograph. Liquid properties were analyzed in-house using simulated distillation (HP 5880a), high temperature gas chromatography (6890a), detailed hydrocarbon analysis, and ASTM fractionation. Coke analyses as well as feedstock analyses and some additional liquid analyses (including elemental analyses) were done off-site.

  13. [Emission and source characterization of monoaromatic hydrocarbons from coke production].

    PubMed

    He, Qiu-Sheng; Wang, Xin-Ming; Sheng, Guo-Ying; Fu, Jia-Mo

    2005-09-01

    Monoaromatic hydrocarbons (MAHs) from indigenous and industrial coking processes are studied in Shanxi province. They are sampled on the top of coke ovens and in the chimneys using stainless steel canister and determined by GC/MSD after preconcentration with liquid nitrogen. Benzene, toluene and xylene are the main components among MAHs emitted from coking processes. Benzene and the total MAHs concentrations were as high as 3421.0 microg/m3 and 4 865.9 microg/m3 in the air from indigenous coking, 548.7 microg/m3 and 1 054.8 microg/m3 in the oventop air from industrial coking, and 1 376.4 microg/m3 and 1 819.4 microg/m3 in stack gas from industrial coking, respectively. The MAHs concentrations vary greatly during the indigenous coking process, which in the prophase (from firing to 10 days) is obviously higher than in the anaphase (10 days to quenching the coke). In industrial coking the MAHs in the oventop air are highest when charging the coal and next when transferring the hot coke, but in stack gas they are highest when charging coal and lowest when transferring the coke. Benzene, toluene, ethylbenzene and xylene (BTEX) in industrial coking samples show good linearity, indicating that MAHs in industrial coking might come predominantly from coal pyrolysis; but BTEX distribute dispersedly in indigenous coking samples, indicating that its emission might be affected by many factors. In all samples BTEX ratios especially high B/E ratio, is unique among MAHs sources, and might be helpful to characterize pollution from coking.

  14. Innovative coke oven gas cleaning system for retrofit applications. Volume 1, Public design report

    SciTech Connect

    Not Available

    1994-05-24

    This Public Design Report provides, in a single document, available nonproprietary design -information for the ``Innovative Coke Oven Gas Cleaning System for Retrofit Applications`` Demonstration Project at Bethlehem Steel Corporation`s Sparrows Point, Maryland coke oven by-product facilities. This project demonstrates, for the first time in the United States, the feasibility of integrating four commercially available technologies (processes) for cleaning coke oven gas. The four technologies are: Secondary Gas Cooling, Hydrogen Sulfide and Ammonia Removal, Hydrogen Sulfide and Ammonia Recovery, and Ammonia Destruction and Sulfur Recovery. In addition to the design aspects, the history of the project and the role of the US Department of,Energy are briefly discussed. Actual plant capital and projected operating costs are also presented. An overview of the integration (retrofit) of the processes into the existing plant is presented and is followed by detailed non-proprietary descriptions of the four technologies and their overall effect on reducing the emissions of ammonia, sulfur, and other pollutants from coke oven gas. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions, catalyst and chemical requirements, and utility requirements are given for each unit. Plant startup provisions, environmental considerations and control monitoring, and safety considerations are also addressed for each process.

  15. Energy efficiency of alternative coke-free metallurgical technologies

    SciTech Connect

    V.G. Lisienko; A.V. Lapteva; A.E. Paren'kov

    2009-02-15

    Energy analysis is undertaken for the blast-furnace process, for liquid-phase processes (Corex, Hismelt, Romelt), for solid-phase pellet reduction (Midrex, HYL III, LP-V in a shaft furnace), for steel production in systems consisting of a blast furnace and a converter, a Midrex unit and an arc furnace, or a Romelt unit and an arc furnace, and for scrap processing in an arc furnace or in an LP-V shaft furnace. Three blast-furnace processes with sinter and coke are adopted as the basis of comparison, as in: the standard blast-furnace process used in Russia; the improved blast-furnace process with coal-dust injection; and the production of vanadium hot metal from vanadium-bearing titanomagnetite ore (with a subsequent duplex process, ferrovanadium production, and its use in the arc furnace).

  16. Reducing dust emissions at OAO Alchevskkoks coke battery 10A

    SciTech Connect

    T.F. Trembach; E.N. Lanina

    2009-07-15

    Coke battery 10A with rammed batch is under construction at OAO Alchevskkoks. The design documentation developed by Giprokoks includes measures for reducing dust emissions to the atmosphere. Aspiration systems with dry dust trapping are employed in the new components of coke battery 10A and in the existing coke-sorting equipment. Two-stage purification of dusty air in cyclones and bag filters is employed for the coke-sorting equipment. This system considerably reduces coke-dust emissions to the atmosphere.

  17. RESIDUA UPGRADING EFFICIENCY IMPROVEMENT MODELS: COKE FORMATION PREDICTABILITY MAPS

    SciTech Connect

    John F. Schabron; A. Troy Pauli; Joseph F. Rovani Jr.

    2002-05-01

    The dispersed particle solution model of petroleum residua structure was used to develop predictors for pyrolytic coke formation. Coking Indexes were developed in prior years that measure how near a pyrolysis system is to coke formation during the coke formation induction period. These have been demonstrated to be universally applicable for residua regardless of the source of the material. Coking onset is coincidental with the destruction of the ordered structure and the formation of a multiphase system. The amount of coke initially formed appears to be a function of the free solvent volume of the original residua. In the current work, three-dimensional coke make predictability maps were developed at 400 C, 450 C, and 500 C (752 F, 842 F, and 932 F). These relate residence time and free solvent volume to the amount of coke formed at a particular pyrolysis temperature. Activation energies for two apparent types of zero-order coke formation reactions were estimated. The results provide a new tool for ranking residua, gauging proximity to coke formation, and predicting initial coke make tendencies.

  18. Water protection in coke-plant design

    SciTech Connect

    G.I. Alekseev

    2009-07-15

    Wastewater generation, water consumption, and water management at coke plants are considered. Measures to create runoff-free water-supply and sewer systems are discussed. Filters for water purification, corrosion inhibitors, and biocides are described. An integrated single-phase technology for the removal of phenols, thiocyanides, and ammoniacal nitrogen is outlined.

  19. 77 FR 32998 - Foundry Coke From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    ... The Commission instituted this review on December 1, 2011 (76 FR 74810) and determined on March 5, 2012 that it would conduct an expedited review (77 FR 15123, March 14, 2012). The Commission... COMMISSION Foundry Coke From China Determination On the basis of the record \\1\\ developed in the subject...

  20. Nitrogen Chemistry and Coke Transformation of FCC Coked Catalyst during the Regeneration Process

    NASA Astrophysics Data System (ADS)

    Shi, Junjun; Guan, Jianyu; Guo, Dawei; Zhang, Jiushun; France, Liam John; Wang, Lefu; Li, Xuehui

    2016-06-01

    Regeneration of the coked catalyst is an important process of fluid catalytic cracking (FCC) in petroleum refining, however, this process will emit environmentally harmful gases such as nitrogen and carbon oxides. Transformation of N and C containing compounds in industrial FCC coke under thermal decomposition was investigated via TPD and TPO to examine the evolved gaseous species and TGA, NMR and XPS to analyse the residual coke fraction. Two distinct regions of gas evolution are observed during TPD for the first time, and they arise from decomposition of aliphatic carbons and aromatic carbons. Three types of N species, pyrrolic N, pyridinic N and quaternary N are identified in the FCC coke, the former one is unstable and tends to be decomposed into pyridinic and quaternary N. Mechanisms of NO, CO and CO2 evolution during TPD are proposed and lattice oxygen is suggested to be an important oxygen resource. Regeneration process indicates that coke-C tends to preferentially oxidise compared with coke-N. Hence, new technology for promoting nitrogen-containing compounds conversion will benefit the in-situ reduction of NO by CO during FCC regeneration.

  1. Nitrogen Chemistry and Coke Transformation of FCC Coked Catalyst during the Regeneration Process.

    PubMed

    Shi, Junjun; Guan, Jianyu; Guo, Dawei; Zhang, Jiushun; France, Liam John; Wang, Lefu; Li, Xuehui

    2016-06-08

    Regeneration of the coked catalyst is an important process of fluid catalytic cracking (FCC) in petroleum refining, however, this process will emit environmentally harmful gases such as nitrogen and carbon oxides. Transformation of N and C containing compounds in industrial FCC coke under thermal decomposition was investigated via TPD and TPO to examine the evolved gaseous species and TGA, NMR and XPS to analyse the residual coke fraction. Two distinct regions of gas evolution are observed during TPD for the first time, and they arise from decomposition of aliphatic carbons and aromatic carbons. Three types of N species, pyrrolic N, pyridinic N and quaternary N are identified in the FCC coke, the former one is unstable and tends to be decomposed into pyridinic and quaternary N. Mechanisms of NO, CO and CO2 evolution during TPD are proposed and lattice oxygen is suggested to be an important oxygen resource. Regeneration process indicates that coke-C tends to preferentially oxidise compared with coke-N. Hence, new technology for promoting nitrogen-containing compounds conversion will benefit the in-situ reduction of NO by CO during FCC regeneration.

  2. Nitrogen Chemistry and Coke Transformation of FCC Coked Catalyst during the Regeneration Process.

    PubMed

    Shi, Junjun; Guan, Jianyu; Guo, Dawei; Zhang, Jiushun; France, Liam John; Wang, Lefu; Li, Xuehui

    2016-01-01

    Regeneration of the coked catalyst is an important process of fluid catalytic cracking (FCC) in petroleum refining, however, this process will emit environmentally harmful gases such as nitrogen and carbon oxides. Transformation of N and C containing compounds in industrial FCC coke under thermal decomposition was investigated via TPD and TPO to examine the evolved gaseous species and TGA, NMR and XPS to analyse the residual coke fraction. Two distinct regions of gas evolution are observed during TPD for the first time, and they arise from decomposition of aliphatic carbons and aromatic carbons. Three types of N species, pyrrolic N, pyridinic N and quaternary N are identified in the FCC coke, the former one is unstable and tends to be decomposed into pyridinic and quaternary N. Mechanisms of NO, CO and CO2 evolution during TPD are proposed and lattice oxygen is suggested to be an important oxygen resource. Regeneration process indicates that coke-C tends to preferentially oxidise compared with coke-N. Hence, new technology for promoting nitrogen-containing compounds conversion will benefit the in-situ reduction of NO by CO during FCC regeneration. PMID:27270486

  3. Nitrogen Chemistry and Coke Transformation of FCC Coked Catalyst during the Regeneration Process

    PubMed Central

    Shi, Junjun; Guan, Jianyu; Guo, Dawei; Zhang, Jiushun; France, Liam John; Wang, Lefu; Li, Xuehui

    2016-01-01

    Regeneration of the coked catalyst is an important process of fluid catalytic cracking (FCC) in petroleum refining, however, this process will emit environmentally harmful gases such as nitrogen and carbon oxides. Transformation of N and C containing compounds in industrial FCC coke under thermal decomposition was investigated via TPD and TPO to examine the evolved gaseous species and TGA, NMR and XPS to analyse the residual coke fraction. Two distinct regions of gas evolution are observed during TPD for the first time, and they arise from decomposition of aliphatic carbons and aromatic carbons. Three types of N species, pyrrolic N, pyridinic N and quaternary N are identified in the FCC coke, the former one is unstable and tends to be decomposed into pyridinic and quaternary N. Mechanisms of NO, CO and CO2 evolution during TPD are proposed and lattice oxygen is suggested to be an important oxygen resource. Regeneration process indicates that coke-C tends to preferentially oxidise compared with coke-N. Hence, new technology for promoting nitrogen-containing compounds conversion will benefit the in-situ reduction of NO by CO during FCC regeneration. PMID:27270486

  4. REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE

    SciTech Connect

    Kevin C. Galbreath; Donald L. Toman; Christopher J. Zygarlicke

    1999-09-01

    Petroleum coke, a byproduct of the petroleum-refining process, is an attractive primary or supplemental fuel for power production primarily because of a progressive and predictable increase in the production volumes of petroleum coke (1, 2). Petroleum coke is most commonly blended with coal in proportions suitable to meet sulfur emission compliance. Petroleum coke is generally less reactive than coal; therefore, the cofiring of petroleum coke with coal typically improves ignition, flame stability, and carbon loss relative to the combustion of petroleum coke alone. Although petroleum coke is a desirable fuel for producing relatively inexpensive electrical power, concerns about the effects of petroleum coke blending on combustion and pollution control processes exist in the coal-fired utility industry (3). The Energy & Environmental Research Center (EERC) completed a 2-year technical assessment of petroleum coke as a supplemental fuel. A survey questionnaire was sent to seven electric utility companies that are currently cofiring coal and petroleum coke in an effort to solicit specific suggestions on research needs and fuel selections. An example of the letter and survey questionnaire is presented in Appendix A. Interest was expressed by most utilities in evaluating the effects of petroleum coke blending on grindability, combustion reactivity, fouling, slagging, and fly ash emissions control. Unexpectedly, concern over corrosion was not expressed by the utilities contacted. Although all seven utilities responded to the question, only two utilities, Northern States Power Company (NSP) and Ameren, sent fuels to the EERC for evaluation. Both utilities sent subbituminous coals from the Power River Basin and petroleum shot coke samples. Petroleum shot coke is produced unintentionally during operational upsets in the petroleum refining process. This report evaluates the effects of petroleum shot coke blending on grindability, fuel reactivity, fouling/slagging, and

  5. Use of resin-bearing wastes from coke and coal chemicals production at the Novokuznetsk Metallurgical Combine

    SciTech Connect

    Kul'kova, T.N.; Yablochkin, N.V.; Gal'chenko, A.I.; Karyakina, E.A.; Litvinova, V.A.; Gorbach, D.A.

    2007-03-15

    The coke and coal chemicals plant at the Novokuznetsk Metallurgical Combine is making trial use of a technology that recycles waste products in 'tar ponds.' Specialists from the Ekomash company have installed a recycling unit in one area of the plant's dump, the unit including an inclined conveyor with a steam heater and a receiving hopper The coal preparation shop receives the wastes in a heated bin, where a screw mixes the wastes with pail of the charge for the coking ovens. The mixture subsequently travels along a moving conveyor belt together with the rest of the charge materials. The addition of up to 2% resin-bearing waste materials to the coal charge has not had any significant effect on the strength properties of the coke.

  6. Reduction in toxicity of coking wastewater to aquatic organisms by vertical tubular biological reactor.

    PubMed

    Zhou, Siyun; Watanabe, Haruna; Wei, Chang; Wang, Dongzhou; Zhou, Jiti; Tatarazako, Norihisa; Masunaga, Shigeki; Zhang, Ying

    2015-05-01

    We conducted a battery of toxicity tests using photo bacterium, algae, crustacean and fish to evaluate acute toxicity profile of coking wastewater, and to evaluate the performance of a novel wastewater treatment process, vertical tubular biological reactor (VTBR), in the removal of toxicity and certain chemical pollutants. A laboratory scale VTBR system was set up to treat industrial coking wastewater, and investigated both chemicals removal efficiency and acute bio-toxicity to aquatic organisms. The results showed that chemical oxygen demand (COD) and phenol reductions by VTBR were approximately 93% and 100%, respectively. VTBR also reduced the acute toxicity of coking wastewater significantly: Toxicity Unit (TU) decreased from 21.2 to 0.4 for Photobacterium phosphoreum, from 9.5 to 0.6 for Isochrysis galbana, from 31.9 to 1.3 for Daphnia magna, and from 30.0 to nearly 0 for Danio rerio. VTBR is an efficient treatment method for the removal of chemical pollutants and acute bio-toxicity from coking wastewater.

  7. The behaviors and fate of polycyclic aromatic hydrocarbons (PAHs) in a coking wastewater treatment plant.

    PubMed

    Zhang, Wanhui; Wei, Chaohai; Chai, Xinsheng; He, Jingying; Cai, Ying; Ren, Man; Yan, Bo; Peng, Pingan; Fu, Jiamo

    2012-06-01

    The occurrence, behaviors and fate of 18 PAHs were investigated in a coking wastewater treatment plant in Songshan coking plant, located in Shaoguan, Guangdong Province of China. It was found that the target compounds occurred widely in raw coking wastewater, treated effluent, sludge and gas samples. In raw coking wastewater, high molecular weight (MW) PAHs were the dominant compounds, while 3-6 ring PAHs predominated in the final effluent. The dominant compounds in gas samples were phenathrene, fluoranthene and pyrene, while they were fluoranthene, pyrene, chrysene and benzo[k]fluoranthene for sludge. The process achieved over 97% removal for all the PAHs, 47-92% of eliminations of these target compounds in liquid phase were achieved in biological stage. Different behaviors of PAHs were observed in the primary tank, anaerobic tank, aerobic tank, hydrolytic tank and coagulation tank units, while heavier and lower ones were mainly removed in anaerobic tank and aerobic tanks, respectively. Regarding the fate of PAHs, calculated fractions of mass losses for low MW PAHs due to transformation and adsorption to sludge accounted for 15-50% and 24-49%, respectively, while the rest was less than 1%. For high MW PAHs, the mass losses were mainly due to adsorption to sludge and separation with tar (contributing 56-76% and 22-39%, respectively), and the removal through transformation was less. PMID:22464861

  8. REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE

    SciTech Connect

    1998-09-01

    A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it may adversely affect combustion performance. Although the blending of petroleum coke with coal may adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.

  9. Regeneration performance and carbon consumption of semi-coke and activated coke for SO₂ and NO removal.

    PubMed

    Ding, Song; Li, Yuran; Zhu, Tingyu; Guo, Yangyang

    2015-08-01

    To decrease the operating cost of flue gas purification technologies based on carbon-based materials, the adsorption and regeneration performance of low-price semi-coke and activated coke were compared for SO2 and NO removal in a simulated flue gas. The functional groups of the two adsorbents before and after regeneration were characterized by a Fourier transform infrared (FTIR) spectrometer, and were quantitatively assessed using temperature programmed desorption (TPD) coupled with FTIR and acid-base titration. The results show that semi-coke had higher adsorption capacity (16.2% for SO2 and 38.6% for NO) than activated coke because of its higher content of basic functional groups and lactones. After regeneration, the adsorption performance of semi-coke decreased because the number of active functional groups decreased and the micropores increased. Semi-coke had better regeneration performance than activated coke. Semi-coke had a larger SO2 recovery of 7.2% and smaller carbon consumption of 12% compared to activated coke. The semi-coke carbon-based adsorbent could be regenerated at lower temperatures to depress the carbon consumption, because the SO2 recovery was only reduced a small amount.

  10. Regeneration performance and carbon consumption of semi-coke and activated coke for SO₂ and NO removal.

    PubMed

    Ding, Song; Li, Yuran; Zhu, Tingyu; Guo, Yangyang

    2015-08-01

    To decrease the operating cost of flue gas purification technologies based on carbon-based materials, the adsorption and regeneration performance of low-price semi-coke and activated coke were compared for SO2 and NO removal in a simulated flue gas. The functional groups of the two adsorbents before and after regeneration were characterized by a Fourier transform infrared (FTIR) spectrometer, and were quantitatively assessed using temperature programmed desorption (TPD) coupled with FTIR and acid-base titration. The results show that semi-coke had higher adsorption capacity (16.2% for SO2 and 38.6% for NO) than activated coke because of its higher content of basic functional groups and lactones. After regeneration, the adsorption performance of semi-coke decreased because the number of active functional groups decreased and the micropores increased. Semi-coke had better regeneration performance than activated coke. Semi-coke had a larger SO2 recovery of 7.2% and smaller carbon consumption of 12% compared to activated coke. The semi-coke carbon-based adsorbent could be regenerated at lower temperatures to depress the carbon consumption, because the SO2 recovery was only reduced a small amount. PMID:26257344

  11. Adsorption removal of pollutants by active cokes produced from sludge in the energy recycle process of wastes.

    PubMed

    Kojima, Naozumi; Mitomo, Aki; Itaya, Yoshinori; Mori, Shigekatsu; Yoshida, Shuichi

    2002-01-01

    This study proposes a recycling system of sludge into active cokes and the fundamental examinations for the application were carried out. In the system, active cokes were produced by carbonizing pellets of sludge in a steam stream. Pyrolysis gas yielded by carbonization can be available to a fuel for a steam generation boiler. The exhaust heat from the boiler is used sequentially for drying of sludge. The active cokes are applied to the adsorbent for dioxin removal in exhaust gas from incinerators of wastes, or for purification of gas obtained in a gasification process of wastes, particularly removal of H2S. The used adsorbent is not recycled, but incinerated in the furnace without a desorption process to decompose adsorbed dioxin or to oxidize H2S for a sequential desulfurization process of SO2. Dry pellets of sludge were carbonized in a quartz tube reactor under various atmospheres. The micro pore structure and the adsorption performance of the cokes produced without activation process were examined. The micro pore structure was influenced by the temperature, the sort of flow gas (N2, CO2 and steam) and carbonization time, and the active cokes produced under the condition of the temperature 823 K for 60 min in the steam atmosphere had a largest specific surface area in the diameter less than 5 nm. The amount of benzene adsorption as an alternative substance of dioxin into the active cokes had a similar quality to a commercial active char produced from coal if it was evaluated by adsorption per a unit specific surface area. This fundamental knowledge must be reflected to an optimum design for development of a simple continuous process to produce the active cokes by a fluidized bed type of the carbonization furnace.

  12. Cyanide treatment options in coke plants

    SciTech Connect

    Minak, H.P.; Lepke, P.

    1997-12-31

    The paper discusses the formation of cyanides in coke oven gas and describes and compares waste processing options. These include desulfurization by aqueous ammonia solution, desulfurization using potash solution, desulfurization in oxide boxes, decomposition of NH{sub 3} and HCN for gas scrubbing. Waste water treatment methods include chemical oxidation, precipitation, ion exchange, reverse osmosis, and biological treatment. It is concluded that biological treatment is the most economical process, safe in operation and requires a minimum of manpower.

  13. Coking rates in a laboratory pyrolysis furnace: Liquid petroleum feedstocks

    SciTech Connect

    Leftin, H.P.; Newsome, D.S.

    1987-05-01

    Integral rates of coking for 14 feedstocks (light naphtha to vacuum gas oil) and mixtures of these were determined in a laboratory pyrolysis furnace between 815 and 943/sup 0/C and between 70 and 340 ms. These can be ranked as severe coking (S.C) and low coking (L.C.) feedstocks and are characterized by production of filamentous and amorphous (encapsulating) coke, respectively. Admixture of a L.C. feedstock in greater than a critical minimum amount of a S.C. feedstock imparts a natural inhibition on the coking rate of the S.C. feedstock, so that the coking rate of the mixture mimics that of the L.C. component.

  14. Improvement of coke quality by utilization of hydrogenation residue

    SciTech Connect

    Meckel, J.F. ); Wairegi, T. )

    1993-01-01

    Hydrogenation residue is the product left over when petroleum residue feedstocks (or coal) are treated by, e.g. the Veba Combi Cracking (VCC) process. Many tests in semitechnical and full-sized coke ovens were carried out with hydrogenation residue (HR) as an additive in coking coal blends for the production of blast furnace coke or foundry coke. The results of the investigations reported in this paper demonstrate that HR is a very promising alternative for enlarging the coking coal basis compared to other processes or the use of other additives. The application of HR on an industrial scale did not indicate any negative impact on the handling of the hydrogenation residue or on the operation of the coke oven battery.

  15. Toxicological assessment of green petroleum coke.

    PubMed

    McKee, Richard H; Herron, Deborah; Beatty, Patrick; Podhasky, Paula; Hoffman, Gary M; Swigert, James; Lee, Carol; Wong, Diana

    2014-01-01

    Green petroleum coke is primarily inorganic carbon with some entrained volatile hydrocarbon material. As part of the petroleum industry response to the high production volume challenge program, the potential for reproductive effects was assessed in a subchronic toxicity/reproductive toxicity screening test in rats (OECD 421). The repeated-dose portion of the study provided evidence for dust accumulation and inflammatory responses in rats exposed to 100 and 300 mg/m(3) but there were no effects at 30 mg/m(3). In the reproductive toxicity screen, the frequency of successful matings was reduced in the high exposure group (300 mg/m(3)) and was not significantly different from control values but was outside the historical experience of the laboratory. The postnatal observations (external macroscopic examination, body weight, and survival) did not indicate any treatment-related differences. Additional tests conducted to assess the potential hazards to aquatic (fish, invertebrates, and algae) and soil dwelling organisms (earthworms and vascular plants) showed few effects at the maximum loading rates of 1000 mg coke/L in aquatic studies and 1000 mg coke/kg soil in terrestrial studies. The only statistically significant finding was an inhibition of algal growth measured as either biomass or growth rate.

  16. Toxicological assessment of green petroleum coke.

    PubMed

    McKee, Richard H; Herron, Deborah; Beatty, Patrick; Podhasky, Paula; Hoffman, Gary M; Swigert, James; Lee, Carol; Wong, Diana

    2014-01-01

    Green petroleum coke is primarily inorganic carbon with some entrained volatile hydrocarbon material. As part of the petroleum industry response to the high production volume challenge program, the potential for reproductive effects was assessed in a subchronic toxicity/reproductive toxicity screening test in rats (OECD 421). The repeated-dose portion of the study provided evidence for dust accumulation and inflammatory responses in rats exposed to 100 and 300 mg/m(3) but there were no effects at 30 mg/m(3). In the reproductive toxicity screen, the frequency of successful matings was reduced in the high exposure group (300 mg/m(3)) and was not significantly different from control values but was outside the historical experience of the laboratory. The postnatal observations (external macroscopic examination, body weight, and survival) did not indicate any treatment-related differences. Additional tests conducted to assess the potential hazards to aquatic (fish, invertebrates, and algae) and soil dwelling organisms (earthworms and vascular plants) showed few effects at the maximum loading rates of 1000 mg coke/L in aquatic studies and 1000 mg coke/kg soil in terrestrial studies. The only statistically significant finding was an inhibition of algal growth measured as either biomass or growth rate. PMID:24179031

  17. AERIAL OVERVIEW, LOOKING WEST, WITH BEE HIVE COKE OVENS IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL OVERVIEW, LOOKING WEST, WITH BEE HIVE COKE OVENS IN FORESTED OVERGROWTH (BOTTOM LEFT), COKE TAILINGS PILE (BOTTOM RIGHT THROUGH CENTER TOP LEFT), FORMER BIRMINGHAM SOUTHERN RAILWAY SHOPS BUILDING (TOP RIGHT). CONVICT CEMETERY IS JUST WEST OF THE TAILINGS PILE (TOP LEFT IN THIS PHOTOGRAPH). - Pratt Coal & Coke Company, Pratt Mines, Convict Cemetery, Bounded by First Street, Avenue G, Third Place & Birmingham Southern Railroad, Birmingham, Jefferson County, AL

  18. Reducing power production costs by utilizing petroleum coke. Annual report

    SciTech Connect

    Galbreath, K.C.

    1998-07-01

    A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it may adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.

  19. Visualization of coke state in hydraulic decoking process

    NASA Astrophysics Data System (ADS)

    Guo, Qian; Tong, Xinglin; Deng, Chengwei; Zhang, Cui; Huang, Di; Chen, Liang; Xiong, Jiaguo

    2016-05-01

    The relationship model of the sound signal and the coke state can be established through multiple test and comparison of the noise signal and the coke operation. By collecting data, we summarize the main frequency power fluctuation range of the sound signal in kinds of state, and extract the nearest 5 decision results for reference. The weighted value of each result according to the update time has gradually increased. On the basis of that, we developed visualization software, real-time reflect out coke coking tower state. Animation refresh rate is second level, and the vertical height can be accurate to 0.1m.

  20. Estimation and characterization of polychlorinated naphthalene emission from coking industries.

    PubMed

    Liu, Guorui; Zheng, Minghui; Lv, Pu; Liu, Wenbin; Wang, Chengzhi; Zhang, Bing; Xiao, Ke

    2010-11-01

    Occurrence of polycyclic aromatic hydrocarbons (PAHs) during the coking process has been widely recognized. The formation of polychlorinated naphthalenes (PCNs) from PAHs during some thermal related processes has been confirmed in many studies. Thus, the coking process is assumed to be a potential source of PCNs. However, intensive investigations on PCN emissions during the coking process are lacking. In order to evaluate PCN emissions from the coking process, an intensive study comprising 11 typical coke plants was undertaken. PCNs were qualified and quantified by isotope dilution HRGC/HRMS techniques. The concentrations of PCNs in stack gas samples collected from the investigated coke plants were in the range of 1.6-91.8 ng Nm(-3) (0.08-4.23 pg TEQ Nm(-3)). The emission factors of PCNs were found to be in the range of 0.77-1.24 ng TEQ per ton of coke production. The estimated annual toxic emissions of PCNs from the global coking industry vary from 430 to 692 mg TEQs. Characteristics of the PCN profiles were dominated by the lower chlorinated homologues, with mono-CN being the most abundant homologue. According to the PCN distribution and correlations of PCN homologues, it was speculated that chlorination is possibly the dominant pathway of PCN formation during the coking process.

  1. Proposal of a novel multifunctional energy system for cogeneration of coke, hydrogen, and power - article no. 052001

    SciTech Connect

    Jin, H.G.; Sun, S.; Han, W.; Gao, L.

    2009-09-15

    This paper proposes a novel multifunctional energy system (MES), which cogenerates coke, hydrogen, and power, through the use of coal and coke oven gas (COG). In this system, a new type of coke oven, firing coal instead of COG as heating resource for coking, is adopted. The COG rich in H{sub 2} is sent to a pressure swing adsorption (PSA) unit to separate about 80% of hydrogen first, and then the PSA purge gas is fed to a combined cycle as fuel. The new system combines the chemical processes and power generation system, along with the integration of chemical conversion and thermal energy utilization. In this manner, both the chemical energy of fuel and thermal energy can be used more effectively. With the same inputs of fuel and the same output of coking heat, the new system can produce about 65% more hydrogen than that of individual systems. As a result, the thermal efficiency of the new system is about 70%, and the exergy efficiency is about 66%. Compared with individual systems, the primary energy saving ratio can reach as high as 12.5%. Based on the graphical exergy analyses, we disclose that the integration of synthetic utilization of COG and coal plays a significant role in decreasing the exergy destruction of the MES system. The promising results obtained may lead to a clean coal technology that will utilize COG and coal more efficiently and economically.

  2. Superfund record of decision amendment (EPA Region 5): Allied Chemical/Ironton Coke Superfund Site, Ironton, OH, July 31, 1995

    SciTech Connect

    1996-02-01

    The Allied Chemical/Ironton Coke Superfund Site, located in Ironton, Lawrence County, Ohio is approximately 95 acres in size. The Allied Chemical/Ironton Coke site is divided into two operable units, the Goldcamp Disposal Area (GDA) and the Coke Plant/Lagoon Area (CPLA). The GDA Record of Decision (ROD) which describes the GDA site remedy was executed on September 29, 1988 (PB89-206221). The CPLA RD/RA is also through a CERCLA Section 106 Unilateral Administrative Order which was signed on July 1, 1991 and was issued to Allied Signal, Inc (PB92-964115). During the pre-design and design for the CPLA, new information discovered in which fundamental changes to the original CPLA and GDA ROD`s are required. This ROD Amendment documents four fundamental changes that will affect the CPLA ROD and one of the four changes that will affect the GDA ROD.

  3. Dry purification of aspirational air in coke-sorting systems with wet slaking of coke

    SciTech Connect

    T.F. Trembach; A.G. Klimenko

    2009-07-15

    Coke transportation after wet slaking is accompanied by the release of dust in the production building and in the surrounding atmosphere. Wet methods are traditionally used to purify very humid air. Giprokoks has developed designs for highly efficient dry dust-removal methods in such conditions.

  4. Effects of preheating and highly heat-conductive brick on coke quality

    SciTech Connect

    Fukuda, K.; Arima, T.

    1995-12-31

    In replacing the coke ovens available currently, the introduction of a combined technique of a preheated coal charging method (preheating temperature:175 C) and the use of highly heat-conductive brick is under examination for raising the productivity of coke ovens. With such background, a study of the effects of this combined technique on the coke quality, especially the coke size was conducted. The experimental results revealed that the primary size of coke produced by the combined technique is noticeably larger than that of the coke made from wet coal and after five revolutions of drum (equivalent to mechanical impact given at a time of dropping from coke oven chamber to wharf), the coke size reduces even compared with an ordinary coke. This may be due to the fact that the coke produced by the combined technique includes a lot of fissures inside the coke lump.

  5. Comparison of the tribological properties of fluorinated cokes and graphites

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1988-01-01

    The friction, wear, endurance life, and surface morphology of rubbed (burnished) fluorinated graphite and fluorinated coke materials were studied. Two different coke powders, a graphitic carbon powder, and a graphite powder were fluorinated and then tribologically investigated. In addition, one of the coke powders was reduced in size before fluorinating to evaluate the effect of a finer particle size on the tribological properties. For comparison, graphite and coke powders which were not fluorinated were also tribologically evaluated. Elemental analysis by emission spectroscopy was performed on each sample to determine the impurity content and X-ray diffraction analysis was performed to determine the crystallinity. Coke was found to have very little lubricating ability, but fluorinated coke did possess good lubricating properties. However, the fluorinated graphite and fluorinated graphitic carbon (which gave equivalent results) gave superior results to those obtained with the fluorinated cokes. No tribological benefit was found for using small versus a larger particle size of coke, at least when evaluated as a rubbed film.

  6. Comparison of the tribological properties of fluorinated cokes and graphites

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1987-01-01

    The friction, wear, endurance life, and surface morphology of rubbed (burnished) fluorinated graphite and fluorinated coke materials were studied. Two different coke powders, a graphitic carbon powder, and a graphite powder were fluorinated and then tribologically investigated. In addition, one of the coke powders was reduced in size before fluorinating to evaluate the effect of a finer particle size on the tribological properties. For comparison, graphite and coke powders which were not fluorinated were also tribologically evaluated. Elemental analysis by emission spectroscopy was performed on each sample to determine the impurity content and X-ray diffraction analysis was performed to determine the crystallinity. Coke was found to have very little lubricating ability, but fluorinated coke did possess good lubricating properties. However, the fluorinated graphite and fluorinated graphitic carbon (which gave equivalent results) gave superior results to those obtained with the fluorinated cokes. No tribological benefit was found for using small versus a larger particle size of coke, at least when evaluated as a rubbed film.

  7. "Fishing" of heteropolyacids into carbonaceous seine via coking.

    PubMed

    Sushkevich, Vitaly L; Ivanova, Irina I; Lancelot, Christine; Moldovan, Simona; Ersen, Ovidiu; Ordomsky, Vitaly V

    2015-12-14

    The carbon encapsulated tungstophosphoric acid was synthesized by the controlled coking during gas phase reaction of formaldehyde with isobutene. The as-made material showed unique stability toward leaching in the aqueous phase due to localization of HPA clusters inside the porous coke matrix with high activity in the esterification reaction. PMID:26451706

  8. Coke Deposition and Smoke Formation in Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Hibbard, R. R.; Wear, J. D.

    1956-01-01

    In the early development of jet engines, it was occasionally found that excessive amounts of coke or other carbonaceous deposits were formed in the combustion chamber. Sometimes a considerable amount of smoke was noted in the-exhaust gases. Excessive coke deposits may adversely affect jet-engine performance in several ways. The formation of excessive amounts of coke on or just downstream of a fuel nozzle (figs. 116(a) and (b)) changes the fuel-spray pattern and possibly affects combustor life and performance. Similar effects on performance can result from the deposition of coke on primary-air entry ports (fig. 116(c)). Sea-level or altitude starting may be impaired by the deposition of coke on spark-plug electrodes (fig. 116(b)), deposits either grounding the electrodes completely or causing the spark to occur at positions other than the intended gap. For some time it was thought that large deposits of coke in turbojet combustion chambers (fig. 116(a)) might break away and damage turbine blades; however, experience has indicated that for metal blades this problem is insignificant. (Cermet turbine blades may be damaged by loose coke deposits.) Finally, the deposition of coke may cause high-temperature areas, which promote liner warping and cracking (fig. 116(d)) from excessive temperature gradients and variations in thermal-expansion rates. Smoke in the exhaust gases does not generally impair engine performance but may be undesirable from a tactical or a nuisance standpoint. Appendix B of reference 1 and references 2 to 4 present data obtained from full-scale engines operated on test stands and from flight tests that indicate some effects on performance caused by coke deposits and smoke. Some information about the mechanism of coke formation is given in reference 5 and chapter IX. The data indicate that (1) high-boiling fuel residuals and partly polymerized products may be mixed with a large amount of smoke formed in the gas phase to account for the consistency

  9. 40 CFR 63.305 - Alternative standards for coke oven doors equipped with sheds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Alternative standards for coke oven... SOURCE CATEGORIES National Emission Standards for Coke Oven Batteries § 63.305 Alternative standards for coke oven doors equipped with sheds. (a) The owner or operator of a new or existing coke oven...

  10. 40 CFR 63.305 - Alternative standards for coke oven doors equipped with sheds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Alternative standards for coke oven... SOURCE CATEGORIES National Emission Standards for Coke Oven Batteries § 63.305 Alternative standards for coke oven doors equipped with sheds. (a) The owner or operator of a new or existing coke oven...

  11. Coke formation during pyrolysis of 1,2-dichloroethane

    SciTech Connect

    Holmen, A.; Lindvag, O.A.

    1995-12-31

    Most processes involving hydrocarbons or carbon oxides at high temperatures suffer from the disadvantage of coke formation. The formation of coke deposits during pyrolysis of hydrocarbons or chlorinated hydrocarbons is of significant practical importance. Examples of such processes are the steam cracking of alkanes to produce olefins and the thermal decomposition of 1,2-dichloroethane (EDC) for the production of vinyl chloride monomer (VCM). Even id the rate of coke production is low, the cumulative nature of the solid product will result in reactor fouling. The present work deals with the thermal decomposition of EDC. Coke formation has been studied on metal surfaces in a quartz tubular reactor. The rate of coke deposition was measures on metal foils hanging from one arm of a microbalance. A complete analysis of the product gas was accomplished using on-line gas chromatography. The results show that coke deposition during thermal decomposition of EDC depends on the composition of the feed as well as on the nature of the surface of the metal foil. Small amounts of other components (contamination with other chlorinated hydrocarbons as an example) may have a large influence on the rate of coke formation. The results are discussed in terms of surface composition/morphology of the metal foil and the free radical mechanism for thermal decomposition of FDC.

  12. Coke mineral transformations in the experimental blast furnace

    SciTech Connect

    Kelli Kazuberns; Sushil Gupta; Mihaela Grigore; David French; Richard Sakurovs; Mats Hallin; Bo Lindblom; Veena Sahajwalla

    2008-09-15

    Blast furnace efficiency may be improved by optimizing coke reactivity. Some but not all forms of mineral matter in the coke modify its reactivity, but changes in mineral matter that occur within coke while in the blast furnace have not been fully quantified. To determine changes in mineral matter forms in the blast furnace, coke samples from a dissection study in the LKAB experimental blast furnace (EBF) were characterized using SEM/EDS analysis, EPMA (microprobe), and low-temperature ashing/quantitative XRD analysis. Variations in alkali concentration, particularly potassium, dominated the compositional changes. At high concentrations of potassium, the mineral matter was largely potassium-bearing but even more potassium was diffused throughout the coke and not associated with mineral matter. There was little difference in potassium concentration between the core and surface of the coke pieces, suggesting that potassium diffused rapidly through the whole coke. Iron, calcium, silicon, and aluminum concentrations were relatively constant in comparison, although the mineralogy of all elements changed significantly with changing temperature. 23 refs., 20 figs., 9 tabs.

  13. Development of chamber wall observation system at coke oven

    SciTech Connect

    Tsukihara, Y.; Hashimoto, K.; Hamaki, M.; Kasaoka, S.; Shirogane, T.

    1993-01-01

    The major factor determining the life of coke ovens is the degree of damage to the coking chamber wall. Repairs can be made by flame gunning if the damage is relatively light, but repair costs increase dramatically as damage becomes more serious. Depending on the case, it may be impossible to restore the oven to its original conditions. It is therefore necessary to inspect damage conditions periodically and carry out repairs systematically. In addition, obtaining a quantitative grasp of coke oven deterioration and estimating the operational burden with oven conditions also have a bearing on the service life of coke ovens. Therefore, for obtaining coke oven life of 30-35 years, it will be still more important that technique of obtaining a quantitative grasp of coke oven deterioration. Visual inspection by operators is not completely effective as a means of early discovery and diagnosis of damaged parts of the oven wall. This report describes the development of a device which solves this problem by making it possible to observe the entire coke oven wall using a diagnostic camera introduced into the oven by remote control, and a computer system for processing the photographic information thus obtained.

  14. Research on the evolvement of morphology of coking coal during the coking process.

    PubMed

    Zhong, Xiangyun; Wu, Shiyong; Liu, Yang; Zhao, Zhenning; Zhang, Yaru; Bai, Jinfeng; Xu, Jun; Xi, Bai

    2013-12-01

    The evolvement of morphology and structure of the coal with different metamorphic degrees during coking process in the vertical furnace was investigated by infrared Image detector. Moreover, the temperature distribution in the radial direction and the crack formation were also studied in heating process. The results show that the amount of crack and the shrinkage level of char decrease with the coal rank rising. In addition, the initial temperature of crack formation for char increases with the coal rank rising.

  15. Variation in coke properties within the blast-furnace shop

    SciTech Connect

    E.N. Stepanov; I.I. Mel'nikov; V.P. Gridasov; A.A. Stepanova

    2009-04-15

    In active production at OAO Magnitogorskii Metallurgicheskii Kombinat (MMK), samples of melt materials were taken during shutdown and during planned repairs at furnaces 1 and 8. In particular, coke was taken from the tuyere zone at different distances from the tuyere tip. The mass of the point samples was 2-15 kg, depending on the sampling zone. The material extracted from each zone underwent magnetic separation and screening by size class. The resulting coke sample was averaged out and divided into parts: one for determining the granulometric composition and mechanical strength; and the other for technical analysis and determination of the physicochemical properties of the coke.

  16. Characteristics of laboratory-coked resid HDS catalyst

    SciTech Connect

    Baumgart, J. Wang, Y.; Ernst, W.R. )

    1990-12-01

    A sample of commercial residual oil hydrotreating catalyst with a bimodal pore structure was coked to progressively higher levels with styrene at 425{degree}C. Measurements of porosity by mercury intrusion-extrusion porosimetry, nitrogen adsorption-desorption porosimetry, and coronene diffusivity reveal the importance of the pore network to the structure of the coked catalyst. The role played by 'shielded' large pores within the structure is demonstrated. It is proposed that coking first occurs at the junctions between large, shielded pores and narrow connecting pores. The results are discussed in terms of the theoretical predictions of Mann and co-workers.

  17. Device for drying and preheating coking coal

    SciTech Connect

    Petrovic, V.; Durselen, H.

    1984-11-13

    In order to preserve the quality of treated coking coal, the drying and preheating operation is performed in consecutive stages. For this purpose, a set of superimposed containers is provided with vertically oriented pipes for a heating medium, the pipes in each container having separate inlets and outlets. The bottom region of each container is further provided with horizontally directed pipes having separate inlet and outlet for receiving a pressure medium which is discharged into the bottom region of each container to produce a whirling bed of the coal. In this manner, the coal is preliminarily dried in the uppermost container, then additionally dried and preheated in the intermediate container, and heated to the desired final temperature in the lowermost container.

  18. [Health risk assessment of coke oven PAHs emissions].

    PubMed

    Bo, Xin; Wang, Gang; Wen, Rou; Zhao, Chun-Li; Wu, Tie; Li, Shi-Bei

    2014-07-01

    Polycyclic aromatic hydrocarbons (PAHs) produced by coke oven are with strong toxicity and carcinogenicity. Taken typical coke oven of iron and steel enterprises as the case study, the dispersion and migration of 13 kinds of PAHs emitted from coke oven were analyzed using AERMOD dispersion model, the carcinogenic and non-carcinogenic risks at the receptors within the modeling domain were evaluated using BREEZE Risk Analyst and the Human Health Risk Assessment Protocol for Hazardous Waste Combustion (HHRAP) was followed, the health risks caused by PAHs emission from coke oven were quantitatively evaluated. The results indicated that attention should be paid to the non-carcinogenic risk of naphthalene emission (the maximum value was 0.97). The carcinogenic risks of each single pollutant were all below 1.0E-06, while the maximum value of total carcinogenic risk was 2.65E-06, which may have some influence on the health of local residents.

  19. 14. Battery of coke ovens (DX?) on right, pusher cars ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Battery of coke ovens (DX?) on right, pusher cars on right, hot gas pipes on left and overhead; pulverized coal bunker is tall, vertical structure on left. looking south - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  20. 71. WESTWARD VIEW OF COKE BIN INSIDE OF THE SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. WESTWARD VIEW OF COKE BIN INSIDE OF THE SOUTH STOCKHOUSE FOR DOROTHY SIX BLAST FURNACE. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  1. RESIDUA UPGRADING EFFICIENCY IMPROVEMENT MODELS: WRI COKING INDEXES

    SciTech Connect

    John F. Schabron; Joseph F. Rovani, Jr.; Francis P. Miknis; Thomas F. Turner

    2003-06-01

    Pyrolysis experiments were conducted with three residua at 400 C (752 F) at various residence times. The wt % coke and gaseous products were measured for the product oils. The Western Research Institute (WRI) Coking Indexes were determined for the product oils. Measurements were made using techniques that might correlate with the Coking Indexes. These included spin-echo proton nuclear magnetic resonance spectroscopy, heat capacity measurements at 280 C (536 F), and ultrasonic attenuation. The two immiscible liquid phases that form once coke formation begins were isolated and characterized for a Boscan residuum pyrolyzed at 400 C (752 F) for 55 minutes. These materials were analyzed for elemental composition (CHNS), porphyrins, and metals (Ni,V) content.

  2. New process to avoid emissions: Constant pressure in coke ovens

    SciTech Connect

    Giertz, J.; Huhn, F.; Hofherr, K.

    1995-12-01

    A chamber pressure regulation (PROven), especially effective in regard to emission control problems of coke ovens is introduced for the first time. Because of the partial vacuum in the collecting main system, it is possible to keep the oven`s raw gas pressure constant on a low level over the full coking time. The individual pressure control for each chamber is assured directly as a function of the oven pressure by an immersion system controlling the flow resistance of the collecting main valve. The latter is a fixed-position design (system name ``FixCup``). By doing away with the interdependence of collecting main pressure and chamber pressure, a parameter seen as a coking constant could not be made variable. This opens a new way to reduce coke oven emissions and simultaneously to prevent the ovens from damage caused by air ingress into the oven.

  3. 22. VIEW OF A SINGLE BEEHIVE COKE OVEN SHOWING THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. VIEW OF A SINGLE BEEHIVE COKE OVEN SHOWING THE INTERIOR STRUCTURE OF THE OVEN. - Tower Hill No. 2 Mine, Approximately 0.47 mile Southwest of intersection of Stone Church Road & Township Route 561, Hibbs, Fayette County, PA

  4. 28. CROSS SECTION OF A RECTANGULAR COKE OVEN SHOWING THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. CROSS SECTION OF A RECTANGULAR COKE OVEN SHOWING THE INTERNAL STRUCTURE OF THE OVEN. - Tower Hill No. 2 Mine, Approximately 0.47 mile Southwest of intersection of Stone Church Road & Township Route 561, Hibbs, Fayette County, PA

  5. Experimental research on quality features of metallurgical coke

    NASA Astrophysics Data System (ADS)

    Andrei, V.; Constantin, N.

    2015-06-01

    From all the solid fuels, the metallurgical coke is the most used in obtaining iron in the blast furnace. Together with the iron ore, manganese ore and fluxes, it constitutes the basis of raw materials and materials for elaborating pig iron. This paper presents the results of laboratory investigations by the authors to determine the most important quality characteristics of some types of coke used in the blast furnace charge.

  6. Priorities in the design of chemical shops at coke plants

    SciTech Connect

    V.I. Rudyka; Y.E. Zingerman; V.V. Grabko; L.A. Kazak

    2009-07-15

    Recent trends in the design of chemical equipment at coke plants are described, through the lens of experience at Giprokoks. The main priorities were to improve the removal of impurities from coke oven gas; to improve equipment design on the basis of new materials; to reduce reagent consumption; to reduce the materials and energy consumed in the construction of new equipment; and to minimize impacts on the environment and worker health. Some technological equipment is briefly characterized.

  7. Mortality of coke plant workers in The Netherlands.

    PubMed Central

    Swaen, G M; Slangen, J J; Volovics, A; Hayes, R B; Scheffers, T; Sturmans, F

    1991-01-01

    During the production of coke, large quantities of coke oven gas are emitted. People who work on the top or on the sides of coke ovens are exposed to this oven gas, which contains a range of carcinogenic chemicals. To investigate the cancer risks under these work conditions, a retrospective study was undertaken. In total 11,399 former workers were enrolled in the study. Of these, 5639 had worked in the coke plant for at least six months between 1945 and 1969. The other 5740 had worked in another plant during the same period and formed a non-exposed group for comparison. The study group was followed up until 1984 for mortality. The causes of death were obtained from the Central Bureau of Statistics. Among the coke oven workers significantly higher death rates were found for lung cancer and non-malignant respiratory disease. Mortality in the byproduct section was similar to that expected. Among workers in the tar distillery the rate for lung cancer was higher than expected. The risk for gastric cancer and non-malignant respiratory disease among the workers of the coke shipping department was increased but the SMRs did not reach statistical significance. No data were collected about individual smoking habits or socioeconomic state of the study subjects and the possibility that the risk found could be attributed to these factors cannot be ruled out. It has been stated by other investigators, however, that the effect of not controlling for smoking tends to be modest. PMID:1998607

  8. Coke oven gas treatment and by-product plant of Magnitogorsk Integrated Iron and Steel Works

    SciTech Connect

    Egorov, V.N.; Anikin, G.J.; Gross, M.

    1995-12-01

    Magnitogorsk Integrated Iron and Steel Works, Russia, decided to erect a new coke oven gas treatment and by-product plant to replace the existing obsolete units and to improve the environmental conditions of the area. The paper deals with the technological concept and the design requirements. Commissioning is scheduled at the beginning of 1996. The paper describes H{sub 2}S and NH{sub 3} removal, sulfur recovery and ammonia destruction, primary gas cooling and electrostatic tar precipitation, and the distributed control system that will be installed.

  9. Prediction of metallurgical coke strength from the petrographic composition of coal blends

    SciTech Connect

    Sutcu, H.; Toroglu, I.; Piskin, S.

    2009-07-01

    Turkey, especially Zonguldak on the West Coast of Black Sea region, has large reserves of bituminous coal that can be used either directly or in blends with other coals for metallurgical coke production. It is possible to predict the coking properties of these coals by petrographic analysis. In this study, semi- and non-coking coals were blended with coking bituminous coals in varying proportions and an estimation was made as to their stability factors through petrographic techniques. It was established that semi- and non-coking bituminous coals could be used in the production of metallurgical coke.

  10. Investigating the principles of the formation of the weight and density of coke cakes in ovens at battery No. 1-bis of the Zaporozhye Coking Plant

    SciTech Connect

    Pinchuk, S.I.; Gorbenko, V.I.; Chernyshov, Yu.A.; Shakun, G.V.

    1984-01-01

    A rather detailed explanation of the method of charging coking ovens at the Zaporozhye Coking Plant is given. The average height and density of the coke cakes produced from one battery of oven chambers with a volume of 41.6 m/sup 3/ were monitored, and automatic control using radioisotopes was employed. Extensive variation in density of coke cakes was noted, and the automatic control device makes it possible to increase the use of the effective volume of the oven chambers and should lead to development of improvements in the quality of coke obtained.

  11. Effect of different pH coking wastewater on adsorption of coking coal.

    PubMed

    Gao, Lihui; Li, Shulei; Wang, Yongtian

    2016-01-01

    H2SO4 has an effect on the sorption of organic contaminants by coking coal (CC) in wastewater. This paper focused on the effect of pH on the removal of chemical oxygen demand (COD), phenols and ammonia. UV-vis spectra, Fourier transform infrared spectra, zeta potential and Brunauer, Emmett and Teller (BET) analysis were investigated to characterize the changes of CC properties and coking wastewater (CW) at different pH values. The results showed that the COD and phenol removal efficiencies increased with decreasing pH value, while the ammonia removal efficiency was decreased gradually. A new transmittance band in the region of 340-600 cm(-1) was observed in UV-vis spectra of CW in acidic condition. The absolute value of the zeta potential as the solution was gradually increasing with the increasing of pH value. Surface area and total pore volume of CC which was immersed in acidic solutions measured by BET were much higher than that of raw CC. CC has a greater adsorption capacity to organic pollution in the acidic solution mainly by van der Waals forces and hydrogen bonding. PMID:26877041

  12. Oxidizing Roasting Performances of Coke Fines Bearing Brazilian Specularite Pellets

    NASA Astrophysics Data System (ADS)

    Chun, Tiejun; Zhu, Deqing

    2016-06-01

    Oxidized pellets, consisting of Brazilian specularite fines and coke fines, were prepared by disc pelletizer using bentonite as binder. The roasting process of pellets includes preheating stage and firing stage. The compressive strength of preheated pellets and fired pellets reached the peak value at 1.5% coke fines dosage. During the initial stage of preheating, some original Fe2O3 was reduced to Fe3O4 because of partial reduction atmosphere in pellet. During the later stage of preheating and firing stage, coke fines were burnt out, and the secondary Fe2O3 (new generation Fe2O3) was generated due to the re-oxidization of Fe3O4, which improved the recrystallization of Fe2O3. Compared with the fired pellets without adding coke fines, fired pellets with 1.5% coke fines exhibited the comparable RSI (reduction swelling index) and RDI+3.15 mm (reduction degradation index), and slightly lower RI (reducibility index).

  13. 75 FR 11936 - USS Clairton Coke Works, Clairton, PA; Notice of Termination of Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration USS Clairton Coke Works, Clairton, PA; Notice of Termination of... Coke Works, Clairton, Pennsylvania. The petitioner has requested that the petition be...

  14. Textural changes in metallurgical coke prepared with polyethylene

    NASA Astrophysics Data System (ADS)

    Gornostayev, Stanislav S.; Heino, Jyrki J.; Kokkonen, Tommi M. T.; Makkonen, Hannu T.; Huttunen, Satu M. M.; Fabritius, Timo M. J.

    2014-10-01

    The effect of high-density polyethylene (HDPE) on the textural features of experimental coke was investigated using polarized-light optical microscopy and wavelet-based image analysis. Metallurgical coke samples were prepared in a laboratory-scale furnace with 2.5%, 5.0%, 7.5%, 10.0%, and 12.5% HDPE by mass, and one sample was prepared by 100% coal. The amounts and distribution of textures (isotropic, mosaic and banded) and pores were obtained. The calculations reveal that the addition of HDPE results in a decrease of mosaic texture and an increase of isotropic texture. Ethylene formed from the decomposition of HDPE is considered as a probable reason for the texture modifications. The approach used in this study can be applied to indirect evaluation for the reactivity and strength of coke.

  15. Steps for green coke calcination -- Mathematical model and practical tests and experiences

    SciTech Connect

    Predel, H.

    1996-10-01

    The different steps for green coke calcination like: water evaporation, drying, VCM-evaporation, VCM burning, heating-up ramps, soaking period are calculated with a mathematical model. The results are compared with practical experiences for regular calcined coke production and with sampling programs during calcination process. The results are important for adjusting calcination conditions to achieve best calcined coke quality.

  16. 40 CFR 63.303 - Standards for nonrecovery coke oven batteries.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... batteries. 63.303 Section 63.303 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... National Emission Standards for Coke Oven Batteries § 63.303 Standards for nonrecovery coke oven batteries... existing nonrecovery coke oven battery that exceed any of the following emission limitations...

  17. 40 CFR 63.302 - Standards for by-product coke oven batteries.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... batteries. 63.302 Section 63.302 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... National Emission Standards for Coke Oven Batteries § 63.302 Standards for by-product coke oven batteries... oven emissions from each affected existing by-product coke oven battery that exceed any of...

  18. 40 CFR 63.303 - Standards for nonrecovery coke oven batteries.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... batteries. 63.303 Section 63.303 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... National Emission Standards for Coke Oven Batteries § 63.303 Standards for nonrecovery coke oven batteries... existing nonrecovery coke oven battery that exceed any of the following emission limitations...

  19. 40 CFR 63.302 - Standards for by-product coke oven batteries.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... batteries. 63.302 Section 63.302 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... National Emission Standards for Coke Oven Batteries § 63.302 Standards for by-product coke oven batteries... oven emissions from each affected existing by-product coke oven battery that exceed any of...

  20. 40 CFR 63.302 - Standards for by-product coke oven batteries.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... batteries. 63.302 Section 63.302 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... National Emission Standards for Coke Oven Batteries § 63.302 Standards for by-product coke oven batteries... oven emissions from each affected existing by-product coke oven battery that exceed any of...

  1. 40 CFR 63.303 - Standards for nonrecovery coke oven batteries.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... batteries. 63.303 Section 63.303 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... National Emission Standards for Coke Oven Batteries § 63.303 Standards for nonrecovery coke oven batteries... existing nonrecovery coke oven battery that exceed any of the following emission limitations...

  2. 40 CFR 63.303 - Standards for nonrecovery coke oven batteries.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... batteries. 63.303 Section 63.303 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... National Emission Standards for Coke Oven Batteries § 63.303 Standards for nonrecovery coke oven batteries... existing nonrecovery coke oven battery that exceed any of the following emission limitations...

  3. 40 CFR 63.302 - Standards for by-product coke oven batteries.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... batteries. 63.302 Section 63.302 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... National Emission Standards for Coke Oven Batteries § 63.302 Standards for by-product coke oven batteries... oven emissions from each affected existing by-product coke oven battery that exceed any of...

  4. [Characterization of PAHs in fly ashes from coke production].

    PubMed

    Mu, Ling; Peng, Lin; Liu, Xiao-Feng; Bai, Hui-Ling; Zhang, Jian-Qiang

    2013-03-01

    In order to investigate the characteristics of polycyclic aromatic hydrocarbons (PAHs) in ashes from coking, PAHs in ashes from three coke production plants were analyzed with GC-MS, and the distribution characteristics of PAHs and potential toxicity risk were discussed. The sum of 16 EPA prior PAHs varied from 8.17 x 10(2) to 5.17 x 10(3) microg x g(-1). PAH contents from the coke oven (stamp charging) with the height of 3.2 m were two times higher than those from the one (top charging) with the height of 6.0 m, and PAHs in ashes from coal charging were significantly higher than those from coke pushing in the same plant. Four-ring and five-ring PAHs were the dominant species in ashes from coking and the sum of them accounted for more than 80.00% of total PAHs. Chrysene (Chr), benzo [a] anthracene (BaA) and benzo [b] fluoranthene (BbF) were abundant in all ash samples. The content of total BaP-based toxic equivalency (BaPeq) ranged from 1.64 x 10(2) to 9.57 x 10(2) microg x g(-1). From the carcinogenic point of view, besides benzo [a] pyrene (BaP), dibenz [a,h] anthracene (DbA) contributed most to the overall toxicity of PAHs, followed by BaA and BbF. BaPeq concentration from coal charging was 5.21-fold higher than that from coke pushing, indicating that different reuse ways should be considered based on their specific toxicity profiles of PAHs.

  5. Further investigation of the impact of the co-combustion of tire-derived fuel and petroleum coke on the petrology and chemistry of coal combustion products

    SciTech Connect

    Hower, J.C.; Robertson, J.D.; Elswick, E.R.; Roberts, J.M.; Brandsteder, K.; Trimble, A.S.; Mardon, S.M.

    2007-07-01

    A Kentucky cyclone-fired unit burns coal and tire-derived fuel, sometimes in combination with petroleum coke. A parallel pulverized combustion (pc) unit at the same plant burns the same coal, without the added fuels. The petrology, chemistry, and sulfur isotope distribution in the fuel and resulting combustion products was investigated for several configurations of the fuel blend. Zinc and Cd in the combustion products are primarily contributed from the tire-derived fuel, the V and Ni are primarily from the petroleum coke, and the As and Hg are probably largely from the coal. The sulfur isotope distribution in the cyclone unit is complicated due to the varying fuel sources. The electrostatic precipitator (ESP) array in the pc unit shows a subtle trend towards heavier S isotopic ratios in the cooler end of the ESP.

  6. Supercritical convection, critical heat flux, and coking characteristics of propane

    NASA Technical Reports Server (NTRS)

    Rousar, D. C.; Gross, R. S.; Boyd, W. C.

    1984-01-01

    The heat transfer characteristics of propane at subcritical and supercritical pressure were experimentally evaluated using electrically heated Monel K-500 tubes. A design correlation for supercritical heat transfer coefficient was established using the approach previously applied to supercritical oxygen. Flow oscillations were observed and the onset of these oscillations at supercritical pressures was correlated with wall-to-bulk temperature ratio and velocity. The critical heat flux measured at subcritical pressure was correlated with the product of velocity and subcooling. Long duration tests at fixed heat flux conditions were conducted to evaluate coking on the coolant side tube wall and coking rates comparable to RP-1 were observed.

  7. Mortality in retired coke oven plant workers.

    PubMed Central

    Chau, N; Bertrand, J P; Mur, J M; Figueredo, A; Patris, A; Moulin, J J; Pham, Q T

    1993-01-01

    A previous study on 536 retired coke oven plant workers in Lorraine Collieries (France) reported an excess of deaths from lung cancer (standardised mortality ratio (SMR) = 251) compared with the French male population. Occupational exposures during working life were retraced for each subject, but the number of deaths during the observation period (1963-82) was small, and smoking habits were known only for dead subjects. In 1988, the cohort was re-examined (182 deaths occurred between 1963 and 1987) and smoking habits were determined for all the subjects. This study confirmed the excess of lung cancer (SMR = 238, p < 0.001). It showed an excess of mortality from all causes (SMR = 141, p < 0.001), overall cancers (SMR = 133, p < 0.05), and cardiovascular diseases (SMR = 133, p < 0.05). A significant excess of deaths was found for subjects who worked near the ovens for all causes (145, p < 0.01), lung cancer (SMR = 252, p < 0.01), colon cancer (SMR = 381, p < 0.05), and cardiovascular diseases (SMR = 155, p < 0.05). A significant excess mortality was also found from all causes (176, p < 0.05) and stomach cancer (SMR = 538, p < 0.01) in subjects who worked in byproducts, from lung cancer (SMR = 433, p < 0.001) in those in the workshops, and from cirrhosis of the liver and alcoholism (SMR = 360, p < 0.01) in those underground; but, due to small numbers, these figures were not robust. An excess of mortality from all causes (SMR = 163, p<001), lung cancer (SMR = 228, p<0.05) and cardiovascular diseases (SMR = 179, p<0.01) was shown also for non-exposed or slightly exposed subjects. The fact that, on the whole, mortality of various exposed groups was similar to that of non-exposed or slightly exposed workers may be explained in part by the selection at hiring and the healthy worker effect. As an increased risk of lung cancer was noted among subjects who worked in the old generations of plant compared with the other workers (although the relative risk was not significant

  8. Theoretical and experimental foundations for preparing coke for blast-furnace smelting

    SciTech Connect

    A.L. Podkorytov; A.M. Kuznetsov; E.N. Dymchenko; V.P. Padalka; S.L. Yaroshevskii; A.V. Kuzin

    2009-05-15

    This article examines the preparation of coke for blast-furnace smelting by a method that most fully meets the requirements of blast-furnace technology: screening of the -36 mm fraction, the separation of nut coke of the 15-36 mm fraction, and its charging into the furnace in a mixture with the iron-ore-bearing charge components. An analysis is made of trial use of coke of the Premium class on blast furnace No. 5 at the Enakievo Metallurgical Plant. Use of this coke makes it possible to reduce the consumption of skip coke by 3.2-4.1%.

  9. Coke battery with 51-m{sup 3} furnace chambers and lateral supply of mixed gas

    SciTech Connect

    V.I. Rudyka; N.Y. Chebotarev; O.N. Surenskii; V.V. Derevich

    2009-07-15

    The basic approaches employed in the construction of coke battery 11A at OAO Magnitogorskii Metallurgicheskii Kombinat are outlined. This battery includes 51.0-m{sup 3} furnaces and a dust-free coke-supply system designed by Giprokoks with lateral gas supply; it is heated exclusively by low-calorific mixed gas consisting of blast-furnace gas with added coke-oven gas. The 82 furnaces in the coke battery are divided into two blocks of 41. The gross coke output of the battery (6% moisture content) is 1140000 t/yr.

  10. Properties of Spent Active Coke Particles Analysed via Comminution in Spouted Bed

    PubMed Central

    Buczek, Bronislaw

    2013-01-01

    Samples of active coke, fresh and spent after cleaning flue gases from communal waste incinerators, were investigated. The outer layers of both coke particles were separately removed by comminution in a spouted bed. The samples of both active cokes were analysed by means of densities, mercury porosimetry, and adsorption technique. Remaining cores were examined to determine the degree of consumption of coke by the sorption of hazardous emissions (SO2, HCl, and heavy metals) through its bed. Differences in contamination levels within the porous structure of the particles were estimated. The study demonstrated the effectiveness of commercial active coke in the cleaning of flue gases. PMID:24459454

  11. 29 CFR 1910.1029 - Coke oven emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... duct permanently mounted onto an oven and through which coal is charged. Green plush means coke which... including preventing green pushes; (3) Prevention of green pushes to the maximum extent possible; (4... after any green push, so as to prevent green pushes; (5) Cleaning of heating flues and related...

  12. Advanced oxidation processes with coke plant wastewater treatment.

    PubMed

    Krzywicka, A; Kwarciak-Kozłowska, A

    2014-01-01

    The aim of this study was to determine the most efficient method of coke wastewater treatment. This research examined two processes - advanced oxidation with Fenton and photo-Fenton reaction. It was observed that the use of ultraviolet radiation with Fenton process had a better result in removal of impurities.

  13. 29 CFR 1926.1129 - Coke oven emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Coke oven emissions. 1926.1129 Section 1926.1129 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Toxic and Hazardous Substances § 1926.1129...

  14. 29 CFR 1926.1129 - Coke oven emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Coke oven emissions. 1926.1129 Section 1926.1129 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Toxic and Hazardous Substances § 1926.1129...

  15. 29 CFR 1926.1129 - Coke oven emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Coke oven emissions. 1926.1129 Section 1926.1129 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Toxic and Hazardous Substances § 1926.1129...

  16. 29 CFR 1926.1129 - Coke oven emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Coke oven emissions. 1926.1129 Section 1926.1129 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Toxic and Hazardous Substances § 1926.1129...

  17. 29 CFR 1926.1129 - Coke oven emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Coke oven emissions. 1926.1129 Section 1926.1129 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Toxic and Hazardous Substances § 1926.1129...

  18. Coke resistant coating technology for applications in ethylene pyrolysis heaters

    NASA Astrophysics Data System (ADS)

    Chauhan, Alok Pratap Singh

    This dissertation begins with a description of the history of the events leading to ethylene pyrolysis tube failure. During service, hydrocarbons pass through the radiant heater coils at temperatures up to ˜ 1100 C. The catalytic activity between the feedstock and the tube wall leads to heterogeneous coke formation. The accumulation of coke, a homogeneous event, leads to localized temperature excursions, pressure variations, and potential tube plugging which all play a significant role in premature tube failure by creep and stress rupture. During normal operation, the tube metal temperature is frequently reduced to pass high pressure steam or steam air mixtures through the tubing to eliminate coke, a process know as decoking. At ˜ 1100 C, depending on the materials of construction, a variety of topologically close packed phases (eta, M 23C6, sigma, M7C3, etc.) form which can lead to premature tube failure by embrittlement during the decoke cycles. In this dissertation, two techniques are discussed which have the potential for overcoming premature tube failure: (1) upgrading the metallurgy to a material that forms a protective oxide coating at the service temperature and also shows resistance to the formation of topologically closed pack phases and (2) a novel technique which can deposit coke resisting coating on the inner diameter of pyrolysis tubing.

  19. Using the undersizes of Karaganda coals in coking charges

    SciTech Connect

    Muzychuk, V.D.; Chernyak, Yu.B.; Khegai, U.; Tyrchenkova, L.M.; Vasyuchkov, E.I.; Vlasova, Z.A.

    1984-01-01

    The requirements for coking coals have increased considerably in the Karaganda basin in connection with starting up the Vostochaya Central Concentrating Mill and coal treatment plant No. 2 of the Karaganda Metallurgical Complex, as well as in connection with the increase in the use of Karaganda coking coals which has taken place at the plants in the Ural and Ukraine regions. The problem of expanding the source of raw materials is of current interest due to the involvement of Karaganda coals with a high ash content in the charge. In this connection, undersizes of the fine classes of Karaganda coals presently used to meet energy needs are of considerable interest. This paper discusses how an undersize of types K and K2 Karaganda coals can be used in determined amounts in the coking charges of the Karaganda Metallurgical Complex. When the amount of type KZh coals in a charges is decreased (less than or equal to 50%), the percentage of coal undersizes from the Karaganda mine must be no more than 5% due to their inferior agglutinating power. When the content of type KZh coal is 55% or more, the percentage of coal undersizes from the Karaganda mine can be increased to 7%. Coal undersizes from the 50th Anniversary of the October Revolution mine possess a higher agglutinating power than those from the Karaganda mine. However, it is not advisable to feed them into a coking charge in an amount surpassing 5% at the present time due to the higher ash content.

  20. Coke Reactivity in Simulated Blast Furnace Shaft Conditions

    NASA Astrophysics Data System (ADS)

    Haapakangas, Juho; Suopajärvi, Hannu; Iljana, Mikko; Kemppainen, Antti; Mattila, Olli; Heikkinen, Eetu-Pekka; Samuelsson, Caisa; Fabritius, Timo

    2016-08-01

    Despite the fact that H2 and H2O are always present in the gas atmosphere of a blast furnace shaft, their role in the solution-loss reactions of coke has not been thoroughly examined. This study focuses on how H2 and H2O affect the reaction behavior and whether a strong correlation can be found between reactivity in the conditions of the CRI test (Coke Reactivity Index) and various simulated blast furnace shaft gas atmospheres. Partial replacement of CO/CO2 with H2/H2O was found to significantly increase the reactivity of all seven coke grades at 1373 K (1100 °C). H2 and H2O, however, did not have a significant effect on the threshold temperature of gasification. The reactivity increasing effect was found to be temperature dependent and clearly at its highest at 1373 K (1100 °C). Mathematical models were used to calculate activation energies for the gasification, which were notably lower for H2O gasification compared to CO2 indicating the higher reactivity of H2O. The reactivity results in gas atmospheres with CO2 as the sole gasifying component did not directly correlate with reactivity results in gases also including H2O, which suggests that the widely used CRI test is not entirely accurate for estimating coke reactivity in the blast furnace.

  1. Coke quality for blast furnaces with coal-dust fuel

    SciTech Connect

    Y.A. Zolotukhin; N.S. Andreichikov

    2009-07-01

    Recently, plans have been developed for the introduction of pulverized coal injection (PCI) at various Russian metallurgical enterprises. The main incentive for switching to PCI is the recent price rises for Russian natural gas. The paper discusses the quality of coke for PCI into blast furnaces.

  2. COKE STORAGE HOPPER LOCATED OUTSIDE THE MALLEABLE FOUNDRY SHOWING LOADING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    COKE STORAGE HOPPER LOCATED OUTSIDE THE MALLEABLE FOUNDRY SHOWING LOADING DEVICE THAT USED A SKIP CAR TO FILL THE HOPPER FROM UNDERGROUND GRAVITY-FED STORAGE AREAS FROM INCOMING RAILROAD CARS. - Stockham Pipe & Fittings Company, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  3. Fundamental Study on Coking Characteristics of LNG Rocket Engines

    NASA Astrophysics Data System (ADS)

    Higashino, Kazuyuki; Sugioka, Masatoshi; Kobayashi, Takao; Minato, Ryojiro; Maru, Yusuke; Sasayama, Yousuke; Otsuka, Masaya; Makino, Takashi; Sakaguchi, Hiroyuki

    Liquid Natural Gas (LNG) will be used as propellant of near future space vehicles and rocket engines. Cooling characteristics of engines, especially methane thermal cracking characteristics depend on material candidate for nozzle and chamber cooling passage material temperature. This paper describes these effects on coking and sample analysis method is suggested.

  4. 30. XX byproducts building (containing coke gas compressors at north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. XX by-products building (containing coke gas compressors at north end, ammonia stills in south end), #20 coal conveyor jutting out of top on east side, continuing out west side to bunker. Looking south/southeast - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  5. 29. Coke oven byproduct building "XX" with ammonia stills; powerhouse ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Coke oven by-product building "XX" with ammonia stills; powerhouse with 8 sisters (stacks) in background; conveyor #20 (with break) on right, pulevrized coal storage bunker on left. Looking north/northwest - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  6. Process for converting coal into liquid fuel and metallurgical coke

    DOEpatents

    Wolfe, Richard A.; Im, Chang J.; Wright, Robert E.

    1994-01-01

    A method of recovering coal liquids and producing metallurgical coke utilizes low ash, low sulfur coal as a parent for a coal char formed by pyrolysis with a volatile content of less than 8%. The char is briquetted and heated in an inert gas over a prescribed heat history to yield a high strength briquette with less than 2% volatile content.

  7. 21. VIEW OF A SINGLE BEEHIVE COKE OVEN. THE USE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. VIEW OF A SINGLE BEEHIVE COKE OVEN. THE USE OF BRICK AND STONE TO FACE THE OVEN WAS A TYPICAL CONSTRUCTION TECHNIQUE. - Tower Hill No. 2 Mine, Approximately 0.47 mile Southwest of intersection of Stone Church Road & Township Route 561, Hibbs, Fayette County, PA

  8. 19. VIEW OF THE TWO ROWS OF COKE OVENS, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. VIEW OF THE TWO ROWS OF COKE OVENS, LOOKING EAST. THE OVENS LIE TO THE EAST OF THE MINE BUILDINGS. BEEHIVE OVENS FORM THE ROW ON THE LEFT OF THE PHOTOGRAPH. THE RECTANGULAR OVENS ARE ON THE RIGHT. - Tower Hill No. 2 Mine, Approximately 0.47 mile Southwest of intersection of Stone Church Road & Township Route 561, Hibbs, Fayette County, PA

  9. AERIAL VIEW OF SLOSS INDUSTRIES, COKE WORKS IN NORTH BIRMINGHAM, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL VIEW OF SLOSS INDUSTRIES, COKE WORKS IN NORTH BIRMINGHAM, VIEW LOOKING SOUTH TOWARD BIRMINGHAM CITY CENTER (SKYSCRAPERS IN FAR DISTANCE RIGHT) AND ACROSS COLLEGEVILLE (BETHEL BAPTIST CHURCH) & NORWOOD RESIDENTIAL DISTRICTS. - Sloss Sheffield Steel & Iron Company, 3500 Thirty-fifth Avenue North, Birmingham, Jefferson County, AL

  10. 29 CFR 1910.1029 - Coke oven emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... eight-hour period. All measurements shall determine exposure without regard to the use of respiratory... practices and respiratory protection as follows: (1) Priority of compliance methods—(i) Existing coke oven... respiratory protection which complies with the requirements of paragraph (g) of this section. (b)...

  11. Thickness Optimization for Petroleum Coke in Microwave Dehydrating Based on the Analysis of Dynamic Absorption Efficiency

    NASA Astrophysics Data System (ADS)

    Shang, Xiaobiao; Chen, Junruo; Peng, Jinhui; Chen, Hua; Zhang, Weifeng; Guo, Shenghui; Chen, Guo

    2015-07-01

    An analytical approach is proposed to optimize the thickness of petroleum coke for achieving maximum microwave power absorption in microwave heating based on analysis of reflection loss (RL). The microwave RL of the petroleum coke layer was studied over the moisture content range of 1%-5% at 20 °C and the petroleum coke (10% moisture content) in the temperature range of 20 to 100 °C at 2.45 GHz. The results show that RL depends sensitively on the thickness of the petroleum coke and the absorption peak shifts towards a larger thickness as the moisture content of the petroleum coke increases. There exists a matching thickness corresponding to the maximum microwave absorption, the maximum absorbing peak decreases when the thickness of petroleum coke exceeds the matching thickness. We also show that the absorption peak is found to move towards a smaller thickness region with increasing petroleum coke temperature.

  12. Influence of heating rate on quality of needle coke in calcining

    SciTech Connect

    Akhmetov, M.M.; Karpinskaya, N.M.; Shipkov, N.N.

    1984-05-01

    This article examines the calcination of raw coke in hearth and chamber furnaces. Three coke samples with identical degrees of calcining were taken from each furnace. The heating rate was calculated from measurements of the coke temperature as it moved in the furnace under conditions of a stable and characteristic calcining regime. The coke temperature was measured by means of a chromel-alumel thermocouple. Electric resistivity and carbon and hydrogen contents are practically identical for the cokes calcined in the hearth and chamber furnaces. The difference between the quality indexes of the cokes is attributed to the difference in the heating rates. The results indicate that a major disadvantage of the hearth furnace is its high heating rate. It is suggested that the hearth furnace should not be used in calcining cokes that must meet rigid quality requirements.

  13. Reactivity of lithium intercalated into petroleum coke in carbonate electrolytes

    SciTech Connect

    Jean, M.; Tranchant, A.; Messina, R.

    1996-02-01

    There have been considerable efforts to develop lithium rocking chair batteries where the lithium metal anode is replaced by a nonmetal material capable of storing and exchanging large quantities of lithium ions. The results of a study of the reactivity of lithium intercalated into petroleum coke (Conoco) in a PC/EC/DMC (1/1/3 volume) mixture and LiCF{sub 3}SO{sub 3} as the lithium salt are presented here. The authors show the loss of intercalated lithium is due to its reactivity with the electrolyte and increases quasi-linearly during 1,000 h of storage, and thereafter becomes less important as the storage time increases. The storage of passivated petroleum coke electrodes without any lithium content allowed the authors to determine the rates of the precipitation and dissolution reactions involving the passivating layer.

  14. Integrated coke, asphalt and jet fuel production process and apparatus

    DOEpatents

    Shang, Jer Y.

    1991-01-01

    A process and apparatus for the production of coke, asphalt and jet fuel m a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products removing at least one coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. the process provides a useful method of mass producing and jet fuels from materials such as coal, oil shale and tar sands.

  15. Mutagenicity studies with urine concentrates from coke plant workers

    SciTech Connect

    Moeller, M.; Dybing, E.

    1980-01-01

    Urine from coke plant workers, collected before and after work, were tested for the content of mutagenic substances in the Salmonella test system. Urine extracts from exposed smokers showed mutagenic activity, whereas urine from exposed nonsmokers did not. The mutagenicity of exposed smoker's urine was not significantly different from that of urine from nonexposed smokers. Mutagenicity of smokers' urine was only evident in the presence of a rat liver metabolic activation system. The addition of beta-glucuronidase did not enhance the mutagenic effect. The facts that coke plant workers are exposed to very high levels of polycyclic aromatic hydrocarbons (PAH) and that there is no observed enhanced mutagenicity of their urine indicate that the mutagenicity observed with urine from smokers is not due to conventional PAH.

  16. Support for batteries of coking furnaces heated from the top

    SciTech Connect

    Gelfand, J.

    1985-05-21

    A support for a battery of coking furnaces with regenerators has a plurality of waste heat passages formed beneath the regenerators and extending in a longitudinal direction of the battery, a foundation formed by a floor member and also by wall members of the waste heat passages, a further supporting plate slidingly supported on the walls and repeatedly subdivided transversely to the longitudinal direction of the battery so as to form a plurality of plate portions, and two longitudinal bars each located at a machine side and at a coke side of the battery and slidingly supported on consoles of the foundation, wherein each of the longitudinal bars engages the plate portions of the furnace supporting plate and fixes them in their positions.

  17. New environmental concepts in the chemical and coke industries

    SciTech Connect

    A.Yu. Naletov; V.A. Naletov

    2007-05-15

    We know that environmentally pure technologies do not exist. Coke production is no exception to the rule. The article considers the logic of environmental decision making. Attention focuses on a new bank of ecologically appropriate materials whose release to the biosphere must be considered solely in quantititative terms. Qualitativily all these materials are familiar; they are assimilated by populations of microorganisms and tar thus compatible with the biosphere.

  18. Coking of JP-4 fuels in electrically heated metal tubes

    NASA Technical Reports Server (NTRS)

    Smith, Arthur L; Cook, William P; Hlavin, Vincent F

    1956-01-01

    A limited exploratory investigation of the rate of coking of four JP-4 fuels in electrically heated metal tubes was conducted in order to provide design information for fuel prevaporizers for turbojet-engine combustors. The fuels tested included two production and two minimum-quality JP-4 type fuels. The heating tube was operated at fuel pressures of approximately 500, 400, and 50 pounds per square inch. The operating fuel temperature was varied between approximately 600 degrees and 1200 degrees F.

  19. An Integrated Model of Coal/Coke Combustion in a Blast Furnace

    NASA Astrophysics Data System (ADS)

    Shen, Y. S.; Guo, B. Y.; Yu, A. B.; Austin, P.; Zulli, P.

    2010-03-01

    A three-dimensional integrated mathematical model of the combustion of pulverized coal and coke is developed. The model is applied to the region of lance-blowpipe-tuyere-raceway-coke bed to simulate the operation of pulverized coal injection in an ironmaking blast furnace. The model integrates two parts: pulverized coal combustion model in the blowpipe-tuyere-raceway-coke bed and the coke combustion model in the coke bed. The model is validated against the measurements in terms of coal burnout and gas composition, respectively. The comprehensive in-furnace phenomena are simulated in the raceway and coke bed, in terms of flow, temperature, gas composition, and coal burning characteristics. In addition, underlying mechanisms for the in-furnace phenomena are analyzed. The model provides a cost-effective tool for understanding and optimizing the in-furnace flow-thermo-chemical characteristics of the PCI process in full-scale blast furnaces.

  20. The History and Future Challenges of Calcined Petroleum Coke Production and Use in Aluminum Smelting

    NASA Astrophysics Data System (ADS)

    Edwards, Les

    2015-02-01

    Calcined petroleum coke is used for the production of carbon anodes in the Hall-Héroult aluminum smelting process due to a combination of low impurity levels, ready availability, and relatively low cost. This article provides a review of the history and use of calcined petroleum coke for anode production and describes the different calcining technologies used by the industry. The article discusses the impact of changes in crude oil quality and refining economics over the last 10 years as well as the impact on green petroleum coke quality and availability. The industry has adapted well to quality changes in recent times, and the blending of different quality cokes by smelters is becoming increasingly important. The world has a plentiful supply of green petroleum coke, but the next wave of aluminum smelting capacity growth will put further pressure on the supply of the higher quality cokes traditionally favored by the industry.

  1. Method and apparatus for processing filling gas from a coke oven battery

    SciTech Connect

    Polenz, J.; Wagner, H.

    1981-08-11

    An improved coke oven battery and an improved method for production of coke and byproducts are provided. The filling gas escaping during the filling of the oven chambers with coal is initially rendered inert by admixing flue gas. Then the resulting gas mixture of filling gas and flue gas is withdrawn via a conduit fed with flushing liquor from the coke oven gas off-take main and is added to the raw coke oven gas after the coke oven gas off-take main. The tar and coal containing flushing liquor coming from the filling gas conduit is fed back to the coke oven gas off-take main after removal of the tar.

  2. Wet oxidation of real coke wastewater containing high thiocyanate concentration.

    PubMed

    Oulego, Paula; Collado, Sergio; Garrido, Laura; Laca, Adriana; Rendueles, Manuel; Díaz, Mario

    2014-01-01

    Coke wastewaters, in particular those with high thiocyanate concentrations, represent an important environmental problem because of their very low biodegradability. In this work, the treatment by wet oxidation of real coke wastewaters containing concentrations of thiocyanate above 17 mM has been studied in a 1-L semi-batch reactor at temperatures between 453 and 493 K, with total oxygen pressures in the range of 2.0-8.0 MPa. A positive effect of the matrix of real coke wastewater was observed, resulting in faster thiocyanate degradation than was obtained with synthetic wastewaters. Besides, the effect of oxygen concentration and temperature on thiocyanate wet oxidation was more noticeable in real effluents than in synthetic wastewaters containing only thiocyanate. It was also observed that the degree of mineralization of the matrix organic compounds was higher when the initial thiocyanate concentration increased. Taking into account the experimental data, kinetic models were obtained, and a mechanism implying free radicals was proposed for thiocyanate oxidation in the matrix considered. In all cases, sulphate, carbonates and ammonium were identified as the main reaction products of thiocyanate wet oxidation.

  3. Human health risk characterization of petroleum coke calcining facility emissions.

    PubMed

    Singh, Davinderjit; Johnson, Giffe T; Harbison, Raymond D

    2015-12-01

    Calcining processes including handling and storage of raw petroleum coke may result in Particulate Matter (PM) and gaseous emissions. Concerns have been raised over the potential association between particulate and aerosol pollution and adverse respiratory health effects including decrements in lung function. This risk characterization evaluated the exposure concentrations of ambient air pollutants including PM10 and gaseous pollutants from a petroleum coke calciner facility. The ambient air pollutant levels were collected through monitors installed at multiple locations in the vicinity of the facility. The measured and modeled particulate levels in ambient air from the calciner facility were compared to standards protective of public health. The results indicated that exposure levels were, on occasions at sites farther from the facility, higher than the public health limit of 150 μg/m(3) 24-h average for PM10. However, the carbon fraction demonstrated that the contribution from the calciner facility was de minimis. Exposure levels of the modeled SO2, CO, NOx and PM10 concentrations were also below public health air quality standards. These results demonstrate that emissions from calcining processes involving petroleum coke, at facilities that are well controlled, are below regulatory standards and are not expected to produce a public health risk.

  4. Reduction of phosphorus and alkali levels in coking coals

    SciTech Connect

    Hoare, I.C.; Waugh, A.B.

    1995-12-31

    A number of coals, though exhibiting desirable coking properties, can have undesirable levels of alkalis and phosphorus. All the phosphorus in the coal will report to the coke, eventually to the iron and thence to the steel, with adverse effects on its metallurgical properties. Alkalis have damaging effects on the blast furnace operation and can be responsible for loss of heat, loss of production, efficiency loss and reduced furnace life. Buyers of coking coal commonly specify such parameters as phosphorus in coal and alkalis in ash, with penalties and rejection over certain limits. With the introduction of new direct reduction technologies such as COREX and HISMELT, and others such as PCI, it is anticipated that coal producers will have even tighter phosphorus and alkali specifications imposed on their products. Phosphorus is predominantly inorganic in origin occurring in a wide variety of minerals in coal, but its main source is apatite. It can be found mainly in the lower density fractions of the coal and intimately bound, so that conventional physical beneficiation techniques are relatively ineffective. CSIRO has developed a cost effective, selective chemical demineralization treatment, which can be applied to the problem of high alkali, high phosphorus coals. This particular technique makes use of unrefined organic acid, which also has the advantage of being low in cost and environmentally benign. In this paper, the effectiveness of acid demineralization of a number of coals is discussed, within the context of their phosphorus and alkali distributions throughout various size/density fractions.

  5. Human health risk characterization of petroleum coke calcining facility emissions.

    PubMed

    Singh, Davinderjit; Johnson, Giffe T; Harbison, Raymond D

    2015-12-01

    Calcining processes including handling and storage of raw petroleum coke may result in Particulate Matter (PM) and gaseous emissions. Concerns have been raised over the potential association between particulate and aerosol pollution and adverse respiratory health effects including decrements in lung function. This risk characterization evaluated the exposure concentrations of ambient air pollutants including PM10 and gaseous pollutants from a petroleum coke calciner facility. The ambient air pollutant levels were collected through monitors installed at multiple locations in the vicinity of the facility. The measured and modeled particulate levels in ambient air from the calciner facility were compared to standards protective of public health. The results indicated that exposure levels were, on occasions at sites farther from the facility, higher than the public health limit of 150 μg/m(3) 24-h average for PM10. However, the carbon fraction demonstrated that the contribution from the calciner facility was de minimis. Exposure levels of the modeled SO2, CO, NOx and PM10 concentrations were also below public health air quality standards. These results demonstrate that emissions from calcining processes involving petroleum coke, at facilities that are well controlled, are below regulatory standards and are not expected to produce a public health risk. PMID:26520182

  6. The new Kaiserstuhl coking plant: The heating system -- Design, construction and initial operating experience

    SciTech Connect

    Strunk, J.

    1996-12-31

    At the end of 1992 the new coke plant Kaiserstuhl in Dortmund/Germany with presently the largest coke ovens world-wide started its production operation in close linkage to the Krupp-Hoesch Metallurgical Works after about 35 months construction time. This plant incorporating comprehensive equipment geared to improve environmental protection is also considered as the most modern coke plant of the world. The heating-system and first results of operation will be presented.

  7. Study on the effect of heat treatment and gasification on the carbon structure of coal chars and metallurgical cokes using fourier transform Raman spectroscopy

    SciTech Connect

    S. Dong; P. Alvarez; N. Paterson; D.R. Dugwell; R. Kandiyoti

    2009-03-15

    Differences in the development of carbon structures between coal chars and metallurgical cokes during high-temperature reactions have been investigated using Raman spectroscopy. These are important to differentiate between different types of carbons in dust recovered from the top gas of the blast furnace. Coal chars have been prepared from a typical injectant coal under different heat-treatment conditions. These chars reflected the effect of peak temperature, residence time at peak temperature, heating rate and pressure on the evolution of their carbon structures. The independent effect of gasification on the development of the carbon structure of a representative coal char has also been studied. A similar investigation has also been carried out to study the effect of heat-treatment temperature (from 1300 to 2000{sup o}C) and gasification on the carbon structure of a typical metallurgical coke. Two Raman spectral parameters, the intensity ratio of the D band to the G band (I{sub D}/I{sub G}) and the intensity ratio of the valley between D and G bands to the G band (I{sub V}/I{sub G}), have been found useful in assessing changes in carbon structure. An increase in I{sub D}/I{sub G} indicates the growth of basic graphene structural units across the temperature range studied. A decrease in I{sub V}/I{sub G} appears to suggest the elimination of amorphous carbonaceous materials and ordering of the overall carbon structure. The Raman spectral differences observed between coal chars and metallurgical cokes are considered to result from the difference in the time-temperature history between the raw injectant coal and the metallurgical coke and may lay the basis for differentiation between metallurgical coke fines and coal char residues present in the dust carried over the top of the blast furnace. 41 refs., 17 figs., 3 tabs.

  8. Graphitization of Coke and Its Interaction with Slag in the Hearth of a Blast Furnace

    NASA Astrophysics Data System (ADS)

    Li, Kejiang; Zhang, Jianliang; Liu, Yanxiang; Barati, Mansoor; Liu, Zhengjian; Zhong, Jianbo; Su, Buxin; Wei, Mengfang; Wang, Guangwei; Yang, Tianjun

    2016-04-01

    Coke reaction behavior in the blast furnace hearth has yet to be fully understood due to limited access to the high temperature zone. The graphitization of coke and its interaction with slag in the hearth of blast furnace were investigated with samples obtained from the center of the deadman of a blast furnace during its overhaul period. All hearth coke samples from fines to lumps were confirmed to be highly graphitized, and the graphitization of coke in the high temperature zone was convinced to start from the coke surface and lead to the formation of coke fines. It will be essential to perform further comprehensive investigations on graphite formation and its evolution in a coke as well as its multi-effect on blast furnace performance. The porous hearth cokes were found to be filled up with final slag. Further research is required about the capability of coke to fill final slag and the attack of final slag on the hearth bottom refractories since this might be a new degradation mechanism of refractories located in the hearth bottom.

  9. CO₂ carbonation under aqueous conditions using petroleum coke combustion fly ash.

    PubMed

    González, A; Moreno, N; Navia, R

    2014-12-01

    Fly ash from petroleum coke combustion was evaluated for CO2 capture in aqueous medium. Moreover the carbonation efficiency based on different methodologies and the kinetic parameters of the process were determined. The results show that petroleum coke fly ash achieved a CO2 capture yield of 21% at the experimental conditions of 12 g L(-1), 363°K without stirring. The carbonation efficiency by petroleum coke fly ash based on reactive calcium species was within carbonation efficiencies reported by several authors. In addition, carbonation by petroleum coke fly ash follows a pseudo-second order kinetic model.

  10. Integration of stripping of fines slurry in a coking and gasification process

    DOEpatents

    DeGeorge, Charles W.

    1980-01-01

    In an integrated fluid coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a wet scrubbing process and wherein the resulting solids-liquid slurry is stripped to remove acidic gases, the stripped vapors of the stripping zone are sent to the gas cleanup stage of the gasification product gas. The improved stripping integration is particularly useful in the combination coal liquefaction process, fluid coking of bottoms of the coal liquefaction zone and gasification of the product coke.

  11. Effects of Coke Calcination Level on Pore Structure in Carbon Anodes

    NASA Astrophysics Data System (ADS)

    Fang, Ning; Xue, Jilai; Lang, Guanghui; Bao, Chongai; Gao, Shoulei

    2016-02-01

    Effects of coke calcination levels on pore structure of carbon anodes have been investigated. Bench anodes were prepared by 3 types of cokes with 4 calcination temperatures (800°C, 900°C, 1000°C and 1100°C). The cokes and anodes were characterized using hydrostatic method, air permeability determination, mercury porosimetry, image analysis and confocal microscopy (CSLM). The cokes with different calcination levels are almost the same in LC values (19-20 Å) and real density (1.967-1.985 g/cm3), while the anode containing coke calcined at 900°C has the lowest open porosity and air permeability. Pore size distribution (represented by Anode H sample) can be roughly divided into two ranges: small and medium pores in diameter of 10-400 μm and large pores of 400-580 μm. For the anode containing coke calcined at 800°C, a number of long, narrow pores in the pore size range of 400-580 μm are presented among cokes particles. Formation of these elongated pores may be attributed to coke shrinkages during the anode baking process, which may develop cracking in the anode under cell operations. More small or medium rounded pores with pore size range of 10-400 μm emerge in the anodes with coke calcination temperatures of 900°C, 1000°C and 1100°C, which may be generated due to release of volatiles from the carbon anode during baking. For the anode containing coke calcined at 1100°C, it is found that many rounded pores often closely surround large coke particles, which have potential to form elongated, narrow pores.

  12. Effects of Two-stage Heat Treatment on Delayed Coke and Study of Their Surface Texture Characteristics

    NASA Astrophysics Data System (ADS)

    Im, Ui-Su; Kim, Jiyoung; Lee, Seon Ho; Lee, Byung-Rok; Peck, Dong-Hyun; Jung, Doo-Hwan

    2016-09-01

    In the present study, surface texture features and chemical properties of two types of cokes, made from coal tar by either 1-stage heat treatment or 2-stage heat treatment, were researched. The relationship between surface texture characteristics and the chemical properties was identified through molecular weight distribution, insolubility of coal tar, weight loss with temperature increase, coking yield, and polarized light microscope analysis. Rapidly cleared anisotropy texture in cokes was observed in accordance with the coking temperature rise. Quinoline insolubility and toluene insolubility of coal tar increased with a corresponding increases in coking temperature. In particular, the cokes produced by the 2-stage heat treatment (2S-C) showed surface structure of needle cokes at a temperature approximately 50°C lower than the 1-stage heat treatment (1S-C). Additionally, the coking yield of 2S-C increased by approximately 14% in comparison with 1S-C.

  13. Interfaces Between Coke, Slag, and Metal in the Tuyere Level of a Blast Furnace

    NASA Astrophysics Data System (ADS)

    Li, Kejiang; Zhang, Jianliang; Liu, Zhengjian; Barati, Mansoor; Zhong, Jianbo; Wei, Mengfang; Wang, Guangwei; Jiao, Kexin; Yang, Tianjun

    2015-04-01

    An in-depth understanding about the reactions in the high-temperature zone of a blast furnace is significant to optimize both the current and future blast furnace process. The interfaces between coke, slag, and metal were observed using scanning electronic microscope with samples obtained from the tuyere level of a blast furnace. Two types of slag phases were identified, one originating from coke ash and the other from the bosh slag. Slag formed by coke ash was seen to cover the coke surface, which may hinder the reaction of coke with both gas and liquid iron. The reduction of FeO from the bosh slag (originated from the primary slag) occurs in the coke/slag interface with the reduced iron forming a metal layer surrounding the coke surface. The reduction of SiO2 occurs both in and outside the coke, and the reduced silicon reacts with iron to form iron silicide if the two species come into contact. Further study is proposed based on the results of this study.

  14. 76 FR 77020 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Coke Oven...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-09

    ..., see the related notice published in the Federal Register on August 22, 2011 (76 FR 52350). Interested... Information Collection Activities; Submission for OMB Review; Comment Request; Coke Oven Emissions ACTION... Administration (OSHA) sponsored information collection request (ICR) titled, ``Coke Oven Emissions,'' to...

  15. Influence of coal on coke properties and blast-furnace operation

    SciTech Connect

    G.R. Gainieva; L.D. Nikitin

    2007-07-01

    With unstable coal supplies and properties and a fluctuating content of coking coal in the batch at OAO Zapadno-Sibirskii Metallurgicheskii Kombinat (ZSMK) and of bituminous coal at Kuznetskaya enrichment facility, it is important to optimize the rank composition of the batch for coke production.

  16. 40 CFR 63.305 - Alternative standards for coke oven doors equipped with sheds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operator shall not operate the exhaust system of the shed at an exhaust flow rate lower than that measured... coke oven doors equipped with sheds. (a) The owner or operator of a new or existing coke oven battery... requirements in this section. (b) To qualify for approval of an alternative standard, the owner or...

  17. Ground-water resources of Coke County, Texas

    USGS Publications Warehouse

    Wilson, Clyde A.

    1973-01-01

    Coke County, located in semiarid west-central Texas, where large ranches, small farms, and oil production are the main bases of the economy, has a small supply of ground and surface water. Of the approximately 1,900 acre-feet of fresh to moderately saline ground water used in 1968, industry used 880 acre-feet, irrigation used 210 acre-feet, and domestic supply and livestock used 820 acre-feet. All of the water for municipal supply and some of the water for industry is obtained from surface-water reservoirs.

  18. [Evaluation of the fibrogenic effect of coke dust on the lungs and internal organs of experimental animals].

    PubMed

    Zyłka-Włoszczyk, M; Ociepiński, M; Szaflarska-Stojko, E

    1991-01-01

    Based on the data collected by the Provincial Regional Administration Unit for Control of Epidemics and Hygiene in Katowice, dust concentration at the MAKOSZOWY Coking Plant in Zabrze at 18 work-places exceeded the TLV's. The purpose of this study was to determine changes within the respiratory systems of experimental animals exposed to intratracheal administration of MAKOSZOWY Coking Plant dust, sampled at the charging larry 3-4 operating stand and at the battery roof. After pulverization the dusts contained 98.1% and 99.6% respirable particles, and 6.5% and 6.0% of SiO2, respectively, determined with the Polezhajev method. They also contained aluminum and iron compounds. Hydroxyproline content in the lungs of the animals following the intratracheal administration of 50 mg of the dusts investigated 3-6 months after the experiment was determined. Determination of Hypro contend within the animals' lungs was pursued with the Stegemann method as modified by Hurych and Chvapil. The biochemical investigation results obtained were statistically analyzed with the t-Student's Test. Single intratracheal administration of dust from the battery roof work stand of the MAKOSZOWY Coking Plant caused within 6 months a statistically significant increase in the lung Hydroxyproline level in experimental animals (t = 13.10). An almost triole Hypro increase with respect to the control group was observed. No analogy between lung Hypro level increase (12.833 mg) and histological change was noted. Such a significant lung Hydroxyproline level increase could have been due to the SiO2 content of dust (6%), as well as to the presence of iron compounds in it (4.98%).(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Identification and removal of polycyclic aromatic hydrocarbons in wastewater treatment processes from coke production plants.

    PubMed

    Zhang, Wanhui; Wei, Chaohai; Yan, Bo; Feng, Chunhua; Zhao, Guobao; Lin, Chong; Yuan, Mengyang; Wu, Chaofei; Ren, Yuan; Hu, Yun

    2013-09-01

    Identification and removal of polycyclic aromatic hydrocarbons (PAHs) were investigated at two coke plants located in Shaoguan, Guangdong Province of China. Samples of raw coking wastewaters and wastewaters from subunits of a coke production plant were analyzed using gas chromatography-mass spectrometry (GC/MS) to provide a detailed chemical characterization of PAHs. The identification and characterization of PAH isomers was based on a positive match of mass spectral data of sample peaks with those for PAH isomers in mass spectra databases with electron impact ionization mass spectra and retention times of internal reference compounds. In total, 270 PAH compounds including numerous nitrogen, oxygen, and sulfur heteroatomic derivatives were positively identified for the first time. Quantitative analysis of target PAHs revealed that total PAH concentrations in coking wastewaters were in the range of 98.5 ± 8.9 to 216 ± 20.2 μg/L, with 3-4-ring PAHs as dominant compounds. Calculation of daily PAH output from four plant subunits indicated that PAHs in the coking wastewater came mainly from ammonia stripping wastewater. Coking wastewater treatment processes played an important role in removing PAHs in coking wastewater, successfully removing 92 % of the target compounds. However, 69 weakly polar compounds, including PAH isomers, were still discharged in the final effluent, producing 8.8 ± 2.7 to 31.9 ± 6.8 g/day of PAHs with potential toxicity to environmental waters. The study of coking wastewater herein proposed can be used to better predict improvement of coke production facilities and treatment conditions according to the identification and removal of PAHs in the coke plant as well as to assess risks associated with continuous discharge of these contaminants to receiving waters.

  20. Distribution of polycyclic aromatic hydrocarbons in coke plant wastewater.

    PubMed

    Burmistrz, Piotr; Burmistrz, Michał

    2013-01-01

    The subject of examinations presented in this paper is the distribution of polycyclic aromatic hydrocarbons (PAHs) between solid and liquid phases in samples of raw wastewater and wastewater after treatment. The content of 16 PAHs according to the US EPA was determined in the samples of coke plant wastewater from the Zdzieszowice Coke Plant, Poland. The samples contained raw wastewater, wastewater after physico-chemical treatment as well as after biological treatment. The ΣPHA16 content varied between 255.050 μg L(-1) and 311.907 μg L(-1) in raw wastewater and between 0.940 and 4.465 μg L(-1) in wastewater after full treatment. Investigation of the distribution of PAHs showed that 71-84% of these compounds is adsorbed on the surface of suspended solids and 16-29% is dissolved in water. Distribution of individual PAHs and ΣPHA16 between solid phase and liquid phase was described with the use of statistically significant, linear equations. The calculated values of the partitioning coefficient Kp changed from 0.99 to 7.90 for naphthalene in samples containing mineral-organic suspension and acenaphthylene in samples with biological activated sludge, respectively.

  1. Stability of system against aggregation in coking a compounded feedstock

    SciTech Connect

    Mimun, K.; Smidovich, E.V.; Zaitseva, N.P.

    1984-05-01

    This article examines a vacuum resid from West Siberian crude and a 250/sup 0/C+ fraction of pyrolysis tar. The pyrolysis tar consists of heavy aromatic hydrocarbons and asphaltenes in approximately equal amounts of 46-48%. The vacuum resid is a conventional straight-run feedstock with a predominance of light and medium aromatic hydrocarbons (37.6%) and a moderate content of asphaltenes (10.2%). The vacuum resid and the pyrolysis tar were subjected to coking in a laboratory still, being coked separately and also in blends with a paraffin wax having a density of 739 kg/m/sup 3/ at 68/sup 0/C, melting point of 54/sup 0/C, and molecular weight of 356. The stability factor was determined for each blend. It is concluded that paraffin wax, like highly aromatic additives, when it is blended with residual stocks with low contents of paraffinic/naphthenic hydrocarbons or none of these hydrocarbons at all (such stocks have a low stability factor), may increase the stability of these residual stocks against phase separation to a significant degree.

  2. Apparatus for leveling coal in a coke oven chamber

    SciTech Connect

    Spindeler, H.; Wackerbarth, F.

    1985-01-01

    A coal-leveling apparatus includes a leveling rod supported by a pressing machine for movement through a leveling opening into a mushroom-shaped gas-collecting space to level the coal charged in the coking chamber of a coke oven. The leveling rod includes a head element that carries two support members that can move on pivot levers between an operative position wherein the support members are extended from the head element for support by upwardly-inclined wall surfaces in the mushroom-shaped gas-collecting space. In the inoperative position, the support members are retracted toward both sides of the head element. An actuating rod extends through the leveling rod to the head element. In one embodiment, the actuating rod can be moved in opposite directions of its length. An end of each of the first pivot levers is connected to the actuating rod and the opposite ends of the first levers are connected to second pivot levers. The second pivot levers are connected at one end to the head element and carry the support members. The connection between the pivot levers and the actuating rod, in one embodiment, is by a pivot connection, and in another embodiment by rollers that can move along an inclined surface on an end of the actuating rod. In a third embodiment a nut is threadedly engaged with threads on the end portion of the actuating rod to move the levers.

  3. Innovative coke oven gas cleaning system for retrofit applications

    SciTech Connect

    Not Available

    1992-10-16

    Bethlehem Steel Corporation (BSC), in conjunction with the Department of Energy (DOE) is conducting a Clean Coal Technology (CCT) project at its Sparrows Point, Maryland Coke Oven Plant. This project combines several existing technologies into an integrated system for removing impurities from Coke Oven Gas (COG) to make it an acceptable fuel. DOE is providing cost-sharing under a Cooperative Agreement with BSC. This Cooperative Agreement requires BSC to develop and conduct an Environmental Monitoring Plan (EMP) for the Clean Coal Technology project and to report the status of the EMP on a quarterly basis. This report is the third quarterly status report of the EMP. It covers the Environmental Monitoring Plan activities for the full year of 1991 from January 1, 1991 through December 31, 1991, including the forth quarter. See Sections 2, 3 and 4 for status reports of the Project Installation and Commissioning, the Environmental Monitoring activities and the Compliance Monitoring results for the period. Section 5 contains a list of Compliance Reports submitted to regulatory agencies during the period. The EMP describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) document the extent of compliance of monitoring activities, i.e. those monitoring required to meet permit requirements, (2) confirm the specific impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base for the assessment of the environmental performance of the technology demonstrated by the project.

  4. Annual book of ASTM Standards 2008. Section Five. Petroleum products, lubricants, and fossil fuels. Volume 05.06. Gaseous fuels; coal and coke

    SciTech Connect

    2008-09-15

    The first part covers standards for gaseous fuels. The second part covers standards on coal and coke including the classification of coals, determination of major elements in coal ash and trace elements in coal, metallurgical properties of coal and coke, methods of analysis of coal and coke, petrogrpahic analysis of coal and coke, physical characteristics of coal, quality assurance and sampling.

  5. Annual book of ASTM Standards 2005. Section Five. Petroleum products, lubricants, and fossil fuels. Volume 05.06. Gaseous fuels; coal and coke

    SciTech Connect

    2005-09-15

    The first part covers standards for gaseous fuels. The standard part covers standards on coal and coke including the classification of coals, determination of major elements in coal ash and trace elements in coal, metallurgical properties of coal and coke, methods of analysis of coal and coke, petrographic analysis of coal and coke, physical characteristics of coal, quality assurance and sampling.

  6. The release of trace elements in the process of coal coking.

    PubMed

    Konieczyński, Jan; Zajusz-Zubek, Elwira; Jabłońska, Magdalena

    2012-01-01

    In order to assess the penetration of individual trace elements into the air through their release in the coal coking process, it is necessary to determine the loss of these elements by comparing their contents in the charge coal and in coke obtained. The present research covered four coke oven batteries differing in age, technology, and technical equipment. By using mercury analyzer MA-2 and the method of ICP MS As, Be, Cd, Co, Hg, Mn, Ni, Se, Sr, Tl, V, and Zn were determined in samples of charge coal and yielded coke. Basing on the analyses results, the release coefficients of selected elements were determined. Their values ranged from 0.5 to 94%. High volatility of cadmium, mercury, and thallium was confirmed. The tests have shown that although the results refer to the selected case studies, it may be concluded that the air purity is affected by controlled emission occurring when coke oven batteries are fired by crude coke oven gas. Fugitive emission of the trace elements investigated, occurring due to coke oven leaks and openings, is small and, is not a real threat to the environment except mercury.

  7. Preparation of modified semi-coke by microwave heating and adsorption kinetics of methylene blue.

    PubMed

    Wang, Xin; Peng, Jin-Hui; Duan, Xin-Hui; Srinivasakannan, Chandrasekar

    2013-01-01

    Preparation of modified semi-coke has been achieved, using phosphoric acid as the modifying agent, by microwave heating from virgin semi-coke. Process optimization using a Central Composite Design (CCD) design of Response Surface Methodology (RSM) technique for the preparation of modifies semi-coke is presented in this paper. The optimum conditions for producing modified semi-coke were: concentration of phosphoric acid 2.04, heating time 20 minutes and temperature 587 degrees C, with the optimum iodine of 862 mg/g and yield of 47.48%. The textural characteristics of modified semi-coke were analyzed using scanning electron microscopy (SEM) and nitrogen adsorption isotherm. The BET surface area of modified semi-coke was estimated to be 989.60 m2/g, with the pore volume of 0.74 cm3/g and a pore diameter of 3.009 nm, with micro-pore volume contributing to 62.44%. The Methylene Blue monolayer adsorption capacity was found to be mg/g at K. The adsorption capacity of the modified semi-coke highlights its suitability for liquid phase adsorption application with a potential usage in waste water treatment.

  8. The Release of Trace Elements in the Process of Coal Coking

    PubMed Central

    Konieczyński, Jan; Zajusz-Zubek, Elwira; Jabłońska, Magdalena

    2012-01-01

    In order to assess the penetration of individual trace elements into the air through their release in the coal coking process, it is necessary to determine the loss of these elements by comparing their contents in the charge coal and in coke obtained. The present research covered four coke oven batteries differing in age, technology, and technical equipment. By using mercury analyzer MA-2 and the method of ICP MS As, Be, Cd, Co, Hg, Mn, Ni, Se, Sr, Tl, V, and Zn were determined in samples of charge coal and yielded coke. Basing on the analyses results, the release coefficients of selected elements were determined. Their values ranged from 0.5 to 94%. High volatility of cadmium, mercury, and thallium was confirmed. The tests have shown that although the results refer to the selected case studies, it may be concluded that the air purity is affected by controlled emission occurring when coke oven batteries are fired by crude coke oven gas. Fugitive emission of the trace elements investigated, occurring due to coke oven leaks and openings, is small and, is not a real threat to the environment except mercury. PMID:22666104

  9. Gas treatment and by-products recovery of Thailand`s first coke plant

    SciTech Connect

    Diemer, P.E.; Seyfferth, W.

    1997-12-31

    Coke is needed in the blast furnace as the main fuel and chemical reactant and the main product of a coke plant. The second main product of the coke plant is coke oven gas. During treatment of the coke oven gas some coal chemicals like tar, ammonia, sulphur and benzole can be recovered as by-products. Since the market prices for these by-products are rather low and often erratic it does not in most cases justify the investment to recover these products. This is the reason why modern gas treatment plants only remove those impurities from the crude gas which must be removed for technical and environmental reasons. The cleaned gas, however, is a very valuable product as it replaces natural gas in steel work furnaces and can be used by other consumers. The surplus can be combusted in the boiler of a power plant. A good example for an optimal plant layout is the new coke oven facility of Thai Special Steel Industry (TSSI) in Rayong. The paper describes the TSSI`s coke oven gas treatment plant.

  10. Characterization of liquids derived from laboratory coking of decant oil and co-coking of Pittsburgh seam bituminous coal with decant oil

    SciTech Connect

    Omer Gul; Caroline Clifford; Leslie R. Rudnick; Harold H. Schobert

    2009-05-15

    In this study, decant oil and a blend of Pittsburgh seam bituminous coal with decant oil were subjected to coking and co-coking in a laboratory-scale delayed coker. Higher yields of coke and gas were obtained from co-coking than from coking. Coal addition into the feedstock resulted in lighter overhead liquid. GC/MS analyses of gasoline, jet fuel, and diesel show that co-coking of coal/decant oil gave higher quantity aromatic components than that of coking of decant oil alone. Simulated distillation gas chromatography analyses of overhead liquids and GC/MS analyses of vacuum fractions show that when coal was reacted with a decant oil, the coal constituents contributed to the distillable liquids. To address the reproducibility of the liquid products, overhead liquid samples collected at the first, third, and fifth hours of experiments of 6 h duration were evaluated using simulated distillation gas chromatography and {sup 1}H and {sup 13}C NMR. NMR analyses of the liquid products showed that, even though there were slight changes in the {sup 1}H and {sup 13}C spectra, the standard deviation was low for the time-dependent samples. Simulated distillation gas chromatography showed that the yields of refinery boiling range materials (i.e., gasoline, jet fuel, diesel, and fuel oil cuts) were reproducible between runs. Fractionation of the overhead liquids into refinery boiling range materials (gasoline, jet fuel, diesel, fuel oil fractions) showed that the boiling range materials and chemical compositions of fractions were found to be reproducible. 54 refs., 17 tabs.

  11. Characterization of the origin and distribution of the minerals and phases in metallurgical cokes

    SciTech Connect

    Sushil Gupta; Maria Dubikova; David French; Veena Sahajwalla

    2007-01-15

    Three industrial metallurgical cokes were examined using X-ray diffraction (XRD) and scanning electron microscopy combined with energy dispersive X-ray analysis (SEM/EDS). The study highlighted the difficulties and implications of identifying the inherent crystalline mineral phases in cokes using XRD such that increasing the ashing temperature led to the formation of anhydrite and destruction of metallic iron: microwave plasma ashing resulted in minimal alteration of the original coke mineralogy apart from the formation of bassanite and possibly jarosite. A preliminary scheme to characterize coke minerals is presented such that, physically, minerals can be classified as fine ({lt}50 {mu}m), coarse (50-100 {mu}m), and agglomerate ({gt}1000 {mu}m); chemically, minerals can be grouped as refractory, semirefractory, and reactive, while on the basis of distribution they can be described as discrete, disseminated, or pore inclusions. Quartz, cristobalite, mullite, and high melting point Al-silicates were found to be the predominant refractory phases while low melting point Al-silicates, e.g., containing high fluxing elements such as K, and Fe were the main semirefractory phases present in all cokes. A variety of iron containing phases including pyrrhotite, troilite, iron oxides, metallic iron, and iron silicates were also invariably present in all cokes while calcium phases were found to occur as sulfide, silicates, and phosphates. In general, iron and calcium phases can be categorized as reactive phases with few exceptions such as oldhamite (CaS). The study highlighted that most of the cokes possess a similar mineralogy, with the main distinction being in their relative abundance, particle size, and nature of distribution in the coke matrix. The study provides a basis to develop a mechanistic understanding of the influence of minerals on coke reactivity and strength at high temperatures. 41 refs., 13 figs., 4 tabs.

  12. Coke workers' exposure to volatile organic compounds in northern China: a case study in Shanxi Province.

    PubMed

    He, Qiusheng; Yan, Yulong; Zhang, Yanli; Wang, Xinming; Wang, Yuhang

    2015-06-01

    China is the largest coke producer and exporter in the world, and it has been a major concern that large populations of coke workers are exposed to the associated air pollutants such as volatile organic compounds (VOCs). This study aimed to preliminarily quantify the potential exposure to VOCs emitted from two representative coking plants and assess the potential health risks. Air samples from various stages of coking were collected from the topside of coke ovens and various plant areas and then analyzed for benzene, toluene, ethylbenzene, and xylene (BTEX). The time-weighted average (TWA) concentrations were used to quantify the coke oven emission (COE). The TWA concentrations for benzene were 705.6 and 290.4 μg m(-3) in plant A and plant B, respectively, which showed a higher exposure level than those reported in other countries. COE varied on the topside of coke ovens during charging and pushing processes, from 268.3 to 1197.7 μg m(-3) in plant A and 85.4-489.7 μg m(-3) in plant B. Our results indicate that benzene exposure from the diffusion of tar distillation also exerts significant health risks and thus should also be concerned. Charging and pushing activities accounted for nearly 70 % of benzene dose at the topside, and the benzene exposure risks to the coke oven workers in China were higher than those reported by US EPA. Compared to the reported emission sources, the weight-based ratios of average benzene to toluene, ethylbenzene, and xylene in different COE air samples showed unique characteristic profiles. Based on the B/T ratios from this work and from literatures on several major cities in northern China, it was evident that COE contributes significantly to the severe pollution of VOCs in the air of northern China. Future more rigorous studies are warranted to characterize VOC emission profiles in the stack gas of the coking processes in China.

  13. Investigation of the effects of heating rate on coking of shale during retorting

    SciTech Connect

    Guffey, F.D.; Hunter, D.E.

    1988-02-01

    The retorting of oil shale distributes organic carbon among three possible products: the liquid product, the noncondensible product, and the residual carbon (coke). The production of coke is detrimental because of the economic effects caused by the loss of organic carbon to this relatively intractable carbon form. Two reference oil shales, a Mahogany zone, Parachute Creek Member, Green River Formation oil shale from Colorado and a Clegg Creek Member, New Albany oil shale from Kentucky, were studied to evaluate the conditions that affect coke production during retorting. The variable that was studied in these experiments was the heating rate during retorting because heating rate has been indicated to have a direct effect on coke production (Burnham and Clarkson 1980). The six heating rates investigated covered the range from 1 to 650/degree/C/h (1.8 to 1169/degree/F/h). The data collected during these experiments were evaluated statistically in order to identify trends. The data for the eastern reference oil shale indicated a decrease in coke formation with increases in the heating rate. The liquid and noncondensible product yields both increased with increasing heating rate. The distribution of products in relation to retort heating rate follows the model suggested by Burnham and Clarkson (1980). Coke production during the retorting of western reference oil shale was found to be constant in relation to heating rate. The liquid product yield increased with increasing heating rate but the trend could not be verified at the 95% confidence level. The coke production observed in these experiments does not follow the prediction of the model. This may indicate that coke formation occurs early in the retorting process and may be limited by the availability of organic materials that form coke. 6 refs., 10 tabs.

  14. Color and chlorinated organics removal from pulp mills wastewater using activated petroleum coke.

    PubMed

    Shawwa, A R; Smith, D W; Sego, D C

    2001-03-01

    Delayed petroleum coke, a waste by-product from the oil sand industry, was utilized in the production of activated carbon. The activated carbon was then evaluated for color and chlorinated organics reduction from pulp mill wastewater. The activation of the petroleum coke was evaluated using a fixed bed reactor involving carbonization and activation steps at temperature of 850 degrees C and using steam as the activation medium. The activation results showed that the maximum surface area of the activated coke was achieved at an activation period of 4 h. The maximum surface area occurred at burnoff and water efficiency of 48.5 and 54.3%, respectively. Increasing the activation period to 6 h resulted in a decrease in the surface area. Methylene blue adsorption results indicated that the activation process was successful. Methylene blue adsorbed per 100 g of applied activated coke was 10 times higher than that adsorbed by raw petroleum coke. Adsorption equilibrium results of the bleached wastewater and the activated coke showed that significant color, COD, DOC and AOX removal (> 90%) was achieved when the activated coke dose exceeded 15,000 mg/L. Adsorption isotherms, in terms of COD, DOC, UV and color were developed based on the batch equilibrium data. Based on these isotherms, the amount of activated coke required to achieve certain removal of color and AOX can be predicted. The utilization of the petroleum coke for the production of activated carbon can provide an excellent disposal option for the oil sand industry at the same time would provide a cheap and valuable activated carbon.

  15. Fraction of Pt surface covered with coke following hydrogenolysis of hexane

    SciTech Connect

    Rivera-Latas, F.J.; Betta, R.A.D.; Boudart, M. )

    1992-05-01

    This paper reports that following hydrogenolysis of n-hexane on an alumina-supported platinum catalyst, the surface of the metal is covered partially with carbonaceous residues or coke. The fraction of surface platinum not covered with coke has been found to be about one half by four independent techniqu3s: titration of preadsorbed oxygen by dihydrogen, chemisorption of carbon monoxide, infrared spectroscopy of chemisorbed carbon monoxide, and hydrogenation rate of ethylene. The first of these techniques suggests itself as the simplest one for further studies of deactivation by coking of platinum catalysts.

  16. Organophosphorus compounds as coke inhibitors during naphtha pyrolysis. Effect of benzyl diethyl phosphite and triphenylphosphine sulfide

    SciTech Connect

    Das, P.; Prasad, S.; Kunztu, D.

    1992-09-01

    This paper reports that significant reduction in the rate of coke formation during naphtha pyrolysis was achieved by adding benzyl diethyl phosphite or triphenylphosphine sulfide to the feed. Although the yield of carbon oxides was reduced, there was no effect of these additives on the hydrocarbon yields. Addition of these organophosphorus compounds significantly reduced the concentration of metals, such as iron, nickel, and chromium, incorporated in the coke. A previously proposed model for coke inhibition due to the formation of a passivating metal-phosphorus complex could satisfactorily correlate the data.

  17. Attempts to prevent injector coking with sunflower oil by engine modifications and fuel additives

    SciTech Connect

    van der Walt, A.N.; Hugo, F.J.C.

    1982-01-01

    The effect of injector tip temperature on coking propencity when sunflower oil is used as a fuel for direct injection engines, was tested. Partial retraction of the injector, the addition of a heat shield to the injector and cooling the injector with water was tried. Also, injector temperature was increased by reducing heat transferred to the cylinder head and preheating the sunflower oil. None of these measures could prevent coking of the injector tip. Coating the injector tip with Teflon and increasing the back leakage rate was also tried without success. Only a few of many additives tested, showed some promise of being able to prevent coking. 5 figures, 1 table.

  18. The effect of calcination conditions on the graphitizability of novel synthetic and coal-derived cokes

    NASA Astrophysics Data System (ADS)

    Bennett, Barbara Ellen

    The effects of calcination heating rate and ultimate calcination temperature upon calcined coke and subsequent graphitic material microstructures were studied for materials prepared from three different precursors. The pitch precursors used were Mitsubishi AR pitch (a synthetic, 100% mesophase pitch), the NMP-extracted portion of a raw coal, and the NMP-extracted fraction of a coal liquefaction residue obtained from an HTI pilot plant. These materials were all green-coked under identical conditions. Optical microscopy confirmed that the Mitsubishi coke was very anisotropic and the HTI coke was nearly as anisotropic. The coke produced from the direct coal extract was very isotropic. Crystalline development during calcination heating was verified by high-temperature x-ray diffraction. Experiments were performed to ascertain the effects of varying calcination heating rate and ultimate temperature. It was determined that calcined coke crystallite size increased with increasing temperature for all three materials but was found to be independent of heating rate. The graphene interplanar spacing decreased with increasing temperature for the isotropic NMP-extract material but increased with increasing temperature for the anisotropic materials---Mitsubishi and HTI cokes. Graphene interplanar spacing was also found to be independent of heating rate. Calcined coke real densities were, likewise, found to be independent of heating rate. The anisotropic cokes (Mitsubishi and HTI) exhibited increasing real density with increasing calcination temperature. The NMP-extract coke increased in density up to 1050°C and then suffered a dramatic reduction in real density when heated to 1250°C. This is indicative of puffing. Since there was no corresponding disruption in the crystalline structure, the puffing phenomena was determined to be intercrystalline rather than intracrystalline. After the calcined cokes were graphitized (under identical conditions), the microstructures were re

  19. Prospects for use of lean caking coal from the Kuznetsk coalfield for coking

    SciTech Connect

    Sulimov, G.I.; Agafonov, A.A.; Ol'shanetskii, L.G.

    1983-01-01

    The coals from the Kuznetsk Coalfield were investigated under laboratory and pilot-plant conditions and compared with coals of various rank from the Anzhero Coalfield. The coals from the South of the Kuzbass have a more favorable petrographic composition than the Anzhero coals; their volatile matter depends on the rank; the caking capacity is low; the plastic layer is not measured, and the swelling index is also low. The lean coal types are coked in charges containing Kuznetsk and Pechora coal. The criterion for evaluation of the coking capacity was the coke mechanical strength indices, obtained during testing in the large grate drum. 1 figure, 4 tables.

  20. Electrical conduction phenomena in coked industrial reforming catalysts

    SciTech Connect

    Daveau, S.; Bonanos, N.

    1997-02-01

    Industrial Pt/Al{sub 2}O{sub 3} reforming catalysts containing up to 26 wt% of carbon have been studied by admittance spectroscopy. Spectra obtained on heating in nitrogen in the range 200--500 C displayed low frequency relaxations, which were interpreted in terms of a network of carbon islands linked by surface ionic conduction. During subsequent cooling, these features disappeared, suggesting that they were generated by dissociation of strongly bound water. Isothermal ac measurements in nitrogen showed that the conductance was determined by the carbon content. Similar measurements made in dilute oxygen showed that the conductance decreased with burn-off of carbon. Analysis of gases evolved on heating revealed aqueous and chloride species, originating from acid sites on the catalyst support. The results suggest that electrical techniques could be used to characterize coked reforming catalysts.

  1. Process and apparatus for cooling coke oven gas

    SciTech Connect

    Austermuhle, F.

    1980-12-16

    A two-stage process, and the apparatus for practicing the process, for cooling process gas are disclosed. The process gas is firstly air-cooled by convection to a temperature above the dew point of naphthalene and finally cooled to the desired discharge temperature by heat exchange with a cooling liquid. The condensed portion of the process gas resulting from the first cooling stage may be utilized to flush the gas conduits of the liquid heat exchanger of the second stage, followed by a recirculation of that condensed portion of the coke oven gas either back through the second stage or by introduction into the stream of process gas prior to its introduction into the first cooling stage.

  2. Experimental study on the effects of blast-cap configurations and charge patterns on coke descending in CDQ cooling shaft

    SciTech Connect

    Y.H. Feng; X.X. Zhang; M.L. Wu

    2008-08-15

    The coke descending behavior in a CDQ cooling shaft is studied experimentally by means of a tracing method with a digital camera. For three different blast-caps, the law of coke flow is studied under five conditions of coke charge. The experimental results show that, for the sake of the uniformity of the coke burden descending, a blast-cap with elliptical cross-section is a better choice than that with circular cross-section regardless of high or low placement. A coke charge pattern with a flat top burden surface is preferable to that with peak-valley surface, a double-peak superior to a one-peak. Trajectory and average velocity distribution of coke behavior depend weakly on whether the coke is continuously fed or not as the discharging began. The blast-caps have local effects on the descending coke and hardly affect whether the cokes flow smoothly or not in the case of coke burden with enough depth.

  3. Relative rates of coke formation from hydrocarbons in steam cracking of naphtha: 3. Aromatic hydrocarbons

    SciTech Connect

    Kopinke, F. . Section of Remediation Research); Zimmermann, G. ); Reyniers, G.C.; Froment, G.F. )

    1993-11-01

    Relative rate constants of coke formation (k) from 18 aromatic hydrocarbons during steam cracking of naphtha at 810 C were determined by application of [sup 14]C-labeled compounds. Benzene is a poor coke precursor (k = 0.3), whereas polycyclic structures like acenaphthylene, anthracene, and chrysene have a high coking potential in the pyrolysis reactor (k = 4.5--6) as well as in the TLE section (k = 12--30). The relation between structure and coke formation rate of aromatic hydrocarbons can be interpreted on the basis of their reactivity in radical reactions. Constituents of the fuel fraction ([ge] C[sub 9]) derived from nonaromatic feed components are more efficient in the TLE fouling than those stemming from benzene derivatives.

  4. Guide to ASTM test methods for the analysis of coal and coke

    SciTech Connect

    R.A. Kishore Nadkarni

    2008-07-01

    The guide includes brief descriptions of all 56 ASTM test methods that cover the physical, chemical, and spectroscopic analytical techniques to qualitatively and quantitatively identify over 40 chemical and physical properties of coal, coke, their products, and by-products.

  5. Study of ways of reducing coke use at non-integrated metallurgical plants

    SciTech Connect

    S.A. Feshchenko; V.I. Pleshkov; I.N. Shishchuk; A.V. Buev

    2006-03-15

    To reduce the costs of blast-furnace smelting, the Svobodnyi Sokol plant has devised a comprehensive program of organizational-technical measures that include study of ways of reducing coke consumption. To do this, the plant began operating its blast furnaces with schungite when making foundry and conversion pig irons. Using schungite in the charge employed to make foundry iron makes it possible to save a significant (10-15%) amount of coke. The value of the coefficient that characterizes the replacement of coke by schungite varies broadly and can reach 1.0 or more, depending on the grade of iron being made and the furnace operating regime. The same coefficient has a value of 0.57 kg coke/kg schungite when 12-15 kg schungite/ton pig is used to make conversion pig iron.

  6. Current developments at Giprokoks for coke-battery construction and reconstruction

    SciTech Connect

    V.I. Rudyka; Y.E. Zingerman; V.B. Kamenyuka; O.N. Surenskii; G.E. Kos'kova; V.V. Derevich; V.A. Gushchin

    2009-07-15

    Approaches developed at Giprokoks for coke-battery construction and reconstruction are considered. Recommendations regarding furnace construction and reconstruction are made on the basis of Ukrainian and world experience.

  7. 40 CFR 63.302 - Standards for by-product coke oven batteries.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... oven emissions from each affected existing by-product coke oven battery that exceed any of the... larger size ovens, operation under negative pressure, and processes with emission points different...

  8. Coke formation on HFAU and HEMT zeolites. Influence of the reaction temperature and propene pressure

    NASA Astrophysics Data System (ADS)

    Doka Nassionou, G. A.; Magnoux, P.; Guisnet, M.

    1999-02-01

    The formation of coke from propene (Pp = 1.3 kPa and 13 kPa) was investigated on HFAU and HEMT zeolites in a microbalance for temperatures ranging from 120 °C to 450 °C. For both zeolites, the greater the propene pressure and the lower the temperature the faster the initial coke formation. However for high propene pressure, initial coke formation is faster with HEMT zeolite. This can be related to the stronger acidity of the HEMT sample. For low propene pressure and after 420 minutes of coking, a minimum in coke is observed for T = 350 ^circC, which can be related to the difference between the rate of formation and the rate of retention of coke molecules. At low temperature, due to their low volatility, oligomers are easily formed and retained in the zeolite pores. These molecules can be totally eliminated by an adequate thermal treatment in vacuum. At higher temperature, only aromatic or polyaromatic compounds which present a size larger than the pore apertures can be retained in the cavities of the zeolites. The greater the reaction time, the faster the retention. Whatever the reaction temperature, coke molecules are more homogeneously distributed in the HEMT crystallites than in those of HFAU samples. For this latter zeolite coke molecules are preferentially formed in the cavities located near the outer surface of the crystallites (shell coking). La formation de coke à partir du propène (Pp = 1,3 et 13 kPa) a été étudiée en microbalance sur zéolithes HFAU et HEMT dans une gamme de température variant de 120 à 450°C. La vitesse initiale de formation de coke dépend de la pression du propène, de la température et également de la zéolithe. Ainsi, pour une forte pression en propène, la vitesse initiale de formation de coke est toujours plus importante sur HEMT que sur HFAU. Ceci est à relier à la plus grande acidité et à la présence de sites acides plus forts sur HEMT. Après 420 minutes de réaction, et pour une faible pression en propène le

  9. Pyrolysis kinetics of coking coal mixed with biomass under non-isothermal and isothermal conditions.

    PubMed

    Jeong, Ha Myung; Seo, Myung Won; Jeong, Sang Mun; Na, Byung Ki; Yoon, Sang Jun; Lee, Jae Goo; Lee, Woon Jae

    2014-03-01

    To investigate the kinetic characteristics of coking coal mixed with biomass during pyrolysis, thermogravimetric (TG) and thermo-balance reactor (TBR) analyses were conducted under non-isothermal and isothermal condition. Yellow poplar as a biomass (B) was mixed with weak coking coal (WC) and hard coking coal (HC), respectively. The calculated activation energies of WC/B blends were higher than those of HC/B blends under non-isothermal and isothermal conditions. The coal/biomass blends show increased reactivity and decreased activation energy with increasing biomass blend ratio, regardless of the coking properties of the coal. The different char structures of the WC/B and HC/B blends were analyzed by BET and SEM.

  10. Production of hydrogen from coke-oven gas by the short-cycle adsorption method

    SciTech Connect

    Podorozhanskii, M.M.; Plichko, V.S.; Shustikov, V.I.; Yavorskaya, Z.G.

    1981-01-01

    In recent years the short-cycle adsorption method has been extensively used to separate hydrogen from hydrogen-containing gases in the petrochemical and chemical industries. With regard to coke-oven gas, which contains about 60% hydrogen, this problem has been given less attention in the literature. As the adsorbent, molecular sieves obtained from carbon have been used. Investigation of the process on a pilot apparatus demonstrated the possibility of using this method to produce hydrogen at a concentration of 95 to 99%. We have obtained similar data using an IGI (Institute of Fossil Fuels) microbead adsorbent with micropore volume of about 0.35 cm/sup 3//g. As a result of the experiments, it was concluded that: (1) the short-cycle adsorption method may be used to produce technical hydrogen suitable for use in hydrorefining processes; (2) an equation was derived describing the degree of purity of the hydrogen as a function of the productivity of a unit of adsorbent volume, the quantity of blowout gases and the duration of the cycle.

  11. Effect of thermal treatment on coke reactivity and catalytic iron mineralogy

    SciTech Connect

    Byong-chul Kim; Sushil Gupta; David French; Richard Sakurovs; Veena Sahajwalla

    2009-07-15

    Iron minerals in coke can catalyze its gasification and may affect coke behavior in the blast furnace. The catalytic behavior of iron depends largely upon the nature of the iron-bearing minerals. To determine the mineralogical changes that iron could undergo in the blast furnace, cokes made from three coals containing iron present in different mineral forms (clays, carbonates, and pyrite) were examined. All coke samples were heat-treated in a horizontal furnace at 1373, 1573, and 1773 K and then gasified with CO{sub 2} at 1173 K in a fixed bed reactor (FBR). Coke mineralogy was characterized using quantitative X-ray diffraction (XRD) analysis of coke mineral matter prepared by low-temperature ashing (LTA) and field emission scanning electron microscopy combined with energy dispersive X-ray analysis (FESEM/EDS). The mineralogy of the three cokes was most notably distinguished by differing proportions of iron-bearing phases. During heat treatment and subsequent gasification, iron-containing minerals transformed to a range of minerals but predominantly iron-silicides and iron oxides, the relative amounts of which varied with heat treatment temperature and gasification conditions. The relationship between initial apparent reaction rate and the amount of catalytic iron minerals - pyrrhotite, metallic iron, and iron oxides - was linear and independent of heat treatment temperature at total catalyst levels below 1 wt %. The study showed that the coke reactivity decreased with increasing temperature of heat treatment due to decreased levels of catalytic iron minerals (largely due to formation of iron silicides) as well as increased ordering of the carbon structure. The study also showed that the importance of catalytic mineral matter in determining reactivity declines as gasification proceeds. 37 refs., 13 figs., 7 tabs.

  12. The Videofil probe, a novel instrument to extend the coke oven service life

    SciTech Connect

    Gaillet, J.P.; Isler, D.

    1997-12-31

    To prolong the service life of coke oven batteries, the Centre de Pyrolyse de Marienau developed the Videofil probe, a novel instrument to conduct diagnoses and to help repair operations of coke ovens. The Videofil probe is a flexible non-water-cooled endoscope which is used to locate flue wall damage and estimate its importance, to define the oven zones to repair and guide the repair work and to control the quality of the repair work and its durability.

  13. Process for operating coking ovens and an oven for use in said process

    SciTech Connect

    Durselen, H.; Onnebrink, F.; Schuffler, A.

    1980-05-13

    In a coking operation where the heating medium is introduced into the furnace by way of a bottom fire box and wherein heat exchangers are provided for the waste gases, the waste gas is passed through a plurality of parallel channels serving as said heat exchangers and the useful portion of the total system available for such exchange is reduced when the coking time is increased beyond the time required at normal operation.

  14. Cryogenic fractionator gas as stripping gas of fines slurry in a coking and gasification process

    DOEpatents

    DeGeorge, Charles W.

    1981-01-01

    In an integrated coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a scrubbing process and wherein the resulting solids-liquid slurry is stripped with a stripping gas to remove acidic gases, at least a portion of the stripping gas comprises a gas comprising hydrogen, nitrogen and methane separated from the coker products.

  15. Coke gasification: the influence and behavior of inherent catalytic mineral matter

    SciTech Connect

    Mihaela Grigore; Richard Sakurovs; David French; Veena Sahajwalla

    2009-04-15

    Gasification of coke contributes to its degradation in the blast furnace. In this study, the effect of gasification on the inherent catalytic minerals in cokes and their reciprocal influence on gasification are investigated. The catalytic mineral phases identified in the cokes used in this study were metallic iron, iron sulfides, and iron oxides. Metallic iron and pyrrhotite were rapidly oxidized during gasification to iron oxide. The catalysts had a strong influence on the apparent rates at the initial stages of reaction. As gasification proceeds, their effect on the reaction rate diminishes as a result of reducing the surface contact between catalyst and carbon matrix because of carbon consumption around the catalyst particles; with extended burnout the reactivity of the coke becomes increasingly dependent on surface area. The reaction rate in the initial stages was also influenced by the particle size of the catalytic minerals; for a given catalytic iron level, the cokes whose catalytic minerals were more finely dispersed had a higher apparent reaction rate than cokes containing larger catalytic particles. Iron, sodium, and potassium in the amorphous phase did not appear to affect the reaction rate. 40 refs., 16 figs., 6 tabs.

  16. Coking suppression in solid oxide fuel cells operating on ethanol by applying pyridine as fuel additive

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Wang, Feng; Ran, Ran; Park, Hee Jung; Jung, Doh Won; Kwak, Chan; Shao, Zongping

    2014-11-01

    In this study, pyridine was used to suppress the coke formation in solid oxide fuel cells (SOFCs) operating on liquid fuels. Pyridine can selectively occupy acidic sites of the Ni/Al2O3 catalyst layer and solves the problem of dehydration of ethanol in principle, resulting in a significant reduction in the coke formation rate for operating on ethanol fuel. At 600 °C, by adding 12.5 vol.% pyridine into the ethanol fuel, the coke formation rate over the Ni/Al2O3 catalyst is reduced by 64% while a cell power output comparable to that operating on hydrogen is still achieved based on total potential hydrogen available from ethanol. The effective reduction of carbon deposition on the catalyst layer thus protects the anode layer from carbon deposition by strongly suppressing coke formation, especially near the anode-electrolyte interface. Pyridine is adsorbed onto the acidic sites of the Ni/Al2O3 catalyst and the adsorbed pyridine may reduce the amount of carbonium ions formed, thereby reducing coke formation. This study suggested that the addition of pyridine could suppress the coke formation in SOFCs with Ni/Al2O3 catalyst layer operated on ethanol or some other similar liquid fuels.

  17. Using High-Voltage Direct Current in Removing Coke from a Zeolite Catalyst Grain

    NASA Astrophysics Data System (ADS)

    Aljalal, Abdulaziz

    2009-03-01

    Zeolite catalysts are commonly used in petroleum refining processes. Over a period of time, these catalysts lose their activity due to gradual deposition of carbonaceous materials, called coke. The coked catalysts are usually reactivated by combusting the coke at elevated temperatures in presence of an oxygen-enriched gas. But the elevated temperatures cause damages to the structure of the catalyst which result in reduced activity. Normally, the catalyst is reactivated 3 or 4 times before it must be returned to the manufacturer for reclamation of the valuable platinum and/or rhenium content. This study is an attempt to come up with a new procedure to remove coke from a zeolite catalyst grain using high-voltage direct current. It is found that the process is self-terminated due to the loss of electrical conductivity of the grain. In addition, it is found that there an optimum current range for which up to 90% of the coke can be removed. Higher or lower currents result in much smaller removal of the coke.

  18. Removal of cyanide compounds from coking wastewater by ferrous sulfate: Improvement of biodegradability.

    PubMed

    Yu, Xubiao; Xu, Ronghua; Wei, Chaohai; Wu, Haizhen

    2016-01-25

    The effect of ferrous sulfate (FeSO4) treatment on the removal of cyanide compounds and the improvement of biodegradability of coking wastewater were investigated by varying Fe:TCN molar ratios. Results suggested that the reaction between FeSO4 and coking wastewater was a two-step process. At the first step, i.e., 0≤Fe:TCN≤1.0, the reaction mechanisms were dominated by the precipitation of FeS, the complexation of CN(-), and the coagulation of organic compounds. The COD of coking wastewater decreased from 3748.1 mg/L to 3450.2 mg/L, but BOD5:COD (B/C) was improved from 0.30 to 0.51. At the second step, i.e., 1.0coking wastewater. Moreover, B/C decreased progressively to 0.35, which was attributed to the negative effects of excess ferrous ions on biodegradability. To improve coking wastewater's biodegradability, a minimum ferrous dosage is required to complete the first step reaction. However, the optimum ferrous dosage should be determined to control a safe residual TCN in coking wastewater for the further biological treatment.

  19. Evaluation of fly ash from co-combustion of coal and petroleum coke for use in concrete

    SciTech Connect

    Scott, A.N.; Thomas, M.D.A.

    2007-01-15

    An investigation of fly ash (FA) produced from various blends of coal and petroleum coke (pet coke) fired at Belledune Generating Station, New Brunswick, Canada, was conducted to establish its performance relative to FA derived from coal-only combustion and its compliance with CSA A3000. The FA samples were beneficiated by an electrostatic separation process to produce samples for testing with a range of loss-on-ignition (LOI) values. The results of these studies indicate that the combustion of pet coke results in very little inorganic residue (for example, typically less than 0.5% ash) and the main impact on FA resulting from the co-combustion of coal and up to 25% pet coke is an increase in the unburned carbon content and LOI values. The testing of FA after beneficiation indicates that FA produced from fuels with up to 25% pet coke performs as good as FA produced from the same coal without pet coke.

  20. Novel carbon-rich additives preparation by degradative solvent extraction of biomass wastes for coke-making.

    PubMed

    Zhu, Xianqing; Li, Xian; Xiao, Li; Zhang, Xiaoyong; Tong, Shan; Wu, Chao; Ashida, Ryuichi; Liu, Wenqiang; Miura, Kouichi; Yao, Hong

    2016-05-01

    In this work, two extracts (Soluble and Deposit) were produced by degradative solvent extraction of biomass wastes from 250 to 350°C. The feasibilities of using Soluble and Deposit as additives for coke-making were investigated for the first time. The Soluble and Deposit, having significantly higher carbon content, lower oxygen content and extremely lower ash content than raw biomasses. All Solubles and most of Deposits can melt completely at the temperature ranged from 80 to 120°C and 140 to 180°C, respectively. The additions of Soluble or Deposit into the coke-making coal significantly improved their thermoplastic properties with as high as 9°C increase of the plastic range. Furthermore, the addition of Deposit or Soluble also markedly enhanced the coke quality through increasing coke strength after reaction (CSR) and reducing coke reactivity index (CRI). Therefore, the Soluble and Deposit were proved to be good additives for coke-making.

  1. The reaction of coke specimens in an environment where both the temperature and the gas composition are time dependent

    SciTech Connect

    Aderibigbe, D.A.; Szekely, J.

    1982-09-01

    The purpose of this communication is to comment on the appropriateness of the currently employed testing procedures for evaluating the performance of coke in the iron blast furnace. It points out that while the ultimate test of coke quality is its actual performance in the real operating blast furnaces, it is clearly desirable to devise tests that enable one to predict how a given type of coke would behave without resorting to expensive, large scale trials, performed under industrial conditions. It suggests that the way in which metallurgical coke reacts in the iron blast furnace may depend quite critically on its previous history (in terms of the temperature and gas composition to which the particle was exposed). The ''intrinsic reactivity'' of a given coke sample may vary quite markedly with furnace operation and that the currently employed simple coke reactivity tests are unlikely to provide information on this type of behavior.

  2. The Evolution of Structural Order as a Measure of Thermal History of Coke in the Blast Furnace

    NASA Astrophysics Data System (ADS)

    Lundgren, Maria; Khanna, Rita; Ökvist, Lena Sundqvist; Sahajwalla, Veena; Björkman, Bo

    2014-04-01

    Investigations were carried out on cokes heat treated in the laboratory and on cokes extracted from the experimental blast furnace (EBF) raceway and hearth. X-ray diffraction (XRD) measurements were performed to investigate changes in structural order ( L c), chemical transformations in coke ash along with comparative thermodynamic equilibrium studies and the influence of melt. Three data processing approaches were used to compute L c values as a function of temperature and time and linear correlations were established between L c and heat treatment temperatures during laboratory investigations. These were used to estimate temperatures experienced by coke in various regions of EBF and estimated raceway temperatures were seen to follow the profile of combustion peak. The MgAl2O4 spinel was observed in coke submerged in slag during laboratory studies and in cokes found further into the raceway. Coke in contact with hot metal showed XRD peaks corresponding to presence of Fe3Si. The intensity of SiO2 peak in coke ash was seen to decrease with increasing temperature and disappeared at around 1770 K (1500 °C) due to the formation of SiC. This study has shown that the evolution of structural order and chemical transformations in coke could be used to estimate its thermal history in blast furnaces.

  3. Experience in the use of the type FEP-4M pyrometer to monitor the temperature distribution along the coke mass

    SciTech Connect

    Zernii, G.G.; Smoilovskii, N.I.; Leibovich, R.E.; Robul, L.A.; Kardashova, E.F.; Sulimova, E.I.

    1982-01-01

    The use of a photoelectric pyrometer for the temperature measurement of the coke mass in coke ovens was discussed. The use of the pyrometer to evaluate the effects of coal composition, moisture, bulk density of the charge, calorific value of the heating gas, and the uniformity of the combustion flare on the final temperature of the coke cake was also included. It was concluded that using the pyrometer made it possible to determine the coke cake heating temperature distribution by length and height, and to adopt operatinal measures in the case of a deviation in the oven heating or charging conditions.

  4. Experimental study on preheated combustion of pulverized semi-coke

    NASA Astrophysics Data System (ADS)

    Yao, Yao; Zhu, Jianguo; Lu, Qinggang; Zhou, Zuxu

    2015-06-01

    In a test rig, pulverized semi-coke was preheated to 850oC in a circulating fluidized bed (CFB) and then combusted at 1100oC in a down-fired combustor (DFC). Experiments were conducted to reveal the effects of three secondary air nozzle cases (co-axial jet, top circular jet and wall circular jet) on the NO emission. The results show that the optimized secondary air nozzle can reduce NO emission. O2 concentration profile is the major factor affecting NO generation and emission, which is led by the secondary air nozzle. The lower O2 concentration led to the generation of lower initial NO. The NO emission at the exit of the DFC was reduced from 189 to 92 mg/m3 (@ 6% O2) with the decrease of initial generation. The peak of NO at 100 mm below the nozzle should be attributed to the oxidization of NH3 in the syngas, rather than the oxidization of fuel-N in the char. The low and well-distributed O2 concentration contributes to the reduction of initial NO, which helps to reduce the NO emission. The combustion efficiencies of the cases of the co-axial jet, the top circular jet, and the wall circular jet are 97.88%, 98.94% and 98.74%, respectively.

  5. Primary silver extraction with a high sulphur activated petroleum coke.

    PubMed

    Schouwenaars, R; Durán Moreno, A; Ramírez Zamora, R M

    2004-01-01

    An extended study was performed to determine the mechanisms that are responsible for the significant silver extraction capacity of activated carbons prepared from a high-sulphur petroleum coke that is available as a waste material from Mexican petroleum refineries. Earlier studies had shown the feasibility of the production of these adsorbents but indicated that the mechanisms of metal adsorption in the present carbons are significantly different from what is classically accepted for commercial carbons. Therefore, selective titration, IR-spectroscopy and scanning electron microscopy of carbons were combined with adsorption experiments and the determination of electrochemical parameters of mixtures of carbon-AgNO3 solution to explain the fundamental reasons for the performance of the obtained carbons. This allowed us to determine the identity of the surface functional groups and to distinguish the effect of different activation processes. The experiments permitted us to explain why these activated carbons, which have a low specific area and lack classical surface functional groups, show such a high silver adsorption capacity.

  6. Treatment of coke-oven wastewater with the powdered activated carbon-contact stabilization activated sludge process. Final report

    SciTech Connect

    Suidan, M.T.; Deady, M.A.; Gee, C.S.

    1983-11-01

    The objective of the study was to determine optimum parameters for the operation of an innovative process train used in the treatment of coke-over wastewater. The treatment process train consisted of a contact-stabilization activated sludge system with powdered activated carbon (PAC) addition, followed by activated sludge nitrification, followed by denitrification in an anoxic filter. The control and operating parameters evaluated during the study were: (a) the average mixed-liquor PAC concentration maintained in the contact-stabilization system, (b) the solids retention time practiced in the contact-stabilization system, and (c) the hydraulic detention time maintained in the contact aeration tank. Three identical treatement process trains were constructed and employed in this study. The coke-oven wastewater used for this investigation was fed to the treatment units at 30% strength. The first part of the study was devoted to determining the interactions between the mixed liquor PAC concentration and the solids retention time in the contact-stabilization tanks. Results showed that optimum overall system performance is attainable when the highest sludge age (30 day) and highest mixed liquor PAC concentration were practiced. During the second phase of the study, all three systems were operated at a 30 day solids retention time while different detention times of 1, 2/3 and 1/3 day were evaluated in the contact tank. PAC addition rates were maintained at the former levels and, consequently, reduced contact times entailed higher mixed liquor carbon concentrations. Once again, the system receiving the highest PAC addition rate of PAC exhibited the best overall performance. This system exhibited no deterioration in process performance as a result of decreased contact detention time. 72 references, 41 figures, 24 tables.

  7. The Effect of CO2 Activation on the Electrochemical Performance of Coke-Based Activated Carbons for Supercapacitors.

    PubMed

    Lee, Hye-Min; Kim, Hong-Gun; An, Kay-Hyeok; Kim, Byung-Joo

    2015-11-01

    The present study developed electrode materials for supercapacitors by activating coke-based activated carbons with CO2. For the activation reaction, after setting the temperature at 1,000 degrees C, four types of activated carbons were produced, over an activation time of 0-90 minutes and with an interval of 30 minutes as the unit. The electrochemical performance of the activated carbons produced was evaluated to examine the effect of CO2 activation. The surface structure of the porous carbons activated through CO2 activation was observed using a scanning electron microscope (SEM). To determine the N2/77 K isothermal adsorption characteristics, the Brunauer-Emmett-Teller (BET) equation and the Barrett-Joyner-Halenda (BJH) equation were used to analyze the pore characteristics. In addition, charge and discharge tests and cyclic voltammetry (CV) were used to analyze the electrochemical characteristics of the changed pore structure. According to the results of the experiments, the N2 adsorption isotherm curves of the porous carbons produced belonged to Type IV in the International Union of Pore and Applied Chemistry (IUPAC) classification and consisted of micropores and mesopores, and, as the activation of CO2 progressed, micropores decreased and mesopores developed. The specific surface area of the porous carbons activated by CO2 was 1,090-1,180 m2/g and thus showed little change, but those of mesopores were 0.43-0.85 cm3/g, thus increasing considerably. In addition, when the electrochemical characteristics were analyzed, the specific capacity was confirmed to have increased from 13.9 F/g to 18.3 F/g. From these results, the pore characteristics of coke-based activated carbons changed considerably because of CO2 activation, and it was therefore possible to increase the electrochemical characteristics. PMID:26726596

  8. Comparison between UV and VUV photolysis for the pre- and post-treatment of coking wastewater.

    PubMed

    Xing, Rui; Zheng, Zhongyuan; Wen, Donghui

    2015-03-01

    In this study, ultraviolet (UV) and vacuum ultraviolet (VUV) photolysis were investigated for the pre-treatment and post-treatment of coking wastewater. First, 6-fold diluted raw coking wastewater was irradiated by UV and VUV. It was found that 15.9%-35.4% total organic carbon (TOC) was removed after 24 hr irradiation. The irradiated effluent could be degraded by the acclimated activated sludge. Even though the VUV photolysis removed more chemical oxygen demand (COD) than UV, the UV-irradiated effluent demonstrated better biodegradability. After 4 hr UV irradiation, the biological oxygen demand BOD5/COD ratio of irradiated coking wastewater increased from 0.163 to 0.224, and its toxicity decreased to the greatest extent. Second, the biologically treated coking wastewater was irradiated by UV and VUV. Both of them were able to remove 37%-47% TOC within 8 hr irradiation. Compared to UV, VUV photolysis could significantly improve the transparency of the bio-treated effluent. VUV also reduced 7% more ammonia nitrogen (NH4+-N), 17% more nitrite nitrogen (NO2--N), and 18% more total nitrogen (TN) than UV, producing 35% less nitrite nitrogen (NO3--N) as a result. In conclusion, UV irradiation was better in improving the biodegradability of coking wastewater, while VUV was more effective at photolyzing the residual organic compounds and inorganic N-species in the bio-treated effluent.

  9. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane.

    PubMed

    Han, Joung Woo; Kim, Chanyeon; Park, Jun Seong; Lee, Hyunjoo

    2014-02-01

    Nickel catalysts are typically used for hydrogen production by reforming reactions. Reforming methane with carbon dioxide, called dry reforming of methane (DRM), is a good way to produce hydrogen or syngas (a mixture of hydrogen and carbon monoxide) from two notable greenhouse gases. However, Ni catalysts used for DRM suffer from severe coke deposition. It has been known that small Ni nanoparticles are advantageous to reduce coke formation, but the high reaction temperature of DRM (800 °C) inevitably induces aggregation of the nanoparticles, leading to severe coke formation and degraded activity. Here, we develop highly coke-resistant Ni catalysts by immobilizing premade Ni nanoparticles of 5.2 nm in size onto functionalized silica supports, and then coating the Ni/SiO2 catalyst with silica overlayers. The silica overlayers enable the transfer of reactants and products while preventing aggregation of the Ni nanoparticles. The silica-coated Ni catalysts operate stably for 170 h without any degradation in activity. No carbon deposition was observed by temperature programmed oxidation (TPO), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy. The Ni catalysts without silica coating show severe sintering after DRM reaction, and the formation of filamentous carbon was observed. The coke-resistant Ni catalyst is potentially useful in various hydrocarbon transformations.

  10. Post oxygen treatment characteristics of coke as an anode material for Li-ion batteries.

    PubMed

    Kim, Jae-Hun; Park, Min-Sik; Jo, Yong Nam; Yu, Ji-Sang; Jeong, Goojin; Kim, Young-Jun

    2013-05-01

    The effect of a oxygen treatment on the electrochemical characteristics of a soft carbon anode material for Li-ion batteries was investigated. After a coke carbonization process at 1000 degrees C in an argon atmosphere, the samples were treated under a flow of oxygen gas to obtain a mild oxidation effect. After this oxygen treatment, the coke samples exhibited an improved initial coulombic efficiency and cycle performance as compared to the carbonized sample. High-resolution transmission electron microscopy revealed that the carbonized cokes consisted of disordered and nanosized graphene layers and the surface of the modified carbon was significantly changed after the treatment. The chemical state of the cokes was analyzed using X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The enhanced electrochemical properties of the surface modified cokes could be attributed to the mild oxidation effect induced by the oxygen treatment. The mild oxidation process could have led to the elimination of surface imperfections and the reinforcement of a solid electrolyte interphase film, which resulted in the improved electrochemical characteristics.

  11. Coke formation and carbon atom economy of methanol-to-olefins reaction.

    PubMed

    Wei, Yingxu; Yuan, Cuiyu; Li, Jinzhe; Xu, Shutao; Zhou, You; Chen, Jingrun; Wang, Quanyi; Xu, Lei; Qi, Yue; Zhang, Qing; Liu, Zhongmin

    2012-05-01

    The methanol-to-olefins (MTO) process is becoming the most important non-petrochemical route for the production of light olefins from coal or natural gas. Maximizing the generation of the target products, ethene and propene, and minimizing the production of byproducts and coke, are major considerations in the efficient utilization of the carbon resource of methanol. In the present work, the heterogeneous catalytic conversion of methanol was evaluated by performing simultaneous measurements of the volatile products generated in the gas phase and the confined coke deposition in the catalyst phase. Real-time and complete reaction profiles were plotted to allow the comparison of carbon atom economy of methanol conversion over the catalyst SAPO-34 at varied reaction temperatures. The difference in carbon atom economy was closely related with the coke formation in the SAPO-34 catalyst. The confined coke compounds were determined. A new type of confined organics was found, and these accounted for the quick deactivation and low carbon atom economy under low-reaction-temperature conditions. Based on the carbon atom economy evaluation and coke species determination, optimized operating conditions for the MTO process are suggested; these conditions guarantee high conversion efficiency of methanol.

  12. Estimation of cytogenetic risk among coke oven workers exposed to polycyclic aromatic hydrocarbons.

    PubMed

    Sureshkumar, Shanmugam; Balachandar, Vellingiri; Devi, Subramaniam Mohana; Arun, Meyyazhagan; Karthickkumar, Alagamuthu; Balamuralikrishnan, Balasubramanian; Sankar, Kathannan; Mustaqahamed, Shafi Ahammed Khan; Dharwadkar, Shanwaz N; Sasikala, Keshavarao; Cho, Ssang-Goo

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) result from the incomplete combustion of natural or synthetic organic materials. The working environment at a coke plant can negatively affect the employed workers who were exposed to coke oven emissions containing PAHs, which formed and released into the environment by the process of pyrolysis of coke. This study aims to analyze the relationship between the exposure of PAHs and the risk of genetic damages such as chromosomal alteration (CA), micronucleus (MN), and DNA damage (PCR-RFLP) in peripheral blood lymphocytes of 27 coke oven workers and equal number of control subjects. The exposed subjects and controls were divided into two groups based on their age (group I<35 years and group II ≥35 years). The exposed subjects were further classified into two groups based on the exposure period (<12 years and ≥12 years). The frequencies of CA and MN in exposed subjects are relatively high with respect to controls. The XRCC1 399 Arg/gln polymorphism showed a substantial smaller difference in allele frequencies between exposed and control subjects. Based on present data, it was concluded that coke oven workers under risk should be monitored for adverse effects of the any long-term exposure.

  13. Commercial cokes and graphites as anode materials for lithium - ion cells

    SciTech Connect

    Derwin, D J; Kinoshita, K; Tran, T D; Zaleski, P

    2000-10-26

    Several types of carbonaceous materials from Superior Graphite Co. were investigated for lithium ion intercalation. These commercially available cokes, graphitized cokes and graphites have a wide range of physical and chemical properties. The coke materials were investigated in propylene carbonate based electrolytes and the graphitic materials were studied in ethylene carbonate/dimethyl solutions to prevent exfoliation. The reversible capacities of disordered cokes are below 230 mAh/g and those for many highly ordered synthetic (artificial) and natural graphites approached 372 mAh/g (LiC{sub 6}). The irreversible capacity losses vary between 15 to as much as 200% of reversible capacities for various types of carbon. Heat treated cokes with the average particle size of 10 microns showed marked improvements in reversible capacity for lithium intercalation. The electrochemical characteristics are correlated with data obtained from scanning electron microscopy (SEM), high resolution transmission electron microscopy (TEM), X-ray diffraction (XRD) and BET surface area analysis. The electrochemical performance, availability, cost and manufacturability of these commercial carbons will be discussed.

  14. Colour change of soft denture liners after storage in coffee and coke.

    PubMed

    Goiato, Marcelo Coelho; Zuccolotti, Bruna Carolina Rossatti; Moreno, Amália; dos Santos, Daniela Micheline; Pesqueira, Aldiéris Alves; Dekon, Stefan Fiuza de Carvalho

    2011-06-01

    This study was to evaluate the colour change of soft denture liners after thermocycling and storage in coffee and coke. Four liners, two silicone-based (Sofreliner S and Reline GS) and two acrylic resin-based (Soft Confort and Dentuflex), were evaluated in this study. Ten samples were obtained for each group. After 2000 cycles of thermocycling with baths of 5°C and 55°C, five samples were stored in coffee and the remaining samples in coke. The colour alteration was evaluated in a reflection spectrophotometer before and after thermocycling, and after 1, 3, 24, 48 and 96h of storage in coffee and coke. Data were submitted to anova and Tukey's HSD test (α=0.05). Thermocycling and storage period represented a higher statistically significant influence for the resin liners than for the silicone materials. Coke did not influence the colour stability of the materials during storage. However, the coffee solution generated statistically significant colour alteration in the material Soft Confort. In the comparison between the coffee and coke solutions, there was no statistically significant difference for colour alteration only for the material Dentuflex. The silicone liners presented better colour stability following thermocycling and storage independent of the solution. The coffee solution was a statistically significant factor for colour alteration of the material Soft Confort.

  15. Preliminary Study of Thermal Treatment of Coke Wastewater Sludge Using Plasma Torch

    NASA Astrophysics Data System (ADS)

    Li, Mingshu; Li, Shengli; Sun, Demao; Liu, Xin; Feng, Qiubao

    2016-10-01

    Thermal plasma was applied for the treatment of coke wastewater sludge derived from the steel industry in order to investigate the feasibility of the safe treatment and energy recovery of the sludge. A 30 kW plasma torch system was applied to study the vitrification and gas production of coke wastewater sludge. Toxicity leaching results indicated that the sludge treated via the thermal plasma process converted into a vitrified slag which resisted the leaching of heavy metals. CO2 was utilized as working gas to study the production and heat energy of the syngas. The heating value of the gas products by thermal plasma achieved 8.43 kJ/L, indicating the further utilization of the gas products. Considering the utilization of the syngas and recovery heat from the gas products, the estimated treatment cost of coke wastewater sludge via plasma torch was about 0.98 CNY/kg sludge in the experiment. By preliminary economic analysis, the dehydration cost takes an important part of the total sludge treatment cost. The treatment cost of the coke wastewater sludge with 50 wt.% moisture was calculated to be about 1.45 CNY/kg sludge dry basis. The treatment cost of the coke wastewater sludge could be effectively controlled by decreasing the water content of the sludge. These findings suggest that an economic dewatering pretreatment method could be combined to cut the total treatment cost in an actual treatment process.

  16. Colour change of soft denture liners after storage in coffee and coke.

    PubMed

    Goiato, Marcelo Coelho; Zuccolotti, Bruna Carolina Rossatti; Moreno, Amália; dos Santos, Daniela Micheline; Pesqueira, Aldiéris Alves; Dekon, Stefan Fiuza de Carvalho

    2011-06-01

    This study was to evaluate the colour change of soft denture liners after thermocycling and storage in coffee and coke. Four liners, two silicone-based (Sofreliner S and Reline GS) and two acrylic resin-based (Soft Confort and Dentuflex), were evaluated in this study. Ten samples were obtained for each group. After 2000 cycles of thermocycling with baths of 5°C and 55°C, five samples were stored in coffee and the remaining samples in coke. The colour alteration was evaluated in a reflection spectrophotometer before and after thermocycling, and after 1, 3, 24, 48 and 96h of storage in coffee and coke. Data were submitted to anova and Tukey's HSD test (α=0.05). Thermocycling and storage period represented a higher statistically significant influence for the resin liners than for the silicone materials. Coke did not influence the colour stability of the materials during storage. However, the coffee solution generated statistically significant colour alteration in the material Soft Confort. In the comparison between the coffee and coke solutions, there was no statistically significant difference for colour alteration only for the material Dentuflex. The silicone liners presented better colour stability following thermocycling and storage independent of the solution. The coffee solution was a statistically significant factor for colour alteration of the material Soft Confort. PMID:20082643

  17. Advanced treatment of biologically pretreated coking wastewater by a bipolar three-dimensional electrode reactor.

    PubMed

    Zhang, Chunhui; Lin, Hui; Chen, Jun; Zhang, Wenwen

    2013-01-01

    Electrochemical oxidation is a promising technology for the treatment ofbio-refractory wastewater. In this research, advanced treatment of coking wastewater which had previously undergone A/O (anaerobic-aerobic biological) treatment was investigated over Ti/RuO2 x IrO2 anode, stainless steel cathode and coke powder particle electrodes which were packed into the electrodes in a bipolar three-dimensional electrode reactor (BTDR). The results showed that the removal efficiency of COD and ammonia nitrogen increased with applied current density. The main influencing factors of BTDR were evaluated by an orthogonal test, including reaction time, plate distance, current density, plate amounts and aeration flow rate. With reaction time of 60 min, plate distance of 1.0 cm, current density of 20 mA/cm2 and plate amounts of four pairs, most of the contaminants in coking wastewater can be remediated by BTDR, which can then meet the discharge limit for coking wastewater in China. For organic pollutants, 12 kinds of organic pollutants can be completely removed, and the removal efficiencies of 11 kinds of organic pollutants are between 13.3 and 70.3% by advanced treatment with BTDR. We conclude that there is great potential for BTDR in engineering applications as a final treatment for coking wastewater. PMID:24350493

  18. 76 FR 52350 - Coke Oven Emissions Standard; Extension of the Office of Management and Budget's (OMB) Approval...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-22

    ... 1995 (44 U.S.C. 3506 et seq.) and Secretary of Labor's Order No. 5-2010 (75 FR 55355). Signed at... Occupational Safety and Health Administration Coke Oven Emissions Standard; Extension of the Office of...) approval of the information collection requirements specified in the Standard on Coke Oven Emissions...

  19. 76 FR 59681 - Middletown Coke Company, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Middletown Coke Company, LLC; Supplemental Notice That Initial Market-Based... above-referenced proceeding of Middletown Coke Company, LLC's application for market-based...

  20. 41 CFR 101-26.4904-416 - DD Form 416: Purchase Request for Coal, Coke, or Briquettes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true DD Form 416: Purchase Request for Coal, Coke, or Briquettes. 101-26.4904-416 Section 101-26.4904-416 Public Contracts and... DD Form 416: Purchase Request for Coal, Coke, or Briquettes. Note: The form illustrated in §...

  1. KRESS INDIRECT DRY COOLING SYSTEM, BETHLEHEM STEEL'S COKE PLANT DEMONSTRATION AT SPARROWS POINT, MARYLAND - VOLUME 2. APPENDICES G-N

    EPA Science Inventory

    The report evaluates the Kress Indirect Dry Cooling (KIDC) process, an innovative system for handling and cooling coke produced from a slot-type by-product coke oven battery. The report is based on the test work and demonstration of the system at Bethlehem Steel Corporation's Sp...

  2. 40 CFR Appendix A to Subpart L of... - Operating Coke Oven Batteries as of April 1, 1992

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... April 1, 1992 A Appendix A to Subpart L of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORIES National Emission Standards for Coke Oven Batteries Pt. 63, Subpt. L, App. A Appendix A to Subpart L of Part 63—Operating Coke Oven Batteries as of April 1, 1992 No. Plant Battery 1...

  3. 41 CFR 101-26.4904-416 - DD Form 416: Purchase Request for Coal, Coke, or Briquettes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false DD Form 416: Purchase Request for Coal, Coke, or Briquettes. 101-26.4904-416 Section 101-26.4904-416 Public Contracts and... DD Form 416: Purchase Request for Coal, Coke, or Briquettes. Note: The form illustrated in §...

  4. 41 CFR 101-26.4904-416 - DD Form 416: Purchase Request for Coal, Coke, or Briquettes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true DD Form 416: Purchase Request for Coal, Coke, or Briquettes. 101-26.4904-416 Section 101-26.4904-416 Public Contracts and... DD Form 416: Purchase Request for Coal, Coke, or Briquettes. Note: The form illustrated in §...

  5. 41 CFR 101-26.4904-416 - DD Form 416: Purchase Request for Coal, Coke, or Briquettes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 2 2013-07-01 2012-07-01 true DD Form 416: Purchase Request for Coal, Coke, or Briquettes. 101-26.4904-416 Section 101-26.4904-416 Public Contracts and... DD Form 416: Purchase Request for Coal, Coke, or Briquettes. Note: The form illustrated in §...

  6. 41 CFR 101-26.4904-416 - DD Form 416: Purchase Request for Coal, Coke, or Briquettes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true DD Form 416: Purchase Request for Coal, Coke, or Briquettes. 101-26.4904-416 Section 101-26.4904-416 Public Contracts and... DD Form 416: Purchase Request for Coal, Coke, or Briquettes. Note: The form illustrated in §...

  7. Coking phenomena in the pyrolysis of ethylene dichloride into vinyl chloride

    SciTech Connect

    Sotowa, Chiaki; Korai, Yozo; Mochida, Isao

    1995-12-31

    Pyrolysis of ethylene dichloride (EDC) into vinyl chloride (VCM) which is the monomer for polyvinyl chloride, one of the most popular polymers, has been established commercially for quite a time. The process around 500{degrees}C has been proved to give VCM of high purity at very high selectivity about 99% and a reasonable conversion about 50%. However, the coking is a major problem in the long run, requiring decoking treatment every two months. The present paper describes features of carbons produced in the pyrolysis process. Coke of respective features was found in the reactor, the transfer line, the heat exchanger and the rapid quencher. Typical pyrolytic carbon, anisotropic coke produced in the liquid phase, isotropic carbon was produced on the reactor wall as low as 500{degrees}C. The mechanisms for their formation are discussed.

  8. Health status among urban residents living in proximity to petroleum coke storage: a first examination.

    PubMed

    Hendryx, Michael; Entwhistle, Jennifer; Kenny, Emily; Illyn, Peter

    2016-01-01

    We conducted an in-person survey in neighborhoods in south Chicago to examine whether residence near outdoor petroleum coke storage piles was associated with poorer health status and illness symptoms. A total of 223 adults (≥18) completed the surveys in English or Spanish, including 136 from a neighborhood exposed to the petroleum coke and 87 from a nearby comparison neighborhood. Exposure was defined based on prevailing winds and distance. We conducted a propensity score regression analysis, and found that residents in the exposed neighborhood were significantly more likely to report poor self-rated health, more unhealthy physical and mental health days, more illness symptoms including in particular respiratory and neurological symptoms, and worse perceived environmental conditions. The survey is limited by the small sample and the self-report nature of the data, but provides initial quantitative evidence that residence near outdoor petroleum coke storage piles may pose a public health risk.

  9. Kinetic study of the catalytic carbonization of coal tar pitch-petroleum coke mixtures

    SciTech Connect

    Xue, J.; Oeye, H.A.; Soerlie, M.

    1996-10-01

    The rate of carbonization has important impacts on the energy consumption and the productivity in baking process of reduction anodes. In the present work the carbonization of coal tar pitch-petroleum coke mixtures with catalysts, such as S, AlCl{sub 3}, AlF{sub 3}, and Fe{sub 2}Cp{sub 2}(CO){sub 4}, was investigated by thermogravimetry (TG) and kinetic analysis of the data. It was found that the pyrolysis temperature for non-coking volatiles decreased with catalysts, and that the coke yield of pitch binder increased. Almost all the sulfur and most of the iron from the additives can be removed during heat treatment, while the remaining aluminum in the residues may not be harmful.

  10. Effect and mechanism of coking residual ammonia water treating by flue gas.

    PubMed

    Cheng, Z J; Yin, G J; Yang, L Q; Wang, W; Cheng, D D

    2001-04-01

    The treatment of coking residual ammonia water has been a big difficult problem at home and abroad, and there is no breakthrough research achievement in the past. The invention patent "The method of treating all coking wastewater or treating coking residual ammonia water by flue gas" has been successfully used in Huaian Steel Works for high concentration and organic industry wastewater treatment. Not only can it realize the wastewater zero discharge, but also the wastewater treatment has an effect of de-sulfur and de-nitrogen for flue gas. So that the flue gas exhaust can meet the requirement of emission standard. The mass transfer and heat transfer, fly ash absorption and coagulation, acid and alkali neutralization reaction, catalysis oxidation and reduction reaction in flue gas would be the major factors.

  11. Health status among urban residents living in proximity to petroleum coke storage: a first examination.

    PubMed

    Hendryx, Michael; Entwhistle, Jennifer; Kenny, Emily; Illyn, Peter

    2016-01-01

    We conducted an in-person survey in neighborhoods in south Chicago to examine whether residence near outdoor petroleum coke storage piles was associated with poorer health status and illness symptoms. A total of 223 adults (≥18) completed the surveys in English or Spanish, including 136 from a neighborhood exposed to the petroleum coke and 87 from a nearby comparison neighborhood. Exposure was defined based on prevailing winds and distance. We conducted a propensity score regression analysis, and found that residents in the exposed neighborhood were significantly more likely to report poor self-rated health, more unhealthy physical and mental health days, more illness symptoms including in particular respiratory and neurological symptoms, and worse perceived environmental conditions. The survey is limited by the small sample and the self-report nature of the data, but provides initial quantitative evidence that residence near outdoor petroleum coke storage piles may pose a public health risk. PMID:27267489

  12. Mechanism of physical transformations of mineral matter in the blast furnace coke with reference to its reactivity and strength

    SciTech Connect

    Stanislav S. Gornostayev; Jouko J. Haerkki

    2006-12-15

    Examinations of polished and dry cut sections of feed and tuyere coke revealed some possible mechanisms for the physical influence of mineral compounds on the reactivity and strength of coke. It was observed that rounded particles of mineral phases that are exposed to the pore walls and surface of coke at high temperature create an inorganic cover, thus reducing the surface available for gas-solid reactions. The particles of mineral matter that have a low melting point and viscosity can affect the coke at earlier stages in the blast furnace process, acting in the upper parts of the blast furnace (BF). The temperature-driven redistribution of mineral phases within the coke matrix probably leads to the creation of weak spots and in general to anisotropy in its properties, thus reducing its strength. 9 refs., 2 figs., 1 tab.

  13. An active carbon catalyst prevents coke formation from asphaltenes during the hydrocracking of vacuum residue

    SciTech Connect

    Fukuyama, H.; Terai, S.

    2007-07-01

    Active carbons were prepared by the steam activation of a brown coal char. The active carbon with mesopores showed greater adsorption selectivity for asphaltenes. The active carbon was effective at suppressing coke formation, even with the high hydrocracking conversion of vacuum residue. The analysis of the change in the composition of saturates, aromatics, resins, and asphaltenes in the cracked residue with conversion demonstrated the ability of active carbon to restrict the transformation of asphaltenes to coke. The active carbon that was richer in mesopores was presumably more effective at providing adsorption sites for the hydrocarbon free-radicals generated initially during thermal cracking to prevent them from coupling and polycondensing.

  14. Diet Coke and Mentos: What is really behind this physical reaction?

    NASA Astrophysics Data System (ADS)

    Coffey, Tonya Shea

    2008-06-01

    The Diet Coke and Mentos reaction is a fun demonstration in chemistry and physics classes of many important concepts in thermodynamics, fluid dynamics, surface science, and the physics of explosions. The reaction has been performed numerous times on television and the Internet, but has not been systematically studied. We report on an experimental study of the Diet Coke and Mentos reaction, and consider many aspects of the reaction, including the ingredients in the candy and soda, the roughness of the candy, the temperature of the soda, and the duration of the reaction.

  15. Fe-Si particles on the surface of blast furnace coke

    NASA Astrophysics Data System (ADS)

    Gornostayev, Stanislav S.; Heikkinen, Eetu-Pekka; Heino, Jyrki J.; Fabritius, Timo M. J.

    2015-07-01

    This study investigates the surface of unpolished samples of blast furnace (BF) coke drilled from the tuyere zone, which hosts Fe-Si particles (mostly Fe3Si) that vary in size, shape, depth of submersion (penetration) into the coke matrix, and contact features with the surface. Based on the shape of the particles and the extent of their contact with the coke matrix, they have been grouped into three major types: (I) sphere-like droplets with limited contact area, (II) semi-spheres with a larger contact area, and (III) irregular segregations with a spherical surface, which exhibit the largest contact area among the three types of particles. Considering the ratio between the height ( h) of the particles and half of their length at the surface level ( l) along the cross-section, these three types can be characterized as follows: (I) h > l, (II) h ≈ l, and (III) h < l. All the three types of particles can be found near each other. The shape and the extent of the contact depend on the degree of penetration of the material into the matrix, which is a function of the composition of the particles. Type (I) particles were initially saturated with Si at an earlier stage and, for that reason, they can react less with carbon in the coke matrix than type (II) and (III), thereby moving faster through the coke cone. Thermodynamic calculations have shown that the temperature interval of 1250-1300°C can be considered the starting point for Si entering into molten iron under quartz-dominated coke ash. Accordingly, the initial pick-up of Si by molten iron can be assumed to be mineral-related. In terms of BF practice, better conditions for sliding Fe-Si droplets through the coke cone are available when they come into contact with free SiO2 concentrated into small grains, and when the SiO2/ΣMe x O y mass ratio in the coke ash is high.

  16. Combustion Simulation and Quick-freeze Observation of a Cupola-furnace Process Using a Bio-coke Fuel Based on Tea Scum

    NASA Astrophysics Data System (ADS)

    Ishii, Kazuyoshi; Murata, Hirotoshi; Kuwana, Kazunori; Mizuno, Satoru; Morita, Akihiro; Ida, Tamio

    Global environment problems have become more and more serious in recent years, and reduction of greenhouse gas emission based on Kyoto Protocol adopted at the 3rd conference of the parties of the United nations Framework Convention on Climate Change (COP3); securement of primary energy source and development of clean and renewable energy sources have been pressingly needed in consideration of the predicted depletion of fossil fuel in the future. In this study, we explore the use of a solidified biomass-derived fuel, having the maximum compressive strength of 100MPa and calorific value of 21MJ/kg, in iron-casting or iron-making processes as an alternative fuel to be mixed with coal coke. This study, carried out for internal observation using a quick-freeze technique, observed an actual working cupola furnace under the 20% alternative coal coke operation condition. After quick freeze of the cupola furnace, the solidified biomass fuel was found to inhabit near the iron-melting zone. Especially, this solidified biomass fuel smoothly changes carbonized fuel through high-density state during the operating process. On the other hand, this study tried to simulate gasification combustion under a high temperature environment instead of actual internal combustion of solidified biomass fuel. These combustion mechanisms were confirmed to be similar to diffusion-flame phenomena in general.

  17. [Priority pollutants ranking and screening of coke industry based on USEtox model].

    PubMed

    Hao, Tian; Du, Peng-Fei; Du, Bin; Zeng, Si-Yu

    2014-01-01

    Thesis aims at evaluating and setting priority to human toxicity and ecotoxicity of coking pollutants. A field research and sampling project are conducted in coke plant in Shanxi so as to complete the coke emission inventory. The USEtox model representing recommended practice in LCIA characterization is applied to the emission inventory to quantify the potential impacts on human toxicity and ecotoxicity of emerging pollutants. Priority pollutants, production procedures and effects of changing plant site on the toxicity are analyzed. As conclusions, benzo(a) pyrene, benzene, Zn and As are identified as the priority pollutants in human toxicity, while pyrene and anthracene in ecotoxicity. Coal charging is the dominant procedure for organic toxicity and priority pollutants include benzo (a) pyrene, benzene, naphthalene, etc. While coke drenching is the dominant procedure for metal toxicity and priority pollutants include Zn, As, Ti, Hg etc. Emission to rural environment can reduce the organic toxicity significantly compared to the emission to urban environment. However, the site changing has no effect on metal toxicity and might increase the risk of the metal pollution to rural water and soil.

  18. Biomarkers of polycyclic aromatic hydrocarbon exposure in European coke oven workers.

    PubMed

    Talaska, Glenn; Thoroman, Jeff; Schuman, Brenda; Käfferlein, Heiko Udo

    2014-12-01

    Biomonitoring is an excellent method for capturing the results of all exposures, regardless of route. Coke oven workers include certain groups that have the potential for high exposure to polycyclic aromatic hydrocarbons (PAH) and other materials. Biomarkers of exposure to these agents include PAH metabolites as markers of internal dose and carcinogen-DNA adducts as measure of effective dose. The purpose of this study was to determine the levels of these biomarkers in persons with different job duties in a modern coke oven plant. We report that the mean levels of 1-hydroxypyrene (1HP) and carcinogen DNA adducts in the exfoliated urothelial cells of coke oven workers are increased the closer a group of workers is to the ovens and highest in the top oven workers with average 1HP level of 11.6 μg/l and 22 adducts per 10(9) unadducted nucleotides. Both 1HP and carcinogen DNA adduct levels increased in supervisors, area workers, side oven workers, top and side oven workers, and top oven workers, respectively. These data are the first to demonstrate an increase in target organ genotoxicity in coke oven workers and a relationship with other biomarkers. Future studies will determine the identity of the DNA adducts, their correlation with 1HP levels and the relationship between levels in individual workers.

  19. Ceramic Lithium Ion Conductor to Solve the Anode Coking Problem of Practical Solid Oxide Fuel Cells.

    PubMed

    Wang, Wei; Wang, Feng; Chen, Yubo; Qu, Jifa; Tadé, Moses O; Shao, Zongping

    2015-09-01

    For practical solid oxide fuel cells (SOFCs) operated on hydrocarbon fuels, the facile coke formation over Ni-based anodes has become a key factor that limits their widespread application. Modification of the anodes with basic elements may effectively improve their coking resistance in the short term; however, the easy loss of basic elements by thermal evaporation at high temperatures is a new emerging problem. Herein, we propose a new design to develop coking-resistant and stable SOFCs using Li(+) -conducting Li0.33 La0.56 TiO3 (LLTO) as an anode component. In the Ni/LLTO composite, any loss of surface lithium can be efficiently compensated by lithium diffused from the LLTO bulk under operation. Therefore, the SOFC with the Ni/LLTO anode catalyst layer yields excellent power outputs and operational stability. Our results suggest that the simple adoption of a Li(+) conductor as a modifier for Ni-based anodes is a practical and easy way to solve the coking problem of SOFCs that operate on hydrocarbons.

  20. Treatment of coking wastewater by an advanced Fenton oxidation process using iron powder and hydrogen peroxide.

    PubMed

    Chu, Libing; Wang, Jianlong; Dong, Jing; Liu, Haiyang; Sun, Xulin

    2012-01-01

    In this study the treatment of coking wastewater was investigated by an advanced Fenton oxidation process using iron powder and hydrogen peroxide. Particular attention was paid to the effect of initial pH, dosage of H(2)O(2) and to improvement in biodegradation. The results showed that higher COD and total phenol removal rates were achieved with a decrease in initial pH and an increase in H(2)O(2) dosage. At an initial pH of less than 6.5 and H(2)O(2) concentration of 0.3 M, COD removal reached 44-50% and approximately 95% of total phenol removal was achieved at a reaction time of 1 h. The oxygen uptake rate of the effluent measured at a reaction time of 1h increased by approximately 65% compared to that of the raw coking wastewater. This indicated that biodegradation of the coking wastewater was significantly improved. Several organic compounds, including bifuran, quinoline, resorcinol and benzofuranol were removed completely as determined by GC-MS analysis. The advanced Fenton oxidation process is an effective pretreatment method for the removal of organic pollutants from coking wastewater. This process increases biodegradation, and may be combined with a classical biological process to achieve effluent of high quality. PMID:22014660

  1. Sensory evaluation and electronic tongue analysis for sweetener recognition in coke drinks

    NASA Astrophysics Data System (ADS)

    Szöllősi, Dániel; Kovács, Zoltán; Gere, Attila; Sípos, László; Kókai, Zoltán; Fekete, András

    2011-09-01

    Consumption of beverages with low energy has an increasing role. Furthermore hydrolyzed starch products such as inverted syrup show a wide application in the beverage industry. Therefore the importance of methods which can monitor the usage of natural and artificial sweeteners is increasing. The task was to describe the relevant sensory attributes and to determine the applicability of the electronic tongue to discriminate the coke drink samples with different sweeteners. Furthermore the aim was to find relationship between the taste attributes and measurement results provided by electronic tongue. An Alpha Astree Electronic Tongue and a trained sensory panel were used to evaluate the coke samples. Panelists found significant differences between the samples in 15 cases from the 18 sensory attributes defined previously by the consensus group. Coke drinks containing different kind of sweeteners can be characterized according to these sensory attributes. The samples were definitely distinguished by the electronic tongue. The main difference was found between the samples made with natural and artificial sweeteners. However electronic tongue was able to distinguish samples containing different kind of artificial and different kind of natural sweeteners, as well. Taste attributes of coke drinks determined by sensory panel were predicted by partial least squares regression method based on the results of electronic tongue with close correlation and low prediction error.

  2. 1. Sheeler redact: Lower east/west conveyor from wharf carried coke ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Sheeler redact: Lower east/west conveyor from wharf carried coke to highline for blast furnaces; upper south/north conveyor carried coal to GG; double window carried coal to powerhouse pulverizer building for powerhouse in background. Looking north/northeast - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  3. Coal flow aids reduce coke plant operating costs and improve production rates

    SciTech Connect

    Bedard, R.A.; Bradacs, D.J.; Kluck, R.W.; Roe, D.C.; Ventresca, B.P.

    2005-06-01

    Chemical coal flow aids can provide many benefits to coke plants, including improved production rates, reduced maintenance and lower cleaning costs. This article discusses the mechanisms by which coal flow aids function and analyzes several successful case histories. 2 refs., 10 figs., 1 tab.

  4. Predicting the amount of coke deposition on catalyst pellets through image analysis and soft computing

    NASA Astrophysics Data System (ADS)

    Zhang, Jingqiong; Zhang, Wenbiao; He, Yuting; Yan, Yong

    2016-11-01

    The amount of coke deposition on catalyst pellets is one of the most important indexes of catalytic property and service life. As a result, it is essential to measure this and analyze the active state of the catalysts during a continuous production process. This paper proposes a new method to predict the amount of coke deposition on catalyst pellets based on image analysis and soft computing. An image acquisition system consisting of a flatbed scanner and an opaque cover is used to obtain catalyst images. After imaging processing and feature extraction, twelve effective features are selected and two best feature sets are determined by the prediction tests. A neural network optimized by a particle swarm optimization algorithm is used to establish the prediction model of the coke amount based on various datasets. The root mean square error of the prediction values are all below 0.021 and the coefficient of determination R 2, for the model, are all above 78.71%. Therefore, a feasible, effective and precise method is demonstrated, which may be applied to realize the real-time measurement of coke deposition based on on-line sampling and fast image analysis.

  5. Who lives near coke plants and oil refineries An exploration of the environmental inequity hypothesis

    SciTech Connect

    Graham, J.D.; Beaulieu, N.D.; Sussman, D.; Sadowitz, M.; Li, Y.C. )

    1999-04-01

    Facility-specific information on pollution was obtained for 36 coke plants and 46 oil refineries in the US and matched with information on populations surrounding these 82 facilities. These data were analyzed to determine whether environmental inequities were present, whether they were more economic or racial in nature, and whether the racial composition of nearby communities has changed significantly since plants began operations. The Census tracts near coke plants have a disproportionate share of poor and nonwhite residents. Multivariate analyses suggest that existing inequities are primarily economic in nature. The findings for oil refineries are not strongly supportive of the environmental inequity hypothesis. Rank ordering of facilities by race, poverty, and pollution produces limited (although not consistent) evidence that the more risky facilities tend to be operating in communities with above-median proportions of nonwhite residents (near coke plants) and Hispanic residents (near oil refineries). Over time, the radical makeup of many communities near facilities has changed significantly, particularly in the case of coke plants sited in the early 1900s. Further risk-oriented studies of multiple manufacturing facilities in various industrial sectors of the economy are recommended.

  6. Water plasmas for the revalorisation of heavy oils and cokes from petroleum refining.

    PubMed

    Hueso, José L; Rico, Víctor J; Cotrino, José; Jiménez-Mateos, J M; González-Elipe, Agustín R

    2009-04-01

    This work investigates the possibility of using plasmas to treat high boiling point and viscous liquids (HBPVL) and cokes resulting as secondary streams from the refining of oil. For their revalorisation, the use of microwave (MW) induced plasmas of water is proposed, as an alternative to more conventional processes (i.e., catalysis, pyrolysis, combustion, etc.). As a main result, this type of energetic cold plasma facilitates the conversion at room temperature of the heavy aromatic oils and cokes into linear hydrocarbons and synthesis gas, commonly defined as syngas (CO + H2 gas mixture). The exposure of the coke to this plasma also facilitates the removal of the sulfur present in the samples and leads to the formation on their surface of a sort of carbon fibers and rods network and new porous structures. Besides, optical emission measurements have provided direct evidence of the intermediates resulting from the fragmentation of the heavy oils and cokes during their exposure to the water plasma. Furthermore, the analysis of the mass spectra patterns suggests a major easiness to break the aromatic bonds mainly contained in the heavy oils. Therefore, an innovative method for the conversion of low value residues from oil-refining processes is addressed.

  7. 46 CFR 148.04-17 - Petroleum coke, calcined, at 130 °F or above.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Section 148.04-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES...) The material must not be loaded in cargo vessels when temperatures exceed 225 °F. (c) Other hazardous... of the vessel or his authorized representative that calcined petroleum coke loaded and...

  8. Structural effects in the reaction between carbon dioxide and coke doped with various potassium bearing catalytic precursors

    NASA Astrophysics Data System (ADS)

    Alam, M.; Debroy, T.

    1986-09-01

    The rate of reaction between carbon dioxide and coke with and without the additions of KCN, KOCN, and K2CO3 was studied using thermogravimetry. Since both potassium and carbon are lost during the reaction, the concentration of potassium in the coke samples was determined as a function of the extent of the reaction by atomic absorption spectrometry. The changes in the specific surface area due to the reaction were studied by the nitrogen adsorption technique. The changes in the pore structure of coke were investigated by mercury porosimetry and scanning electron microscopy. The distribution of potassium in the coke structure was examined as a function of the reaction time by the energy dispersion X-ray technique. Furthermore, since sulfur is known to influence the rate of the C-CO2 reaction, the sulfur content of the coke samples with or without the addition of catalytic precursors was monitored as a function of the extent of reaction. The influences of the structural parameters and the concentration of potassium on the rate of the coke-CO2 reaction were determined. The rate data were analyzed on the basis of a structural model to examine the contributions of the chemical reaction and the pore diffusion on the overall rate of the coke-CO2 reaction.

  9. Is living near a coking works harmful to health? A study of industrial air pollution.

    PubMed Central

    Bhopal, R S; Phillimore, P; Moffatt, S; Foy, C

    1994-01-01

    OBJECTIVE--To determine whether there was excess ill health in people living near a coking works, and if so whether it was related to exposure to coking works' emissions. DESIGN--Populations varying in proximity to the coking works were compared with control populations. Health data were correlated with available environmental data. METHODS--Analysis of routinely collected mortality, cancer registration, and birth statistics; community survey using self completed postal questionnaires; retrospective analysis of general practice (GP) records; tests of respiratory function; and analysis of available environmental data. MAIN RESULTS--Study and control populations were comparable in terms of response rates, gender, and most socioeconomic indicators. For adults, age standardised mortality and cancer rates of the population closest to the coking works were comparable with those for the district as a whole. Gender ratios, birthweight, and stillbirth rates were comparable in the study and control populations. For several indicators of respiratory health including cough, sinus trouble, glue ear, and wheeze (but not for asthma and chronic bronchitis) there was a gradient of self reported ill health, with the highest prevalence in areas closest to the works. For example, sinus trouble was reported by 20% of adults and 13% of children in the area closest to the works compared with 13% and 6% respectively in the control area. GP consultations for respiratory disorders increased when pollution (measured by SO2 levels) was high: annual consultation rates per 1000 varied from 752 in the top group of daily pollution levels to 424 in the bottom group. Analysis of locally collected smoke and SO2 data indicated that SO2 concentrations were highest closest to the works and, after closure of the coking works, the number of days on which SO2 and smoke levels exceeded 100 micrograms/m3 and 90 micrograms/m3, respectively, fell steeply. CONCLUSION--Routinely available indicators failed to

  10. Torrefaction reduction of coke formation on catalysts used in esterification and cracking of biofuels from pyrolysed lignocellulosic feedstocks

    SciTech Connect

    Kastner, James R; Mani, Sudhagar; Hilten, Roger; Das, Keshav C

    2015-11-04

    A bio-oil production process involving torrefaction pretreatment, catalytic esterification, pyrolysis, and secondary catalytic processing significantly reduces yields of reactor char, catalyst coke, and catalyst tar relative to the best-case conditions using non-torrefied feedstock. The reduction in coke as a result of torrefaction was 28.5% relative to the respective control for slow pyrolysis bio-oil upgrading. In fast pyrolysis bio-oil processing, the greatest reduction in coke was 34.9%. Torrefaction at 275.degree. C. reduced levels of acid products including acetic acid and formic acid in the bio-oil, which reduced catalyst coking and increased catalyst effectiveness and aromatic hydrocarbon yields in the upgraded oils. The process of bio-oil generation further comprises a catalytic esterification of acids and aldehydes to generate such as ethyl levulinate from lignified biomass feedstock.

  11. 75 FR 53963 - Notice of Baseline Filings: The Peoples Gas Light and Coke Company, Minnesota Energy Resources...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ..., Docket No. PR10-89-000, Docket No. PR10-90-000] Notice of Baseline Filings: The Peoples Gas Light and Coke Company, Minnesota Energy Resources Corporation, Louisville Gas and Electric Company,...

  12. Proximity to coke works and hospital admissions for respiratory and cardiovascular disease in England and Wales

    PubMed Central

    Aylin, P; Bottle, A; Wakefield, J; Jarup, L; Elliott, P

    2001-01-01

    BACKGROUND—The incidence of hospital admissions for respiratory and cardiovascular diseases in areas close to operating coke works in England and Wales was investigated.
METHODS—A small area study using distance from source as a proxy for exposure was undertaken in subjects aged 65 or over and children under 5 years within 7.5 km of four coke works (1991 estimated populations 87 760 and 43 932, respectively). The main outcome measures were emergency hospital admissions in 1992/3-1994/5 with a primary diagnosis of coronary heart disease (ICD 410-414), stroke (ICD 431-438), all respiratory diseases (ICD 460-519), chronic obstructive pulmonary disease (ICD 491-492), and asthma (ICD 493) in those aged 65 or over, and all respiratory and asthma admissions in children under 5 years of age.
RESULTS—At age 65 or over the combined estimate of relative risk with proximity to coke works (per km) ranged from 0.99 (95% CI 0.90to 1.09) for chronic obstructive pulmonary disease to 1.03 (95% CI 0.94 to 1.13) for asthma. For children under 5 years the combined estimate of risk was 1.08 (95% CI 0.98 to 1.20) for all respiratory disease and 1.07 (95% CI 0.98 to 1.18) for asthma. There was evidence of significant heterogeneity in risk estimates between coke work groups, especially in children under 5 years (p<0.001 and p=0.004 for respiratory disease and asthma, respectively). For the Teesside coke works in North East England the relative risk with proximity (per km) was 1.09 (95% CI 1.06 to 1.12) for respiratory disease and 1.09 (95% CI 1.04 to 1.15) for asthma.
CONCLUSIONS—No evidence overall was found for an association between hospital admissions and living near operational coke works in England and Wales. Trends of a higher risk of hospital admission for respiratory disease and asthma among children with proximity to the Teesside plant require further investigation.

 PMID:11182017

  13. 40 CFR Appendix A to Subpart L of... - Operating Coke Oven Batteries as of April 1, 1992

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Coke, Tarrant, AL A 5 6 2 Acme Steel, Chicago, IL 1 2 3 Armco, Inc., Middletown, OH 1 2 3 4 Armco, Inc., Ashland, KY 3 4 5 Bethlehem Steel, Bethlehem, PA A 2 3 6 Bethlehem Steel, Burns Harbor, IN 1 2 7 Bethlehem Steel, Lackawanna, NY 7 8 8 Citizens Gas, Indianapolis, IN E H 1 9 Empire Coke, Holt, AL 1 2 10...

  14. 40 CFR Appendix A to Subpart L of... - Operating Coke Oven Batteries as of April 1, 1992

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Coke, Tarrant, AL A 5 6 2 Acme Steel, Chicago, IL 1 2 3 Armco, Inc., Middletown, OH 1 2 3 4 Armco, Inc., Ashland, KY 3 4 5 Bethlehem Steel, Bethlehem, PA A 2 3 6 Bethlehem Steel, Burns Harbor, IN 1 2 7 Bethlehem Steel, Lackawanna, NY 7 8 8 Citizens Gas, Indianapolis, IN E H 1 9 Empire Coke, Holt, AL 1 2 10...

  15. 40 CFR Appendix A to Subpart L of... - Operating Coke Oven Batteries as of April 1, 1992

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Coke, Tarrant, AL A 5 6 2 Acme Steel, Chicago, IL 1 2 3 Armco, Inc., Middletown, OH 1 2 3 4 Armco, Inc., Ashland, KY 3 4 5 Bethlehem Steel, Bethlehem, PA A 2 3 6 Bethlehem Steel, Burns Harbor, IN 1 2 7 Bethlehem Steel, Lackawanna, NY 7 8 8 Citizens Gas, Indianapolis, IN E H 1 9 Empire Coke, Holt, AL 1 2 10...

  16. 40 CFR Appendix A to Subpart L of... - Operating Coke Oven Batteries as of April 1, 1992

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Coke, Tarrant, AL A 5 6 2 Acme Steel, Chicago, IL 1 2 3 Armco, Inc., Middletown, OH 1 2 3 4 Armco, Inc., Ashland, KY 3 4 5 Bethlehem Steel, Bethlehem, PA A 2 3 6 Bethlehem Steel, Burns Harbor, IN 1 2 7 Bethlehem Steel, Lackawanna, NY 7 8 8 Citizens Gas, Indianapolis, IN E H 1 9 Empire Coke, Holt, AL 1 2 10...

  17. [Preliminary investigation on emission of PCDD/Fs and DL-PCBs through flue gas from coke plants in China].

    PubMed

    Sun, Peng-Cheng; Li, Xiao-Lu; Cheng, Gang; Lu, Yong; Wu, Chang-Min; Wu, Chang-Min; Luo, Jin-Hong

    2014-07-01

    According to the Stockholm Convention, polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) are classified into unintentionally produced persistent organic pollutants (UP-POPs), and named dioxins. Coke production as a thermal process contains organic matters, metal and chlorine, is considered to be a potential source of dioxins. Intensive studies on the emission of dioxins from coking industry are still very scarce. In order to estimate the emission properties of dioxins through coke production, isotope dilution HRGC/HRMS technique was used to determine the concentration of dioxins through flue gas during heating of coal. Three results were obtained. First, total toxic equivalents at each stationary emission source were in the range of 3.9-30.0 pg x m(-3) (at WHO-TEQ) for dioxins which was lower than other thermal processes such as municipal solid waste incineration. Second, higher chlorinated PCDD/Fs were the dominant congeners. Third, emissions of dioxins were dependent on coking pattern. Stamping coking and higher coking chamber may lead to lower emission.

  18. Cross sectional study on lung function of coke oven workers: a lung function surveillance system from 1978 to 1990

    PubMed Central

    Wu, J; Kreis, I; Griffiths, D; Darling, C

    2002-01-01

    Aims: To determine the association between lung function of coke oven workers and exposure to coke oven emissions. Methods: Lung function data and detailed work histories for workers in recovery coke ovens of a steelworks were extracted from a lung function surveillance system. Multiple regressions were employed to determine significant predictors for lung function indices. The first sets of lung function tests for 613 new starters were pooled to assess the selection bias. The last sets of lung function tests for 834 subjects with one or more year of coke oven history were pooled to assess determinants of lung function. Results: Selection bias associated with the recruitment process was not observed among the exposure groups. For subjects with a history of one or more years of coke oven work, each year of working in the most exposed "operation" position was associated with reductions in FEV1 of around 9 ml (p = 0.006, 95% CI: 3 ml to 16 ml) and in FVC of around 12 ml (p = 0.002, 95% CI: 4 ml to 19 ml). Negative effects of smoking on lung function were also observed. Conclusions: Exposure to coke oven emissions was found to be associated with lower FEV1 and FVC. Effects of work exposure on lung function are similar to those found in other studies. PMID:12468747

  19. Recycling of rubber tires in electric arc furnace steelmaking: simultaneous combustion of metallurgical coke and rubber tyres blends

    SciTech Connect

    Magdalena Zaharia; Veena Sahajwalla; Byong-Chul Kim; Rita Khanna; N. Saha-Chaudhury; Paul O'Kane; Jonathan Dicker; Catherine Skidmore; David Knights

    2009-05-15

    The present study investigates the effect of addition of waste rubber tires on the combustion behavior of its blends with coke for carbon injection in electric arc furnace steelmaking. Waste rubber tires were mixed in different proportions with metallurgical coke (MC) (10:90, 20:80, 30:70) for combustion and pyrolysis at 1473 K in a drop tube furnace (DTF) and thermogravimetric analyzer (TGA), respectively. Under experimental conditions most of the rubber blends indicated higher combustion efficiencies compared to those of the constituent coke. In the early stage of combustion the weight loss rate of the blends is much faster compared to that of the raw coke due to the higher volatile yield of rubber. The presence of rubber in the blends may have had an impact upon the structure during the release and combustion of their high volatile matter (VM) and hence increased char burnout. Measurements of micropore surface area and bulk density of the chars collected after combustion support the higher combustion efficiency of the blends in comparison to coke alone. The surface morphology of the 30% rubber blend revealed pores in the residual char that might be attributed to volatile evolution during high temperature reaction in oxygen atmosphere. Physical properties and VM appear to have a major effect upon the measured combustion efficiency of rubber blends. The study demonstrates that waste rubber tires can be successfully co-injected with metallurgical coke in electric arc furnace steelmaking process to provide additional energy from combustion. 44 refs., 11 figs., 2 tabs.

  20. Novel carbon-rich additives preparation by degradative solvent extraction of biomass wastes for coke-making.

    PubMed

    Zhu, Xianqing; Li, Xian; Xiao, Li; Zhang, Xiaoyong; Tong, Shan; Wu, Chao; Ashida, Ryuichi; Liu, Wenqiang; Miura, Kouichi; Yao, Hong

    2016-05-01

    In this work, two extracts (Soluble and Deposit) were produced by degradative solvent extraction of biomass wastes from 250 to 350°C. The feasibilities of using Soluble and Deposit as additives for coke-making were investigated for the first time. The Soluble and Deposit, having significantly higher carbon content, lower oxygen content and extremely lower ash content than raw biomasses. All Solubles and most of Deposits can melt completely at the temperature ranged from 80 to 120°C and 140 to 180°C, respectively. The additions of Soluble or Deposit into the coke-making coal significantly improved their thermoplastic properties with as high as 9°C increase of the plastic range. Furthermore, the addition of Deposit or Soluble also markedly enhanced the coke quality through increasing coke strength after reaction (CSR) and reducing coke reactivity index (CRI). Therefore, the Soluble and Deposit were proved to be good additives for coke-making. PMID:26871958

  1. Prediction of the quality of coke obtained from vacuum residues by using spectroscopy infrared FTIR-ART

    NASA Astrophysics Data System (ADS)

    León, A. Y.; Rodríguez, N. A.; Mejía, E.; Cabanzo, R.

    2016-02-01

    According to the trend of the heavy crudes and high demand of fuels, it is projected a considerable increase in the production of vacuum residues. With the purpose of taking advantage of these loads, the refineries have been improving conversion processes for the production of better quality distillates. However, as increasing the severity conditions and the species content of resins and asphaltenes high concentrations of coke are obtained. To provide an insight into the quality and cokes properties, in this study fifty (50) coke samples obtained from vacuum residues processed under conditions of thermal cracking and hydroconversion were selected. Each coke was analysed in detail with properties such as fixed carbon, volatile material, ash, and calorific value. Subsequently, a characterization methodology was developed to predict the properties of cokes, by using partial least squares regression, and infrared spectroscopy (FTIR-ATR) in the spectral range from 4000 to 500cm-1. The models obtained by chemometrics allowed to predict the quality of the coke produced from vacuum residues with reliable responses in short periods of time.

  2. Air pollution from a large steel factory: polycyclic aromatic hydrocarbon emissions from coke-oven batteries

    SciTech Connect

    Lorenzo Liberti; Michele Notarnicola; Roberto Primerano; Paolo Zannetti

    2006-03-15

    A systematic investigation of solid and gaseous atmospheric emissions from some coke-oven batteries of one of Europe's largest integrated steel factory (Taranto, Italy) has been carried out. These emissions, predominantly diffuse, originate from oven leakages, as well as from cyclic operations of coal loading and coke unloading. In air monitoring samples, polycyclic aromatic hydrocarbons (PAHs) were consistently detected at concentrations largely exceeding threshold limit values. By means of PAHs speciation profile and benzo-(a)pyrene (BaP) equivalent dispersion modeling from diffuse sources, the study indicated that serious health risks exist not only in working areas, but also in a densely populated residential district near the factory. 30 refs., 5 figs., 3 tabs.

  3. Optimization of photo-Fenton process of RO concentrated coking wastewater using response surface methodology.

    PubMed

    Huiqing, Zhang; Chunsong, Ye; Xian, Zhang; Fan, Yang; Jun, Yang; Wei, Zhou

    2012-01-01

    The objective of this study was aimed at investigating the removal of chemical oxygen demand (COD) from reverse osmosis (RO) concentrated coking wastewater by the photo-Fenton process. The optimum extraction conditions for the photo-Fenton process by Box-Behnken design (BBD) and response surface methodology (RSM) to establish a predictive polynomial quadratic model were discussed based on a single factor test. Optimized parameters validated by the analysis of variances (ANOVA) were found to be H(2)O(2) concentration of 345.2 mg/L, pH value of 4.1 and reaction time of 103.5 minutes under ultraviolet irradiation. The experimental results of the COD removal under the optimized conditions presented better agreement with the predicted values with deviation error of 3.2%. The results confirmed that RSM based on BBD was a suitable method to optimize the operating conditions of RO concentrated coking wastewater.

  4. Functionalization of Petroleum Coke-Derived Carbon for Synergistically Enhanced Capacitive Performance

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Li, Xuejin; Huang, Jufeng; Xing, Wei; Yan, Zifeng

    2016-03-01

    Petroleum coke is a valuable and potential source for clean energy storage if it could be modified legitimately and facilely. In the present study, porous carbon with high surface area and abundant oxygen-containing groups was prepared from petroleum coke by chemical activation and modification processes. The as-prepared carbon exhibits a high surface area (1129 m2 · g-1) and stable micrographic structure. It presents a high specific capacitance and excellent rate performance in KOH electrolyte. Even at an ultrahigh current density of 50 A · g-1, the specific capacitance of the prepared carbon can still reach up to an unprecedented value of 261 F · g-1 with a superhigh retention rate of 81 %. In addition, the energy density of this material in aqueous electrolyte can be as high as 13.9 Wh · kg-1. The high energy density and excellent rate performance ensure its prosperous application in high-power energy storage system.

  5. A mathematical model for the estimation of flue temperature in a coke oven

    SciTech Connect

    Choi, K.I.; Kim, S.Y.; Suo, J.S.; Hur, N.S.; Kang, I.S.; Lee, W.J.

    1997-12-31

    The coke plants at the Kwangyang works has adopted an Automatic Battery Control (ABC) system which consists of four main parts, battery heating control, underfiring heat and waste gas oxygen control, pushing and charging schedule and Autotherm-S that measures heating wall temperature during pushing. The measured heating wall temperature is used for calculating Mean Battery Temperature (MBT) which is average temperature of flues for a battery, but the Autotherm-S system can not provide the flue temperatures of an oven. This work attempted to develop mathematical models for the estimation of the flue temperature using the measured heating wall temperature and to examine fitness of the mathematical model for the coke plant operation by analysis of raw gas temperature at the stand pipe. Through this work it is possible to reflect heating wall temperature in calculating MBT for battery heating control without the interruption caused by a maintenance break.

  6. Study on CO2 gasification reactivity and physical characteristics of biomass, petroleum coke and coal chars.

    PubMed

    Huo, Wei; Zhou, Zhijie; Chen, Xueli; Dai, Zhenghua; Yu, Guangsuo

    2014-05-01

    Gasification reactivities of six different carbonaceous material chars with CO2 were determined by a Thermogravimetric Analyzer (TGA). Gasification reactivities of biomass chars are higher than those of coke and coal chars. In addition, physical structures and chemical components of these chars were systematically tested. It is found that the crystalline structure is an important factor to evaluate gasification reactivities of different chars and the crystalline structures of biomass chars are less order than those of coke and coal chars. Moreover, initial gasification rates of these chars were measured at high temperatures and with relatively large particle sizes. The method of calculating the effectiveness factor η was used to quantify the effect of pore diffusion on gasification. The results show that differences in pore diffusion effects among gasification with various chars are prominent and can be attributed to different intrinsic gasification reactivities and physical characteristics of different chars. PMID:24642484

  7. Study on CO2 gasification reactivity and physical characteristics of biomass, petroleum coke and coal chars.

    PubMed

    Huo, Wei; Zhou, Zhijie; Chen, Xueli; Dai, Zhenghua; Yu, Guangsuo

    2014-05-01

    Gasification reactivities of six different carbonaceous material chars with CO2 were determined by a Thermogravimetric Analyzer (TGA). Gasification reactivities of biomass chars are higher than those of coke and coal chars. In addition, physical structures and chemical components of these chars were systematically tested. It is found that the crystalline structure is an important factor to evaluate gasification reactivities of different chars and the crystalline structures of biomass chars are less order than those of coke and coal chars. Moreover, initial gasification rates of these chars were measured at high temperatures and with relatively large particle sizes. The method of calculating the effectiveness factor η was used to quantify the effect of pore diffusion on gasification. The results show that differences in pore diffusion effects among gasification with various chars are prominent and can be attributed to different intrinsic gasification reactivities and physical characteristics of different chars.

  8. The occurrence and fate of phenolic compounds in a coking wastewater treatment plant.

    PubMed

    Zhang, Wanhui; Wei, Chaohai; Feng, Chunhua; Ren, Yuan; Hu, Yun; Yan, Bo; Wu, Chaofei

    2013-01-01

    The occurrence of 14 phenolic compounds (PCs) was assessed in the raw, treated wastewater, dewatered sludge and gas samples from a coking wastewater treatment plant (WWTP) in China. It was found that 3-cresol was the dominant compound in the raw coking wastewater with a concentration of 183 mg L(-1), and that chlorophenols and nitrophenols were in the level of μg L(-1). Phenol was the dominant compound in the gas samples, while 2,4,6-trichlorophenol predominated in the dewatered sludge sample. The anaerobic and aerobic tanks played key roles in the elimination of chlorophenols and phenols, respectively. Analysis of daily mass flows of PCs in WWTP showed that 89-98% of phenols and 83-89% of nitrophenols were biodegraded, and that 44-69% of chlorophenols were adsorbed to sludge, indicating that the fate of PCs was highly influenced by their biodegradability and physical-chemical property. PMID:23863439

  9. High-strength insulating castable used behind coke-oven buckstays and jambs

    SciTech Connect

    Sich, G. Jr. ); Gladfelder, L.A. . Iron and Steel Monolithics); Cox, F.S.

    1993-10-01

    Conventional pumpable, clay-based grouting materials used behind the armor/jamb systems were inadequate. Open brick joints caused reduced end flue temperatures which resulted in improper coking with reduced yields and coke quality, as well as difficulties in controlling door emissions. Based on criteria established by an Armco task force, a unique commercial product supplied by North American Refractories was located that had the potential of meeting these requirements. A laboratory trial casting program was undertaken by Armco that verified the potential of this castable refractory. Development programs by Armco and North American Refractories were established to optimize the properties of the refractory. Actual oven repairs have demonstrated that the castable developed meets all requirements for successful performance. These include: absence of castable failures; nonspalling; repairable through ceramic welding; and acceptable flowability.

  10. Electrochemical and structural studies of petroleum coke in carbonate-based electrolytes

    SciTech Connect

    Jean, M.; Desnoyer, C.; Tranchant, A.; Messina, R.

    1995-07-01

    The behavior of petroleum coke (Conoco) was examined in a propylene carbonate/ethylene carbonate/dimethylcarbonate (1/1/3 volume) mixture with LiCF{sub 3}SO{sub 3} as the lithium salt. The thermodynamics and the kinetics of the lithium intercalation/deintercalation processes in the carbon matrix were investigated by galvanostatic curves and by cyclic voltammetry. X-ray measurements were also done.

  11. Tried and True: Using Diet Coke and Mentos to Teach Scientific Inquiry

    ERIC Educational Resources Information Center

    Murray, Tracey Arnold

    2011-01-01

    Adding mint Mentos candy to a two-liter bottle of Diet Coke produces a fountain of soda foam that can reach 3 m high. A demonstration such as this can get a "Wow" out of most audiences, usually followed by a "Do it again!"--but can it be used to teach anything? The answer is a definite "Yes," and what follows is a guided inquiry activity that…

  12. Lymphohaematopoietic system cancer incidence in an urban area near a coke oven plant: an ecological investigation

    PubMed Central

    Parodi, S; Vercelli, M; Stella, A; Stagnaro, E; Valerio, F

    2003-01-01

    Aims: To evaluate the incidence risk of lymphohaematopoietic cancers for the 1986–94 period in Cornigliano, a district of Genoa (Italy), where a coke oven is located a few hundred metres from the residential area. Methods: The whole of Genoa and one of its 25 districts (Rivarolo) were selected as controls. The trend of risk around the coke oven was evaluated via Stone's method, while the geographic pattern of such risks across the Cornigliano district was evaluated by computing full Bayes estimates of standardised incidence ratio (FBE-SIR). Results: In males, elevated relative risks (RR) were observed for all lymphohaematopoietic cancers (RR 1.7 v Rivarolo and 1.6 v Genoa), for NHL (RR 2.4 v Rivarolo and 1.7 v Genoa), and for leukaemia (RR 2.4 v Rivarolo and 1.9 v Genoa). In females, statistically non-significant RR were observed. In males no excess of risk was found close to the coke oven. In females, a rising risk for NHL was observed approaching the plant, although statistical significance was not reached, while the risk for leukaemia was not evaluable due to the small number of cases. Analysis of the geographic pattern of risk suggested the presence of a cluster of NHL in both sexes in the eastern part of the district, where a foundry had been operational until the early 1980s. A cluster of leukaemia cases was observed in males in a northern part of the area, where no major sources of benzene seemed to be present. Conclusions: The estimated risks seem to be slightly or not at all related to the distance from the coke oven. The statistically significant higher risks observed in males for NHL and leukaemia, and the clusters of leukaemia in males and of NHL in both sexes deserve further investigations in order to trace the exposures associated with such risks. PMID:12598665

  13. The aquatic toxicity and chemical forms of coke plant effluent cyanide -- Implications for discharge limits

    SciTech Connect

    Garibay, R.; Rupnow, M.; Godwin-Saad, E.; Hall, S.

    1995-12-31

    Cyanide is present in treated cokemaking process waters at concentrations as high as 8.0 mg/L. In assessing options for managing the discharge of a treated effluent, the development and implementation of discharge limits for cyanide became a critical issue. A study was initiated to evaluate possible alternatives to cyanide permit limits at the US Steel Gary Works Facility. The objectives of the study were to: (1) evaluation the forms of cyanide present in coke plant effluent; (2) determine whether these forms of cyanide are toxic to selected aquatic organisms; (3) compare the aquatic toxicity of various chemical forms of cyanide; (4) identify if the receiving water modifies cyanide bioavailability; and (5) confirm, with respect to water quality-based effluent limits, an appropriate analytical method for monitoring cyanide in a coke plant effluent. The results of aquatic toxicity tests and corresponding analytical data are presented. Toxicity tests were conducted with various pure chemical forms of cyanide as well as whole coke plant effluent (generated from a pilot-scale treatment system). Test species included the fathead minnow (Pimephales promelas), rainbow trout (Oncorhynchus mykiss), Ceriodaphnia dubia (C. dubia) and Daphnia magna (D. magna). Analytical measurements for cyanide included total, weak acid dissociable, diffusible cyanide and selected metal species of cyanide. The findings presented by the paper are relevant with respect to the application of cyanide water quality criteria for a coke plant effluent discharge, the translation of these water quality-based effluent limits to permit limits, and methods for compliance monitoring for cyanide.

  14. [Enhanced bioremediation of coking plant soils contaminated with polycyclic aromatic hydrocarbons].

    PubMed

    Lu, Xiao-Xia; Li, Xiu-Li; Ma, Jie; Wu, Shu-Ke; Chen, Chao-Qi; Wu, Wei

    2011-03-01

    Soil samples contaminated with polycyclic aromatic hydrocarbons (PAHs) were collected from Beijing Coking Plant. The purposes were to isolate PAHs degrading bacteria from the soils, determine their appropriate living condition, enrich them and apply them in the enhanced bioremediation of the contaminated soils. Using each of the 16 USEPA priority PAHs as the sole carbon source, PAHs degrading bacteria were isolated using the method of plate streaking and identified by genetic analysis. In total seven species of PAHs degrading bacteria were obtained. When mixed, these bacteria could degrade the 16 (2-6 cyclic) PAHs studied at appropriate concentrations. In the liquid medium, when the total concentration of the 16 PAHs (sigma PAH16) was 17 microg/mL, single bacteria could grow well and degrade the PAHs. However, when sigma PAH16 was 166 microg/mL, the growth and activity of either single PAHs degrading bacteria or a mixture of the seven PAHs degrading bacteria were inhibited. Aiming at the contaminated soils from Beijing coking plant, five treatments were performed, i.e., control (C), addition of nutrient (N), addition of nutrient and PAHs degrading bacteria (N + B), addition of nutrient and surfactant (N +S), addition of nutrient and PAHs degrading bacteria and surfactant (N + B + S). After five weeks of experiment, compared to the C treatment, the mean removal rate of the 16 PAHs in the N + B treatment was increased 32%, and the mean removal rate of the 16 PAHs in the N + B + S treatment was increased 46% (the mean removal rate of the 10 4-6 cyclic PAHs was increased 52%). The addition of PAHs degrading bacteria and surfactant could significantly enhance the degradation of PAHs in the soils. This study provides evidence for the enhanced bioremediation of PAHs contaminated soil for Beijing coking plant and other coking plants.

  15. Assessment of the effectiveness of respirator usage in coke oven workers.

    PubMed

    Wu, Ming-Tsang

    2002-01-01

    This program protection factor study was conducted to evaluate the effectiveness of filter cartridge respirators while coke oven workers performed their normal work. Benzene soluble fraction (BSF) of total particulate concentrations was measured inside and outside the respirators of nine coke oven workers who worked on the top of the battery of one older coke oven plant and who reported regular use of respirators. The measurements were taken for 3 consecutive days. Excluding two undetectable measurements inside the respirator, it was found that the outside respirator BSF concentrations (25 sets) ranged from 87 to 807 microg/m3, whereas the inside respirator BSF concentrations ranged from 16 to 509 microg/m3. A program protection factor (PPF) for each set of observations was calculated as the ratio of outside to inside air BSF concentrations. The mean PPF was 2.5 with a range of 1.1 to 9.6, and 12 of the 25 measurements (48%) were below 2.0. Although the workers claimed they regularly wore their respirators, the wide range and the low PPF findings suggest that worker behavior and respirator fit may influence the level of protection provided by the respirator.

  16. Modeling and Simulation of Petroleum Coke Calcination in Pot Calciner Using Two-Fluid Model

    NASA Astrophysics Data System (ADS)

    Xiao, Jin; Huang, Jindi; Zhong, Qifan; Zhang, Hongliang; Li, Jie

    2016-02-01

    The aim of this work was to establish a mathematical model for the analysis of calcining process of petroleum coke in a 24-pot calciner via computational fluid dynamics (CFD) numerical simulation method. The model can be divided into two main parts (1) heterogeneous reacting flow of petroleum coke calcination in the pot was simulated using a two-fluid model approach where the gas and solid phase are treated as a continuous phases; and (2) the standard turbulence equations combined with the finite rate/eddy-dissipation combustion model and discrete ordinates model were solved for the turbulent gas reacting flow in the flue. The model of the calcining process was implemented in ANSYS Fluent 15.0 (commercial CFD software) and validated by industrial production data. After the validation research, the model has been applied to inspect the distribution features of the temperature field in the furnace, the concentration field of residual moisture and volatiles in the petroleum coke, and the vector velocity field of gas and solid phases. This research can provide a theoretical basis for optimizing the structure and improving the automatic control level of a pot calciner.

  17. Biomonitoring of polycyclic aromatic hydrocarbons from coke oven emissions and reproductive toxicity in nonsmoking workers.

    PubMed

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Lin, Wen-Yi; Wu, Ming-Tsang; Taylor, Steven; Chang-Chien, Guo-Ping; Zhou, Guodong; Diawara, Norou

    2013-01-15

    The objective of the cross-sectional study was to assess whether exposure to polycyclic aromatic hydrocarbons (PAHs) from coke oven emissions contributed to alteration of semen quality and sperm DNA integrity in nonsmoking workers. Nonsmoking coke oven workers from a steel plant in Taiwan served as the exposure groups (topside-oven workers for the high exposure group and side-oven workers for the low exposure group), and administrators and security personnel in the plant served as the control. An exposure assessment was conducted to determine both particulate and gaseous phase of PAH levels and urinary 1-hydroxypyrene (1-OHP) levels. Semen quality was analyzed according to WHO guidelines. DNA fragmentation and bulky DNA adducts were measured to assess sperm DNA integrity. There was no significant difference in sperm concentrations, vitality, and DNA fragmentation between the exposed group and the control. The high exposure group experienced significantly lower percentages of normal morphology as compared with the control (p=0.0001). Bulky DNA adducts were detected in the exposed group that were significant higher than the control (p=0.04). Exposure to PAHs from coke-oven emissions could contribute to increased levels of bulky DNA adducts in sperm.

  18. Biological removal of antiandrogenic activity in gray wastewater and coking wastewater by membrane reactor process.

    PubMed

    Ma, Dehua; Chen, Lujun; Liu, Cong; Bao, Chenjun; Liu, Rui

    2015-07-01

    A recombinant human androgen receptor yeast assay was applied to investigate the occurrence of antiandrogens as well as the mechanism for their removal during gray wastewater and coking wastewater treatment. The membrane reactor (MBR) system for gray wastewater treatment could remove 88.0% of antiandrogenic activity exerted by weakly polar extracts and 97.3% of that by moderately strong polar extracts, but only 32.5% of that contributed by strong polar extracts. Biodegradation by microorganisms in the MBR contributed to 95.9% of the total removal. After the treatment, the concentration of antiandrogenic activity in the effluent was still 1.05 μg flutamide equivalence (FEQ)/L, 36.2% of which was due to strong polar extracts. In the anaerobic reactor, anoxic reactor, and membrane reactor system for coking wastewater treatment, the antiandrogenic activity of raw coking wastewater was 78.6 mg FEQ/L, and the effluent of the treatment system had only 0.34 mg FEQ/L. The antiandrogenic activity mainly existed in the medium strong polar and strong polar extracts. Biodegradation by microorganisms contributed to at least 89.2% of the total antiandrogenic activity removal in the system. Biodegradation was the main removal mechanism of antiandrogenic activity in both the wastewater treatment systems.

  19. Semi-Coke-Supported Mixed Metal Oxides for Hydrogen Sulfide Removal at High Temperatures.

    PubMed

    Jie, Mi; Yongyan, Zhang; Yongsheng, Zhu; Ting, Guo; Huiling, Fan

    2012-07-01

    To improve the desulfurization efficiency of sorbents at low cost, modified semi-coke was used as the substrate for mixed metal oxides (ZFM; oxides of zinc [Zn], iron [Fe], and manganese [Mn]) in hot gas desulfurization. Performance of the prepared ZFM/modified semi-coke (MS) sorbents were evaluated in a fixed-bed reactor in the temperature range 400-550°C. Results showed that the molar ratio of Mn to Zn, effect of the substrate, the calcination temperature, and the sulfidation temperature influenced the performance of the sorbents. Optimum conditions for the preparation of the ZFM/MS sorbents were molar ratio of Mn(NO(3))(2)·6H(2)O, Zn(NO(3))(2), and Fe(NO(3))(3), 0.6:1:2; mass ratio of ZFM0.6 to modified semi-coke support, 1:1; and calcination temperature, 600°C. The ZFM0.6/MS sorbent thus prepared exhibited the best sorption sulfur capacity of 27.46% at 450°C.

  20. Performance and microbial community dynamics in bioaugmented aerated filter reactor treating with coking wastewater.

    PubMed

    Shi, Shengnan; Qu, Yuanyuan; Ma, Qiao; Zhang, XuWang; Zhou, Jiti; Ma, Fang

    2015-08-01

    In this study, zeolite-biological aerated filters (Z-BAFs) bioaugmented by free and magnetically immobilized cells of Arthrobacter sp. W1 were designed to treat coking wastewater containing high concentrations of phenol and naphthalene along with carbazole (CA), dibenzofuran (DBF), and dibenzothiophene (DBT). All treatments were carried out for a period of 100days and the data indicated that bioaugmented Z-BAFs with magnetically immobilized cells was most efficient for treating coking wastewaters. Illumina high-throughput sequencing was used to reveal the microbial community structures of Z-BAFs. Both bioaugmentation treatments could accelerate the shift of the bacterial community structures. The introduced strain W1 remained dominant in the bioaugmented Z-BAFs with magnetically immobilized cells, indicating both strain W1 and the indigenous degrading bacteria played the most significant role in the treatment. Overall, bioaugmented Z-BAF with magnetically immobilized cells can be used to efficiently degrade phenol, naphthalene, CA, DBF, and DBT in coking wastewater. PMID:25935396

  1. The effect of treatment stages on the coking wastewater hazardous compounds and their toxicity.

    PubMed

    Wei, Xiao-xue; Zhang, Zi-yang; Fan, Qing-lan; Yuan, Xiao-ying; Guo, Dong-sheng

    2012-11-15

    This study investigated the change of hazardous materials in coking wastewater at different treatment stages (anaerobic, anaerobic/aerobic, anaerobic/aerobic/photo degradation, anaerobic/aerobic/ozone oxidation treatment) and the effects of them on the development of maize embryos and the activity of amylase and protease in maize seeds. Moreover the interaction of refractory organic matters in the wastewater at different treatment stages with amylase and protease also were determined in vitro. The results show that the biodegradable and the refractory organic compounds in the wastewater both can affect maize embryo development (germination inhibition rate is 19.3% for biodegradable organic compounds). As the treatment stage preceding, the inhibition effect of coking wastewater on the development of the maize embryo (for germination inhibition rates change from 49.3% to 24.6%) and on enzymatic activity (inhibition rates change from 63.9% to 22.4% for amylase) decreases gradually, but the photo-degradation treatment to anaerobic/aerobic effluent can increase its toxicity. The changes in the ability of the refractory organic compounds to bind with enzyme proteins, combined with the analysis of the organic components by GC/MS, show that in the process of coking wastewater treatment no new toxic chemicals were produced. PMID:23022415

  2. Performance and microbial community dynamics in bioaugmented aerated filter reactor treating with coking wastewater.

    PubMed

    Shi, Shengnan; Qu, Yuanyuan; Ma, Qiao; Zhang, XuWang; Zhou, Jiti; Ma, Fang

    2015-08-01

    In this study, zeolite-biological aerated filters (Z-BAFs) bioaugmented by free and magnetically immobilized cells of Arthrobacter sp. W1 were designed to treat coking wastewater containing high concentrations of phenol and naphthalene along with carbazole (CA), dibenzofuran (DBF), and dibenzothiophene (DBT). All treatments were carried out for a period of 100days and the data indicated that bioaugmented Z-BAFs with magnetically immobilized cells was most efficient for treating coking wastewaters. Illumina high-throughput sequencing was used to reveal the microbial community structures of Z-BAFs. Both bioaugmentation treatments could accelerate the shift of the bacterial community structures. The introduced strain W1 remained dominant in the bioaugmented Z-BAFs with magnetically immobilized cells, indicating both strain W1 and the indigenous degrading bacteria played the most significant role in the treatment. Overall, bioaugmented Z-BAF with magnetically immobilized cells can be used to efficiently degrade phenol, naphthalene, CA, DBF, and DBT in coking wastewater.

  3. Eight years of operating experience of the world's largest coke oven battery at Krupp Mannesmann Steelworks

    SciTech Connect

    Beckmann, R.; Meyer, G.

    1993-01-01

    The world's largest coke oven battery at Huettenwerke Krupp Mannesmann has been in operation since December, 1984. The battery produces 1.1 million metric tons of coke per year and is comprised of 70 high capacity ovens with an effective volume of 70 m[sup 3]. Whereas the oven dimensions had nearly been built before, the chamber width of 550 mm was an innovative technological step. The CONTROLPRESS Bracing System was used to ensure the permanent stability of the refractory brickwork. All machines, including quenching car, are one-spot machines and are fully automatic. The rated capacity was reached after only eight weeks. In the following years, the average output was always between 99 and 104 % of rated capacity. Also with regard to meeting stringent environmental regulations, similar success was achieved. The good general condition of the battery and machines after eight years operating time at full capacity can largely be attributed to the high degree of preventive maintenance, the regular inspection of the bracing system by Krupp Koppers as well as the good qualification of the coking plant workforce by regular training. The widening of the oven chambers has proven to be the right decision. All difficulties that may result from the increase in oven length and height are compensated by the wider chamber. On the basis of the experience, the wider high capacity ovens can be expected to have the same service life as smaller ovens.

  4. 46 CFR 148.295 - Petroleum coke, calcined or uncalcined, at 55 °C (131 °F) or above.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Petroleum coke, calcined or uncalcined, at 55 °C (131 Â... Requirements for Certain Materials § 148.295 Petroleum coke, calcined or uncalcined, at 55 °C (131 °F) or above. (a) This part does not apply to shipments of petroleum coke, calcined or uncalcined, on any...

  5. 46 CFR 148.295 - Petroleum coke, calcined or uncalcined, at 55 °C (131 °F) or above.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Petroleum coke, calcined or uncalcined, at 55 °C (131 Â... Requirements for Certain Materials § 148.295 Petroleum coke, calcined or uncalcined, at 55 °C (131 °F) or above. (a) This part does not apply to shipments of petroleum coke, calcined or uncalcined, on any...

  6. 46 CFR 148.295 - Petroleum coke, calcined or uncalcined, at 55 °C (131 °F) or above.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Petroleum coke, calcined or uncalcined, at 55 °C (131 Â... Requirements for Certain Materials § 148.295 Petroleum coke, calcined or uncalcined, at 55 °C (131 °F) or above. (a) This part does not apply to shipments of petroleum coke, calcined or uncalcined, on any...

  7. 46 CFR 148.295 - Petroleum coke, calcined or uncalcined, at 55 °C (131 °F) or above.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Petroleum coke, calcined or uncalcined, at 55 °C (131 Â... Requirements for Certain Materials § 148.295 Petroleum coke, calcined or uncalcined, at 55 °C (131 °F) or above. (a) This part does not apply to shipments of petroleum coke, calcined or uncalcined, on any...

  8. Mechanical strength of extrusion briquettes (BREX) for blast-furnace and ferroalloy production: II. Effect of the method of grinding coke breeze on the strength of extrusion briquettes

    NASA Astrophysics Data System (ADS)

    Bizhanov, A. M.; Kurunov, I. F.; Dashevskii, V. Ya.

    2015-05-01

    The influence of the method of grinding coke breeze on the strength and the behavior of extrusion briquette (BREX) during static loading is studied. It is found that the size, the shape, and the surface relief of coke breeze particles affect the character of BREX fracture. The application of a shearing extruder for preliminary refinement of coke breeze can result in viscoelastic fracture of BREX due to an increase in its impact toughness.

  9. [Aerosol size distribution of organic carbon and elemental carbon on the top of coke oven and in the plant area].

    PubMed

    Liu, Xiao-Feng; Peng, Lin; Bai, Hui-Ling; Mu, Ling; Song, Chong-Fang

    2013-08-01

    In order to investigate the characteristic of organic carbon (OC) and elemental carbon (EC) in particles on the top of coke oven and in the plant area, the particle matter samples of five size fraction including < or = 1.4 microm, 1.4-2.1 microm, 2.1-4.2 microm, 4.2-10.2 microm and > or = 10.2 microm were collected using Staplex234 cascade impactor, and OC and EC were analyzed by Elementar Analysensysteme GmbH vario EL cube. The mass concentrations of OC and EC associated with TSP on the top of coke oven were 291.6 microg x m(-3) and 255.1 microg x m(-3), while those in the plant area were 377.8 microg x m(-3) and 151.7 microg x m(-3). The mass concentration of secondary organic carbon (SOC) in particles with size of < or = 1.4 microm was 147.3 microg x m(-3) in the plant area. The value of OC/EC in particles less than 2.1 microm was 1.3 on the top of coke oven. The mass concentration of EC in TSP in the plant area was lower than that on the top of coke oven, while the mass concentration of OC in the plant area was significantly higher than that on the top of coke oven. The mass concentrations of OC and EC associated with particles less than 10.2 microm in the plant area were far higher than those in the atmosphere of area where the coke plant is located. The OC and EC in particles, which were collected both on the top of coke oven and in the plant area, were mainly enriched in fine particles. The size distribution of OC showed a clear distinction between the coke oven top and the plant area, which revealed that OC in the plant area was more preferably enriched in fine particles than that on the top of coke oven, and the same size distribution of EC was found on the top of coke oven and in the plant area. In the plant area, the mass concentration of SOC and the contribution of SOC to OC increased with the decreasing diameter in particles with diameter of less than 10.2 microm.

  10. An example of alkalization of SiO{sub 2} in a blast furnace coke

    SciTech Connect

    S.S. Gornostayev; P.A. Tanskanen; E.-P. Heikkinen; O. Kerkkonen; J.J. Haerkki

    2007-09-15

    Scanning electron microscopy and an electron-microprobe analysis of a sample of blast furnace (BF) coke have revealed alkalization (5.64 wt % Na{sub 2}O + K{sub 2}O) and Al saturation (17.28 wt % Al{sub 2}O{sub 3}) of SiO{sub 2} by BF gases. The K/Na{sub at} value of 1.15 in the new phase (alteration zone) reflects close atomic proportions of the elements and suggests that the abilities to incorporate K and Na during the process are almost equal. This Al saturation and alkalization of SiO{sub 2} indicates an active role for Al along with alkali metals in BF gases. The average width of the altered area in the SiO{sub 2} grain is about 10 m, which suggests that SiO{sub 2} particles of that size can be transformed fully to the new phase, provided that at least one of their faces is open to an external pore (surface of the coke) or internal pore with circulating BF gases. The grains that exceed 10 {mu}m can only be partly altered, which means that smaller SiO{sub 2} grains can incorporate more alkali metals and Al (during their transformation to the Al and alkali-bearing phase) than a similar volume of SiO{sub 2} concentrated in larger grains. Thermodynamic calculations for 100 g{sub solid}/100 g{sub gas} and temperatures 800-1800{sup o}C have shown that the BF gases have very little or no effect on the alkalization of SiO{sub 2}. If the alteration process described in this paper proves to be a generalized phenomenon in blast furnace cokes, then the addition of fine-grained quartz to the surface of the coke before charging a BF can be useful for removing of some of the Al and alkali from the BF gases and reduce coke degradation by alkalis, or at least improve its properties until the temperature reaches approximately 2000{sup o}C. 22 refs., 5 figs., 1 tab.

  11. Influence of electrolytes (TEABF4 and TEMABF4) on electrochemical performance of graphite oxide derived from needle coke.

    PubMed

    Yang, Sunhye; Kim, Ick-Jun; Choi, In-Sik; Bae, Mi-Kyeong; Kim, Hyun-Soo

    2013-05-01

    The structure of needle coke was changed to graphite oxide structure after oxidation treatment with 70 wt.% of nitric acid and sodium chlorate (NaClO3), and the inter-layer distance of the oxidized needle coke was expanded to 6.9 angstroms. The first charge profile of the oxidized needle coke-cell with 1.2 M TEMABF4/acetonitrile solution displayed that the intercalation of electrolyte ions into the inter-layer occurred at 1.0 V, which value is lower than 1.3 V of the oxidized needle coke-cell with 1.2 M TEABF4/acetonitrile solution. After first charge/discharge, the cell using TEMABF4 electrolyte exhibited smaller electrode resistance of 0.05 omega, and larger specific volume capacitance of 25.5 F/ml at the two-electrode system in the potential range 0-2.5 V than those of the cell using TEABF4 electrolyte. Compared to the TEABF4 electrolyte, better electrochemical performance of the TEMABF4 electrolyte in the oxidized needle coke may be caused by the smaller cation (TEMA+) size and better ion mobility in the nanopores between inter-layers.

  12. KRESS INDIRECT DRY COOLING SYSTEM, BETHLEHEM STEEL'S COKE PLANT DEMONSTRATION AT SPARROWS POINT, MARYLAND - VOLUME 1. TECHNICAL REPORT AND APPENDICES A-F

    EPA Science Inventory

    The report evaluates the Kress Indirect Dry Cooling (KIDC) process, an innovative system for handling and cooling coke produced from a slot-type by-product coke oven battery. he report is based on the test work and demonstration of the system at Bethlehem Steel Corporation's Spar...

  13. Genetic damage induced by organic extract of coke oven emissions on human bronchial epithelial cells.

    PubMed

    Zhai, Qingfeng; Duan, Huawei; Wang, Yadong; Huang, Chuanfeng; Niu, Yong; Dai, Yufei; Bin, Ping; Liu, Qingjun; Chen, Wen; Ma, Junxiang; Zheng, Yuxin

    2012-08-01

    Coke oven emissions are known as human carcinogen, which is a complex mixture of polycyclic aromatic hydrocarbon. In this study, we aimed to clarify the mechanism of action of coke oven emissions induced carcinogenesis and to identify biomarkers of early biological effects in a human bronchial epithelial cell line with CYP1A1 activity (HBE-CYP1A1). Particulate matter was collected in the oven area on glass filter, extracted and analyzed by GC/MS. DNA breaks and oxidative damage were evaluated by alkaline and endonucleases (FPG, hOGG1 and ENDO III)-modified comet assays. Cytotoxicity and chromosomal damage were assessed by the cytokinesis-block micronucleus cytome (CBMN-Cyt) assay. The cells were treated with organic extract of coke oven emissions (OE-COE) representing 5, 10, 20, 40μg/mL extract for 24h. We found that there was a dose-effect relationship between the OE-COE and the direct DNA damage presented by tail length, tail intensity and Olive tail moment in the comet assay. The presence of lesion-specific endonucleases in the assays increased DNA migration after OE-COE treatment when compared to those without enzymes, which indicated that OE-COE produced oxidative damage at the level of pyrimidine and purine bases. The dose-dependent increase of micronuclei, nucleoplasmic bridges and nuclear buds in exposed cells was significant, indicating chromosomal and genomic damage induced by OE-COE. Based on the cytotoxic biomarkers in CBMN-Cyt assay, OE-COE may inhibit nuclear division, interfere with apoptosis, or induce cell necrosis. This study indicates that OE-COE exposure can induce DNA breaks/oxidative damage and genomic instability in HBE-CYP1A1 cells. The FPG-comet assay appears more specific for detecting oxidative DNA damage induced by complex mixtures of genotoxic substances.

  14. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes.

    PubMed

    Zhu, Xiuping; Ni, Jinren; Lai, Peng

    2009-09-01

    Electrochemical oxidation is a promising technology to treatment of bio-refractory wastewater. Coking wastewater contains high concentration of refractory and toxic compounds and the water quality usually cannot meet the discharge standards after conventional biological treatment processes. This paper initially investigated the electrochemical oxidation using boron-doped diamond (BDD) anode for advanced treatment of coking wastewater. Under the experimental conditions (current density 20-60mAcm(-2), pH 3-11, and temperature 20-60 degrees C) using BDD anode, complete mineralization of organic pollutants was almost achieved, and surplus ammonia-nitrogen (NH(3)-N) was further removed thoroughly when pH was not adjusted or at alkaline value. Moreover, the TOC and NH(3)-N removal rates in BDD anode cell were much greater than those in other common anode systems such as SnO(2) and PbO(2) anodes cells. Given the same target to meet the National Discharge Standard of China, the energy consumption of 64kWhkgCOD(-1) observed in BDD anode system was only about 60% as much as those observed in SnO(2) and PbO(2) anode systems. Further investigation revealed that, in BDD anode cell, organic pollutants were mainly degraded by reaction with free hydroxyl radicals and electrogenerated oxidants (S(2)O(8)(2-), H(2)O(2), and other oxidants) played a less important role, while direct electrochemical oxidation and indirect electrochemical oxidation mediated by active chlorine can be negligible. These results showed great potential of BDD anode system in engineering application as a final treatment of coking wastewater.

  15. Effluent characteristics of advanced treatment for biotreated coking wastewater by electrochemical technology using BDD anodes.

    PubMed

    Wang, Chunrong; Zhang, Mengru; Liu, Wei; Ye, Min; Su, Fujin

    2015-05-01

    Effluent of biotreated coking wastewater comprises hundreds of organic and inorganic pollutants and has the characteristics of high toxicity and difficult biodegradation; thus, its chemical oxygen demand cannot meet drainage standards in China. A boron-doped diamond anode was selected for advanced treatment of biotreated coking wastewater, and considering the efficiency of the removal of total organic carbon and energy consumption, optimal conditions were obtained as current density of 75 mA cm(-2), electrolysis time of 1.5 h, and an electrode gap of 1.0 cm in an orthogonal test. Effluent characteristics were investigated at different electrolysis times. The ratio of the 5-day biochemical oxygen demand (BOD5) to the chemical oxygen demand increased from an initial value of 0.05 to 0.65 at 90 min. Fluorescence spectra were used to evaluate the evolution of refractory organics. Two fluorescence peaks for raw wastewater, corresponding to an aromatic protein-like substance II and humic acid-like substance, weakened at 30 and at 90 min, only the former was detected. The specific oxygen uptake rate was used to assess effluent toxicity, and an obvious inhibition effect was found at 15 min; then, it was significantly faded at 30 and 45 min. The BOD5/NO3 (-)-N ratio increased from an initial value of 0.48 to 1.25 at 45 min and then gradually dropped to 0.69 at 90 min. According to the above effluent characteristics, it is strongly suggested that electrochemical technology using boron-doped diamond anodes is combined with biological denitrification technology for the advanced treatment of biotreated coking wastewater.

  16. Effluent characteristics of advanced treatment for biotreated coking wastewater by electrochemical technology using BDD anodes.

    PubMed

    Wang, Chunrong; Zhang, Mengru; Liu, Wei; Ye, Min; Su, Fujin

    2015-05-01

    Effluent of biotreated coking wastewater comprises hundreds of organic and inorganic pollutants and has the characteristics of high toxicity and difficult biodegradation; thus, its chemical oxygen demand cannot meet drainage standards in China. A boron-doped diamond anode was selected for advanced treatment of biotreated coking wastewater, and considering the efficiency of the removal of total organic carbon and energy consumption, optimal conditions were obtained as current density of 75 mA cm(-2), electrolysis time of 1.5 h, and an electrode gap of 1.0 cm in an orthogonal test. Effluent characteristics were investigated at different electrolysis times. The ratio of the 5-day biochemical oxygen demand (BOD5) to the chemical oxygen demand increased from an initial value of 0.05 to 0.65 at 90 min. Fluorescence spectra were used to evaluate the evolution of refractory organics. Two fluorescence peaks for raw wastewater, corresponding to an aromatic protein-like substance II and humic acid-like substance, weakened at 30 and at 90 min, only the former was detected. The specific oxygen uptake rate was used to assess effluent toxicity, and an obvious inhibition effect was found at 15 min; then, it was significantly faded at 30 and 45 min. The BOD5/NO3 (-)-N ratio increased from an initial value of 0.48 to 1.25 at 45 min and then gradually dropped to 0.69 at 90 min. According to the above effluent characteristics, it is strongly suggested that electrochemical technology using boron-doped diamond anodes is combined with biological denitrification technology for the advanced treatment of biotreated coking wastewater. PMID:25432427

  17. Organic extracts of coke oven emissions can induce genetic damage in metabolically competent HepG2 cells.

    PubMed

    Xin, Lili; Wang, Jianshu; Guo, Sifan; Wu, Yanhu; Li, Xiaohai; Deng, Huaxin; Kuang, Dan; Xiao, Wei; Wu, Tangchun; Guo, Huan

    2014-05-01

    Coke oven emissions (COEs) containing various carcinogenic polycyclic aromatic hydrocarbons (PAHs) represent the coal-burning pollution in the air. Organic pollutants in the aerosol and particulate matter of COEs were collected from the bottom, side, and top of a coke oven. The Comet assay and cytokinesis-block micronucleus cytome assay were conducted to analyze the genetic damage of extractable organic matter (EOM) of COEs on HepG2 cells. All the three EOMs could induce significant dose-dependent increases in Olive tail moment, tail DNA, and tail length, micronuclei, nucleoplasmic bridges, and nuclear buds frequencies, which were mostly positively correlated with the total PAHs concentration in each EOM. In conclusion, EOMs of COEs in the three typical working places of coke oven can induce DNA strand breaks and genomic instability in the metabolically competent HepG2 cells. The PAHs in EOMs may be important causative agents for the genotoxic effects of COEs.

  18. Health-hazard evaluation report HETA 85-441-1765, New Boston Coke Corporation, New Boston, Ohio

    SciTech Connect

    O'Malley, M.A.

    1986-12-01

    In response to a request from the Industrial Commission of Ohio, worker complaints of skin disease at the New Boston Coke Corporation, New Boston, Ohio were investigated. The request was based on seven reports of dermatitis thought to be associated with steam exposure during coke quenching. Quench water had a pH of 8.85 and contained phenol, ammonia, calcium-oxide, and suspended particulates (82% organic compounds); no irritant threshold levels were found for these compounds. Skin tests in rabbits showed a minimal irritant capacity for quench water. Medical records did not reveal the origin of dermatitis. Active skin lesions were characterized as nummular eczema or atopic dermatitis, which were not thought to be of occupational origin. The author concludes that coke-quenching steam does not pose a skin hazard, but certain work activities may aggravate existing skin conditions. Recommendations include elimination of abrasive cleansing agents, use of skin moisturizers after washing, and prompt medical evaluation of skin complaints.

  19. Coke Formation in a Zeolite Crystal During the Methanol-to-Hydrocarbons Reaction as Studied with Atom Probe Tomography.

    PubMed

    Schmidt, Joel E; Poplawsky, Jonathan D; Mazumder, Baishakhi; Attila, Özgün; Fu, Donglong; de Winter, D A Matthijs; Meirer, Florian; Bare, Simon R; Weckhuysen, Bert M

    2016-09-01

    Understanding the formation of carbon deposits in zeolites is vital to developing new, superior materials for various applications, including oil and gas conversion processes. Herein, atom probe tomography (APT) has been used to spatially resolve the 3D compositional changes at the sub-nm length scale in a single zeolite ZSM-5 crystal, which has been partially deactivated by the methanol-to-hydrocarbons reaction using (13) C-labeled methanol. The results reveal the formation of coke in agglomerates that span length scales from tens of nanometers to atomic clusters with a median size of 30-60 (13) C atoms. These clusters correlate with local increases in Brønsted acid site density, demonstrating that the formation of the first deactivating coke precursor molecules occurs in nanoscopic regions enriched in aluminum. This nanoscale correlation underscores the importance of carefully engineering materials to suppress detrimental coke formation.

  20. Coke formation in a zeolite crystal during the methanol-to-hydrocarbons reaction as studied with atom probe tomography

    DOE PAGES

    Schmidt, Joel E.; Poplawsky, Jonathan D.; Mazumder, Baishakhi; Attila, Özgün; Fu, Donglong; de Winter, D. A. Matthijs; Meirer, Florian; Bare, Simon R.; Weckhuysen, Bert M.

    2016-08-03

    Understanding the formation of carbon deposits in zeolites is vital to developing new, superior materials for various applications, including oil and gas conversion processes. Herein, atom probe tomography (APT) has been used to spatially resolve the 3D compositional changes at the sub-nm length scale in a single zeolite ZSM-5 crystal, which has been partially deactivated by the methanol-to-hydrocarbons reaction using 13C-labeled methanol. The results reveal the formation of coke in agglomerates that span length scales from tens of nanometers to atomic clusters with a median size of 30–60 13C atoms. These clusters correlate with local increases in Brønsted acid sitemore » density, demonstrating that the formation of the first deactivating coke precursor molecules occurs in nanoscopic regions enriched in aluminum. Here, this nanoscale correlation underscores the importance of carefully engineering materials to suppress detrimental coke formation.« less

  1. Coke Formation in a Zeolite Crystal During the Methanol-to-Hydrocarbons Reaction as Studied with Atom Probe Tomography.

    PubMed

    Schmidt, Joel E; Poplawsky, Jonathan D; Mazumder, Baishakhi; Attila, Özgün; Fu, Donglong; de Winter, D A Matthijs; Meirer, Florian; Bare, Simon R; Weckhuysen, Bert M

    2016-09-01

    Understanding the formation of carbon deposits in zeolites is vital to developing new, superior materials for various applications, including oil and gas conversion processes. Herein, atom probe tomography (APT) has been used to spatially resolve the 3D compositional changes at the sub-nm length scale in a single zeolite ZSM-5 crystal, which has been partially deactivated by the methanol-to-hydrocarbons reaction using (13) C-labeled methanol. The results reveal the formation of coke in agglomerates that span length scales from tens of nanometers to atomic clusters with a median size of 30-60 (13) C atoms. These clusters correlate with local increases in Brønsted acid site density, demonstrating that the formation of the first deactivating coke precursor molecules occurs in nanoscopic regions enriched in aluminum. This nanoscale correlation underscores the importance of carefully engineering materials to suppress detrimental coke formation. PMID:27485276

  2. Matrix endor studies of the carbonization of West Canadian coking coals

    NASA Astrophysics Data System (ADS)

    West, P. R.; Cannon, S. E.

    1981-02-01

    Cretaceous bituminous coals of known rank R¯0 max, vitrinite reflectance) have been examined by ESR (electron spin resonance) and ENDOR (electron nuclear double resonance) techniques. Both highly oxidised (outcrop) and unoxidised mine-run Balmer coal from the Crowsnest field have been subjected to heat treatment (200-900°C), and the matrix proton ENDOR signal studied as a function of applied microwave and rf power. Changes in ENDOR line shape and intensity are described with particular emphasis on the presoftening region of the unoxidised coal. A comparative study of the carbonization of hvb and 1vb coking coal from the Crowsnest is reported.

  3. Kinetics of petroleum coke/biomass blends during co-gasification

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-liang; Guo, Jian; Wang, Guang-wei; Xu, Tao; Chai, Yi-fan; Zheng, Chang-le; Xu, Run-sheng

    2016-09-01

    The co-gasification behavior and synergistic effect of petroleum coke, biomass, and their blends were studied by thermogravimetric analysis under CO2 atmosphere at different heating rates. The isoconversional method was used to calculate the activation energy. The results showed that the gasification process occurred in two stages: pyrolysis and char gasification. A synergistic effect was observed in the char gasification stage. This effect was caused by alkali and alkaline earth metals in the biomass ash. Kinetics analysis showed that the activation energy in the pyrolysis stage was less than that in the char gasification stage. In the char gasification stage, the activation energy was 129.1-177.8 kJ/mol for petroleum coke, whereas it was 120.3-150.5 kJ/mol for biomass. We also observed that the activation energy calculated by the Flynn-Wall-Ozawa (FWO) method were larger than those calculated by the Kissinger-Akahira-Sunosen (KAS) method. When the conversion was 1.0, the activation energy was 106.2 kJ/mol when calculated by the KAS method, whereas it was 120.3 kJ/mol when calculated by the FWO method.

  4. Functionalization of Petroleum Coke-Derived Carbon for Synergistically Enhanced Capacitive Performance.

    PubMed

    Zhang, Yan; Li, Xuejin; Huang, Jufeng; Xing, Wei; Yan, Zifeng

    2016-12-01

    Petroleum coke is a valuable and potential source for clean energy storage if it could be modified legitimately and facilely. In the present study, porous carbon with high surface area and abundant oxygen-containing groups was prepared from petroleum coke by chemical activation and modification processes. The as-prepared carbon exhibits a high surface area (1129 m(2) · g(-1)) and stable micrographic structure. It presents a high specific capacitance and excellent rate performance in KOH electrolyte. Even at an ultrahigh current density of 50 A · g(-1), the specific capacitance of the prepared carbon can still reach up to an unprecedented value of 261 F · g(-1) with a superhigh retention rate of 81 %. In addition, the energy density of this material in aqueous electrolyte can be as high as 13.9 Wh · kg(-1). The high energy density and excellent rate performance ensure its prosperous application in high-power energy storage system.

  5. The assessment of the coke wastewater treatment efficacy in rotating biological contractor.

    PubMed

    Cema, G; Żabczyński, S; Ziembińska-Buczyńska, A

    2016-01-01

    Coke wastewater is known to be relatively difficult for biological treatment. Nonetheless, biofilm-based systems seem to be promising tool for such treatment. That is why a rotating biological contactor (RBC) system focused on the Anammox process was used in this study. The experiment was divided into two parts with synthetic and then real wastewater. It was proven that it is possible to treat coke wastewater with RBC but such a procedure requires a very long start-up period for the nitritation (190 days), as well as for the Anammox process, where stable nitrogen removal over 70% was achieved after 400 days of experiment. Interestingly, it was possible at a relatively low (20.2 ± 2.2 °C) temperature. The polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) based monitoring of the bacterial community showed that its biodiversity decreased when the real wastewater was treated and it was composed mainly of GC-rich genotypes, probably because of the modeling influence of this wastewater and the genotypes specialization.

  6. A new technology for producing hydrogen and adjustable ratio syngas from coke oven gas

    SciTech Connect

    Jun Shen; Zhi-zhong Wang; Huai-wang Yang; Run-sheng Yao

    2007-12-15

    About 15 billion Nm{sup 3} coke oven gas (COG) is emitted into the air in Shanxi Province in China as air pollutants. It is also a waste of precious chemical resources. In this study, COG was purified respectively by four methods including refrigeration, fiberglass, silica gel, and molecular sieve. Purified COG was separated by a prism membrane into two gas products. One consists mainly of H{sub 2} ({gt}90 vol %) and the other is rich in CH{sub 4} ({gt}60 vol %) with their exact compositions to vary with the membrane separation pressure and outlet gas flow ratio. The gas rich in CH{sub 4} was partially oxidized with oxygen in a high-temperature fixed-bed quartz reactor charged with coke particles of 10 mm size. At 1200-1300{sup o}C, a CH{sub 4} conversion of {gt}99% could be obtained. The H{sub 2}/CO ratio in the synthesis product gas can be adjusted in the range 0.3-1.4, very favorable for further C1 synthesis. 10 refs., 17 figs., 1t ab.

  7. Physicochemical characteristics and desulphurization activity of pyrolusite-blended activated coke.

    PubMed

    Yang, Lin; Jiang, Xia; Huang, Tian; Jiang, Wenju

    2015-01-01

    In this study, a novel activated coke (AC-P) was prepared by the blending method using bituminous coal as the raw material and pyrolusite as the catalyst. The physicochemical properties of prepared activated coke (AC) were characterized by BET, Fourier-Transform Infrared Spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction. The results indicated that the blended pyrolusite had a slight effect on the structural properties of AC, while the oxygenated functional groups on AC were increased and MnO2 and Fe2O3 in pyrolusite were reduced to MnO and Fe on the AC-P samples, respectively. All the AC-P samples significantly improved the removal of SO2, with the highest sulphur capacity (153 mg/g) for the AC blended with 8 wt% pyrolusite, which was 57.7% higher than that of the blank activated cock. This could be mainly attributed to the change in surface chemical properties of the AC-P samples and the active catalytic components in pyrolusite for the catalytic oxidation of SO2 in desulphurization process.

  8. Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz

    SciTech Connect

    Yuan Zhang; Jin-hu Wu; Dong-ke Zhang

    2008-03-15

    The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

  9. Predicting project environmental performance under market uncertainties: case study of oil sands coke.

    PubMed

    McKellar, Jennifer M; Bergerson, Joule A; Kettunen, Janne; MacLean, Heather L

    2013-06-01

    A method combining life cycle assessment (LCA) and real options analyses is developed to predict project environmental and financial performance over time, under market uncertainties and decision-making flexibility. The method is applied to examine alternative uses for oil sands coke, a carbonaceous byproduct of processing the unconventional petroleum found in northern Alberta, Canada. Under uncertainties in natural gas price and the imposition of a carbon price, our method identifies that selling the coke to China for electricity generation by integrated gasification combined cycle is likely to be financially preferred initially, but eventually hydrogen production in Alberta is likely to be preferred. Compared to the results of a previous study that used life cycle costing to identify the financially preferred alternative, the inclusion of real options analysis adds value as it accounts for flexibility in decision-making (e.g., to delay investment), increasing the project's expected net present value by 25% and decreasing the expected life cycle greenhouse gas emissions by 11%. Different formulations of the carbon pricing policy or changes to the natural gas price forecast alter these findings. The combined LCA/real options method provides researchers and decision-makers with more comprehensive information than can be provided by either technique alone. PMID:23675646

  10. Mathematical simulation of thermal decomposition processes in coking polymers during intense heating

    SciTech Connect

    Shlenskii, O.F.; Polyakov, A.A.

    1994-12-01

    Description of nonstationary heat transfer in heat-shielding materials based on cross-linked polymers, mathematical simulation of chemical engineering processes of treating coking and fiery coals, and designing calculations all require taking thermal destruction kinetics into account. The kinetics of chemical transformations affects the substance density change depending on the temperature, the time, the heat-release function, and other properties of materials. The traditionally accepted description of the thermal destruction kinetics of coking materials is based on formulating a set of kinetic equations, in which only chemical transformations are taken into account. However, such an approach does not necessarily agree with the obtained experimental data for the case of intense heating. The authors propose including the parameters characterizing the decrease of intermolecular interaction in a comparatively narrow temperature interval (20-40 K) into the set of kinetic equations. In the neighborhood of a certain temperature T{sub 1}, which is called the limiting temperature of thermal decomposition, a decrease in intermolecular interaction causes an increase in the rates of chemical and phase transformations. The effect of the enhancement of destruction processes has been found experimentally by the contact thermal analysis method.

  11. Simulation and optimization of a coking wastewater biological treatment process by activated sludge models (ASM).

    PubMed

    Wu, Xiaohui; Yang, Yang; Wu, Gaoming; Mao, Juan; Zhou, Tao

    2016-01-01

    Applications of activated sludge models (ASM) in simulating industrial biological wastewater treatment plants (WWTPs) are still difficult due to refractory and complex components in influents as well as diversity in activated sludges. In this study, an ASM3 modeling study was conducted to simulate and optimize a practical coking wastewater treatment plant (CWTP). First, respirometric characterizations of the coking wastewater and CWTP biomasses were conducted to determine the specific kinetic and stoichiometric model parameters for the consecutive aeration-anoxic-aeration (O-A/O) biological process. All ASM3 parameters have been further estimated and calibrated, through cross validation by the model dynamic simulation procedure. Consequently, an ASM3 model was successfully established to accurately simulate the CWTP performances in removing COD and NH4-N. An optimized CWTP operation condition could be proposed reducing the operation cost from 6.2 to 5.5 €/m(3) wastewater. This study is expected to provide a useful reference for mathematic simulations of practical industrial WWTPs.

  12. Fly ashes from coal and petroleum coke combustion: current and innovative potential applications.

    PubMed

    González, Aixa; Navia, Rodrigo; Moreno, Natalia

    2009-12-01

    Coal fly ashes (CFA) are generated in large amounts worldwide. Current combustion technologies allow the burning of fuels with high sulfur content such as petroleum coke, generating non-CFA, such as petroleum coke fly ash (PCFA), mainly from fluidized bed combustion processes. The disposal of CFA and PCFA fly ashes can have severe impacts in the environment such as a potential groundwater contamination by the leaching of heavy metals and/or particulate matter emissions; making it necessary to treat or reuse them. At present CFA are utilized in several applications fields such as cement and concrete production, agriculture and soil stabilization. However, their reuse is restricted by the quality parameters of the end-product or requirements defined by the production process. Therefore, secondary material markets can use a limited amount of CFA, which implies the necessity of new markets for the unused CFA. Some potential future utilization options reviewed herein are zeolite synthesis and valuable metals extraction. In comparison to CFA, PCFA are characterized by a high Ca content, suggesting a possible use as neutralizers of acid wastewaters from mining operations, opening a new potential application area for PCFA that could solve contamination problems in emergent and mining countries such as Chile. However, this potential application may be limited by PCFA heavy metals leaching, mainly V and Ni, which are present in PCFA in high concentrations. PMID:19423583

  13. Functionalization of Petroleum Coke-Derived Carbon for Synergistically Enhanced Capacitive Performance.

    PubMed

    Zhang, Yan; Li, Xuejin; Huang, Jufeng; Xing, Wei; Yan, Zifeng

    2016-12-01

    Petroleum coke is a valuable and potential source for clean energy storage if it could be modified legitimately and facilely. In the present study, porous carbon with high surface area and abundant oxygen-containing groups was prepared from petroleum coke by chemical activation and modification processes. The as-prepared carbon exhibits a high surface area (1129 m(2) · g(-1)) and stable micrographic structure. It presents a high specific capacitance and excellent rate performance in KOH electrolyte. Even at an ultrahigh current density of 50 A · g(-1), the specific capacitance of the prepared carbon can still reach up to an unprecedented value of 261 F · g(-1) with a superhigh retention rate of 81 %. In addition, the energy density of this material in aqueous electrolyte can be as high as 13.9 Wh · kg(-1). The high energy density and excellent rate performance ensure its prosperous application in high-power energy storage system. PMID:27009530

  14. The assessment of the coke wastewater treatment efficacy in rotating biological contractor.

    PubMed

    Cema, G; Żabczyński, S; Ziembińska-Buczyńska, A

    2016-01-01

    Coke wastewater is known to be relatively difficult for biological treatment. Nonetheless, biofilm-based systems seem to be promising tool for such treatment. That is why a rotating biological contactor (RBC) system focused on the Anammox process was used in this study. The experiment was divided into two parts with synthetic and then real wastewater. It was proven that it is possible to treat coke wastewater with RBC but such a procedure requires a very long start-up period for the nitritation (190 days), as well as for the Anammox process, where stable nitrogen removal over 70% was achieved after 400 days of experiment. Interestingly, it was possible at a relatively low (20.2 ± 2.2 °C) temperature. The polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) based monitoring of the bacterial community showed that its biodiversity decreased when the real wastewater was treated and it was composed mainly of GC-rich genotypes, probably because of the modeling influence of this wastewater and the genotypes specialization. PMID:26942544

  15. Biological nitrogen removal from coke plant wastewater with external carbon addition

    SciTech Connect

    Lee, M.W.; Park, J.M.

    1998-07-01

    Coke plant wastewater containing high concentrations of ammonia and toxic compounds such as phenol and cyanide was treated using a biological nitrogen removal (BNR) system comprising carbon removal, nitrification, and denitrification stages. The objective of this study was to investigate the feasibility of complete ammonia removal from the coke plant wastewater using a sequential BNR process with external carbon addition. Sodium acetate was introduced as an external carbon source to the denitrification stage after oxidation of phenol and other carbonaceous compounds in the carbon-removal stage. The efficiency of denitrification was strongly affected by the loading rate of the external carbon source, and its optimal rate was determined based on the ratio of chemical oxygen demand to nitrate- and nitrite-nitrogen (COD:NO{sub x}-N) of the denitrification stage. The overall removal efficiency of major soluble pollutants in the wastewater was greater than 95% in the BNR system. When a step input of phenol was introduced to check the stability of the overall system, the nitrification was markedly inhibited because of the incomplete degradation of phenol in the carbon-removal stage. However, after this brief inhibition, the nitrification stage recovered to its normal efficiency within 18 days.

  16. Petroleum coke in the urban environment: a review of potential health effects.

    PubMed

    Caruso, Joseph A; Zhang, Kezhong; Schroeck, Nicholas J; McCoy, Benjamin; McElmurry, Shawn P

    2015-05-29

    Petroleum coke, or petcoke, is a granular coal-like industrial by-product that is separated during the refinement of heavy crude oil. Recently, the processing of material from Canadian oil sands in U.S. refineries has led to the appearance of large petcoke piles adjacent to urban communities in Detroit and Chicago. The purpose of this literature review is to assess what is known about the effects of petcoke exposure on human health. Toxicological studies in animals indicate that dermal or inhalation petcoke exposure does not lead to a significant risk for cancer development or reproductive and developmental effects. However, pulmonary inflammation was observed in long-term inhalation exposure studies. Epidemiological studies in coke oven workers have shown increased risk for cancer and chronic obstructive pulmonary diseases, but these studies are confounded by multiple industrial exposures, most notably to polycyclic aromatic hydrocarbons that are generated during petcoke production. The main threat to urban populations in the vicinity of petcoke piles is most likely fugitive dust emissions in the form of fine particulate matter. More research is required to determine whether petcoke fine particulate matter causes or exacerbates disease, either alone or in conjunction with other environmental contaminants.

  17. Fly ashes from coal and petroleum coke combustion: current and innovative potential applications.

    PubMed

    González, Aixa; Navia, Rodrigo; Moreno, Natalia

    2009-12-01

    Coal fly ashes (CFA) are generated in large amounts worldwide. Current combustion technologies allow the burning of fuels with high sulfur content such as petroleum coke, generating non-CFA, such as petroleum coke fly ash (PCFA), mainly from fluidized bed combustion processes. The disposal of CFA and PCFA fly ashes can have severe impacts in the environment such as a potential groundwater contamination by the leaching of heavy metals and/or particulate matter emissions; making it necessary to treat or reuse them. At present CFA are utilized in several applications fields such as cement and concrete production, agriculture and soil stabilization. However, their reuse is restricted by the quality parameters of the end-product or requirements defined by the production process. Therefore, secondary material markets can use a limited amount of CFA, which implies the necessity of new markets for the unused CFA. Some potential future utilization options reviewed herein are zeolite synthesis and valuable metals extraction. In comparison to CFA, PCFA are characterized by a high Ca content, suggesting a possible use as neutralizers of acid wastewaters from mining operations, opening a new potential application area for PCFA that could solve contamination problems in emergent and mining countries such as Chile. However, this potential application may be limited by PCFA heavy metals leaching, mainly V and Ni, which are present in PCFA in high concentrations.

  18. Petroleum Coke in the Urban Environment: A Review of Potential Health Effects

    PubMed Central

    Caruso, Joseph A.; Zhang, Kezhong; Schroeck, Nicholas J.; McCoy, Benjamin; McElmurry, Shawn P.

    2015-01-01

    Petroleum coke, or petcoke, is a granular coal-like industrial by-product that is separated during the refinement of heavy crude oil. Recently, the processing of material from Canadian oil sands in U.S. refineries has led to the appearance of large petcoke piles adjacent to urban communities in Detroit and Chicago. The purpose of this literature review is to assess what is known about the effects of petcoke exposure on human health. Toxicological studies in animals indicate that dermal or inhalation petcoke exposure does not lead to a significant risk for cancer development or reproductive and developmental effects. However, pulmonary inflammation was observed in long-term inhalation exposure studies. Epidemiological studies in coke oven workers have shown increased risk for cancer and chronic obstructive pulmonary diseases, but these studies are confounded by multiple industrial exposures, most notably to polycyclic aromatic hydrocarbons that are generated during petcoke production. The main threat to urban populations in the vicinity of petcoke piles is most likely fugitive dust emissions in the form of fine particulate matter. More research is required to determine whether petcoke fine particulate matter causes or exacerbates disease, either alone or in conjunction with other environmental contaminants. PMID:26035666

  19. Predicting project environmental performance under market uncertainties: case study of oil sands coke.

    PubMed

    McKellar, Jennifer M; Bergerson, Joule A; Kettunen, Janne; MacLean, Heather L

    2013-06-01

    A method combining life cycle assessment (LCA) and real options analyses is developed to predict project environmental and financial performance over time, under market uncertainties and decision-making flexibility. The method is applied to examine alternative uses for oil sands coke, a carbonaceous byproduct of processing the unconventional petroleum found in northern Alberta, Canada. Under uncertainties in natural gas price and the imposition of a carbon price, our method identifies that selling the coke to China for electricity generation by integrated gasification combined cycle is likely to be financially preferred initially, but eventually hydrogen production in Alberta is likely to be preferred. Compared to the results of a previous study that used life cycle costing to identify the financially preferred alternative, the inclusion of real options analysis adds value as it accounts for flexibility in decision-making (e.g., to delay investment), increasing the project's expected net present value by 25% and decreasing the expected life cycle greenhouse gas emissions by 11%. Different formulations of the carbon pricing policy or changes to the natural gas price forecast alter these findings. The combined LCA/real options method provides researchers and decision-makers with more comprehensive information than can be provided by either technique alone.

  20. Simulation and optimization of a coking wastewater biological treatment process by activated sludge models (ASM).

    PubMed

    Wu, Xiaohui; Yang, Yang; Wu, Gaoming; Mao, Juan; Zhou, Tao

    2016-01-01

    Applications of activated sludge models (ASM) in simulating industrial biological wastewater treatment plants (WWTPs) are still difficult due to refractory and complex components in influents as well as diversity in activated sludges. In this study, an ASM3 modeling study was conducted to simulate and optimize a practical coking wastewater treatment plant (CWTP). First, respirometric characterizations of the coking wastewater and CWTP biomasses were conducted to determine the specific kinetic and stoichiometric model parameters for the consecutive aeration-anoxic-aeration (O-A/O) biological process. All ASM3 parameters have been further estimated and calibrated, through cross validation by the model dynamic simulation procedure. Consequently, an ASM3 model was successfully established to accurately simulate the CWTP performances in removing COD and NH4-N. An optimized CWTP operation condition could be proposed reducing the operation cost from 6.2 to 5.5 €/m(3) wastewater. This study is expected to provide a useful reference for mathematic simulations of practical industrial WWTPs. PMID:26439861

  1. Isotopic ratio based source apportionment of children's blood lead around coking plant area.

    PubMed

    Cao, Suzhen; Duan, Xiaoli; Zhao, Xiuge; Wang, Beibei; Ma, Jin; Fan, Delong; Sun, Chengye; He, Bin; Wei, Fusheng; Jiang, Guibin

    2014-12-01

    Lead exposure in the environment is a major hazard affecting human health, particularly for children. The blood lead levels in the local children living around the largest coking area in China were measured, and the source of blood lead and the main pathways of lead exposure were investigated based on lead isotopic ratios ((207)Pb/(206)Pb and (208)Pb/(206)Pb) in blood and in a variety of media, including food, airborne particulate matter, soil, dust and drinking water. The children's blood lead level was 5.25 (1.59 to 34.36 as range) μg dL(-1), lower than the threshold in the current criteria of China defined by the US Centers for Disease Control (10 μg dL(-1)). The isotopic ratios in the blood were 2.111±0.018 for (208)Pb/(206)Pb and 0.864±0.005 for (207)Pb/(206)Pb, similar to those of vegetables, wheat, drinking water, airborne particulate matter, but different from those of vehicle emission and soil/dust, suggesting that the formers were the main pathway of lead exposure among the children. The exposure pathway analysis based on the isotopic ratios and the human health risk assessment showed that dietary intake of food and drinking water contributed 93.67% of total exposed lead. The study further indicated that the coal used in the coking plant is the dominant pollution source of lead in children's blood.

  2. Urinary 1-hydroxypyrene concentrations in Chinese coke oven workers relative to job category, respirator usage, and cigarette smoking

    SciTech Connect

    Bo Chen; Yunping Hu; Lixing Zheng; Qiangyi Wang; Yuanfen Zhou; Taiyi Jin

    2007-09-15

    1-Hydroxypyrene (1-OHP) is a biomarker of recent exposure to polycyclic aromatic hydrocarbons (PAHs). We investigated whether urinary 1-OHP concentrations in Chinese coke oven workers (COWs) are modulated by job category, respirator usage, and cigarette smoking. The present cross-sectional study measured urinary 1-OHP concentrations in 197 COWs from Coking plant I and 250 COWs from Coking plant II, as well as 220 unexposed referents from Control plant I and 56 referents from Control plant II. Urinary 1-OHP concentrations (geometric mean, {mu}mol/mol creatinine) were 5.18 and 4.21 in workers from Coking plants I and II, respectively. The highest 1-OHP levels in urine were found among topside workers including lidmen, tar chasers, and whistlers. Benchmen had higher 1-OHP levels than other workers at the sideoven. Above 75% of the COWs exceeded the recommended occupational exposure limit of 2.3 {mu}mol/mol creatinine. Respirator usage and increased body mass index (BMI) slightly reduced 1-OHP levels in COWs. Cigarette smoking significantly increased urinary 1-OHP levels in unexposed referents but had no effect in COWs. Chinese COWs, especially topside workers and benchmen, are exposed to high levels of PAHs. Urinary 1-OHP concentrations appear to be modulated by respirator usage and BMI in COWs, as well as by smoking in unexposed referents.

  3. 77 FR 20788 - Foundry Coke Products From the People's Republic of China: Final Results of Expedited Second...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ...'') Review, 76 FR 74775 (December 1, 2011); see also Notice of Amended Final Determination of Sales at Less... 66 FR 48025 (September 17, 2001) (``Order''). We received a complete substantive response from the... International Trade Administration Foundry Coke Products From the People's Republic of China: Final Results...

  4. Catalytic fast pyrolysis of mushroom waste to upgraded bio-oil products via pre-coked modified HZSM-5 catalyst.

    PubMed

    Wang, Jia; Zhong, Zhaoping; Ding, Kuan; Xue, Zeyu

    2016-07-01

    In this paper, HZSM-5 catalyst was modified by pre-coked to cover the strong external acid sites by methanol to olefins reaction, and the modified catalysts were then applied to conduct the catalyst fast pyrolysis of mushroom waste for upgraded bio-fuel production. Experiment results showed that the strong external acid sites and specific surface area decreased with pre-coked percentage increasing from 0% to 5.4%. Carbon yields of hydrocarbons increased at first and then decreased with a maximum value of 53.47%. While the obtained oxygenates presented an opposite variation tendency, and the minimum values could be reached when pre-coked percentage was 2.7%. Among the achieved hydrocarbons, toluene and p-xylene were found to be the main products, and the selectivity of p-xylene increased at first and then decreased with a maximum value of 34.22% when the pre-coked percentage was 1.3%, and the selectivity of toluene showed the opposite tendency with a minimum value of 25.47%. PMID:27065226

  5. Deactivation of steam-reforming model catalysts by coke formation. II. Promotion with potassium and effect of water

    SciTech Connect

    Demicheli, M.C.; Duprez, D.; Barbier, J. ); Ferretti, O.A.; Ponzi, E.N. )

    1994-02-01

    The influence of potassium on the hydrogenolysis of cyclopentane and on the simultaneous carbon formation over a series of alumina-supported Ni catalysts was studied. With increasing potassium loadings at temperatures where either a deactivating two-dimensional carbon or a filamentary carbon was formed, the catalytic activity passed through a maximum and then decreased. With relatively high K-doses there was less coking in the presence of steam; the growth of filamentary carbon was then largely reduced. Characterization of the coked catalysts by temperature-programmed oxidation and SEM disclosed quite different roles of alkali: at lower contents, associated with alumina, potassium facilitates the formation of filamentary carbon and minimizes the generation of coke precursors, whereas at higher contents it acts as a poison for both hydrogenolysis and coking reactions. In all cases, the alkali promoted the catalytic oxidation of the carbon deposits. Because of its localization, the alkali could also modify the nickel-carbon interface in carbon filaments. 32 refs., 12 figs., 5 tabs.

  6. Use of Technogenic Silica Fume and Brown Coal Semi-Coke in the Technology of Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Anikin, A. E.; Galevskiy, G. V.; Rudneva, V. V.; Galevskiy, S. G.; Il'yaschenko, D. P.

    2016-08-01

    The paper describes thermodynamic experiments to determine the optimal temperature and time modes for the carbide production process from the briquette charge comprising silica fume and brown coal semi-coke, conditions for chemical enriching of silicon carbide, its phase, chemical and granulometric compositions and particle morphology.

  7. Optimizing anti-coking abilities of zeolites by ethylene diamine tetraacetie acid modification on catalytic fast pyrolysis of corn stalk

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Zhong, Zhaoping; Song, Zuwei; Ding, Kuan; Chen, Paul; Ruan, Roger

    2015-12-01

    In order to minimize coke yield during biomass catalytic fast pyrolysis (CFP) process, ethylene diamine tetraacetie acid (EDTA) chemical modification method is carried out to selectively remove the external framework aluminum of HZSM-5 catalyst. X-ray diffraction (XRD), nitrogen (N2)-adsorption and ammonia-temperature programmed desorption (NH3-TPD) techniques are employed to investigate the porosity and acidity characteristics of original and modified HZSM-5 samples. Py-GC/MS and thermo-gravimetric analyzer (TGA) experiments are further conducted to explore the catalytic effect of modified HZSM-5 samples on biomass CFP and to verify the positive effect on coke reduction. Results show that EDTA treatment does not damage the crystal structure of HZSM-5 zeolites, but leads to a slight increase of pore volume and pore size. Meanwhile, the elimination of the strong acid peak indicates the dealumination of outer surface of HZSM-5 zeolites. Treatment time of 2 h (labeled EDTA-2H) is optimal for acid removal and hydrocarbon formation. Among all modified catalysts, EDTA-2H performs the best for deacidification and can obviously increase the yields of positive chemical compositions in pyrolysis products. Besides, EDTA modification can improve the anti-coking properties of HZSM-5 zeolites, and EDTA-2H gives rise to the lowest coke yield.

  8. Method of reducing NO/sub x/ component of flue gas in heating coking ovens, and an arrangement of coking oven for carrying out the method

    SciTech Connect

    Janicka, J.; Jakobi, W.; Durselen, H.; Meyer, G.

    1987-11-03

    This patent describes a method of reducing NO/sub x/ component of flue gas produced in the flame of a coking oven of the type having vertical heating flues cooperating in pairs of flamed and non-flamed flues, the flamed heating flues including inlets for rich gas, primary air and lean gas arranged at the bottom region of the flues to provide a low level combustion stage, and further including inlets for secondary air and secondary lean gas arranged above the low level combustion stage to provide a high level combustion stage, partitions separating the flamed and non-flamed heating flues in respective pairs having a top opening for recirculating flue gas from the flamed flue to the non-flamed one, and a bottom opening for mixing a branch current of the recirculating flue gas with the supplied primary air and rich and lean gases in the flamed flue. It consists of a. adjusting the recirculation current rate, namely the volume ratio of the recirculated flue gas branch current to the flue gas current without recirculation, to amount between 20% and 50%; b. adjusting the combustion stage ratio, namely the volume ratio of the supplied primary air in the low level combustion stage to the supplied secondary in the high level combustion stage to an amount between 40% and 70%; and c. arranging the high level combustion stage between 35% and 55% of the height of the heating flues.

  9. Assessment of potential damage to DNA in urine of coke oven workers: an assay of unscheduled DNA synthesis.

    PubMed Central

    Roos, F; Renier, A; Ettlinger, J; Iwatsubo, Y; Letourneux, M; Haguenoer, J M; Jaurand, M C; Pairon, J C

    1997-01-01

    OBJECTIVES: A study was conducted in coke oven workers to evaluate the biological consequences of the exposure of these workers, particularly production of potential genotoxic factors. METHODS: 60 coke oven workers and 40 controls were recruited in the same iron and steel works. Exposure to polycyclic aromatic hydrocarbons (PAHs) was assessed by job and measurement of 1-hydroxypyrene (1OHP) in urine samples. An unscheduled DNA synthesis assay was performed on rat pleural mesothelial cells used as a test system to evaluate the effect of the workers' filtered urine on the DNA repair capacity of rat cells to determine whether DNA damaging agents are present in the urine of these workers. RESULTS: Urinary concentrations of 1OHP ranged from 0.06 to 24.2 (mean (SD) 2.1 (3.6)) mumol/mol creatinine in exposed coke oven workers, and from 0.01 to 0.9 in controls (0.12 (0.15)). These high concentrations in coke oven workers reflected recent exposure to PAHs and were in agreement with the assessment of exposure by job. No significant difference was found between coke oven workers and controls in the DNA repair level of rat cells treated with urine samples. However, the rat cell repair capacity decreased with increasing 1OHP concentrations in the exposed population (r = -0.28, P < 0.05). CONCLUSIONS: As high concentrations of 1OHP were found in the urine of some workers, a more stringent control of exposures to PAHs in the workplace is required. Exposure to PAHs was not associated with a clear cut modification of the urinary excretion of DNA damaging factors in this test, as shown by the absence of increased unscheduled DNA synthesis in rat cells. However, impairment of some repair mechanisms by urinary constituents is suspected. PMID:9470892

  10. Development and Testing of the Advanced CHP System Utilizing the Off-Gas from the Innovative Green Coke Calcining Process in Fluidized Bed

    SciTech Connect

    Chudnovsky, Yaroslav; Kozlov, Aleksandr

    2013-08-15

    Green petroleum coke (GPC) is an oil refining byproduct that can be used directly as a solid fuel or as a feedstock for the production of calcined petroleum coke. GPC contains a high amount of volatiles and sulfur. During the calcination process, the GPC is heated to remove the volatiles and sulfur to produce purified calcined coke, which is used in the production of graphite, electrodes, metal carburizers, and other carbon products. Currently, more than 80% of calcined coke is produced in rotary kilns or rotary hearth furnaces. These technologies provide partial heat utilization of the calcined coke to increase efficiency of the calcination process, but they also share some operating disadvantages. However, coke calcination in an electrothermal fluidized bed (EFB) opens up a number of potential benefits for the production enhancement, while reducing the capital and operating costs. The increased usage of heavy crude oil in recent years has resulted in higher sulfur content in green coke produced by oil refinery process, which requires a significant increase in the calcinations temperature and in residence time. The calorific value of the process off-gas is quite substantial and can be effectively utilized as an “opportunity fuel” for combined heat and power (CHP) production to complement the energy demand. Heat recovered from the product cooling can also contribute to the overall economics of the calcination process. Preliminary estimates indicated the decrease in energy consumption by 35-50% as well as a proportional decrease in greenhouse gas emissions. As such, the efficiency improvement of the coke calcinations systems is attracting close attention of the researchers and engineers throughout the world. The developed technology is intended to accomplish the following objectives: - Reduce the energy and carbon intensity of the calcined coke production process. - Increase utilization of opportunity fuels such as industrial waste off-gas from the novel

  11. Alternative control techniques document: PM-10 emissions from selected processes at coke ovens and integrated iron and steel mills. Final report

    SciTech Connect

    Marsosudiro, P.J.; Snow, W.S.

    1994-02-01

    The purpose of the document is to provide guidance to state and local air quality management agencies for determining reasonably available control technologies (RACT) and best available control technologies (BACT) that apply to PM-10 sources in the iron and steel industry. Emission sources addressed are coke pushing, coke quenching, coke sizing and screening, casthouse operations, hot metal transfer, and desulfurization. These sources were selected for analysis because they are not presently regulated under New Source Performance Standards (NSPS). Emission control system descriptions, environmental and energy impact assessments, and control cost analyses are presented. The principal emission collection devices used are the fabric filter and wet venturi scrubber.

  12. Evaluation of co-cokes from bituminous coal with vacuum resid or decant oil, and evaluation of anthracites, as precursors to graphite

    NASA Astrophysics Data System (ADS)

    Nyathi, Mhlwazi S.

    2011-12-01

    Graphite is utilized as a neutron moderator and structural component in some nuclear reactor designs. During the reactor operaction the structure of graphite is damaged by collision with fast neutrons. Graphite's resistance to this damage determines its lifetime in the reactor. On neutron irradiation, isotropic or near-isotropic graphite experiences less structural damage than anisotropic graphite. The degree of anisotropy in a graphite artifact is dependent on the structure of its precursor coke. Currently, there exist concerns over a short supply of traditional precursor coke, primarily due to a steadily increasing price of petroleum. The main goal of this study was to study the anisotropic and isotropic properties of graphitized co-cokes and anthracites as a way of investigating the possibility of synthesizing isotropic or near-isotropic graphite from co-cokes and anthracites. Demonstrating the ability to form isotropic or near-isotropic graphite would mean that co-cokes and anthracites have a potential use as filler material in the synthesis of nuclear graphite. The approach used to control the co-coke structure was to vary the reaction conditions. Co-cokes were produced by coking 4:1 blends of vacuum resid/coal and decant oil/coal at temperatures of 465 and 500 °C for reaction times of 12 and 18 hours under autogenous pressure. Co-cokes obtained were calcined at 1420 °C and graphitized at 3000 °C for 24 hours. Optical microscopy, X-ray diffraction, temperature-programmed oxidation and Raman spectroscopy were used to characterize the products. It was found that higher reaction temperature (500 °C) or shorter reaction time (12 hours) leads to an increase in co-coke structural disorder and an increase in the amount of mosaic carbon at the expense of textural components that are necessary for the formation of anisotropic structure, namely, domains and flow domains. Characterization of graphitized co-cokes showed that the quality, as expressed by the degree of

  13. Chloride determination by ion chromatography in petroleum coke after digestion by microwave-induced combustion.

    PubMed

    Pereira, Juliana S F; Diehl, Liange O; Duarte, Fábio A; Santos, Maria F P; Guimarães, Regina C L; Dressler, Valderi L; Flores, Erico M M

    2008-12-12

    Microwave-induced combustion was applied to petroleum coke digestion in closed vessels for further chloride determination by ion chromatography. Samples were pressed as pellets and placed on a quartz holder. Combustion was performed using oxygen pressure of 2 MPa and 50 microl of 6 moll(-1) NH(4)NO(3) as aid for ignition. Recoveries from 97 to 102% were obtained for all studied absorbing solutions (water, H(2)O(2), Na(2)CO(3) or (NH(4))(2)CO(3)). Accuracy was evaluated using certified reference materials with agreement better than 98% using water as absorbing solution with reflux step. The limit of quantification was 3.8 microg g(-1). PMID:18996537

  14. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution

    PubMed Central

    Neagu, Dragos; Oh, Tae-Sik; Miller, David N.; Ménard, Hervé; Bukhari, Syed M.; Gamble, Stephen R.; Gorte, Raymond J.; Vohs, John M.; Irvine, John T.S.

    2015-01-01

    Metal particles supported on oxide surfaces are used as catalysts for a wide variety of processes in the chemical and energy conversion industries. For catalytic applications, metal particles are generally formed on an oxide support by physical or chemical deposition, or less commonly by exsolution from it. Although fundamentally different, both methods might be assumed to produce morphologically and functionally similar particles. Here we show that unlike nickel particles deposited on perovskite oxides, exsolved analogues are socketed into the parent perovskite, leading to enhanced stability and a significant decrease in the propensity for hydrocarbon coking, indicative of a stronger metal–oxide interface. In addition, we reveal key surface effects and defect interactions critical for future design of exsolution-based perovskite materials for catalytic and other functionalities. This study provides a new dimension for tailoring particle–substrate interactions in the context of increasing interest for emergent interfacial phenomena. PMID:26360910

  15. Quantitative analysis of ammonium salts in coking industrial liquid waste treatment process based on Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Cao, Ya-Nan; Wang, Gui-Shi; Tan, Tu; Cai, Ting-Dong; Liu, Kun; Wang, Lei; Zhu, Gong-Dong; Mei, Jiao-Xu

    2016-10-01

    Quantitative analysis of ammonium salts in the process of coking industrial liquid waste treatment is successfully performed based on a compact Raman spectrometer combined with partial least square (PLS) method. Two main components (NH4SCN and (NH4)2S2O3) of the industrial mixture are investigated. During the data preprocessing, wavelet denoising and an internal standard normalization method are employed to improve the predicting ability of PLS models. Moreover, the PLS models with different characteristic bands for each component are studied to choose a best resolution. The internal and external calibration results of the validated model show a mass percentage error below 1% for both components. Finally, the repeatabilities and reproducibilities of Raman and reference titration measurements are also discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 41405022 and 61475068).

  16. Microscope image processor for treatment of coke-oven ammonia liquor

    SciTech Connect

    Miyake, Minoru; Yamamoto, Masaki . Ironmaking Dept.); Maeda, Kohzoh . Process Control Dept.)

    1993-08-01

    Ammonia liquor generated in cokemaking operations is discharged from the plant after removal and decomposition of harmful substances. The volume and chemical composition of ammonia liquor varies greatly with the operating conditions of the coke oven and coal properties. These variations often cause unstable activated sludge operation, frequent bulking and other irregularities. Up to now, the activated sludge operation was mainly controlled by analyzing water quality. Recently, however, the importance of observed microorganisms in sludge such as zoogleal microorganisms (floc), filamentous microorganisms and protozoa, has been recognized. These microorganisms are normally observed manually with microscopes, but this procedure is relatively ineffective for control purposes because the measurements take too long and the results are based on qualitative judgments. To realize a quantitative measurement method for filamentous microorganisms and floc, a microscope image processor was developed jointly with Hitachi Ltd. for activated sludge control. The microscope image processor has been found to be effective in predicting bulking and evaluating bulking control techniques.

  17. Cyanide leaching from soil developed from coking plant purifier waste as influenced by citrate

    SciTech Connect

    Tim Mansfeldt; Heike Leyer; Kurt Barmettler; Ruben Kretzschmar

    2004-07-01

    Soils in the vicinity of manufactured gas plants and coal coking plants are often highly contaminated with cyanides in the form of the compound Prussian blue. The objective of this study was to investigate the influence of citrate on the leaching of iron-cyanide complexes from an extremely acidic soil (pH 2.3) developed from gas purifier waste near a former coking plant. The soil contained 63 g kg{sup -1} CN, 148 g kg{sup -1} Fe, 123 g kg{sup -1} S, and 222 g kg{sup -1} total C. Analysis of the soil by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy revealed the presence of Prussian blue, gypsum, elemental sulfur, jarosite, and hematite. For column leaching experiments, air-dried soil was mixed with purified cristabolite sand at a ratio of 1:3 and packed into chromatography columns. The soil was leached with dilute (0.1 or 1 mM) CaCl{sub 2} solutions and the effluent was collected and analyzed for total and dissolved CN, Ca, Fe, SO{sub 4}, pH, and pe. In the absence of citrate, the total dissolved CN concentration in the effluent was always below current drinking water limits (< 1.92 {mu}M), indicating low leaching potential. Adding citrate at a concentration of 1 mM had little effect on the CN concentrations in the column effluent. Addition of 10 or 100 mM citrate to the influent solution resulted in strong increases in dissolved and colloidal CN concentrations in the effluent.

  18. Using Lymphocyte and Plasma Hsp70 as Biomarkers for Assessing Coke Oven Exposure among Steel Workers

    PubMed Central

    Yang, Xiaobo; Zheng, Jinping; Bai, Yun; Tian, Fengjie; Yuan, Jing; Sun, Jianya; Liang, Huashan; Guo, Liang; Tan, Hao; Chen, Weihong; Tanguay, Robert M.; Wu, Tangchun

    2007-01-01

    Background Hsp70, an early-response protein induced when organisms are confronted with simple or complicated environmental stresses, can act as either a cellular protector or a danger signal. Objectives The goal of this study was to evaluate levels of lymphocyte and/or plasma Hsp70 as biomarkers for assessing exposure response to complex coke oven emissions (COEs). Methods We recruited 101 coke oven workers and determined levels of polycyclic aromatic hydrocarbon (PAH) exposure, urinary 1-hydroxypyrene (1-OHP), genotoxic damage by comet assay and micronuclei test, and other markers of damage, including plasma malondialdehyde (MDA) and lactate dehydrogenase (LDH). These were compared to levels of lymphocyte (intra-cellular) and plasma (extracellular) Hsp70 using Western blots and enzyme-linked immunosorbent assays (ELISA), respectively. Results We observed a COEs-related dose-dependent increase in levels of DNA damage, micronuclei rate, MDA concentration, and LDH activity. Lymphocyte Hsp70 levels increased in the intermediate-exposure group (1.39 ± 0.88) but decreased in the high-exposure group (1.10 ± 0.55), compared with the low-exposure group. In contrast, plasma Hsp70 levels progressively increased as the dose of exposure increased. Negative correlations were seen between lymphocyte Hsp70 levels and olive tail moment and LDH activity in the intermediate- and high-exposure groups. However, we observed positive correlations between plasma Hsp70 levels and LDH activity in the low and intermediate groups. Conclusions In workers exposed to COEs, high lymphocyte Hsp70 levels may provide protection and high plasma Hsp70 levels may serve as a danger marker. Larger validation studies are needed to establish the utility of Hsp70 as a response marker. PMID:18007987

  19. Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology.

    PubMed

    Zhang, Tao; Ding, Lili; Ren, Hongqiang; Xiong, Xiang

    2009-12-01

    Ammonium nitrogen removal from wastewater has been of considerable concern for several decades. In the present research, we examined chemical precipitation recycle technology (CPRT) for ammonium nitrogen removal from coking wastewater. The pyrolysate resulting from magnesium ammonium phosphate (MAP) pyrogenation in sodium hydroxide (NaOH) solution was recycled for ammonium nitrogen removal from coking wastewater. The objective of this study was to investigate the conditions for MAP pyrogenation and to characterize of MAP pyrolysate for its feasibility in recycling. Furthermore, MAP pyrolysate was characterized by scanning electron microscope (FESEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) as well as X-ray diffraction (XRD). The MAP pyrolysate could be produced at the optimal condition of a hydroxyl (OH(-)) to ammonium molar ratio of 2:1, a heating temperature of 110 degrees C, and a heating time of 3h. Surface characterization analysis indicated that the main component of the pyrolysate was amorphous magnesium sodium phosphate (MgNaPO(4)). The pyrolysate could be recycled as a magnesium and phosphate source at an optimum pH of 9.5. When the recycle times were increased, the ammonium nitrogen removal ratio gradually decreased if the pyrolysate was used without supplementation. When the recycle times were increased, the ammonium nitrogen removal efficiency was not decreased if the added pyrolysate was supplemented with MgCl(2).6H(2)O plus Na(2)HPO(4).12H(2)O during treatment. A high ammonium nitrogen removal ratio was obtained by using pre-formed MAP as seeding material.

  20. PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions

    NASA Astrophysics Data System (ADS)

    Khalili, Nasrin R.; Scheff, Peter A.; Holsen, Thomas M.

    To evaluate the chemical composition (source fingerprint) of the major sources of polyaromatic hydrocarbons (PAHs) in the Chicago metropolitan area, a study of major PAH sources was conducted during 1990-1992. In this study, a modified high-volume sampling method (PS-1 sampler) was employed to collect airborne PAHs in both the particulate and gas phases. Hewlett Packard 5890 gas chromatographs equipped with the flame ionization and mass spectrometer detectors (GC/FID and GC/MS) were used to analyze the samples. The sources sampled were: coke ovens, highway vehicles, heavy-duty diesel engines, gasoline engines and wood combustion. Results of this study showed that two and three ring PAHs were responsible for 98, 76, 92, 73 and 80% of the total concentration of measured 20 PAHs for coke ovens, diesel engines, highway tunnels, gasoline engines and wood combustion samples, respectively. Six ring PAHs such as indeno(1,2,3- cd)pyrene and benzo( ghi)perylene were mostly below the detection limit of this study and only detected in the highway tunnel, diesel and gasoline engine samples. The source fingerprints were obtained by averaging the ratios of individual PAH concentrations to the total concentration of categorical pollutants including: (a) total measured mass of PAHs with retention times between naphthalene and coronene, (b) the mass of the 20 PAHs measured in this study, (c) total VOCs, and (d) total PM10. Since concentrations of the above categorical pollutants were different for individual samples and different sources, the chemical composition patterns obtained for each categorical pollutant were different. The source fingerprints have been developed for use in chemical mass balance receptor modeling calculations.

  1. 40 CFR 60.105a - Monitoring of emissions and operations for fluid catalytic cracking units (FCCU) and fluid coking...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... with the approved alternative for monitoring exhaust gas flow rate in 40 CFR 63.1573(a) of the National... rate. As an alternative to a CPMS, the owner or operator must comply with the requirements in either... of a jet ejector type wet scrubber or other type of wet scrubber equipped with atomizing...

  2. 40 CFR 60.105a - Monitoring of emissions and operations for fluid catalytic cracking units (FCCU) and fluid coking...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with the approved alternative for monitoring exhaust gas flow rate in 40 CFR 63.1573(a) of the National... rate. As an alternative to a CPMS, the owner or operator must comply with the requirements in either... of a jet ejector type wet scrubber or other type of wet scrubber equipped with atomizing...

  3. 40 CFR 60.105a - Monitoring of emissions and operations for fluid catalytic cracking units (FCCU) and fluid coking...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with the approved alternative for monitoring exhaust gas flow rate in 40 CFR 63.1573(a) of the National... rate. As an alternative to a CPMS, the owner or operator must comply with the requirements in either... of a jet ejector type wet scrubber or other type of wet scrubber equipped with atomizing...

  4. 40 CFR 60.105a - Monitoring of emissions and operations for fluid catalytic cracking units (FCCU) and fluid coking...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) of this section. (A) As an alternative to pressure drop, the owner or operator of a jet ejector type... the hourly average pressure drop, liquid feed rate, and exhaust gas flow rate. As an alternative to a... alternative to exhaust gas flow rate, the owner or operator shall comply with the approved alternative...

  5. 40 CFR 60.105a - Monitoring of emissions and operations for fluid catalytic cracking units (FCCU) and fluid coking...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) of this section. (A) As an alternative to pressure drop, the owner or operator of a jet ejector type... the hourly average pressure drop, liquid feed rate, and exhaust gas flow rate. As an alternative to a... alternative to exhaust gas flow rate, the owner or operator shall comply with the approved alternative...

  6. A Real-Time Mathematical Model for the Two-Dimensional Temperature Field of Petroleum Coke Calcination in Vertical Shaft Calciner

    NASA Astrophysics Data System (ADS)

    Xiao, Jin; Huang, Jindi; Zhong, Qifan; Li, Fachuang; Zhang, Hongliang; Li, Jie

    2016-08-01

    A real-time mathematical model for the two-dimensional temperature field of petroleum coke calcination in vertical shaft calciner was developed based on computational fluid dynamics. In the modeling process, the petroleum coke discharging process was described by the solid viscous flow, the dynamic heat flux boundary condition was adopted to specify the heat transfer between the flue wall and the gas in the flue, and the Arrhenius equation was used to characterize the pyrolysis process of petroleum coke. The model was validated with both measurement data and data from the literature. The effects of discharge rate per pot, volatile content of green coke, and excess air coefficient on the temperature field of the vertical shaft calciner were investigated with the use of the developed model. The following reasonable operating conditions were obtained: the discharge rate per pot should be less than 90 kg/h, the volatile content of green coke should be in the range of 9-11%, and the excess air coefficient should be in the range of 1.10-1.20. In this work, the governing equations were discretized by using the finite volume method, and the discrete linear equations were solved by using sparse matrix package UMFPACK. The model calculating process takes about less than 15 s. Therefore, the model is beneficial in realizing real-time online temperature detection of petroleum coke calcination in a vertical shaft calciner.

  7. Semi-coke briquettes: towards reducing emissions of primary PM2.5, particulate carbon, and carbon monoxide from household coal combustion in China.

    PubMed

    Li, Qing; Li, Xinghua; Jiang, Jingkun; Duan, Lei; Ge, Su; Zhang, Qi; Deng, Jianguo; Wang, Shuxiao; Hao, Jiming

    2016-01-01

    Direct household use of unprocessed raw coals for cooking and heating without any air pollution control device has caused serious indoor and outdoor environment problems by emitting particulate matter (PM) and gaseous pollutants. This study examined household emission reduction by switching from unprocessed bituminous and anthracite coals to processed semi-coke briquettes. Two typical stoves were used to test emission characteristics when burning 20 raw coal samples commonly used in residential heating activities and 15 semi-coke briquette samples which were made from bituminous coals by industrial carbonization treatment. The carbonization treatment removes volatile compounds from raw coals which are the major precursors for PM formation and carbon emission. The average emission factors of primary PM2.5, elemental carbon, organic carbon, and carbon monoxide for the tested semi-coke briquettes are much lower than those of the tested raw coals. Based on the current coal consumption data in China, switching to semi-coke briquettes can reduce average emission factors of these species by about 92%, 98%, 91%, and 34%, respectively. Additionally, semi-coke briquette has relatively lower price and higher burnout ratio. The replacement of raw coals with semi-coke briquettes is a feasible path to reduce pollution emissions from household activities.

  8. Semi-coke briquettes: towards reducing emissions of primary PM2.5, particulate carbon, and carbon monoxide from household coal combustion in China

    NASA Astrophysics Data System (ADS)

    Li, Qing; Li, Xinghua; Jiang, Jingkun; Duan, Lei; Ge, Su; Zhang, Qi; Deng, Jianguo; Wang, Shuxiao; Hao, Jiming

    2016-01-01

    Direct household use of unprocessed raw coals for cooking and heating without any air pollution control device has caused serious indoor and outdoor environment problems by emitting particulate matter (PM) and gaseous pollutants. This study examined household emission reduction by switching from unprocessed bituminous and anthracite coals to processed semi-coke briquettes. Two typical stoves were used to test emission characteristics when burning 20 raw coal samples commonly used in residential heating activities and 15 semi-coke briquette samples which were made from bituminous coals by industrial carbonization treatment. The carbonization treatment removes volatile compounds from raw coals which are the major precursors for PM formation and carbon emission. The average emission factors of primary PM2.5, elemental carbon, organic carbon, and carbon monoxide for the tested semi-coke briquettes are much lower than those of the tested raw coals. Based on the current coal consumption data in China, switching to semi-coke briquettes can reduce average emission factors of these species by about 92%, 98%, 91%, and 34%, respectively. Additionally, semi-coke briquette has relatively lower price and higher burnout ratio. The replacement of raw coals with semi-coke briquettes is a feasible path to reduce pollution emissions from household activities.

  9. Semi-coke briquettes: towards reducing emissions of primary PM2.5, particulate carbon, and carbon monoxide from household coal combustion in China.

    PubMed

    Li, Qing; Li, Xinghua; Jiang, Jingkun; Duan, Lei; Ge, Su; Zhang, Qi; Deng, Jianguo; Wang, Shuxiao; Hao, Jiming

    2016-01-01

    Direct household use of unprocessed raw coals for cooking and heating without any air pollution control device has caused serious indoor and outdoor environment problems by emitting particulate matter (PM) and gaseous pollutants. This study examined household emission reduction by switching from unprocessed bituminous and anthracite coals to processed semi-coke briquettes. Two typical stoves were used to test emission characteristics when burning 20 raw coal samples commonly used in residential heating activities and 15 semi-coke briquette samples which were made from bituminous coals by industrial carbonization treatment. The carbonization treatment removes volatile compounds from raw coals which are the major precursors for PM formation and carbon emission. The average emission factors of primary PM2.5, elemental carbon, organic carbon, and carbon monoxide for the tested semi-coke briquettes are much lower than those of the tested raw coals. Based on the current coal consumption data in China, switching to semi-coke briquettes can reduce average emission factors of these species by about 92%, 98%, 91%, and 34%, respectively. Additionally, semi-coke briquette has relatively lower price and higher burnout ratio. The replacement of raw coals with semi-coke briquettes is a feasible path to reduce pollution emissions from household activities. PMID:26782059

  10. Semi-coke briquettes: towards reducing emissions of primary PM2.5, particulate carbon, and carbon monoxide from household coal combustion in China

    PubMed Central

    Li, Qing; Li, Xinghua; Jiang, Jingkun; Duan, Lei; Ge, Su; Zhang, Qi; Deng, Jianguo; Wang, Shuxiao; Hao, Jiming

    2016-01-01

    Direct household use of unprocessed raw coals for cooking and heating without any air pollution control device has caused serious indoor and outdoor environment problems by emitting particulate matter (PM) and gaseous pollutants. This study examined household emission reduction by switching from unprocessed bituminous and anthracite coals to processed semi-coke briquettes. Two typical stoves were used to test emission characteristics when burning 20 raw coal samples commonly used in residential heating activities and 15 semi-coke briquette samples which were made from bituminous coals by industrial carbonization treatment. The carbonization treatment removes volatile compounds from raw coals which are the major precursors for PM formation and carbon emission. The average emission factors of primary PM2.5, elemental carbon, organic carbon, and carbon monoxide for the tested semi-coke briquettes are much lower than those of the tested raw coals. Based on the current coal consumption data in China, switching to semi-coke briquettes can reduce average emission factors of these species by about 92%, 98%, 91%, and 34%, respectively. Additionally, semi-coke briquette has relatively lower price and higher burnout ratio. The replacement of raw coals with semi-coke briquettes is a feasible path to reduce pollution emissions from household activities. PMID:26782059

  11. A Real-Time Mathematical Model for the Two-Dimensional Temperature Field of Petroleum Coke Calcination in Vertical Shaft Calciner

    NASA Astrophysics Data System (ADS)

    Xiao, Jin; Huang, Jindi; Zhong, Qifan; Li, Fachuang; Zhang, Hongliang; Li, Jie

    2016-02-01

    A real-time mathematical model for the two-dimensional temperature field of petroleum coke calcination in vertical shaft calciner was developed based on computational fluid dynamics. In the modeling process, the petroleum coke discharging process was described by the solid viscous flow, the dynamic heat flux boundary condition was adopted to specify the heat transfer between the flue wall and the gas in the flue, and the Arrhenius equation was used to characterize the pyrolysis process of petroleum coke. The model was validated with both measurement data and data from the literature. The effects of discharge rate per pot, volatile content of green coke, and excess air coefficient on the temperature field of the vertical shaft calciner were investigated with the use of the developed model. The following reasonable operating conditions were obtained: the discharge rate per pot should be less than 90 kg/h, the volatile content of green coke should be in the range of 9-11%, and the excess air coefficient should be in the range of 1.10-1.20. In this work, the governing equations were discretized by using the finite volume method, and the discrete linear equations were solved by using sparse matrix package UMFPACK. The model calculating process takes about less than 15 s. Therefore, the model is beneficial in realizing real-time online temperature detection of petroleum coke calcination in a vertical shaft calciner.

  12. [Screening of a Highly Efficient Quinoline-degrading Strain and Its Enhanced Biotreatment on Coking Waste Water].

    PubMed

    Li, Jing; Li, Wen-ying

    2015-04-01

    A bacterial strain, which could utilize quinoline as the sole carbon, nitrogen and energy source, was isolated from the activated sludge in a coking wastewater treatment plant. According to the 16S rRNA gene sequence analysis, the strain was identified as Acidovorax sp. Taken into consideration of both the growth and the quinoline degradation of the strain, the optimized degradation conditions were acquired as following: 10% inoculum, pH value of 8.0-10.0, 35 degrees C and 150 r x min(-1). The process of its growth was simulated by Haldane kinetic model under different initial quinoline concentrations, the fitted curve had a good correlation with test measured values. Furthermore, coking wastewater was bioaugmented by the mixed strains of DQS-01 and D2 with enhanced process in a moving bed biofilm reactor, and the COD degradation rate was 87.4% within 72 h.

  13. Enhanced phenol degradation in coking wastewater by immobilized laccase on magnetic mesoporous silica nanoparticles in a magnetically stabilized fluidized bed.

    PubMed

    Wang, Feng; Hu, Yiru; Guo, Chen; Huang, Wei; Liu, Chun-Zhao

    2012-04-01

    The immobilized laccase on magnetic mesoporous silica nanoparticles has been developed for efficient phenol degradation. The degradation rate of phenol by the immobilized laccase was 2-fold higher than that of the free laccase, and the immobilized laccase retained 71.3% of its initial degradation ability after 10 successive batch treatments of coking wastewater. The phenol degradation in the coking wastewater was enhanced in a continuous treatment process by the immobilized laccase in a magnetically stabilized fluidized bed (MSFB) because of good mixing and mass transfer. The degradation rate of phenol maintained more than 99% at a flow rate of less than 450mLh(-1) and decreased slowly to 91.5% after 40h of the continuous operation in the MSFB. The present work indicated that the immobilized laccase on magnetic mesoporous supports together with the MSFB provided a promising avenue for the continuous enzymatic degradation of phenolic compounds in industrial wastewater.

  14. Multimedia fate and source apportionment of polycyclic aromatic hydrocarbons in a coking industry city in Northern China.

    PubMed

    Wang, Y L; Xia, Z H; Liu, D; Qiu, W X; Duan, X L; Wang, R; Liu, W J; Zhang, Y H; Wang, D; Tao, S; Liu, W X

    2013-10-01

    A steady state Level III fate model was established and applied to quantify source-receptor relationship in a coking industry city in Northern China. The local emission inventory of PAHs, as the model input, was acquired based on energy consumption and emission factors. The model estimations were validated by measured data and indicated remarkable variations in the paired isomeric ratios. When a rectification factor, based on the receptor-to-source ratio, was calculated by the fate model, the quantitatively verified molecular diagnostic ratios provided reasonable results of local PAH emission sources. Due to the local ban and measures on small scale coking activities implemented from the beginning of 2004, the model calculations indicated that the local emission amount of PAHs in 2009 decreased considerably compared to that in 2003. PMID:23845769

  15. The association of XRCC1 haplotypes and chromosomal damage levels in peripheral blood lymphocyte among coke-oven workers

    SciTech Connect

    Shuguang Leng; Juan Cheng; Linyuan Zhang; Yong Niu; Yufei Dai; Zufei Pan; Bin Li; Fengsheng He; Yuxin Zheng

    2005-05-15

    Theoretically, a haplotype has a higher level of heterozygosity than individual single nucleotide polymorphism (SNP) and the association study based on the haplotype may have an increased power for detecting disease associations compared with SNP-based analysis. In this study, we investigated the effects of four haplotype-tagging SNPs (htSNP) and the inferred haplotype pairs of the X-ray cross-complementing group 1 (XRCC1) gene on chromosome damage detected by the cytokinesis-block micronucleus assay. The study included 141 coke-oven workers with exposure to a high level of polycyclic aromatic hydrocarbons and 66 nonexposed controls. The frequencies of total MN and MNed cells were borderline associated with the Arg{sup 194}Trp polymorphism (P = 0.053 and P = 0.050, respectively) but not associated with the Arg{sup 280}His, Arg{sup 399}Gln and Gln{sup 632}Gln polymorphisms among coke-oven workers. Five haplotypes, including CGGG, TGGG, CAGG, CGAG, and CGGA, were inferred based on the four htSNPs of XRCC1 gene. The haplotype CGGG was associated with the decreased frequencies of total MN and MNed cells, and the haplotypes TGGG and CGAG were associated with the increased frequencies of total MN and MNed cells with adjustment for covariates among coke-oven workers. This study showed that the haplotypes derived from htSNPs in the XRCC1 gene were more likely than single SNPs to correlate with the polycyclic aromatic hydrocarbon-induced chromosome damage among coke-oven workers.

  16. A highly active and coke-resistant steam reforming catalyst comprising uniform nickel-iron alloy nanoparticles.

    PubMed

    Koike, Mitsuru; Li, Dalin; Nakagawa, Yoshinao; Tomishige, Keiichi

    2012-12-01

    Doing fine with Ni-Fe: The calcination and reduction of a hydrotalcite precursor containing Ni and Fe ions gives uniform Ni-Fe alloy nanoparticles mixed with Mg(Ni, Fe, Al)O particles. The uniformity of the Ni-Fe alloy nanoparticles is connected to the catalyst's high activity and resistance to coke formation in toluene and phenol steam reforming reactions.

  17. Characteristics of polycyclic aromatic hydrocarbons and their gas/particle partitioning from fugitive emissions in coke plants

    NASA Astrophysics Data System (ADS)

    Mu, Ling; Peng, Lin; Liu, Xiaofeng; Song, Chongfang; Bai, Huiling; Zhang, Jianqiang; Hu, Dongmei; He, Qiusheng; Li, Fan

    2014-02-01

    Coking is one of the most important emission sources of polycyclic aromatic hydrocarbons (PAHs) in China. However, there is little information available on the emission characteristics of PAHs from fugitive emission during coking, especially on the specific processes dominating the gas-particle partitioning of PAHs. In this study, emission characteristics and gas-particle partitioning of PAHs from fugitive emission in four typical coke plants (CPs) with different scales and techniques were investigated. The average concentrations of total PAHs from fugitive emission at CP2, CP3 and CP4 (stamp charging) were 146.98, 31.82, and 35.20 μg m-3, which were 13.38-, 2.90- and 3.20-fold higher, respectively, than those at CP1 (top charging, 10.98 μg m-3). Low molecular weight PAHs with 2-3 rings made up 75.3% of the total PAHs on average, and the contributions of particulate PAH to the total BaP equivalent concentrations (BaPeq) in each plant were significantly higher than the corresponding contributions to the total PAH mass concentrations. The calculated total BaPeq concentrations varied from 0.19 to 10.86 μg m-3 with an average of 3.14 μg m-3, and more efficient measures to control fugitive emission in coke plants should be employed to prevent or reduce the health risk to workers. Absorption into organic matter dominated the gas-particle partitioning for most of the PAHs including PhA, FluA, Chr, BbF, BkF and BaP, while adsorption on elemental carbon appeared to play a dominant role for AcPy, AcP and Flu.

  18. Limitations of the removal of cyanide from coking wastewater by ozonation and by the hydrogen peroxide-ozone process.

    PubMed

    Pueyo, N; Miguel, N; Ovelleiro, J L; Ormad, M P

    2016-01-01

    The purpose of this study is to compare the efficiency of ozonation and the hydrogen peroxide-ozone process for the removal of cyanide from coking wastewater. The most efficient oxidation process is combined with coagulation-flocculation-decantation and lime-soda ash softening pretreatments. The oxidation in aqueous solution and industrial wastewater (at pH 9.5-12.3) by O3 was carried out using a range of concentration of consumed O3 from 10 to 290 mg/L. A molar ratio of H2O2/O3 from 0.1 to 5.2 with different concentrations of O3 constants was used for the H2O2-O3 process. The maximum cyanide removal obtained in coking wastewater was 90% using a mass ratio of O3/CN(-) of 9.5. Using lower concentrations of O3, cyanide is not removed and can even be generated due to the presence of other cyanide precursor organic micropollutants in the industrial matrix. The concentration of O3 is reduced to half for the same cyanide removal efficiency if the pretreatments are applied to reduce the carbonate and bicarbonate ions. The cyanide removal efficiency in coking wastewater is not improved if the O3 is combined with the H2O2. However, the preliminary cyanide removal treatment in aqueous solution showed an increase in the cyanide removal efficiency for the H2O2-O3 process.

  19. Preparation and characterization of bi-metallic nanoparticle catalyst having better anti-coking properties using reverse micelle technique

    NASA Astrophysics Data System (ADS)

    Zacharia, Thomas

    Energy needs are rising on an exponential basis. The mammoth energy sources like coal, natural gas and petroleum are the cause of pollution. The large outcry for an alternate energy source which is environmentally friendly and energy efficient is heard during the past few years. This is where “Clean-Fuel” like hydrogen gained its ground. Hydrogen is mainly produced by steam methane reforming (SMR). An alternate sustainable process which can reduce the cost as well as eliminate the waste products is Tri-reforming. In both these reforming processes nickel is used as catalyst. However as the process goes on the catalyst gets deactivated due to coking on the catalytic surface. This goal of this thesis work was to develop a bi-metallic catalyst which has better anti-coking properties compared to the conventional nickel catalyst. Tin was used to dope nickel. It was found that Ni3Sn complex around a core of Ni is coking resistant compared to pure nickel catalyst. Reverse micelle synthesis of catalyst preparation was used to control the size and shape of catalytic particles. These studies will benefit researches on hydrogen production and catalyst manufactures who work on different bi-metallic combinations.

  20. Limitations of the removal of cyanide from coking wastewater by ozonation and by the hydrogen peroxide-ozone process.

    PubMed

    Pueyo, N; Miguel, N; Ovelleiro, J L; Ormad, M P

    2016-01-01

    The purpose of this study is to compare the efficiency of ozonation and the hydrogen peroxide-ozone process for the removal of cyanide from coking wastewater. The most efficient oxidation process is combined with coagulation-flocculation-decantation and lime-soda ash softening pretreatments. The oxidation in aqueous solution and industrial wastewater (at pH 9.5-12.3) by O3 was carried out using a range of concentration of consumed O3 from 10 to 290 mg/L. A molar ratio of H2O2/O3 from 0.1 to 5.2 with different concentrations of O3 constants was used for the H2O2-O3 process. The maximum cyanide removal obtained in coking wastewater was 90% using a mass ratio of O3/CN(-) of 9.5. Using lower concentrations of O3, cyanide is not removed and can even be generated due to the presence of other cyanide precursor organic micropollutants in the industrial matrix. The concentration of O3 is reduced to half for the same cyanide removal efficiency if the pretreatments are applied to reduce the carbonate and bicarbonate ions. The cyanide removal efficiency in coking wastewater is not improved if the O3 is combined with the H2O2. However, the preliminary cyanide removal treatment in aqueous solution showed an increase in the cyanide removal efficiency for the H2O2-O3 process. PMID:27438254

  1. Superfund record of decision amendment (EPA Region 5): Allied Chemical and Ironton Coke, Ironton, OH, September 30, 1998

    SciTech Connect

    Not Available

    1999-03-01

    This decision document, together with the Allied Chemical/Ironton Coke Record of Decision (ROD) dated December 28, 1990, the first Allied Chemical/Ironton Coke ROD Amendment dated July 31, 1995 (ROD Amendment No 1), and the second ROD Amendment dated September 4, 1997 (ROD Amendment No 2), presents the selected remedial action for the Allied Chemical/Ironton Coke site. The remedy selected in the 1990 ROD, 1995 ROD Amendment No. 1, and 1997 ROD Amendment No. 2 for the site is a final remedial action. Through ROD Amendment No. 3 the following components of the selected remedy are being modified: Replace in-situ bioremediation of 457,000 cubic yards of soil in Lagoons 1--4 with hot spot excavation and wetland development; and Replace incineration of Lagoon 5 materials with recycling, treatment, and/or disposal of the K087 listed waste in an approved off-site hazardous waste facility and the use of the remaining material, excluding debris, as an alternative fuel.

  2. Processes forming Gas, Tar, and Coke in Cellulose Gasification from Gas-Phase Reactions of Levoglucosan as Intermediate.

    PubMed

    Fukutome, Asuka; Kawamoto, Haruo; Saka, Shiro

    2015-07-01

    The gas-phase pyrolysis of levoglucosan (LG), the major intermediate species during cellulose gasification, was studied experimentally over the temperature range of 400-900 °C. Gaseous LG did not produce any dehydration products, which include coke, furans, and aromatic substances, although these are characteristic products of the pyrolysis of molten LG. Alternatively, at >500 °C, gaseous LG produced only fragmentation products, such as noncondensable gases and condensable C1 -C3 fragments, as intermediates during noncondensable gas formation. Therefore, it was determined that secondary reactions of gaseous LG can result in the clean (tar- and coke-free) gasification of cellulose. Cooling of the remaining LG in the gas phase caused coke formation by the transition of the LG to the molten state. The molecular mechanisms that govern the gas- and molten-phase reactions of LG are discussed in terms of the acid catalyst effect of intermolecular hydrogen bonding to promote the molten-phase dehydration reactions. PMID:26099988

  3. Ambient air quality and emission characteristics in and around a non-recovery type coke oven using high sulphur coal.

    PubMed

    Saikia, Jyotilima; Saikia, Prasenjit; Boruah, Ratan; Saikia, Binoy K

    2015-10-15

    The objective of this study is to determine the concentrations of gaseous species and aerosols in and around a non-recovery type coke making oven using high sulphur coals. In this paper, physico-chemical properties of the feed coal sample are reported along with the collection and measurement of the emitted gases (SO2, NO2, and NH3) and aerosol particles (PM2.5, PM10) during the coal carbonization in the oven. The coals used are from northeast India and they are high sulphur in nature. The concentrations of the gases e.g., SO2, NO2 and NH3 emitted are observed to be within the limit of National Ambient Air Quality Standard for 24h. The mean PM10 and PM2.5 concentrations are found to be 125.4 μg/m(3) and 48.6 μg/m(3) respectively, as measured during three days of coke oven operations. About 99% of the SO2 in flue gases is captured by using an alkali treatment during the coke oven operation. A Principal Component Analysis (PCA) after Centred Log Ratio (clr) transformation is also performed to know the positive and negative correlation among the coal properties and the emission parameters.

  4. Processes forming Gas, Tar, and Coke in Cellulose Gasification from Gas-Phase Reactions of Levoglucosan as Intermediate.

    PubMed

    Fukutome, Asuka; Kawamoto, Haruo; Saka, Shiro

    2015-07-01

    The gas-phase pyrolysis of levoglucosan (LG), the major intermediate species during cellulose gasification, was studied experimentally over the temperature range of 400-900 °C. Gaseous LG did not produce any dehydration products, which include coke, furans, and aromatic substances, although these are characteristic products of the pyrolysis of molten LG. Alternatively, at >500 °C, gaseous LG produced only fragmentation products, such as noncondensable gases and condensable C1 -C3 fragments, as intermediates during noncondensable gas formation. Therefore, it was determined that secondary reactions of gaseous LG can result in the clean (tar- and coke-free) gasification of cellulose. Cooling of the remaining LG in the gas phase caused coke formation by the transition of the LG to the molten state. The molecular mechanisms that govern the gas- and molten-phase reactions of LG are discussed in terms of the acid catalyst effect of intermolecular hydrogen bonding to promote the molten-phase dehydration reactions.

  5. The integration of cyanide hydratase and tyrosinase catalysts enables effective degradation of cyanide and phenol in coking wastewaters.

    PubMed

    Martínková, Ludmila; Chmátal, Martin

    2016-10-01

    The aim of this study was to design an effective method for the bioremediation of coking wastewaters, specifically for the concurrent elimination of their highly toxic components - cyanide and phenols. Almost full degradation of free cyanide (0.32-20 mM; 8.3-520 mg L(-1)) in the model and the real coking wastewaters was achieved by using a recombinant cyanide hydratase in the first step. The removal of cyanide, a strong inhibitor of tyrosinase, enabled an effective degradation of phenols by this enzyme in the second step. Phenol (16.5 mM, 1,552 mg L(-1)) was completely removed from a real coking wastewater within 20 h and cresols (5.0 mM, 540 mg L(-1)) were removed by 66% under the same conditions. The integration of cyanide hydratase and tyrosinase open up new possibilities for the bioremediation of wastewaters with complex pollution.

  6. Propane dehydrogenation over Pt-Cu bimetallic catalysts: the nature of coke deposition and the role of copper

    NASA Astrophysics Data System (ADS)

    Han, Zhiping; Li, Shuirong; Jiang, Feng; Wang, Tuo; Ma, Xinbin; Gong, Jinlong

    2014-08-01

    This paper describes an investigation of the promotional effect of Cu on the catalytic performance of Pt/Al2O3 catalysts for propane dehydrogenation. We have shown that Pt/Al2O3 catalysts possess higher propylene selectivity and lower deactivation rate as well as enhanced anti-coking ability upon Cu addition. The optimized loading content of Cu is 0.5 wt%, which increases the propylene selectivity to 90.8% with a propylene yield of 36.5%. The origin of the enhanced catalytic performance and anti-coking ability of the Pt-Cu/Al2O3 catalyst is ascribed to the intimate interaction between Pt and Cu, which is confirmed by the change of particle morphology and atomic electronic environment of the catalyst. The Pt-Cu interaction inhibits propylene adsorption and elevates the energy barrier of C-C bond rupture. The inhibited propylene adsorption diminishes the possibility of coke formation and suppresses the cracking reaction towards the formation of lighter hydrocarbons on Pt-Cu/Al2O3, while a higher energy barrier for C-C bond cleavage suppresses the methane formation.

  7. Different solvents for the regeneration of the exhausted activated carbon used in the treatment of coking wastewater.

    PubMed

    Guo, Dongsheng; Shi, Qiantao; He, Binbin; Yuan, Xiaoying

    2011-02-28

    The solvents n-pentane, methylene dichloride, ethyl ether and dodecylbenzenesulphonic acid sodium were used to regenerate exhausted activated carbon used in the process of treating coking wastewater, and the efficiency, ability, and optimum conditions of the different solvents on this regeneration were investigated. The results indicate that n-pentane could effectively remove refractory organic compounds in the coking wastewater adsorbed on the surface of activated carbon and could repeatedly regenerate the exhausted activated carbon to recover its adsorption activity. Under the conditions of a regeneration time of 20 min, a regeneration temperature of 25°C, an activated carbon drying time of 300 min, and an activated carbon drying temperature of 150°C, n-pentane had the best regeneration efficiency, at 98.27%, for exhausted activated carbon. Gas chromatography-mass spectrometry analysis results show that the nature of the activated carbon regenerated by organic solvents had no remarkable change in adsorption for the main types of organic compounds in coking wastewater. The good regenerative effect of n-pentane on the activated carbon may be due its stronger desorption of esters embedded within the internal structure of activated carbon. PMID:21236567

  8. The integration of cyanide hydratase and tyrosinase catalysts enables effective degradation of cyanide and phenol in coking wastewaters.

    PubMed

    Martínková, Ludmila; Chmátal, Martin

    2016-10-01

    The aim of this study was to design an effective method for the bioremediation of coking wastewaters, specifically for the concurrent elimination of their highly toxic components - cyanide and phenols. Almost full degradation of free cyanide (0.32-20 mM; 8.3-520 mg L(-1)) in the model and the real coking wastewaters was achieved by using a recombinant cyanide hydratase in the first step. The removal of cyanide, a strong inhibitor of tyrosinase, enabled an effective degradation of phenols by this enzyme in the second step. Phenol (16.5 mM, 1,552 mg L(-1)) was completely removed from a real coking wastewater within 20 h and cresols (5.0 mM, 540 mg L(-1)) were removed by 66% under the same conditions. The integration of cyanide hydratase and tyrosinase open up new possibilities for the bioremediation of wastewaters with complex pollution. PMID:27328365

  9. Influence of inorganic anions on metals release from oil sands coke and on toxicity of nickel and vanadium to Ceriodaphnia dubia.

    PubMed

    Puttaswamy, Naveen; Liber, Karsten

    2012-02-01

    In a previous study it was shown that pH significantly influences the release of metals from oil sands coke, particularly Ni and V which were identified as the cause of coke leachate toxicity. Coke comes in contact with oil sands process water (OSPW) during its transport to and long term storage in reclamation landscapes. However, the influence of dominant inorganic anions present in OSPW (i.e. HCO(3)(-), Cl(-) and SO(4)(2-)) on metals release from coke and on speciation and toxicity of Ni and V, has not been characterized before. Coke was subjected to a 15-d batch leaching process at four levels of HCO(3)(-), Cl(-) and SO(4)(2-) to determine the influence on metals release and speciation. Further, the effects of each of the three anions on Ni and V toxicity, as well as the mixture toxicity of Ni and V, were assessed using the three-brood Ceriodaphnia dubia test. Inorganic anions had a significant influence on the type and amount of metals released from coke. Specifically, sulfate increased the mobilization of cationic metals (e.g. Ni, Fe, Mn and Zn), whereas bicarbonate enhanced the release of oxyanion forming metals (e.g. Al, As, Mo and V) from coke. Chloride had no particular effect on the type and amount of metals released. With respect to toxicity, elevated bicarbonate levels decreased the 7-d Ni IC50 from 6.3 to 2.3 μg L(-1), whereas sulfate showed an ameliorative effect against V toxicity to C. dubia. In combination, Ni and V acted additively at their highest sub-lethal concentrations. Aqueous chemistry and toxicity of Ni and V are discussed with the goal of informing reclamation efforts at the Athabasca oil sands.

  10. Copyrolysis of coal and waste plastics under coke-oven gas

    SciTech Connect

    Liao, H.; Li, B.; Zhang, B.

    1998-12-31

    A way for increasing oil and decreasing water (IODW) in copyrolysis of coal with coke-oven gas (COG) by adding waste plastics was suggested and the effects of pressure, heating rate and final temperature on the yields of char, oil and water obtained from copyrolysis of coal and waste plastics under COG were investigated in detail. Copyrolysis of Chinese Xianfeng lignite and waste plastics under COG were carried out in a 10g fixed-bed reactor under pressures of 0.1--3MPa, heating rate from 5--25 K/min and final temperatures of 723--923K. The results indicated that by adding 5% of high-density polyethylene (HDPE), the oil yield increased 4.5% (excluding the oil yield from HDPE pyrolysis) more than that of coal pyrolysis without HDPE, and water decreased about 2.2%. The yields of increased oil and decreased water accounted for 21.2% and 13% of Xianfeng lignite pyrolysis alone, respectively. With increasing pressure and final temperature, the total conversion, oil yields and water increased in varying degrees. Decreasing heating rate is beneficial to improve oil yield and reduce water. Adding waste plastics in copyrolysis of coal with COG not only improves the economic interest but also creates a way for high effective treatment of waste plastics.

  11. Isotopic Evidence for Oil Sands Petroleum Coke in the Peace-Athabasca Delta.

    PubMed

    Jautzy, Josué J; Ahad, Jason M E; Gobeil, Charles; Smirnoff, Anna; Barst, Benjamin D; Savard, Martine M

    2015-10-20

    The continued growth of mining and upgrading activities in Canada's Athabasca oil sands (AOS) region has led to concerns about emissions of contaminants such as polycyclic aromatic hydrocarbons (PAHs). Whereas a recent increase in PAH emissions has been demonstrated within around 50 km of the main center of surface mining and upgrading operations, the exact nature of the predominant source(s) and the geographical extent of the deposition are still under debate. Here, we report a century-long source apportionment of PAHs using dual (δ(2)H, δ(13)C) compound-specific isotope analysis on phenanthrene deposited in a lake from the Athabasca sector of the Peace-Athabasca Delta situated ∼150 km downstream (north) of the main center of mining operations. The isotopic signatures in the core were compared to those of the main potential sources in this region (i.e., unprocessed AOS bitumen, upgrader residual coke, forest fires, coal, gasoline and diesel soot). A significant concurrent increase (∼55.0‰) in δ(2)H and decrease (∼1.5‰) in δ(13)C of phenanthrene over the last three decades pointed to an increasingly greater component of petcoke-derived PAHs. This study is the first to quantify long-range (i.e., >100 km) transport of a previously under-considered anthropogenic PAH source in the AOS region. PMID:26404505

  12. The effects of adsorbing organic pollutants from super heavy oil wastewater by lignite activated coke.

    PubMed

    Tong, Kun; Lin, Aiguo; Ji, Guodong; Wang, Dong; Wang, Xinghui

    2016-05-01

    The adsorption of organic pollutants from super heavy oil wastewater (SHOW) by lignite activated coke (LAC) was investigated. Specifically, the effects of LAC adsorption on pH, BOD5/COD(Cr)(B/C), and the main pollutants before and after adsorption were examined. The removed organic pollutants were characterized by Fourier transform infrared spectroscopy (FTIR), Boehm titrations, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography with organic carbon detection (LC-OCD). FTIR spectra indicated that organic pollutants containing -COOH and -NH2 functional groups were adsorbed from the SHOW. Boehm titrations further demonstrated that carboxyl, phenolic hydroxyl, and lactonic groups on the surface of the LAC increased. GC-MS showed that the removed main organic compounds are difficult to be degraded or extremely toxics to aquatic organisms. According to the results of LC-OCD, 30.37 mg/L of dissolved organic carbons were removed by LAC adsorption. Among these, hydrophobic organic contaminants accounted for 25.03 mg/L. Furthermore, LAC adsorption was found to increase pH and B/C ratio of the SHOW. The mechanisms of adsorption were found to involve between the hydrogen bonding and the functional groups of carboxylic, phenolic, and lactonic on the LAC surface. In summary, all these results demonstrated that LAC adsorption can remove bio-refractory DOCs, which is beneficial for biodegradation.

  13. Removal of phenol from coke-oven wastewater by cross-flow nanofiltration membranes.

    PubMed

    Kumar, Ramesh; Pal, Parimal

    2013-05-01

    This study investigated the phenol rejection characteristics of some nanofiltration membranes during treatment of coke wastewater. Four different types of composite polyamide commercial nanofiltration membranes (Sepro, USA) were tested under different operating conditions including transmembrane pressure, pH and recovery rate. When pressure was increased from 4 to 16 bars, the percentage of rejection of phenol in the permeate increased from 72.5% to 97.7% while yielding a high flux of 118 litres per square meter per hour(LMH) at a volumetric cross flow rate of 800 litres per hour at pH 10 (in recirculation mode) in case of NF1 membrane. The effect of recovery rate on the rejection coefficient of phenol and flux was also studied in concentrated mode and found that a recovery rate of up 55% nanofiltration was successfully operated without much decline of flux and rejection coefficient. Finally, nanofiltration had great efficiency in phenol removal from industrial wastewater and was considered suitable regarding its operation.

  14. Structural and High-Temperature Tensile Properties of Special Pitch-Coke Graphites

    NASA Technical Reports Server (NTRS)

    Kotlensky, W. V.; Martens, H. E.

    1961-01-01

    The room-temperature structural properties and the tensile properties up to 5000 F (275O C) were determined for ten grades of specially prepared petroleum-coke coal-tar-pitch graphites which were graphitized at 5430 F (3000 C). One impregnation with coal-tar pitch increased the bulk density from 1.41 to 1.57 g/cm3 and the maximum strength at 4500 F (2500 C) from 4000 to 5700 psi. None of the processing parameters studied had a marked effect on the closed porosity or the X-ray structure or the per cent graphitization. The coarse-particle filler resulted in the lowest coefficient of thermal expansion and the fine-particle filler in the highest coefficient. A marked improvement in uniformity of tensile strength was observed. A standard-deviation analysis gave a one-sigma value of approximately 150 psi for one of these special grades and values of 340-420 psi for three commercial grades.

  15. Effects of HyperCoal addition on coke strength and thermoplasticity of coal blends

    SciTech Connect

    Toshimasa Takanohashi; Takahiro Shishido; Ikuo Saito

    2008-05-15

    Ashless coal, also known as HyperCoal (HPC), was produced by thermal extraction of three coals of different ranks (Gregory caking coal, Warkworth steam coal, and Pasir subbituminous coal) with 1-methylnaphthalene (1-MN) at 360, 380, and 400{sup o}C. The effects of blending these HPCs into standard coal blends were investigated. Blending HPCs as 5-10% of a standard blend (Kouryusho:Goonyella:K9) enhanced the thermoplasticity over a wide temperature range. For blends made with the Pasir-HPC, produced from a noncaking coal, increasing the extraction temperature from 360 to 400{sup o}C increased the thermoplasticity significantly. Blends containing Warkworth-HPC, produced from a slightly caking coal, had a higher tensile strength than the standard blend in semicoke strength tests. The addition of 10% Pasir-HPC, extracted at 400{sup o}C, increased the tensile strength of the semicokes to the same degree as those made with Gregory-HPC. Furthermore, all HPC blends had a higher tensile strength and smaller weight loss during carbonization. These results suggest that the HPC became integrated into the coke matrix, interacting strongly with the other raw coals. 14 refs., 11 figs., 1 tab.

  16. Isolation and characterization of phenol degrading yeasts from wastewater in the coking plant of Zarand, Kerman

    PubMed Central

    Karimi, Maryam; Hassanshahian, Mehdi

    2016-01-01

    Phenol and phenolic compounds are environmental pollutants present in industrial wastewaters such as coal tar, oil refineries and petrochemical plants. Phenol removal from industrial effluents is extremely important for the protection of environment. Usually, phenol degradation is carried out by physicochemical methods that are costly and produce hazardous metabolites. Recently, phenol biodegradation has been considered. Yeasts are the most important phenol biodegraders. In this study, the phenol-degrading yeast from environmental samples (soil and wastewater) was isolated from the coking plant of Zarand, Kerman. Then total heterotrophic yeasts were counted. The soil samples had higher rates of yeast degrader, in comparison to wastewater samples. After three passages, four yeasts (K1, K2, K7 and K11) that had the highest growth rate were selected for further study. Also, these yeasts were able to remove phenol measured by Gibbs reagent. The effect of four different concentrations of phenol (50, 125, 200 and 275) mg L−1 was measured and three degradation patterns in these yeasts were observed. The hydrophobicity and emulsification activity were measured in all eleven yeasts. Finally, strong yeasts in phenol degrading yeasts were identified by molecular method using amplification of 18S rRNA gene region. The sequencing results showed that these isolated yeasts belonged to Candida tropicalis strain K1, Pichia guilliermondii strain K2, Meyerozyma guilliermondii strain K7 and C. tropicalis strain K11. PMID:26887222

  17. Heterotrophic nitrogen removal by Acinetobacter sp. Y1 isolated from coke plant wastewater.

    PubMed

    Liu, YuXiang; Hu, Tingting; Song, Yujie; Chen, Hongping; Lv, YongKang

    2015-11-01

    A strain of Acinetobacter sp. Y1, which exhibited an amazing ability to remove ammonium, nitrite and nitrate, was isolated from the activated sludge of a coking wastewater treatment plant. The aim of this work was to study the ability, influence factors and possible pathway of nitrogen removal by Acinetobacter sp. Y1. Results showed that maximum removal rate of NH4(+)-N by the strain was 10.28 mg-N/L/h. Carbon source had significant influence on the growth and ammonium removal efficiencies of strain Y1. Pyruvate, citrate and acetate were favourable carbon sources for the strain. Temperature, pH value and shaking speed could affect the growth and nitrogen removal ability. Nitrate or nitrite could be used as a sole nitrogen source for the growth and removed efficiently by the strain. N2 levels increased to 53.74%, 50.21% and 55.13% within 36 h when 100 mg/L NH4(+)-N, NO2(-)-N or NO3(-) -N was used as sole nitrogen source in the gas detection experiment. The activities of hydroxylamine oxidoreductase (HAO), nitrate reductase (NR) and nitrite reductase (NiR), which are key enzymes in heterotrophic nitrification and aerobic denitrification, were all detectable in the strain. Consequently, a possible pathway for ammonium removal by the strain was also suggested.

  18. Role of hydrogen in blast furnaces to improve productivity and decrease coke consumption

    SciTech Connect

    Agarwal, J.C.; Brown, F.C.; Chin, D.L.; Stevens, G.; Clark, R.; Smith, D.

    1995-12-01

    The hydrogen contained in blast furnace gases exerts a variety of physical, thermochemical, and kinetic effects as the gases pass through the various zones. The hydrogen is derived from two sources: (1) the dissociation of moisture in the blast air (ambient and injected with hot blast), and (2) the release from partial combustion of supplemental fuels (including moisture in atomizing water, steam, or transport air, if any). With each atom of oxygen (or carbon), the molar amounts of hydrogen released are more than six times higher for natural gas than for coal, and two times higher for natural gas than for oil. Injection of natural gas in a blast furnace is not a new process. Small amounts of natural gas--about 50--80 lb or 1,100--1,700 SCF/ton of hot metal--have been injected in many of the North American blast furnaces since the early 1960s, with excellent operating results. What is new, however, is a batter understanding of how natural gas reacts in the blast furnace and how natural gas and appropriate quantities of oxygen can be used to increase the driving rate or combustion rate of carbon (coke) in the blast furnace without causing hanging furnace and operating problems. The paper discusses the factors limiting blast furnace productivity and how H{sub 2} and O{sub 2} can increase productivity.

  19. Isolation and characterization of phenol degrading yeasts from wastewater in the coking plant of Zarand, Kerman.

    PubMed

    Karimi, Maryam; Hassanshahian, Mehdi

    2016-01-01

    Phenol and phenolic compounds are environmental pollutants present in industrial wastewaters such as coal tar, oil refineries and petrochemical plants. Phenol removal from industrial effluents is extremely important for the protection of environment. Usually, phenol degradation is carried out by physicochemical methods that are costly and produce hazardous metabolites. Recently, phenol biodegradation has been considered. Yeasts are the most important phenol biodegraders. In this study, the phenol-degrading yeast from environmental samples (soil and wastewater) was isolated from the coking plant of Zarand, Kerman. Then total heterotrophic yeasts were counted. The soil samples had higher rates of yeast degrader, in comparison to wastewater samples. After three passages, four yeasts (K1, K2, K7 and K11) that had the highest growth rate were selected for further study. Also, these yeasts were able to remove phenol measured by Gibbs reagent. The effect of four different concentrations of phenol (50, 125, 200 and 275) mgL(-1) was measured and three degradation patterns in these yeasts were observed. The hydrophobicity and emulsification activity were measured in all eleven yeasts. Finally, strong yeasts in phenol degrading yeasts were identified by molecular method using amplification of 18S rRNA gene region. The sequencing results showed that these isolated yeasts belonged to Candida tropicalis strain K1, Pichia guilliermondii strain K2, Meyerozyma guilliermondii strain K7 and C. tropicalis strain K11.

  20. Treatment of soil eluate containing nitro aromatic compounds by adsorption on activated coke (AC).

    PubMed

    Zhang, Yiping; Jiang, Zhenming; Zhao, Quanlin; Zhang, Zhenzhong; Su, Hongping; Gao, Xuewen; Ye, Zhengfang

    2016-01-01

    Soil washing is a kind of physical method to remove organic matters from contaminated soil. However, its eluate after washing may result in secondary pollution to the environment. In this study, activated coke (AC) was used to remove organic pollutants from contaminated soil eluate. The effect of temperature, initial chemical oxygen demand (COD) and AC dosage on COD removal efficiency was investigated. The results showed that the organic matter can be removed in the eluate because the COD dropped a lot. When the AC dosage was 20 g·L(-1), 88.92% of COD decreased after 480 min of adsorption at 50 °C. The process of adsorption can be described by the Redlich-Peterson isotherm. The adsorption was spontaneous and endothermic. The pseudo-second-order model can be used to describe the adsorption process. After adsorption, the acute toxicity of the eluate was reduced by 76%, and the water qualities were in agreement with Chinese discharge standard GB 14470.1-2002, which means the eluate could be discharged to the environment. PMID:27003071

  1. The effects of adsorbing organic pollutants from super heavy oil wastewater by lignite activated coke.

    PubMed

    Tong, Kun; Lin, Aiguo; Ji, Guodong; Wang, Dong; Wang, Xinghui

    2016-05-01

    The adsorption of organic pollutants from super heavy oil wastewater (SHOW) by lignite activated coke (LAC) was investigated. Specifically, the effects of LAC adsorption on pH, BOD5/COD(Cr)(B/C), and the main pollutants before and after adsorption were examined. The removed organic pollutants were characterized by Fourier transform infrared spectroscopy (FTIR), Boehm titrations, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography with organic carbon detection (LC-OCD). FTIR spectra indicated that organic pollutants containing -COOH and -NH2 functional groups were adsorbed from the SHOW. Boehm titrations further demonstrated that carboxyl, phenolic hydroxyl, and lactonic groups on the surface of the LAC increased. GC-MS showed that the removed main organic compounds are difficult to be degraded or extremely toxics to aquatic organisms. According to the results of LC-OCD, 30.37 mg/L of dissolved organic carbons were removed by LAC adsorption. Among these, hydrophobic organic contaminants accounted for 25.03 mg/L. Furthermore, LAC adsorption was found to increase pH and B/C ratio of the SHOW. The mechanisms of adsorption were found to involve between the hydrogen bonding and the functional groups of carboxylic, phenolic, and lactonic on the LAC surface. In summary, all these results demonstrated that LAC adsorption can remove bio-refractory DOCs, which is beneficial for biodegradation. PMID:26808249

  2. Removal of detergents by activated petroleum coke from a clarified wastewater treated for reuse.

    PubMed

    Ramírez Zamora, R M; Durán Pilotzi, A; Domínguez Mora, R; Durán Moreno, A

    2004-01-01

    The removal of detergents from clarified wastewaters by activated petroleum coke (CAPA) was assessed. These substances, owing to their foamy properties, constitute a problem for ammonia removal by the air stripping process that could be installed in a wastewater treatment train to produce reclaimed water. CAPA was evaluated as a more economical alternative than a commercial activated carbon. Experimental work was divided in three stages: 1) production and characterisation of materials; 2) pretreatment of raw wastewater through the Fenton's reagent or coagulation-flocculation process with Al2(SO4)3; and 3) adsorption and bio-adsorption tests of clarified effluents. These tests were carried out in the laboratory in discontinuous and continuous reactors, the former by the "point-by-point" technique, with and without a previous fixing of bacteria, and the latter by the Rapid Small Scale Column Test. Detergents content, color, COD and UV254nm were measured in raw and treated wastewaters. Results show that the best pretreatment for the adsorption process was coagulation-flocculation rather than Fenton's method. Oxidation by this process decreased the adsorptive properties of detergents. Biomass fixed on the CAPA particles significantly increased the UV254nm and COD removal efficiencies (20% and 170% respectively). The breakthrough curves showed that CAPA could attain the expected detergents removal efficiency (66%) for the alum effluent.

  3. Characterization of fly ashes from circulating fluidized bed combustion (CFBC) boilers cofiring coal and petroleum coke

    SciTech Connect

    Feihu Li; Jianping Zhai; Xiaoru Fu; Guanghong Sheng

    2006-08-15

    The chemistry, mineralogy, morphology, and particle size distribution were investigated in fly ashes from the burning of Datong (ShanXi, China) bituminous coal and the cofiring of Mideast high-sulfur petroleum coke (PC) with 30:70 (cal %) and 50:50 (cal %) blends of Datong bituminous coal in two commercial CFBC boilers. With the exception of CaO, the amounts of major oxides in the fly ashes from cofiring PC and coal were close to those of the common coal fly ashes. The PC-coal fly ashes were enriched in Ni, V, and Mo, implying these trace elements were mainly derived from PC. Ni and V, along with several other elements, such as Cr, Cu, Se, Pb, U, Th, and possibly As and Cd, increased in content with a decrease in temperature of the electrostatic precipitator (ESP). The results of chemistry, mineralogy, and morphology studies suggested that the desulfurization rate of the CFBC boilers at current conditions was low, and the PC tends to coarsen the fly ash particles and increase the loss on ignition (LOI) values, making these fly ashes unsuitable for use as a cement additive or a mineral admixture in concrete. Further studies on the combustion status of the CFBC boilers are needed if we want to be able to increase the desulfurization rate and produce high-quality fly ashes for broader and full utilization. 22 refs., 4 figs., 4 tabs.

  4. Isotopic Evidence for Oil Sands Petroleum Coke in the Peace-Athabasca Delta.

    PubMed

    Jautzy, Josué J; Ahad, Jason M E; Gobeil, Charles; Smirnoff, Anna; Barst, Benjamin D; Savard, Martine M

    2015-10-20

    The continued growth of mining and upgrading activities in Canada's Athabasca oil sands (AOS) region has led to concerns about emissions of contaminants such as polycyclic aromatic hydrocarbons (PAHs). Whereas a recent increase in PAH emissions has been demonstrated within around 50 km of the main center of surface mining and upgrading operations, the exact nature of the predominant source(s) and the geographical extent of the deposition are still under debate. Here, we report a century-long source apportionment of PAHs using dual (δ(2)H, δ(13)C) compound-specific isotope analysis on phenanthrene deposited in a lake from the Athabasca sector of the Peace-Athabasca Delta situated ∼150 km downstream (north) of the main center of mining operations. The isotopic signatures in the core were compared to those of the main potential sources in this region (i.e., unprocessed AOS bitumen, upgrader residual coke, forest fires, coal, gasoline and diesel soot). A significant concurrent increase (∼55.0‰) in δ(2)H and decrease (∼1.5‰) in δ(13)C of phenanthrene over the last three decades pointed to an increasingly greater component of petcoke-derived PAHs. This study is the first to quantify long-range (i.e., >100 km) transport of a previously under-considered anthropogenic PAH source in the AOS region.

  5. Removal of phenol from coke-oven wastewater by cross-flow nanofiltration membranes.

    PubMed

    Kumar, Ramesh; Pal, Parimal

    2013-05-01

    This study investigated the phenol rejection characteristics of some nanofiltration membranes during treatment of coke wastewater. Four different types of composite polyamide commercial nanofiltration membranes (Sepro, USA) were tested under different operating conditions including transmembrane pressure, pH and recovery rate. When pressure was increased from 4 to 16 bars, the percentage of rejection of phenol in the permeate increased from 72.5% to 97.7% while yielding a high flux of 118 litres per square meter per hour(LMH) at a volumetric cross flow rate of 800 litres per hour at pH 10 (in recirculation mode) in case of NF1 membrane. The effect of recovery rate on the rejection coefficient of phenol and flux was also studied in concentrated mode and found that a recovery rate of up 55% nanofiltration was successfully operated without much decline of flux and rejection coefficient. Finally, nanofiltration had great efficiency in phenol removal from industrial wastewater and was considered suitable regarding its operation. PMID:23789574

  6. Coke induced stabilization of catalytic activity of silylated ZSM-5 zeolite

    SciTech Connect

    Bhat, Y.S.; Das, J.; Halgeri, A.B.

    1995-08-01

    One of the ways to synthesize dialkylbenzenes is to alkylate monoalkylbenzene with an alkylating agent such as alcohol or olefin over a Friedel-Crafts or zeolite catalyst. The latter is gaining importance as it is an environmentally friendly system. Dialkylbenzenes like paraxylene, para-ethyltoluene, and para-diethylbenzene are sources for various monomers. Several techniques have been reported in the literature to modify the zeolite characteristics in such a way that the dialkylbenzenes formed during monoalkylbenzene alkylation contain more para isomer. Among these techniques, the chemical vapor deposition of silica (CVD) is drawing the attention of researchers. The silylation results in fine control of pore opening size with the silica deposited on the external surface. The internal structure remains unaffected; only the pore entrance is narrowed. It was observed that the silylated zeolite used for synthesizing para-dialkylbenzene by monoalkylbenzene alkylation deactivates with increased time on stream. This paper deals with the coke-induced stabilization of catalytic activity of ZSM-5 zeolite during alkylation of ethylbenzene with ethanol.

  7. [Bioremediation of PAHs contaminated soil from Beijing coking plant by Lasiodiplodia theobromae].

    PubMed

    Zhang, Zhi-yuan; Wang, Cui-ping; Liu, Hai-bin; Sun, Hong-wen

    2012-08-01

    Bioremediation of PAHs contaminated soil from Beijing Coking Plant was performed using a novel fungal strain Lasiodiplodia theobromae (L. theobromae). Moreover, enhanced bioremediation of PAHs contaminated soil was investigated in the presence of different concentrations of Tween 80 and hydroxypropyl-beta-cyclodextrin (HPCD). The correlation of the dynamics of enzyme activities during remediation and the degradation of PAHs was analyzed. The results showed that the degradation rate of PAHs increased to 45.3% on the 70th day after addition of L. theobromae, which was 30 percentage points higher than that of the control group. At an optimum concentration of 2 g x kg(-1) for Tween 80 and 1 g x kg(-1) for HPCD, the degradation rate of PAHs was enhanced to 65.8% and 63.9%, respectively, which was 50 percentage points higher than that of the control group. Hydrogen peroxidase and invertase activities in soil in the bioremediation group with only L. theobromae and the surfactant enhanced group were both enhanced twice more than that of the control group. These results showed that L. theobromae may produce hydrogen peroxidase and invertase or have synergic effect with indigenous microorganisms. Correlation analysis showed that the correlation coefficients of PAHs degradation rate and maximum enzyme activities of hydrogen peroxidase and invertase were 0.781 and 0.837, respectively. Therefore, the correlation between invertase activities and degradation rate was higher.

  8. Treatment of soil eluate containing nitro aromatic compounds by adsorption on activated coke (AC).

    PubMed

    Zhang, Yiping; Jiang, Zhenming; Zhao, Quanlin; Zhang, Zhenzhong; Su, Hongping; Gao, Xuewen; Ye, Zhengfang

    2016-01-01

    Soil washing is a kind of physical method to remove organic matters from contaminated soil. However, its eluate after washing may result in secondary pollution to the environment. In this study, activated coke (AC) was used to remove organic pollutants from contaminated soil eluate. The effect of temperature, initial chemical oxygen demand (COD) and AC dosage on COD removal efficiency was investigated. The results showed that the organic matter can be removed in the eluate because the COD dropped a lot. When the AC dosage was 20 g·L(-1), 88.92% of COD decreased after 480 min of adsorption at 50 °C. The process of adsorption can be described by the Redlich-Peterson isotherm. The adsorption was spontaneous and endothermic. The pseudo-second-order model can be used to describe the adsorption process. After adsorption, the acute toxicity of the eluate was reduced by 76%, and the water qualities were in agreement with Chinese discharge standard GB 14470.1-2002, which means the eluate could be discharged to the environment.

  9. Combined fenton oxidation and biological activated carbon process for recycling of coking plant effluent.

    PubMed

    Jiang, Wen-xin; Zhang, Wei; Li, Bing-jing; Duan, Jun; Lv, Yan; Liu, Wan-dong; Ying, Wei-chi

    2011-05-15

    Fenton oxidation and coagulation-flocculation-sedimentation (CFS) were both effective in removing many organic constituents of the biotreated coking plant effluent before the final treatment in an activated carbon adsorber. Fenton oxidation broke down most persistent organic pollutants and complex cyanides present in the feed stream and caused the eventual biodegradation of the organic residues in the adsorber. The results of Fenton oxidation followed by adsorption and biodegradation in two biological activated carbon (BAC) adsorbers show that the combined treatment consistently produced a high quality final effluent of <50mg/L in COD(Cr) and <0.5mg/L in total cyanide during the 70-d study without replacing any activated carbon. The BAC function of the adsorber substantially reduced the need for replacing activated carbon making the combined Fenton oxidation-BAC treatment process a cost effective treatment process to recycle the final effluent for many beneficial reuses while meeting the much more stringent discharge limits of the future.

  10. [Bioremediation of PAHs contaminated soil from Beijing coking plant by Lasiodiplodia theobromae].

    PubMed

    Zhang, Zhi-yuan; Wang, Cui-ping; Liu, Hai-bin; Sun, Hong-wen

    2012-08-01

    Bioremediation of PAHs contaminated soil from Beijing Coking Plant was performed using a novel fungal strain Lasiodiplodia theobromae (L. theobromae). Moreover, enhanced bioremediation of PAHs contaminated soil was investigated in the presence of different concentrations of Tween 80 and hydroxypropyl-beta-cyclodextrin (HPCD). The correlation of the dynamics of enzyme activities during remediation and the degradation of PAHs was analyzed. The results showed that the degradation rate of PAHs increased to 45.3% on the 70th day after addition of L. theobromae, which was 30 percentage points higher than that of the control group. At an optimum concentration of 2 g x kg(-1) for Tween 80 and 1 g x kg(-1) for HPCD, the degradation rate of PAHs was enhanced to 65.8% and 63.9%, respectively, which was 50 percentage points higher than that of the control group. Hydrogen peroxidase and invertase activities in soil in the bioremediation group with only L. theobromae and the surfactant enhanced group were both enhanced twice more than that of the control group. These results showed that L. theobromae may produce hydrogen peroxidase and invertase or have synergic effect with indigenous microorganisms. Correlation analysis showed that the correlation coefficients of PAHs degradation rate and maximum enzyme activities of hydrogen peroxidase and invertase were 0.781 and 0.837, respectively. Therefore, the correlation between invertase activities and degradation rate was higher. PMID:23213912

  11. Characterization of coal- and petroleum-derived binder pitches and the interaction of pitch/coke mixtures in pre-baked carbon anodes

    NASA Astrophysics Data System (ADS)

    Suriyapraphadilok, Uthaiporn

    Carbon anodes are manufactured from calcined petroleum coke (i.e. sponge coke) and recycled anode butts as fillers, and coal tar pitch (SCTP) as the binder. During the manufacturing of carbon anodes, coal tar pitch is mixed with calcined petroleum coke. The mix of binder, filler and some additives is heated to about 50°C above the softening point of the pitch, typically 160°C. This temperature is sufficient to enable the pitch to wet the coke particles. The mix is then either extruded, vibrated, or pressed to form a green anode. The binding between coke and pitch is very important to the anode properties. There are different binder pitches used in this work, which were standard coal tar pitch (SCTP-2), petroleum pitch (PP-1), gasification pitch (GP-115), coal-extract pitch (WVU-5), and co-coking pitches (HTCCP and OXCCP). Petroleum pitch is a residue produced from heat-treatment and distillation of petroleum fractions. Production of coal-extract pitch involves a prehydrogenation of coal followed by extraction using a dipolar solvent. Gasification pitches are distilled by-product tars produced from the coal gasification process. Co-coking pitch was developed in this work and was obtained from the liquid distillate of co-coking process of coal and heavy petroleum residue. Understanding of composition and structures of pitches from different sources and processes would lead to greater understanding of the binding properties of pitch in carbon anodes and was one of the main focuses in this study. Characterization of pitches by using different techniques including gas chromatography/mass spectrometry (GC/MS), high performance liquid chromatography (HPLC), matrix-assisted laser desorption ionization/mass spectrometry (MALDI/MS), 1H and 13C solution-state nuclear magnetic resonance (NMR), and 13C solid-state NMR yield important chemistry and structural information. The binding, or in other words the interactions in the pitch/coke mixture, is another interest in this

  12. Comparison of 3 MeV C{sup +} Ion-Irradiation Effects between The Nuclear Graphites made of Pitch and Petroleum Cokes

    SciTech Connect

    Se-Hwan, Chi; Gen-Chan, Kim; Jong-Hwa, Chang

    2006-07-01

    Currently, all the commercially available nuclear graphite grades are being made from two different cokes, i.e., petroleum coke or coal-tar pitch coke, and a coal-tar pitch binder. Of these, since the coke composes most of the graphite volume, i.e., > 70 %, it is understood that a physical, chemical, thermal, and mechanical property as well as an irradiation-induced property change will be strongly dependent on the type of coke. To obtain first-hand information on the effects of the coke type, i.e., petroleum or pitch, on the irradiation sensitivity of graphite, specimens made of IG-110 of petroleum coke and IG-430 of pitch coke were irradiated up to {approx} 19 dpa by 3 MeV C{sup +} at room temperature, and the irradiation-induced changes in the hardness, Young's modulus, Raman spectrum, and oxidation properties were characterized. Results of the TEM show that the size and density of the Mrozowski cracks appeared to be far larger and higher in the IG-110 than the IG-430. Results of the hardness test revealed a slightly higher increase in the IG-430 than the IG-110 by around 10 dpa, and the Raman spectrum measurement showed a higher (FWHM){sub D}/(FWHM){sub G} value for IG-430 for 0.02 {approx} 0.25 dpa. Both the hardness and Raman measurement may imply a higher irradiation sensitivity of the IG-430 than the IG-110. Results of the Young's modulus measurements showed a large data scattering, which prevented us from estimating the differences between the grades. Oxidation experiments using a TG-DTA under a flow of dry air/He = 2.5 % (flow rate: 40 CC/min) at 750 and 1000 deg C show that the IG-110 of the petroleum coke exhibits a far higher oxidation rate than the IG-430. The discrepancy between the oxidation rate of the two grades increased with an increase in the oxidation temperature and the dose. Oxidized surface pore area was larger for IG-110. Judging from the results obtained from the present experimental conditions, the irradiation sensitivity appeared to be

  13. Innovative coke oven gas cleaning system for retrofit applications. Quarterly technical progress report No. 4, October 1, 1990 to December 31, 1990

    SciTech Connect

    Kwasnoski, D.

    1993-10-22

    Work on this coke oven gas cleaning demonstration project (CCT-II) this quarter has been focused on Phase IIB tasks, and include engineering, procurement, construction, and training. Additionally, plans for changes in the operating schedule of the coke plant that affect the demonstration project are described. Engineering efforts are nearly complete. Remaining to be finalized is an assessment of electrical heat tracing/insulation needs for pipe lines, assessment of fire protection requirements, and instrument modifications. Procurement of all major equipment items is complete, except for possible additions to fire fighting capabilities. Major focus is on expediting pipe and structural steel to the project site. Civil construction is complete except for minor pads and bases as required for pipe supports, etc. Erection of the hydrogen sulfide and ammonia scrubber vessels is complete. Installation of scrubber vessel internals is underway. A subcontractor has been retained to develop a computerized program for operations and maintenance training for the coke oven gas treatment plant. Recent developments in the coke plant operating plans will result in reductions in the rate of production of coke oven gas to be processed in the demonstration project.

  14. Quinoline-degrading strain Pseudomonas aeruginosa KDQ4 isolated from coking activated sludge is capable of the simultaneous removal of phenol in a dual substrate system.

    PubMed

    Zhang, Panhong; Jia, Rong; Zhang, Yuxiu; Shi, Peili; Chai, Tuanyao

    2016-11-01

    Quinoline is a refractory organic compound in the treatment of coking wastewater. The isolation of high efficiency quinoline-degrading bacteria from activated sludge and the evaluation of their degradation characteristics in the presence of phenol or in the actual coking wastewater are important for the improvement of effluent quality. The novel bacterial strain Pseudomonas aeruginosa KDQ4 was isolated from a quinoline enrichment culture obtained from the activated sludge of a coking wastewater treatment plant. The optimum temperature and initial pH for quinoline degradation were 33-38°C and 8-9, respectively. KDQ4 completely degraded 400 mg/L of quinoline within 24 h and 800 mg/L of phenol within 30 h. In the dual-substrate system, the removal efficiencies of quinoline and phenol at the same initial concentration (200 mg/L) by KDQ4 were 89% and 100% within 24 h, respectively, indicating that KDQ4 could simultaneously and quickly degrade quinoline and phenol in a coexistence system. Moreover, KDQ4 was able to adapt to actual coking wastewater containing high quinoline and phenol concentrations and rapidly remove them. KDQ4 also exhibited heterotrophic nitrification and aerobic denitrification potential under aerobic conditions. These results suggested a potential bioaugmentation role for KDQ4 in the removal of nitrogen-heterocyclic compounds and phenolics from coking wastewater. PMID:27458688

  15. Eoetvoesia caeni gen. nov., sp. nov., isolated from an activated sludge system treating coke plant effluent.

    PubMed

    Felföldi, Tamás; Vengring, Anita; Kéki, Zsuzsa; Márialigeti, Károly; Schumann, Peter; Tóth, Erika M

    2014-06-01

    A novel bacterium, PB3-7B(T), was isolated on phenol-supplemented inorganic growth medium from a laboratory-scale wastewater purification system that treated coke plant effluent. 16S rRNA gene sequence analysis revealed that strain PB3-7B(T) belonged to the family Alcaligenaceae and showed the highest pairwise sequence similarity to Parapusillimonas granuli Ch07(T) (97.5%), Candidimonas bauzanensis BZ59(T) (97.3%) and Pusillimonas noertemannii BN9(T) (97.2%). Strain PB3-7B(T) was rod-shaped, motile and oxidase- and catalase-positive. The predominant fatty acids were C(16 : 0), C(17 : 0) cyclo, C(19 : 0) cyclo ω8c and C(14 : 0) 3-OH, and the major respiratory quinone was Q-8. The G+C content of the genomic DNA of strain PB3-7B(T) was 59.7 mol%. The novel bacterium can be distinguished from closely related type strains based on its urease activity and the capacity for assimilation of glycerol and amygdalin. On the basis of the phenotypic, chemotaxonomic and molecular data, strain PB3-7B(T) is considered to represent a new genus and species, for which the name Eoetvoesia caeni gen. nov., sp. nov. is proposed. The type strain of Eoetvoesia caeni is PB3-7B(T) ( = DSM 25520(T) = NCAIM B 02512(T)).

  16. Anodic oxidation of coke oven wastewater: Multiparameter optimization for simultaneous removal of cyanide, COD and phenol.

    PubMed

    Sasidharan Pillai, Indu M; Gupta, Ashok K

    2016-07-01

    Anodic oxidation of industrial wastewater from a coke oven plant having cyanide including thiocyanate (280 mg L(-1)), chemical oxygen demand (COD - 1520 mg L(-1)) and phenol (900 mg L(-1)) was carried out using a novel PbO2 anode. From univariate optimization study, low NaCl concentration, acidic pH, high current density and temperature were found beneficial for the oxidation. Multivariate optimization was performed with cyanide including thiocyanate, COD and phenol removal efficiencies as a function of changes in initial pH, NaCl concentration and current density using Box-Behnken experimental design. Optimization was performed for maximizing the removal efficiencies of these three parameters simultaneously. The optimum condition was obtained as initial pH 3.95, NaCl as 1 g L(-1) and current density of 6.7 mA cm(-2), for which the predicted removal efficiencies were 99.6%, 86.7% and 99.7% for cyanide including thiocyanate, COD and phenol respectively. It was in agreement with the values obtained experimentally as 99.1%, 85.2% and 99.7% respectively for these parameters. The optimum conditions with initial pH constrained to a range of 6-8 was initial pH 6, NaCl as 1.31 g L(-1) and current density as 6.7 mA cm(-2). The predicted removal efficiencies were 99%, 86.7% and 99.6% for the three parameters. The efficiencies obtained experimentally were in agreement at 99%, 87.8% and 99.6% respectively. The cost of operation for degradation at optimum conditions was calculated as 21.4 USD m(-3).

  17. Study on removal of elemental mercury from simulated flue gas over activated coke treated by acid

    NASA Astrophysics Data System (ADS)

    Ma, Jinfeng; Li, Caiting; Zhao, Lingkui; Zhang, Jie; Song, Jingke; Zeng, Guangming; Zhang, Xunan; Xie, Yine

    2015-02-01

    This work addressed the investigation of activated coke (AC) treated by acids. Effects of AC samples, modified by ether different acids (H2SO4, HNO3 and HClO4) or HClO4 of varied concentrations, on Hg0 removal were studied under simulated flue gas conditions. In addition, effects of reaction temperature and individual flue gas components including O2, NO, SO2 and H2O were discussed. In the experiments, Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) were applied to explore the surface properties of sorbents and possible mechanism of Hg0 oxidation. Results showed that AC sample treated by HClO4 of 4.5 mol/L exhibited maximum promotion of efficiency on Hg0 removal at 160 °C. NO was proved to be positive in the removal of Hg0. And SO2 displayed varied impact in capturing Hg0 due to the integrated reactions between SO2 and modified AC. The addition of O2 could improve the advancement further to some extent. Besides, the Hg0 removal capacity had a slight declination when H2O was added in gas flow. Based on the analysis of XPS and FTIR, the selected sample absorbed Hg0 mostly in chemical way. The reaction mechanism, deduced from results of characterization and performance of AC samples, indicated that Hg0 could firstly be absorbed on sorbent and then react with oxygen-containing (Csbnd O) or chlorine-containing groups (Csbnd Cl) on the surface of sorbent. And the products were mainly in forms of mercuric chloride (HgCl2) and mercuric oxide (HgO).

  18. Anodic oxidation of coke oven wastewater: Multiparameter optimization for simultaneous removal of cyanide, COD and phenol.

    PubMed

    Sasidharan Pillai, Indu M; Gupta, Ashok K

    2016-07-01

    Anodic oxidation of industrial wastewater from a coke oven plant having cyanide including thiocyanate (280 mg L(-1)), chemical oxygen demand (COD - 1520 mg L(-1)) and phenol (900 mg L(-1)) was carried out using a novel PbO2 anode. From univariate optimization study, low NaCl concentration, acidic pH, high current density and temperature were found beneficial for the oxidation. Multivariate optimization was performed with cyanide including thiocyanate, COD and phenol removal efficiencies as a function of changes in initial pH, NaCl concentration and current density using Box-Behnken experimental design. Optimization was performed for maximizing the removal efficiencies of these three parameters simultaneously. The optimum condition was obtained as initial pH 3.95, NaCl as 1 g L(-1) and current density of 6.7 mA cm(-2), for which the predicted removal efficiencies were 99.6%, 86.7% and 99.7% for cyanide including thiocyanate, COD and phenol respectively. It was in agreement with the values obtained experimentally as 99.1%, 85.2% and 99.7% respectively for these parameters. The optimum conditions with initial pH constrained to a range of 6-8 was initial pH 6, NaCl as 1.31 g L(-1) and current density as 6.7 mA cm(-2). The predicted removal efficiencies were 99%, 86.7% and 99.6% for the three parameters. The efficiencies obtained experimentally were in agreement at 99%, 87.8% and 99.6% respectively. The cost of operation for degradation at optimum conditions was calculated as 21.4 USD m(-3). PMID:27039363

  19. Status of the Shanghai Coking and Chemical Company`s U-GAS coal gasification plant

    SciTech Connect

    Bryan, B.G.; Hoppe, J.A.

    1998-12-31

    The World`s demand for energy is expected to double in the next twenty-five years. The energy mix for the next century is expected to remain strongly dependent on fossil fuels. With large worldwide coal reserves, coal will continue to play a major role in the World`s energy mix for the foreseeable future. Its use for power generation is expected to expand significantly. It is therefore very important that this coal be used in an efficient, environmentally clean, and economic manner. The Institute of Gas Technology`s U-GAS gasification process is an advanced gasification technology that can meet such a challenge. This paper describes the U-GAS coal gasification technology being used by Shanghai Coking and Chemical Corporation in their chemical facility in Shanghai, China. As part of Shanghai`s Trigeneration (Trigen) coal gasification project, seven of eight available U-GAS gasifiers have been placed in service since the plant began operation in December 1994. These gasifiers are the first commercial-scale U-GAS gasifiers to be installed anywhere in the world. Over 80 performance and production runs have now been logged over the last three and a half years of operation. From the early days of only several hours of continuous operation to today`s over 3,100 hours, significant improvements in plant performance and reliability have been achieved. Modifications and design improvements to the various plant sections are discussed, along with the resulting improvements in gasifier availability and coal conversion efficiency. Despite a strong start in China, the U-GAS technology will require an ongoing development and improvement program to realize widespread commercial deployment in China and other markets. A recently initiated DOE-sponsored program addressing key factors in commercial viability and market definition for U-GAS in China is discussed.

  20. Deciphering Cyanide-Degrading Potential of Bacterial Community Associated with the Coking Wastewater Treatment Plant with a Novel Draft Genome.

    PubMed

    Wang, Zhiping; Liu, Lili; Guo, Feng; Zhang, Tong

    2015-10-01

    Biotreatment processes fed with coking wastewater often encounter insufficient removal of pollutants, such as ammonia, phenols, and polycyclic aromatic hydrocarbons (PAHs), especially for cyanides. However, only a limited number of bacterial species in pure cultures have been confirmed to metabolize cyanides, which hinders the improvement of these processes. In this study, a microbial community of activated sludge enriched in a coking wastewater treatment plant was analyzed using 454 pyrosequencing and Illumina sequencing to characterize the potential cyanide-degrading bacteria. According to the classification of these pyro-tags, targeting V3/V4 regions of 16S rRNA gene, half of them were assigned to the family Xanthomonadaceae, implying that Xanthomonadaceae bacteria are well-adapted to coking wastewater. A nearly complete draft genome of the dominant bacterium was reconstructed from metagenome of this community to explore cyanide metabolism based on analysis of the genome. The assembled 16S rRNA gene from this draft genome showed that this bacterium was a novel species of Thermomonas within Xanthomonadaceae, which was further verified by comparative genomics. The annotation using KEGG and Pfam identified genes related to cyanide metabolism, including genes responsible for the iron-harvesting system, cyanide-insensitive terminal oxidase, cyanide hydrolase/nitrilase, and thiosulfate:cyanide transferase. Phylogenetic analysis showed that these genes had homologs in previously identified genomes of bacteria within Xanthomonadaceae and even presented similar gene cassettes, thus implying an inherent cyanide-decomposing potential. The findings of this study expand our knowledge about the bacterial degradation of cyanide compounds and will be helpful in the remediation of cyanides contamination. PMID:25910603

  1. Functional group and individual maceral chemistry of high volatile bituminous coals from southern Indiana: Controls on coking

    USGS Publications Warehouse

    Walker, R.; Mastalerz, Maria

    2004-01-01

    The individual maceral chemistries of two Pennsylvanian, high volatile bituminous coals, the Danville Coal Member (Dugger Formation, R o=0.55%) and the Lower Block Coal Member (Brazil Formation, R o=0.56%) of Indiana, were investigated using electron microprobe and Fourier Transform Infrared Spectrometry (FTIR) techniques, with the purpose of understanding differences in their coking behavior. Microprobe results reveal that carbon contents are highest in inertinite and sporinite, followed by desmocollinite and telocollinite. Oxygen and organic nitrogen are most abundant in telocollinite and desmocollinite; sporinite and inertinite contain lesser amounts of these two elements. Organic sulfur contents are highest in sporinite, lowest in inertinite, and intermediate in desmocollinite and telocollinite. Vitrinites within the Danville and Lower Block coals are very similar in elemental composition, while Lower Block inertinites and sporinites have higher carbon, lower oxygen, and sulfur contents which, when combined with the inertinite-and sporinite-rich composition of the Lower Block seam, strongly influences its whole coal chemistry. Fourier transform infrared spectrometry revealed greater aromatic hydrogen in the Lower Block coal, along with higher CH2/CH3 ratios, which suggest that liptinites contribute considerable amounts of long-chain, unbranched aliphatics to the overall kerogen composition of the Lower Block coal. Long-chain, unbranched aliphatics crack at higher temperatures, producing tar and oily byproducts during coking; these may help increase Lower Block plasticity. Electron microprobe and FTIR results indicate that individual maceral chemistries, combined with the maceral composition of the seam, are the primary control of better coking properties of the Lower Block coal. ?? 2003 Elsevier B.V. All rights reserved.

  2. Deciphering Cyanide-Degrading Potential of Bacterial Community Associated with the Coking Wastewater Treatment Plant with a Novel Draft Genome.

    PubMed

    Wang, Zhiping; Liu, Lili; Guo, Feng; Zhang, Tong

    2015-10-01

    Biotreatment processes fed with coking wastewater often encounter insufficient removal of pollutants, such as ammonia, phenols, and polycyclic aromatic hydrocarbons (PAHs), especially for cyanides. However, only a limited number of bacterial species in pure cultures have been confirmed to metabolize cyanides, which hinders the improvement of these processes. In this study, a microbial community of activated sludge enriched in a coking wastewater treatment plant was analyzed using 454 pyrosequencing and Illumina sequencing to characterize the potential cyanide-degrading bacteria. According to the classification of these pyro-tags, targeting V3/V4 regions of 16S rRNA gene, half of them were assigned to the family Xanthomonadaceae, implying that Xanthomonadaceae bacteria are well-adapted to coking wastewater. A nearly complete draft genome of the dominant bacterium was reconstructed from metagenome of this community to explore cyanide metabolism based on analysis of the genome. The assembled 16S rRNA gene from this draft genome showed that this bacterium was a novel species of Thermomonas within Xanthomonadaceae, which was further verified by comparative genomics. The annotation using KEGG and Pfam identified genes related to cyanide metabolism, including genes responsible for the iron-harvesting system, cyanide-insensitive terminal oxidase, cyanide hydrolase/nitrilase, and thiosulfate:cyanide transferase. Phylogenetic analysis showed that these genes had homologs in previously identified genomes of bacteria within Xanthomonadaceae and even presented similar gene cassettes, thus implying an inherent cyanide-decomposing potential. The findings of this study expand our knowledge about the bacterial degradation of cyanide compounds and will be helpful in the remediation of cyanides contamination.

  3. In-Class Quantification of the Mentos and Diet Coke Analogue Experiment: Effects of Wind on Volcanic Isopach Patterns

    NASA Astrophysics Data System (ADS)

    Quane, S.; Klos, Z.; Jacobsen, R.

    2009-05-01

    The Mentos and Diet Coke experiment, where instantaneous emplacement of Mentos candy in Diet Coke creates a soda/CO2 eruptive plume, is a common educational analogue for a volcanic eruption. In this paper, we quantify the effects of varying directional wind speeds on the eruptive plume as a learning tool in advanced Introductory Geology and Volcanology courses. The Mentos and Diet Coke reaction is a fun, safe and affordable analogue for explosive, single pulse, basaltic eruptions (e.g., Strombolian eruptions). Specifically, the physical and chemical reaction nucleating CO2 bubbles on the pitted surface of Mentos candy is directly analogous to the collapsing foam eruption regime described by Parfitt (2004) where inertia driven fragmentation of the liquid (Namiki and Manga, 2008) leads to basaltic pyroclastic eruptions. Often, in these systems, the pyroclasts are carried downwind, resulting lopsided (downwind side taller) cinder cones. In our experiments, we create a single pulse eruption by simultaneously dropping four Mentos candies into a 16.9 oz. bottle of Diet Coke. The experiments are run under different wind conditions created by three stacked box fans in the off (control experiment) low, medium and high settings. Wind speed is measured using a hand held anemometer. The pyroclast dispersal is recorded by degree of liquid saturation through four layers of newspaper. The liquid is allowed to soak in for thirty seconds post eruption and then the individual layers of newspaper are separated and the saturation envelope is traced with a black marker and digitally photographed. The pyroclast dispersal envelope (or saturation area) is then quantified from the photos by image analysis in Adobe Photoshop. In addition, the experiments are videotaped to quantify ejection velocity using frame by frame analysis in iMovie. The resulting isopach ("deposit thickness") maps indicate a strong tightening of dispersal envelopes with increasing wind speed as seen in natural

  4. Environmental impact of heavy metals on the soils and plants around a coke-making factory of Jiyuan city, China

    NASA Astrophysics Data System (ADS)

    Lun Leung, Kwun

    2010-05-01

    The combustion of coal usually leads to many different kinds of pollution around coke-making factories. Among these pollutions, the heavy metal contamination in the soil and plants is one of the major concerns by people living around. Heavy metals are highly attracted to the biological tissue, and can stay in bodies of organisms for long period of time, causing a lot of hazardous diseases to human beings, animal and plants. In the developing regions of China, developing of industries has been based on the sacrifices of environments and human health. In order to evaluate the danger of heavy metal contamination from a coke factory to citizens of close inhabitants, a survey on soil and plants was conducted in the region around a coke-making factory in Jiyuan city, which is a major electricity supplying city for the Henan Province in China. In this study, 8 surface soil samples and 11 plant samples were collected from 8 different places around the coke-making factory in Jiyuan city. The collected samples are then treated in the laboratory, and 8 types of heavy metals, which include arsenic, cadmium, chromium, cobalt, copper, lead, nickel and zinc, are analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). The concentration data of heavy metals that collected from the analysis are then used to evaluate their toxicity towards living organisms and ecology by applying several biological effect standards, such as effect-range low (ERL), effect-range median (ERM) and several maximum allowances standards of heavy metal concentrations in soils and plants that established by different countries. Moreover, the relationship between the distance from the factory and the concentration of heavy metals in soils and plants are also evaluated in order to find out the contamination ranges of those heavy metals from the source. The result shows that the concentration of these 8 types of heavy metals in the

  5. Ultraviolet Raman spectroscopy of catalysts: Adsorption and coke formation in zeolites and vibrational spectra of supported metal oxides

    NASA Astrophysics Data System (ADS)

    Chua, Yek Tann

    2001-10-01

    The primary goal of this dissertation is to study the physicochemical and catalytic properties of zeolites and supported metal oxide catalysts using UV Raman spectroscopy. In order to reduce the thermal degradation and possible photodecomposition of adsorbates by UV radiation, we have developed a novel fluidized bed method for measuring the UV Raman spectra of catalysts and adsorbates. The UV Raman spectra of various organic compounds adsorbed in zeolites H-USY and H-ZSM-5 are recorded. When measurements are performed on stationary and spinning samples, the Raman spectra show the presence of coke, a typical end product of heat and photochemistry. In contrast, the Raman peaks of the unreacted adsorbates dominate the spectra measured using the fluidized bed method. These results indicate that the fluidized bed technique is a good method for measuring UV Raman spectra of catalysts and adsorbates. The formation of coke in the methanol-to-gasoline conversion over zeolite H-ZSM-5 causes deactivation of the catalyst. To gain insight into the formation of coke, we have studied this reaction using UV Raman spectroscopy. The Raman spectral changes suggest coke is produced from conjugated olefins via cyclopentadiene intermediates. Aromatic compounds in gasoline may also be produced from cyclopentadienes. The adsorbate-induced structural changes of zeolites may alter the molecular sieving characteristics of these materials which ultimately affect their performance as catalysts and adsorbents. We have quantified the adsorbate-induced structural changes of zeolite H-RHO using UV Raman spectroscopy. The Raman spectra of the zeolite after the adsorption of water, methanol or acetonitrile are consistent with an increase in the average T-O-T angle of the zeolite of 5-8°. The adsorption of ammonia, on the other hand, decreases the average T-O-T angle by 5°. Because of certain advantages of UV Raman spectroscopy over visible Raman spectroscopy, recently there is a strong interest in

  6. Effects of genetic polymorphisms of metabolic enzymes on cytokinesis-block micronucleus in peripheral blood lymphocyte among coke-oven workers

    SciTech Connect

    Shuguang Leng; Yufei Dai; Yong Niu; Zufei Pan; Xiaohua Li; Juan Cheng; Fengsheng He; Yuxin Zheng

    2004-10-15

    Exploring the associations between genetic polymorphisms of metabolic enzymes and susceptibility to polycyclic aromatic hydrocarbon (PAH)-induced chromosomal damage is of great significance for understanding PAH carcinogenesis. Cytochrome P450, glutathione S-transferase, microsomal epoxide hydrolase, NAD(P)H:quinone oxidoreductase, and N-acetyltransferase are PAH-metabolizing enzymes. In this study, we genotyped for the polymorphisms of these genes and assessed their effects on cytokinesis-block micronucleus (CBMN) frequencies in peripheral blood lymphocytes among 141 coke-oven workers and 66 non-coke-oven worker controls. The geometric means of urinary 1-hydroxypyrene levels in coke-oven workers and the controls were 12.0 and 0.7 {mu}mol/mol creatinine, respectively. The CBMN frequency (number of micronuclei per 1,000 binucleated lymphocytes) was significantly higher in coke-oven workers (9.5 {+-} 6.6) than in the controls. Among the coke-oven workers, age was positively associated with CBMN frequency; the mEH His{sup 113} variant genotype exhibited significantly lower CBMN frequency than did the Tyr{sup 113}/Tyr{sup 113} genotype; the low mEH activity phenotype exhibited a lower CBMN frequency than did the high mEH activity phenotype; the GSTP1 Val{sup 105}/Val{sup 105} genotype exhibited a higher CBMN frequency than did the GSTP1 Ile{sup 105}/Ile{sup 105} or Ile{sup 105}/Val{sup 105} genotypes; the joint effect of high mEH activity phenotype and GSTM1 null genotype on CBMN frequencies was also found. Gene-environment interactions between occupational PAH exposure and polymorphisms of mEH and/or GSTM1 were also evident. These results indicate that the mEH, GSTP1, and GSTM1 polymorphisms may play a role in sensitivity or genetic susceptibility to the genotoxic effects of PAH exposure in the coke-oven workers.

  7. Theoretical Investigation of the Process of Steam-Oxygen Gasification of Coke-Ash Particles in a Fluidized Bed Under Pressure

    NASA Astrophysics Data System (ADS)

    Rokhman, B. B.

    2015-03-01

    The problem on the evolution of the state of an ensemble of reacting coke-ash particles in a fluidized-bed gas generator is considered. A kinetic equation for the distribution function of particles within small ranges of carbon concentration variation for the stages of surface and bulk reaction has been constructed and integrated. Boundary conditions ("matching" conditions) at the boundaries between these ranges are formulated. The influence of the granulometric composition of the starting coal, height, porosity, and of the bed temperature on the process of steam-oxygen gasification of coke-ash particles of individual sorts of fuel and of a binary coal mixture has been investigated.

  8. Concerning Units.

    ERIC Educational Resources Information Center

    Wadlinger, Robert L.

    1983-01-01

    SI units come in two distinct types: fundamental (kilogram, meter) and descriptive (atom, molecule). Proper/improper uses of atom/molecule from historical cases are presented followed by a re-introduction of a light "wave (cycle)" unit and the clearly defined photon model which is deduced. Also examines omission of the fundamental unit "radon."…

  9. Influence of laminar flow on preorientation of coal tar pitch structural units: Raman microspectroscopic study

    NASA Astrophysics Data System (ADS)

    Urban, O.; Jehlička, J.; Pokorný, J.; Rouzaud, J. N.

    2003-08-01

    In order to estimate the role of laminar flow of viscous, aromatic matter of carbonaceous precursor on microtextural preorientation in pregraphitization stage, we performed experiments with coal tar pitch (CTP). The principal hypothesis of preorientation of basic structural units (BSUs) in the case of laminar flow (pressure impregnation of CTP into porous matrix) and secondary release of volatiles during carbonization were studied. Glass microplates, planar porous medium with average distance between single microplates 5 μm were used as suitable porous matrix. Samples of CTP were carbonized up to 2500 °C. Optical microscopy reveals large flow domains in the sample of cokes carbonized between glass microplates. Raman microspectroscopy and high resolution transmission electron microscopy (HRTEM) show that at nanometric scale, the samples do not support the proposed hypotheses. With increasing temperature of pyrolysis, the graphitization of CTP impregnated into porous matrix proceeds to lower degree of structural ordering in comparison with single pyrolyzed CTP. This is explained by the release of volatile matter during carbonization in geometrically restricted spaces. More evident structural changes were discovered with the sample of single coke, where parts of fine grain mosaics, relicts of 'so called QI parts', reveal higher structural organization, in comparison with large and prolonged flow domains, similar to flow domains of cokes from microplates.

  10. Performance and microbial community analysis of the anaerobic reactor with coke oven gas biomethanation and in situ biogas upgrading.

    PubMed

    Wang, Wen; Xie, Li; Luo, Gang; Zhou, Qi; Angelidaki, Irini

    2013-10-01

    A new method for simultaneous coke oven gas (COG) biomethanation and in situ biogas upgrading in anaerobic reactor was developed in this study. The simulated coke oven gas (SCOG) (92% H2 and 8% CO) was injected directly into the anaerobic reactor treating sewage sludge through hollow fiber membrane (HFM). With pH control at 8.0, the added H2 and CO were fully consumed and no negative effects on the anaerobic degradation of sewage sludge were observed. The maximum CH4 content in the biogas was 99%. The addition of SCOG resulted in enrichment and dominance of homoacetogenetic genus Treponema and hydrogenotrophic genus Methanoculleus in the liquid, which indicated that H2 were converted to methane by both direct (hydrogenotrophic methanogenesis) and indirect (homoacetogenesis+aceticlastic methanogenesis) pathways in the liquid. However, the aceticlasitic genus Methanosaeta was dominant for archaea in the biofilm on the HFM, which indicated indirect (homoacetogenesis+aceticlastic methanogenesis) H2 conversion pathway on the biofilm.

  11. Characteristics of polycyclic aromatic hydrocarbons in agricultural soils at a typical coke production base in Shanxi, China.

    PubMed

    Duan, Yonghong; Shen, Guofeng; Tao, Shu; Hong, Jianping; Chen, Yuanchen; Xue, Miao; Li, Tongchao; Su, Shu; Shen, Huizhong; Fu, Xiaofang; Meng, Qingchun; Zhang, Jing; Zhang, Bing; Han, Xiaoying; Song, Kang

    2015-05-01

    There is wide concern about polycyclic aromatic hydrocarbons (PAHs) because of their carcinogenic and mutagenic potential. The coking industry is an important source of PAHs. In this study, 36 arable soil samples, a sensitive medium from the perspective of food safety and health, were collected from one of the largest coke production bases in China. The concentration of total 21 PAHs ranged from 294 to 1665 ng g(-1), with a mean of 822±355 ng g(-1). Approximately 60% of the soil samples were heavily polluted with the level higher than 600 ng g(-1). Particularly high abundances of high molecular weight PAHs were found, and the calculated BaPeq was as high as 54.3 ng g(-1). Soil PAH levels were positively correlated with soil organic matter content. The soil PAHs were from complex mixture sources, and high-temperature pyrogenic sources were most likely responsible for the heavy PAH contamination. Effective control strategies and probable remediation approaches should be proposed to improve soil quality.

  12. Membrane-integrated physico-chemical treatment of coke-oven wastewater: transport modelling and economic evaluation.

    PubMed

    Kumar, Ramesh; Chakrabortty, Sankha; Pal, Parimal

    2015-04-01

    A modelling and simulation study with economic evaluation was carried out for an advanced membrane-integrated hybrid treatment process that ensures reuse of water with recovery of ammoniacal nitrogen as struvite from coke-oven wastewater. Linearized transport model was developed based on extended Nernst-Plank and concentration polarization modulus equation. Effects of pH, transmembrane pressure and cross-flow rate of interest on membrane charge density, solute rejection and solvent flux were investigated. The membrane module was successful in yielding a pure water flux as high as 120 L m(-2) h(-1) removing more than 95 and 96% of the cyanide and phenol, respectively, while permeating more than 90% NH4 (+)-N at a transmembrane pressure of only 15 × 10(2) KPa and at a pH of 10 for a volumetric cross-flow rate of 800 L h(-1). The Fenton's reagents were used to degrade more than 99% of pollutants present in the concentrated stream. The developed model could successfully predict the plant performance as reflected in the very low relative error (0.01-0.12) and overall high correlation coefficient (R(2) > 0.96). Economic analysis indicated that such a membrane-integrated hybrid system could be quite promising in coke wastewater treatment at low cost i.e. $0.934/m(2) of wastewater.

  13. Membrane-integrated physico-chemical treatment of coke-oven wastewater: transport modelling and economic evaluation.

    PubMed

    Kumar, Ramesh; Chakrabortty, Sankha; Pal, Parimal

    2015-04-01

    A modelling and simulation study with economic evaluation was carried out for an advanced membrane-integrated hybrid treatment process that ensures reuse of water with recovery of ammoniacal nitrogen as struvite from coke-oven wastewater. Linearized transport model was developed based on extended Nernst-Plank and concentration polarization modulus equation. Effects of pH, transmembrane pressure and cross-flow rate of interest on membrane charge density, solute rejection and solvent flux were investigated. The membrane module was successful in yielding a pure water flux as high as 120 L m(-2) h(-1) removing more than 95 and 96% of the cyanide and phenol, respectively, while permeating more than 90% NH4 (+)-N at a transmembrane pressure of only 15 × 10(2) KPa and at a pH of 10 for a volumetric cross-flow rate of 800 L h(-1). The Fenton's reagents were used to degrade more than 99% of pollutants present in the concentrated stream. The developed model could successfully predict the plant performance as reflected in the very low relative error (0.01-0.12) and overall high correlation coefficient (R(2) > 0.96). Economic analysis indicated that such a membrane-integrated hybrid system could be quite promising in coke wastewater treatment at low cost i.e. $0.934/m(2) of wastewater. PMID:25380632

  14. Bioaugmentation with isolated strains for the removal of toxic and refractory organics from coking wastewater in a membrane bioreactor.

    PubMed

    Zhu, Xiaobiao; Liu, Rui; Liu, Cong; Chen, Lujun

    2015-11-01

    The bioaugmentation strains for phenol, pyridine, quinoline, carbazole, and naphthalene degradation were employed to treat coking wastewater in a membrane bioreactor (MBR). The results showed that the bioaugmented MBR was much better in pollutant removal than that of the control MBR with conventional activated sludge. Compared to the control MBR, the bioaugmented MBR displayed an additional 3.2 mg/L of phenol, pyridine, quinoline, naphthalene and carbazole in total by the addition of the degrading strains. Also, about 10 % of the chemical oxygen demand in the effluent was further removed by the bioaugmentation. The pyrosequencing analysis of the sludge in the MBRs revealed that the microbial community shifted in response to the addition of the degrading strains. The diversity of the microbial community increased during the bioaugmentation, and some bacterial taxa favorable to the removal of toxic and refractory pollutants appeared in the bioaugmented MBR. The results indicated that the use of high-efficiency bacteria was a feasible method for industrial coking wastewater treatment. PMID:26510738

  15. Physicochemical characterization of coke-plant soil for the assessment of polycyclic aromatic hydrocarbon availability and the feasibility of phytoremediation

    SciTech Connect

    Ahn, S.; Werner, D.; Luthy, R.G.

    2005-09-01

    Coke oven site soil was characterized to assess the particle association and availability of polycyclic aromatic hydrocarbons (PAHs). We identified various carbonaceous materials including coal, coke, pitch, and tar decanter sludge. Most of the PAHs were associated with the polymeric matrix of tar sludge or hard pitch as discrete particles, coatings on soil mineral particles, or complex aggregates. The PAH availability from these particles was very low due to hindered diffusive release from solid tar or pitch with apparent diffusivities of 6 x 10{sup -15} for phenanthrene, 3 x 10{sup -15} for pyrene, and 1 x 10{sup -15} cm{sup 2}/s for benzo(a)pyrene. Significant concentrations of PAHs were observed in the interior of solid tar aggregates with up to 40,000 mg/kg total PAHs. The release of PAHs from the interior of such particles requires diffusion over a substantial distance, and semipermeable membrane device tests confirmed a very limited availability of PAHs. These findings explain the results from three years of phytoremediation of the site soil, for which no significant changes in the total PAH concentrations were observed in the test plot samples. The observed low bioavailability of PAHs probably inhibited PAH phytoremediation, as diffusion-limited mass transfer would limit the release of PAHs to the aqueous phase.

  16. Dispersion modeling of polycyclic aromatic hydrocarbons from combustion of biomass and fossil fuels and production of coke in Tianjin, China.

    PubMed

    Tao, Shu; Li, Xinrong; Yang, Yu; Coveney, Raymond M; Lu, Xiaoxia; Chen, Haitao; Shen, Weiran

    2006-08-01

    A USEPA, procedure, ISCLT3 (Industrial Source Complex Long-Term), was applied to model the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) emitted from various sources including coal, petroleum, natural gas, and biomass into the atmosphere of Tianjin, China. Benzo[a]pyrene equivalent concentrations (BaPeq) were calculated for risk assessment. Model results were provisionally validated for concentrations and profiles based on the observed data at two monitoring stations. The dominant emission sources in the area were domestic coal combustion, coke production, and biomass burning. Mainly because of the difference in the emission heights, the contributions of various sources to the average concentrations at receptors differ from proportions emitted. The shares of domestic coal increased from approximately 43% at the sources to 56% at the receptors, while the contributions of coking industry decreased from approximately 23% at the sources to 7% at the receptors. The spatial distributions of gaseous and particulate PAHs were similar, with higher concentrations occurring within urban districts because of domestic coal combustion. With relatively smaller contributions, the other minor sources had limited influences on the overall spatial distribution. The calculated average BaPeq value in air was 2.54 +/- 2.87 ng/m3 on an annual basis. Although only 2.3% of the area in Tianjin exceeded the national standard of 10 ng/m3, 41% of the entire population lives within this area.

  17. Metabolic activation of organic extracts from diesel, coke oven, roofing tar, and cigarette smoke emissions in the Ames assay

    SciTech Connect

    Williams, K.; Lewtas, J.

    1985-01-01

    The role of metabolic activation in the difference between a microbial and mammalian bioassays in the ranking of genotoxic potency of several environmental emissions was investigated. Although the relative potency in the Ames assay correlated well with the relative potency in mammalian cell and mouse skin for a series of automotive emissions (diesel and gasoline), this was not the case for the coke oven, roofing tar, and cigarette smoke condensate (CSC) emissions. The study examined several parameters of the metabolic activation with Salmonella typhimurium TA98 including S9 concentration and a comparison of Aroclor-1254 induced with uninduced S9 from both rat and hamster liver. The diesel-emissions sample was direct acting while the other samples required activation. The standard S9 concentration (approximately 1.25 mg protein/plate) also produced the maximum mutagenic activity. Induced S9s produced higher mutagenic activity than uninduced. The hamster S9 gave significantly higher mutagenic activies than rat S9 for the coke oven and CSC.

  18. Bioremediation of coking wastewater containing carbazole, dibenzofuran, dibenzothiophene and naphthalene by a naphthalene-cultivated Arthrobacter sp. W1.

    PubMed

    Shi, Shengnan; Qu, Yuanyuan; Ma, Fang; Zhou, Jiti

    2014-07-01

    A naphthalene-utilizing bacterium, Arthrobacter sp. W1, was used to investigate the cometabolic degradation of carbazole (CA), dibenzofuran (DBF) and dibenzothiophene (DBT) using naphthalene as the primary substrate. Both the growing and washed cells of strain W1 could degrade CA, DBF, DBT, and naphthalene simultaneously and quickly. Inhibition kinetics confirmed that the presence of CA, DBF and DBT in the growing system would inhibit the cells growth and biodegradability of strain W1. The relationship between ln(C/C0) and time, and specific degradation rate and CA, DBF and DBT concentration could be described well by First-order and Michaelis-Menten kinetics. The treatment of real coking wastewater containing high concentration of phenol, naphthalene, CA, DBF, DBT and NH3-N was shown to be highly efficient by naphthalene-grown W1 coupling with activation zeolite. Toxicity assessment indicated the treatment of the coking wastewater by strain W1 coupling with activation led to less toxicity than untreated wastewater.

  19. CO2 co-gasification of lower sulphur petroleum coke and sugar cane bagasse via TG-FTIR analysis technique.

    PubMed

    Edreis, Elbager M A; Luo, Guangqian; Li, Aijun; Chao, Chen; Hu, Hongyun; Zhang, Sen; Gui, Ben; Xiao, Li; Xu, Kai; Zhang, Pingan; Yao, Hong

    2013-05-01

    This study investigates the non-isothermal mechanism and kinetic behaviour of gasification of a lower sulphur petroleum coke, sugar cane bagasse and blends under carbon dioxide atmosphere conditions using the thermogravimetric analyser (TGA). The gas products were measured online with coupled Fourier transform infrared spectroscopy (FTIR). The achieved results explored that the sugar cane bagasse and blend gasification happened in two steps: at (<500 °C) the volatiles are released, and at (>700 °C) char gasification occurred, whereas the lower sulphur petroleum coke presented only one char gasification stage at (>800 °C). Significant interactions were observed in the whole process. Some solid-state mechanisms were studied by the Coats-Redfern method in order to observe the mechanisms responsible for the gasification of samples. The results show that the chemical first order reaction is the best responsible mechanism for whole process. The main released gases are CO2, CO, CH4, HCOOH, C6H5OH and CH3COOH.

  20. Dispersion modeling of polycyclic aromatic hydrocarbons from combustion of biomass and fossil fuels and production of coke in Tianjin, China

    SciTech Connect

    Shu Tao; Xinrong Li; Yu Yang; Raymond M. Coveney, Jr.; Xiaoxia Lu; Haitao Chen; Weiran Shen

    2006-08-01

    A USEPA procedure, ISCLT3 (Industrial Source Complex Long-Term), was applied to model the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) emitted from various sources including coal, petroleum, natural gas, and biomass into the atmosphere of Tianjin, China. Benzo(a)pyrene equivalent concentrations (BaPeq) were calculated for risk assessment. Model results were provisionally validated for concentrations and profiles based on the observed data at two monitoring stations. The dominant emission sources in the area were domestic coal combustion, coke production, and biomass burning. Mainly because of the difference in the emission heights, the contributions of various sources to the average concentrations at receptors differ from proportions emitted. The shares of domestic coal increased from {approximately} 43% at the sources to 56% at the receptors, while the contributions of coking industry decreased from {approximately} 23% at the sources to 7% at the receptors. The spatial distributions of gaseous and particulate PAHs were similar, with higher concentrations occurring within urban districts because of domestic coal combustion. With relatively smaller contributions, the other minor sources had limited influences on the overall spatial distribution. The calculated average BaPeq value in air was 2.54 {+-} 2.87 ng/m{sup 3} on an annual basis. Although only 2.3% of the area in Tianjin exceeded the national standard of 10 ng/m{sup 3}, 41% of the entire population lives within this area. 37 refs., 9 figs.

  1. A story of revival: United Coal's East Gulf preparation plant

    SciTech Connect

    2009-04-15

    Some say beauty is in the eye of the beholder, but when United Coal purchased the assets of White Mountain Mining in late 2005, the attractiveness of the acquired assets did not require much debate. Whilst the Pocahontas Coal reserves included in the acquisition were very desirable for producing coke, the East Gulf preparation plant was in poor condition. In order to minimize cost, maintenance and manpower whilst increasing production, the circuits in the existing plant were modified and the Barvoy Vessel was replaced with a single, pump fed, 30-inch Krebs HM cyclone. A spiral circuit was added as were screen bowl centrifuges. Finally the plant was given a structural upgrade and a new siding was installed. With the East Gulf restoration project complete, the United Coal Co. (UCC) and Pocahontas Coal are now considering expanding the Affinity complex. 2 figs., 6 photos.

  2. A Size-Dependent Thermodynamic Model for Coke Crystallites: The Carbon-Sulfur System Up to 2500 K (2227 °C)

    NASA Astrophysics Data System (ADS)

    Ouzilleau, Philippe; Gheribi, Aïmen E.; Lindberg, Daniel K.; Chartrand, Patrice

    2016-06-01

    A model is presented for the development of the thermodynamic functions of enthalpy, entropy, and Gibbs energy for the elements carbon and sulfur in coke crystallites. The crystallites of various degrees of graphitization may be described by crystallite length L a and crystallite height L c. This carbon/sulfur model has been developed using concepts similar to those in the carbon/hydrogen model for coke crystallites. The major model parameters are derived from reported thermodynamic properties. Approximately 75 pct of the model parameters for the carbon/hydrogen and carbon/sulfur system are parameters common to both systems. The resulting crystallite size ( L a) constrained in the carbon/sulfur phase diagram, computed by a Gibbs energy minimization technique, is presented for 1 atm and temperatures between 1500 K and 2500 K (1227 °C and 2227 °C). A very good agreement is obtained between the predicted thermal desulfurization of petroleum cokes and critically assessed experimental data. The removal of sulfur from coke crystallites is predicted to occur mostly between 1600 K and 1850 K (1327 °C and 1577 °C) at 1 atm, depending on the L a value. The precision in the predictive calculations and the transferability of the model parameters are two aspects that tend to support the usefulness and the theoretical basis of the entire approach.

  3. Petroleum coke and soft tailings sediment in constructed wetlands may contribute to the uptake of trace metals by algae and aquatic invertebrates.

    PubMed

    Baker, Leanne F; Ciborowski, Jan J H; MacKinnon, Michael D

    2012-01-01

    The fate of trace metals in pore water collected from wetland sediments and organisms exposed to petroleum coke were evaluated within in situ aquatic microcosms. Oil sands operators of Fort McMurray, Alberta, Canada produced 60 million tonnes of petroleum coke by 2008, containing elevated concentrations of sulphur and several trace metals commonly seen in oil sands materials. This material may be included in the construction of reclaimed wetlands. Microcosms were filled with a surface layer of petroleum coke over mine-waste sediments and embedded in a constructed wetland for three years to determine how these materials would affect the metal concentrations in the sediment pore water, colonizing wetland plants and benthic invertebrates. Petroleum coke treatments produced significantly elevated levels of Ni. We also found unexpectedly higher concentrations of metals in "consolidated tailings" waste materials, potentially due to the use of oil sands-produced gypsum, and higher background concentration of elements in the sediment used in the controls. A trend of higher concentrations of V, Ni, La, and Y was present in the tissues of the colonizing macrophytic alga Chara spp. Aeshnid dragonflies may also be accumulating V. These results indicate that the trace metals present in some oil sands waste materials could be taken up by aquatic macro-algae and some wetland invertebrates if these materials are included in reclaimed wetlands.

  4. An in-depth understanding of the bimetallic effects and coked carbon species on an active bimetallic Ni(Co)/Al2O3 dry reforming catalyst.

    PubMed

    Liao, Xin; Gerdts, Rihards; Parker, Stewart F; Chi, Lina; Zhao, Yongxiang; Hill, Martyn; Guo, Junqiu; Jones, Martin O; Jiang, Zheng

    2016-06-29

    Ni/Al2O3, Co/Al2O3 and bimetallic Ni(Co)/Al2O3 catalysts were prepared using an impregnation method and employed in CO2 dry reforming of methane under coking-favored conditions. The spent catalysts were carefully characterized using typical characterization technologies and inelastic neutron scattering spectroscopy. The bimetallic catalyst exhibited a superior activity and anti-coking performance compared to Ni/Al2O3, while the most resistant to coking behavior was Co/Al2O3. The enhanced activity of the Ni(Co)/Al2O3 bimetallic catalyst is attributed to the reduced particle size of metallic species and resistance to forming stable filamentous carbon. The overall carbon deposition on the spent bimetallic catalyst is comparable to that of the spent Ni/Al2O3 catalyst, whereas the carbon deposited on the bimetallic catalyst is mainly less-stable carbonaceous species as confirmed by SEM, TPO, Raman and INS characterization. This study provides an in depth understanding of alloy effects in catalysts, the chemical nature of coked carbon on spent Ni-based catalysts and, hopefully, inspires the creative design of a new bimetallic catalyst for dry reforming reactions. PMID:27326792

  5. Coke industry and steel metallurgy as the source of soil contamination by technogenic magnetic particles, heavy metals and polycyclic aromatic hydrocarbons.

    PubMed

    Rachwał, Marzena; Magiera, Tadeusz; Wawer, Małgorzata

    2015-11-01

    Application of integrated magnetic, geochemical and mineralogical methods for qualitative and quantitative assessment of forest topsoils exposed to the industrial emissions was the objective of this manuscript. Volume magnetic susceptibility (κ) in three areas of southern Poland close to the coke and metallurgical plants was measured directly in the field. Representative topsoil samples were collected for further chemical and mineralogical analyses. Topsoil magnetic susceptibility in the studied areas depended mainly on the content of technogenic magnetic particles (TMPs) and decreased downwind at increasing distance from the emitters. In the vicinity of coking plants a high amount of polycyclic aromatic hydrocarbons (PAHs) was observed, especially the most carcinogenic ones with four- and five-member rings. No significant concentration of TMPs (estimated on the base of κ values) and heavy metals (HM) was observed in area where the coke plant was the only pollution source. In areas with both coke and metallurgical industry, higher amounts of TMPs, PAHs and HM were detected. Morphological and mineralogical analyses of TMPs separated from contaminated soil samples revealed their high heterogeneity in respect of morphology, grain size, mineral and chemical constitution. Pollution load index and toxicity equivalent concentration of PAHs used for soil quality assessment indicated its high level of pollution.

  6. An in-depth understanding of the bimetallic effects and coked carbon species on an active bimetallic Ni(Co)/Al2O3 dry reforming catalyst.

    PubMed

    Liao, Xin; Gerdts, Rihards; Parker, Stewart F; Chi, Lina; Zhao, Yongxiang; Hill, Martyn; Guo, Junqiu; Jones, Martin O; Jiang, Zheng

    2016-06-29

    Ni/Al2O3, Co/Al2O3 and bimetallic Ni(Co)/Al2O3 catalysts were prepared using an impregnation method and employed in CO2 dry reforming of methane under coking-favored conditions. The spent catalysts were carefully characterized using typical characterization technologies and inelastic neutron scattering spectroscopy. The bimetallic catalyst exhibited a superior activity and anti-coking performance compared to Ni/Al2O3, while the most resistant to coking behavior was Co/Al2O3. The enhanced activity of the Ni(Co)/Al2O3 bimetallic catalyst is attributed to the reduced particle size of metallic species and resistance to forming stable filamentous carbon. The overall carbon deposition on the spent bimetallic catalyst is comparable to that of the spent Ni/Al2O3 catalyst, whereas the carbon deposited on the bimetallic catalyst is mainly less-stable carbonaceous species as confirmed by SEM, TPO, Raman and INS characterization. This study provides an in depth understanding of alloy effects in catalysts, the chemical nature of coked carbon on spent Ni-based catalysts and, hopefully, inspires the creative design of a new bimetallic catalyst for dry reforming reactions.

  7. Methylation of CpG island of p14(ARK), p15(INK4b) and p16(INK4a) genes in coke oven workers.

    PubMed

    Zhang, H; Li, X; Ge, L; Yang, J; Sun, J; Niu, Q

    2015-02-01

    To detect the blood genomic DNA methylation in coke oven workers and find a possible early screening index for occupational lung cancer, 74 coke oven workers as the exposed group and 47 water pump workers as the controls were surveyed, and urine samples and peripheral blood mononuclear cells (PBMCs) were collected. Airborne benzo[a]pyrene (B[a]P) levels in workplace and urinary 1-hydroxypyrene (1-OH-Py) levels were determined by high-performance liquid chromatography. DNA damage of PBMCs and the p14(ARK), p15(INK4b) and p16(INK4a) gene CpG island methylation in the promoter region were detected by comet assay and methylation-specific polymerase chain reaction techniques, respectively. Results show that compared with the controls, concentration of airborne B[a]Ps was elevated in the coke plant, and urinary 1-OH-Py's level and DNA olive tail moment in comet assay were significantly increased in the coke oven workers, and p14(ARK), p15(INK4b) and p16(INK4a) gene methylation rates were also significantly increased. With the working years and urinary 1-OH-Py's level, the rates of p14(ARK) and p16(INK4a) gene methylation were significantly increased while that of p15(INK4b) gene methylation displayed no statistical change. We conclude that PBMCs' p14(ARK) and p16(INK4a) gene methylation may be used for screening and warning lung cancer in coke oven workers.

  8. Unit Cells

    ERIC Educational Resources Information Center

    Olsen, Robert C.; Tobiason, Fred L.

    1975-01-01

    Describes the construction of unit cells using clear plastic cubes which can be disassembled, and one inch cork balls of various colors, which can be cut in halves, quarters, or eighths, and glued on the inside face of the cube, thus simulating a unit cell. (MLH)

  9. UNIT, PETROLOGY.

    ERIC Educational Resources Information Center

    Louisiana Arts and Science Center, Baton Rouge.

    THIS TEACHER'S GUIDE FOR A UNIT ON PETROLOGY IS SUITABLE FOR ADAPTATION AT EITHER THE UPPER ELEMENTARY OR THE JUNIOR HIGH SCHOOL LEVELS. THE UNIT BEGINS WITH A STORY THAT INTRODUCES VOLCANIC ACTION AND IGNEOUS ROCK FORMATION. SELECTED CONCEPTS ARE LISTED FOLLOWED BY SUGGESTED ACTIVITIES. A BIBLIOGRAPHY, FILM LIST, VOCABULARY LIST, AND QUESTION AND…

  10. UNIT, ALASKA.

    ERIC Educational Resources Information Center

    Louisiana Arts and Science Center, Baton Rouge.

    THE UNIT DESCRIBED IN THIS BOOKLET DEALS WITH THE GEOGRAPHY OF ALASKA. THE UNIT IS PRESENTED IN OUTLINE FORM. THE FIRST SECTION DEALS PRINCIPALLY WITH THE PHYSICAL GEOGRAPHY OF ALASKA. DISCUSSED ARE (1) THE SIZE, (2) THE MAJOR LAND REGIONS, (3) THE MOUNTAINS, VOLCANOES, GLACIERS, AND RIVERS, (4) THE NATURAL RESOURCES, AND (5) THE CLIMATE. THE…

  11. Enhanced Capacitive Performance of N-Doped Activated Carbon from Petroleum Coke by Combining Ammoxidation with KOH Activation

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Zhang, Yu; Huang, Jufeng; Du, Dongfeng; Xing, Wei; Yan, Zifeng

    2016-05-01

    Low cost with high specific capacitance and energy density is the critical and main requirement for practical supercapacitors. A novel N-doped activated carbon was fabricated by KOH activation of petroleum coke and ammonia treatment. The as-prepared carbon exhibits a high specific surface area (1875 m2 g-1), excellent conductivity (57 S m-1), and rich nitrogen level (4.0 wt%). Those outstanding characters result in this porous carbon a hopeful electrode material for electrochemical supercapacitors. It shows high specific capacitance (up to 299 F g-1) and superior rate capability (76 % retention ratio at 20 A g-1) in 30 wt% KOH aqueous electrolyte. This efficient treatment method ensures its prosperous application in energy storage systems.

  12. Enhanced Capacitive Performance of N-Doped Activated Carbon from Petroleum Coke by Combining Ammoxidation with KOH Activation.

    PubMed

    Zhang, Yan; Zhang, Yu; Huang, Jufeng; Du, Dongfeng; Xing, Wei; Yan, Zifeng

    2016-12-01

    Low cost with high specific capacitance and energy density is the critical and main requirement for practical supercapacitors. A novel N-doped activated carbon was fabricated by KOH activation of petroleum coke and ammonia treatment. The as-prepared carbon exhibits a high specific surface area (1875 m(2) g(-1)), excellent conductivity (57 S m(-1)), and rich nitrogen level (4.0 wt%). Those outstanding characters result in this porous carbon a hopeful electrode material for electrochemical supercapacitors. It shows high specific capacitance (up to 299 F g(-1)) and superior rate capability (76 % retention ratio at 20 A g(-1)) in 30 wt% KOH aqueous electrolyte. This efficient treatment method ensures its prosperous application in energy storage systems.

  13. Physico-chemical characterization of products from vacuum oil under delayed coking process by infrared spectroscopy and chemometrics methods

    NASA Astrophysics Data System (ADS)

    Meléndez, L. V.; Cabanzo, R.; Mejía-Ospino, E.; Guzmán, A.

    2016-02-01

    Eight vacuum residues and their delayed coking liquids products from Colombian crude were study by infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and principal component analysis (PCA). For the samples the structural parameters of aromaticity factor (fa), alifaticity (A2500-3100cm-1), aromatic condensation degree (GCA), length of aliphatic chains (LCA) and aliphatic chain length associated with aromatic (LACAR) were determined through the development of a methodology, which includes the previous processing of spectroscopy data, identifying the regions in the IR spectra of greatest variance using PCA and molecules patterns. The parameters were compared with the results obtained from proton magnetic resonance (1H-NMR) and 13C-NMR. The results showed the influence and correlation of structural parameters with some physicochemical properties such as API gravity, weight percent sulphur (% S) and Conradson carbon content (% CCR)

  14. Decline in liver neoplasms in wild brown bullhead catfish after coking plant closes and environmental PAHs plummet

    SciTech Connect

    Baumann, P.C.; Harshbarger, J.C.

    1995-02-01

    Polycyclic aromatic hydrocarbons (PAHs) in both sediment and brown bullhead catfish tissues from the Black River in Lorain County, Ohio, declined by 65% and 93%, respectively, between 1980 and 1982. Sediment PAHs declined an additional 99% by 1987, coincident with the closure of a coking facility in 1983. Contemporaneously, liver cancer in 3- to 4-year-old brown bullheads declined to about one-quarter the 1982 frequency (10% versus 39%) by 1987, while the percentage of livers without any proliferative lesions doubled (42% versus 20%). These changes were significant within age group. Our data affirm a cause-and-effect relationship between PAH exposure and liver cancer in wild fish. The data also support the efficacy of natural, unassisted remediation once the source of the pollution is eliminated. 21 refs., 4 tabs.

  15. High Coke-Resistance Pt/Mg1-xNixO Catalyst for Dry Reforming of Methane

    PubMed Central

    Al-Doghachi, Faris A. J.; Islam, Aminul; Zainal, Zulkarnain; Saiman, Mohd Izham; Embong, Zaidi; Taufiq-Yap, Yun Hin

    2016-01-01

    A highly active and stable nano structured Pt/Mg1-xNixO catalysts was developed by a simple co-precipitation method. The obtained Pt/Mg1-xNixO catalyst exhibited cubic structure nanocatalyst with a size of 50–80 nm and realized CH4 and CO2 conversions as high as 98% at 900°C with excellent stability in the dry reforming of methane. The characterization of catalyst was performed using various kinds of analytical techniques including XRD, BET, XRF, TPR-H2, TGA, TEM, FESEM, FT-IR, and XPS analyses. Characterization of spent catalyst further confirms that Pt/Mg1-xNixO catalyst has high coke-resistance for dry reforming. Thus, the catalyst demonstrated in this study, offers a promising catalyst for resolving the dilemma between dispersion and reducibility of supported metal, as well as activity and stability during high temperature reactions. PMID:26745623

  16. Enhanced Capacitive Performance of N-Doped Activated Carbon from Petroleum Coke by Combining Ammoxidation with KOH Activation.

    PubMed

    Zhang, Yan; Zhang, Yu; Huang, Jufeng; Du, Dongfeng; Xing, Wei; Yan, Zifeng

    2016-12-01

    Low cost with high specific capacitance and energy density is the critical and main requirement for practical supercapacitors. A novel N-doped activated carbon was fabricated by KOH activation of petroleum coke and ammonia treatment. The as-prepared carbon exhibits a high specific surface area (1875 m(2) g(-1)), excellent conductivity (57 S m(-1)), and rich nitrogen level (4.0 wt%). Those outstanding characters result in this porous carbon a hopeful electrode material for electrochemical supercapacitors. It shows high specific capacitance (up to 299 F g(-1)) and superior rate capability (76 % retention ratio at 20 A g(-1)) in 30 wt% KOH aqueous electrolyte. This efficient treatment method ensures its prosperous application in energy storage systems. PMID:27167734

  17. High Coke-Resistance Pt/Mg1-xNixO Catalyst for Dry Reforming of Methane.

    PubMed

    Al-Doghachi, Faris A J; Islam, Aminul; Zainal, Zulkarnain; Saiman, Mohd Izham; Embong, Zaidi; Taufiq-Yap, Yun Hin

    2016-01-01

    A highly active and stable nano structured Pt/Mg1-xNixO catalysts was developed by a simple co-precipitation method. The obtained Pt/Mg1-xNixO catalyst exhibited cubic structure nanocatalyst with a size of 50-80 nm and realized CH4 and CO2 conversions as high as 98% at 900°C with excellent stability in the dry reforming of methane. The characterization of catalyst was performed using various kinds of analytical techniques including XRD, BET, XRF, TPR-H2, TGA, TEM, FESEM, FT-IR, and XPS analyses. Characterization of spent catalyst further confirms that Pt/Mg1-xNixO catalyst has high coke-resistance for dry reforming. Thus, the catalyst demonstrated in this study, offers a promising catalyst for resolving the dilemma between dispersion and reducibility of supported metal, as well as activity and stability during high temperature reactions. PMID:26745623

  18. Closed-loop identification and control application for dissolved oxygen concentration in a full-scale coke wastewater treatment plant.

    PubMed

    Yoo, C K; Cho, J H; Kwak, H J; Choi, S K; Chun, H D; Lee, I

    2001-01-01

    The objective of this paper is to apply a closed-loop identification to actual dissolved oxygen control system in the coke wastewater treatment plant. It approximates the dissolved oxygen dynamics to a high order model using the integral transform method and reduces it to the first-order plus time delay (FOPTD) or second-order plus time delay (SOPTD) for the PID controller tuning. To experiment the process identification on the real plant, a simple set-point change of the speed of surface aerator under the closed-loop control without any mode change was used as an activation signal of the identification. The full-scale experimental results show a good identification performance and a good tracking ability for set-point change. As a result of improved control performance, the fluctuation of dissolved oxygen concentration variation has been decreased and the electric power saving has been accomplished.

  19. Physical and electrochemical properties of supercapacitor composite electrodes prepared from biomass carbon and carbon from green petroleum coke

    NASA Astrophysics Data System (ADS)

    Awitdrus, Deraman, M.; Talib, I. A.; Farma, R.; Omar, R.; Ishak, M. M.; Taer, E.; Dolah, B. N. M.; Basri, N. H.; Nor, N. S. M.

    2015-04-01

    The green monoliths (GMs) were prepared from the mixtures of pre-carbonized fibers of oil palm empty fruit bunches (or self-adhesive carbon grains (SACG)) and green petroleum coke (GPC) with the mixing ratio of 0, 10, 30, 50 and 70 % GPC, respectively. The GMs were carbonized in N2 environment at 800°C to produce carbon monoliths (CM00, CM10, CM30, CM50 and CM70). The CMs were CO2 activated at 800°C for 1 hour to produced activated carbon monolith electrodes (ACM00, ACM10, ACM30, ACM50 and ACM70). For each percentage of GPC, three duplicate symmetrical supercapacitor cells were fabricated using these activated carbon monolith electrodes respectively, and the capacitive performance amongst the cells was compared and analyzed in order to observe the relationship between the capacitive performance and the physical properties (microstructure and porosity) of the ACMs electrodes containing varying percentage of GPC.

  20. Closed-loop identification and control application for dissolved oxygen concentration in a full-scale coke wastewater treatment plant.

    PubMed

    Yoo, C K; Cho, J H; Kwak, H J; Choi, S K; Chun, H D; Lee, I

    2001-01-01

    The objective of this paper is to apply a closed-loop identification to actual dissolved oxygen control system in the coke wastewater treatment plant. It approximates the dissolved oxygen dynamics to a high order model using the integral transform method and reduces it to the first-order plus time delay (FOPTD) or second-order plus time delay (SOPTD) for the PID controller tuning. To experiment the process identification on the real plant, a simple set-point change of the speed of surface aerator under the closed-loop control without any mode change was used as an activation signal of the identification. The full-scale experimental results show a good identification performance and a good tracking ability for set-point change. As a result of improved control performance, the fluctuation of dissolved oxygen concentration variation has been decreased and the electric power saving has been accomplished. PMID:11385849

  1. Nitrogen balance and transformation in the nitrification process of coking wastewater and the influence on nitrification kinetics.

    PubMed

    Shan, Mingjun; Zhang, Yan; Kou, Lihong

    2014-01-01

    This paper describes the total nitrogen balance, and the direction and degree of nitrogen transformation during the nitrification process of coking wastewater. According to the actual nitrification process, the conventional nitrification kinetic equation was amended. After 48 h of nitrification, the total nitrogen content remained almost the same with error less than 0.6%. The total removal efficiency of NH4(+)-N was 91.1%, in which blow-off, producing cells and transforming to nitrate nitrogen accounted for 1.1, 17.8 and 72.2% respectively. Considering the influences of NH4(+)-N blow-off and conversion from cyanide, thiocyanide and organic nitrogen, the nitrification kinetic equation was amended as μ'=0.82·S/(0.48+S).

  2. Influence of carrier filling ratio on the performance of moving bed biofilm reactor in treating coking wastewater.

    PubMed

    Gu, Qiyuan; Sun, Tichang; Wu, Gen; Li, Mingyue; Qiu, Wei

    2014-08-01

    This study aims to evaluate the effect of carrier filling ratio on the performance of a moving bed biofilm reactor in degrading chemical oxygen demand, phenol, thiocyanate, and ammonia from coking wastewater at 20h of hydraulic retention time. The operational experiments under different carrier filling ratios ranging from 20% to 60% were investigated. The maximum removal efficiency of 89%, 99% and 99% for COD, phenol and thiocyanate, and minimum sensitivity to the increasing contaminants concentration in the influent were achieved at 50% carrier filling ratio. The Haldane competitive substrate inhibition kinetics model was used to describe the relationship between the oxygen uptake rate of ammonium oxidizers and the concentration of free ammonium. The highest biofilm microbial community functional diversity (Shannon's diversity index, H') and evenness (Shannon's evenness index, E') were obtained at 50% carrier filling ratio in all runs using a Biolog ECO microplate.

  3. High Coke-Resistance Pt/Mg1-xNixO Catalyst for Dry Reforming of Methane.

    PubMed

    Al-Doghachi, Faris A J; Islam, Aminul; Zainal, Zulkarnain; Saiman, Mohd Izham; Embong, Zaidi; Taufiq-Yap, Yun Hin

    2016-01-01

    A highly active and stable nano structured Pt/Mg1-xNixO catalysts was developed by a simple co-precipitation method. The obtained Pt/Mg1-xNixO catalyst exhibited cubic structure nanocatalyst with a size of 50-80 nm and realized CH4 and CO2 conversions as high as 98% at 900°C with excellent stability in the dry reforming of methane. The characterization of catalyst was performed using various kinds of analytical techniques including XRD, BET, XRF, TPR-H2, TGA, TEM, FESEM, FT-IR, and XPS analyses. Characterization of spent catalyst further confirms that Pt/Mg1-xNixO catalyst has high coke-resistance for dry reforming. Thus, the catalyst demonstrated in this study, offers a promising catalyst for resolving the dilemma between dispersion and reducibility of supported metal, as well as activity and stability during high temperature reactions.

  4. Decline in liver neoplasms in wild brown bullhead catfish after coking plant closes and environmental PAHs plummet.

    PubMed

    Baumann, P C; Harshbarger, J C

    1995-02-01

    Polycyclic aromatic hydrocarbons (PAHs) in both sediment and brown bullhead catfish tissues from the Black River in Lorain County, Ohio, declined by 65% and 93%, respectively, between 1980 and 1982. Sediment PAHs declined an additional 99% by 1987, coincident with the closure of a coking facility in 1983. Contemporaneously, liver cancer in 3- to 4-year-old brown bullheads declined to about one-quarter the 1982 frequency (10% versus 39%) by 1987, while the percentage of livers without any proliferative lesions doubled (42% versus 20%). These changes were significant within age group. Our data affirm a cause-and-effect relationship between PAH exposure and liver cancer in wild fish. The data also support the efficacy of natural, unassisted remediation once the source of the pollution is eliminated.

  5. Photosynthetic units.

    PubMed

    Schmid, G H; Gaffron, H

    1968-08-01

    Leaf tissues of aurea mutants of tobacco and Lespedeza have been shown to have higher photosynthetic capacity per molecule of chlorophyll, a higher saturation intensity, a simpler lamellar structure, and the same quantum yield as their dark green parents. Here we report on the values of photosynthetic units for both types of plants and some algae. The unit has been assumed to be about as uniform and steady in the plant world as the quantum efficiency. The number on which all theoretical discussions have been based so far is 2400 per O(2) evolved or CO(2) reduced. With dark green plants and algae our determinations of units by means of 40 microsec flashes superimposed on a steady rate of background photosynthesis at 900 ergs cm(-2) sec(-1) of red light yielded mostly numbers between 2000 and 2700. However, the photosynthetic unit turned out to be very variable, even in these objects. In aurea mutants the unit was distinctly smaller, averaging 600 chl/CO(2). By choosing the right combination of colors for flash and background light, units as low as 300 chl/CO(2) or 40 chl/e(-) could be measured consistently. We found five well-defined groups of units composed of multiples of its smallest member. These new findings are discussed in terms of structural entities that double or divide under the influence of far-red light.

  6. Degradation of polycyclic aromatic hydrocarbons in a coking wastewater treatment plant residual by an O3/ultraviolet fluidized bed reactor.

    PubMed

    Lin, Chong; Zhang, Wanhui; Yuan, Mengyang; Feng, Chunhua; Ren, Yuan; Wei, Chaohai

    2014-09-01

    Coking wastewater treatment plant (CWWTP) represents a typical point source of polycyclic aromatic hydrocarbons (PAHs) to the water environment and threatens the safety of drinking water in downstream regions. To enhance the removal of residual PAHs from bio-treated coking wastewater, a pilot-scale O3/ultraviolet (UV) fluidized bed reactor (O3/UV FBR) was designed and different operating factors including UV irradiation intensity, pH, initial concentration, contact time, and hydraulic retention time (HRT) were investigated at an ozone level of 240 g h(-1) and 25 ± 3 °C. A health risk evaluation and cost analysis were also carried out under the continuous-flow mode. As far as we know, this is the first time an O3/UV FBR has been explored for PAHs treatment. The results indicated that between 41 and 75 % of 18 target PAHs were removed in O3/UV FBR due to synergistic effects of UV irradiation. Both increased reaction time and increased pH were beneficial for the removal of PAHs. The degradation of the target PAHs within 8 h can be well fitted by the pseudo-first-order kinetics (R (2) > 0.920). The reaction rate was also positively correlated with the initial concentrations of PAHs. The health risk assessment showed that the total amount of carcinogenic substance exposure to surface water was reduced by 0.432 g day(-1). The economic analysis showed that the O3/UV FBR was able to remove 18 target PAHs at a cost of US$0.34 m(-3). These results suggest that O3/UV FBR is efficient in removing residuals from CWWTP, thus reducing the accumulation of persistent pollutant released to surface water.

  7. Dose-response relationships of polycyclic aromatic hydrocarbons exposure and oxidative damage to DNA and lipid in coke oven workers.

    PubMed

    Kuang, Dan; Zhang, Wangzhen; Deng, Qifei; Zhang, Xiao; Huang, Kun; Guan, Lei; Hu, Die; Wu, Tangchun; Guo, Huan

    2013-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are known to induce reactive oxygen species and oxidative stress, but the dose-response relationships between exposure to PAHs and oxidative stress levels have not been established. In this study, we recruited 1333 male coke oven workers, monitored the levels of environmental PAHs, and measured internal PAH exposure biomarkers including 12 urinary PAH metabolites and plasma benzo[a]pyrene-r-7,t-8,t-9,c-10-tetrahydotetrol-albumin (BPDE-Alb) adducts, as well as the two oxidative biomarkers urinary 8-hydroxydeoxyguanosine (8-OHdG) and 8-iso-prostaglandin-F2α (8-iso-PGF2α). We found that the total concentration of urinary PAH metabolites and plasma BPDE-Alb adducts were both significantly associated with increased 8-OHdG and 8-iso-PGF2α in both smokers and nonsmokers (all p < 0.05). This exposure-response effect was also observed for most PAH metabolites (all p(trend) < 0.01), except for 4-hydroxyphenanthrene and 8-OHdG (p(trend) = 0.108). Furthermore, it was shown that only urinary 1-hydroxypyrene has a significant positive association with both 8-OHdG and 8-iso-PGF2α after a Bonferroni correction (p < 0.005). Our results indicated that urinary ΣOH-PAHs and plasma BPDE-Alb adducts can result in significant dose-related increases in oxidative damage to DNA and lipids. Furthermore, when a multianalyte method is unavailable, our findings demonstrate that urinary 1-hydroxypyrene is a useful biomarker for evaluating total PAHs exposure and assessing oxidative damage in coke oven workers.

  8. Performance and microbial community composition in a long-term sequential anaerobic-aerobic bioreactor operation treating coking wastewater.

    PubMed

    Joshi, Dev Raj; Zhang, Yu; Tian, Zhe; Gao, Yingxin; Yang, Min

    2016-09-01

    The combined anaerobic-aerobic biosystem is assumed to consume less energy for the treatment of high strength industrial wastewater. In this study, pollutant removal performance and microbial diversity were assessed in a long-term (over 300 days) bench-scale sequential anaerobic-aerobic bioreactor treating coking wastewater. Anaerobic treatment removed one third of the chemical oxygen demand (COD) and more than half of the phenols with hydraulic retention time (HRT) of 42 h, while the combined system with total HRT of 114 h removed 81.8, 85.6, 99.9, 98.2, and 85.4 % of COD, total organic carbon (TOC), total phenols, thiocyanate, and cyanide, respectively. Two-dimensional gas chromatography with time-of-flight mass spectrometry showed complete removal of phenol derivatives and nitrogenous heterocyclic compounds (NHCs) via the combined system, with the anaerobic process alone contributing 58.4 and 58.6 % removal on average, respectively. Microbial activity in the bioreactors was examined by 454 pyrosequencing of the bacterial, archaeal, and fungal communities. Proteobacteria (61.2-93.4 %), particularly Betaproteobacteria (34.4-70.1 %), was the dominant bacterial group. Ottowia (14.1-46.7 %), Soehngenia (3.0-8.2 %), and Corynebacterium (0.9-12.0 %), which are comprised of phenol-degrading and hydrolytic bacteria, were the most abundant genera in the anaerobic sludge, whereas Thiobacillus (6.6-43.6 %), Diaphorobacter (5.1-13.0 %), and Comamonas (0.2-11.1 %) were the major degraders of phenol, thiocyanate, and NHCs in the aerobic sludge. Despite the low density of fungi, phenol degrading oleaginous yeast Trichosporon was abundant in the aerobic sludge. This study demonstrated the feasibility and optimization of less energy intensive treatment and the potential association between abundant bacterial groups and biodegradation of key pollutants in coking wastewater. PMID:27221291

  9. Performance and microbial community composition in a long-term sequential anaerobic-aerobic bioreactor operation treating coking wastewater.

    PubMed

    Joshi, Dev Raj; Zhang, Yu; Tian, Zhe; Gao, Yingxin; Yang, Min

    2016-09-01

    The combined anaerobic-aerobic biosystem is assumed to consume less energy for the treatment of high strength industrial wastewater. In this study, pollutant removal performance and microbial diversity were assessed in a long-term (over 300 days) bench-scale sequential anaerobic-aerobic bioreactor treating coking wastewater. Anaerobic treatment removed one third of the chemical oxygen demand (COD) and more than half of the phenols with hydraulic retention time (HRT) of 42 h, while the combined system with total HRT of 114 h removed 81.8, 85.6, 99.9, 98.2, and 85.4 % of COD, total organic carbon (TOC), total phenols, thiocyanate, and cyanide, respectively. Two-dimensional gas chromatography with time-of-flight mass spectrometry showed complete removal of phenol derivatives and nitrogenous heterocyclic compounds (NHCs) via the combined system, with the anaerobic process alone contributing 58.4 and 58.6 % removal on average, respectively. Microbial activity in the bioreactors was examined by 454 pyrosequencing of the bacterial, archaeal, and fungal communities. Proteobacteria (61.2-93.4 %), particularly Betaproteobacteria (34.4-70.1 %), was the dominant bacterial group. Ottowia (14.1-46.7 %), Soehngenia (3.0-8.2 %), and Corynebacterium (0.9-12.0 %), which are comprised of phenol-degrading and hydrolytic bacteria, were the most abundant genera in the anaerobic sludge, whereas Thiobacillus (6.6-43.6 %), Diaphorobacter (5.1-13.0 %), and Comamonas (0.2-11.1 %) were the major degraders of phenol, thiocyanate, and NHCs in the aerobic sludge. Despite the low density of fungi, phenol degrading oleaginous yeast Trichosporon was abundant in the aerobic sludge. This study demonstrated the feasibility and optimization of less energy intensive treatment and the potential association between abundant bacterial groups and biodegradation of key pollutants in coking wastewater.

  10. A novel integration system of magnetically immobilized cells and a pair of graphite plate-stainless iron mesh electrodes for the bioremediation of coking wastewater.

    PubMed

    Jiang, Bei; Tan, Liang; Ning, Shuxiang; Shi, Shengnan

    2016-09-01

    Magnetically immobilized cells of Comamonas sp. JB coupling with electrode reaction was developed to enhance the treatment efficiency of coking wastewater containing phenol, carbazole (CA), dibenzofuran (DBF), and dibenzothiophene (DBT). The pair of graphite plate-stainless iron mesh electrodes was chosen as the most suitable electrodes. Magnetically immobilized cells coupling with graphite plate-stainless iron mesh electrodes (coupling system) exhibited high degradation activity for all the compounds, which were significantly higher than the sum by single magnetically immobilized cells and electrode reaction at the optimal voltage. Recycling experiments demonstrated that the degradation activity of coupling system increased gradually during eight recycles, indicating that there was a coupling effect between the biodegradation and electrode reaction. Phenol hydroxylase and qPCR assays confirmed that appropriate electrical stimulation could improve phenol hydroxylase activity and promote cells growth. Toxicity assessment suggested the treatment of the coking wastewater by coupling system led to less toxicity than untreated wastewater. PMID:27289060

  11. Environmental risks and problems of the optimal management of an oil shale semi-coke and ash landfill in Kohtla-Järve, Estonia.

    PubMed

    Vallner, Leo; Gavrilova, Olga; Vilu, Raivo

    2015-08-15

    The main wastes of the Estonian shale oil industry - oil shale semi-coke and ashes - are deposited in landfills. The Kohtla-Järve oil shale semi-coke and ash landfill, which is likely the largest of its kind in the World, was started in 1938. The environmental risks connected with the landfill were assessed and prioritized. The most significant hazard to human health is emission of harmful landfill gases and the water contamination in the local river network is harmful for aqueous organisms. The spatial expansion of subsurface contamination predicted by the groundwater transport model completed is practically insignificant from the viewpoint of health services. The landfill's leachates must be captured and purified, and the closed part of the landfill should be covered by greenery. The partial landfill capping recently executed is useless. The EU Landfill Directive requirements imposed on the hydraulic resistance of geological barriers cannot prevent the leakage of contaminants from a landfill.

  12. DNA single strand breakage, DNA adducts, and sister chromatid exchange in lymphocytes and phenanthrene and pyrene metabolites in urine of coke oven workers.

    PubMed Central

    Popp, W; Vahrenholz, C; Schell, C; Grimmer, G; Dettbarn, G; Kraus, R; Brauksiepe, A; Schmeling, B; Gutzeit, T; von Bülow, J; Norpoth, K

    1997-01-01

    OBJECTIVES: To investigate the specificity of biological monitoring variables (excretion of phenanthrene and pyrene metabolites in urine) and the usefulness of some biomarkers of effect (alkaline filter elution, 32P postlabelling assay, measurement of sister chromatid exchange) in workers exposed to polycyclic aromatic hydrocarbons (PAHs). METHODS: 29 coke oven workers and a standardised control group were investigated for frequencies of DNA single strand breakage, DNA protein cross links (alkaline filter elution assay), sister chromatid exchange, and DNA adducts (32P postlabelling assay) in lymphocytes. Phenanthrene and pyrene metabolites were measured in 24 hour urine samples. 19 different PAHs (including benzo(a)pyrene, pyrene, and phenanthrene) were measured at the workplace by personal air monitoring. The GSTT1 activity in erythrocytes and lymphocyte subpopulations in blood was also measured. RESULTS: Concentrations of phenanthrene, pyrene, and benzo(a)pyrene in air correlated well with the concentration of total PAHs in air; they could be used for comparisons of different workplaces if the emission compositions were known. The measurement of phenanthrene metabolites in urine proved to be a better biological monitoring variable than the measurement of 1-hydroxypyrene. Significantly more DNA strand breaks in lymphocytes of coke oven workers were found (alkaline filter elution assay); the DNA adduct rate was not significantly increased in workers, but correlated with exposure to PAHs in a semiquantitative manner. The number of sister chromatid exchanges was lower in coke oven workers but this was not significant; thus counting sister chromatid exchanges was not a good variable for biomonitoring of coke oven workers. Also, indications for immunotoxic influences (changes in lymphocyte subpopulations) were found. CONCLUSIONS: The measurement of phenanthrene metabolites in urine seems to be a better biological monitoring variable for exposure to PAHs than

  13. Microwave-assisted ultraviolet digestion of petroleum coke for the simultaneous determination of nickel, vanadium and sulfur by ICP-OES.

    PubMed

    Oliveira, Jussiane S S; Picoloto, Rochele S; Bizzi, Cezar A; Mello, Paola A; Barin, Juliano S; Flores, Erico M M

    2015-11-01

    A method for the simultaneous determination of Ni, V and S in petroleum coke by inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave-assisted ultraviolet digestion (MW-UV) in closed vessels was proposed. Digestion was performed using electrodeless discharge lamps positioned inside quartz vessels and turned on by microwave radiation. The following parameters were evaluated: HNO3 concentration (15 mL of 1, 4, 7, 10 or 14.4 mol L(-1)), volume of H2O2 (30%, 1 or 3 mL), sample mass (100, 250 or 500 mg) and heating time (40 or 60 min) with or without the use of UV lamps. Digestion efficiency was evaluated by the determination of the residual carbon content (RCC) in digests. Using UV lamps lower RCC was obtained and the combination of 4 mol L(-1) HNO3 with 3 mL of H2O2 and 60 min of heating allowed a suitable digestion of up to 500 mg of petroleum coke (RCC< 21%). The agreement with the reference values for Ni, V and S (obtained by digestion of petroleum coke by microwave-induced combustion) and with a certified reference material of petroleum coke was between 96 and 101%. The proposed method was considered as advantageous when compared to American Society for Testing and Materials method because it allowed the simultaneous determination of Ni, V and S with lower limit of detection (0.22, 0.12 and 8.7 µg g(-1) for Ni, V and S, respectively) avoiding the use of concentrated nitric acid and providing digests suitable for routine analysis by ICP-OES.

  14. Determination of the effect of different additives in coking blends using a combination of in situ high-temperature {sup 1}H NMR and rheometry

    SciTech Connect

    Miguel C. Diaz; Karen M. Steel; Trevor C. Drage; John W. Patrick; Colin E. Snape

    2005-12-01

    High-temperature {sup 1}H NMR and rheometry measurements were carried out on 4:1 wt/wt blends of a medium volatile bituminous coal with two anthracites, two petroleum cokes, charcoal, wood, a low-temperature coke breeze, tyre crumb, and active carbon to determine the effects on fluidity development to identify the parameters responsible for these effects during pyrolysis and to study possible relationships among the parameters derived from these techniques. Positive, negative, and neutral effects were identified on the concentration of fluid material. Small positive effects (ca. 5-6%) were caused by blending the coal with petroleum cokes. Charcoal, wood, and active carbon all exerted negative effects on concentration (18-27% reduction) and mobility (12-25% reduction in T2) of the fluid phase, which have been associated with the inert character and high surface areas of these additives that adsorb the fluid phase of the coal. One of the anthracites and the low-temperature coke breeze caused deleterious effects to a lesser extent on the concentration (7-12%) and mobility (13-17%) of the fluid material, possibly due to the high concentration of metals in these additives (ca. 11% ash). Despite the high fluid character of tyre crumb at the temperature of maximum fluidity of the coal (73%), the mobility of the fluid phase of the blend was lower than expected. The comparison of {sup 1}H NMR and rheometry results indicated that to account for the variations in minimum complex viscosity for all the blends, both the maximum concentration of fluid phase and the maximum mobility of the fluid material had to be considered. For individual blends, two exponential relationships have been found between the complex viscosity and the concentration of solid phase in both the softening and resolidification stages but the parameters are different for each blend. 30 refs., 8 figs., 5 tabs.

  15. Microwave-assisted ultraviolet digestion of petroleum coke for the simultaneous determination of nickel, vanadium and sulfur by ICP-OES.

    PubMed

    Oliveira, Jussiane S S; Picoloto, Rochele S; Bizzi, Cezar A; Mello, Paola A; Barin, Juliano S; Flores, Erico M M

    2015-11-01

    A method for the simultaneous determination of Ni, V and S in petroleum coke by inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave-assisted ultraviolet digestion (MW-UV) in closed vessels was proposed. Digestion was performed using electrodeless discharge lamps positioned inside quartz vessels and turned on by microwave radiation. The following parameters were evaluated: HNO3 concentration (15 mL of 1, 4, 7, 10 or 14.4 mol L(-1)), volume of H2O2 (30%, 1 or 3 mL), sample mass (100, 250 or 500 mg) and heating time (40 or 60 min) with or without the use of UV lamps. Digestion efficiency was evaluated by the determination of the residual carbon content (RCC) in digests. Using UV lamps lower RCC was obtained and the combination of 4 mol L(-1) HNO3 with 3 mL of H2O2 and 60 min of heating allowed a suitable digestion of up to 500 mg of petroleum coke (RCC< 21%). The agreement with the reference values for Ni, V and S (obtained by digestion of petroleum coke by microwave-induced combustion) and with a certified reference material of petroleum coke was between 96 and 101%. The proposed method was considered as advantageous when compared to American Society for Testing and Materials method because it allowed the simultaneous determination of Ni, V and S with lower limit of detection (0.22, 0.12 and 8.7 µg g(-1) for Ni, V and S, respectively) avoiding the use of concentrated nitric acid and providing digests suitable for routine analysis by ICP-OES. PMID:26452926

  16. 40 CFR 98.250 - Definition of source category.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (c) This source category consists of the following sources at petroleum refineries: Catalytic cracking units; fluid coking units; delayed coking units; catalytic reforming units; coke calcining units... distillation of petroleum or through redistillation, cracking, or reforming of unfinished petroleum...

  17. [Conservation Units.

    ERIC Educational Resources Information Center

    Texas Education Agency, Austin.

    Instructional units deal with each aspect of conservation: forests, wildlife, rangelands, water, minerals, and soil. The area of the secondary school curriculum with which each is correlated is indicated. Lists of general and specific objectives are followed by suggested teaching procedures, including ideas for introducing the topic, questions to…

  18. [Conservation Units.

    ERIC Educational Resources Information Center

    Texas Education Agency, Austin.

    Each of the six instructional units deals with one aspect of conservation: forests, water, rangeland, minerals (petroleum), and soil. The area of the elementary school curriculum with which each correlates is indicated. Lists of general and specific objectives are followed by suggested teaching procedures, including ideas for introducing the…

  19. Cold test with a benchtop set-up for fluidized bed reactor using quartz sand to simulate gasification of coal cokes by concentrated solar radiation

    NASA Astrophysics Data System (ADS)

    Gokon, Nobuyuki; Tanabe, Tomoaki; Shimizu, Tadaaki; Kodama, Tatsuya

    2016-05-01

    The impacts of internal circulation of a mixture of coal-coke particles and quartz sand on the fluidization state in a fluidized bed reactor are investigated by a cold test with a benchtop set-up in order to design 10-30 kWth scale prototype windowed fluidized-bed reactor. Firstly, a basic relationship between pressure loss of inlet gas and gas velocity was experimentally examined using quartz sand with different particle sizes by a small-scale quartz tube with a distributor at ambient pressure and temperature. Based on the results, an appropriate particle range of quartz sand and layer height/layer diameter ratio (L/D ratio) was determined for a design of the fluidized bed reactor. Secondly, a windowed reactor mock-up was designed and fabricated for solar coke gasification using quartz sand as a bed material. The pressure loss between the inlet and outlet gases was examined, and descending cokes and sand particles on the sidewall of the reactor was observed in the reactor mock-up. The moving velocity and distance of descending particles/sands from the top to bottom of fluidized bed were measured by the visual observation of the colored tracer particles on outside wall of the reactor.

  20. Effects of polymerization and briquetting parameters on the tensile strength of briquettes formed from coal coke and aniline-formaldehyde resin

    SciTech Connect

    Demirbas, A.; Simsek, T.

    2006-10-15

    In this work, the utilization of aniline (C{sub 6}H{sub 7}N) formaldehyde (HCHO) resins as a binding agent of coke briquetting was investigated. Aniline (AN) formaldehyde (F) resins are a family of thermoplastics synthesized by condensing AN and F in an acid solution exhibiting high dielectric strength. The tensile strength sharply increases as the ratio of F to AN from 0.5 to 1.6, and it reaches the highest values between 1.6 and 2.2 F/AN ratio; it then slightly decreases. The highest tensile strength of F-AN resin-coke briquette (23.66 MN/m{sup 2}) was obtained from the run with 1.5 of F/AN ratio by using (NH4){sub 2}S{sub 2}O{sub 8} catalyst at 310 K briquetting temperature. The tensile strength of F-AN resin-coke briquette slightly decreased with increasing the catalyst percent to 0.10%, and then it sharply decreased to zero with increasing the catalyst percent to 0.2%. The effect of pH on the tensile strength is irregular. As the pH of the mixture increases from 9.0 to 9.2, the tensile strength shows a sharp increase, and the curve reaches a plateau value between pH 9.3 and 9.9; then the tensile strength shows a slight increase after pH = 9.9.