Science.gov

Sample records for indirect reverse cholesterol

  1. Ciprofibrate increases cholesteryl ester transfer protein gene expression and the indirect reverse cholesterol transport to the liver

    PubMed Central

    2009-01-01

    Background CETP is a plasma protein that modulates atherosclerosis risk through its HDL-cholesterol reducing action. The aim of this work was to examine the effect of the PPARα agonist, ciprofibrate, on the CETP gene expression, in the presence and absence of apolipoprotein (apo) CIII induced hypertriglyceridemia, and its impact on the HDL metabolism. Results Mice expressing apo CIII and/or CETP and non-transgenic littermates (CIII, CIII/CETP, CETP, non-Tg) were treated with ciprofibrate during 3 weeks. Drug treatment reduced plasma triglycerides (30-43%) and non-esterified fatty acids (19-47%) levels. Cholesterol (chol) distribution in plasma lipoprotein responses to ciprofibrate treatment was dependent on the genotypes. Treated CIII expressing mice presented elevation in VLDL-chol and reduction in HDL-chol. Treated CETP expressing mice responded with reduction in LDL-chol whereas in non-Tg mice the LDL-chol increased. In addition, ciprofibrate increased plasma post heparin lipoprotein lipase activity (1.3-2.1 fold) in all groups but hepatic lipase activity decreased in treated CETP and non-Tg mice. Plasma CETP activity and liver CETP mRNA levels were significantly increased in treated CIII/CETP and CETP mice (30-100%). Kinetic studies with 3H-cholesteryl ether (CEt) labelled HDL showed a 50% reduction in the 3H-CEt found in the LDL fraction in ciprofibrate treated compared to non-treated CETP mice. This means that 3H-CEt transferred from HDL to LDL was more efficiently removed from the plasma in the fibrate treated mice. Accordingly, the amount of 3H-CEt recovered in the liver 6 hours after HDL injection was increased by 35%. Conclusion Together these data showed that the PPARα agonist ciprofibrate stimulates CETP gene expression and changes the cholesterol flow through the reverse cholesterol transport, increasing plasma cholesterol removal through LDL. PMID:19930639

  2. HDL Function, Dysfunction, and Reverse Cholesterol Transport

    PubMed Central

    Fisher, Edward A.; Feig, Jonathan E.; Hewing, Bernd; Hazen, Stanley L.; Smith, Jonathan D.

    2012-01-01

    Although high HDL-cholesterol levels are associated with decreased cardiovascular risk in epidemiological studies, recent genetic and pharmacological findings have raised doubts about the beneficial effects of HDL. Raising HDL levels in animal models by infusion or over expression of apolipoprotein A-I has shown clear vascular improvements, such as delayed atherosclerotic lesion progression and accelerated lesion regression, along with increased reverse cholesterol transport. Inflammation and other factors, such as myeloperoxidase mediated oxidation, can impair HDL production and HDL function, in regard to its reverse cholesterol transport, antioxidant, and anti-inflammatory activities. Thus, tests of HDL function, which have not yet been developed as routine diagnostic assays, may prove useful and be a better predictor of cardiovascular risk than HDL-cholesterol levels. PMID:23152494

  3. High-density lipoprotein metabolism and reverse cholesterol transport: strategies for raising HDL cholesterol.

    PubMed

    Tosheska Trajkovska, Katerina; Topuzovska, Sonja

    2017-08-01

    A key to effective treatment of cardiovascular disease is to understand the body's complex lipoprotein transport system. Reverse cholesterol transport (RCT) is the process of cholesterol movement from the extrahepatic tissues back to the liver. Lipoproteins containing apoA-I [highdensity lipoprotein (HDL)] are key mediators in RCT, whereas non-high-density lipoproteins (non-HDL, lipoproteins containing apoB) are involved in the lipid delivery pathway. HDL particles are heterogeneous; they differ in proportion of proteins and lipids, size, shape, and charge. HDL heterogeneity is the result of the activity of several factors that assemble and remodel HDL particles in plasma: ATP-binding cassette transporter A1 (ABCA1), lecithin cholesterol acyltransferase (LCAT), cholesteryl ester transfer protein (CETP), hepatic lipase (HL), phospholipid transfer protein (PLTP), endothelial lipase (EL), and scavenger receptor class B type I (SR-BI). The RCT pathway consists of the following steps: 1. Cholesterol efflux from peripheral tissues to plasma, 2. LCAT-mediated esterification of cholesterol and remodeling of HDL particles, 3. direct pathway of HDL cholesterol delivery to the liver, and 4. indirect pathway of HDL cholesterol delivery to the liver via CETP-mediated transfer There are several established strategies for raising HDL cholesterol in humans, such as lifestyle changes; use of drugs including fibrates, statins, and niacin; and new therapeutic approaches. The therapeutic approaches include CETP inhibition, peroxisome proliferator-activated receptor (PPAR) agonists, synthetic farnesoid X receptor agonists, and gene therapy. Results of clinical trials should be awaited before further clinical management of atherosclerotic cardiovascular disease.

  4. The Role of Macrophage Lipophagy in Reverse Cholesterol Transport

    PubMed Central

    2017-01-01

    Macrophage cholesterol efflux is a central step in reverse cholesterol transport, which helps to maintain cholesterol homeostasis and to reduce atherosclerosis. Lipophagy has recently been identified as a new step in cholesterol ester hydrolysis that regulates cholesterol efflux, since it mobilizes cholesterol from lipid droplets of macrophages via autophagy and lysosomes. In this review, we briefly discuss recent advances regarding the mechanisms of the cholesterol efflux pathway in macrophage foam cells, and present lipophagy as a therapeutic target in the treatment of atherosclerosis. PMID:28345315

  5. Red Blood Cells Play a Role in Reverse Cholesterol Transport

    PubMed Central

    Hung, Kimberly T.; Berisha, Stela Z.; Ritchey, Brian M.; Santore, Jennifer; Smith, Jonathan D.

    2012-01-01

    Objective Reverse cholesterol transport (RCT) involves the removal of cholesterol from peripheral tissue for excretion in the feces. Here, we determined whether red blood cells (RBCs) can contribute to RCT. Methods and Results We performed a series of studies in apoAI-deficient mice where the HDL-mediated pathway of RCT is greatly diminished. RBCs carried a higher fraction of whole blood cholesterol than plasma in apoAI-deficient mice, and as least as much of the labeled cholesterol derived from injected foam cells appeared in RBCs compared to plasma. To determine if RBCs mediate RCT to the fecal compartment, we measured RCT in anemic and control apoAI-deficient mice and found that anemia decreased RCT to the feces by over 35% after correcting for fecal mass. Transfusion of [3H]cholesterol labeled RBCs led to robust delivery of the labeled cholesterol to the feces in apoAI-deficient hosts. In wild type mice, the majority of the blood cholesterol mass, as well as [3H]cholesterol derived from the injected foam cells, was found in plasma, and anemia did not significantly alter RCT to the feces after correction for fecal mass. Conclusion The RBC cholesterol pool is dynamic and facilitates RCT of peripheral cholesterol to the feces, particularly in the low HDL state. PMID:22499994

  6. Human paraoxonase 1 overexpression in mice stimulates HDL cholesterol efflux and reverse cholesterol transport

    PubMed Central

    Ikhlef, Souade; Berrougui, Hicham; Kamtchueng Simo, Olivier; Zerif, Echarki

    2017-01-01

    This study was aimed to investigate the effect of human PON1 overexpression in mice on cholesterol efflux and reverse cholesterol transport. PON1 overexpression in PON1-Tg mice induced a significant 3-fold (p<0.0001) increase in plasma paraoxonase activity and a significant ~30% (p<0.0001) increase in the capacity of HDL to mediate cholesterol efflux from J774 macrophages compared to wild-type mice. It also caused a significant 4-fold increase (p<0.0001) in the capacity of macrophages to transfer cholesterol to apoA-1, a significant 2-fold (p<0.0003) increase in ABCA1 mRNA and protein expression, and a significant increase in the expression of PPARγ (p<0.0003 and p<0.04, respectively) and LXRα (p<0.0001 and p<0.01, respectively) mRNA and protein compared to macrophages from wild-type mice. Moreover, transfection of J774 macrophages with human PON1 also increased ABCA1, PPARγ and LXRα protein expression and stimulates macrophages cholesterol efflux to apo A1. In vivo measurements showed that the overexpression of PON1 significantly increases the fecal elimination of macrophage-derived cholesterol in PON1-Tg mice. Overall, our results suggested that the overexpression of PON1 in mice may contribute to the regulation of the cholesterol homeostasis by improving the capacity of HDL to mediate cholesterol efflux and by stimulating reverse cholesterol transport. PMID:28278274

  7. Extracellular cholesterol-rich microdomains generated by human macrophages and their potential function in reverse cholesterol transport

    PubMed Central

    Ong, Daniel S.; Anzinger, Joshua J.; Leyva, Francisco J.; Rubin, Noa; Addadi, Lia; Kruth, Howard S.

    2010-01-01

    Previous studies have shown that cholesterol in atherosclerotic plaques is present in both intracellular and extracellular forms. In the current study, we investigated a mechanism for extracellular cholesterol accumulation and examined the capacity of this pool of cholesterol to be removed by cholesterol acceptors, a step in reverse cholesterol transport. Human monocyte-derived macrophages differentiated with macrophage-colony stimulating factor were incubated with acetylated LDL to allow cholesterol enrichment and processing. These macrophages were subsequently labeled with a monoclonal antibody that specifically detects ordered cholesterol arrays, revealing the presence of unesterified cholesterol-rich microdomains on the cell surfaces and in the extracellular matrix. Similar unesterified cholesterol-rich microdomains were present in human atherosclerotic plaques. Actin microfilaments functioned in microdomain deposition or maintenance, and Src family kinases regulated transfer of these microdomains from the cell surface onto the extracellular matrix. Mediators of reverse cholesterol transport, apolipoprotein A-I (apoA-I), and HDL were capable of removing these extracellular un-esterified cholesterol-rich microdomains. However, apoA-I removed the microdomains only when macrophages were present. ApoA-I removal of microdomains was blocked by glyburide and inhibitor of ATP-binding cassette transporter A1 (ABCA1) function. In summary, cultures of cholesterol-enriched human monocyte-derived macrophages generate extracellular unesterified cholesterol-rich microdomains, which can subsequently be removed by cholesterol acceptors and therefore potentially function in reverse cholesterol transport. PMID:20421591

  8. Liver LXRα expression is crucial for whole body cholesterol homeostasis and reverse cholesterol transport in mice

    PubMed Central

    Zhang, Yuan; Breevoort, Sarah R.; Angdisen, Jerry; Fu, Mingui; Schmidt, Daniel R.; Holmstrom, Sam R.; Kliewer, Steven A.; Mangelsdorf, David J.; Schulman, Ira G.

    2012-01-01

    Liver X receptors (LXRα and LXRβ) are important regulators of cholesterol and lipid metabolism, and their activation has been shown to inhibit cardiovascular disease and reduce atherosclerosis in animal models. Small molecule agonists of LXR activity are therefore of great therapeutic interest. However, the finding that such agonists also promote hepatic lipogenesis has led to the idea that hepatic LXR activity is undesirable from a therapeutic perspective. To investigate whether this might be true, we performed gene targeting to selectively delete LXRα in hepatocytes. Liver-specific deletion of LXRα in mice substantially decreased reverse cholesterol transport, cholesterol catabolism, and cholesterol excretion, revealing the essential importance of hepatic LXRα for whole body cholesterol homeostasis. Additionally, in a pro-atherogenic background, liver-specific deletion of LXRα increased atherosclerosis, uncovering an important function for hepatic LXR activity in limiting cardiovascular disease. Nevertheless, synthetic LXR agonists still elicited anti-atherogenic activity in the absence of hepatic LXRα, indicating that the ability of agonists to reduce cardiovascular disease did not require an increase in cholesterol excretion. Furthermore, when non-atherogenic mice were treated with synthetic LXR agonists, liver-specific deletion of LXRα eliminated the detrimental effect of increased plasma triglycerides, while the beneficial effect of increased plasma HDL was unaltered. In sum, these observations suggest that therapeutic strategies that bypass the liver or limit the activation of hepatic LXRs should still be beneficial for the treatment of cardiovascular disease. PMID:22484817

  9. Reverse cholesterol transport: its contribution to cholesterol catabolism in normal and disease states.

    PubMed

    Loh, K C; Tan, M H

    1996-10-01

    To review the reverse cholesterol transport (RCT) model and its contribution to cholesterol catabolism in normal and disease states. Pertinent articles were identified through a MEDLINE search of the English language literature from 1983 to 1995, followed by a manual search of the bibliographies of pertinent articles. Review articles, laboratory and clinical studies and case reports. The physiology of the RCT pathway as well as alterations observed in individuals with diseases or lifestyle changes were reviewed. Data were derived mainly from laboratory studies and clinical observations. The RCT model is proposed to explain the removal of excess cholesterol from extrahepatic tissues and its delivery to liver for catabolism. This involves several regulated steps mediated by the plasma apolipoproteins and two key enzymes, lecithin:cholesterol acyltransferase (LCAT) and cholesteryl ester transfer protein (CETP). In essence free cholesterol in peripheral tissues is taken up by nascent high density lipoprotein (HDL) particles, converted to cholesteryl esters (by LCAT), and then transferred to apo B-containing lipoproteins (by CETP) for hepatic removal. Altered cholesterol catabolism may occur in individuals with disorders of a genetic or acquired nature as well as lifestyle changes, as a result of alterations in one of several of the putative steps or enzymes involved in RCT. The proposed antiatherogenic role of RCT remains to be validated as a review of the possible alterations noted in various disorders showed conflicting results in atherogenic propensity.

  10. A new model of reverse cholesterol transport: enTICEing strategies to stimulate intestinal cholesterol excretion.

    PubMed

    Temel, Ryan E; Brown, J Mark

    2015-07-01

    Cardiovascular disease (CVD) remains the largest cause of mortality in most developed countries. Although recent failed clinical trials and Mendelian randomization studies have called into question the high-density lipoprotein (HDL) hypothesis, it remains well accepted that stimulating the process of reverse cholesterol transport (RCT) can prevent or even regress atherosclerosis. The prevailing model for RCT is that cholesterol from the artery wall must be delivered to the liver where it is secreted into bile before leaving the body through fecal excretion. However, many studies have demonstrated that RCT can proceed through a non-biliary pathway known as transintestinal cholesterol excretion (TICE). The goal of this review is to discuss the current state of knowledge of the TICE pathway, with emphasis on points of therapeutic intervention.

  11. A New Model of Reverse Cholesterol Transport: EnTICEing Strategies to Stimulate Intestinal Cholesterol Excretion

    PubMed Central

    Temel, Ryan E.; Brown, J. Mark

    2015-01-01

    Cardiovascular disease (CVD) remains the largest cause of mortality in most developed countries. Although recent failed clinical trials and Mendelian randomization studies have called into question the high density lipoprotein (HDL) hypothesis, it remains well accepted that stimulating the process of reverse cholesterol transport (RCT) can prevent or even regress atherosclerosis. The prevailing model for RCT is that cholesterol from the artery wall must be delivered to the liver where it is secreted into bile before leaving the body through fecal excretion. However, many studies have demonstrated that RCT can proceed through a non-biliary pathway known as transintestinal cholesterol excretion (TICE). The goal of this review is to discuss the current state of knowledge of the TICE pathway, with emphasis on points of therapeutic intervention. PMID:25930707

  12. From evolution to revolution: miRNAs as pharmacological targets for modulating cholesterol efflux and reverse cholesterol transport.

    PubMed

    Dávalos, Alberto; Fernández-Hernando, Carlos

    2013-09-01

    There has been strong evolutionary pressure to ensure that an animal cell maintains levels of cholesterol within tight limits for normal function. Imbalances in cellular cholesterol levels are a major player in the development of different pathologies associated to dietary excess. Although epidemiological studies indicate that elevated levels of high-density lipoprotein (HDL)-cholesterol reduce the risk of cardiovascular disease, recent genetic evidence and pharmacological therapies to raise HDL levels do not support their beneficial effects. Cholesterol efflux as the first and probably the most important step in reverse cholesterol transport is an important biological process relevant to HDL function. Small non-coding RNAs (microRNAs), post-transcriptional control different aspects of cellular cholesterol homeostasis including cholesterol efflux. miRNA families miR-33, miR-758, miR-10b, miR-26 and miR-106b directly modulates cholesterol efflux by targeting the ATP-binding cassette transporter A1 (ABCA1). Pre-clinical studies with anti-miR therapies to inhibit some of these miRNAs have increased cellular cholesterol efflux, reverse cholesterol transport and reduce pathologies associated to dyslipidemia. Although miRNAs as therapy have benefits from existing antisense technology, different obstacles need to be solved before we incorporate such research into clinical care. Here we focus on the clinical potential of miRNAs as therapeutic target to increase cholesterol efflux and reverse cholesterol transport as a new alternative to ameliorate cholesterol-related pathologies.

  13. Caveolae and Caveolin-1 Integrate Reverse Cholesterol Transport and Inflammation in Atherosclerosis

    PubMed Central

    Qin, Li; Zhu, Neng; Ao, Bao-Xue; Liu, Chan; Shi, Ya-Ning; Du, Ke; Chen, Jian-Xiong; Zheng, Xi-Long; Liao, Duan-Fang

    2016-01-01

    Lipid disorder and inflammation play critical roles in the development of atherosclerosis. Reverse cholesterol transport is a key event in lipid metabolism. Caveolae and caveolin-1 are in the center stage of cholesterol transportation and inflammation in macrophages. Here, we propose that reverse cholesterol transport and inflammation in atherosclerosis can be integrated by caveolae and caveolin-1. PMID:27011179

  14. Caveolae and Caveolin-1 Integrate Reverse Cholesterol Transport and Inflammation in Atherosclerosis.

    PubMed

    Qin, Li; Zhu, Neng; Ao, Bao-Xue; Liu, Chan; Shi, Ya-Ning; Du, Ke; Chen, Jian-Xiong; Zheng, Xi-Long; Liao, Duan-Fang

    2016-03-22

    Lipid disorder and inflammation play critical roles in the development of atherosclerosis. Reverse cholesterol transport is a key event in lipid metabolism. Caveolae and caveolin-1 are in the center stage of cholesterol transportation and inflammation in macrophages. Here, we propose that reverse cholesterol transport and inflammation in atherosclerosis can be integrated by caveolae and caveolin-1.

  15. Transintestinal and Biliary Cholesterol Secretion Both Contribute to Macrophage Reverse Cholesterol Transport in Rats-Brief Report.

    PubMed

    de Boer, Jan Freark; Schonewille, Marleen; Dikkers, Arne; Koehorst, Martijn; Havinga, Rick; Kuipers, Folkert; Tietge, Uwe J F; Groen, Albert K

    2017-04-01

    Reverse cholesterol transport comprises efflux of cholesterol from macrophages and its subsequent removal from the body with the feces and thereby protects against formation of atherosclerotic plaques. Because of lack of suitable animal models that allow for evaluation of the respective contributions of biliary cholesterol secretion and transintestinal cholesterol excretion (TICE) to macrophage reverse cholesterol transport under physiological conditions, the relative importance of both pathways in this process has remained controversial. To separate cholesterol traffic via the biliary route from TICE, bile flow was mutually diverted between rats, continuously, for 3 days. Groups of 2 weight-matched rats were designated as a pair, and both rats were equipped with cannulas in the bile duct and duodenum. Bile from rat 1 was diverted to the duodenum of rat 2, whereas bile from rat 2 was rerouted to the duodenum of rat 1. Next, rat 1 was injected with [(3)H]cholesterol-loaded macrophages. [(3)H]Cholesterol secreted via the biliary route was consequently diverted to rat 2 and could thus be quantified from the feces of that rat. On the other hand, [(3)H]cholesterol tracer in the feces of rat 1 reflected macrophage-derived cholesterol excreted via TICE. Using this setup, we found that 63% of the label secreted with the fecal neutral sterols had travelled via the biliary route, whereas 37% was excreted via TICE. TICE and biliary cholesterol secretion contribute to macrophage reverse cholesterol transport in rats. The majority of macrophage-derived cholesterol is however excreted via the hepatobiliary route. © 2017 American Heart Association, Inc.

  16. From Evolution to Revolution: miRNAs as Pharmacological Targets for Modulating Cholesterol Efflux and Reverse Cholesterol Transport

    PubMed Central

    Dávalos, Alberto; Fernández-Hernando, Carlos

    2013-01-01

    There has been strong evolutionary pressure to ensure that an animal cell maintain levels of cholesterol within tight limits for normal function. Imbalances in cellular cholesterol levels are a major player in the development of different pathologies associated to dietary excess. Although epidemiological studies indicate that elevated levels of high-density lipoprotein (HDL)-cholesterol reduce the risk of cardiovascular disease, recent genetic evidence and pharmacological therapies to raise HDL levels do not support their beneficial effects. Cholesterol efflux as the first and probably the most important step in reverse cholesterol transport is an important biological process relevant to HDL function. Small non-coding RNAs (microRNAs), post-transcriptional control different aspects of cellular cholesterol homeostasis including cholesterol efflux. miRNA families miR-33, miR-758, miR-10b, miR-26 and miR-106b directly modulates cholesterol efflux by targeting the ATP-binding cassette transporter A1 (ABCA1). Pre-clinical studies with anti-miR therapies to inhibit some of these miRNAs have increased cellular cholesterol efflux, reverse cholesterol transport and reduce pathologies associated to dyslipidemia. Although miRNAs as therapy have benefits from existing antisense technology, different obstacles need to be solved before we incorporate such research into clinical care. Here we focus on the clinical potential of miRNAs as therapeutic target to increase cholesterol efflux and reverse cholesterol transport as a new alternative to ameliorate cholesterol-related pathologies. PMID:23435093

  17. Dietary cholesterol affects plasma lipid levels, the intravascular processing of lipoproteins and reverse cholesterol transport without increasing the risk for heart disease.

    PubMed

    Barona, Jacqueline; Fernandez, Maria Luz

    2012-08-01

    The associations between dietary cholesterol and heart disease are highly controversial. While epidemiological studies and clinical interventions have shown the lack of correlation between cholesterol intake and cardiovascular disease (CVD) risk, there is still concern among health practitioners and the general population regarding dietary cholesterol. In this review, several clinical studies utilizing cholesterol challenges are analyzed in terms of changes that occur in lipoprotein metabolism resulting from excess consumption of cholesterol. Dietary cholesterol has been shown to increase both LDL and HDL in those individuals who respond to a cholesterol challenge without altering the LDL cholesterol/HDL cholesterol ratio, a key marker of CVD risk. Further, dietary cholesterol has been shown to increase only HDL with no changes in LDL with average cholesterol consumption and during weight loss interventions. Ingestion of cholesterol has also been shown to increase the size of both LDL and HDL particles with the associated implications of a less atherogenic LDL particle as well as more functional HDL in reverse cholesterol transport. Other changes observed in lipoprotein metabolism are a greater number of large LDL and decreases in small LDL subfractions. All this information put together points to specific roles of dietary cholesterol in substantially altering intravascular processing of lipoproteins as well as reverse cholesterol transport.

  18. Dietary Cholesterol Affects Plasma Lipid Levels, the Intravascular Processing of Lipoproteins and Reverse Cholesterol Transport without Increasing the Risk for Heart Disease

    PubMed Central

    Barona, Jacqueline; Fernandez, Maria Luz

    2012-01-01

    The associations between dietary cholesterol and heart disease are highly controversial. While epidemiological studies and clinical interventions have shown the lack of correlation between cholesterol intake and cardiovascular disease (CVD) risk, there is still concern among health practitioners and the general population regarding dietary cholesterol. In this review, several clinical studies utilizing cholesterol challenges are analyzed in terms of changes that occur in lipoprotein metabolism resulting from excess consumption of cholesterol. Dietary cholesterol has been shown to increase both LDL and HDL in those individuals who respond to a cholesterol challenge without altering the LDL cholesterol/HDL cholesterol ratio, a key marker of CVD risk. Further, dietary cholesterol has been shown to increase only HDL with no changes in LDL with average cholesterol consumption and during weight loss interventions. Ingestion of cholesterol has also been shown to increase the size of both LDL and HDL particles with the associated implications of a less atherogenic LDL particle as well as more functional HDL in reverse cholesterol transport. Other changes observed in lipoprotein metabolism are a greater number of large LDL and decreases in small LDL subfractions. All this information put together points to specific roles of dietary cholesterol in substantially altering intravascular processing of lipoproteins as well as reverse cholesterol transport. PMID:23016129

  19. Reversible effects of sphingomyelin degradation on cholesterol distribution and metabolism in fibroblasts and transformed neuroblastoma cells.

    PubMed Central

    Pörn, M I; Slotte, J P

    1990-01-01

    Plasma-membrane sphingomyelin appears to be one of the major determinants of the preferential allocation of cell cholesterol into the plasma-membrane compartment, since removal of sphingomyelin leads to a dramatic redistribution of cholesterol within the cell [Slotte & Bierman (1988) Biochem. J. 250, 653-658]. In the present study we examined the long-term effects of sphingomyelin degradation on cholesterol redistribution in cells and determined the reversibility of the process. In a human lung fibroblast-cell line, removal of 80% of the sphingomyelin led to a rapid and transient up-regulation (3-fold) of acyl-CoA:cholesterol acyltransferase (ACAT) activity, and also, within 30 h, to the translocation of about 50% of the cell non-esterified cholesterol from a cholesterol oxidase-susceptible compartment (i.e. the cell surface) to oxidase-resistant compartments. At 49 h after the initial sphingomyelin degradation, the cell sphingomyelin level was back to 45% of the control level, and the direction of cell cholesterol flow was toward the cell surface, although the original distribution was not achieved. In a transformed neuroblastoma cell line (SH-SY5Y), the depletion of sphingomyelin led to a similarly rapid and transient up-regulation of ACAT activity, and to the translocation of about 25% of cell-surface cholesterol into internal membranes (within 3 h). The flow of cholesterol back to the cholesterol oxidase-susceptible pool was rapid, and a pretreatment cholesterol distribution was reached within 20-49 h. Also, the resynthesis of sphingomyelin was faster in SH-SY5Y neuroblastoma cells and reached control levels within 24 h. The findings of the present study show that the cellular redistribution of cholesterol, as induced by sphingomyelin degradation, is reversible and suggest that the normalization of cellular cholesterol distribution is linked to the re-synthesis of sphingomyelin. PMID:2222406

  20. Clinically used selective estrogen receptor modulators affect different steps of macrophage-specific reverse cholesterol transport

    PubMed Central

    Fernández-Suárez, María E.; Escolà-Gil, Joan C.; Pastor, Oscar; Dávalos, Alberto; Blanco-Vaca, Francisco; Lasunción, Miguel A.; Martínez-Botas, Javier; Gómez-Coronado, Diego

    2016-01-01

    Selective estrogen receptor modulators (SERMs) are widely prescribed drugs that alter cellular and whole-body cholesterol homeostasis. Here we evaluate the effect of SERMs on the macrophage-specific reverse cholesterol transport (M-RCT) pathway, which is mediated by HDL. Treatment of human and mouse macrophages with tamoxifen, raloxifene or toremifene induced the accumulation of cytoplasmic vesicles of acetyl-LDL-derived free cholesterol. The SERMs impaired cholesterol efflux to apolipoprotein A-I and HDL, and lowered ABCA1 and ABCG1 expression. These effects were not altered by the antiestrogen ICI 182,780 nor were they reproduced by 17β-estradiol. The treatment of mice with tamoxifen or raloxifene accelerated HDL-cholesteryl ester catabolism, thereby reducing HDL-cholesterol concentrations in serum. When [3H]cholesterol-loaded macrophages were injected into mice intraperitoneally, tamoxifen, but not raloxifene, decreased the [3H]cholesterol levels in serum, liver and feces. Both SERMs downregulated liver ABCG5 and ABCG8 protein expression, but tamoxifen reduced the capacity of HDL and plasma to promote macrophage cholesterol efflux to a greater extent than raloxifene. We conclude that SERMs interfere with intracellular cholesterol trafficking and efflux from macrophages. Tamoxifen, but not raloxifene, impair M-RCT in vivo. This effect is primarily attributable to the tamoxifen-mediated reduction of the capacity of HDL to promote cholesterol mobilization from macrophages. PMID:27601313

  1. Clinically used selective estrogen receptor modulators affect different steps of macrophage-specific reverse cholesterol transport.

    PubMed

    Fernández-Suárez, María E; Escolà-Gil, Joan C; Pastor, Oscar; Dávalos, Alberto; Blanco-Vaca, Francisco; Lasunción, Miguel A; Martínez-Botas, Javier; Gómez-Coronado, Diego

    2016-09-07

    Selective estrogen receptor modulators (SERMs) are widely prescribed drugs that alter cellular and whole-body cholesterol homeostasis. Here we evaluate the effect of SERMs on the macrophage-specific reverse cholesterol transport (M-RCT) pathway, which is mediated by HDL. Treatment of human and mouse macrophages with tamoxifen, raloxifene or toremifene induced the accumulation of cytoplasmic vesicles of acetyl-LDL-derived free cholesterol. The SERMs impaired cholesterol efflux to apolipoprotein A-I and HDL, and lowered ABCA1 and ABCG1 expression. These effects were not altered by the antiestrogen ICI 182,780 nor were they reproduced by 17β-estradiol. The treatment of mice with tamoxifen or raloxifene accelerated HDL-cholesteryl ester catabolism, thereby reducing HDL-cholesterol concentrations in serum. When [(3)H]cholesterol-loaded macrophages were injected into mice intraperitoneally, tamoxifen, but not raloxifene, decreased the [(3)H]cholesterol levels in serum, liver and feces. Both SERMs downregulated liver ABCG5 and ABCG8 protein expression, but tamoxifen reduced the capacity of HDL and plasma to promote macrophage cholesterol efflux to a greater extent than raloxifene. We conclude that SERMs interfere with intracellular cholesterol trafficking and efflux from macrophages. Tamoxifen, but not raloxifene, impair M-RCT in vivo. This effect is primarily attributable to the tamoxifen-mediated reduction of the capacity of HDL to promote cholesterol mobilization from macrophages.

  2. Selective delipidation of plasma HDL enhances reverse cholesterol transport in vivo.

    PubMed

    Sacks, Frank M; Rudel, Lawrence L; Conner, Adam; Akeefe, Hassibullah; Kostner, Gerhard; Baki, Talal; Rothblat, George; de la Llera-Moya, Margarita; Asztalos, Bela; Perlman, Timothy; Zheng, Chunyu; Alaupovic, Petar; Maltais, Jo-Ann B; Brewer, H Bryan

    2009-05-01

    Uptake of cholesterol from peripheral cells by nascent small HDL circulating in plasma is necessary to prevent atherosclerosis. This process, termed reverse cholesterol transport, produces larger cholesterol-rich HDL that transfers its cholesterol to the liver facilitating excretion. Most HDL in plasma is cholesterol-rich. We demonstrate that treating plasma with a novel selective delipidation procedure converts large to small HDL [HDL-selectively delipidated (HDL-sdl)]. HDL-sdl contains several cholesterol-depleted species resembling small alpha, prebeta-1, and other prebeta forms. Selective delipidation markedly increases efficacy of plasma to stimulate ABCA1-mediated cholesterol transfer from monocytic cells to HDL. Plasma from African Green monkeys underwent selective HDL delipidation. The delipidated plasma was reinfused into five monkeys. Prebeta-1-like HDL had a plasma residence time of 8 +/- 6 h and was converted entirely to large alpha-HDL having residence times of 13-14 h. Small alpha-HDL was converted entirely to large alpha-HDL. These findings suggest that selective HDL delipidation activates reverse cholesterol transport, in vivo and in vitro. Treatment with delipidated plasma tended to reduce diet-induced aortic atherosclerosis in monkeys measured by intravascular ultrasound. These findings link the conversion of small to large HDL, in vivo, to improvement in atherosclerosis.

  3. Macrophage Independent Regulation of Reverse Cholesterol Transport by Liver X Receptors

    PubMed Central

    Breevoort, Sarah R.; Angdisen, Jerry; Schulman, Ira G.

    2014-01-01

    Objective The ability of high density lipoprotein (HDL) particles to accept cholesterol from peripheral cells such as lipid-laden macrophages and to transport cholesterol to the liver for catabolism and excretion in a process termed reverse cholesterol transport (RCT) is believed to underlie the beneficial cardiovascular effects of elevated HDL. The liver X receptors (LXRα and LXRβ) regulate RCT by controlling the efflux of cholesterol from macrophages to HDL and the excretion, catabolism and absorption of cholesterol in the liver and intestine. Importantly, treatment with LXR agonists increases RCT and decreases atherosclerosis in animal models. Nevertheless, LXRs are expressed in multiple tissues involved in RCT and their tissue specific contributions to RCT are still not well defined. Approach and Results Utilizing tissue-specific LXR deletions together with in vitro and in vivo assays of cholesterol efflux and fecal cholesterol excretion we demonstrate that macrophage LXR activity is neither necessary nor sufficient for LXR agonist-stimulated RCT. In contrast, the ability of LXR agonists primarily acting in the intestine to increase HDL mass and HDL function appears to underlie the ability of LXR agonists to stimulate RCT in vivo. Conclusions We demonstrate that activation of LXR in macrophages makes little or no contribution to LXR agonist-stimulated RCT. Unexpectedly our studies suggest that the ability of macrophages to efflux cholesterol to HDL in vivo is not regulated by macrophage activity but is primarily determined by the quantity and functional activity of HDL. PMID:24947527

  4. Newly developed apolipoprotein A-I mimetic peptide promotes macrophage reverse cholesterol transport in vivo.

    PubMed

    Shimizu, Tomohiko; Tanigawa, Hiroyuki; Miura, Shin-ichiro; Kuwano, Takashi; Takata, Kohei; Suematsu, Yasunori; Imaizumi, Satoshi; Yahiro, Eiji; Zhang, Bo; Uehara, Yoshinari; Saku, Keijiro

    2015-08-01

    We elucidated the effect of newly developed Fukuoka Apolipoprotein A-I Mimetic Peptide (FAMP) on in vivo macrophage reverse cholesterol transport (RCT) and the underlying mechanisms. Cholesteryl ester transfer protein transgenic mice were divided into FAMP, and placebo control groups, and injected with FAMP or phosphate buffer saline intraperitoneally for 5 days. The FAMP group showed a significant decrease in plasma high-density lipoprotein cholesterol (HDL-C), and plasma from the FAMP group had an increased ability to promote ATP-binding cassette transporter A1 (ABCA1)-mediated cholesterol efflux from bone marrow macrophages ex vivo. Furthermore, mice were injected intraperitoneally with (3)H-cholesterol-labeled and cholesterol-loaded macrophages and monitored for the appearance of (3)H-tracer. The amount of (3)H-tracer excreted into feces over 48h in the FAMP group was significantly higher than that in the control group. (3)H-cholesterol ester (CE)-HDL was injected intravenously and (3)H-cholesterol in blood was counted. In the FAMP group, plasma (3)H-CE-HDL decreased rapidly, and treatment with FAMP markedly increased the fractional catabolic rate. The administration of FAMP promoted ABCA1-dependent efflux ex vivo, HDL turnover in vivo, and macrophage RCT in vivo despite reduced plasma HDL-C levels. FAMP might have atheroprotective potential. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Novel technique for generating macrophage foam cells for in vitro reverse cholesterol transport studies[S

    PubMed Central

    Sengupta, Bhaswati; Narasimhulu, Chandrakala Aluganti; Parthasarathy, Sampath

    2013-01-01

    Generation of foam cells, an essential step for reverse cholesterol transport studies, uses the technique of receptor-dependent macrophage loading with radiolabeled acetylated LDL. In this study, we used the ability of a biologically relevant detergent molecule, lysophosphatidylcholine (lyso-PtdCho), to form mixed micelles with cholesterol or cholesteryl ester (CE) to generate macrophage foam cells. Fluorescent or radiolabeled cholesterol/lyso-PtdCho mixed micelles were prepared and incubated with RAW 264.7 or mouse peritoneal macrophages. Results showed that such micelles were quite stable at 4°C and retained the solubilized cholesterol during one month of storage. Macrophages incubated with cholesterol or CE (unlabeled, fluorescently labeled, or radiolabeled)/lyso-PtdCho mixed micelles accumulated CE as documented by microscopy, lipid staining, labeled oleate incorporation, and by TLC. Such foam cells unloaded cholesterol when incubated with HDL but not with oxidized HDL. We propose that stable cholesterol or CE/lyso-PtdCho micelles would offer advantages over existing methods. PMID:24115226

  6. Dietary cholesterol degrades rabbit long term memory for discrimination learning but facilitates acquisition of discrimination reversal

    PubMed Central

    Schreurs, Bernard G.; Smith-Bell, Carrie A.; Wang, Desheng; Burhans, Lauren B.

    2013-01-01

    We have shown previously that feeding dietary cholesterol before learning can improve acquisition whereas feeding cholesterol after learning can degrade long term memory. To examine these different findings within a single paradigm, we fed groups of rabbits 2% cholesterol or normal chow with or without 0.12 ppm copper added to the drinking water following two-tone discrimination learning of the nictitating membrane response in which a 8-kHz tone (conditioned stimulus, CS+) was followed by air puff and a 1-kHz tone (CS−) was not. After eight weeks on the diet, we assessed the rabbits’ conditioned responding during testing and retraining. We then reversed the two-tone discrimination and assessed responding to the 1-kHz tone CS+ and the 8-kHz CS−. During testing, rabbits given cholesterol without copper had lower levels of responding to CS+ than rabbits in the other groups suggesting they did not retain the discrimination as well. However, during a brief discrimination retraining session, their response levels to the CS+ returned to the level of the other groups, demonstrating a return of the memory of the original discrimination. At the end of discrimination reversal, these same rabbits exhibited superior discrimination indexed by lower response levels to CS− but similar levels to CS+, suggesting they were better able to acquire the new relationship between the two tones by inhibiting CS− responses. These results add to our previous data by showing cholesterol diet-induced degradation of an old memory and facilitation of a new memory can both be demonstrated within a discrimination reversal paradigm. Given discrimination reversal is a hippocampally-dependent form of learning, the data support the role of cholesterol in modifying hippocampal function as we have shown previously with in vitro brain slice recordings. PMID:24076265

  7. Phospholipid transfer protein deficiency in mice impairs macrophage reverse cholesterol transport in vivo.

    PubMed

    Si, Yanhong; Zhang, Ying; Chen, Xiaofeng; Zhai, Lei; Zhou, Guanghai; Yu, Ailing; Cao, Haijun; Shucun, Qin

    2016-07-01

    Phospholipid transfer protein is expressed in various cell types and secreted into plasma, where it transfers phospholipids between lipoproteins and modulates the composition of high-density lipoprotein particles. Phospholipid transfer protein deficiency in vivo can lower high-density lipoprotein cholesterol level significantly and impact the biological quality of high-density lipoprotein. Considering high-density lipoprotein was a critical determinant for reverse cholesterol transport, we investigated the role of systemic phospholipid transfer protein deficiency in macrophage reverse cholesterol transport in vivo After the littermate phospholipid transfer protein KO and WT mice were fed high-fat diet for one month, they were injected intraperitoneally with (3)H-cholesterol-labeled and acLDL-loaded macrophages. Then the appearance of (3)H-tracer in plasma, liver, bile, intestinal wall, and feces over 48 h was determined. Plasma lipid analysis indicated phospholipid transfer protein deficiency lowered total cholesterol, high-density lipoprotein-C and apolipoprotein A1 levels significantly but increased triglyceride level in mice. The isotope tracing experiment showed (3)H-cholesterol of plasma was decreased by 68% for male and 62% for female, and (3)H-tracer of bile was decreased by 37% for male and 21% for female in phospholipid transfer protein KO mice compared with WT mice. However, there was no difference in liver, and (3)H-tracer of intestinal wall was increased by 43% for male and 27% for female. Finally, (3)H-tracer of fecal excretion in phospholipid transfer protein KO mice was reduced significantly by 36% for male and 43% for female during 0-24 h period, but there was no significant difference during 24-48 h period. Meanwhile, Western Blot analysis showed the expressions of reverse cholesterol transport -related protein liver X receptor α (LXRα), ATP binding cassette transporter A1, and cholesterol 7α-hydroxylase A1 were upregulated in liver of

  8. Phospholipid transfer protein deficiency in mice impairs macrophage reverse cholesterol transport in vivo

    PubMed Central

    Si, Yanhong; Zhang, Ying; Chen, Xiaofeng; Zhai, Lei; Zhou, Guanghai; Yu, Ailing; Cao, Haijun

    2016-01-01

    Phospholipid transfer protein is expressed in various cell types and secreted into plasma, where it transfers phospholipids between lipoproteins and modulates the composition of high-density lipoprotein particles. Phospholipid transfer protein deficiency in vivo can lower high-density lipoprotein cholesterol level significantly and impact the biological quality of high-density lipoprotein. Considering high-density lipoprotein was a critical determinant for reverse cholesterol transport, we investigated the role of systemic phospholipid transfer protein deficiency in macrophage reverse cholesterol transport in vivo. After the littermate phospholipid transfer protein KO and WT mice were fed high-fat diet for one month, they were injected intraperitoneally with 3H-cholesterol-labeled and acLDL-loaded macrophages. Then the appearance of 3H-tracer in plasma, liver, bile, intestinal wall, and feces over 48 h was determined. Plasma lipid analysis indicated phospholipid transfer protein deficiency lowered total cholesterol, high-density lipoprotein-C and apolipoprotein A1 levels significantly but increased triglyceride level in mice. The isotope tracing experiment showed 3H-cholesterol of plasma was decreased by 68% for male and 62% for female, and 3H-tracer of bile was decreased by 37% for male and 21% for female in phospholipid transfer protein KO mice compared with WT mice. However, there was no difference in liver, and 3H-tracer of intestinal wall was increased by 43% for male and 27% for female. Finally, 3H-tracer of fecal excretion in phospholipid transfer protein KO mice was reduced significantly by 36% for male and 43% for female during 0–24 h period, but there was no significant difference during 24–48 h period. Meanwhile, Western Blot analysis showed the expressions of reverse cholesterol transport -related protein liver X receptor α (LXRα), ATP binding cassette transporter A1, and cholesterol 7α-hydroxylase A1 were upregulated in liver of

  9. Lck Inhibits Heat Shock Protein 65-Mediated Reverse Cholesterol Transport in T Cells.

    PubMed

    Luo, Tiantian; Hu, Jing; Xi, Dan; Xiong, Haowei; He, Wenshuai; Liu, Jichen; Li, Menghao; Lu, Hao; Zhao, Jinzhen; Lai, Wenyan; Guo, Zhigang

    2016-11-15

    Previously, we reported that heat shock protein (HSP)65 impairs the effects of high-density lipoprotein on macrophages. We also showed that immune response activation adversely affects reverse cholesterol transport (RCT). In this study, we investigated the effects of the Src family kinase lymphocyte-specific protein tyrosine kinase (Lck) and elucidated the mechanism underlying HSP65-regulated cholesterol efflux in T cells. We evaluated cell proliferation, Lck expression, and inflammatory cytokine production in Jurkat cells and CD4(+) T cells. HSP65-mediated inhibition of RCT was assessed by evaluating ABCA1, ABCG1, SR-BI, PPAR-γ, and liver X receptor-α expression. A dose-dependent relationship was found between the levels of these proteins and the suppression of cholesterol efflux. Stimulation of Lck-silenced T cells with ionomycin resulted in a decrease in intracellular calcium levels. Treatment of Jurkat cells with PP2, an inhibitor of Src family kinase, inhibited calcium-induced, but not PMA-induced, ERK phosphorylation. NF-κB activation in response to PMA was minimally inhibited in cells stimulated with PP2. HSP65 failed to trigger downstream ERK or JNK phosphorylation or to activate NF-κB or protein kinase C-γ in Lck-silenced cells. Additionally, elevation of intracellular calcium was also impaired. However, HSP65 significantly enhanced cholesterol efflux and decreased cellular cholesterol content by inducing the expression of cholesterol transport proteins in Lck-silenced cells. The treatment of Jurkat cells with PP2 also inhibited cell proliferation and promoted RCT. In conclusion, Lck is a key molecule in the TCR signaling cascade that inhibits cholesterol efflux and upregulates intracellular cholesterol ester content in T cells. Our results demonstrate that the immune response plays a previously unrecognized role in RCT. Copyright © 2016 by The American Association of Immunologists, Inc.

  10. Oxysterol generation and liver X receptor-dependent reverse cholesterol transport: not all roads lead to Rome.

    PubMed

    Pannu, Parveer S; Allahverdian, Sima; Francis, Gordon A

    2013-04-10

    Cell cholesterol metabolism is a tightly regulated process, dependent in part on activation of nuclear liver X receptors (LXRs) to increase expression of genes mediating removal of excess cholesterol from cells in the reverse cholesterol transport pathway. LXRs are thought to be activated predominantly by oxysterols generated enzymatically from cholesterol in different cell organelles. Defects resulting in slowed release of cholesterol from late endosomes and lysosomes or reduction in sterol-27-hydroxylase activity lead to specific blocks in oxysterol production and impaired LXR-dependent gene activation. This block does not appear to be compensated by oxysterol production in other cell compartments. The purpose of this review is to summarize current knowledge about oxysterol-dependent activation by LXR of genes involved in reverse cholesterol transport, and what these defects of cell cholesterol homeostasis can teach us about the critical pathways of oxysterol generation for expression of LXR-dependent genes.

  11. Regulation of reverse cholesterol transport - a comprehensive appraisal of available animal studies

    PubMed Central

    2012-01-01

    Plasma levels of high density lipoprotein (HDL) cholesterol are strongly inversely correlated to the risk of atherosclerotic cardiovascular disease. A major recognized functional property of HDL particles is to elicit cholesterol efflux and consequently mediate reverse cholesterol transport (RCT). The recent introduction of a surrogate method aiming at determining specifically RCT from the macrophage compartment has facilitated research on the different components and pathways relevant for RCT. The current review provides a comprehensive overview of studies carried out on macrophage-specific RCT including a quick reference guide of available data. Knowledge and insights gained on the regulation of the RCT pathway are summarized. A discussion of methodological issues as well as of the respective relevance of specific pathways for RCT is also included. PMID:22458435

  12. Chronic Moderate Alcohol Intakes Accelerate SR-B1 Mediated Reverse Cholesterol Transport

    PubMed Central

    Li, Menghua; Diao, Yan; Liu, Ying; Huang, Hui; Li, Yanze; Tan, Peizhu; Liang, Huan; He, Qi; Nie, Junhui; Dong, Xingli; Wang, Yang; Zhou, Lingyun; Gao, Xu

    2016-01-01

    Cholesterol is essential for all animal life. However, a high level of cholesterol in the body is strongly associated with the progression of various severe diseases. In our study, the potential involvement of alcohol in the regulation of high density lipoprotein (HDL) receptor scavenger receptor class B and type I (SR-B1)-mediated reverse cholesterol transport was investigated. We separated male C57BL/6 mice into four diets: control, alcohol, Control + HC and alcohol + HC. The SR-B1 level and 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate- high- density lipoprotein (DiI-HDL) uptake were also measured in AML12 cells and HL7702 cells treated with alcohol. The control + HC diet led to increased hepatic triglyceride and cholesterol levels while alcohol + HC led no significant change. Compared with that of the control group, the SR-B1 mRNA level was elevated by 27.1% (P < 0.05), 123.8% (P < 0.001) and 343.6% (P < 0.001) in the alcohol, control + HC and alcohol + HC groups, respectively. In AML12 and HL7702 cells, SR-B1 level and DiI-HDL uptake were repressed by SR-B1 siRNA or GW9662. However, these effects were reversed through alcohol treatment. These data suggest that a moderate amount of alcohol plays a novel role in reverse cholesterol transport, mainly mediated by PPARγ and SR-B1. PMID:27618957

  13. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis.

    PubMed

    Rayner, Katey J; Sheedy, Frederick J; Esau, Christine C; Hussain, Farah N; Temel, Ryan E; Parathath, Saj; van Gils, Janine M; Rayner, Alistair J; Chang, Aaron N; Suarez, Yajaira; Fernandez-Hernando, Carlos; Fisher, Edward A; Moore, Kathryn J

    2011-07-01

    Plasma HDL levels have a protective role in atherosclerosis, yet clinical therapies to raise HDL levels have remained elusive. Recent advances in the understanding of lipid metabolism have revealed that miR-33, an intronic microRNA located within the SREBF2 gene, suppresses expression of the cholesterol transporter ABC transporter A1 (ABCA1) and lowers HDL levels. Conversely, mechanisms that inhibit miR-33 increase ABCA1 and circulating HDL levels, suggesting that antagonism of miR-33 may be atheroprotective. As the regression of atherosclerosis is clinically desirable, we assessed the impact of miR-33 inhibition in mice deficient for the LDL receptor (Ldlr-/- mice), with established atherosclerotic plaques. Mice treated with anti-miR33 for 4 weeks showed an increase in circulating HDL levels and enhanced reverse cholesterol transport to the plasma, liver, and feces. Consistent with this, anti-miR33-treated mice showed reductions in plaque size and lipid content, increased markers of plaque stability, and decreased inflammatory gene expression. Notably, in addition to raising ABCA1 levels in the liver, anti-miR33 oligonucleotides directly targeted the plaque macrophages, in which they enhanced ABCA1 expression and cholesterol removal. These studies establish that raising HDL levels by anti-miR33 oligonucleotide treatment promotes reverse cholesterol transport and atherosclerosis regression and suggest that it may be a promising strategy to treat atherosclerotic vascular disease.

  14. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis

    PubMed Central

    Rayner, Katey J.; Sheedy, Frederick J.; Esau, Christine C.; Hussain, Farah N.; Temel, Ryan E.; Parathath, Saj; van Gils, Janine M.; Rayner, Alistair J.; Chang, Aaron N.; Suarez, Yajaira; Fernandez-Hernando, Carlos; Fisher, Edward A.; Moore, Kathryn J.

    2011-01-01

    Plasma HDL levels have a protective role in atherosclerosis, yet clinical therapies to raise HDL levels have remained elusive. Recent advances in the understanding of lipid metabolism have revealed that miR-33, an intronic microRNA located within the SREBF2 gene, suppresses expression of the cholesterol transporter ABC transporter A1 (ABCA1) and lowers HDL levels. Conversely, mechanisms that inhibit miR-33 increase ABCA1 and circulating HDL levels, suggesting that antagonism of miR-33 may be atheroprotective. As the regression of atherosclerosis is clinically desirable, we assessed the impact of miR-33 inhibition in mice deficient for the LDL receptor (Ldlr–/– mice), with established atherosclerotic plaques. Mice treated with anti-miR33 for 4 weeks showed an increase in circulating HDL levels and enhanced reverse cholesterol transport to the plasma, liver, and feces. Consistent with this, anti-miR33–treated mice showed reductions in plaque size and lipid content, increased markers of plaque stability, and decreased inflammatory gene expression. Notably, in addition to raising ABCA1 levels in the liver, anti-miR33 oligonucleotides directly targeted the plaque macrophages, in which they enhanced ABCA1 expression and cholesterol removal. These studies establish that raising HDL levels by anti-miR33 oligonucleotide treatment promotes reverse cholesterol transport and atherosclerosis regression and suggest that it may be a promising strategy to treat atherosclerotic vascular disease. PMID:21646721

  15. Cholesterol

    MedlinePlus

    ... from the food you eat (such as eggs, meats, and dairy products). Too much cholesterol can have ... fewer foods with saturated fats (such as red meat and most dairy products). Opt for healthier fats, ...

  16. HIV inhibits endothelial reverse cholesterol transport through impacting subcellular Caveolin-1 trafficking.

    PubMed

    Lin, Shanshan; Nadeau, Peter E; Mergia, Ayalew

    2015-07-15

    Human immunodeficiency virus (HIV) infection leads to decreased reverse cholesterol transport (RCT) in macrophages, and Nef mediated down-regulation and redistribution of ATP-binding cassette transporter A1 (ABCA1) are identified as key factors for this effect. This may partially explain the increased risk of atherosclerosis in HIV infected individuals. Since endothelial dysfunction is key in the initial stages of atherosclerosis, we sought to determine whether RCT was affected in human aortic endothelial cells (HAECs). We found that apoA-I does not significantly stimulate cholesterol efflux in HAECs while cholesterol efflux to high-density lipoprotein (HDL) was dramatically reduced in HAECs co-cultured with HIV infected cells. Studies with wild type and Nef defective HIV revealed no significant differences suggesting that multiple factors are working perhaps in concert with Nef to affect cholesterol efflux to HDL from HAECs. Interestingly, treating HAECs with recombinant Nef showed similar effect in HDL mediated cholesterol efflux as observed in HAECs co-cultured with HIV infected cells. Using a detergent-free based subcellular fractionation approach, we demonstrated that exposure of HAECs to HIV infected cells or Nef alone disrupts caveolin 1 (Cav-1) subcellular trafficking upon HDL stimulation. Moreover, Nef significantly enhanced tyrosine 14 phosphorylation of Cav-1 which may have an impact on recycling of Cav-1 and caveolae. These results suggest that HIV interferes with cholesterol efflux by HDL in HAECs through the disruption of Cav-1s' cellular distribution and that multiple factors are involved, possibly including Nef, for the inhibition of HDL mediated cholesterol efflux and alteration of cellular distribution of Cav-1.

  17. Reverse Cholesterol Transport Is Increased in Germ-Free Mice-Brief Report.

    PubMed

    Mistry, Rima H; Verkade, Henkjan J; Tietge, Uwe J F

    2017-03-01

    The intestinal microbiota is emerging as a clinically relevant modulator of atherosclerotic risk. Reverse cholesterol transport (RCT) is an atheroprotective metabolic pathway. How the microbiota impacts RCT has not been investigated. Therefore, the aim of this study was to characterize (cholesterol) metabolism and RCT in germ-free mice compared with conventional mice. In chow-fed germ-free mice, plasma cholesterol was unchanged, whereas liver cholesterol content was higher (1.5-fold; P<0.05) than in conventional controls. Biliary secretion of cholesterol (2-fold; P<0.001) and bile acids (3-fold; P<0.001) was substantially increased in the germ-free model, whereas fecal neutral sterol excretion was unaltered, and fecal bile acid excretion was decreased (P<0.01). However, fecal bile acid profiles of germ-free mice were dominated by the presence of β-muricholic acid (P<0.001), pointing toward a higher contribution of the alternative acidic pathway to total bile acid synthesis in these mice. As expected, secondary bile acids were absent in the germ-free model. In vivo macrophage-to-feces RCT was increased >2-fold (P<0.01) in the absence of intestinal bacteria. These data demonstrate that the absence of the intestinal microbiota stimulates RCT >2-fold. Thereby, our results support the importance of intestinal bacteria for metabolic regulation and indicate that specific targeting of the microbiota bears therapeutic potential to prevent and treat cardiovascular disease. © 2017 American Heart Association, Inc.

  18. Effects of Dietary Flavonoids on Reverse Cholesterol Transport, HDL Metabolism, and HDL Function.

    PubMed

    Millar, Courtney L; Duclos, Quinn; Blesso, Christopher N

    2017-03-01

    Strong experimental evidence confirms that HDL directly alleviates atherosclerosis. HDL particles display diverse atheroprotective functions in reverse cholesterol transport (RCT), antioxidant, anti-inflammatory, and antiapoptotic processes. In certain inflammatory disease states, however, HDL particles may become dysfunctional and proatherogenic. Flavonoids show the potential to improve HDL function through their well-documented effects on cellular antioxidant status and inflammation. The aim of this review is to summarize the basic science and clinical research examining the effects of dietary flavonoids on RCT and HDL function. Based on preclinical studies that used cell culture and rodent models, it appears that many flavonoids (e.g., anthocyanidins, flavonols, and flavone subclasses) influence RCT and HDL function beyond simple HDL cholesterol concentration by regulating cellular cholesterol efflux from macrophages and hepatic paraoxonase 1 expression and activity. In clinical studies, dietary anthocyanin intake is associated with beneficial changes in serum biomarkers related to HDL function in a variety of human populations (e.g., in those who are hyperlipidemic, hypertensive, or diabetic), including increased HDL cholesterol concentration, as well as HDL antioxidant and cholesterol efflux capacities. However, clinical research on HDL functionality is lacking for some flavonoid subclasses (e.g., flavanols, flavones, flavanones, and isoflavones). Although there has been a tremendous effort to develop HDL-targeted drug therapies, more research is warranted on how the intake of foods or specific nutrients affects HDL function.

  19. Performance of cholesterol oxidase sequestered within reverse micelles formed in supercritical carbon dioxide

    SciTech Connect

    Kane, M.A.; Baker, G.A.; Pandey, S.; Bright, F.V.

    2000-05-30

    The authors report the first results on an enzyme-induced reaction within the water core of reverse micelles that have been formed in supercritical CO{sub 2} (scCO{sub 2}). By using a perfluoropolyether ammonium carboxylate (PFPE) surfactant, the authors form reverse micelles in scCO{sub 2} with water cores and the authors show that the oxidation of cholesterol by cholesterol oxidase (ChOx) obeys Michaelis-Menten kinetics. The results of their experiments also show that (1) the optimum ChOx activity occurs when the molar ratio of H{sub 2}O-to-PFPE (R) exceeds {approximately}12, (2) the rate constant describing the conversion of the ChOx-cholesterol complex to product ({kappa}{sub cat,app}) is similar to values reported using reverse micelle systems formed in liquid alkanes, (3) the equilibrium constant that describes the ChOx-cholesterol complex dissociation (K{sub m,app}) is optimal at high R values, (4) the best-case K{sub m,app} is {approximately}2-fold better than the value reported using reverse micelles formed in liquid alkanes, (5) there is little change in the ChOx {kappa}{sub cat,app} and K{sub m,app} as the authors adjust the CO{sub 2} pressure between 100 and 260 bar, and (6) the ChOx was active within the PFPE water pool for at least 5 h; however, after 8 or more hours within the PFPE water pool, ChOx became temporarily inactive.

  20. HDL functionality in reverse cholesterol transport--Challenges in translating data emerging from mouse models to human disease.

    PubMed

    Lee-Rueckert, Miriam; Escola-Gil, Joan Carles; Kovanen, Petri T

    2016-07-01

    Whereas LDL-derived cholesterol accumulates in atherosclerotic lesions, HDL particles are thought to facilitate removal of cholesterol from the lesions back to the liver thereby promoting its fecal excretion from the body. Because generation of cholesterol-loaded macrophages is inherent to atherogenesis, studies on the mechanisms stimulating the release of cholesterol from these cells and its ultimate excretion into feces are crucial to learn how to prevent lesion development or even induce lesion regression. Modulation of this key anti-atherogenic pathway, known as the macrophage-specific reverse cholesterol transport, has been extensively studied in several mouse models with the ultimate aim of applying the emerging knowledge to humans. The present review provides a detailed comparison and critical analysis of the various steps of reverse cholesterol transport in mouse and man. We attempt to translate this in vivo complex scenario into practical concepts, which could serve as valuable tools when developing novel HDL-targeted therapies.

  1. Insulin-induced glucose control improves HDL cholesterol levels but not reverse cholesterol transport in type 2 diabetic patients.

    PubMed

    Fadini, Gian Paolo; Iori, Elisabetta; Marescotti, Maria Cristina; Vigili de Kreutzenberg, Saula; Avogaro, Angelo

    2014-08-01

    Type 2 diabetes (T2D) is characterized by low HDL cholesterol (HDL-C) and HDL dysfunction. We herein tested whether lowering HbA1c affects HDL-C and reverse cholesterol transport (RCT). Forty-two uncontrolled T2D patients initiating basal insulin were included. HbA1c, HDL-C and RCT were assessed at baseline and after 6 months. At baseline, HDL-C and RCT were directly correlated (r = 0.50; p < 0.001). After 6 months of insulin therapy, HbA1c dropped from 8.8 ± 0.16% to 7.1 ± 0.1%, while average HDL-C and RCT did not change. Follow-up HDL-C and RCT were still correlated (r = 0.31; p = 0.033) and ΔHDL-C correlated with ΔRCT (r = 0.32; p = 0.029). ΔHbA1c correlated with ΔHDL-C (r = 0.43, p = 0.001), but not with ΔRCT. In patients with ΔHbA1c above the median value (1.3%), HDL-C (but not RCT) increased significantly. In conclusion, glucose control correlates with increased HDL-C, but not with improved RCT. Thus, persistent HDL dysfunction despite improved HbA1c and HDL-C can contribute to residual cardiovascular risk in T2D. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Isomer-specific effects of conjugated linoleic acid on HDL functionality associated with reverse cholesterol transport.

    PubMed

    Nicod, Nathalie; Parker, Robert S; Giordano, Elena; Maestro, Virginia; Davalos, Alberto; Visioli, Francesco

    2015-02-01

    High-density lipoproteins (HDLs) are atheroprotective because of their role in reverse cholesterol transport. The intestine is involved in this process because it synthesizes HDL, removes cholesterol from plasma and excretes it into the lumen. We investigated the role of selected dietary fatty acids on intestinal cholesterol uptake and HDL functionality. Caco-2 monolayers grown on Transwells were supplemented with either palmitic, palmitoleic, oleic, linoleic, docosahexaenoic, eicosapentaenoic, arachidonic or conjugated linoleic acids (CLAs): c9,t11-CLA; t9,t11-CLA; c10,t12-CLA. Cells synthesized HDL in the basolateral compartment for 24 h in the absence or presence of an antibody to SR-BI (aSR-BI), which inhibits its interaction with HDL. Free cholesterol (FC) accumulated to a greater extent in the presence than in the absence of aSR-BI, indicating net uptake of FC by SR-BI. Uptake's efficiency was significantly decreased when cells were treated with c9,t11-CLA relative to the other fatty acids. These differences were associated with lower HDL functionality, since neither SR-BI protein expression nor expression and alternative splicing of other genes involved lipid metabolism were affected. Only INSIG2 expression was decreased, with no increase of its target genes. Increasing pre-β-HDL synthesis, by inducing ABCA1 and adding APOA1, resulted in reduced uptake of FC by SR-BI after c9,t11-CLA treatment, indicating reduced functionality of pre-β-HDL. Conversely, treatment with c9,t11-CLA resulted in a greater uptake of FC and esterified cholesterol from mature HDL. Therefore, Caco-2 monolayers administered c9,t11-CLA produced a nonfunctional pre-β-HDL but took up cholesterol more efficiently via SR-BI from mature HDL.

  3. High-density lipoprotein heterogeneity and function in reverse cholesterol transport

    PubMed Central

    Rothblat, George H.; Phillips, Michael C.

    2011-01-01

    Purpose of review HDL is a cardioprotective lipoprotein, at least in part, because of its ability to mediate reverse cholesterol transport (RCT). It is becoming increasingly clear that the antiatherogenic effects of HDL are not only dependent on its concentration in circulating blood but also on its biological ‘quality’. This review summarizes our current understanding of how the biological activities of individual subclasses of HDL particles contribute to overall HDL performance in RCT. Recent findings Recent work indicates that apolipoprotein A-I-containing nascent HDL particles are heterogeneous and that such particles exert different effects on the RCT pathway. RCT from macrophages has been examined in detail in mice and the roles of plasma factors (lecithin-cholesterol acyltransferase, cholesterol ester transfer protein, phospholipid transfer protein) and cell factors (ATP-binding cassette transporter A1, ATP-binding cassette transporter G1, scavenger receptor class B type 1) have been evaluated. Manipulation of such factors has consistent effects on RCT and atherosclerosis, but the level of plasma HDL does not reliably predict the degree of RCT. Furthermore, HDL cholesterol or apolipoprotein A-I levels do not necessarily correlate with the magnitude of cholesterol efflux from macrophages; more understanding of the contributions of specific HDL subspecies is required. Summary The antiatherogenic quality of HDL is defined by the functionality of HDL subspecies. In the case of RCT, the rate of cholesterol movement through the pathway is critical and the contributions of particular types of HDL particles to this process are becoming better defined. PMID:20480549

  4. Inhibition of soluble epoxide hydrolase in mice promotes reverse cholesterol transport and regression of atherosclerosis.

    PubMed

    Shen, Li; Peng, Hongchun; Peng, Ran; Fan, Qingsong; Zhao, Shuiping; Xu, Danyan; Morisseau, Christophe; Chiamvimonvat, Nipavan; Hammock, Bruce D

    2015-04-01

    Adipose tissue is the body largest free cholesterol reservoir and abundantly expresses ATP binding cassette transporter A1 (ABCA1), which maintains plasma high-density lipoprotein (HDL) levels. HDLs have a protective role in atherosclerosis by mediating reverse cholesterol transport (RCT). Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose inhibition has various beneficial effects on cardiovascular disease. The sEH is highly expressed in adipocytes, and it converts epoxyeicosatrienoic acids (EETs) into less bioactive dihydroxyeicosatrienoic acids. We previously showed that increasing EETs levels with a sEH inhibitor (sEHI) (t-AUCB) resulted in elevated ABCA1 expression and promoted ABCA1-mediated cholesterol efflux from 3T3-L1 adipocytes. The present study investigates the impacts of t-AUCB in mice deficient for the low density lipoprotein (LDL) receptor (Ldlr(-/-) mice) with established atherosclerotic plaques. The sEH inhibitor delivered in vivo for 4 weeks decreased the activity of sEH in adipose tissue, enhanced ABCA1 expression and cholesterol efflux from adipose depots, and consequently increased HDL levels. Furthermore, t-AUCB enhanced RCT to the plasma, liver, bile and feces. It also showed the reduction of plasma LDL-C levels. Consistently, t-AUCB-treated mice showed reductions in the size of atherosclerotic plaques. These studies establish that raising adipose ABCA1 expression, cholesterol efflux, and plasma HDL levels with t-AUCB treatment promotes RCT, decreasing LDL-C and atherosclerosis regression, suggesting that sEH inhibition may be a promising strategy to treat atherosclerotic vascular disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Fish oil supplementation reverses the effect of cholesterol on apoptotic gene expression in smooth muscle cells

    PubMed Central

    2010-01-01

    Background Nutritional control of gene regulation guides the transformation of smooth muscle cells (SMC) into foam cells in atherosclerosis. Oxidative stress has been reported in areas of lipid accumulation, activating proliferation genes. Suppression of oxidative stress by antioxidant administration reduces this activation and the progression of lesions. We hypothesized that fish oil consumption may protect against atherosclerotic vascular disease. The study objective was to determine the effects of dietary cholesterol and fish-oil intake on the apoptotic pathways induced by 25-hydroxycholesterol (25-HC) in SMC cultures. Methods An in vivo/in vitro cell model was used, culturing SMC isolated from chicks exposed to an atherogenic cholesterol-rich diet with 5% of cholesterol (SMC-Ch) alone or followed by an anti-atherogenic fish oil-rich diet with 10% of menhaden oil (SMC-Ch-FO) and from chicks on standard diet (SMC-C). Cells were exposed to 25-HC, studying apoptosis levels by flow cytometry (Annexin V) and expressions of caspase-3, c-myc, and p53 genes by quantitative real-time reverse transcriptase-polymerase chain reaction. Results: Exposure to 25-HC produced apoptosis in all three SMC cultures, which was mediated by increases in caspase-3, c-myc, and p53 gene expression. Changes were more marked in SMC-Ch than in SMC-C, indicating that dietary cholesterol makes SMC more susceptible to 25-HC-mediated apoptosis. Expression of p53 gene was elevated in SMC-Ch-FO. This supports the proposition that endogenous levels of p53 protect SMC against apoptosis and possibly against the development of atherosclerosis. Fish oil attenuated the increase in c-myc levels observed in SMC-C and SMC-Ch, possibly through its influence on the expression of antioxidant genes. Conclusion Replacement of a cholesterol-rich diet with a fish oil-rich diet produces some reversal of the cholesterol-induced changes, increasing the resistance of SMC to apoptosis. PMID:20630092

  6. [Role of the ABC transporters A1 and G1, key reverse cholesterol transport proteins, in atherosclerosis].

    PubMed

    Demina, E P; Miroshnikova, V V; Schwarzman, A L

    2016-01-01

    Atherosclerosis is one of the most common causes of death worldwide. Epidemiology studies firmly established an inverse relationship between atherogenesis and distorted lipid metabolism, in particular, higher levels of total cholesterol, an accumulation of CH-laden macrophages (foam cells), and lower plasma levels of antiatherogenic high density lipoprotein (HDL). It is believed that the reverse cholesterol transport, a process that removes excess cholesterol from peripheral tissues/cells including macrophages to circulating HDL, is one of the main mechanisms responsible for anti-atherogenic properties of HDL. The key proteins of reverse cholesterol transport-ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1)-mediate the cholesterol efflux from macrophages and prevent their transformation into foam cells. This review focuses on the role of ABC transporters A1 and G1 in the pathogenesis of atherosclerosis.

  7. Molecular mechanism of reverse cholesterol transport: reaction of pre-beta-migrating high-density lipoprotein with plasma lecithin/cholesterol acyltransferase.

    PubMed

    Nakamura, Yasushi; Kotite, Leila; Gan, Yonghong; Spencer, Thomas A; Fielding, Christopher J; Fielding, Phoebe E

    2004-11-23

    A 70-75 kDa high-density lipoprotein (HDL) particle with pre-beta-electrophoretic migration (pre-beta(1)-HDL) has been identified in several studies as an early acceptor of cell-derived cholesterol. However, the further metabolism of this complex has not been determined. Here we sought to identify the mechanism by which cell-derived cholesterol was esterified and converted to mature HDL as part of reverse cholesterol transport (RCT). Human plasma selectively immunodepleted of pre-beta(1)-HDL was used to study factors regulating pre-beta(1)-HDL production. A major role for phospholipid transfer protein (PLTP) in the recycling of pre-beta(1)-HDL was identified. Cholesterol binding, esterification by lecithin/cholesterol acyltransferase (LCAT) and transfer by cholesteryl ester transfer protein (CETP) were measured using (3)H-cholesterol-labeled cell monolayers. LCAT bound to (3)H-free cholesterol (FC)-labeled pre-beta(1)-HDL generated cholesteryl esters at a rate much greater than the rest of HDL. The cholesteryl ester produced in pre-beta(1)-HDL in turn became the preferred substrate of CETP. Selective LCAT-mediated reactivity with pre-beta(1)-HDL represents a novel mechanism increasing the efficiency of RCT.

  8. Plasma proteomic analysis of stable coronary artery disease indicates impairment of reverse cholesterol pathway

    PubMed Central

    Basak, Trayambak; Tanwar, Vinay Singh; Bhardwaj, Gourav; Bhardwaj, Nitin; Ahmad, Shadab; Garg, Gaurav; V, Sreenivas; Karthikeyan, Ganesan; Seth, Sandeep; Sengupta, Shantanu

    2016-01-01

    Coronary artery disease (CAD) is one of the largest causes of death worldwide yet the traditional risk factors, although useful in identifying people at high risk, lack the desired predictive accuracy. Techniques like quantitative plasma proteomics holds immense potential to identify newer markers and this study (conducted in three phases) was aimed to identify differentially expressed proteins in stable CAD patients. In the first (discovery) phase, plasma from CAD cases (angiographically proven) and controls were subjected to iTRAQ based proteomic analysis. Proteins found to be differentially expressed were then validated in the second and third (verification and validation) phases in larger number of (n = 546) samples. After multivariate logistic regression adjusting for confounding factors (age, diet, etc.), four proteins involved in the reverse cholesterol pathway (Apo A1, ApoA4, Apo C1 and albumin) along with diabetes and hypertension were found to be significantly associated with CAD and could account for approximately 88% of the cases as revealed by ROC analysis. The maximum odds ratio was found to be 6.70 for albumin (p < 0.0001), followed by Apo AI (5.07, p < 0.0001), Apo CI (4.03, p = 0.001), and Apo AIV (2.63, p = 0.003). Down-regulation of apolipoproteins and albumin implicates the impairment of reverse cholesterol pathway in CAD. PMID:27350024

  9. Plasma proteomic analysis of stable coronary artery disease indicates impairment of reverse cholesterol pathway.

    PubMed

    Basak, Trayambak; Tanwar, Vinay Singh; Bhardwaj, Gourav; Bhardwaj, Nitin; Ahmad, Shadab; Garg, Gaurav; V, Sreenivas; Karthikeyan, Ganesan; Seth, Sandeep; Sengupta, Shantanu

    2016-06-28

    Coronary artery disease (CAD) is one of the largest causes of death worldwide yet the traditional risk factors, although useful in identifying people at high risk, lack the desired predictive accuracy. Techniques like quantitative plasma proteomics holds immense potential to identify newer markers and this study (conducted in three phases) was aimed to identify differentially expressed proteins in stable CAD patients. In the first (discovery) phase, plasma from CAD cases (angiographically proven) and controls were subjected to iTRAQ based proteomic analysis. Proteins found to be differentially expressed were then validated in the second and third (verification and validation) phases in larger number of (n = 546) samples. After multivariate logistic regression adjusting for confounding factors (age, diet, etc.), four proteins involved in the reverse cholesterol pathway (Apo A1, ApoA4, Apo C1 and albumin) along with diabetes and hypertension were found to be significantly associated with CAD and could account for approximately 88% of the cases as revealed by ROC analysis. The maximum odds ratio was found to be 6.70 for albumin (p < 0.0001), followed by Apo AI (5.07, p < 0.0001), Apo CI (4.03, p = 0.001), and Apo AIV (2.63, p = 0.003). Down-regulation of apolipoproteins and albumin implicates the impairment of reverse cholesterol pathway in CAD.

  10. Liver X receptor activation promotes macrophage-to-feces reverse cholesterol transport in a dyslipidemic hamster model

    PubMed Central

    Briand, François; Tréguier, Morgan; André, Agnès; Grillot, Didier; Issandou, Marc; Ouguerram, Khadija; Sulpice, Thierry

    2010-01-01

    Liver X receptor (LXR) activation promotes reverse cholesterol transport (RCT) in rodents but has major side effects (increased triglycerides and LDL-cholesterol levels) in species expressing cholesteryl ester transfer protein (CETP). In the face of dyslipidemia, it remains unclear whether LXR activation stimulates RCT in CETP species. We therefore used a hamster model made dyslipidemic with a 0.3% cholesterol diet and treated with vehicle or LXR agonist GW3965 (30 mg/kg bid) over 10 days. To investigate RCT, radiolabeled 3H-cholesterol macrophages or 3H-cholesteryl oleate-HDL were then injected to measure plasma and feces radioactivity over 72 or 48 h, respectively. The cholesterol-enriched diet increased VLDL-triglycerides and total cholesterol levels in all lipoprotein fractions and strongly increased liver lipids. Overall, GW3965 failed to improve both dyslipidemia and liver steatosis. However, after 3H-cholesterol labeled macrophage injection, GW3965 treatment significantly increased the 3H-tracer appearance by 30% in plasma over 72 h, while fecal 3H-cholesterol excretion increased by 156% (P < 0.001). After 3H-cholesteryl oleate-HDL injection, GW3965 increased HDL-derived cholesterol fecal excretion by 64% (P < 0.01 vs. vehicle), while plasma fractional catabolic rate remained unchanged. Despite no beneficial effect on dyslipidemia, LXR activation promotes macrophage-to-feces RCT in dyslipidemic hamsters. These results emphasize the use of species with a more human-like lipoprotein metabolism for drug profiling. PMID:19965597

  11. Chitosan oligosaccharides promote reverse cholesterol transport and expression of scavenger receptor BI and CYP7A1 in mice.

    PubMed

    Zong, Chuanlong; Yu, Yang; Song, Guohua; Luo, Tian; Li, Luqin; Wang, Xinnong; Qin, Shucun

    2012-02-01

    Chitosan oligosaccharides (COS) are beneficial in improving plasma lipids and diminishing atherosclerotic risks. In this study, we examined the effects of COS on reverse cholesterol transport (RCT) in C57BL/6 mice. (3)H-cholesterol-laden macrophages were injected intraperitoneally into mice fed with various dosage of COS (250, 500, 1000 mg/kg mouse weight, respectively) or vehicle by gastric gavages. Plasma lipid level was determined and (3)H-cholesterol was traced in plasma, liver, bile and feces. The effects of COS on hepatic cholesterol 7 alpha-hydroxylase (CYP7A1) and scavenger receptor BI (SR-BI) expression were also investigated. COS administration led to a significant decrease in plasma total cholesterol and low-density lipoprotein (LDL) cholesterol and a significant increase in peritoneal macrophage-derived (3)H-cholesterol in liver and bile as well as in feces. Liver protein expressions of CYP7A1, SR-BI and LDL receptor (LDL-R) were improved in a dosage-dependent manner in COS-administered mice. Our findings provide the first in vivo demonstration of a positive role for COS in RCT pathway and hepatic CYP7A1 and SR-BI expression in mice. Additionally, the LDL cholesterol lowering effect might be relative to hepatic LDL-R expression stimulated by COS in mice.

  12. Enhanced vascular permeability facilitates entry of plasma HDL and promotes macrophage-reverse cholesterol transport from skin in mice

    PubMed Central

    Kareinen, Ilona; Cedó, Lídia; Silvennoinen, Reija; Laurila, Pirkka-Pekka; Jauhiainen, Matti; Julve, Josep; Blanco-Vaca, Francisco; Escola-Gil, Joan Carles; Kovanen, Petri T.; Lee-Rueckert, Miriam

    2015-01-01

    Reverse cholesterol transport (RCT) pathway from macrophage foam cells initiates when HDL particles cross the endothelium, enter the interstitial fluid, and induce cholesterol efflux from these cells. We injected [3H]cholesterol-loaded J774 macrophages into the dorsal skin of mice and measured the transfer of macrophage-derived [3H]cholesterol to feces [macrophage-RCT (m-RCT)]. Injection of histamine to the macrophage injection site increased locally vascular permeability, enhanced influx of intravenously administered HDL, and stimulated m-RCT from the histamine-treated site. The stimulatory effect of histamine on m-RCT was abolished by prior administration of histamine H1 receptor (H1R) antagonist pyrilamine, indicating that the histamine effect was H1R-dependent. Subcutaneous administration of two other vasoactive mediators, serotonin or bradykinin, and activation of skin mast cells to secrete histamine and other vasoactive compounds also stimulated m-RCT. None of the studied vasoactive mediators affected serum HDL levels or the cholesterol-releasing ability of J774 macrophages in culture, indicating that acceleration of m-RCT was solely due to increased availability of cholesterol acceptors in skin. We conclude that disruption of the endothelial barrier by vasoactive compounds enhances the passage of HDL into interstitial fluid and increases the rate of RCT from peripheral macrophage foam cells, which reveals a novel tissue cholesterol-regulating function of these compounds. PMID:25473102

  13. Enhanced vascular permeability facilitates entry of plasma HDL and promotes macrophage-reverse cholesterol transport from skin in mice.

    PubMed

    Kareinen, Ilona; Cedó, Lídia; Silvennoinen, Reija; Laurila, Pirkka-Pekka; Jauhiainen, Matti; Julve, Josep; Blanco-Vaca, Francisco; Escola-Gil, Joan Carles; Kovanen, Petri T; Lee-Rueckert, Miriam

    2015-02-01

    Reverse cholesterol transport (RCT) pathway from macrophage foam cells initiates when HDL particles cross the endothelium, enter the interstitial fluid, and induce cholesterol efflux from these cells. We injected [(3)H]cholesterol-loaded J774 macrophages into the dorsal skin of mice and measured the transfer of macrophage-derived [(3)H]cholesterol to feces [macrophage-RCT (m-RCT)]. Injection of histamine to the macrophage injection site increased locally vascular permeability, enhanced influx of intravenously administered HDL, and stimulated m-RCT from the histamine-treated site. The stimulatory effect of histamine on m-RCT was abolished by prior administration of histamine H1 receptor (H1R) antagonist pyrilamine, indicating that the histamine effect was H1R-dependent. Subcutaneous administration of two other vasoactive mediators, serotonin or bradykinin, and activation of skin mast cells to secrete histamine and other vasoactive compounds also stimulated m-RCT. None of the studied vasoactive mediators affected serum HDL levels or the cholesterol-releasing ability of J774 macrophages in culture, indicating that acceleration of m-RCT was solely due to increased availability of cholesterol acceptors in skin. We conclude that disruption of the endothelial barrier by vasoactive compounds enhances the passage of HDL into interstitial fluid and increases the rate of RCT from peripheral macrophage foam cells, which reveals a novel tissue cholesterol-regulating function of these compounds.

  14. The Impairment of Macrophage-to-Feces Reverse Cholesterol Transport during Inflammation Does Not Depend on Serum Amyloid A

    PubMed Central

    de Beer, Maria C.; Wroblewski, Joanne M.; Noffsinger, Victoria P.; Meyer, Jason M.; van der Westhuyzen, Deneys R.

    2013-01-01

    Studies suggest that inflammation impairs reverse cholesterol transport (RCT). We investigated whether serum amyloid A (SAA) contributes to this impairment using an established macrophage-to-feces RCT model. Wild-type (WT) mice and mice deficient in SAA1.1 and SAA2.1 (SAAKO) were injected intraperitoneally with 3H-cholesterol-labeled J774 macrophages 4 hr after administration of LPS or buffered saline. 3H-cholesterol in plasma 4 hr after macrophage injection was significantly reduced in both WT and SAAKO mice injected with LPS, but this was not associated with a reduced capacity of serum from LPS-injected mice to promote macrophage cholesterol efflux in vitro. Hepatic accumulation of 3H-cholesterol was unaltered in either WT or SAAKO mice by LPS treatment. Radioactivity present in bile and feces of LPS-injected WT mice 24 hr after macrophage injection was reduced by 36% (P < 0.05) and 80% (P < 0.001), respectively. In contrast, in SAAKO mice, LPS did not significantly reduce macrophage-derived 3H-cholesterol in bile, and fecal excretion was reduced by only 45% (P < 0.05). Injection of cholesterol-loaded allogeneic J774 cells, but not syngeneic bone-marrow-derived macrophages, transiently induced SAA in C57BL/6 mice. Our study confirms reports that acute inflammation impairs steps in the RCT pathway and establishes that SAA plays only a minor role in this impairment. PMID:23431457

  15. The reverse cholesterol transport pathway improves understanding of genetic networks for fat deposition and muscle growth in beef cattle

    USDA-ARS?s Scientific Manuscript database

    In the present study, thirteen genes involved in the reverse cholesterol transport (RCT) pathway were investigated for their associations with three fat depositions, eight fatty acid compositions and two growth-related phenotypes in a Wagyu x Limousin reference population, including 6 F1 bulls, 113 ...

  16. Pravastatin reverses the membrane cholesterol reorganization induced by myocardial infarction within lipid rafts in CD14(+)/CD16(-) circulating monocytes.

    PubMed

    Salvary, Thomas; Gambert-Nicot, Ségolène; Brindisi, Marie-Claude; Meneveau, Nicolas; Schiele, François; Séronde, Marie-France; Lorgis, Luc; Zeller, Marianne; Cottin, Yves; Kantelip, Jean-Pierre; Gambert, Philippe; Davani, Siamak

    2012-09-01

    Large numbers of monocytes are recruited in the infarcted myocardium. Their cell membranes contain cholesterol-rich microdomains called lipids rafts, which participate in numerous signaling cascades. In addition to its cholesterol-lowering effect, pravastatin has several pleiotropic effects and is widely used as secondary prevention treatment after myocardial infarction (MI). The aim of this study was to investigate the effects of pravastatin on the organization of cholesterol within monocyte membrane rafts from patients who had suffered myocardial infarction. Monocytes from healthy donors and acute MI patients were cultured with or without 4μM pravastatin. Lipid rafts were extracted by Lubrol WX, caveolae and flat rafts were separated using a modified sucrose gradient. Cholesterol level and caveolin-1 expression in lipid rafts were determined. In healthy donors, cholesterol was concentrated in flat rafts (63±3 vs 13±1%, p<0.001). While monocytes from MI patients presented similar cholesterol distribution in both caveolae and flat rafts. Cholesterol distribution was higher in flat rafts in healthy donors, compared to MI patients (63±3 vs 41±2%, p<0.001), with less distribution in caveolae (13±1 vs 34±2%, p<0.001). Pravastatin reversed the cholesterol distribution in MI patients cells between flat rafts (41±2 vs 66±3%, p<0.001) and caveolae (34±2 vs 18±1%, p<0.001). In conclusion, MI redistributes cholesterol from flat rafts to caveolae indicating monocyte membrane reorganization. In vitro pravastatin treatment restored basal conditions in MI monocytes, suggesting another effect of statins.

  17. Simultaneous measurement of cholesterol 7 alpha-hydroxylase activity by reverse-phase high-performance liquid chromatography using both endogenous and exogenous (4- sup 14 C)cholesterol as substrate

    SciTech Connect

    Hylemon, P.B.; Studer, E.J.; Pandak, W.M.; Heuman, D.M.; Vlahcevic, Z.R.; Chiang, J.Y. )

    1989-11-01

    The HPLC-spectrophotometric method for measuring cholesterol 7 alpha-hydroxylase activity was modified by using a C-18 reverse-phase column to separate 7 alpha-hydroxy-4-cholesten-3-one and 4-cholesten-3-one and by adding 7 beta-hydroxycholesterol to each reaction mixture as an internal recovery standard. With this method, we were able to simultaneously measure cholesterol 7 alpha-hydroxylase activity using endogenous cholesterol and exogenous (4-{sup 14}C)cholesterol as substrate. Rat liver cytosol differentially stimulated (286%) the 7 alpha-hydroxylation of exogenous (4-{sup 14}C)-cholesterol. In contrast, total cholesterol 7 alpha-hydroxylase activity was stimulated only 35% by cytosol. This method should prove useful for studying mechanisms of cholesterol delivery to cholesterol 7 alpha-hydroxylase.

  18. LXR-dependent regulation of macrophage-specific reverse cholesterol transport is impaired in a model of genetic diabesity.

    PubMed

    Errico, Teresa L; Méndez-Lara, Karen Alejandra; Santos, David; Cabrerizo, Núria; Baila-Rueda, Lucía; Metso, Jari; Cenarro, Ana; Pardina, Eva; Lecube, Albert; Jauhiainen, Matti; Peinado-Onsurbe, Julia; Escolà-Gil, Joan Carles; Blanco-Vaca, Francisco; Julve, Josep

    2017-08-01

    Diabesity and fatty liver have been associated with low levels of high-density lipoprotein cholesterol, and thus could impair macrophage-specific reverse cholesterol transport (m-RCT). Liver X receptor (LXR) plays a critical role in m-RCT. Abcg5/g8 sterol transporters, which are involved in cholesterol trafficking into bile, as well as other LXR targets, could be compromised in the livers of obese individuals. We aimed to determine m-RCT dynamics in a mouse model of diabesity, the db/db mice. These obese mice displayed a significant retention of macrophage-derived cholesterol in the liver and reduced fecal cholesterol elimination compared with nonobese mice. This was associated with a significant downregulation of the hepatic LXR targets, including Abcg5/g8. Pharmacologic induction of LXR promoted the delivery of total tracer output into feces in db/db mice, partly due to increased liver and small intestine Abcg5/Abcg8 gene expression. Notably, a favorable upregulation of the hepatic levels of ABCG5/G8 and NR1H3 was also observed postoperatively in morbidly obese patients, suggesting a similar LXR impairment in these patients. In conclusion, our data show that downregulation of the LXR axis impairs cholesterol transfer from macrophages to feces in db/db mice, whereas the induction of the LXR axis partly restores impaired m-RCT by elevating the liver and small intestine expressions of Abcg5/g8. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Quercetin improves macrophage reverse cholesterol transport in apolipoprotein E-deficient mice fed a high-fat diet.

    PubMed

    Cui, Yingjie; Hou, Pengbo; Li, Fahui; Liu, Qinghua; Qin, Shucun; Zhou, Guanghai; Xu, Xuelian; Si, Yanhong; Guo, Shoudong

    2017-01-14

    Quercetin, one of the most widely distributed flavonoids in plants, has been demonstrated to reduce hyperlipidaemia and atherosclerotic lesion formation. Reverse cholesterol transport (RCT) plays a crucial role in exporting cholesterol from peripheral cells, which is one mechanism utilized in the prevention and treatment of atherosclerosis. The aim of this study is to investigate whether quercetin reduces lipid accumulation by improving RCT in vivo. Apolipoprotein E-deficient mice fed a high-fat diet were used to investigate the effect of quercetin on RCT by an isotope tracing method, and the underlying mechanisms were clarified by molecular techniques. These novel results demonstrated that quercetin significantly improved [(3)H]-cholesterol transfer from [(3)H]-cholesterol-loaded macrophages to the plasma (approximately 34% increase), liver (30% increase), and bile (50% increase) and finally to the feces (approximately 40% increase) for excretion in apolipoprotein E-deficient mice fed a high-fat diet. Furthermore, quercetin markedly increased the cholesterol accepting ability of plasma and high-density lipoprotein (HDL) and dramatically decreased the content of malondialdehyde in plasma and oxidized phosphocholine carried by HDL. Therefore, the underlying mechanisms of quercetin in improving RCT may be partially due to the elevated cholesterol accepting ability of HDL, the increased expression levels of proteins related to RCT, such as ATP-binding cassettes (ABC) A1 and G1, and the improved antioxidant activity of HDL. Quercetin accelerates RCT in an atherosclerosis model, which is helpful in clarifying the lipid-lowering effect of quercetin.

  20. 1,25(OH)2 vitamin D suppresses macrophage migration and reverses atherogenic cholesterol metabolism in type 2 diabetic patients.

    PubMed

    Riek, Amy E; Oh, Jisu; Bernal-Mizrachi, Carlos

    2013-07-01

    Reduced monocyte infiltration into the vessel wall and increased macrophage cholesterol efflux are critical components in atherosclerotic plaque regression. During inflammation, monocyte chemotactic protein 1 (MCP-1) signaling activation and cholesterol deposition in macrophages induce endoplasmic reticulum (ER) stress, which promotes an increased inflammatory response. Increased macrophage ER stress shifts macrophages into an M2 macrophage phenotype with increased cholesterol uptake and deposition. In type 2 diabetes, a population with elevated baseline risk of cardiovascular disease (CVD), vitamin D deficiency doubles that risk. We have found that 1,25-dihydroxy vitamin D [1,25(OH)2D] prevents foam cell formation during macrophage differentiation by suppressing ER stress. However, it is unknown whether suppression of ER stress by 1,25(OH)2D decreases monocyte infiltration and reverses atherogenic cholesterol metabolism in previously differentiated, vitamin D-deplete macrophages. We collected peripheral monocytes from type 2 diabetic patients and differentiated them into macrophages under vitamin D-deplete or 1,25(OH)2D-supplemented conditions. 1,25(OH)2D supplementation suppressed macrophage migration in response to MCP-1 and mRNA expression of chemokine (C-C motif) receptor 2 (CCR2), the MCP-1 receptor, compared to vitamin D-deplete cells. Furthermore, inhibition of ER stress with phenyl butyric acid resulted in similar effects even in vitamin D-deplete cells, while induction of ER stress with Thapsigargin under 1,25(OH)2D-supplemented conditions increased macrophage migration and CCR2 expression, suggesting that the effects of vitamin D on migration are mediated through ER stress suppression. To determine whether the detrimental pattern of macrophage cholesterol metabolism in vitamin D depletion is reversible, we assessed cholesterol uptake in macrophages differentiated under vitamin D-deplete conditions as described above, then supplemented with 1,25(OH)2D or

  1. High density lipoprotein (HDL) particles from end-stage renal disease patients are defective in promoting reverse cholesterol transport

    PubMed Central

    Anderson, Josephine L.C.; Gautier, Thomas; Nijstad, Niels; Tölle, Markus; Schuchardt, Mirjam; van der Giet, Markus; Tietge, Uwe J.F.

    2017-01-01

    Atherosclerotic cardiovascular disease (CVD) represents the largest cause of mortality in end-stage renal disease (ESRD). CVD in ESRD is not explained by classical CVD risk factors such as HDL cholesterol mass levels making functional alterations of lipoproteins conceivable. HDL functions in atheroprotection by promoting reverse cholesterol transport (RCT), comprising cholesterol efflux from macrophage foam cells, uptake into hepatocytes and final excretion into the feces. ESRD-HDL (n = 15) were compared to healthy control HDL (n = 15) for their capacity to promote in vitro (i) cholesterol efflux from THP-1 macrophage foam cells and (ii) SR-BI-mediated selective uptake into ldla[SR-BI] cells as well as (iii) in vivo RCT. Compared with HDL from controls, ESRD-HDL displayed a significant reduction in mediating cholesterol efflux (p < 0.001) and SR-BI-mediated selective uptake (p < 0.01), two key steps in RCT. Consistently, also the in vivo capacity of ESRD-HDL to promote RCT when infused into wild-type mice was significantly impaired (p < 0.01). In vitro oxidation of HDL from healthy controls with hypochloric acid was able to fully mimic the impaired biological activities of ESRD-HDL. In conclusion, we demonstrate that HDL from ESRD patients is dysfunctional in key steps as well as overall RCT, likely due to oxidative modification. PMID:28148911

  2. High density lipoprotein (HDL) particles from end-stage renal disease patients are defective in promoting reverse cholesterol transport.

    PubMed

    Anderson, Josephine L C; Gautier, Thomas; Nijstad, Niels; Tölle, Markus; Schuchardt, Mirjam; van der Giet, Markus; Tietge, Uwe J F

    2017-02-02

    Atherosclerotic cardiovascular disease (CVD) represents the largest cause of mortality in end-stage renal disease (ESRD). CVD in ESRD is not explained by classical CVD risk factors such as HDL cholesterol mass levels making functional alterations of lipoproteins conceivable. HDL functions in atheroprotection by promoting reverse cholesterol transport (RCT), comprising cholesterol efflux from macrophage foam cells, uptake into hepatocytes and final excretion into the feces. ESRD-HDL (n = 15) were compared to healthy control HDL (n = 15) for their capacity to promote in vitro (i) cholesterol efflux from THP-1 macrophage foam cells and (ii) SR-BI-mediated selective uptake into ldla[SR-BI] cells as well as (iii) in vivo RCT. Compared with HDL from controls, ESRD-HDL displayed a significant reduction in mediating cholesterol efflux (p < 0.001) and SR-BI-mediated selective uptake (p < 0.01), two key steps in RCT. Consistently, also the in vivo capacity of ESRD-HDL to promote RCT when infused into wild-type mice was significantly impaired (p < 0.01). In vitro oxidation of HDL from healthy controls with hypochloric acid was able to fully mimic the impaired biological activities of ESRD-HDL. In conclusion, we demonstrate that HDL from ESRD patients is dysfunctional in key steps as well as overall RCT, likely due to oxidative modification.

  3. Exposure to Polymers Reverses Inhibition of Pulmonary Surfactant by Serum, Meconium, or Cholesterol in the Captive Bubble Surfactometer

    PubMed Central

    López-Rodríguez, Elena; Ospina, Olga Lucía; Echaide, Mercedes; Taeusch, H. William; Pérez-Gil, Jesús

    2012-01-01

    Dysfunction of pulmonary surfactant in the lungs is associated with respiratory pathologies such as acute respiratory distress syndrome or meconium aspiration syndrome. Serum, cholesterol, and meconium have been described as inhibitory agents of surfactant’s interfacial activity once these substances appear in alveolar spaces during lung injury and inflammation. The deleterious action of these agents has been only partly evaluated under physiologically relevant conditions. We have optimized a protocol to assess surfactant inhibition by serum, cholesterol, or meconium in the captive bubble surfactometer. Specific measures of surface activity before and after native surfactant was exposed to inhibitors included i), film formation, ii), readsorption of material from surface-associated reservoirs, and iii), interfacial film dynamics during compression-expansion cycling. Results show that serum creates a steric barrier that impedes surfactant reaching the interface. A mechanical perturbation of this barrier allows native surfactant to compete efficiently with serum to form a highly surface-active film. Exposure of native surfactant to cholesterol or meconium, on the other hand, modifies the compressibility of surfactant films though optimal compressibility properties recover on repetitive compression-expansion cycling. Addition of polymers like dextran or hyaluronic acid to surfactant fully reverses inhibition by serum. These polymers also prevent surfactant inhibition by cholesterol or meconium, suggesting that the protective action of polymers goes beyond the mere enhancement of interfacial adsorption as described by depletion force theories. PMID:23062337

  4. Exposure to polymers reverses inhibition of pulmonary surfactant by serum, meconium, or cholesterol in the captive bubble surfactometer.

    PubMed

    López-Rodríguez, Elena; Ospina, Olga Lucía; Echaide, Mercedes; Taeusch, H William; Pérez-Gil, Jesús

    2012-10-03

    Dysfunction of pulmonary surfactant in the lungs is associated with respiratory pathologies such as acute respiratory distress syndrome or meconium aspiration syndrome. Serum, cholesterol, and meconium have been described as inhibitory agents of surfactant's interfacial activity once these substances appear in alveolar spaces during lung injury and inflammation. The deleterious action of these agents has been only partly evaluated under physiologically relevant conditions. We have optimized a protocol to assess surfactant inhibition by serum, cholesterol, or meconium in the captive bubble surfactometer. Specific measures of surface activity before and after native surfactant was exposed to inhibitors included i), film formation, ii), readsorption of material from surface-associated reservoirs, and iii), interfacial film dynamics during compression-expansion cycling. Results show that serum creates a steric barrier that impedes surfactant reaching the interface. A mechanical perturbation of this barrier allows native surfactant to compete efficiently with serum to form a highly surface-active film. Exposure of native surfactant to cholesterol or meconium, on the other hand, modifies the compressibility of surfactant films though optimal compressibility properties recover on repetitive compression-expansion cycling. Addition of polymers like dextran or hyaluronic acid to surfactant fully reverses inhibition by serum. These polymers also prevent surfactant inhibition by cholesterol or meconium, suggesting that the protective action of polymers goes beyond the mere enhancement of interfacial adsorption as described by depletion force theories. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. A reversal of decreasing trends in population cholesterol levels in Västerbotten County, Sweden

    PubMed Central

    Ng, Nawi; Johnson, Owe; Lindahl, Bernt; Norberg, Margareta

    2012-01-01

    Background High cholesterol is identified as a major risk factor for chronic non-communicable diseases, especially cardiovascular and cerebrovascular diseases. Monitoring trends of cholesterol levels and comparing trends across population groups are important to assess population distribution and risks related to cholesterol change over time. Cholesterol surveillance data are lacking, even in high-income countries. Objectives To describe the trends in cholesterol and triglyceride levels in different population groups and to estimate the risk of developing hypercholesterolemia and hypertriglyceridemia in Västerbotten County, Sweden during 1990–2010. Designs and Methods Since 1990, 133,082 individuals living in Västerbotten County, Northern Sweden, invited on their 30th, 40th, 50th and 60th birthdays, participated in the Västerbotten Intervention Program. Ten years after baseline data collection, 34,868 individuals were surveyed for a second time. In addition to a self-administered health questionnaire (that included information on socioeconomic status, demographics, self-reported health and lifestyle behaviours), blood cholesterol and triglyceride were examined. Results The level and prevalence of hypercholesterolemia decreased significantly from 1990 to 2007, but the trends began to increase during 2008–2010 in men, women, and in all educational groups. Men had significantly higher serum triglyceride levels than women and their cholesterol levels were similar to those of the women. This study shows that those with basic education and who live in rural inlands had consistently higher triglyceride level than those who live in the city and have higher educational attainments. People with basic education are also at higher risk of developing hypercholesterolemia and hypertriglyceridemia at 10-year follow-up; the risk is much higher among the older cohorts, particularly women. During 1990–2010, the proportion of participants who reported treatment with lipid

  6. A reversal of decreasing trends in population cholesterol levels in Västerbotten County, Sweden.

    PubMed

    Ng, Nawi; Johnson, Owe; Lindahl, Bernt; Norberg, Margareta

    2012-01-01

    High cholesterol is identified as a major risk factor for chronic non-communicable diseases, especially cardiovascular and cerebrovascular diseases. Monitoring trends of cholesterol levels and comparing trends across population groups are important to assess population distribution and risks related to cholesterol change over time. Cholesterol surveillance data are lacking, even in high-income countries. To describe the trends in cholesterol and triglyceride levels in different population groups and to estimate the risk of developing hypercholesterolemia and hypertriglyceridemia in Västerbotten County, Sweden during 1990-2010. Since 1990, 133,082 individuals living in Västerbotten County, Northern Sweden, invited on their 30th, 40th, 50th and 60th birthdays, participated in the Västerbotten Intervention Program. Ten years after baseline data collection, 34,868 individuals were surveyed for a second time. In addition to a self-administered health questionnaire (that included information on socioeconomic status, demographics, self-reported health and lifestyle behaviours), blood cholesterol and triglyceride were examined. The level and prevalence of hypercholesterolemia decreased significantly from 1990 to 2007, but the trends began to increase during 2008-2010 in men, women, and in all educational groups. Men had significantly higher serum triglyceride levels than women and their cholesterol levels were similar to those of the women. This study shows that those with basic education and who live in rural inlands had consistently higher triglyceride level than those who live in the city and have higher educational attainments. People with basic education are also at higher risk of developing hypercholesterolemia and hypertriglyceridemia at 10-year follow-up; the risk is much higher among the older cohorts, particularly women. During 1990-2010, the proportion of participants who reported treatment with lipid-lowering agents increased from 1.1% to 9.6% among men and

  7. Signal transduction pathways provide opportunities to enhance HDL and apoAI-dependent reverse cholesterol transport.

    PubMed

    Mulay, Vishwaroop; Wood, Peta; Rentero, Carles; Enrich, Carlos; Grewal, Thomas

    2012-02-01

    Binding of High Density Lipoprotein (HDL) and its major apolipoprotein A-I (apoA-I) to cell surface receptors is believed to initiate a plethora of signaling cascades that promote atheroprotective cell behavior, including the removal of excess cholesterol from lipid-loaded macrophages. More specifically, HDL and apoA-I binding to scavenger receptor BI (SR-BI) and ATP-binding cassette (ABC) transporter A1 has been shown to activate protein kinase A and C (PKA, PKC), Rac/Rho GTPases, Janus Kinase 2 (JAK2), calmodulin as well as mitogen-activated protein kinases (MAPK). Some of these signaling events upregulate mobilization of cholesterol from cellular pools, while others promote efflux pathways through increased expression, stability, and cell surface localization of SR-BI and ABCA1. This review aims to summarize the current knowledge of HDL- and apoA-I -induced signal transduction pathways that are linked to cholesterol efflux and discusses the underlying mechanisms that could couple ligand binding to SR-BI and ABCA1 with signaling and cholesterol export. Additional focus is given on the potential of pharmacological intervention to modulate the activity of signaling cascades for the inhibition or regression of cholesterol accumulation in atherosclerotic lesions.

  8. Intake of grape procyanidins during gestation and lactation impairs reverse cholesterol transport and increases atherogenic risk indexes in adult offspring.

    PubMed

    Del Bas, Josep Maria; Crescenti, Anna; Arola-Arnal, Anna; Oms-Oliu, Gemma; Arola, Lluís; Caimari, Antoni

    2015-12-01

    Cardiovascular disease (CVD) is one of the most prevalent noncommunicable diseases in humans. Different studies have identified dietary procyanidins as bioactive compounds with beneficial properties against CVD by improving lipid homeostasis, among other mechanisms. The aim of this work was to assess whether grape seed procyanidin consumption at a physiological dose during the perinatal period could influence the CVD risk of the offspring. Wistar rat dams were treated with a grape seed procyanidin extract (GSPE; 25mg/kg of body weight per day) or vehicle during gestation and lactation. The adult male offspring of GSPE-treated dams presented decreased high-density lipoprotein cholesterol (HDL-C) levels, increased total cholesterol-to-HDL-C ratios and an exacerbated fasting triglyceride-to-HDL-C ratios (atherogenic index of plasma) compared to the control group. Impaired reverse cholesterol transport (RCT) was evidenced by the accumulation of cholesterol in skeletal muscle and by decreased fecal excretion of cholesterol and bile acids, which was consistent with the observed mRNA down-regulation of the rate-limiting enzyme in the hepatic bile acid synthesis pathway Cyp7A1. Conversely, GSPE programming also resulted in up-regulated gene expression of different key components of the RCT process, such as hepatic Npc1, Abcg1, Abca1, Lxra, Srebp2, Lcat, Scarb1 and Pltp, and the repression of microRNA miR-33a expression, a key negative controller of hepatic RCT at the gene expression level. Our results show that maternal intake of grape procyanidins during the perinatal period impacts different components of the RCT process, resulting in increased CVD risk in the adult offspring. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Interleukin-10 increases reverse cholesterol transport in macrophages through its bidirectional interaction with liver X receptor α

    SciTech Connect

    Halvorsen, Bente; Holm, Sverre; Yndestad, Arne; Scholz, Hanne; Sagen, Ellen Lund; Nebb, Hilde; Holven, Kirsten B.; Dahl, Tuva B.; Aukrust, Pål

    2014-08-08

    Highlights: • IL-10 promotes reverse cholesterol efflux from lipid loaded macrophages. • IL-10 increases the expression of ABCA-1 and ABCG-1. • IL-10 exhibits cross-talk with the nuclear receptor LXRα. - Abstract: Interleukin (IL)-10 is a prototypical anti-inflammatory cytokine that has been shown to attenuate atherosclerosis development. In addition to its anti-inflammatory properties, the anti-atherogenic effect of IL-10 has recently also been suggested to reflect a complex effect of IL-10 on lipid metabolism in macrophages. In the present study we examined the effects of IL-10 on cholesterol efflux mechanism in lipid-loaded THP-1 macrophages. Our main findings were: (i) IL-10 significantly enhanced cholesterol efflux induced by fetal-calf serum, high-density lipoprotein (HDL){sub 2} and apolipoprotein A-1. (ii) The IL-10-mediated effects on cholesterol efflux were accompanied by an increased IL-10-mediated expression of the ATP-binding cassette transporters ABCA1 and ABCG1, that was further enhanced when the cells were co-activated with the liver X receptor (LXR)α agonist (22R)-hydroxycholesterol. (iii) The effect of LXRα activation on the IL-10-mediated effects on the ATP-binding cassette transporters seems to include enhancing effects on the IL-10 receptor 1 (IL10R1) expression and interaction with STAT-3 signaling. (iv) These enhancing effects on ABCA1 and ABCG1 was not seen when the cells were stimulated with the IL-10 family members IL-22 and IL-24. This study suggests that the anti-atherogenic properties of IL-10 may include enhancing effects on cholesterol efflux mechanism that involves cross-talk with LXRα activation.

  10. Indirect human impacts reverse centuries of carbon sequestration and salt marsh accretion.

    PubMed

    Coverdale, Tyler C; Brisson, Caitlin P; Young, Eric W; Yin, Stephanie F; Donnelly, Jeffrey P; Bertness, Mark D

    2014-01-01

    Direct and indirect human impacts on coastal ecosystems have increased over the last several centuries, leading to unprecedented degradation of coastal habitats and loss of ecological services. Here we document a two-century temporal disparity between salt marsh accretion and subsequent loss to indirect human impacts. Field surveys, manipulative experiments and GIS analyses reveal that crab burrowing weakens the marsh peat base and facilitates further burrowing, leading to bank calving, disruption of marsh accretion, and a loss of over two centuries of sequestered carbon from the marsh edge in only three decades. Analogous temporal disparities exist in other systems and are a largely unrecognized obstacle in attaining sustainable ecosystem services in an increasingly human impacted world. In light of the growing threat of indirect impacts worldwide and despite uncertainties in the fate of lost carbon, we suggest that estimates of carbon emissions based only on direct human impacts may significantly underestimate total anthropogenic carbon emissions.

  11. Indirect Human Impacts Reverse Centuries of Carbon Sequestration and Salt Marsh Accretion

    PubMed Central

    Coverdale, Tyler C.; Brisson, Caitlin P.; Young, Eric W.; Yin, Stephanie F.; Donnelly, Jeffrey P.; Bertness, Mark D.

    2014-01-01

    Direct and indirect human impacts on coastal ecosystems have increased over the last several centuries, leading to unprecedented degradation of coastal habitats and loss of ecological services. Here we document a two-century temporal disparity between salt marsh accretion and subsequent loss to indirect human impacts. Field surveys, manipulative experiments and GIS analyses reveal that crab burrowing weakens the marsh peat base and facilitates further burrowing, leading to bank calving, disruption of marsh accretion, and a loss of over two centuries of sequestered carbon from the marsh edge in only three decades. Analogous temporal disparities exist in other systems and are a largely unrecognized obstacle in attaining sustainable ecosystem services in an increasingly human impacted world. In light of the growing threat of indirect impacts worldwide and despite uncertainties in the fate of lost carbon, we suggest that estimates of carbon emissions based only on direct human impacts may significantly underestimate total anthropogenic carbon emissions. PMID:24675669

  12. Association between prediagnostic glucose, triglycerides, cholesterol and meningioma, and reverse causality.

    PubMed

    Bernardo, Brittany M; Orellana, Robert C; Weisband, Yiska Lowenberg; Hammar, Niklas; Walldius, Goran; Malmstrom, Hakan; Ahlbom, Anders; Feychting, Maria; Schwartzbaum, Judith

    2016-06-28

    Although meningioma is a benign tumour, it may cause significant morbidity. Obesity and diabetes are positively associated with meningioma. To evaluate the potential effects of obesity-related prediagnostic glucose, triglycerides and cholesterol on meningioma and of prediagnostic meningioma on these biomarkers, we conducted a cohort study. We identified 41 355 individuals in the Apolipoprotein MOrtality RISk cohort with values for these biomarkers within 15 years before meningioma diagnosis, death, migration or the end of follow-up. We then estimated hazard ratios (HRs) and their interactions with time and age using Cox regression. Meningioma was diagnosed in 181 women and 115 men whose median follow-up time was 7 years. Fasting serum glucose level was inversely related to meningioma among women (Ptrend=0.0006) but not men (Ptrend=0.24). Prediagnostic diabetes was inversely related to meningioma in both sexes combined (HR=0.45, 95% confidence interval (CI) 0.29-0.71), as was serum cholesterol within the year before diagnosis (HR=0.50, 95% CI 0.34-0.72). Paradoxically, hyperglycaemia is inversely associated with meningioma in women. This finding does not necessarily negate the positive role of obesity or diabetes in meningioma development; rather, it may indicate that their effects depend on the stage of development. Furthermore, the prediagnostic tumour may reduce serum cholesterol levels.

  13. Association between prediagnostic glucose, triglycerides, cholesterol and meningioma, and reverse causality

    PubMed Central

    Bernardo, Brittany M; Orellana, Robert C; Weisband, Yiska Lowenberg; Hammar, Niklas; Walldius, Goran; Malmstrom, Hakan; Ahlbom, Anders; Feychting, Maria; Schwartzbaum, Judith

    2016-01-01

    Background: Although meningioma is a benign tumour, it may cause significant morbidity. Obesity and diabetes are positively associated with meningioma. To evaluate the potential effects of obesity-related prediagnostic glucose, triglycerides and cholesterol on meningioma and of prediagnostic meningioma on these biomarkers, we conducted a cohort study. Methods: We identified 41 355 individuals in the Apolipoprotein MOrtality RISk cohort with values for these biomarkers within 15 years before meningioma diagnosis, death, migration or the end of follow-up. We then estimated hazard ratios (HRs) and their interactions with time and age using Cox regression. Results: Meningioma was diagnosed in 181 women and 115 men whose median follow-up time was 7 years. Fasting serum glucose level was inversely related to meningioma among women (Ptrend=0.0006) but not men (Ptrend=0.24). Prediagnostic diabetes was inversely related to meningioma in both sexes combined (HR=0.45, 95% confidence interval (CI) 0.29-0.71), as was serum cholesterol within the year before diagnosis (HR=0.50, 95% CI 0.34-0.72). Conclusions: Paradoxically, hyperglycaemia is inversely associated with meningioma in women. This finding does not necessarily negate the positive role of obesity or diabetes in meningioma development; rather, it may indicate that their effects depend on the stage of development. Furthermore, the prediagnostic tumour may reduce serum cholesterol levels. PMID:27253176

  14. High-fat and fructose intake induces insulin resistance, dyslipidemia, and liver steatosis and alters in vivo macrophage-to-feces reverse cholesterol transport in hamsters.

    PubMed

    Briand, François; Thiéblemont, Quentin; Muzotte, Elodie; Sulpice, Thierry

    2012-04-01

    Reverse cholesterol transport (RCT) promotes the egress of cholesterol from peripheral tissues to the liver for biliary and fecal excretion. Although not demonstrated in vivo, RCT is thought to be impaired in patients with metabolic syndrome, in which liver steatosis prevalence is relatively high. Golden Syrian hamsters were fed a nonpurified (CON) diet and normal drinking water or a high-fat (HF) diet containing 27% fat, 0.5% cholesterol, and 0.25% deoxycholate as well as 10% fructose in drinking water for 4 wk. Compared to CON, the HF diet induced insulin resistance and dyslipidemia, with significantly higher plasma non-HDL-cholesterol concentrations and cholesteryl ester transfer protein activity. The HF diet induced severe liver steatosis, with significantly higher cholesterol and TG levels compared to CON. In vivo RCT was assessed by i.p. injecting ³H-cholesterol labeled macrophages. Compared to CON, HF hamsters had significantly greater ³H-tracer recoveries in plasma, but not HDL. After 72 h, ³H-tracer recovery in HF hamsters was 318% higher in liver and 75% lower in bile (P < 0.01), indicating that the HF diet impaired hepatic cholesterol fluxes. However, macrophage-derived cholesterol fecal excretion was 45% higher in HF hamsters than in CON hamsters. This effect was not related to intestinal cholesterol absorption, which was 89% higher in HF hamsters (P < 0.05), suggesting a possible upregulation of transintestinal cholesterol excretion. Our data indicate a significant increase in macrophage-derived cholesterol fecal excretion in a hamster model of metabolic syndrome, which may not compensate for the diet-induced dyslipidemia and liver steatosis.

  15. Statins attenuate but do not eliminate the reverse epidemiology of total serum cholesterol in patients with non-ischemic chronic heart failure.

    PubMed

    Fröhlich, Hanna; Raman, Nandita; Täger, Tobias; Schellberg, Dieter; Goode, Kevin M; Kazmi, Syed; Grundtvig, Morten; Hole, Torstein; Cleland, John G F; Katus, Hugo A; Agewall, Stefan; Clark, Andrew L; Atar, Dan; Frankenstein, Lutz

    2017-07-01

    In patients with chronic heart failure (CHF) increasing levels of total serum cholesterol are associated with improved survival - while statin usage is not. The impact of statin treatment on the "reverse epidemiology" of cholesterol is unclear. 2992 consecutive patients with non-ischemic CHF due to left ventricular systolic dysfunction from the Norwegian CHF Registry and the CHF Registries of the Universities of Hull, UK, and Heidelberg, Germany, were studied. 1736 patients were individually double-matched on both cholesterol levels and the individual propensity scores for statin treatment. All-cause mortality was analyzed as a function of baseline cholesterol and statin use in both the general and the matched sample. 1209 patients (40.4%) received a statin. During a follow-up of 13,740 patient-years, 360 statin users (29.8%) and 573 (32.1%) statin non-users died. When grouped according to total cholesterol levels as low (≤3.6mmol/L), moderate (3.7-4.9mmol/L), high (4.8-6.2mmol/L), and very high (>6.2mmol/L), we found improved survival with very high as compared with low cholesterol levels. This association was present in statin users and non-users in both the general and matched sample (p<0.05 for each group comparison). The negative association of total cholesterol and mortality persisted when cholesterol was treated as a continuous variable (HR 0.83, 95%CI 0.77-0.90, p<0.001 for matched patients), but it was less pronounced in statin users than in non-users (F-test p<0.001). Statins attenuate but do not eliminate the reverse epidemiological association between increasing total serum cholesterol and improved survival in patients with non-ischemic CHF. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Contaminants of emerging concern in reverse osmosis brine concentrate from indirect/direct water reuse applications.

    PubMed

    Romeyn, Travis R; Harijanto, Wesley; Sandoval, Sofia; Delagah, Saied; Sharbatmaleki, Mohamadali

    2016-01-01

    Water shortage is becoming more common due to droughts and global population increases resulting in the increasing popularity of water reuse to create new water sources. Reverse osmosis (RO) membrane systems are popular in these applications since they can produce drinking water quality effluent. Unfortunately, RO systems have the drawback of generating concentrate streams that contain contaminants rejected by the membrane including chemicals of emerging concern (CECs). CECs are chemicals such as hormones, steroids, pesticides, pharmaceuticals, and personal care products that are used for their intended purpose and then released into wastewater. CECs are believed to be detrimental to aquatic wildlife health and pose an unknown human health risk. This research gathered the existing knowledge on CEC presence in concentrate, available proven concentrate treatment methods, their CEC removal abilities, and current CEC regulations. It was found that 127 CECs have been measured in RO concentrate with 100 being detected at least once. The most potent treatment process available is UV/H2O2 as it offers the highest removal rates for the widest range of chemicals. The less expensive process of ozone/biologically activated carbon offers slightly lower removal abilities. This comprehensive report will provide the groundwork for better understanding, regulating and treating concentrate stream CECs.

  17. A specific antidote for reversal of anticoagulation by direct and indirect inhibitors of coagulation factor Xa.

    PubMed

    Lu, Genmin; DeGuzman, Francis R; Hollenbach, Stanley J; Karbarz, Mark J; Abe, Keith; Lee, Gail; Luan, Peng; Hutchaleelaha, Athiwat; Inagaki, Mayuko; Conley, Pamela B; Phillips, David R; Sinha, Uma

    2013-04-01

    Inhibitors of coagulation factor Xa (fXa) have emerged as a new class of antithrombotics but lack effective antidotes for patients experiencing serious bleeding. We designed and expressed a modified form of fXa as an antidote for fXa inhibitors. This recombinant protein (r-Antidote, PRT064445) is catalytically inactive and lacks the membrane-binding γ-carboxyglutamic acid domain of native fXa but retains the ability of native fXa to bind direct fXa inhibitors as well as low molecular weight heparin-activated antithrombin III (ATIII). r-Antidote dose-dependently reversed the inhibition of fXa by direct fXa inhibitors and corrected the prolongation of ex vivo clotting times by such inhibitors. In rabbits treated with the direct fXa inhibitor rivaroxaban, r-Antidote restored hemostasis in a liver laceration model. The effect of r-Antidote was mediated by reducing plasma anti-fXa activity and the non-protein bound fraction of the fXa inhibitor in plasma. In rats, r-Antidote administration dose-dependently and completely corrected increases in blood loss resulting from ATIII-dependent anticoagulation by enoxaparin or fondaparinux. r-Antidote has the potential to be used as a universal antidote for a broad range of fXa inhibitors.

  18. The reverse cholesterol transport pathway improves understanding of genetic networks for fat deposition and muscle growth in beef cattle.

    PubMed

    Daniels, Tyler F; Wu, Xiao-Lin; Pan, Zengxiang; Michal, Jennifer J; Wright, Raymond W; Killinger, Karen M; MacNeil, Michael D; Jiang, Zhihua

    2010-12-03

    In the present study, thirteen genes involved in the reverse cholesterol transport (RCT) pathway were investigated for their associations with three fat depositions, eight fatty acid compositions and two growth-related phenotypes in a Wagyu x Limousin reference population, including 6 F(1) bulls, 113 F(1) dams, and 246 F(2) progeny. A total of 37 amplicons were used to screen single nucleotide polymorphisms (SNPs) on 6 F(1) bulls. Among 36 SNPs detected in 11 of these 13 genes, 19 were selected for genotyping by the Sequenom assay design on all F(2) progeny. Single-marker analysis revealed seven SNPs in ATP binding cassette A1, apolipoproteins A1, B and E, phospholipid transfer protein and paraoxinase 1 genes significantly associated with nine phenotypes (P<0.05). Previously, we reported genetic networks associated with 19 complex phenotypes based on a total of 138 genetic polymorphisms derived from 71 known functional genes. Therefore, after Bonferroni correction, these significant (adjusted P<0.05) and suggestive (adjusted P<0.10) associations were then used to identify genetic networks related to the RCT pathway. Multiple-marker analysis suggested possible genetic networks involving the RCT pathway for kidney-pelvic-heart fat percentage, rib-eye area, and subcutaneous fat depth phenotypes with markers derived from paraoxinase 1, apolipoproteins A1 and E, respectively. The present study confirmed that genes involved in cholesterol homeostasis are useful targets for investigating obesity in humans as well as for improving meat quality phenotypes in a livestock production.

  19. Location of cholesterol in liposomes by using small-angle X-ray scattering (SAXS) data and the generalized indirect Fourier transformation (GIFT) method.

    PubMed

    Aburai, Kenichi; Ogura, Taku; Hyodo, Ryo; Sakai, Hideki; Abe, Masahiko; Glatter, Otto

    2013-01-01

    We investigated the location of cholesterol (Chol) in liposomes and its interaction with phospholipids using small-angle x-ray scattering (SAXS) data and applying the generalized indirect Fourier transformation (GIFT) method. The GIFT method has been applied to lamellar liquid crystal systems and it gives quantitative data on bilayer thickness, electron density profile, and membrane flexibility (Caillé parameter). When the GIFT method is applied to the SAXS data of dipalmitoylphosphatidylcholine (DPPC) alone (Chol [-]) or a DPPC/Chol = 7/3 mixed system (Chol [+], molar ratio), change in the bilayer thickness was insignificant in both systems. However, the electron density for the Chol (+) system was higher than that for the Chol (-) system at the location of hydrophilic groups of phospholipids, and whereas Caillé parameter value increased with temperature for the Chol (-) system, no significant change with temperature was observed in the Caillé parameter for the Chol (+) system. These results indicated that Chol is located in the vicinity of the hydrophilic group of the phospholipids and constricts the packing of the acyl chain of phospholipids in the bilayer.

  20. An apolipoprotein A-I mimetic peptide designed with a reductionist approach stimulates reverse cholesterol transport and reduces atherosclerosis in mice.

    PubMed

    Ditiatkovski, Michael; D'Souza, Wilissa; Kesani, Rajitha; Chin-Dusting, Jaye; de Haan, Judy B; Remaley, Alan; Sviridov, Dmitri

    2013-01-01

    Apolipoprotein A-I (apoA-I) mimetic peptides are considered a promising novel therapeutic approach to prevent and/or treat atherosclerosis. An apoA-I mimetic peptide ELK-2A2K2E was designed with a reductionist approach and has shown exceptional activity in supporting cholesterol efflux but modest anti-inflammatory and anti-oxidant properties in vitro. In this study we compared these in vitro properties with the capacity of this peptide to modify rates of reverse cholesterol transport and development of atherosclerosis in mouse models. The peptide enhanced the rate of reverse cholesterol transport in C57BL/6 mice and reduced atherosclerosis in Apoe(-/-) mice receiving a high fat diet. The peptide modestly reduced the size of the plaques in aortic arch, but was highly active in reducing vascular inflammation and oxidation. Administration of the peptide to Apoe(-/-) mice on a high fat diet reduced the levels of total, high density lipoprotein and non-high density lipoprotein cholesterol and triglycerides. It increased the proportion of smaller HDL particles in plasma at the expense of larger HDL particles, and increased the capacity of the plasma to support cholesterol efflux. Thus, ELK-2A2K2E peptide reduced atherosclerosis in Apoe(-/-) mice, however, the functional activity profile after chronic in vivo administration was different from that found in acute in vitro studies.

  1. Type I diabetes mellitus decreases in vivo macrophage-to-feces reverse cholesterol transport despite increased biliary sterol secretion in mice

    PubMed Central

    Freark de Boer, Jan; Annema, Wijtske; Schreurs, Marijke; van der Veen, Jelske N.; van der Giet, Markus; Nijstad, Niels; Kuipers, Folkert; Tietge, Uwe J. F.

    2012-01-01

    Type I diabetes mellitus (T1DM) increases atherosclerotic cardiovascular disease; however, the underlying pathophysiology is still incompletely understood. We investigated whether experimental T1DM impacts HDL-mediated reverse cholesterol transport (RCT). C57BL/6J mice with alloxan-induced T1DM had higher plasma cholesterol levels (P < 0.05), particularly within HDL, and increased hepatic cholesterol content (P < 0.001). T1DM resulted in increased bile flow (2.1-fold; P < 0.05) and biliary secretion of bile acids (BA, 10.5-fold; P < 0.001), phospholipids (4.5-fold; P < 0.001), and cholesterol (5.5-fold; P < 0.05). Hepatic cholesterol synthesis was unaltered, whereas BA synthesis was increased in T1DM (P < 0.001). Mass fecal BA output was significantly higher in T1DM mice (1.5-fold; P < 0.05), fecal neutral sterol excretion did not change due to increased intestinal cholesterol absorption (2.1-fold; P < 0.05). Overall in vivo macrophage-to-feces RCT, using [3H]cholesterol-loaded primary mouse macrophage foam cells, was 20% lower in T1DM (P < 0.05), mainly due to reduced tracer excretion within BA (P < 0.05). In vitro experiments revealed unchanged cholesterol efflux toward T1DM HDL, whereas scavenger receptor class BI-mediated selective uptake from T1DM HDL was lower in vitro and in vivo (HDL kinetic experiments) (P < 0.05), conceivably due to increased glycation of HDL-associated proteins (+65%, P < 0.01). In summary, despite higher mass biliary sterol secretion T1DM impairs macrophage-to-feces RCT, mainly by decreasing hepatic selective uptake, a mechanism conceivably contributing to increased cardiovascular disease in T1DM. PMID:22180634

  2. Stimulation of CD36 and the key effector of reverse cholesterol transport ATP-binding cassette A1 in monocytoid cells by niacin.

    PubMed

    Rubic, Tina; Trottmann, Matthias; Lorenz, Reinhard L

    2004-02-01

    Niacin, the first lipid lowering drug shown to improve survival after myocardial infarction, decreases LDL and increases HDL cholesterol levels. These effects cannot fully be explained by its suspected mechanism of action, inhibition of lipolysis and hepatic VLDL synthesis. Niacin has also been shown to interfere with the cyclic AMP (cAMP)/protein kinase A (PKA) pathway and massively stimulate prostaglandin D2 (PGD2) formation. The major metabolite of PGD2, 15-deoxy-Delta(12,14)-prostaglandin J2 (15d-PGJ2), was recently identified as the most potent endogenous PPARgamma activator. We, therefore, studied the effects of niacin on the PPARgamma- and cAMP-dependent expression of receptors promoting reverse cholesterol transport. The transcription of PPARgamma-, HDL-, LDL- and scavenger-receptors and the sterol exporter ABCA1, were measured by quantitative RT-PCR and cellular cholesterol efflux and PPARgamma activation studied in macrophage and hepatocyte models. Niacin stimulated the translocation of PPARgamma and the transcription of PPARgamma, CD36 and ABCA1 in monocytoid cells, whereas the LDL-receptor (LDL-R) was unchanged. Thereby niacin enhanced HDL-mediated cholesterol efflux from the cells resulting in a reduced cellular cholesterol content. The niacin effect on CD36 but not on ABCA1 was prevented by cyclooxygenase inhibition, whereas the niacin effect on ABCA1 but not on CD36 was prevented by PKA inhibition, suggesting mediation by the 15d-PGJ2/PPARgamma and the cAMP/PKA pathways, respectively. These new actions of niacin on several key effectors of reverse cholesterol transport out of the vessel wall provide a rational to expect regression of atherosclerosis and test the combination of niacin with statins for an overadditive clinical benefit.

  3. Direct evidence in vivo of impaired macrophage-specific reverse cholesterol transport in ATP-binding cassette transporter A1-deficient mice.

    PubMed

    Calpe-Berdiel, Laura; Rotllan, Noemi; Palomer, Xavier; Ribas, Vicent; Blanco-Vaca, Francisco; Escolà-Gil, Joan Carles

    2005-12-30

    The ATP-binding cassette transporter A1 (ABCA1) is a key regulator of high-density lipoprotein (HDL) metabolism. There is strong evidence that ABCA1 is a key regulator of reverse cholesterol transport (RCT). However, this could not be proved in vivo since hepatobiliary cholesterol transport was unchanged in ABCA1-deficient mice (ABCA1-/-). We used ABCA1-/- mice to test the hypothesis that ABCA1 is a critical determinant of macrophage-specific RCT. Although this cell-specific RCT only accounts for a tiny part of total RCT, it is widely accepted that it may have a major impact on atherosclerosis susceptibility. [(3)H]cholesterol-labeled endogenous macrophages were injected intraperitoneally into wild-type ABCA1+/+, ABCA1+/- and ABCA1-/- mice maintained on a chow diet. A direct relationship was observed between ABCA1 gene dose and plasma [(3)H]cholesterol at 24 and 48 h after the injection of tracer into the mice. Forty-eight hours after this injection, ABCA1-/- mice had significantly reduced [(3)H]cholesterol in liver (2.8-fold), small intestine enterocytes (1.7-fold) and feces (2-fold). To our knowledge, this is the first direct in vivo quantitative evidence that ABCA1 is a critical determinant of macrophage-specific RCT.

  4. The association of high-density lipoprotein cholesterol with cancer incidence in type II diabetes: a case of reverse causality?

    PubMed

    Morton, Jamie; Ng, Martin K C; Chalmers, John; Woodward, Mark; Mancia, Giuseppe; Poulter, Neil R; Marre, Michel; Cooper, Mark E; Zoungas, Sophia

    2013-09-01

    Low high-density lipoprotein cholesterol (HDL-C) and type II diabetes are associated with an increased risk for cancer. Patients with type II diabetes typically have low HDL-C; however, the association between HDL-C and cancer has not been examined in this population. A total of 11,140 patients with type II diabetes were followed for a median of 5 years. Cox proportional hazard models were used to assess the association between baseline HDL-C and risk of cancer incidence and cancer death, with adjustments made for potential confounders. To explore the possibility of reverse causation, analyses were repeated for the cancers occurring in the first and second halves of follow-up. Six hundred and ninety-nine patients developed cancer, with 48% occurring within the first half of follow-up. For every 0.4 mmol/L lower baseline HDL-C, there was a 16% higher risk of cancer [HR 1.16; 95% confidence interval (CI), 1.06-1.28; P = 0.0008] and cancer death (HR 1.16; 95% CI, 1.01-1.32; P = 0.03). After adjustment for confounding, the higher risk remained significant for cancer (adjusted HR 1.10; 95% CI, 1.00-1.22; P = 0.05) but not for cancer death (adjusted HR 1.08; 95% CI, 0.93-1.25; P = 0.31). The association was driven by cancers occurring within the first half of follow-up (adjusted HR 1.22; 95% CI, 1.05-1.41; P = 0.008) as no significant association was found between HDL-C and cancer in the second half of follow-up. Low HDL-C is associated with cancer risk in patients with type II diabetes. However, this association may be explained by confounding and reverse causation. HDL-C is not a risk factor for cancer in type II diabetes.

  5. Myeloperoxidase and serum amyloid A contribute to impaired in vivo reverse cholesterol transport during the acute phase response but not group IIA secretory phospholipase A2[S

    PubMed Central

    Annema, Wijtske; Nijstad, Niels; Tölle, Markus; de Boer, Jan Freark; Buijs, Ruben V. C.; Heeringa, Peter; van der Giet, Markus; Tietge, Uwe J. F.

    2010-01-01

    Atherosclerosis is linked to inflammation. HDL protects against atherosclerotic cardiovascular disease, mainly by mediating cholesterol efflux and reverse cholesterol transport (RCT). The present study aimed to test the impact of acute inflammation as well as selected acute phase proteins on RCT with a macrophage-to-feces in vivo RCT assay using intraperitoneal administration of [3H]cholesterol-labeled macrophage foam cells. In patients with acute sepsis, cholesterol efflux toward plasma and HDL were significantly decreased (P < 0.001). In mice, acute inflammation (75 µg/mouse lipopolysaccharide) decreased [3H]cholesterol appearance in plasma (P < 0.05) and tracer excretion into feces both within bile acids (−84%) and neutral sterols (−79%, each P < 0.001). In the absence of systemic inflammation, overexpression of serum amyloid A (SAA, adenovirus) reduced overall RCT (P < 0.05), whereas secretory phospholipase A2 (sPLA2, transgenic mice) had no effect. Myeloperoxidase injection reduced tracer appearance in plasma (P < 0.05) as well as RCT (−36%, P < 0.05). Hepatic expression of bile acid synthesis genes (P < 0.01) and transporters mediating biliary sterol excretion (P < 0.01) was decreased by inflammation. In conclusion, our data demonstrate that acute inflammation impairs cholesterol efflux in patients and macrophage-to-feces RCT in vivo in mice. Myeloperoxidase and SAA contribute to a certain extent to reduced RCT during inflammation but not sPLA2. However, reduced bile acid formation and decreased biliary sterol excretion might represent major contributing factors to decreased RCT in inflammation. PMID:20061576

  6. Switching the nucleoside reverse transcriptase inhibitor backbone to tenofovir disoproxil fumarate + emtricitabine promptly improves triglycerides and low-density lipoprotein cholesterol in dyslipidaemic patients.

    PubMed

    Valantin, M A; Bittar, R; de Truchis, P; Bollens, D; Slama, L; Giral, P; Bonnefont-Rousselot, D; Pétour, P; Aubron-Olivier, C; Costagliola, D; Katlama, C

    2010-03-01

    To assess the impact of switching to tenofovir disoproxil fumarate + emtricitabine on lipid parameters. HIV-infected patients with plasma viral load <400 copies/mL, fasted triglycerides from 2.3 to 11.4 mmol/L and/or fasted low-density lipoprotein (LDL)-cholesterol >4.1 mmol/L were randomized to switch the nucleoside reverse transcriptase inhibitor (NRTI) backbone to fixed-dose combination tenofovir disoproxil fumarate + emtricitabine or to maintain the baseline antiretroviral regimen (the control group). The study has been registered with ClinicalTrials.gov under the identifier NCT00323492. Ninety-one patients were included in the intent-to-treat (ITT) analysis with triglycerides 2.4 mmol/L and LDL-cholesterol 4.0 mmol/L (median values). At week 12, the median changes from baseline of triglycerides were -0.5 mmol/L (-25%; n = 46) and -0.1 mmol/L (-6%; n = 45) in the tenofovir disoproxil fumarate + emtricitabine and control groups, respectively, indicating a difference of -0.4 mmol/L (P = 0.034) [95% confidence interval (CI): -0.9 to -0.0]. Similarly for LDL-cholesterol, changes of -0.4 mmol/L (-9%) and -0.1 mmol/L (-1%) were observed in the tenofovir disoproxil fumarate + emtricitabine and control groups, respectively, indicating a difference of -0.4 mmol/L (P = 0.031) [95% CI: -0.7 to -0.0]. The proportion of patients with LDL-cholesterol >4.1 mmol/L decreased from 48% at baseline to 26% at week 12 in the tenofovir disoproxil fumarate + emtricitabine group versus no change in the control group. No virological failure was observed during the study. Switching to tenofovir disoproxil fumarate + emtricitabine in dyslipidaemic HIV-infected patients improves triglycerides and LDL-cholesterol.

  7. High-Density Lipoprotein Proteomic Composition, and not Efflux Capacity, Reflects Differential Modulation of Reverse Cholesterol Transport by Saturated and Monounsaturated Fat Diets.

    PubMed

    O'Reilly, Marcella; Dillon, Eugene; Guo, Weili; Finucane, Orla; McMorrow, Aoibheann; Murphy, Aoife; Lyons, Claire; Jones, Daniel; Ryan, Miriam; Gibney, Michael; Gibney, Eileen; Brennan, Lorraine; de la Llera Moya, Margarita; Reilly, Muredach P; Roche, Helen M; McGillicuddy, Fiona C

    2016-05-10

    Acute inflammation impairs reverse cholesterol transport (RCT) and reduces high-density lipoprotein (HDL) function in vivo. This study hypothesized that obesity-induced inflammation impedes RCT and alters HDL composition, and investigated if dietary replacement of saturated (SFA) for monounsaturated (MUFA) fatty acids modulates RCT. Macrophage-to-feces RCT, HDL efflux capacity, and HDL proteomic profiling was determined in C57BL/6j mice following 24 weeks on SFA- or MUFA-enriched high-fat diets (HFDs) or low-fat diet. The impact of dietary SFA consumption and insulin resistance on HDL efflux function was also assessed in humans. Both HFDs increased plasma (3)H-cholesterol counts during RCT in vivo and ATP-binding cassette, subfamily A, member 1-independent efflux to plasma ex vivo, effects that were attributable to elevated HDL cholesterol. By contrast, ATP-binding cassette, subfamily A, member 1-dependent efflux was reduced after both HFDs, an effect that was also observed with insulin resistance and high SFA consumption in humans. SFA-HFD impaired liver-to-feces RCT, increased hepatic inflammation, and reduced ABC subfamily G member 5/8 and ABC subfamily B member 11 transporter expression in comparison with low-fat diet, whereas liver-to-feces RCT was preserved after MUFA-HFD. HDL particles were enriched with acute-phase proteins (serum amyloid A, haptoglobin, and hemopexin) and depleted of paraoxonase-1 after SFA-HFD in comparison with MUFA-HFD. Ex vivo efflux assays validated increased macrophage-to-plasma RCT in vivo after both HFDs but failed to capture differential modulation of hepatic cholesterol trafficking. By contrast, proteomics revealed the association of hepatic-derived inflammatory proteins on HDL after SFA-HFD in comparison with MUFA-HFD, which reflected differential hepatic cholesterol trafficking between groups. Acute-phase protein levels on HDL may serve as novel biomarkers of impaired liver-to-feces RCT in vivo. © 2016 The Authors.

  8. Electrochemical oxidation of cholesterol

    PubMed Central

    2015-01-01

    Summary Indirect cholesterol electrochemical oxidation in the presence of various mediators leads to electrophilic addition to the double bond, oxidation at the allylic position, oxidation of the hydroxy group, or functionalization of the side chain. Recent studies have proven that direct electrochemical oxidation of cholesterol is also possible and affords different products depending on the reaction conditions. PMID:25977713

  9. Anacetrapib and dalcetrapib differentially alters HDL metabolism and macrophage-to-feces reverse cholesterol transport at similar levels of CETP inhibition in hamsters.

    PubMed

    Briand, François; Thieblemont, Quentin; Muzotte, Elodie; Burr, Noémie; Urbain, Isabelle; Sulpice, Thierry; Johns, Douglas G

    2014-10-05

    Cholesteryl ester transfer protein (CETP) inhibitors dalcetrapib and anacetrapib differentially alter LDL- and HDL-cholesterol levels, which might be related to the potency of each drug to inhibit CETP activity. We evaluated the effects of both drugs at similar levels of CETP inhibition on macrophage-to-feces reverse cholesterol transport (RCT) in hamsters. In normolipidemic hamsters, both anacetrapib 30 mg/kg QD and dalcetrapib 200 mg/kg BID inhibited CETP activity by ~60%. After injection of 3H-cholesteryl oleate labeled HDL, anacetrapib and dalcetrapib reduced HDL-cholesteryl esters fractional catabolic rate (FCR) by 30% and 26% (both P<0.001 vs. vehicle) respectively, but only dalcetrapib increased HDL-derived 3H-tracer fecal excretion by 30% (P<0.05 vs. vehicle). After 3H-cholesterol labeled macrophage intraperitoneal injection, anacetrapib stimulated 3H-tracer appearance in HDL, but both drugs did not promote macrophage-derived 3H-tracer fecal excretion. In dyslipidemic hamsters, both anacetrapib 1 mg/kg QD and dalcetrapib 200 mg/kg BID inhibited CETP activity by ~65% and reduced HDL-cholesteryl ester FCR by 36% (both P<0.001 vs. vehicle), but only anacetrapib increased HDL-derived 3H-tracer fecal excretion significantly by 39%. After 3H-cholesterol labeled macrophage injection, only anacetrapib 1 mg/kg QD stimulated macrophage-derived 3H-tracer appearance in HDL. These effects remained weaker than those observed with anacetrapib 60 mg/kg QD, which induced a maximal inhibition of CETP and stimulation of macrophage-derived 3H-tracer fecal excretion. In contrast, dalcetrapib 200 mg/kg BID reduced macrophage-derived 3H-tracer fecal excretion by 23% (P<0.05 vs. vehicle). In conclusion, anacetrapib and dalcetrapib differentially alter HDL metabolism and RCT in hamsters. A stronger inhibition of CETP may be required to promote macrophage-to-feces reverse cholesterol transport in dyslipidemic hamsters. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Altered Apical Morphology (Reverse Architecture): Use of Indirect Ultrasonic Technique for Orthograde MTA Placement in Maxillary Premolars

    PubMed Central

    Sonali, Kapoor; Suresh, Agrawal Vineet; Abhishek, Patel; Jenish, Patel

    2016-01-01

    Aim. To report the management and orthograde technique of MTA placement in case of reverse architecture maxillary premolars. Summary. Two cases of 17-year-old and 21-year-old female patients were referred to endodontic speciality for management of maxillary premolar having reverse architecture with wide immature open apex like a bell mouth. In both the cases, after control of intraradicular infection, it was decided to use MTA for apexification and obturation of canals. Orthograde placement of MTA is a challenging procedure in terms of length control and condensation especially in divergent irregular reverse architecture wide open apex. A novel technique with the help of finger plugger, sterilized paper point, and ultrasonic agitation for 3D compaction of MTA at apical reverse architecture was used. Thickening of the canal wall and complete apical closure were confirmed one year after the treatment. PMID:27313910

  11. Comparative effect of fish oil feeding and other dietary fatty acids on plasma lipoproteins, biliary lipids, and hepatic expression of proteins involved in reverse cholesterol transport in the rat.

    PubMed

    Morgado, Nora; Rigotti, Attilio; Valenzuela, Alfonso

    2005-01-01

    While elevated plasma high-density lipoprotein (HDL) levels has been associated to a reduction in cardiovascular risk, dietary fish oils rich in omega-3 polyunsaturated fatty acids (PUFAs) may protect against this disease. The protective effect of HDL is associated to its participation in the reverse cholesterol transport pathway. On the other hand, omega-3 PUFAs decrease plasma HDL levels compared to other fatty acids, which may suggest an effect on reverse cholesterol transport. In this work, the effect of dietary fish oil on the fatty acid composition of hepatic membranes, plasma lipoprotein cholesterol profile, biliary lipids, and the expression of proteins involved in reverse cholesterol transport, was compared to other dietary oils having a different degree of fatty acid unsaturation. Male rats were fed a semi synthetic diet containing fish oil (omega-3), sunflower oil (omega-6), olive oil (omega-9) or coconut oil (saturated). Hepatic membrane fatty acid composition, plasma cholesterol levels, lipoprotein cholesterol profile, biliary lipids, hepatic mRNA levels for lecithin cholesterol acyltransferase, hepatic lipase, apo E, and apo A-I, and hepatic protein levels of the scavenger receptor class B type I, caveolin-1, and the ATP binding cassette transporter A1 were analyzed. Plasma apo A-I and apo E protein levels were also evaluated. Compared to the other diets, omega-3 PUFAs significantly changed omega-3/omega-6 fatty acid ratio of hepatic membranes, caused a reduction of plasma total and HDL cholesterol, and selectively increased biliary cholesterol secretion. No modification in the expression levels of lecithin cholesterol acyltransferase, hepatic lipase, apo A-I and apo E mRNA was observed. Hepatic scavenger receptor class B type I, caveolin-1, and the ATP binding cassette transporter A1 protein levels were also not affected. Plasma apo A-I, but not apo E, was reduced. These results show that dietary omega-3 PUFAs reduce plasma HDL cholesterol and

  12. About Cholesterol

    MedlinePlus

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More About Cholesterol Updated:Jul 5,2017 Whether you’ve just ... Quiz This content was last reviewed April 2017. Cholesterol • Home • About Cholesterol Introduction Atherosclerosis What Your Cholesterol ...

  13. What's Cholesterol?

    MedlinePlus

    ... Room? What Happens in the Operating Room? What's Cholesterol? KidsHealth > For Kids > What's Cholesterol? A A A ... thing for food to be low in it? Cholesterol and Your Body Cholesterol (say: kuh-LES-tuh- ...

  14. An In-Silico Model of Lipoprotein Metabolism and Kinetics for the Evaluation of Targets and Biomarkers in the Reverse Cholesterol Transport Pathway

    PubMed Central

    Lu, James; Hübner, Katrin; Nanjee, M. Nazeem; Brinton, Eliot A.; Mazer, Norman A.

    2014-01-01

    High-density lipoprotein (HDL) is believed to play an important role in lowering cardiovascular disease (CVD) risk by mediating the process of reverse cholesterol transport (RCT). Via RCT, excess cholesterol from peripheral tissues is carried back to the liver and hence should lead to the reduction of atherosclerotic plaques. The recent failures of HDL-cholesterol (HDL-C) raising therapies have initiated a re-examination of the link between CVD risk and the rate of RCT, and have brought into question whether all target modulations that raise HDL-C would be atheroprotective. To help address these issues, a novel in-silico model has been built to incorporate modern concepts of HDL biology, including: the geometric structure of HDL linking the core radius with the number of ApoA-I molecules on it, and the regeneration of lipid-poor ApoA-I from spherical HDL due to remodeling processes. The ODE model has been calibrated using data from the literature and validated by simulating additional experiments not used in the calibration. Using a virtual population, we show that the model provides possible explanations for a number of well-known relationships in cholesterol metabolism, including the epidemiological relationship between HDL-C and CVD risk and the correlations between some HDL-related lipoprotein markers. In particular, the model has been used to explore two HDL-C raising target modulations, Cholesteryl Ester Transfer Protein (CETP) inhibition and ATP-binding cassette transporter member 1 (ABCA1) up-regulation. It predicts that while CETP inhibition would not result in an increased RCT rate, ABCA1 up-regulation should increase both HDL-C and RCT rate. Furthermore, the model predicts the two target modulations result in distinct changes in the lipoprotein measures. Finally, the model also allows for an evaluation of two candidate biomarkers for in-vivo whole-body ABCA1 activity: the absolute concentration and the % lipid-poor ApoA-I. These findings illustrate the

  15. Attitudes, personal evaluations, cognitive evaluation and interpersonal attraction: on the direct, indirect and reverse-causal effects.

    PubMed

    Singh, Ramadhar; Ho, Li Jen; Tan, Hui Lynn; Bell, Paul A

    2007-03-01

    The authors hypothesized that (1) attraction toward a stranger based on attitudinal similarity is automatic, but cognitive evaluation of the stranger's quality before the measurement of attraction can make attraction nonautomatic or controlled; (2) personal evaluations from the stranger activate automatic attraction and cognitive evaluation; (3) controlled attraction from attitudes and automatic attraction and cognitive evaluation from personal evaluations engender reverse-causal effects (i.e. they mediate each other); and (4) attraction and cognitive evaluation are distinct constructs. Attitudinal similarity between the participant and the stranger or personal evaluations of the former by the latter were varied in Experiment 1 (N=96), and were crossed with each other in Experiment 2 (N=240). Orders of response measurement were either cognitive evaluation followed by attraction or attraction followed by cognitive evaluation. Results confirmed the hypotheses. Implications of the findings are discussed.

  16. Reversals.

    ERIC Educational Resources Information Center

    National Center on Educational Media and Materials for the Handicapped, Columbus, OH.

    Selected from the National Instructional Materials Information System (NIMIS)--a computer based on-line interactive retrieval system on special education materials--the bibliography covers nine materials for remediating reversals in handicapped students at the early childhood and elementary levels. Entries are presented in order of NIMIS accession…

  17. Inhibitory effect of Piper betel leaf extracts on copper-mediated LDL oxidation and oxLDL-induced lipid accumulation via inducing reverse cholesterol transport in macrophages.

    PubMed

    Ma, Gwo-Chin; Wu, Pei-Fang; Tseng, Hsien-Chun; Chyau, Charng-Cherng; Lu, Hsiu-Chin; Chou, Fen-Pi

    2013-12-15

    Piper betel leaf (PBL) has the biological capabilities of detoxification and can work as an anti-inflammatory agent and an anti-oxidant. In this study, we evaluated the anti-oxidative activity of the extract of Piper betel leaves (PBLs) on the basis of Cu(2+)-mediated oxidation, and its ability to prevent foam cell formation in a model for oxidised low density lipoprotein (oxLDL)-induced lipid accumulation in macrophages. Our data demonstrated that PBLs were able to inhibit LDL oxidation in vitro and are able to reduce the lipid accumulation in macrophages. We showed the underlying mechanisms to be the following: PBLs up-regulated the protein levels of the class A and class B scavenger receptors, the membrane lipid transporter ABCA1, and its upstream regulator Liver X receptor (LXR) in the macrophages exposed to oxLDL. The results suggested that PBLs activated the reverse cholesterol transport mechanism to enhance the metabolism of the oxLDL that could prevent both lipid accumulation and foam cell formation and further minimise the possible damage of vessels caused by the oxLDL. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Cholesterol (image)

    MedlinePlus

    Cholesterol is a soft, waxy substance that is present in all parts of the body including the ... and obtained from animal products in the diet. Cholesterol is manufactured in the liver and is needed ...

  19. Cholesterol and lifestyle

    MedlinePlus

    Hyperlipidemia - cholesterol and lifestyle; CAD - cholesterol and lifestyle; Coronary artery disease - cholesterol and lifestyle; Heart disease - cholesterol and lifestyle; Prevention - cholesterol and lifestyle; Cardiovascular disease - ...

  20. Effects of Cholesterol-altering Pharmaceuticals on Cholesterol Metabolism, Steroidogenesis, and Gene Expression in the Fathead Minnow (Pimephales promelas)

    EPA Science Inventory

    Pharmaceuticals that target cholesterol biosynthesis and uptake are among the most widely prescribed drugs and have been detected in the aquatic environment. Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome pr...

  1. Effects of Cholesterol-altering Pharmaceuticals on Cholesterol Metabolism, Steroidogenesis, and Gene Expression in the Fathead Minnow (Pimephales promelas)

    EPA Science Inventory

    Pharmaceuticals that target cholesterol biosynthesis and uptake are among the most widely prescribed drugs and have been detected in the aquatic environment. Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome pr...

  2. Good vs. Bad Cholesterol

    MedlinePlus

    ... Venous Thromboembolism Aortic Aneurysm More Good vs. Bad Cholesterol Updated:Apr 3,2017 Cholesterol can't dissolve ... test . View an animation of cholesterol . LDL (Bad) Cholesterol LDL cholesterol is considered the “bad” cholesterol because ...

  3. What's Cholesterol?

    MedlinePlus

    ... ve ever gone to the grocery store or food market, you've probably seen foods with labels on them that say "low in ... body. You also can get cholesterol from the foods you eat. Meat, fish, eggs, butter, cheese, and whole or low-fat milk all have cholesterol in ...

  4. Transport of cholesterol.

    PubMed

    Norum, K R; Berg, T; Helgerud, P; Drevon, C A

    1983-10-01

    .ur current model for cholesterol transport is summarized in Figure 10. In this figure we have put together the various steps in cholesterol transport that were described previously in this review. Under normal conditions, cholesterol metabolism and transport are well regulated. If the transport system is overloaded for a long time, however, hypercholesterolemia caused mainly by increased plasma LDL may develop in several species, including humans. Under such circumstances reverse transport of cholesterol may also fail, giving rise to deposits of cholesterol. Tissue macrophages may be responsible for this lipid accumulation, because receptor-mediated (adsorptive) endocytosis of lipoprotein-associated cholesterol in these cells is not under negative-feedback control. The deposits are mainly found in tissues poorly supplied with blood and lymph: the skin, tendons, the cornea, and arteries. Overload of cholesterol transport may be the result of too much fat and cholesterol in the diet, giving rise to cholesterol-rich lipoproteins from the gut and to increased production of liver (formula; see text) VLDL, which in humans ends up as LDL. In many individuals, however, no hypercholesterolemia is seen, even after eating large amounts of a "western" diet for decades; others may develop increased LDL on a relatively "prudent" diet. Obviously many of the factors and mechanisms in cholesterol transport are influenced by genetic factors. Although studies of several inborn errors of lipid metabolism have given information about some mechanisms, the quantitatively more important differences in genetic patterns, which determine whether or not a western diet will result in hyperlipidemia, are not well known. Perhaps studies of different forms of apoB and apoE and of HDL subgroups and hyper-alpha-lipoproteinemia will explain why certain individuals develop hypercholesterolemia and premature atherosclerosis. All the recent information related to cholesterol metabolism and transport

  5. Lysosomes, cholesterol and atherosclerosis

    PubMed Central

    Jerome, W Gray

    2011-01-01

    Cholesterol-engorged macrophage foam cells are a critical component of the atherosclerotic lesion. Reducing the sterol deposits in lesions reduces clinical events. Sterol accumulations within lysosomes have proven to be particularly hard to mobilize out of foam cells. Moreover, excess sterol accumulation in lysosomes has untoward effects, including a complete disruption of lysosome function. Recently, we demonstrated that treatment of sterol-engorged macrophages in culture with triglyceride-containing particles can reverse many of the effects of cholesterol on lysosomes and dramatically reduce the sterol burden in these cells. This article describes what is known about lysosomal sterol engorgement, discusses the possible mechanisms by which triglyceride could produce its effects, and evaluates the possible positive and negative effects of reducing the lysosomal cholesterol levels in foam cells. PMID:21643524

  6. Apolipoprotein A-I Mimetic Peptide D-4F Reduces Cardiac Hypertrophy and Improves Apolipoprotein A-I-Mediated Reverse Cholesterol Transport From Cardiac Tissue in LDL Receptor-null Mice Fed a Western Diet.

    PubMed

    Han, Jie; Zhang, Song; Ye, Ping; Liu, Yong-Xue; Qin, Yan-Wen; Miao, Dong-Mei

    2016-05-01

    Epidemiological studies have suggested that hypercholesterolemia is an independent determinant of increased left ventricular (LV) mass. Because high-density lipoprotein and its major protein apolipoprotein A-I (apoA-I) mediate reverse cholesterol transport (RCT) and have cardiac protective effects, we hypothesized that the apoA-I mimetic peptide D-4F could promote RCT in cardiac tissue and decrease cardiac hypertrophy induced by hypercholesterolemia. Low-density lipoprotein receptor-null mice were fed by a Western diet for 18 weeks and then randomized to receive water, or D-4F 0.3 mg/mL, or D-4F 0.5 mg/mL added to drinking water for 6 weeks. After D-4F administration, an increase in high-density lipoprotein cholesterol and a decrease in low-density lipoprotein cholesterol, total cholesterol, and triglyceride in a trend toward dose-responsivity were found in cardiac tissue. Ultrasound biomicroscopy revealed a reduction in LV posterior wall end-diastolic dimension, and an increase in mitral valve E/A ratio and LV ejection fraction. Hematoxylin-eosin staining showed reduced LV wall thickness and myocardial cell diameter. The protein levels of ABCA1 and LXRα were elevated in cardiac tissue of D-4F treated mice compared with the controls (P < 0.05). These results demonstrated that D-4F treatment reduced cardiac hypertrophy, and improved cardiac performance in low-density lipoprotein receptor-null mice fed a Western diet, presumably through the LXRα-ABCA1 pathway associated with enhanced myocardial RCT.

  7. A pH-responsive drug nanovehicle constructed by reversible attachment of cholesterol to PEGylated poly(l-lysine) via catechol-boronic acid ester formation.

    PubMed

    Yang, Bin; Lv, Yin; Zhu, Jing-Yi; Han, Yun-Tao; Jia, Hui-Zhen; Chen, Wei-Hai; Feng, Jun; Zhang, Xian-Zheng; Zhuo, Ren-Xi

    2014-08-01

    The present work reports the construction of a drug delivery nanovehicle via a pH-sensitive assembly strategy for improved cellular internalization and intracellular drug liberation. Through spontaneous formation of boronate linkage in physiological conditions, phenylboronic acid-modified cholesterol was able to attach onto catechol-pending methoxypoly(ethylene glycol)-block-poly(l-lysine). This comb-type polymer can self-organize into a micellar nanoconstruction that is able to effectively encapsulate poorly water-soluble agents. The blank micelles exhibited negligible in vitro cytotoxicity, yet doxorubicin (DOX)-loaded micelles could effectively induce cell death at a level comparable to free DOX. Owing to the acid-labile feature of the boronate linkage, a reduction in environmental pH from pH 7.4 to 5.0 could trigger the dissociation of the nanoconstruction, which in turn could accelerate the liberation of entrapped drugs. Importantly, the blockage of endosomal acidification in HeLa cells by NH4Cl treatment significantly decreased the nuclear uptake efficiency and cell-killing effect mediated by the DOX-loaded nanoassembly, suggesting that acid-triggered destruction of the nanoconstruction is of significant importance in enhanced drug efficacy. Moreover, confocal fluorescence microscopy and flow cytometry assay revealed the effective internalization of the nanoassemblies, and their cellular uptake exhibited a cholesterol dose-dependent profile, indicating the contribution of introduced cholesterol functionality to the transmembrane process of the nanoassembly.

  8. Cholesterol Levels

    MedlinePlus

    ... diet or exercise routine. References American Heart Association [Internet]. Dallas (TX): American Heart Association Inc.; c2017. About ... Cholesterol_UCM_001220_Article.jsp American Heart Association [Internet]. Dallas (TX): American Heart Association Inc.; c2017. Good ...

  9. Cholesterol and Statins

    MedlinePlus

    ... from you cholesterol is important Cholesterol has a bad rap. In reality, your body needs cholesterol to ... low-cholesterol diet should help lower your LDL (bad cholesterol). If it’s not lowered enough by reducing ...

  10. Novel apo E-derived ABCA1 agonist peptide (CS-6253) promotes reverse cholesterol transport and induces formation of preβ-1 HDL in vitro

    DOE PAGES

    Hafiane, Anouar; Bielicki, John K.; Johansson, Jan O.; ...

    2015-07-24

    Apolipoprotein (apo) mimetic peptides replicate some aspects of HDL function. We have previously reported the effects of compound ATI-5261 on its ability to replicate many functions of native apo A-I in the process of HDL biogenesis. ATI-5261 induced muscle toxicity in wild type C57Bl/6 mice, increased CPK, ALT and AST and increase in triglyceride (Tg) levels. Aromatic phenylalanine residues on the non-polar face of ATI-5261, together with positively charged arginine residues at the lipid-water interface were responsible for these effects. This information was used to create a novel analog (CS-6253) that was non-toxic. We evaluated this peptide designed from themore » carboxyl terminus of apo E, in its ability to mimic apo A-I functionality. Our data shows that the lipidated particles generated by incubating cells overexpressing ABCA1 with lipid free CS-6253 enhances the rate of ABCA1 lipid efflux with high affinity interactions with native ABCA1 oligomeric forms and plasma membrane micro-domains. Interaction between ABCA1 and lipid free CS-6253 resulted in formation of nascent HDL-CS-6253 particles that are actively remodeled in plasma. Mature HDL-CS-6253 particles deliver cholesterol to liver cells via SR-BI in-vitro. CS-6253 significantly increases cholesterol efflux in murine macrophages and in human THP-1 macrophage-derived foam cells expressing ABCA1. Addition of CS-6253 to plasma dose-dependently displaced apo A-I from α-HDL particles and led to de novo formation of preβ-1 HDL that stimulates ABCA1 dependent cholesterol efflux efficiently. When incubated with human plasma CS-6253 was also found to bind with HDL and LDL and promoted the transfer of cholesterol from HDL to LDL predominantly. Our data shows that CS-6253 mimics apo A-I in its ability to promote ABCA1-mediated formation of nascent HDL particles, and enhances formation of preβ-1 HDL with increase in the cycling of apo A-I between the preβ and α-HDL particles in-vitro. These mechanisms are

  11. Novel Apo E-Derived ABCA1 Agonist Peptide (CS-6253) Promotes Reverse Cholesterol Transport and Induces Formation of preβ-1 HDL In Vitro

    PubMed Central

    Hafiane, Anouar; Bielicki, John K.; Johansson, Jan O.; Genest, Jacques

    2015-01-01

    Apolipoprotein (apo) mimetic peptides replicate some aspects of HDL function. We have previously reported the effects of compound ATI-5261 on its ability to replicate many functions of native apo A-I in the process of HDL biogenesis. ATI-5261 induced muscle toxicity in wild type C57Bl/6 mice, increased CPK, ALT and AST and increase in triglyceride (Tg) levels. Aromatic phenylalanine residues on the non-polar face of ATI-5261, together with positively charged arginine residues at the lipid-water interface were responsible for these effects. This information was used to create a novel analog (CS-6253) that was non-toxic. We evaluated this peptide designed from the carboxyl terminus of apo E, in its ability to mimic apo A-I functionality. Our data shows that the lipidated particles generated by incubating cells overexpressing ABCA1 with lipid free CS-6253 enhances the rate of ABCA1 lipid efflux with high affinity interactions with native ABCA1 oligomeric forms and plasma membrane micro-domains. Interaction between ABCA1 and lipid free CS-6253 resulted in formation of nascent HDL-CS-6253 particles that are actively remodeled in plasma. Mature HDL-CS-6253 particles deliver cholesterol to liver cells via SR-BI in-vitro. CS-6253 significantly increases cholesterol efflux in murine macrophages and in human THP-1 macrophage-derived foam cells expressing ABCA1. Addition of CS-6253 to plasma dose-dependently displaced apo A-I from α-HDL particles and led to de novo formation of preβ-1 HDL that stimulates ABCA1 dependent cholesterol efflux efficiently. When incubated with human plasma CS-6253 was also found to bind with HDL and LDL and promoted the transfer of cholesterol from HDL to LDL predominantly. Our data shows that CS-6253 mimics apo A-I in its ability to promote ABCA1-mediated formation of nascent HDL particles, and enhances formation of preβ-1 HDL with increase in the cycling of apo A-I between the preβ and α-HDL particles in-vitro. These mechanisms are

  12. Novel Apo E-Derived ABCA1 Agonist Peptide (CS-6253) Promotes Reverse Cholesterol Transport and Induces Formation of preβ-1 HDL In Vitro.

    PubMed

    Hafiane, Anouar; Bielicki, John K; Johansson, Jan O; Genest, Jacques

    2015-01-01

    Apolipoprotein (apo) mimetic peptides replicate some aspects of HDL function. We have previously reported the effects of compound ATI-5261 on its ability to replicate many functions of native apo A-I in the process of HDL biogenesis. ATI-5261 induced muscle toxicity in wild type C57Bl/6 mice, increased CPK, ALT and AST and increase in triglyceride (Tg) levels. Aromatic phenylalanine residues on the non-polar face of ATI-5261, together with positively charged arginine residues at the lipid-water interface were responsible for these effects. This information was used to create a novel analog (CS-6253) that was non-toxic. We evaluated this peptide designed from the carboxyl terminus of apo E, in its ability to mimic apo A-I functionality. Our data shows that the lipidated particles generated by incubating cells overexpressing ABCA1 with lipid free CS-6253 enhances the rate of ABCA1 lipid efflux with high affinity interactions with native ABCA1 oligomeric forms and plasma membrane micro-domains. Interaction between ABCA1 and lipid free CS-6253 resulted in formation of nascent HDL-CS-6253 particles that are actively remodeled in plasma. Mature HDL-CS-6253 particles deliver cholesterol to liver cells via SR-BI in-vitro. CS-6253 significantly increases cholesterol efflux in murine macrophages and in human THP-1 macrophage-derived foam cells expressing ABCA1. Addition of CS-6253 to plasma dose-dependently displaced apo A-I from α-HDL particles and led to de novo formation of preβ-1 HDL that stimulates ABCA1 dependent cholesterol efflux efficiently. When incubated with human plasma CS-6253 was also found to bind with HDL and LDL and promoted the transfer of cholesterol from HDL to LDL predominantly. Our data shows that CS-6253 mimics apo A-I in its ability to promote ABCA1-mediated formation of nascent HDL particles, and enhances formation of preβ-1 HDL with increase in the cycling of apo A-I between the preβ and α-HDL particles in-vitro. These mechanisms are

  13. Development of an ion-pair reversed-phase HPLC method with indirect UV detection for determination of phosphates and phosphites as impurities in sodium risedronate.

    PubMed

    Breuzovska, Katerina; Dimitrovska, Aneta; Kitanovski, Zoran; Petrusevska, Jelena; Ribarska, Jasmina Tonic; Jolevska, Suzana Trajkovic

    2010-01-01

    A method based on RP-HPLC with indirect UV detection was developed for the determination of phosphates and phosphites as impurities in sodium risedronate. RP separation of the phosphates and phosphites was achieved by adding tetrabutylammonium hydroxide as an ion-pairing agent in the mobile phase. Potassium hydrogen phthalate was added to the mobile phase as an ionic chromophore in order to obtain high background absorption of the mobile phase. Separation was performed on a C18 column using a mixture of pH 8.2 buffer (containing 0.5 mM tetrabutylammonium hydroxide and 1 mM phthalate) and acetonitrile (95 + 5, v/v) as the mobile phase, with indirect UV detection at 248 nm. The validation of the method included determination of specificity/selectivity, linearity, LOD, LOQ, accuracy, precision, and robustness. The LOD was 0.86 microg/mL for phosphates and 0.76 microg/mL for phosphites. The LOQ was 2.60 microg/mL for phosphates and 2.29 microg/mL for phosphites. The developed method is suitable for quantitative determination of phosphates and phosphites as impurities in QC of sodium risedronate.

  14. Early steps in steroidogenesis: intracellular cholesterol trafficking

    PubMed Central

    Miller, Walter L.; Bose, Himangshu S.

    2011-01-01

    Steroid hormones are made from cholesterol, primarily derived from lipoproteins that enter cells via receptor-mediated endocytosis. In endo-lysosomes, cholesterol is released from cholesterol esters by lysosomal acid lipase (LAL; disordered in Wolman disease) and exported via Niemann-Pick type C (NPC) proteins (disordered in NPC disease). These diseases are characterized by accumulated cholesterol and cholesterol esters in most cell types. Mechanisms for trans-cytoplasmic cholesterol transport, membrane insertion, and retrieval from membranes are less clear. Cholesterol esters and “free” cholesterol are enzymatically interconverted in lipid droplets. Cholesterol transport to the cholesterol-poor outer mitochondrial membrane (OMM) appears to involve cholesterol transport proteins. Cytochrome P450scc (CYP11A1) then initiates steroidogenesis by converting cholesterol to pregnenolone on the inner mitochondrial membrane (IMM). Acute steroidogenic responses are regulated by cholesterol delivery from OMM to IMM, triggered by the steroidogenic acute regulatory protein (StAR). Chronic steroidogenic capacity is determined by CYP11A1 gene transcription. StAR mutations cause congenital lipoid adrenal hyperplasia, with absent steroidogenesis, potentially lethal salt loss, and 46,XY sex reversal. StAR mutations initially destroy most, but not all steroidogenesis; low levels of StAR-independent steroidogenesis are lost later due to cellular damage, explaining the clinical findings. Rare P450scc mutations cause a similar syndrome. This review addresses these early steps in steroid biosynthesis. PMID:21976778

  15. Blonanserin reverses the phencyclidine (PCP)-induced impairment in novel object recognition (NOR) in rats: role of indirect 5-HT(1A) partial agonism.

    PubMed

    Horiguchi, M; Meltzer, H Y

    2013-06-15

    Blonanserin is an atypical antipsychotic drug (APD) which, compared to other atypical APDs, is a relatively selective serotonin (5-HT)2A and dopamine D2 antagonist. Comparing blonanserin with more broadly acting atypical APDs could be useful to test the contributions of actions at other monoamine receptors, e.g. 5-HT1A receptors, to the reversal of PCP-induced novel object recognition (NOR) deficit. In this study, we tested the effect of blonanserin alone, and in combination with 5-HT1A agents, on NOR deficit induced by subchronic treatment with the N-methyl-D-aspartate (NMDA) receptor antagonist, phencyclidine (PCP; 2 mg/kg), b.i.d., for 7 days. Blonanserin, 1mg/kg, but not 0.3mg/kg, improved the PCP-induced NOR deficit. However, at 1mg/kg, object exploration was diminished. Co-administration of sub-effective doses of blonanserin (0.3 mg/kg) and the 5-HT1A partial agonist, tandospirone (0.2 mg/kg), significantly reversed the NOR deficit without diminishing activity during the acquisition or retention periods. The combination of WAY100635 (0.6 mg/kg), a 5-HT1A antagonist, and blonanserin (1 mg/kg), also diminished object exploration which prevented assessment of the effect of this combination on NOR. WAY100635 (0.6 mg/kg) blocked the ameliorating effect of risperidone (0.1 mg/kg), another atypical APD with low affinity for 5-HT1A receptors, but did not impair exploration. These results suggest that blonansein and risperidone, atypical APDs which lack a direct action on 5-HT1A receptors require 5-HT1A receptor stimulation to reverse the subchronic PCP-induced NOR deficit and provide a support for clinical trial of blonanserin in combination with tandospirone to ameliorate cognitive impairment in schizophrenia and to have fewer side effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Comparative Structures and Evolution of Vertebrate Carboxyl Ester Lipase (CEL) Genes and Proteins with a Major Role in Reverse Cholesterol Transport.

    PubMed

    Holmes, Roger S; Cox, Laura A

    2011-01-01

    Bile-salt activated carboxylic ester lipase (CEL) is a major triglyceride, cholesterol ester and vitamin ester hydrolytic enzyme contained within pancreatic and lactating mammary gland secretions. Bioinformatic methods were used to predict the amino acid sequences, secondary and tertiary structures and gene locations for CEL genes, and encoded proteins using data from several vertebrate genome projects. A proline-rich and O-glycosylated 11-amino acid C-terminal repeat sequence (VNTR) previously reported for human and other higher primate CEL proteins was also observed for other eutherian mammalian CEL sequences examined. In contrast, opossum CEL contained a single C-terminal copy of this sequence whereas CEL proteins from platypus, chicken, lizard, frog and several fish species lacked the VNTR sequence. Vertebrate CEL genes contained 11 coding exons. Evidence is presented for tandem duplicated CEL genes for the zebrafish genome. Vertebrate CEL protein subunits shared 53-97% sequence identities; demonstrated sequence alignments and identities for key CEL amino acid residues; and conservation of predicted secondary and tertiary structures with those previously reported for human CEL. Phylogenetic analyses demonstrated the relationships and potential evolutionary origins of the vertebrate CEL family of genes which were related to a nematode carboxylesterase (CES) gene and five mammalian CES gene families.

  17. LDL Cholesterol Test

    MedlinePlus

    ... Lipoprotein Cholesterol Related tests: Cholesterol ; HDL Cholesterol ; Triglycerides ; Lipid Profile ; Direct LDL Cholesterol ; Cardiac Risk Assessment ; Lp(a) ; ... LDL-C) is used as part of a lipid profile to predict an individual's risk of developing heart ...

  18. Cholesterol IQ Quiz

    MedlinePlus

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Cholesterol IQ Quiz Updated:Jul 5,2017 Begin the quiz Cholesterol • Home • About Cholesterol Introduction Atherosclerosis What Your Cholesterol ...

  19. Cholesterol and Your Child

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Cholesterol and Your Child KidsHealth > For Parents > Cholesterol and ... child's risk of developing heart disease later. About Cholesterol Cholesterol is a waxy substance produced by the ...

  20. Women and Cholesterol

    MedlinePlus

    ... Disease Venous Thromboembolism Aortic Aneurysm More Women and Cholesterol Updated:Apr 1,2016 The female sex hormone ... 2014. Related Sites Nutrition Center My Life Check Cholesterol • Home • About Cholesterol • Why Cholesterol Matters • Understand Your ...

  1. Common Misconceptions about Cholesterol

    MedlinePlus

    ... Venous Thromboembolism Aortic Aneurysm More Common Misconceptions about Cholesterol Updated:Apr 3,2017 Cholesterol can be both ... misconceptions about cholesterol. Click on each misconception about cholesterol to see the truth: My choices about diet ...

  2. Lifestyle Changes and Cholesterol

    MedlinePlus

    ... Venous Thromboembolism Aortic Aneurysm More Lifestyle Changes and Cholesterol Updated:Sep 26,2016 As part of a ... to the Terms and Conditions and Privacy Policy Cholesterol • Home • About Cholesterol • Why Cholesterol Matters • Understand Your ...

  3. Cholesterol homeostasis: How do cells sense sterol excess?

    PubMed

    Howe, Vicky; Sharpe, Laura J; Alexopoulos, Stephanie J; Kunze, Sarah V; Chua, Ngee Kiat; Li, Dianfan; Brown, Andrew J

    2016-09-01

    Cholesterol is vital in mammals, but toxic in excess. Consequently, elaborate molecular mechanisms have evolved to maintain this sterol within narrow limits. How cells sense excess cholesterol is an intriguing area of research. Cells sense cholesterol, and other related sterols such as oxysterols or cholesterol synthesis intermediates, and respond to changing levels through several elegant mechanisms of feedback regulation. Cholesterol sensing involves both direct binding of sterols to the homeostatic machinery located in the endoplasmic reticulum (ER), and indirect effects elicited by sterol-dependent alteration of the physical properties of membranes. Here, we examine the mechanisms employed by cells to maintain cholesterol homeostasis.

  4. The Oxnard advanced water purification facility: combining indirect potable reuse with reverse osmosis concentrate beneficial use to ensure a California community's water sustainability and provide coastal wetlands restoration.

    PubMed

    Lozier, Jim; Ortega, Ken

    2010-01-01

    The City of Oxnard in California is implementing a strategic water resources program known as the Groundwater Recovery Enhancement and Treatment (GREAT) program, which includes an Advanced Water Purification Facility (AWPF) that will use a major portion of the secondary effluent from the City's existing Water Pollution Control Facility to produce high-quality treated water to be used for irrigation of edible food crops, landscape irrigation, injection into the groundwater basin to form a barrier to seawater intrusion, and other industrial uses. The AWPF, currently under design by CH2M HILL, will employ a multiple-barrier treatment train consisting of microfiltration, reverse osmosis, and ultravioletlightbased advanced oxidation processes to purify the secondary effluent to conform to California Department of Public Health Title 22 Recycled Water Criteria for groundwater recharge. The AWPF, which will have initial and build-out capacities of ca. 24,000 and ca 95,000 m(3)/day, respectively, was limited to a 1.8-hectare site, with 0.4 hectares dedicated to a Visitor's Center and administration building. Further, the depth below grade and height of the AWPF's structures were constrained because of the high groundwater table at the site, the high cost of excavation and dewatering, and local codes. To accommodate these various restrictions, an innovative design approach has been developed. This paper summarizes the design constraints and innovative solutions for the design of the AWPF.

  5. Quercetin regulates hepatic cholesterol metabolism by promoting cholesterol-to-bile acid conversion and cholesterol efflux in rats.

    PubMed

    Zhang, Min; Xie, Zongkai; Gao, Weina; Pu, Lingling; Wei, Jingyu; Guo, Changjiang

    2016-03-01

    Quercetin, a common member of the flavonoid family, is widely present in plant kingdom. Despite that quercetin is implicated in regulating cholesterol metabolism, the molecular mechanism is poorly understood. We hypothesized that quercetin regulates cholesterol homeostasis through regulating the key enzymes involved in hepatic cholesterol metabolism. To test this hypothesis, we compared the profile of key enzymes and transcription factors involved in the hepatic cholesterol metabolism in rats with or without quercetin supplementation. Twenty male Wistar rats were randomly divided into control and quercetin-supplemented groups. Serum total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and total bile acids in feces and bile were measured. Hepatic enzymatic activities were determined by activity assay kit and high-performance liquid chromatography-based analyses. The messenger RNA (mRNA) and protein expressions were determined by reverse transcriptase polymerase chain reaction and Western blot analyses, respectively. The results showed that the activity of hepatic cholesterol 7α-hydroxylase, a critical enzyme in the conversion of cholesterol to bile acids, was significantly elevated by quercetin. The expression of cholesterol 7α-hydroxylase, as well as liver X receptor α, an important transcription factor, was also increased at both mRNA and protein levels by quercetin. However, quercetin exposure had no impact on the activity of hepatic HMG-CoA reductase, a rate-limiting enzyme in the biosynthesis of cholesterol. We also found that quercetin treatment significantly increased ATP binding cassette transporter G1 mRNA and protein expression in the liver, suggesting that quercetin may increase hepatic cholesterol efflux. Collectively, the results presented here indicate that quercetin regulates hepatic cholesterol metabolism mainly through the pathways that promote cholesterol-to-bile acid conversion and

  6. Cholesterol efflux analyses using stable isotopes and mass spectrometry

    PubMed Central

    Brown, Robert J.; Shao, Fei; Baldán, Ángel; Albert, Carolyn J.; Ford, David A.

    2012-01-01

    Cholesterol efflux from macrophages and the vascular wall is the initial step of the cardiovascular protective reverse cholesterol transport process. This study demonstrates a mass spectrometry based assay to measure the cellular and media content of [d7]-cholesterol and unlabeled cholesterol that can be used to measure cholesterol efflux from cell lines. Using a triple quadrupole ESI-MS instrument in direct infusion mode, product ion scanning for m/z 83, neutral loss (NL) 375.5 scanning and NL 368.5 scanning were used to detect cholesterol (as an acetylated derivative), [d7]-cholesteryl ester (CE) and unlabeled CE, respectively. The same mass of [d7]-cholesterol was substituted for [3H]-cholesterol under standard efflux assay conditions. At the end of [d7]-cholesterol loading, the intracellular mass of [d7]-cholesterol was 2-fold greater than unlabeled cholesterol, and the intracellular [d7]-CE profile is similar to unlabeled CE. Efflux of cholesterol to apolipoprotein A-I and high-density lipoproteins was similar when comparing efflux of either [d7]-cholesterol or [3H]-cholesterol as measured by following efflux of the tracers only. This technique also can be used to assess the efflux of unlabeled cholesterol to acceptors in media that are initially cholesterol-free (e.g., apolipoprotein A-I). Taken together, this mass spectrometry based assay provides new molecular detail to assess cholesterol efflux. PMID:23072980

  7. What Is Cholesterol?

    MedlinePlus

    ... Can I Help Someone Who's Being Bullied? Volunteering Cholesterol KidsHealth > For Teens > Cholesterol Print A A A ... High Cholesterol? en español ¿Qué es el colesterol? Cholesterol Is a Fat in the Blood Cholesterol (kuh- ...

  8. What Is Cholesterol?

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Cholesterol KidsHealth > For Teens > Cholesterol A A A What's ... High Cholesterol? en español ¿Qué es el colesterol? Cholesterol Is a Fat in the Blood Cholesterol (kuh- ...

  9. Indirect inversions

    NASA Astrophysics Data System (ADS)

    Sergienko, Olga

    2013-04-01

    Since Doug MacAyeal's pioneering studies of the ice-stream basal traction optimizations by control methods, inversions for unknown parameters (e.g., basal traction, accumulation patterns, etc) have become a hallmark of the present-day ice-sheet modeling. The common feature of such inversion exercises is a direct relationship between optimized parameters and observations used in the optimization procedure. For instance, in the standard optimization for basal traction by the control method, ice-stream surface velocities constitute the control data. The optimized basal traction parameters explicitly appear in the momentum equations for the ice-stream velocities (compared to the control data). The inversion for basal traction is carried out by minimization of the cost (or objective, misfit) function that includes the momentum equations facilitated by the Lagrange multipliers. Here, we build upon this idea, and demonstrate how to optimize for parameters indirectly related to observed data using a suite of nested constraints (like Russian dolls) with additional sets of Lagrange multipliers in the cost function. This method opens the opportunity to use data from a variety of sources and types (e.g., velocities, radar layers, surface elevation changes, etc.) in the same optimization process.

  10. HDL Cholesterol Test

    MedlinePlus

    ... Lipoprotein Cholesterol Related tests: Cholesterol ; LDL Cholesterol ; Triglycerides ; Lipid Profile ; Cardiac Risk Assessment ; Lp-PLA2 All content on ... HDL-C) is used as part of a lipid profile to screen for unhealthy levels of lipids and ...

  11. Causes of High Cholesterol

    MedlinePlus

    ... Venous Thromboembolism Aortic Aneurysm More Causes of High Cholesterol Updated:Jul 5,2017 If you have high ... and procedures related to heart disease and stroke. Cholesterol • Home • About Cholesterol • HDL, LDL, and Triglycerides • Causes ...

  12. Common Misconceptions about Cholesterol

    MedlinePlus

    ... Do My Cholesterol Levels Mean? | Spanish Your Cholesterol Score Explained What Are High Blood Cholesterol and Triglycerides? ... Pressure? 7 All About Heart Rate (Pulse) 8 Warning Signs of a Heart Attack 9 Tachycardia | Fast ...

  13. Cell Cholesterol Homeostasis: Mediation by Active Cholesterol

    PubMed Central

    Steck, Theodore L.; Lange, Yvonne

    2010-01-01

    Recent evidence suggests that the major pathways mediating cell cholesterol homeostasis respond to a common signal: active membrane cholesterol. Active cholesterol is that fraction which exceeds the complexing capacity of the polar bilayer lipids. Increments in plasma membrane cholesterol exceeding this threshold have an elevated chemical activity (escape tendency) and redistribute via diverse transport proteins to both circulating plasma lipoproteins and intracellular organelles. Active cholesterol prompts several feedback responses thereby. It is the substrate for its own esterification and for the synthesis of regulatory side-chain oxysterols. It also stimulates manifold pathways that down-regulate the biosynthesis, curtail the ingestion and increase the export of cholesterol. Thus, the abundance of cholesterol is tightly coupled to that of its polar lipid partners through active cholesterol. PMID:20843692

  14. MicroRNA-223 coordinates cholesterol homeostasis

    PubMed Central

    Vickers, Kasey C.; Landstreet, Stuart R.; Levin, Michael G.; Shoucri, Bassem M.; Toth, Cynthia L.; Taylor, Robert C.; Palmisano, Brian T.; Tabet, Fatiha; Cui, Huanhuan L.; Rye, Kerry-Anne; Sethupathy, Praveen; Remaley, Alan T.

    2014-01-01

    MicroRNAs (miRNAs) regulate a wide variety of biological processes and contribute to metabolic homeostasis. Here, we demonstrate that microRNA-223 (miR-223), an miRNA previously associated with inflammation, also controls multiple mechanisms associated with cholesterol metabolism. miR-223 promoter activity and mature levels were found to be linked to cellular cholesterol states in hepatoma cells. Moreover, hypercholesterolemia was associated with increased hepatic miR-223 levels in athero-prone mice. miR-223 was found to regulate high-density lipoprotein-cholesterol (HDL-C) uptake, through direct targeting and repression of scavenger receptor BI, and to inhibit cholesterol biosynthesis through the direct repression of sterol enzymes 3-hydroxy-3-methylglutaryl-CoA synthase 1 and methylsterol monooxygenase 1 in humans. Additionally, miR-223 was found to indirectly promote ATP-binding cassette transporter A1 expression (mRNA and protein) through Sp3, thereby enhancing cellular cholesterol efflux. Finally, genetic ablation of miR-223 in mice resulted in increased HDL-C levels and particle size, as well as increased hepatic and plasma total cholesterol levels. In summary, we identified a critical role for miR-223 in systemic cholesterol regulation by coordinated posttranscriptional control of multiple genes in lipoprotein and cholesterol metabolism. PMID:25246565

  15. Cholesterol distribution in living cells: fluorescence imaging using dehydroergosterol as a fluorescent cholesterol analog.

    PubMed Central

    Mukherjee, S; Zha, X; Tabas, I; Maxfield, F R

    1998-01-01

    Cholesterol is an important constituent of most mammalian cell membranes and its concentration in various cellular membranes is tightly regulated. Although there is much information about cholesterol distribution and trafficking in cells, it is primarily derived from indirect measurements, and the results obtained using different approaches are often conflicting. A cholesterol analog that faithfully mimics the properties of cholesterol and can be followed in living cells would thus be very useful. In this study, we report the fluorescence imaging of such an analog, dehydroergosterol (DHE), in living cells. DHE differs from cholesterol in having three additional double bonds and an extra methyl group. In model systems, DHE closely mimics the behavior of native cholesterol. Using triple-labeling studies, we show that DHE colocalizes extensively with endocytosed transferrin, an endocytic recycling compartment marker, and with a marker for the trans-Golgi network, Tac-TGN38. This distribution of DHE is qualitatively similar to that observed when cells are labeled with the fluorescent cholesterol-binding polyene antibiotic, filipin, although there are differences in apparent proportions of DHE and filipin that are localized at the plasma membrane. Another cholesterol derivative, 25-NBD-cholesterol, has a structure that is compromised by the presence of a bulky NBD group and does not distribute to the same organelles as DHE or filipin. In addition, we show in this manuscript that kinetic processes can be followed in living cells by monitoring recovery of DHE fluorescence in a photobleached region over time. Our observations provide evidence for the presence of a large intracellular cholesterol pool in the endocytic recycling compartment and the trans-Golgi network that might play important roles in the trafficking of lipids, lipid-anchored proteins, and transmembrane proteins that preferentially partition into cholesterol-enriched membrane domains. In addition, this

  16. [Basic mechanisms: absorption and excretion of cholesterol and other sterols].

    PubMed

    Cofan Pujol, Montserrat

    2014-01-01

    Cholesterol is of vital importance for vertebrate cell membrane structure and function. It is obvious that adequate regulation of cholesterol homeostasis is essential. Hypercholesterolemia promotes atherosclerosis and thereby represents a major risk factor for cardiovascular disease. The liver has been considered the major site of control in maintenance of cholesterol homeostasis. The liver facilitates clearance of (very) low density lipoprotein particles and cholesterol-containing chylomicron remnants, synthesizes cholesterol, synthesizes and secretes (nascent) high density lipoprotein particles, secretes cholesterol and bile salts to bile, and is involved in reverse cholesterol transport. In recent years, however, the importance of the intestine in many aspects of cholesterol physiology is increasingly recognized. It has become apparent that direct secretion of cholesterol from the blood compartment into the intestine, or transintestinal cholesterol excretion, plays a major role in disposal of cholesterol via the feces. This review will discuss current knowledge on the physiology of cholesterol homeostasis, with emphasis on cholesterol absorption, cholesterol synthesis and fecal excretion, and therapeutic options for hypercholesterolemia. Copyright © 2013 Elsevier España, S.L. y SEA. All rights reserved.

  17. Cholesterol depletion in Mycobacterium avium-infected macrophages overcomes the block in phagosome maturation and leads to the reversible sequestration of viable mycobacteria in phagolysosome-derived autophagic vacuoles.

    PubMed

    de Chastellier, Chantal; Thilo, Lutz

    2006-02-01

    Phagocytic entry of mycobacteria into macrophages requires the presence of cholesterol in the plasma membrane. This suggests that pathogenic mycobacteria may require cholesterol for their subsequent intra-cellular survival in non-maturing phagosomes. Here we report on the effect of cholesterol depletion on pre-existing phagosomes in mouse bone marrow-derived macrophages infected with Mycobacterium avium. Cholesterol depletion with methyl-beta-cyclodextrin resulted in a loosening of the close apposition between the phagosome membrane and the mycobacterial surface, followed by fusion with lysosomes. The resulting phagolysosomes then autonomously executed autophagy, which did not involve the endoplasmic reticulum. After 5 h of depletion, intact mycobacteria had accumulated in large auto-phagolysosomes. Autophagy was specific for phagolysosomes that contained mycobacteria, as it did not involve latex bead-containing phagosomes in infected cells. Upon replenishment of cholesterol, mycobacteria became increasingly aligned to the lysosomal membrane, from where they were individually sequestered in phagosomes with an all-around closely apposed phagosome membrane and which no longer fused with lysosomes. These observations indicate that, cholesterol depletion (i) resulted in phagosome maturation and fusion with lysosomes and (ii) caused mycobacterium-containing phagolysosomes to autonomously undergo autophagy. Furthermore, (iii) mycobacteria were not killed in auto-phagolysosomes, and (iv) cholesterol replenishment enabled mycobacterium to rescue itself from autophagic phagolysosomes to again reside individually in phagosomes which no longer fused with lysosomes.

  18. Effect of dietary cholesterol and fat on cell cholesterol transfer to postprandial plasma in hyperlipidemic men.

    PubMed

    Sutherland, Wayne H F; de Jong, Sylvia A; Walker, Robert J

    2007-10-01

    Postprandial chylomicrons are potent ultimate acceptors of cell membrane cholesterol and are believed to accelerate reverse cholesterol transport (RCT). We compared the effects of meals rich in polyunsaturated fat (PUFA) and either high (605 mg) or low (151 mg) in cholesterol and a meal rich in dairy fat (DF) in the form of cream on net in vitro transport of red blood cell (RBC) membrane cholesterol to 4 and 6 h postprandial plasma in eight normotriglyceridemic (NTG-H) and eight hypertriglyceridemic (HTG-H) men with mild to moderate hypercholesterolemia. In HTG-H men, cell cholesterol accumulation in 6-h postprandial plasma was significantly (P = 0.02) less after the PUFA-HC meal compared with the other meals. The significant (P < 0.001) increase in cell plus endogenous cholesterol accumulation in the triglyceride-rich lipoprotein (TRL) fraction of 4 h postprandial plasma incubated with RBC was significantly (P = 0.007) higher after the PUFA-HC meal compared with DF meal in HTG-H men. In NTG-H men, cholesterol accumulation in plasma and plasma lipoproteins in the presence and absence of RBC was not significantly affected by the type of meal ingested. These data suggest that addition of large amounts of cholesterol to a PUFA meal may impair diffusion-mediated transport of cell membrane cholesterol to postprandial plasma and that replacing DF with PUFA in a meal increases postprandial lipemia and may potentially increase cholesterol accumulation in atherogenic postprandial TRL in HTG-H men.

  19. Get Your Cholesterol Checked

    MedlinePlus

    ... cholesterol levels with a blood test called a lipid profile. For the test, a nurse will take a ... blood tests that can check cholesterol, but a lipid profile gives the most information. Find out more about ...

  20. Cholesterol - Multiple Languages

    MedlinePlus

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Cholesterol URL of this page: https://medlineplus.gov/languages/cholesterol.html Other topics A-Z Expand Section ...

  1. ABCG1-mediated generation of extracellular cholesterol microdomains[S

    PubMed Central

    Freeman, Sebastian R.; Jin, Xueting; Anzinger, Joshua J.; Xu, Qing; Purushothaman, Sonya; Fessler, Michael B.; Addadi, Lia; Kruth, Howard S.

    2014-01-01

    Previous studies have demonstrated that the ATP-binding cassette transporters (ABC)A1 and ABCG1 function in many aspects of cholesterol efflux from macrophages. In this current study, we continued our investigation of extracellular cholesterol microdomains that form during enrichment of macrophages with cholesterol. Human monocyte-derived macrophages and mouse bone marrow-derived macrophages, differentiated with macrophage colony-stimulating factor (M-CSF) or granulocyte macrophage colony-stimulation factor (GM-CSF), were incubated with acetylated LDL (AcLDL) to allow for cholesterol enrichment and processing. We utilized an anti-cholesterol microdomain monoclonal antibody to reveal pools of unesterified cholesterol, which were found both in the extracellular matrix and associated with the cell surface, that we show function in reverse cholesterol transport. Coincubation of AcLDL with 50 μg/ml apoA-I eliminated all extracellular and cell surface-associated cholesterol microdomains, while coincubation with the same concentration of HDL only removed extracellular matrix-associated cholesterol microdomains. Only at an HDL concentration of 200 µg/ml did HDL eliminate the cholesterol microdomains that were cell-surface associated. The deposition of cholesterol microdomains was inhibited by probucol, but it was increased by the liver X receptor (LXR) agonist TO901317, which upregulates ABCA1 and ABCG1. Extracellular cholesterol microdomains did not develop when ABCG1-deficient mouse bone marrow-derived macrophages were enriched with cholesterol. Our findings show that generation of extracellular cholesterol microdomains is mediated by ABCG1 and that reverse cholesterol transport occurs not only at the cell surface but also within the extracellular space. PMID:24212237

  2. All about Cholesterol

    MedlinePlus

    Toolkit No. 6 All About Cholesterol Managing your cholesterol and other blood fats (also called blood lipids) can help you prevent health problems. ... it’s likely that your cholesterol may be off. All of these are risk factors for diabetes, heart ...

  3. Detecting Elevated Cholesterol Levels

    PubMed Central

    Reimer, H.L.; Elford, R.W.; Shumak, S.

    1991-01-01

    To assess accuracy of blood cholesterol measurements in the office, fingerprick blood cholesterol assays by a dry reagent chemistry analyzer were compared in 151 patients with simultaneous venipuncture cholesterol assays by standard laboratory methods. Compared with the laboratory assay, seven of eight analyzers had total absolute biases less than 5%. Variability in results was comparable to that of community laboratories. PMID:21229050

  4. Cholesterol and Plants

    ERIC Educational Resources Information Center

    Behrman, E. J.; Gopalan, Venkat

    2005-01-01

    There is a widespread belief among the public and even among chemist that plants do not contain cholesterol. This wrong belief is the result of the fact that plants generally contain only small quantities of cholesterol and that analytical methods for the detection of cholesterol in this range were not developed until recently.

  5. Cholesterol and Plants

    ERIC Educational Resources Information Center

    Behrman, E. J.; Gopalan, Venkat

    2005-01-01

    There is a widespread belief among the public and even among chemist that plants do not contain cholesterol. This wrong belief is the result of the fact that plants generally contain only small quantities of cholesterol and that analytical methods for the detection of cholesterol in this range were not developed until recently.

  6. What Your Cholesterol Levels Mean

    MedlinePlus

    ... Disease Venous Thromboembolism Aortic Aneurysm More What Your Cholesterol Levels Mean Updated:Jul 5,2017 Keeping your ... stroke. This content was last reviewed April 2017. Cholesterol • Home • About Cholesterol Introduction Atherosclerosis What Your Cholesterol ...

  7. Home-Use Tests - Cholesterol

    MedlinePlus

    ... Medical Procedures In Vitro Diagnostics Home Use Tests Cholesterol Share Tweet Linkedin Pin it More sharing options ... a home-use test kit to measure total cholesterol. What cholesterol is: Cholesterol is a fat (lipid) ...

  8. [Trans-intestinal cholesterol excretion (TICE): a new route for cholesterol excretion].

    PubMed

    Blanchard, Claire; Moreau, François; Cariou, Bertrand; Le May, Cédric

    2014-10-01

    The small intestine plays a crucial role in dietary and biliary cholesterol absorption, as well as its lymphatic secretion as chylomicrons (lipoprotein exogenous way). Recently, a new metabolic pathway called TICE (trans-intestinal excretion of cholesterol) that plays a central role in cholesterol metabolism has emerged. TICE is an inducible way, complementary to the hepatobiliary pathway, allowing the elimination of the plasma cholesterol directly into the intestine lumen through the enterocytes. This pathway is poorly characterized but several molecular actors of TICE have been recently identified. Although it is a matter of debate, two independent studies suggest that TICE is involved in the anti-atherogenic reverse cholesterol transport pathway. Thus, TICE is an innovative drug target to reduce -cardiovascular diseases.

  9. Modeling Indirect Tunneling in Silicon

    NASA Astrophysics Data System (ADS)

    Chen, Edward

    Indirect tunneling in silicon p-n junctions catches people's attention again in recent years. First, the phenomenon induces a serious leakage problem, so called gate-induced drain leakage (GIDL) effect, in modern metal-oxide-semiconductor field-effect transistors (MOSFETs). Second, it is utilized to develop a novel tunneling transistor with the sharp turn-on ability for continuing ITRS roadmap. Although the indirect tunneling is important for the state-of-the-art transistor-technology, the accuracy of the present tunneling models in technology computer-aided design (TCAD) tools is still vague. In the research work, the theory of indirect tunneling in silicon has been thoroughly studied. The phonon-assisted tunneling model has been developed and compared with the existing ones in the Sentaurus-Synopsys, Medici-Synopsys, and Atlas-Silvaco TCAD tools. Beyond these existing models, ours successfully predicts the indirect tunneling current under the different field direction in silicon. In addition, bandgap narrowing in heavily-doped p-n junctions under the reverse-biased condition is also studied during the model development. At the end of the research work, the application to low standby power (LSTP) transistors is demonstrated to show the capability of our tunneling model in the device level.

  10. Cholesterol oxidase from Bordetella species promotes irreversible cell apoptosis in lung adenocarcinoma by cholesterol oxidation

    PubMed Central

    Liu, J; Xian, G; Li, M; Zhang, Y; Yang, M; Yu, Y; Lv, H; Xuan, S; Lin, Y; Gao, L

    2014-01-01

    Cholesterol oxidase (COD), an enzyme catalyzing the oxidation of cholesterol, has been applied to track the distribution of membrane cholesterol. Little investigations about the effect of COD on tumor cells have been performed. In the present study, we provided evidence that COD from Bordetella species (COD-B), induced apoptosis of lung cancer cells in vitro and in vivo. COD-B treatment inhibited Akt and ERK1/2 phosphorylation in dose- and time-dependent manner, which was not reversed and was even aggravated by cholesterol addition. Further investigation indicated that COD-B treatment promoted the generation of reactive oxygen species (ROS) and that cholesterol addition further elevated ROS levels. Moreover, COD-B treatment resulted in JNK and p38 phosphorylation, downregulation of Bcl-2, upregulation of Bax, activated caspase-3 and cytochrome C release, which likely responded to freshly produced hydrogen peroxide that accompanied cholesterol oxidation. Catalase pretreatment could only partially prevent COD-B-induced events, suggesting that catalase inhibited H2O2-induced signal transduction but had little effect on signal pathways involved in cholesterol depletion. Our results demonstrated that COD-B led to irreversible cell apoptosis by decreasing cholesterol content and increasing ROS level. In addition, COD-B may be a promising candidate for a novel anti-tumor therapy. PMID:25118932

  11. Regulation of cholesterol homeostasis.

    PubMed

    van der Wulp, Mariëtte Y M; Verkade, Henkjan J; Groen, Albert K

    2013-04-10

    Hypercholesterolemia is an important risk factor for cardiovascular disease. It is caused by a disturbed balance between cholesterol secretion into the blood versus uptake. The pathways involved are regulated via a complex interplay of enzymes, transport proteins, transcription factors and non-coding RNA's. The last two decades insight into underlying mechanisms has increased vastly but there are still a lot of unknowns, particularly regarding intracellular cholesterol transport. After decades of concentration on the liver, in recent years the intestine has come into focus as an important control point in cholesterol homeostasis. This review will discuss current knowledge of cholesterol physiology, with emphasis on cholesterol absorption, cholesterol synthesis and fecal excretion, and new (possible) therapeutic options for hypercholesterolemia.

  12. Role of cellular cholesterol metabolism in vascular cell calcification.

    PubMed

    Geng, Yifan; Hsu, Jeffrey J; Lu, Jinxiu; Ting, Tabitha C; Miyazaki, Makoto; Demer, Linda L; Tintut, Yin

    2011-09-23

    Vascular calcification impairs vessel compliance and increases the risk of cardiovascular events. We found previously that liver X receptor agonists, which regulate intracellular cholesterol homeostasis, augment PKA agonist- or high phosphate-induced osteogenic differentiation of vascular smooth muscle cells. Because cholesterol is an integral component of the matrix vesicles that nucleate calcium mineral, we examined the role of cellular cholesterol metabolism in vascular cell mineralization. The results showed that vascular smooth muscle cells isolated from LDL receptor null (Ldlr(-/-)) mice, which have impaired cholesterol uptake, had lower levels of intracellular cholesterol and less osteogenic differentiation, as indicated by alkaline phosphatase activity and matrix mineralization, compared with WT cells. PKA activation with forskolin acutely induced genes that promote cholesterol uptake (LDL receptor) and biosynthesis (HMG-CoA reductase). In WT cells, inhibition of cholesterol uptake by lipoprotein-deficient serum attenuated forskolin-induced matrix mineralization, which was partially reversed by the addition of cell-permeable cholesterol. Prolonged activation of both uptake and biosynthesis pathways by cotreatment with a liver X receptor agonist further augmented forskolin-induced matrix mineralization. Inhibition of either cholesterol uptake, using Ldlr(-/-) cells, or of cholesterol biosynthesis, using mevastatin-treated WT cells, failed to inhibit matrix mineralization due to up-regulation of the respective compensatory pathway. Inhibition of both pathways simultaneously using mevastatin-treated Ldlr(-/-) cells did inhibit forskolin-induced matrix mineralization. Altogether, the results suggest that up-regulation of cholesterol metabolism is essential for matrix mineralization by vascular cells.

  13. High blood cholesterol levels

    MedlinePlus

    Lipid disorders; Hyperlipoproteinemia; Hyperlipidemia; Dyslipidemia; Hypercholesterolemia ... A cholesterol test is done to diagnose a lipid disorder. Different experts recommend different starting ages. Recommended ...

  14. Intracellular cholesterol-binding proteins enhance HDL-mediated cholesterol uptake in cultured primary mouse hepatocytes.

    PubMed

    Storey, Stephen M; McIntosh, Avery L; Huang, Huan; Landrock, Kerstin K; Martin, Gregory G; Landrock, Danilo; Payne, H Ross; Atshaves, Barbara P; Kier, Ann B; Schroeder, Friedhelm

    2012-04-15

    A major gap in our knowledge of rapid hepatic HDL cholesterol clearance is the role of key intracellular factors that influence this process. Although the reverse cholesterol transport pathway targets HDL to the liver for net elimination of free cholesterol from the body, molecular details governing cholesterol uptake into hepatocytes are not completely understood. Therefore, the effects of sterol carrier protein (SCP)-2 and liver fatty acid-binding protein (L-FABP), high-affinity cholesterol-binding proteins present in hepatocyte cytosol, on HDL-mediated free cholesterol uptake were examined using gene-targeted mouse models, cultured primary hepatocytes, and 22-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol). While SCP-2 overexpression enhanced NBD-cholesterol uptake, counterintuitively, SCP-2/SCP-x gene ablation also 1) enhanced the rapid molecular phase of free sterol uptake detectable in <1 min and initial rate and maximal uptake of HDL free cholesterol and 2) differentially enhanced free cholesterol uptake mediated by the HDL3, rather than the HDL2, subfraction. The increased HDL free cholesterol uptake was not due to increased expression or distribution of the HDL receptor [scavenger receptor B1 (SRB1)], proteins regulating SRB1 [postsynaptic density protein (PSD-95)/Drosophila disk large tumor suppressor (dlg)/tight junction protein (ZO1) and 17-kDa membrane-associated protein], or other intracellular cholesterol trafficking proteins (steroidogenic acute response protein D, Niemann Pick C, and oxysterol-binding protein-related proteins). However, expression of L-FABP, the single most prevalent hepatic cytosolic protein that binds cholesterol, was upregulated twofold in SCP-2/SCP-x null hepatocytes. Double-immunogold electron microscopy detected L-FABP sufficiently close to SRB1 for direct interaction, similar to SCP-2. These data suggest a role for L-FABP in HDL cholesterol uptake, a finding confirmed with SCP-2

  15. Intracellular cholesterol-binding proteins enhance HDL-mediated cholesterol uptake in cultured primary mouse hepatocytes

    PubMed Central

    Storey, Stephen M.; McIntosh, Avery L.; Huang, Huan; Landrock, Kerstin K.; Martin, Gregory G.; Landrock, Danilo; Payne, H. Ross; Atshaves, Barbara P.; Kier, Ann B.

    2012-01-01

    A major gap in our knowledge of rapid hepatic HDL cholesterol clearance is the role of key intracellular factors that influence this process. Although the reverse cholesterol transport pathway targets HDL to the liver for net elimination of free cholesterol from the body, molecular details governing cholesterol uptake into hepatocytes are not completely understood. Therefore, the effects of sterol carrier protein (SCP)-2 and liver fatty acid-binding protein (L-FABP), high-affinity cholesterol-binding proteins present in hepatocyte cytosol, on HDL-mediated free cholesterol uptake were examined using gene-targeted mouse models, cultured primary hepatocytes, and 22-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol). While SCP-2 overexpression enhanced NBD-cholesterol uptake, counterintuitively, SCP-2/SCP-x gene ablation also 1) enhanced the rapid molecular phase of free sterol uptake detectable in <1 min and initial rate and maximal uptake of HDL free cholesterol and 2) differentially enhanced free cholesterol uptake mediated by the HDL3, rather than the HDL2, subfraction. The increased HDL free cholesterol uptake was not due to increased expression or distribution of the HDL receptor [scavenger receptor B1 (SRB1)], proteins regulating SRB1 [postsynaptic density protein (PSD-95)/Drosophila disk large tumor suppressor (dlg)/tight junction protein (ZO1) and 17-kDa membrane-associated protein], or other intracellular cholesterol trafficking proteins (steroidogenic acute response protein D, Niemann Pick C, and oxysterol-binding protein-related proteins). However, expression of L-FABP, the single most prevalent hepatic cytosolic protein that binds cholesterol, was upregulated twofold in SCP-2/SCP-x null hepatocytes. Double-immunogold electron microscopy detected L-FABP sufficiently close to SRB1 for direct interaction, similar to SCP-2. These data suggest a role for L-FABP in HDL cholesterol uptake, a finding confirmed with SCP-2

  16. Role of low density lipoprotein-bound cholesterol esters in acute lymphoblastic leukemia cells

    SciTech Connect

    Cutts, J.L.; Madden, E.A.; Melnykovych, G.

    1986-05-01

    The glucocorticoid sensitive CEM-C7 T-cell line was derived from human acute lymphoblastic leukemia cells by Norman and Thompson. Madden et al. have demonstrated that this growth inhibitory effect is due in part to a glucocorticoid-mediated inhibition of cholesterol synthesis and can be partially reversed by cholesterol dispersions. To further delineate the role of cholesterol in this growth inhibition, they have examined the ability of low density lipoprotein (LDL)-bound (/sup 3/H)cholesterol linoleate to reverse the growth inhibitory effect of 1 ..mu..M dexamethasone (Dex) on the CEM-C7 cells. LDL-bound cholesterol linoleate was unable to reverse the Dex-mediated growth inhibition, although incorporation of (/sup 14/C) acetate into free cholesterol was inhibited by 29%, following the Brown and Goldstein model. The presence of Dex further inhibited acetate incorporation into free cholesterol in the LDL-treated cells. Under all conditions, more than 99% of the acetate incorporated into cholesterol was present as free cholesterol, while over 87% of the LDL-bound cholesterol linoleate taken up remained in the ester compartment. These results indicate that CEM-C7 cells are unable to utilize LDL-bound cholesterol esters as a source of free cholesterol and rely on endogenous synthesis for their free cholesterol requirements.

  17. Cholesterol - what to ask your doctor

    MedlinePlus

    ... your doctor; What to ask your doctor about cholesterol ... What is my cholesterol level? What should my cholesterol level be? What are HDL ("good") cholesterol and LDL ("bad") cholesterol? Does my cholesterol ...

  18. Kids and Cholesterol.

    ERIC Educational Resources Information Center

    Ficklen, Ellen

    1992-01-01

    According to a 1991 National Cholesterol Education Program report, the best way to avoid heart trouble is to take early preventive measures. This means that children over age two should follow the same low-fat, low-cholesterol guidelines already recommended for adults. Sidebars contain a fat glossary and tips for cutting fat in school lunches.…

  19. Cholesterol and Kir channels

    PubMed Central

    Levitan, Irena

    2009-01-01

    To date, most of the major types of Kir channels, Kir2s, Kir3s, Kir4s and Kir6s, have been found to partition into cholesterol-rich membrane domains and/or to be regulated by changes in the level of membrane cholesterol. Surprisingly, however, in spite of the structural similarities between different Kirs, effects of cholesterol on different types of Kir channels vary from cholesterol-induced decrease in the current density (Kir2 channels) to the loss of channel activity by cholesterol depletion (Kir4 channels) and loss of channel coupling by different mediators (Kir3 and Kir6 channels). Recently, we have gained initial insights into the mechanisms responsible for cholesterol-induced suppression Kir2 channels, but mechanisms underlying cholesterol sensitivity of other Kir channels are mostly unknown. The goal of this review is to present a summary of the current knowledge of the distinct effects of cholesterol on different types of Kir channels in vitro and in vivo. PMID:19548316

  20. Cholesterol and prostate cancer.

    PubMed

    Freeman, Michael R; Solomon, Keith R

    2004-01-01

    Cholesterol is a neutral lipid that accumulates in liquid-ordered, detergent-resistant membrane domains called lipid rafts. Lipid rafts serve as membrane platforms for signal transduction mechanisms that mediate cell growth, survival, and a variety of other processes relevant to cancer. A number of studies, going back many years, demonstrate that cholesterol accumulates in solid tumors and that cholesterol homeostasis breaks down in the prostate with aging and with the transition to the malignant state. This review summarizes the established links between cholesterol and prostate cancer (PCa), with a focus on how accumulation of cholesterol within the lipid raft component of the plasma membrane may stimulate signaling pathways that promote progression to hormone refractory disease. We propose that increases in cholesterol in prostate tumor cell membranes, resulting from increases in circulating levels or from dysregulation of endogenous synthesis, results in the coalescence of raft domains. This would have the effect of sequestering positive regulators of oncogenic signaling within rafts, while maintaining negative regulators in the liquid-disordered membrane fraction. This approach toward examining the function of lipid rafts in prostate cancer cells may provide insight into the role of circulating cholesterol in malignant growth and on the potential relationship between diet and aggressive disease. Large-scale characterization of proteins that localize to cholesterol-rich domains may help unveil signaling networks and pathways that will lead to identification of new biomarkers for disease progression and potentially to novel targets for therapeutic intervention.

  1. Indirection and computer security.

    SciTech Connect

    Berg, Michael J.

    2011-09-01

    The discipline of computer science is built on indirection. David Wheeler famously said, 'All problems in computer science can be solved by another layer of indirection. But that usually will create another problem'. We propose that every computer security vulnerability is yet another problem created by the indirections in system designs and that focusing on the indirections involved is a better way to design, evaluate, and compare security solutions. We are not proposing that indirection be avoided when solving problems, but that understanding the relationships between indirections and vulnerabilities is key to securing computer systems. Using this perspective, we analyze common vulnerabilities that plague our computer systems, consider the effectiveness of currently available security solutions, and propose several new security solutions.

  2. Do proteins facilitate the formation of cholesterol-rich domains?

    PubMed

    Epand, Richard M

    2004-11-03

    Both biological and model membranes can exhibit the formation of domains. A brief review of some of the diverse methodologies used to identify the presence of domains in membranes is given. Some of these domains are enriched in cholesterol. The segregation of lipids into cholesterol-rich domains can occur in both pure lipid systems as well as membranes containing peptides and proteins. Peptides and proteins can promote the formation of cholesterol-rich domains not only by preferentially interacting with cholesterol and being sequestered into these regions of the membrane, but also indirectly as a consequence of being excluded from cholesterol-rich domains. The redistribution of components is dictated by the thermodynamics of the system. The formation of domains in a biological membrane is a consequence of all of the intermolecular interactions including those among lipid molecules as well as between lipids and proteins.

  3. Effects of pravastatin on cholesterol metabolism of cholesterol-fed heterozygous WHHL rabbits

    PubMed Central

    Harsch, Michael; Gebhardt, Angelika; Reymann, Andreas; Lang, Gerhard; Schliack, Michael; Löser, Roland; Hinrich Braesen, Jan; Niendorf, Axel

    1998-01-01

    We administered the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor pravastatin at a daily dose of 1 mg kg−1 body weight to cholesterol-fed (0.03%) heterozygous Watanabe heritable hyperlipidaemic rabbits, an animal model for heterozygous familial hypercholesterolaemia.After 12 months of cholesterol treatment, immunohistochemistry with the monoclonal antibody 9D9 was used to detect hepatic low density lipoprotein (LDL) receptors, which were quantified by densitometry. In addition we determined LDL receptor mRNA by competitive reverse transcriptase polymerase chain reaction. The cholesterol precursor lathosterol and the plant sterol campesterol were analysed by gas-liquid chromatography.The drug reduced total plasma cholesterol levels by 51% (P=0.04), when compared to the control group. Unexpectedly, hepatic LDL receptor density and mRNA showed no significant differences between the groups. Total plasma levels of lathosterol and campesterol also revealed no significant differences between the groups, if expressed relative to plasma cholesterol.The findings suggest that mechanisms other than induced hepatic LDL receptors are responsible for the cholesterol-lowering effect of pravastatin in this animal model. We propose a reduced cholesterol absorption efficiency compatible with similar campesterol levels between both groups observed in our study. PMID:9641543

  4. Bile acid sequestrants for cholesterol

    MedlinePlus

    ... ency/patientinstructions/000787.htm Bile acid sequestrants for cholesterol To use the sharing features on this page, ... are medicines that help lower your LDL (bad) cholesterol . Too much cholesterol in your blood can stick ...

  5. Novel apo E-derived ABCA1 agonist peptide (CS-6253) promotes reverse cholesterol transport and induces formation of preβ-1 HDL in vitro

    SciTech Connect

    Hafiane, Anouar; Bielicki, John K.; Johansson, Jan O.; Genest, Jacques; Zhu, Xuewei

    2015-07-24

    Apolipoprotein (apo) mimetic peptides replicate some aspects of HDL function. We have previously reported the effects of compound ATI-5261 on its ability to replicate many functions of native apo A-I in the process of HDL biogenesis. ATI-5261 induced muscle toxicity in wild type C57Bl/6 mice, increased CPK, ALT and AST and increase in triglyceride (Tg) levels. Aromatic phenylalanine residues on the non-polar face of ATI-5261, together with positively charged arginine residues at the lipid-water interface were responsible for these effects. This information was used to create a novel analog (CS-6253) that was non-toxic. We evaluated this peptide designed from the carboxyl terminus of apo E, in its ability to mimic apo A-I functionality. Our data shows that the lipidated particles generated by incubating cells overexpressing ABCA1 with lipid free CS-6253 enhances the rate of ABCA1 lipid efflux with high affinity interactions with native ABCA1 oligomeric forms and plasma membrane micro-domains. Interaction between ABCA1 and lipid free CS-6253 resulted in formation of nascent HDL-CS-6253 particles that are actively remodeled in plasma. Mature HDL-CS-6253 particles deliver cholesterol to liver cells via SR-BI in-vitro. CS-6253 significantly increases cholesterol efflux in murine macrophages and in human THP-1 macrophage-derived foam cells expressing ABCA1. Addition of CS-6253 to plasma dose-dependently displaced apo A-I from α-HDL particles and led to de novo formation of preβ-1 HDL that stimulates ABCA1 dependent cholesterol efflux efficiently. When incubated with human plasma CS-6253 was also found to bind with HDL and LDL and promoted the transfer of cholesterol from HDL to LDL predominantly. Our data shows that CS-6253 mimics apo A-I in its ability to promote ABCA1-mediated formation of nascent HDL particles, and enhances formation of preβ-1 HDL with increase in the cycling of apo A-I between the preβ and α-HDL particles in-vitro. These

  6. Cholesterol and Ion Channels

    PubMed Central

    Levitan, Irena; Fang, Yun; Rosenhouse-Dantsker, Avia; Romanenko, Victor

    2010-01-01

    A variety of ion channels, including members of all major ion channel families, have been shown to be regulated by changes in the level of membrane cholesterol and partition into cholesterol-rich membrane domains. In general, several types of cholesterol effects have been described. The most common effect is suppression of channel activity by an increase in membrane cholesterol, an effect that was described for several types of inwardly-rectifying K+ channels, voltage-gated K+ channels, Ca+2 sensitive K+ channels, voltage-gated Na+ channels, N-type voltage-gated Ca+2 channels and volume-regulated anion channels. In contrast, several types of ion channels, such as epithelial amiloride-sensitive Na+ channels and Transient Receptor Potential channels, as well as some of the types of inwardly-rectifying and voltage-gated K+ channels were shown to be inhibited by cholesterol depletion. Cholesterol was also shown to alter the kinetic properties and current-voltage dependence of several voltage-gated channels. Finally, maintaining membrane cholesterol level is required for coupling ion channels to signalling cascades. In terms of the mechanisms, three general mechanisms have been proposed: (i) specific interactions between cholesterol and the channel protein, (ii) changes in the physical properties of the membrane bilayer and (iii) maintaining the scaffolds for protein-protein interactions. The goal of this review is to describe systematically the role of cholesterol in regulation of the major types of ion channels and to discuss these effects in the context of the models proposed. PMID:20213557

  7. Effects of Gemfibrozil on Cholesterol Metabolism and Steroidogenesis in the Fathead Minnow (Pimephales promelas)

    EPA Science Inventory

    Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors (PPAR), which are transcriptional cofactors that regulate expression of genes related to lipid metabolism. Gemfibrozil is a fib...

  8. Effects of Gemfibrozil on Cholesterol Metabolism, Steroidogenesis, and Reproduction in the Fathead Minnow (Pimephales promelas)

    EPA Science Inventory

    Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors (PPAR), which are transcriptional cofactors that regulate expression of genes related to lipid metabolism. Gemfibrozil is a fib...

  9. Effects of Gemfibrozil on Cholesterol Metabolism, Steroidogenesis, and Reproduction in the Fathead Minnow (Pimephales promelas)

    EPA Science Inventory

    Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors, which are transcriptional cofactors that regulate expression of genes related to lipid metabolism. Gemfibrozil is a fibrate th...

  10. Effects of Gemfibrozil on Cholesterol Metabolism and Steroidogenesis in the Fathead Minnow (Pimephales promelas)

    EPA Science Inventory

    Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors (PPAR), which are transcriptional cofactors that regulate expression of genes related to lipid metabolism. Gemfibrozil is a fib...

  11. Effects of Gemfibrozil on Cholesterol Metabolism, Steroidogenesis, and Reproduction in the Fathead Minnow (Pimephales promelas)

    EPA Science Inventory

    Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors (PPAR), which are transcriptional cofactors that regulate expression of genes related to lipid metabolism. Gemfibrozil is a fib...

  12. Effects of Gemfibrozil on Cholesterol Metabolism, Steroidogenesis, and Reproduction in the Fathead Minnow (Pimephales promelas)

    EPA Science Inventory

    Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors, which are transcriptional cofactors that regulate expression of genes related to lipid metabolism. Gemfibrozil is a fibrate th...

  13. Detecting Elevated Cholesterol Levels

    PubMed Central

    Reimer, H.L.; Elford, R.W.; Shumak, S.

    1991-01-01

    The Reflotron dry chemistry reflectance photometer was studied as a case-finding method in physicians' offices. A total of 713 adult patients had their risk factor profiles determined along with fingerprick blood cholesterol measurements. Blood cholesterol levels were classified into three categories, (<5.2 mmol/L), 51%; borderline high (5.2 to 6.1 mmol/L), 28%; and high (≥6.2 mmol/L), 21%. The physicians' predictions from clinical risk factor profiles of which patients had elevated serum cholesterol levels were inaccurate. PMID:21229051

  14. Intestinal SR-BI does not impact cholesterol absorption or transintestinal cholesterol efflux in mice.

    PubMed

    Bura, Kanwardeep S; Lord, Caleb; Marshall, Stephanie; McDaniel, Allison; Thomas, Gwyn; Warrier, Manya; Zhang, Jun; Davis, Matthew A; Sawyer, Janet K; Shah, Ramesh; Wilson, Martha D; Dikkers, Arne; Tietge, Uwe J F; Collet, Xavier; Rudel, Lawrence L; Temel, Ryan E; Brown, J Mark

    2013-06-01

    Reverse cholesterol transport (RCT) can proceed through the classic hepatobiliary route or through the nonbiliary transintestinal cholesterol efflux (TICE) pathway. Scavenger receptor class B type I (SR-BI) plays a critical role in the classic hepatobiliary route of RCT. However, the role of SR-BI in TICE has not been studied. To examine the role of intestinal SR-BI in TICE, sterol balance was measured in control mice and mice transgenically overexpressing SR-BI in the proximal small intestine (SR-BI(hApoCIII-ApoAIV-Tg)). SR-BI(hApoCIII-ApoAIV-Tg) mice had significantly lower plasma cholesterol levels compared with wild-type controls, yet SR-BI(hApoCIII-ApoAIV-Tg) mice had normal fractional cholesterol absorption and fecal neutral sterol excretion. Both in the absence or presence of ezetimibe, intestinal SR-BI overexpression had no impact on the amount of cholesterol excreted in the feces. To specifically study effects of intestinal SR-BI on TICE we crossed SR-BI(hApoCIII-ApoAIV-Tg) mice into a mouse model that preferentially utilized the TICE pathway for RCT (Niemann-Pick C1-like 1 liver transgenic), and likewise found no alterations in cholesterol absorption or fecal sterol excretion. Finally, mice lacking SR-BI in all tissues also exhibited normal cholesterol absorption and fecal cholesterol disposal. Collectively, these results suggest that SR-BI is not rate limiting for intestinal cholesterol absorption or for fecal neutral sterol loss through the TICE pathway.

  15. Mathematically modelling the dynamics of cholesterol metabolism and ageing.

    PubMed

    Morgan, A E; Mooney, K M; Wilkinson, S J; Pickles, N A; Mc Auley, M T

    2016-07-01

    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the UK. This condition becomes increasingly prevalent during ageing; 34.1% and 29.8% of males and females respectively, over 75 years of age have an underlying cardiovascular problem. The dysregulation of cholesterol metabolism is inextricably correlated with cardiovascular health and for this reason low density lipoprotein cholesterol (LDL-C) and high density lipoprotein cholesterol (HDL-C) are routinely used as biomarkers of CVD risk. The aim of this work was to use mathematical modelling to explore how cholesterol metabolism is affected by the ageing process. To do this we updated a previously published whole-body mathematical model of cholesterol metabolism to include an additional 96 mechanisms that are fundamental to this biological system. Additional mechanisms were added to cholesterol absorption, cholesterol synthesis, reverse cholesterol transport (RCT), bile acid synthesis, and their enterohepatic circulation. The sensitivity of the model was explored by the use of both local and global parameter scans. In addition, acute cholesterol feeding was used to explore the effectiveness of the regulatory mechanisms which are responsible for maintaining whole-body cholesterol balance. It was found that our model behaves as a hypo-responder to cholesterol feeding, while both the hepatic and intestinal pools of cholesterol increased significantly. The model was also used to explore the effects of ageing in tandem with three different cholesterol ester transfer protein (CETP) genotypes. Ageing in the presence of an atheroprotective CETP genotype, conferring low CETP activity, resulted in a 0.6% increase in LDL-C. In comparison, ageing with a genotype reflective of high CETP activity, resulted in a 1.6% increase in LDL-C. Thus, the model has illustrated the importance of CETP genotypes such as I405V, and their potential role in healthy ageing. Copyright © 2016 Elsevier Ireland Ltd. All

  16. Cholesterol testing and results

    MedlinePlus

    ... VLDL test results; HDL test results; Coronary risk profile results; Hyperlipidemia-results; Lipid disorder test results ... in your blood. You may also have a lipid (or coronary risk) profile, which includes: Total cholesterol Low density lipoprotein (LDL ...

  17. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Hua, Duy H. (Inventor); Koo, Sung I. (Inventor); Noh, Sang K. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  18. MD-2 binds cholesterol.

    PubMed

    Choi, Soo-Ho; Kim, Jungsu; Gonen, Ayelet; Viriyakosol, Suganya; Miller, Yury I

    2016-02-19

    Cholesterol is a structural component of cellular membranes, which is transported from liver to peripheral cells in the form of cholesterol esters (CE), residing in the hydrophobic core of low-density lipoprotein. Oxidized CE (OxCE) is often found in plasma and in atherosclerotic lesions of subjects with cardiovascular disease. Our earlier studies have demonstrated that OxCE activates inflammatory responses in macrophages via toll-like receptor-4 (TLR4). Here we demonstrate that cholesterol binds to myeloid differentiation-2 (MD-2), a TLR4 ancillary molecule, which is a binding receptor for bacterial lipopolysaccharide (LPS) and is indispensable for LPS-induced TLR4 dimerization and signaling. Cholesterol binding to MD-2 was competed by LPS and by OxCE-modified BSA. Furthermore, soluble MD-2 in human plasma and MD-2 in mouse atherosclerotic lesions carried cholesterol, the finding supporting the biological significance of MD-2 cholesterol binding. These results help understand the molecular basis of TLR4 activation by OxCE and mechanisms of chronic inflammation in atherosclerosis.

  19. Effect of heparin and adrenocorticotropin on the hepatic and serum cholesterol in catfish, Heteropneustes fossils.

    PubMed

    Jaiswal, D M; Belsare, D K

    1976-10-01

    The administration of heparin with or without ACTH significantly decreased hepatic cholesterol content in catfish. In serum, heparin alone produced first hypercholesterolemia which was followed by hypocholesterolemia whereas it potentiated hypercholesterolemic action of ACTH three hours after administration. It is concluded that heparin normally caused hypercholesterolemia by releasing cholesterol from liver as lipoprotein complex. The hypocholesterolemic action of heparin might be an indirect one.

  20. Treadmill exercise reverses dendritic spine loss in direct and indirect striatal medium spiny neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease.

    PubMed

    Toy, William A; Petzinger, Giselle M; Leyshon, Brian J; Akopian, Garnik K; Walsh, John P; Hoffman, Matilde V; Vučković, Marta G; Jakowec, Michael W

    2014-03-01

    Exercise has been shown to be beneficial for Parkinson's disease (PD). A major interest in our lab has been to investigate how exercise modulates basal ganglia function and modifies disease progression. Dopamine (DA) depletion leads to loss of dendritic spines within the caudate nucleus and putamen (striatum) in PD and its animal models and contributes to motor impairments. Striatal medium spiny neurons (MSNs) can be delineated into two populations, the dopamine D1 receptor (DA-D1R)-containing MSNs of the direct pathway and dopamine D2 receptor (DA-D2R)-containing MSNs of the indirect pathway. There is evidence to suggest that the DA-D2R-indirect pathway MSNs may be preferentially affected after DA-depletion with a predominate loss of dendritic spine density when compared to MSNs of the DA-D1R-direct pathway in rodents; however, others have reported that both pathways may be affected in primates. The purpose of this study was to investigate the effects of intensive exercise on dendritic spine density and arborization in MSNs of these two pathways in the MPTP mouse model of PD. We found that MPTP led to a decrease in dendritic spine density in both DA-D1R- and DA-D2R-containing MSNs and 30 days of intensive treadmill exercise led to increased dendritic spine density and arborization in MSNs of both pathways. In addition, exercise increased the expression of synaptic proteins PSD-95 and synaptophysin. Taken together these findings support the potential effect of exercise in modifying synaptic connectivity within the DA-depleted striatum and in modifying disease progression in individuals with PD.

  1. Cholesterol through the Looking Glass

    PubMed Central

    Kristiana, Ika; Luu, Winnie; Stevenson, Julian; Cartland, Sian; Jessup, Wendy; Belani, Jitendra D.; Rychnovsky, Scott D.; Brown, Andrew J.

    2012-01-01

    How cholesterol is sensed to maintain homeostasis has been explained by direct binding to a specific protein, Scap, or through altering the physical properties of the membrane. The enantiomer of cholesterol (ent-cholesterol) is a valuable tool in distinguishing between these two models because it shares nonspecific membrane effects with native cholesterol (nat-cholesterol), but not specific binding interactions. This is the first study to compare ent- and nat-cholesterol directly on major molecular parameters of cholesterol homeostasis. We found that ent-cholesterol suppressed activation of the master transcriptional regulator of cholesterol metabolism, SREBP-2, almost as effectively as nat-cholesterol. Importantly, ent-cholesterol induced a conformational change in the cholesterol-sensing protein Scap in isolated membranes in vitro, even when steps were taken to eliminate potential confounding effects from endogenous cholesterol. Ent-cholesterol also accelerated proteasomal degradation of the key cholesterol biosynthetic enzyme, squalene monooxygenase. Together, these findings provide compelling evidence that cholesterol maintains its own homeostasis not only via direct protein interactions, but also by altering membrane properties. PMID:22869373

  2. Ceramide displaces cholesterol from lipid rafts and decreases the association of the cholesterol binding protein caveolin-1.

    PubMed

    Yu, Cuijuan; Alterman, Michail; Dobrowsky, Rick T

    2005-08-01

    Addition of exogenous ceramide causes a significant displacement of cholesterol in lipid raft model membranes. However, whether ceramide-induced cholesterol displacement is sufficient to alter the protein composition of caveolin-enriched lipid raft membranes is unknown. Therefore, we examined whether increasing endogenous ceramide levels with bacterial sphingomyelinase (bSMase) depleted cholesterol and changed the protein composition of caveolin-enriched membranes (CEMs) isolated from immortalized Schwann cells. bSMase increased ceramide levels severalfold and decreased the cholesterol content of detergent-insoluble CEMs by 25-50% within 2 h. To examine the effect of ceramide on the protein composition of the CEMs, we performed a quantitative proteomic analysis using stable isotope labeling of cells in culture and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Although ceramide rapidly depleted lipid raft cholesterol, the levels of the cholesterol binding protein caveolin-1 (Cav-1) decreased by 25% only after 8 h. Importantly, replenishing the cells with cholesterol rapidly reversed the loss of Cav-1 from the CEMs. Ceramide-induced cholesterol depletion increased the association of 5'-nucleotidase and ATP synthase beta-subunit with the CEMs but had a minimal effect on changing the abundance of other lipid raft proteins, such as flotillin-1 and G-proteins. These results suggest that the ceramide-induced loss of cholesterol from CEMs may contribute to altering the lipid raft proteome.

  3. Cyclodextrins as catalysts for the removal of cholesterol from macrophage foam cells.

    PubMed Central

    Atger, V M; de la Llera Moya, M; Stoudt, G W; Rodrigueza, W V; Phillips, M C; Rothblat, G H

    1997-01-01

    Low concentrations of cyclodextrins (< 1.0 mM) added to serum act catalytically, accelerating the exchange of cholesterol between cells and lipoproteins. J774 macrophages incubated with serum and 2-hydroxypropyl-beta-cyclodextrin (< or = 1 mM) released fivefold more labeled cholesterol than with serum alone. Increased efflux was not accompanied by a change in cell cholesterol mass; thus, cyclodextrin functioned as a cholesterol shuttle, enhancing cholesterol bidirectional flux without changing the equilibrium cholesterol distribution between cells and medium. The addition of phospholipid vesicles to serum and cyclodextrin shifted the equilibrium distribution to favor the medium, producing rapid and extensive depletion of cell cholesterol mass. The combination of serum, phospholipid vesicles, and cyclodextrin also stimulated the rapid clearance of both free and esterified cholesterol from mouse peritoneal macrophages loaded with free and esterified cholesterol. This study: (a) demonstrates that a compound can function as a catalyst to enhance the movement of cholesterol between cells and serum, (b) illustrates the difference between cholesterol exchange and net transport in a cell/serum system, (c) demonstrates how net movement of cholesterol is linked to concentration gradients established by phospholipids, (d) provides a basis for the development of the shuttle/sink model for the first steps in reverse cholesterol transport, (e) validates the model using artificial shuttles (cyclodextrins) and sinks (large unilamellar vesicles), and (f) suggests that cyclodextrin-like cholesterol shuttles might be of pharmacological significance in treating unstable atherosclerotic plaques. PMID:9045882

  4. [The food cholesterol controversy].

    PubMed

    Cichosz, Grazyna; Czeczot, Hanna

    2012-07-01

    Arteriosclerosis of blood vessels, the main cause of heart attack and stroke, is a disease of multifactor pathogenesis. Multiple experimental, clinical and epidemiologic studies indicate that free radicals and lipid oxidation products take part in aterogenesis process. Homocysteine possess also cytotoxic activity leading to degradation of elastine of internal membrane of blood vessels. Deficiency of vitamin folic acid, B12 and B6 cause homocysteine accumulation in human organism. Identifying the arteriosclerosis with oxidation of LDL-cholesterol results with faulty conclusions. Metabolism of cholesterol in human organism depends on content of n-6 and n-3 polyunsaturated fatty acids, phospholipids, fitosterols, food fiber, Lactobacillus and antioxidants in the diet. In aterogenesis antioxidant defficiency, especially long-lasting ones, are more important then amount of fat itself. Considering cholesterol intake with average food and its absorption amounting 25-30%, one can conclude that amount of cholesterol in intestine originates in 90% from liver synthesis, which is excreted with bile, and in more than ten percent--from food. This is why reduction of cholesterol intake with food only little improves blood lipid indexes.

  5. Cholesterol depletion induces autophagy

    SciTech Connect

    Cheng, Jinglei; Ohsaki, Yuki; Tauchi-Sato, Kumi; Fujita, Akikazu; Fujimoto, Toyoshi . E-mail: tfujimot@med.nagoya-u.ac.jp

    2006-12-08

    Autophagy is a mechanism to digest cells' own components, and its importance in many physiological and pathological processes is being recognized. But the molecular mechanism that regulates autophagy is not understood in detail. In the present study, we found that cholesterol depletion induces macroautophagy. The cellular cholesterol in human fibroblasts was depleted either acutely using 5 mM methyl-{beta}-cyclodextrin or 10-20 {mu}g/ml nystatin for 1 h, or metabolically by 20 {mu}M mevastatin and 200 {mu}M mevalonolactone along with 10% lipoprotein-deficient serum for 2-3 days. By any of these protocols, marked increase of LC3-II was detected by immunoblotting and by immunofluorescence microscopy, and the increase was more extensive than that caused by amino acid starvation, i.e., incubation in Hanks' solution for several hours. The induction of autophagic vacuoles by cholesterol depletion was also observed in other cell types, and the LC3-positive membranes were often seen as long tubules, >50 {mu}m in length. The increase of LC3-II by methyl-{beta}-cyclodextrin was suppressed by phosphatidylinositol 3-kinase inhibitors and was accompanied by dephosphorylation of mammalian target of rapamycin. By electron microscopy, autophagic vacuoles induced by cholesterol depletion were indistinguishable from those seen after amino acid starvation. These results demonstrate that a decrease in cholesterol activates autophagy by a phosphatidylinositol 3-kinase-dependent mechanism.

  6. Cholesterol Metabolism in CKD.

    PubMed

    Reiss, Allison B; Voloshyna, Iryna; De Leon, Joshua; Miyawaki, Nobuyuki; Mattana, Joseph

    2015-12-01

    Patients with chronic kidney disease (CKD) have a substantial risk of developing coronary artery disease. Traditional cardiovascular disease (CVD) risk factors such as hypertension and hyperlipidemia do not adequately explain the high prevalence of CVD in CKD. Both CVD and CKD are inflammatory states and inflammation adversely affects lipid balance. Dyslipidemia in CKD is characterized by elevated triglyceride levels and high-density lipoprotein levels that are both decreased and dysfunctional. This dysfunctional high-density lipoprotein becomes proinflammatory and loses its atheroprotective ability to promote cholesterol efflux from cells, including lipid-overloaded macrophages in the arterial wall. Elevated triglyceride levels result primarily from defective clearance. The weak association between low-density lipoprotein cholesterol level and coronary risk in CKD has led to controversy over the usefulness of statin therapy. This review examines disrupted cholesterol transport in CKD, presenting both clinical and preclinical evidence of the effect of the uremic environment on vascular lipid accumulation. Preventative and treatment strategies are explored.

  7. Cholesterol and prostate cancer.

    PubMed

    Pelton, Kristine; Freeman, Michael R; Solomon, Keith R

    2012-12-01

    Prostate cancer risk can be modified by environmental factors, however the molecular mechanisms affecting susceptibility to this disease are not well understood. As a result of a series of recently published studies, the steroidal lipid, cholesterol, has emerged as a clinically relevant therapeutic target in prostate cancer. This review summarizes the findings from human studies as well as animal and cell biology models, which suggest that high circulating cholesterol increases risk of aggressive prostate cancer, while cholesterol lowering strategies may confer protective benefit. Relevant molecular processes that have been experimentally tested and might explain these associations are described. We suggest that these promising results now could be applied prospectively to attempt to lower risk of prostate cancer in select populations.

  8. Autophagy Regulates Cholesterol Efflux from Macrophage Foam Cells via Lysosomal Acid Lipase

    PubMed Central

    Ouimet, Mireille; Franklin, Vivian; Mak, Esther; Liao, Xianghai; Tabas, Ira; Marcel, Yves L.

    2012-01-01

    SUMMARY The lipid droplet (LD) is the major site of cholesterol storage in macrophage foam cells and is a potential therapeutic target for the treatment of atherosclerosis. Cholesterol, stored as cholesteryl esters (CEs), is liberated from this organelle and delivered to cholesterol acceptors. The current paradigm attributes all cytoplasmic CE hydrolysis to the action of neutral CE hydrolases. Here, we demonstrate an important role for lysosomes in LD CE hydrolysis in cholesterol-loaded macrophages, in addition to that mediated by neutral hydrolases. Furthermore, we demonstrate that LDs are delivered to lysosomes via autophagy, where lysosomal acid lipase (LAL) acts to hydrolyze LD CE to generate free cholesterol mainly for ABCA1-dependent efflux; this process is specifically induced upon macrophage cholesterol loading. We conclude that, in macrophage foam cells, lysosomal hydrolysis contributes to the mobilization of LD-associated cholesterol for reverse cholesterol transport. PMID:21641547

  9. Indirect decentralized learning control

    NASA Technical Reports Server (NTRS)

    Longman, Richard W.; Lee, Soo C.; Phan, M.

    1992-01-01

    The new field of learning control develops controllers that learn to improve their performance at executing a given task, based on experience performing this specific task. In a previous work, the authors presented a theory of indirect learning control based on use of indirect adaptive control concepts employing simultaneous identification and control. This paper develops improved indirect learning control algorithms, and studies the use of such controllers in decentralized systems. The original motivation of the learning control field was learning in robots doing repetitive tasks such as on an assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. The basic result of the paper is to show that stability of the indirect learning controllers for all subsystems when the coupling between subsystems is turned off, assures convergence to zero tracking error of the decentralized indirect learning control of the coupled system, provided that the sample time in the digital learning controller is sufficiently short.

  10. Cholesterol modulates open probability and desensitization of NMDA receptors

    PubMed Central

    Korinek, Miloslav; Vyklicky, Vojtech; Borovska, Jirina; Lichnerova, Katarina; Kaniakova, Martina; Krausova, Barbora; Krusek, Jan; Balik, Ales; Smejkalova, Tereza; Horak, Martin; Vyklicky, Ladislav

    2015-01-01

    NMDA receptors (NMDARs) are glutamate-gated ion channels that mediate excitatory neurotransmission in the CNS. Although these receptors are in direct contact with plasma membrane, lipid–NMDAR interactions are little understood. In the present study, we aimed at characterizing the effect of cholesterol on the ionotropic glutamate receptors. Whole-cell current responses induced by fast application of NMDA in cultured rat cerebellar granule cells (CGCs) were almost abolished (reduced to 3%) and the relative degree of receptor desensitization was increased (by seven-fold) after acute cholesterol depletion by methyl-β-cyclodextrin. Both of these effects were fully reversible by cholesterol repletion. By contrast, the responses mediated by AMPA/kainate receptors were not affected by cholesterol depletion. Similar results were obtained in CGCs after chronic inhibition of cholesterol biosynthesis by simvastatin and acute enzymatic cholesterol degradation to 4-cholesten-3-one by cholesterol oxidase. Fluorescence anisotropy measurements showed that membrane fluidity increased after methyl-β-cyclodextrin pretreatment. However, no change in fluidity was observed after cholesterol enzymatic degradation, suggesting that the effect of cholesterol on NMDARs is not mediated by changes in membrane fluidity. Our data show that diminution of NMDAR responses by cholesterol depletion is the result of a reduction of the open probability, whereas the increase in receptor desensitization is the result of an increase in the rate constant of entry into the desensitized state. Surface NMDAR population, agonist affinity, single-channel conductance and open time were not altered in cholesterol-depleted CGCs. The results of our experiments show that cholesterol is a strong endogenous modulator of NMDARs. Key points NMDA receptors (NMDARs) are tetrameric cation channels permeable to calcium; they mediate excitatory synaptic transmission in the CNS and their excessive activation can lead to

  11. Preparation of intravenous cholesterol tracer using current good manufacturing practices.

    PubMed

    Lin, Xiaobo; Ma, Lina; Racette, Susan B; Swaney, William P; Ostlund, Richard E

    2015-12-01

    Studies of human reverse cholesterol transport require intravenous infusion of cholesterol tracers. Because insoluble lipids may pose risk and because it is desirable to have consistent doses of defined composition available over many months, we investigated the manufacture of cholesterol tracer under current good manufacturing practice (CGMP) conditions appropriate for phase 1 investigation. Cholesterol tracer was prepared by sterile admixture of unlabeled cholesterol or cholesterol-d7 in ethanol with 20% Intralipid(®). The resulting material was filtered through a 1.2 micron particulate filter, stored at 4°C, and tested at time 0, 1.5, 3, 6, and 9 months for sterility, pyrogenicity, autoxidation, and particle size and aggregation. The limiting factor for stability was a rise in thiobarbituric acid-reacting substances of 9.6-fold over 9 months (P < 0.01). The emulsion was stable with the Z-average intensity-weighted mean droplet diameter remaining at 60 nm over 23 months. The zeta potential (a measure of negative surface charge protecting from aggregation) was unchanged at -36.2. Rapid cholesterol pool size was 25.3 ± 1.3 g. Intravenous cholesterol tracer was stable at 4°C for 9 months postproduction. CGMP manufacturing methods can be achieved in the academic setting and need to be considered for critical components of future metabolic studies. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  12. Ezetimibe Promotes Brush Border Membrane-to-Lumen Cholesterol Efflux in the Small Intestine

    PubMed Central

    Nakano, Takanari; Inoue, Ikuo; Takenaka, Yasuhiro; Ono, Hiraku; Katayama, Shigehiro; Awata, Takuya; Murakoshi, Takayuki

    2016-01-01

    Ezetimibe inhibits Niemann-Pick C1-like 1 (NPC1L1), an apical membrane cholesterol transporter of enterocytes, thereby reduces intestinal cholesterol absorption. This treatment also increases extrahepatic reverse cholesterol transport via an undefined mechanism. To explore this, we employed a trans-intestinal cholesterol efflux (TICE) assay, which directly detects circulation-to-intestinal lumen 3H-cholesterol transit in a cannulated jejunal segment, and found an increase of TICE by 45%. To examine whether such increase in efflux occurs at the intestinal brush border membrane(BBM)-level, we performed luminal perfusion assays, similar to TICE but the jejunal wall was labelled with orally-given 3H-cholesterol, and determined elevated BBM-to-lumen cholesterol efflux by 3.5-fold with ezetimibe. Such increased efflux probably promotes circulation-to-lumen cholesterol transit eventually; thus increases TICE. Next, we wondered how inhibition of NPC1L1, an influx transporter, resulted in increased efflux. When we traced orally-given 3H-cholesterol in mice, we found that lumen-to-BBM 3H-cholesterol transit was rapid and less sensitive to ezetimibe treatment. Comparison of the efflux and fractional cholesterol absorption revealed an inverse correlation, indicating the efflux as an opposite-regulatory factor for cholesterol absorption efficiency and counteracting to the naturally-occurring rapid cholesterol influx to the BBM. These suggest that the ezetimibe-stimulated increased efflux is crucial in reducing cholesterol absorption. Ezetimibe-induced increase in cholesterol efflux was approximately 2.5-fold greater in mice having endogenous ATP-binding cassette G5/G8 heterodimer, the major sterol efflux transporter of enterocytes, than the knockout counterparts, suggesting that the heterodimer confers additional rapid BBM-to-lumen cholesterol efflux in response to NPC1L1 inhibition. The observed framework for intestinal cholesterol fluxes may provide ways to modulate the flux

  13. Cholesterol, inflammasomes, and atherogenesis

    USDA-ARS?s Scientific Manuscript database

    Plasma cholesterol levels have been strongly associated with atherogenesis, underscoring the role of lipid metabolism in defining cardiovascular disease risk. However, atherosclerotic plaque is highly dynamic and contains elements of both the innate and adaptive immune system that respond to the abe...

  14. Cholesterol: Up in Smoke.

    ERIC Educational Resources Information Center

    Raloff, Janet

    1991-01-01

    Discussed is the contribution cooked meat makes to air pollution. The dozens of compounds, including cholesterol, that are released when a hamburger is grilled are described. The potential effects of these emissions on humans and the urban environment are discussed. (KR)

  15. Cholesterol: Up in Smoke.

    ERIC Educational Resources Information Center

    Raloff, Janet

    1991-01-01

    Discussed is the contribution cooked meat makes to air pollution. The dozens of compounds, including cholesterol, that are released when a hamburger is grilled are described. The potential effects of these emissions on humans and the urban environment are discussed. (KR)

  16. Vitamin E protects against impairment of endothelium-mediated relaxations in cholesterol-fed rabbits.

    PubMed

    Stewart-Lee, A L; Forster, L A; Nourooz-Zadeh, J; Ferns, G A; Anggård, E E

    1994-03-01

    The vascular effects of dietary vitamin E were investigated in isolated carotid artery preparations from cholesterol-fed New Zealand White rabbits. Rabbits were fed either a control, 1% cholesterol, or 1% cholesterol plus 0.2% vitamin E diet for 4 weeks. In raised-tone preparations, relaxant responses to acetylcholine were enhanced in rabbits fed cholesterol plus vitamin E, reversing the reduction in responses measured in preparations from cholesterol-fed rabbits. Relaxant responses to the calcium ionophore A23187 were significantly enhanced in cholesterol plus vitamin E-fed rabbits compared with those fed cholesterol alone, with no difference between control and cholesterol-fed rabbits. Relaxant responses to sodium nitroprusside were not different between the three dietary groups. Constrictor responses to noradrenaline and serotonin in isolated carotid artery preparations at basal tone were unaltered after cholesterol and cholesterol plus vitamin E diets. The copper-induced oxidation of beta-very-low-density lipoproteins (beta VLDL) isolated from plasma of rabbits fed a cholesterol plus vitamin E diet was almost completely inhibited compared with the oxidation of beta VLDL from rabbits fed cholesterol alone. These results show that vitamin E prevents endothelial dysfunction associated with cholesterol feeding and suggests that vitamin E may be beneficial in preventing functional impairment associated with atherosclerosis.

  17. Alginic acid cell entrapment: a novel method for measuring in vivo macrophage cholesterol homeostasis

    PubMed Central

    Sontag, Timothy J.; Chellan, Bijoy; Bhanvadia, Clarissa V.; Getz, Godfrey S.; Reardon, Catherine A.

    2015-01-01

    Macrophage conversion to atherosclerotic foam cells is partly due to the balance of uptake and efflux of cholesterol. Cholesterol efflux from cells by HDL and its apoproteins for subsequent hepatic elimination is known as reverse cholesterol transport. Numerous methods have been developed to measure in vivo macrophage cholesterol efflux. Most methods do not allow for macrophage recovery for analysis of changes in cellular cholesterol status. We describe a novel method for measuring cellular cholesterol balance using the in vivo entrapment of macrophages in alginate, which retains incorporated cells while being permeable to lipoproteins. Recipient mice were injected subcutaneously with CaCl2 forming a bubble into which a macrophage/alginate suspension was injected, entrapping the macrophages. Cells were recovered after 24 h. Cellular free and esterified cholesterol mass were determined enzymatically and normalized to cellular protein. Both normal and cholesterol loaded macrophages undergo measureable changes in cell cholesterol when injected into WT and apoA-I-, LDL-receptor-, or apoE-deficient mice. Cellular cholesterol balance is dependent on initial cellular cholesterol status, macrophage cholesterol transporter expression, and apolipoprotein deficiency. Alginate entrapment allows for the in vivo measurement of macrophage cholesterol homeostasis and is a novel platform for investigating the role of genetics and therapeutic interventions in atherogenesis. PMID:25465389

  18. Chlamydia trachomatis growth depends on eukaryotic cholesterol esterification and is affected by Acyl-CoA:cholesterol acyltransferase inhibition

    PubMed Central

    Peters, Jan; Byrne, Gerald I.

    2015-01-01

    Chlamydia trachomatis is auxotrophic for a variety of essential metabolites. Inhibitors that interrupt host cell catabolism may inhibit chlamydial growth and reveal Chlamydia metabolite requirements. We used the known indoleamine-2,3-dioxygenase (IDO)-inhibitor 4-phenyl imidazole (4-PI) to reverse Interferon (IFN)-γ-induced chlamydial growth inhibition. However, at elevated inhibitor concentrations chlamydial growth was arrested even in the absence of IFN-γ. Since 4-PI is known to interfere with cholesterol metabolism, the effect of cholesterol add-back was tested. Chlamydia growth was restored in the presence of cholesterol in serum-containing, but not serum-free medium suggesting that cholesterol and other serum components are required for growth recovery. When serum factors were tested, either cholesteryl linoleate or the combination of cholesterol and linoleic acid restored chlamydial growth. However, growth was not restored when either cholesterol or linoleic acid were added alone, suggesting that the production of cholesteryl esters from cholesterol and fatty acids was affected by 4-PI treatment. In eukaryotic cells, the enzyme Acyl-CoA:cholesterol acyltransferase (ACAT) catalyzes the production of cholesteryl esters. When HeLa cells were treated with the ACAT-specific inhibitor 4-hydroxycinnamicacid amide C. trachomatis growth was interrupted, but was restored by the addition of cholesteryl linoleate, suggesting that ACAT activity is necessary for intracellular Chlamydia growth. PMID:25883118

  19. Evaluation of the high density lipoprotein cholesterol protective effect against atherogenesis in rabbits fed cholesterol supplemented diets.

    PubMed

    Neuman, M P; Neuman, J; Mosso, H E; Ibarra, R; Rodríguez, S; Scavini, L M; Achille, A; Pecorini, V

    1990-01-01

    Plasma high density lipoprotein cholesterol (HDL-C) was evaluated in 15 rabbits fed cholesterol supplemented diets to assess its protective effect on the atherogenic process. From a baseline level of 29 +/- 11 mg/dl (mean +/- SD) the maximum attained for HDL-C was twofold in only three rabbits, whereas total cholesterol (TC) increased 20 fold. Plasma TC/HDL-C ratio rose 80 fold from the baseline (2.4 +/- 0.9) and it was the best parameter that correlated with aortic cholesterol accumulation and pathological scores. Aortic TC content increased 10 fold and free cholesterol/cholesterol esters ratio decreased 20 fold. Pathological studies showed that aortic lesion scores rose from 0 to 4. It can be concluded that the high correlations obtained when TC/HDL-C ratio was plotted against both aortic cholesterol deposition and lesion scores, support the theory of the reverse cholesterol transport and the effectiveness of this index to predict the degree of the atherogenic process. On the other hand, the poor response of HDL-C in this model encourages future research using drugs to increase this parameter in order to normalize TC/HDL-C ratio and avoid lesions.

  20. Cholesterol biosynthesis in normocholesterolemic patients after cholesterol removal by plasmapheresis.

    PubMed

    Feillet, C; Cristol, J P; Michel, F; Kanouni, T; Navarro, R; Navarro, M; Monnier, L; Descomps, B

    1997-01-01

    Plasmapheresis and low-density lipoprotein (LDL)-apheresis are recognized procedures for the treatment of hyperlipidemia resistant to diet and lipid-lowering drugs and provide information on cholesterol synthesis in hypercholesterolemic patients. However, cholesterol synthesis after acute cholesterol removal from plasma has never been investigated in normocholesterolemic patients. In this study, cholesterol synthesis was evaluated in three normocholesterolemic patients by determination of plasma lathosterol, lathosterol-to-cholesterol ratio, and plasma mevalonic acid. In a short-term kinetic study, samples were collected before and after plasmapheresis and every 6 hours during 24 hours. In the second part of the study, cholesterol synthesis was evaluated daily for 3 days. In normocholesterolemic patients, cholesterol returns to basal levels in 3 days. However, cholesterol removal did not result in a significant increase in lathosterol-to-cholesterol ratio or in plasma mevalonic acid, despite a slight increase in lathosterol. In contrast, when repeated plasma exchanges induced a dramatic hypocholesterolemia (< 1 mmol/liter), an acute but transient stimulation of cholesterol synthesis was observed (lathosterol/cholesterol ratio and MVA, respectively, increase from 8.2 to 22.3 and from 28 nmol/liter to 98 nmol/liter). This study shows that cholesterol synthesis is not stimulated by plasmapheresis in normocholesterolemic patients but is enhanced in dramatic hypocholesterolemic patients (< 1 mmol/liter).

  1. Indirect microbial detection

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.

    1980-01-01

    Indirect method for detection of microbial growth utilizes flow of charged particles across barrier that physically separated growing cells from electrodes and measures resulting difference in potential between two platinum electrodes. Technique allows simplified noncontact monitoring of all growth in highly infectious cultures or in critical biochemical studies.

  2. Indirect decentralized repetitive control

    NASA Technical Reports Server (NTRS)

    Lee, Soo Cheol; Longman, Richard W.

    1993-01-01

    Learning control refers to controllers that learn to improve their performance at executing a given task, based on experience performing this specific task. In a previous work, the authors presented a theory of indirect decentralized learning control based on use of indirect adaptive control concepts employing simultaneous identification and control. This paper extends these results to apply to the indirect repetitive control problem in which a periodic (i.e., repetitive) command is given to a control system. Decentralized indirect repetitive control algorithms are presented that have guaranteed convergence to zero tracking error under very general conditions. The original motivation of the repetitive control and learning control fields was learning in robots doing repetitive tasks such as on an assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the desired trajectory. Decentralized repetitive control is natural for this application because the feedback control for link rotations is normally implemented in a decentralized manner, treating each link as if it is independent of the other links.

  3. RhoA and p38 MAPK mediate apoptosis induced by cellular cholesterol depletion.

    PubMed

    Calleros, Laura; Lasa, Marina; Rodríguez-Alvarez, Francisco J; Toro, María J; Chiloeches, Antonio

    2006-07-01

    Cholesterol is essential for cell viability, and homeostasis of cellular cholesterol is crucial to various cell functions. Here we examined the effect of cholesterol depletion on apoptosis and the mechanisms underlying this effect in NIH3T3 cells. We show that chronic cholesterol depletion achieved with lipoprotein-deficient serum (LPDS) and 25-hydroxycholesterol (25-HC) treatment resulted in a significant increase in cellular apoptosis and caspase-3 activation. This effect is not due to a deficiency of nonsterol isoprenoids, intermediate metabolites of the cholesterol biosynthetic pathway, but rather to low cholesterol levels, since addition of cholesterol together with LPDS and 25-HC nearly abolished apoptosis, whereas addition of farnesyl pyrophosphate or geranylgeranyl-pyrophosphate did not reverse the cell viability loss induced by LPDS plus 25-HC treatment. These effects were accompanied by an increase in ERK, JNK and p38 MAPK activity. However, only the inhibition of p38 MAPK with the specific inhibitor SB203580 or the overexpression of a kinase defective MKK6 resulted in a significant decrease in apoptosis and caspase-3 cleavage induced by cholesterol depletion. Furthermore, LPDS plus 25-HC increased RhoA activity, and this effect was reversed by addition of exogenous cholesterol. Finally, overexpression of the dominant negative N19RhoA inhibited p38 MAPK phosphorylation and apoptosis induced by low cholesterol levels. Together, our results demonstrate that cholesterol depletion induces apoptosis through a RhoA- and p38 MAPK-dependent mechanism.

  4. Cholesterol transformations during heat treatment.

    PubMed

    Derewiaka, D; Molińska née Sosińska, E

    2015-03-15

    The aim of the study was to characterise products of cholesterol standard changes during thermal processing. Cholesterol was heated at 120°C, 150°C, 180°C and 220°C from 30 to 180 min. The highest losses of cholesterol content were found during thermal processing at 220°C, whereas the highest content of cholesterol oxidation products was observed at temperature of 150°C. The production of volatile compounds was stimulated by the increase of temperature. Treatment of cholesterol at higher temperatures i.e. 180°C and 220°C led to the formation of polymers and other products e.g. cholestadienes and fragmented cholesterol molecules. Further studies are required to identify the structure of cholesterol oligomers and to establish volatile compounds, which are markers of cholesterol transformations, mainly oxidation.

  5. What Causes High Blood Cholesterol?

    MedlinePlus

    ... this page from the NHLBI on Twitter. What Causes High Blood Cholesterol? Many factors can affect the ... in families. An inherited condition called familial hypercholesterolemia causes very high LDL cholesterol. (“Inherited” means the condition ...

  6. Intestinal Farnesoid X Receptor Controls Transintestinal Cholesterol Excretion in Mice.

    PubMed

    de Boer, Jan Freark; Schonewille, Marleen; Boesjes, Marije; Wolters, Henk; Bloks, Vincent W; Bos, Trijnie; van Dijk, Theo H; Jurdzinski, Angelika; Boverhof, Renze; Wolters, Justina C; Kuivenhoven, Jan A; van Deursen, Jan M; Oude Elferink, Ronald P J; Moschetta, Antonio; Kremoser, Claus; Verkade, Henkjan J; Kuipers, Folkert; Groen, Albert K

    2017-04-01

    The role of the intestine in the maintenance of cholesterol homeostasis increasingly is recognized. Fecal excretion of cholesterol is the last step in the atheroprotective reverse cholesterol transport pathway, to which biliary and transintestinal cholesterol excretion (TICE) contribute. The mechanisms controlling the flux of cholesterol through the TICE pathway, however, are poorly understood. We aimed to identify mechanisms that regulate and stimulate TICE. We performed studies with C57Bl/6J mice, as well as with mice with intestine-specific knockout of the farnesoid X receptor (FXR), mice that express an FXR transgene specifically in the intestine, and ABCG8-knockout mice. Mice were fed a control diet or a diet supplemented with the FXR agonist PX20606, with or without the cholesterol absorption inhibitor ezetimibe. Some mice with intestine-specific knockout of FXR were given daily injections of fibroblast growth factor (FGF)19. To determine fractional cholesterol absorption, mice were given intravenous injections of cholesterol D5 and oral cholesterol D7. Mice were given (13)C-acetate in drinking water for measurement of cholesterol synthesis. Bile cannulations were performed and biliary cholesterol secretion rates were assessed. In a separate set of experiments, bile ducts of male Wistar rats were exteriorized, allowing replacement of endogenous bile by a model bile. In mice, we found TICE to be regulated by intestinal FXR via induction of its target gene Fgf15 (FGF19 in rats and human beings). Stimulation of this pathway caused mice to excrete up to 60% of their total cholesterol content each day. PX20606 and FGF19 each increased the ratio of muricholate:cholate in bile, inducing a more hydrophilic bile salt pool. The altered bile salt pool stimulated robust secretion of cholesterol into the intestinal lumen via the sterol-exporting heterodimer adenosine triphosphate binding cassette subfamily G member 5/8 (ABCG5/G8). Of note, the increase in TICE induced by

  7. Recombinant human serum amyloid A (apoSAAp) binds cholesterol and modulates cholesterol flux.

    PubMed

    Liang, J S; Sipe, J D

    1995-01-01

    During acute inflammation, the serum amyloid A (apoSAA) proteins apoSAA1 and apoSAA2 are transiently associated with high density lipoproteins (HDL) in concentrations of as much as 1000-fold more than their concentrations during homeostasis; however, their effect on HDL function is unclear. Recombinant apoSAAp, a hybrid of the closely related human apoSAA1 and apoSAA2 isoforms, was found to exhibit a high affinity for cholesterol. The adsorption of apoSAAp to polystyrene microtiter wells at physiological pH, temperature, and salt concentration was inhibited and reversed by cholesterol. ApoSAAp, to a greater extent than apoA-I, albumin, or fetal bovine serum, enhanced diffusion of cholesterol from HDL across a membrane that retained molecules > 3.5 kDa. Cholesterol from 25 nM to 125 microM inhibited binding of [3H]cholesterol to 167 nM apoSAAp. A cholesterol binding assay was developed to determine the dissociation constant for binding of [3H]cholesterol to apoSAAp; Kd = 1.7 +/- 0.3 x 10(-7) M and the maximum binding capacity (Bmax) is 1.1 +/- 0.1 mol/mol. After binding cholesterol, the apparent size of apoSAAp as determined by gel filtration on Sephacryl S-100 was increased from 12 to 23 kDa. ApoSAAp enhanced free [14C]cholesterol uptake from tissue culture medium by HepG2 cells, an effect that was dose dependent and blocked by polyclonal antibodies to human apoSAA1 and apoSAA2. ApoSAAp, unlike apoA-I, was taken up from serum-free medium by HepG2 cells and appeared to be degraded by cell-associated enzymes. Unlike peritoneal exudate cells, human HepG2 hepatoma cells do not secrete an enzyme that degrades apoSAAp. These results suggest that apoSAA can potentially serve as a transient cholesterol-binding protein.

  8. Cholesterol excretion and colon cancer.

    PubMed

    Broitman, S A

    1981-09-01

    Populations consuming diets high in fat and cholesterol exhibit a greater incidence of colon cancer than those consuming less fat and cholesterol. Lowering elevated serum cholesterol levels experimentally or clinically is associated with increased large-bowel tumorigenesis. Thus, cholesterol lost to the gut, either dietary or endogenously synthesized, appears to have a role in large-bowel cancer. Whether the effect(s) is mediated by increases in fecal bile acid excretion or some other mechanism is not clear.

  9. Facts about Blood Cholesterol. Revised.

    ERIC Educational Resources Information Center

    National Heart, Lung, and Blood Inst. (DHHS/NIH), Bethesda, MD.

    This fact sheet offers information on blood cholesterol and its implications for a healthy heart. An explanation is given of the known facts about cholesterol and how it affects the body. A chart is provided that lists various foods and their fat and cholesterol contents. (JD)

  10. How to Get Your Cholesterol Tested

    MedlinePlus

    ... Thromboembolism Aortic Aneurysm More How To Get Your Cholesterol Tested Updated:Apr 3,2017 Cholesterol plays a ... factors for heart disease and stroke . How is cholesterol tested? A cholesterol screening measures your level of ...

  11. Indirect resin composites

    PubMed Central

    Nandini, Suresh

    2010-01-01

    Aesthetic dentistry continues to evolve through innovations in bonding agents, restorative materials, and conservative preparation techniques. The use of direct composite restoration in posterior teeth is limited to relatively small cavities due to polymerization stresses. Indirect composites offer an esthetic alternative to ceramics for posterior teeth. This review article focuses on the material aspect of the newer generation of composites. This review was based on a PubMed database search which we limited to peer-reviewed articles in English that were published between 1990 and 2010 in dental journals. The key words used were ‘indirect resin composites,’ composite inlays,’ and ‘fiber-reinforced composites.’ PMID:21217945

  12. Cholesterol crystal embolism (atheroembolism)

    PubMed Central

    VENTURELLI, CHIARA; JEANNIN, GUIDO; SOTTINI, LAURA; DALLERA, NADIA; SCOLARI, FRANCESCO

    2006-01-01

    Cholesterol crystal embolism, known as atheroembolic disease, is caused by showers of cholesterol crystals from an atherosclerotic plaque that occludes small arteries. Embolization can occur spontaneously or as an iatrogenic complication from an invasive vascular procedure (angiography or vascular surgery) and after anticoagulant therapy. The atheroembolism can give rise to different degrees of renal impairment. Some patients show a moderate loss of renal function, others severe renal failure requiring dialysis. Renal outcome can be variable: some patients deteriorate or remain on dialysis, some improve and some remain with chronic renal impairment. Clinically, three types of atheroembolic renal disease have been described: acute, subacute or chronic. More frequently a progressive loss of renal function occurs over weeks. Atheroembolization can involve the skin, gastrointestinal system and central nervous system. The diagnosis is difficult and controversial for the protean extrarenal manifestations. In the past, the diagnosis was often made post-mortem. In the last 10 yrs, awareness of atheroembolic renal disease has improved. The correct diagnosis requires the clinician to be alert. The typical patient is a white male aged >60 yrs with a history of hypertension, smoking and arterial disease. The presence of a classic triad (precipitating event, renal failure and peripheral cholesterol crystal embolization) suggests the diagnosis. This can be confirmed by a biopsy of the target organs. A specific treatment is lacking; however, it is an important diagnosis to make because an aggressive therapeutic approach can be associated with a more favorable clinical outcome. PMID:21977265

  13. Cholesterol crystal embolism (atheroembolism).

    PubMed

    Venturelli, Chiara; Jeannin, Guido; Sottini, Laura; Dallera, Nadia; Scolari, Francesco

    2006-01-01

    Cholesterol crystal embolism, known as atheroembolic disease, is caused by showers of cholesterol crystals from an atherosclerotic plaque that occludes small arteries. Embolization can occur spontaneously or as an iatrogenic complication from an invasive vascular procedure (angiography or vascular surgery) and after anticoagulant therapy. The atheroembolism can give rise to different degrees of renal impairment. Some patients show a moderate loss of renal function, others severe renal failure requiring dialysis. Renal outcome can be variable: some patients deteriorate or remain on dialysis, some improve and some remain with chronic renal impairment. Clinically, three types of atheroembolic renal disease have been described: acute, subacute or chronic. More frequently a progressive loss of renal function occurs over weeks. Atheroembolization can involve the skin, gastrointestinal system and central nervous system. The diagnosis is difficult and controversial for the protean extrarenal manifestations. In the past, the diagnosis was often made post-mortem. In the last 10 yrs, awareness of atheroembolic renal disease has improved. The correct diagnosis requires the clinician to be alert. The typical patient is a white male aged >60 yrs with a history of hypertension, smoking and arterial disease. The presence of a classic triad (precipitating event, renal failure and peripheral cholesterol crystal embolization) suggests the diagnosis. This can be confirmed by a biopsy of the target organs. A specific treatment is lacking; however, it is an important diagnosis to make because an aggressive therapeutic approach can be associated with a more favorable clinical outcome.

  14. Naturally-occurring phytosterols in the usual diet influence cholesterol metabolism in healthy subjects.

    PubMed

    Sanclemente, T; Marques-Lopes, I; Fajó-Pascual, M; Cofán, M; Jarauta, E; Ros, E; Puzo, J; García-Otín, A L

    2012-10-01

    Modulation of cholesterol absorption is potentially an effective way of lowering blood cholesterol levels and decreasing inherent cardiovascular risk in the general population. It is well established that cholesterol absorption efficiency can be modified by the intake of foods enriched with gram-doses of phytosterols, but little is known about the effects of phytosterols in the usual diet, even though moderate doses have been reported to affect whole-body cholesterol metabolism. A way to indirectly measure cholesterol synthesis and absorption rates is by quantification of serum non-cholesterol sterols. The aim of this study was to investigate the role of naturally occurring phytosterol intake on cholesterol absorption and serum cholesterol concentrations in a Spanish free-living population. A total of 85 healthy volunteers were studied regarding their dietary habits (using a validated food frequency questionnaire), lipid profile and surrogate markers of cholesterol metabolism. Subjects were classified into tertiles of total phytosterol intake, and differences in lipid profile and markers of cholesterol metabolism were assessed by multivariate linear regression models adjusted for various confounders. The estimated daily intake of phytosterols and cholesterol was 489 (median) and 513 (mean) mg, respectively. Both serum low-density lipoprotein (LDL)-cholesterol concentration and sitosterol-to-cholesterol ratio adjusted by sitosterol intake (a surrogate marker of intestinal cholesterol absorption) decreased significantly (p < 0.05, both) across tertiles of phytosterol intake. Moderate doses of phytosterols in the habitual diet might have a protective effect on the lipid profile via decreasing cholesterol absorption. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. HDL Cholesterol Efflux Capacity: Cardiovascular Risk Factor and Potential Therapeutic Target.

    PubMed

    Bhatt, Anish; Rohatgi, Anand

    2016-01-01

    Low high-density lipoprotein cholesterol (HDL-C) levels are associated with incident cardiovascular events; however, many therapies targeting increases in HDL-C have failed to show consistent clinical benefit. Thus, focus has recently shifted toward measuring high-density lipoprotein (HDL) function. HDL is the key mediator of reverse cholesterol transport, the process of cholesterol extraction from foam cells, and eventual excretion into the biliary system. Cholesterol efflux from peripheral macrophages to HDL particles has been associated with atherosclerosis in both animals and humans. We review the mechanism of cholesterol efflux and the emerging evidence on the association between cholesterol efflux capacity and cardiovascular disease in human studies. We also focus on the completed and ongoing trials of novel therapies targeting different aspects of HDL cholesterol efflux.

  16. Brain-derived neurotrophic factor regulates cholesterol metabolism for synapse development.

    PubMed

    Suzuki, Shingo; Kiyosue, Kazuyuki; Hazama, Shunsuke; Ogura, Akihiko; Kashihara, Megumi; Hara, Tomoko; Koshimizu, Hisatsugu; Kojima, Masami

    2007-06-13

    Brain-derived neurotrophic factor (BDNF) exerts multiple biological functions in the CNS. Although BDNF can control transcription and protein synthesis, it still remains open to question whether BDNF regulates lipid biosynthesis. Here we show that BDNF elicits cholesterol biosynthesis in cultured cortical and hippocampal neurons. Importantly, BDNF elicited cholesterol synthesis in neurons, but not in glial cells. Quantitative reverse transcriptase-PCR revealed that BDNF stimulated the transcription of enzymes in the cholesterol biosynthetic pathway. BDNF-induced cholesterol increases were blocked by specific inhibitors of cholesterol synthesis, mevastatin and zaragozic acid, suggesting that BDNF stimulates de novo synthesis of cholesterol rather than the incorporation of extracellular cholesterol. Because cholesterol is a major component of lipid rafts, we investigated whether BDNF would increase the cholesterol content in lipid rafts or nonraft membrane domains. Interestingly, the BDNF-mediated increase in cholesterol occurred in rafts, but not in nonrafts, suggesting that BDNF promotes the development of neuronal lipid rafts. Consistent with this notion, BDNF raised the level of the lipid raft marker protein caveolin-2 in rafts. Remarkably, BDNF increased the levels of presynaptic proteins in lipid rafts, but not in nonrafts. An electrophysiological study revealed that BDNF-dependent cholesterol biosynthesis plays an important role for the development of a readily releasable pool of synaptic vesicles. Together, these results suggest a novel role for BDNF in cholesterol metabolism and synapse development.

  17. Cholesterol influences potassium currents in inner hair cells isolated from guinea pig cochlea.

    PubMed

    Kimitsuki, Takashi

    2017-02-01

    There is a correlation between serum hyperlipidemia and hearing loss. Cholesterol is an integral component of the cell membrane and regulates the activity of ion channels in the lipid bilayer. The aim of this study was to investigate the effects of cholesterol on the potassium currents in IHCs by using the cholesterol-depleting drug, MβCD, and water-soluble cholesterol. IHCs were acutely isolated from a mature guinea-pig cochlea and potassium currents were recorded. MβCD and water-soluble cholesterol were applied to IHCs under pressure puff pipettes. IHCs showed outwardly rectifying currents (IK,f and IK,s) in response to depolarizing voltage pulses, with only a slight inward current (IK,n) when hyperpolarized. In 10mM MβCD solutions, the amplitude of outward K currents reversely decreased; however, fast activation kinetics was preserved. In contrast, in solution of 1mM water-soluble cholesterol, the amplitude of outward K currents reversely increased. At the membrane potential of +110mV, relative conductances were 0.87±0.07 and 1.18±0.11 in MβCD solutions and cholesterol solutions, respectively. The amplitude of K currents in isolated IHCs was reversely changed by cholesterol-depleting drug and water-soluble cholesterol. These results demonstrated the possibility of the involvement of IHC function in hyperlipidemia-induced inner ear disorders. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Introducing inducible fluorescent split cholesterol oxidase to mammalian cells.

    PubMed

    Chernov, Konstantin G; Neuvonen, Maarit; Brock, Ivonne; Ikonen, Elina; Verkhusha, Vladislav V

    2017-05-26

    Cholesterol oxidase (COase) is a bacterial enzyme catalyzing the first step in the biodegradation of cholesterol. COase is an important biotechnological tool for clinical diagnostics and production of steroid drugs and insecticides. It is also used for tracking intracellular cholesterol; however, its utility is limited by the lack of an efficient temporal control of its activity. To overcome this we have developed a regulatable fragment complementation system for COase cloned from Chromobacterium sp. The enzyme was split into two moieties that were fused to FKBP (FK506-binding protein) and FRB (rapamycin-binding domain) pair and split GFP fragments. The addition of rapamycin reconstituted a fluorescent enzyme, termed split GFP-COase, the fluorescence level of which correlated with its oxidation activity. A rapid decrease of cellular cholesterol induced by intracellular expression of the split GFP-COase promoted the dissociation of a cholesterol biosensor D4H from the plasma membrane. The process was reversible as upon rapamycin removal, the split GFP-COase fluorescence was lost, and cellular cholesterol levels returned to normal. These data demonstrate that the split GFP-COase provides a novel tool to manipulate cholesterol in mammalian cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Sphingolipid domains in the plasma membranes of fibroblasts are not enriched with cholesterol

    SciTech Connect

    Frisz, Jessica F.; Klitzing, Haley A.; Lou, Kaiyan; Hutcheon, Ian D.; Weber, Peter K.; Zimmerberg, Joshua; Kraft, Mary L.

    2013-04-22

    The plasma membranes of mammalian cells are widely expected to contain domains that are enriched with cholesterol and sphingolipids. In this work, we have used high-resolution secondary ion mass spectrometry to directly map the distributions of isotope-labeled cholesterol and sphingolipids in the plasma membranes of intact fibroblast cells. Although acute cholesterol depletion reduced sphingolipid domain abundance, cholesterol was evenly distributed throughout the plasma membrane and was not enriched within the sphingolipid domains. As a result, we rule out favorable cholesterol-sphingolipid interactions as dictating plasma membrane organization in fibroblast cells. Because the sphingolipid domains are disrupted by drugs that depolymerize the cells actin cytoskeleton, cholesterol must instead affect the sphingolipid organization via an indirect mechanism that involves the cytoskeleton.

  20. Sphingolipid domains in the plasma membranes of fibroblasts are not enriched with cholesterol

    DOE PAGES

    Frisz, Jessica F.; Klitzing, Haley A.; Lou, Kaiyan; ...

    2013-04-22

    The plasma membranes of mammalian cells are widely expected to contain domains that are enriched with cholesterol and sphingolipids. In this work, we have used high-resolution secondary ion mass spectrometry to directly map the distributions of isotope-labeled cholesterol and sphingolipids in the plasma membranes of intact fibroblast cells. Although acute cholesterol depletion reduced sphingolipid domain abundance, cholesterol was evenly distributed throughout the plasma membrane and was not enriched within the sphingolipid domains. As a result, we rule out favorable cholesterol-sphingolipid interactions as dictating plasma membrane organization in fibroblast cells. Because the sphingolipid domains are disrupted by drugs that depolymerize themore » cells actin cytoskeleton, cholesterol must instead affect the sphingolipid organization via an indirect mechanism that involves the cytoskeleton.« less

  1. Sphingolipid Domains in the Plasma Membranes of Fibroblasts Are Not Enriched with Cholesterol*

    PubMed Central

    Frisz, Jessica F.; Klitzing, Haley A.; Lou, Kaiyan; Hutcheon, Ian D.; Weber, Peter K.; Zimmerberg, Joshua; Kraft, Mary L.

    2013-01-01

    The plasma membranes of mammalian cells are widely expected to contain domains that are enriched with cholesterol and sphingolipids. In this work, we have used high-resolution secondary ion mass spectrometry to directly map the distributions of isotope-labeled cholesterol and sphingolipids in the plasma membranes of intact fibroblast cells. Although acute cholesterol depletion reduced sphingolipid domain abundance, cholesterol was evenly distributed throughout the plasma membrane and was not enriched within the sphingolipid domains. Thus, we rule out favorable cholesterol-sphingolipid interactions as dictating plasma membrane organization in fibroblast cells. Because the sphingolipid domains are disrupted by drugs that depolymerize the cells actin cytoskeleton, cholesterol must instead affect the sphingolipid organization via an indirect mechanism that involves the cytoskeleton. PMID:23609440

  2. Cholesterol-dependent Conformational Plasticity in GPCR Dimers

    PubMed Central

    Prasanna, Xavier; Sengupta, Durba; Chattopadhyay, Amitabha

    2016-01-01

    The organization and function of the serotonin1A receptor, an important member of the GPCR family, have been shown to be cholesterol-dependent, although the molecular mechanism is not clear. We performed a comprehensive structural and dynamic analysis of dimerization of the serotonin1A receptor by coarse-grain molecular dynamics simulations totaling 3.6 ms to explore the molecular details of its cholesterol-dependent association. A major finding is that the plasticity and flexibility of the receptor dimers increase with increased cholesterol concentration. In particular, a dimer interface formed by transmembrane helices I-I was found to be sensitive to cholesterol. The modulation of dimer interface appears to arise from a combination of direct cholesterol occupancy and indirect membrane effects. Interestingly, the presence of cholesterol at the dimer interface is correlated with increased dimer plasticity and flexibility. These results represent an important step in characterizing the molecular interactions in GPCR organization with potential relevance to therapeutic interventions. PMID:27535203

  3. Melanocortin 1 Receptor Signaling Regulates Cholesterol Transport in Macrophages.

    PubMed

    Rinne, Petteri; Rami, Martina; Nuutinen, Salla; Santovito, Donato; van der Vorst, Emiel P C; Guillamat-Prats, Raquel; Lyytikäinen, Leo-Pekka; Raitoharju, Emma; Oksala, Niku; Ring, Larisa; Cai, Minying; Hruby, Victor J; Lehtimäki, Terho; Weber, Christian; Steffens, Sabine

    2017-07-04

    The melanocortin 1 receptor (MC1-R) is expressed by monocytes and macrophages, where it exerts anti-inflammatory actions on stimulation with its natural ligand α-melanocyte-stimulating hormone. The present study was designed to investigate the specific role of MC1-R in the context of atherosclerosis and possible regulatory pathways of MC1-R beyond anti-inflammation. Human and mouse atherosclerotic samples and primary mouse macrophages were used to study the regulatory functions of MC1-R. The impact of pharmacological MC1-R activation on atherosclerosis was assessed in apolipoprotein E-deficient mice. Characterization of human and mouse atherosclerotic plaques revealed that MC1-R expression localizes in lesional macrophages and is significantly associated with the ATP-binding cassette transporters ABCA1 and ABCG1, which are responsible for initiating reverse cholesterol transport. Using bone marrow-derived macrophages, we observed that α-melanocyte-stimulating hormone and selective MC1-R agonists similarly promoted cholesterol efflux, which is a counterregulatory mechanism against foam cell formation. Mechanistically, MC1-R activation upregulated the levels of ABCA1 and ABCG1. These effects were accompanied by a reduction in cell surface CD36 expression and in cholesterol uptake, further protecting macrophages from excessive lipid accumulation. Conversely, macrophages deficient in functional MC1-R displayed a phenotype with impaired efflux and enhanced uptake of cholesterol. Pharmacological targeting of MC1-R in atherosclerotic apolipoprotein E-deficient mice reduced plasma cholesterol levels and aortic CD36 expression and increased plaque ABCG1 expression and signs of plaque stability. Our findings identify a novel role for MC1-R in macrophage cholesterol transport. Activation of MC1-R confers protection against macrophage foam cell formation through a dual mechanism: It prevents cholesterol uptake while concomitantly promoting ABCA1- and ABCG1-mediated reverse

  4. Activation of the Liver X Receptor Stimulates Trans-intestinal Excretion of Plasma Cholesterol*

    PubMed Central

    van der Veen, Jelske N.; van Dijk, Theo H.; Vrins, Carlos L. J.; van Meer, Hester; Havinga, Rick; Bijsterveld, Klaas; Tietge, Uwe J. F.; Groen, Albert K.; Kuipers, Folkert

    2009-01-01

    Recent studies have indicated that direct intestinal secretion of plasma cholesterol significantly contributes to fecal neutral sterol loss in mice. The physiological relevance of this novel route, which represents a part of the reverse cholesterol transport pathway, has not been directly established in vivo as yet. We have developed a method to quantify the fractional and absolute contributions of several cholesterol fluxes to total fecal neutral sterol loss in vivo in mice, by assessing the kinetics of orally and intravenously administered stable isotopically labeled cholesterol combined with an isotopic approach to assess the fate of de novo synthesized cholesterol. Our results show that trans-intestinal cholesterol excretion significantly contributes to removal of blood-derived free cholesterol in C57Bl6/J mice (33% of 231 μmol/kg/day) and that pharmacological activation of LXR with T0901317 strongly stimulates this pathway (63% of 706 μmol/kg/day). Trans-intestinal cholesterol excretion is impaired in mice lacking Abcg5 (−4%), suggesting that the cholesterol transporting Abcg5/Abcg8 heterodimer is involved in this pathway. Our data demonstrate that intestinal excretion represents a quantitatively important route for fecal removal of neutral sterols independent of biliary secretion in mice. This pathway is sensitive to pharmacological activation of the LXR system. These data support the concept that the intestine substantially contributes to reverse cholesterol transport. PMID:19416968

  5. Serum total and HDL cholesterol and risk of prostate cancer.

    PubMed

    Mondul, Alison M; Weinstein, Stephanie J; Virtamo, Jarmo; Albanes, Demetrius

    2011-11-01

    Studies suggest a decreased risk of high-grade prostate cancer in men with lower circulating total cholesterol and that statins may protect against aggressive disease. Confirmation in additional populations and examination of associations for lipoprotein subfractions are needed. We examined prostate cancer risk and serum total and HDL cholesterol in the ATBC Study cohort (n = 29,093). Cox proportional hazards models were used to estimate the relative risk of total (n = 2,041), non-aggressive (n = 829), aggressive (n = 461), advanced (n = 412), and high-grade (n = 231) prostate cancer by categories of total and HDL cholesterol. After excluding the first 10 years of follow-up, men with higher serum total cholesterol were at increased risk of overall (≥240 vs. <200 mg/dl: HR = 1.22, 95% CI 1.03-1.44, p-trend = 0.01) and advanced (≥240 vs. <200 mg/dl: HR = 1.85, 95% CI 1.13-3.03, p-trend = 0.05) prostate cancer. Higher HDL cholesterol was suggestively associated with a decreased risk of prostate cancer regardless of stage or grade. In this population of smokers, high serum total cholesterol was associated with higher risk of advanced prostate cancer, and high HDL cholesterol suggestively reduced the risk of prostate cancer overall. These results support previous studies and, indirectly, support the hypothesis that statins may reduce the risk of advanced prostate cancer by lowering cholesterol.

  6. Retrograde cholesterol transport in the human Caco-2/TC7 cell line: a model to study trans-intestinal cholesterol excretion in atherogenic and diabetic dyslipidemia.

    PubMed

    Dugardin, Camille; Briand, Olivier; Touche, Véronique; Schonewille, Marleen; Moreau, François; Le May, Cédric; Groen, Albert K; Staels, Bart; Lestavel, Sophie

    2017-02-01

    The dyslipidemia associated with type 2 diabetes is a major risk factor for the development of atherosclerosis. Trans-intestinal cholesterol excretion (TICE) has recently been shown to contribute, together with the classical hepatobiliary route, to fecal cholesterol excretion and cholesterol homeostasis. The aim of this study was to develop an in vitro cell model to investigate enterocyte-related processes of TICE. Differentiated Caco-2/TC7 cells were grown on transwells and incubated basolaterally (blood side) with human plasma and apically (luminal side) with lipid micelles. Radioactive and fluorescent cholesterol tracers were used to investigate cholesterol uptake at the basolateral membrane, intracellular distribution and apical excretion. Our results show that cholesterol is taken up at the basolateral membrane, accumulates intracellularly as lipid droplets and undergoes a cholesterol acceptor-facilitated and progressive excretion through the apical membrane of enterocytes. The overall process is abolished at 4 °C, suggesting a biologically active phenomenon. Moreover, this trans-enterocytic retrograde cholesterol transport displays some TICE features like modulation by PCSK9 and an ABCB1 inhibitor. Finally, we highlight the involvement of microtubules in the transport of plasma cholesterol from basolateral to apical pole of enterocytes. The human Caco-2/TC7 cell line appears a good in vitro model to investigate the enterocytic molecular mechanisms of TICE, which may help to identify intestinal molecular targets to enhance reverse cholesterol transport and fight against dyslipidemia.

  7. Bioechnology of indirect liquefaction

    SciTech Connect

    Datta, R.; Jain, M.K.; Worden, R.M.; Grethlein, A.J.; Soni, B.; Zeikus, J.G.; Grethlein, H.

    1990-05-07

    The project on biotechnology of indirect liquefaction was focused on conversion of coal derived synthesis gas to liquid fuels using a two-stage, acidogenic and solventogenic, anaerobic bioconversion process. The acidogenic fermentation used a novel and versatile organism, Butyribacterium methylotrophicum, which was fully capable of using CO as the sole carbon and energy source for organic acid production. In extended batch CO fermentations the organism was induced to produce butyrate at the expense of acetate at low pH values. Long-term, steady-state operation was achieved during continuous CO fermentations with this organism, and at low pH values (a pH of 6.0 or less) minor amounts of butanol and ethanol were produced. During continuous, steady-state fermentations of CO with cell recycle, concentrations of mixed acids and alcohols were achieved (approximately 12 g/l and 2 g/l, respectively) which are high enough for efficient conversion in stage two of the indirect liquefaction process. The metabolic pathway to produce 4-carbon alcohols from CO was a novel discovery and is believed to be unique to our CO strain of B. methylotrophicum. In the solventogenic phase, the parent strain ATCC 4259 of Clostridium acetobutylicum was mutagenized using nitrosoguanidine and ethyl methane sulfonate. The E-604 mutant strain of Clostridium acetobutylicum showed improved characteristics as compared to parent strain ATCC 4259 in batch fermentation of carbohydrates.

  8. Cholesterol metabolism in Huntington disease.

    PubMed

    Karasinska, Joanna M; Hayden, Michael R

    2011-09-06

    The CNS is rich in cholesterol, which is essential for neuronal development and survival, synapse maturation, and optimal synaptic activity. Alterations in brain cholesterol homeostasis are linked to neurodegeneration. Studies have demonstrated that Huntington disease (HD), a progressive and fatal neurodegenerative disorder resulting from polyglutamine expansion in the huntingtin protein, is associated with changes in cellular cholesterol metabolism. Emerging evidence from human and animal studies indicates that attenuated brain sterol synthesis and accumulation of cholesterol in neuronal membranes represent two distinct mechanisms occurring in the presence of mutant huntingtin that influence neuronal survival. Increased knowledge of how changes in intraneuronal cholesterol metabolism influence the pathogenesis of HD will provide insights into the potential application of brain cholesterol regulation as a therapeutic strategy for this devastating disease.

  9. Recent advances in cholesterol chemistry.

    PubMed

    Morzycki, Jacek W

    2014-05-01

    This review article presents advances in cholesterol chemistry since 2000. Various transformations (chemical, enzymatic, electrochemical, etc.) of cholesterol are presented. A special emphasis is given to cholesterol oxidation reactions, but also substitution of the 3β-hydroxyl group, addition to the C5-C6 double bond, C-H functionalization, and C-C bond forming reactions are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Acrolein impairs the cholesterol transport functions of high density lipoproteins.

    PubMed

    Chadwick, Alexandra C; Holme, Rebecca L; Chen, Yiliang; Thomas, Michael J; Sorci-Thomas, Mary G; Silverstein, Roy L; Pritchard, Kirkwood A; Sahoo, Daisy

    2015-01-01

    High density lipoproteins (HDL) are considered athero-protective, primarily due to their role in reverse cholesterol transport, where they transport cholesterol from peripheral tissues to the liver for excretion. The current study was designed to determine the impact of HDL modification by acrolein, a highly reactive aldehyde found in high abundance in cigarette smoke, on the cholesterol transport functions of HDL. HDL was chemically-modified with acrolein and immunoblot and mass spectrometry analyses confirmed apolipoprotein crosslinking, as well as acrolein adducts on apolipoproteins A-I and A-II. The ability of acrolein-modified HDL (acro-HDL) to serve as an acceptor of free cholesterol (FC) from COS-7 cells transiently expressing SR-BI was significantly decreased. Further, in contrast to native HDL, acro-HDL promotes higher neutral lipid accumulation in murine macrophages as judged by Oil Red O staining. The ability of acro-HDL to mediate efficient selective uptake of HDL-cholesteryl esters (CE) into SR-BI-expressing cells was reduced compared to native HDL. Together, the findings from our studies suggest that acrolein modification of HDL produces a dysfunctional particle that may ultimately promote atherogenesis by impairing functions that are critical in the reverse cholesterol transport pathway.

  11. Food prices and blood cholesterol.

    PubMed

    Rahkovsky, Ilya; Gregory, Christian A

    2013-01-01

    Cardiovascular diseases (CVD) cost Americans billions of dollars per year. High cholesterol levels, which are closely related to dietary habits, are a major contributor to CVD. In this article, we study whether changes in food prices are related to cholesterol levels and whether taxes or subsidies on particular foods would be effective in lowering cholesterol levels and, consequently, CVD costs. We find that prices of vegetables, processed foods, whole milk and whole grains are significantly associated with blood cholesterol levels. Having analyzed the costs and benefits of government interventions, we find that a subsidy of vegetables and whole grains would be an efficient way to reduce CVD expenditures.

  12. Cholesterol self-powered biosensor.

    PubMed

    Sekretaryova, Alina N; Beni, Valerio; Eriksson, Mats; Karyakin, Arkady A; Turner, Anthony P F; Vagin, Mikhail Yu

    2014-10-07

    Monitoring the cholesterol level is of great importance, especially for people with high risk of developing heart disease. Here we report on reagentless cholesterol detection in human plasma with a novel single-enzyme, membrane-free, self-powered biosensor, in which both cathodic and anodic bioelectrocatalytic reactions are powered by the same substrate. Cholesterol oxidase was immobilized in a sol-gel matrix on both the cathode and the anode. Hydrogen peroxide, a product of the enzymatic conversion of cholesterol, was electrocatalytically reduced, by the use of Prussian blue, at the cathode. In parallel, cholesterol oxidation catalyzed by mediated cholesterol oxidase occurred at the anode. The analytical performance was assessed for both electrode systems separately. The combination of the two electrodes, formed on high surface-area carbon cloth electrodes, resulted in a self-powered biosensor with enhanced sensitivity (26.0 mA M(-1) cm(-2)), compared to either of the two individual electrodes, and a dynamic range up to 4.1 mM cholesterol. Reagentless cholesterol detection with both electrochemical systems and with the self-powered biosensor was performed and the results were compared with the standard method of colorimetric cholesterol quantification.

  13. [The real measurement of non-HDL-cholesterol: Atherogenic cholesterol].

    PubMed

    Millán, Jesús; Hernández-Mijares, Antonio; Ascaso, Juan F; Blasco, Mariano; Brea, Angel; Díaz, Ángel; González-Santos, Pedro; Mantilla, Teresa; Pedro-Botet, Juan; Pintó, Xavier

    Lowe density lipoproteins (LDL) are the causal agent of cardiovascular diseases. In practice, we identify LDL with cholesterol transported in LDL (cLDL). So, cLDL has become the major target for cardiovascular prevention. Howewer, we have progressive evidences about the role of triglycerides rich lipoproteins, particularly those very low density lipoprotein (VLDL) in promotion and progression of atherosclerosis, that leads cholesterol in VLDL and its remanents as a potential therapeutic target. This feature is particularly important and of a great magnitude, in patients with hypertiglyceridemia. We can to considere, that the non-HDL cholesterol -cLDL+cVLDL+c-remmants+Lp(a)- is the real measurement of atherogenic cholesterol. In addition, non-HDL-cholesterol do not show any variations between postprandial states. In fact, non-HDL-cholesterol should be an excellent marker of atherogenic cholesterol, and an major therapeutic target in patients with atherogenic dyslipidaemia. According with different clinical trials and with the epidemiological and mendelian studies, in patients with high cardiovascular risk, optimal level of cLDL will be under 70mg/dl, and under 100 ng/dl for non-HDL-cholesterol; and in high risk patients, 100mg/dl and 130mg/dl, respectively. Copyright © 2016. Publicado por Elsevier España, S.L.U.

  14. Neurotensin and substance P: differential effects on plasma cholesterol levels in conscious ovariectomized rats.

    PubMed

    Raju, K; Vijayan, E

    1981-08-01

    Circulating plasma cholesterol levels were measured in conscious ovariectomized rats, bearing an indwelling silastic catheter in the external jugular vein, after intravenous (i.v.) pulse injection of 100 microliter 0.9% NaCl containing varying doses of neurotensin and/or substance P. Control injections of saline or decapeptide LH-RH or phosphate buffer did not modify plasma cholesterol levels. 10 or 20 micrograms doses of neurotensin produced a significant and dose-related increase in plasma cholesterol levels while similar doses of substance P had an opposite effect and induced a significant decline in plasma cholesterol levels in ovariectomized rats. 4-APP, a drug which selectively inhibits hepatic secretion of lipoproteins, significantly lowers plasma cholesterol to levels comparable to those produced by substance P. 4-APP and substance P induced hypocholesterolemia was readily reversed by a single dose of neurotensin. These findings indicate that neurotensin acts to increase circulating cholesterol levels and substance P antagonizes this hypercholesterolemic effect of neurotensin presumably by acting at some step in cholesterol transport. Reversal of the inhibitory effects of 4-APP and substance P on blood cholesterol by neurotensin may be through its action on hepatic secretion of lipoproteins, since 4-APP is known to lower circulating cholesterol by its specific action on hepatic secretion of lipoproteins.

  15. Prenatal ethanol exposure increases brain cholesterol content in adult rats.

    PubMed

    Barceló-Coblijn, Gwendolyn; Wold, Loren E; Ren, Jun; Murphy, Eric J

    2013-11-01

    Fetal alcohol syndrome is the most severe expression of the fetal alcohol spectrum disorders (FASD). Although alterations in fetal and neonate brain fatty acid composition and cholesterol content are known to occur in animal models of FASD, the persistence of these alterations into adulthood is unknown. To address this question, we determined the effect of prenatal ethanol exposure on individual phospholipid class fatty acid composition, individual phospholipid class mass, and cholesterol mass in brains from 25-week-old rats that were exposed to ethanol during gestation beginning at gestational day 2. While total phospholipid mass was unaffected, phosphatidylinositol and cardiolipin mass was decreased 14 and 43 %, respectively. Exposure to prenatal ethanol modestly altered brain phospholipid fatty acid composition, and the most consistent change was a significant 1.1-fold increase in total polyunsaturated fatty acids (PUFA), in the n-3/n-6 ratio, and in the 22:6n-3 content in ethanolamine glycerophospholipids and in phosphatidylserine. In contrast, prenatal ethanol consumption significantly increased brain cholesterol mass 1.4-fold and the phospholipid to cholesterol ratio was significantly increased 1.3-fold. These results indicate that brain cholesterol mass was significantly increased in adult rats exposed prenatally to ethanol, but changes in phospholipid mass and phospholipid fatty acid composition were extremely limited. Importantly, suppression of postnatal ethanol consumption was not sufficient to reverse the large increase in cholesterol observed in the adult rats.

  16. Probing red cell membrane cholesterol movement with cyclodextrin.

    PubMed

    Steck, Theodore L; Ye, Jin; Lange, Yvonne

    2002-10-01

    We probed the kinetics with which cholesterol moves across the human red cell bilayer and exits the membrane using methyl-beta-cyclodextrin as an acceptor. The fractional rate of cholesterol transfer (% s(-1)) was unprecedented, the half-time at 37 degrees C being ~1 s. The kinetics observed under typical conditions were independent of donor concentration and directly proportional to acceptor concentration. The rate of exit of membrane cholesterol fell hyperbolically to zero with increasing dilution. The energy of activation for cholesterol transfer was the same at high and low dilution; namely, 27-28 Kcal/mol. This behavior is not consistent with an exit pathway involving desorption followed by aqueous diffusion to acceptors nor with a simple one-step collision mechanism. Rather, it is that predicted for an activation-collision mechanism in which the reversible partial projection of cholesterol molecules out of the bilayer precedes their collisional capture by cyclodextrin. Because the entire membrane pool was transferred in a single first-order process under all conditions, we infer that the transbilayer diffusion (flip-flop) of cholesterol must have proceeded faster than its exit, i.e., with a half-time of <1 s at 37 degrees C.

  17. Prion Infection Impairs Cholesterol Metabolism in Neuronal Cells*

    PubMed Central

    Cui, Huanhuan L.; Guo, Belinda; Scicluna, Benjamin; Coleman, Bradley M.; Lawson, Victoria A.; Ellett, Laura; Meikle, Peter J.; Bukrinsky, Michael; Mukhamedova, Nigora; Sviridov, Dmitri; Hill, Andrew F.

    2014-01-01

    Conversion of prion protein (PrPC) into a pathological isoform (PrPSc) during prion infection occurs in lipid rafts and is dependent on cholesterol. Here, we show that prion infection increases the abundance of cholesterol transporter, ATP-binding cassette transporter type A1 (ATP-binding cassette transporter type A1), but reduces cholesterol efflux from neuronal cells leading to the accumulation of cellular cholesterol. Increased abundance of ABCA1 in prion disease was confirmed in prion-infected mice. Mechanistically, conversion of PrPC to the pathological isoform led to PrPSc accumulation in rafts, displacement of ABCA1 from rafts and the cell surface, and enhanced internalization of ABCA1. These effects were abolished with reversal of prion infection or by loading cells with cholesterol. Stimulation of ABCA1 expression with liver X receptor agonist or overexpression of heterologous ABCA1 reduced the conversion of prion protein into the pathological form upon infection. These findings demonstrate a reciprocal connection between prion infection and cellular cholesterol metabolism, which plays an important role in the pathogenesis of prion infection in neuronal cells. PMID:24280226

  18. RAGE Suppresses ABCG1-Mediated Macrophage Cholesterol Efflux in Diabetes

    PubMed Central

    Daffu, Gurdip; Shen, Xiaoping; Senatus, Laura; Thiagarajan, Devi; Abedini, Andisheh; Hurtado del Pozo, Carmen; Rosario, Rosa; Song, Fei; Friedman, Richard A.; Ramasamy, Ravichandran

    2015-01-01

    Diabetes exacerbates cardiovascular disease, at least in part through suppression of macrophage cholesterol efflux and levels of the cholesterol transporters ATP binding cassette transporter A1 (ABCA1) and ABCG1. The receptor for advanced glycation end products (RAGE) is highly expressed in human and murine diabetic atherosclerotic plaques, particularly in macrophages. We tested the hypothesis that RAGE suppresses macrophage cholesterol efflux and probed the mechanisms by which RAGE downregulates ABCA1 and ABCG1. Macrophage cholesterol efflux to apolipoprotein A1 and HDL and reverse cholesterol transport to plasma, liver, and feces were reduced in diabetic macrophages through RAGE. In vitro, RAGE ligands suppressed ABCG1 and ABCA1 promoter luciferase activity and transcription of ABCG1 and ABCA1 through peroxisome proliferator–activated receptor-γ (PPARG)–responsive promoter elements but not through liver X receptor elements. Plasma levels of HDL were reduced in diabetic mice in a RAGE-dependent manner. Laser capture microdissected CD68+ macrophages from atherosclerotic plaques of Ldlr−/− mice devoid of Ager (RAGE) displayed higher levels of Abca1, Abcg1, and Pparg mRNA transcripts versus Ager-expressing Ldlr−/− mice independently of glycemia or plasma levels of total cholesterol and triglycerides. Antagonism of RAGE may fill an important therapeutic gap in the treatment of diabetic macrovascular complications. PMID:26253613

  19. Food combinations for cholesterol lowering.

    PubMed

    Harland, Janice I

    2012-12-01

    Reducing elevated LDL-cholesterol is a key public health challenge. There is substantial evidence from randomised controlled trials (RCT) that a number of foods and food components can significantly reduce LDL-cholesterol. Data from RCT have been reviewed to determine whether effects are additive when two or more of these components are consumed together. Typically components, such as plant stanols and sterols, soya protein, β-glucans and tree nuts, when consumed individually at their target rate, reduce LDL-cholesterol by 3-9 %. Improved dietary fat quality, achieved by replacing SFA with unsaturated fat, reduces LDL-cholesterol and can increase HDL-cholesterol, further improving blood lipid profile. It appears that the effect of combining these interventions is largely additive; however, compliance with multiple changes may reduce over time. Food combinations used in ten 'portfolio diet' studies have been reviewed. In clinical efficacy studies of about 1 month where all foods were provided, LDL-cholesterol is reduced by 22-30 %, whereas in community-based studies of >6 months' duration, where dietary advice is the basis of the intervention, reduction in LDL-cholesterol is about 15 %. Inclusion of MUFA into 'portfolio diets' increases HDL-cholesterol, in addition to LDL-cholesterol effects. Compliance with some of these dietary changes can be achieved more easily compared with others. By careful food component selection, appropriate to the individual, the effect of including only two components in the diet with good compliance could be a sustainable 10 % reduction in LDL-cholesterol; this is sufficient to make a substantial impact on cholesterol management and reduce the need for pharmaceutical intervention.

  20. Cholesterol 7α-hydroxylase protects the liver from inflammation and fibrosis by maintaining cholesterol homeostasis.

    PubMed

    Liu, Hailiang; Pathak, Preeti; Boehme, Shannon; Chiang, John Y L

    2016-10-01

    Cholesterol 7α-hydroxylase (CYP7A1) plays a critical role in control of bile acid and cholesterol homeostasis. Bile acids activate farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5) to regulate lipid, glucose, and energy metabolism. However, the role of bile acids in hepatic inflammation and fibrosis remains unclear. In this study, we showed that adenovirus-mediated overexpression of Cyp7a1 ameliorated lipopolysaccharide (LPS)-induced inflammatory cell infiltration and pro-inflammatory cytokine production in WT and TGR5-deficient (Tgr5(-/-)) mice, but not in FXR-deficient (Fxr(-/-)) mice, suggesting that bile acid signaling through FXR protects against hepatic inflammation. Nuclear factor κ light-chain enhancer of activated B cells (NF-κB)-luciferase reporter assay showed that FXR agonists significantly inhibited TNF-α-induced NF-κB activity. Furthermore, chromatin immunoprecipitation and mammalian two-hybrid assays showed that ligand-activated FXR interacted with NF-κB and blocked recruitment of steroid receptor coactivator-1 to cytokine promoter and resulted in inhibition of NF-κB activity. Methionine/choline-deficient (MCD) diet increased hepatic inflammation, free cholesterol, oxidative stress, apoptosis, and fibrosis in CYP7A1-deficient (Cyp7a1(-/-)) mice compared with WT mice. Remarkably, adenovirus-mediated overexpression of Cyp7a1 effectively reduced hepatic free cholesterol and oxidative stress and reversed hepatic inflammation and fibrosis in MCD diet-fed Cyp7a1(-/-) mice. Current studies suggest that increased Cyp7a1 expression and bile acid synthesis ameliorate hepatic inflammation through activation of FXR, whereas reduced bile acid synthesis aggravates MCD diet-induced hepatic inflammation and fibrosis. Maintaining bile acid and cholesterol homeostasis is important for protecting against liver injury and nonalcoholic fatty liver disease.

  1. Brain cholesterol turnover required for geranylgeraniol production and learning in mice.

    PubMed

    Kotti, Tiina J; Ramirez, Denise M O; Pfeiffer, Brad E; Huber, Kimberly M; Russell, David W

    2006-03-07

    The mevalonate pathway produces cholesterol and nonsterol isoprenoids, such as geranylgeraniol. In the brain, a fraction of cholesterol is metabolized in neurons by the enzyme cholesterol 24-hydroxylase, and this depletion activates the mevalonate pathway. Brains from mice lacking 24-hydroxylase excrete cholesterol more slowly, and the tissue compensates by suppressing the mevalonate pathway. Here we report that this suppression causes a defect in learning. 24-Hydroxylase knockout mice exhibit severe deficiencies in spatial, associative, and motor learning, and in hippocampal long-term potentiation (LTP). Acute treatment of wild-type hippocampal slices with an inhibitor of the mevalonate pathway (a statin) also impairs LTP. The effects of statin treatment and genetic elimination of 24-hydroxylase on LTP are reversed by a 20-min treatment with geranylgeraniol but not by cholesterol. We conclude that cholesterol turnover in brain activates the mevalonate pathway and that a constant production of geranylgeraniol in a small subset of neurons is required for LTP and learning.

  2. Dietary cholesterol modulates the excitability of rabbit hippocampal CA1 pyramidal neurons.

    PubMed

    Wang, Desheng; Schreurs, Bernard G

    2010-08-02

    Previous work has shown high dietary cholesterol can affect learning and memory including rabbit eyeblink conditioning and this effect may be due to increased membrane cholesterol and enhanced hippocampal amyloid beta production. This study investigated whether dietary cholesterol modulates rabbit hippocampal CA1 neuron membrane properties known to be involved in rabbit eyeblink conditioning. Whole-cell current clamp recordings in hippocampal neurons from rabbits fed 2 percent cholesterol or normal chow for 8 weeks revealed changes including decreased after-hyperpolarization amplitudes (AHPs) - an index of membrane excitability shown to be important for rabbit eyeblink conditioning. This index was reversed by adding copper to drinking water - a dietary manipulation that can retard rabbit eyeblink conditioning. Evidence of cholesterol effects on membrane excitability was provided by application of methyl-beta-cyclodextrin, a compound that reduces membrane cholesterol, which increased the excitability of hippocampal CA1 neurons.

  3. Serum cholesterol in cerebral malignancies.

    PubMed

    Grieb, P; Ryba, M S; Jagielski, J; Gackowski, W; Paczkowski, P; Chrapusta, S J

    1999-01-01

    Reduced blood cholesterol levels were reported in patients with a variety of malignant peripheral tumors. This fact is likely related to increased cholesterol demand by proliferating tumor cells. The question arises whether this 'tumor-associated hypocholesterolemia' occurs also in patients with brain tumors, and--if it does not--whether its absence can be related to the location of the tumors. We have compared fasting serum total cholesterol levels among three groups of patients: 52 patients with gliomas, 56 patients with symptomatic metastatic brain tumors, and 50 patients harboring malignant tumors of peripheral location but showing no clinical signs of brain metastases. Patients in the last group, despite being--on an average--more age-advanced, had lower total serum cholesterol levels than either the patients with gliomas, or the patients with brain metastases. No difference in the cholesterol levels was found between the two latter groups, and a majority of these patients had borderline or elevated cholesterol levels. This apparent absence of 'tumor-associated hypocholesterolemia' in brain tumor patients may be related to either brain tumors' ability to synthesize cholesterol de novo and their reduced dependence on peripheral cholesterol supply, the existence of brain tumor-blood barrier, effect of medications used to counteract brain edema and seizures, or a combination of these factors.

  4. Cholesterol Depletion Disorganizes Oocyte Membrane Rafts Altering Mouse Fertilization

    PubMed Central

    Buschiazzo, Jorgelina; Ialy-Radio, Come; Auer, Jana; Wolf, Jean-Philippe; Serres, Catherine

    2013-01-01

    Drastic membrane reorganization occurs when mammalian sperm binds to and fuses with the oocyte membrane. Two oocyte protein families are essential for fertilization, tetraspanins and glycosylphosphatidylinositol-anchored proteins. The firsts are associated to tetraspanin-enriched microdomains and the seconds to lipid rafts. Here we report membrane raft involvement in mouse fertilization assessed by cholesterol modulation using methyl-β-cyclodextrin. Cholesterol removal induced: (1) a decrease of the fertilization rate and index; and (2) a delay in the extrusion of the second polar body. Cholesterol repletion recovered the fertilization ability of cholesterol-depleted oocytes, indicating reversibility of these effects. In vivo time-lapse analyses using fluorescent cholesterol permitted to identify the time-point at which the probe is mainly located at the plasma membrane enabling the estimation of the extent of the cholesterol depletion. We confirmed that the mouse oocyte is rich in rafts according to the presence of the raft marker lipid, ganglioside GM1 on the membrane of living oocytes and we identified the coexistence of two types of microdomains, planar rafts and caveolae-like structures, by terms of two differential rafts markers, flotillin-2 and caveolin-1, respectively. Moreover, this is the first report that shows characteristic caveolae-like invaginations in the mouse oocyte identified by electron microscopy. Raft disruption by cholesterol depletion disturbed the subcellular localization of the signal molecule c-Src and the inhibition of Src kinase proteins prevented second polar body extrusion, consistent with a role of Src-related kinases in fertilization via signaling complexes. Our data highlight the functional importance of intact membrane rafts for mouse fertilization and its dependence on cholesterol. PMID:23638166

  5. Epigenetic regulation of cholesterol homeostasis

    PubMed Central

    Meaney, Steve

    2014-01-01

    Although best known as a risk factor for cardiovascular disease, cholesterol is a vital component of all mammalian cells. In addition to key structural roles, cholesterol is a vital biochemical precursor for numerous biologically important compounds including oxysterols and bile acids, as well as acting as an activator of critical morphogenic systems (e.g., the Hedgehog system). A variety of sophisticated regulatory mechanisms interact to coordinate the overall level of cholesterol in cells, tissues and the entire organism. Accumulating evidence indicates that in additional to the more “traditional” regulatory schemes, cholesterol homeostasis is also under the control of epigenetic mechanisms such as histone acetylation and DNA methylation. The available evidence supporting a role for these mechanisms in the control of cholesterol synthesis, elimination, transport and storage are the focus of this review. PMID:25309573

  6. Identification of a Cholesterol-Binding Pocket in Inward Rectifier K+ (Kir) Channels

    PubMed Central

    Fürst, Oliver; Nichols, Colin G.; Lamoureux, Guillaume; D’Avanzo, Nazzareno

    2014-01-01

    Cholesterol is the major sterol component of all mammalian plasma membranes. Recent studies have shown that cholesterol inhibits both bacterial (KirBac1.1 and KirBac3.1) and eukaryotic (Kir2.1) inward rectifier K+ (Kir) channels. Lipid-sterol interactions are not enantioselective, and the enantiomer of cholesterol (ent-cholesterol) does not inhibit Kir channel activity, suggesting that inhibition results from direct enantiospecific binding to the channel, and not indirect effects of changes to the bilayer. Furthermore, conservation of the effect of cholesterol among prokaryotic and eukaryotic Kir channels suggests an evolutionary conserved cholesterol-binding pocket, which we aimed to identify. Computational experiments were performed by docking cholesterol to the atomic structures of Kir2.2 (PDB: 3SPI) and KirBac1.1 (PDB: 2WLL) using Autodock 4.2. Poses were assessed to ensure biologically relevant orientation and then clustered according to location and orientation. The stability of cholesterol in each of these poses was then confirmed by molecular dynamics simulations. Finally, mutation of key residues (S95H and I171L) in this putative binding pocket found within the transmembrane domain of Kir2.1 channels were shown to lead to a loss of inhibition by cholesterol. Together, these data provide support for this location as a biologically relevant pocket. PMID:25517146

  7. Emotional eating as a mediator between anxiety and cholesterol in population with overweight and hypertension.

    PubMed

    Mensorio, Marinna S; Cebolla, Ausiàs; Lisón, Juan Francisco; Rodilla, Enrique; Palomar, Gonzalo; Miragall, Marta; Baños, Rosa Maria

    2016-12-23

    Although the relationship between cholesterol and mood states (especially anxiety) has been well studied, few researches have included the role of eating styles in this relationship. This study explored the associations among eating styles, negative emotional symptoms, and levels of cholesterol (and other medical variables) in a population with hypertension and overweight or obesity, analyzing the possible mediation mechanisms involved. A cross-sectional study was conducted in 68 adults with hypertension and overweight/obesity, and stepwise multiple regression analysis and mediation analyses were carried out to test the hypothesis that eating styles mediate the relationship between negative emotional symptoms and cholesterol. Several significant correlations among age, anthropometric, medical, and psychological variables (eating styles and negative emotional symptoms) were found. There was a significant indirect effect of anxiety on total cholesterol and LDL cholesterol through emotional eating. Results suggest that emotional eating has a relevant role in the rise in total and LDL cholesterol, acting as a mediator in the relationship between anxiety and cholesterol. This finding could have important implications, since it introduces a new variable in the relationship between emotions and cholesterol and, therefore, changes the way of understanding this relationship, and of treating high cholesterol in a hypertensive sample.

  8. Direct interaction between cholesterol and phosphatidylcholines in hydrated membranes revealed by ATR-FTIR spectroscopy.

    PubMed

    Arsov, Zoran; Quaroni, Luca

    2007-11-01

    By using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and curve fitting we have examined temperature dependence and composition dependence of the shape of the carbonyl band in phosphatidylcholine/cholesterol model membranes. Membranes were hydrated either in excess water or in excess deuterated water. The studied binary mixtures exhibit different lipid phases at appropriate temperature and amount of cholesterol, among them also the so-called liquid-ordered phase. The results confirm that cholesterol has a significant indirect influence on the carbonyl band through conformational and hydration effects. This influence was interpreted in view of the known temperature composition phase diagrams for inspected binary mixtures. In addition, direct interaction was observed, which could point to the presence of hydrogen bond between cholesterol and carbonyl group. This direct interaction, though weak, might play at least a partial role in the stabilization of cholesterol-rich lipid domains in model and biological membranes.

  9. Pectin penta-oligogalacturonide reduces cholesterol accumulation by promoting bile acid biosynthesis and excretion in high-cholesterol-fed mice.

    PubMed

    Zhu, Ru-Gang; Sun, Yan-Di; Hou, Yu-Ting; Fan, Jun-Gang; Chen, Gang; Li, Tuo-Ping

    2017-06-25

    Haw pectin penta-oligogalacturonide (HPPS) has important role in improving cholesterol metabolism and promoting the conversion of cholesterol to bile acids (BA) in mice fed high-cholesterol diet (HCD). However, the mechanism is not clear. This study aims to investigate the effects of HPPS on cholesterol accumulation and the regulation of hepatic BA synthesis and transport in HCD-fed mice. Results showed that HPPS significantly decreased plasma and hepatic TC levels but increased plasma high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-I (apoA-I) levels, compared to HCD. BA analysis showed that HPPS markedly decreased hepatic and small intestine BA levels but increased the gallbladder BA levels, and finally decreased the total BA pool size, compared to HCD. Studies of molecular mechanism revealed that HPPS promoted hepatic ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette transporter G1 (ABCG1), and scavenger receptor BI (SR-BI) expression but did not affect ATB binding cassette transporter G5/G8 (ABCG5/8) expression. HPPS inactivated hepatic farnesoid X receptor (FXR) and target genes expression, which resulted in significant increase of cholesterol 7α-hydroxylase 1 (CYP7A1) and sterol 12α-hydroxylase (CYP8B1) expression, with up-regulations of 204.2% and 33.5% for mRNA levels, respectively, compared with HCD. In addition, HPPS markedly enhanced bile salt export pump (BSEP) expression but didn't affect the sodium/taurocholate co-transporting polypeptide (NTCP) expression. In conclusion, the study revealed that HPPS reduced cholesterol accumulation by promoting BA synthesis in the liver and excretion in the feces, and might promote macrophage-to-liver reverse cholesterol transport (RCT) but did not liver-to-fecal RCT. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Contractility and calcium signaling of human myometrium are profoundly affected by cholesterol manipulation: implications for labor?

    PubMed

    Jie Zhang; Kendrick, Annabelle; Quenby, Siobhan; Wray, Susan

    2007-07-01

    The authors elucidate cholesterol's effect on human uterine contractility and calcium signaling to test the hypotheses that elevation of cholesterol decreases uterine activity and that oxytocin cannot augment contraction when cholesterol is elevated. The effects of cholesterol extraction with methyl beta-cyclodextrin and enrichment with low-density lipoproteins and cholesterol on contractile activity and intracellular calcium signaling in spontaneous or oxytocin-stimulated myometrium are determined. Force occurring spontaneously and with oxytocin is significantly increased by cholesterol extraction. Cholesterol enrichment profoundly inhibits force production in a dose-dependent manner and could reverse the effects of cholesterol extraction. Qualitatively similar results are found for nonpregnant and pregnant laboring and non-laboring myometrium. These contractile changes are related to changes in intracellular Ca2+ . Thus, elevated cholesterol is deleterious to contractility and Ca2+ signaling in human myometrium. Cholesterol may contribute to uterine quiescence but could cause difficulties in labor in obese/dyslipidemic women, consistent with their increased cesarean delivery rates.

  11. Exosome Secretion Ameliorates Lysosomal Storage of Cholesterol in Niemann-Pick Type C Disease*

    PubMed Central

    Strauss, Katrin; Goebel, Cornelia; Runz, Heiko; Möbius, Wiebke; Weiss, Sievert; Feussner, Ivo; Simons, Mikael; Schneider, Anja

    2010-01-01

    Niemann-Pick type C1 disease is an autosomal-recessive lysosomal storage disorder. Loss of function of the npc1 gene leads to abnormal accumulation of free cholesterol and sphingolipids within the late endosomal and lysosomal compartments resulting in progressive neurodegeneration and dysmyelination. Here, we show that oligodendroglial cells secrete cholesterol by exosomes when challenged with cholesterol or U18666A, which induces late endosomal cholesterol accumulation. Up-regulation of exosomal cholesterol release was also observed after siRNA-mediated knockdown of NPC1 and in fibroblasts derived from NPC1 patients and could be reversed by expression of wild-type NPC1. We provide evidence that exosomal cholesterol secretion depends on the presence of flotillin. Our findings indicate that exosomal release of cholesterol may serve as a cellular mechanism to partially bypass the traffic block that results in the toxic lysosomal cholesterol accumulation in Niemann-Pick type C1 disease. Furthermore, we suggest that secretion of cholesterol by exosomes contributes to maintain cellular cholesterol homeostasis. PMID:20554533

  12. Effects of sphingomyelin and phosphatidylcholine degradation on cyclodextrin-mediated cholesterol efflux in cultured fibroblasts.

    PubMed

    Ohvo, H; Olsio, C; Slotte, J P

    1997-11-15

    The hydrolysis of plasma membrane sphingomyelin is known to dramatically alter cellular cholesterol homeostasis in different ways, whereas the degradation of plasma membrane phosphatidylcholine has much less or no effects on cell cholesterol homeostasis [Pörn, Ares, Slotte, J. Lipid Res. 34 (1993) 1385-1392]. In this study, we used an efficient extracellular cholesterol acceptor (cyclodextrin) and determined the extent of cholesterol efflux from cultured fibroblasts in which plasma membrane sphingomyelin or phosphatidylcholine was degraded. Treatment of cells with sphingomyelinase reduced the cell sphingomyelin content by about 76% (about 13 nmol SM degraded), and dramatically increased the desorption of [3H]cholesterol from the plasma membrane to 2-hydroxypropyl-beta-cyclodextrin. The corresponding hydrolysis of cell surface phosphatidylcholine (about 12% reduction of the cellular phosphatidylcholine content, corresponding to about 12 nmol degraded PC) had almost no effect on cell [3H]cholesterol efflux. The stimulatory effect of sphingomyelin degradation on cell [3H]cholesterol efflux was reversible, since rates of [3H]cholesterol efflux dropped back to control levels when cells (in this case baby hamster kidney cells) were allowed to restore their sphingomyelin content by re-synthesis in the absence of sphingomyelinase. The findings of this study clearly demonstrate that plasma membrane sphingomyelin markedly affected the rate of cholesterol transfer between cells and an extracellular acceptor (i.e., cyclodextrin), whereas the effect of phosphatidylcholine on cholesterol efflux was much smaller.

  13. Cholesterol acceptor capacity is preserved by different mechanisms in preterm and term fetuses.

    PubMed

    Pecks, Ulrich; Mohaupt, Markus G; Hütten, Matthias C; Maass, Nicolai; Rath, Werner; Escher, Geneviève

    2014-02-01

    Fetal serum cholesterol and lipoprotein concentrations differ between preterm and term born neonates. An imbalance of the flow of cholesterol from the sites of synthesis or efflux from cells of peripheral organs to the liver, the reverse cholesterol transport (RCT), is linked to atherosclerosis and cardiovascular disease (CVD). Preterm delivery is a risk factor for the development of CVD. Thus, we hypothesized that RCT is affected by a diminished cholesterol acceptor capacity in preterm as compared to term fetuses. Cholesterol efflux assays were performed in RAW264.7, HepG2, and HUVEC cell lines. In the presence and absence of ABC transporter overexpression by TO-901317, umbilical cord sera of preterm and term born neonates (n = 28 in both groups) were added. Lipid components including high density lipoprotein (HDL), low density lipoprotein (LDL), apolipoprotein A1, and apolipoprotein E were measured and related to fractional cholesterol efflux values. We found overall, fractional cholesterol efflux to remain constant between the study groups, and over gestational ages at delivery, respectively. However, correlation analysis revealed cholesterol efflux values to be predominantly related to HDL concentration at term, while in preterm neonates, cholesterol efflux was mainly associated with LDL In conclusion cholesterol acceptor capacity during fetal development is kept in a steady state with different mechanisms and lipid fractions involved at distinct stages during the second half of fetal development. However, RCT mechanisms in preterm neonates seem not to be involved in the development of CVD later in life suggesting rather changes in the lipoprotein pattern causative.

  14. Lateral organization of cholesterol molecules in lipid-cholesterol assemblies.

    SciTech Connect

    Singh, Rajiv R. P.; Slepoy, Alexander; Sengupta, Pinaki; Cox, Daniel L.

    2005-05-01

    We present results of an off-lattice simulation of a two-component planar system, as a model for lateral organization of cholesterol molecules in lipid-cholesterol assemblies. We explore the existence of 'superlattice' structures even in fluid systems, in the absence of an underlying translational long-range order, and study their coupling to hexatic or bond-orientational order. We discuss our results in context of geometric superlattice theories and 'condensation complexes' in understanding a variety of experiments in artificial lipid-cholesterol assemblies.

  15. Cholesterol metabolism, LDL, and the LDL receptor

    SciTech Connect

    Myant, N.B. )

    1990-01-01

    This book covers cholesterol and metabolism. Paper include: The LDL Receptor in Perspective, Cholesterol in Animal Tissues, HMG-CoA Reductase. acetyl-CoA: Cholesterol Acyltransferase, and LDL: Physical and Chemical Characteristics.

  16. Understand Your Risk for High Cholesterol

    MedlinePlus

    ... Aortic Aneurysm More Understand Your Risk for High Cholesterol Updated:Apr 1,2016 LDL (bad) cholesterol is ... content was last reviewed on 04/21/2014. Cholesterol Guidelines: Putting the pieces together Myth vs. Truth – ...

  17. Cholesterol metabolism and colon cancer.

    PubMed

    Broitman, S A; Cerda, S; Wilkinson, J

    1993-01-01

    While epidemiologic and concordant experimental data indicate a direct relationship between dietary fat (and presumably caloric) intake and the development of colon cancer, the effect of dietary cholesterol on this disease is still not clear. However, there appears to be a developing literature concerning an inverse relationship between serum and plasma cholesterol levels, and the risk for colon cancer. Findings that low serum cholesterol levels are apparent as early as ten years prior to the detection of colon cancer implies that sub clinical disease is probably not involved initially in this process. The possibility of low serum cholesterol as a bio-marker was considered in epidemiologic studies which focused upon obese men with lower than normal serum cholesterol levels who were found to be at increased risk to colon cancer. While the relationship between low serum cholesterol and colonic or intestinal cholesterol metabolism is presently not understood, current genetic studies provide a promising though as yet unexplored potential association. Alterations which occur during the developmental progression of colonic cancer include changes in chromosome 5, which also carries two genes vital to the biosynthesis and regulation of systemic and cellular cholesterol metabolism, 3-hydroxy-3-methylglutaryl coenzyme A synthase, and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCoA R). Regulation of cholesterol metabolism in intestinal cells in vivo and in vitro varies from that seen in normal fibroblasts or hepatocytes in terms of exogenous sources of cholesterol and how these sources regulate internal synthesis. Colonic cancer cells have been used to assess small bowel enterocyte cholesterol metabolism, which has been possible because of their ability to differentiate in culture, however information regarding true colonic enterocyte cholesterol metabolism is relatively scarce. Colonic cancer cells have been shown to possess a diminished or nonexistent ability to use

  18. Think Again About Cholesterol Survey.

    PubMed

    Catapano, Alberico L; Wiklund, Olov

    2015-12-01

    Cardiovascular disease (CVD) is still the main cause of death in Europe. Elevated plasma cholesterol, specifically low-density lipoprotein cholesterol (LDL-C), is the main causative risk factor for CVD, most prominently associated with coronary heart disease. A widespread disinformation about cholesterol and CVD is one factor underlying a poor compliance to lipid-lowering therapy. To investigate how cholesterol, CVD and cholesterol reduction is perceived in the population, a survey was commissioned by the European Atherosclerosis Society (EAS). Nearly half of people above 25 years of age are most worried about cancer (45%), compared to just over one in four who are worried about heart disease (27%). A majority believe being overweight (72%), blood pressure (70%) and smoking (67%) most affect heart health, far more than note cholesterol (59%) and family history (39%). The majority of adults recognize that high LDL (or "bad") cholesterol should be a health priority for everyone, including those younger than 40 and those who are not overweight. However, 1 in 4 (25%) incorrectly believe that it does not need to be a concern until someone shows signs or symptoms. Although 89% of adults surveyed agreed it is important for people to know whether or not they have high LDL-C, an overwhelming 92% did not know their LDL-C levels or had never had their cholesterol levels tested. A high 63% had never heard of familial hypercholesterolemia: France had the lowest level of awareness (41%) to Denmark with a high 80%, and the association of the disease with high levels of LDL-C is quite poor (only 36%), with Sweden only at 22% versus a high in Spain of 54%. A large part of the people participating in the survey were quite uncertain about the modality of transmission for familial hypercholesterolemia in the family. All in all, this survey highlights the need for more information among citizens for the role of cholesterol in determining CVD.

  19. 12-((5-Iodo-4-azido-2-hydroxybenzoyl)amino)dodecanoic acid: Biological recognition by cholesterol esterase and acyl-CoA:cholesterol O-acyltransferase

    SciTech Connect

    Kinnunen, P.M.; Klopf, F.H.; Bastiani, C.A.; Gelfman, C.M.; Lange, L.G. )

    1990-02-13

    Potential probes of protein cholesterol and fatty acid binding sites, namely, 12-((5-iodo-4-azido-2-hydroxybenzoyl)amino)dodecanoate (IFA) and its coenzyme A (IFA:CoA) and cholesteryl (IFA:CEA) esters, were synthesized. These radioactive, photoreactive lipid analogues were recognized as substrates and inhibitors of acyl-CoA;cholesterol O-acyltransferase (ACAT) and cholesterol esterase, neutral lipid binding enzymes which are key elements in the regulation of cellular cholesterol metabolism. In the dark, IFA reversibly inhibited cholesteryl ({sup 14}C)oleate hydrolysis by purified bovine pancreatic cholesterol esterase with an apparent K{sub i} of 150 {mu}M. Cholesterol esterase inhibition by IFA became irreversible after photolysis with UV light and oleic acid provided 50% protection against inactivation. Incubation of homogeneous bovine pancreatic cholesterol esterase with IFA:CEA resulted in its hydrolysis to IFA and cholesterol, indicating recognition of IFA:CEA as a substrate by cholesterol esterase. The coenzyme A ester, IFA:CoA, was a reversible inhibitor of microsomal ACAT activity under dark conditions, and photolysis resulted in irreversible inhibition of enzyme activity with 87% efficiency. IFA:CoA was also recognized as a substrate by both liver and aortic microsomal ACATs, with resultant synthesis of {sup 125}IFA:CEA. IFA and its derivatives, IFA:CEA and IFA:CoA, are thus inhibitors and substrates for cholesterol esterase and ACAT. Biological recognition of these photoaffinity lipid analogues will facilitate the identification and structural analysis of hitherto uncharacterized protein lipid binding sites.

  20. HDL Cholesterol: How to Boost Your 'Good' Cholesterol

    MedlinePlus

    ... are better. By Mayo Clinic Staff High-density lipoprotein (HDL) is known as the "good" cholesterol because ... bloodstream attached to proteins. These proteins are called lipoproteins. Low-density lipoprotein. High levels of low-density ...

  1. Targeting cancer using cholesterol conjugates

    PubMed Central

    Radwan, Awwad A.; Alanazi, Fares K.

    2013-01-01

    Conjugation of cholesterol moiety to active compounds for either cancer treatment or diagnosis is an attractive approach. Cholesterol derivatives are widely studied as cancer diagnostic agents and as anticancer derivatives either in vitro or in vivo using animal models. In largely growing studies, anticancer agents have been chemically conjugated to cholesterol molecules, to enhance their pharmacokinetic behavior, cellular uptake, target specificity, and safety. To efficiently deliver anticancer agents to the target cells and tissues, many different cholesterol–anticancer conjugates were synthesized and characterized, and their anticancer efficiencies were tested in vitro and in vivo. PMID:24493968

  2. Cholesterol perturbs lipid bilayers nonuniversally.

    PubMed

    Pan, Jianjun; Mills, Thalia T; Tristram-Nagle, Stephanie; Nagle, John F

    2008-05-16

    Cholesterol is well known to modulate the physical properties of biomembranes. Using modern x-ray scattering methods, we have studied the effects of cholesterol on the bending modulus K(C), the thickness D(HH), and the orientational order parameter S(xray) of lipid bilayers. We find that the effects are different for at least three classes of phospholipids characterized by different numbers of saturated hydrocarbon chains. Most strikingly, cholesterol strongly increases K(C) when both chains of the phospholipid are fully saturated but not at all when there are two monounsaturated chains.

  3. Cholesterol Perturbs Lipid Bilayers Nonuniversally

    SciTech Connect

    Pan Jianjun; Mills, Thalia T.; Tristram-Nagle, Stephanie; Nagle, John F.

    2008-05-16

    Cholesterol is well known to modulate the physical properties of biomembranes. Using modern x-ray scattering methods, we have studied the effects of cholesterol on the bending modulus K{sub C}, the thickness D{sub HH}, and the orientational order parameter S{sub xray} of lipid bilayers. We find that the effects are different for at least three classes of phospholipids characterized by different numbers of saturated hydrocarbon chains. Most strikingly, cholesterol strongly increases K{sub C} when both chains of the phospholipid are fully saturated but not at all when there are two monounsaturated chains.

  4. Identification of the active protein in rice bran protein having an inhibitory activity of cholesterol micellar solubility.

    PubMed

    Wang, Jilite; Shimada, Masaya; Nagaoka, Satoshi

    2017-06-01

    In our previous study, rice bran protein (RBP) inhibited cholesterol micellar solubility in vitro and decreased serum cholesterol level in rats. In the present study, RBP was separated and purified by size-exclusion chromatography and reversed-phase chromatography. The active protein of RBP related to cholesterol micellar solubility was identified as lectin and non-specific lipid-transfer protein 1 using MALDI-TOF mass spectrometry analysis.

  5. Dissecting the membrane cholesterol requirement for mycobacterial entry into host cells.

    PubMed

    Viswanathan, Gopinath; Jafurulla, Md; Kumar, G Aditya; Raghunand, Tirumalai R; Chattopadhyay, Amitabha

    2015-07-01

    Mycobacteria are intracellular pathogens that can invade and survive within host macrophages, and are a major cause of mortality and morbidity worldwide. The molecular mechanism involved in the internalization of mycobacteria is poorly understood. In this work, we have explored the role of host membrane cholesterol in the entry of the avirulent surrogate mycobacterial strain Mycobacterium smegmatis into THP-1 macrophages. Our results show that depletion of host membrane cholesterol using methyl-β-cyclodextrin results in a significant reduction in the entry of M. smegmatis into host cells. More importantly, we show that the inhibition in the ability of M. smegmatis to enter host macrophages could be reversed upon replenishment of membrane cholesterol. To the best of our knowledge, these results constitute the first report showing that membrane cholesterol replenishment can reverse the inhibition in the entry of mycobacteria into host cells. In addition, we demonstrate that cholesterol complexation using amphotericin B (without physical depletion) is sufficient to inhibit mycobacterial entry. Importantly, we observed a significant reduction in mycobacterial entry upon enrichment of host membrane cholesterol. Taken together, our results demonstrate, for the first time, that an optimum host plasma membrane cholesterol is necessary for the entry of mycobacteria. These results assume relevance in the context of developing novel therapeutic strategies targeting cholesterol-mediated mycobacterial host cell entry.

  6. Cholesterol's location in lipid bilayers

    SciTech Connect

    Marquardt, Drew; Kučerka, Norbert; Wassall, Stephen R.; Harroun, Thad A.; Katsaras, John

    2016-04-04

    It is well known that cholesterol modifies the physical properties of lipid bilayers. For example, the much studied liquid-ordered Lo phase contains rapidly diffusing lipids with their acyl chains in the all trans configuration, similar to gel phase bilayers. Moreover, the Lo phase is commonly associated with cholesterol-enriched lipid rafts, which are thought to serve as platforms for signaling proteins in the plasma membrane. Cholesterol's location in lipid bilayers has been studied extensively, and it has been shown – at least in some bilayers – to align differently from its canonical upright orientation, where its hydroxyl group is in the vicinity of the lipid–water interface. In this study we review recent works describing cholesterol's location in different model membrane systems with emphasis on results obtained from scattering, spectroscopic and molecular dynamics studies.

  7. Cholesterol's location in lipid bilayers

    DOE PAGES

    Marquardt, Drew; Kučerka, Norbert; Wassall, Stephen R.; ...

    2016-04-04

    It is well known that cholesterol modifies the physical properties of lipid bilayers. For example, the much studied liquid-ordered Lo phase contains rapidly diffusing lipids with their acyl chains in the all trans configuration, similar to gel phase bilayers. Moreover, the Lo phase is commonly associated with cholesterol-enriched lipid rafts, which are thought to serve as platforms for signaling proteins in the plasma membrane. Cholesterol's location in lipid bilayers has been studied extensively, and it has been shown – at least in some bilayers – to align differently from its canonical upright orientation, where its hydroxyl group is in themore » vicinity of the lipid–water interface. In this study we review recent works describing cholesterol's location in different model membrane systems with emphasis on results obtained from scattering, spectroscopic and molecular dynamics studies.« less

  8. Cholesterol confusion and statin controversy.

    PubMed

    DuBroff, Robert; de Lorgeril, Michel

    2015-07-26

    The role of blood cholesterol levels in coronary heart disease (CHD) and the true effect of cholesterol-lowering statin drugs are debatable. In particular, whether statins actually decrease cardiac mortality and increase life expectancy is controversial. Concurrently, the Mediterranean diet model has been shown to prolong life and reduce the risk of diabetes, cancer, and CHD. We herein review current data related to both statins and the Mediterranean diet. We conclude that the expectation that CHD could be prevented or eliminated by simply reducing cholesterol appears unfounded. On the contrary, we should acknowledge the inconsistencies of the cholesterol theory and recognize the proven benefits of a healthy lifestyle incorporating a Mediterranean diet to prevent CHD.

  9. Americans' Cholesterol Levels Keep Falling

    MedlinePlus

    ... and 2013-2014, the CDC reported. Dr. David Friedman is chief of heart failure services at Long ... for cholesterol treatment, all seem to be working," Friedman said. The study was published online Nov. 30 ...

  10. Molecular dynamics simulations on the interaction of the transmembrane NavAb channel with cholesterol and lipids in the membrane.

    PubMed

    Suwattanasophon, Chonticha; Wolschann, Peter; Faller, Roland

    2016-01-01

    Increased cholesterol levels are associated with multiple pathological conditions. In this work, molecular dynamics simulations were applied to observe the influence of membrane cholesterol levels on a voltage-gated sodium channel. Different lipid compositions are modeled around the channel to obtain information about the possible effects by which cholesterol influences NavAb channels. Cholesterol was normally not directly interacting with either the closed or inactivated conformation. Cholesterol increased lipid packing implying that it plays a crucial role in restricting lipid movement in the region around 1 nm of the channel in a 1-palmitoyl-2-oeleoyl phosphatidylcholine matrix. Our results provide the first computational indication of an indirect modulation of NavAb channels by membrane cholesterol.

  11. High-Density Lipoprotein, Lecithin: Cholesterol Acyltransferase, and Atherosclerosis

    PubMed Central

    Ossoli, Alice; Pavanello, Chiara

    2016-01-01

    Epidemiological data clearly show the existence of a strong inverse correlation between plasma high-density lipoprotein cholesterol (HDL-C) concentrations and the incidence of coronary heart disease. This relation is explained by a number of atheroprotective properties of HDL, first of all the ability to promote macrophage cholesterol transport. HDL are highly heterogeneous and are continuously remodeled in plasma thanks to the action of a number of proteins and enzymes. Among them, lecithin:cholesterol acyltransferase (LCAT) plays a crucial role, being the only enzyme able to esterify cholesterol within lipoproteins. LCAT is synthetized by the liver and it has been thought to play a major role in reverse cholesterol transport and in atheroprotection. However, data from animal studies, as well as human studies, have shown contradictory results. Increased LCAT concentrations are associated with increased HDL-C levels but not necessarily with atheroprotection. On the other side, decreased LCAT concentration and activity are associated with decreased HDL-C levels but not with increased atherosclerosis. These contradictory results confirm that HDL-C levels per se do not represent the functionality of the HDL system. PMID:27302716

  12. Effect of cellular cholesterol depletion on rabies virus infection.

    PubMed

    Hotta, Kozue; Bazartseren, Boldbarrtar; Kaku, Yoshihiro; Noguchi, Akira; Okutani, Akiko; Inoue, Satoshi; Yamada, Akio

    2009-01-01

    Although there are several reports on candidates for rabies virus (RABV) receptor, possible roles played by these receptor candidates in determination of highly neurotropic nature of RABV have not been well understood. Since these candidate receptors for RABV were reported to be frequently associated with cholesterol-rich microdomains characterized by lipid rafts and caveolae structures, we attempted to determine whether the disturbance of microdomains caused by the cholesterol depletion showed any effects on RABV infection. When the cellular cholesterol was depleted by methyl-beta-cyclodextrin (MBCD) treatment, increase in RABV adsorption and infection, but not multiplication rather than suppression was observed in both BHK-21 and HEp-2 cells. These effects exerted by MBCD treatment on RABV infection could be reversed by cholesterol reconstitution. These results suggest that RABV enters BHK-21 or HEp-2 cells through ports of entry other than those located on cholesterol-rich microdomains and raise the possibility that RABV uses different mechanisms to enter the non-neuronal cells.

  13. Formation of Cholesterol Bilayer Domains Precedes Formation of Cholesterol Crystals in Cholesterol/Dimyristoylphosphatidylcholine Membranes: EPR and DSC Studies

    PubMed Central

    Mainali, Laxman; Raguz, Marija; Subczynski, Witold K.

    2013-01-01

    Saturation-recovery EPR along with DSC were used to determine the cholesterol content at which pure cholesterol bilayer domains (CBDs) and cholesterol crystals begin to form in dimyristoylphosphatidylcholine (DMPC) membranes. To preserve compositional homogeneity throughout the membrane suspension, lipid multilamellar dispersions were prepared using a rapid solvent exchange method. The cholesterol content increased from 0 to 75 mol%. With spin-labeled cholesterol analogs it was shown that the CBDs begin to form at ~50 mol% cholesterol. It was confirmed by DSC that the cholesterol solubility threshold for DMPC membranes is detected at ~66 mol% cholesterol. At levels above this cholesterol content, monohydrate cholesterol crystals start to form. The major finding is that formation of CBDs precedes formation of cholesterol crystals. The region of the phase diagram for cholesterol contents between 50 and 66 mol% is described as a structured one-phase region in which CBDs have to be supported by the surrounding DMPC bilayer saturated with cholesterol. Thus, the phase boundary located at 66 mol% cholesterol separates the structured one-phase region (liquid-ordered phase of DMPC with CBDs) from the two-phase region where the structured liquid-ordered phase of DMPC coexists with cholesterol crystals. It is likely that CBDs are precursors of monohydrate cholesterol crystals. PMID:23834375

  14. Reversible dementias

    PubMed Central

    Tripathi, Manjari; Vibha, Deepti

    2009-01-01

    In recent years, more attention has been given to the early diagnostic evaluation of patients with dementia which is essential to identify patients with cognitive symptoms who may have treatable conditions. Guidelines suggest that all patients presenting with dementia or cognitive symptoms should be evaluated with a range of laboratory tests, and with structural brain imaging with computed tomography (CT) or magnetic resonance imaging (MRI). While many of the disorders reported as ‘reversible dementias’ are conditions that may well be associated with cognitive or behavioral symptoms, these symptoms are not always sufficiently severe to fulfill the clinical criteria for dementia. Thus, while the etiology of a condition may be treatable it should not be assumed that the associated dementia is fully reversible. Potentially reversible dementias should be identified and treatment considered, even if the symptoms are not sufficiently severe to meet the clinical criteria for dementia, and even if partial or full reversal of the cognitive symptoms cannot be guaranteed. In the literature, the most frequently observed potentially reversible conditions identified in patients with cognitive impairment or dementia are depression, adverse effects of drugs, drug or alcohol abuse, space-occupying lesions, normal pressure hydrocephalus, and metabolic conditions land endocrinal conditions like hypothyroidism and nutritional conditions like vitamin B-12 deficiency. Depression is by far the most common of the potentially reversible conditions. The review, hence addresses the common causes of reversible dementia and the studies published so far. PMID:21416018

  15. Cholesterol and Benign Prostate Disease

    PubMed Central

    Freeman, Michael R.; Solomon, Keith R.

    2014-01-01

    The origins of benign prostatic diseases, such as benign prostatic hyperplasia (BPH) and chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), are poorly understood. Patients suffering from benign prostatic symptoms report a substantially reduced quality of life, and the relationship between benign prostate conditions and prostate cancer is uncertain. Epidemiologic data for BPH and CP/CPPS are limited, however an apparent association bet ween BPH symptoms and cardiovascular disease (CVD) has been consistently reported. The prostate synthesizes and stores large amounts of cholesterol and prostate tissues may be particularly sensitive to perturbations in cholesterol metabolism. Hypercholesterolemi, a major risk factor for CVD, is also a risk factor for BPH. Animal model and clinical trial findings suggest that agents that inhibit cholesterol absorption from the intestine, such as the class of compounds known as polyene macrolides, can reduce prostate gland size and improve lower urinary tract symptoms (LUTS). Observational studies indicate that cholesterol-lowering drugs reduce the risk of aggressive prostate cancer, while prostate cancer cell growth and survival pathways depend in part on cholesterol-sensitive biochemical mechanisms. Here we review the evidence that cholesterol metabolism plays a role in the incidence of benign prostate disease and we highlight possible therapeutic approaches based on this concept. PMID:21862201

  16. Cholesterol and benign prostate disease.

    PubMed

    Freeman, Michael R; Solomon, Keith R

    2011-01-01

    The origins of benign prostatic diseases, such as benign prostatic hyperplasia (BPH) and chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), are poorly understood. Patients suffering from benign prostatic symptoms report a substantially reduced quality of life, and the relationship between benign prostate conditions and prostate cancer is uncertain. Epidemiologic data for BPH and CP/CPPS are limited, however an apparent association between BPH symptoms and cardiovascular disease (CVD) has been consistently reported. The prostate synthesizes and stores large amounts of cholesterol and prostate tissues may be particularly sensitive to perturbations in cholesterol metabolism. Hypercholesterolemia, a major risk factor for CVD, is also a risk factor for BPH. Animal model and clinical trial findings suggest that agents that inhibit cholesterol absorption from the intestine, such as the class of compounds known as polyene macrolides, can reduce prostate gland size and improve lower urinary tract symptoms (LUTS). Observational studies indicate that cholesterol-lowering drugs reduce the risk of aggressive prostate cancer, while prostate cancer cell growth and survival pathways depend in part on cholesterol-sensitive biochemical mechanisms. Here we review the evidence that cholesterol metabolism plays a role in the incidence of benign prostate disease and we highlight possible therapeutic approaches based on this concept.

  17. Membrane cholesterol selectively modulates the activity of the human ABCG2 multidrug transporter.

    PubMed

    Telbisz, Agnes; Müller, Marianna; Ozvegy-Laczka, Csilla; Homolya, László; Szente, Lajos; Váradi, András; Sarkadi, Balázs

    2007-11-01

    The human ABCG2 multidrug transporter provides protection against numerous toxic compounds and causes multidrug resistance in cancer. Here we examined the effects of changes in membrane cholesterol on the function of this protein. Human ABCG2 was expressed in mammalian and in Sf9 insect cells, and membrane cholesterol depletion or enrichment was achieved by preincubation with beta cyclodextrin or its cholesterol-loaded form. We found that mild cholesterol depletion of intact mammalian cells inhibited ABCG2-dependent dye and drug extrusion in a reversible fashion, while the membrane localization of the transporter protein was unchanged. Cholesterol enrichment of cholesterol-poor Sf9 cell membrane vesicles greatly increased ABCG2-driven substrate uptake, substrate-stimulated ATPase activity, as well as the formation of a catalytic cycle intermediate (nucleotide trapping). Interestingly, modulation of membrane cholesterol did not significantly affect the function of the R482G or R482T substrate mutant ABCG2 variants, or that of the MDR1 transporter. The selective, major effect of membrane cholesterol on the wild-type ABCG2 suggests a regulation of the activity of this multidrug transporter during processing or in membrane micro-domain interactions. The experimental recognition of physiological and pharmacological substrates of ABCG2, as well as the fight against cancer multidrug resistance may be facilitated by demonstrating the key role of membrane cholesterol in this transport activity.

  18. Metabolism, Energetics, and Lipid Biology in the Podocyte – Cellular Cholesterol-Mediated Glomerular Injury

    PubMed Central

    Merscher, Sandra; Pedigo, Christopher E.; Mendez, Armando J.

    2014-01-01

    Chronic kidney disease (CKD) is associated with a high risk of death. Dyslipidemia is commonly observed in patients with CKD and is accompanied by a decrease in plasma high-density lipoprotein, and an increase in plasma triglyceride-rich lipoproteins and oxidized lipids. The observation that statins may decrease albuminuria but do not stop the progression of CKD indicates that pathways other than the cholesterol synthesis contribute to cholesterol accumulation in the kidneys of patients with CKD. Recently, it has become clear that increased lipid influx and impaired reverse cholesterol transport can promote glomerulosclerosis, and tubulointerstitial damage. Lipid-rafts are cholesterol-rich membrane domains with important functions in regulating membrane fluidity, membrane protein trafficking, and in the assembly of signaling molecules. In podocytes, which are specialized cells of the glomerulus, they contribute to the spatial organization of the slit diaphragm (SD) under physiological and pathological conditions. The discovery that podocyte-specific proteins such as podocin can bind and recruit cholesterol contributing to the formation of the SD underlines the importance of cholesterol homeostasis in podocytes and suggests cholesterol as an important regulator in the development of proteinuric kidney disease. Cellular cholesterol accumulation due to increased synthesis, influx, or decreased efflux is an emerging concept in podocyte biology. This review will focus on the role of cellular cholesterol accumulation in the pathogenesis of kidney diseases with a focus on glomerular diseases. PMID:25352833

  19. [Nicotinic acid increases cellular transport of high density lipoprotein cholesterol in patients with hypoalphalipoproteinemia].

    PubMed

    Figueroa, Catalina; Droppelmann, Katherine; Quiñones, Verónica; Amigo, Ludwig; Mendoza, Camila; Serrano, Valentina; Véjar, Margarita; Maiz, Alberto; Rigotti, Attilio

    2015-09-01

    Plasma high density lipoproteins (HDL) are involved in reverse cholesterol transport mediated by the scavenger receptor class B type I (SR-BI). Nicotinic acid increases HDL cholesterol levels, even though its specific impact on SR-BI dependent-cellular cholesterol transport remains unknown. To determine the effect of nicotinic acid on HDL particle functionality in cholesterol efflux and uptake mediated by SR-BI in cultured cells in hypoalphalipoproteinemic patients. In a pilot study, eight patients with low HDL (≤ 40 mg/dL) were treated with extended release nicotinic acid. HDL cholesterol and phospholipid levels, HDL2 and HDL3 fractions and HDL particle sizes were measured at baseline and post-therapy. Before and after nicotinic acid treatment, HDL particles were used for cholesterol transport studies in cells transfected with SR-BI. Nicotinic acid treatment raised total HDL cholesterol and phospholipids, HDL2 levels as well as HDL particle size. Nicotinic acid significantly increased HDL cholesterol efflux and uptake capacity mediated by SR-BI in cultured cells. Nicotinic acid therapy increases SR-BI-dependent HDL cholesterol transport in cultured cells, establishing a new cellular mechanism by which this lipid-lowering drug appears to modulate HDL metabolism in patients with hypoalphalipoproteinemia.

  20. Facts about...Blood Cholesterol. Revised.

    ERIC Educational Resources Information Center

    National Heart, Lung, and Blood Inst. (DHHS/NIH), Bethesda, MD.

    This fact sheet on blood cholesterol examines the connection between cholesterol and heart disease, lists risk factors for heart disease that can and cannot be controlled, points out who can benefit from lowering blood cholesterol, distinguishes between blood and dietary cholesterol, describes low density lipoprotein and high density lipoprotein…

  1. Niacin to Boost Your HDL "Good" Cholesterol

    MedlinePlus

    Niacin can boost 'good' cholesterol Niacin is a B vitamin that may raise your HDL ("good") cholesterol. But side effects might outweigh benefits for most ... been used to increase high-density lipoprotein (HDL) cholesterol — the "good" cholesterol that helps remove low-density ...

  2. Reversible Sterilization

    ERIC Educational Resources Information Center

    Largey, Gale

    1977-01-01

    Notes that difficult questions arise concerning the use of sterilization for alleged eugenic and euthenic purposes. Thus, how reversible sterilization will be used with relation to the poor, mentally ill, mentally retarded, criminals, and minors, is questioned. (Author/AM)

  3. Reversible Sterilization

    ERIC Educational Resources Information Center

    Largey, Gale

    1977-01-01

    Notes that difficult questions arise concerning the use of sterilization for alleged eugenic and euthenic purposes. Thus, how reversible sterilization will be used with relation to the poor, mentally ill, mentally retarded, criminals, and minors, is questioned. (Author/AM)

  4. Amperometric determination of serum total cholesterol with nanoparticles of cholesterol esterase and cholesterol oxidase.

    PubMed

    Aggarwal, V; Malik, J; Prashant, A; Jaiwal, P K; Pundir, C S

    2016-05-01

    We describe the preparation of glutaraldehyde cross-linked and functionalized cholesterol esterase nanoparticles (ChENPs) and cholesterol oxidase nanoparticles (ChOxNPs) aggregates and their co-immobilization onto Au electrode for improved amperometric determination of serum total cholesterol. Transmission electron microscope (TEM) images of ChENPs and ChOxNPs showed their spherical shape and average size of 35.40 and 56.97 nm, respectively. Scanning electron microscope (SEM) studies of Au electrode confirmed the co-immobilization of enzyme nanoparticles (ENPs). The biosensor exhibited optimal response at pH 5.5 and 40°C within 5 s when polarized at +0.25 V versus Ag/AgCl. The working/linear range of the biosensor was 10-700 mg/dl for cholesterol. The sensor showed high sensitivity and measured total cholesterol as low as 0.1 mg/dl. The biosensor was evaluated and employed for total cholesterol determination in sera of apparently healthy and diseased persons. The analytical recovery of added cholesterol was 90%, whereas the within-batch and between-batch coefficients of variation (CVs) were less than 2% and less than 3%. There was a good correlation (r = 0.99) between serum cholesterol values as measured by the standard enzymic colorimetric method and the current method. The initial activity of ENPs/working electrode was reduced by 50% during its regular use (200 times) over a period of 60 days when stored dry at 4°C.

  5. Reversible Cardiomyopathies

    PubMed Central

    Patel, Harsh; Madanieh, Raef; Kosmas, Constantine E; Vatti, Satya K; Vittorio, Timothy J

    2015-01-01

    Cardiomyopathies (CMs) have many etiological factors that can result in severe structural and functional dysregulation. Fortunately, there are several potentially reversible CMs that are known to improve when the root etiological factor is addressed. In this article, we discuss several of these reversible CMs, including tachycardia-induced, peripartum, inflammatory, hyperthyroidism, Takotsubo, and chronic illness–induced CMs. Our discussion also includes a review on their respective pathophysiology, as well as possible management solutions. PMID:26052233

  6. Phosphatidylcholine: Greasing the Cholesterol Transport Machinery

    PubMed Central

    Lagace, Thomas A.

    2015-01-01

    Negative feedback regulation of cholesterol metabolism in mammalian cells ensures a proper balance of cholesterol with other membrane lipids, principal among these being the major phospholipid phosphatidylcholine (PC). Processes such as cholesterol biosynthesis and efflux, cholesteryl ester storage in lipid droplets, and uptake of plasma lipoproteins are tuned to the cholesterol/PC ratio. Cholesterol-loaded macrophages in atherosclerotic lesions display increased PC biosynthesis that buffers against elevated cholesterol levels and may also facilitate cholesterol trafficking to enhance cholesterol sensing and efflux. These same mechanisms could play a generic role in homeostatic responses to acute changes in membrane free cholesterol levels. Here, I discuss the established and emerging roles of PC metabolism in promoting intracellular cholesterol trafficking and membrane lipid homeostasis. PMID:27081313

  7. Direct vs. Indirect Moral Enhancement.

    PubMed

    Schaefer, G Owen

    2015-09-01

    Moral enhancement is an ostensibly laudable project. Who wouldn't want people to become more moral? Still, the project's approach is crucial. We can distinguish between two approaches for moral enhancement: direct and indirect. Direct moral enhancements aim at bringing about particular ideas, motives or behaviors. Indirect moral enhancements, by contrast, aim at making people more reliably produce the morally correct ideas, motives or behaviors without committing to the content of those ideas, motives and/or actions. I will argue, on Millian grounds, that the value of disagreement puts serious pressure on proposals for relatively widespread direct moral enhancement. A more acceptable path would be to focus instead on indirect moral enhancements while staying neutral, for the most part, on a wide range of substantive moral claims. I will outline what such indirect moral enhancement might look like, and why we should expect it to lead to general moral improvement.

  8. Prediagnostic total and high-density lipoprotein cholesterol and risk of cancer.

    PubMed

    Ahn, Jiyoung; Lim, Unhee; Weinstein, Stephanie J; Schatzkin, Arthur; Hayes, Richard B; Virtamo, Jarmo; Albanes, Demetrius

    2009-11-01

    Circulating total cholesterol has been inversely associated with cancer risk; however, the role of reverse causation and the associations for high-density lipoprotein (HDL) cholesterol have not been fully characterized. We examined the relationship between serum total and HDL cholesterol and risk of overall and site-specific cancers among 29,093 men in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study cohort. Fasting serum total and HDL cholesterol were assayed at baseline, and 7,545 incident cancers were identified during up to 18 years of follow-up. Multivariable proportional hazards models were conducted to estimate relative risks (RR). Higher serum total cholesterol concentration was associated with decreased risk of cancer overall (RR for comparing high versus low quintile, 0.85; 95% confidence interval, 0.79-0.91; P trend <0.001; >276.7 versus <203.9 mg/dL), and the inverse association was particularly evident for cancers of the lung and liver. These associations were no longer significant, however, when cases diagnosed during the first 9 years of follow-up were excluded. Greater HDL cholesterol was also associated with decreased risk of cancer (RR for high versus low quintile, 0.89; 95% confidence interval, 0.83-0.97; P trend = 0.01; >55.3 versus <36.2 mg/dL). The inverse association of HDL cholesterol was evident for cancers of lung, prostate, liver, and the hematopoietic system, and the associations of HDL cholesterol with liver and lung cancers remained after excluding cases diagnosed within 12 years of study entry. Our findings suggest that prior observations regarding serum total cholesterol and cancer are largely explained by reverse causation. Although chance and reverse causation may explain some of the inverse HDL associations, we cannot rule out some etiologic role for this lipid fraction.

  9. Pre-diagnostic Total and High Density Lipoprotein Cholesterol and Risk of Cancer

    PubMed Central

    Ahn, Jiyoung; Lim, Unhee; Weinstein, Stephanie J.; Schatzkin, Arthur; Hayes, Richard B.; Virtamo, Jarmo; Albanes, Demetrius

    2012-01-01

    Background Circulating total cholesterol has been inversely associated with cancer risk; however, the role of reverse causation and the associations for high density lipoprotein (HDL) cholesterol have not been fully characterized. We examined the relationship between serum total and HDL cholesterol and risk of overall and site-specific cancers among 29,093 men in the ATBC Study cohort. Methods Fasting serum total and HDL cholesterol were assayed at baseline, and 7,545 incident cancers were identified during up to 18 years of follow-up. Multivariable proportional hazards models were conducted to estimate relative risks. Results Higher serum total cholesterol concentration was associated with decreased risk of cancer overall (RR for comparing high versus low quintile=0.85, 95%CI=0.79–0.91; P trend < 0.001; >276.7 versus <203.9 mg/dL), and the inverse association was particularly evident for cancers of the lung and liver. These associations were no longer significant, however, when cases diagnosed during the first nine years of follow-up were excluded. Greater HDL cholesterol was also associated with decreased risk of cancer (RR for high versus low quintile=0.89, 95%CI=0.83–0.97; P trend=0.01; >55.3 versus <36.2 mg/dL). The inverse association of HDL cholesterol was evident for cancers of lung, prostate, liver, and the hematopoietic system, and the associations of HDL cholesterol with liver and lung cancers remained after excluding cases diagnosed within 12 years of study entry. Conclusion Our findings suggest that prior observations regarding serum total cholesterol and cancer are largely explained by reverse causation. Although chance and reverse causation may explain some of the inverse HDL associations, we cannot rule out some etiologic role for this lipid fraction. PMID:19887581

  10. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice.

    PubMed

    Schonewille, Marleen; de Boer, Jan Freark; Mele, Laura; Wolters, Henk; Bloks, Vincent W; Wolters, Justina C; Kuivenhoven, Jan A; Tietge, Uwe J F; Brufau, Gemma; Groen, Albert K

    2016-08-01

    Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins, we investigated the effects on cholesterol metabolism in mice in detail. Surprisingly, direct measurement of whole body cholesterol synthesis revealed that cholesterol synthesis was robustly increased in statin-treated mice. Measurement of organ-specific cholesterol synthesis demonstrated that the liver is predominantly responsible for the increase in cholesterol synthesis. Excess synthesized cholesterol did not accumulate in the plasma, as plasma cholesterol decreased. However, statin treatment led to an increase in cholesterol removal via the feces. Interestingly, enhanced cholesterol excretion in response to rosuvastatin and lovastatin treatment was mainly mediated via biliary cholesterol secretion, whereas atorvastatin mainly stimulated cholesterol removal via the transintestinal cholesterol excretion pathway. Moreover, we show that plasma cholesterol precursor levels do not reflect cholesterol synthesis rates during statin treatment in mice. In conclusion, cholesterol synthesis is paradoxically increased upon statin treatment in mice. However, statins potently stimulate the excretion of cholesterol from the body, which sheds new light on possible mechanisms underlying the cholesterol-lowering effects of statins. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  11. Sterol carrier protein 2 participates in hypersecretion of biliary cholesterol during gallstone formation in genetically gallstone-susceptible mice.

    PubMed Central

    Fuchs, M; Lammert, F; Wang, D Q; Paigen, B; Carey, M C; Cohen, D E

    1998-01-01

    In inbred mice, susceptibility to cholesterol gallstone disease is conferred by Lith genes, which in part promote hypersecretion of cholesterol into bile in response to a high-fat/cholesterol/cholic acid (lithogenic) diet. Because cytosolic sterol carrier protein 2 (SCP2) is believed to participate in cellular cholesterol trafficking and is elevated in the liver cytosol of cholesterol gallstone patients, we defined the hepatic expression of SCP2 during cholesterol gallstone formation in gallstone-susceptible C57L and gallstone-resistant AKR mice fed the lithogenic diet. Steady-state cytosolic SCP2 levels in C57L, but not AKR mice increased as a function of time and were correlated positively with biliary cholesterol hypersecretion, cholesterol saturation indices of gall-bladder biles and the appearance of liquid and solid cholesterol crystals leading to gallstone formation. Steady-state mRNA levels increased co-ordinately, consistent with regulation of SCP2 expression at the transcriptional level. Our results suggest that overexpression of SCP2 contributes to biliary cholesterol hypersecretion and the pathogenesis of gallstones in genetically susceptible mice. Because of the different chromosomal localizations of the Lith and Scp2 genes, we postulate that Lith genes control SCP2 expression indirectly. PMID:9806881

  12. The logic of indirect speech

    PubMed Central

    Pinker, Steven; Nowak, Martin A.; Lee, James J.

    2008-01-01

    When people speak, they often insinuate their intent indirectly rather than stating it as a bald proposition. Examples include sexual come-ons, veiled threats, polite requests, and concealed bribes. We propose a three-part theory of indirect speech, based on the idea that human communication involves a mixture of cooperation and conflict. First, indirect requests allow for plausible deniability, in which a cooperative listener can accept the request, but an uncooperative one cannot react adversarially to it. This intuition is supported by a game-theoretic model that predicts the costs and benefits to a speaker of direct and indirect requests. Second, language has two functions: to convey information and to negotiate the type of relationship holding between speaker and hearer (in particular, dominance, communality, or reciprocity). The emotional costs of a mismatch in the assumed relationship type can create a need for plausible deniability and, thereby, select for indirectness even when there are no tangible costs. Third, people perceive language as a digital medium, which allows a sentence to generate common knowledge, to propagate a message with high fidelity, and to serve as a reference point in coordination games. This feature makes an indirect request qualitatively different from a direct one even when the speaker and listener can infer each other's intentions with high confidence. PMID:18199841

  13. [Accuracy of HDL cholesterol measurements].

    PubMed

    Niedmann, P D; Luthe, H; Wieland, H; Schaper, G; Seidel, D

    1983-02-01

    The widespread use of different methods for the determination of HDL-cholesterol (in Europe: sodium phosphotungstic acid/MgCl2) in connection with enzymatic procedures (in the USA: heparin/MnCl2 followed by the Liebermann-Burchard method) but common reference values makes it necessary to evaluate not only accuracy, specificity, and precision of the precipitation step but also of the subsequent cholesterol determination. A high ratio of serum vs. concentrated precipitation reagent (10:1 V/V) leads to the formation of variable amounts of delta-3.5-cholestadiene. This substance is not recognized by cholesterol oxidase but leads to an 1.6 times overestimation by the Liebermann-Burchard method. Therefore, errors in HDL-cholesterol determination should be considered and differences up to 30% may occur between HDL-cholesterol values determined by the different techniques (heparin/MnCl2 - Liebermann-Burchard and NaPW/MgCl2-CHOD-PAP).

  14. [Determination of HDL-cholesterol].

    PubMed

    Herrmann, W; Schütz, C; Reuter, W

    1983-01-01

    For the clinical practice methods of the determination of HDL-cholesterol made their way which are based on the precipitation of apolipoprotein-B-containing lipoproteins and a determination of cholesterol following. The expensive methods of the ultracentrifugation serve as reference methods. The most-spread precipitation techniques (heparin/MCl2, dextran sulphate/CaCl2 or MgCl2 photungstic acid/MgCl2) are comparatively observed with regard to their effectiveness, practicability and methodical and technical conditions (influence of the concentration of the precipitation reagents, pH-value, temperature, incubation and centrifugation conditions). Results of own investigations as well as data from literature are presented to the problem of the harmonization of the cholesterol determination with the precipitation technique. According to the opinion of the authors for the enzymatic determination of cholesterol by means of the CHOD-PAP-method the phosphotungstic acid precipitation well stood the test, whereas for the chemical determination of cholesterol after Liebermann-Burchard in manual or automatized works the precipitation by means of dextran sulphate/CaCl2 (40 g/l, 2.0 mol/l) is to be recommended. The superabundant precipitations with phosphotungstic acid and dextran sulphate/MgCl2 (20 g/l, 2.0 mol/l) achieve higher results in Liebermann-Burchard's reaction likely on account of interferences.

  15. RADIOAUTOGRAPHY OF CHOLESTEROL IN LUNG

    PubMed Central

    Darrah, Hilary K.; Hedley-Whyte, John; Hedley-Whyte, E. Tessa

    1971-01-01

    30 Swiss albino mice aged 8 days were injected intraperitoneally with 0.2 ml of a solution of 4% N,N-dimethyl-formamide in 5% dextrose in water containing cholesterol-1,2-3H (∼1 mCi/ml). Lung tissue was embedded in an Epon mixture after either acetone and propylene oxide dehydration, partial ethanol and Epon 812 dehydration, or the precipitation of cholesterol by digitonin succeeded by partial dehydration. The distribution of cholesterol-1,2-3H in lung parenchyma in 1µ Epon section radioautograms was compared with that in frozen section radioautograms and was found to be independent of the manner of tissue processing. Grain distribution in the tissue was essentially the same whether 16, 63, 93, or 100% radioactivity was retained in the lung. However, grain distribution in the alveolar spaces differed, presumably due to displacement of pulmonary surfactant, which contains cholesterol. Intracellular distribution of cholesterol, in electron microscope radioautograms, was the same with either 51% or 93% retention of radioactivity in the lung. Loss of radioactivity into the various processing solutions was monitored. The various processing techniques have different drawbacks. PMID:19866763

  16. Sphingomyelinase activates GLUT4 translocation via a cholesterol-dependent mechanism.

    PubMed

    Liu, Ping; Leffler, Brian J; Weeks, Lara K; Chen, Guoli; Bouchard, Christine M; Strawbridge, Andrew B; Elmendorf, Jeffrey S

    2004-02-01

    A basis for the insulin mimetic effect of sphingomyelinase on glucose transporter isoform GLUT4 translocation remains unclear. Because sphingomyelin serves as a major determinant of plasma membrane cholesterol and a relationship between plasma membrane cholesterol and GLUT4 levels has recently become apparent, we assessed whether GLUT4 translocation induced by sphingomyelinase resulted from changes in membrane cholesterol content. Exposure of 3T3-L1 adipocytes to sphingomyelinase resulted in a time-dependent loss of sphingomyelin from the plasma membrane and a concomitant time-dependent accumulation of plasma membrane GLUT4. Degradation products of sphingomyelin did not mimic this stimulatory action. Plasma membrane cholesterol amount was diminished in cells exposed to sphingomyelinase. Restoration of membrane cholesterol blocked the stimulatory effect of sphingomyelinase. Increasing concentrations of methyl-beta-cyclodextrin, which resulted in a dose-dependent reversible decrease in membrane cholesterol, led to a dose-dependent reversible increase in GLUT4 incorporation into the plasma membrane. Although increased plasma membrane GLUT4 content by cholesterol extraction with concentrations of methyl-beta-cyclodextrin above 5 mM most likely reflected decreased GLUT4 endocytosis, translocation stimulated by sphingomyelinase or concentrations of methyl-beta-cyclodextrin below 2.5 mM occurred without any visible changes in the endocytic retrieval of GLUT4. Furthermore, moderate loss of cholesterol induced by sphingomyelinase or low concentrations of methyl-beta-cyclodextrin did not alter membrane integrity or increase the abundance of other plasma membrane proteins such as the GLUT1 glucose transporter or the transferrin receptor. Regulation of GLUT4 translocation by moderate cholesterol loss did not involve known insulin-signaling proteins. These data reveal that sphingomyelinase enhances GLUT4 exocytosis via a novel cholesterol-dependent mechanism.

  17. Turnover of xanthoma cholesterol in hyperlipoproteinemia patients.

    PubMed

    Bhattacharyya, A K; Connor, W E; Mausolf, F A; Flatt, A D

    1976-03-01

    The turnover of xanthoma cholesterol was measured in 9 hyperlipidemic and one normocholesterolemic patients. Sequential biopsies of the xanthomas were obtained 13 to 364 days after the administration of isotopic cholesterol and were then analyzed for cholesterol specific activity. A total of 34 xanthomas of 3 different types - 10 tendon xanthomas, 3 tuberous xanthomas, and 21 xanthelasmas - comprised the material for analysis. The cholesterol specific activity ratio of tendron xanthomas to that of the plasma varied from 11 per cent at 21 days to a maximum of 543 per cent at 122 days after the intravenous administration of isotopic cholesterol. This ratio declined to 426 per cent at 182 days and was still 131 per cent at 364 days. Similarly, the cholesterol specific activity of xanthelasmas increased gradually. In most instances, the xanthelasma cholesterol attained isotopic equilibration with plasma cholesterol by about 50 days but varied from patient to patient (minimum time, 46 days and maximum time, 91 days). The cholesterol content of xanthomas ranged from 10.7 to 197.0 mg per gram of dry weight of the tissue. Sixty-one to 87 per cent of the total xanthoma cholesterol was esterified. No other sterols were identified in these xanthomas. Thus, the cholesterol of 3 types of xanthoma readily attained isotopic equilibration with the plasma cholesterol which suggested total exchangeability of cholesterol between plasma and xanthomas. The uptake of cholesterol by the xanthomas from plasma was rapid considering the large mass of cholesterol in the lesions. The turnover of xanthoma cholesterol was intermediate between that of the rapidly exchangeable pool and of the slowly exchangeable pool of body cholesterol. Comparison of these results with those obtained in human advanced atheroma suggest that the turnover of xanthoma cholesterol and atheroma cholesterol are quite different.

  18. Cooperation under Indirect Reciprocity and Imitative Trust

    PubMed Central

    Saavedra, Serguei; Smith, David; Reed-Tsochas, Felix

    2010-01-01

    Indirect reciprocity, a key concept in behavioral experiments and evolutionary game theory, provides a mechanism that allows reciprocal altruism to emerge in a population of self-regarding individuals even when repeated interactions between pairs of actors are unlikely. Recent empirical evidence show that humans typically follow complex assessment strategies involving both reciprocity and social imitation when making cooperative decisions. However, currently, we have no systematic understanding of how imitation, a mechanism that may also generate negative effects via a process of cumulative advantage, affects cooperation when repeated interactions are unlikely or information about a recipient's reputation is unavailable. Here we extend existing evolutionary models, which use an image score for reputation to track how individuals cooperate by contributing resources, by introducing a new imitative-trust score, which tracks whether actors have been the recipients of cooperation in the past. We show that imitative trust can co-exist with indirect reciprocity mechanisms up to a threshold and then cooperation reverses -revealing the elusive nature of cooperation. Moreover, we find that when information about a recipient's reputation is limited, trusting the action of third parties towards her (i.e. imitating) does favor a higher collective cooperation compared to random-trusting and share-alike mechanisms. We believe these results shed new light on the factors favoring social imitation as an adaptive mechanism in populations of cooperating social actors. PMID:21048950

  19. Polarizable multipolar electrostatics for cholesterol

    NASA Astrophysics Data System (ADS)

    Fletcher, Timothy L.; Popelier, Paul L. A.

    2016-08-01

    FFLUX is a novel force field under development for biomolecular modelling, and is based on topological atoms and the machine learning method kriging. Successful kriging models have been obtained for realistic electrostatics of amino acids, small peptides, and some carbohydrates but here, for the first time, we construct kriging models for a sizeable ligand of great importance, which is cholesterol. Cholesterol's mean total (internal) electrostatic energy prediction error amounts to 3.9 kJ mol-1, which pleasingly falls below the threshold of 1 kcal mol-1 often cited for accurate biomolecular modelling. We present a detailed analysis of the error distributions.

  20. Cholesterol-induced stimulation of platelet aggregation is prevented by a hempseed-enriched diet.

    PubMed

    Prociuk, M A; Edel, A L; Richard, M N; Gavel, N T; Ander, B P; Dupasquier, C M C; Pierce, G N

    2008-04-01

    Hypercholesterolemia indirectly increases the risk for myocardial infarction by enhancing the ability of platelets to aggregate. Diets enriched with polyunsaturated fatty acids (PUFAs) have been shown to reduce the detrimental effects of cholesterol on platelet aggregation. This study investigated whether dietary hempseed, a rich source of PUFAs, inhibits platelet aggregation under normal and hypercholesterolemic conditions. Male New Zealand white rabbits were fed one of 6 dietary interventions: regular control diet (RG); control diet + 10% hempseed (HP); control diet + 10% partially delipidated hempseed (DHP); control diet + 0.5% cholesterol (OL); control diet + 0.5% cholesterol + 10% hempseed (OLHP); control diet + 5% coconut oil (CO). After 8 weeks, blood was collected to measure ADP- and collagen-induced platelet aggregation and plasma levels of fatty acids, cholesterol, and triglycerides. The hempseed-fed animals (HP and OLHP) displayed elevated plasma levels of PUFAs and a prominent enhancement in 18:3n-6 (gamma-linolenic acid, GLA) levels, a unique PUFA found in hempseed. The cholesterol-supplemented groups (OL and OLHP) had significantly elevated plasma levels of cholesterol and triglycerides, but platelet aggregation was significantly augmented only in the OL group. The addition of hempseed to this diet (OLHP) normalized aggregation. The direct addition of GLA to the OL platelet samples blocked the cholesterol-induced stimulation of platelet aggregation. The results of this study demonstrate that when hempseed is added to a cholesterol-enriched diet, cholesterol-induced platelet aggregation returns to control levels. This normalization is not due to a reduction in plasma cholesterol levels, but may be partly due to increased levels of plasma GLA.

  1. Indirect Reciprocity; A Field Experiment.

    PubMed

    van Apeldoorn, Jacobien; Schram, Arthur

    2016-01-01

    Indirect reciprocity involves cooperative acts towards strangers, either in response to their kindness to third parties (downstream) or after receiving kindness from others oneself (upstream). It is considered to be important for the evolution of cooperative behavior amongst humans. Though it has been widely studied theoretically, the empirical evidence of indirect reciprocity has thus far been limited and based solely on behavior in laboratory experiments. We provide evidence from an online environment where members can repeatedly ask and offer services to each other, free of charge. For the purpose of this study we created several new member profiles, which differ only in terms of their serving history. We then sent out a large number of service requests to different members from all over the world. We observe that a service request is more likely to be rewarded for those with a profile history of offering the service (to third parties) in the past. This provides clear evidence of (downstream) indirect reciprocity. We find no support for upstream indirect reciprocity (in this case, rewarding the service request after having previously received the service from third parties), however. Our evidence of downstream indirect reciprocity cannot be attributed to reputational effects concerning one's trustworthiness as a service user.

  2. Indirect Reciprocity; A Field Experiment

    PubMed Central

    van Apeldoorn, Jacobien; Schram, Arthur

    2016-01-01

    Indirect reciprocity involves cooperative acts towards strangers, either in response to their kindness to third parties (downstream) or after receiving kindness from others oneself (upstream). It is considered to be important for the evolution of cooperative behavior amongst humans. Though it has been widely studied theoretically, the empirical evidence of indirect reciprocity has thus far been limited and based solely on behavior in laboratory experiments. We provide evidence from an online environment where members can repeatedly ask and offer services to each other, free of charge. For the purpose of this study we created several new member profiles, which differ only in terms of their serving history. We then sent out a large number of service requests to different members from all over the world. We observe that a service request is more likely to be rewarded for those with a profile history of offering the service (to third parties) in the past. This provides clear evidence of (downstream) indirect reciprocity. We find no support for upstream indirect reciprocity (in this case, rewarding the service request after having previously received the service from third parties), however. Our evidence of downstream indirect reciprocity cannot be attributed to reputational effects concerning one’s trustworthiness as a service user. PMID:27043712

  3. Indirect Reciprocity under Incomplete Observation

    PubMed Central

    Nakamura, Mitsuhiro; Masuda, Naoki

    2011-01-01

    Indirect reciprocity, in which individuals help others with a good reputation but not those with a bad reputation, is a mechanism for cooperation in social dilemma situations when individuals do not repeatedly interact with the same partners. In a relatively large society where indirect reciprocity is relevant, individuals may not know each other's reputation even indirectly. Previous studies investigated the situations where individuals playing the game have to determine the action possibly without knowing others' reputations. Nevertheless, the possibility that observers of the game, who generate the reputation of the interacting players, assign reputations without complete information about them has been neglected. Because an individual acts as an interacting player and as an observer on different occasions if indirect reciprocity is endogenously sustained in a society, the incompleteness of information may affect either role. We examine the game of indirect reciprocity when the reputations of players are not necessarily known to observers and to interacting players. We find that the trustful discriminator, which cooperates with good and unknown players and defects against bad players, realizes cooperative societies under seven social norms. Among the seven social norms, three of the four suspicious norms under which cooperation (defection) to unknown players leads to a good (bad) reputation enable cooperation down to a relatively small observation probability. In contrast, the three trustful norms under which both cooperation and defection to unknown players lead to a good reputation are relatively efficient. PMID:21829335

  4. The Future of Indirect Evidence

    PubMed Central

    Efron, Bradley

    2009-01-01

    Familiar statistical tests and estimates are obtained by the direct observation of cases of interest: a clinical trial of a new drug, for instance, will compare the drug’s effects on a relevant set of patients and controls. Sometimes, though, indirect evidence may be temptingly available, perhaps the results of previous trials on closely related drugs. Very roughly speaking, the difference between direct and indirect statistical evidence marks the boundary between frequentist and Bayesian thinking. Twentieth-century statistical practice focused heavily on direct evidence, on the grounds of superior objectivity. Now, however, new scientific devices such as microarrays routinely produce enormous data sets involving thousands of related situations, where indirect evidence seems too important to ignore. Empirical Bayes methodology offers an attractive direct/indirect compromise. There is already some evidence of a shift toward a less rigid standard of statistical objectivity that allows better use of indirect evidence. This article is basically the text of a recent talk featuring some examples from current practice, with a little bit of futuristic speculation. PMID:21243111

  5. Effect of ezetimibe on plasma cholesterol levels, cholesterol absorption and secretion of biliary cholesterol in laboratory opossums with high and low responses to dietary cholesterol

    PubMed Central

    Chan, Jeannie; Kushwaha, Rampratap S.; VandeBerg, Jane F.; VandeBerg, John L.

    2008-01-01

    Partially inbred lines of laboratory opossums differ in plasma LDL cholesterol concentration and cholesterol absorption on a high cholesterol diet. The aim of the present studies was to determine whether ezetimibe inhibits cholesterol absorption and eliminates the differences in plasma cholesterol and hepatic cholesterol metabolism between high and low responders on a high cholesterol diet. Initially, we determined that the optimum dose of ezetimibe was 5 mg/kg/day, and treated six high and six low responding opossums with this dose (with equal numbers of controls) for 3 weeks while opossums consumed a high cholesterol and low fat (HCLF) diet. Plasma and LDL cholesterol concentrations decreased significantly (P<0.05) in treated but not in untreated high responding opossums. Plasma cholesterol concentrations of untreated low responders increased slightly (P<0.05) but not in treated low responders. Percent cholesterol absorption was significantly higher in untreated high responders than in other groups. Livers from high responders with or without treatment were significantly (P <0.01) heavier than livers from low responders with or without treatment. Hepatic cholesterol concentrations in untreated high responders were significantly (P<0.05) higher than in low responders with or without treatment (P<0.001). The gall bladder bile cholesterol concentrations in untreated high responders were significantly (P<0.05) lower than in other groups. A decrease in biliary cholesterol in low responders treated with ezetimibe was associated with a decrease in hepatic expression of ABCG5 and ABCG8. These studies suggest that ezetimibe decreases plasma cholesterol levels in high responders mainly by decreasing cholesterol absorption and increasing biliary cholesterol concentrations. Since ezetimibe’s target is NPC1L1 and NPC1L1 is expressed in the intestine of opossums, its effect on cholesterol absorption may be mediated by inhibiting NPC1L1 function in the intestine. PMID

  6. Effect of ezetimibe on plasma cholesterol levels, cholesterol absorption, and secretion of biliary cholesterol in laboratory opossums with high and low responses to dietary cholesterol.

    PubMed

    Chan, Jeannie; Kushwaha, Rampratap S; Vandeberg, Jane F; Vandeberg, John L

    2008-12-01

    Partially inbred lines of laboratory opossums differ in plasma low-density lipoprotein cholesterol concentration and cholesterol absorption on a high-cholesterol diet. The aim of the present studies was to determine whether ezetimibe inhibits cholesterol absorption and eliminates the differences in plasma cholesterol and hepatic cholesterol metabolism between high and low responders on a high-cholesterol diet. Initially, we determined that the optimum dose of ezetimibe was 5 mg/(kg d) and treated 6 high- and 6 low-responding opossums with this dose (with equal numbers of controls) for 3 weeks while the opossums consumed a high-cholesterol and low-fat diet. Plasma and low-density lipoprotein cholesterol concentrations decreased significantly (P < .05) in treated but not in untreated high-responding opossums. Plasma cholesterol concentrations increased slightly (P < .05) in untreated low responders but not in treated low responders. The percentage of cholesterol absorption was significantly higher in untreated high responders than in other groups. Livers from high responders with or without treatment were significantly (P < .01) heavier than livers from low responders with or without treatment. Hepatic cholesterol concentrations in untreated high responders were significantly (P < .05) higher than those in low responders with or without treatment (P < .001). The gall bladder bile cholesterol concentrations in untreated high responders were significantly (P < .05) lower than those in other groups. A decrease in biliary cholesterol in low responders treated with ezetimibe was associated with a decrease in hepatic expression of ABCG5 and ABCG8. These studies suggest that ezetimibe decreases plasma cholesterol levels in high responders mainly by decreasing cholesterol absorption and increasing biliary cholesterol concentrations. Because ezetimibe's target is NPC1L1 and NPC1L1 is expressed in the intestine of opossums, its effect on cholesterol absorption may be mediated

  7. Amperometric cholesterol biosensor based on the direct electrochemistry of cholesterol oxidase and catalase on a graphene/ionic liquid-modified glassy carbon electrode.

    PubMed

    Gholivand, Mohammad Bagher; Khodadadian, Mehdi

    2014-03-15

    Cholesterol oxidase (ChOx) and catalase (CAT) were co-immobilized on a graphene/ionic liquid-modified glassy carbon electrode (GR-IL/GCE) to develop a highly sensitive amperometric cholesterol biosensor. The H2O2 generated during the enzymatic reaction of ChOx with cholesterol could be reduced electrocatalytically by immobilized CAT to obtain a sensitive amperometric response to cholesterol. The direct electron transfer between enzymes and electrode surface was investigated by cyclic voltammetry. Both enzymes showed well-defined redox peaks with quasi-reversible behaviors. An excellent sensitivity of 4.163 mA mM(-1)cm(-2), a response time less than 6s, and a linear range of 0.25-215 μM (R(2)>0.99) have been observed for cholesterol determination using the proposed biosensor. The apparent Michaelis-Menten constant (KM(app)) was calculated to be 2.32 mM. The bienzymatic cholesterol biosensor showed good reproducibility (RSDs<5%) with minimal interference from the coexisting electroactive compounds such as ascorbic acid and uric acid. The CAT/ChOx/GR-IL/GCE showed excellent analytical performance for the determination of free cholesterol in human serum samples.

  8. ACAT inhibition reverses LCAT deficiency and improves plasma HDL in chronic renal failure.

    PubMed

    Vaziri, N D; Liang, K

    2004-11-01

    Chronic renal failure (CRF) is associated with increased risk of arteriosclerotic cardiovascular disease and profound alteration of plasma lipid profile. Uremic dyslipidemia is marked by increased plasma concentration of ApoB-containing lipoproteins and impaired high-density lipoprotein (HDL)-mediated reverse cholesterol transport. These abnormalities are, in part, due to acquired LCAT deficiency and upregulation of hepatic acyl-CoA:cholesterol acyltransferase (ACAT). ACAT catalyzes intracellular esterification of cholesterol, thereby promoting hepatic production of ApoB-containing lipoproteins and constraining HDL-mediated cholesterol uptake in the peripheral tissues. In view of the above considerations, we tested the hypothesis that pharmacological inhibition of ACAT may ameliorate CRF-induced dyslipidemia. 5/6 Nephrectomized rats were treated with either ACAT inhibitor IC-976 (30 mg.kg(-1).day(-1)) or placebo for 6 wk. Sham-operated rats served as controls. Key cholesterol-regulating enzymes, plasma lipids, and creatinine clearance were measured. The untreated CRF rats exhibited increased plasma low-density lipoprotein (LDL) and very LDL (VLDL) cholesterol, unchanged plasma HDL cholesterol, elevated total cholesterol-to-HDL cholesterol ratio, reduced liver microsomal free cholesterol, and diminished creatinine clearance. This was accompanied by reduced plasma LCAT, increased hepatic ACAT-2 mRNA, ACAT-2 protein and ACAT activity, and unchanged hepatic HMG-CoA reductase and cholesterol 7alpha-hydroxylase. ACAT inhibitor raised plasma HDL cholesterol, lowered LDL and VLDL cholesterol, and normalized total cholesterol-to-HDL cholesterol ratio without changing total cholesterol concentration (hence, a shift from ApoB-containing lipoproteins to HDL). This was accompanied by normalizations of hepatic ACAT activity and plasma LCAT. In conclusion, inhibition of ACAT reversed LCAT deficiency and improved plasma HDL level in CRF rats. Future studies are needed to explore

  9. Modulation of Chemokine Receptor Function by Cholesterol: New Prospects for Pharmacological Intervention.

    PubMed

    Legler, Daniel F; Matti, Christoph; Laufer, Julia M; Jakobs, Barbara D; Purvanov, Vladimir; Uetz-von Allmen, Edith; Thelen, Marcus

    2017-04-01

    Chemokine receptors are seven transmembrane-domain receptors belonging to class A of G-protein-coupled receptors (GPCRs). The receptors together with their chemokine ligands constitute the chemokine system, which is essential for directing cell migration and plays a crucial role in a variety of physiologic and pathologic processes. Given the importance of orchestrating cell migration, it is vital that chemokine receptor signaling is tightly regulated to ensure appropriate responses. Recent studies highlight a key role for cholesterol in modulating chemokine receptor activities. The steroid influences the spatial organization of GPCRs within the membrane bilayer, and consequently can tune chemokine receptor signaling. The effects of cholesterol on the organization and function of chemokine receptors and GPCRs in general include direct and indirect effects (Fig. 1). Here, we review how cholesterol and some key metabolites modulate functions of the chemokine system in multiple ways. We emphasize the role of cholesterol in chemokine receptor oligomerization, thereby promoting the formation of a signaling hub enabling integration of distinct signaling pathways at the receptor-membrane interface. Moreover, we discuss the role of cholesterol in stabilizing particular receptor conformations and its consequence for chemokine binding. Finally, we highlight how cholesterol accumulation, its deprivation, or cholesterol metabolites contribute to modulating cell orchestration during inflammation, induction of an adaptive immune response, as well as to dampening an anti-tumor immune response.

  10. Effects of zinc and cholesterol/choleate on serum lipoproteins and the liver in rats

    SciTech Connect

    Cho, C.H.; Chen, S.M.; Ogle, C.W.; Young, T.K.

    1989-01-01

    The effects of short-term treatment with orally-administered zinc sulfate and/or a mixture of cholesterol/choleate on serum lipoprotein and hepatic enzyme levels were studied. Administration of graded doses of zinc sulfate for 5 days, dose-dependently increased serum and hepatic zinc levels but depressed the serum high-density lipoprotein-cholesterol (HDL-C) concentration and liver cytochrome P-450 activity. However, it did not affect hepatic concentrations of malondialdehyde and free {beta}-glucuronidase. Cholesterol/choleate treatment for 5 days markedly damaged the liver, as reflected by elevations of hepatic concentrations of malondialdehyde (both in the mitochondrial and microsomal fractions) and of free {beta}-glucuronidase; total cholesterol and low-density lipoprotein-cholesterol in the blood were increased, whereas HDL-C was decreased significantly. Concomitant administration of zinc sulfate with cholesterol/choleate further lowered HDL-C levels, but reversed the high hepatic concentrations of both malondialdehyde and free {beta}-glucuronidase. The present study indicates that both zinc ions and cholesterol can decrease circulatory HDL-C levels and that zinc protects against cholesterol-induced hepatic damage by reducing lysosomal enzyme release and preventing lipid peroxidation in the liver.

  11. Preparation of intravenous cholesterol tracer using current good manufacturing practices1[S

    PubMed Central

    Lin, Xiaobo; Ma, Lina; Racette, Susan B.; Swaney, William P.; Ostlund, Richard E.

    2015-01-01

    Studies of human reverse cholesterol transport require intravenous infusion of cholesterol tracers. Because insoluble lipids may pose risk and because it is desirable to have consistent doses of defined composition available over many months, we investigated the manufacture of cholesterol tracer under current good manufacturing practice (CGMP) conditions appropriate for phase 1 investigation. Cholesterol tracer was prepared by sterile admixture of unlabeled cholesterol or cholesterol-d7 in ethanol with 20% Intralipid®. The resulting material was filtered through a 1.2 micron particulate filter, stored at 4°C, and tested at time 0, 1.5, 3, 6, and 9 months for sterility, pyrogenicity, autoxidation, and particle size and aggregation. The limiting factor for stability was a rise in thiobarbituric acid-reacting substances of 9.6-fold over 9 months (P < 0.01). The emulsion was stable with the Z-average intensity-weighted mean droplet diameter remaining at 60 nm over 23 months. The zeta potential (a measure of negative surface charge protecting from aggregation) was unchanged at −36.2. Rapid cholesterol pool size was 25.3 ± 1.3 g. Intravenous cholesterol tracer was stable at 4°C for 9 months postproduction. CGMP manufacturing methods can be achieved in the academic setting and need to be considered for critical components of future metabolic studies. PMID:26416797

  12. Peroxisome proliferator-activated receptor delta activation leads to increased transintestinal cholesterol efflux

    PubMed Central

    Vrins, Carlos L. J.; van der Velde, Astrid E.; van den Oever, Karin; Levels, Johannes H. M.; Huet, Stephane; Oude Elferink, Ronald P. J.; Kuipers, Folkert; Groen, Albert K.

    2009-01-01

    Peroxisome proliferator-activated receptor delta (PPARδ) is involved in regulation of energy homeostasis. Activation of PPARδ markedly increases fecal neutral sterol secretion, the last step in reverse cholesterol transport. This phenomenon can neither be explained by increased hepatobiliary cholesterol secretion, nor by reduced cholesterol absorption. To test the hypothesis that PPARδ activation leads to stimulation of transintestinal cholesterol efflux (TICE), we quantified it by intestine perfusions in FVB mice treated with PPARδ agonist GW610742. To exclude the effects on cholesterol absorption, mice were also treated with cholesterol absorption inhibitor ezetimibe or ezetimibe/GW610742. GW601742 treatment had little effect on plasma lipid levels but stimulated both fecal neutral sterol excretion (∼200%) and TICE (∼100%). GW610742 decreased intestinal Npc1l1 expression but had no effect on Abcg5/Abcg8. Interestingly, expression of Rab9 and LIMPII, encoding proteins involved in intracellular cholesterol trafficking, was increased upon PPARδ activation. Although treatment with ezetimibe alone had no effect on TICE, it reduced the effect of GW610742 on TICE. These data show that activation of PPARδ stimulates fecal cholesterol excretion in mice, primarily by the two-fold increase in TICE, indicating that this pathway provides an interesting target for the development of drugs aiming at the prevention of atherosclerosis. PMID:19439761

  13. Reversible Computing

    DTIC Science & Technology

    1980-02-01

    will have been introduced. 9. Reversible celular autemata We shall assume the reader to have some familiarity with the concept of cel- lular...10003 Mr. Kin B. Thcmpson 1 copy Technical Director Information Systems Divisia.i Naval Research Laboratory (OP-91T) Technical Information Division

  14. Reverse mortgages.

    PubMed

    Farnesi, D

    1995-09-01

    Elders and their families are often caught in a financial bind when it comes to paying for much-needed home care services. Reverse mortgages may offer a solution to elderly home care clients who own their homes but have a limited income with which to maintain their independence.

  15. REVERSE OSMOSIS,

    DTIC Science & Technology

    acetate membranes. Mechanisms of the process and porous cellulose acetate membrane technology are briefly reviewed. Based on a general capillary...The reverse osmosis process is discussed with particular reference to systems involving aqueous solutions and Loeb-Sourirajan-type porous cellulose

  16. Novel in vivo Method for Measuring Cholesterol Mass Flux in Peripheral Macrophages

    PubMed Central

    Weibel, Ginny L.; Hayes, Sara; Wilson, Aisha; Phillips, Michael C.; Billheimer, Jeffrey; Rader, Daniel J.; Rothblat, George H.

    2011-01-01

    Objective Reverse cholesterol transport (RCT) is the process by which excess cholesterol is removed from peripheral tissue by high density lipoprotein (HDL) and delivered to the liver for excretion. Presently, methods of measuring in vivo RCT do so by monitoring the appearance in the feces of labeled cholesterol that originated from peripheral macrophage foam cells. These methods do not account for changes in macrophage cholesterol mass. We have developed an in vivo assay to measure cholesterol mass changes in atherosclerotic foam cells. Methods and Results Macrophages are entrapped in semi-permeable (pore size 0.2μm) hollow fibers and surgically implanted into the peritoneum of recipient mice. The fibers are removed from the peritoneum 24h after implantation. This method allows the complete recovery of the macrophages for quantification of changes in cholesterol mass and cellular protein. In wild type mice we measured a significant reduction in total cell cholesterol (TC) when hollow fibers containing cholesterol-enriched macrophage cells were implanted (TC before implantation = 105±18μg/mg cell protein, TC 24h after implantation = 60±16μg/mg protein). Additionally, there was an increase in cholesterol content when hollow fibers containing cholesterol-normal macrophages were implanted in an atherogenic mouse model (LDLr/apobec dko) compared to a wild type mouse (initial TC content = 57±24μg/mg protein, TC 24h after implantation: wild type mice = 52±10μg/mg protein; LDLr/apobec dko mice = 118±27μg/mg protein). Conclusions This assay can quantify in vivo both cholesterol mass accumulation, and reduction, in macrophages. This method permits quantitative analysis of the progression and regression of foam cells. PMID:21940945

  17. Membrane Cholesterol Modulates Superwarfarin Toxicity

    SciTech Connect

    Marangoni, M. Natalia; Martynowycz, Michael W.; Kuzmenko, Ivan; Braun, David; Polak, Paul E.; Weinberg, Guy; Rubinstein, Israel; Gidalevitz, David; Feinstein, Douglas L.

    2016-04-26

    Superwarfarins are modified analogs of warfarin with additional lipophilic aromatic rings, up to 100-fold greater potency, and longer biological half-lives. We hypothesized that increased hydrophobicity allowed interactions with amphiphilic membranes and modulation of biological responses. We find that superwarfarins brodifacoum and difenacoum increase lactate production and cell death in neuroblastoma cells. In contrast, neither causes changes in glioma cells that have higher cholesterol content. After choleterol depletion, lactate production was increased and cell viability was reduced. Drug-membrane interactions were examined by surface X-ray scattering using Langmuir monolayers of dipalmitoylphosphatidylcholine and/or cholesterol. Specular X-ray reflectivity data revealed that superwarfarins, but not warfarin, intercalate between dipalmitoylphosphatidylcholine molecules, whereas grazing incidence X-ray diffraction demonstrated changes in lateral crystalline order of the film. Neither agent showed significant interactions with monolayers containing >20% cholesterol. These findings demonstrate an affinity of superwarfarins to biomembranes and suggest that cellular responses to these agents are regulated by cholesterol content.

  18. Community Guide to Cholesterol Resources.

    ERIC Educational Resources Information Center

    National Heart and Lung Inst. (DHHS/NIH), Bethesda, MD.

    This guide is divided into two sections, one for physicians and the other for patients. The physician section lists different resources including continuing medical education opportunities on the medical and scientific aspects of cholesterol and heart disease and on the physician's role in diagnosis and patient management. Additional materials on…

  19. Remnant cholesterol and ischemic heart disease.

    PubMed

    Varbo, Anette; Nordestgaard, Børge G

    2014-08-01

    To review recent advances in the field of remnant cholesterol as a contributor to the development of ischemic heart disease (IHD). Epidemiologic, mechanistic, and genetic studies all support a role for elevated remnant cholesterol (=cholesterol in triglyceride-rich lipoproteins) as a contributor to the development of atherosclerosis and IHD. Observational studies show association between elevated remnant cholesterol and IHD, and mechanistic studies show remnant cholesterol accumulation in the arterial wall like LDL-cholesterol (LDL-C) accumulation. Furthermore, large genetic studies show evidence of remnant cholesterol as a causal risk factor for IHD independent of HDL-cholesterol levels. Genetic studies also show that elevated remnant cholesterol is associated with low-grade inflammation, whereas elevated LDL-C is not. There are several pharmacologic ways of lowering remnant cholesterol levels; however, it remains to be seen in large randomized clinical intervention trials if lowering of remnant cholesterol, in individuals with elevated levels, will reduce the risk of IHD. Evidence is emerging for elevated remnant cholesterol being a causal risk factor for IHD. Elevated remnant cholesterol levels likely are part of the explanation of the residual risk of IHD observed after LDL-C has been lowered to recommended levels.

  20. Cholesterol autoxidation in phospholipid membrane bilayers

    SciTech Connect

    Sevanian, A.; McLeod, L.L.

    1987-09-01

    Lipid peroxidation in unilamellar liposomes of known cholesterol-phospholipid composition was monitored under conditions of autoxidation or as induced by a superoxide radical generating system, gamma-irradiation or cumene hydroperoxide. Formation of cholesterol oxidation products was indexed to the level of lipid peroxidation. The major cholesterol oxidation products identified were 7-keto-cholesterol, isomeric cholesterol 5,6-epoxides, isomeric 7-hydroperoxides and isomeric 3,7-cholestane diols. Other commonly encountered products included 3,5-cholestadiene-7-one and cholestane-3 beta, 5 alpha, 6 beta-triol. Superoxide-dependent peroxidation required iron and produced a gradual increase in 7-keto-cholesterol and cholesterol epoxides. Cholesterol oxidation was greatest in liposomes containing high proportions of unsaturated phospholipid to cholesterol (4:1 molar ratio), intermediate with low phospholipid to cholesterol ratios (2:1) and least in liposomes prepared with dipalmitoylphosphatidylcholine and cholesterol. This relationship held regardless of the oxidizing conditions used. Cumene hydroperoxide-dependent lipid peroxidation and/or more prolonged oxidations with other oxidizing systems yielded a variety of products where cholesterol-5 beta,6 beta-epoxide, 7-ketocholesterol and the 7-hydroperoxides were most consistently elevated. Oxyradical initiation of lipid peroxidation produced a pattern of cholesterol oxidation products distinguishable from the pattern derived by cumene hydroperoxide-dependent peroxidation.

  1. Sericin reduces serum cholesterol in rats and cholesterol uptake into Caco-2 cells.

    PubMed

    Limpeanchob, Nanteetip; Trisat, Kanittaporn; Duangjai, Acharaporn; Tiyaboonchai, Waree; Pongcharoen, Sutatip; Sutheerawattananonda, Manote

    2010-12-08

    A cholesterol lowering effect of sericin was investigated both in vivo and in vitro. Rats were dosed with cholesterol with and without sericin for 14 days. Non-high-density lipoprotein (HDL) and total serum cholesterols were reduced in rats fed high-cholesterol diet with all three tested doses of sericin (10, 100, and 1000 mg kg(-1) day(-1)). The potential mechanism of actions was determined by measuring the uptake of radiolabeled cholesterol into differentiated Caco-2 cells and cholesterol solubility in mixed lipid micelles. Concentration of sericin as low as 25 and 50 μg/mL inhibited 30% of cholesterol uptake into Caco-2 cells whereas no effect was found at higher concentration. Cholesterol micellar solubility was reduced in the presence of sericin. This study suggests the cholesterol lowering effect of sericin results from its inhibition of cholesterol absorption in intestinal cells and its reduction of cholesterol solubility in lipid micelles.

  2. Theoretical and testing performance of an innovative indirect evaporative chiller

    SciTech Connect

    Jiang, Yi; Xie, Xiaoyun

    2010-12-15

    An indirect evaporative chiller is a device used to produce chilled water at a temperature between the wet bulb temperature and dew point of the outdoor air, which can be used in building HVAC systems. This article presents a theoretical analysis and practical performance of an innovative indirect evaporative chiller. First, the process of the indirect evaporative chiller is introduced; then, the matching characteristics of the process are presented and analyzed. It can be shown that the process that produces cold water by using dry air is a nearly-reversible process, so the ideal produced chilled water temperature of the indirect evaporative chiller can be set close to the dew point temperature of the chiller's inlet air. After the indirect evaporative chiller was designed, simulations were done to analyze the output water temperature, the cooling efficiency relative to the inlet dew point temperature, and the COP that the chiller can performance. The first installation of the indirect evaporative chiller of this kind has been run for 5 years in a building in the city of Shihezi. The tested output water temperature of the chiller is around 14-20 C, which is just in between of the outdoor wet bulb temperature and dew point. The tested COP{sub r,s} of the developed indirect evaporative chiller reaches 9.1. Compared with ordinary air conditioning systems, the indirect evaporative chiller can save more than 40% in energy consumption due to the fact that the only energy consumed is from pumps and fans. An added bonus is that the indirect evaporative chiller uses no CFCs that pollute to the aerosphere. The tested internal parameters, such as the water-air flow rate ratio and heat transfer area for each heat transfer process inside the chiller, were analyzed and compared with designed values. The tested indoor air conditions, with a room temperature of 23-27 C and relative humidity of 50-70%, proved that the developed practical indirect evaporative chiller successfully

  3. Apigenin in the regulation of cholesterol metabolism and protection of blood vessels.

    PubMed

    Zhang, Kun; Song, Wei; Li, Dalin; Jin, Xing

    2017-05-01

    Hyperlipidemia is a major independent risk factor for atherosclerosis. Seeking natural compounds in medicinal plants capable of reducing blood fat and studying their mechanisms of action has been the focus of research in recent years. The aim of the present study was to analyze the mechanisms of apigenin in regulating cholesterol metabolism and protecting blood vessels, and to provide a theoretical basis for the clinical application of apigenin. The mouse model of hyperlipidemia was established to verify the efficacy of apigenin in improving hyperlipidemia and to observe the mechanism of action of apigenin in reducing cholesterol content. In vitro cell experiments were conducted to evaluate the role of apigenin in mediating reverse cholesterol transport. Additionally, H2O2-injured human umbilical venous endothelial cells (EA.hy926 cells) were used for further study on the roles of apigenin in resisting oxidization and protecting vascular endothelial cells. Apigenin significantly regulated blood fat, reduced animal weight, and reduced total cholesterol (P=0.024), triglyceride (P=0.031) and low-density lipoprotein cholesterol (P=0.014) in the serum of the high-fat diet mice. Apigenin improved the blood lipid metabolism of the hyper-lipidemia model mice. Body weight and serum cholesterol content increased abnormally (P=0.003) as a consequence of high-fat diet. Apigenin increased the activity of superoxide dismutase in EA.hy926 cells (P=0.043) and increased the amount of nitric oxide secreted by the cells (P=0.038). Apigenin also inhibited the proliferation of vascular smooth muscle cells in a dose-dependent manner (P=0.036). In conclusion, apigenin can regulate cholesterol metabolism in vivo and plays a role in reducing the level of blood fat by promoting cholesterol absorption and conversion, and accelerating reverse cholesterol transport. Apigenin also has a role in resisting oxidization and protecting blood vessels.

  4. New Cholesterol Fighting Meds Target Key Gene

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_165942.html New Cholesterol Fighting Meds Target Key Gene Two trials ... 25, 2017 THURSDAY, May 25, 2017 (HealthDay News) -- New gene-based therapies appear to significantly decrease cholesterol ...

  5. High Cholesterol: Medicines to Help You

    MedlinePlus

    ... Consumer Information by Audience For Women High Cholesterol--Medicines To Help You Share Tweet Linkedin Pin it ... Test to check your cholesterol (LDL-C) Combination Medicines Brand Name Generic Name Advicor Niacin and Lovastatin ...

  6. Do You Know Your Cholesterol Levels?

    MedlinePlus

    ... Selected Audiences Contact The Health Information Center Do You Know Your Cholesterol Levels? Print-friendly Version (PDF, ... Your Heart: Get Moving and Eat Smart Did you know that high blood cholesterol is a serious ...

  7. Healthy Dietary Fats Help Beat High Cholesterol

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_166625.html Healthy Dietary Fats Help Beat High Cholesterol Eating them can reduce ... and Human Services. More Health News on Cholesterol Dietary Fats Heart Diseases--Prevention Recent Health News Related MedlinePlus ...

  8. What You Need to Know about Cholesterol

    MedlinePlus

    ... 164304.html What You Need to Know About Cholesterol Heart expert explains the difference between good and ... 28, 2017 MONDAY, March 27, 2017 (HealthDay News) -- Cholesterol plays a vital role in your health, so ...

  9. Active membrane cholesterol as a physiological effector.

    PubMed

    Lange, Yvonne; Steck, Theodore L

    2016-09-01

    Sterols associate preferentially with plasma membrane sphingolipids and saturated phospholipids to form stoichiometric complexes. Cholesterol in molar excess of the capacity of these polar bilayer lipids has a high accessibility and fugacity; we call this fraction active cholesterol. This review first considers how active cholesterol serves as an upstream regulator of cellular sterol homeostasis. The mechanism appears to utilize the redistribution of active cholesterol down its diffusional gradient to the endoplasmic reticulum and mitochondria, where it binds multiple effectors and directs their feedback activity. We have also reviewed a broad literature in search of a role for active cholesterol (as opposed to bulk cholesterol or lipid domains such as rafts) in the activity of diverse membrane proteins. Several systems provide such evidence, implicating, in particular, caveolin-1, various kinds of ABC-type cholesterol transporters, solute transporters, receptors and ion channels. We suggest that this larger role for active cholesterol warrants close attention and can be tested easily.

  10. Structure of N-Terminal Domain of NPC1 Reveals Distinct Subdomains for Binding and Transfer of Cholesterol

    SciTech Connect

    Kwon, Hyock Joo; Abi-Mosleh, Lina; Wang, Michael L.; Deisenhofer, Johann; Goldstein, Joseph L.; Brown, Michael S.; Infante, Rodney E.

    2010-09-21

    LDL delivers cholesterol to lysosomes by receptor-mediated endocytosis. Exit of cholesterol from lysosomes requires two proteins, membrane-bound Niemann-Pick C1 (NPC1) and soluble NPC2. NPC2 binds cholesterol with its isooctyl side chain buried and its 3{beta}-hydroxyl exposed. Here, we describe high-resolution structures of the N-terminal domain (NTD) of NPC1 and complexes with cholesterol and 25-hydroxycholesterol. NPC1(NTD) binds cholesterol in an orientation opposite to NPC2: 3{beta}-hydroxyl buried and isooctyl side chain exposed. Cholesterol transfer from NPC2 to NPC1(NTD) requires reorientation of a helical subdomain in NPC1(NTD), enlarging the opening for cholesterol entry. NPC1 with point mutations in this subdomain (distinct from the binding subdomain) cannot accept cholesterol from NPC2 and cannot restore cholesterol exit from lysosomes in NPC1-deficient cells. We propose a working model wherein after lysosomal hydrolysis of LDL-cholesteryl esters, cholesterol binds NPC2, which transfers it to NPC1(NTD), reversing its orientation and allowing insertion of its isooctyl side chain into the outer lysosomal membranes.

  11. Indirect reciprocity with optional interactions.

    PubMed

    Ghang, Whan; Nowak, Martin A

    2015-01-21

    Indirect reciprocity is a mechanism for the evolution of cooperation that is relevant for prosocial behavior among humans. Indirect reciprocity means that my behavior towards you also depends on what you have done to others. Indirect reciprocity is associated with the evolution of social intelligence and human language. Most approaches to indirect reciprocity assume obligatory interactions, but here we explore optional interactions. In any one round a game between two players is offered. A cooperator accepts a game unless the reputation of the other player indicates a defector. For a game to take place, both players must accept. In a game between a cooperator and a defector, the reputation of the defector is revealed to all players with probability Q. After a sufficiently large number of rounds the identity of all defectors is known and cooperators are no longer exploited. The crucial condition for evolution of cooperation can be written as hQB>1, where h is the average number of rounds per person and B=(b/c)-1 specifies the benefit-to-cost ratio. We analyze both stochastic and deterministic evolutionary game dynamics. We study two extensions that deal with uncertainty: hesitation and malicious gossip. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Indirect methods in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Bertulani, C. A.; Shubhchintak; Mukhamedzhanov, A.; Kadyrov, A. S.; Kruppa, A.; Pang, D. Y.

    2016-04-01

    We discuss recent developments in indirect methods used in nuclear astrophysics to determine the capture cross sections and subsequent rates of various stellar burning processes, when it is difficult to perform the corresponding direct measurements. We discuss in brief, the basic concepts of Asymptotic Normalization Coefficients, the Trojan Horse Method, the Coulomb Dissociation Method, (d,p), and charge-exchange reactions.

  13. 19 CFR 10.879 - Indirect materials.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Indirect materials. 10.879 Section 10.879 Customs... of Origin § 10.879 Indirect materials. Indirect materials are to be disregarded in determining..., except that the cost of such indirect materials may be included in meeting the value-content...

  14. 19 CFR 10.816 - Indirect materials.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Indirect materials. 10.816 Section 10.816 Customs... Rules of Origin § 10.816 Indirect materials. Indirect materials are to be disregarded in determining..., except that the cost of such indirect materials may be included in meeting the value-content...

  15. 19 CFR 10.816 - Indirect materials.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Indirect materials. 10.816 Section 10.816 Customs... Rules of Origin § 10.816 Indirect materials. Indirect materials are to be disregarded in determining..., except that the cost of such indirect materials may be included in meeting the value-content...

  16. 19 CFR 10.879 - Indirect materials.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Indirect materials. 10.879 Section 10.879 Customs... of Origin § 10.879 Indirect materials. Indirect materials are to be disregarded in determining..., except that the cost of such indirect materials may be included in meeting the value-content...

  17. 19 CFR 10.816 - Indirect materials.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Indirect materials. 10.816 Section 10.816 Customs... Rules of Origin § 10.816 Indirect materials. Indirect materials are to be disregarded in determining..., except that the cost of such indirect materials may be included in meeting the value-content...

  18. 19 CFR 10.776 - Indirect materials.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Indirect materials. 10.776 Section 10.776 Customs... Rules of Origin § 10.776 Indirect materials. Indirect materials are to be disregarded in determining..., except that the cost of such indirect materials may be included in meeting the value-content...

  19. 19 CFR 10.879 - Indirect materials.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Indirect materials. 10.879 Section 10.879 Customs... of Origin § 10.879 Indirect materials. Indirect materials are to be disregarded in determining..., except that the cost of such indirect materials may be included in meeting the value-content...

  20. 19 CFR 10.776 - Indirect materials.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Indirect materials. 10.776 Section 10.776 Customs... Rules of Origin § 10.776 Indirect materials. Indirect materials are to be disregarded in determining..., except that the cost of such indirect materials may be included in meeting the value-content...

  1. 19 CFR 10.776 - Indirect materials.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Indirect materials. 10.776 Section 10.776 Customs... Rules of Origin § 10.776 Indirect materials. Indirect materials are to be disregarded in determining..., except that the cost of such indirect materials may be included in meeting the value-content...

  2. 19 CFR 10.776 - Indirect materials.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Indirect materials. 10.776 Section 10.776 Customs... Rules of Origin § 10.776 Indirect materials. Indirect materials are to be disregarded in determining..., except that the cost of such indirect materials may be included in meeting the value-content...

  3. 19 CFR 10.816 - Indirect materials.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Indirect materials. 10.816 Section 10.816 Customs... Rules of Origin § 10.816 Indirect materials. Indirect materials are to be disregarded in determining..., except that the cost of such indirect materials may be included in meeting the value-content...

  4. Vasectomy reversal.

    PubMed

    Belker, A M

    1987-02-01

    A vasovasostomy may be performed on an outpatient basis with local anesthesia, but also may be performed on an outpatient basis with epidural or general anesthesia. Local anesthesia is preferred by most of my patients, the majority of whom choose this technique. With proper preoperative and intraoperative sedation, patients sleep lightly through most of the procedure. Because of the length of time often required for bilateral microsurgical vasoepididymostomy, epidural or general anesthesia and overnight hospitalization are usually necessary. Factors influencing the preoperative choice for vasovasostomy or vasoepididymostomy in patients undergoing vasectomy reversal are considered. The preoperative planned choice of vasovasostomy or vasoepididymostomy for patients having vasectomy reversal described herein does not have the support of all urologists who regularly perform these procedures. My present approach has evolved as the data reported in Tables 1 and 2 have become available, but it may change as new information is evaluated. However, it offers a logical method for planning choices of anesthesia and inpatient or outpatient status for patients undergoing vasectomy reversal procedures.

  5. Non-cholesterol sterols and cholesterol metabolism in sitosterolemia.

    PubMed

    Othman, Rgia A; Myrie, Semone B; Jones, Peter J H

    2013-12-01

    Sitosterolemia (STSL) is a rare autosomal recessive disease, manifested by extremely elevated plant sterols (PS) in plasma and tissue, leading to xanthoma and premature atherosclerotic disease. Therapeutic approaches include limiting PS intake, interrupting enterohepatic circulation of bile acid using bile acid binding resins such as cholestyramine, and/or ileal bypass, and inhibiting intestinal sterol absorption by ezetimibe (EZE). The objective of this review is to evaluate sterol metabolism in STSL and the impact of the currently available treatments on sterol trafficking in this disease. The role of PS in initiation of xanthomas and premature atherosclerosis is also discussed. Blocking sterols absorption with EZE has revolutionized STSL patient treatment as it reduces circulating levels of non-cholesterol sterols in STSL. However, none of the available treatments including EZE have normalized plasma PS concentrations. Future studies are needed to: (i) explore where cholesterol and non-cholesterol sterols accumulate, (ii) assess to what extent these sterols in tissues can be mobilized after blocking their absorption, and (iii) define the factors governing sterol flux. Copyright © 2013. Published by Elsevier Ireland Ltd.

  6. Transfer of cholesterol by the NPC team.

    PubMed

    Vance, Jean E

    2010-08-04

    The mechanisms of intracellular cholesterol transport are largely unknown. In this issue of Cell Metabolism, Wang et al. (2010) identify amino acid residues on the lumenal lysosomal protein Niemann-Pick C2 (NPC2) that are required for intralysosomal transfer of endocytosed cholesterol to membrane-bound NPC1 via a process that avoids movement of hydrophobic cholesterol through the aqueous phase.

  7. Isolation of Cholesterol from an Egg Yolk

    ERIC Educational Resources Information Center

    Taber, Douglass F.; Li, Rui; Anson, Cory M.

    2011-01-01

    A simple procedure for the isolation of the cholesterol, by hydrolysis and extraction followed by column chromatography, is described. The cholesterol can be further purified by complexation with oxalic acid. It can also be oxidized and conjugated to cholestenone. The source of the cholesterol is one egg yolk, which contains about 200 mg of…

  8. Isolation of Cholesterol from an Egg Yolk

    ERIC Educational Resources Information Center

    Taber, Douglass F.; Li, Rui; Anson, Cory M.

    2011-01-01

    A simple procedure for the isolation of the cholesterol, by hydrolysis and extraction followed by column chromatography, is described. The cholesterol can be further purified by complexation with oxalic acid. It can also be oxidized and conjugated to cholestenone. The source of the cholesterol is one egg yolk, which contains about 200 mg of…

  9. Cholesterol Screening: A Practical Guide to Implementation.

    ERIC Educational Resources Information Center

    Kingery, Paul M.

    1995-01-01

    Dry-chemistry cholesterol analysis has made screening feasible in a variety of settings. The article provides practical tips for the implementation of mass cholesterol screening using a portable dry-chemistry analyzer and discusses issues involved in conducting effective cholesterol screening programs from start to finish. (SM)

  10. A new high-temperature transition of crystalline cholesterol in mixtures with phosphatidylserine.

    PubMed Central

    Epand, R M; Bach, D; Epand, R F; Borochov, N; Wachtel, E

    2001-01-01

    , the 96 degrees C peak disappears and the 38 degrees C transition reappears on heating. For samples of 1-palmitoyl-2-oleoyl phosphatidylserine or of 1-stearoyl-2-oleoyl phosphatidylserine having mol fractions of cholesterol between 0.4 and 0.7, the 38 degrees C transition that reappears after the melting of the 96 degrees C component generally has the same enthalpy as do freshly prepared samples. This demonstrates that, at least for these samples, the amount of anhydrous cholesterol crystallites formed is indeed a property of the lipid mixture. We have also examined variations in the method of preparation of the sample and find similar behavior in all cases, although there are quantitative differences. The 96 degrees C transition is partially reversible on cooling and reheating. This transition is also scan rate dependent, indicating that it is, at least in part, kinetically determined. The enthalpy of the 96 degrees C transition, after incubation of the sample for 3 weeks at 37 degrees C is dependent on the ratio of cholesterol to 1-palmitoyl-2-oleoyl phosphatidylserine or to 1-stearoyl-2-oleoyl phosphatidylserine, with the enthalpy per mole cholesterol increasing between cholesterol mol fractions of 0.2 and 0.5. Dimyristoyl phosphatidylserine at a 1:1 molar ratio with cholesterol, after incubation at 37 degrees C, exhibits a transition at 95 degrees C that reverses on cooling at 44 degrees C, instead of 60 degrees C, as observed with either 1-palmitoyl-2-oleoyl phosphatidylserine or 1-stearoyl-2-oleoyl phosphatidylserine. These findings along with the essential absence of the 96 degrees C transition in pure cholesterol or in cholesterol/phosphatidylcholine mixtures, indicates that the phospholipid affects the characteristics of the transition, and therefore the cholesterol crystallites must be in direct contact with the phospholipid and are not simply in the form of pure crystals of cholesterol. These observations are particularly important in view of recent

  11. First identification of xanthone sulfonamides as potent acyl-CoA:cholesterol acyltransferase (ACAT) inhibitors.

    PubMed

    Hu, Honggang; Liao, Hongli; Zhang, Jun; Wu, Weifeng; Yan, Jufang; Yan, Yonghong; Zhao, Qingjie; Zou, Yan; Chai, Xiaoyun; Yu, Shichong; Wu, Qiuye

    2010-05-15

    Inhibitors of acyl-CoA:cholesterol acyltransferase (ACAT) would be useful anti-atherogenic agents, since an absence of ACAT affects the absorption and transformation of cholesterol, indirectly resulting in the reduction of cholesteryl ester accumulation in blood vessels. This report discloses xanthone sulfonamides as novel class small molecule inhibitors of ACAT. A series of xanthone sulfonamides were synthesized and evaluated to result in the identification of several potent ACAT inhibitors, among which 2n proved to be more potent than the positive control Sandoz58-35. Moreover, a molecular model for the binding between 2n and the active site of ACAT-2 was provided based computational docking results.

  12. A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY -cholesterol

    USDA-ARS?s Scientific Manuscript database

    Studies have shown a negative association between cellular cholesterol efflux and coronary artery disease (CAD). Standard protocol for quantifying cholesterol efflux involves labeling cells with [(3)H]cholesterol and measuring release of the labeled sterol. Using [(3)H]cholesterol is not ideal for...

  13. Bacteroides sp. strain D8, the first cholesterol-reducing bacterium isolated from human feces.

    PubMed

    Gérard, Philippe; Lepercq, Pascale; Leclerc, Marion; Gavini, Françoise; Raibaud, Pierre; Juste, Catherine

    2007-09-01

    The microbial community in the human colon contains bacteria that reduce cholesterol to coprostanol, but the species responsible for this conversion are still unknown. We describe here the first isolation and characterization of a cholesterol-reducing bacterium of human intestinal origin. Strain D8 was isolated from a 10(-8) dilution of a fresh stool sample provided by a senior male volunteer with a high capacity to reduce luminal cholesterol to coprostanol. Cholesterol-to-coprostanol conversion by strain D8 started on the third day, while cells were in stationary phase, and was almost complete after 7 days. Intermediate products (4-cholesten-3-one and coprostanone) were occasionally observed, suggesting an indirect pathway for cholesterol-to-coprostanol conversion. Resting-cell assays showed that strain D8 could reduce 1.5 mumol of cholesterol/mg bacterial protein/h. Strain D8 was a gram-negative, non-spore-forming, rod-shaped organism identified as a member of the genus Bacteroides closely related to Bacteroides vulgatus, based on its morphological and biochemical characteristics. The 16S rRNA gene sequence of strain D8 was most similar (>99.5%) to those of two isolates of the recently described species Bacteroides dorei. Phylogenetic tree construction confirmed that Bacteroides sp. strain D8 clustered within an independent clade together with these B. dorei strains. Nevertheless, no cholesterol-reducing activity could be detected in cultures of the B. dorei type strain. Based on Bacteroides group-specific PCR-temporal temperature gradient gel electrophoresis, there was no correlation between the presence of a band comigrating with the band of Bacteroides sp. strain D8 and cholesterol conversion in 11 human fecal samples, indicating that this strain is unlikely to be mainly responsible for cholesterol conversion in the human population.

  14. Cholesterol Depletion from a Ceramide/Cholesterol Mixed Monolayer: A Brewster Angle Microscope Study

    NASA Astrophysics Data System (ADS)

    Mandal, Pritam; Noutsi, Pakiza; Chaieb, Sahraoui

    2016-06-01

    Cholesterol is crucial to the mechanical properties of cell membranes that are important to cells’ behavior. Its depletion from the cell membranes could be dramatic. Among cyclodextrins (CDs), methyl beta cyclodextrin (MβCD) is the most efficient to deplete cholesterol (Chol) from biomembranes. Here, we focus on the depletion of cholesterol from a C16 ceramide/cholesterol (C16-Cer/Chol) mixed monolayer using MβCD. While the removal of cholesterol by MβCD depends on the cholesterol concentration in most mixed lipid monolayers, it does not depend very much on the concentration of cholesterol in C16-Cer/Chol monolayers. The surface pressure decay during depletion were described by a stretched exponential that suggested that the cholesterol molecules are unable to diffuse laterally and behave like static traps for the MβCD molecules. Cholesterol depletion causes morphology changes of domains but these disrupted monolayers domains seem to reform even when cholesterol level was low.

  15. D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage

    PubMed Central

    Alfonso-García, Alba; Pfisterer, Simon G.; Riezman, Howard; Ikonen, Elina; Potma, Eric O.

    2015-01-01

    Abstract. We generated a highly deuterated cholesterol analog (D38-cholesterol) and demonstrated its use for selective vibrational imaging of cholesterol storage in mammalian cells. D38-cholesterol produces detectable signals in stimulated Raman scattering (SRS) imaging, is rapidly taken up by cells, and is efficiently metabolized by acyl-CoA cholesterol acyltransferase to form cholesteryl esters. Using hyperspectral SRS imaging of D38-cholesterol, we visualized cholesterol storage in lipid droplets. We found that some lipid droplets accumulated preferentially unesterified D38-cholesterol, whereas others stored D38-cholesteryl esters. In steroidogenic cells, D38-cholesteryl esters and triacylglycerols were partitioned into distinct sets of lipid droplets. Thus, hyperspectral SRS imaging of D38-cholesterol demonstrates a heterogeneous incorporation of neutral lipid species, i.e., free cholesterol, cholesteryl esters, and triacylglycerols, between individual lipid droplets in a cell. PMID:26719944

  16. The Drosophila DHR96 nuclear receptor binds cholesterol and regulates cholesterol homeostasis

    PubMed Central

    Horner, Michael A.; Pardee, Keith; Liu, Suya; King-Jones, Kirst; Lajoie, Gilles; Edwards, Aled; Krause, Henry M.; Thummel, Carl S.

    2009-01-01

    Cholesterol homeostasis is required to maintain normal cellular function and avoid the deleterious effects of hypercholesterolemia. Here we show that the Drosophila DHR96 nuclear receptor binds cholesterol and is required for the coordinate transcriptional response of genes that are regulated by cholesterol and involved in cholesterol uptake, trafficking, and storage. DHR96 mutants die when grown on low levels of cholesterol and accumulate excess cholesterol when maintained on a high-cholesterol diet. The cholesterol accumulation phenotype can be attributed to misregulation of npc1b, an ortholog of the mammalian Niemann-Pick C1-like 1 gene NPC1L1, which is essential for dietary cholesterol uptake. These studies define DHR96 as a central regulator of cholesterol homeostasis. PMID:19952106

  17. The Drosophila DHR96 nuclear receptor binds cholesterol and regulates cholesterol homeostasis.

    PubMed

    Horner, Michael A; Pardee, Keith; Liu, Suya; King-Jones, Kirst; Lajoie, Gilles; Edwards, Aled; Krause, Henry M; Thummel, Carl S

    2009-12-01

    Cholesterol homeostasis is required to maintain normal cellular function and avoid the deleterious effects of hypercholesterolemia. Here we show that the Drosophila DHR96 nuclear receptor binds cholesterol and is required for the coordinate transcriptional response of genes that are regulated by cholesterol and involved in cholesterol uptake, trafficking, and storage. DHR96 mutants die when grown on low levels of cholesterol and accumulate excess cholesterol when maintained on a high-cholesterol diet. The cholesterol accumulation phenotype can be attributed to misregulation of npc1b, an ortholog of the mammalian Niemann-Pick C1-like 1 gene NPC1L1, which is essential for dietary cholesterol uptake. These studies define DHR96 as a central regulator of cholesterol homeostasis.

  18. D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage

    NASA Astrophysics Data System (ADS)

    Alfonso-García, Alba; Pfisterer, Simon G.; Riezman, Howard; Ikonen, Elina; Potma, Eric O.

    2016-06-01

    We generated a highly deuterated cholesterol analog (D38-cholesterol) and demonstrated its use for selective vibrational imaging of cholesterol storage in mammalian cells. D38-cholesterol produces detectable signals in stimulated Raman scattering (SRS) imaging, is rapidly taken up by cells, and is efficiently metabolized by acyl-CoA cholesterol acyltransferase to form cholesteryl esters. Using hyperspectral SRS imaging of D38-cholesterol, we visualized cholesterol storage in lipid droplets. We found that some lipid droplets accumulated preferentially unesterified D38-cholesterol, whereas others stored D38-cholesteryl esters. In steroidogenic cells, D38-cholesteryl esters and triacylglycerols were partitioned into distinct sets of lipid droplets. Thus, hyperspectral SRS imaging of D38-cholesterol demonstrates a heterogeneous incorporation of neutral lipid species, i.e., free cholesterol, cholesteryl esters, and triacylglycerols, between individual lipid droplets in a cell.

  19. A Novel Lipid Droplet-Associated Serine Hydrolase Regulates Macrophage Cholesterol Mobilization

    PubMed Central

    Goo, Young-Hwa; Son, Se-Hee; Kreienberg, Paul B.; Paul, Antoni

    2014-01-01

    Objective Lipid-laden macrophages or foam cells are characterized by massive cytosolic lipid droplet (LD) deposition containing mostly cholesterol ester (CE) derived from the lipoproteins cleared from the arterial wall. Cholesterol efflux from foam cells is considered to be atheroprotective. Since cholesterol is effluxed as free cholesterol (FC), CE accumulation in LDs may limit FC efflux. Our objective was to identify proteins that regulate cholesterol trafficking through LDs. Approach and results In a proteomic analysis of the LD fraction of RAW 264.7 macrophages we identified an evolutionarily conserved protein with a canonical GXSXG lipase catalytic motif and a predicted α/β-hydrolase fold, the RIKEN cDNA 1110057K04 gene, which we named lipid droplet-associated hydrolase (LDAH). LDAH association to LDs was confirmed by immunoblotting and immunocytochemistry. LDAH was labeled with a probe specific for active serine hydrolases. LDAH showed relatively weak in vitro CE hydrolase activity. However, cholesterol measurements in intact cells supported a significant role of LDAH in CE homeostasis, since LDAH upregulation and downregulation decreased and increased, respectively, intracellular cholesterol and CE in HEK293 cells and RAW 264.7 macrophages. Mutation of the putative nucleophilic serine impaired active hydrolase probe binding, in vitro CE hydrolase activity, and the cholesterol lowering effect in cells, while this mutant still localized to the LD. LDAH upregulation increased CE hydrolysis and cholesterol efflux from macrophages and, interestingly, LDAH is highly expressed in macrophage-rich areas within mouse and human atherosclerotic lesions. Conclusions The data identify a candidate target to promote reverse cholesterol transport from atherosclerotic lesions. PMID:24357060

  20. Effects of cholesterol on thermal stability of discoidal high density lipoproteins[S

    PubMed Central

    Jayaraman, Shobini; Benjwal, Sangeeta; Gantz, Donald L.; Gursky, Olga

    2010-01-01

    Reverse cholesterol transport in plasma involves variations in HDL cholesterol concentration. To understand physicochemical and functional implications of such variations, we analyzed stability of reconstituted HDL containing human apolipoproteins (apoA-I, apoA-II, or apoC-I), phosphatidylcholines varying in chain length (12–18 carbons) and unsaturation (0 or 1), and 0–35 mol% cholesterol. Lipoprotein heat denaturation was monitored by circular dichroism for protein unfolding/dissociation and by light scattering for particle fusion. We found that cholesterol stabilizes relatively unstable complexes; for example, incorporation of 10–30 mol% cholesterol in apoC-I:dimyristoyl phosphatidylcholine complexes increased their kinetic stability by δΔG* ≅ 1 kcal/mol. In more stable complexes containing larger proteins and/or longer-chain lipids, incorporation of 10% cholesterol did not significantly alter the disk stability; however, 15% or more cholesterol destabilized the apoA-I-containing complexes and led to vesicle formation. Thus, cholesterol tends to stabilize less stable lipoproteins, apparently by enhancing favorable packing interactions, but in more stable lipoproteins, where such interactions are already highly optimized, the stabilizing effect of cholesterol decreases and, eventually, becomes destabilizing. These results help uncouple the functional roles of particle stability and chain fluidity and suggest that structural disorder in HDL surface, rather than chain fluidity, is an important physicochemical determinant of HDL function.—Jayaraman, S., S. Benjwal, D. L. Gantz, and O. Gursky. Effects of cholesterol on thermal stability of discoidal high density lipoproteins. J. Lipid Res. 2010. 51: 324–333. PMID:19700415

  1. Cholesterol Accumulation in CD11c(+) Immune Cells Is a Causal and Targetable Factor in Autoimmune Disease.

    PubMed

    Ito, Ayaka; Hong, Cynthia; Oka, Kazuhiro; Salazar, Jon V; Diehl, Cody; Witztum, Joseph L; Diaz, Mercedes; Castrillo, Antonio; Bensinger, Steven J; Chan, Lawrence; Tontonoz, Peter

    2016-12-20

    Liver X receptors (LXRs) are regulators of cholesterol metabolism that also modulate immune responses. Inactivation of LXR α and β in mice leads to autoimmunity; however, how the regulation of cholesterol metabolism contributes to autoimmunity is unclear. Here we found that cholesterol loading of CD11c(+) cells triggered the development of autoimmunity, whereas preventing excess lipid accumulation by promoting cholesterol efflux was therapeutic. LXRβ-deficient mice crossed to the hyperlipidemic ApoE-deficient background or challenged with a high-cholesterol diet developed autoantibodies. Cholesterol accumulation in lymphoid organs promoted T cell priming and stimulated the production of the B cell growth factors Baff and April. Conversely, B cell expansion and the development of autoantibodies in ApoE/LXR-β-deficient mice was reversed by ApoA-I expression. These findings implicate cholesterol imbalance as a contributor to immune dysfunction and suggest that stimulating HDL-dependent reverse cholesterol transport could be beneficial in the setting of autoimmune disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Dietary cholesterol and plasma lipoprotein profiles: Randomized controlled trials

    USDA-ARS?s Scientific Manuscript database

    Early work suggested that dietary cholesterol increased plasma total cholesterol concentrations in humans. Given the relationship between elevated plasma cholesterol concentrations and cardiovascular disease risk, dietary guidelines have consistently recommended limiting food sources of cholesterol....

  3. Fish protein hydrolysates affect cholesterol metabolism in rats fed non-cholesterol and high-cholesterol diets.

    PubMed

    Hosomi, Ryota; Fukunaga, Kenji; Arai, Hirofumi; Kanda, Seiji; Nishiyama, Toshimasa; Yoshida, Munehiro

    2012-03-01

    Fish consumption is well known to provide health benefits in both experimental animals and human subjects. Numerous studies have demonstrated the beneficial effects of various protein hydrolysates on lipid metabolism. In this context, this study examined the effect of fish protein hydrolysates (FPH) on cholesterol metabolism compared with the effect of casein. FPHs were prepared from Alaska pollock meat using papain as a protease. Male Wistar rats were divided into the following four dietary groups of seven rats each: either casein (20%) or FPH (10%) + casein (10%), with or without 0.5% cholesterol and 0.1% sodium cholate. Serum and liver lipid levels, fecal cholesterol and bile acid excretions, and the hepatic expression of genes encoding proteins involved in cholesterol homeostasis were examined. In rats fed the FPH diets compared with casein diets with or without cholesterol and sodium cholate, the indexes of cholesterol metabolism-namely, serum cholesterol, triglyceride, and low-density lipoprotein-cholesterol levels-were significantly lower, whereas fecal cholesterol and bile acid excretions were higher. Rats fed the FPH diets compared with casein with cholesterol exhibited a lower liver cholesterol level via an increased liver cholesterol 7α-hydroxylase (CYP7A1) expression level. This study demonstrates that the intake of FPH has hypocholesterolemic effects through the enhancement of fecal cholesterol and bile acid excretions and CYP7A1 expression levels. Therefore, fish peptides prepared by papain digestion might provide health benefits by decreasing the cholesterol content in the blood, which would contribute to the prevention of circulatory system diseases such as arteriosclerosis.

  4. Peptide mediators of cholesterol efflux

    DOEpatents

    Bielicki, John K.; Johansson, Jan

    2013-04-09

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABAC1 that parallels that of full-length apolipoproteins. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  5. Evaluating computational models of cholesterol metabolism.

    PubMed

    Paalvast, Yared; Kuivenhoven, Jan Albert; Groen, Albert K

    2015-10-01

    Regulation of cholesterol homeostasis has been studied extensively during the last decades. Many of the metabolic pathways involved have been discovered. Yet important gaps in our knowledge remain. For example, knowledge on intracellular cholesterol traffic and its relation to the regulation of cholesterol synthesis and plasma cholesterol levels is incomplete. One way of addressing the remaining questions is by making use of computational models. Here, we critically evaluate existing computational models of cholesterol metabolism making use of ordinary differential equations and addressed whether they used assumptions and make predictions in line with current knowledge on cholesterol homeostasis. Having studied the results described by the authors, we have also tested their models. This was done primarily by testing the effect of statin treatment in each model. Ten out of eleven models tested have made assumptions in line with current knowledge of cholesterol metabolism. Three out of the ten remaining models made correct predictions, i.e. predicting a decrease in plasma total and LDL cholesterol or increased uptake of LDL upon treatment upon the use of statins. In conclusion, few models on cholesterol metabolism are able to pass a functional test. Apparently most models have not undergone the critical iterative systems biology cycle of validation. We expect modeling of cholesterol metabolism to go through many more model topologies and iterative cycles and welcome the increased understanding of cholesterol metabolism these are likely to bring.

  6. Piperine prevents cholesterol gallstones formation in mice.

    PubMed

    Song, Xiu-Yun; Xu, Shuang; Hu, Jin-Feng; Tang, Jia; Chu, Shi-Feng; Liu, Hang; Han, Ning; Li, Jing-Wei; Zhang, Dong-Ming; Li, Yue-Ting; Chen, Nai-Hong

    2015-03-15

    Biliary cholesterol may contribute to the formation of cholesterol gallstones, and regulation of these levels could be a useful therapeutic strategy for gallstones disease. Piperine (PA) is a potential cholesterol lowering agent. In this study, we assessed the effect and mechanism of PA in preventing cholesterol gallstones formation induced by feeding lithogenic diet containing high cholesterol levels to mice. C57BL/6 inbred mice were fed lithogenic or chow diets for 10 weeks, with or without PA (15, 30 and 60 mg/kg) or ursodeoxycholic acid (UDCA, 60 mg/kg) administration. Cholesterol, phospholipids and crystals in bile, the lipid in serum, pathological changes and proteins expression in liver were analyzed. The results showed that PA could decrease the cholesterol potency and crystals in bile, reduce total cholesterol (TC), triglycerides (TG) and increase high-density lipoprotein/low-density lipoprotein (HDL/LDL) levels in serum. Furthermore, PA treatment reduced liver lipid peroxidation and protected hepatobiliary cells from liver injury by decreasing malondialdehyde (MDA) and increasing superoxide dismutase (SOD). In addition, PA inhibited the expression of ATP-binding cassette transporters G5/8 (ABCG5/8) and liver X receptor (LXR) in liver, and reduced cholesterol transport from the hepatocytes to the gallbladder. It may be the mechanism of PA in preventing cholesterol gallstones formation. PA as a potential drug for prevention cholesterol gallstones merits further investigation.

  7. Low cell cholesterol levels increase NFkappaB activity through a p38 MAPK-dependent mechanism.

    PubMed

    Calleros, Laura; Lasa, Marina; Toro, María J; Chiloeches, Antonio

    2006-12-01

    Cholesterol, p38 MAPK and NFkappaB have been shown to participate in inflammation and cellular differentiation. Here, we examined the effect of cholesterol on NFkappaB-dependent transcription and the mechanisms underlying this effect in NIH3T3 cells. We show that chronic cholesterol depletion achieved with lipoprotein-deficient serum (LPDS) and 25-hydroxycholesterol (25-HC) treatment resulted in a significant increase in NFkappaB-dependent transcription, NFkappaB-DNA binding, IkappaBalpha degradation and p65/NFkappaB translocation to the nucleus, and the addition of exogenous cholesterol reversed these effects. Previously, we have shown that low cell cholesterol levels activate p38 MAPK. Here, we found that inhibition of p38 MAPK with the specific inhibitor SB203580 blocked the increase in NFkappaB activity, IkappaBalpha degradation and p65/NFkappaB translocation to the nucleus induced by cholesterol depletion. Moreover, the inhibition of the p38 MAPK downstream effector MSK1 with the specific inhibitor H89, or the overexpression of a kinase defective MSK1 abrogated the NFkappaB-dependent transcription induced by cholesterol depletion. On the other hand, the transactivation potential of p65/NFkappaB depends on phosphorylation of S276 by MSK1. We observed that cholesterol depletion increased the p65/NFkappaB transactivation capacity. This effect was reversed by cell cholesterol repletion or incubation with the SB203580 inhibitor. Moreover, the expression of a p65/NFkappaB S276A mutant was insensitive to cholesterol depletion. Together, our results demonstrate that cholesterol depletion induces NFkappaB transcriptional activity, not only by affecting the IkappaBalpha degradation and the translocation of p65/NFkappaB to the nucleus, but also regulating the p65/NFkappaB transactivating potential through a p38 MAPK/MSK1 mediated pathway.

  8. A mirror code for protein-cholesterol interactions in the two leaflets of biological membranes

    PubMed Central

    Fantini, Jacques; Di Scala, Coralie; Evans, Luke S.; Williamson, Philip T. F.; Barrantes, Francisco J.

    2016-01-01

    Cholesterol controls the activity of a wide range of membrane receptors through specific interactions and identifying cholesterol recognition motifs is therefore critical for understanding signaling receptor function. The membrane-spanning domains of the paradigm neurotransmitter receptor for acetylcholine (AChR) display a series of cholesterol consensus domains (referred to as “CARC”). Here we use a combination of molecular modeling, lipid monolayer/mutational approaches and NMR spectroscopy to study the binding of cholesterol to a synthetic CARC peptide. The CARC-cholesterol interaction is of high affinity, lipid-specific, concentration-dependent, and sensitive to single-point mutations. The CARC motif is generally located in the outer membrane leaflet and its reverse sequence CRAC in the inner one. Their simultaneous presence within the same transmembrane domain obeys a “mirror code” controlling protein-cholesterol interactions in the outer and inner membrane leaflets. Deciphering this code enabled us to elaborate guidelines for the detection of cholesterol-binding motifs in any membrane protein. Several representative examples of neurotransmitter receptors and ABC transporters with the dual CARC/CRAC motifs are presented. The biological significance and potential clinical applications of the mirror code are discussed. PMID:26915987

  9. Matrix metalloproteinase 8 degrades apolipoprotein A-I and reduces its cholesterol efflux capacity.

    PubMed

    Salminen, Aino; Åström, Pirjo; Metso, Jari; Soliymani, Rabah; Salo, Tuula; Jauhiainen, Matti; Pussinen, Pirkko J; Sorsa, Timo

    2015-04-01

    Various cell types in atherosclerotic lesions express matrix metalloproteinase (MMP)-8. We investigated whether MMP-8 affects the structure and antiatherogenic function of apolipoprotein (apo) A-I, the main protein component of HDL particles. Furthermore, we studied serum lipid profiles and cholesterol efflux capacity in MMP-8-deficient mouse model. Incubation of apoA-I (28 kDa) with activated MMP-8 yielded 22 kDa and 25 kDa apoA-I fragments. Mass spectrometric analyses revealed that apoA-I was cleaved at its carboxyl-terminal part. Treatment of apoA-I and HDL with MMP-8 resulted in significant reduction (up to 84%, P < 0.001) in their ability to facilitate cholesterol efflux from cholesterol-loaded THP-1 macrophages. The cleavage of apoA-I by MMP-8 and the reduction in its cholesterol efflux capacity was inhibited by doxycycline. MMP-8-deficient mice had significantly lower serum triglyceride (TG) levels (P = 0.003) and larger HDL particles compared with wild-type (WT) mice. However, no differences were observed in the apoA-I levels or serum cholesterol efflux capacities between the mouse groups. Proteolytic modification of apoA-I by MMP-8 may impair the first steps of reverse cholesterol transport, leading to increased accumulation of cholesterol in the vessel walls. Eventually, inhibition of MMPs by doxycycline may reduce the risk for atherosclerotic vascular diseases.

  10. Cholesterol transport via ABCA1: new insights from solid-phase binding assay.

    PubMed

    Reboul, Emmanuelle; Dyka, Frank M; Quazi, Faraz; Molday, Robert S

    2013-04-01

    It is now well established that the ATP-binding cassette transporter A1 (ABCA1) plays a pivotal role in HDL metabolism, reverse cholesterol transport and net efflux of cellular cholesterol and phospholipids. We aimed to resolve some uncertainties related to the putative function of ABCA1 as a mediator of lipid transport by using a methodology developed in the laboratory to isolate a protein and study its interactions with other compounds. ABCA1 was tagged with the 1D4 peptide at the C terminus and expressed in human HEK 293 cells. Preliminary experiments showed that the tag modified neither the protein expression/localization within the cells nor the ability of ABCA1 to promote cholesterol cellular efflux to apolipoprotein A-I. ABCA1-1D4 was then purified and reconstituted in liposomes. ABCA1 displayed an ATPase activity in phospholipid liposomes that was significantly decreased by cholesterol. Finally, interactions with either cholesterol or apolipoprotein A-I were assessed by binding experiments with protein immobilized on an immunoaffinity matrix. Solid-phase binding assays showed no direct binding of cholesterol or apolipoprotein A-I to ABCA1. Overall, our data support the hypothesis that ABCA1 is able to mediate the transport of cholesterol from cells without direct interaction and that apo A-I primarily binds to membrane surface or accessory protein(s).

  11. Multilayer Structures in Lipid Monolayer Films Containing Surfactant Protein C: Effects of Cholesterol and POPE

    PubMed Central

    Malcharek, Stefan; Hinz, Andreas; Hilterhaus, Lutz; Galla, Hans-Joachim

    2005-01-01

    The influence of cholesterol and POPE on lung surfactant model systems consisting of DPPC/DPPG (80:20) and DPPC/DPPG/surfactant protein C (80:20:0.4) has been investigated. Cholesterol leads to a condensation of the monolayers, whereas the isotherms of model lung surfactant films containing POPE exhibit a slight expansion combined with an increased compressibility at medium surface pressure (10–30 mN/m). An increasing amount of liquid-expanded domains can be visualized by means of fluorescence light microscopy in lung surfactant monolayers after addition of either cholesterol or POPE. At surface pressures of 50 mN/m, protrusions are formed which differ in size and shape as a function of the content of cholesterol or POPE, but only if SP-C is present. Low amounts of cholesterol (10 mol %) lead to an increasing number of protrusions, which also grow in size. This is interpreted as a stabilizing effect of cholesterol on bilayers formed underneath the monolayer. Extreme amounts of cholesterol (30 mol %), however, cause an increased monolayer rigidity, thus preventing reversible multilayer formation. In contrast, POPE, as a nonbilayer lipid thought to stabilize the edges of protrusions, leads to more narrow protrusions. The lateral extension of the protrusions is thereby more influenced than their height. PMID:15653721

  12. A mirror code for protein-cholesterol interactions in the two leaflets of biological membranes

    NASA Astrophysics Data System (ADS)

    Fantini, Jacques; di Scala, Coralie; Evans, Luke S.; Williamson, Philip T. F.; Barrantes, Francisco J.

    2016-02-01

    Cholesterol controls the activity of a wide range of membrane receptors through specific interactions and identifying cholesterol recognition motifs is therefore critical for understanding signaling receptor function. The membrane-spanning domains of the paradigm neurotransmitter receptor for acetylcholine (AChR) display a series of cholesterol consensus domains (referred to as “CARC”). Here we use a combination of molecular modeling, lipid monolayer/mutational approaches and NMR spectroscopy to study the binding of cholesterol to a synthetic CARC peptide. The CARC-cholesterol interaction is of high affinity, lipid-specific, concentration-dependent, and sensitive to single-point mutations. The CARC motif is generally located in the outer membrane leaflet and its reverse sequence CRAC in the inner one. Their simultaneous presence within the same transmembrane domain obeys a “mirror code” controlling protein-cholesterol interactions in the outer and inner membrane leaflets. Deciphering this code enabled us to elaborate guidelines for the detection of cholesterol-binding motifs in any membrane protein. Several representative examples of neurotransmitter receptors and ABC transporters with the dual CARC/CRAC motifs are presented. The biological significance and potential clinical applications of the mirror code are discussed.

  13. Cholesterol metabolism and homeostasis in the brain.

    PubMed

    Zhang, Juan; Liu, Qiang

    2015-04-01

    Cholesterol is an essential component for neuronal physiology not only during development stage but also in the adult life. Cholesterol metabolism in brain is independent from that in peripheral tissues due to blood-brain barrier. The content of cholesterol in brain must be accurately maintained in order to keep brain function well. Defects in brain cholesterol metabolism has been shown to be implicated in neurodegenerative diseases, such as Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), and some cognitive deficits typical of the old age. The brain contains large amount of cholesterol, but the cholesterol metabolism and its complex homeostasis regulation are currently poorly understood. This review will seek to integrate current knowledge about the brain cholesterol metabolism with molecular mechanisms.

  14. Regulation of CD4+ T-Cell Function by Membrane Cholesterol

    DTIC Science & Technology

    2012-03-13

    cholesterol lowering statin therapy can lead to the beneficial reversal of Th1 to Th2 polarization in psoriasis patients associated with hyperlipidemia...in psoriasis with treatment of associated hyperlipidemia. Am J Med Sci 341: 394-398. 106 Figure legends Figure 1. Squalene

  15. Extra Virgin Olive Oil Polyphenols Promote Cholesterol Efflux and Improve HDL Functionality

    PubMed Central

    Berrougui, Hicham; Ikhlef, Souad; Khalil, Abdelouahed

    2015-01-01

    Results of the present work give evidence from the beneficial role of extra virgin olive of oil (EVOO) consumption towards oxidative stress and cardiovascular diseases. Polyphenols contained in EVOO are responsible for inhibiting lipoproteins oxidative damages and promoting reverse cholesterol transport process via ABCA1 pathway. PMID:26495005

  16. Beyond cholesterol: the enigma of atherosclerosis revisited.

    PubMed

    Bhakdi, Sucharit; Lackner, Karl J; Han, Shan-Rui; Torzewski, Michael; Husmann, Matthias

    2004-04-01

    Atherosclerosis is widely regarded as a chronic inflammatory disease that develops as a consequence of entrapment of low density lipoprotein (LDL) in the arterial intima. Native LDL lacks inflammatory properties, so the lipoprotein must undergo biochemical alterations in order to become atherogenic. Modification is commonly regarded as being dangerous because it bestows inflammatory properties onto the lipoprotein. Most current models consider oxidation to be the decisive modifying event. Here, we submit a different concept for discussion. We propose that modification of tissue-entrapped LDL is required because it enables the lipoprotein to signal to the immune system and effect its own removal. Oxidation would be too haphazard to fulfill this function. We summarize the evidence indicating that modification occurs through the action of ubiquitous hydrolytic enzymes. Enzymatically remodeled LDL binds C-reactive protein. C-reactive protein bound to remodeled LDL not only activates complement but also regulates it by inhibiting activation of the terminal complement cascade. Simultaneously, epitopes are exposed to enable the lipoprotein to be recognized and taken up by macrophages. The high density lipoprotein-dependent reverse transport pathway concludes the sequence of events that clear tissues of cholesterol in a non-inflammatory manner very similar to what has been described for the removal of apoptotic cells. It is proposed that these physiological processes occur throughout life without harm, pathology evolving only when the machinery suffers overload. Detrimental effects are then evoked primarily by the unreigned activation of complement, macrophages, and other effectors of the immune system in the lesions.

  17. PKCβ: Expanding role in hepatic adaptation of cholesterol homeostasis to dietary fat/cholesterol.

    PubMed

    Mehta, Devina; Mehta, Kamal D

    2017-03-01

    Cholesterol homeostasis relies on an intricate network of cellular processes whose deregulation in response to Western type high-fat/cholesterol diets can lead to several life-threatening pathologies. Significant advances have been made in resolving the molecular identity and regulatory function of transcription factors sensitive to fat, cholesterol, or bile acids, but whether body senses the presence of both fat and cholesterol simultaneously is not known. Assessing the impact of a high-fat/cholesterol load, rather than an individual component alone, on cholesterol homeostasis is more physiologically relevant because Western diets deliver both fat and cholesterol at the same time. Moreover, dietary fat and dietary cholesterol are reported to act synergistically to impair liver cholesterol homeostasis. A key insight into the role of protein kinase C-β (PKCβ) in hepatic adaptation to high-fat/cholesterol diets was gained recently through the use of knockout mice. The emerging evidence indicates that PKCβ is an important regulator of cholesterol homeostasis that ensures normal adaptation to high-fat/cholesterol intake. Consistent with this function, high-fat/cholesterol diets induce PKCβ expression and signaling in the intestine and liver, while systemic PKCβ deficiency promotes accumulation of cholesterol in the liver and bile. PKCβ disruption results in profound dysregulation of hepatic cholesterol and bile homeostasis and imparts sensitivity to cholesterol gallstone formation. The available results support involvement of a two-pronged mechanism by which intestine and liver PKCβ signaling converge on liver ERK1/2 to dictate diet-induced cholesterol and bile acid homeostasis. Collectively, PKCβ is an integrator of dietary fat/cholesterol signal and mediates changes to cholesterol homeostasis.

  18. Regulation of biliary cholesterol secretion in the rat. Role of hepatic cholesterol esterification.

    PubMed Central

    Nervi, F; Bronfman, M; Allalón, W; Depiereux, E; Del Pozo, R

    1984-01-01

    Although the significance of the enterohepatic circulation of bile salts in the solubilization and biliary excretion of cholesterol is well established, little is known about the intrahepatic determinants of biliary cholesterol output. Studies were undertaken to elucidate some of these determinants in the rat. Feeding 1% diosgenin for 1 wk increased biliary cholesterol output and saturation by 400%. Bile flow, biliary bile salt, phospholipid and protein outputs remained in the normal range. When ethynyl estradiol (EE) was injected into these animals, biliary cholesterol output decreased to almost normal levels under circumstances of minor changes in the rates of biliary bile salt and phospholipid outputs. Similarly, when chylomicron cholesterol was intravenously injected into diosgenin-fed animals, biliary cholesterol output significantly decreased as a function of the dose of chylomicron cholesterol administered. Relative rates of hepatic cholesterol synthesis and esterification were measured in isolated hepatocytes. Although hepatic cholesterogenesis increased 300% in diosgenin-fed animals, the contribution of newly synthesized cholesterol to total biliary cholesterol output was only 19 +/- 9%, compared with 12 +/- 6% in control and 15 +/- 5% in diosgenin-fed and EE-injected rats. The rate of oleate incorporation into hepatocytic cholesterol esters was 30% inhibited in diosgenin-fed rats. When EE was injected into these animals, the rate of cholesterol esterification increased to almost 300%. To investigate further the interrelationship between hepatic cholesterol esterification and biliary cholesterol output, we studied 21 diosgenin-fed rats. Six of them received in addition EE and 10 received chylomicron cholesterol. The relationships between biliary cholesterol output as a function of both microsomal acyl-CoA:cholesterol acyltransferase (ACAT) activity and hepatic cholesterol ester concentration were significantly correlated in a reciprocal manner. From these

  19. Effect of Lung Surfactant Protein SP-C and SP-C-Promoted Membrane Fragmentation on Cholesterol Dynamics.

    PubMed

    Roldan, Nuria; Nyholm, Thomas K M; Slotte, J Peter; Pérez-Gil, Jesús; García-Álvarez, Begoña

    2016-10-18

    To allow breathing and prevent alveolar collapse, lung surfactant (LS) develops a complex membranous system at the respiratory surface. LS is defined by a specific protein and lipid composition, including saturated and unsaturated phospholipid species and cholesterol. Surfactant protein C (SP-C) has been suggested to be an essential element for sustaining the presence of cholesterol in surfactant without functional impairment. In this work, we used a fluorescent sterol-partitioning assay to assess the effect of the surfactant proteins SP-B and SP-C on cholesterol distribution in membranes. Our results suggest that in the LS context, the combined action of SP-B and SP-C appears to facilitate cholesterol dynamics, whereas SP-C does not seem to establish a direct interaction with cholesterol that could increase the partition of free cholesterol into membranes. Interestingly, SP-C exhibits a membrane-fragmentation behavior, leading to the conversion of large unilamellar vesicles into highly curved vesicles ∼25 nm in diameter. Sterol partition was observed to be sensitive to the bending of bilayers, indicating that the effect of SP-C to mobilize cholesterol could be indirectly associated with SP-C-mediated membrane remodeling. Our results suggest a potential role for SP-C in generating small surfactant structures that may participate in cholesterol mobilization and pulmonary surfactant homeostasis at the alveolar interfaces. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Naringenin prevents cholesterol-induced systemic inflammation, metabolic dysregulation, and atherosclerosis in Ldlr−/− mice[S

    PubMed Central

    Assini, Julia M.; Mulvihill, Erin E.; Sutherland, Brian G.; Telford, Dawn E.; Sawyez, Cynthia G.; Felder, Sarah L.; Chhoker, Sanjiv; Edwards, Jane Y.; Gros, Robert; Huff, Murray W.

    2013-01-01

    Obesity-associated chronic inflammation contributes to metabolic dysfunction and propagates atherosclerosis. Recent evidence suggests that increased dietary cholesterol exacerbates inflammation in adipose tissue and liver, contributing to the proatherogenic milieu. The ability of the citrus flavonoid naringenin to prevent these cholesterol-induced perturbations is unknown. To assess the ability of naringenin to prevent the amplified inflammatory response and atherosclerosis induced by dietary cholesterol, male Ldlr−/− mice were fed either a cholesterol-enriched high-fat or low-fat diet supplemented with 3% naringenin for 12 weeks. Naringenin, through induction of hepatic fatty acid (FA) oxidation and attenuation of FA synthesis, prevented hepatic steatosis, hepatic VLDL overproduction, and hyperlipidemia induced by both cholesterol-rich diets. Naringenin attenuated hepatic macrophage infiltration and inflammation stimulated by dietary cholesterol. Insulin resistance, adipose tissue expansion, and inflammation were alleviated by naringenin. Naringenin attenuated the cholesterol-induced formation of both foam cells and expression of inflammatory markers in peritoneal macrophages. Naringenin significantly decreased atherosclerosis and inhibited the formation of complex lesions, which was associated with normalized aortic lipids and a reversal of aortic inflammation. We demonstrate that in mice fed cholesterol-enriched diets, naringenin attenuates peripheral and systemic inflammation, leading to protection from atherosclerosis. These studies offer a therapeutically relevant alternative for the prevention of cholesterol-induced metabolic dysregulation. PMID:23269394

  1. Efflux of cholesterol and phospholipids derived from the haemoglobin-lipid adduct in human red blood cells into plasma.

    PubMed

    Nikolić, Milan; Stanić, Dragana; Baricević, Ivona; Jones, David R; Nedić, Olgica; Niketić, Vesna

    2007-03-01

    The interior of red blood cells (RBCs) contains a variable amount of cholesterol and phospholipids bound to haemoglobin (Hb). This current study was devised to determine if this pool of lipids (termed Hb-Ch) was available for exchange with plasma lipoproteins. We studied the in vitro efflux of lipids from human RBCs into fasting plasma in men with either low (control group) or high Hb-Ch (study group). When plasma was incubated with a two-fold excess of autologous RBCs the plasma cholesterol level increased due to a decrease in the level of cholesterol from the RBC membrane (in the control group) and due to a decrease in the level of cholesterol both from the RBC membrane and the Hb-Ch fraction (in the study group). The loss of Hb-Ch-derived phospholipids during lipid efflux was roughly equal to that of Hb-Ch-derived cholesterol. The loss of RBC cholesterol into plasma high-density lipoproteins (HDL) was more pronounced in our study group and correlated with the loss of cholesterol from Hb-Ch. The Hb-Ch adduct significantly contributes to the lipid efflux from RBCs into plasma. The majority of cholesterol released from Hb-Ch appears in the plasma HDL fraction suggesting that Hb-Ch may play a role in reverse cholesterol transport in vivo.

  2. igr Genes and Mycobacterium tuberculosis cholesterol metabolism.

    PubMed

    Chang, Jennifer C; Miner, Maurine D; Pandey, Amit K; Gill, Wendy P; Harik, Nada S; Sassetti, Christopher M; Sherman, David R

    2009-08-01

    Recently, cholesterol was identified as a physiologically important nutrient for Mycobacterium tuberculosis survival in chronically infected mice. However, it remained unclear precisely when cholesterol is available to the bacterium and what additional bacterial functions are required for its metabolism. Here, we show that the igr locus, which we previously found to be essential for intracellular growth and virulence of M. tuberculosis, is required for cholesterol metabolism. While igr-deficient strains grow identically to the wild type in the presence of short- and long-chain fatty acids, the growth of these bacteria is completely inhibited in the presence of cholesterol. Interestingly, this mutant is still able to respire under cholesterol-dependent growth inhibition, suggesting that the bacteria can metabolize other carbon sources during cholesterol toxicity. Consistent with this hypothesis, we found that the growth-inhibitory effect of cholesterol in vitro depends on cholesterol import, as mutation of the mce4 sterol uptake system partially suppresses this effect. In addition, the Delta igr mutant growth defect during the early phase of disease is completely suppressed by mutating mce4, implicating cholesterol intoxication as the primary mechanism of attenuation. We conclude that M. tuberculosis metabolizes cholesterol throughout infection.

  3. Cholesterol, the central lipid of mammalian cells

    PubMed Central

    Maxfield, Frederick R.; van Meer, Gerrit

    2010-01-01

    Summary of recent advances Despite its importance for mammalian cell biology and human health, there are many basic aspects of cholesterol homeostasis that are not well understood. Even for the well-characterized delivery of cholesterol to cells via lipoproteins, a novel regulatory mechanism has been discovered recently, involving a serum protein called PCSK9, which profoundly affects lipoproteins and their receptors. Cells can export cholesterol by processes that require the activity of ABC transporters, but the molecular mechanisms for cholesterol transport remain unclear. Cholesterol levels in different organelles vary by 5–10 fold, and the mechanisms for maintaining these differences are now partially understood. Several proteins have been proposed to play a role in the inter-organelle movement of cholesterol, but many aspects of the mechanisms for regulating intracellular transport and distribution of cholesterol remain to be worked out. The endoplasmic reticulum is the main organelle responsible for regulation of cholesterol synthesis, and careful measurements have shown that the proteins responsible for sterol sensing respond over a very narrow range of cholesterol concentrations to provide very precise, switch-like control over cholesterol synthesis. PMID:20627678

  4. Liver X receptors regulate adrenal cholesterol balance

    PubMed Central

    Cummins, Carolyn L.; Volle, David H.; Zhang, Yuan; McDonald, Jeffrey G.; Sion, Benoît; Lefrançois-Martinez, Anne-Marie; Caira, Françoise; Veyssière, Georges; Mangelsdorf, David J.; Lobaccaro, Jean-Marc A.

    2006-01-01

    Cholesterol is the obligate precursor to adrenal steroids but is cytotoxic at high concentrations. Here, we show the role of the liver X receptors (LXRα and LXRβ) in preventing accumulation of free cholesterol in mouse adrenal glands by controlling expression of genes involved in all aspects of cholesterol utilization, including the steroidogenic acute regulatory protein, StAR, a novel LXR target. Under chronic dietary stress, adrenal glands from Lxrαβ–/– mice accumulated free cholesterol. In contrast, wild-type animals maintained cholesterol homeostasis through basal expression of genes involved in cholesterol efflux and storage (ABC transporter A1 [ABCA1], apoE, SREBP-1c) while preventing steroidogenic gene (StAR) expression. Upon treatment with an LXR agonist that mimics activation by oxysterols, expression of these target genes was increased. Basally, Lxrαβ–/– mice exhibited a marked decrease in ABCA1 and a derepression of StAR expression, causing a net decrease in cholesterol efflux and an increase in steroidogenesis. These changes occurred under conditions that prevented the acute stress response and resulted in a phenotype more specific to the loss of LXRα, including hypercorticosteronemia, cholesterol ester accumulation, and adrenomegaly. These results imply LXRα provides a safety valve to limit free cholesterol levels as a basal protective mechanism in the adrenal gland, where cholesterol is under constant flux. PMID:16823488

  5. Regulation of Cholesterol Metabolism in the Dog

    PubMed Central

    Pertsemlidis, Demetrius; Kirchman, Ernest H.; Ahrens, E. H.

    1973-01-01

    In six adult pedigreed dogs the effects of high-cholesterol diets or bile diversion on the sizes of body cholesterol pools were studied at autopsy. Total body cholesterol was determined by measuring the cholesterol content of discrete organs and of the eviscerated carcass: neither cholesterol feeding nor bile diversion had altered total body cholesterol or the cholesterol content of individual organs and tissues. These results validated the conclusion based on sterol balance data obtained during life, that high-cholesterol feeding did not lead to substantial expansion of tissue cholesterol pools. The total amount of exchangeable cholesterol in the animals with an intact enterohepatic circulation, when estimated from isotopic data, was essentially the same as that measured chemically: this indicated that there was little or no nonexchangeable cholesterol in these dogs, except in skin and nervous tissue, regardless of the cholesterol content of the diet. This correspondence of estimates was not obtained in the bile-diverted dogs: we propose that the defect in the isotopic estimates was due to the accelerated rate of cholesterol synthesis in these animals. Gross and microscopic morphology of all organs and tissues was examined. Abnormal findings were limited to the biliary tract and the urinary collecting system of the two bile-diverted dogs: multiple bilirubinate gallstones were found, and mild pyelitis and ureteritis were present on the side of the bilio-renal shunt, but the urinary bladder was normal. Histologic evidence of moderate degree of cholangitis was found in one of the two bile-shunted dogs, but in neither dog was there evidence of impedance of bile flow. PMID:4727465

  6. 7 CFR 2903.4 - Indirect costs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM General Information § 2903.4 Indirect costs. (a) For the Biodiesel Fuel Education Program, applicants should use the current indirect cost rate negotiated with...

  7. 7 CFR 2903.4 - Indirect costs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM General Information § 2903.4 Indirect costs. (a) For the Biodiesel Fuel Education Program, applicants should use the current indirect cost rate negotiated with the...

  8. Reduction of blood serum cholesterol

    NASA Technical Reports Server (NTRS)

    Winitz, M. (Inventor)

    1974-01-01

    By feeding a human subject as the sole source of sustenance a defined diet wherein the carbohydrate consists substantially entirely of glucose, maltose or a polysaccharide of glucose, the blood serum cholesterol level of the human subject is substantially reduced. If 25 percent of the carbohydrate is subsequently supplied in the form of sucrose, an immediate increase from the reduced level is observed. The remainder of the defined diet normally includes a source of amino acids, such as protein or a protein hydrolysate, vitamins, minerals and a source of essential fatty acid.

  9. Bosonic cascades of indirect excitons

    NASA Astrophysics Data System (ADS)

    Nalitov, A. V.; De Liberato, S.; Lagoudakis, P.; Savvidis, P. G.; Kavokin, A. V.

    2017-08-01

    Recently, the concept of the terahertz bosonic cascade laser (BCL) based on a parabolic quantum well (PQW) embedded in a microcavity was proposed. We refine this proposal by suggesting transitions between indirect exciton (IX) states as a source of terahertz emission. We explicitly propose a structure containing a narrow-square QW and a wide-parabolic QW for the realisation of a bosonic cascade. Advantages of this type of structures are in large dipole matrix elements for terahertz transitions and in long exciton radiative lifetimes which are crucial for realisation of threshold and quantum efficiency BCLs.

  10. PPARγ1 and LXRα face a new regulator of macrophage cholesterol homeostasis and inflammatory responsiveness, AEBP1

    PubMed Central

    Majdalawieh, Amin; Ro, Hyo-Sung

    2010-01-01

    Peroxisome proliferator-activated receptor γ1 (PPARγ1) and liver X receptor α (LXRα) are nuclear receptors that play pivotal roles in macrophage cholesterol homeostasis and inflammation; key biological processes in atherogenesis. The activation of PPARγ1 and LXRα by natural or synthetic ligands results in the transactivation of ABCA1, ABCG1, and ApoE; integral players in cholesterol efflux and reverse cholesterol transport. In this review, we describe the structure, isoforms, expression pattern, and functional specificity of PPARs and LXRs. Control of PPARs and LXRs transcriptional activity by coactivators and corepressors is also highlighted. The specific roles that PPARγ1 and LXRα play in inducing macrophage cholesterol efflux mediators and antagonizing macrophage inflammatory responsiveness are summarized. Finally, this review focuses on the recently reported regulatory functions that adipocyte enhancer-binding protein 1 (AEBP1) exerts on PPARγ1 and LXRα transcriptional activity in the context of macrophage cholesterol homeostasis and inflammation. PMID:20419060

  11. Determination of cholesterol in food samples using dispersive liquid-liquid microextraction followed by HPLC-UV.

    PubMed

    Daneshfar, A; Khezeli, T; Lotfi, H J

    2009-02-01

    A fast, simple, and sensitive sample preparation procedure based on dispersive liquid-liquid microextraction (DLLME) is proposed for the determination of cholesterol in food samples using isocratic reverse phase high performance liquid chromatography (RP-HPLC) and UV detection. The influence of several important parameters on extraction efficiency of cholesterol was evaluated. Under optimized conditions, a linear relationship was obtained between the peak area and the concentration of cholesterol in the range of 0.03-10 microgl(-1). The detection and quantification limits were 0.01 and 0.03 microgl(-1), respectively. Intra-day and inter-day precisions for the analysis of cholesterol were in the range of 1.0-3.1%. The applicability of the proposed method was demonstrated by analyzing cholesterol in milk, egg yolk and olive oil.

  12. Lymphatic vessels are essential for the removal of cholesterol from peripheral tissues by SR-BI-mediated transport of HDL.

    PubMed

    Lim, Hwee Ying; Thiam, Chung Hwee; Yeo, Kim Pin; Bisoendial, Radjesh; Hii, Chung Shii; McGrath, Kristine C Y; Tan, Kar Wai; Heather, Alison; Alexander, J Steven Jonathan; Angeli, Veronique

    2013-05-07

    Removal of cholesterol from peripheral tissues to the bloodstream via reverse cholesterol transport (RCT) is a process of major biological importance. Here we demonstrate that lymphatic drainage is required for RCT. We have previously shown that hypercholesterolemia in mice is associated with impaired lymphatic drainage and increased lipid accumulation in peripheral tissues. We now show that restoration of lymphatic drainage in these mice significantly improves cholesterol clearance. Conversely, obstruction of lymphatic vessels in wild-type mice significantly impairs RCT. Finally, we demonstrate using silencing RNA interference, neutralizing antibody, and transgenic mice that removal of cholesterol by lymphatic vessels is dependent on the uptake and transcytosis of HDL by scavenger receptor class B type I expressed on lymphatic endothelium. Collectively, this study challenges the current view that lymphatic endothelium is a passive exchange barrier for cholesterol transport and provides further evidence for its interplay with lipid biology in health and disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. 9-cis β-Carotene Increased Cholesterol Efflux to HDL in Macrophages.

    PubMed

    Bechor, Sapir; Zolberg Relevy, Noa; Harari, Ayelet; Almog, Tal; Kamari, Yehuda; Ben-Amotz, Ami; Harats, Dror; Shaish, Aviv

    2016-07-19

    Cholesterol efflux from macrophages is a key process in reverse cholesterol transport and, therefore, might inhibit atherogenesis. 9-cis-β-carotene (9-cis-βc) is a precursor for 9-cis-retinoic-acid (9-cis-RA), which regulates macrophage cholesterol efflux. Our objective was to assess whether 9-cis-βc increases macrophage cholesterol efflux and induces the expression of cholesterol transporters. Enrichment of a mouse diet with βc from the alga Dunaliella led to βc accumulation in peritoneal macrophages. 9-cis-βc increased the mRNA levels of CYP26B1, an enzyme that regulates RA cellular levels, indicating the formation of RA from βc in RAW264.7 macrophages. Furthermore, 9-cis-βc, as well as all-trans-βc, significantly increased cholesterol efflux to high-density lipoprotein (HDL) by 50% in RAW264.7 macrophages. Likewise, food fortification with 9-cis-βc augmented cholesterol efflux from macrophages ex vivo. 9-cis-βc increased both the mRNA and protein levels of ABCA1 and apolipoprotein E (APOE) and the mRNA level of ABCG1. Our study shows, for the first time, that 9-cis-βc from the diet accumulates in peritoneal macrophages and increases cholesterol efflux to HDL. These effects might be ascribed to transcriptional induction of ABCA1, ABCG1, and APOE. These results highlight the beneficial effect of βc in inhibition of atherosclerosis by improving cholesterol efflux from macrophages.

  14. Recovery of Serum Cholesterol Predicts Survival After Left Ventricular Assist Device Implantation

    PubMed Central

    Vest, Amanda R.; Kennel, Peter J.; Maldonado, Dawn; Young, James B.; Mountis, Maria M.; Naka, Yoshifumi; Colombo, Paolo C.; Mancini, Donna M.; Starling, Randall C.; Schulze, P. Christian

    2017-01-01

    Background Advanced systolic heart failure is associated with myocardial and systemic metabolic abnormalities, including low levels of total cholesterol and low-density lipoprotein. Low cholesterol and low-density lipoprotein have been associated with greater mortality in heart failure. Implantation of a left ventricular assist device (LVAD) reverses some of the metabolic derangements of advanced heart failure. Methods and Results A cohort was retrospectively assembled from 2 high-volume implantation centers, totaling 295 continuous-flow LVAD recipients with ≥2 cholesterol values available. The cohort was predominantly bridge-to-transplantation (67%), with median age of 59 years and 49% ischemic heart failure cause. Total cholesterol, low-density lipoprotein, high-density lipoprotein, and triglyceride levels all significantly increased after LVAD implantation (median values from implantation to 3 months post implantation 125–150 mg/dL, 67–85 mg/dL, 32–42 mg/dL, and 97–126 mg/dL, respectively). On Cox proportional hazards modeling, patients achieving recovery of total cholesterol levels, defined as a median or greater change from pre implantation to 3 months post-LVAD implantation, had significantly better unadjusted survival (hazard ratio, 0.445; 95% confidence interval, 0.212–0.932) and adjusted survival (hazard ratio, 0.241; 95% confidence interval, 0.092–0.628) than those without cholesterol recovery after LVAD implantation. The continuous variable of total cholesterol at 3 months post implantation and the cholesterol increase from pre implantation to 3 months were also both significantly associated with survival during LVAD support. Conclusions Initiation of continuous-flow LVAD support was associated with significant recovery of all 4 lipid variables. Patients with a greater increase in total cholesterol by 3 months post implantation had superior survival during LVAD support. PMID:27623768

  15. 9-cis β-Carotene Increased Cholesterol Efflux to HDL in Macrophages

    PubMed Central

    Bechor, Sapir; Zolberg Relevy, Noa; Harari, Ayelet; Almog, Tal; Kamari, Yehuda; Ben-Amotz, Ami; Harats, Dror; Shaish, Aviv

    2016-01-01

    Cholesterol efflux from macrophages is a key process in reverse cholesterol transport and, therefore, might inhibit atherogenesis. 9-cis-β-carotene (9-cis-βc) is a precursor for 9-cis-retinoic-acid (9-cis-RA), which regulates macrophage cholesterol efflux. Our objective was to assess whether 9-cis-βc increases macrophage cholesterol efflux and induces the expression of cholesterol transporters. Enrichment of a mouse diet with βc from the alga Dunaliella led to βc accumulation in peritoneal macrophages. 9-cis-βc increased the mRNA levels of CYP26B1, an enzyme that regulates RA cellular levels, indicating the formation of RA from βc in RAW264.7 macrophages. Furthermore, 9-cis-βc, as well as all-trans-βc, significantly increased cholesterol efflux to high-density lipoprotein (HDL) by 50% in RAW264.7 macrophages. Likewise, food fortification with 9-cis-βc augmented cholesterol efflux from macrophages ex vivo. 9-cis-βc increased both the mRNA and protein levels of ABCA1 and apolipoprotein E (APOE) and the mRNA level of ABCG1. Our study shows, for the first time, that 9-cis-βc from the diet accumulates in peritoneal macrophages and increases cholesterol efflux to HDL. These effects might be ascribed to transcriptional induction of ABCA1, ABCG1, and APOE. These results highlight the beneficial effect of βc in inhibition of atherosclerosis by improving cholesterol efflux from macrophages. PMID:27447665

  16. Lecithin:cholesterol acyltransferase: old friend or foe in atherosclerosis?

    PubMed Central

    Kunnen, Sandra; Van Eck, Miranda

    2012-01-01

    Lecithin:cholesterol acyltransferase (LCAT) is a key enzyme that catalyzes the esterification of free cholesterol in plasma lipoproteins and plays a critical role in high-density lipoprotein (HDL) metabolism. Deficiency leads to accumulation of nascent preβ-HDL due to impaired maturation of HDL particles, whereas enhanced expression is associated with the formation of large, apoE-rich HDL1 particles. In addition to its function in HDL metabolism, LCAT was believed to be an important driving force behind macrophage reverse cholesterol transport (RCT) and, therefore, has been a subject of great interest in cardiovascular research since its discovery in 1962. Although half a century has passed, the importance of LCAT for atheroprotection is still under intense debate. This review provides a comprehensive overview of the insights that have been gained in the past 50 years on the biochemistry of LCAT, the role of LCAT in lipoprotein metabolism and the pathogenesis of atherosclerosis in animal models, and its impact on cardiovascular disease in humans. PMID:22566575

  17. Molecular dynamics simulation of dipalmitoylphosphatidylcholine membrane with cholesterol sulfate.

    PubMed Central

    Smondyrev, A M; Berkowitz, M L

    2000-01-01

    Using the molecular dynamics simulation technique, we studied the changes occurring in a dipalmitoylphosphatidylcholine (DPPC):cholesterol (CH) membrane at 50 mol% sterol when cholesterol is replaced with cholesterol sulfate (CS). Our simulations were performed at constant pressure and temperature on a nanosecond time scale. We found that 1) the area per DPPC:CS heterodimer is greater than the area of the DPPC:CH heterodimer; 2) CS increases ordering of DPPC acyl chains, but to a lesser extent than CH; 3) the number of hydrogen bonds between DPPC and water is decreased in a CS-containing membrane, but CS forms more water hydrogen bonds than CH; and 4) the membrane dipole potential reverses its sign for a DPPC-CS membrane compared to a DPPC-CH bilayer. We also studied the changes occurring in lipid headgroup conformations and determined the location of CS molecules in the membrane. Our results are in good agreement with the data available from experiments. PMID:10733950

  18. 19 CFR 10.460 - Indirect materials.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Indirect materials. 10.460 Section 10.460 Customs... of Origin § 10.460 Indirect materials. An indirect material, as defined in § 10.402(o), will be considered to be an originating material without regard to where it is produced. Example. Chilean Producer...

  19. 19 CFR 10.603 - Indirect materials.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Indirect materials. 10.603 Section 10.603 Customs... States Free Trade Agreement Rules of Origin § 10.603 Indirect materials. An indirect material, as defined in § 10.582(m) of this subpart, will be considered to be an originating material without regard...

  20. 19 CFR 10.460 - Indirect materials.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Indirect materials. 10.460 Section 10.460 Customs... of Origin § 10.460 Indirect materials. An indirect material, as defined in § 10.402(o), will be considered to be an originating material without regard to where it is produced. Example. Chilean Producer...

  1. 19 CFR 10.460 - Indirect materials.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Indirect materials. 10.460 Section 10.460 Customs... of Origin § 10.460 Indirect materials. An indirect material, as defined in § 10.402(o), will be considered to be an originating material without regard to where it is produced. Example. Chilean Producer...

  2. 19 CFR 10.2024 - Indirect materials.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Indirect materials. 10.2024 Section 10.2024... Agreement Rules of Origin § 10.2024 Indirect materials. An indirect material, as defined in § 10.2013(i), will be considered to be an originating material without regard to where it is produced....

  3. 19 CFR 10.541 - Indirect materials.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Indirect materials. 10.541 Section 10.541 Customs... Rules of Origin § 10.541 Indirect materials. An indirect material, as defined in § 10.502(j) of this subpart, will be considered to be an originating material without regard to where it is produced, and...

  4. 19 CFR 10.541 - Indirect materials.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Indirect materials. 10.541 Section 10.541 Customs... Rules of Origin § 10.541 Indirect materials. An indirect material, as defined in § 10.502(j) of this subpart, will be considered to be an originating material without regard to where it is produced, and...

  5. 19 CFR 10.541 - Indirect materials.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Indirect materials. 10.541 Section 10.541 Customs... Rules of Origin § 10.541 Indirect materials. An indirect material, as defined in § 10.502(j) of this subpart, will be considered to be an originating material without regard to where it is produced, and...

  6. 19 CFR 10.541 - Indirect materials.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Indirect materials. 10.541 Section 10.541 Customs... Rules of Origin § 10.541 Indirect materials. An indirect material, as defined in § 10.502(j) of this subpart, will be considered to be an originating material without regard to where it is produced, and...

  7. 19 CFR 10.1024 - Indirect materials.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Indirect materials. 10.1024 Section 10.1024... Agreement Rules of Origin § 10.1024 Indirect materials. An indirect material, as defined in § 10.1002(n) of.... Korean Producer A produces good C using non-originating material B. Producer A imports...

  8. 19 CFR 10.603 - Indirect materials.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Indirect materials. 10.603 Section 10.603 Customs... States Free Trade Agreement Rules of Origin § 10.603 Indirect materials. An indirect material, as defined in § 10.582(m) of this subpart, will be considered to be an originating material without regard...

  9. 19 CFR 10.924 - Indirect materials.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Indirect materials. 10.924 Section 10.924 Customs... Rules of Origin § 10.924 Indirect materials. An indirect material, as defined in § 10.902(m) of this subpart, will be considered to be an originating material without regard to where it is produced....

  10. 19 CFR 10.3024 - Indirect materials.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Indirect materials. 10.3024 Section 10.3024... Promotion Agreement Rules of Origin § 10.3024 Indirect materials. An indirect material, as defined in § 10.3013(h), will be considered to be an originating material without regard to where it is...

  11. 19 CFR 10.603 - Indirect materials.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Indirect materials. 10.603 Section 10.603 Customs... States Free Trade Agreement Rules of Origin § 10.603 Indirect materials. An indirect material, as defined in § 10.582(m) of this subpart, will be considered to be an originating material without regard...

  12. 19 CFR 10.603 - Indirect materials.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Indirect materials. 10.603 Section 10.603 Customs... States Free Trade Agreement Rules of Origin § 10.603 Indirect materials. An indirect material, as defined in § 10.582(m) of this subpart, will be considered to be an originating material without regard...

  13. 19 CFR 10.460 - Indirect materials.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Indirect materials. 10.460 Section 10.460 Customs... of Origin § 10.460 Indirect materials. An indirect material, as defined in § 10.402(o), will be considered to be an originating material without regard to where it is produced. Example. Chilean Producer...

  14. 19 CFR 10.603 - Indirect materials.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Indirect materials. 10.603 Section 10.603 Customs... States Free Trade Agreement Rules of Origin § 10.603 Indirect materials. An indirect material, as defined in § 10.582(m) of this subpart, will be considered to be an originating material without regard...

  15. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression....

  16. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression....

  17. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression....

  18. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression....

  19. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression....

  20. 7 CFR 3430.54 - Indirect costs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Indirect costs. 3430.54 Section 3430.54 Agriculture... Post-Award and Closeout § 3430.54 Indirect costs. Indirect cost rates for grants and cooperative agreements shall be determined in accordance with the applicable assistance regulations and cost...

  1. 48 CFR 31.203 - Indirect costs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Indirect costs. 31.203... REQUIREMENTS CONTRACT COST PRINCIPLES AND PROCEDURES Contracts With Commercial Organizations 31.203 Indirect costs. (a) For contracts subject to full CAS coverage, allocation of indirect costs shall be based...

  2. 7 CFR 2903.4 - Indirect costs.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM General Information § 2903.4 Indirect costs. (a) For the Biodiesel Fuel Education Program, applicants should use the current indirect cost rate negotiated with the... funds. Grantees electing this alternative will not be allowed to charge, as direct costs, indirect...

  3. 7 CFR 2903.4 - Indirect costs.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM General Information § 2903.4 Indirect costs. (a) For the Biodiesel Fuel Education Program, applicants should use the current indirect cost rate negotiated with the... funds. Grantees electing this alternative will not be allowed to charge, as direct costs, indirect...

  4. 7 CFR 2903.4 - Indirect costs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM General Information § 2903.4 Indirect costs. (a) For the Biodiesel Fuel Education Program, applicants should use the current indirect cost rate negotiated with the... funds. Grantees electing this alternative will not be allowed to charge, as direct costs, indirect...

  5. [Diagnostic importance of HDL cholesterol determination].

    PubMed

    Reissner, J; Herrmann, W

    1990-01-01

    The present paper describes the sensitivity to quantification of changes of HDL-cholesterol in serum by two different precipitation and analytical techniques during the treatment of patients. After the precipitation of VLDL and LDL by phosphotungstic acid/magnesium chloride the chemical determination of HDL-cholesterol in serum with the Liebermann-Burchard reaction yields different results in comparison to enzymatic HDL-cholesterol determined in serum supernatant after the precipitation by polyethylene glycol 20.000. Correlation analyses of apolipoprotein A-I with enzymatic HDL-, HDL2-, HDL3-cholesterol or electrophoretic alpha-cholesterol demonstrate that the therapeutically induced changes (by training and diet) of lipid composition are more correctly reflected by the enzymatic determination of HDL-cholesterol after serum precipitation by polyethylene glycol.

  6. microRNAs and cholesterol metabolism

    PubMed Central

    Moore, Kathryn J.; Rayner, Katey J.; Suárez, Yajaira; Fernández-Hernando, Carlos

    2010-01-01

    Cholesterol metabolism is tightly regulated at the cellular level. In addition to classic transcriptional regulation of cholesterol metabolism (e.g., by SREBP and LXR), members of a class of non-coding RNAs termed microRNAs (miRNAs) have recently been identified to be potent post-transcriptional regulators of lipid metabolism genes, including cholesterol homeostasis. We and others have recently shown that miR-33 regulates cholesterol efflux and HDL biogenesis by downregulating the expression of the ABC transporters, ABCA1 and ABCG1. In addition to miR-33, miR-122 and miR-370 have been shown to play important roles in regulating cholesterol and fatty acid metabolism. These new data suggest important roles of microRNAs in the epigenetic regulation of cholesterol metabolism and have opened new avenues for the treatment of dyslipidemias. PMID:20880716

  7. Molecular Mechanism of Cyclodextrin Mediated Cholesterol Extraction

    PubMed Central

    López, Cesar A.; de Vries, Alex H.; Marrink, Siewert J.

    2011-01-01

    The depletion of cholesterol from membranes, mediated by β-cyclodextrin (β-CD) is well known and documented, but the molecular details of this process are largely unknown. Using molecular dynamics simulations, we have been able to study the CD mediated extraction of cholesterol from model membranes, in particular from a pure cholesterol monolayer, at atomic resolution. Our results show that efficient cholesterol extraction depends on the structural distribution of the CDs on the surface of the monolayer. With a suitably oriented dimer, cholesterol is extracted spontaneously on a nanosecond time scale. Additional free energy calculations reveal that the CDs have a strong affinity to bind to the membrane surface, and, by doing so, destabilize the local packing of cholesterol molecules making their extraction favorable. Our results have implications for the interpretation of experimental measurements, and may help in the rational design of efficient CD based nano-carriers. PMID:21455285

  8. Cholesterol Oxidation in Fish and Fish Products.

    PubMed

    Dantas, Natalie Marinho; Sampaio, Geni Rodrigues; Ferreira, Fernanda Silva; Labre, Tatiana da Silva; Torres, Elizabeth Aparecida Ferraz da Silva; Saldanha, Tatiana

    2015-12-01

    Fish and fish products are important from a nutritional point of view due to the presence of high biological value proteins and the high content of polyunsaturated fatty acids, especially those of the n-3 series, and above all eicosapentaenoic acid and docosahexaenoic acid. However, these important food products also contain significant amounts of cholesterol. Although cholesterol participates in essential functions in the human body, it is unstable, especially in the presence of light, oxygen, radiation, and high temperatures that can cause the formation of cholesterol oxidation products or cholesterol oxides, which are prejudicial to human health. Fish processing involves high and low temperatures, as well as other methods for microbiological control, which increases shelf life and consequently added value; however, such processes favor the formation of cholesterol oxidation products. This review brings together data on the formation of cholesterol oxides during the preparation and processing of fish into food products which are recognized and recommended for their nutritional properties.

  9. Imbalanced cholesterol metabolism in Alzheimer's disease.

    PubMed

    Xue-shan, Zhao; Juan, Peng; Qi, Wu; Zhong, Ren; Li-hong, Pan; Zhi-han, Tang; Zhi-sheng, Jiang; Gui-xue, Wang; Lu-shan, Liu

    2016-05-01

    Alzheimer's disease (AD) is a complex and multifactorial neurodegenerative disease that is mainly caused by β-amyloid accumulation. A large number of studies have shown that elevated cholesterol levels may perform a function in AD pathology, and several cholesterol-related gene polymorphisms are associated with this disease. Although numerous studies have shown the important function of cholesterol in AD pathogenesis and development, the underlying mechanism remains unclear. To further elucidate cholesterol metabolism disorder and AD, we first, review metabolism and regulation of the cholesterol in the brain. Second, we summarize the literature stating that hypercholesterolemia is one of the risk factors of AD. Third, we discuss the main mechanisms of abnormal cholesterol metabolism that increase the risk of AD. Finally, the relationships between AD and apolipoprotein E, PCSK9, and LRP1 are discussed in this article.

  10. 2013 Cholesterol Guidelines Revisited: Percent LDL Cholesterol Reduction or Attained LDL Cholesterol Level or Both for Prognosis?

    PubMed

    Bangalore, Sripal; Fayyad, Rana; Kastelein, John J; Laskey, Rachel; Amarenco, Pierre; DeMicco, David A; Waters, David D

    2016-04-01

    The 2013 American College of Cardiology (ACC)/American Heart Association (AHA) guideline on the treatment of blood cholesterol recommends moderate- to high-intensity statins for patients with atherosclerotic cardiovascular disease but departs from the traditional treat-to-target approach. Whether percent low-density lipoprotein cholesterol (LDL-C) reduction or attained LDL-C levels add incremental prognostic value to statin dose is not known. Patients in the Treating to New Targets (TNT), Incremental Decrease in Endpoints through Aggressive Lipid Lowering (IDEAL), and Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) trials (patient-level data) randomized to a statin arm (atorvastatin 80 mg/10 mg or simvastatin 20 mg) were chosen. Patients were divided into groups based on attained LDL-C levels (≤70 vs >70 mg/dL) and percent LDL-C reduction (≥50% vs <50%). Primary outcome was major cardiovascular event defined as death due to coronary heart disease, nonfatal myocardial infarction, resuscitated cardiac arrest, or stroke. Incremental prognostic value was assessed by using a forward conditional Cox proportional hazards model. Two models were tested: Model 1: Step 1 statin dose; Step 2 add attained LDL-C levels (continuous variable); Step 3 add percent LDL-C reduction (continuous variable). Model 2: Steps 2 and 3 were reversed. Among 13,937 patients included in this study, percent LDL-C reduction added incremental prognostic value over both statin dose and attained LDL-C levels (global chi-square increased from 3.64 to 26.1 to 47.5; P <.0001). However, attained LDL-C level did not provide incremental prognostic value over statin dose and percent LDL-C reduction (global chi-square increased from 3.64 to 47.5 to 47.5; P <.0001 and .94, respectively). Among patients with attained LDL-C ≤70 mg/dL, those with percent LDL-C reduction of <50% had a significantly higher risk of primary outcome (hazard ratio [HR], 1.51; 95% confidence interval [CI

  11. Indirect reciprocity with trinary reputations.

    PubMed

    Tanabe, Shoma; Suzuki, Hideyuki; Masuda, Naoki

    2013-01-21

    Indirect reciprocity is a reputation-based mechanism for cooperation in social dilemma situations when individuals do not repeatedly meet. The conditions under which cooperation based on indirect reciprocity occurs have been examined in great details. Most previous theoretical analysis assumed for mathematical tractability that an individual possesses a binary reputation value, i.e., good or bad, which depends on their past actions and other factors. However, in real situations, reputations of individuals may be multiple valued. Another puzzling discrepancy between the theory and experiments is the status of the so-called image scoring, in which cooperation and defection are judged to be good and bad, respectively, independent of other factors. Such an assessment rule is found in behavioral experiments, whereas it is known to be unstable in theory. In the present study, we fill both gaps by analyzing a trinary reputation model. By an exhaustive search, we identify all the cooperative and stable equilibria composed of a homogeneous population or a heterogeneous population containing two types of players. Some results derived for the trinary reputation model are direct extensions of those for the binary model. However, we find that the trinary model allows cooperation under image scoring under some mild conditions.

  12. Indirect costs of rheumatoid arthritis

    PubMed Central

    Raciborski, Filip; Kwiatkowska, Brygida

    2015-01-01

    It is estimated that in Poland about 400,000 persons in general suffer from inflammatory joint diseases, including rheumatoid arthritis (RA). Epidemiological surveys documenting the frequency and disturbance of musculoskeletal disorders in the Polish population are few in number. Most of the estimations are based on epidemiological data from other countries (prevalence of 0.5–1%). According to the data of the National Health Fund in Poland 135,000–157,000 persons in total are treated because of rheumatoid arthritis per year [ICD10 (International Statistical Classification of Diseases and Related Health Problems): M05, M06]. In the case of this group of diseases indirect costs significantly outweigh the direct costs. Indirect costs increase together with activity level of the disease. The cost analysis of productivity loss of RA patients indicates that sickness absenteeism and informal care are the most burdensome. At the national level it amounts in total from 1.2 billion to 2.8 billion PLN per year, depending on the method of analysis. These costs could be significantly reduced through early diagnosis and introduction of effective treatment. PMID:27407258

  13. Effects of dietary cholesterol and simvastatin on cholesterol synthesis in Smith-Lemli-Opitz syndrome (SLOS)

    PubMed Central

    Chan, Yen-Ming; Merkens, Louise S.; Connor, William E.; Roullet, Jean-Baptiste; Penfield, Jennifer A.; Jordan, Julia M.; Steiner, Robert D.; Jones, Peter J.H.

    2009-01-01

    Deficient cholesterol and/or excessive 7-dehydrocholesterol (7-DHC) may be responsible for the pathology of Smith-Lemli-Opitz syndrome (SLOS). Both high cholesterol diets given to ameliorate cholesterol deficiency while decreasing 7-DHC, and cholesterol-enriched diets plus simvastatin to further decrease sterol synthesis, have been used as potential therapies. However, the effect of dietary cholesterol and simvastatin on cholesterol synthesis in SLOS has not been reported. Twelve SLOS subjects enrolled in the study: Nine had received a high cholesterol diet (HI) for 3 years, and three were studied after 4 weeks on a low cholesterol diet (LO). Cholesterol fractional synthesis rate (FSR) was measured after oral administration of deuterium oxide, using gas-chromatography-isotope ratio mass spectrometry. FSR was lower in HI compared with LO (HI: 1.46±0.62%/d; LO: 4.77±0.95%/d; P<0.001). Three HI subjects were re-tested after 0.8 years taking simvastatin (HI+ST). Simvastatin tended to reduce FSR and significantly decreased (P<0.01) plasma 7-DHC compared to cholesterol supplementation alone. The study demonstrates the utility of the deuterium incorporation method to understand the effect of therapeutic interventions in SLOS. The data suggest that dietary cholesterol supplementation reduces cholesterol synthesis in SLOS and further support the rationale for the combined treatment of SLOS with a cholesterol-enriched diet and simvastatin. PMID:19430384

  14. Cholesterol metabolism and serum non-cholesterol sterols: summary of 13 plant stanol ester interventions.

    PubMed

    Hallikainen, Maarit; Simonen, Piia; Gylling, Helena

    2014-04-27

    The efficacy and safety of plant stanols added to food products as serum cholesterol lowering agents have been demonstrated convincingly, but their effects on cholesterol metabolism and on serum non-cholesterol sterols is less evaluated. The aim of this study was to assess the validity of serum non-cholesterol sterols and squalene as bioindices of cholesterol synthesis and absorption, and to examine how the individual serum non-cholesterol sterols respond to consumption of plant stanols. We collected all randomized, controlled plant stanol ester (STAEST) interventions in which serum cholestanol, plant sterols campesterol and sitosterol, and at least two serum cholesterol precursors had been analysed. According to these criteria, there was a total of 13 studies (total 868 subjects without lipid-lowering medication; plant stanol doses varied from 0.8 to 8.8 g/d added in esterified form; the duration of the studies varied from 4 to 52 weeks). Serum non-cholesterol sterols were assayed with gas-liquid chromatography, cholesterol synthesis with the sterol balance technique, and fractional cholesterol absorption with the dual continuous isotope feeding method. The results demonstrated that during the control and the STAEST periods, the serum plant sterol/cholesterol- and the cholestanol/cholesterol-ratios reflected fractional cholesterol absorption, and the precursor sterol/cholesterol-ratios reflected cholesterol synthesis. Plant sterol levels were dose-dependently reduced by STAEST so that 2 g of plant stanols reduced serum campesterol/cholesterol-ratio on average by 32%. Serum cholestanol/cholesterol-ratio was reduced less frequently than those of the plant sterols by STAEST, and the cholesterol precursor sterol ratios did not change consistently in the individual studies emphasizing the importance of monitoring more than one surrogate serum marker. Serum non-cholesterol sterols are valid markers of cholesterol absorption and synthesis even during cholesterol

  15. Cholesterol metabolism and serum non-cholesterol sterols: summary of 13 plant stanol ester interventions

    PubMed Central

    2014-01-01

    Background The efficacy and safety of plant stanols added to food products as serum cholesterol lowering agents have been demonstrated convincingly, but their effects on cholesterol metabolism and on serum non-cholesterol sterols is less evaluated. The aim of this study was to assess the validity of serum non-cholesterol sterols and squalene as bioindices of cholesterol synthesis and absorption, and to examine how the individual serum non-cholesterol sterols respond to consumption of plant stanols. Methods We collected all randomized, controlled plant stanol ester (STAEST) interventions in which serum cholestanol, plant sterols campesterol and sitosterol, and at least two serum cholesterol precursors had been analysed. According to these criteria, there was a total of 13 studies (total 868 subjects without lipid-lowering medication; plant stanol doses varied from 0.8 to 8.8 g/d added in esterified form; the duration of the studies varied from 4 to 52 weeks). Serum non-cholesterol sterols were assayed with gas–liquid chromatography, cholesterol synthesis with the sterol balance technique, and fractional cholesterol absorption with the dual continuous isotope feeding method. Results The results demonstrated that during the control and the STAEST periods, the serum plant sterol/cholesterol- and the cholestanol/cholesterol-ratios reflected fractional cholesterol absorption, and the precursor sterol/cholesterol-ratios reflected cholesterol synthesis. Plant sterol levels were dose-dependently reduced by STAEST so that 2 g of plant stanols reduced serum campesterol/cholesterol-ratio on average by 32%. Serum cholestanol/cholesterol-ratio was reduced less frequently than those of the plant sterols by STAEST, and the cholesterol precursor sterol ratios did not change consistently in the individual studies emphasizing the importance of monitoring more than one surrogate serum marker. Conclusions Serum non-cholesterol sterols are valid markers of cholesterol absorption

  16. Metabolism of adrenal cholesterol in man

    PubMed Central

    Borkowski, Abraham; Delcroix, Claude; Levin, Sam

    1972-01-01

    The kinetics of plasma and adrenal cholesteral equilibration were analyzed in patients undergoing bilateral adrenalectomy for generalized mammary carcinoma. A biological model is proposed to help in the understanding of adrenal cholesterol physiology. It comprises two intracellular compartments: (1) A compartment of free adrenal cholesterol which is small (of the order of 17 mg) but turns over very fast; it is renewed approximately 8 times per day: 3 times by the inflow of free plasma cholesterol, and 5 times by the hydrolysis of esterified adrenal cholesterol, the contribution of adrenal cholesterol synthesis appearing to be relatively small. (2) A compartment of esterified adrenal cholesterol which is 20 times larger; it is constantly renewed by in situ esterification and hydrolysis with a daily fractional turnover rate of the order of 0.25. The direct and selective accumulation of plasma cholesteryl esters is practically absent. Only free adrenal cholesterol returns to plasma, mostly after conversion into steroid “hormones.” However small the synthesis of adrenal cholesterol may be, it seems more important in the zona “reticularis.” On the other hand, the inflow of plasma cholesterol and the turnover of the free adrenal compartment tend to be faster in the zona “fasciculata.” The equilibration of plasma and adrenal cholesterol can proceed unmodified under conditions of ACTH suppression. In one patient with Cushing's disease the size of the two adrenal compartments was clearly increased but their equilibration with plasma cholesterol proceeded normally. In another patient the kinetics of hydrocortisone corresponded to those of free adrenal cholesterol in the control studies. PMID:4338119

  17. ABCA12 regulates ABCA1-dependent cholesterol efflux from macrophages and the development of atherosclerosis.

    PubMed

    Fu, Ying; Mukhamedova, Nigora; Ip, Sally; D'Souza, Wilissa; Henley, Katya J; DiTommaso, Tia; Kesani, Rajitha; Ditiatkovski, Michael; Jones, Lynelle; Lane, Rachael M; Jennings, Garry; Smyth, Ian M; Kile, Benjamin T; Sviridov, Dmitri

    2013-08-06

    ABCA12 is involved in the transport of ceramides in skin, but it may play a wider role in lipid metabolism. We show that, in Abca12-deficient macrophages, cholesterol efflux failed to respond to activation with LXR agonists. Abca12 deficiency caused a reduction in the abundance of Abca1, Abcg1, and Lxrβ. Overexpression of Lxrβ reversed the effects. Mechanistically, Abca12 deficiency did not affect expression of genes involved in cholesterol metabolism. Instead, a physical association between Abca1, Abca12, and Lxrβ proteins was established. Abca12 deficiency enhanced interaction between Abca1 and Lxrβ and the degradation of Abca1. Overexpression of ABCA12 in HeLa-ABCA1 cells increased the abundance and stability of ABCA1. Abca12 deficiency caused an accumulation of cholesterol in macrophages and the formation of foam cells, impaired reverse cholesterol transport in vivo, and increased the development of atherosclerosis in irradiated Apoe(-/-) mice reconstituted with Apoe(-/-)Abca12(-/-) bone marrow. Thus, ABCA12 regulates the cellular cholesterol metabolism via an LXRβ-dependent posttranscriptional mechanism.

  18. Macrophage-mediated cholesterol handling in atherosclerosis.

    PubMed

    Chistiakov, Dimitry A; Bobryshev, Yuri V; Orekhov, Alexander N

    2016-01-01

    Formation of foam cells is a hallmark at the initial stages of atherosclerosis. Monocytes attracted by pro-inflammatory stimuli attach to the inflamed vascular endothelium and penetrate to the arterial intima where they differentiate to macrophages. Intimal macrophages phagocytize oxidized low-density lipoproteins (oxLDL). Several scavenger receptors (SR), including CD36, SR-A1 and lectin-like oxLDL receptor-1 (LOX-1), mediate oxLDL uptake. In late endosomes/lysosomes of macrophages, oxLDL are catabolysed. Lysosomal acid lipase (LAL) hydrolyses cholesterol esters that are enriched in LDL to free cholesterol and free fatty acids. In the endoplasmic reticulum (ER), acyl coenzyme A: cholesterol acyltransferase-1 (ACAT1) in turn catalyses esterification of cholesterol to store cholesterol esters as lipid droplets in the ER of macrophages. Neutral cholesteryl ester hydrolases nCEH and NCEH1 are involved in a secondary hydrolysis of cholesterol esters to liberate free cholesterol that could be then out-flowed from macrophages by cholesterol ATP-binding cassette (ABC) transporters ABCA1 and ABCG1 and SR-BI. In atherosclerosis, disruption of lipid homoeostasis in macrophages leads to cholesterol accumulation and formation of foam cells.

  19. Structure of Cholesterol in Lipid Rafts

    NASA Astrophysics Data System (ADS)

    Toppozini, Laura; Meinhardt, Sebastian; Armstrong, Clare L.; Yamani, Zahra; Kučerka, Norbert; Schmid, Friederike; Rheinstädter, Maikel C.

    2014-11-01

    Rafts, or functional domains, are transient nano-or mesoscopic structures in the plasma membrane and are thought to be essential for many cellular processes such as signal transduction, adhesion, trafficking, and lipid or protein sorting. Observations of these membrane heterogeneities have proven challenging, as they are thought to be both small and short lived. With a combination of coarse-grained molecular dynamics simulations and neutron diffraction using deuterium labeled cholesterol molecules, we observe raftlike structures and determine the ordering of the cholesterol molecules in binary cholesterol-containing lipid membranes. From coarse-grained computer simulations, heterogenous membranes structures were observed and characterized as small, ordered domains. Neutron diffraction was used to study the lateral structure of the cholesterol molecules. We find pairs of strongly bound cholesterol molecules in the liquid-disordered phase, in accordance with the umbrella model. Bragg peaks corresponding to ordering of the cholesterol molecules in the raftlike structures were observed and indexed by two different structures: a monoclinic structure of ordered cholesterol pairs of alternating direction in equilibrium with cholesterol plaques, i.e., triclinic cholesterol bilayers.

  20. Regulation of Plasma Cholesterol by Lipoprotein Receptors

    NASA Astrophysics Data System (ADS)

    Brown, Michael S.; Kovanen, Petri T.; Goldstein, Joseph L.

    1981-05-01

    The lipoprotein transport system holds the key to understanding the mechanisms by which genes, diet, and hormones interact to regulate the plasma cholesterol level in man. Crucial components of this system are lipoprotein receptors in the liver and extrahepatic tissues that mediate the uptake and degradation of cholesterol-carrying lipoproteins. The number of lipoprotein receptors, and hence the efficiency of disposal of plasma cholesterol, can be increased by cholesterol-lowering drugs. Regulation of lipoprotein receptors can be exploited pharmacologically in the therapy of hypercholesterolemia and atherosclerosis in man.

  1. Cholesterol modulates Orai1 channel function

    PubMed Central

    Derler, Isabella; Jardin, Isaac; Stathopulos, Peter B.; Muik, Martin; Fahrner, Marc; Zayats, Vasilina; Pandey, Saurabh K.; Poteser, Michael; Lackner, Barbara; Absolonova, Marketa; Schindl, Rainer; Groschner, Klaus; Ettrich, Rüdiger; Ikura, Mitsu; Romanin, Christoph

    2017-01-01

    STIM1 (stromal interaction molecule 1) and Orai proteins are the essential components of Ca2+ release–activated Ca2+ (CRAC) channels. We focused on the role of cholesterol in the regulation of STIM1-mediated Orai1 currents. Chemically induced cholesterol depletion enhanced store-operated Ca2+ entry (SOCE) and Orai1 currents. Furthermore, cholesterol depletion in mucosal-type mast cells augmented endogenous CRAC currents, which were associated with increased degranulation, a process that requires calcium influx. Single point mutations in the Orai1 amino terminus that would be expected to abolish cholesterol binding enhanced SOCE to a similar extent as did cholesterol depletion. The increase in Orai1 activity in cell expressing these cholesterol-binding–deficient mutants occurred without affecting the amount in the plasma membrane or the coupling of STIM1 to Orai1. We detected cholesterol binding to an Orai1 amino-terminal fragment in vitro and to full-length Orai1 in cells. Thus, our data showed that Orai1 senses the amount of cholesterol in the plasma membrane and that the interaction of Orai1 with cholesterol inhibits its activity, thereby limiting SOCE. PMID:26814231

  2. Cholesterol and late-life cognitive decline.

    PubMed

    van Vliet, Peter

    2012-01-01

    High cholesterol levels are a major risk factor for cardiovascular disease, but their role in dementia and cognitive decline is less clear. This review highlights current knowledge on the role of cholesterol in late-life cognitive function, cognitive decline, and dementia. When measured in midlife, high cholesterol levels associate with an increased risk of late-life dementia and cognitive decline. However, when measured in late-life, high cholesterol levels show no association with cognitive function, or even show an inverse relation. Although statin treatment has been shown to associate with a lower risk of dementia and cognitive decline in observational studies, randomized controlled trials show no beneficial effect of statin treatment on late-life cognitive function. Lowering cholesterol levels may impair brain function, since cholesterol is essential for synapse formation and maturation and plays an important role in the regulation of signal transduction through its function as a component of the cell membrane. However, membrane cholesterol also plays a role in the formation and aggregation of amyloid-β. Factors that influence cholesterol metabolism, such as dietary intake, are shown to play a role in late-life cognitive function and the risk of dementia. In conclusion, cholesterol associates with late-life cognitive function, but the association is strongly age-dependent. There is no evidence that treatment with statins in late-life has a beneficial effect on cognitive function.

  3. Dietary plant sterols and cholesterol metabolism.

    PubMed

    Ellegård, Lars H; Andersson, Susan W; Normén, A Lena; Andersson, Henrik A

    2007-01-01

    Plant sterols, naturally occurring in foods of plant origin, reduce cholesterol absorption. Experimental studies show plant sterols to be an important part of the serum-cholesterol lowering effect of certain diets and dietary components. Epidemiological data show that individuals with higher intakes of plant sterols from their habitual diets have lower serum-cholesterol levels. To date, the role of naturally occurring plant sterols for lowering serum cholesterol has probably been underestimated. The consumption of dietary plant sterols should be a part of dietary advice to patients with hypercholesterolemia and the general public for the prevention and management of coronary heart disease.

  4. Impact of cholesterol on disease progression.

    PubMed

    Lin, Chun-Jung; Lai, Cheng-Kuo; Kao, Min-Chuan; Wu, Lii-Tzu; Lo, U-Ging; Lin, Li-Chiung; Chen, Yu-An; Lin, Ho; Hsieh, Jer-Tsong; Lai, Chih-Ho; Lin, Chia-Der

    2015-06-01

    Cholesterol-rich microdomains (also called lipid rafts), where platforms for signaling are provided and thought to be associated with microbe-induced pathogenesis and lead to cancer progression. After treatment of cells with cholesterol disrupting or usurping agents, raft-associated proteins and lipids can be dissociated, and this renders the cell structure nonfunctional and therefore mitigates disease severity. This review focuses on the role of cholesterol in disease progression including cancer development and infectious diseases. Understanding the molecular mechanisms of cholesterol in these diseases may provide insight into the development of novel strategies for controlling these diseases in clinical scenarios.

  5. Crystalline domain structure and cholesterol crystal nucleation in single hydrated DPPC:cholesterol:POPC bilayers.

    PubMed

    Ziblat, Roy; Leiserowitz, Leslie; Addadi, Lia

    2010-07-21

    Grazing incidence X-ray diffraction measurements were performed on single hydrated bilayers and monolayers of DPPC:Cholesterol:POPC at varying concentrations. There are substantial differences in the phase and structure behavior of the crystalline domains formed within the bilayers relative to the corresponding monolayers, due to interactions between the opposing leaflets. Depending on the lipid composition, these interactions led to phase separation, changes in molecular tilt angle, or formation of cholesterol crystals. In monolayers, DPPC and cholesterol form a single crystalline phase at all compositions studied. In bilayers, a second crystalline phase appears when cholesterol levels are increased: domains of cholesterol and DPPC form monolayer thick crystals where each of the lipid leaflets diffracts independently, whereas excess cholesterol forms cholesterol bilayer thick crystals at a DPPC:Chol ratio < 46:54 +/- 2 mol %. The nucleation of the cholesterol crystals occurs at concentrations relevant to the actual cell plasma membrane composition.

  6. Cholesterol-Independent Effects of Methyl-β-Cyclodextrin on Chemical Synapses

    PubMed Central

    Ormerod, Kiel G.; Coorssen, Jens R.; Mercier, A. Joffre

    2012-01-01

    The cholesterol chelating agent, methyl-β-cyclodextrin (MβCD), alters synaptic function in many systems. At crayfish neuromuscular junctions, MβCD is reported to reduce excitatory junctional potentials (EJPs) by impairing impulse propagation to synaptic terminals, and to have no postsynaptic effects. We examined the degree to which physiological effects of MβCD correlate with its ability to reduce cholesterol, and used thermal acclimatization as an alternative method to modify cholesterol levels. MβCD impaired impulse propagation and decreased EJP amplitude by 40% (P<0.05) in preparations from crayfish acclimatized to 14°C but not from those acclimatized to 21°C. The reduction in EJP amplitude in the cold-acclimatized group was associated with a 49% reduction in quantal content (P<0.05). MβCD had no effect on input resistance in muscle fibers but decreased sensitivity to the neurotransmitter L-glutamate in both warm- and cold-acclimatized groups. This effect was less pronounced and reversible in the warm-acclimatized group (90% reduction in cold, P<0.05; 50% reduction in warm, P<0.05). MβCD reduced cholesterol in isolated nerve and muscle from cold- and warm-acclimatized groups by comparable amounts (nerve: 29% cold, 25% warm; muscle: 20% cold, 18% warm; P<0.05). This effect was reversed by cholesterol loading, but only in the warm-acclimatized group. Thus, effects of MβCD on glutamate-sensitivity correlated with its ability to reduce cholesterol, but effects on impulse propagation and resulting EJP amplitude did not. Our results indicate that MβCD can affect both presynaptic and postsynaptic properties, and that some effects of MβCD are unrelated to cholesterol chelation. PMID:22590538

  7. Neonatal dietary cholesterol and alleles of cholesterol 7-alpha hydroxylase affect piglet cerebrum weight, cholesterol concentration, and behavior

    USDA-ARS?s Scientific Manuscript database

    This experiment was designed to test the effect of polymorphism in the cholesterol 7-alpha hydroxylase (CYP7) gene locus, and dietary cholesterol (C) on cerebrum C in neonatal pigs fed sow's milk formulas. Thirty-six pigs (18 male and 18 female) genetically selected for high (HG), or low (LG) plasma...

  8. HDL-apolipoprotein A-I exchange is independently associated with cholesterol efflux capacity

    PubMed Central

    Borja, Mark S.; Ng, Kit F.; Irwin, Angela; Hong, Jaekyoung; Wu, Xing; Isquith, Daniel; Zhao, Xue-Qiao; Prazen, Bryan; Gildengorin, Virginia; Oda, Michael N.; Vaisar, Tomáš

    2015-01-01

    HDL is the primary mediator of cholesterol mobilization from the periphery to the liver via reverse cholesterol transport (RCT). A critical first step in this process is the uptake of cholesterol from lipid-loaded macrophages by HDL, a function of HDL inversely associated with prevalent and incident cardiovascular disease. We hypothesized that the dynamic ability of HDL to undergo remodeling and exchange of apoA-I is an important and potentially rate-limiting aspect of RCT. In this study, we investigated the relationship between HDL-apoA-I exchange (HAE) and serum HDL cholesterol (HDL-C) efflux capacity. We compared HAE to the total and ABCA1-specific cholesterol efflux capacity of 77 subjects. We found that HAE was highly correlated with both total (r = 0.69, P < 0.0001) and ABCA1-specific (r = 0.47, P < 0.0001) efflux, and this relationship remained significant after adjustment for HDL-C or apoA-I. Multivariate models of sterol efflux capacity indicated that HAE accounted for approximately 25% of the model variance for both total and ABCA1-specific efflux. We conclude that the ability of HDL to exchange apoA-I and remodel, as measured by HAE, is a significant contributor to serum HDL efflux capacity, independent of HDL-C and apoA-I, indicating that HDL dynamics are an important factor in cholesterol efflux capacity and likely RCT. PMID:26254308

  9. Perturbed cholesterol and vesicular trafficking associated with dengue blocking in Wolbachia-infected Aedes aegypti cells.

    PubMed

    Geoghegan, Vincent; Stainton, Kirsty; Rainey, Stephanie M; Ant, Thomas H; Dowle, Adam A; Larson, Tony; Hester, Svenja; Charles, Philip D; Thomas, Benjamin; Sinkins, Steven P

    2017-09-13

    Wolbachia are intracellular maternally inherited bacteria that can spread through insect populations and block virus transmission by mosquitoes, providing an important approach to dengue control. To better understand the mechanisms of virus inhibition, we here perform proteomic quantification of the effects of Wolbachia in Aedes aegypti mosquito cells and midgut. Perturbations are observed in vesicular trafficking, lipid metabolism and in the endoplasmic reticulum that could impact viral entry and replication. Wolbachia-infected cells display a differential cholesterol profile, including elevated levels of esterified cholesterol, that is consistent with perturbed intracellular cholesterol trafficking. Cyclodextrins have been shown to reverse lipid accumulation defects in cells with disrupted cholesterol homeostasis. Treatment of Wolbachia-infected Ae. aegypti cells with 2-hydroxypropyl-β-cyclodextrin restores dengue replication in Wolbachia-carrying cells, suggesting dengue is inhibited in Wolbachia-infected cells by localised cholesterol accumulation. These results demonstrate parallels between the cellular Wolbachia viral inhibition phenotype and lipid storage genetic disorders. Wolbachia infection of mosquitoes can block dengue virus infection and is tested in field trials, but the mechanism of action is unclear. Using proteomics, Geoghegan et al. here identify effects of Wolbachia on cholesterol homeostasis and dengue virus replication in Aedes aegypti.

  10. Disruption of astrocyte-neuron cholesterol cross talk affects neuronal function in Huntington's disease

    PubMed Central

    Valenza, M; Marullo, M; Di Paolo, E; Cesana, E; Zuccato, C; Biella, G; Cattaneo, E

    2015-01-01

    In the adult brain, neurons require local cholesterol production, which is supplied by astrocytes through apoE-containing lipoproteins. In Huntington's disease (HD), such cholesterol biosynthesis in the brain is severely reduced. Here we show that this defect, occurring in astrocytes, is detrimental for HD neurons. Astrocytes bearing the huntingtin protein containing increasing CAG repeats secreted less apoE-lipoprotein-bound cholesterol in the medium. Conditioned media from HD astrocytes and lipoprotein-depleted conditioned media from wild-type (wt) astrocytes were equally detrimental in a neurite outgrowth assay and did not support synaptic activity in HD neurons, compared with conditions of cholesterol supplementation or conditioned media from wt astrocytes. Molecular perturbation of cholesterol biosynthesis and efflux in astrocytes caused similarly altered astrocyte–neuron cross talk, whereas enhancement of glial SREBP2 and ABCA1 function reversed the aspects of neuronal dysfunction in HD. These findings indicate that astrocyte-mediated cholesterol homeostasis could be a potential therapeutic target to ameliorate neuronal dysfunction in HD. PMID:25301063

  11. Cholesterol overloading leads to hepatic L02 cell damage through activation of the unfolded protein response.

    PubMed

    Li, Qi; Liu, Zhiguo; Guo, Jianli; Chen, Jiangyuan; Yang, Pu; Tian, Jun; Sun, Jun; Zong, Yiqiang; Qu, Shen

    2009-10-01

    Reported data indicate that cholesterol loading in the liver can cause hepatic injury. To explore the possible mechanisms of cell damage resulting from cholesterol overloading in hepatocytes, cell apoptosis, the unfolded protein response (UPR) and the correlation between them were assessed in the cholesterol-overloaded normal human hepatic cell line L02. L02 cells were incubated with 200 microg/ ml of low density lipoprotein (LDL) for 24 h with or without 20 microg/ml 58035, an inhibitor of acyl-CoA:cholesterol acyltransferase (ACAT). In the LDL+58035 group, the intracellular cholesterol level was dramatically increased, which was measured by an enzymatic combined high performance liquid chromatography assay. Expression of immunoglobulin-binding protein, X-box binding protein 1, activating transcription factor 6, activating transcription factor 4, CCAAT/enhancer-binding protein homologous protein-10, markers of endoplasmic reticulum stress (ERS)/ UPR, were up-regulated as determined using reverse transcription-polymerase chain reaction (RT-PCR) or Western blot analysis. The rate of cell apoptic death increased 21.3+/-2.4%. Meanwhile, the active caspase-3 protein expression was increased 8.4-fold compared to the active caspase-3 protein expression in the controls. Furthermore, 4-phenylbutyric acid, an inhibitor of UPR, partly reduced cell apoptosis and activation of caspase-3. This study suggests that cholesterol overloading in hepatic L02 cells induces ERS and activates the UPR which, in part, leads to the apoptotic damage of cells.

  12. PCSK9 at the crossroad of cholesterol metabolism and immune function during infections.

    PubMed

    Paciullo, Francesco; Fallarino, Francesca; Bianconi, Vanessa; Mannarino, Massimo R; Sahebkar, Amirhossein; Pirro, Matteo

    2017-01-07

    Sepsis, a complex and dynamic syndrome resulting from microbial invasion and immune system dysregulation, is associated with an increased mortality, reaching up to 35% worldwide. Cholesterol metabolism is often disturbed during sepsis, with low plasma cholesterol levels being associated with poor prognosis. Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes degradation of the low-density lipoprotein receptor (LDLR), thus regulating intracellular and plasma cholesterol levels. PCSK9 is often upregulated during sepsis and might have a detrimental effect on immune host response and survival. Accordingly, PCSK9 reduces lipopolysaccharide uptake and clearance by human hepatocytes. Moreover, PCSK9 upregulation exacerbates organ dysfunction and tissue inflammation during sepsis, whereas a protective effect of PCSK9 deficiency has been documented in septic patients. Although a possible detrimental impact of PCSK9 on survival has been described, some beneficial effects of PCSK9 on immune response may be hypothesized. First, PCSK9 is associated with increased plasma cholesterol levels, which might be protective during sepsis. Second, PCSK9, by stimulating LDLR degradation and inhibiting reverse cholesterol transport (RCT), might promote preferential cholesterol accumulation in macrophages and other immune cells; these events might improve lipid raft composition and augment toll-like receptor function thus supporting inflammatory response. Hence, a more clear definition of the role of PCSK9 in septic states might provide additional insight in the understanding of the sepsis-associated immune dysregulation and enhance therapeutic outcomes.

  13. Increased serum cholesterol esterification rates predict coronary heart disease and sudden death in a general population.

    PubMed

    Tanaka, Shin-ichiro; Yasuda, Tomoyuki; Ishida, Tatsuro; Fujioka, Yoshio; Tsujino, Takeshi; Miki, Tetsuo; Hirata, Ken-ichi

    2013-05-01

    Lecithin:cholesterol acyltransferase (LCAT) is thought to be important in reverse cholesterol transport. However, its association with coronary heart disease (CHD) and sudden death is controversial. We prospectively studied 1927 individuals from the general population. Serum concentrations of apolipoprotein A-I, A-II, B, C-II, C-III, E, and LCAT activity measured as a serum cholesterol esterification rate were evaluated. We documented 61 events of CHD and sudden death during 10.9 years of follow-up. After adjustment for age and sex, LCAT activity was significantly associated with the risk of CHD and sudden death (hazard ratio, 3.02; 95% confidence interval, 1.49-6.12; P=0.002). In multivariate analysis adjusted for age, sex, current smoking status, history of diabetes mellitus, body mass index, systolic blood pressure, serum total cholesterol, and serum high-density lipoprotein cholesterol concentrations, the hazard ratio of LCAT activity for the risk of CHD and sudden death remained significant (hazard ratio, 3.07; 95% confidence interval, 1.35-7.01; P=0.008). However, when it was analyzed for men and women separately, this association remained significant only in women. Increased LCAT activity measured as a serum cholesterol esterification rate was a risk for CHD and sudden death in a Japanese general population.

  14. Evidence That Chromium Modulates Cellular Cholesterol Homeostasis and ABCA1 Functionality Impaired By Hyperinsulinemia

    PubMed Central

    Sealls, Whitney; Penque, Brent A.; Elmendorf, Jeffrey S.

    2011-01-01

    Objective Trivalent chromium (Cr3+) is an essential micronutrient. Findings since the 1950s suggest that Cr3+ might benefit cholesterol homeostasis. Here we present mechanistic evidence in support of this role of Cr3+. Method and Results High-density lipoprotein cholesterol generation in 3T3-L1 adipocytes, rendered ineffective by hyperinsulinemia, known to accompany disorders of lipid metabolism was corrected by Cr3+. Mechanistically, Cr3+ reversed hyperinsulinemia-induced cellular cholesterol accrual and associated defects in cholesterol transporter ABCA1 trafficking and apolipoprotein A1-mediated cholesterol efflux. Moreover, direct activation of AMP-activated protein kinase (AMPK), known to be activated by Cr3+, and/or inhibition of hexosamine biosynthesis pathway (HBP) activity, known to be elevated by hyperinsulinemia, mimics Cr3+ action. Conclusion These findings suggest a mechanism of Cr3+ action that fits with long-standing claims of its role in cholesterol homeostasis. Furthermore, these data implicate a mechanistic basis for the coexistence of dyslipidemia with hyperinsulinemia. PMID:21311039

  15. Separate spheres and indirect benefits

    PubMed Central

    Brock, Dan W

    2003-01-01

    On any plausible account of the basis for health care resource prioritization, the benefits and costs of different alternative resource uses are relevant considerations in the prioritization process. Consequentialists hold that the maximization of benefits with available resources is the only relevant consideration. Non-consequentialists do not reject the relevance of consequences of benefits and costs, but insist that other considerations, and in particular the distribution of benefits and costs, are morally important as well. Whatever one's particular account of morally justified standards for the prioritization of different health interventions, we must be able to measure those interventions' benefits and costs. There are many theoretical and practical difficulties in that measurement, such as how to weigh extending life against improving health and quality of life as well as how different quality of life improvements should be valued, but they are not my concern here. This paper addresses two related issues in assessing benefits and costs for health resource prioritization. First, should benefits be restricted only to health benefits, or include as well other non health benefits such as economic benefits to employers from reducing the lost work time due to illness of their employees? I shall call this the Separate Spheres problem. Second, should only the direct benefits, such as extending life or reducing disability, and direct costs, such as costs of medical personnel and supplies, of health interventions be counted, or should other indirect benefits and costs be counted as well? I shall call this the Indirect Benefits problem. These two issues can have great importance for a ranking of different health interventions by either a cost/benefit or cost effectiveness analysis (CEA) standard. PMID:12773217

  16. Effect of niacin on LXRalpha and PPARgamma expression and HDL-induced cholesterol efflux in adipocytes of hypercholesterolemic rabbits.

    PubMed

    Zhao, Shui-ping; Yang, Jun; Li, Jing; Dong, Shao-zhuang; Wu, Zhi-hong

    2008-02-29

    Adipose tissue contains a large amount of cholesterol and performs a buffer function for circulating cholesterol. Liver X receptors (LXR) alpha and peroxisome proliferator-activated receptor gamma (PPARgamma) might play a significant role in adipocyte cholesterol metabolism through mediation of cholesterol efflux. The aim of this study was to evaluate the effect of niacin on LXRalpha and PPARgamma expression and HDL-induced cholesterol efflux in adipocytes from hypercholesterolemic rabbits. Twelve rabbits fed with high-cholesterol diet for 8 weeks were randomly divided into two groups: (1) high cholesterol group (n=6): maintained high cholesterol diet for 6 weeks; (2) niacin group (n=6): the same cholesterol diet plus niacin (200 mg/kg/d) for 6 weeks. Control group (n=6) was fed with normal diet for 14 weeks. Subcutaneous adipose was collected for adipocyte culture. Reverse transcription polymerase chain reaction (RT-PCR) was used to evaluate adipocytes LXRalpha mRNA expressions. Cholesterol efflux rate was determined through measuring release of radioactivity from (3)H-cholesterol prelabeled cells into medium containing high-density lipoprotein (HDL). The direct effect of niacin on LXRalpha and PPARgamma mRNA expression in primary rabbit adipocytes was assayed. High cholesterol diet resulted in decreased LXRalpha mRNA expressions and reduced HDL-induced cholesterol efflux rate in adipocytes. Six weeks of niacin treatment significantly enhanced the cholesterol efflux from adipocytes, which was related to the increased mRNA expressions of LXRalpha (r=0.71, P<0.05). In in vitro study, niacin dose-dependently stimulated LXRalpha and PPARgamma mRNA expression in cultured adipocytes. And various doses of niacin-induced cholesterol efflux was positive correlation with LXRalpha and PPARgamma mRNA expression (r=0.83 P<0.01; r=0.76 P<0.05; respectively). Niacin can up-regulate LXRalpha and PPARgamma mRNA expression and promote the HDL-induced cholesterol efflux in

  17. Water quality has a pronounced effect on cholesterol-induced accumulation of Alzheimer amyloid beta (Abeta) in rabbit brain.

    PubMed

    Sparks, D Larry; Lochhead, Jeff; Horstman, Donna; Wagoner, Tom; Martin, Tim

    2002-12-01

    Increased circulating cholesterol is known to promote risk of coronary artery disease. It is now emerging that cholesterol promotes production and accumulation of amyloid beta (Abeta) deposited in the hallmark pathologic lesion of Alzheimer's disease (AD), the senile plaque, perhaps by shifting away from normal metabolism of amyloid beta protein precursor (AbetaPP) to beta. Previous studies employing the cholesterol-fed rabbit model of AD demonstrated that induction of AD-like Abeta accumulation in brain could be reversed by co-administration of cholesterol lowering drugs or removing cholesterol, prompted initiation of an AD Cholesterol-Lowering (Statin) Treatment Trial. We now present data that identify a previously unrecognized role for dietary water quality on the severity of neuropathology induced by elevated cholesterol. Neuronal accumulation of Abeta induced by increased circulating concentrations of cholesterol in the New Zealand white rabbit is attenuated when distilled drinking water is administered compared to use of tap water. The numbers of neurons in cholesterol-fed rabbits that exhibited Abeta immunoreactivity, relative to normal chow-fed controls, increased approximately 2.5 fold among animals on tap water but only approximately 1.9 fold among animals on distilled water. This yielded a statistically significant approximately 28% reduction due to the use of distilled water. In addition, the subjectively assessed intensity of neuronal Abeta immunoreactivity was consistently reduced among cholesterol-fed rabbits allowed distilled drinking water compared to cholesterol-fed rabbits on tap water. As intensity of antibody immunoreactivity is likely related to concentration of antigen, the identified difference among cholesterol-fed rabbits allowed distilled drinking water may hold greater importance than a significant reduction in numbers of affected neurons. The effect on neuronal Abeta immunoreactivity intensity was observable among cholesterol

  18. ACAT inhibitors: the search for novel cholesterol lowering agents.

    PubMed

    Pal, Palash; Gandhi, Hardik; Giridhar, Rajani; Yadav, Mange Ram

    2013-06-01

    Increased level of serum cholesterol (hyperlipidemia) is the most significant risk factor for the development of atherosclerosis. Cholesterol levels are affected by factors such as rate of endogenous cholesterol synthesis, biliary cholesterol excretion and dietary cholesterol absorption. Acyl CoA: Cholesterol O-acyl transferases (ACAT) are a small family of enzymes that catalyze cholesterol esterification and cholesterol absorption in intestinal mucosal cells and maintain the cholesterol homeostasis in the blood. Inhibition of the ACAT enzymes is one of the attractive targets to treat hyperlipidemia. Literature survey shows that structurally diverse compounds possess ACAT inhibitory properties. In this review, a comprehensive presentation of the literature on diverse ACAT inhibitors has been given.

  19. Fenofibrate reduces intestinal cholesterol absorption via PPARalpha-dependent modulation of NPC1L1 expression in mouse.

    PubMed

    Valasek, Mark A; Clarke, Stephen L; Repa, Joyce J

    2007-12-01

    Fibrates, including fenofibrate, exert their biological effects by binding peroxisome proliferator-activated receptor alpha (PPARalpha), a member of the nuclear receptor superfamily of ligand-activated transcription factors. Treatment with PPARalpha agonists enhances fatty acid oxidation, decreases plasma triglycerides, and may promote reverse cholesterol transport. In addition, fibrate administration can reduce intestinal cholesterol absorption in patients, although the molecular mechanism for this effect is unknown. Because Niemann-Pick C1-Like 1 (NPC1L1) is already known to be a critical protein for cholesterol absorption, we hypothesized that fenofibrate might modulate NPC1L1 expression to alter intestinal cholesterol transport. Here, we find that fenofibrate-treated wild-type mice have decreased fractional cholesterol absorption (35-47% decrease) and increased fecal neutral sterol excretion (51-83% increase), which correspond to decreased expression of NPC1L1 mRNA and protein (38-66% decrease) in the proximal small intestine. These effects of fenofibrate are dependent on PPARalpha, as Ppar alpha-knockout mice fail to respond like wild-type littermates. Fenofibrate affects the ezetimibe-sensitive pathway and retains the ability to decrease cholesterol absorption and NPC1L1 mRNA expression in chow-fed liver X receptor alpha/beta-double-knockout mice and high-cholesterol- or cholic acid-fed wild-type mice. These data demonstrate that fenofibrate specifically acts via PPARalpha to decrease cholesterol absorption at the level of intestinal NPC1L1 expression.

  20. Accumulation of cholesterol and increased demand for zinc in serum-deprived RPE cells

    PubMed Central

    Mishra, Sanghamitra; Peterson, Katherine; Yin, Lili; Berger, Alan; Fan, Jianguo

    2016-01-01

    Purpose Having observed that confluent ARPE-19 cells (derived from human RPE) survive well in high-glucose serum-free medium (SFM) without further feeding for several days, we investigated the expression profile of RPE cells under the same conditions. Methods Expression profiles were examined with microarray and quantitative PCR (qPCR) analyses, followed by western blot analysis of key regulated proteins. The effects of low-density lipoprotein (LDL) and zinc supplementation were examined with qPCR. Immunofluorescence was used to localize the LDL receptor and to examine LDL uptake. Cellular cholesterol levels were measured with filipin binding. Expression patterns in primary fetal RPE cells were compared using qPCR. Results Microarray analyses of gene expression in ARPE-19, confirmed with qPCR, showed upregulation of lipid and cholesterol biosynthesis pathways in SFM. At the protein level, the cholesterol synthesis control factor SRBEF2 was activated, and other key lipid synthesis proteins increased. Supplementation of SFM with LDL reversed the upregulation of lipid and cholesterol synthesis genes, but not of cholesterol transport genes. The LDL receptor relocated to the plasma membrane, and LDL uptake was activated by day 5–7 in SFM, suggesting increased demand for cholesterol. Confluent ARPE-19 cells in SFM accumulated intracellular cholesterol, compared with cells supplemented with serum, over 7 days. Over the same time course in SFM, the expression of metallothioneins decreased while the major zinc transporter was upregulated, consistent with a parallel increase in demand for zinc. Supplementation with zinc reversed expression changes for metallothionein genes, but not for other zinc-related genes. Similar patterns of regulation were also seen in primary fetal human RPE cells in SFM. Conclusions ARPE-19 cells respond to serum deprivation and starvation with upregulation of the lipid and cholesterol pathways, accumulation of intracellular cholesterol, and

  1. [A history and review of cholesterol ester transfer protein inhibitors and their contribution to the understanding of the physiology and pathophysiology of high density lipoprotein].

    PubMed

    Corral, Pablo; Schreier, Laura

    2014-01-01

    There is irrefutable evidence that statins reduce the risk of cardiovascular events in a magnitude proportional to the intensity of the decrease in cholesterol transport by the low density lipoproteins. Despite this great advance there is still a residual risk of cardiovascular events. For this reason, an increase in the levels of high density lipoprotein is considered in order to boost the main action of this lipoprotein, which is reverse cholesterol transport. Distinct classes of evidence (epidemiological, genetic, and pathophysiological) show that the inhibition and/or modulation of cholesterol ester transfer protein increases plasma high density lipoprotein-cholesterol levels. The main reason for presenting this review is to look at the physiology of cholesterol ester transfer protein, its interrelationship with high density lipoproteins, and to give an update on the development of different cholesterol ester transfer protein inhibitor/modulator molecules. Copyright © 2013 Elsevier España, S.L. y SEA. All rights reserved.

  2. Cholesterol efflux is differentially regulated in neurons and astrocytes: implications for brain cholesterol homeostasis

    PubMed Central

    Chen, Jing; Zhang, Xiaolu; Kusumo, Handojo; Costa, Lucio G.; Guizzetti, Marina

    2012-01-01

    Disruption of cholesterol homeostasis in the central nervous system (CNS) has been associated with neurological, neurodegenerative, and neurodevelopmental disorders. The CNS is a closed system with regard to cholesterol homeostasis, as cholesterol-delivering lipoproteins from the periphery cannot pass the blood-brain-barrier and enter the brain. Different cell types in the brain have different functions in the regulation of cholesterol homeostasis, with astrocytes producing and releasing apolipoprotein E and lipoproteins, and neurons metabolizing cholesterol to 24(S)-hydroxycholesterol. We present evidence that astrocytes and neurons adopt different mechanisms also in regulating cholesterol efflux. We found that in astrocytes cholesterol efflux is induced by both lipid-free apolipoproteins and lipoproteins, while cholesterol removal from neurons is triggered only by lipoproteins. The main pathway by which apolipoproteins induce cholesterol efflux is through ABCA1. By upregulating ABCA1 levels and by inhibiting its activity and silencing its expression, we show that ABCA1 is involved in cholesterol efflux from astrocytes but not from neurons. Furthermore, our results suggest that ABCG1 is involved in cholesterol efflux to apolipoproteins and lipoproteins from astrocytes but not from neurons, while ABCG4, whose expression is much higher in neurons than astrocytes, is involved in cholesterol efflux from neurons but not astrocytes. These results indicate that different mechanisms regulate cholesterol efflux from neurons and astrocytes, reflecting the different roles that these cell types play in brain cholesterol homeostasis. These results are important in understanding cellular targets of therapeutic drugs under development for the treatments of conditions associated with altered cholesterol homeostasis in the CNS. PMID:23010475

  3. Role of cholesterol in Mycobacterium tuberculosis infection.

    PubMed

    Miner, Maurine D; Chang, Jennifer C; Pandey, Amit K; Sassetti, Christopher M; Sherman, David R

    2009-06-01

    Mycobacterium tuberculosis (MTB) acquisition and utilization of nutrients within the host cell is poorly understood, although it has been hypothesized that host lipids probably play an important role in MTB survival. Cholesterol has recently been identified as an important lipid for mycobacterial infection. The mce4 transport system is required for cholesterol import into bacterial cells, and deletion of mce4 locus resulted in severe attenuation in a chronic mouse model of infection. However, it has remained unclear what additional bacterial functions were required for utilization of this sterol. We have found that the igr locus, which was previously found essential for intracellular growth and virulence of MTB, is required for cholesterol metabolism: igr-deficient bacteria cannot grow using cholesterol as a primary carbon source. The growth-inhibitory effect of cholesterol in vitro depends on cholesterol import, as the delta igr mutant growth defect during the early phase of disease is completely suppressed by mutating mce4, implicating cholesterol intoxication as the primary mechanism of attenuation. We conclude that M. tuberculosis metabolizes cholesterol throughout the course of infection, and that degradation of this sterol is crucial for bacterial persistence.

  4. Cholesterol: An Achilles' Heel for Glioblastoma?

    PubMed

    An, Zhenyi; Weiss, William A

    2016-11-14

    In this issue of Cancer Cell, Villa et al. report that survival of glioblastoma cells is dependent on uptake of cholesterol. A synthetic agonist of the Liver X receptor depleted cholesterol in GBM cells, slowing growth of GBM xenografts.

  5. What Do My Cholesterol Levels Mean?

    MedlinePlus

    ... to write your own questions for the next time you see your healthcare provider. For example: How can I reduce my cholesterol? How often should I have my cholesterol checked? ©2015, American Heart Association Multi-language Fact Sheet Topics Heart-related Conditions What is ...

  6. Cholesterol-lowering nutraceuticals and functional foods.

    PubMed

    Chen, Zhen-Yu; Jiao, Rui; Ma, Ka Ying

    2008-10-08

    Epidemiological studies have demonstrated that elevated levels of plasma total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) are the major risk factors for coronary heart disease (CHD), whereas high concentrations of plasma high-density lipoprotein cholesterol (HDL-C) and a low ratio of TC to HDL-C are protective against CHD. A relationship between plasma TC and the risk of CHD is well established at concentrations above 240 mg/dL. In addition to the use of three main classes of cholesterol-lowering medications, including HMG-CoA reductase inhibitors, anion-exchange resins, and fibrates, a nutritionally balanced diet that reduces saturated fat and cholesterol intake has traditionally been the first goal of dietary therapy in lowering plasma TC. In recent years, nutraceuticals and functional foods have attracted much interest as possible alternative therapies for lowering plasma TC, especially for hypercholesterolemia patients, whose blood cholesterol level is marginally high (200-240 mg/dL) but not high enough to warrant the prescription of cholesterol-lowering medications. This review summarizes the findings of recent studies on the production, application, efficacy, and mechanisms of popular cholesterol-lowering nutraceuticals and functional foods.

  7. Baicalin promotes cholesterol efflux by regulating the expression of SR-BI in macrophages

    PubMed Central

    Yu, Renchao; Lv, Yuexia; Wang, Juanling; Pan, Nana; Zhang, Rui; Wang, Xiaxia; Yu, Haichu; Tan, Lijuan; Zhao, Yunhe; Li, Bo

    2016-01-01

    Intake of a high dosage of baicalin has previously been shown to attenuate hyperlipidemia induced by a high-fat diet. Baicalin functions as an activator of peroxisome proliferator-activated receptor-γ (PPAR-γ), which is the key regulator of reverse cholesterol transport (RCT). The present study aimed to test the hypothesis that baicalin could promote cholesterol efflux in macrophages through activating PPAR-γ. Phorbol 12-myristate 13-acetate-stimulated THP-1 cells were treated with oxidized low-density lipoprotein and (3H)-cholesterol for 24 h, and the effects of baicalin on cholesterol efflux were evaluated in the presence of apolipoprotein A-1 (ApoA-1), or high-density lipoprotein subfraction 2 (HDL2) or subfraction 3 (HDL3). The expression levels of scavenger receptor class B type I (SR-BI), PPAR-γ and liver X receptor-α (LXRα) were detected and specific inhibitors or activators of SR-BI, PPAR-γ and LXRα were applied to investigate the mechanism. Treatment of THP-1 macrophages with baicalin significantly accelerated HDL-mediated, but not ApoA-1-mediated cholesterol efflux. However, baicalin treatment increased the expression of SR-BI at the mRNA and protein levels in a dose- and time-dependent manner, and pre-treatment with the SR-BI inhibitor BLT-1 and SR-BI small interfering RNA significantly inhibited baicalin-induced cholesterol efflux. Furthermore, baicalin increased the expression of PPAR-γ and LXRα, and the application of specific agonists and inhibitors of PPAR-γ and LXRα changed the expression of SR-BI, as well as cholesterol efflux. It may be concluded that baicalin induced cholesterol efflux from THP-1 macrophages via the PPAR-γ/LXRα/SR-BI pathway. PMID:28105139

  8. Baicalin promotes cholesterol efflux by regulating the expression of SR-BI in macrophages.

    PubMed

    Yu, Renchao; Lv, Yuexia; Wang, Juanling; Pan, Nana; Zhang, Rui; Wang, Xiaxia; Yu, Haichu; Tan, Lijuan; Zhao, Yunhe; Li, Bo

    2016-12-01

    Intake of a high dosage of baicalin has previously been shown to attenuate hyperlipidemia induced by a high-fat diet. Baicalin functions as an activator of peroxisome proliferator-activated receptor-γ (PPAR-γ), which is the key regulator of reverse cholesterol transport (RCT). The present study aimed to test the hypothesis that baicalin could promote cholesterol efflux in macrophages through activating PPAR-γ. Phorbol 12-myristate 13-acetate-stimulated THP-1 cells were treated with oxidized low-density lipoprotein and ((3)H)-cholesterol for 24 h, and the effects of baicalin on cholesterol efflux were evaluated in the presence of apolipoprotein A-1 (ApoA-1), or high-density lipoprotein subfraction 2 (HDL2) or subfraction 3 (HDL3). The expression levels of scavenger receptor class B type I (SR-BI), PPAR-γ and liver X receptor-α (LXRα) were detected and specific inhibitors or activators of SR-BI, PPAR-γ and LXRα were applied to investigate the mechanism. Treatment of THP-1 macrophages with baicalin significantly accelerated HDL-mediated, but not ApoA-1-mediated cholesterol efflux. However, baicalin treatment increased the expression of SR-BI at the mRNA and protein levels in a dose- and time-dependent manner, and pre-treatment with the SR-BI inhibitor BLT-1 and SR-BI small interfering RNA significantly inhibited baicalin-induced cholesterol efflux. Furthermore, baicalin increased the expression of PPAR-γ and LXRα, and the application of specific agonists and inhibitors of PPAR-γ and LXRα changed the expression of SR-BI, as well as cholesterol efflux. It may be concluded that baicalin induced cholesterol efflux from THP-1 macrophages via the PPAR-γ/LXRα/SR-BI pathway.

  9. Cholesterol synthesis inhibitors protect against platelet-activating factor-induced neuronal damage

    PubMed Central

    Bate, Clive; Rumbold, Louis; Williams, Alun

    2007-01-01

    Background Platelet-activating factor (PAF) is implicated in the neuronal damage that accompanies ischemia, prion disease and Alzheimer's disease (AD). Since some epidemiological studies demonstrate that statins, drugs that reduce cholesterol synthesis, have a beneficial effect on mild AD, we examined the effects of two cholesterol synthesis inhibitors on neuronal responses to PAF. Methods Primary cortical neurons were treated with cholesterol synthesis inhibitors (simvastatin or squalestatin) prior to incubation with different neurotoxins. The effects of these drugs on neuronal cholesterol levels and neuronal survival were measured. Immunoblots were used to determine the effects of simvastatin or squalestatin on the distribution of the PAF receptor and an enzyme linked immunoassay was used to quantify the amounts of PAF receptor. Results PAF killed primary neurons in a dose-dependent manner. Pre-treatment with simvastatin or squalestatin reduced neuronal cholesterol and increased the survival of PAF-treated neurons. Neuronal survival was increased 50% by 100 nM simvastatin, or 20 nM squalestatin. The addition of mevalonate restored cholesterol levels, and reversed the protective effect of simvastatin. Simvastatin or squalestatin did not affect the amounts of the PAF receptor but did cause it to disperse from within lipid rafts. Conclusion Treatment of neurons with cholesterol synthesis inhibitors including simvastatin and squalestatin protected neurons against PAF. Treatment caused a percentage of the PAF receptors to disperse from cholesterol-sensitive domains. These results raise the possibility that the effects of statins on neurodegenerative disease are, at least in part, due to desensitisation of neurons to PAF. PMID:17233902

  10. MUC Expression in Gallbladder Epithelial Tissues in Cholesterol-Associated Gallbladder Disease

    PubMed Central

    Yoo, Kyo-Sang; Choi, Ho Soon; Jun, Dae Won; Lee, Hang Lak; Lee, Oh Young; Yoon, Byung Chul; Lee, Kyeong Geun; Paik, Seung Sam; Kim, Yong Seok; Lee, Jin

    2016-01-01

    Background/Aims Gallstone pathogenesis is linked to mucin hypersecretion and bacterial infection. Several mucin genes have been identified in gallbladder epithelial cells (GBECs). We investigated MUC expression in cholesterol-associated gallbladder disease and evaluated the relationship between mucin and bacterial infection. Methods The present study involved 20 patients with cholesterol stones with cholecystitis, five with cholesterol stones with cholesterolosis, six with cholesterol polyps, two with gallbladder cancer, and six controls. Canine GBECs treated with lipopolysaccharide were also studied. MUC3, MUC5AC, MUC5B, and MUC6 antibodies were used for dot/slot immunoblotting and immunohistochemical studies of the gallbladder epithelial tissues, canine GBECs, and bile. Reverse-transcription polymerase chain reaction was performed to evaluate MUC3 and MUC5B expression. Results MUC3, MUC5AC, MUC5B, and MUC6 were expressed in the normal gallbladder epithelium, and of those, MUC3 and MUC5B exhibited the highest expression levels. Greatly increased levels of MUC3 and MUC5B expression were observed in the cholesterol stone group, and slightly increased levels were observed in the cholesterol polyp group; MUC3 and MUC5B mRNA was also upregulated in those groups. Canine GBECs treated with lipopolysaccharide also showed upregulation of MUC3 and MUC5B. Conclusions The mucin genes with the highest expression levels in gallbladder tissue in cholesterol-associated diseases were MUC3 and MUC5B. Cholesterol stones and gallbladder infections were associated with increased MUC3 and MUC5B expression. PMID:27563024

  11. Prosopis farcta beans increase HDL cholesterol and decrease LDL cholesterol in ostriches (Struthio camelus).

    PubMed

    Omidi, Arash; Ansari nik, Hossein; Ghazaghi, Mahmood

    2013-02-01

    Ten blue-neck male ostriches (Struthio camelus) were fed Prosopis farcta beans throughout a 30-day experiment. Blood samples were collected from ostriches on days 0 and 30 to measure levels of high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, triglyceride, total serum protein, albumin, globulin, cholesterol, calcium, inorganic phosphorus, the activity of aspartate aminotransferase, alanine aminotransferase, and γ-glutamyl transferase (γ-GT). From days 0 to 30, HDL cholesterol, total protein, and globulins levels increased significantly whereas LDL cholesterol, inorganic phosphorus, and γ-GT activity decreased significantly.

  12. Cholesterol granulomas in three meerkats (Suricata suricatta).

    PubMed

    Sladky, K K; Dalldorf, F G; Steinberg, H; Wright, J F; Loomis, M R

    2000-11-01

    Cholesterol granulomas are uncommon pathologic lesions in animals, although they are important intracranial tumors in humans. This report describes cholesterol granulomas associated with multiple organ systems of three captive meerkats. In the most severe case, meerkat No. 1, the pathologic behavior of the cholesterol granuloma was unique in that it appeared to locally invade the cerebrum and calvarium, possibly contributing to neurological deficits observed antemortem. A review of other meerkat necropsies revealed incidental, asymptomatic cholesterol granulomas in organs of two other individuals, meerkat Nos. 2 and 3. Histologically, all lesions were composed of cholesterol clefts admixed with large, foamy macrophages containing hemosiderin, multinucleated giant cells, lymphocytes, plasma cells, and foci of mineralization. Hypercholesterolemia was documented in two of the three meerkats.

  13. Cholesterol-lowering effect of plant sterols.

    PubMed

    AbuMweis, Suhad S; Jones, Peter J H

    2008-12-01

    Plant sterols are plant components that have a chemical structure similar to cholesterol except for the addition of an extra methyl or ethyl group; however, plant sterol absorption in humans is considerably less than that of cholesterol. In fact, plant sterols reduce cholesterol absorption and thus reduce circulating levels of cholesterol. Earlier studies that have tested the efficacy of plant sterols as cholesterol-lowering agents incorporated plant sterols into fat spreads. Later on, plant sterols were added to other food matrices, including juices, nonfat beverages, milk and yogurt, cheese, meat, croissants and muffins, and cereal and chocolate bars. The beneficial physiologic effects of plant sterols could be further enhanced by combining them with other beneficial substances, such as olive and fish oils, fibers, and soy proteins, or with exercise. The addition of plant sterols to the diet is suggested by health experts as a safe and effective way to reduce the risk of coronary heart disease.

  14. Analysis of cholesterol trafficking with fluorescent probes

    PubMed Central

    Maxfield, Frederick R.; Wüstner, Daniel

    2013-01-01

    Cholesterol plays an important role in determining the biophysical properties of biological membranes, and its concentration is tightly controlled by homeostatic processes. The intracellular transport of cholesterol among organelles is a key part of the homeostatic mechanism, but sterol transport processes are not well understood. Fluorescence microscopy is a valuable tool for studying intracellular transport processes, but this method can be challenging for lipid molecules because addition of a fluorophore may alter the properties of the molecule greatly. We discuss the use of fluorescent molecules that can bind to cholesterol to reveal its distribution in cells. We also discuss the use of intrinsically fluorescent sterols that closely mimic cholesterol, as well as some minimally modified fluorophore-labeled sterols. Methods for imaging these sterols by conventional fluorescence microscopy and by multiphoton microscopy are described. Some label-free methods for imaging cholesterol itself are also discussed briefly. PMID:22325611

  15. Indirect Lightning Safety Assessment Methodology

    SciTech Connect

    Ong, M M; Perkins, M P; Brown, C G; Crull, E W; Streit, R D

    2009-04-24

    Lightning is a safety hazard for high-explosives (HE) and their detonators. In the However, the current flowing from the strike point through the rebar of the building The methodology for estimating the risk from indirect lighting effects will be presented. It has two parts: a method to determine the likelihood of a detonation given a lightning strike, and an approach for estimating the likelihood of a strike. The results of these two parts produce an overall probability of a detonation. The probability calculations are complex for five reasons: (1) lightning strikes are stochastic and relatively rare, (2) the quality of the Faraday cage varies from one facility to the next, (3) RF coupling is inherently a complex subject, (4) performance data for abnormally stressed detonators is scarce, and (5) the arc plasma physics is not well understood. Therefore, a rigorous mathematical analysis would be too complex. Instead, our methodology takes a more practical approach combining rigorous mathematical calculations where possible with empirical data when necessary. Where there is uncertainty, we compensate with conservative approximations. The goal is to determine a conservative estimate of the odds of a detonation. In Section 2, the methodology will be explained. This report will discuss topics at a high-level. The reasons for selecting an approach will be justified. For those interested in technical details, references will be provided. In Section 3, a simple hypothetical example will be given to reinforce the concepts. While the methodology will touch on all the items shown in Figure 1, the focus of this report is the indirect effect, i.e., determining the odds of a detonation from given EM fields. Professor Martin Uman from the University of Florida has been characterizing and defining extreme lightning strikes. Using Professor Uman's research, Dr. Kimball Merewether at Sandia National Laboratory in Albuquerque calculated the EM fields inside a Faraday-cage type

  16. Fish protein decreases serum cholesterol in rats by inhibition of cholesterol and bile acid absorption.

    PubMed

    Hosomi, Ryota; Fukunaga, Kenji; Arai, Hirofumi; Kanda, Seiji; Nishiyama, Toshimasa; Yoshida, Munehiro

    2011-05-01

    Fish protein has been shown to decrease serum cholesterol content by inhibiting absorption of cholesterol and bile acid in laboratory animals, though the mechanism underlying this effect is not yet fully understood. The purpose of this study was to elucidate the mechanism underlying the inhibition of cholesterol and bile acid absorption following fish protein intake. Male Wistar rats were divided into 2 dietary groups of 7 rats each, 1 group receiving a diet consisting of 20% casein and the other receiving a diet consisting of 10% casein and 10% fish protein. Both experimental diets also contained 0.5% cholesterol and 0.1% sodium cholate. After the rats had been on their respective diets for 4 wk, their serum and liver cholesterol contents and fecal cholesterol, bile acid, and nitrogen excretion contents were measured. Fish protein consumption decreased serum and liver cholesterol content and increased fecal cholesterol and bile acid excretion and simultaneously increased fecal nitrogen excretion. In addition, fish protein hydrolyzate prepared by in vitro digestion had lower micellar solubility of cholesterol and higher binding capacity for bile acids compared with casein hydrolyzate. These results suggest that the hypocholesterolemic effect of fish protein is mediated by increased fecal cholesterol and bile acid excretion, which is due to the digestion products of fish protein having reduced micellar solubility of cholesterol and increased bile acid binding capacity.

  17. Dietary cholesterol and the origin of cholesterol in the brain of developing rats.

    PubMed

    Edmond, J; Korsak, R A; Morrow, J W; Torok-Both, G; Catlin, D H

    1991-09-01

    Milk substitutes containing cholesterol at concentrations lower, equal to or greater than the concentrations found in natural rat milk were fed to artificially reared rat pups from 5 d until 15 or 16 d after birth. Pups reared by their mother served as controls. In one experiment, D7-cholesterol was fed in the milk at four different concentrations. The purpose of the study was to determine whether cholesterol in milk influenced growth and the sterol composition of brain over the period of its most rapid accumulation in this organ. We found that body and brain weights were not different, irrespective of the concentration of cholesterol in the milk substitutes. High concentrations of cholesterol in milk caused a significant increase in cholesterol in liver and plasma, whereas the concentration of cholesterol in brain was not different from the concentration in the brain of controls. The amounts of D7-cholesterol in lung and liver, and in plasma and RBC that pass the brain, were consistent with the concentration fed in the milk and approached 70% of the total content of cholesterol in these organs at the highest concentration fed. Brain, by contrast, contained very small amounts of D7-cholesterol, which could readily be attributed to D7-cholesterol associated with the vascular system of the blood-brain barrier. We found that the sterol composition of brain is not influenced by the concentration of cholesterol in milk and that cholesterol exogenous to brain, even in a hypercholesterolemic condition, does not gain entry to the brain. We conclude that the brain biosynthesizes de novo all the cholesterol it requires.

  18. Indirect discrimination and breast screening.

    PubMed

    Botha, J L; Manku-Scott, T K; Moledina, F; Williams, A

    1993-01-01

    Uptake of screening services in inner-city communities has been low, particularly in older age groups, lower social classes, and ethnic minorities. In Leicester City, where up to 25% of the population belong to ethnic minorities, this may have important implications for breast screening. We randomly sampled 701 inner-city women aged 45 to 64 years, stratified by neighborhood and by women's "likely home language." Trained interviewers succeeded in interviewing 79% of those eligible, and we report here a preliminary analysis of 413 respondents. Knowledge of breast cancer and screening varied markedly and significantly by actual language: 60.4% of English-speaking and 12.5% of non-English-speaking women correctly answered 10 or more questions (of 14) about breast cancer and screening (chi 2(1) = 89.884; P = .000). Despite that, 80% or more women stated their intention to attend for screening and assessment if necessary, irrespective of neighborhood, language, age, or social class. We suggest that the difference in knowledge between language groups arose from indirect discrimination in the way in which health-related information is disseminated in British society. However, after providing appropriate screening information, we report similarly high intended acceptance rates in the two language groups.

  19. Lifespan based indirect response models

    PubMed Central

    Ruixo, Juan Jose Perez

    2012-01-01

    In the field of hematology, several mechanism-based pharmacokinetic-pharmacodynamic models have been developed to understand the dynamics of several blood cell populations under different clinical conditions while accounting for the essential underlying principles of pharmacology, physiology and pathology. In general, a population of blood cells is basically controlled by two processes: the cell production and cell loss. The assumption that each cell exits the population when its lifespan expires implies that the cell loss rate is equal to the cell production rate delayed by the lifespan and justifies the use of delayed differential equations for compartmental modeling. This review is focused on lifespan models based on delayed differential equations and presents the structure and properties of the basic lifespan indirect response (LIDR) models for drugs affecting cell production or cell lifespan distribution. The LIDR models for drugs affecting the precursor cell production or decreasing the precursor cell population are also presented and their properties are discussed. The interpretation of transit compartment models as LIDR models is reviewed as the basis for introducing a new LIDR for drugs affecting the cell lifespan distribution. Finally, the applications and limitations of the LIDR models are discussed. PMID:22212685

  20. Cholesterol-Lowering Supplements: Lower Your Numbers without Prescription Medication

    MedlinePlus

    ... cholesterol and LDL cholesterol May cause nausea, indigestion, gas, diarrhea or constipation; may be ineffective if you take ezetimibe (Zetia), a prescription cholesterol medication Soy protein as a substitute for other high-fat protein sources May reduce ...

  1. Indirect immunofluorescence assay for intra vitam diagnosis of avian bornavirus infection in psittacine birds.

    PubMed

    Herzog, Sibylle; Enderlein, Dirk; Heffels-Redmann, Ursula; Piepenbring, Anne; Neumann, Daniel; Kaleta, Erhard F; Müller, Hermann; Lierz, Michael; Herden, Christiane

    2010-06-01

    Different avian bornavirus (ABV) genotypes have recently been detected in psittacine birds with proventricular dilatation disease (PDD), an inflammatory fatal central and peripheral nervous system disorder. An indirect immunofluorescence assay (IIFA) for intra vitam demonstration of ABV-specific serum antibodies was established since reverse transcription-PCR (RT-PCR) assays may not detect all ABV variants.

  2. Indirect Immunofluorescence Assay for Intra Vitam Diagnosis of Avian Bornavirus Infection in Psittacine Birds ▿

    PubMed Central

    Herzog, Sibylle; Enderlein, Dirk; Heffels-Redmann, Ursula; Piepenbring, Anne; Neumann, Daniel; Kaleta, Erhard F.; Müller, Hermann; Lierz, Michael; Herden, Christiane

    2010-01-01

    Different avian bornavirus (ABV) genotypes have recently been detected in psittacine birds with proventricular dilatation disease (PDD), an inflammatory fatal central and peripheral nervous system disorder. An indirect immunofluorescence assay (IIFA) for intra vitam demonstration of ABV-specific serum antibodies was established since reverse transcription-PCR (RT-PCR) assays may not detect all ABV variants. PMID:20392921

  3. Plasma lipoproteins in familial lecithin:cholesterol acyltransferase deficiency: lipid composition and reactivity in vitro

    PubMed Central

    Glomset, John A.; Norum, Kaare R.; King, Weiling

    1970-01-01

    Plasma lipoproteins from patients with familial lecithin:cholesterol acyltransferase (LCAT) deficiency have been fractioned by preparative ultra-centrifugation and gel filtration and their lipid content and reactivity studied. All of the lipoproteins are abnormal with respect to lipid concentration or relative lipid content. The low density lipoproteins (LDL) and high density lipoproteins (HDL) appear to react normally with partially purified LCAT from normal plasma. Also, the lipids of the very low density lipoproteins (VLDL) and LDL, like those of the corresponding lipoproteins of normal plasma, are indirectly altered by the action of LCAT on normal HDL. Thus, during incubation in vitro VLDL cholesteryl ester is increased and VLDL triglyceride is decreased, as described by others for VLDL from hyperlipemic plasma, and both the unesterified cholesterol and lecithin of the VLDL and LDL are decreased. The patients' VLDL and LDL are abnormal, however, in that they lose unesterified cholesterol and lecithin to normal HDL in the absence of LCAT. Also, the patients' HDL lose these lipids to erythrocyte membranes in the absence of the enzyme. Our results provide further evidence that the abnormal cholesterol and phospholipid composition of the patients' lipoproteins is caused by the LCAT deficiency. They support the postulate that an excess of unesterified cholesterol and lecithin develops as VLDL are converted to LDL and HDL and suggest that in the absence of LCAT this excess lipid distributes among plasma lipoproteins and plasma membranes. They further suggest that LCAT normally reduces this excess lipid through a combination of direct and indirect effects. PMID:5456796

  4. Indirect Self-Destructiveness and Emotional Intelligence.

    PubMed

    Tsirigotis, Konstantinos

    2016-06-01

    While emotional intelligence may have a favourable influence on the life and psychological and social functioning of the individual, indirect self-destructiveness exerts a rather negative influence. The aim of this study has been to explore possible relations between indirect self-destructiveness and emotional intelligence. A population of 260 individuals (130 females and 130 males) aged 20-30 (mean age of 24.5) was studied by using the Polish version of the chronic self-destructiveness scale and INTE, i.e., the Polish version of the assessing emotions scale. Indirect self-destructiveness has significant correlations with all variables of INTE (overall score, factor I, factor II), and these correlations are negative. The intensity of indirect self-destructiveness differentiates significantly the height of the emotional intelligence and vice versa: the height of the emotional intelligence differentiates significantly the intensity of indirect self-destructiveness. Indirect self-destructiveness has negative correlations with emotional intelligence as well as its components: the ability to recognize emotions and the ability to utilize emotions. The height of emotional intelligence differentiates the intensity of indirect self-destructiveness, and vice versa: the intensity of indirect self-destructiveness differentiates the height of emotional intelligence. It seems advisable to use emotional intelligence in the prophylactic and therapeutic work with persons with various types of disorders, especially with the syndrome of indirect self-destructiveness.

  5. Two stage indirect evaporative cooling system

    SciTech Connect

    Bourne, Richard C.; Lee, Brian E.; Callaway, Duncan

    2005-08-23

    A two stage indirect evaporative cooler that moves air from a blower mounted above the unit, vertically downward into dry air passages in an indirect stage and turns the air flow horizontally before leaving the indirect stage. After leaving the dry passages, a major air portion travels into the direct stage and the remainder of the air is induced by a pressure drop in the direct stage to turn 180.degree. and returns horizontally through wet passages in the indirect stage and out of the unit as exhaust air.

  6. Effect of potato ethanol residue on rat plasma cholesterol levels.

    PubMed

    Hashimoto, Naoto; Shinomiya, Noriyuki; Saito, Katsuichi; Noda, Takahiro; Han, Kyu-Ho; Fukushima, Michihiro

    2013-01-01

    We investigated the cholesterol-lowering effect of a potato ethanol residue (PER). The plasma cholesterol levels excluding high-density lipoprotein cholesterol were lower in the rats given a PER-containing diet for 6 weeks than in the control group, whereas the fecal cholesterol levels were higher. These results suggest that PER partially reduced plasma cholesterol levels via excretion of cholesterol into the feces.

  7. Recurring exon deletions in the haptoglobin (HP) gene associate with lower blood cholesterol levels

    PubMed Central

    Boettger, Linda M.; Salem, Rany M.; Handsaker, Robert E.; Peloso, Gina; Kathiresan, Sekar; Hirschhorn, Joel; McCarroll, Steven A.

    2016-01-01

    Two exons of the human haptoglobin (HP) gene exhibit copy number variation that affects HP multimerization and underlies one of the first protein polymorphisms identified in humans. The evolutionary origins and medical significance of this polymorphism have been uncertain. Here we show that this variation has likely arisen from the recurring reversion of an ancient hominin-specific duplication of these exons. Though this polymorphism has been largely invisible to genome-wide genetic studies to date, we describe a way to analyze it by imputation from SNP haplotypes and find among 22,288 individuals that these HP exonic deletions associate with reduced LDL and total cholesterol levels. We show that these deletions, and a SNP that affects HP expression, are the likely drivers of the strong but complex association of cholesterol levels to SNPs near HP. Recurring exonic deletions in the haptoglobin gene likely enhance human health by lowering cholesterol levels in the blood. PMID:26901066

  8. Physiological and pathological implications of cholesterol.

    PubMed

    Cortes, Victor A; Busso, Dolores; Maiz, Alberto; Arteaga, Antonio; Nervi, Flavio; Rigotti, Attilio

    2014-01-01

    Cholesterol has evolved to fulfill sophisticated biophysical, cell signaling and endocrine requirements of animal systems. At a cellular level, cholesterol is found in membranes, where it increases both bilayer stiffness and impermeability to water and ions. Furthermore, cholesterol is integrated into specialized lipid-protein membrane microdomains with critical topographical and signaling functions. At an organismal level, cholesterol is the precursor for all steroid hormones, including gluco- and mineralo-corticoids, sex hormones and vitamin D, all of which regulate carbohydrate, sodium, reproductive and bone homeostasis, respectively. This sterol is also the precursor for bile acids, which are important for intestinal absorption of dietary lipids as well as energy and glucose metabolic regulation. Importantly, complex mechanisms maintain cholesterol within physiological ranges and the disregulation of these mechanisms results in embryonic or adult diseases, caused by either excessive or reduced tissue cholesterol levels. The causative role of cholesterol in these diseases has been demonstrated by diverse genetic and pharmacologic animal models that are commented in this review.

  9. Cholesterol Asymmetry in Synaptic Plasma Membranes

    PubMed Central

    Wood, W. Gibson; Igbavboa, Urule; Müller, Walter E.; Eckert, Gunter P.

    2010-01-01

    Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: 1) chronic ethanol consumption; 2) statins; 3) aging; and 4) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density-lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, p-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function. PMID:21214553

  10. Biliary lipids and cholesterol gallstone disease

    PubMed Central

    Wang, David Q-H.; Cohen, David E.; Carey, Martin C.

    2009-01-01

    Biliary lipids are a family of four dissimilar molecular species consisting of a mixture of bile salts (substituted cholanoic acids), phospholipids, mostly (>96%) diacylphosphatidylcholines, unesterified cholesterol, and bilirubin conjugates known trivially as lipopigments. The primary pathophysiological defect in cholesterol gallstone disease is hypersecretion of hepatic cholesterol into bile with less frequent hyposecretion of bile salts and/or phospholipids. Several other gallbladder abnormalities contribute and include hypomotility, immune-mediated inflammation, hypersecretion of gelling mucins, and accelerated phase transitions; there is also reduced intestinal motility that augments “secondary” bile salt synthesis by the anaerobic microflora. Cholesterol nucleation is initiated when unilamellar vesicles of cholesterol plus biliary phospholipids fuse to form multilamellar vesicles. From these “plate-like” cholesterol monohydrate crystals, the building blocks of macroscopic stones are nucleated heterogeneously by mucin gel. Multiple Lith gene loci have been identified in inbred mice, paving the way for discovery of an ever-increasing number of LITH genes in humans. Because of the frequency of the metabolic syndrome today, insulin resistance and LITH genes all interact with a number of environmental cholelithogenic factors to cause the gallstone phenotype. This review summarizes current concepts of the physical-chemical state of biliary lipids in health and in lithogenic bile and outlines the molecular, genetic, hepatic, and cholecystic factors that underlie the pathogenesis of cholesterol gallstones. PMID:19017613

  11. Tau pathology induces intraneuronal cholesterol accumulation.

    PubMed

    Glöckner, Frauke; Ohm, Thomas G

    2014-09-01

    Epidemiologic and experimental data suggest the involvement of cholesterol metabolism in the development and progression of Alzheimer disease and Niemann-Pick type C disease, but not of frontotemporal dementias. In these 3 neurodegenerative diseases, however, protein tau hyperphosphorylation and aggregation into neurofibrillary tangles are observed. To elucidate the relationship between cholesterol and tau, we compared sterol levels of neurons burdened with neurofibrillary tangles with those of their unaffected neighbors using semiquantitative filipin fluorescence microscopy in mice expressing P301L mutant human tau (a well-described model of FTDP-17) and in P301L transgenic mice lacking apolipoprotein E (the major cholesterol transporter in the brain). Cellular unesterified cholesterol was higher in neurons affected by tau pathology irrespective of apolipoprotein E deficiency. This argues for an impact of tau pathology on cellular cholesterol homeostasis. We suggest that there is a bidirectional mode of action: Disturbances in cellular cholesterol metabolism may promote tau pathology, but tau pathology may also alter neuronal cholesterol homeostasis; once it is established, a vicious cycle may promote neurofibrillary tangle formation.

  12. Synthetic High-Density Lipoprotein-Like Nanocarrier Improved Cellular Transport of Lysosomal Cholesterol in Human Sterol Carrier Protein-Deficient Fibroblasts.

    PubMed

    Nam, Da-Eun; Kim, Ok-Kyung; Park, Yoo Kyoung; Lee, Jeongmin

    2016-01-01

    Sterol carrier protein-2 (SCP-2), which is not found in tissues of people with Zellweger syndrome, facilitates the movement of cholesterol within cells, resulting in abnormal accumulation of cholesterol in SCP-2-deficient cells. This study investigated whether synthetic high-density lipoprotein-like nanocarrier (sHDL-NC) improves the cellular transport of lysosomal cholesterol to plasma membrane in SCP-2-deficient fibroblasts. Human SCP-2-deficient fibroblasts were incubated with [(3)H-cholesterol]LDL as a source of cholesterol and sHDL-NC. The cells were fractionated by centrifugation permit tracking of [(3)H]-cholesterol from lysosome into plasma membrane. Furthermore, cellular content of cholesteryl ester as a storage form and mRNA expression of low-density lipoprotein (LDL) receptor were measured to support the cholesterol transport to plasma membrane. Incubation with sHDL-NC for 8 h significantly increased uptake of [(3)H]-cholesterol to lysosome by 53% and further enhanced the transport of [(3)H]-cholesterol to plasma membrane by 32%. Treatment with sHDL-NC significantly reduced cellular content of cholesteryl ester and increased mRNA expression of LDL receptor (LDL-R). In conclusion, sHDL-NC enables increased transport of lysosomal cholesterol to plasma membrane. In addition, these data were indirectly supported by decreased cellular content of cholesteryl ester and increased gene expression of LDL-R. Therefore, sHDL-NC may be a useful vehicle for transporting cholesterol, which may help to prevent accumulation of cholesterol in SCP-2-deficient fibroblasts.

  13. Proteins and cholesterol-rich domains.

    PubMed

    Epand, Richard M

    2008-01-01

    Biological membranes are composed of many molecular species of lipids and proteins. These molecules do not mix ideally. In the plane of the membrane components are segregated into domains that are enriched in certain lipids and proteins. Cholesterol is a membrane lipid that is not uniformly distributed in the membrane. Proteins play an important role in determining cholesterol distribution. Certain types of protein lipidation are known to cause the lipoprotein to sequester with cholesterol and to stabilize cholesterol-rich domains. However, proteins that are excluded from such domains also contribute to the redistribution of cholesterol. One of the motifs that favor interaction with cholesterol is the CRAC motif. The role of the CRAC motif of the gp41 fusogenic protein of HIV is discussed. The distribution of the multianionic lipid, phosphatidylinositol(4,5)bis-phosphate (PtnIns(4,5)P2), is also not uniform in cell membranes. This lipid has several functions in the cell, including a morphological role in determining the sites of attachment of the actin cytoskeleton to the plasma membrane. PtnIns(4,5)P2 is sequestered by proteins having clusters of cationic residues in their sequence. Certain proteins containing cationic clusters also contain moieties such as myristoylation or a CRAC segment that would also endow them with the ability to sequester to a cholesterol-rich domain. These proteins interact with PtnIns(4,5)P2 in a cholesterol-dependent manner forming domains that are enriched in both cholesterol and in PtnIns(4,5)P2 but can also be distinct from liquid-ordered raft-like domains.

  14. Cellular Cholesterol Transport Proteins in Diabetic Nephropathy

    PubMed Central

    Tsun, Joseph G. S.; Yung, Susan; Chau, Mel K. M.; Shiu, Sammy W. M.; Chan, Tak Mao; Tan, Kathryn C. B.

    2014-01-01

    Background Lipid accumulation has been shown to accelerate renal injury, and the intracellular accumulation of lipids may be caused by alterations in synthesis as well as lipid uptake and efflux. We have investigated the role of cellular cholesterol transport proteins including adenosine triphosphate binding cassette transporter A1 (ABCA1), G1 (ABCG1) and scavenger receptor class B type I (SR-BI) in diabetic nephropathy. Methods Protein expression and the ability to mediate cholesterol efflux of ABCA1, ABCG1 and SR-BI was determined in human renal mesangial cells and proximal tubular epithelial cells cultured under normal or high glucose conditions. Renal expression of these cholesterol transporters was examined in a murine model of streptozotocin-induced type 1 diabetes. Results ABCA1, ABCG1 and SR-BI were expressed in both human renal mesangial cells and proximal tubular epithelial cells, and mediated cholesterol efflux to apolipoprotein AI and HDL. In vitro, hyperglycemia reduced the expression and the ability to mediate cholesterol efflux of all three cholesterol transporters (p<0.05). In vivo studies showed that intra-renal accumulation of lipids was increased in diabetic mice, particularly in mice with nephropathy. This was associated with a significant reduction in the expression of ABCA1, ABCG1 and SR-BI in the kidneys. These changes were already seen in diabetic mice without nephropathy and preceded the development of nephropathy. Diabetic mice with nephropathy had the lowest level of these cholesterol transporters. Conclusion Inducing diabetes with streptozotocin significantly reduced renal expression of ABCA1, ABCG1 and SR-BI. Defects in cholesterol export pathway in renal cells could therefore promote cholesterol accumulation and might contribute to the development of diabetic nephropathy. PMID:25181357

  15. Genetic therapies to lower cholesterol.

    PubMed

    Khoo, Bernard

    2015-01-01

    This review surveys the state-of-the-art in genetic therapies for familial hypercholesterolaemia (FH), caused most commonly by mutations in the LDL receptor (LDLR) gene. FH manifests as highly elevated low density lipoprotein (LDL) cholesterol levels and consequently accelerated atherosclerosis. Modern pharmacological therapies for FH are insufficiently efficacious to prevent premature cardiovascular disease, can cause significant adverse effects and can be expensive. Genetic therapies for FH have been mooted since the mid 1990s but gene replacement strategies using viral vectors have so far been unsuccessful. Other strategies involve knocking down the expression of Apolipoprotein B100 (APOB100) and the protease PCSK9 which designates LDLR for degradation. The antisense oligonucleotide mipomersen, which knocks down APOB100, is currently marketed (with restrictions) in the USA, but is not approved in Europe due to its adverse effects. To address this problem, we have devised a novel therapeutic concept, APO-skip, which is based on modulation of APOB splicing, and which has the potential to deliver a cost-effective, efficacious and safe therapy for FH.

  16. Raising HDL cholesterol in women.

    PubMed

    Eapen, Danny J; Kalra, Girish L; Rifai, Luay; Eapen, Christina A; Merchant, Nadya; Khan, Bobby V

    2010-08-09

    High-density lipoprotein cholesterol (HDL-C) concentration is essential in the determination of coronary heart disease (CHD) risk in women. This is especially true in the postmenopausal state, where lipid profiles and CHD risk mimic that of age-matched men. Thus, interventions designed to reduce CHD risk by raising HDL-C levels may have particular significance during the transition to menopause. This review discusses HDL-C-raising therapies and the role of HDL in the primary prevention of CHD in women. Lifestyle-based interventions such as dietary change, aerobic exercise regimens, and smoking cessation are initial steps that are effective in raising HDL-C, and available data suggest women respond similarly to men with these interventions. When combined with pharmacotherapy, the effects of these lifestyle alterations are further amplified. Though studies demonstrating gender-specific differences in therapy are limited, niacin continues to be the most effective agent in raising HDL-C levels, especially when used in combination with fibrate or statin therapy. Emerging treatments such as HDL mimetic therapy show much promise in further raising HDL-C levels and improving cardiovascular outcomes.

  17. Cellular Cholesterol Regulates Ubiquitination and Degradation of the Cholesterol Export Proteins ABCA1 and ABCG1*

    PubMed Central

    Hsieh, Victar; Kim, Mi-Jurng; Gelissen, Ingrid C.; Brown, Andrew J.; Sandoval, Cecilia; Hallab, Jeannette C.; Kockx, Maaike; Traini, Mathew; Jessup, Wendy; Kritharides, Leonard

    2014-01-01

    The objective of this study was to examine the influence of cholesterol in post-translational control of ABCA1 and ABCG1 protein expression. Using CHO cell lines stably expressing human ABCA1 or ABCG1, we observed that the abundance of these proteins is increased by cell cholesterol loading. The response to increased cholesterol is rapid, is independent of transcription, and appears to be specific for these membrane proteins. The effect is mediated through cholesterol-dependent inhibition of transporter protein degradation. Cell cholesterol loading similarly regulates degradation of endogenously expressed ABCA1 and ABCG1 in human THP-1 macrophages. Turnover of ABCA1 and ABCG1 is strongly inhibited by proteasomal inhibitors and is unresponsive to inhibitors of lysosomal proteolysis. Furthermore, cell cholesterol loading inhibits ubiquitination of ABCA1 and ABCG1. Our findings provide evidence for a rapid, cholesterol-dependent, post-translational control of ABCA1 and ABCG1 protein levels, mediated through a specific and sterol-sensitive mechanism for suppression of transporter protein ubiquitination, which in turn decreases proteasomal degradation. This provides a mechanism for acute fine-tuning of cholesterol transporter activity in response to fluctuations in cell cholesterol levels, in addition to the longer term cholesterol-dependent transcriptional regulation of these genes. PMID:24500716

  18. Cholesterol Depletion from a Ceramide/Cholesterol Mixed Monolayer: A Brewster Angle Microscope Study

    PubMed Central

    Mandal, Pritam; Noutsi, Pakiza; Chaieb, Sahraoui

    2016-01-01

    Cholesterol is crucial to the mechanical properties of cell membranes that are important to cells’ behavior. Its depletion from the cell membranes could be dramatic. Among cyclodextrins (CDs), methyl beta cyclodextrin (MβCD) is the most efficient to deplete cholesterol (Chol) from biomembranes. Here, we focus on the depletion of cholesterol from a C16 ceramide/cholesterol (C16-Cer/Chol) mixed monolayer using MβCD. While the removal of cholesterol by MβCD depends on the cholesterol concentration in most mixed lipid monolayers, it does not depend very much on the concentration of cholesterol in C16-Cer/Chol monolayers. The surface pressure decay during depletion were described by a stretched exponential that suggested that the cholesterol molecules are unable to diffuse laterally and behave like static traps for the MβCD molecules. Cholesterol depletion causes morphology changes of domains but these disrupted monolayers domains seem to reform even when cholesterol level was low. PMID:27245215

  19. Tissue storage and control of cholesterol metabolism in man on high cholesterol diets.

    PubMed

    Quintão, E C; Brumer, S; Stechhahn, K

    1977-03-01

    The possibility of accumulation of tissue cholesterol in human beings submitted to high cholesterol feeding was investigated in liver biopsies and through fecal sterol balance studies. Feeding to 10 individuals 3.1 to 3.4 g/day of cholesterol for 3 weeks raised the mean serum level from 293 to 349 mg/100 ml, namely 19%, whereas the liver cholesterol content was 417 mg/100 g of wet weight. In 10 control cases eating 0.1--0.4 g/day of cholesterol serum cholesterol remained stable throughout the experimental period and the liver cholesterol content was 256 mg/100 g. Difference of liver colesterol level between the two groups was 62%. In 7 patients submitted to two periods of balance investigation on a cholesterol-free synthetic formula diet respectively prior to (PI) and after (PIII) eating the high cholesterol solid food from 4 to 15 weeks (PII), fecal steroid excretion in PIII exceeded PI in 3 patients. Such data are a direct evidence for the existence of an efficient system to release acutely stored cholesterol. In one patient bile acid excretion accounted for the difference between PIII and PI.

  20. Relative activity of cholesterol in OPPC/cholesterol/sphingomyelin mixtures measured with an acoustic sensor.

    PubMed

    Melzak, Kathryn A; Gizeli, Electra

    2009-03-01

    Acoustic devices are sensitive to the mole fraction of cholesterol present in liposomes adsorbed to the device surface as a result of the different mechanical properties of the liposomes. This fact was exploited to develop an acoustic assay to determine the relative affinity of cholesterol for different lipid mixtures. In the assay described here, the initial rate of beta-cyclodextrin-induced removal of cholesterol was measured for liposomes having a range of compositions. The initial rate of cholesterol removal was found to be directly proportional to the concentration of beta-cyclodextrin (betaCD) present over the range of 0-7.5 mg/ml (0-6.6 mM), consistent with other assays measuring the betaCD-accelerated transfer of cholesterol between liposomes. The affinity of cholesterol for 1-oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine (OPPC) liposomes with a sphingomyelin mole fraction, chi(SPM), of 0.2 was found to be 1.4x higher than that for pure OPPC liposomes. For liposomes composed only of OPPC and cholesterol in varying ratios, the initial rate of cholesterol removal was determined as a function of cholesterol mole fraction (chi(C)). The initial rate of removal showed an increase at chi(C) = 0.13, consistent with phase diagrams showing the start of liquid ordered domain formation, but no such increase at chi(C) = 0.25, in contrast to the predictions of the umbrella model for OPPC/cholesterol interactions.