Sample records for indium complexes

  1. A Comparison of Gallium and Indium Alkoxide Complexes as Catalysts for Ring-Opening Polymerization of Lactide.

    PubMed

    Kremer, Alexandre B; Andrews, Ryan J; Milner, Matthew J; Zhang, Xu R; Ebrahimi, Tannaz; Patrick, Brian O; Diaconescu, Paula L; Mehrkhodavandi, Parisa

    2017-02-06

    The impact of the metal size and Lewis acidity on the polymerization activity of group 13 metal complexes was studied, and it was shown that, within the same ligand family, indium complexes are far more reactive and selective than their gallium analogues. To this end, gallium and aluminum complexes supported by a tridentate diaminophenolate ligand, as well as gallium complexes supported by N,N'-ethylenebis(salicylimine)(salen) ligands, were synthesized and compared to their indium analogues. Using the tridentate ligand set, it was possible to isolate the gallium chloride complexes 3 and (±)-4 and the aluminum analogues 5 and (±)-6. The alkoxygallium complex (±)-2, supported by a salen ligand, was also prepared and characterized and, along with the three-component system GaCl 3 /BnOH/NEt 3 , was tested for the ring-opening polymerization of lactide and ε-caprolactone. The polymerization rates and selectivities of both systems were significantly lower than those for the indium analogues. The reaction of (±)-2 with 1 equiv of lactide forms the first insertion product, which is stable in solution and can be characterized at room temperature. In order to understand the differences of the reactivity within the group 13 metal complexes, a Lewis acidity study using triethylphosphine oxide (the Gutmann-Beckett method) was undertaken for a series of aluminum, gallium, and indium halide complexes; this study shows that indium halide complexes are less Lewis acidic than their aluminum and gallium analogues. Density functional theory calculations show that the Mulliken charges for the indium complexes are higher than those for the gallium analogues. These data suggest that the impact of ligands on the reactivity is more significant than that of the metal Lewis acidity.

  2. The mobility of indium and gallium in groundwater systems: constraining the role of sorption in sand column experiments

    NASA Astrophysics Data System (ADS)

    Dror, I.; Ringering, K.; Yecheskel, Y.; Berkowitz, B.

    2017-12-01

    The mobility of indium and gallium in groundwater environments was studied via laboratory experiments using quartz sand as a porous medium. Indium and gallium are metals of very low abundance in the Earth's crust and, correspondingly, the biosphere is only adapted to very small concentrations of these elements. However, in modern semiconductor industries, both elements play a central role and are incorporated in devices of mass production such as smartphones and digital cameras. The resulting considerable increase in production, use and discharge of indium and gallium throughout the last two decades, with a continuous and fast increase in the near future, raises questions regarding the fate of both elements in the environment. However, the transport behavior of these two metals in soils and groundwater systems remains poorly understood to date. Because of the low solubility of both elements in aqueous solutions, trisodium citrate was used as a complexation agent to stabilize the solutions, enabling investigation of the transport of these metals at neutral pH. Column experiments showed different binding capacities for indium and gallium, where gallium is much more mobile compared to indium and both metals are substantially retarded in the column. Different affinities were also confirmed by examining sorption isotherms of indium and gallium in equilibrium batch systems. The effect of natural organic matter on the mobility of indium and gallium was also studied, by addition of humic acid. For both metals, the presence of humic acid affects the sorption dynamics: for indium, sorption is strongly inhibited leading to much higher mobility, whereas gallium showed a slightly higher sorption affinity and very similar mobility compared to the same setup without humic acid addition. However, in all cases, the binding capacity of gallium to quartz is much weaker than that of indium. These results are consistent with the assumption that indium and gallium form different types of complexes with organic ligands. It was further observed that the complexes of gallium appear to be more stable than those of indium.

  3. Enantioselective and Regioselective Indium(III)-Catalyzed Addition of Pyrroles to Isatins

    PubMed Central

    Gutierrez, Elisa G.; Wong, Casey J.; Sahin, Aziza H.

    2011-01-01

    The indium(III)-catalyzed enantioselective and regioselective addition of pyrroles to isatins is described. The effects of metal and solvent on the reactivity and selectivity are compared and discussed, demonstrating that the indium(III)-indapybox complex provides the most effective catalyst. A case of divergent reactivity between pyrroles and indoles is presented. PMID:21992567

  4. DNA AND THE FINE STRUCTURE OF SYNAPTIC CHROMOSOMES IN THE DOMESTIC ROOSTER (GALLUS DOMESTICUS)

    PubMed Central

    Coleman, James R.; Moses, Montrose J.

    1964-01-01

    The indium trichloride method of Watson and Aldridge (38) for staining nucleic acids for electron microscopy was employed to study the relationship of DNA to the structure of the synaptinemal complex in meiotic prophase chromosomes of the domestic rooster. The selectivity of the method was demonstrated in untreated and DNase-digested testis material by comparing the distribution of indium staining in the electron microscope to Feulgen staining and ultraviolet absorption in thicker sections seen with the light microscope. Following staining by indium, DNA was found mainly in the microfibril component of the synaptinemal complex. When DNA was known to have been removed from aldehyde-fixed material by digestion with DNase, indium stainability was also lost. However, staining of the digested material with non-selective heavy metal techniques demonstrated the presence of material other than DNA in the microfibrils and showed that little alteration in appearance of the chromosome resulted from DNA removal. The two dense lateral axial elements of the synaptinemal complex, but not the central one to any extent, also contained DNA, together with non-DNA material. PMID:14228519

  5. Extraction equilibrium of indium(III) from nitric acid solutions by di(2-ethylhexyl)phosphoric acid dissolved in kerosene.

    PubMed

    Tsai, Hung-Sheng; Tsai, Teh-Hua

    2012-01-04

    The extraction equilibrium of indium(III) from a nitric acid solution using di(2-ethylhexyl) phosphoric acid (D2EHPA) as an acidic extractant of organophosphorus compounds dissolved in kerosene was studied. By graphical and numerical analysis, the compositions of indium-D2EHPA complexes in organic phase and stoichiometry of the extraction reaction were examined. Nitric acid solutions with various indium concentrations at 25 °C were used to obtain the equilibrium constant of InR₃ in the organic phase. The experimental results showed that the extraction distribution ratios of indium(III) between the organic phase and the aqueous solution increased when either the pH value of the aqueous solution and/or the concentration of the organic phase extractant increased. Finally, the recovery efficiency of indium(III) in nitric acid was measured.

  6. Synthesis of Two New Group 13 Benzoato-Chloro Complexes: A Structural Study of Gallium and Indium Chelating Carboxylates

    NASA Technical Reports Server (NTRS)

    Duraj, Stan A.; Hepp, Aloysius F.; Woloszynek, Robert; Protasiewicz, John D.; Dequeant, Michael; Ren, Tong

    2010-01-01

    Two new heteroleptic chelated-benzoato gallium (III) and indium (III) complexes have been prepared and structurally characterized. The molecular structures of [GaCl2(4-Mepy)2(O2CPh)]4-Mepy (1) and [InCl(4-Mepy)2(O2CPh)2]4-Mepy (2) have been determined by single-crystal x-ray diffraction. The gallium compound (1) is a distorted octahedron with cis-chloride ligands co-planar with the chelating benzoate and the 4-methylpyridines trans to each other. This is the first example of a Ga(III) structure with a chelating benzoate. The indium compound (2) is a distorted pentagonal bipyramid with two chelating benzoates, one 4-methylpyridine in the plane and a chloride trans to the other 4-methylpyridine. The indium bis-benzoate is an unusual example of a seven-coordinate structure with classical ligands. Both complexes, which due to the chelates, could also be described as pseudo-trigonal bipyramidal, include a three-bladed motif with three roughly parallel aromatic rings that along with a solvent of crystallization and electron-withdrawing chloride ligand(s) stabilize the solid-state structures.

  7. Impact of aryloxy initiators on the living and immortal polymerization of lactide.

    PubMed

    Chile, L-E; Ebrahimi, T; Wong, A; Aluthge, D C; Hatzikiriakos, S G; Mehrkhodavandi, P

    2017-05-23

    This report describes two different methodologies for the synthesis of aryl end-functionalized poly(lactide)s (PLAs) catalyzed by indium complexes. In the first method, a series of para-functionalized phenoxy-bridged dinuclear indium complexes [(NNO)InCl] 2 (μ-Cl)(μ-OPh R ) (R = OMe (1), Me (2), H (3), Br (4), NO 2 (5)) were synthesized and fully characterized. The solution and solid state structures of these complexes reflect the electronic differences between these initiators. The polymerization rates correlate with the electron donating ability of the phenoxy initiators: the para-nitro substituted complex 5 is essentially inactive. However, the para-methoxy variant, while less active than the ethoxy-bridged complex [(NNO)InCl] 2 (μ-Cl)(μ-OEt) (A), shows sufficient activity. Alternatively, aryl-capped PLAs were synthesized via immortal polymerization of PLA with A in the presence of a range of arylated chain transfer agents. Certain aromatic diols shut down polymerization by chelating one indium centre to form a stable metal complex. Immortal ROP was successful when using phenol, and 1,5-naphthalenediol. These polymers were analysed and chain end fidelity was confirmed using 1 H NMR spectroscopy, MALDI-TOF mass spectrometry, and UV-Vis spectroscopy. This study shed light on possible speciation when attempting to generate PLA-lignin copolymers.

  8. Direct transparent electrode patterning on layered GaN substrate by screen printing of indium tin oxide nanoparticle ink for Eu-doped GaN red light-emitting diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashiwagi, Y., E-mail: kasiwagi@omtri.or.jp; Yamamoto, M.; Saitoh, M.

    2014-12-01

    Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25 nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850 °C for 10 min under atmospheric conditions, the resistivity of the ITO film was 5.2 mΩ cm. The fabricated LED up to 3 mm square surface emitted red light when the on-voltage was exceeded.

  9. Direct transparent electrode patterning on layered GaN substrate by screen printing of indium tin oxide nanoparticle ink for Eu-doped GaN red light-emitting diode

    NASA Astrophysics Data System (ADS)

    Kashiwagi, Y.; Koizumi, A.; Takemura, Y.; Furuta, S.; Yamamoto, M.; Saitoh, M.; Takahashi, M.; Ohno, T.; Fujiwara, Y.; Murahashi, K.; Ohtsuka, K.; Nakamoto, M.

    2014-12-01

    Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25 nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850 °C for 10 min under atmospheric conditions, the resistivity of the ITO film was 5.2 mΩ cm. The fabricated LED up to 3 mm square surface emitted red light when the on-voltage was exceeded.

  10. (Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2001-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  11. (Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2002-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  12. (Polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2001-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interefere in the ethylene polymerization process, while affecting the the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  13. Indium oxide inverse opal films synthesized by structure replication method

    NASA Astrophysics Data System (ADS)

    Amrehn, Sabrina; Berghoff, Daniel; Nikitin, Andreas; Reichelt, Matthias; Wu, Xia; Meier, Torsten; Wagner, Thorsten

    2016-04-01

    We present the synthesis of indium oxide (In2O3) inverse opal films with photonic stop bands in the visible range by a structure replication method. Artificial opal films made of poly(methyl methacrylate) (PMMA) spheres are utilized as template. The opal films are deposited via sedimentation facilitated by ultrasonication, and then impregnated by indium nitrate solution, which is thermally converted to In2O3 after drying. The quality of the resulting inverse opal film depends on many parameters; in this study the water content of the indium nitrate/PMMA composite after drying is investigated. Comparison of the reflectance spectra recorded by vis-spectroscopy with simulated data shows a good agreement between the peak position and calculated stop band positions for the inverse opals. This synthesis is less complex and highly efficient compared to most other techniques and is suitable for use in many applications.

  14. Group 13 β-ketoiminate compounds: gallium hydride derivatives as molecular precursors to thin films of Ga2O3.

    PubMed

    Pugh, David; Marchand, Peter; Parkin, Ivan P; Carmalt, Claire J

    2012-06-04

    Bis(β-ketoimine) ligands, [R{N(H)C(Me)-CHC(Me)═O}(2)] (L(1)H(2), R = (CH(2))(2); L(2)H(2), R = (CH(2))(3)), linked by ethylene (L(1)) and propylene (L(2)) bridges have been used to form aluminum, gallium, and indium chloride complexes [Al(L(1))Cl] (3), [Ga(L(n))Cl] (4, n = 1; 6, n = 2) and [In(L(n))Cl] (5, n = 1; 7, n = 2). Ligand L(1) has also been used to form a gallium hydride derivative [Ga(L(1))H] (8), but indium analogues could not be made. β-ketoimine ligands, [Me(2)N(CH(2))(3)N(H)C(R')-CHC(R')═O] (L(3)H, R' = Me; L(4)H, R' = Ph), with a donor-functionalized Lewis base have also been synthesized and used to form gallium and indium alkyl complexes, [Ga(L(3))Me(2)] (9) and [In(L(3))Me(2)] (10), which were isolated as oils. The related gallium hydride complexes, [Ga(L(n))H(2)] (11, n = 3; 12, n = 4), were also prepared, but again no indium hydride species could be made. The complexes were characterized mainly by NMR spectroscopy, mass spectrometry, and single crystal X-ray diffraction. The β-ketoiminate gallium hydride compounds (8 and 11) have been used as single-source precursors for the deposition of Ga(2)O(3) by aerosol-assisted (AA)CVD with toluene as the solvent. The quality of the films varied according to the precursor used, with the complex [Ga(L(1))H] (8) giving by far the best quality films. Although the films were amorphous as deposited, they could be annealed at 1000 °C to form crystalline Ga(2)O(3). The films were analyzed by powder XRD, SEM, and EDX.

  15. Synthesis of In2O3nanoparticles by thermal decomposition of a citrate gel precursor

    NASA Astrophysics Data System (ADS)

    Rey, J. F. Q.; Plivelic, T. S.; Rocha, R. A.; Tadokoro, S. K.; Torriani, I.; Muccillo, E. N. S.

    2005-06-01

    This paper describes the synthesis of indium oxide by a modified sol-gel method, and the study of thermal decomposition of the metal complex in air. The characterization of the intermediate as well as the final compounds was carried out by thermogravimetry, differential thermal analysis, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and small angle X-ray scattering. The results show that the indium complex decomposes to In2O3 with the formation of an intermediate compound. Nanoparticles of cubic In2O3 with crystallite sizes in the nanosize range were formed after calcination at temperatures up to 900°C. Calcined materials are characterized by a polydisperse distribution of spherical particles with sharp and smooth surfaces.

  16. Germanium and indium

    USGS Publications Warehouse

    Shanks, W.C. Pat; Kimball, Bryn E.; Tolcin, Amy C.; Guberman, David E.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Germanium and indium are two important elements used in electronics devices, flat-panel display screens, light-emitting diodes, night vision devices, optical fiber, optical lens systems, and solar power arrays. Germanium and indium are treated together in this chapter because they have similar technological uses and because both are recovered as byproducts, mainly from copper and zinc sulfides.The world’s total production of germanium in 2011 was estimated to be 118 metric tons. This total comprised germanium recovered from zinc concentrates, from fly ash residues from coal burning, and from recycled material. Worldwide, primary germanium was recovered in Canada from zinc concentrates shipped from the United States; in China from zinc residues and coal from multiple sources in China and elsewhere; in Finland from zinc concentrates from the Democratic Republic of the Congo; and in Russia from coal.World production of indium metal was estimated to be about 723 metric tons in 2011; more than one-half of the total was produced in China. Other leading producers included Belgium, Canada, Japan, and the Republic of Korea. These five countries accounted for nearly 95 percent of primary indium production.Deposit types that contain significant amounts of germanium include volcanogenic massive sulfide (VMS) deposits, sedimentary exhalative (SEDEX) deposits, Mississippi Valley-type (MVT) lead-zinc deposits (including Irish-type zinc-lead deposits), Kipushi-type zinc-lead-copper replacement bodies in carbonate rocks, and coal deposits.More than one-half of the byproduct indium in the world is produced in southern China from VMS and SEDEX deposits, and much of the remainder is produced from zinc concentrates from MVT deposits. The Laochang deposit in Yunnan Province, China, and the VMS deposits of the Murchison greenstone belt in Limpopo Province, South Africa, provide excellent examples of indium-enriched deposits. The SEDEX deposits at Bainiuchang, China (located in southeastern Yunnan Province), and the Dabaoshan SEDEX deposit (located in the Nanling region of China) contain indium-enriched sphalerite. Another major potential source of indium occurs in the polymetallic tin-tungsten belt in the Eastern Cordillera of the Andes Mountains of Bolivia. Deposits there occur as dense arrays of narrow, elongate, indium-enriched tin oxide-polymetallic sulfide veins in volcanic rocks and porphyry stocks.Information about the behavior of germanium and indium in the environment is limited. In surface weathering environments, germanium and indium may dissolve from host minerals and form complexes with chloride, fluoride, hydroxide, organic matter, phosphate, or sulfate compounds. The tendency for germanium and indium to be dissolved and transported largely depends upon the pH and temperature of the weathering solutions. Because both elements are commonly concentrated in sulfide minerals, they can be expected to be relatively mobile in acid mine drainage where oxidative dissolution of sulfide minerals releases metals and sulfuric acid, resulting in acidic pH values that allow higher concentrations of metals to be dissolved into solution.

  17. Skylab M518 multipurpose furnace convection analysis

    NASA Technical Reports Server (NTRS)

    Bourgeois, S. V.; Spradley, L. W.

    1975-01-01

    An analysis was performed of the convection which existed on ground tests and during skylab processing of two experiments: vapor growth of IV-VI compounds growth of spherical crystals. A parallel analysis was also performed on Skylab experiment indium antimonide crystals because indium antimonide (InSb) was used and a free surface existed in the tellurium-doped Skylab III sample. In addition, brief analyses were also performed of the microsegregation in germanium experiment because the Skylab crystals indicated turbulent convection effects. Simple dimensional analysis calculations and a more accurate, but complex, convection computer model, were used in the analysis.

  18. Geochemistry and petrology of the indium-bearing polymetallic skarn ores at Pitkäranta, Ladoga Karelia, Russia

    NASA Astrophysics Data System (ADS)

    Valkama, M.; Sundblad, K.; Cook, N. J.; Ivashchenko, V. I.

    2016-08-01

    The historic mining district of Pitkäranta in the Ladoga region, Fennoscandian Shield, was exploited for Fe, Cu, Zn, Pb, Sn and Ag in the nineteenth to twentieth centuries. The Pitkäranta region is dominated by Palaeoproterozoic supracrustal rocks, which, together with gneissic Archaean dome structures, constitute an allochthonous terrane complex that amalgamated to the Archaean continent during the Svecokarelian orogeny at 1.9-1.8 Ga. This crustal complex was intruded by 1.8 Ga Late orogenic granites, 1.54 Ga anorogenic rapakivi granites and 1.45 Ga dolerites. The polymetallic skarn ores of Pitkäranta extend over a 25-km-long zone in Palaeoproterozoic supracrustal rocks and formed from hydrothermal solutions, which emanated from the anorogenic rapakivi granites and reacted with marble layers. Four major ore types are recognised after the dominating metal: Fe, Cu, Sn and Zn, respectively. These types are not restricted to individual mines or mine fields but represent end members in zonation patterns within each ore body. Pitkäranta was the second discovery site in the world for indium but has been without modern documentation for more than 75 years. The indium contents in the ores are up to 600 ppm, in most cases sphalerite-hosted. The only roquesite-bearing sample in this study had an indium grade of 291 ppm and an In/Zn ratio of 51 (close to the criteria for the limiting conditions for creating an In-rich mineral). The Pitkäranta ores have a potential for future small-scale exploitation, but all such plans are hampered by high contents if Bi, Cd and As.

  19. An Atom-Economic and Selective Ruthenium-Catalyzed Redox Isomerization of Propargylic Alcohols. An Efficient Strategy for the Synthesis of Leukotrienes

    PubMed Central

    Trost, Barry M.; Livingston, Robert C.

    2008-01-01

    Catalytic ruthenium complexes in conjunction with an indium cocatalyst and Bronsted acid isomerize primary and secondary propargylic alcohols in good yields to provide trans enals and enones exclusively. Readily available indenylbis(triphenylphosphine)ruthenium chloride in the presence of indium triflate and camphorsulfonic acid give the best turnover numbers and reactivity with the broadest range of substrates. Deuterium labeling experiments suggest that the process occurs through propargylic hydride migration followed by protic cleavage of the resultant vinylruthenium intermediate. Application of this method to the synthesis of leukotriene B4 demonstrates its utility and extraordinary selectivity. PMID:18702463

  20. Synthesis, Characterization, and Processing of Copper, Indium, and Gallium Dithiocarbamates for Energy Conversion Applications

    NASA Technical Reports Server (NTRS)

    Duraj, S. A.; Duffy, N. V.; Hepp, A. F.; Cowen, J. E.; Hoops, M. D.; Brothrs, S. M.; Baird, M. J.; Fanwick, P. E.; Harris, J. D.; Jin, M. H.-C.

    2009-01-01

    Ten dithiocarbamate complexes of indium(III) and gallium(III) have been prepared and characterized by elemental analysis, infrared spectra and melting point. Each complex was decomposed thermally and its decomposition products separated and identified with the combination of gas chromatography/mass spectrometry. Their potential utility as photovoltaic materials precursors was assessed. Bis(dibenzyldithiocarbamato)- and bis(diethyldithiocarbamato)copper(II), Cu(S2CN(CH2C6H5)2)2 and Cu(S2CN(C2H5)2)2 respectively, have also been examined for their suitability as precursors for copper sulfides for the fabrication of photovoltaic materials. Each complex was decomposed thermally and the products analyzed by GC/MS, TGA and FTIR. The dibenzyl derivative complex decomposed at a lower temperature (225-320 C) to yield CuS as the product. The diethyl derivative complex decomposed at a higher temperature (260-325 C) to yield Cu2S. No Cu containing fragments were noted in the mass spectra. Unusual recombination fragments were observed in the mass spectra of the diethyl derivative. Tris(bis(phenylmethyl)carbamodithioato-S,S'), commonly referred to as tris(N,N-dibenzyldithiocarbamato)indium(III), In(S2CNBz2)3, was synthesized and characterized by single crystal X-ray crystallography. The compound crystallizes in the triclinic space group P1(bar) with two molecules per unit cell. The material was further characterized using a novel analytical system employing the combined powers of thermogravimetric analysis, gas chromatography/mass spectrometry, and Fourier transform infrared (FT-IR) spectroscopy to investigate its potential use as a precursor for the chemical vapor deposition (CVD) of thin film materials for photovoltaic applications. Upon heating, the material thermally decomposes to release CS2 and benzyl moieties in to the gas phase, resulting in bulk In2S3. Preliminary spray CVD experiments indicate that In(S2CNBz2)3 decomposed on a Cu substrate reacts to produce stoichiometric CuInS2 films.

  1. Preparation and Single-Crystal X-Ray Structures of Four Related Mixed-Ligand 4-Methylpyridine Indium Halide Complexes

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Clark, Eric B.; Schupp, John D.; Williams, Jennifer N.; Duraj, Stan A.; Fanwick, Philip E.

    2013-01-01

    We describe the structures of four related indium complexes obtained during synthesis of solid-state materials precursors. Indium adducts of halides and 4-methylpyridine, InX3(pic)3 (X = Cl, Br; pic = 4-methylpyridine) consist of octahedral molecules with meridional (mer) geometry. Crystals of mer-InCl3(pic)3 (1) are triclinic, space group P1(bar) (No. 2), with a = 9.3240(3), b = 13.9580(6), c = 16.7268 (7) A, alpha = 84.323(2), beta = 80.938(2), gamma = 78.274(3)Z = 4, R = 0.035 for 8820 unique reflections. Crystals of mer-InBr3(pic)3 (2) are monoclinic, space group P21/n (No. 14), with a = 15.010(2), b = 19.938(2), c = 16.593(3), beta = 116.44(1)Z = 8, R = 0.053 for 4174 unique reflections. The synthesis and structures of related compounds with phenylsulfide (chloride) (3) and a dimeric complex with bridging hydroxide (bromide) (4) coordination is also described. Crystals of trans-In(SC6H5)Cl2(pic)3 (3) are monoclinic, space group P21/n (No. 14), with a = 9.5265(2), b = 17.8729(6), c = 13.8296(4), beta = 99.7640(15)Z = 4, R = 0.048 for 5511 unique reflections. Crystals of [In(mu-OH)Br2(pic)22 (4) are tetragonal, space group = I41cd (No. 110) with a = 19.8560(4), b = 19.8560(4), c = 25.9528(6), Z = 8, R = 0.039 for 5982 unique reflections.

  2. Purely electronic mechanism of electrolyte gating of indium tin oxide thin films

    DOE PAGES

    Leng, X.; Bozovic, I.; Bollinger, A. T.

    2016-08-10

    Epitaxial indium tin oxide films have been grown on both LaAlO 3 and yttria-stabilized zirconia substrates using RF magnetron sputtering. Electrolyte gating causes a large change in the film resistance that occurs immediately after the gate voltage is applied, and shows no hysteresis during the charging/discharging processes. When two devices are patterned next to one another and the first one gated through an electrolyte, the second one shows no changes in conductance, in contrast to what happens in materials (like tungsten oxide) susceptible to ionic electromigration and intercalation. These findings indicate that electrolyte gating in indium tin oxide triggers amore » pure electronic process (electron depletion or accumulation, depending on the polarity of the gate voltage), with no electrochemical reactions involved. Electron accumulation occurs in a very thin layer near the film surface, which becomes highly conductive. These results contribute to our understanding of the electrolyte gating mechanism in complex oxides and may be relevant for applications of electric double layer transistor devices.« less

  3. Solvothermal indium fluoride chemistry: Syntheses and crystal structures of K{sub 5}In{sub 3}F{sub 14}, beta-(NH{sub 4}){sub 3}InF{sub 6} and [NH{sub 4}]{sub 3}[C{sub 6}H{sub 21}N{sub 4}]{sub 2}[In{sub 4}F{sub 21}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayasundera, Anil C.A.; Goff, Richard J.; Li Yang

    2010-02-15

    The solvothermal syntheses and crystal structures of three indium fluorides are presented. K{sub 5}In{sub 3}F{sub 14} (1) and beta-(NH{sub 4}){sub 3}InF{sub 6} (2) are variants on known inorganic structure types chiolite and cryolite, respectively, with the latter exhibiting a complex and apparently novel structural distortion. [NH{sub 4}]{sub 3}[C{sub 6}H{sub 21}N{sub 4}]{sub 2}[In{sub 4}F{sub 21}] (3) represents a new hybrid composition displaying a unique trimeric metal fluoride building unit. - Graphical abstract: Solvothermal synthesis has been used to prepare three indium fluorides, including a novel hybrid material containing a unique [In{sub 3}F{sub 15}] trimer templated by tren.

  4. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    DOEpatents

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  5. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    DOEpatents

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  6. Atomic layer deposition of indium oxide thin film from a liquid indium complex containing 1-dimethylamino-2-methyl-2-propoxy ligands

    NASA Astrophysics Data System (ADS)

    Han, Jeong Hwan; Jung, Eun Ae; Kim, Hyo Yeon; Kim, Da Hye; Park, Bo Keun; Park, Jin-Seong; Son, Seung Uk; Chung, Taek-Mo

    2016-10-01

    In2O3 thin films were grown from a newly developed, liquid, homoleptic, In-based complex, tris(1-dimethylamino-2-methyl-2-propoxy)indium [In(dmamp)3], and O3 by atomic layer deposition (ALD) at growth temperatures of 150-200 °C. In(dmamp)3 exhibited single-step evaporation with negligible residue and excellent thermal stability between 30 and 250 °C. The self-limiting surface reaction of In2O3 during ALD was demonstrated by varying the In(dmamp)3 and O3 pulse lengths, with a growth rate of 0.027 nm/cycle achieved at 200 °C. The In2O3 films grown at temperatures over 175 °C exhibited negligible concentrations of impurities, whereas that grown below 175 °C had concentrations of residual C of 6-8 at.%. Glancing angle X-ray diffraction revealed that the In2O3 films were polycrystalline in nature when the deposition temperature was greater than 200 °C. The In2O3 films grown at 150-200 °C exhibited carrier concentrations of 1.5 × 1018-6.6 × 1019 cm-3, resistivities of 15.1-2 × 10-3 Ω cm, and Hall mobilities of 0.8-42 cm2/(V s).

  7. Use of and Occupational Exposure to Indium in the United States

    PubMed Central

    Hines, Cynthia J.; Roberts, Jennifer L.; Andrews, Ronnee N.; Jackson, Matthew V.; Deddens, James A.

    2015-01-01

    Indium use has increased greatly in the past decade in parallel with the growth of flat-panel displays, touchscreens, optoelectronic devices, and photovoltaic cells. Much of this growth has been in the use of indium tin oxide (ITO). This increased use has resulted in more frequent and intense exposure of workers to indium. Starting with case reports and followed by epidemiological studies, exposure to ITO has been linked to serious and sometimes fatal lung disease in workers. Much of this research was conducted in facilities that process sintered ITO, including manufacture, grinding, and indium reclamation from waste material. Little has been known about indium exposure to workers in downstream applications. In 2009–2011, the National Institute for Occupational Safety and Health (NIOSH) contacted 89 potential indium-using companies; 65 (73%) responded, and 43 of the 65 responders used an indium material. Our objective was to identify current workplace applications of indium materials, tasks with potential indium exposure, and exposure controls being used. Air sampling for indium was either conducted by NIOSH or companies provided their data for a total of 63 air samples (41 personal, 22 area) across 10 companies. Indium exposure exceeded the NIOSH recommended exposure limit (REL) of 0.1 mg/m3 for certain methods of resurfacing ITO sputter targets, cleaning sputter chamber interiors, and in manufacturing some inorganic indium compounds. Indium air concentrations were low in sputter target bonding with indium solder, backside thinning and polishing of fabricated indium phosphide-based semiconductor devices, metal alloy production, and in making indium-based solder pastes. Exposure controls such as containment, local exhaust ventilation (LEV), and tool-mounted LEV can be effective at reducing exposure. In conclusion, occupational hygienists should be aware that the manufacture and use of indium materials can result in indium air concentrations that exceed the NIOSH REL. Given recent findings of adverse health effects in workers, research is needed to determine if the current REL sufficiently protects workers against indium-related diseases. PMID:24195539

  8. Materials flow of indium in the United States in 2008 and 2009

    USGS Publications Warehouse

    Goonan, Thomas G.

    2012-01-01

    Indium is a material that has many applications. It is used by anyone who watches television or views a computer screen. It is found in solar energy arrays and in soldering applications that are required to be lead free. In 2009, about 550 metric tons (t) of indium metal was produced from primary sources world-wide; it was estimated that the United States consumed about 110 t of indium metal (20 percent of world primary production). However, when imports of consumer products that contain indium are considered, the United States consumed about 200 t of indium (36 percent of world primary production). When one considers the recovery from the low-efficiency sputtering process that coats indium-tin oxide onto glass and other surfaces, the recycling rate (within the manufacturing process that uses indium-tin oxide in flat panel displays approaches 36 percent. However, indium recovery from old scrap generated from end-of-life consumer products is not sufficiently economic to add significantly to secondary production. Between 1988 and 2010, indium prices averaged $381 per kilogram (in constant 2000 dollars). However, prices have been quite volatile (deviating from the average of $381 per kilogram by ±$199 per kilogram, a 52 percent difference from the average), reflecting short-term disequilibrium of supply and demand but also responsiveness of supply to demand. The dynamics of zinc smelting govern the primary supply of indium because indium is a byproduct of zinc smelting. Secondary indium supply, which accounts for about one-half of total indium supply, is governed by indium prices and technological advances in recovery. Indium demand is expected to grow because the number and volume of cutting edge technology applications that depend on indium are expected to grow.

  9. Charge Transfer Between Quantum Dots and Peptide-Coupled Redox Complexes

    DTIC Science & Technology

    2009-01-01

    labeled with reactive metal complexes includ- ing a ruthenium chelate (Ru), a bis-bipyridine ruthe- nium chelate (ruthenium-bpy), and a ferrocene metal...of unconjugated QDs and the metal complex–labeled peptides immobilized on indium tin oxide (ITO) electrodes. The ruthenium and ferrocene peptide...Ag/AgCI E v s. N H E E v s. v ac uu m (e V ) Ruthenium Ferrocene Ruthenium-bpy DHLA QDs DHLA-PEG QDs Quantum dot Metal complex CB VB E0X of QDs Fe

  10. Influence of Metallic Indium Concentration on the Properties of Indium Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Kalkan, N.

    2016-10-01

    Current-voltage characteristics of indium-embedded indium oxide thin films (600-850 Å), with Ag electrodes approximately 1000 Å thick, prepared by reactive evaporation of pure metallic indium in partial air pressure have been studied for substrate temperatures between 50 and 125°C. The optical properties of these films have also been investigated as a function of metallic indium concentration and substrate temperature. I-V characteristics of all the samples are non-ohmic, independent of metallic indium concentration. The conductivity of the films increases but the optical transmission decreases with increasing metallic indium concentration. Metallic indium concentration was found to be an important parameter affecting the film properties. Furthermore, two possible conduction mechanisms are proposed.

  11. Method to Improve Indium Bump Bonding via Indium Oxide Removal Using a Multi-Step Plasma Process

    NASA Technical Reports Server (NTRS)

    Dickie, Matthew R. (Inventor); Nikzad, Shouleh (Inventor); Greer, H. Frank (Inventor); Jones, Todd J. (Inventor); Vasquez, Richard P. (Inventor); Hoenk, Michael E. (Inventor)

    2012-01-01

    A process for removing indium oxide from indium bumps in a flip-chip structure to reduce contact resistance, by a multi-step plasma treatment. A first plasma treatment of the indium bumps with an argon, methane and hydrogen plasma reduces indium oxide, and a second plasma treatment with an argon and hydrogen plasma removes residual organics. The multi-step plasma process for removing indium oxide from the indium bumps is more effective in reducing the oxide, and yet does not require the use of halogens, does not change the bump morphology, does not attack the bond pad material or under-bump metallization layers, and creates no new mechanisms for open circuits.

  12. Patents and Licenses Through 1994,

    DTIC Science & Technology

    1994-01-01

    Chiang was employed at Honeywell Radiation Center, where she worked on mercury cadmium telluride (HgCdTe) and gallium phosphide photoconductive...5,251,225 Gallium Indium Arsenide Phosphide 4,258,375; 4,372,791; 4,718,070;4,722,092 Gallium Indium Arsenide Phosphide /Indium Phosphide ...Indirect-Gap Semiconductor 3,636,471 Indium Arsenide 2,990,259 Indium Gallium Arsenide 4,746,620 Indium Phosphide 2,990,259; 4,376,285

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocchetti, Laura; Amato, Alessia; Fonti, Viviana

    Graphical abstract: Display Omitted - Highlights: • End-of-life LCD panels represent a source of indium. • Several experimental conditions for indium leaching have been assessed. • Indium is completely extracted with 2 M sulfuric acid at 80 °C for 10 min. • Cross-current leaching improves indium extraction and operating costs are lowered. • Benefits to the environment come from reduction of CO{sub 2} emissions and reagents use. - Abstract: Indium is a critical element mainly produced as a by-product of zinc mining, and it is largely used in the production process of liquid crystal display (LCD) panels. End-of-life LCDs representmore » a possible source of indium in the field of urban mining. In the present paper, we apply, for the first time, cross-current leaching to mobilize indium from end-of-life LCD panels. We carried out a series of treatments to leach indium. The best leaching conditions for indium were 2 M sulfuric acid at 80 °C for 10 min, which allowed us to completely mobilize indium. Taking into account the low content of indium in end-of-life LCDs, of about 100 ppm, a single step of leaching is not cost-effective. We tested 6 steps of cross-current leaching: in the first step indium leaching was complete, whereas in the second step it was in the range of 85–90%, and with 6 steps it was about 50–55%. Indium concentration in the leachate was about 35 mg/L after the first step of leaching, almost 2-fold at the second step and about 3-fold at the fifth step. Then, we hypothesized to scale up the process of cross-current leaching up to 10 steps, followed by cementation with zinc to recover indium. In this simulation, the process of indium recovery was advantageous from an economic and environmental point of view. Indeed, cross-current leaching allowed to concentrate indium, save reagents, and reduce the emission of CO{sub 2} (with 10 steps we assessed that the emission of about 90 kg CO{sub 2}-Eq. could be avoided) thanks to the recovery of indium. This new strategy represents a useful approach for secondary production of indium from waste LCD panels.« less

  14. Cross-current leaching of indium from end-of-life LCD panels.

    PubMed

    Rocchetti, Laura; Amato, Alessia; Fonti, Viviana; Ubaldini, Stefano; De Michelis, Ida; Kopacek, Bernd; Vegliò, Francesco; Beolchini, Francesca

    2015-08-01

    Indium is a critical element mainly produced as a by-product of zinc mining, and it is largely used in the production process of liquid crystal display (LCD) panels. End-of-life LCDs represent a possible source of indium in the field of urban mining. In the present paper, we apply, for the first time, cross-current leaching to mobilize indium from end-of-life LCD panels. We carried out a series of treatments to leach indium. The best leaching conditions for indium were 2M sulfuric acid at 80°C for 10min, which allowed us to completely mobilize indium. Taking into account the low content of indium in end-of-life LCDs, of about 100ppm, a single step of leaching is not cost-effective. We tested 6 steps of cross-current leaching: in the first step indium leaching was complete, whereas in the second step it was in the range of 85-90%, and with 6 steps it was about 50-55%. Indium concentration in the leachate was about 35mg/L after the first step of leaching, almost 2-fold at the second step and about 3-fold at the fifth step. Then, we hypothesized to scale up the process of cross-current leaching up to 10 steps, followed by cementation with zinc to recover indium. In this simulation, the process of indium recovery was advantageous from an economic and environmental point of view. Indeed, cross-current leaching allowed to concentrate indium, save reagents, and reduce the emission of CO2 (with 10 steps we assessed that the emission of about 90kg CO2-Eq. could be avoided) thanks to the recovery of indium. This new strategy represents a useful approach for secondary production of indium from waste LCD panels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Electronic structure of indium-tungsten-oxide alloys and their energy band alignment at the heterojunction to crystalline silicon

    NASA Astrophysics Data System (ADS)

    Menzel, Dorothee; Mews, Mathias; Rech, Bernd; Korte, Lars

    2018-01-01

    The electronic structure of thermally co-evaporated indium-tungsten-oxide films is investigated. The stoichiometry is varied from pure tungsten oxide to pure indium oxide, and the band alignment at the indium-tungsten-oxide/crystalline silicon heterointerface is monitored. Using in-system photoelectron spectroscopy, optical spectroscopy, and surface photovoltage measurements, we show that the work function of indium-tungsten-oxide continuously decreases from 6.3 eV for tungsten oxide to 4.3 eV for indium oxide, with a concomitant decrease in the band bending at the hetero interface to crystalline silicon than indium oxide.

  16. Development of InP solid state detector and liquid scintillator containing metal complex for measurement of pp/7Be solar neutrinos and neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Fukuda, Yoshiyuki; Moriyama, Shigetaka

    2012-07-01

    A large volume solid state detector using a semi-insulating Indium Phosphide (InP) wafer have been developed for measurement of pp/7Be solar neutrinos. Basic performance such as the charge collection efficiency and the energy resolution were measured by 60% and 20%, respectively. In order to detect two gammas (115keV and 497keV) from neutrino capture, we have designed hybrid detector which consist InP detector and liquid xenon scintillator for IPNOS experiment. New InP detector with thin electrode (Cr 50Å- Au 50Å). For another possibility, an organic liquid scintillator containing indium complex and zirconium complex were studied for a measurement of low energy solar neutrinos and neutrinosless double beta decay, respectively. Benzonitrile was chosen as a solvent because of good solubility for the quinolinolato complexes (2 wt%) and of good light yield for the scintillation induced by gamma-ray irradiation. The photo-luminescence emission spectra of InQ3 and ZrQ4 in benzonitrile was measured and liquid scintillator cocktail using InQ3 and ZrQ4 (50mg) in benzonitrile solutions (20 mL) with secondary scintillators with PPO (100mg) and POPOP (10mg) was made. The energy spectra of incident gammas were measured, and they are first results of the gamma-ray energy spectra using luminescent of metal complexes.

  17. Coordination Complexes of Titanium(IV) and Indium(III) Phthalocyanines with Carbonyl-Containing Dyes: The Formation of Singly Bonded Anionic Squarylium Dimers.

    PubMed

    Konarev, Dmitri V; Kuzmin, Alexey V; Khasanov, Salavat S; Fatalov, Alexey M; Yudanova, Evgenia I; Lyubovskaya, Rimma N

    2018-04-14

    Reduction methods for the preparation of coordination complexes of titanium(IV) and indium(III) phthalocyanines (Pc) with organic dyes such as indigo, thioindigo, and squarylium dye III (SQ) have been developed, which allow one to obtain crystalline {cryptand(K + )}{(cis-indigo-O,O) 2- Ti IV (Pc 2- )}(Cl - )⋅C 6 H 4 Cl 2 (1), {cryptand(K + )}{(cis-thioindigo-O,O) 2- In III (Pc 2- )} - ⋅C 6 H 4 Cl 2 (2), and {cryptand(K + )}{[(SQ) 2 -O,O] 2- In III (Pc 2- )} - ⋅3.5 C 6 H 4 Cl 2 (3) complexes. The formation of these complexes is accompanied by the reduction of the starting dyes to the anionic state. Transition of trans-indigo or trans-thioindigo to the cis conformation in 1 and 2 provides coordination of both carbonyl oxygen atoms of the dye to Ti IV Pc or In III Pc. SQ is reduced to the radical anion state and forms unusual diamagnetic singly bonded (SQ - ) 2 dimers in 3. These dimers have two closely positioned carbonyl oxygen atoms coordinated to In III Pc. Dianionic Pc 2- macrocycles have been found in 1-3. The complexes contain two chromophore molecules at one metal center. However, their optical spectra are defined mainly by absorption bands of the metal phthalocyanines. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Regularly arranged indium islands on glass/molybdenum substrates upon femtosecond laser and physical vapor deposition processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ringleb, F.; Eylers, K.; Teubner, Th.

    2016-03-14

    A bottom-up approach is presented for the production of arrays of indium islands on a molybdenum layer on glass, which can serve as micro-sized precursors for indium compounds such as copper-indium-gallium-diselenide used in photovoltaics. Femtosecond laser ablation of glass and a subsequent deposition of a molybdenum film or direct laser processing of the molybdenum film both allow the preferential nucleation and growth of indium islands at the predefined locations in a following indium-based physical vapor deposition (PVD) process. A proper choice of laser and deposition parameters ensures the controlled growth of indium islands exclusively at the laser ablated spots. Basedmore » on a statistical analysis, these results are compared to the non-structured molybdenum surface, leading to randomly grown indium islands after PVD.« less

  19. Control banding assessment of workers' exposure to indium and its compounds in 13 Japanese indium plants.

    PubMed

    Higashikubo, Ichiro; Arito, Heihachiro; Ando, Kenji; Araki, Akihiro; Shimizu, Hidesuke; Sakurai, Haruhiko

    2018-05-25

    This study aimed to assess workers' exposure to indium and its compounds in 55 indium-handling operations among 13 Japanese plants. The surveyed plants were selected from indium-manufacturing plants whose annual indium production exceeded 500 kg. The Control of Substances Hazardous to Health (COSHH) Essentials control banding toolkit, which contains simple scales for hazard levels, quantities in daily use, and "dustiness" characteristics, was used to assess generic risks of indium-handling operations. The operations were then classified into one of four Control Approaches (CAs). There were 35 indium-handling operations classified into CA4 (requires expert advice) and 16 grouped into CA3 (requires containment). There were three operations classified into CA2 (requires engineering controls) and only one into CA1 (requires good general ventilation (GV) and working practices). Of the 51 operations classified as CA4 and CA3, 36 were found to be improperly equipped with local exhaust ventilation, and the remaining 15 operations solely relied on GV practices. Respiratory protective equipment (RPE) used in the 13 indium plants was examined with reference to the recommendations of the COSHH Essentials and Japan's Technical Guidelines. Our findings suggest that stringent engineering control measures and respiratory protection from indium dust are needed to improve indium-handling operations. Our results show that the most common control approach for Japanese indium-handling operations is to require expert advice, including worker health checks for respiratory diseases and exposure measurement by air sampling.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Ke; Wang, Xiaoyun; Liu, Jingjing

    Highlights: • Cu/In bilayer was fabricated by BMSMW deposition technique. • High quality CIS film was successfully fabricated. • A preferable ratio of Cu:In:S close to 1:1:2 was approached. • The SPV response as high as 6 mV was achieved. - Abstract: High-quality CuInS{sub 2} (CIS) thin films have been fabricated by sulfurization of electrodeposited copper–indium bilayer. A novel bell-like wave modulated square wave (BWMSW) electrodeposition technique is employed for the deposition of copper thin film. Three independent parameters (current or potential, frequency, duty cycle) are available for the BWMSW electrodeposition, which is different from the traditional electrodeposition technique withmore » only one adjustable parameter (current or potential). The influences of deposition parameters such as frequency, duty cycle and the concentration of complexing agent are investigated. Benefited from the high quality copper film obtained by the BWMSW technique, the indium film is electrodeposited successfully on the copper layer to form a compact copper–indium alloy bilayer. After sulfurized at 600 °C for 60 min, the phase pure CIS film is obtained with better crystallinity. The structures, morphologies and optoelectronic properties of the CIS film are also characterized.« less

  1. An evaluation of the potential yield of indium recycled from end-of-life LCDs: A case study in China.

    PubMed

    Wang, Hengguang; Gu, Yifan; Wu, Yufeng; Zhang, Yi-Nan; Wang, Wei

    2015-12-01

    With the advances in electronics and information technology, China has gradually become the largest consumer of household appliances (HAs). Increasingly, end-of-life (EOL) HAs are generated in China. EOL recycling is a promising strategy to reduce dependence on virgin production, and indium is one of the recycled substances. The potential yield of indium recycling has not been systematically evaluated in China thus far. This paper estimates the potential yield of recycled indium from waste liquid crystal displays (LCDs) in China during the period from 2015 to 2030. The quantities of indium that will be used to produce LCDs are also predicted. The estimates focus on the following three key LCD waste sources: LCD TVs, desktop computers and portable computers. The results show that the demand for indium will be increasing in the near future. It is expected that 350 tonnes of indium will be needed to produce LCDs in China in 2035. The indium recycled from EOL LCDs, however, is much less than the demand and only accounts for approximately 48% of the indium demand. The sustainable index of indium is always less than 0.5. Therefore, future indium recycling efforts should focus on the development of recycling technology and the improvement of the relevant policy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Main types of rare-metal mineralization in Karelia

    NASA Astrophysics Data System (ADS)

    Ivashchenko, V. I.

    2016-03-01

    Rare-metal mineralization in Karelia is represented by V, Be, U deposits and In, Re, Nb, Ta, Li, Ce, La, and Y occurrences, which are combined into 17 types of magmatic, pegmatite, albitite-greisen, hydrothermal-metasomatic, sedimentary, and epigenetic groups. The main vanadium resources are localized in the Onega ore district. These are deposits of the Padma group (556 kt) and the Pudozhgorsky complex (1.5 Mt). The REE occurrences are primarily characterized by Ce-La specialization. The perspective of HREE is related to the Eletozero-Tiksheozero alkaline and Salmi anorthosite-rapakivi granite complexes. Rare-metal pegmatites bear complex mineralization with insignificant low-grade resources. The Lobash and Jalonvaara porphyry Cu-Mo deposits are potential sources of rhenium: Re contents in molybdenite are 20-70 and 50-246 ppm and hypothetical resources are 12 and 7.5 t, respectively. The high-grade (˜100 ppm) and metallogenic potential of indium (˜2400 t) make the deposits of the Pitkäranta ore district leading in the category of Russian ore objects most prospective for indium. Despite the diverse rare-metal mineralization known in Karelia, the current state of this kind of mineral commodities at the world market leaves real metallogenic perspective only for V, U, Re, In, and Nb.

  3. The influence of random indium alloy fluctuations in indium gallium nitride quantum wells on the device behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Tsung-Jui; Wu, Yuh-Renn, E-mail: yrwu@ntu.edu.tw; Shivaraman, Ravi

    2014-09-21

    In this paper, we describe the influence of the intrinsic indium fluctuation in the InGaN quantum wells on the carrier transport, efficiency droop, and emission spectrum in GaN-based light emitting diodes (LEDs). Both real and randomly generated indium fluctuations were used in 3D simulations and compared to quantum wells with a uniform indium distribution. We found that without further hypothesis the simulations of electrical and optical properties in LEDs such as carrier transport, radiative and Auger recombination, and efficiency droop are greatly improved by considering natural nanoscale indium fluctuations.

  4. Investigation of an Electrochemical Method for Separation of Copper, Indium, and Gallium from Pretreated CIGS Solar Cell Waste Materials

    PubMed Central

    Gustafsson, Anna M. K.; Björefors, Fredrik; Steenari, Britt-Marie

    2015-01-01

    Recycling of the semiconductor material copper indium gallium diselenide (CIGS) is important to ensure a future supply of indium and gallium, which are relatively rare and therefore expensive elements. As a continuation of our previous work, where we recycled high purity selenium from CIGS waste materials, we now show that copper and indium can be recycled by electrodeposition from hydrochloric acid solutions of dissolved selenium-depleted material. Suitable potentials for the reduction of copper and indium were determined to be −0.5 V and −0.9 V (versus the Ag/AgCl reference electrode), respectively, using cyclic voltammetry. Electrodeposition of first copper and then indium from a solution containing the dissolved residue from the selenium separation and ammonium chloride in 1 M HCl gave a copper yield of 100.1 ± 0.5% and an indium yield of 98.1 ± 2.5%. The separated copper and indium fractions contained no significant contamination of the other elements. Gallium remained in solution together with a small amount of indium after the separation of copper and indium and has to be recovered by an alternative method since electrowinning from the chloride-rich acid solution was not effective. PMID:26347901

  5. Theoretical Study of Indium Compounds of Interest for Organometallic Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Cardelino, B. H.; Moore, C. E.; Cardelino, C. A.; Frazier, D. O.; Backmann, K. J.

    2000-01-01

    The structural. electronic and therinochemical properties of indium compounds which are of interest in halide transport and organometallic chemical vapor deposition processes have been studied by ab initio and statistical mechanics methods. The compounds reported include: indium halides and hydrides (InF, InCl, InCl3, InH, InH2, InH3); indium clusters (In2, In3); methylindium, dimethylindium, and their hydrogen derivatives [In(CH3), In(CH3)H, In(CH3)H2, In(CH3)2, In(CH3)2H]; dimethyl-indium dimer [In2(CH3)4], trimethyl-indium [In(CH3)3]; dehydrogenated methyl, dimethyl and trimethylindium [In(CH3)2CH2, In(CH3)CH2, In(CH2)], trimethylindium adducts with ammonia, trimethylamine and hydrazine [(CH3)3In:NH3, (CH3)3In:N(CH3)3, (CH3)3In:N(H2)N(H2)]; dimethylamino-indium and methylimino-indium [In(CH3)2(NH2), In(CH3)(NH)]; indium nitride and indium nitride dimer (InN, In2N2), indium phosphide, arsenide and antimonide ([InP, InAs, InSb). The predicted electronic properties are based on density functional theory calculations; the calculated thermodynamic properties are reported following the format of the JANAF (Joint Army, Navy, NASA, Air Force) Tables. Equilibrium compositions at two temperatures (298 and 1000 K) have been analyzed for groups of competing simultaneous reactions.

  6. 40 CFR 421.190 - Applicability: Description of the secondary indium subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE... subcategory. The provisions of this subpart are applicable to discharges resulting from the production of indium at secondary indium facilities processing spent electrolyte solutions and scrap indium metal raw...

  7. The precipitation of indium at elevated pH in a stream influenced by acid mine drainage

    USGS Publications Warehouse

    White, Sarah Jane O.; Hussain, Fatima A.; Hemond, Harold F.; Sacco, Sarah A.; Shine, James P.; Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.

    2017-01-01

    Indium is an increasingly important metal in semiconductors and electronics and has uses in important energy technologies such as photovoltaic cells and light-emitting diodes (LEDs). One significant flux of indium to the environment is from lead, zinc, copper, and tin mining and smelting, but little is known about its aqueous behavior after it is mobilized. In this study, we use Mineral Creek, a headwater stream in southwestern Colorado severely affected by heavy metal contamination as a result of acid mine drainage, as a natural laboratory to study the aqueous behavior of indium. At the existing pH of ~ 3, indium concentrations are 6–29 μg/L (10,000 × those found in natural rivers), and are completely filterable through a 0.45 μm filter. During a pH modification experiment, the pH of the system was raised to > 8, and > 99% of the indium became associated with the suspended solid phase (i.e. does not pass through a 0.45 μm filter). To determine the mechanism of removal of indium from the filterable and likely primarily dissolved phase, we conducted laboratory experiments to determine an upper bound for a sorption constant to iron oxides, and used this, along with other published thermodynamic constants, to model the partitioning of indium in Mineral Creek. Modeling results suggest that the removal of indium from the filterable phase is consistent with precipitation of indium hydroxide from a dissolved phase. This work demonstrates that nonferrous mining processes can be a significant source of indium to the environment, and provides critical information about the aqueous behavior of indium.

  8. Research on the effect of alkali roasting of copper dross on leaching rate of indium

    NASA Astrophysics Data System (ADS)

    Dafang, Liu; Fan, Xingxiang; Shi, Yifeng; Yang, Kunbin

    2017-11-01

    The byproduct copper dross produced during refining crude lead was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and fluorescence spectrometer (XRF), which showed that copper dross mainly contained lead, copper, zinc, arsenic, antimony, bismuth, sulfur and a small amount of indium and silver etc. The mineralogical phase change of oxidation roasting of copper dross by adding sodium hydroxide was analyzed with the help of XRD and SEM. The effects of water leaching, ratio of sodium hydroxide, roasting time, and roasting temperature on leaching rate of indium were investigated mainly. The experimental results showed that phase of lead metal and sulfides of lead, copper and zinc disappeared after oxidation roasting of copper dross by adding sodium hydroxide, new phase of oxides of lead, copper, zinc and sodium salt of arsenic and antimony appeared. Water leaching could remove arsenic, and acid leaching residue obtained was then leached with acid. The leaching rate of indium was higher 6.98% compared with alkali roasting of copper dross-acid leaching. It showed that removing arsenic by water leaching and acid leaching could increase the leaching rate of indium and be beneficial to reducing subsequent acid consumption of extracting indium by acid leaching. The roasting temperature had a significant effect on the leaching rate of indium, and leaching rate of indium increased with the rise of roasting temperature. When roasting temperature ranged from 450°C to 600°C, leaching rate of indium increased significantly with the rise of roasting temperature. When roasting temperature rose from 450°C to 600°C, leaching rate of indium increased by 60.29%. The amount of sodium hydroxide had an significant effect on the leaching rate of indium, and the leaching of indium increased with the increase of the amount of sodium hydroxide, and the leaching rate of indium was obviously higher than that of copper dross blank roasting and acid leaching.

  9. Indium Substitution Effect on the Topological Crystalline Insulator Family (Pb 1$-$xSn x)1 $-$yInyTe: Topological and Superconducting Properties

    DOE PAGES

    Zhong, Ruidan; Schneeloch, John; Li, Qiang; ...

    2017-02-16

    Topological crystalline insulators (TCIs) have been of great interest in the area of condensed matter physics. We investigated the effect of indium substitution on the crystal structure and transport properties in the TCI system (Pb 1-xSn x) 1-yIn yTe. For samples with a tin concentration x ≤ 50% , the low-temperature resisitivities show a dramatic variation as a function of indium concentration: with up to ~2% indium doping, the samples show weak-metallic behavior similar to their parent compounds; with `6% indium doping, samples have true bulk-insulating resistivity and present evidence for nontrivial topological surface states; with higher indium doping levels,more » superconductivity was observed, with a transition temperature, T c , positively correlated to the indium concentration and reaching as high as 4.7 K. We address this issue from the view of bulk electronic structure modified by the indium-induced impurity level that pins the Fermi level. The current work summarizes the indium substitution effect on (Pb,Sn)Te, and discusses the topological and superconducting aspects, which can be provide guidance for future studies on this and related systems.« less

  10. Indium Substitution Effect on the Topological Crystalline Insulator Family (Pb 1$-$xSn x)1 $-$yInyTe: Topological and Superconducting Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Ruidan; Schneeloch, John; Li, Qiang

    Topological crystalline insulators (TCIs) have been of great interest in the area of condensed matter physics. We investigated the effect of indium substitution on the crystal structure and transport properties in the TCI system (Pb 1-xSn x) 1-yIn yTe. For samples with a tin concentration x ≤ 50% , the low-temperature resisitivities show a dramatic variation as a function of indium concentration: with up to ~2% indium doping, the samples show weak-metallic behavior similar to their parent compounds; with `6% indium doping, samples have true bulk-insulating resistivity and present evidence for nontrivial topological surface states; with higher indium doping levels,more » superconductivity was observed, with a transition temperature, T c , positively correlated to the indium concentration and reaching as high as 4.7 K. We address this issue from the view of bulk electronic structure modified by the indium-induced impurity level that pins the Fermi level. The current work summarizes the indium substitution effect on (Pb,Sn)Te, and discusses the topological and superconducting aspects, which can be provide guidance for future studies on this and related systems.« less

  11. Characterization and Analysis of Indium-Doped Silicon Extrinsic Detector Material

    DTIC Science & Technology

    1980-06-01

    lines are likely to be due to donor- acceptor complexes of some type. The observation of these lines marks the first time that anyone has observed such...York, 1972. 18. R.S.C. Cobbold , Theory and Applications of Field Effect Transistors, John Wiley and Sons, New York, 1970. 19. W.N. Carr, and J.P. Mize

  12. Exposure Potential and Health Impacts of Indium and Gallium, Metals Critical to Emerging Electronics and Energy Technologies.

    PubMed

    White, Sarah Jane O; Shine, James P

    2016-12-01

    The rapid growth of new electronics and energy technologies requires the use of rare elements of the periodic table. For many of these elements, little is known about their environmental behavior or human health impacts. This is true for indium and gallium, two technology critical elements. Increased environmental concentrations of both indium and gallium create the potential for increased environmental exposure, though little is known about the extent of this exposure. Evidence is mounting that indium and gallium can have substantial toxicity, including in occupational settings where indium lung disease has been recognized as a potentially fatal disease caused by the inhalation of indium particles. This paper aims to review the basic chemistry, changing environmental concentrations, potential for human exposure, and known health effects of indium and gallium.

  13. Indium oxide based fiber optic SPR sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Sarika; Sharma, Navneet K., E-mail: navneetk.sharma@jiit.ac.in

    2016-05-06

    Surface plasmon resonance based fiber optic sensor using indium oxide layer is presented and theoretically studied. It has been found that with increase in thickness of indium oxide layer beyond 170 nm, the sensitivity of SPR sensor decreases. 170 nm thick indium oxide layer based SPR sensor holds maximum sensitivity.

  14. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN P-10...

  15. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN P-10...

  16. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN P-10...

  17. Optical and Electrical Characterization of Bulk Grown Indium-Gallium-Arsenide Alloys

    DTIC Science & Technology

    2010-03-01

    OPTICAL AND ELECTRICAL CHARACTERIZATION OF BULK GROWN INDIUM- GALLIUM -ARSENIDE ALLOYS THESIS...Government. AFIT/GAP/ENP/10-M02 OPTICAL AND ELECTRICAL CHARACTERIZATION OF BULK GROWN INDIUM- GALLIUM -ARSENIDE ALLOYS THESIS Presented to...ELECTRICAL CHARACTERIZATION OF BULK GROWN INDIUM- GALLIUM -ARSENIDE ALLOYS Austin C Bergstrom, BS 2 nd Lieutenant, USAF

  18. Early Changes in Clinical, Functional, and Laboratory Biomarkers in Workers at Risk of Indium Lung Disease

    PubMed Central

    Virji, M. Abbas; Trapnell, Bruce C.; Carey, Brenna; Healey, Terrance; Kreiss, Kathleen

    2014-01-01

    Rationale: Occupational exposure to indium compounds, including indium–tin oxide, can result in potentially fatal indium lung disease. However, the early effects of exposure on the lungs are not well understood. Objectives: To determine the relationship between short-term occupational exposures to indium compounds and the development of early lung abnormalities. Methods: Among indium–tin oxide production and reclamation facility workers, we measured plasma indium, respiratory symptoms, pulmonary function, chest computed tomography, and serum biomarkers of lung disease. Relationships between plasma indium concentration and health outcome variables were evaluated using restricted cubic spline and linear regression models. Measurements and Main Results: Eighty-seven (93%) of 94 indium–tin oxide facility workers (median tenure, 2 yr; median plasma indium, 1.0 μg/l) participated in the study. Spirometric abnormalities were not increased compared with the general population, and few subjects had radiographic evidence of alveolar proteinosis (n = 0), fibrosis (n = 2), or emphysema (n = 4). However, in internal comparisons, participants with plasma indium concentrations ≥ 1.0 μg/l had more dyspnea, lower mean FEV1 and FVC, and higher median serum Krebs von den Lungen-6 and surfactant protein-D levels. Spline regression demonstrated nonlinear exposure response, with significant differences occurring at plasma indium concentrations as low as 1.0 μg/l compared with the reference. Associations between health outcomes and the natural log of plasma indium concentration were evident in linear regression models. Associations were not explained by age, smoking status, facility tenure, or prior occupational exposures. Conclusions: In indium–tin oxide facility workers with short-term, low-level exposure, plasma indium concentrations lower than previously reported were associated with lung symptoms, decreased spirometric parameters, and increased serum biomarkers of lung disease. PMID:25295756

  19. One-step synthesis of dithiocarbamates from metal powders

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Hehemann, David G.; Duraj, Stan A.; Clark, Eric B.; Eckles, William E.; Fanwick, Phillip E.

    1994-01-01

    Neutral metal dithiocarbamate complexes (M(NR2CS2)X) are well-known precursors to metal sulfides, a class of materials with numerous technological applications. We are involved in a research effort to prepare new precursors to metal sulfides using simple, reproducible synthetic procedures. We describe the results of our synthetic and characterization studies for M = Fe, Co, Ni, Cu. and In. For example, treatment of metallic indium with tetramethylthiuram disulfide (tmtd) in 4-methylpyridine (4-Mepy) at 25 deg C produces a new homoleptic indium (III) dithiocarbamate, In(N(CH3)2CS2)3(I), in yields of over 60 percent. The indium (III) dithiocarbamate was characterized by X-ray crystallography; (I) exists in the solid state as discrete distorted-octahedral molecules. Compound (I) crystallizes in the P1bar (No. 2) space group with lattice parameters: a = 9.282(1) A, b = 10.081(1) A, c = 12.502 A, alpha = 73.91(1) deg, beta = 70.21(1) deg, gamma = 85.8(1)deg, and Z = 2. X-ray diffraction and mass spectral data were used to characterize the products of the analogous reactions with Fe, Co, Ni, and Cu. We discuss both use of dithiocarbamates as precursors and our approach to their preparation.

  20. The Availability of Indium: The Present, Medium Term, and Long Term

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lokanc, Martin; Eggert, Roderick; Redlinger, Michael

    2015-10-01

    Demand for indium is likely to increase if the growth in deployment of the copper-indium-gallium-selenide (CIGS) and III-V thin-film photovoltaic technologies accelerates. There are concerns about indium supply constraints since it is relatively rare element in the earth's crust and because it is produced exclusively as a byproduct.

  1. 10 CFR Appendix C to Part 20 - Quantities 1 of Licensed Material Requiring Labeling

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Indium-115 100 Indium-116m 1,000 Indium-117m 1,000 Indium-117 1,000 Indium-119m 1,000 Tin-110 100 Tin-111 1,000 Tin-113 100 Tin-117m 100 Tin-119m 100 Tin-121m 100 Tin-121 1,000 Tin-123m 1,000 Tin-123 10 Tin-125 10 Tin-126 10 Tin-127 1,000 Tin-128 1,000 Antimony-115 1,000 Antimony-116m 1,000 Antimony-116 1...

  2. POLAROGRAPHIC BEHAVIOUR OF INDIUM IN THE PRESENCE OF TRIHYDROXYGLUTARIC ACID (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinogradova, E.N.; An, C.

    1961-09-01

    The polarographic behavtor ot indium in the presence of trihydroxyglutaric acid in acid, nautral, and alkalino media was studied. The vaIue of the half-wave potental of a simple indium ion was determined in HClO/sub 4/ by the half-peak: potential during the anodic dissolutaon of and indium from an amalgam. The half-wave potential is eqia; tp 0.488 v. The effect of the concentration of trihydroxyglutaric acido on the E/sub 1/2/ of indium was studied. It was found that the regular shift of E/sub 1/2/ on changing the concentration of trihydroxyglutaric acid is observed only at pH 4 and pH ll. Themore » coordination number p = 2 and the unstability constant for the indium-trihydroxyglutaric aeid eonnplex at pH 4 were found. K (mean) is (9.73 plus or minus 0.82) x 10/sup - 11/. It was established that the process of indium reduction at pH 11 is irreversible. A method was suggested for the polarographic determination of indium and cadmium, when present together, in trihydroxyglutaric acid at pH 3 and pH 9. (auth)« less

  3. Advanced Computational Modeling of Vapor Deposition in a High-Pressure Reactor

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.; Moore, Craig E.; McCall, Sonya D.; Cardelino, Carlos A.; Dietz, Nikolaus; Bachmann, Klaus

    2004-01-01

    In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties.

  4. Advanced Computational Modeling of Vapor Deposition in a High-pressure Reactor

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.; Moore, Craig E.; McCall, Sonya D.; Cardelino, Carlos A.; Dietz, Nikolaus; Bachmann, Klaus

    2004-01-01

    In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties.

  5. 1.55 Micrometer Sub-Micron Finger, Interdigitated MSM Photodetector Arrays with Low Dark Current

    DTIC Science & Technology

    2010-02-02

    pf a- IGZO TFTs. IV. RF Characteristics of Room Temperature Deposited Indium Zinc Oxide Thin - Film Transistors Depletion-mode indium zinc...III. High Performance Indium Gallium Zinc Oxide Thin Film Transistors Fabricated On Polyethylene Terephthalate Substrates High-performance...amorphous (a-) InGaZnO-based thin film transistors (TFTs) were fabricated on flexible polyethylene terephthalate (PET) substrates coated with indium

  6. Nanostructured antistatic and antireflective thin films made of indium tin oxide and silica over-coat layer

    NASA Astrophysics Data System (ADS)

    Cho, Young-Sang; Hong, Jeong-Jin; Yang, Seung-Man; Choi, Chul-Jin

    2010-08-01

    Stable dispersion of colloidal indium tin oxide nanoparticles was prepared by using indium tin oxide nanopowder, organic solvent, and suitable dispersants through attrition process. Various comminution parameters during the attrition step were studied to optimize the process for the stable dispersion of indium tin oxide sol. The transparent and conductive films were fabricated on glass substrate using the indium tin oxide sol by spin coating process. To obtain antireflective function, partially hydrolyzed alkyl silicate was deposited as over-coat layer on the pre-fabricated indium tin oxide film by spin coating technique. This double-layered structure of the nanostructured film was characterized by measuring the surface resistance and reflectance spectrum in the visible wavelength region. The final film structure was enough to satisfy the TCO regulations for EMI shielding purposes.

  7. Indium Gallium Nitride/Gallium Nitride (InGaN/GaN) Nanorods Superlattice (SL)

    DTIC Science & Technology

    2006-03-29

    Final Report (Technical) 3. DATES COVERED 29-03-2005 to 29-05-2006 4. TITLE AND SUBTITLE Indium Gallium Nitride/ Gallium Nitride (InGaN/GaN...Institution: Quantum functional Semiconductor Research Center (QSRC), Dongguk University - Title of project: Indium Gallium Nitride/ Gallium Nitride...Accepted with minor revision Indium Gallium Nitride / Gallium Nitride (InGaN/ GaN) Nanorods Superlattice (SL) Abstract The growth condition, electrical

  8. Effects of a powered air-purifying respirator intervention on indium exposure reduction and indium related biomarkers among ITO sputter target manufacturing workers.

    PubMed

    Liu, Hung-Hsin; Chen, Chang-Yuh; Lan, Cheng-Hang; Chang, Cheng-Ping; Peng, Chiung-Yu

    2016-01-01

    This study aimed to evaluate the efficacy of powered air-purifying respirators (PAPRs) worn by the workers, and to investigate the effect of this application on exposure and preclinical effects in terms of workplace measuring and biomarker monitoring in ITO sputter target manufacturing plants and workers, respectively. Fifty-four workers were recruited and investigated from 2010-2012, during which PAPRs were provided to on-site workers in September 2011. Each worker completed questionnaires and provided blood and urine samples for analysis of biomarkers of indium exposure and preclinical effects. Area and personal indium air samples were randomly collected from selected worksites and from participants. The penetration percentage of the respirator (concentration inside respirator divided by concentration outside respirator) was 6.6%. Some biomarkers, such as S-In, SOD, GPx, GST, MDA, and TMOM, reflected the decrease in exposure and showed lower levels, after implementation of PAPRs. This study is the first to investigate the efficacy of PAPRs for reducing indium exposure. The measurement results clearly showed that the implementation of PAPRs reduces levels of indium-related biomarkers. These findings have practical applications for minimizing occupational exposure to indium and for managing the health of workers exposed to indium.

  9. Defects, strain relaxation, and compositional grading in high indium content InGaN epilayers grown by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazioti, C.; Kehagias, Th.; Pavlidou, E.

    2015-10-21

    We investigate the structural properties of a series of high alloy content InGaN epilayers grown by plasma-assisted molecular beam epitaxy, employing the deposition temperature as variable under invariant element fluxes. Using transmission electron microscopy methods, distinct strain relaxation modes were observed, depending on the indium content attained through temperature adjustment. At lower indium contents, strain relaxation by V-pit formation dominated, with concurrent formation of an indium-rich interfacial zone. With increasing indium content, this mechanism was gradually substituted by the introduction of a self-formed strained interfacial InGaN layer of lower indium content, as well as multiple intrinsic basal stacking faults andmore » threading dislocations in the rest of the film. We show that this interfacial layer is not chemically abrupt and that major plastic strain relaxation through defect introduction commences upon reaching a critical indium concentration as a result of compositional pulling. Upon further increase of the indium content, this relaxation mode was again gradually succeeded by the increase in the density of misfit dislocations at the InGaN/GaN interface, leading eventually to the suppression of the strained InGaN layer and basal stacking faults.« less

  10. Looking Down Under for a Circular Economy of Indium.

    PubMed

    Werner, Tim T; Ciacci, Luca; Mudd, Gavin Mark; Reck, Barbara K; Northey, Stephen Alan

    2018-02-20

    Indium is a specialty metal crucial for modern technology, yet it is potentially critical due to its byproduct status in mining. Measures to reduce its criticality typically focus on improving its recycling efficiency at end-of-life. This study quantifies primary and secondary indium resources ("stocks") for Australia through a dynamic material-flow analysis. It is based on detailed assessments of indium mineral resources hosted in lead-zinc and copper deposits, respective mining activities from 1844 to 2013, and the trade of indium-containing products from 1988 to 2015. The results show that Australia's indium stocks are substantial, estimated at 46.2 kt in mineral resources and an additional 14.7 kt in mine wastes. Australian mineral resources alone could meet global demand (∼0.8 kt/year) for more than five decades. Discarded material from post-consumer products, instead, is negligible (43 t). This suggests that the resilience of Australia's indium supply can best be increased through efficiency gains in mining (such as introducing domestic indium refining capacity) rather than at the end of the product life. These findings likely also apply to other specialty metals, such as gallium or germanium, and other resource-dominated countries. Finally, the results illustrate that national circular economy strategies can differ substantially.

  11. InP (Indium Phosphide): Into the future

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1989-01-01

    Major industry is beginning to be devoted to indium phosphide and its potential applications. Key to these applications are high speed and radiation tolerance; however the high cost of indium phosphide may be an inhibitor to progress. The broad applicability of indium phosphide to many devices will be discussed with an emphasis on photovoltaics. Major attention is devoted to radiation tolerance and means of reducing cost of devices. Some of the approaches applicable to solar cells may also be relevant to other devices. The intent is to display the impact of visionary leadership in the field and enable the directions and broad applicability of indium phosphide.

  12. Indium: bringing liquid-crystal displays into focus

    USGS Publications Warehouse

    Mercer, Celestine N.

    2015-07-30

    Compared to more abundant industrial metals such as lead and zinc, information about the behavior and toxicity of indium in the environment is limited. However, many indium compounds have been proven to be toxic to animals.

  13. Indium Doped Zinc Oxide Thin Films Deposited by Ultrasonic Chemical Spray Technique, Starting from Zinc Acetylacetonate and Indium Chloride

    PubMed Central

    Biswal, Rajesh; Maldonado, Arturo; Vega-Pérez, Jaime; Acosta, Dwight Roberto; Olvera, María De La Luz

    2014-01-01

    The physical characteristics of ultrasonically sprayed indium-doped zinc oxide (ZnO:In) thin films, with electrical resistivity as low as 3.42 × 10−3 Ω·cm and high optical transmittance, in the visible range, of 50%–70% is presented. Zinc acetylacetonate and indium chloride were used as the organometallic zinc precursor and the doping source, respectively, achieving ZnO:In thin films with growth rate in the order of 100 nm/min. The effects of both indium concentration and the substrate temperature on the structural, morphological, optical, and electrical characteristics were measured. All the films were polycrystalline, fitting well with hexagonal wurtzite type ZnO. A switching in preferential growth, from (002) to (101) planes for indium doped samples were observed. The surface morphology of the films showed a change from hexagonal slices to triangle shaped grains as the indium concentration increases. Potential applications as transparent conductive electrodes based on the resulting low electrical resistance and high optical transparency of the studied samples are considered. PMID:28788118

  14. Indium Doped Zinc Oxide Thin Films Deposited by Ultrasonic Chemical Spray Technique, Starting from Zinc Acetylacetonate and Indium Chloride.

    PubMed

    Biswal, Rajesh; Maldonado, Arturo; Vega-Pérez, Jaime; Acosta, Dwight Roberto; De La Luz Olvera, María

    2014-07-04

    The physical characteristics of ultrasonically sprayed indium-doped zinc oxide (ZnO:In) thin films, with electrical resistivity as low as 3.42 × 10 -3 Ω·cm and high optical transmittance, in the visible range, of 50%-70% is presented. Zinc acetylacetonate and indium chloride were used as the organometallic zinc precursor and the doping source, respectively, achieving ZnO:In thin films with growth rate in the order of 100 nm/min. The effects of both indium concentration and the substrate temperature on the structural, morphological, optical, and electrical characteristics were measured. All the films were polycrystalline, fitting well with hexagonal wurtzite type ZnO. A switching in preferential growth, from (002) to (101) planes for indium doped samples were observed. The surface morphology of the films showed a change from hexagonal slices to triangle shaped grains as the indium concentration increases. Potential applications as transparent conductive electrodes based on the resulting low electrical resistance and high optical transparency of the studied samples are considered.

  15. Indium oxide/n-silicon heterojunction solar cells

    DOEpatents

    Feng, Tom; Ghosh, Amal K.

    1982-12-28

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  16. Indium adhesion provides quantitative measure of surface cleanliness

    NASA Technical Reports Server (NTRS)

    Krieger, G. L.; Wilson, G. J.

    1968-01-01

    Indium tipped probe measures hydrophobic and hydrophilic contaminants on rough and smooth surfaces. The force needed to pull the indium tip, which adheres to a clean surface, away from the surface provides a quantitative measure of cleanliness.

  17. Effect of doping of tin on optoelectronic properties of indium oxide: DFT study

    NASA Astrophysics Data System (ADS)

    Tripathi, Madhvendra Nath

    2015-06-01

    Indium tin oxide is widely used transparent conductor. Experimentally observed that 6% tin doping in indium oxide is suitable for optoelectronic applications and more doping beyond this limit degrades the optoelectronic property. The stoichiometry (In32-xSnxO48+x/2; x=0-6) is taken to understand the change in lattice parameter, electronic structure, and optical property of ITO. It is observed that lattice parameter increases and becomes constant after 6% tin doping that is in good agreement of the experimental observation. The electronic structure calculation shows that the high tin doping in indium oxide adversely affects the dispersive nature of the bottom of conduction band of pure indium oxide and decreases the carrier mobility. Optical calculations show that transmittance goes down upto 60% for the tin concentration more than 6%. The present paper shows that how more than 6% tin doping in indium oxide adversely affects the optoelectronic property of ITO.

  18. Polyether complexes of groups 13 and 14.

    PubMed

    Swidan, Ala'aeddeen; Macdonald, Charles L B

    2016-07-21

    Notable aspects of the chemistry of complexes of polyether ligands including crown ethers, cryptands, glycols, glymes, and related polyether ligands with heavier group 13 and 14 elements are reviewed with a focus on results from 2005 to the present. The majority of reported polyether complexes contain lead(ii) and thallium(i) but recent breakthroughs in regard to the preparation of low oxidation state reagents of the lighter congeners have allowed for the generation of complexes containing indium(i), gallium(i), germanium(ii), and even silicon(ii). The important roles of ligand size, donor types, and counter anions in regard to the chemical properties of the polyether complexes is highlighted. A particular focus on the structural aspects of the numerous coordination complexes provides a rationale for some of the spectacular contributions that such compounds have made to Modern Main Group Chemistry.

  19. Engineering a Large Scale Indium Nanodot Array for Refractive Index Sensing.

    PubMed

    Xu, Xiaoqing; Hu, Xiaolin; Chen, Xiaoshu; Kang, Yangsen; Zhang, Zhiping; B Parizi, Kokab; Wong, H-S Philip

    2016-11-23

    In this work, we developed a simple method to fabricate 12 × 4 mm 2 large scale nanostructure arrays and investigated the feasibility of indium nanodot (ND) array with different diameters and periods for refractive index sensing. Absorption resonances at multiple wavelengths from the visible to the near-infrared range were observed for various incident angles in a variety of media. Engineering the ND array with a centered square lattice, we successfully enhanced the sensitivity by 60% and improved the figure of merit (FOM) by 190%. The evolution of the resonance dips in the reflection spectra, of square lattice and centered square lattice, from air to water, matches well with the results of Lumerical FDTD simulation. The improvement of sensitivity is due to the enhancement of local electromagnetic field (E-field) near the NDs with centered square lattice, as revealed by E-field simulation at resonance wavelengths. The E-field is enhanced due to coupling between the two square ND arrays with [Formula: see text]x period at phase matching. This work illustrates an effective way to engineer and fabricate a refractive index sensor at a large scale. This is the first experimental demonstration of poor-metal (indium) nanostructure array for refractive index sensing. It also demonstrates a centered square lattice for higher sensitivity and as a better basic platform for more complex sensor designs.

  20. Method for forming indium oxide/n-silicon heterojunction solar cells

    DOEpatents

    Feng, Tom; Ghosh, Amal K.

    1984-03-13

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  1. Method for enhancing the solubility of boron and indium in silicon

    DOEpatents

    Sadigh, Babak; Lenosky, Thomas J.; Diaz de la Rubia, Tomas; Giles, Martin; Caturla, Maria-Jose; Ozolins, Vidvuds; Asta, Mark; Theiss, Silva; Foad, Majeed; Quong, Andrew

    2002-01-01

    A method for enhancing the equilibrium solubility of boron and indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100.degree. C.; and for indium, a 1% tensile strain at 1100.degree. C., corresponds to an enhancement of the solubility by 200%.

  2. An investigation on the In doping of ZnO thin films by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Mahesh, Devika; Kumar, M. C. Santhosh

    2018-04-01

    Indium doped zinc oxide (IGZO)thin films are gaining much interest owing to its commercial application as transparent conductive oxide thin films. In the current study thin films indium doped ZnO thin films have been deposited on glass substrates by chemical spray pyrolysis technique with an indium concentration of 1, 2.5 and 4% in Zinc source. The films show a peak shift in the X-Ray Diffraction patterns with varying indium doping concentration. The (101) peak was enhanced for the 2.5 % indium doped films and variation in grain size with the different doping levels was studied. The as-deposited films are uniform and shown high transparency (>90%) in the visible region. Average thicknesses of films are found to be 800nm, calculated using the envelope method. The film with 2.5 % of indium content was found to be highly conducting than the rest, since for the lower and higher concentrations the conductivity was possibly halted by the limit in carrier concentration and indium segregation in the grain boundaries respectively. The enhancement of mobility and carrier concentration was clearly seen in the optimum films.

  3. Increased p-type conductivity through use of an indium surfactant in the growth of Mg-doped GaN

    NASA Astrophysics Data System (ADS)

    Kyle, Erin C. H.; Kaun, Stephen W.; Young, Erin C.; Speck, James S.

    2015-06-01

    We have examined the effect of an indium surfactant on the growth of p-type GaN by ammonia-based molecular beam epitaxy. p-type GaN was grown at temperatures ranging from 700 to 780 °C with and without an indium surfactant. The Mg concentration in all films in this study was 4.5-6 × 1019 cm-3 as measured by secondary ion mass spectroscopy. All p-type GaN films grown with an indium surfactant had higher p-type conductivities and higher hole concentrations than similar films grown without an indium surfactant. The lowest p-type GaN room temperature resistivity was 0.59 Ω-cm, and the highest room temperature carrier concentration was 1.6 × 1018 cm-3. Fits of the temperature-dependent carrier concentration data showed a one to two order of magnitude lower unintentional compensating defect concentration in samples grown with the indium surfactant. Samples grown at higher temperature had a lower active acceptor concentration. Improvements in band-edge luminescence were seen by cathodoluminescence for samples grown with the indium surfactant, confirming the trends seen in the Hall data.

  4. Recycling of indium from waste LCD: A promising non-crushing leaching with the aid of ultrasonic wave.

    PubMed

    Zhang, Kaihua; Li, Bin; Wu, Yufeng; Wang, Wei; Li, Rubing; Zhang, Yi-Nan; Zuo, Tieyong

    2017-06-01

    The tremendous amount of end-of-life liquid crystal displays (LCDs) has become one of the prominent sources of waste electrical and electronic equipment (WEEE) in recent years. Despite the necessity of safe treatment, recycling indium is also a focus of waste LCD treatment because of the scarcity of indium. Based on the analyses of the structure of Indium Tin Oxide (ITO) glass, crushing is demonstrated to be not required. In the present research, a complete non-crushing leaching method was firstly adopted to recycle indium from waste LCDs, and the ultrasonic waves was applied in the leaching process. The results demonstrated that indium can be leached efficiently with even a low concentration of chloride acid (HCl) without extra heating. About 96.80% can be recovered in 60mins, when the ITO glass was leached by 0.8MHCl with an enhancement of 300W ultrasonic waves. The indium leaching process is abridged free from crushing, and proves to be of higher efficiency. In addition, the ultrasonic wave influence on leaching process was also explained combing with micron-scale structure of ITO glass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Enhanced optical properties due to indium incorporation in zinc oxide nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farid, S.; Mukherjee, S.; Sarkar, K.

    Indium-doped zinc oxide nanowires grown by vapor-liquid-solid technique with 1.6 at. % indium content show intense room temperature photoluminescence (PL) that is red shifted to 20 meV from band edge. We report on a combination of nanowires and nanobelts-like structures with enhanced optical properties after indium doping. The near band edge emission shift gives an estimate for the carrier density as high as 5.5 × 10{sup 19 }cm{sup −3} for doped nanowires according to Mott's critical density theory. Quenching of the visible green peak is seen for doped nanostructures indicating lesser oxygen vacancies and improved quality. PL and transmission electron microscopy measurementsmore » confirm indium doping into the ZnO lattice, whereas temperature dependent PL data give an estimation of the donor and acceptor binding energies that agrees well with indium doped nanowires. This provides a non-destructive technique to estimate doping for 1D structures as compared to the traditional FET approach. Furthermore, these indium doped nanowires can be a potential candidate for transparent conducting oxides applications and spintronic devices with controlled growth mechanism.« less

  6. Noninvasive Imaging of Administered Progenitor Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven R Bergmann, M.D., Ph.D.

    The objective of this research grant was to develop an approach for labeling progenitor cells, specifically those that we had identified as being able to replace ischemic heart cells, so that the distribution could be followed non-invasively. In addition, the research was aimed at determining whether administration of progenitor cells resulted in improved myocardial perfusion and function. The efficiency and toxicity of radiolabeling of progenitor cells was to be evaluated. For the proposed clinical protocol, subjects with end-stage ischemic coronary artery disease were to undergo a screening cardiac positron emission tomography (PET) scan using N-13 ammonia to delineate myocardial perfusionmore » and function. If they qualified based on their PET scan, they would undergo an in-hospital protocol whereby CD34+ cells were stimulated by the administration of granulocytes-colony stimulating factor (G-CSF). CD34+ cells would then be isolated by apharesis, and labeled with indium-111 oxine. Cells were to be re-infused and subjects were to undergo single photon emission computed tomography (SPECT) scanning to evaluate uptake and distribution of labeled progenitor cells. Three months after administration of progenitor cells, a cardiac PET scan was to be repeated to evaluate changes in myocardial perfusion and/or function. Indium oxine is a radiopharmaceutical for labeling of autologous lymphocytes. Indium-111 (In-111) decays by electron capture with a t{sub ½} of 67.2 hours (2.8 days). Indium forms a saturated complex that is neutral, lipid soluble, and permeates the cell membrane. Within the cell, the indium-oxyquinolone complex labels via indium intracellular chelation. Following leukocyte labeling, ~77% of the In-111 is incorporated in the cell pellet. The presence of red cells and /or plasma reduces the labeling efficacy. Therefore, the product needed to be washed to eliminate plasma proteins. This repeated washing can damage cells. The CD34 selected product was a 90-99% pure population of leukocytes. Viability was assessed using Trypan blue histological analysis. We successfully isolated and labeled ~25-30 x 10{sup 7} CD34+ lymphocytes in cytokine mobilized progenitor cell apharesis harvests. Cells were also subjected to a stat gram stain to look for bacterial contamination, stat endotoxin LAL to look for endotoxin contamination, flow cytometry for evaluation of the purity of the cells and 14-day sterility culture. Colony forming assays confirm the capacity of these cells to proliferate and function ex-vivo with CFU-GM values of 26 colonies/ 1 x 10{sup 4} cells plated and 97% viability in cytokine augmented methylcellulose at 10-14 days in CO{sub 2} incubation. We developed a closed-processing system for the product labeling prior to infusion to maintain autologous cell integrity and sterility. Release criteria for the labeled product were documented for viability, cell count and differential, and measured radiolabel. We were successful in labeling the cells with up to 500 uCi/10{sup 8} cells, with viability of >98%. However, due to delays in getting the protocol approved by the FDA, the cells were not infused in humans in this location (although we did successfully use CD34+ cells in humans in a study in Australia). The approach developed should permit labeling of progenitor cells that can be administered to human subjects for tracking. The labeling approach should be useful for all progenitor cell types, although this would need to be verified since different cell lines may have differential radiosensitivity.« less

  7. 40 CFR 421.195 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Indium Subcategory Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Indium... existing sources. The mass of wastewater pollutants in secondary indium process wastewater introduced into...

  8. 40 CFR 421.195 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Indium Subcategory Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Indium... existing sources. The mass of wastewater pollutants in secondary indium process wastewater introduced into...

  9. THE TOXICITY OF INDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downs, W.L.; Scott, J.K.; Steadman, L.T.

    1959-09-16

    Data are presented on the toxic effects of indium, administered as a chloride (InCl/sub 3/) or as an oxide (In/sub 2/O/sub 3/), in rats, rabbits, and dcgs. Data are included on the tissue distribution and excretion of indium-114. (C.H.)

  10. Low-temperature mechanical dissipation of thermally evaporated indium film for use in interferometric gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Murray, Peter G.; Martin, Iain W.; Cunningham, Liam; Craig, Kieran; Hammond, Giles D.; Hofmann, Gerd; Hough, James; Nawrodt, Ronny; Reifert, David; Rowan, Sheila

    2015-06-01

    Indium bonding is under consideration for use in the construction of cryogenic mirror suspensions in future gravitational wave detectors. This paper presents measurements of the mechanical loss of a thermally evaporated indium film over a broad range of frequencies and temperatures. It provides an estimate of the resulting thermal noise at 20 K for a typical test mass geometry for a cryogenic interferometric gravitational wave detector from an indium layer between suspension elements.

  11. Indium Single-Ion Frequency Standard

    NASA Technical Reports Server (NTRS)

    Nagourney, Warren

    2001-01-01

    A single laser-cooled indium ion is a promising candidate for an ultimate resolution optical time or frequency standard. It can be shown that single ions from group IIIA of the periodic table (indium, thallium, etc.) can have extremely small systematic errors. In addition to being free from Doppler, transit-time and collisional shifts, these ions are also quite insensitive to perturbations from ambient magnetic and electric fields (mainly due to the use of a J=0-0 transition for spectroscopy). Of all group IIIA ions, indium seems to be the most practical, since it is heavy enough to have a tolerable intercombination cooling transition rate and (unlike thallium) has transitions which are easily accessible with frequency multiplied continuous-wave lasers. A single indium ion standard has a potential inaccuracy of one part in 10(exp 18) for integration times of 10(exp 6) seconds. We have made substantial progress during the grant period in constructing a frequency standard based upon a single indium ion. At the beginning of the grant period, single indium ions were being successfully trapped, but the lasers and optical systems were inadequate to achieve the desired goal. We have considerably improved the stability of the dye laser used to cool the ions and locked it to a molecular resonance line, making it possible to observe stable cooling-line fluorescence from a single indium ion for reasonable periods of time, as required by the demands of precision spectroscopy. We have substantially improved the single-ion fluorescence signal with significant benefits for the detection efficiency of forbidden transitions using the 'shelving' technique. Finally, we have constructed a compact, efficient UV 'clock' laser and observed 'clock' transitions in single indium ions using this laser system. We will elaborate on these accomplishments.

  12. Macrophage Solubilization and Cytotoxicity of Indium-Containing Particles In Vitro

    PubMed Central

    Morgan, Daniel L.

    2013-01-01

    Indium-containing particles (ICPs) are used extensively in the microelectronics industry. Pulmonary toxicity is observed after inhalation exposure to ICPs; however, the mechanism(s) of pathogenesis is unclear. ICPs are insoluble at physiological pH and are initially engulfed by alveolar macrophages (and likely airway epithelial cells). We hypothesized that uptake of ICPs by macrophages followed by phagolysosomal acidification results in the solubilization of ICPs into cytotoxic indium ions. To address this, we characterized the in vitro cytotoxicity of indium phosphide (InP) or indium tin oxide (ITO) particles with macrophages (RAW cells) and lung-derived epithelial (LA-4) cells at 24h using metabolic (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) and membrane integrity (lactate dehydrogenase) assays. InP and ITO were readily phagocytosed by RAW and LA-4 cells; however, the particles were much more cytotoxic to RAW cells and cytotoxicity was dose dependent. Treatment of RAW cells with cytochalasin D (CytoD) blocked particle phagocytosis and reduced cytotoxicity. Treatment of RAW cells with bafilomycin A1, a specific inhibitor of phagolysosomal acidification, also reduced cytotoxicity but did not block particle uptake. Based on direct indium measurements, the concentration of ionic indium was increased in culture medium from RAW but not LA-4 cells following 24-h treatment with particles. Ionic indium derived from RAW cells was significantly reduced by treatment with CytoD. These data implicate macrophage uptake and solubilization of InP and ITO via phagolysosomal acidification as requisite for particle-induced cytotoxicity and the release of indium ions. This may apply to other ICPs and strongly supports the notion that ICPs require solubilization in order to be toxic. PMID:23872580

  13. Method of manufacturing tin-doped indium oxide nanofibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozcan, Soydan; Naskar, Amit K

    2017-06-06

    A method of making indium tin oxide nanofibers includes the step of mixing indium and tin precursor compounds with a binder polymer to form a nanofiber precursor composition. The nanofiber precursor composition is co-formed with a supporting polymer to form a composite nanofiber having a precursor composition nanofiber completely surrounded by the supporting polymer composition. The supporting polymer composition is removed from the composite nanofiber to expose the precursor composition nanofiber. The precursor composition nanofiber is then heated in the presence of oxygen such as O.sub.2 to form indium tin oxide and to remove the binder polymer to form anmore » indium tin oxide nanofiber. A method of making metal oxide nanofibers is also disclosed.« less

  14. Evaluation of hydrogen radical treatment for indium surface oxide removal and analysis of re-oxidation behavior

    NASA Astrophysics Data System (ADS)

    Furuyama, Kohta; Yamanaka, Kazuyuki; Higurashi, Eiji; Suga, Tadatomo

    2018-02-01

    Indium is a commonly used metal for sealing, bonding, and soldering due to its good malleability and ductility even at cryogenic temperatures. The effects of hydrogen radical treatment on indium surface oxide removal were evaluated by the spreading ratio test of indium balls (diameter, 300 µm purity, 99.99%). It was found that hydrogen radical treatment longer than 20 s at temperatures higher than 170 °C results in successful surface oxide removal. X-ray photoelectron spectroscopy analysis was carried out to study the re-oxidation behavior after treatment, and it was found that hydrogen radical treatment slows down the re-oxidation of indium compared with surface oxide removal realized by physical bombardment with an argon fast atom beam.

  15. 40 CFR 421.196 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Electrolyte. PSNS for the Secondary Indium Subcategory Pollutant or pollutant property Maximum for any 1 day... GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Indium Subcategory... wastewater pollutants in secondary indium process wastewater introduced into a POTW should not exceed the...

  16. 40 CFR 421.196 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Electrolyte. PSNS for the Secondary Indium Subcategory Pollutant or pollutant property Maximum for any 1 day... GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Indium Subcategory... wastewater pollutants in secondary indium process wastewater introduced into a POTW should not exceed the...

  17. On the local injection of emitted electrons into micrograins on the surface of A{sup III}–B{sup V} semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukov, N. D., E-mail: ndzhukov@rambler.ru; Glukhovskoi, E. G.; Khazanov, A. A.

    2016-06-15

    The characteristics of the injection of electrons into a semiconductor from a microprobe–micrograin nanogap are investigated with a tunneling microscope in the mode of field emission into locally selected surface microcrystals of indium antimonide, indium arsenide, and gallium arsenide. The current mechanisms are established and their parameters are determined by comparing the experimental I–V characteristics and those calculated from formulas of current transport. The effect of limitation of the current into the micrograins of indium antimonide and indium arsenide which manifests itself at injection levels exceeding a certain critical value, e.g., 6 × 10{sup 16} cm{sup –3} for indium antimonidemore » and 4 × 10{sup 17} cm{sup –3} for indium arsenide, is discovered. A physical model, i.e., the localization of electrons in the surface area of a micrograin due to their Coulomb interaction, is proposed.« less

  18. Effect of doping of tin on optoelectronic properties of indium oxide: DFT study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Madhvendra Nath, E-mail: ommadhav27@gmail.com

    2015-06-24

    Indium tin oxide is widely used transparent conductor. Experimentally observed that 6% tin doping in indium oxide is suitable for optoelectronic applications and more doping beyond this limit degrades the optoelectronic property. The stoichiometry (In{sub 32-x}Sn{sub x}O{sub 48+x/2}; x=0-6) is taken to understand the change in lattice parameter, electronic structure, and optical property of ITO. It is observed that lattice parameter increases and becomes constant after 6% tin doping that is in good agreement of the experimental observation. The electronic structure calculation shows that the high tin doping in indium oxide adversely affects the dispersive nature of the bottom ofmore » conduction band of pure indium oxide and decreases the carrier mobility. Optical calculations show that transmittance goes down upto 60% for the tin concentration more than 6%. The present paper shows that how more than 6% tin doping in indium oxide adversely affects the optoelectronic property of ITO.« less

  19. On the impact of indium distribution on the electronic properties in InGaN nanodisks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benaissa, M., E-mail: benaissa.um5@gmail.com, E-mail: benaissa@fsr.ac.ma; Sigle, W.; Aken, P. A. van

    2015-03-09

    We analyze an epitaxially grown heterostructure composed of InGaN nanodisks inserted in GaN nanowires in order to relate indium concentration to the electronic properties. This study was achieved with spatially resolved low-loss electron energy-loss spectroscopy using monochromated electrons to probe optical excitations—plasmons—at nanometer scale. Our findings show that each nanowire has its own indium fluctuation and therefore its own average composition. Due to this indium distribution, a scatter is obtained in plasmon energies, and therefore in the optical dielectric function, of the nanowire ensemble. We suppose that these inhomogeneous electronic properties significantly alter band-to-band transitions and consequently induce emission broadening.more » In addition, the observation of tailing indium composition into the GaN barrier suggests a graded well-barrier interface leading to further inhomogeneous broadening of the electro-optical properties. An improvement in the indium incorporation during growth is therefore needed to narrow the emission linewidth of the presently studied heterostructures.« less

  20. Synthesis and decomposition of a novel carboxylate precursor to indium oxide

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Andras, Maria T.; Duraj, Stan A.; Clark, Eric B.; Hehemann, David G.; Scheiman, Daniel A.; Fanwick, Phillip E.

    1994-01-01

    Reaction of metallic indium with benzoyl peroxide in 4-1 methylpyridine (4-Mepy) at 25 C produces an eight-coordinate mononuclear indium(III) benzoate, In(eta(sup 2)-O2CC6H5)3(4-Mepy)2 4H2O (I), in yields of up to 60 percent. The indium(III) benzoate was fully characterized by elemental analysis, spectroscopy, and X-ray crystallography; (I) exists in the crystalline state as discrete eight-coordinate molecules; the coordination sphere around the central indium atom is best described as pseudo-square pyramidal. Thermogravimetric analysis of (I) and X-ray diffraction powder studies on the resulting pyrolysate demonstrate that this new benzoate is an inorganic precursor to indium oxide. Decomposition of (I) occurs first by loss of 4-methylpyridine ligands (100 deg-200 deg C), then loss of benzoates with formation of In2O3 at 450 C. We discuss both use of carboxylates as precursors and our approach to their preparation.

  1. Synthesis of indium-containing nanoparticles using plasmas in water to study their effects on living body

    NASA Astrophysics Data System (ADS)

    Amano, Takaaki; Koga, Kazunori; Sarinont, Thapanut; Seo, Hyunwoong; Itagaki, Naho; Shiratani, Masaharu; Kitazaki, Satoshi; Hirata, Miyuki; Nakatsu, Yoshimichi; Tanaka, Akiyo

    2015-09-01

    Nanoparticles can be employed for biomedical applications such as biomarkers, drug delivery systems, and cancer therapies. They are, however, pointed out their adverse effects on human body. Here, we synthesed indium-containing nanoparticles using discharge plasmas with indium electrodes immersed in DI water and administrated nanoparticles to rats to analyze their kinetics in living body. The discharge power was 5.1 W. The electron density is 5x1017/cm3 deduced from Stark broadening of hydrogen lines. TEM observation shows the mean size of primary nanoparticles is 7 nm. The nanoparticles are indium crystalline and indium hydroxide crystalline. The synthesized nanoparticles and purchased nanoparticles (In2O3, <100nm) were administrated to rats using subcutaneous injection. Indium of 166.7 g/day (synthesized) and of 27.8 g/day (purchased) are detected from the urine at 12 weeks after the administration. Synthesized nanoparticles dispersed in water are useful for analyzing kinetics of nanoparticles in living body. Work partly supported by KAKENHI.

  2. Sodium enhances indium-gallium interdiffusion in copper indium gallium diselenide photovoltaic absorbers.

    PubMed

    Colombara, Diego; Werner, Florian; Schwarz, Torsten; Cañero Infante, Ingrid; Fleming, Yves; Valle, Nathalie; Spindler, Conrad; Vacchieri, Erica; Rey, Germain; Guennou, Mael; Bouttemy, Muriel; Manjón, Alba Garzón; Peral Alonso, Inmaculada; Melchiorre, Michele; El Adib, Brahime; Gault, Baptiste; Raabe, Dierk; Dale, Phillip J; Siebentritt, Susanne

    2018-02-26

    Copper indium gallium diselenide-based technology provides the most efficient solar energy conversion among all thin-film photovoltaic devices. This is possible due to engineered gallium depth gradients and alkali extrinsic doping. Sodium is well known to impede interdiffusion of indium and gallium in polycrystalline Cu(In,Ga)Se 2 films, thus influencing the gallium depth distribution. Here, however, sodium is shown to have the opposite effect in monocrystalline gallium-free CuInSe 2 grown on GaAs substrates. Gallium in-diffusion from the substrates is enhanced when sodium is incorporated into the film, leading to Cu(In,Ga)Se 2 and Cu(In,Ga) 3 Se 5 phase formation. These results show that sodium does not decrease per se indium and gallium interdiffusion. Instead, it is suggested that sodium promotes indium and gallium intragrain diffusion, while it hinders intergrain diffusion by segregating at grain boundaries. The deeper understanding of dopant-mediated atomic diffusion mechanisms should lead to more effective chemical and electrical passivation strategies, and more efficient solar cells.

  3. Mineral of the month: indium

    USGS Publications Warehouse

    George, Micheal W.

    2004-01-01

    Indium was discovered in Germany in 1863. Although it is a lustrous silver-white color, the finders named the new material for the “indigo” spectral lines the mineral created on the spectrograph. Indium ranks 61st in abundance in Earth’s crust and is about three times more abundant than silver or mercury.

  4. [Mechanism of renal elimination of 2 elements of group IIIA of the periodic table : aluminum and indium].

    PubMed

    Galle, P

    1981-01-05

    Aluminium and indium, two elements of group IIIA of the periodic table, are concentrated by the kidney inside lysosomes of proximal tubule cell. In these lysosomes, aluminium and indium are precipitated as non-soluble phosphate salts and these precipitates are then expelled in the tubular lumen and eliminated with the urinary flow. These data have been visualized by analytical microscopy (ion microscopy and X ray microanalysis). Local acid phosphatases are assumed to permit the concentration of aluminium and indium salts inside the lysosomes.

  5. Reflectance of metallic indium for solar energy applications

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.; Hasegawa, T.

    1984-01-01

    An investigation has been conducted in order to compile quantitative data on the reflective properties of metallic indium. The fabricated samples were of sufficiently high quality that differences from similar second-surface silvered mirrors were not apparent to the human eye. Three second-surface mirror samples were prepared by means of vacuum deposition techniques, yielding indium thicknesses of approximately 1000 A. Both hemispherical and specular measurements were made. It is concluded that metallic indium possesses a sufficiently high specular reflectance to be potentially useful in many solar energy applications.

  6. Determination of indium in geological materials by electrothermal-atomization atomic absorption spectrometry with a tungsten-impregnated graphite furance

    USGS Publications Warehouse

    Zhou, L.; Chao, T.T.; Meier, A.L.

    1984-01-01

    The sample is fused with lithium metaborate and the melt is dissolved in 15% (v/v) hydrobromic acid. Iron(III) is reduced with ascorbic acid to avoid its coextraction with indium as the bromide into methyl isobutyl ketone. Impregnation of the graphite furnace with sodium tungstate, and the presence of lithium metaborate and ascorbic acid in the reaction medium improve the sensitivity and precision. The limits of determination are 0.025-16 mg kg-1 indium in the sample. For 22 geological reference samples containing more than 0.1 mg kg-1 indium, relative standard deviations ranged from 3.0 to 8.5% (average 5.7%). Recoveries of indium added to various samples ranged from 96.7 to 105.6% (average 100.2%). ?? 1984.

  7. Investigation of buried homojunctions in p-InP formed during sputter deposition of both indium tin oxide and indium oxide

    NASA Technical Reports Server (NTRS)

    Gessert, T. A.; Li, X.; Wanlass, M. W.; Nelson, A. J.; Coutts, T. J.

    1990-01-01

    While dc magnetron sputter deposition of indium tin oxide leads to the formation of a buried homojunction in single crystal p-type InP, the mechanism of type conversion of the InP surface is not apparent. In view of the recent achievement of nearly 17-percent global efficiencies for cells fabricated solely by sputter deposition of In2O3, it is presently surmised that tin may not be an essential element in type conversion. A variety of electrical and optical techniques are presently used to evaluate the changes at both indium tin oxide/InP and indium oxide/InP interfaces. Such mechanisms as the passivation of acceptors by hydrogen, and sputter damage, are found to occur simultaneously.

  8. THz conductivities of indium-tin-oxide nanowhiskers as a graded-refractive-index structure.

    PubMed

    Yang, Chan-Shan; Chang, Chia-Hua; Lin, Mao-Hsiang; Yu, Peichen; Wada, Osamu; Pan, Ci-Ling

    2012-07-02

    Indium-tin-oxide (ITO) nanowhiskers with attractive electrical and anti-reflection properties were prepared by the glancing-angle electron-beam evaporation technique. Structural and crystalline properties of such nanostructures were examined by scanning transmission electron microscopy and X-ray diffraction. Their frequency-dependent complex conductivities, refractive indices and absorption coefficients have been characterized with terahertz time-domain spectroscopy (THz-TDS), in which the nanowhiskers were considered as a graded-refractive-index (GRIN) structure instead of the usual thin film model. The electrical properties of ITO GRIN structures are analyzed and fitted well with Drude-Smith model in the 0.2~2.0 THz band. Our results indicate that the ITO nanowhiskers and its bottom layer atop the substrate exhibit longer carrier scattering times than ITO thin films. This signifies that ITO nanowhiskers have an excellent crystallinity with large grain size, consistent with X-ray data. Besides, we show a strong backscattering effect and fully carrier localization in the ITO nanowhiskers.

  9. High indium content homogenous InAlN layers grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kyle, Erin C. H.; Kaun, Stephen W.; Wu, Feng; Bonef, Bastien; Speck, James S.

    2016-11-01

    InAlN grown by plasma-assisted molecular beam epitaxy often contains a honeycomb microstructure. The honeycomb microstructure consists of 5-10 nm diameter aluminum-rich regions which are surrounded by indium-rich regions. Layers without this microstructure were previously developed for nominally lattice-matched InAlN and have been developed here for higher indium content InAlN. In this study, InAlN was grown in a nitrogen-rich environment with high indium to aluminum flux ratios at low growth temperatures. Samples were characterized by high-resolution x-ray diffraction, atomic force microscopy, high-angle annular dark-field scanning transmission electron microscopy, and atom probe tomography. Atomic force microscopy showed InAlN layers grown at temperatures below 450 °C under nitrogen-rich conditions were free of droplets. InAlN films with indium contents up to 81% were grown at temperatures between 410 and 440 °C. High-angle annular dark-field scanning transmission electron microscopy and atom probe tomography showed no evidence of honeycomb microstructure for samples with indium contents of 34% and 62%. These layers are homogeneous and follow a random alloy distribution. A growth diagram for InAlN of all indium contents is reported.

  10. Increased p-type conductivity through use of an indium surfactant in the growth of Mg-doped GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyle, Erin C. H., E-mail: erinkyle@engineering.ucsb.edu; Kaun, Stephen W.; Young, Erin C.

    2015-06-01

    We have examined the effect of an indium surfactant on the growth of p-type GaN by ammonia-based molecular beam epitaxy. p-type GaN was grown at temperatures ranging from 700 to 780 °C with and without an indium surfactant. The Mg concentration in all films in this study was 4.5–6 × 10{sup 19} cm{sup −3} as measured by secondary ion mass spectroscopy. All p-type GaN films grown with an indium surfactant had higher p-type conductivities and higher hole concentrations than similar films grown without an indium surfactant. The lowest p-type GaN room temperature resistivity was 0.59 Ω-cm, and the highest room temperature carrier concentration wasmore » 1.6 × 10{sup 18} cm{sup −3}. Fits of the temperature-dependent carrier concentration data showed a one to two order of magnitude lower unintentional compensating defect concentration in samples grown with the indium surfactant. Samples grown at higher temperature had a lower active acceptor concentration. Improvements in band-edge luminescence were seen by cathodoluminescence for samples grown with the indium surfactant, confirming the trends seen in the Hall data.« less

  11. Effect of Indium nano-sandwiching on the structural and optical performance of ZnSe films

    NASA Astrophysics Data System (ADS)

    Al Garni, S. E.; Qasrawi, A. F.

    In the current study, we attempted to explore the effects of the Indium nanosandwiching on the mechanical and optical properties of the physically evaporated ZnSe thin films by means of X-ray diffractions and ultraviolet spectrophotometry techniques. While the thickness of each layer of ZnSe was fixed at 1.0 μm, the thickness of the nanosandwiched Indium thin films was varied in the range of 25-100 nm. It was observed that the as grown ZnSe films exhibits cubic and hexagonal nature of crystallization as those of the ZnSe powders before the film deposition. The cubic phases weighs ∼70% of the structure. The analysis of this phases revealed that there is a systematic variation process presented by the decreasing of; the lattice constant, compressing strain, stress, stacking faults and dislocation intensity and increasing grain size resulted from increasing the Indium layer thickness in the range of 50-100 nm. In addition, the nanosandwiching of Indium between two layers of ZnSe is observed to enhance the absorbability of the ZnSe. Particularly, at incident photon energy of 2.38 eV the absorbability of the ZnSe films which are sandwiched with 100 nm Indium is increased by 13.8 times. Moreover, increasing the thickness of the Indium layer shrinks the optical energy band gap. These systematic variations in mechanical and optical properties are assigned to the better recrystallization process that is associated with Indium insertion which in turn allows total internal energy redistribution in the ZnSe films through the enlargement of grains.

  12. Star-shaped PHB-PLA block copolymers: immortal polymerization with dinuclear indium catalysts.

    PubMed

    Yu, I; Ebrahimi, T; Hatzikiriakos, S G; Mehrkhodavandi, P

    2015-08-28

    The first example of a one-component precursor to star-shaped polyesters, and its utilization in the synthesis of previously unknown star-shaped poly(hydroxybutyrate)-poly(lactic acid) block copolymers, is reported. A series of such mono- and bis-benzyl alkoxy-bridged complexes were synthesized, fully characterized, and their solvent dependent solution structures and reactivity were examined. These complexes were highly active catalysts for the controlled polymerization of β-butyrolactone to form poly(hydroxybutyrate) at room temperature. Solution studies indicate that a mononuclear propagating species formed in THF and that the dimer-monomer equilibrium affects the rates of BBL polymerization. In the presence of linear and branched alcohols, these complexes catalyze well-controlled immortal polymerization and copolymerization of β-butyrolactone and lactide.

  13. 78 FR 69417 - Proposed Data Collections Submitted for Public Comment and Recommendations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ... days of this notice. Proposed Project An Investigation of Lung Health at an Indium-Tin Oxide Production... conduct a study regarding the lung health of workers at an indium-tin oxide production facility. Indium-tin oxide (ITO) is a sintered material used in the manufacture of devices such as liquid crystal...

  14. Synthesis and use of (polyfluoroaryl)fluoroanions of aluminum, gallium and indium

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2000-01-01

    Salts of (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are described. The (polyfluoroaryl)fluoroanions have the formula [ER'R"R'"F].sup..crclbar. wherein E is aluminum, gallium, or indium, wherein F is fluorine, and wherein R', R", and R'" is each a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic group.

  15. Two-Step Plasma Process for Cleaning Indium Bonding Bumps

    NASA Technical Reports Server (NTRS)

    Greer, Harold F.; Vasquez, Richard P.; Jones, Todd J.; Hoenk, Michael E.; Dickie, Matthew R.; Nikzad, Shouleh

    2009-01-01

    A two-step plasma process has been developed as a means of removing surface oxide layers from indium bumps used in flip-chip hybridization (bump bonding) of integrated circuits. The two-step plasma process makes it possible to remove surface indium oxide, without incurring the adverse effects of the acid etching process.

  16. Adsorption of collagen to indium oxide nanoparticles and infrared emissivity study thereon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Yuming; Shan Yun; Sun Yanqing

    Adsorption of collagen to indium oxide nanoparticles was carried out in water-acetone solution at volumetric ratio of 1:1 with pH value varying from 3.2 to 9.3. As indicated by TGA, maximum collagen adsorption to indium oxide nanoparticles occurred at pH of 3.2. It was proposed that noncovalent interactions such as hydrogen bonding, hydrophilic and electrostatic interactions made main contributions to collagen adsorption. The IR emissivity values (8-14 {mu}m) of collagen-adsorbed indium oxide nanoparticles decreased significantly compared to either pure collagen or indium oxide nanoparticles possibly due to the interfacial interactions between collagen and indium oxide nanoparticles. And the lowest infraredmore » emissivity value of 0.587 was obtained at collagen adsorption of 1.94 g/100 g In{sub 2}O{sub 3}. On the chance of improved compatibility with organic adhesives, the chemical activity of adsorbed collagen was further confirmed by grafting copolymerization with methyl methacrylate by formation of polymer shell outside, as evidenced by IR spectrum and transmission electron microscopy.« less

  17. Cadmium-free junction fabrication process for CuInSe.sub.2 thin film solar cells

    DOEpatents

    Ramanathan, Kannan V.; Contreras, Miguel A.; Bhattacharya, Raghu N.; Keane, James; Noufi, Rommel

    1999-01-01

    The present invention provides an economical, simple, dry and controllable semiconductor layer junction forming process to make cadmium free high efficiency photovoltaic cells having a first layer comprised primarily of copper indium diselenide having a thin doped copper indium diselenide n-type region, generated by thermal diffusion with a group II(b) element such as zinc, and a halide, such as chlorine, and a second layer comprised of a conventional zinc oxide bilayer. A photovoltaic device according the present invention includes a first thin film layer of semiconductor material formed primarily from copper indium diselenide. Doping of the copper indium diselenide with zinc chloride is accomplished using either a zinc chloride solution or a solid zinc chloride material. Thermal diffusion of zinc chloride into the copper indium diselenide upper region creates the thin n-type copper indium diselenide surface. A second thin film layer of semiconductor material comprising zinc oxide is then applied in two layers. The first layer comprises a thin layer of high resistivity zinc oxide. The second relatively thick layer of zinc oxide is doped to exhibit low resistivity.

  18. Effect of impurity on high pressure behavior of nano indium titanate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chitnis, Abhishek, E-mail: abhishekchitnis87@gmail.com; Garg, Nandini; Mishra, A. K.

    2015-06-24

    Angle dispersive x-ray diffraction studies were carried out on a mixture of nano particles of indium titanate, indium oxide, and disordered TiO{sub 2} upto pressures of ∼ 45 GPa. Our studies show that indium titanate undergoes a partial decomposition to its constituent high pressure oxides. However, concomitantly a very small fraction of indium titanate transforms to a denser phase at ∼ 27.5 GPa. This transformation to new phase was found to be irreversible. At this pressure even cubic In{sub 2}O{sub 3} transformed to the In{sub 2}O{sub 3} (II) (iso-structural to Rh{sub 2}O{sub 3} (II)) phase, without any signature of themore » intermediate corundum phase. The high pressure In{sub 2}O{sub 3} (II) phase transforms to the corundum structure on release of pressure. These studies indicate that the presence of a large fraction of seed impurities could have facilitated the decomposition of indium titanate into its constituent oxides at the cost of its incomplete transformation to the high pressure denser phase.« less

  19. Effect of Precursor Selection on the Photocatalytic Performance of Indium Oxide Nanomaterials for Gas-Phase CO 2 Reduction

    DOE PAGES

    Hoch, Laura B.; He, Le; Qiao, Qiao; ...

    2016-06-01

    Nonstoichiometric indium oxide nanoparticles, In 2O 3–x(OH)y, have been shown to function as active photocatalysts for gas-phase CO 2 reduction under simulated solar irradiation. We demonstrate that the choice of starting material has a strong effect on the photocatalytic activity of indium oxide nanoparticles. We also examine three indium oxide materials prepared via the thermal decomposition of either indium(III) hydroxide or indium(III) nitrate and correlate their stability and photocatalytic activity to the number and type of defect present in the material. Furthermore, we use 13CO 2 isotope-tracing experiments to clearly identify the origins of the observed carbon-containing products. Significantly, wemore » find that the oxidizing nature of the precursor anion has a substantial impact on the defect formation within the sample. Our study demonstrates the importance of surface defects in designing an active heterogeneous photocatalyst and provides valuable insight into key parameters for the precursor design, selection, and performance optimization of materials for gas-phase CO 2 reduction.« less

  20. Indium-mediated asymmetric Barbier-type propargylations: additions to aldehydes and ketones and mechanistic investigation of the organoindium reagents.

    PubMed

    Haddad, Terra D; Hirayama, Lacie C; Buckley, Jannise J; Singaram, Bakthan

    2012-01-20

    We report a simple, efficient, and general method for the indium-mediated enantioselective propargylation of aromatic and aliphatic aldehydes under Barbier-type conditions in a one-pot synthesis affording the corresponding chiral alcohol products in very good yield (up to 90%) and enantiomeric excess (up to 95%). The extension of this methodology to ketones demonstrated the need for electrophilic ketones more reactive than acetophenone as the reaction would not proceed with just acetophenone. Using the Lewis acid indium triflate [In(OTf)(3)] induced regioselective formation of the corresponding homoallenic alcohol product from acetophenone. However, this methodology demonstrated excellent chemoselectivity in formation of only the corresponding secondary homopropargylic alcohol product in the presence of a ketone functionality. Investigation of the organoindium intermediates under our reaction conditions shows the formation of allenylindium species, and we suggest that these species contain an indium(III) center. In addition, we have observed the presence of a shiny, indium(0) nugget throughout the reaction, irrespective of the stoichiometry, indicating disproportionation of indium halide byproduct formed during the reaction.

  1. Highly conductive indium nanowires deposited on silicon by dip-pen nanolithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozhukhov, Anton; Volodin, Vladimir; Novosibirsk State University, Novosibirsk 630090

    2015-04-14

    In this paper, we developed a new dip-pen nanolithography (DPN) method. Using this method, we fabricated conductive nanowires with diameters of 30–50 nm on silicon substrates. To accomplish this, indium was transferred from an atomic force microscopy tip to the surface by applying a potential difference between the tip and substrate. The fabricated indium nanowires were several micrometers in length. Unlike thermal DPN, our DPN method hardly oxidized the indium, producing nanowires with conductivities from 5.7 × 10{sup −3} to 4 × 10{sup −2} Ω cm.

  2. Thin film metrology and microwave loss characterization of indium and aluminum/indium superconducting planar resonators

    NASA Astrophysics Data System (ADS)

    McRae, C. R. H.; Béjanin, J. H.; Earnest, C. T.; McConkey, T. G.; Rinehart, J. R.; Deimert, C.; Thomas, J. P.; Wasilewski, Z. R.; Mariantoni, M.

    2018-05-01

    Scalable architectures characterized by quantum bits (qubits) with low error rates are essential to the development of a practical quantum computer. In the superconducting quantum computing implementation, understanding and minimizing material losses are crucial to the improvement of qubit performance. A new material that has recently received particular attention is indium, a low-temperature superconductor that can be used to bond pairs of chips containing standard aluminum-based qubit circuitry. In this work, we characterize microwave loss in indium and aluminum/indium thin films on silicon substrates by measuring superconducting coplanar waveguide resonators and estimating the main loss parameters at powers down to the sub-photon regime and at temperatures between 10 and 450 mK. We compare films deposited by thermal evaporation, sputtering, and molecular beam epitaxy. We study the effects of heating in a vacuum and ambient atmospheric pressure as well as the effects of pre-deposition wafer cleaning using hydrofluoric acid. The microwave measurements are supported by thin film metrology including secondary-ion mass spectrometry. For thermally evaporated and sputtered films, we find that two-level state are the dominant loss mechanism at low photon number and temperature, with a loss tangent due to native indium oxide of ˜ 5 × 10 - 5 . The molecular beam epitaxial films show evidence of the formation of a substantial indium-silicon eutectic layer, which leads to a drastic degradation in resonator performance.

  3. Influence of precursor concentration on the structural, optical and electrical properties of indium oxide thin film prepared by a sol-gel method

    NASA Astrophysics Data System (ADS)

    Lau, L. N.; Ibrahim, N. B.; Baqiah, H.

    2015-08-01

    This research was carried out to study the effect of different precursor concentrations on the physical properties of indium oxide (In2O3) thin film. In2O3 is a promising n-type semiconductor material that has been used in optoelectronic applications because of its highly transparent properties. It is a transparent conducting oxide with a wide band gap (∼3.7 eV). The experiment was started by preparing different precursor concentrations of indium nitrate hydrate (In (NO3)·H2O) solution and followed by the spin coating technique prior to an annealing process at 500 °C. Indium oxide thin films were characterized using an X-ray diffractometer, an ultraviolet-visible spectroscopy, a field emission scanning electron microscope and a Hall Effect Measurement System in order to determine the influence caused by the different molarities of indium oxide. The result showed that the film thickness increased with the indium oxide molarity. Film thicknesses were in the range of 0.3-135.1 nm and optical transparency of films was over 94%. Lowest resistivity of 2.52 Ω cm with a mobility of 26.60 cm2 V-1 S-1 and carrier concentration of 4.27 × 1017 cm-3 was observed for the indium oxide thin film prepared at 0.30 M.

  4. Indium droplet formation in InGaN thin films with single and double heterojunctions prepared by MOCVD

    PubMed Central

    2014-01-01

    Indium gallium nitride (InGaN) samples with single heterojunction (SH) and double heterojunction (DH) were prepared using metal-organic chemical vapor deposition. SH has a layer of InGaN thin film (thicknesses, 25, 50, 100, and 200 nm) grown on an uGaN film (thickness, 2 μm). The DH samples are distinguished by DH uGaN film (thickness, 120 nm) grown on the InGaN layer. Reciprocal space mapping measurements reveal that the DH samples are fully strained with different thicknesses, whereas the strain in the SH samples are significantly relaxed with the increasing thickness of the InGaN film. Scanning electron microscopy results show that the surface roughness of the sample increases when the sample is relaxed. High-resolution transmission electron microscopy images of the structure of indium droplets in the DH sample indicate that the thickness of the InGaN layer decreases with the density of indium droplets. The formation of these droplets is attributed to the insufficient kinetic energy of indium atom to react with the elements of group V, resulting to aggregation. The gallium atoms in the GaN thin film will not be uniformly replaced by indium atoms; the InGaN thin film has an uneven distribution of indium atoms and the quality of the epitaxial layer is degraded. PMID:25024692

  5. Macrophage Solubilization and Cytotoxicity of Indium-Containing Particles as in vitro Correlates to Pulmonary Toxicity in vivo

    PubMed Central

    Gwinn, William M.; Qu, Wei; Bousquet, Ronald W.; Price, Herman; Shines, Cassandra J.; Taylor, Genie J.; Waalkes, Michael P.; Morgan, Daniel L.

    2015-01-01

    Macrophage-solubilized indium-containing particles (ICPs) were previously shown in vitro to be cytotoxic. In this study, we compared macrophage solubilization and cytotoxicity of indium phosphide (InP) and indium-tin oxide (ITO) with similar particle diameters (∼1.5 µm) and then determined if relative differences in these in vitro parameters correlated with pulmonary toxicity in vivo. RAW 264.7 macrophages were treated with InP or ITO particles and cytotoxicity was assayed at 24 h. Ionic indium was measured in 24 h culture supernatants. Macrophage cytotoxicity and particle solubilization in vitro were much greater for InP compared with ITO. To correlate changes in vivo, B6C3F1 mice were treated with InP or ITO by oropharyngeal aspiration. On Days 14 and 28, bronchoalveolar lavage (BAL) and pleural lavage (PL) fluids were collected and assayed for total leukocytes. Cell differentials, lactate dehydrogenase activity, and protein levels were also measured in BAL. All lavage parameters were greatly increased in mice treated with InP compared with ITO. These data suggest that macrophage solubilization and cytotoxicity of some ICPs in vitro are capable of predicting pulmonary toxicity in vivo. In addition, these differences in toxicity were observed despite the two particulate compounds containing similar amounts of indium suggesting that solubilization, not total indium content, better reflects the toxic potential of some ICPs. Soluble InCl3 was shown to be more cytotoxic than InP to macrophages and lung epithelial cells in vitro further suggesting that ionic indium is the primary cytotoxic component of InP. PMID:25527823

  6. Superconductivity induced by In substitution into the topological crystalline insulator Pb0.5Sn0.5Te

    NASA Astrophysics Data System (ADS)

    Zhong, R. D.; Schneeloch, J. A.; Liu, T. S.; Camino, F. E.; Tranquada, J. M.; Gu, G. D.

    2014-07-01

    Indium substitution turns the topological crystalline insulator (TCI) Pb0.5Sn0.5Te into a possible topological superconductor. To investigate the effect of the indium concentration on the crystal structure and superconducting properties of (Pb0.5Sn0.5)1-xInxTe, we have grown high-quality single crystals using a modified floating-zone method and have performed systematic studies for indium content in the range 0≤x≤0.35. We find that the single crystals retain the rocksalt structure up to the solubility limit of indium (x ˜0.30). Experimental dependencies of the superconducting transition temperature (Tc) and the upper critical magnetic field (Hc2) on the indium content x have been measured. The maximum Tc is determined to be 4.7 K at x =0.30, with μ0Hc2(T =0)≈5 T.

  7. Reliable bonding using indium-based solders

    NASA Astrophysics Data System (ADS)

    Cheong, Jongpil; Goyal, Abhijat; Tadigadapa, Srinivas; Rahn, Christopher

    2004-01-01

    Low temperature bonding techniques with high bond strengths and reliability are required for the fabrication and packaging of MEMS devices. Indium and indium-tin based bonding processes are explored for the fabrication of a flextensional MEMS actuator, which requires the integration of lead zirconate titanate (PZT) substrate with a silicon micromachined structure at low temperatures. The developed technique can be used either for wafer or chip level bonding. The lithographic steps used for the patterning and delineation of the seed layer limit the resolution of this technique. Using this technique, reliable bonds were achieved at a temperature of 200°C. The bonds yielded an average tensile strength of 5.41 MPa and 7.38 MPa for samples using indium and indium-tin alloy solders as the intermediate bonding layers respectively. The bonds (with line width of 100 microns) showed hermetic sealing capability of better than 10-11 mbar-l/s when tested using a commercial helium leak tester.

  8. Reliable bonding using indium-based solders

    NASA Astrophysics Data System (ADS)

    Cheong, Jongpil; Goyal, Abhijat; Tadigadapa, Srinivas; Rahn, Christopher

    2003-12-01

    Low temperature bonding techniques with high bond strengths and reliability are required for the fabrication and packaging of MEMS devices. Indium and indium-tin based bonding processes are explored for the fabrication of a flextensional MEMS actuator, which requires the integration of lead zirconate titanate (PZT) substrate with a silicon micromachined structure at low temperatures. The developed technique can be used either for wafer or chip level bonding. The lithographic steps used for the patterning and delineation of the seed layer limit the resolution of this technique. Using this technique, reliable bonds were achieved at a temperature of 200°C. The bonds yielded an average tensile strength of 5.41 MPa and 7.38 MPa for samples using indium and indium-tin alloy solders as the intermediate bonding layers respectively. The bonds (with line width of 100 microns) showed hermetic sealing capability of better than 10-11 mbar-l/s when tested using a commercial helium leak tester.

  9. Effect of indium addition in U-Zr metallic fuel on lanthanide migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yeon Soo; Wiencek, T.; O'Hare, E.

    Advanced fast reactor concepts to achieve ultra-high burnup (~50%) require prevention of fuel-cladding chemical interaction (FCCI). Fission product lanthanide accumulation at high burnup is substantial and significantly contributes to FCCI upon migration to the cladding interface. Diffusion barriers are typically used to prevent interaction of the lanthanides with the cladding. A more active method has been proposed which immobilizes the lanthanides through formation of stable compounds with an additive. Theoretical analysis showed that indium, thallium, and antimony are good candidates. Indium was the strongest candidate because of its low reactivity with iron-based cladding alloys. Characterization of the as-fabricated alloys wasmore » performed to determine the effectiveness of the indium addition in forming compounds with lanthanides, represented by cerium. Tests to examine how effectively the dopant prevents lanthanide migration under a thermal gradient were also performed. The results showed that indium effectively prevented cerium migration.« less

  10. Effect of variation in indium concentration on the photosensitivity of chlorine doped In{sub 2}S{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherian, Angel Susan; Kartha, C. Sudha; Vijayakumar, K. P.

    2014-01-28

    Consequence of variation in Indium concentration in chlorine doped In2S{sub 3} thin films deposited by spray pyrolysis technique was studied. Chlorine was incorporated in the spray solution, using HCl and Indium concentration was varied by adjusting In/S ratio Interestingly, the photo response of all chlorine doped samples augmented compared to pristine samples; but the highest photosensitivity value of ∼2300 was obtained only when 36ml 0.5M HCl was added to the solution of In{sub 2}S{sub 3} having In/S=2/8. It was also observed that samples with high photosensitivity possess higher band gap and variation in sub band gap absoption levels were observedmore » with increase in Indium concentration. The present study proved that concentration of Indium plays an important role in controlling the crystallinity and photosensitivity of chlorine doped samples.« less

  11. Influence of dislocations on indium diffusion in semi-polar InGaN/GaN heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Yao; National Institute for Materials Science, Tsukuba, Ibaraki 305-0044; Sun, Huabin

    2015-05-15

    The spatial distribution of indium composition in InGaN/GaN heterostructure is a critical topic for modulating the wavelength of light emitting diodes. In this letter, semi-polar InGaN/GaN heterostructure stripes were fabricated on patterned GaN/Sapphire substrates by epitaxial lateral overgrowth (ELO), and the spatial distribution of indium composition in the InGaN layer was characterized by using cathodoluminescence. It is found that the indium composition is mainly controlled by the diffusion behaviors of metal atoms (In and Ga) on the surface. The diffusivity of metal atoms decreases sharply as migrating to the region with a high density of dislocations and other defects, whichmore » influences the distribution of indium composition evidently. Our work is beneficial for the understanding of ELO process and the further development of InGaN/GaN heterostructure based devices.« less

  12. Optimal design study of high efficiency indium phosphide space solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Flood, Dennis J.

    1990-01-01

    Recently indium phosphide solar cells have achieved beginning of life AMO efficiencies in excess of 19 pct. at 25 C. The high efficiency prospects along with superb radiation tolerance make indium phosphide a leading material for space power requirements. To achieve cost effectiveness, practical cell efficiencies have to be raised to near theoretical limits and thin film indium phosphide cells need to be developed. The optimal design study is described of high efficiency indium phosphide solar cells for space power applications using the PC-1D computer program. It is shown that cells with efficiencies over 22 pct. AMO at 25 C could be fabricated by achieving proper material and process parameters. It is observed that further improvements in cell material and process parameters could lead to experimental cell efficiencies near theoretical limits. The effect of various emitter and base parameters on cell performance was studied.

  13. Energy structure and radiative lifetimes of InxGa1-xN /AlN quantum dots

    NASA Astrophysics Data System (ADS)

    Aleksandrov, Ivan A.; Zhuravlev, Konstantin S.

    2018-01-01

    We report calculations of the ground state transition energies and the radiative lifetimes in InxGa1-xN /AlN quantum dots with different size and indium content. The ground state transition energy and the radiative lifetime of the InxGa1-xN /AlN quantum dots can be varied over a wide range by changing the height of the quantum dot and the indium content. The sizes and compositions for quantum dots emitting in the wavelength range for fiber-optic telecommunications have been found. The radiative lifetime of the InxGa1-xN /AlN quantum dots increases with increase in quantum dot height at a constant indium content, and increases with increase in indium content at constant quantum dot height. For quantum dots with constant ground state transition energy the radiative lifetime decreases with increase in indium content.

  14. Indium phosphide space solar cell research: Where we are and where we are going

    NASA Technical Reports Server (NTRS)

    Jain, R. K.; Flood, D. J.; Weinberg, Irving

    1995-01-01

    Indium phosphide is considered to be a strong contender for many photovoltaic space applications because of its radiation resistance and its potential for high efficiency. An overview of recent progress is presented, and possible future research directions for indium phosphide space solar cells are discussed. The topics considered include radiation damage studies and space flight experiments.

  15. Electron emitting device and method of making the same

    DOEpatents

    Olsen, Gregory Hammond; Martinelli, Ramon Ubaldo; Ettenberg, Michael

    1977-04-19

    A substrate of single crystalline gallium arsenide has on a surface thereof a layer of single crystalline indium gallium phosphide. A layer of single crystalline gallium arsenide is on the indium gallium phosphide layer and a work function reducing material is on the gallium arsenide layer. The substrate has an opening therethrough exposing a portion of the indium gallium phosphide layer.

  16. Method for restoring the resistance of indium oxide semiconductors after heating while in sealed structures

    DOEpatents

    Seager, C.H.; Evans, J.T. Jr.

    1998-11-24

    A method is described for counteracting increases in resistivity encountered when Indium Oxide resistive layers are subjected to high temperature annealing steps during semiconductor device fabrication. The method utilizes a recovery annealing step which returns the Indium Oxide layer to its original resistivity after a high temperature annealing step has caused the resistivity to increase. The recovery anneal comprises heating the resistive layer to a temperature between 100 C and 300 C for a period of time that depends on the annealing temperature. The recovery is observed even when the Indium Oxide layer is sealed under a dielectric layer. 1 fig.

  17. Method for restoring the resistance of indium oxide semiconductors after heating while in sealed structures

    DOEpatents

    Seager, Carleton H.; Evans, Jr., Joseph Tate

    1998-01-01

    A method for counteracting increases in resistivity encountered when Indium Oxide resistive layers are subjected to high temperature annealing steps during semiconductor device fabrication. The method utilizes a recovery annealing step which returns the Indium Oxide layer to its original resistivity after a high temperature annealing step has caused the resistivity to increase. The recovery anneal comprises heating the resistive layer to a temperature between 100.degree. C. and 300.degree. C. for a period of time that depends on the annealing temperature. The recovery is observed even when the Indium Oxide layer is sealed under a dielectric layer.

  18. Microstructure-mechanical property relationships for Al-Cu-Li-Zr alloys with minor additions of cadmium, indium or tin

    NASA Technical Reports Server (NTRS)

    Blackburn, L. B.; Starke, E. A., Jr.

    1989-01-01

    Minor amounts of cadmium, indium or tin were added to a baseline alloy with the nominal composition of Al-2.4Cu-2.4Li-0.15Zr. These elements were added in an attempt to increase the age-hardening response of the material such that high strengths could be achieved through heat-treatment alone, without the need for intermediate mechanical working. The alloy variant containing indium achieved a higher peak hardness in comparison to the other alloy variations, including the baseline material, when aged at temperatures ranging from 160 C to 190 C. Tensile tests on specimens peak-aged at 160 indicated the yield strength of the indium-bearing alloy increased by approximately 15 percent compared to that of the peak-aged baseline alloy. In addition, the yield strength obtained in the indium-bearing alloy was comparable to that reported for similar baseline material subjected to a 6 percent stretch prior to peak-aging at 190 C. The higher strength levels obtaied for the indium-bearing alloy are attributed to increased number densities and homogeneity of both the T1 and theta-prime phases, as determined by TEM studies.

  19. Obtaining a Low and Wide Atomic Layer Deposition Window (150-275 °C) for In2 O3 Films Using an InIII Amidinate and H2 O.

    PubMed

    Kim, Sang Bok; Jayaraman, Ashwin; Chua, Danny; Davis, Luke M; Zheng, Shao-Liang; Zhao, Xizhu; Lee, Sunghwan; Gordon, Roy G

    2018-06-05

    Indium oxide is a major component of many technologically important thin films, most notably the transparent conductor indium tin oxide (ITO). Despite being pyrophoric, homoleptic indium(III) alkyls do not allow atomic layer deposition (ALD) of In 2 O 3 using water as a co-precursor at substrate temperatures below 200 °C. Several alternative indium sources have been developed, but none allows ALD at lower temperatures except in the presence of oxidants such as O 2 or O 3 , which are not compatible with some substrates or alloying processes. We have synthesized a new indium precursor, tris(N,N'-diisopropylformamidinato)indium(III), compound 1, which allows ALD of pure, carbon-free In 2 O 3 films using H 2 O as the only co-reactant, on substrates in the temperature range 150-275 °C. In contrast, replacing just the H of the anionic iPrNC(H)NiPr ligand with a methyl group (affording the known tris(N,N'-diisopropylacetamidinato)indium(III), compound 2) results in a considerably higher and narrower ALD window in the analogous reaction with H 2 O (225-300 °C). Kinetic studies demonstrate that a higher rate of surface reactions in both parts of the ALD cycle gives rise to this difference in the ALD windows. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Indium Lung Disease

    PubMed Central

    Nakano, Makiko; Omae, Kazuyuki; Takeuchi, Koichiro; Chonan, Tatsuya; Xiao, Yong-long; Harley, Russell A.; Roggli, Victor L.; Hebisawa, Akira; Tallaksen, Robert J.; Trapnell, Bruce C.; Day, Gregory A.; Saito, Rena; Stanton, Marcia L.; Suarthana, Eva; Kreiss, Kathleen

    2012-01-01

    Background: Reports of pulmonary fibrosis, emphysema, and, more recently, pulmonary alveolar proteinosis (PAP) in indium workers suggested that workplace exposure to indium compounds caused several different lung diseases. Methods: To better understand the pathogenesis and natural history of indium lung disease, a detailed, systematic, multidisciplinary analysis of clinical, histopathologic, radiologic, and epidemiologic data for all reported cases and workplaces was undertaken. Results: Ten men (median age, 35 years) who produced, used, or reclaimed indium compounds were diagnosed with interstitial lung disease 4-13 years after first exposure (n = 7) or PAP 1-2 years after first exposure (n = 3). Common pulmonary histopathologic features in these patients included intraalveolar exudate typical of alveolar proteinosis (n = 9), cholesterol clefts and granulomas (n = 10), and fibrosis (n = 9). Two patients with interstitial lung disease had pneumothoraces. Lung disease progressed following cessation of exposure in most patients and was fatal in two. Radiographic data revealed that two patients with PAP subsequently developed fibrosis and one also developed emphysematous changes. Epidemiologic investigations demonstrated the potential for exposure to respirable particles and an excess of lung abnormalities among coworkers. Conclusions: Occupational exposure to indium compounds was associated with PAP, cholesterol ester crystals and granulomas, pulmonary fibrosis, emphysema, and pneumothoraces. The available evidence suggests exposure to indium compounds causes a novel lung disease that may begin with PAP and progress to include fibrosis and emphysema, and, in some cases, premature death. Prospective studies are needed to better define the natural history and prognosis of this emerging lung disease and identify effective prevention strategies. PMID:22207675

  1. Electrothermal atomisation atomic absorption conditions and matrix modifications for determining antimony, arsenic, bismuth, cadmium, gallium, gold, indium, lead, molybdenum, palladium, platinum, selenium, silver, tellurium, thallium and tin following back-extraction of organic aminohalide extracts

    USGS Publications Warehouse

    Clark, J.R.

    1986-01-01

    A multi-element organic-extraction and back-extraction procedure, that had been developed previously to eliminate matrix interferences in the determination of a large number of trace elements in complex materials such as geological samples, produced organic and aqueous solutions that were complex. Electrothermal atomisation atomic absorption conditions and matrix modifications have been developed for 13 of the extracted elements (Ag, As, Au, Bi, Cd, Ga, In, Pb, Sb, Se, Sn, Te and Tl) that enhance sensitivity, alleviate problems resulting from the complex solutions and produce acceptable precision. Platinum, Pd and Mo can be determined without matrix modification directly on the original unstripped extracts.

  2. Preparation of CIGS-based solar cells using a buffered electrodeposition bath

    DOEpatents

    Bhattacharya, Raghu Nath

    2007-11-20

    A photovoltaic cell exhibiting an overall conversion efficiency of at least 9.0% is prepared from a copper-indium-gallium-diselenide thin film. The thin film is prepared by simultaneously electroplating copper, indium, gallium, and selenium onto a substrate using a buffered electro-deposition bath. The electrodeposition is followed by adding indium to adjust the final stoichiometry of the thin film.

  3. Semiconductor material and method for enhancing solubility of a dopant therein

    DOEpatents

    Sadigh, Babak; Lenosky, Thomas J.; Rubia, Tomas Diaz; Giles, Martin; Caturla, Maria-Jose; Ozolins, Vidvuds; Asta, Mark; Theiss, Silva; Foad, Majeed; Quong, Andrew

    2003-09-09

    A method for enhancing the equilibrium solubility of boron and indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100.degree. C.; and for indium, a 1% tensile strain at 1100.degree. C., corresponds to an enhancement of the solubility by 200%.

  4. Occult purulent pericarditis detected by indium-111 leukocyte imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, M.L.; Niebulski, H.I.; Uretsky, B.F.

    1984-05-01

    Leukocyte imaging with indium-111 is a relatively new technique which, to this point in time, has been discussed almost exclusively in the radiologic literature. Although this procedure has been used mainly to detect intra-abdominal infection, the thorax is routinely imaged along with the abdomen, and therefore detection of cardiac disease may be feasible. This case report is of a young woman after liver transplantation who developed occult purulent pericarditis initially detected by a leukocyte scan with indium-111. This case demonstrates that striking pericardial uptake on a whole-body indium-111 leukocyte scan can occur with purulent pericarditis, and it reemphasizes how insidiouslymore » purulent pericarditis may present in an immunosuppressed patient.« less

  5. A Semiconductor Material And Method For Enhancing Solubility Of A Dopant Therein

    DOEpatents

    Sadigh, Babak; Lenosky, Thomas J.; Diaz de la Rubia, Tomas; Giles, Martin; Caturla, Maria-Jose; Ozolins, Vidvuds; Asta, Mark; Theiss, Silva; Foad, Majeed; Quong, Andrew

    2005-03-29

    A method for enhancing the equilibrium solubility of boron ad indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100.degree. C.; and for indium, a 1% tensile strain at 1100.degree. C., corresponds to an enhancement of the solubility by 200%.

  6. False positive indium-111 white blood cell scan in a closed clavicle fracture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, R.J.; Gordon, L.

    1988-01-01

    Aggressive treatment of the multiply injured patient often requires early fixation of many fractures, some of which may be open. Often, patients develop postoperative fevers requiring a thorough workup to rule out infection. Recently, indium-111 white blood cell (WBC) imaging has become a valuable adjunct in the diagnosis of acute infection. The patient described had a simple, closed clavicle fracture with markedly increased activity on an indium-111 WBC scan obtained for fever workup. This subsequently proved to be a normal, healing, noninfected fracture by other diagnostic techniques. Noninfected, simple closed fractures should be added to the list of causes formore » a false-positive indium-111 WBC scan.« less

  7. Synthesis, characterization and investigation of the photophysical and photochemical properties of highly soluble novel metal-free, zinc(II), and indium(III) phthalocyanines substituted with 2,3,6-trimethylphenoxy moieties.

    PubMed

    Gürel, Ekrem; Pişkin, Mehmet; Altun, Selçuk; Odabaş, Zafer; Durmuş, Mahmut

    2015-04-07

    This work presents the synthesis and characterization of metal-free, zinc(II), and indium(III)acetate phthalocyanines substituted with 2,3,6-trimethylphenoxy groups at the peripheral and non-peripheral positions. The photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen generation and photodegradation under light irradiation) properties of these novel phthalocyanines and unsubstituted zinc(II) and indium(III)acetate phthalocyanines were investigated in dimethylformamide solution. The effects of the types of substituents and their positions and the variety of central metal ions on the phthalocyanine core on their spectroscopic, photophysical and photochemical properties were also determined. The studied 2,3,6-trimethylphenoxy substituted metal-free, zinc(II) and indium(III)acetate phthalocyanines especially indium(III)acetate derivatives exhibited appropriate photophysical and photochemical properties such as high singlet oxygen generation and these phthalocyanines can be potential Type II photosensitizers for photodynamic therapy in cancer applications.

  8. A Novel Fabrication Method of Bi₂Te₃-Based Thermoelectric Modules by Indium Electroplating and Thermocompression Bonding.

    PubMed

    Yoon, Jongchan; Bae, Sung Hwa; Sohn, Ho-Sang; Son, Injoon; Kim, Kyung Tae; Ju, Young-Wan

    2018-09-01

    In this study, we devised a method to bond thermoelectric elements directly to copper electrodes by plating indium with a relatively low melting point. A coating of indium, ~30 μm in thickness, was fabricated by electroplating the surface of a Bi2Te3-based thermoelectric element with a nickel diffusion barrier layer. They were then subjected to direct thermocompression bonding at 453 K on a hotplate for 10 min at a pressure of 1.1 kPa. Scanning electron microscopy images confirmed that a uniform bond was formed at the copper electrode/thermoelectric element interface, and the melted/solidified indium layer was defect free. Thus, the proposed novel method of fabricating a thermoelectric module by electroplating indium on the surface of the thermoelectric element and directly bonding with the copper electrode can be used to obtain a uniformly bonded interface even at a relatively low temperature without the use of solder pastes.

  9. Technologies for Trapped-Ion Quantum Information Systems

    DTIC Science & Technology

    2016-03-21

    mate- rials such as graphene and indium tin oxide, integrating devices like optical fibers and mirrors, and exploring alternative ion loading and...trapping techniques. Keywords ion traps · quantum computation · quantum information · trapped ions · ion-photon interface · graphene · indium tin oxide...displays are typically made of indium tin oxide (ITO), a material that is both an elec- trical and an optical conductor. However, using ITO electrodes

  10. Tunable blue organic light emitting diode based on aluminum calixarene supramolecular complex

    NASA Astrophysics Data System (ADS)

    Legnani, C.; Reyes, R.; Cremona, M.; Bagatin, I. A.; Toma, H. E.

    2004-07-01

    In this letter, the results of supramolecular organic light emitting diodes using a calix[4] arene complex thin film as emitter and electron transporting layer are presented. The devices were grown onto glass substrates coated with indium-tin-oxide layer and aluminum thick (150nm) cathode. By applying a dc voltage between the device electrodes in forward bias condition, a blue light emission in the active area of the device was observed. It was found that the electroluminescent emission peak can be tuned between 470 and 510nm changing the applied voltage bias from 4.3 to 5.4V. The observed tunable emission can be associated with an energy transfer from the calixarene compound.

  11. Ion beam synthesis of indium-oxide nanocrystals for improvement of oxide resistive random-access memories

    NASA Astrophysics Data System (ADS)

    Bonafos, C.; Benassayag, G.; Cours, R.; Pécassou, B.; Guenery, P. V.; Baboux, N.; Militaru, L.; Souifi, A.; Cossec, E.; Hamga, K.; Ecoffey, S.; Drouin, D.

    2018-01-01

    We report on the direct ion beam synthesis of a delta-layer of indium oxide nanocrystals (In2O3-NCs) in silica matrices by using ultra-low energy ion implantation. The formation of the indium oxide phase can be explained by (i) the affinity of indium with oxygen, (ii) the generation of a high excess of oxygen recoils generated by the implantation process in the region where the nanocrystals are formed and (iii) the proximity of the indium-based nanoparticles with the free surface and oxidation from the air. Taking advantage of the selective diffusivity of implanted indium in SiO2 with respect to Si3N4, In2O3-NCs have been inserted in the SiO2 switching oxide of micrometric planar oxide-based resistive random access memory (OxRAM) devices fabricated using the nanodamascene process. Preliminary electrical measurements show switch voltage from high to low resistance state. The devices with In2O3-NCs have been cycled 5 times with identical operating voltages and RESET current meanwhile no switch has been observed for non implanted devices. This first measurement of switching is very promising for the concept of In2O3-NCs based OxRAM memories.

  12. Scalable Indium Phosphide Thin-Film Nanophotonics Platform for Photovoltaic and Photoelectrochemical Devices.

    PubMed

    Lin, Qingfeng; Sarkar, Debarghya; Lin, Yuanjing; Yeung, Matthew; Blankemeier, Louis; Hazra, Jubin; Wang, Wei; Niu, Shanyuan; Ravichandran, Jayakanth; Fan, Zhiyong; Kapadia, Rehan

    2017-05-23

    Recent developments in nanophotonics have provided a clear roadmap for improving the efficiency of photonic devices through control over absorption and emission of devices. These advances could prove transformative for a wide variety of devices, such as photovoltaics, photoelectrochemical devices, photodetectors, and light-emitting diodes. However, it is often challenging to physically create the nanophotonic designs required to engineer the optical properties of devices. Here, we present a platform based on crystalline indium phosphide that enables thin-film nanophotonic structures with physical morphologies that are impossible to achieve through conventional state-of-the-art material growth techniques. Here, nanostructured InP thin films have been demonstrated on non-epitaxial alumina inverted nanocone (i-cone) substrates via a low-cost and scalable thin-film vapor-liquid-solid growth technique. In this process, indium films are first evaporated onto the i-cone structures in the desired morphology, followed by a high-temperature step that causes a phase transformation of the indium into indium phosphide, preserving the original morphology of the deposited indium. Through this approach, a wide variety of nanostructured film morphologies are accessible using only control over evaporation process variables. Critically, the as-grown nanotextured InP thin films demonstrate excellent optoelectronic properties, suggesting this platform is promising for future high-performance nanophotonic devices.

  13. Cosputtering crystal growth of zinc oxide-based composite films: From the effects of doping to phase on photoactivity and gas sensing properties

    NASA Astrophysics Data System (ADS)

    Liang, Yuan-Chang; Lee, Chia-Min

    2016-10-01

    ZnO-In2O3 (InO) composite thin films were grown by radio frequency cosputtering ZnO and InO ceramic targets in this study. The indium content of the composite films was varied from 1.7 at. % to 8.2 at. % by varying the InO sputtering power during cosputtering thin-film growth. X-ray diffraction and transmission electron microscopy analysis results show that the high indium content leads to the formation of a separated InO phase in the ZnO matrix. The surface crystallite size and roughness of the ZnO-InO composite films grown here increased with an increasing indium content. Furthermore, under the conditions of a higher indium content and InO sputtering power, the number of crystal defects in the composite films increased, and the optical absorbance edge of the composite films broadened. The photoactivity and ethanol gas sensing response of the ZnO-InO composite films increased as their indium content increased; this finding is highly correlated with the microstructural evolution of ZnO-InO composite films of various indium contents, which is achieved by varying the InO sputtering power during cosputtering.

  14. The n-type conduction of indium-doped Cu{sub 2}O thin films fabricated by direct current magnetron co-sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Xing-Min; Su, Xiao-Qiang; Ye, Fan, E-mail: yefan@szu.edu.cn

    2015-08-24

    Indium-doped Cu{sub 2}O thin films were fabricated on K9 glass substrates by direct current magnetron co-sputtering in an atmosphere of Ar and O{sub 2}. Metallic copper and indium disks were used as the targets. X-ray diffraction showed that the diffraction peaks could only be indexed to simple cubic Cu{sub 2}O, with no other phases detected. Indium atoms exist as In{sup 3+} in Cu{sub 2}O. Ultraviolet-visible spectroscopy showed that the transmittance of the samples was relatively high and that indium doping increased the optical band gaps. The Hall effect measurement showed that the samples were n-type semiconductors at room temperature. Themore » Seebeck effect test showed that the films were n-type semiconductors near or over room temperature (<400 K), changing to p-type at relatively high temperatures. The conduction by the samples in the temperature range of the n-type was due to thermal band conduction and the donor energy level was estimated to be 620.2–713.8 meV below the conduction band. The theoretical calculation showed that indium doping can raise the Fermi energy level of Cu{sub 2}O and, therefore, lead to n-type conduction.« less

  15. Reduction of Polarization Field Strength in Fully Strained c-Plane InGaN/(In)GaN Multiple Quantum Wells Grown by MOCVD.

    PubMed

    Zhang, Feng; Ikeda, Masao; Zhang, Shu-Ming; Liu, Jian-Ping; Tian, Ai-Qin; Wen, Peng-Yan; Cheng, Yang; Yang, Hui

    2016-12-01

    The polarization fields in c-plane InGaN/(In)GaN multiple quantum well (MQW) structures grown on sapphire substrate by metal-organic chemical vapor deposition are investigated in this paper. The indium composition in the quantum wells varies from 14.8 to 26.5% for different samples. The photoluminescence wavelengths are calculated theoretically by fully considering the related effects and compared with the measured wavelengths. It is found that when the indium content is lower than 17.3%, the measured wavelengths agree well with the theoretical values. However, when the indium content is higher than 17.3%, the measured ones are much shorter than the calculation results. This discrepancy is attributed to the reduced polarization field in the MQWs. For the MQWs with lower indium content, 100% theoretical polarization can be maintained, while, when the indium content is higher, the polarization field decreases significantly. The polarization field can be weakened down to 23% of the theoretical value when the indium content is 26.5%. Strain relaxation is excluded as the origin of the polarization reduction because there is no sign of lattice relaxation in the structures, judging by the X-ray diffraction reciprocal space mapping. The possible causes of the polarization reduction are discussed.

  16. 3-D indium(III)-btc channel frameworks and their ion-exchange properties (btc=1,3,5-benzenetricarboxylate)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin Zhengzhong; Chen Lian; Yue Chengyang

    2006-04-15

    Assembly of InCl{sub 3} with 1,3,5-benzenetricarboxylic acid (H{sub 3}btc) and pyridine or pyridine derivatives under hydrothermal conditions produces a series of isostructural coordination polymers with the interesting frameworks: {l_brace}(HL)[In{sub 4}(OH){sub 4}(btc){sub 3}].L.3H{sub 2}O{r_brace} {sub n} {sub ,} L=pyridine (1); L=2-picoline (2); L=4-picoline (3) and {l_brace}(Hdpea)[In{sub 4}(OH){sub 4}(btc){sub 3}].3H{sub 2}O{r_brace} {sub n} (4) (dpea=1,2-di(4-pyridyl)ethane). In these four complexes, carboxyl and hydroxyl oxygen atoms bridge indium(III) centers to form octahedral chain-like sinusoidal curves, which are further interlinked by btc{sup 3-} moieties to generate 3-D frameworks with 1-D channels. The protonated guests HL in 1-3 located at the channels can be fully exchangedmore » by K{sup +} ion or partially exchanged by Sr{sup 2+}, and Ba{sup 2+} ions.« less

  17. Synthesis of ligand-stabilized metal oxide nanocrystals and epitaxial core/shell nanocrystals via a lower-temperature esterification process.

    PubMed

    Ito, Daisuke; Yokoyama, Shun; Zaikova, Tatiana; Masuko, Keiichiro; Hutchison, James E

    2014-01-28

    The properties of metal oxide nanocrystals can be tuned by incorporating mixtures of matrix metal elements, adding metal ion dopants, or constructing core/shell structures. However, high-temperature conditions required to synthesize these nanocrystals make it difficult to achieve the desired compositions, doping levels, and structural control. We present a lower temperature synthesis of ligand-stabilized metal oxide nanocrystals that produces crystalline, monodisperse nanocrystals at temperatures well below the thermal decomposition point of the precursors. Slow injection (0.2 mL/min) of an oleic acid solution of the metal oleate complex into an oleyl alcohol solvent at 230 °C results in a rapid esterification reaction and the production of metal oxide nanocrystals. The approach produces high yields of crystalline, monodisperse metal oxide nanoparticles containing manganese, iron, cobalt, zinc, and indium within 20 min. Synthesis of tin-doped indium oxide (ITO) can be accomplished with good control of the tin doping levels. Finally, the method makes it possible to perform epitaxial growth of shells onto nanocrystal cores to produce core/shell nanocrystals.

  18. [Risk analysis and assessment of occupational hazard fromindiumand its compounds in manufacture of liquid crystal display panel].

    PubMed

    Qiu, Haili; Zhou, Wei; Li, Zhimin; Tian, Dongchao; Weng, Shaofan; He, Juntao

    2015-08-01

    To understand the exposed positions and levels of indium and its compounds in manufacture of liquid crystal displays, and to evaluate the degree of occupational hazard from indium and its compounds. On-site investigation of occupational health, occupational hazard monitoring, and occupational health examination were used to evaluate the degree of occupational hazard from indium and its compounds in three manufacturers of liquid crystal display panel in Shenzhen, Guangdong, China. The time-weighted average (TWA) and short-term exposure limit (STEL) concentrations of indium and its compounds to which sputtering machine operating positions were exposed were less than 0.002~0.004 mg/m³ and 0.006~0.007 mg/m³, respectively, both of which complied with the National Hygienic Standard (PC-TWA = 0.1 mg/m³; PC-STEL = 0.3 mg/m³); the TWA and STEL concentrations of indium and its compounds to which grinding positions were exposed were 0.114~2.98 mg/m³ and 0.31~10.02 mg/m³, respectively, both of which exceeded the National Hygienic Standard with the highest concentration 33-fold higher than the standard. No significant health damages were found in exposed workers according to the results of occupational health examination. The grinding positions are the key to the control of occupational hazard from indium and its compounds in manufacture of liquid crystal display panel. The workers should be equipped with the anti-particulate full-face respirator, which is an effective way to prevent occupational hazard from indium and its compounds.

  19. Hydrothermal fluoride and chloride complexation of indium: an EXAFS study

    NASA Astrophysics Data System (ADS)

    Loges, Anselm; Testemale, Denis; Huotari, Simo; Honkanen, Ari-Pekka; Potapkin, Vasily; Wagner, Thomas

    2017-04-01

    Indium (In) is one of the geochemically lesser studied ore metals, and the factors that control the hydrothermal transport and deposition are largely unknown. It has no ore deposits of its own and is commonly mined as a by-product of Zn ores, and there are very few minerals that contain In as an essential structural component. Recently, industrial application of In in touch screen devices has drastically increased demand, which is projected to exceed supply from the current sources in the near future. Since the most relevant In sources are hydrothermal sphalerite ores and to a lesser extent hydrothermal greisen-type deposits in evolved granitic plutons, the aqueous geochemistry of In is of particular interest for understanding its ore forming processes. As a first step towards a comprehensive model for hydrothermal In solubility and speciation, we have studied In speciation in fluoride and chloride bearing solutions at 30-400˚ C and 500 bar using X-Ray Absorption Spectroscopy (XAS) measurements. The experiments were conducted in a unique hydrothermal autoclave setup at beamline BM30B-FAME at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Our results show that the complexation of In changes dramatically between 30 and 400˚ C. Below ca. 200˚ C, fluoride complexes are the most stable ones, but they break down at higher temperatures. Chloride complexes on the other hand become increasingly stable with increasing temperature. This behavior has interesting consequences for natural ore forming systems. In Cl-rich systems (e.g. massive sulfide ores formed in sea floor environments), cooling can be an effective precipitating mechanism. In F-rich systems, fluoride complexation can extend In mobility to low temperatures and In will only precipitate when F is effectively removed from the fluid, e.g. by mixing with a Ca-rich fluid and precipitation of fluorite (CaF2) as is commonly observed in skarn or greisen-type deposits. Due to In complexing with both F and Cl, depending on temperature, In distribution also has great potential as a fluid chemistry/temperature indicator in a wide range of different hydrothermal ore-forming systems.

  20. Quantification of indium in steel using PIXE

    NASA Astrophysics Data System (ADS)

    Oliver, A.; Miranda, J.; Rickards, J.; Cheang, J. C.

    1989-04-01

    The quantitative analysis of steel for endodontics tools was carried out using low-energy protons (≤ 700 keV). A computer program for a thick-target analysis which includes enhancement due to secondary fluorescence was used. In this experiment the L-lines of indium are enhanced due to the proximity of other elements' K-lines to the indium absorption edge. The results show that the ionization cross section expression employed to evaluate this magnitude is important.

  1. High-efficiency indium tin oxide/indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Li, X.; Wanlass, M. W.; Gessert, T. A.; Emery, K. A.; Coutts, T. J.

    1989-01-01

    Improvements in the performance of indium tin oxide (ITO)/indium phosphide solar cells have been realized by the dc magnetron sputter deposition of n-ITO onto an epitaxial p/p(+) structure grown on commercial p(+) bulk substrates. The highest efficiency cells were achieved when the surface of the epilayer was exposed to an Ar/H2 plasma before depositing the bulk of the ITO in a more typical Ar/O2 plasma. With H2 processing, global efficiencies of 18.9 percent were achieved. It is suggested that the excellent performance of these solar cells results from the optimization of the doping, thickness, transport, and surface properties of the p-type base, as well as from better control over the ITO deposition procedure.

  2. Growth of indium gallium arsenide thin film on silicon substrate by MOCVD technique

    NASA Astrophysics Data System (ADS)

    Chowdhury, Sisir; Das, Anish; Banerji, Pallab

    2018-05-01

    Indium gallium arsenide (InGaAs) thin film with indium phosphide (InP) buffer has been grown on p-type silicon (100) by Metal Organic Chemical Vapor Deposition (MOCVD) technique. To get a lattice matched substrate an Indium Phosphide buffer thin film is deposited onto Si substrate prior to InGaAs growth. The grown films have been investigated by UV-Vis-NIR reflectance spectroscopy. The band gap energy of the grown InGaAs thin films determined to be 0.82 eV from reflectance spectrum and the films are found to have same thickness for growth between 600 °C and 650 °C. Crystalline quality of the grown films has been studied by grazing incidence X-ray diffractometry (GIXRD).

  3. Thermodynamic properties of uranium in liquid gallium, indium and their alloys

    NASA Astrophysics Data System (ADS)

    Volkovich, V. A.; Maltsev, D. S.; Yamshchikov, L. F.; Osipenko, A. G.

    2015-09-01

    Activity, activity coefficients and solubility of uranium was determined in gallium, indium and gallium-indium alloys containing 21.8 (eutectic), 40 and 70 wt.% In. Activity was measured at 573-1073 K employing the electromotive force method, and solubility between room temperature (or the alloy melting point) and 1073 K employing direct physical measurements. Activity coefficients were obtained from the difference of experimentally determined temperature dependencies of uranium activity and solubility. Intermetallic compounds formed in the respective alloys were characterized using X-ray diffraction. Partial and excess thermodynamic functions of uranium in the studied alloys were calculated. Liquidus lines in U-Ga and U-In phase diagrams from the side rich in gallium or indium are proposed.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swain, Basudev, E-mail: swain@iae.re.kr; Mishra, Chinmayee; Hong, Hyun Seon

    Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11 kg/m{sup 3} of copper and 1.35 kg/m{sup 3} of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered usingmore » various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compared. The developed copper nanopowder recovery techniques are techno-economical feasible processes for commercial production of copper nanopowder in the range of 100–500 nm size from the reported facilities through a one-pot synthesis. By all the process reported pure copper nanopowder can be recovered with>99% efficiency. After the copper recovery, copper concentration in the wastewater reduced to acceptable limit recommended by WHO for wastewater disposal. The process is not only beneficial for recycling of copper, but also helps to address environment challenged posed by ITO etching wastewater. From a complex wastewater, synthesis of pure copper nanopowder using various wet chemical reduction route and their comparison is the novelty of this recovery process. - Highlights: • From the Indium-Tin-Oxide etching wastewater, copper nanopowder was synthesized. • Solution chemistry of ITO etching wastewater is addressed. • A techno-economical feasible, environment friendly and occupational safe process. • Brings back the material to production stream and address the circular economy. • A cradle to cradle technology management lowers the futuristic carbon economy.« less

  5. Measuring systolic ankle and toe pressure using the strain gauge technique--a comparison study between mercury and indium-gallium strain gauges.

    PubMed

    Broholm, Rikke; Wiinberg, Niels; Simonsen, Lene

    2014-09-01

    Measurement of the ankle and toe pressures are often performed using a plethysmograph, compression cuffs and a strain gauge. Usually, the strain gauge contains mercury but other alternatives exist. From 2014, the mercury-containing strain gauge will no longer be available in the European Union. The aim of this study was to compare an indium-gallium strain gauge to the established mercury-containing strain gauge. Consecutive patients referred to the Department of Clinical Physiology and Nuclear Medicine at Bispebjerg and Frederiksberg Hospitals for measurements of systolic ankle and toe pressures volunteered for the study. Ankle and toe pressures were measured twice with the mercury and the indium-gallium strain gauge in random order. Comparison of the correlation between the mean pressure using the mercury and the indium-gallium device and the difference between the two devices was performed for both toe and ankle level. A total of 53 patients were included (36 male). Mean age was 69 (range, 45-92 years). Mean pressures at toe and ankle level with the mercury and the indium-gallium strain gauges were 77 (range, 0-180) mm Hg and 113 (range, 15-190) mm Hg, respectively. Comparison between the mercury and the indium-gallium strain gauge showed a difference in toe blood pressure values of - 0.7 mm Hg (SD: 7.0). At the ankle level, a difference of 2.0 mm Hg (SD: 8.6) was found. The two different devices agree sufficiently in the measurements of systolic ankle and toe pressure for the indium-gallium strain gauge to replace the mercury strain gauge.

  6. Vapor phase tri-methyl-indium seeding system suitable for high temperature spectroscopy and thermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiddon, R.; Zhou, B.; Borggren, J.

    2015-09-15

    Tri-methyl-indium (TMI) is used as an indium transport molecule to introduce indium atoms to reactive hot gas flows/combustion environments for spectroscopic diagnostics. A seeding system was constructed to allow the addition of an inert TMI laden carrier gas into an air/fuel mixture burning consequently on a burner. The amount of the seeded TMI in the carrier gas can be readily varied by controlling the vapor pressure through the temperature of the container. The seeding process was calibrated using the fluorescent emission intensity from the indium 6{sup 2}S{sub 1/2} → 5{sup 2}P{sub 1/2} and 6{sup 2}S{sub 1/2} → 5{sup 2}P{sub 3/2}more » transitions as a function of the calculated TMI seeding concentration over a range of 2–45 ppm. The response was found to be linear over the range 3–22.5 ppm; at concentrations above 25 ppm there is a loss of linearity attributable to self-absorption or loss of saturation of TMI vapor pressure in the carrier gas flow. When TMI was introduced into a post-combustion environment via an inert carrier gas, molecular transition from InH and InOH radicals were observed in the flame emission spectrum. Combined laser-induced fluorescence and absorption spectroscopy were applied to detect indium atoms in the TMI seeded flame and the measured atomic indium concentration was found to be at the ppm level. This method of seeding organometallic vapor like TMI to a reactive gas flow demonstrates the feasibility for quantitative spectroscopic investigations that may be applicable in various fields, e.g., chemical vapor deposition applications or temperature measurement in flames with two-line atomic fluorescence.« less

  7. Junction characteristics of indium tin oxide/indium phosphide solar cells

    NASA Astrophysics Data System (ADS)

    Sheldon, P.; Ahrenkiel, R. K.; Hayes, R. E.; Russell, P. E.; Nottenburg, R. N.; Kazmerski, L. L.

    Efficient indium tin oxide (ITO)/p-InP solar cells have been fabricated. Typical uncorrected efficiencies range from 9-12 percent at AM1 intensities. It is shown that deposition of ITO causes a semi-insulating layer at the InP surface as determined by C-V measurements. The thickness of this layer is approximately 750 A. We believe that this high resistivity region is due to surface accumulation of Fe at the ITO/InP interface.

  8. Status of indium phosphide solar cell development at Spire

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Keavney, C. J.; Vernon, S. M.

    1987-01-01

    On-going development of indium phosphide solar cells for space applications is presented. The development is being carried out with a view towards both high conversion efficiency and simplicity of manufacture. The cell designs comprise the ion-implanted cell, the indium tin oxide top contact cell, and the epitaxial cell grown by metal organic chemical vapor deposition. Modelling data on the limit to the efficiency are presented and comparison is made to measured performance data.

  9. Application of Copper Indium Gallium Diselenide Photovoltaic Cells to Extend the Endurance and Capabilities of Unmanned Aerial Vehicles

    DTIC Science & Technology

    2009-09-01

    Group V element to make them n or p material. Another common group of semiconductors are called III–V compounds , such as gallium arsenide (GaAs), or...these compounds used for photovoltaics are Cadmium Telluride (CdTe), and Copper Indium Gallium DiSelenide, commonly referred to as CIGS [49]. Figure...INDIUM GALLIUM DISELENIDE PHOTOVOLTAIC CELLS TO EXTEND THE ENDURANCE AND CAPABILITIES OF UNMANNED AERIAL VEHICLES by William R. Hurd

  10. Effect of non-vacuum thermal annealing on high indium content InGaN films deposited by pulsed laser deposition.

    PubMed

    Wang, Tzu-Yu; Ou, Sin-Liang; Shen, Kun-Ching; Wuu, Dong-Sing

    2013-03-25

    InGaN films with 33% and 60% indium contents were deposited by pulsed laser deposition (PLD) at a low growth temperature of 300 °C. The films were then annealed at 500-800 °C in the non-vacuum furnace for 15 min with an addition of N(2) atmosphere. X-ray diffraction results indicate that the indium contents in these two films were raised to 41% and 63%, respectively, after annealing in furnace. In(2)O(3) phase was formed on InGaN surface during the annealing process, which can be clearly observed by the measurements of auger electron spectroscopy, transmission electron microscopy and x-ray photoelectron spectroscopy. Due to the obstruction of indium out-diffusion by forming In(2)O(3) on surface, it leads to the efficient increment in indium content of InGaN layer. In addition, the surface roughness was greatly improved by removing In(2)O(3) with the etching treatment in HCl solution. Micro-photoluminescence measurement was performed to analyze the emission property of InGaN layer. For the as-grown InGaN with 33% indium content, the emission wavelength was gradually shifted from 552 to 618 nm with increasing the annealing temperature to 800 °C. It reveals the InGaN films have high potential in optoelectronic applications.

  11. Thermal replacement reaction: a novel route for synthesizing eco-friendly ZnO@γ-In2Se3 hetero-nanostructures by replacing cadmium with indium and their photoelectrochemical and photocatalytic performances

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuo; Choi, Mingi; Baek, Minki; Yong, Kijung

    2015-05-01

    A novel route called thermal replacement reaction was demonstrated for synthesizing eco-friendly ZnO@γ-In2Se3 hetero-structural nanowires on FTO glass by replacing the element cadmium with indium for the first time. The indium layer was coated on the surface of the ZnO nanowires beforehand, then CdSe quantum dots were deposited onto the coated indium layer, and finally the CdSe quantum dots were converted to γ-In2Se3 quantum dots by annealing under vacuum at 350 °C for one hour. The prepared ZnO@γ-In2Se3 hetero-nanostructures exhibit stable photoelectrochemical properties that can be ascribed to the protection of the In2O3 layer between the ZnO nanowire and γ-In2Se3 quantum dots and better photocatalytic performance in the wide wavelength region from 400 nm to nearly 750 nm. This strategy for preparing the ZnO@γ-In2Se3 hetero-nanostructures not only enriches our understanding of the single replacement reaction where the active element cadmium can be replaced with indium, but also opens a new way for the in situ conversion of cadmium-based to eco-friendly indium-based nano-devices.

  12. Thermal replacement reaction: a novel route for synthesizing eco-friendly ZnO@γ-In2Se3 hetero-nanostructures by replacing cadmium with indium and their photoelectrochemical and photocatalytic performances.

    PubMed

    Zhang, Zhuo; Choi, Mingi; Baek, Minki; Yong, Kijung

    2015-05-21

    A novel route called thermal replacement reaction was demonstrated for synthesizing eco-friendly ZnO@γ-In2Se3 hetero-structural nanowires on FTO glass by replacing the element cadmium with indium for the first time. The indium layer was coated on the surface of the ZnO nanowires beforehand, then CdSe quantum dots were deposited onto the coated indium layer, and finally the CdSe quantum dots were converted to γ-In2Se3 quantum dots by annealing under vacuum at 350 °C for one hour. The prepared ZnO@γ-In2Se3 hetero-nanostructures exhibit stable photoelectrochemical properties that can be ascribed to the protection of the In2O3 layer between the ZnO nanowire and γ-In2Se3 quantum dots and better photocatalytic performance in the wide wavelength region from 400 nm to nearly 750 nm. This strategy for preparing the ZnO@γ-In2Se3 hetero-nanostructures not only enriches our understanding of the single replacement reaction where the active element cadmium can be replaced with indium, but also opens a new way for the in situ conversion of cadmium-based to eco-friendly indium-based nano-devices.

  13. The use of indium-111 labeled platelet scanning for the detection of asymptomatic deep venous thrombosis in a high risk population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegel, R.S.; Rae, J.L.; Ryan, N.L.

    Five hundred indium-111 labeled platelet imaging studies (387 donor and 113 autologous) were performed postoperatively in 473 patients who had undergone total hip replacement, total knee replacement, or internal fixation of a hip fracture to detect occult deep venous thrombosis. All patients had been anticoagulated prophylactically with aspirin, warfarin sodium (Coumadin), or dextran. Thirty-four possible cases of proximal deep venous thrombosis were identified in 28 asymptomatic patients. To verify the scan results, 31 venograms were performed in 25 patients (three refused). In 21 of 31 cases, totally occlusive thrombi were detected; in 5 cases, partially occlusive thrombi were detected; inmore » 5 cases, no thrombus was seen. No patient who had a negative scan nor any patient who had a verified positive scan (and received appropriate heparin therapy) subsequently developed symptoms or signs of pulmonary embolism. One hundred forty-one indium study patients also underwent Doppler ultrasonography/impedance plethysmography (Doppler/IPG) as a comparative non-invasive technique. In 137 cases, the results of the indium study and Doppler/IPG studies were congruent. The indium study had no false negative results that were detected by Doppler/IPG. No patient had any clinically evident toxicity. These results suggest that indium-111 labeled platelet scanning is a safe, noninvasive means for identifying DVT in high risk patients.« less

  14. Suppression of persistent photo-conductance in solution-processed amorphous oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Lee, Minkyung; Kim, Minho; Jo, Jeong-Wan; Park, Sung Kyu; Kim, Yong-Hoon

    2018-01-01

    This study offers a combinatorial approach for suppressing the persistent photo-conductance (PPC) characteristic in solution-processed amorphous oxide semiconductor (AOS) thin-film transistors (TFTs) in order to achieve rapid photo-recovery. Various analyses were used to examine the photo-instability of indium-gallium-zinc-oxide (IGZO) TFTs including negative-bias-illumination-stress (NBIS) and transient photo-response behaviors. It was found that the indium ratio in metallic components had a significant impact on their PPC and photo-recovery characteristics. In particular, when the indium ratio was low (51.5%), the PPC characteristic was significantly suppressed and achieving rapid photo-recovery was possible without significantly affecting the electrical performance of AOSs. These results imply that the optimization of the indium composition ratio may allow achieving highly photo-stable and near PPC-free characteristics while maintaining high electrical performance of AOSs. It is considered that the negligible PPC behavior and rapid photo-recovery observed in IGZO TFTs with a lower indium composition are attributed to the less activation energy required for the neutralization of ionized oxygen vacancies.

  15. Indium-incorporation efficiency in semipolar (11-22) oriented InGaN-based light emitting diodes

    NASA Astrophysics Data System (ADS)

    Monavarian, Morteza; Metzner, Sebastian; Izyumskaya, Natalia; Okur, Serdal; Zhang, Fan; Can, Nuri; Das, Saikat; Avrutin, Vitaliy; Özgür, Ümit; Bertram, Frank; Christen, Jürgen; Morkoç, Hadis

    2015-03-01

    Reduced electric field in semipolar (1122) GaN/InGaN heterostructures makes this orientation attractive for high efficiency light emitting diodes. In this work, we investigated indium incorporation in semipolar (1122) GaN grown by metal-organic chemical vapor deposition on planar m-plane sapphire substrates. Indium content in the semipolar material was compared with that in polar c-plane samples grown under the same conditions simultaneously side by side on the same holder. The investigated samples incorporated dual GaN/InGaN/GaN double heterostructures with 3nm wide wells. In order to improve optical quality, both polar and semipolar templates were grown using an in-situ epitaxial lateral overgrowth (ELO) technique. Indium incorporation efficiency was derived from the comparison of PL spectra measured on the semipolar and polar structures at the highest excitation density, which allowed us to minimize the effect of quantum confined Stark effect on the emission wavelength. Our data suggests increased indium content in the semipolar material by up to 3.0%, from 15% In in c- GaN to 18% In in (1122) GaN.

  16. Influence of nitrogen on magnetic properties of indium oxide

    NASA Astrophysics Data System (ADS)

    Ashok, Vishal Dev; De, S. K.

    2013-07-01

    Magnetic properties of indium oxide (In2O3) prepared by the decomposition of indium nitrate/indium hydroxide in the presence of ammonium chloride (NH4Cl) has been investigated. Structural and optical characterizations confirm that nitrogen is incorporated into In2O3. Magnetization has been convoluted to individual diamagnetic paramagnetic and ferromagnetic contributions with varying concentration of NH4Cl. Spin wave with diverging thermal exponent dominates in both field cool and zero field cool magnetizations. Uniaxial anisotropy plays an important role in magnetization as a function of magnetic field at higher concentration of NH4Cl. Avrami analysis indicates the absence of pinning effect in the magnetization process. Ferromagnetism has been interpreted in terms of local moments induced by anion dopant and strong hybridization with host cation.

  17. Compositional analysis of dilute nitride doped indium antimonide bulk crystal by VDS technique

    NASA Astrophysics Data System (ADS)

    Deshpande, Manisha; Maske, Dilip; Choudhari, Rashmi; Arora, Brij Mohan; Gadkari, Dattatray

    2016-05-01

    Dilute nitrides are suitable materials for fabrication of devices in detection of long wavelength infrared region. Dilute nitride doped Indium antimonide bulk crystals were grown using vertical directional solidification technique. The compositional characteristics of the crystals were carried out using EDS. The analysis was simulated and compared with observations using DTSA II software for accuracy. The ingots have uniform composition of Indium and Antimony. The actual nitrogen composition measured using EDS was 0.136% for doped nitrogen composition 0.1% except near conical end where it was 0.1%. The study of bonding between nitrogen, Indium and antimony was carried out using SIMS. The analysis shows strong presence of In-N bonding along with In-Sb bonds which indicates nitrogen has replaced antimony atoms in crystal lattice.

  18. Prototyping for LENS

    NASA Astrophysics Data System (ADS)

    Rasco, B. C.

    2012-03-01

    The Low-Energy Neutrino Spectroscopy (LENS) experiment will precisely measure the energy spectrum of low-energy solar neutrinos via charged-current neutrino reactions on indium. The LENS detector concept applies indium-loaded scintillator in an optically-segmented lattice geometry to achieve precise time and spatial resolution with unprecedented sensitivity for low-energy neutrino events. The LENS collaboration is currently developing prototypes that aim to demonstrate the performance and selectivity of the technology and to benchmark Monte Carlo simulations that will guide scaling to the full LENS instrument. Currently a 120 liter prototype, microLENS, is operating with pure scintillator (no indium loading) in the Kimballton Underground Research Facility (KURF). We will present results from initial measurements with microLENS and plans for a 400 liter prototype, miniLENS, using indium loaded scintillator that will be installed this summer.

  19. Synthesis and Structural Characterization of Tris(dimethyldithiocarbamate)Indium(III), In[S2CN(CH3)2]3

    NASA Technical Reports Server (NTRS)

    Clark, Eric B.; Breen, Marc L.; Fanwick, Phillip E.; Hepp, Aloysius F.; Duraj, Stan A.

    1998-01-01

    The synthesis and structure of the indium dithiocarbamate, In[SCN(CH3)2]3*1/2 4-mepy (4-mepy = 4-methylpyridine), is described. Indium metal was oxidized by tetramethylthiuramdisulfide in 4-methylpyridine at 25C to form a new, homoleptic indium(HI) dithiocarbamate in yields exceeding 60%. In[S2CN(CH3)213 exists as a discrete molecule with a distorted-octahedral geometry. The compound crystallizes in the P 1-bar (No. 2) space group with a = 9.282(l)A, b = 10.081(1)A, c = 12.502 A, alpha= 73.91 (1) degrees, beta = 70.21(1) degrees, gamma = 85.84(1) degrees, Z = 2,v(A(exp 3)) =1057.3(3), R = 0.046, and R(sub w) = 0.061.

  20. MOCVD growth of gallium nitride with indium surfactant

    NASA Astrophysics Data System (ADS)

    Won, Dong Jin

    In this thesis research, the effect of indium surfactant on Ga-polar and N-polar GaN films grown at 950 °C by MOCVD on various substrates such as Si-face SiC, bulk GaN, Si(111), and C-face SiC was studied to investigate the stress relaxation mechanism, structural, and optical properties of GaN films which were modified by the indium surfactant. The effect of indium surfactant on GaN films grown on SiC was studied first. In the 1.8 microm thick Ga-polar GaN films grown on lattice-mismatched Si-face SiC substrates utilizing indium surfactant at 950 °C, inverted hexagonal pyramid surface defects, so-called V-defects which consist of six (1011) planes, formed at threading dislocations on the GaN surface, which gave rise to the relaxation of compressive misfit stress in an elastic way. Simultaneously, enhanced surface mobility of Ga and N adatoms with indium surfactant lead to improved 2D growth, which may be contradictory to the formation of surface defects like V-defects. In order to find the driving force for V-defect formation in the presence of indium, a nucleation and growth model was developed, taking into consideration the strain, surface, and dislocation energies modified by indium surfactant. This model found that the V-defect formation can be energetically preferred since indium reduces the surface energy of the (1011) plane, which gives rise to the V-defect formation and growth that can overcome the energy barrier at the critical radius of the V-defect. These Ga-polar GaN films were found to be unintentionally doped with Si. Thus, an investigation into the effect of intentional Si doping at a constant TMIn flow rate on GaN films was also performed. Si turned out to be another important factor in the generation of V-defects because Si may be captured at the threading dislocation cores by forming Si -- N bonds, acting as a mask to locally prevent GaN growth. This behavior appeared to assist the initiation of the V-defect which enables V-defects to easily grow beyond the critical radius. Thus, introduction of indium surfactant and Si doping was found to be the most favorable conditions for V-defect formation in Ga-polar GaN films grown on Si-face SiC substrates. The nucleation and growth model predicted that V-defects may not form in homoepitaxy because the energy barrier for V-defect formation approaches infinity due to zero misfit stress. When indium surfactant and Si dopant were introduced simultaneously during the homoepitaxial growth, V-defects did not form in 1.8 microm thick Ga-polar GaN films grown at 950 °C on bulk GaN that had very low threading dislocation density, as predicted by the nucleation and growth model. Ga-polar GaN films grown on Si(111) substrates using indium surfactant showed that additional tensile stress was induced by indium with respect to the reference GaN. Since cracking is known to be a stress relaxation mechanism for tension, the In-induced additional tensile stress is thus detrimental to the GaN films which experience the tensile thermal stress associated with the difference in coefficient of thermal expansion between GaN and the substrate during cooling after growth. The generation of tensile stress by indium seemed correlated with a reduction of V-defects since a high density of V-defects formed under the initial compressive stress at the GaN nucleation stage and then V-defect density decreased as the film grew. Even though the initial misfit stress of the GaN film grown on Si(111) was lower than that of GaN grown on SiC, a high density of V-defects were created under the initial compressive stress. Therefore, the high density of threading dislocations was believed to strongly drive the V-defect formation under In-rich conditions. Consequently, without using high quality bulk GaN substrates, V-defects could not be avoided in Ga-polar GaN films grown on foreign substrates such as Si-face SiC and Si(111) in the presence of indium surfactant and Si dopants during growth. Thus, N-polar GaN films were investigated using vicinal C-face SiC substrates because a theoretical study utilizing first-principles calculations predicted that V-defects are not energetically favored on the N-face GaN. When indium surfactant and Si doping were used during N-polar GaN growth, V-defects did not form, as predicted by theory. This observation suggests that V-defect free N-polar InGaN alloys also can be achieved, which may enable stable green laser diodes with long lifetime to be fabricated using the high indium composition N-polar InGaN films. (Abstract shortened by UMI.)

  1. Template synthesis of indium nanowires using anodic aluminum oxide membranes.

    PubMed

    Chen, Feng; Kitai, Adrian H

    2008-09-01

    Indium nanowires with diameters approximately 300 nm have been synthesized by a hydraulic pressure technique using anodic aluminum oxide (AAO) templates. The indium melt is injected into the AAO template and solidified to form nanostructures. The nanowires are dense, continuous and uniformly run through the entire approximately 60 microm thickness of the AAO template. X-ray diffraction (XRD) reveals that the nanowires are polycrystalline with a preferred orientation. SEM is performed to characterize the morphology of the nanowires.

  2. Improving the optoelectronic properties of titanium-doped indium tin oxide thin films

    NASA Astrophysics Data System (ADS)

    Taha, Hatem; Jiang, Zhong-Tao; Henry, David J.; Amri, Amun; Yin, Chun-Yang; Mahbubur Rahman, M.

    2017-06-01

    The focus of this study is on a sol-gel method combined with spin-coating to prepare high-quality transparent conducting oxide (TCO) films. The structural, morphological, optical and electrical properties of sol-gel-derived pure and Ti-doped indium tin oxide (ITO) thin films were studied as a function of the concentration of the Ti (i.e. 0 at%, 2 at% and 4 at%) and annealing temperatures (150 °C-600 °C). FESEM measurements indicate that all the films are ˜350 nm thick. XRD analysis confirmed the cubic bixbyite structure of the polycrystalline indium oxide phase for all of the thin films. Increasing the Ti ratio, as well as the annealing temperature, improved the crystallinity of the films. Highly crystalline structures were obtained at 500 °C, with average grain sizes of about 50, 65 and 80 nm for Ti doping of 0 at%, 2 at% and 4 at%, respectively. The electrical and optical properties improved as the annealing temperature increased, with an enlarged electronic energy band gap and an optical absorption edge below 280 nm. In particular, the optical transmittance and electrical resistivity of the samples with a 4 at% Ti content improved from 87% and 7.10 × 10-4 Ω.cm to 92% and 1.6 × 10-4 Ω.cm, respectively. The conductivity, especially for the annealing temperature at 150 °C, is acceptable for many applications such as flexible electronics. These results demonstrate that unlike the more expensive and complex vacuum sputtering process, high-quality Ti-doped ITO films can be achieved by fast processing, simple wet-chemistry, and easy doping level control with the possibility of producing films with high scalability.

  3. AFM, CLSM and EIS characterization of the immobilization of antibodies on indium-tin oxide electrode and their capture of Legionella pneumophila.

    PubMed

    Souiri, Mina; Blel, Nesrine; Sboui, Dejla; Mhamdi, Lotfi; Epalle, Thibaut; Mzoughi, Ridha; Riffard, Serge; Othmane, Ali

    2014-01-01

    The microscopic surface molecular structures and properties of monoclonal anti-Legionella pneumophila antibodies on an indium-tin oxide (ITO) electrode surface were studied to elaborate an electrochemical immunosensor for Legionella pneumophila detection. A monoclonal anti-Legionella pneumophila antibody (MAb) has been immobilized onto an ITO electrode via covalent chemical bonds between antibodies amino-group and the ring of (3-Glycidoxypropyl) trimethoxysilane (GPTMS). The functionalization of the immunosensor was characterized by atomic force microscopy (AFM), water contact angle measurement, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in the presence of [Fe(CN)₆](3-/4-) as a redox probe. Specific binding of Legionella pneumophila sgp 1 cells onto the antibody-modified ITO electrode was shown by confocal laser scanning microscopy (CLSM) imaging and EIS. AFM images evidenced the dense and relatively homogeneous morphology on the ITO surface. The formation of the complex epoxysilane-antibodies acting as barriers for the electron transfer between the electrode surface and the redox species in the solution induced a significant increase in the charge transfer resistance (Rct) compared to all the electric elements. A linear relationship between the change in charge transfer resistance (ΔRct=Rct after immunoreactions - Rct control) and the logarithmic concentration value of L. pneumophila was observed in the range of 5 × 10(1)-5 × 10(4) CFU mL(-1) with a limit of detection 5 × 10(1)CFU mL(-1). The present study has demonstrated the successful deposition of an anti-L. pneumophila antibodies on an indium-tin oxide surface, opening its subsequent use as immuno-captor for the specific detection of L. pneumophila in environmental samples. © 2013 Elsevier B.V. All rights reserved.

  4. Sputtered gold-coated ITO nanowires by alternating depositions from Indium and ITO targets for application in surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Setti, Grazielle O.; Mamián-López, Mónica B.; Pessoa, Priscila R.; Poppi, Ronei J.; Joanni, Ednan; Jesus, Dosil P.

    2015-08-01

    Indium Tin oxide (ITO) nanowires were deposited by RF sputtering over oxidized silicon using ITO and Indium targets. The nanowires grew on the substrate with a catalyst layer of Indium by the vapor-liquid-solid (VLS) mechanism. Modifications in the deposition conditions affected the morphology and dimensions of the nanowires. The samples, after being covered with gold, were evaluated as surface-enhanced Raman scattering (SERS) substrates for detection of dye solutions and very good intensifications of the Raman signal were obtained. The SERS performance of the samples was also compared to that of a commercial SERS substrate and the results achieved were similar. To the best of our knowledge, this is the first time ITO nanowires were grown by the sputtering technique using oxide and metal targets.

  5. Synthesis and Structural Characterization of Tris(dimethyldithicarbamate)Indium(III), In[S2CN(CH3)2]3

    NASA Technical Reports Server (NTRS)

    Clark, Eric B.; Breen, Marc L.; Fanwick, Phillip E.; Hepp, Aloysius F.; Duraj, Stan A.

    1998-01-01

    The synthesis and structure of the indium dithiocarbamate, In[S2CN(CH3)2]30 central dot 1/2 4- mepy (4-mepy = 4-methylpyridine), is described. Indium metal was oxidized by tetramethylthiuramdisulfide in 4-methylpyridine at 25 C to form a new, homoleptic indium(III) dithiocarbamate in yields exceeding 60%. In[S2CN(CH3)2]3 exists as a discrete molecule with a distorted-octahedral geometry. The compound crystallizes in the P 1-bar (No. 2) space group with a = 9.282(l) A, b = 10.081 (1) A, c, c = 12.502 A, alpha = 73.91 (1)(sup 0), beta = 70.21(1)(sup 0), gamma = 85.84(1)(sup 0), Z = 2, V (A(sup 3) = 1057.3(3), R = 0.046, and R(sub w) = 0.061.

  6. Compositional analysis of dilute nitride doped indium antimonide bulk crystal by VDS technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshpande, Manisha, E-mail: manishauj@gmail.com; Department of Physics, Mithibai College, Vile Parle; Maske, Dilip

    2016-05-06

    Dilute nitrides are suitable materials for fabrication of devices in detection of long wavelength infrared region. Dilute nitride doped Indium antimonide bulk crystals were grown using vertical directional solidification technique. The compositional characteristics of the crystals were carried out using EDS. The analysis was simulated and compared with observations using DTSA II software for accuracy. The ingots have uniform composition of Indium and Antimony. The actual nitrogen composition measured using EDS was 0.136% for doped nitrogen composition 0.1% except near conical end where it was 0.1%. The study of bonding between nitrogen, Indium and antimony was carried out using SIMS.more » The analysis shows strong presence of In-N bonding along with In-Sb bonds which indicates nitrogen has replaced antimony atoms in crystal lattice.« less

  7. Comparison of indium-labeled-leukocyte imaging with sequential technetium-gallium scanning in the diagnosis of low-grade musculoskeletal sepsis. A prospective study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkel, K.D.; Brown, M.L.; Dewanjee, M.K.

    We prospectively compared sequential technetium-gallium imaging with indium-labeled-leukocyte imaging in fifty patients with suspected low-grade musculoskeletal sepsis. Adequate images and follow-up examinations were obtained for forty-two patients. The presence or absence of low-grade sepsis was confirmed by histological and bacteriological examinations of tissue specimens taken at surgery in thirty of the forty-two patients. In these thirty patients, the sensitivity of sequential Tc-Ga imaging was 48 per cent, the specificity was 86 per cent, and the accuracy was 57 per cent, whereas the sensitivity of the indium-labeled-leukocyte technique was 83 per cent, the specificity was 86 per cent, and the accuracymore » was 83 per cent. When the additional twelve patients for whom surgery was deemed unnecessary were considered, the sensitivity of sequential Tc-Ga imaging was 50 per cent, the specificity was 78 per cent, and the accuracy was 62 per cent, as compared with a sensitivity of 83 per cent, a specificity of 94 per cent, and an accuracy of 88 per cent with the indium-labeled-leukocyte method. In patients with a prosthesis the indium-labeled-leukocyte image was 94 per cent accurate, compared with 75 per cent accuracy for sequential Tc-Ga imaging. Statistical analysis of these data demonstrated that the indium-labeled-leukocyte technique was superior to sequential Tc-Ga imaging in detecting areas of low-grade musculoskeletal sepsis.« less

  8. Effects of the unintentional background concentration, indium composition and defect density on the performance of InGaN p-i-n homojunction solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Shudong; Cheng, Liwen; Wang, Qiang

    2018-07-01

    We theoretically investigate the effects of the unintentional background concentration, indium composition and defect density of intrinsic layer (i-layer) on the photovoltaic performance of InGaN p-i-n homojunction solar cells by solving the Poisson and steady-state continuity equations. The built-in electric field and carrier generation rate depend on the position within the i-layer. The collection efficiency, short circuit current density, open circuit voltage, fill factor, and conversion efficiency are found to depend strongly on the background concentration, thickness, indium composition, and defect density of the i-layer. With increasing the background concentration, the maximum thickness of field-bearing i-layer decreases, and the width of depletion region may become even too small to cover the whole i-layer, resulting in a serious decrease of the carrier collection. Some oscillations as a function of indium composition are found in the short circuit current density and conversion efficiency at high indium composition and low defect density due to the interference between the absorbance and the generation rate of carriers. The defect density degrades seriously the overall photovoltaic performance, and its effect on the photovoltaic performance is roughly seven orders of magnitude higher than the previously reported values [Feng et al., J. Appl. Phys. 108 (2010) 093118]. As a result, the high crystalline quality InGaN with high indium composition is a key factor in the device performance of III-nitride based solar cells.

  9. Application of Mythen detector: In-situ XRD study on the thermal expansion behavior of metal indium

    NASA Astrophysics Data System (ADS)

    Du, Rong; Chen, ZhongJun; Cai, Quan; Fu, JianLong; Gong, Yu; Wu, ZhongHua

    2016-07-01

    A Mythen detector has been equipped at the beamline 4B9A of Beijing Synchrotron Radiation Facility (BSRF), which is expected to enable BSRF to perform time-resolved measurement of X-ray diffraction (XRD) full-profiles. In this paper, the thermal expansion behavior of metal indium has been studied by using the in-situ XRD technique with the Mythen detector. The indium was heated from 303 to 433 K with a heating rate of 2 K/min. The in-situ XRD full-profiles were collected with a rate of one profile per 10 seconds. Rietveld refinement was used to extract the structural parameters. The results demonstrate that these collected quasi-real-time XRD profiles can be well used for structural analysis. The metal indium was found to have a nonlinear thermal expansion behavior from room temperature to the melting point (429.65 K). The a-axis of the tetragonal unit cell expands with a biquadratic dependency on temperature, while the c-axis contracts with a cubic dependency on temperature. By the time-resolved XRD measurements, it was observed that the [200] preferred orientation can maintain to about 403.15 K. While (110) is the last and detectable crystal plane just before melting of the polycrystalline indium foil. This study is not only beneficial to the application of metal indium, but also exhibits the capacity of in-situ time-resolved XRD measurements at the X-ray diffraction station of BSRF.

  10. Flexible and High-Performance Amorphous Indium Zinc Oxide Thin-Film Transistor Using Low-Temperature Atomic Layer Deposition.

    PubMed

    Sheng, Jiazhen; Lee, Hwan-Jae; Oh, Saeroonter; Park, Jin-Seong

    2016-12-14

    Amorphous indium zinc oxide (IZO) thin films were deposited at different temperatures, by atomic layer deposition (ALD) using [1,1,1-trimethyl-N-(trimethylsilyl)silanaminato]indium (INCA-1) as the indium precursor, diethlzinc (DEZ) as the zinc precursor, and hydrogen peroxide (H 2 O 2 ) as the reactant. The ALD process of IZO deposition was carried by repeated supercycles, including one cycle of indium oxide (In 2 O 3 ) and one cycle of zinc oxide (ZnO). The IZO growth rate deviates from the sum of the respective In 2 O 3 and ZnO growth rates at ALD growth temperatures of 150, 175, and 200 °C. We propose growth temperature-dependent surface reactions during the In 2 O 3 cycle that correspond with the growth-rate results. Thin-film transistors (TFTs) were fabricated with the ALD-grown IZO thin films as the active layer. The amorphous IZO TFTs exhibited high mobility of 42.1 cm 2 V -1 s -1 and good positive bias temperature stress stability. Finally, flexible IZO TFT was successfully fabricated on a polyimide substrate without performance degradation, showing the great potential of ALD-grown TFTs for flexible display applications.

  11. Identification of photoluminescence P line in indium doped silicon as In{sub Si}-Si{sub i} defect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lauer, Kevin, E-mail: klauer@cismst.de; Möller, Christian; Schulze, Dirk

    2015-01-15

    Indium and carbon co-implanted silicon was investigated by low-temperature photoluminescence spectroscopy. A photoluminescence peak in indium doped silicon (P line) was found to depend on the position of a silicon interstitial rich region, the existence of a SiN{sub x}:H/SiO{sub x} stack and on characteristic illumination and annealing steps. These results led to the conclusion that silicon interstitials are involved in the defect and that hydrogen impacts the defect responsible for the P line. By applying an unique illumination and annealing cycle we were able to link the P line defect with a defect responsible for degradation of charge carrier lifetimemore » in indium as well as boron doped silicon. We deduced a defect model consisting of one acceptor and one silicon interstitial atom denoted by A{sub Si}-Si{sub i}, which is able to explain the experimental data of the P line as well as the light-induced degradation in indium and boron doped silicon. Using this model we identified the defect responsible for the P line as In{sub Si}-Si{sub i} in neutral charge state and C{sub 2v} configuration.« less

  12. Synthesis, structures, and electroluminescent properties of scandium N,O-chelated complexes toward near-white organic light-emitting diodes.

    PubMed

    Katkova, Marina A; Balashova, Tatyana V; Ilichev, Vasilii A; Konev, Alexey N; Isachenkov, Nikolai A; Fukin, Georgy K; Ketkov, Sergey Yu; Bochkarev, Mikhail N

    2010-06-07

    Three members of a new class of electroluminescent, neutral, and monomeric scandium N,O-chelate complexes, namely, Sc(III)-tris-2-(2-benzoimidazol-2-yl)phenolate (1), Sc(III)-tris-2-(2-benzoxyazol-2-yl)phenolate (2), and Sc(III)-tris-2-(2-benzothiazol-2-yl)phenolate (3), have been prepared and X-ray characterized. DFT calculations have been performed. In contrast to the most frequently applied dual or multiple dopants in multilayer white OLED devices, all our simpler devices with the configuration of indium tin oxide/N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine/neat scandium complex/Yb exhibit close to near-white emission with a blue hue (CIE(x,y) = 0.2147, 0.2379) in the case of 1, a cyan hue (0.2702, 0.3524) in the case of 2, and a yellowish hue (0.3468; 0.4284) in the case of 3.

  13. Fabrication of 10 μm-scale conductive Cu patterns by selective laser sintering of Cu complex ink

    NASA Astrophysics Data System (ADS)

    Min, Hyungsuk; Lee, Byoungyoon; Jeong, Sooncheol; Lee, Myeongkyu

    2017-02-01

    A Cu complex ink was synthesized using copper formate as a precursor and its potential for laser patterning was investigated. The Cu ink was spin-coated onto a substrate and the coated film was space-selectively sintered using a nanosecond-pulsed ultraviolet laser. The unexposed Cu ink could be removed from the film by rinsing it with the dispersing agent used to synthesize the ink, disclosing a conductive Cu pattern. A minimum resistivity of 8.46×10-5 Ω cm was obtained for the Cu lines with 10-20 μm widths. The feasibility of this method for metallization was demonstrated by fabricating a complex Cu electric circuit on an indium tin oxide-coated glass substrate. The selective laser sintering approach provides a simple, cost-effective alternative to conventional lithography for the production of electrode or metallization patterns.

  14. Robust and stretchable indium gallium zinc oxide-based electronic textiles formed by cilia-assisted transfer printing

    PubMed Central

    Yoon, Jongwon; Jeong, Yunkyung; Kim, Heeje; Yoo, Seonggwang; Jung, Hoon Sun; Kim, Yonghun; Hwang, Youngkyu; Hyun, Yujun; Hong, Woong-Ki; Lee, Byoung Hun; Choa, Sung-Hoon; Ko, Heung Cho

    2016-01-01

    Electronic textile (e-textile) allows for high-end wearable electronic devices that provide easy access for carrying, handling and using. However, the related technology does not seem to be mature because the woven fabric hampers not only the device fabrication process directly on the complex surface but also the transfer printing of ultrathin planar electronic devices. Here we report an indirect method that enables conformal wrapping of surface with arbitrary yet complex shapes. Artificial cilia are introduced in the periphery of electronic devices as adhesive elements. The cilia also play an important role in confining a small amount of glue and damping mechanical stress to maintain robust electronic performance under mechanical deformation. The example of electronic applications depicts the feasibility of cilia for ‘stick-&-play' systems, which provide electronic functions by transfer printing on unconventional complex surfaces. PMID:27248982

  15. Dependence of Strain Distribution on In Content in InGaN/GaN Quantum Wires and Spherical Quantum Dots

    NASA Astrophysics Data System (ADS)

    Sharma, Akant Sagar; Dhar, S.

    2018-02-01

    The distribution of strain, developed in zero-dimensional quantum spherical dots and one-dimensional cylindrical quantum wires of an InGaN/GaN system is calculated as functions of radius of the structure and indium mole fraction. The strain shows strong dependence on indium mole fraction at small distances from the center. The strain associated with both the structures is found to decrease exponentially with the increase in dot or cylinder radius and increases linearly with indium content.

  16. Low Pressure Synthesis of Indium Phosphide,

    DTIC Science & Technology

    1982-04-01

    UNCLASSIFIED F/G 713 M EEEEEEEEEII MEEMMMME W , 2~ h IW 𔃼 * ).I 2 MICROCOP RESOWI1OW TWS CHAT . . WROmNA RUIEJ MT STHDMS-W3-ALORMO TNDM- m &6.4. MM RO - TMS...pNode . M-V Semiconductor compound ’S.T o a.ek* !cm .. EImd’b lc a ..... . P Pocry sline large g rain .bgot of indiumn phosphide have been synthe- simed...indium temperature of 1003"C. 2. BACKGROUND .r. Indium phosphide is a compound composed of elements from the third and fifth columns of the periodic

  17. Indium-chlorine and gallium-chlorine tetrasubstituted phthalocyanines in a bulk system, Langmuir monolayers and Langmuir-Blodgett nanolayers--spectroscopic investigations.

    PubMed

    Bursa, B; Wróbel, D; Biadasz, A; Kędzierski, K; Lewandowska, K; Graja, A; Szybowicz, M; Durmuş, M

    2014-07-15

    The paper deals with spectroscopic characterization of metallic phthalocyanines (Pc's) (indium and gallium) complexed with chlorine and substituted with four benzyloxyphenoxy peripheral groups in bulk systems, 2D Langmuir monolayers and Langmuir-Blodgett nanolayers. An influence of the molecular structure of dyes (the presence of metal and of substitutes attached to the phthalocyanine macroring) on the in situ measurements of light absorption is reported. Molecular arrangement of the phthalocyanine molecular skeleton in the Langmuir monolayers on water substrate and in the Langmuir-Blodgett nanolayers is evaluated. A comparison of the light absorption spectra of the phthalocyanine monolayers with the spectra of the dyes in solution supports the existence of dye aggregates in the monolayer. It was shown that the type of dye aggregates (oblique and H types) depends markedly on the dye molecular structures. The NIR-IR, IR reflection-absorption and Raman spectra are also monitored for Langmuir-Blodgett nanolayers in non-polarized and polarized light. It was shown that the dye molecules in the Langmuir-Blodgett layers are oriented nearly vertically with respect to a gold substrate. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Basic Operating Mode | Materials Science | NREL

    Science.gov Websites

    indium diselenide thin film, showing elemental maps of copper (left) and indium (right). CuInSe2 thin film. Cu and In elemental maps obtained by EDS. In its basic operating mode, scanning electron

  19. Recalibration of indium foil for personnel screening in criticality accidents.

    PubMed

    Takada, C; Tsujimura, N; Mikami, S

    2011-03-01

    At the Nuclear Fuel Cycle Engineering Laboratories of the Japan Atomic Energy Agency (JAEA), small pieces of indium foil incorporated into personal dosemeters have been used for personnel screening in criticality accidents. Irradiation tests of the badges were performed using the SILENE reactor to verify the calibration of the indium activation that had been made in the 1980s and to recalibrate them for simulated criticalities that would be the most likely to occur in the solution process line. In addition, Monte Carlo calculations of the indium activation using the badge model were also made to complement the spectral dependence. The results lead to a screening level of 15 kcpm being determined that corresponds to a total dose of 0.25 Gy, which is also applicable in posterior-anterior exposure. The recalibration based on the latest study will provide a sounder basis for the screening procedure in the event of a criticality accident.

  20. Evaluation of musculoskeletal sepsis with indium-111 white blood cell imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouzounian, T.J.; Thompson, L.; Grogan, T.J.

    The detection of musculoskeletal sepsis, especially following joint replacement, continues to be a challenging problem. Often, even with invasive diagnostic evaluation, the diagnosis of infection remains uncertain. This is a report on the first 55 Indium-111 white blood cell (WBC) images performed in 39 patients for the evaluation of musculoskeletal sepsis. There were 40 negative and 15 positive Indium-111 WBC images. These were correlated with operative culture and tissue pathology, aspiration culture, and clinical findings. Thirty-eight images were performed for the evaluation of possible total joint sepsis (8 positive and 30 negative images); 17 for the evaluation of nonarthroplasty-related musculoskeletalmore » sepsis (7 positive and 10 negative images). Overall, there were 13 true-positive, 39 true-negative, two false-positive, and one false-negative images. Indium-111 WBC imaging is a sensitive and specific means of evaluating musculoskeletal sepsis, especially following total joint replacement.« less

  1. Tin-polyimide and indium-polyimide thin-film composites as soft X-ray bandpass filters

    NASA Technical Reports Server (NTRS)

    Powell, Stephen F.; Allen, Maxwell J.; Willis, Thomas D.

    1993-01-01

    A tin-polyimide and an indium-polyimide soft X-ray bandpass filter were fabricated with thicknesses of 1400 and 1750 A for the metal and polyimide components, respectively. The transmission of each filter was measured at the Stanford Synchrotron Radiation Laboratory. The transmission of the tin-polyimide filter was found to be about 40 percent for radiation with wavelengths between 60 and 80 A. The transmission of the indium-polyimide filter was greater than 40 percent between 70 and 90 A. The indium was about 5 percent more transmissive than the tin and attained a maximum transmission of about 48 percent at 76 A. Such filters have potential applications to soft X-ray telescopes that operate in this region. They might also be of interest to investigators who work with X-ray microscopes that image live biological specimens in the 23-44-A water window.

  2. Interfacial Chemistry-Induced Modulation of Schottky Barrier Heights: In Situ Measurements of the Pt-Amorphous Indium Gallium Zinc Oxide Interface Using X-ray Photoelectron Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, Brendan T.; Oleksak, Richard P.; Thevuthasan, Suntharampillai

    A method to modulate the Schottky barrier heights for platinum and amorphous indium gallium zinc oxide (a-IGZO) interfaces is demonstrated through thermal processing and background ambient pressure control. The interfacial chemistries that modulate barrier heights for the Pt/a-IGZO system were investigated using in-situ X-ray photoelectron spectroscopy. A significant reduction of indium, from In3+ to In0, occurs during deposition of Pt on to the a-IGZO surface in ultra-high vacuum. Post-annealing and controlling the background ambient O2 pressure allows tuning the degree of indium reduction and the corresponding Schottky barrier height between 0.17 to 0.77 eV. Understanding the detailed interfacial chemistries atmore » Pt/a-IGZO interfaces may allow for improved electronic device performance, including Schottky diodes, memristors, and metalsemiconductor field-effect transistors.« less

  3. High-resistive layers obtained through periodic growth and in situ annealing of InGaN by metalorganic chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shuo; Ma, Ping, E-mail: maping@semi.ac.cn; Liu, Boting

    2016-06-15

    High-resistive layers were obtained by periodic growth and in situ annealing of InGaN. The effect of the annealing temperature of InGaN on the indium content and the material sheet resistive was investigated. The indium content decreased as the increase of in situ annealing temperature. Additionally, the material sheet resistance increased with the increase of the in situ annealing temperature for the annealed samples and reached 2 × 10{sup 10}Ω/sq in the light and 2 × 10{sup 11}Ω/sq in the dark when the in situ annealing temperature reached 970{sup ∘}C. The acquirement of high-resistive layers is attributed to the generation ofmore » indium vacancy-related defects. Introducing indium vacancy-related defects to compensate background carriers can be an effective method to grow high-resistance material.« less

  4. A combined kick-out and dissociative diffusion mechanism of grown-in Be in InGaAs and InGaAsP. A new finite difference-Bairstow method for solution of the diffusion equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koumetz, Serge D., E-mail: Serge.Koumetz@univ-rouen.fr; Martin, Patrick; Murray, Hugues

    Experimental results on the diffusion of grown-in beryllium (Be) in indium gallium arsenide (In{sub 0.53}Ga{sub 0.47}As) and indium gallium arsenide phosphide (In{sub 0.73}Ga{sub 0.27}As{sub 0.58}P{sub 0.42}) gas source molecular beam epitaxy alloys lattice-matched to indium phosphide (InP) can be successfully explained in terms of a combined kick-out and dissociative diffusion mechanism, involving neutral Be interstitials (Be{sub i}{sup 0}), singly positively charged gallium (Ga), indium (In) self-interstitials (I{sub III}{sup +}) and singly positively charged Ga, In vacancies (V{sub III}{sup +}). A new numerical method of solution to the system of diffusion equations, based on the finite difference approximations and Bairstow's method,more » is proposed.« less

  5. Plasma vapor deposited n-indium tin oxide/p-copper indium oxide heterojunctions for optoelectronic device applications

    NASA Astrophysics Data System (ADS)

    Jaya, T. P.; Pradyumnan, P. P.

    2017-12-01

    Transparent crystalline n-indium tin oxide/p-copper indium oxide diode structures were fabricated on quartz substrates by plasma vapor deposition using radio frequency (RF) magnetron sputtering. The p-n heterojunction diodes were highly transparent in the visible region and exhibited rectifying current-voltage (I-V) characteristics with a good ideality factor. The sputter power during fabrication of the p-layer was found to have a profound effect on I-V characteristics, and the diode with the p-type layer deposited at a maximum power of 200 W exhibited the highest value of the diode ideality factor (η value) of 2.162, which suggests its potential use in optoelectronic applications. The ratio of forward current to reverse current exceeded 80 within the range of applied voltages of -1.5 to +1.5 V in all cases. The diode structure possessed an optical transmission of 60-70% in the visible region.

  6. Optical and structural characteristics of high indium content InGaN/GaN multi-quantum wells with varying GaN cap layer thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, J.; Zhao, D. G., E-mail: dgzhao@red.semi.ac.cn; Jiang, D. S.

    2015-02-07

    The optical and structural properties of InGaN/GaN multi-quantum wells (MQWs) with different thicknesses of low temperature grown GaN cap layers are investigated. It is found that the MQW emission energy red-shifts and the peak intensity decreases with increasing GaN cap layer thickness, which may be partly caused by increased floating indium atoms accumulated at quantum well (QW) surface. They will result in the increased interface roughness, higher defect density, and even lead to a thermal degradation of QW layers. An extra growth interruption introduced before the growth of GaN cap layer can help with evaporating the floating indium atoms, andmore » therefore is an effective method to improve the optical properties of high indium content InGaN/GaN MQWs.« less

  7. Mobility of indium on the ZnO(0001) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinhold, R.; Reeves, R. J.; Allen, M. W.

    2015-02-02

    The mobility of indium on the Zn-polar (0001) surface of single crystal ZnO wafers was investigated using real-time x-ray photoelectron spectroscopy. A sudden transition in the wettability of the ZnO(0001) surface was observed at ∼520 °C, with indium migrating from the (0001{sup ¯}) underside of the wafer, around the non-polar (11{sup ¯}00) and (112{sup ¯}0) sidewalls, to form a uniform self-organized (∼20 Å) adlayer. The In adlayer was oxidized, in agreement with the first principles calculations of Northrup and Neugebauer that In{sub 2}O{sub 3} precipitation can only be avoided under a combination of In-rich and Zn-rich conditions. These findings suggest that unintentionalmore » In adlayers may form during the epitaxial growth of ZnO on indium-bonded substrates.« less

  8. Interfacial Chemistry-Induced Modulation of Schottky Barrier Heights: In Situ Measurements of the Pt–Amorphous Indium Gallium Zinc Oxide Interface Using X-ray Photoelectron Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, Brendan T.; Oleksak, Richard P.; Thevuthasan, Suntharampillai

    A method to modulate the Schottky barrier heights for platinum and amorphous indium gallium zinc oxide (a-IGZO) interfaces is demonstrated through thermal processing and background ambient pressure control. The interfacial chemistries that modulate barrier heights for the Pt/a-IGZO system were investigated using in-situ X-ray photoelectron spectroscopy. A significant reduction of indium, from In 3+ to In 0, occurs during deposition of Pt on to the a-IGZO surface in ultra-high vacuum. Post-annealing and controlling the background ambient O 2 pressure allows tuning the degree of indium reduction and the corresponding Schottky barrier height between 0.17 to 0.77 eV. Understanding the detailedmore » interfacial chemistries at Pt/a-IGZO interfaces may allow for improved electronic device performance, including Schottky diodes, memristors, and metalsemiconductor field-effect transistors.« less

  9. Enhanced photo-catalytic activity of ordered mesoporous indium oxide nanocrystals in the conversion of CO2 into methanol.

    PubMed

    Gondal, M A; Dastageer, M A; Oloore, L E; Baig, U; Rashid, S G

    2017-07-03

    Ordered mesoporous indium oxide nanocrystal (m-In 2 O 3 ) was synthesized by nanocasting technique, in which highly ordered mesoporous silca (SBA-15) was used as structural matrix. X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halanda (BJH) studies were carried out on m-In 2 O 3 and the results revealed that this material has a highly ordered mesoporous surface with reduced grain size, increased surface area and surface volume compared to the non porous indium oxide. The diffuse reluctance spectrum exhibited substantially improved light absorption efficiency in m-In 2 O 3 compared to normal indium oxide, however, no considerable change in the band gap energies of these materials was observed. When m-In 2 O 3 was used as a photo-catalyst in the photo-catalytic process of converting carbon dioxide (CO 2 ) into methanol under the pulsed laser radiation of 266-nm wavelengths, an enhanced photo-catalytic activity with the quantum efficiency of 4.5% and conversion efficiency of 46.3% were observed. It was found that the methanol production yield in this chemical process is as high as 485 µlg -1 h -1 after 150 min of irradiation, which is substantially higher than the yields reported in the literature. It is quite clear from the results that the introduction of mesoporosity in indium oxide, and the consequent enhancement of positive attributes required for a photo-catalyst, transformed photo-catalytically weak indium oxide into an effective photo-catalyst for the conversion of CO 2 into methanol.

  10. Indium-111 labeled anti-melanoma monoclonal antibodies

    DOEpatents

    Srivastava, S.C.; Fawwaz, R.A.; Ferrone, S.

    1984-04-30

    A monoclonal antibody to a high molecular weight melanoma-associated antigen was chelated and radiolabeled with indium-111. This material shows high affinity for melanoma and thus can be used in the detection, localization and imaging of melanoma. 1 figure.

  11. Contrast of Backscattered Electron SEM Images of Nanoparticles on Substrates with Complex Structure

    PubMed Central

    Müller, Erich; Fritsch-Decker, Susanne; Hettler, Simon; Störmer, Heike; Weiss, Carsten; Gerthsen, Dagmar

    2017-01-01

    This study is concerned with backscattered electron scanning electron microscopy (BSE SEM) contrast of complex nanoscaled samples which consist of SiO2 nanoparticles (NPs) deposited on indium-tin-oxide covered bulk SiO2 and glassy carbon substrates. BSE SEM contrast of NPs is studied as function of the primary electron energy and working distance. Contrast inversions are observed which prevent intuitive interpretation of NP contrast in terms of material contrast. Experimental data is quantitatively compared with Monte-Carlo- (MC-) simulations. Quantitative agreement between experimental data and MC-simulations is obtained if the transmission characteristics of the annular semiconductor detector are taken into account. MC-simulations facilitate the understanding of NP contrast inversions and are helpful to derive conditions for optimum material and topography contrast. PMID:29109816

  12. Contrast of Backscattered Electron SEM Images of Nanoparticles on Substrates with Complex Structure.

    PubMed

    Kowoll, Thomas; Müller, Erich; Fritsch-Decker, Susanne; Hettler, Simon; Störmer, Heike; Weiss, Carsten; Gerthsen, Dagmar

    2017-01-01

    This study is concerned with backscattered electron scanning electron microscopy (BSE SEM) contrast of complex nanoscaled samples which consist of SiO 2 nanoparticles (NPs) deposited on indium-tin-oxide covered bulk SiO 2 and glassy carbon substrates. BSE SEM contrast of NPs is studied as function of the primary electron energy and working distance. Contrast inversions are observed which prevent intuitive interpretation of NP contrast in terms of material contrast. Experimental data is quantitatively compared with Monte-Carlo- (MC-) simulations. Quantitative agreement between experimental data and MC-simulations is obtained if the transmission characteristics of the annular semiconductor detector are taken into account. MC-simulations facilitate the understanding of NP contrast inversions and are helpful to derive conditions for optimum material and topography contrast.

  13. INDIUM AND ZINC MEDIATED ONE-ATOM CARBOCYCLE ENLARGEMENT IN WATER. (R822668)

    EPA Science Inventory

    Abstract

    Six-, seven-, eight-membered rings are enlarged by one carbon-atom into seven-, eight- and nine-membered ring derivatives respectively, via indium or zinc mediated reactions in aqueous medium.

  14. Atmospheric Deposition of Indium in the Northeastern United States: Flux and Historical Trends.

    PubMed

    White, Sarah Jane O; Keach, Carrie; Hemond, Harold F

    2015-11-03

    The metal indium is an example of an increasingly important material used in electronics and new energy technologies, whose environmental behavior and toxicity are poorly understood despite increasing evidence of detrimental health impacts and human-induced releases to the environment. In the present work, the history of indium deposition from the atmosphere is reconstructed from its depositional record in an ombrotrophic bog in Massachusetts. A novel freeze-coring technique is used to overcome coring difficulties posed by woody roots and peat compressibility, enabling retrieval of relatively undisturbed peat cores dating back more than a century. Results indicate that long-range atmospheric transport is a significant pathway for the transport of indium, with peak concentrations of 69 ppb and peak fluxes of 1.9 ng/cm2/yr. Atmospheric deposition to the bog began increasing in the late 1800s/early 1900s, and peaked in the early 1970s. A comparison of deposition data with industrial production and emissions estimates suggests that both coal combustion and the smelting of lead, zinc, copper, and tin sulfides are sources of indium to the atmosphere in this region. Deposition appears to have decreased considerably since the 1970s, potentially a visible effect of particulate emissions controls instated in North America during that decade.

  15. Indium-mediated asymmetric barbier-type allylations: additions to aldehydes and ketones and mechanistic investigation of the organoindium reagents.

    PubMed

    Haddad, Terra D; Hirayama, Lacie C; Singaram, Bakthan

    2010-02-05

    We report a simple, efficient, and general method for the indium-mediated enantioselective allylation of aromatic and aliphatic aldehydes and ketones under Barbier-type conditions in a one-pot synthesis affording the corresponding chiral alcohol products in very good yield (up to 99%) and enantiomeric excess (up to 93%). Our method is able to tolerate various functional groups, such as esters, nitriles, and phenols. Additionally, more substituted allyl bromides, such as crotyl and cinnamyl bromide, can be used providing moderate enantioselectivity (72% and 56%, respectively) and excellent diastereoselectivity when employing cinnamyl bromide (>95/5 anti/syn). However, the distereoselectivity when using crotyl bromide was poor and other functionalized allyl bromides under our method afforded low enantioselectivities for the alcohol products. In these types of indium-mediated additions, solvent plays a major role in determining the nature of the organoindium intermediate and we observed the susceptibility of some allylindium intermediates to hydrolysis in protic solvents. Under our reaction conditions using a polar aprotic solvent, we suggest that an allylindium(III) species is the active allylating intermediate. In addition, we have observed the presence of a shiny, indium(0) nugget throughout the reaction, irrespective of the stoichiometry, indicating disproportionation of indium halide byproduct formed during the reaction.

  16. Fabrication of an Organic Light-Emitting Diode from New Host π Electron Rich Zinc Complex

    NASA Astrophysics Data System (ADS)

    Jafari, Mohammad Reza; Janghouri, Mohammad; Shahedi, Zahra

    2017-01-01

    A new π electron rich zinc complex was used as a fluorescent material in organic light-emitting diodes (OLEDs). Devices with a structure of indium tin oxide/poly (3,4-ethylenedi-oxythiophene):poly(styrenesulfonate) (PEDOT: PSS) (50 nm)/polyvinylcarbazole (60 nm)/Zn: %2 porphyrin derivatives (45 nm)/Al (150 nm) were fabricated. Porphyrin derivatives accounting for 2 wt.% in the π electron rich zinc complex were used as a host. The electroluminescence (EL) spectra of porphyrin derivatives indicated a red shift, as π electron rich zinc complex EL spectra. The device (4) has also a luminance of 3420 cd/m2 and maximum efficiency of 1.58 cd/A at 15 V, which are the highest values among four devices. The result of Commission International del'Eclairage (CIE) (X, Y) coordinate and EL spectrum of device (3) indicated that it is more red shifted compared to other devices. Results of this work indicate that π electron rich zinc complex is a promising host material for high efficiency red OLEDs and has a simple structure compared to Alq3-based devices.

  17. Leaching of indium from obsolete liquid crystal displays: Comparing grinding with electrical disintegration in context of LCA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodbiba, Gjergj, E-mail: dodbiba@sys.t.u-tokyo.ac.jp; Nagai, Hiroki; Wang Lipang

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Two pre-treatment methods, prior to leaching of indium from obsolete LCD modules, were described. Black-Right-Pointing-Pointer Conventional grinding and electrical disintegration have been evaluated and compared in the context of LCA. Black-Right-Pointing-Pointer Experimental data on the leaching capacity for indium and the electricity consumption of equipment were inputted into the LCA model in order to compare the environmental performance of each method. Black-Right-Pointing-Pointer An estimate for the environmental performance was calculated as the sum of six impact categories. Black-Right-Pointing-Pointer Electrical disintegration method outperforms conventional grinding in all impact categories. - Abstract: In order to develop an effective recycling systemmore » for obsolete Liquid Crystal Displays (LCDs), which would enable both the leaching of indium (In) and the recovery of a pure glass fraction for recycling, an effective liberation or size-reduction method would be an important pre-treatment step. Therefore, in this study, two different types of liberation methods: (1) conventional grinding, and (2) electrical disintegration have been tested and evaluated in the context of Life Cycle Assessment (LCA). In other words, the above-mentioned methods were compared in order to find out the one that ensures the highest leaching capacity for indium, as well as the lowest environmental burden. One of the main findings of this study was that the electrical disintegration was the most effective liberation method, since it fully liberated the indium containing-layer, ensuring a leaching capacity of 968.5 mg-In/kg-LCD. In turn, the estimate for the environmental burden was approximately five times smaller when compared with the conventional grinding.« less

  18. Indium nanoparticles for ultraviolet surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Das, Rupali; Soni, R. K.

    2018-05-01

    Ultraviolet Surface-enhanced Raman spectroscopy (UVSERS) has emerged as an efficient molecular spectroscopy technique for ultra-sensitive and ultra-low detection of analyte concentration. The generic SERS substrates based on gold and silver nanostructures have been extensively explored for high local electric field enhancement only in visible-NIR region of the electromagnetic spectrum. The template synthesis of controlled nanoscale size metallic nanostructures supporting localized surface plasmon resonance (LSPR) in the UV region have been recently explored due to their ease of synthesis and potential applications in optoelectronic, catalysis and magnetism. Indium (In0) nanoparticles exhibit active surface plasmon resonance (SPR) in ultraviolet (UV) and deep-ultaviolet (DUV) region with optimal absorption losses. This extended accessibility makes indium a promising material for UV plasmonic, chemical sensing and more recently in UV-SERS. In this work, spherical indium nanoparticles (In NPs) were synthesized by modified polyol reduction method using NaBH4 having local surface plasmon resonance near 280 nm. The as-synthesized spherical In0 nanoparticles were then coated with thin silica shells of thickness ˜ 5nm by a modified Stober method protecting the nanoparticles from agglomeration, direct contact with the probed molecules as well as prevent oxidation of the nanoparticles. Morphological evolution of In0 nanoparticles and SiO2 coating were characterized by transmission electron microscope (TEM). An enhanced near resonant shell-isolated SERS activity from thin film of tryptophan (Tryp) molecules deposited on indium coated substrates under 325nm UV excitation was observed. Finite difference time domain (FDTD) method is employed to comprehend the experimental results and simulate the electric field contours which showed amplified electromagnetic field localized around the nanostructures. The comprehensive analysis indicates that indium is a promising alternate exogenous contrast agent for efficient Raman spectroscopy from molecules.

  19. Plasma Treatment to Remove Carbon from Indium UV Filters

    NASA Technical Reports Server (NTRS)

    Greer, Harold F.; Nikzad, Shouleh; Beasley, Matthew; Gantner, Brennan

    2012-01-01

    The sounding rocket experiment FIRE (Far-ultraviolet Imaging Rocket Experiment) will improve the science community fs ability to image a spectral region hitherto unexplored astronomically. The imaging band of FIRE (.900 to 1,100 Angstroms) will help fill the current wavelength imaging observation hole existing from approximately equal to 620 Angstroms to the GALEX band near 1,350 Angstroms. FIRE is a single-optic prime focus telescope with a 1.75-m focal length. The bandpass of 900 to 1100 Angstroms is set by a combination of the mirror coating, the indium filter in front of the detector, and the salt coating on the front of the detector fs microchannel plates. Critical to this is the indium filter that must reduce the flux from Lymanalpha at 1,216 Angstroms by a minimum factor of 10(exp -4). The cost of this Lyman-alpha removal is that the filter is not fully transparent at the desired wavelengths of 900 to 1,100 Angstroms. Recently, in a project to improve the performance of optical and solar blind detectors, JPL developed a plasma process capable of removing carbon contamination from indium metal. In this work, a low-power, low-temperature hydrogen plasma reacts with the carbon contaminants in the indium to form methane, but leaves the indium metal surface undisturbed. This process was recently tested in a proof-of-concept experiment with a filter provided by the University of Colorado. This initial test on a test filter showed improvement in transmission from 7 to 9 percent near 900 with no process optimization applied. Further improvements in this performance were readily achieved to bring the total transmission to 12% with optimization to JPL's existing process.

  20. Development of molecular precursors for deposition of indium sulphide thin film electrodes for photoelectrochemical applications.

    PubMed

    Ehsan, Muhammad Ali; Peiris, T A Nirmal; Wijayantha, K G Upul; Olmstead, Marilyn M; Arifin, Zainudin; Mazhar, Muhammad; Lo, K M; McKee, Vickie

    2013-08-14

    Symmetrical and unsymmetrical dithiocarbamato pyridine solvated and non-solvated complexes of indium(III) with the general formula [In(S2CNRR')3]·n(py) [where py = pyridine; R,R' = Cy, n = 2 (1); R,R' = (i)Pr, n = 1.5 (2); NRR' = Pip, n = 0.5 (3) and R = Bz, R' = Me, n = 0 (4)] have been synthesized. The compositions, structures and properties of these complexes have been studied by means of microanalysis, IR and (1)H-NMR spectroscopy, X-ray single crystal and thermogravimetric (TG/DTG) analyses. The applicability of these complexes as single source precursors (SSPs) for the deposition of β-In2S3 thin films on fluorine-doped SnO2 (FTO) coated conducting glass substrates by aerosol-assisted chemical vapour deposition (AACVD) at temperatures of 300, 350 and 400 °C is studied. All films have been characterized by powder X-ray diffraction (PXRD) and energy dispersive X-ray analysis (EDX) for the detection of phase and stoichiometry of the deposit. Scanning electron microscopy (SEM) studies reveal that precursors (1)-(4), irrespective of different metal ligand design, generate comparable morphologies of β-In2S3 thin films at different temperatures. Direct band gap energies of 2.2 eV have been estimated from the UV-vis spectroscopy for the β-In2S3 films fabricated from precursors (1) and (4). The photoelectrochemical (PEC) properties of β-In2S3 were confirmed by recording the current-voltage plots under light and dark conditions. The plots showed anodic photocurrent densities of 1.25 and 0.65 mA cm(-2) at 0.23 V vs. Ag/AgCl for the β-In2S3 films made at 400 and 350 °C from the precursors (1) and (4), respectively. The photoelectrochemical performance indicates that the newly synthesised precursors are highly useful in fabricating β-In2S3 electrodes for solar energy harvesting and optoelectronic application.

  1. Homeotropic alignment of dendritic columnar liquid crystal induced by hydrogen-bonded triphenylene core bearing fluoroalkyl chains.

    PubMed

    Ishihara, Shinsuke; Furuki, Yusuke; Hill, Jonathan P; Ariga, Katsuhiko; Takeoka, Shinji

    2014-07-01

    A 1:3 molar complex of the fluoroalkyl side chain-substituted 2,6,10-tris-carboxymethoxy-3,7,11-tris(4,4,5,5,6,6,7,7,7-nonafluoroheptyloxy)triphenylene (TPF4) with the second generation dendron 3,5-bis(3,4-bis-dodecyloxybenzyloxy)-N-pyridin-4-yl-benzamide (DN) assembled through complementary hydrogen bonding to form a supramolecular columnar liquid crystal, which exhibited homeotropic alignment when sandwiched between octadecyltrichlorosilane (OTS)-coated or indium tin oxide (ITO)-coated glass plates due to specific interactions between the fluoroalkyl side chains and the substrates.

  2. Visible light electroluminescent diodes of indium-gallium phosphide

    NASA Technical Reports Server (NTRS)

    Clough, R.; Richman, D.; Tietjen, J.

    1970-01-01

    Vapor deposition and acceptor impurity diffusion techniques are used to prepare indium-gallium phosphide junctions. Certain problems in preparation are overcome by altering gas flow conditions and by increasing the concentration of phosphine in the gas. A general formula is given for the alloy's composition.

  3. Interfacial Chemistry-Induced Modulation of Schottky Barrier Heights: In Situ Measurements of the Pt-Amorphous Indium Gallium Zinc Oxide Interface Using X-ray Photoelectron Spectroscopy.

    PubMed

    Flynn, Brendan T; Oleksak, Richard P; Thevuthasan, Suntharampillai; Herman, Gregory S

    2018-01-31

    A method to understand the role of interfacial chemistry on the modulation of Schottky barrier heights for platinum and amorphous indium gallium zinc oxide (a-IGZO) interfaces is demonstrated through thermal processing and background ambient pressure control. In situ X-ray photoelectron spectroscopy was used to characterize the interfacial chemistries that modulate barrier heights in this system. The primary changes were a significant chemical reduction of indium, from In 3+ to In 0 , that occurs during deposition of Pt on to the a-IGZO surface in ultrahigh vacuum. Postannealing and controlling the background ambient O 2 pressure allows further tuning of the reduction of indium and the corresponding Schottky barrier heights from 0.17 to 0.77 eV. Understanding the detailed interfacial chemistries at Pt/a-IGZO interfaces may allow for improved electronic device performance, including Schottky diodes, memristors, and metal-semiconductor field-effect transistors.

  4. Metal-organic chemical vapor deposition of high quality, high indium composition N-polar InGaN layers for tunnel devices

    NASA Astrophysics Data System (ADS)

    Lund, Cory; Romanczyk, Brian; Catalano, Massimo; Wang, Qingxiao; Li, Wenjun; DiGiovanni, Domenic; Kim, Moon J.; Fay, Patrick; Nakamura, Shuji; DenBaars, Steven P.; Mishra, Umesh K.; Keller, Stacia

    2017-05-01

    In this study, the growth of high quality N-polar InGaN films by metalorganic chemical vapor deposition is presented with a focus on growth process optimization for high indium compositions and the structural and tunneling properties of such films. Uniform InGaN/GaN multiple quantum well stacks with indium compositions up to 0.46 were grown with local compositional analysis performed by energy-dispersive X-ray spectroscopy within a scanning transmission electron microscope. Bright room-temperature photoluminescence up to 600 nm was observed for films with indium compositions up to 0.35. To study the tunneling behavior of the InGaN layers, N-polar GaN/In0.35Ga0.65N/GaN tunnel diodes were fabricated which reached a maximum current density of 1.7 kA/cm2 at 5 V reverse bias. Temperature-dependent measurements are presented and confirm tunneling behavior under reverse bias.

  5. Highly luminescent, high-indium-content InGaN film with uniform composition and full misfit-strain relaxation

    NASA Astrophysics Data System (ADS)

    Fischer, A. M.; Wei, Y. O.; Ponce, F. A.; Moseley, M.; Gunning, B.; Doolittle, W. A.

    2013-09-01

    We have studied the properties of thick InxGa1-xN films, with indium content ranging from x ˜ 0.22 to 0.67, grown by metal-modulated epitaxy. While the low indium-content films exhibit high density of stacking faults and dislocations, a significant improvement in the crystalline quality and optical properties has been observed starting at x ˜ 0.6. Surprisingly, the InxGa1-xN film with x ˜ 0.67 exhibits high luminescence intensity, low defect density, and uniform full lattice-mismatch strain relaxation. The efficient strain relaxation is shown to be due to a critical thickness close to the monolayer range. These films were grown at low temperatures (˜400 °C) to facilitate indium incorporation and with precursor modulation to enhance surface morphology and metal adlayer diffusion. These findings should contribute to the development of growth techniques for nitride semiconductors under high lattice misfit conditions.

  6. Sensitive elemental detection using microwave-assisted laser-induced breakdown imaging

    NASA Astrophysics Data System (ADS)

    Iqbal, Adeel; Sun, Zhiwei; Wall, Matthew; Alwahabi, Zeyad T.

    2017-10-01

    This study reports a sensitive spectroscopic method for quantitative elemental detection by manipulating the temporal and spatial parameters of laser-induced plasma. The method was tested for indium detection in solid samples, in which laser ablation was used to generate a tiny plasma. The lifetime of the laser-induced plasma can be extended to hundreds of microseconds using microwave injection to remobilize the electrons. In this novel method, temporal integrated signal of indium emission was significantly enhanced. Meanwhile, the projected detectable area of the excited indium atoms was also significantly improved using an interference-, instead of diffraction-, based technique, achieved by directly imaging microwave-enhanced plasma through a novel narrow-bandpass filter, exactly centered at the indium emission line. Quantitative laser-induce breakdown spectroscopy was also recorded simultaneously with the new imaging method. The intensities recorded from both methods exhibit very good mutual linear relationship. The detection intensity was improved to 14-folds because of the combined improvements in the plasma lifetime and the area of detection.

  7. Effect of dislocations on the open-circuit voltage, short-circuit current and efficiency of heteroepitaxial indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Flood, Dennis J.

    1990-01-01

    Excellent radiation resistance of indium phosphide solar cells makes them a promising candidate for space power applications, but the present high cost of starting substrates may inhibit their large scale use. Thin film indium phosphide cells grown on Si or GaAs substrates have exhibited low efficiencies, because of the generation and propagation of large number of dislocations. Dislocation densities were calculated and its influence on the open circuit voltage, short circuit current, and efficiency of heteroepitaxial indium phosphide cells was studied using the PC-1D. Dislocations act as predominant recombination centers and are required to be controlled by proper transition layers and improved growth techniques. It is shown that heteroepitaxial grown cells could achieve efficiencies in excess of 18 percent AMO by controlling the number of dislocations. The effect of emitter thickness and surface recombination velocity on the cell performance parameters vs. dislocation density is also studied.

  8. Mechanism of laser induced fluorescence signal generation in InCl3-ethanol mixture flames

    NASA Astrophysics Data System (ADS)

    Fang, Bolang; Hu, Zhiyun; Zhang, Zhenrong; Li, Guohua; Shao, Jun; Feng, Guobin

    2017-05-01

    Nonlinear regime Two-line Atomic Fluorescence (NTLAF) is a promising technique for two-dimensional thermometry. A key challenge is seeding of indium atoms into flame. This work aims at investigating the mechanism of Indium LIF signal generation in a fuel-rich InCl3-ethanol premixed flame. Several types of images including natural emission of the flame itself, natural emission of CH, natural emission of OH, natural emission at 410 nm/451 nm of indium atom, and laser induced fluorescence at 410 nm/451 nm were obtained. The indium atom was generated in the flame front, and could survive in the post-flame zone for a while which is benefit for making NTLAF measurements. Further detail mechanism of fluorescence signals generation in InCl3-ethanol solution burning was investigated. The conclusion which probable to be drew is that to gain high NTLAF signals, the size of liquid droplets should be well controlled, neither to be too large nor to be gasified.

  9. Indium-saving effect and physical properties of transparent conductive multilayers

    NASA Astrophysics Data System (ADS)

    Kawamura, M.; Kiba, T.; Abe, Y.; Kim, K. H.

    2018-03-01

    Indium-free transparent conductive multilayer structures consisting of top and bottom MoO3 layers and an Ag interlayer (MoO3/Ag/MoO3; MAM) are deposited onto glass substrates by vacuum evaporation. The transmittance and sheet resistance of the structures are evaluated, and the optimum structure is determined to be MAM (20/14/30 nm) as it shows the best figure of merit (FOM), which is used as the index for transparent conductive films, with a value of 6.2 × 10-3 Ω-1. To further improve the performance of the films, we attempt to fabricate a multilayer consisting of MoO3 and indium zinc oxide (IZO), based on previous results. The obtained IAM (30/14/50 nm) multilayer shows an FOM higher than that of the MAM, with a value of 32 × 10-3 Ω-1. Moreover, it reduces the amount of required indium as compared with the IZO/Ag/IZO multilayer.

  10. Technological process and optimum design of organic materials vacuum pyrolysis and indium chlorinated separation from waste liquid crystal display panels.

    PubMed

    Ma, En; Xu, Zhenming

    2013-12-15

    In this study, a technology process including vacuum pyrolysis and vacuum chlorinated separation was proposed to convert waste liquid crystal display (LCD) panels into useful resources using self-design apparatuses. The suitable pyrolysis temperature and pressure are determined as 300°C and 50 Pa at first. The organic parts of the panels were converted to oil (79.10 wt%) and gas (2.93 wt%). Then the technology of separating indium was optimized by central composite design (CCD) under response surface methodology (RSM). The results indicated the indium recovery ratio was 99.97% when the particle size is less than 0.16 mm, the weight percentage of NH4Cl to glass powder is 50 wt% and temperature is 450°C. The research results show that the organic materials, indium and glass of LCD panel can be recovered during the recovery process efficiently and eco-friendly. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Effects of alloy composition and Si-doping on vacancy defect formation in (InxGa1-x)2O3 thin films

    NASA Astrophysics Data System (ADS)

    Prozheeva, V.; Hölldobler, R.; von Wenckstern, H.; Grundmann, M.; Tuomisto, F.

    2018-03-01

    Various nominally undoped and Si-doped (InxGa1-x)2O3 thin films were grown by pulsed laser deposition in a continuous composition spread mode on c-plane α-sapphire and (100)-oriented MgO substrates. Positron annihilation spectroscopy in the Doppler broadening mode was used as the primary characterisation technique in order to investigate the effect of alloy composition and dopant atoms on the formation of vacancy-type defects. In the undoped samples, we observe a Ga2O3-like trend for low indium concentrations changing to In2O3-like behaviour along with the increase in the indium fraction. Increasing indium concentration is found to suppress defect formation in the undoped samples at [In] > 70 at. %. Si doping leads to positron saturation trapping in VIn-like defects, suggesting a vacancy concentration of at least mid-1018 cm-3 independent of the indium content.

  12. High Affinity Binding of Indium and Ruthenium Ions by Gastrins

    PubMed Central

    Baldwin, Graham S.; George, Graham N.; Pushie, M. Jake

    2015-01-01

    The peptide hormone gastrin binds two ferric ions with high affinity, and iron binding is essential for the biological activity of non-amidated forms of the hormone. Since gastrins act as growth factors in gastrointestinal cancers, and as peptides labelled with Ga and In isotopes are increasingly used for cancer diagnosis, the ability of gastrins to bind other metal ions was investigated systematically by absorption spectroscopy. The coordination structures of the complexes were characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy. Changes in the absorption of gastrin in the presence of increasing concentrations of Ga3+ were fitted by a 2 site model with dissociation constants (Kd) of 3.3 x 10−7 and 1.1 x 10−6 M. Although the absorption of gastrin did not change upon the addition of In3+ ions, the changes in absorbance on Fe3+ ion binding in the presence of indium ions were fitted by a 2 site model with Kd values for In3+ of 6.5 x 10−15 and 1.7 x 10−7 M. Similar results were obtained with Ru3+ ions, although the Kd values for Ru3+ of 2.6 x 10−13 and 1.2 x 10−5 M were slightly larger than observed for In3+. The structures determined by EXAFS all had metal:gastrin stoichiometries of 2:1 but, while the metal ions in the Fe, Ga and In complexes were bridged by a carboxylate and an oxygen with a metal-metal separation of 3.0–3.3 Å, the Ru complex clearly demonstrated a short range Ru—Ru separation, which was significantly shorter, at 2.4 Å, indicative of a metal-metal bond. We conclude that gastrin selectively binds two In3+ or Ru3+ ions, and that the affinity of the first site for In3+ or Ru3+ ions is higher than for ferric ions. Some of the metal ion-gastrin complexes may be useful for cancer diagnosis and therapy. PMID:26457677

  13. Indium Hybridization of Large Format TES Bolometer Arrays to Readout Multiplexers for Far-Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Miller, Timothy M.; Costen, Nick; Allen, Christine

    2007-01-01

    This conference poster reviews the Indium hybridization of the large format TES bolometer arrays. We are developing a key technology to enable the next generation of detectors. That is the Hybridization of Large Format Arrays using Indium bonded detector arrays containing 32x40 elements which conforms to the NIST multiplexer readout architecture of 1135 micron pitch. We have fabricated and hybridized mechanical models with the detector chips bonded after being fully back-etched. The mechanical support consists of 30 micron walls between elements Demonstrated electrical continuity for each element. The goal is to hybridize fully functional array of TES detectors to NIST readout.

  14. PERSONNEL NEUTRON DOSIMETER

    DOEpatents

    Fitzgerald, J.J.; Detwiler, C.G. Jr.

    1960-05-24

    A description is given of a personnel neutron dosimeter capable of indicating the complete spectrum of the neutron dose received as well as the dose for each neutron energy range therein. The device consists of three sets of indium foils supported in an aluminum case. The first set consists of three foils of indium, the second set consists of a similar set of indium foils sandwiched between layers of cadmium, whereas the third set is similar to the second set but is sandwiched between layers of polyethylene. By analysis of all the foils the neutron spectrum and the total dose from neutrons of all energy levels can be ascertained.

  15. Pulmonary uptake in Indium-111 leukocyte imaging: clinical significance in patients with suspected occult infections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, P.S.; Datz, F.L.; Disbro, M.A.

    1984-02-01

    A retrospective review was undertaken to evaluate the frequency and significance of pulmonary activity noted on 306 indium-111 leukocyte studies involving 232 patients with suspected occult infections. Forty-eight studies showed pulmonary activity in one of two patterns of uptake, focal or diffuse. Fourteen of 27 studies (52%) with focal uptake and two of 21 studies (10%) with diffuse uptake were associated with infectious processes. Lung uptake of indium-111-labeled leukocytes was a poor predictor of pulmonary infection in patients studied for occult infection, although the focal pattern was more likely than the diffuse pattern to be associated with infection.

  16. Control of surface adatom kinetics for the growth of high-indium content InGaN throughout the miscibility gap

    NASA Astrophysics Data System (ADS)

    Moseley, Michael; Lowder, Jonathan; Billingsley, Daniel; Doolittle, W. Alan

    2010-11-01

    The surface kinetics of InGaN alloys grown via metal-modulated epitaxy (MME) are explored in combination with transient reflection high-energy electron diffraction intensities. A method for monitoring and controlling indium segregation in situ is demonstrated. It is found that indium segregation is more accurately associated with the quantity of excess adsorbed metal, rather than the metal-rich growth regime in general. A modified form of MME is developed in which the excess metal dose is managed via shuttered growth, and high-quality InGaN films throughout the miscibility gap are grown.

  17. Diode laser-based thermometry using two-line atomic fluorescence of indium and gallium

    NASA Astrophysics Data System (ADS)

    Borggren, Jesper; Weng, Wubin; Hosseinnia, Ali; Bengtsson, Per-Erik; Aldén, Marcus; Li, Zhongshan

    2017-12-01

    A robust and relatively compact calibration-free thermometric technique using diode lasers two-line atomic fluorescence (TLAF) for reactive flows at atmospheric pressures is investigated. TLAF temperature measurements were conducted using indium and, for the first time, gallium atoms as temperature markers. The temperature was measured in a multi-jet burner running methane/air flames providing variable temperatures ranging from 1600 to 2000 K. Indium and gallium were found to provide a similar accuracy of 2.7% and precision of 1% over the measured temperature range. The reliability of the TLAF thermometry was further tested by performing simultaneous rotational CARS measurements in the same experiments.

  18. Reference correlations for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel and tin**

    PubMed Central

    Assael, Marc J.; Chatzimichailidis, Arsenios; Antoniadis, Konstantinos D.; Wakeham, William A.; Huber, Marcia L.; Fukuyama, Hiroyuki

    2017-01-01

    The available experimental data for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel, and tin has been critically examined with the intention of establishing thermal conductivity reference correlations. All experimental data have been categorized into primary and secondary data according to the quality of measurement specified by a series of criteria. The proposed standard reference correlations for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel, and tin are respectively characterized by uncertainties of 9.8, 15.9, 9.7, 13.7, 16.9, 7.7, and 12.6% at the 95% confidence level. PMID:29353915

  19. Transparent indium-tin oxide/indium-gallium-zinc oxide Schottky diodes formed by gradient oxygen doping

    NASA Astrophysics Data System (ADS)

    Ho, Szuheng; Yu, Hyeonggeun; So, Franky

    2017-11-01

    Amorphous InGaZnO (a-IGZO) is promising for transparent electronics due to its high carrier mobility and optical transparency. However, most metal/a-IGZO junctions are ohmic due to the Fermi-level pinning at the interface, restricting their device applications. Here, we report that indium-tin oxide/a-IGZO Schottky diodes can be formed by gradient oxygen doping in the a-IGZO layer that would otherwise form an ohmic contact. Making use of back-to-back a-IGZO Schottky junctions, a transparent IGZO permeable metal-base transistor is also demonstrated with a high common-base gain.

  20. Strained quantum well photovoltaic energy converter

    NASA Technical Reports Server (NTRS)

    Freundlich, Alexandre (Inventor); Renaud, Philippe (Inventor); Vilela, Mauro Francisco (Inventor); Bensaoula, Abdelhak (Inventor)

    1998-01-01

    An indium phosphide photovoltaic cell is provided where one or more quantum wells are introduced between the conventional p-conductivity and n-conductivity indium phosphide layer. The approach allows the cell to convert the light over a wider range of wavelengths than a conventional single junction cell and in particular convert efficiently transparency losses of the indium phosphide conventional cell. The approach hence may be used to increase the cell current output. A method of fabrication of photovoltaic devices is provided where ternary InAsP and InGaAs alloys are used as well material in the quantum well region and results in an increase of the cell current output.

  1. Atomic layer epitaxy of hematite on indium tin oxide for application in solar energy conversion

    DOEpatents

    Martinson, Alex B.; Riha, Shannon; Guo, Peijun; Emery, Jonathan D.

    2016-07-12

    A method to provide an article of manufacture of iron oxide on indium tin oxide for solar energy conversion. An atomic layer epitaxy method is used to deposit an uncommon bixbytite-phase iron (III) oxide (.beta.-Fe.sub.2O.sub.3) which is deposited at low temperatures to provide 99% phase pure .beta.-Fe.sub.2O.sub.3 thin films on indium tin oxide. Subsequent annealing produces pure .alpha.-Fe.sub.2O.sub.3 with well-defined epitaxy via a topotactic transition. These highly crystalline films in the ultra thin film limit enable high efficiency photoelectrochemical chemical water splitting.

  2. Liquid precursor for deposition of indium selenide and method of preparing the same

    DOEpatents

    Curtis, Calvin J.; Miedaner, Alexander; van Hest, Marinus Franciscus Antonius Maria; Ginley, David S.; Hersh, Peter A.; Eldada, Louay; Stanbery, Billy J.

    2015-09-22

    Liquid precursors containing indium and selenium suitable for deposition on a substrate to form thin films suitable for semiconductor applications are disclosed. Methods of preparing such liquid precursors and method of depositing a liquid precursor on a substrate are also disclosed.

  3. Indium sealing techniques.

    NASA Technical Reports Server (NTRS)

    Hochuli, U.; Haldemann, P.

    1972-01-01

    Gold films are used as an alloying flux to form 5-micron-thick indium film seals at temperatures below 300 C. Pyrex was sealed to quartz, ULE, CER-VIT, Irtran 2, Ge, GaAs, Invar, Kovar, Al, and Cu. The seals can also be used as current feedthroughs and graded seals.

  4. Synthesis, characterization and catalytic activity of indium substituted nanocrystalline Mobil Five (MFI) zeolite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Kishor Kr.; Nandi, Mithun; Talukdar, Anup K., E-mail: anup_t@sify.com

    2015-06-15

    Highlights: • In situ modification of the MFI zeolite by incorporation of indium. • The samples were characterized by XRD, FTIR, TGA, UV–vis (DRS), SAA, EDX and SEM. • The incorporation of indium was confirmed by XRD, FT-IR, UV–vis (DRS), EDX and TGA. • Hydroxylation of phenol reaction was studied on the synthesized catalysts. - Abstract: A series of indium doped Mobil Five (MFI) zeolite were synthesized hydrothermally with silicon to aluminium and indium molar ratio of 100 and with aluminium to indium molar ratios of 1:1, 2:1 and 3:1. The MFI zeolite phase was identified by XRD and FT-IRmore » analysis. In XRD analysis the prominent peaks were observed at 2θ values of around 6.5° and 23° with a few additional shoulder peaks in case of all the indium incorporated samples suggesting formation of pure phase of the MFI zeolite. All the samples under the present investigation were found to exhibit high crystallinity (∼92%). The crystallite sizes of the samples were found to vary from about 49 to 55 nm. IR results confirmed the formation of MFI zeolite in all cases showing distinct absorbance bands near 1080, 790, 540, 450 and 990 cm{sup −1}. TG analysis of In-MFI zeolites showed mass losses in three different steps which are attributed to the loss due to adsorbed water molecules and the two types TPA{sup +} cations. Further, the UV–vis (DRS) studies reflected the position of the indium metal in the zeolite framework. Surface area analysis of the synthesized samples was carried out to characterize the synthesized samples The analysis showed that the specific surface area ranged from ∼357 to ∼361 m{sup 2} g{sup −1} and the pore volume of the synthesized samples ranged from 0.177 to 0.182 cm{sup 3} g{sup −1}. The scanning electron microscopy studies showed the structure of the samples to be rectangular and twinned rectangular shaped. The EDX analysis was carried out for confirmation of Si, Al and In in zeolite frame work. The catalytic activities of the synthesized samples were investigated with respect to hydroxylation of phenol, in which catechol and hydroquinone were found to be the major products. It is observed that under all reaction conditions catechol selectivity was higher than the hydroquinone selectivity. In-MFI zeolites were successfully synthesized and were used as an effective catalyst for the hydroxylation of phenol to synthesize catechol and hydroquinone as the major product.« less

  5. Crystallinity, Surface Morphology, and Photoelectrochemical Effects in Conical InP and InN Nanowires Grown on Silicon.

    PubMed

    Parameshwaran, Vijay; Xu, Xiaoqing; Clemens, Bruce

    2016-08-24

    The growth conditions of two types of indium-based III-V nanowires, InP and InN, are tailored such that instead of yielding conventional wire-type morphologies, single-crystal conical structures are formed with an enlarged diameter either near the base or near the tip. By using indium droplets as a growth catalyst, combined with an excess indium supply during growth, "ice cream cone" type structures are formed with a nanowire "cone" and an indium-based "ice cream" droplet on top for both InP and InN. Surface polycrystallinity and annihilation of the catalyst tip of the conical InP nanowires are observed when the indium supply is turned off during the growth process. This growth design technique is extended to create single-crystal InN nanowires with the same morphology. Conical InN nanowires with an enlarged base are obtained through the use of an excess combined Au-In growth catalyst. Electrochemical studies of the InP nanowires on silicon demonstrate a reduction photocurrent as a proof of photovolatic behavior and provide insight as to how the observed surface polycrystallinity and the resulting interface affect these device-level properties. Additionally, a photovoltage is induced in both types of conical InN nanowires on silicon, which is not replicated in epitaxial InN thin films.

  6. First-principles analysis of structural and opto-electronic properties of indium tin oxide

    NASA Astrophysics Data System (ADS)

    Tripathi, Madhvendra Nath; Shida, Kazuhito; Sahara, Ryoji; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2012-05-01

    Density functional theory (DFT) and DFT + U (DFT with on-site Coulomb repulsion corrections) calculations have been carried out to study the structural and opto-electronic properties of indium tin oxide (ITO) for both the oxidized and reduced environment conditions. Some of the results obtained by DFT calculations differ from the experimental observations, such as uncertain indication for the site preference of tin atom to replace indium atom at b-site or d-site, underestimation of local inward relaxation in the first oxygen polyhedra around tin atom, and also the improper estimation of electronic density of states and hence resulting in an inappropriate optical spectra of ITO. These discrepancies of theoretical outcomes with experimental observations in ITO arise mainly due to the underestimation of the cationic 4d levels within standard DFT calculations. Henceforth, the inclusion of on-site corrections within DFT + U framework significantly modifies the theoretical results in better agreement to the experimental observations. Within this framework, our calculations show that the indium b-site is preferential site over d-site for tin atom substitution in indium oxide under both the oxidized and reduced conditions. Moreover, the calculated average inward relaxation value of 0.16 Å around tin atom is in good agreement with the experimental value of 0.18 Å. Furthermore, DFT + U significantly modify the electronic structure and consequently induce modifications in the calculated optical spectra of ITO.

  7. Apker Award Talk: Atomic Beam Measurement of the Indium 6p1 / 2 Scalar Polarizability

    NASA Astrophysics Data System (ADS)

    Augenbraun, Benjamin

    2016-05-01

    We report on the first measurement of the scalar polarizability of the indium 6p1 / 2 -excited state using two-step laser spectroscopy in an atomic beam. This is one in a series of precise atomic structure measurements by the Majumder lab at Williams College, which serve as stringent tests of abinitio calculation methods for three-valence-electron systems. We stabilize a laser to the indium 5p1 / 2 --> 6s1 / 2 410 nm transition and scan a second laser across the 6s1 / 2 --> 6p1 / 2 1343 nm transition. The two laser beams are overlapped and interact transversely with a collimated atomic beam of indium. Two-tone FM spectroscopy allows us to observe the small (< 1 part in 103) IR absorption, and characteristic sideband features in the RF-demodulated lineshape provide built-in frequency calibration. Application of DC electric fields up to 20 kV/cm give rise to Stark shifts of order 100 MHz. Because our group has previously measured the difference in polarizabilities within the 410 nm transition, we can determine the 6p1 / 2 polarizability with no loss of precision. Preliminary results are in excellent agreement with recent theoretical calculations and can be used to infer accurate values for the indium 6 p - 5 d matrix elements.

  8. A new indium metal-organic 3D framework with 1,3,5-benzenetricarboxylate, MIL-96 (In), containing {mu} {sub 3}-oxo-centered trinuclear units and a hexagonal 18-ring network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkringer, Christophe; Loiseau, Thierry

    2006-05-25

    A new indium trimesate In{sub 12}O(OH){sub 12}({l_brace}OH{r_brace}{sub 4},{l_brace}H{sub 2}O{r_brace}{sub 5})[btc]{sub 6}.{approx}31H{sub 2}O, called MIL-96 (btc = 1,3,5-benzenetricarboxylate or trimesate species) was hydrothermally synthesized under mild condition (210 deg. C, 5 h) in the presence of trimethyl 1,3,5-benzenetricarboxylate in water and characterized by single-crystal X-ray diffraction technique. The MIL-96 (In) structure exhibits a three-dimensional metal-organic framework containing isolated trinuclear {mu} {sub 3}-oxo-bridged indium clusters and infinite chains of InO{sub 4}(OH){sub 2} and InO{sub 2}(OH){sub 3}(H{sub 2}O) octahedra generating a hexagonal network based on 18-membered ring. The two types of indium entities are connected to each other through the trimesate species whichmore » induce corrugated chains of indium octahedra, linked via {mu} {sub 2}-hydroxo bonds with the specific -cis-cis-trans- sequence. The 3D framework of MIL-96 reveals three kind of cavities (two of them have estimated {approx} 400 A{sup 3} volumes), in which are encapsulated free water molecules. The latter species are removed upon heating at 150 deg. C.« less

  9. Two rare indium-based porous metal-metalloporphyrin frameworks exhibiting interesting CO 2 uptake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Wen-Yang; Zhang, Zhuxiu; Cash, Lindsay

    2014-01-13

    Two rare indium-based porous metal–metalloporphyrin frameworks (MMPFs), MMPF-7 and MMPF-8, were constructed by self-assembly of In(III) and two custom-designed porphyrin–tetracarboxylate ligands. MMPF-7 and MMPF-8 possess the pts topology and exhibit interesting CO 2 adsorption properties.

  10. Scintigraphic evaluation in musculoskeletal sepsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkel, K.D.; Fitzgerald, R.H. Jr.; Brown, M.L.

    In this article, the mechanism of technetium, gallium, and indium-labeled white blood cell localization in septic processes is detailed, and the method of interpretation of these three isotopes with relationship to musculoskeletal infection is outlined. Specific clinical application of technetium, gallium, and indium-labeled white blood cell imaging for musculoskeletal sepsis is reviewed.

  11. The Effects of Strain on the Electrical Properties of Thin Evaporated Films of Semiconductor Compounds

    ERIC Educational Resources Information Center

    Steel, G. G.

    1970-01-01

    Reports on project intended to establish how electrical resistance, Hall voltage, and magnetoresistance change when a thin film specimen is subjected to mechanical strain. Found resistance of semiconducting film of indium arsenide and indium antimonide decreases with tension and increases with compression. (LS)

  12. Thin Metallic Films from Solvated Metal Atoms.

    DTIC Science & Technology

    1987-07-14

    platinium , and especially indium are discussed. N, ; ,, -- !, : N) By Dist , , . N S f1 -- ~~r, 821-19 C[ Thin metallic films from solvated metal atoms...metallic films. Cold, palladium, platinium , and especially indium are discussed. 1- INTRQDUCTION In the field of chemistry an active and broad area of

  13. Synthesis Characterization and Decomposition Studies of tris[N-N-dibenzyidithocarbaso)Indium (III) Chemical Spray Deposition of Polycrystalline CuInS2 on Copper Films

    NASA Technical Reports Server (NTRS)

    Hehemann, David G.; Lau, J. Eva; Harris, Jerry D.; Hoops, Michael D.; Duffy, Norman V.

    2005-01-01

    This paper presents the results of the synthesis characterization and decomposition studies of tris[N-N-dibenzyidithocarbaso)Indium (III) with chemical spray deposition of polycrystalline CuInS2 on Copper Films.

  14. How metallic is the binding state of indium hosted by excess-metal chalcogenides in ore deposits?

    NASA Astrophysics Data System (ADS)

    Ondina Figueiredo, Maria; Pena Silva, Teresa; Oliveira, Daniel; Rosa, Diogo

    2010-05-01

    Discovered in 1863, indium is nowadays a strategic scarce metal used both in classical technologic fields (like low melting-temperature alloys and solders) and in innovative nano-technologies to produce "high-tech devices" by means of new materials, namely liquid crystal displays (LCDs), organic light emitting diodes (OLEDs) and the recently introduced transparent flexible thin-films manufactured with ionic amorphous oxide semiconductors (IAOS). Indium is a typical chalcophile element, seldom forming specific minerals and occurring mainly dispersed within polymetallic sulphides, particularly with excess metal ions [1]. The average content of indium in the Earth's crust is very low but a further increase in its demand is still expected in the next years, thus focusing a special interest in uncovering new exploitation sites through promising polymetallic sulphide ores - e.g., the Iberian Pyrite Belt (IPB) [2] - and in improving recycling technologies. Indium recovery stands mostly on zinc extraction from sphalerite, the natural cubic sulphide which is the prototype of so-called "tetrahedral sulphides" where metal ions fill half of the available tetrahedral sites within the cubic closest packing of sulphur anions where the double of unfilled interstices are available for further in-filling. It is worth remarking that such packing array is particularly suitable for accommodating polymetallic cations by filling closely located interstitial sites [3] as happens in excess-metal tetrahedral sulphides - e.g. bornite, ideally Cu5FeS4, recognized as an In-carrying mineral [4]. Studying the tendency towards In-In interactions able of leading to the formation of polycations would efficiently contribute to understand indium crystal chemistry and the metal binding state in natural chalcogenides. Accordingly, an X-ray absorption near-edge spectroscopy (XANES) study at In L3-edge was undertaken using the instrumental set-up of ID21 beamline at the ESRF (European Synchrotron Radiation Facility, in Grenoble/France). Polymetallic chalcogenide minerals and various model compounds displaying distinct bonding situations of indium to other ligands (oxygen and halides) were studied. Encouraging results from a first experiment [5] showed the presence of a "white line" in the XANES spectra collected from InF3 and from In-hosting bornite; however, the impossibility of clearly identifying the nanoscale phase hosting indium in sulphide ore samples has hindered a full interpretation of X-ray absorption data. The crystal chemistry of indium in natural chalcogenides is now reanalysed and XANES results obtained so far for polymetallic sulphides are accordingly re-evaluated, disclosing a challenging clue for indium binding state in these host minerals within sulphide ores. [1] M.O. Figueiredo et al. (2007) Procd. 9th Biennial SGA Mtg., Dublin/Ireland, edt. C. Andrew et al., 1355-1357. [2] O.C. Gaspar (2002) Canad. Miner. 40, 611-636. [3] M.O. Figueiredo & T.P. Silva (2009) ICANS 23, 23rd Int. Conf. Amorphous & Nano-crystalline Semiconductors, Netherlands, August 23-28. Poster ID 229 (abstract). [4] T. Seifert & D. Sandmann (2002) Ore Geol. Reviews 28, 1-31. [5] M.O. Figueiredo & T.P. Silva (2009) XVIII Int. Mater. Res. Congr., Mexico, August 16-20. Symp. 20, Poster nr. 1 (abstract). * Work developed within the research project PTDC/CTE-GIN/67027/2006 financed by the Portuguese Foundation for Science & Technology (FCT/MCTES). The financial support from EU to perform the experiments at the ESRF is also acknowledged.

  15. Separation of metalloporphyrins from metallation reactions by liquid chromatography and electrophoresis.

    PubMed

    Duff, G A; Yeager, S A; Singhal, A K; Pestel, B C; Ressner, J M; Foster, N

    1987-04-24

    The analytical separation of the indium and manganese complexes of three synthetic, meso-substituted, water-soluble porphyrins from their respective free bases in metallation reaction mixtures is described. The ligands tetra-3N-methylpyridyl porphyrin, tetra-4N-methylpyridyl porphyrin and tetra-N,N,N-trimethylanilinium porphyrin are complexed with In (III) and Mn (III) and are separated from residual free base by high-performance liquid chromatography (HPLC) in acidic conditions with gradient elution on ODS bonded stationary phase. Electrophoretic separation is achieved on both cellulose polyacetate strips and polyacrylamide tube gels under basic conditions. Although analytical separations can be achieved by both HPLC and electrophoresis, only HPLC is suitable for the development of preparative scale separations. Column chromatography, ion-pairing and ion-suppression HPLC techniques fail to separate such highly charged and closely related aromatic compounds.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Peng-Yuan; Zhang, Wei-De, E-mail: zhangwd@scut.edu.cn

    Highlights: • Preparation of nanostructured In{sub 2}O{sub 3} microspheres. • Morphology and phase control of In{sub 2}O{sub 3}. • Gas sensors based on the In{sub 2}O{sub 3} microspheres exhibit excellent sensing properties for the detection of formaldehyde. - Abstract: Urchin-like InOOH microspheres were successfully prepared by a convenient and controllable method. Such experimental parameters as solvents and complexing reagents on the formation of the urchin-like InOOH microspheres were investigated. Scanning electron microscopy, X-ray diffraction and infrared spectroscopy were employed to investigate the evolution process of the urchin-like InOOH precursors. Furthermore, the formation mechanism of the urchin-like InOOH microspheres was proposed.more » By annealing the urchin-like InOOH precursor at different temperatures under ambient pressure, rhombohedral corundum-type indium oxide (rh-In{sub 2}O{sub 3}), cubic bixbyite-type indium oxide (c-In{sub 2}O{sub 3}) and mixed phases of rh-In{sub 2}O{sub 3} and c-In{sub 2}O{sub 3} were obtained. The gas sensing properties of the prepared In{sub 2}O{sub 3} samples were examined. It was found that the sensors based on the prepared In{sub 2}O{sub 3} samples exhibited excellent response and selectivity to formaldehyde.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourlier, Yoan; Cristini Robbe, Odile; Laboratoire de Physique des Lasers, Atomes et Molécules

    Highlights: • CuIn{sub (1−x)}Ga{sub x}S{sub 2} thin films were prepared by sol–gel process. • Evolution of lattice parameters is characteristic of a solid solution. • Optical band gap was found to be linearly dependent on the gallium rate. - Abstract: In this paper, we report the elaboration of Cu(In,Ga)S{sub 2} chalcopyrite thin films via a sol–gel process. To reach this aim, solutions containing copper, indium and gallium complexes were prepared. These solutions were thereafter spin-coated onto the soda lime glass substrates and calcined, leading to metallic oxides thin films. Expected chalcopyrite films were finally obtained by sulfurization of oxides layersmore » using a sulfur atmosphere at 500 °C. The rate of gallium incorporation was studied both at the solutions synthesis step and at the thin films sulfurization process. Elemental and X-ray diffraction (XRD) analyses have shown the efficiency of monoethanolamine used as a complexing agent for the preparation of CuIn{sub (1−x)}Ga{sub x}S{sub 2} thin layers. Moreover, the replacement of diethanolamine by monoethanolamine has permitted the substitution of indium by isovalent gallium from x = 0 to x = 0.4 and prevented the precipitation of copper derivatives. XRD analyses of sulfurized thin films CuIn{sub (1−x)}Ga{sub x}S{sub 2,} clearly indicated that the increasing rate of gallium induced a shift of XRD peaks, revealing an evolution of the lattice parameter in the chalcopyrite structure. These results were confirmed by Raman analyses. Moreover, the optical band gap was also found to be linearly dependent upon the gallium rate incorporated within the thin films: it varies from 1.47 eV for x = 0 to 1.63 eV for x = 0.4.« less

  18. Diagrams of the formation of In2S3 and In2Se3 films on vitroceramic upon precipitation, according to potentiometric titration

    NASA Astrophysics Data System (ADS)

    Tulenin, S. S.; Bakhteev, S. A.; Yusupov, R. A.; Maskaeva, L. N.; Markov, V. F.

    2013-10-01

    Boundary conditions and ranges of the formation of indium(III) sulfide and selenide upon precipitation by thiocarbamide and selenocarbamide are determined. Potentiometric titration of indium chloride (InCl3) in the concentration range of 0.0001 to 0.100 mol/L by a solution of sodium hydroxide is performed. It is found that the following pH ranges are optimal for In2S3 and In2Se3 film precipitation: from 3.0 to 4.5 and from 9.0 to 14.0. Indium selenide layers 100 to 300 nm thick are prepared on vitroceramic by hydrochemcial precipitation.

  19. Work in progress: radionuclide imaging of indium-111-labeled eosinophils in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Runge, V.M.; Rand, T.H.; Clanton, J.A.

    1983-05-01

    Eosinophils isolated from peritoneal exudates were labeled with indium-111-oxine and injected intravenously into sensitized mice. They became localized at sites of inflammation produced by intradermal injections of schistosomal antigen or Toxocara canis larvae, whereas labeled neutrophils did not. Intense uptake of eosinophils by normal spleen, liver, and bone marrow was noted, with tracer distribution effectively complete by 5 hours after injection. Indium-111-eosinophil studies appear to be quite sensitive to parasitic inflammatory reactions; in contrast, nonspecific inflammation such as that induced by turpentine causes localization of eosinophils, but to a lesser extent. This technique may be useful in the study ofmore » parasitic and allergic disease.« less

  20. Energy level alignment at the interfaces between typical electrodes and nucleobases: Al/adenine/indium-tin-oxide and Al/thymine/indium-tin-oxide

    NASA Astrophysics Data System (ADS)

    Lee, Younjoo; Lee, Hyunbok; Park, Soohyung; Yi, Yeonjin

    2012-12-01

    We investigated the interfacial electronic structures of Al/adenine/indium-tin-oxide (ITO) and Al/thymine/ITO using in situ ultraviolet and x-ray photoemission spectroscopy and density functional theory calculations. Adenine shows both an interface dipole and level bending, whereas thymine shows only an interface dipole in contact with ITO. In addition, thymine possesses a larger ionization energy than adenine. These are understood with delocalized π states confirmed with theoretical calculations. For the interface between nucleobases and Al, both nucleobases show a prominent reduction of the electron injection barrier from Al to each base in accordance with a downward level shift.

  1. On the shift of the electroluminescence spectra of In{sub x}Ga{sub 1−x}N/GaN structures with various indium contents and various substrate materials caused by the stark effect and mechanical stresses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veleschuk, V. P., E-mail: vvvit@ukr.nd; Vlasenko, A. I.; Kisselyuk, M. P.

    2015-08-15

    The shift between the maxima of the electroluminescence spectra of In{sub x}Ga{sub 1−x}N/GaN structures is measured at forward and reverse bias depending on the indium content x in the quantum well and on the substrate material (SiC, AuSn/Si, and Al{sub 2}O{sub 3}). It is established that this shift increases as the indium concentration in the In{sub x}Ga{sub 1−x}N layer and mechanical stresses from the substrate increase.

  2. Dual operation characteristics of resistance random access memory in indium-gallium-zinc-oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Yang, Jyun-Bao; Chang, Ting-Chang; Huang, Jheng-Jie; Chen, Yu-Chun; Chen, Yu-Ting; Tseng, Hsueh-Chih; Chu, Ann-Kuo; Sze, Simon M.

    2014-04-01

    In this study, indium-gallium-zinc-oxide thin film transistors can be operated either as transistors or resistance random access memory devices. Before the forming process, current-voltage curve transfer characteristics are observed, and resistance switching characteristics are measured after a forming process. These resistance switching characteristics exhibit two behaviors, and are dominated by different mechanisms. The mode 1 resistance switching behavior is due to oxygen vacancies, while mode 2 is dominated by the formation of an oxygen-rich layer. Furthermore, an easy approach is proposed to reduce power consumption when using these resistance random access memory devices with the amorphous indium-gallium-zinc-oxide thin film transistor.

  3. Stable indium oxide thin-film transistors with fast threshold voltage recovery

    NASA Astrophysics Data System (ADS)

    Vygranenko, Yuriy; Wang, Kai; Nathan, Arokia

    2007-12-01

    Stable thin-film transistors (TFTs) with semiconducting indium oxide channel and silicon dioxide gate dielectric were fabricated by reactive ion beam assisted evaporation and plasma-enhanced chemical vapor deposition. The field-effect mobility is 3.3cm2/Vs, along with an on/off current ratio of 106, and subthreshold slope of 0.5V/decade. When subject to long-term gate bias stress, the TFTs show fast recovery of the threshold voltage (VT) when relaxed without annealing, suggesting that charge trapping at the interface and/or in the bulk gate dielectric to be the dominant mechanism underlying VT instability. Device performance and stability make indium oxide TFTs promising for display applications.

  4. Preparation of copper-indium-gallium-diselenide precursor films by electrodeposition for fabricating high efficiency solar cells

    DOEpatents

    Bhattacharya, Raghu N.; Hasoon, Falah S.; Wiesner, Holm; Keane, James; Noufi, Rommel; Ramanathan, Kannan

    1999-02-16

    A photovoltaic cell exhibiting an overall conversion efficiency of 13.6% is prepared from a copper-indium-gallium-diselenide precursor thin film. The film is fabricated by first simultaneously electrodepositing copper, indium, gallium, and selenium onto a glass/molybdenum substrate (12/14). The electrodeposition voltage is a high frequency AC voltage superimposed upon a DC voltage to improve the morphology and growth rate of the film. The electrodeposition is followed by physical vapor deposition to adjust the final stoichiometry of the thin film to approximately Cu(In.sub.1-n Ga.sub.x)Se.sub.2, with the ratio of Ga/(In+Ga) being approximately 0.39.

  5. Modeling of the absorption properties of Ga1-xInxAs1-yNy/GaAs quantum well structures for photodetection applications

    NASA Astrophysics Data System (ADS)

    Aissat, A.; Bestam, R.; Alshehri, B.; Vilcot, J. P.

    2015-06-01

    This work reports on theoretical studies on the GaInNAs material properties (bandgap, lattice mismatch, absorption coefficient) as grown on GaAs substrate. The Band Anti-Crossing (BAC) kṡp 8 × 8 model has been used to determine the influence of indium and nitrogen concentrations on the position of conduction and valence bands. The incorporation of nitrogen at a level lower than 5% causes the split of the conduction band. For indium and nitrogen concentrations of 38% and 3.5%, respectively, the strained bandgap energy is 0.70 eV and the absorption coefficient of indium and nitrogen-rich compounds increases significantly.

  6. Equation of state of liquid Indium under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Huaming, E-mail: huamingli@gatech.edu, E-mail: mo.li@gatech.edu; Li, Mo, E-mail: huamingli@gatech.edu, E-mail: mo.li@gatech.edu; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332

    2015-09-15

    We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids,more » these detailed predictions are yet to be confirmed by further experiment.« less

  7. IOMIDAZOLIUM-BASED INDIUM(III) TETRAHIDES: RECYCLABLE CATALYSTS FOR EFFICIENT COUPLING OF CARBON DIOXIDE WITH EXPOXIDES TO FORM CYCLIC CARBONATES

    EPA Science Inventory

    The transformation of CO2 an abundant greenhouse gas, into cyclic carbonates by coupling reaction with epoxides is receiving well-deserved attention. A series of imidazolium-based indium tetrahalides, prepared efficiently via microwave assisted reaction of InX3 with [1-R-3-metht...

  8. Understanding the adhesion and optical properties of eutectic metal alloys for solution-processed electronics

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Aggarwal, Shantanu; Narayana, Chandrabhas; Narayan, K. S.

    2018-02-01

    The role of indium in controlling the adhesion and the optical properties of fusible, low- melting alloys is highlighted in this work. The optical activity of indium-alloy/polymer interface is probed using surface-enhanced Raman spectroscopy, which shows a large increase in polymer Raman modes intensity. Signatures of plasmon and chemically enhanced Raman are visible for more than one polymer. Improvement in adhesion is also reflected in their ability to coat conformally onto the polymer surface resulting in a suitable interface for electrical transport. The electrical characteristics of alloy electrodes, which are printed in ambient conditions, are superior when compared to the thermally evaporated aluminum cathodes. Raman and responsivity measurements indicate that indium (In) forms metal/organic hybrid charge-transfer states at the alloy/polymer interface and assumes a decisive role in controlling the mechanical, optical, and electrical properties of these electrodes. Our studies suggest that the indium present in small quantities (˜5 wt. %) can significantly improve the overall performance of the low-temperature printable eutectic alloy electrodes.

  9. Structure and Internal Stress of Tin-Doped Indium Oxide and Indium-Zinc Oxide Films Deposited by DC Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Nishimura, Eriko; Sasabayashi, Tomoko; Ito, Norihiro; Sato, Yasushi; Utsumi, Kentaro; Yano, Koki; Kaijo, Akira; Inoue, Kazuyoshi; Shigesato, Yuzo

    2007-12-01

    Representative transparent conductive oxide films, such as tin-doped indium oxide (ITO) and indium-zinc oxide (IZO) films, were deposited by dc magnetron sputtering using corresponding oxide targets under various total gas pressures (Ptot) ranging from 0.3 to 3.0 Pa. The ITO films deposited at a Ptot lower than 0.7 Pa were polycrystalline and were found to have a large compressive stress of about 1.5 × 109 Pa, whereas the ITO films deposited at 1.5-3.0 Pa were amorphous and had a low tensile stress. In contrast, all the IZO films deposited at a Ptot range of 0.3-3.0 Pa showed an entirely amorphous structure, where the compressive stress in the IZO films deposited at a Ptot lower than 1.5 Pa was lower than that in the ITO films. Such compressive stress was considered to be generated by the atomic peening effect of high-energy neutrals (Ar0) recoiled from the target or high-energy negative ions (O-) accelerated in the cathode sheath toward the film surface.

  10. Study the physical and optoelectronic properties of silver gallium indium selenide AgGaInSe2/Si heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Hassun, Hanan K.

    2018-05-01

    AgGa1-x InxSe2 (AGIS) thin films was deposited on Si and glass substrates by thermal evaporation at RT and different ratios of Indium (x=0.2, 0.5, 0.8). The synthetics properties of AGIS thin film have been examined using X-ray diffraction and AFM. AGIS thin films possessed a polycrystalline tetragonal structure. Average diameter and roughness calculated from AFM images shows an increase in its value with increasing the ratios of Indium. Hall measurements showed n-type conduction with high mobility. The AgGa0.2In0.8Se2 thin film solar cell with a band gap of 1.65eV exhibit a total efficiency of 6.3% with open-circuit voltage Voc 0.38V, short circuit current Jsc 29 mA/cm2, fill factor FF 0.571 and total area 1 cm2. The built-in potential Vbi, concentration of majoritarian carrier ND and depletion width w are definite under different ratios of Indium from C-V amount.

  11. Thermal contact resistance measurement of conduction cooled binary current lead joint block in cryocooler based self field I-V characterization facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundu, Ananya, E-mail: ananya@ipr.res.in; Das, Subrat Kumar; Agarwal, Anees Bano Pooja

    2016-05-23

    In the present study thermal resistance of conduction cooled current lead joint block employing two different interfacial material namely AlN sheet and Kapton Film have been studied in the temperature range 5K-35K. In each case, the performance of different interlayer materials e.g. Indium foil for moderately pressurized contacts (contact pressure <1 MPa), and Apiezon N Grease, GE varnish for low pressurized contact (contact pressure <1 MPa) is studied. The performances of AlN joint with Indium foil and with Apeizon N Grease are studied and it is observed that the contact resistance reduces more with indium foil as compared to greasedmore » contact. The contact resistance measurements of Kapton film with Apiezon N grease and with GE varnish were also carried out in the same temperature range. A comparative study of AlN joint with Indium foil and Kapton with GE varnish as filler material is carried out to demonstrate better candidate material among Kapton and AlN for a particular filler material in the same temperature range.« less

  12. Reference Data for the Density and Viscosity of Liquid Cadmium, Cobalt, Gallium, Indium, Mercury, Silicon, Thallium, and Zinc

    NASA Astrophysics Data System (ADS)

    Assael, Marc J.; Armyra, Ivi J.; Brillo, Juergen; Stankus, Sergei V.; Wu, Jiangtao; Wakeham, William A.

    2012-09-01

    The available experimental data for the density and viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zinc have been critically examined with the intention of establishing both a density and a viscosity standard. All experimental data have been categorized into primary and secondary data according to the quality of measurement, the technique employed and the presentation of the data, as specified by a series of criteria. The proposed standard reference correlations for the density of liquid cadmium, cobalt, gallium, indium, silicon, thallium, and zinc are characterized by percent deviations at the 95% confidence level of 0.6, 2.1, 0.4, 0.5, 2.2, 0.9, and 0.7, respectively. In the case of mercury, since density reference values already exist, no further work was carried out. The standard reference correlations for the viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zinc are characterized by percent deviations at the 95% confidence level of 9.4, 14.0, 13.5, 2.1, 7.3, 15.7, 5.1, and 9.3, respectively.

  13. Heat transfer at a sapphire - indium interface in the 30 mK - 300 mK temperature range

    NASA Astrophysics Data System (ADS)

    Liberadzka, J.; Koettig, T.; Bremer, J.; van der Post, C. C. W.; ter Brake, H. J. M.

    2017-02-01

    Within the framework of the AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) project a direct measurement of the Earth’s gravitational acceleration on antihydrogen will be carried out. In order to obtain satisfactory precision of the measurement, the thermal movement of the particles should be reduced. Therefore a Penning trap, which is used to trap antiprotons and create antihydrogen, will be placed on a mixing chamber of an especially designed dilution refrigerator. The trap consists of 10 electrodes, which need to be electrically insulated, but thermally anchored. To ensure that the trap remains at a temperature below 100 mK, the heat transfer at the metallic-dielectric boundary is investigated. A copper - indium - sapphire - indium - copper sandwich setup was mounted on the CERN Cryolab dilution refrigerator. Keeping the mixing chamber at a constant low temperature in the range of 30 mK to 300 mK, steady-state measurements with indium in normal conducting and superconducting states have been performed. Obtained results along with a precise description of our setup are presented.

  14. Immune stimulation following dermal exposure to unsintered indium tin oxide

    PubMed Central

    Brock, Kristie; Anderson, Stacey E.; Lukomska, Ewa; Long, Carrie; Anderson, Katie; Marshall, Nikki; Meade, B. Jean

    2015-01-01

    In recent years, several types of pulmonary pathology, including alveolar proteinosis, fibrosis, and emphysema, have been reported in workers in the indium industry. To date, there remains no clear understanding of the underlying mechanism(s). Pulmonary toxicity studies in rats and mice have demonstrated the development of mediastinal lymph node hyperplasia and granulomas of mediastinal lymph nodes and bronchus-associated lymphoid tissues following exposure to indium tin oxide. Given the association between exposure to other metals and the development of immune-mediated diseases, these studies were undertaken to begin to investigate the immuno-modulatory potential of unsintered indium tin oxide (uITO) in a mouse model. Using modifications of the local lymph node assay, BALB/c mice (five animals/group) were exposed topically via intact or breached skin or injected intradermally at the base of the ear pinnae with either vehicle or increasing concentrations 2.5–10% uITO (90:10 indium oxide/tin oxide, particle size <50 nm). Dose-responsive increases in lymphocyte proliferation were observed with a calculated EC3 of 4.7% for the intact skin study. Phenotypic analysis of draining lymph node cells following intradermal injection with 5% uITO yielded a profile consistent with a T-cell-mediated response. These studies demonstrate the potential for uITO to induce sensitization and using lymphocyte proliferation as a biomarker of exposure, and demonstrate the potential for uITO to penetrate both intact and breached skin. PMID:24164313

  15. Neutron diffraction and thermoelectric properties of indium filled In x Co 4 Sb 12 ( x=0.05, 0.2) and indium cerium filled Ce 0.05 In 0.1 Co 4 Sb 12 skutterudites: Neutron diffraction and thermoelectric properties of In/Ce skutterudites

    DOE PAGES

    Sesselmann, Andreas; Klobes, Benedikt; Dasgupta, Titas; ...

    2015-09-25

    The thermoelectric properties on polycrystalline single (In) and double filled (Ce, In) skutterudites are characterized between 300 and 700 K. Powder neutron diffraction measurements of the skutterudite compositions In xCo 4Sb 12 (x= 0.05, 0.2) and Ce 0.05In 0.1Co 4Sb 12 as a function of temperature (12- 300 K) were carried out, which gives more insight into the structural data of single and double-filled skutterudites. Our results show that due to the annealing treatment, a Sb deficiency is detectable and thus verifies defects at the Sb lattice site of the skutterudite. Furthermore, we show by electron microprobe analysis that amore » considerable amount of indium is lost during synthesis and post-processing for the single indium filled samples, but not for the double cerium and indium skutterudite sample. The double-filled skutterudite is superior to the single-filled skutterudite composition due to a higher charge carrier density, a comparable lattice thermal resistivity, and a higher density of states effective mass in our experiment. Finally, we obtained a significantly higher Einstein temperature for the double-filled skutterudite composition in comparison to the single-filled species, which reflects the high sensitivity due to filling of the void lattice position within the skutterudite crystal.« less

  16. Characterization of Novel Plasmonic, Photonic, and Semiconductor Microstructures

    NASA Astrophysics Data System (ADS)

    Sears, Jasmine Soria

    The fields of telecommunications and optoelectronics are under constant pressure to shrink devices and reduce power consumption. Micro-scale photonic and plasmonic structures can trap light and enhance the brightness of active emitters; thus, these types of structures are promising avenues to accomplishing the goals of miniaturization and efficiency. A deeper understanding of specific structures is important in order to gauge their suitability for specific applications. In this dissertation, two types of microstructures are explored: one-dimensional silicon photonic crystals and self-assembled indium islands. This dissertation will provide novel characterization of these structures and a description of how to utilize or compensate for the observed features. A photonic crystal can act as a tiny resonator for certain wavelengths, making it a promising structure for applications that require extremely small lasers. However, because of silicon’s indirect bandgap, a silicon photonic crystal cavity would require the addition of an active emitter to function as a light source. Attempts to incorporate erbium into these cavities, and the observation of an unusual coupling phenomenon, will be discussed. Self-assembled indium islands are plasmonic structures that can be grown via molecular beam epitaxy. In theory, these islands should be pure indium nanoantennas on top of a smooth gallium arsenide substrate. In practice, the component materials are less segregated than predicted, giving rise to unexpected hollow dome shapes and a sub-surface indium layer. Although these features were not an intended result of indium island growth, they provide information regarding the island formation process and potentially contribute additional applications.

  17. Optimization of Indium Bump Morphology for Improved Flip Chip Devices

    NASA Technical Reports Server (NTRS)

    Jones, Todd J.; Nikzad, Shouleh; Cunningham, Thomas J.; Blazejewski, Edward; Dickie, Matthew R.; Hoenk, Michael E.; Greer, Harold F.

    2011-01-01

    Flip-chip hybridization, also known as bump bonding, is a packaging technique for microelectronic devices that directly connects an active element or detector to a substrate readout face-to-face, eliminating the need for wire bonding. In order to make conductive links between the two parts, a solder material is used between the bond pads on each side. Solder bumps, composed of indium metal, are typically deposited by thermal evaporation onto the active regions of the device and substrate. While indium bump technology has been a part of the electronic interconnect process field for many years and has been extensively employed in the infrared imager industry, obtaining a reliable, high-yield process for high-density patterns of bumps can be quite difficult. Under the right conditions, a moderate hydrogen plasma exposure can raise the temperature of the indium bump to the point where it can flow. This flow can result in a desirable shape where indium will efficiently wet the metal contact pad to provide good electrical contact to the underlying readout or imager circuit. However, it is extremely important to carefully control this process as the intensity of the hydrogen plasma treatment dramatically affects the indium bump morphology. To ensure the fine-tuning of this reflow process, it is necessary to have realtime feedback on the status of the bumps. With an appropriately placed viewport in a plasma chamber, one can image a small field (a square of approximately 5 millimeters on each side) of the bumps (10-20 microns in size) during the hydrogen plasma reflow process. By monitoring the shape of the bumps in real time using a video camera mounted to a telescoping 12 magnifying zoom lens and associated optical elements, an engineer can precisely determine when the reflow of the bumps has occurred, and can shut off the plasma before evaporation or de-wetting takes place.

  18. A view of aqueous electrochemical carbon dioxide reduction to formate at indium electrodes, and the reversible electrodeposition of silver in ionic liquids through the lens of fundamental surface science

    NASA Astrophysics Data System (ADS)

    Detweiler, Zachary M.

    Two systems were studied using in situ measurement techniques, demonstrating the importance of creative experimental design. The electroreduction of CO2 at heterogeneous indium electrodes in aqueous solution was analyzed by cyclic voltammetry. Bulk electrolyses showed that increased indium oxide presence prior to electrolysis improved the Faradaic efficiency of CO 2 reduction to formate in 0.5 M K2SO2 aqueous solutions at a pH of 4.4. In order to more accurately assign speciation at the electrode surface ex situ O2 and H2O dosing of metallic indium under UHV was studied with XPS, HREELS and TPD. Ambient pressure XPS showed that the ratio of oxide to hydroxide at the indium interface is strongly dependent on the partial pressure of water; decreasing as P(H2O) increases. Using this information, a qualitative picture of the indium interface could be generated. In situ ATR-FTIR with an indium thin film as the working electrode showed that bulk oxide quickly reduces with applied potential, but an interfacial oxide is still present at high reductive overpotential. Additionally, an adsorbed carbonate at the thin film interface was observed upon introducing CO 2 to the cell. The implication of a surface bound carbonate as the CO 2 reduction intermediate draws on a mechanism that has not previously been discussed in the electrochemical reduction of CO2. The previous study of this mechanism from Ficscher-Tropsch literature helps to predict the further reduced products found at more electropositive metals, such as copper or magnesium, the latter of which is described here. Additionaly described here is a series of ILs that were employed as electrolyte for reversible silver deposition. BMIM N(TfO)2 was found to be the most promising of those studied, intrinsically giving a more uniform deposit that was bright and reversible. Deposit formation was studied using SEM and EDX as a function of deposition potential and deposition time. In situ reflectometry was employed to get a direct measure of deposit reflectivity on ITO coated glass as a function of time. A promising device system has been elucidated as a result and future considerations have been identified from coincident electrochemical and spectroscopic measurements.

  19. Preparation and Structural Properties of InIII–H Complexes

    PubMed Central

    Sickerman, Nathaniel S.; Henry, Renée M.; Ziller, Joseph W.

    2013-01-01

    The use of the tripodal ligands tris[(N'-tert-butylureaylato)-N-ethyl]aminato ([H3buea]3−) and the sulfonamide-based N,N',N"-[2,2',2"-nitrilotris(ethane-2,1-diyl)]tris(2,4,6-trimethylbenzene-sulfonamidato) ([MST]3−) has led to the synthesis of two structurally distinct In(III)–OH complexes. The first example of a five-coordinate indium(III) complex with a terminal hydroxide ligand, K[InIIIH3buea(OH)], was prepared by addition of In(OAc)3 and water to a deprotonated solution of H6buea. X-ray diffraction analysis, as well as FTIR and 1H NMR spectroscopic methods, provided evidence for the formation of a monomeric In(III)–OH complex. The complex contains an intramolecular hydrogen bonding (H-bonding) network involving the In(III)–OH unit and [H3buea]3− ligand, which aided in isolation of the complex. Isotope labeling studies verified the source of the hydroxo ligand as water. Treatment of the [InIIIMST] complex with a mixture of 15-crown-5 ether and NaOH led to isolation of the complex [15-crown-5⊃NaI-(μ-OH)-InIIIMST], whose solid-state structure was confirmed using X-ray diffraction methods. Nuclear magnetic resonance studies on this complex suggest it retains its heterobimetallic structure in solution. PMID:25309019

  20. Superlattices and Semiconductor/Semiconductor Interfaces.

    DTIC Science & Technology

    1984-01-17

    the electron effective ’J. N. Schulman and T. C. Mc"il AppI. Phys. Lett 34. 66311979). masse in the snuff band-gap alloys, suggesting reducedp- 3.P...et al. " have made DLTS measurements on n-type, , lead to the loss of electrically active indium through the for- indium doped CdTe films grown on BaF

  1. Direct synthesis of alkenyl iodides via indium-catalyzed iodoalkylation of alkynes with alcohols and aqueous HI.

    PubMed

    Wu, Chao; Wang, Zheng; Hu, Zhan; Zeng, Fei; Zhang, Xing-Yu; Cao, Zhong; Tang, Zilong; He, Wei-Min; Xu, Xin-Hua

    2018-05-02

    A convenient and efficient indium-catalyzed approach to synthesize alkenyl iodides has been developed through direct iodoalkylation of alkynes with alcohols and aqueous HI under mild conditions. This catalytic protocol offers an attractive approach for the synthesis of a diverse range of alkenyl iodides in good to excellent yields.

  2. Preparation Of Copper Indium Gallium Diselenide Films For Solar Cells

    DOEpatents

    Bhattacharya, Raghu N.; Contreras, Miguel A.; Keane, James; Tennant, Andrew L. , Tuttle, John R.; Ramanathan, Kannan; Noufi, Rommel

    1998-08-08

    High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.

  3. Multi-oxide active layer deposition using Applied Materials Pivot array coater for high-mobility metal oxide TFT

    NASA Astrophysics Data System (ADS)

    Park, Hyun Chan; Scheer, Evelyn; Witting, Karin; Hanika, Markus; Bender, Marcus; Hsu, Hao Chien; Yim, Dong Kil

    2015-11-01

    By controlling a thin indium tin oxide (ITO), indium zinc oxide interface layer between gate insulator and indium gallium zinc oxide (IGZO), the thin-film transistor (TFT) performance can reach higher mobility as conventional IGZO as well as superior stability. For large-area display application, Applied Materials static PVD array coater (Applied Materials GmbH & Co. KG, Alzenau, Germany) using rotary targets has been developed to enable uniform thin layer deposition in display industry. Unique magnet motion parameter optimization in Pivot sputtering coater is shown to provide very uniform thin ITO layer to reach TFT performance with high mobility, not only on small scale, but also on Gen8.5 (2500 × 2200 mm glass size) production system.

  4. Influence of indium supply on Au-catalyzed InGaAs nanowire growth studied by in situ X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Sasaki, Takuo; Takahasi, Masamitu

    2017-06-01

    In this study, we analyzed the influence of indium supply on the growth dynamics of gold-catalyzed InGaAs nanowires by in situ synchrotron X-ray diffraction. A high In/Ga supply ratio results in strong size inhomogeneity of Au particles and interrupts the nanowire growth at a certain point of time. Based on the experimental results, we discussed the state of Au catalysts with high indium content during the nanowire growth. We found that a growth temperature below the eutectic temperature is essential to avoid the growth interruption and maintain the nanowire growth. The high In/Ga ratio necessitates accurate size control of Au particles before growth for further improvement of the nanowire growth.

  5. Indium nanowires at the silicon surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozhukhov, A. S., E-mail: antonkozhukhov@yandex.ru; Sheglov, D. V.; Latyshev, A. V.

    2016-07-15

    Conductive indium nanowires up to 50 nm in width and up to 10 μm in length are fabricated on the surface of silicon by local resputtering from the probe of an atomic-force microscope. The transfer of indium from the probe of the atomic-force microscope onto the silicon surface is initiated by applying a potential between the probe and the surface as they approach each other to spacings, at which the mutual repulsive force is ~10{sup –7} N. The conductivity of the nanowires ranges from 7 × 10{sup –3} to 4 × 10{sup –2} Ω cm, which is several orders ofmore » magnitude lower than that in the case of the alternative technique of heat transfer.« less

  6. One-Step Synthesis of Monodisperse In-Doped ZnO Nanocrystals

    NASA Astrophysics Data System (ADS)

    Wang, Qing Ling; Yang, Ye Feng; He, Hai Ping; Chen, Dong Dong; Ye, Zhi Zhen; Jin, Yi Zheng

    2010-05-01

    A method for the synthesis of high quality indium-doped zinc oxide (In-doped ZnO) nanocrystals was developed using a one-step ester elimination reaction based on alcoholysis of metal carboxylate salts. The resulting nearly monodisperse nanocrystals are well-crystallized with typically crystal structure identical to that of wurtzite type of ZnO. Structural, optical, and elemental analyses on the products indicate the incorporation of indium into the host ZnO lattices. The individual nanocrystals with cubic structures were observed in the 5% In-ZnO reaction, due to the relatively high reactivity of indium precursors. Our study would provide further insights for the growth of doped oxide nanocrystals, and deepen the understanding of doping process in colloidal nanocrystal syntheses.

  7. Superior local conductivity in self-organized nanodots on indium-tin-oxide films induced by femtosecond laser pulses.

    PubMed

    Wang, Chih; Wang, Hsuan-I; Tang, Wei-Tsung; Luo, Chih-Wei; Kobayashi, Takayoshi; Leu, Jihperng

    2011-11-21

    Large-area surface ripple structures of indium-tin-oxide films, composed of self-organized nanodots, were induced by femtosecond laser pulses, without scanning. The multi-periodic spacing (~800 nm, ~400 nm and ~200 nm) was observed in the laser-induced ripple of ITO films. The local conductivity of ITO films is significantly higher, by approximately 30 times, than that of the as-deposited ITO films, due to the formation of these nanodots. Such a significant change can be ascribed to the formation of indium metal-like clusters, which appear as budges of ~5 nm height, due to an effective volume increase after breaking the In-O to form In-In bonding. © 2011 Optical Society of America

  8. Novel solar light driven photocatalyst, zinc indium vanadate for photodegradation of aqueous phenol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahapure, Sonali A.; Rane, Vilas H.; Ambekar, Jalindar D.

    2011-05-15

    Graphical abstract: Novel photocatalyst, zinc indium vanadate (ZnIn{sub 2}V{sub 2}O{sub 9}) demonstrated and showed an excellent photocatalytic activity for phenol degradation under visible light. Research highlights: {yields} Designing and identification of a photocatalyst having prospective potential application to be used in visible light (400-800 nm). {yields} Successful synthesis of novel ZnIn{sub 2}V{sub 2}O{sub 9} by solid state route. {yields} Confirmation of the designed product using characterization techniques. {yields} Application study comprising photodegradation of aqueous phenol at visible light despite of UV radiations. -- Abstract: In the present investigation, we have demonstrated the synthesis of novel photocatalyst, zinc indium vanadate (ZIV)more » by solid-solid state route using respective oxides of zinc, indium and vanadium. This novel photocatalyst was characterized using XRD, FESEM, UV-DRS and FTIR in order to investigate its structural, morphological and optical properties. XRD clearly shows the formation of phase pure ZIV of triclinic crystal structure with good crystallinity. FESEM micrographs showed the clustered morphology having particle size between 0.5 and 1 {mu}m. Since, optical study showed the band gap around 2.8 eV, i.e. in visible region, we have performed the photocatalytic activity of phenol degradation under visible light irradiation. The photodecomposition of phenol by ZIV is studied for the first time and an excellent photocatalytic activity was obtained using this novel photocatalyst. Considering the band gap of zinc indium vanadate in visible region, it will also be the potential candidate for water splitting.« less

  9. Fabrication and characterization of copper oxide (CuO)–gold (Au)–titania (TiO{sub 2}) and copper oxide (CuO)–gold (Au)–indium tin oxide (ITO) nanowire heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, Nitin, E-mail: nchopra@eng.ua.edu; Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487; Shi, Wenwu

    2014-10-15

    Nanoscale heterostructures composed of standing copper oxide nanowires decorated with Au nanoparticles and shells of titania and indium tin oxide were fabricated. The fabrication process involved surfactant-free and wet-chemical nucleation of gold nanoparticles on copper oxide nanowires followed by a line-of-sight sputtering of titania or indium tin oxide. The heterostructures were characterized using high resolution electron microscopy, diffraction, and energy dispersive spectroscopy. The interfaces, morphologies, crystallinity, phases, and chemical compositions were analyzed. The process of direct nucleation of gold nanoparticles on copper oxide nanoparticles resulted in low energy interface with aligned lattice for both the components. Coatings of polycrystalline titaniamore » or amorphous indium tin oxide were deposited on standing copper oxide nanowire–gold nanoparticle heterostructures. Self-shadowing effect due to standing nanowire heterostructures was observed for line-of-sight sputter deposition of titania or indium tin oxide coatings. Finally, the heterostructures were studied using Raman spectroscopy and ultraviolet–visible spectroscopy, including band gap energy analysis. Tailing in the band gap energy at longer wavelengths (or lower energies) was observed for the nanowire heterostructures. - Highlights: • Heterostructures comprised of CuO nanowires coated with Au nanoparticles. • Au nanoparticles exhibited nearly flat and low energy interface with nanowire. • Heterostructures were further sputter-coated with oxide shell of TiO{sub 2} or ITO. • The process resulted in coating of polycrystalline TiO{sub 2} and amorphous ITO shell.« less

  10. Economic and Environmental Consequences of Widespread Expansion of Solar energy

    NASA Astrophysics Data System (ADS)

    Satija, Gaurav

    The purpose of the thesis is to examine the sustainability of an expansion in solar energy subject to resource constraints of Indium. Coal and natural gas are taken as competitors for solar in the energy market. The consumer electronics market also competes with solar PV production because of Indium's use in the manufacturing of LCD screens. A partial equilibrium model is made which determines the rate of extraction of indium, coal and natural gas endogenously. Consumer demand is modeled by the use of cost shares. Generation of electricity and production of LCDs are modeled using Constant Elasticity of Substitution functions. Initial production capacity for both electricity and LCD is considered in the model. The model then endogenously determines the level of investment required. Model simulations are performed to predict the extraction paths and production levels for a timeline of 100 years. A sensitivity analysis is performed to see the reaction of the model to changes in consumer demand and learning rates in solar energy. The response of the model to imposition of various emission caps is also shown. Results of the model show that indium scarcity prevents solar from expanding significantly to a level where it can take over from non-renewable sources of energy. Increased research in solar technologies would not be of much help unless more Indium is available, either by recycling of solar PVs and LCDs or searching for alternate technologies to manufacture LCD screes. Emission caps are able to control excessive usage of fossil fuels and preserve them for a longer time.

  11. Stopping characteristics of boron and indium ions in silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veselov, D. S., E-mail: DSVeselov@mephi.ru; Voronov, Yu. A.

    2016-12-15

    The mean range and its standard deviation are calculated for boron ions implanted into silicon with energies below 10 keV. Similar characteristics are calculated for indium ions with energies below 200 keV. The obtained results are presented in tabular and graphical forms. These results may help in the assessment of conditions of production of integrated circuits with nanometer-sized elements.

  12. Lupus myocarditis: case report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaManna, M.M.; Lumia, F.J.; Gordon, C.I.

    1988-03-01

    Although gallium-67 (/sup 67/Ga) accumulates in both neoplastic and inflammatory tissues, indium-111 (/sup 111/In) labeled leukocytes are seen only in inflammatory cells. Indium-111-labeled leukocytes therefore are a useful agent in the noninvasive differentiation of inflammatory tissue from neoplastic tissue. This case is an interesting example of the use of /sup 111/In-labeled leukocytes to make that differentiation.

  13. Indium diffusion through high-k dielectrics in high-k/InP stacks

    NASA Astrophysics Data System (ADS)

    Dong, H.; Cabrera, W.; Galatage, R. V.; Santosh KC, Brennan, B.; Qin, X.; McDonnell, S.; Zhernokletov, D.; Hinkle, C. L.; Cho, K.; Chabal, Y. J.; Wallace, R. M.

    2013-08-01

    Evidence of indium diffusion through high-k dielectric (Al2O3 and HfO2) films grown on InP (100) by atomic layer deposition is observed by angle resolved X-ray photoelectron spectroscopy and low energy ion scattering spectroscopy. The analysis establishes that In-out diffusion occurs and results in the formation of a POx rich interface.

  14. Wavelength-scale Microlasers based on VCSEL-Photonic Crystal Architecture

    DTIC Science & Technology

    2015-01-20

    molecular beam epitaxy , MBE). We will also assume the triangular lattice of air...Abbreviations, and Acronyms InP: indium phosphide InGaAsP: indium gallium arsenide phosphide MBE: molecular beam epiitaxy VCSEL : vertical cavity...substrates and were grown by MBE. Electron beam lithography and reactive ion etching was used to deep‐etch the holes of the PhC‐ VCSELS ,

  15. Influence of disorder on the superconducting critical temperature in indium-opal nanocomposites

    NASA Astrophysics Data System (ADS)

    Zakharchuk, I.; Januzaj, A.; Mikhailin, N. Yu.; Traito, K. B.; Chernyaev, A. V.; Romanov, S. G.; Safonchik, M.; Shamshur, D. V.; Lähderanta, E.

    2018-06-01

    Transport properties of bulk indium-opal and indium-porous glass superconducting nanocomposites possessing moderate and strong disorder are investigated. A strongly nonmonotonous dependence of the global critical temperature Tc versus normal state conductivity of samples is found. The maximum, which is observed at moderate disorder, has Tc higher than that of clean bulk indium. The increasing part can be explained by the Eliashberg equations with disorder and an additional mechanism of interaction between superconducting and dielectric granules. The descending part of the maximum at higher disorder can be explained by the increasing of long-range Coulomb repulsion due to diffusion of charges. Negative slope in magnetic field dependence of resistivity and a peak in the temperature dependence of resistivity, observed in the sample near the proximity to the disorder-induced superconductor-insulator transition (SIT). A large difference between the onset temperature of superconducting fluctuations, Tcon , and global critical temperature Tc is found and considered in the framework of the weak multifractal theory. Slow time-logarithmic relaxation of the resistivity between Tc and Tcon is observed, which assumes existence of the precursor state near the SIT. This unusual state is discussed in the scope of the many-body localization theory.

  16. Interfacial reactions of nano-structured Cu-doped indium oxide/indium tin oxide ohmic contacts to p-GaN.

    PubMed

    Yoon, Young Joon; Chae, S W; Kim, B K; Park, Min Joo; Kwak, Joon Seop

    2010-05-01

    Interfacial microstructure and elemental diffusion of Cu-doped indium oxide (CIO)/indium tin oxide (ITO) ohmic contacts to p-type GaN for light-emitting diodes (LEDs) were investigated using cross-sectional transmission electron microscopy (XTEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction. The CIO/ITO contacts gave specific contact resistances of approximately 10(-4) omegacm2 and transmittance greater than 95% at a wavelength of 405 nm when annealed at 630 degrees C for 1 min in air. After annealing at 630 degrees C, multi-component oxides composed of Ga2O3-In2O3, Ga2O3-CuO, and In2O3-CuO formed at the interface between p-GaN and ITO. Formation of multi-component oxides reduced the barrier height between p-GaN and ITO due to their higher work functions than that of ITO, and caused Ga in the GaN to diffuse into the CIO/ITO layer, followed by generation of acceptor-like Ga vacancies near the GaN surface, which lowered contact resistivity of the CIO/ITO contacts to p-GaN after the annealing.

  17. High indium non-polar InGaN clusters with infrared sensitivity grown by PAMBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukundan, Shruti; Mohan, Lokesh; Chandan, Greeshma

    2015-03-15

    Studies on the optical properties of InGaN alloy of relatively higher indium content are of potential interest to understand the effect of indium content on the optical band gap of epitaxial InGaN. We report the growth of self assembled non-polar high indium clusters of In{sub 0.55}Ga{sub 0.45}N over non-polar (11-20) a-plane In{sub 0.17}Ga{sub 0.83}N epilayer grown on a-plane (11-20)GaN/(1-102) r-plane sapphire substrate using plasma assisted molecular beam epitaxy (PAMBE). Such structures are potential candidates for high brightness LEDs emitting in longer wavelengths. The high resolution X-ray diffraction studies revealed the formation of two distinct compositions of In{sub x}Ga{sub 1−x}N alloys,more » which were further confirmed by photoluminescence studies. A possible mechanism for the formation of such structure was postulated which was supported with the results obtained by energy dispersive X-ray analysis. The structure hence grown when investigated for photo-detecting properties, showed sensitivity to both infrared and ultraviolet radiations due to the different composition of InGaN region.« less

  18. Analysis of amorphous indium-gallium-zinc-oxide thin-film transistor contact metal using Pilling-Bedworth theory and a variable capacitance diode model

    NASA Astrophysics Data System (ADS)

    Kiani, Ahmed; Hasko, David G.; Milne, William I.; Flewitt, Andrew J.

    2013-04-01

    It is widely reported that threshold voltage and on-state current of amorphous indium-gallium-zinc-oxide bottom-gate thin-film transistors are strongly influenced by the choice of source/drain contact metal. Electrical characterisation of thin-film transistors indicates that the electrical properties depend on the type and thickness of the metal(s) used. Electron transport mechanisms and possibilities for control of the defect state density are discussed. Pilling-Bedworth theory for metal oxidation explains the interaction between contact metal and amorphous indium-gallium-zinc-oxide, which leads to significant trap formation. Charge trapping within these states leads to variable capacitance diode-like behavior and is shown to explain the thin-film transistor operation.

  19. The zinc-loss effect and mobility enhancement of DUV-patterned sol-gel IGZO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Wang, Kuan-Hsun; Zan, Hsiao-Wen; Soppera, Olivier

    2018-03-01

    We investigate the composition of the DUV-patterned sol-gel indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) and observe a significant zinc loss effect during developing when the DUV exposure is insufficient. The zinc loss, however, is beneficial for increasing the mobility. Reducing zinc to indium composition ratio from 0.5 to 0.02 can effectively increase mobility from 0.27 to 7.30 cm2 V-1 s-1 when the gallium to indium ratio is fixed as 0.25 and the post annealing process is fixed as 300 °C for 2 h. On the other hand, an IGO TFT fails to deliver a uniform film and a reproducible TFT performance, revealing the critical role of zinc in forming homogeneous IGZO TFTs.

  20. Determination of gold, indium, tellurium and thallium in the same sample digest of geological materials by atomic-absorption spectroscopy and two-step solvent extraction

    USGS Publications Warehouse

    Hubert, A.E.; Chao, T.T.

    1985-01-01

    A rock, soil, or stream-sediment sample is decomposed with hydrofluoric acid, aqua regia, and hydrobromic acid-bromine solution. Gold, thallium, indium and tellurium are separated and concentrated from the sample digest by a two-step MIBK extraction at two concentrations of hydrobromic add. Gold and thallium are first extracted from 0.1M hydrobromic acid medium, then indium and tellurium are extracted from 3M hydrobromic acid in the presence of ascorbic acid to eliminate iron interference. The elements are then determined by flame atomic-absorption spectrophotometry. The two-step solvent extraction can also be used in conjunction with electrothermal atomic-absorption methods to lower the detection limits for all four metals in geological materials. ?? 1985.

  1. Optical and electrical properties of indium tin oxide films near their laser damage threshold [Electrical and optical properties of indium tin oxide films under multi-pulse laser irradiation at 1064 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Jae -Hyuck; Lange, Andrew; Bude, Jeff

    In this paper, we investigated whether the optical and electrical properties of indium tin oxide (ITO) films are degraded under laser irradiation below their laser ablation threshold. While performing multi-pulse laser damage experiments on a single ITO film (4.7 ns, 1064 nm, 10 Hz), we examined the optical and electrical properties in situ. A decrease in reflectance was observed prior to laser damage initiation. However, under sub-damage threshold irradiation, conductivity and reflectance of the film were maintained without measurable degradation. This indicates that ITO films in optoelectronic devices may be operated below their lifetime laser damage threshold without noticeable performancemore » degradation.« less

  2. Enhancement of the electrical characteristics of thin-film transistors with indium-zinc-tin oxide/Ag/indium-zinc-tin oxide multilayer electrodes

    NASA Astrophysics Data System (ADS)

    Oh, Dohyun; Yun, Dong Yeol; Cho, Woon-Jo; Kim, Tae Whan

    2014-08-01

    Transparent indium-zinc-tin oxide (IZTO)-based thin-film transistors (TFTs) with IZTO/Ag/IZTO multilayer electrodes were fabricated on glass substrates using a tilted dual-target radio-frequency magnetron sputtering system. The IZTO TFTs with IZTO/Ag/IZTO multilayer electrodes exhibited a high optical transmittance in a visible region. The threshold voltage, the mobility, and the on/off-current ratio of the TFTs with IZTO/Ag/IZTO multilayer electrodes were enhanced in comparison with those of the TFTs with ITO electrodes. The source/drain contact resistance of the IZTO TFTs with IZTO/Ag/IZTO multilayer electrodes was smaller than that of the IZTO TFTs with ITO electrodes, resulting in enhancement of their electrical characteristics.

  3. Enhancement of indium incorporation to InGaN MQWs on AlN/GaN periodic multilayers

    NASA Astrophysics Data System (ADS)

    Monavarian, Morteza; Hafiz, Shopan; Das, Saikat; Izyumskaya, Natalia; Özgür, Ümit; Morkoç, Hadis; Avrutin, Vitaliy

    2016-02-01

    The effect of compressive strain in buffer layer on strain relaxation and indium incorporation in InGaN multi-quantum wells (MQWs) is studied for two sets of samples grown side by side on both relaxed GaN layers and strained 10-pairs of AlN/GaN periodic multilayers. The 14-nm AlN layers were utilized in both multilayers, while GaN thickness was 4.5 and 2.5 nm in the first and the second set, respectively. The obtained results for the InGaN active layers on relaxed GaN and AlN/GaN periodic multilayers indicate enhanced indium incorporation for more relaxed InGaN active layers providing a variety of emission colors from purple to green.

  4. Optical and electrical properties of indium tin oxide films near their laser damage threshold [Electrical and optical properties of indium tin oxide films under multi-pulse laser irradiation at 1064 nm

    DOE PAGES

    Yoo, Jae -Hyuck; Lange, Andrew; Bude, Jeff; ...

    2017-02-10

    In this paper, we investigated whether the optical and electrical properties of indium tin oxide (ITO) films are degraded under laser irradiation below their laser ablation threshold. While performing multi-pulse laser damage experiments on a single ITO film (4.7 ns, 1064 nm, 10 Hz), we examined the optical and electrical properties in situ. A decrease in reflectance was observed prior to laser damage initiation. However, under sub-damage threshold irradiation, conductivity and reflectance of the film were maintained without measurable degradation. This indicates that ITO films in optoelectronic devices may be operated below their lifetime laser damage threshold without noticeable performancemore » degradation.« less

  5. Mid-infrared emission in InxGa1-xAs/GaAs T-shaped quantum wire lasers and its indium composition dependence

    NASA Astrophysics Data System (ADS)

    Ridene, Said

    2018-03-01

    In this work, the emission wavelength has been extended out to 1.3, 1.5, and 2.2 μm for InxGa1-xAs/GaAs T-shaped quantum wire (TQWR) using multi-band k.p model and variational formalism. We have investigated the impact of the indium composition on the performance of a series of TQWR through a calculation of the optical gain and transition energies. It is found that the optical gain and the emission wavelength are more influenced taking into account the effect of the indium concentration and persisted up at room temperature (RT). The results could open the way to the development of laser communication systems operating at long wavelengths and fabricated from TQWRs structure.

  6. Electrostatically driven resonance energy transfer in "cationic" biocompatible indium phosphide quantum dots.

    PubMed

    Devatha, Gayathri; Roy, Soumendu; Rao, Anish; Mallick, Abhik; Basu, Sudipta; Pillai, Pramod P

    2017-05-01

    Indium Phosphide Quantum Dots (InP QDs) have emerged as an alternative to toxic metal ion based QDs in nanobiotechnology. The ability to generate cationic surface charge, without compromising stability and biocompatibility, is essential in realizing the full potential of InP QDs in biological applications. We have addressed this challenge by developing a place exchange protocol for the preparation of cationic InP/ZnS QDs. The quaternary ammonium group provides the much required permanent positive charge and stability to InP/ZnS QDs in biofluids. The two important properties of QDs, namely bioimaging and light induced resonance energy transfer, are successfully demonstrated in cationic InP/ZnS QDs. The low cytotoxicity and stable photoluminescence of cationic InP/ZnS QDs inside cells make them ideal candidates as optical probes for cellular imaging. An efficient resonance energy transfer ( E ∼ 60%) is observed, under physiological conditions, between the cationic InP/ZnS QD donor and anionic dye acceptor. A large bimolecular quenching constant along with a linear Stern-Volmer plot confirms the formation of a strong ground state complex between the cationic InP/ZnS QDs and the anionic dye. Control experiments prove the role of electrostatic attraction in driving the light induced interactions, which can rightfully form the basis for future nano-bio studies between cationic InP/ZnS QDs and anionic biomolecules.

  7. Metal-organic chemical vapor deposition of cerium oxide, gallium-indium-oxide, and magnesium oxide thin films: Precursor design, film growth, and film characterization

    NASA Astrophysics Data System (ADS)

    Edleman, Nikki Lynn

    A new class of volatile, low-melting, fluorine-free lanthanide metal-organic chemical vapor deposition (MOCVD) precursors has been developed. The neutral, monomeric cerium, neodymium, gadolinium, and erbium complexes are coordinatively saturated by a versatile, multidentate, ether-functionalized beta-ketoiminate ligand, and complex melting point and volatility characteristics can be tuned by altering the alkyl substituents on the ligand periphery. Direct comparison with lanthanide beta-diketonate complexes reveals that the present precursor class is a superior choice for lanthanide oxide MOCVD. Epitaxial CeO 2 buffer layer films have been grown on (001) YSZ substrates by MOCVD at significantly lower temperatures than previously reported using one of the newly developed cerium precursors. High-quality YBCO films grown on these CeO2 buffer layers by POMBE exhibit very good electrical transport properties. The cerium complex has therefore been explicitly demonstrated to be a stable and volatile precursor and is attractive for low-temperature growth of coated conductor multilayer structures by MOCVD. Gallium-indium-oxide thin films (GaxIn2-xO 3), x = 0.0˜1.1, have been grown by MOCVD using the volatile metal-organic precursors In(dpm)3 and Ga(dpm)3. The films have a homogeneously Ga-substituted, cubic In2O3 microstructure randomly oriented on quartz or heteroepitaxial on (100) YSZ single-crystal substrates. The highest conductivity of the as-grown films is found at x = 0.12. The optical transmission window and absolute transparency of the films rivals or exceeds that of the most transparent conductive oxides known. Reductive annealing results in improved charge transport characteristics with little loss of optical transparency. No significant difference in electrical properties is observed between randomly oriented and heteroepitaxial films, thus arguing that carrier scattering effects at high-angle grain boundaries play a minor role in the film conductivity mechanism. The synthesis and characterization of a new magnesium MOCVD precursor, Mg(dpm)2(TMEDA) is detailed. It is shown that the donating ligand TMEDA prevents oligomerization and subsequent volatility depression as observed in the commonly used [Mg(dpm)2]2. The superiority of Mg(dpm)2(TMEDA) as an MOCVD precursor is explicitly demonstrated by growth of epitaxial MgO thin films on single-crystal SrTiO3 substrates.

  8. Formation and Characterization of Gold Nanoparticles

    DTIC Science & Technology

    2013-09-01

    nanowires are useful because they can be grown almost dislocation free, due to their nano dimension. The quality of crystalline materials is diminished by...real substrate temperature was obtained from the calibration based on the melting points of indium (In), selenium (Se), cadmium (Cd), and zinc (Zn...hydrogen fluoride In indium MBE molecular beam epitaxy NH3OH ammonium hydroxide RHEED reflection high-energy electron diffraction Se selenium SEM

  9. Intra-abdominal abscess demonstrating an unusually large intra-abdominal pattern on an indium-111 leukocyte scan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, R.R.; Fernandez-Ulloa, M.; ter Penning, B.

    1988-12-01

    Indium-111 WBC imaging of a patient with occult septicemia revealed a large focal pattern of radiopharmaceutical distribution within the abdominal cavity at 24 hours post radiopharmaceutical administration. This finding was felt to represent a large intra-abdominal abscess. A five liter peritoneal abscess was found at surgery. This case illustrates an unusual presentation of an intra-abdominal abscess.

  10. Shear strengths of a gallium alloy bonded to human enamel following nine different surface treatments.

    PubMed

    Claire, J; Williams, P T

    2001-03-01

    Gallium and indium-containing alloys have demonstrated an ability to wet and bond to many types of materials including enamel. The purpose of this study was to evaluate and compare the bond strengths of a gallium-and-indium-containing alloy and a dental amalgam to human enamel surfaces. A flat enamel bonding surface was created by slicing recently extracted human molars with a 180-grit diamond wheel. Cylinders of amalgam or a gallium-indium alloy were bonded to the as-cut surfaces or to as-cut surfaces that had been pumiced, air-abraded or acid-etched for various times. Before testing, samples were stored under different conditions (100% humidity, immersed in water, thermocycled). The shear-bond strength was determined using a crosshead speed of 0.1 mm x min(-1). Sample size was 10. Data was subjected to ANOVA and a post-hoc Tukey's test. The bond strength of amalgam to enamel was zero. The bond strength of the gallium-indium alloy ranged between 6.5 MPa (10s etch with 10% phosphoric acid) and 4.2 MPa (pumiced enamel). Acid-etching significantly increased the bond strength (P>0.0001) The bond strength was not significantly affected by the type of mechanical surface preparation, storage conditions, thermocycling, etching times or acid concentrations. Bonding, particularly chemical bonding, suggests a greater potential for better wetting and therefore better sealing of a cavity. Since microleakage of restorations is one of the principal causes of restoration failure, materials that can bond may in turn posses enhanced resistance to microleakage and ultimately, resistance to restoration failure. The gallium-indium alloy evaluated in this study may be such an alloy.

  11. Measurement of acute Q-wave myocardial infarct size with single photon emission computed tomography imaging of indium-111 antimyosin.

    PubMed

    Antunes, M L; Seldin, D W; Wall, R M; Johnson, L L

    1989-04-01

    Myocardial infarct size was measured by single photon emission computed tomography (SPECT) following injection of indium-111 antimyosin in 27 patients (18 male and 9 female; mean age 57.4 +/- 10.5 years, range 37 to 75) who had acute transmural myocardial infarction (MI). These 27 patients represent 27 of 35 (77%) consecutive patients with acute Q-wave infarctions who were injected with indium-111 antimyosin. In the remaining 8 patients either tracer uptake was too faint or the scans were technically inadequate to permit infarct sizing from SPECT reconstructions. In the 27 patients studied, infarct location by electrocardiogram was anterior in 15 and inferoposterior in 12. Nine patients had a history of prior infarction. Each patient received 2 mCi of indium-111 antimyosin followed by SPECT imaging 48 hours later. Infarct mass was determined from coronal slices using a threshold value obtained from a human torso/cardiac phantom. Infarct size ranged from 11 to 87 g mean 48.5 +/- 24). Anterior infarcts were significantly (p less than 0.01) larger (60 +/- 20 g) than inferoposterior infarcts (34 +/- 21 g). For patients without prior MI, there were significant inverse correlations between infarct size and ejection fraction (r = 0.71, p less than 0.01) and wall motion score (r = 0.58, p less than 0.01) obtained from predischarge gated blood pool scans. Peak creatine kinase-MB correlated significantly with infarct size for patients without either reperfusion or right ventricular infarction (r = 0.66). Seven patients without prior infarcts had additional simultaneous indium-111/thallium-201 SPECT studies using dual energy windows.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Determination of silver, antimony, bismuth, copper, cadmium and indium in ores, concentrates and related materials by atomic-absorption spectrophotometry after methyl isobutyl ketone extraction as iodides.

    PubMed

    Donaldson, E M; Wang, M

    1986-03-01

    Methods for determining ~ 0.2 mug g or more of silver and cadmium, ~ 0.5 mug g or more of copper and ~ 5 mug g or more of antimony, bismuth and indium in ores, concentrates and related materials are described. After sample decomposition and recovery of antimony and bismuth retained by lead and calcium sulphates, by co-precipitation with hydrous ferric oxide at pH 6.20 +/- 0.05, iron(III) is reduced to iron(II) with ascorbic acid, and antimony, bismuth, copper, cadmium and indium are separated from the remaining matrix elements by a single methyl isobutyl ketone extraction of their iodides from ~2M sulphuric acid-0.1M potassium iodide. The extract is washed with a sulphuric acid-potassium iodide solution of the same composition to remove residual iron and co-extracted zinc, and the extracted elements are stripped from the extract with 20% v v nitric acid-20% v v hydrogen peroxide. Alternatively, after the removal of lead sulphate by filtration, silver, copper, cadmium and indium can be extracted under the same conditions and stripped with 40% v v nitric acid-25% v v hydrochloric acid. The strip solutions are treated with sulphuric and perchloric acids and ultimately evaporated to dry ness. The individual elements are determined in a 24% v v hydrochloric acid medium containing 1000 mug of potassium per ml by atomic-absorption spectrophotometry with an air-acetylene flame. Tin, arsenic and molybdenum are not co-extracted under the conditions above. Results obtained for silver, antimony, bismuth and indium in some Canadian certified reference materials by these methods are compared with those obtained earlier by previously published methods.

  13. Super-stretchable metallic interconnects on polymer with a linear strain of up to 100%

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arafat, Yeasir; Dutta, Indranath; Panat, Rahul, E-mail: Rahul.panat@wsu.edu

    Metal interconnects in flexible and wearable devices are heterogeneous metal-polymer systems that are expected to sustain large deformation without failure. The principal strategy to make strain tolerant interconnect lines on flexible substrates has comprised of creating serpentine structures of metal films with either in-plane or out-of-plane waves, using porous substrates, or using highly ductile materials such as gold. The wavy and helical serpentine patterns preclude high-density packing of interconnect lines on devices, while ductile materials such as Au are cost prohibitive for real world applications. Ductile copper films can be stretched if bonded to the substrate, but show high levelmore » of cracking beyond few tens of % strain. In this paper, we demonstrate a material system consisting of Indium metal film over an elastomer (PDMS) with a discontinuous Cr layer such that the metal interconnect can be stretched to extremely high linear strain (up to 100%) without any visible cracks. Such linear strain in metal interconnects exceeds that reported in literature and is obtained without the use of any geometrical manipulations or porous substrates. Systematic experimentation is carried out to explain the mechanisms that allow the Indium film to sustain the high strain level without failure. The islands forming the discontinuous Cr layer are shown to move apart from each other during stretching without delamination, providing strong adhesion to the Indium film while accommodating the large strain in the system. The Indium film is shown to form surface wrinkles upon release from the large strain, confirming its strong adhesion to PDMS. A model is proposed based upon the observations that can explain the high level of stretch-ability of the Indium metal film over the PDMS substrate.« less

  14. High In-content InGaN nano-pyramids: Tuning crystal homogeneity by optimized nucleation of GaN seeds

    NASA Astrophysics Data System (ADS)

    Bi, Zhaoxia; Gustafsson, Anders; Lenrick, Filip; Lindgren, David; Hultin, Olof; Wallenberg, L. Reine; Ohlsson, B. Jonas; Monemar, Bo; Samuelson, Lars

    2018-01-01

    Uniform arrays of submicron hexagonal InGaN pyramids with high morphological and material homogeneity, reaching an indium composition of 20%, are presented in this work. The pyramids were grown by selective area metal-organic vapor phase epitaxy and nucleated from small openings in a SiN mask. The growth selectivity was accurately controlled with diffusion lengths of the gallium and indium species, more than 1 μm on the SiN surface. High material homogeneity of the pyramids was achieved by inserting a precisely formed GaN pyramidal seed prior to InGaN growth, leading to the growth of well-shaped InGaN pyramids delimited by six equivalent {" separators="| 10 1 ¯ 1 } facets. Further analysis reveals a variation in the indium composition to be mediated by competing InGaN growth on two types of crystal planes, {" separators="| 10 1 ¯ 1 } and (0001). Typically, the InGaN growth on {" separators="| 10 1 ¯ 1 } planes is much slower than on the (0001) plane. The formation of the (0001) plane and the growth of InGaN on it were found to be dependent on the morphology of the GaN seeds. We propose growth of InGaN pyramids seeded by {" separators="| 10 1 ¯ 1 }-faceted GaN pyramids as a mean to avoid InGaN material grown on the otherwise formed (0001) plane, leading to a significant reduction of variations in the indium composition in the InGaN pyramids. The InGaN pyramids in this work can be used as a high-quality template for optoelectronic devices having indium-rich active layers, with a potential of reaching green, yellow, and red emissions for LEDs.

  15. Surface modifications on InAs decrease indium and arsenic leaching under physiological conditions

    NASA Astrophysics Data System (ADS)

    Jewett, Scott A.; Yoder, Jeffrey A.; Ivanisevic, Albena

    2012-11-01

    Devices containing III-V semiconductors such as InAs are increasingly being used in the electronic industry for a variety of optoelectronic applications. Furthermore, the attractive chemical, material, electronic properties make such materials appealing for use in devices designed for biological applications, such as biosensors. However, in biological applications the leaching of toxic materials from these devices could cause harm to cells or tissue. Additionally, after disposal, toxic inorganic materials can leach from devices and buildup in the environment, causing long-term ecological harm. Therefore, the toxicity of these materials along with their stability in physiological conditions are important factors to consider. Surface modifications are one common method of stabilizing semiconductor materials in order to chemically and electronically passivate them. Such surface modifications could also prevent the leaching of toxic materials by preventing the regrowth of the unstable surface oxide layer and by creating an effective barrier between the semiconductor surface and the surrounding environment. In this study, various surface modifications on InAs are developed with the goal of decreasing the leaching of indium and arsenic. The leaching of indium and arsenic from modified substrates was assessed in physiological conditions using inductively coupled plasma mass spectrometry (ICP-MS). Substrates modified with 11-mercapto-1-undecanol (MU) and graft polymerized with poly(ethylene) glycol (PEG) were most effective at preventing indium and arsenic leaching. These surfaces were characterized using contact angle analysis, ellipsometry, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Substrates modified with collagen and synthetic polyelectrolytes were least effective, due to the destructive nature of acidic environments on InAs. The toxicity of modified and unmodified InAs, along with raw indium, arsenic, and PEG components was assessed using zebrafish embryos.

  16. Well-Defined Heterobimetallic Reactivity at Unsupported Ruthenium-Indium Bonds.

    PubMed

    Riddlestone, Ian M; Rajabi, Nasir A; Macgregor, Stuart A; Mahon, Mary F; Whittlesey, Michael K

    2018-02-01

    The hydride complex [Ru(IPr) 2 (CO)H][BAr F 4 ], 1, reacts with InMe 3 with loss of CH 4 to form [Ru(IPr) 2 (CO)(InMe)(Me)][BAr F 4 ], 4, featuring an unsupported Ru-In bond with unsaturated Ru and In centres. 4 reacts with H 2 to give [Ru(IPr) 2 (CO)(η 2 -H 2 )(InMe)(H)][BAr F 4 ], 5, while CO induces formation of the indyl complex [Ru(IPr) 2 (CO) 3 (InMe 2 )][BAr F 4 ], 7. These observations highlight the ability of Me to shuttle between Ru and In centres and are supported by DFT calculations on the mechanism of formation of 4 and its reactions with H 2 and CO. An analysis of Ru-In bonding in these species is also presented. Reaction of 1 with GaMe 3 also involves CH 4 loss but, in contrast to its In congener, sees IPr transfer from Ru to Ga to give a gallyl complex featuring an η 6 interaction of one aryl substituent with Ru. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Optoelectronic and magnetic properties of Mn-doped indium tin oxide: A first-principles study

    NASA Astrophysics Data System (ADS)

    Nath Tripathi, Madhvendra; Saeed Bahramy, Mohammad; Shida, Kazuhito; Sahara, Ryoji; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2012-10-01

    The manganese doped indium tin oxide (ITO) has integrated magnetics, electronics, and optical properties for next generation multifunctional devices. Our first-principles density functional theory (DFT) calculations show that the manganese atom replaces b-site indium atom, located at the second coordination shell of the interstitial oxygen in ITO. It is also found that both anti-ferromagnetic and ferromagnetic behaviors are realizable. The calculated magnetic moment of 3.95μB/Mn as well as the high transmittance of ˜80% for a 150 nm thin film of Mn doped ITO is in good agreement with the experimental data. The inclusion of on-site Coulomb repulsion corrections via DFT + U methods turns out to improve the optical behavior of the system. The optical behaviors of this system reveal its suitability for the magneto-opto-electronic applications.

  18. Oxygen-free atomic layer deposition of indium sulfide

    DOEpatents

    Martinson, Alex B.; Hock, Adam S.; McCarthy, Robert; Weimer, Matthew S.

    2016-07-05

    A method for synthesizing an In(III) N,N'-diisopropylacetamidinate precursor including cooling a mixture comprised of diisopropylcarbodiimide and diethyl ether to approximately -30.degree. C., adding methyllithium drop-wise into the mixture, allowing the mixture to warm to room temperature, adding indium(III) chloride as a solid to the mixture to produce a white solid, dissolving the white solid in pentane to form a clear and colorless solution, filtering the mixture over a celite plug, and evaporating the solution under reduced pressure to obtain a solid In(III) N,N'-diisopropylacetamidinate precursor. This precursor has been further used to develop a novel atomic layer deposition technique for indium sulfide by dosing a reactor with the precursor, purging with nitrogen, dosing with dilute hydrogen sulfide, purging again with nitrogen, and repeating these steps to increase growth.

  19. Improvement of Bipolar Switching Properties of Gd:SiOx RRAM Devices on Indium Tin Oxide Electrode by Low-Temperature Supercritical CO2 Treatment.

    PubMed

    Chen, Kai-Huang; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Liang, Shu-Ping; Young, Tai-Fa; Syu, Yong-En; Sze, Simon M

    2016-12-01

    Bipolar switching resistance behaviors of the Gd:SiO2 resistive random access memory (RRAM) devices on indium tin oxide electrode by the low-temperature supercritical CO2-treated technology were investigated. For physical and electrical measurement results obtained, the improvement on oxygen qualities, properties of indium tin oxide electrode, and operation current of the Gd:SiO2 RRAM devices were also observed. In addition, the initial metallic filament-forming model analyses and conduction transferred mechanism in switching resistance properties of the RRAM devices were verified and explained. Finally, the electrical reliability and retention properties of the Gd:SiO2 RRAM devices for low-resistance state (LRS)/high-resistance state (HRS) in different switching cycles were also measured for applications in nonvolatile random memory devices.

  20. Optical properties of an indium doped CdSe nanocrystal: A density functional approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salini, K.; Mathew, Vincent, E-mail: vincent@cukerala.ac.in; Mathew, Thomas

    2016-05-06

    We have studied the electronic and optical properties of a CdSe nanocrystal doped with n-type impurity atom. First principle calculations of the CdSe nanocrystal based on the density functional theory (DFT), as implemented in the Vienna Ab Initio Simulation Package (VASP) was used in the calculations. We have introduced a single Indium impurity atom into CdSe nanocrystal with 1.3 nm diameter. Nanocrystal surface dangling bonds are passivated with hydrogen atom. The band-structure, density of states and absorption spectra of the doped and undopted nanocrystals were discussed. Inclusion of the n-type impurity atom introduces an additional electron in conduction band, and significantlymore » alters the electronic and optical properties of undoped CdSe nanocrystal. Indium doped CdSe nannocrystal have potential applications in optoelectronic devices.« less

  1. Effect of temperature and rare-earth doping on charge-carrier mobility in indium-monoselenide crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdinov, A. Sh., E-mail: abdinov-axmed@yandex.ru; Babayeva, R. F., E-mail: Babaeva-Rena@yandex.ru; Amirova, S. I.

    2013-08-15

    In the temperature range T = 77-600 K, the dependence of the charge-carrier mobility ({mu}) on the initial dark resistivity is experimentally investigated at 77 K ({rho}d{sub 0}), as well as on the temperature and the level (N) of rare-earth doping with such elements as gadolinium (Gd), holmium (Ho), and dysprosium (Dy) in n-type indium-monoselenide (InSe) crystals. It is established that the anomalous behavior of the dependences {mu}(T), {mu}({rho}d{sub 0}), and {mu}(N) found from the viewpoint of the theory of charge-carrier mobility in crystalline semiconductors is related, first of all, to partial disorder in indium-monoselenide crystals and can be attributedmore » to the presence of random drift barriers in the free energy bands.« less

  2. Temperature sensibility of the birefringence properties in side-hole photonic crystal fiber filled with Indium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reyes-Vera, Erick, E-mail: erickreyes@itm.edu.co; Gómez-Cardona, Nelson D.; Facultad de Ingeniería, Instituto Tecnológico Metropolitano, A.A. 54954 Medellín

    2014-11-17

    We report on the temperature sensitivity of the birefringence properties of a special kind of photonic crystal fiber containing two side holes filled with Indium metal. The modulation of the fiber birefringence is accomplished through the stress field induced by the expansion of the metal. Although the fiber was made at low gas pressures during the indium infiltration process, the birefringence showed anomalous property at a relatively low temperature value, which is completely different from those reported in conventional-like fibers with two holes filled with metal. By modeling the anisotropic changes induced by the metal expansion to the refractive indexmore » within the fiber, we are able to reproduce the experimental results. Our results have practical relevance for the design of devices based on this technology.« less

  3. Heterostructures of metamorphic GaInAs photovoltaic converters fabricated by MOCVD on GaAs substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mintairov, S. A., E-mail: mintairov@scell.ioffe.ru; Emelyanov, V. M.; Rybalchenko, D. V.

    Heterostructures of metamorphic GaInAs photovoltaic converters (PVCs) are on GaAs substrates by the metal-organic chemical vapor deposition (MOCVD) method. It is shown that using a multilayer metamorphic buffer with a step of 2.5% in indium content and layer thicknesses of 120 nm provides the high quality of bulk layers subsequently grown on the buffer up to an indium content of 24%. PVCs with a long-wavelength photosensitivity edge up to 1300 nm and a quantum efficiency of ~80% in the spectral range 1050–1100 nm are fabricated. Analysis of the open-circuit voltage of the PVCs and diffusion lengths of minority carriers inmore » the layers demonstrates that the density of misfit dislocations penetrating into the bulk layers increases at an indium content exceeding 10%.« less

  4. Novel Routes to Tune Thermal Conductivities and Thermoelectric Properties of Materials

    DTIC Science & Technology

    2012-11-15

    expand the possibilities of borides as functional compou nds. A series of indium-free novel TCO compounds with novel crystal structures, has...powerful methods for modification were demonstrated in the borides , silicides and oxides. Introduction: The goal of this project is to...the possibility to modify the crystal structures can expand the possibilities of borides as functional compounds. A series of indium-free novel TCO

  5. The role of water in the synthesis of indium nanoparticles.

    PubMed

    Dreyfuss, Sébastien; Pradel, Christian; Vendier, Laure; Mallet-Ladeira, Sonia; Mézailles, Nicolas

    2016-12-06

    We report the water-assisted synthesis of indium nanoparticles (In NPs). We found that a precise amount of water was necessary to allow the formation of the desired 7 nm In NPs: the oxidation of the In surface by water inhibits the growth of NPs as well as subsequent reactivity with white phosphorus (P 4 ). A novel surface activation method based on the use of organosilanes is presented.

  6. Active spacecraft potential control: An ion emitter experiment. [Cluster mission

    NASA Technical Reports Server (NTRS)

    Riedler, W.; Goldstein, R.; Hamelin, M.; Maehlum, B. N.; Troim, J.; Olsen, R. C.; Pedersen, A.; Grard, R. J. L.; Schmidt, R.; Rudenauer, F.

    1988-01-01

    The cluster spacecraft are instrumented with ion emitters for charge neutralization. The emitters produce indium ions at 6 keV. The ion current is adjusted in a feedback loop with instruments measuring the spacecraft potential. The system is based on the evaporation of indium in the apex field of a needle. The design of the active spacecraft potential control instruments, and the ion emitters is presented.

  7. Modeling and Simulation of a Dual-Junction CIGS Solar Cell Using Silvaco ATLAS

    DTIC Science & Technology

    2012-12-01

    junction Copper Indium Gallium Selenide (CIGS) photovoltaic cell is investigated in this thesis. Research into implementing a dual-junction solar cell...Silvaco ATLASTM model of a single CIGS cell was created by utilizing actual solar cell parameters (such as layer thicknesses, gallium ratio, doping...THIS PAGE INTENTIONALLY LEFT BLANK v ABSTRACT The potential of designing a dual-junction Copper Indium Gallium Selenide (CIGS) photovoltaic

  8. Purchase of a Raman and Photoluminescence Imaging System for Characterization of Advanced Electrochemical and Electronic Materials

    DTIC Science & Technology

    2016-01-05

    regularly used the Raman imaging system to characterize the doping chemistry of colloidal indium nitride nanoparticles . This material shows an interesting...regularly used the Raman imaging system to characterize the doping chemistry of colloidal indium nitride nanoparticles . This material shows an...analysis of thin film coatings, bulk materials, powders and nanoparticles . The instrument is extensively used to characterize advanced electrochemical and

  9. DARPA Perspectives on Multifunctional Materials/Power and Energy

    DTIC Science & Technology

    2012-08-09

    In-situ growth of aligned CNTs Electronics Graphene /Metal oxide CMOS interconnects Erosion Diamond/ZnS LWIR missile domes Tribology TiN/Carbon...application Optoelectronics InGaN LEDs Energy ZnSnN2 Photovoltaics Optoelectronics Indium Tin Oxide/ Polycarbonate Anti-corrosion Paint /Steel...InGaN LEDs Energy ZnSnN2 Photovoltaics Optoelectronics Indium Tin Oxide/ Polycarbonate Anti-corrosion Paint /Steel Tribology TiN/High speed

  10. Structural, optical, and electrical properties of NiO-In composite films deposited by radio frequency cosputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Sheng-Chi, E-mail: chensc@mail.mcut.edu.tw; Wen, Chao-Kuang; Lin, Yu-Chin

    2014-03-15

    In-doped NiO films with indium concentrations ranging from 0 to 30.3 at. % were deposited on glass substrates to investigate corresponding structural, optical, and electrical property variations. The x-ray diffraction patterns show that all films display only NiO peaks. When In atoms were added to NiO films, the NiO peaks shifted to lower angles, indicating that the lattice parameters of the films increased due to the larger In ions substituting for the smaller Ni ions. An electrical resistivity (ρ) too high to be measured occurred when the indium concentration in the NiO film was less than 15.6 at. %. Themore » ρ value dropped significantly to 0.06 Ω·cm as the indium concentration increased to 26.9 at. %. Upon further raising the In to 30.3 at. %, the ρ value decreased further to 0.01 Ω·cm. All the In-doped NiO films showed n-type conduction. The transmittance of undoped NiO film is as high as 96%. On raising the indium concentration to 15.6, 19.9, 26.9, and 30.3 at. %, the transmittances decreased further to 68%, 62%, 57%, and 47%, respectively. Introducing higher In concentrations improved the films’ thermal stability of electrical resistivity.« less

  11. Shape-transformable liquid metal nanoparticles in aqueous solution† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc00057j Click here for additional data file.

    PubMed Central

    Lin, Yiliang; Liu, Yang

    2017-01-01

    Stable suspensions of eutectic gallium indium (EGaIn) liquid metal nanoparticles form by probe-sonicating the metal in an aqueous solution. Positively-charged molecular or macromolecular surfactants in the solution, such as cetrimonium bromide or lysozyme, respectively, stabilize the suspension by interacting with the negative charges of the surface oxide that forms on the metal. The liquid metal breaks up into nanospheres via sonication, yet can transform into rods of gallium oxide monohydroxide (GaOOH) via moderate heating in solution either during or after sonication. Whereas heating typically drives phase transitions from solid to liquid (via melting), here heating drives the transformation of particles from liquid to solid via oxidation. Interestingly, indium nanoparticles form during the process of shape transformation due to the selective removal of gallium. This dealloying provides a mechanism to create indium nanoparticles at temperatures well below the melting point of indium. To demonstrate the versatility, we show that it is possible to shape transform and dealloy other alloys of gallium including ternary liquid metal alloys. Scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDS) mapping, and X-ray diffraction (XRD) confirm the dealloying and transformation mechanism. PMID:28580116

  12. A novel precursor system and its application to produce tin doped indium oxide.

    PubMed

    Veith, M; Bubel, C; Zimmer, M

    2011-06-14

    A new type of precursor has been developed by molecular design and synthesised to produce tin doped indium oxide (ITO). The precursor consists of a newly developed bimetallic indium tin alkoxide, Me(2)In(O(t)Bu)(3)Sn (Me = CH(3), O(t)Bu = OC(CH(3))(3)), which is in equilibrium with an excess of Me(2)In(O(t)Bu). This quasi single-source precursor is applied in a sol-gel process to produce powders and coatings of ITO using a one-step heat treatment process under an inert atmosphere. The main advantage of this system is the simple heat treatment that leads to the disproportionation of the bivalent Sn(II) precursor into Sn(IV) and metallic tin, resulting in an overall reduced state of the metal in the final tin doped indium oxide (ITO) material, hence avoiding the usually necessary reduction step. Solid state (119)Sn-NMR measurements of powder samples confirm the appearance of Sn(II) in an amorphous gel state and of metallic tin after annealing under nitrogen. The corresponding preparation of ITO coatings by spin coating on glass leads to transparent conductive layers with a high transmittance of visible light and a low electrical resistivity without the necessity of a reduction step.

  13. Phosphor-Free InGaN White Light Emitting Diodes Using Flip-Chip Technology

    PubMed Central

    Li, Ying-Chang; Chang, Liann-Be; Chen, Hou-Jen; Yen, Chia-Yi; Pan, Ke-Wei; Huang, Bohr-Ran; Kuo, Wen-Yu; Chow, Lee; Zhou, Dan; Popko, Ewa

    2017-01-01

    Monolithic phosphor-free two-color gallium nitride (GaN)-based white light emitting diodes (LED) have the potential to replace current phosphor-based GaN white LEDs due to their low cost and long life cycle. Unfortunately, the growth of high indium content indium gallium nitride (InGaN)/GaN quantum dot and reported LED’s color rendering index (CRI) are still problematic. Here, we use flip-chip technology to fabricate an upside down monolithic two-color phosphor-free LED with four grown layers of high indium quantum dots on top of the three grown layers of lower indium quantum wells separated by a GaN tunneling barrier layer. The photoluminescence (PL) and electroluminescence (EL) spectra of this white LED reveal a broad spectrum ranging from 475 to 675 nm which is close to an ideal white-light source. The corresponding color temperature and color rendering index (CRI) of the fabricated white LED, operated at 350, 500, and 750 mA, are comparable to that of the conventional phosphor-based LEDs. Insights of the epitaxial structure and the transport mechanism were revealed through the TEM and temperature dependent PL and EL measurements. Our results show true potential in the Epi-ready GaN white LEDs for future solid state lighting applications. PMID:28772792

  14. Combustion synthesized indium-tin-oxide (ITO) thin film for source/drain electrodes in all solution-processed oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Tue, Phan Trong; Inoue, Satoshi; Takamura, Yuzuru; Shimoda, Tatsuya

    2016-06-01

    We report combustion solution synthesized (SCS) indium-tin-oxide (ITO) thin film, which is a well-known transparent conductive oxide, for source/drain (S/D) electrodes in solution-processed amorphous zirconium-indium-zinc-oxide TFT. A redox-based combustion synthetic approach is applied to ITO thin film using acetylacetone as a fuel and metal nitrate as oxidizer. The structural and electrical properties of SCS-ITO precursor solution and thin films were systematically investigated with changes in tin concentration, indium metal precursors, and annealing conditions such as temperature, time, and ambient. It was found that at optimal conditions the SCS-ITO thin film exhibited high crystalline quality, atomically smooth surface (RMS ~ 4.1 Å), and low electrical resistivity (4.2 × 10-4 Ω cm). The TFT using SCS-ITO film as the S/D electrodes showed excellent electrical properties with negligible hysteresis. The obtained "on/off" current ratio, subthreshold swing factor, subthreshold voltage, and field-effect mobility were 5 × 107, 0.43 V/decade, 0.7 V, and 2.1 cm2/V s, respectively. The performance and stability of the SCS-ITO TFT are comparable to those of the sputtered-ITO TFT, emphasizing that the SCS-ITO film is a promising candidate for totally solution-processed oxide TFTs.

  15. Preparation of cuxinygazsen precursor films and powders by electroless deposition

    DOEpatents

    Bhattacharya, Raghu N.; Batchelor, Wendi Kay; Wiesner, Holm; Ramanathan, Kannan; Noufi, Rommel

    1999-01-01

    A method for electroless deposition of Cu.sub.x In.sub.y Ga.sub.z Se.sub.n (x=0-2, y=0-2, z=0-2, n=0-3) precursor films and powders onto a metallic substrate comprising: preparing an aqueous bath solution of compounds selected from the group consisting of: I) a copper compound, a selenium compound, an indium compound and gallium compound; II) a copper compound, a selenium compound and an indium compound; III) a selenium compound, and indium compound and a gallium compound; IV) a selenium compound and a indium compound; and V) a copper compound and selenium compound; each compound being present in sufficient quantity to react with each other to produce Cu.sub.x In.sub.y Ga.sub.z Se.sub.n (x=0-2, y=0-2, z=0-2, n=0-3); adjusting the pH of the aqueous bath solution to an acidic value by the addition of a dilute acid; and initiating an electroless reaction with an oxidizing counterelectrode for a sufficient time to cause a deposit of Cu.sub.x In.sub.y Ga.sub.z Se.sub.n (x=0-2, y=0-2, z=0-2, n=0-3) from the aqueous bath solution onto a metallic substrate.

  16. Effect of replacement of tin doped indium oxide (ITO) by ZnO: analysis of environmental impact categories

    NASA Astrophysics Data System (ADS)

    Ziemińska-Stolarska, Aleksandra; Barecka, Magda; Zbiciński, Ireneusz

    2017-10-01

    Abundant use of natural resources is doubtlessly one of the greatest challenges of sustainable development. Process alternatives, which enable sustainable manufacturing of valuable products from more accessible resources, are consequently required. One of examples of limited resources is Indium, currently broadly used for tin doped indium oxide (ITO) for production of transparent conductive films (TCO) in electronics industry. Therefore, candidates for Indium replacement, which would offer as good performance as the industrial state-of-the-art technology based on ITO are widely studied. However, the environmental impact of new layers remains unknown. Hence, this paper studies the environmental effect of ITO replacement by zinc oxide (ZnO) by means life cycle assessment (LCA) methodology. The analysis enables to quantify the environmental impact over the entire period of life cycle of products—during manufacturing, use phase and waste generation. The analysis was based on experimental data for deposition process. Further, analysis of different impact categories was performed in order to determine specific environmental effects related to technology change. What results from the analysis, is that ZnO is a robust alternative material for ITO replacement regarding environmental load and energy efficiency of deposition process which is also crucial for sustainable TCO layer production.

  17. The nature of the interaction of dimethylselenide with IIIA group element compounds.

    PubMed

    Madzhidov, Timur I; Chmutova, Galina A

    2013-05-16

    The first systematic theoretical study of the nature of intermolecular bonding of dimethylselenide as donor and IIIA group element halides as acceptors was made with the help of the approach of Quantum Theory of Atoms in Molecules. Density Functional Theory with "old" Sapporo triple-ζ basis sets was used to calculate geometry, thermodynamics, and wave function of Me2Se···AX3 complexes. The analysis of the electron density distribution and the Laplacian of the electron density allowed us to reveal and explain the tendencies in the influence of the central atom (A = B, Al, Ga, In) and halogen (X = F, Cl, Br, I) on the nature of Se···A bonding. Significant changes in properties of the selenium lone pair upon complexation were described by means of the analysis of the Laplacian of the charge density. Charge transfer characteristics and the contributions to it from electron localization and delocalization were analyzed in terms of localization and delocalization indexes. Common features of the complexation and differences in the nature of bonding were revealed. Performed analysis evidenced that gallium and indium halide complexes can be attributed to charge transfer-driven complexes; aluminum halides complexes seem to be mainly of an electrostatic nature. The nature of bonding in different boron halides essentially varies; these complexes are stabilized mainly by covalent Se···B interaction. In all the complexes under study covalence of the Se···A interaction is rather high.

  18. Humidity-induced room-temperature decomposition of Au contacted indium phosphide

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.; Weizer, Victor G.

    1990-01-01

    It has been found that Au-contacted InP is chemically unstable at room temperature in a humid ambient due to the leaching action of indium nitrate islands that continually remove In from the contact metallization and thus, in effect, from the Inp substrate. While similar appearing islands form on Au-contacted GaAs, that system appears to be stable since leaching of the group III element does not take place.

  19. Surface smoothing of indium tin oxide film by laser-induced photochemical etching

    NASA Astrophysics Data System (ADS)

    Kang, JoonHyun; Kim, Young-Hwan; Kwon, Seok Joon; Park, Joon-Suh; Park, Kyoung Wan; Park, Jae-Gwan; Han, Il Ki

    2017-12-01

    Surface smoothing of indium tin oxide (ITO) film by laser irradiation was demonstrated. The ITO surface was etched by choline radicals, which were activated by laser irradiation at a wavelength of 532 nm. The RMS surface roughness was improved from 5.6 to 4.6 nm after 10 min of laser irradiation. We also showed the changes in the surface morphology of the ITO film with various irradiation powers and times.

  20. Growth of Gallium Nitride Nanorods and Their Coalescence Overgrowth

    DTIC Science & Technology

    2012-09-07

    absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures,” Optics Express, Vol. 20, No. S1, p...The obtained indium content can be slightly underestimated because certain incorporated indium atoms may diffuse out of the SSA image . However, such... luminescence InGaN/GaN quantum-well structures of various silicon -doping conditions,” Appl. Phys. Lett. 84, 2506-2508 (2004). 41. R. K. Debnath, R

  1. High-performance a-IGZO thin-film transistor with conductive indium-tin-oxide buried layer

    NASA Astrophysics Data System (ADS)

    Ahn, Min-Ju; Cho, Won-Ju

    2017-10-01

    In this study, we fabricated top-contact top-gate (TCTG) structure of amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) with a thin buried conductive indium-tin oxide (ITO) layer. The electrical performance of a-IGZO TFTs was improved by inserting an ITO buried layer under the IGZO channel. Also, the effect of the buried layer's length on the electrical characteristics of a-IGZO TFTs was investigated. The electrical performance of the transistors improved with increasing the buried layer's length: a large on/off current ratio of 1.1×107, a high field-effect mobility of 35.6 cm2/Vs, a small subthreshold slope of 116.1 mV/dec, and a low interface trap density of 4.2×1011 cm-2eV-1 were obtained. The buried layer a-IGZO TFTs exhibited enhanced transistor performance and excellent stability against the gate bias stress.

  2. Mid-Holocene change in types of degassing volcanoes, using indium in Antarctic ice as a tracer of volcanic source type

    USGS Publications Warehouse

    Hinkley, T.; Matsumoto, A.

    2007-01-01

    Proportions of trace metals in Antarctic ice samples indicate that the type of volcanoes that dominated atmospheric emissions changed at about the middle of the Holocene from relatively mafic, deep source volcanoes to more silicic, shallower-source volcanoes. We base this inference on the strong contrast in the abundances of the trace metal indium (In), relative to other trace metals present in ice, deposited at different times in the past, and on contrasting In abundances in modern emissions of volcanoes of different types. Indium is more abundant in the emissions of deep-source mafic volcanoes than in more felsic, shallower-source volcanoes. Earlier workers have shown, on the basis of petrologic and some meteoritic evidence, that In may be partitioned to the interiors (stony mantles) of differentiated planets, or enriched in the liquids of partly crystallized mafic melts.

  3. Effect of Temperature on Nucleation of Nanocrystalline Indium Tin Oxide Synthesized by Electron-Beam Evaporation

    NASA Astrophysics Data System (ADS)

    Shen, Yan; Zhao, Yujun; Shen, Jianxing; Xu, Xiangang

    2017-07-01

    Indium tin oxide (ITO) has been widely applied as a transparent conductive layer and optical window in light-emitting diodes, solar cells, and touch screens. In this paper, crystalline nano-sized ITO dendrites are obtained using an electron-beam evaporation technique. The surface morphology of the obtained ITO was studied for substrate temperatures of 25°C, 130°C, 180°C, and 300°C. Nano-sized crystalline dendrites were synthesized only at a substrate temperature of 300°C. The dendrites had a cubic structure, confirmed by the results of x-ray diffraction and transmission electron microscopy. The growth mechanism of the nano-crystalline dendrites could be explained by a vapor-liquid-solid (VLS) growth model. The catalysts of the VLS process were indium and tin droplets, confirmed by varying the substrate temperature, which further influenced the nucleation of the ITO dendrites.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yang; Kidder, Michelle; Ruther, Rose E.

    In this paper, we present a new class of catalysts, InMo-ZSM- 5, which can be prepared by indium impregnation of Mo-ZSM- 5. The incorporation of indium dramatically decreases coke formation during methane dehydroaromatization. The benzene and C 2 hydrocarbons selectivity among total hydrocarbons over InMo-ZSM- 5 remains comparable to that of Mo-ZSM- 5 despite reduced methane conversion due to decreased coke formation. We found 1 wt% indium to be optimal loading for reducing coke selectivity to half that of Mo-ZSM- 5. Characterization methods were not helpful in discerning the interaction of In with Mo but experiments with bimetallic 1In2Mo-ZSM- 5more » and mechanical mixture 1In+2Mo-ZSM- 5 suggest that In and Mo need to be in close proximity to suppress coke formation. Finally, this is supported by temperature programmed reduction experiments which show that In incorporation leads to lower Mo reduction temperature in In2Mo-ZMS- 5.« less

  5. The Advent of Indium Selenide: Synthesis, Electronic Properties, Ambient Stability and Applications

    PubMed Central

    Boukhvalov, Danil W.; Gürbulak, Bekir; Duman, Songül; Wang, Lin; Caputi, Lorenzo S.; Chiarello, Gennaro; Cupolillo, Anna

    2017-01-01

    Among the various two-dimensional semiconductors, indium selenide has recently triggered the interest of scientific community, due to its band gap matching the visible region of the electromagnetic spectrum, with subsequent potential applications in optoelectronics and especially in photodetection. In this feature article, we discuss the main issues in the synthesis, the ambient stability and the application capabilities of this novel class of two-dimensional semiconductors, by evidencing open challenges and pitfalls. In particular, we evidence how the growth of single crystals with reduced amount of Se vacancies is crucial in the road map for the exploitation of indium selenide in technology through ambient-stable nanodevices with outstanding values of both mobility of charge carriers and ON/OFF ratio. The surface chemical reactivity of the InSe surface, as well as applications in the fields of broadband photodetection, flexible electronics and solar energy conversion are also discussed. PMID:29113090

  6. Diagnostics of RF magnetron sputtering plasma for synthesizing transparent conductive Indium-Zinc-Oxide film

    NASA Astrophysics Data System (ADS)

    Ohta, Takayuki; Inoue, Mari; Takota, Naoki; Ito, Masafumi; Higashijima, Yasuhiro; Kano, Hiroyuki; den, Shoji; Yamakawa, Koji; Hori, Masaru

    2009-10-01

    Transparent conductive Oxide film has been used as transparent conducting electrodes of optoelectronic devices such as flat panel display, solar cells, and so on. Indium-Zinc-Oxide (IZO) has been investigated as one of promising alternatives Indium Tin Oxide film, due to amorphous, no nodule and so on. In order to control a sputtering process with highly precise, RF magnetron sputtering plasma using IZO composite target was diagnosed by absorption and emission spectroscopy. We have developed a multi-micro hollow cathode lamp which can emit simultaneous multi-atomic lines for monitoring Zn and In densities simultaneously. Zn and In densities were measured to be 10^9 from 10^10 cm-3 at RF power from 40 to 100 W, pressure of 5Pa, and Ar flow rate of 300 sccm. The emission intensities of Zn, In, InO, and Ar were also observed.

  7. Mass measurements of neutron-rich indium isotopes toward the N =82 shell closure

    NASA Astrophysics Data System (ADS)

    Babcock, C.; Klawitter, R.; Leistenschneider, E.; Lascar, D.; Barquest, B. R.; Finlay, A.; Foster, M.; Gallant, A. T.; Hunt, P.; Kootte, B.; Lan, Y.; Paul, S. F.; Phan, M. L.; Reiter, M. P.; Schultz, B.; Short, D.; Andreoiu, C.; Brodeur, M.; Dillmann, I.; Gwinner, G.; Kwiatkowski, A. A.; Leach, K. G.; Dilling, J.

    2018-02-01

    Precise mass measurements of the neutron-rich In-130125 isotopes have been performed with the TITAN Penning trap mass spectrometer. TITAN's electron beam ion trap was used to charge breed the ions to charge state q =13 + thus providing the necessary resolving power to measure not only the ground states but also isomeric states at each mass number. In this paper, the properties of the ground states are investigated through a series of mass differentials, highlighting trends in the indium isotopic chain as compared to its proton-magic neighbor, tin (Z =50 ). In addition, the energies of the indium isomers are presented. The (8-) level in 128In is found to be 78 keV lower than previously thought and the (21 /2- ) isomer in 127In is shown to be lower than the literature value by more than 150 keV.

  8. Indium-oxide nanoparticles for RRAM devices compatible with CMOS back-end-off-line

    NASA Astrophysics Data System (ADS)

    León Pérez, Edgar A. A.; Guenery, Pierre-Vincent; Abouzaid, Oumaïma; Ayadi, Khaled; Brottet, Solène; Moeyaert, Jérémy; Labau, Sébastien; Baron, Thierry; Blanchard, Nicholas; Baboux, Nicolas; Militaru, Liviu; Souifi, Abdelkader

    2018-05-01

    We report on the fabrication and characterization of Resistive Random Access Memory (RRAM) devices based on nanoparticles in MIM structures. Our approach is based on the use of indium oxide (In2O3) nanoparticles embedded in a dielectric matrix using CMOS-full-compatible fabrication processes in view of back-end-off-line integration for non-volatile memory (NVM) applications. A bipolar switching behavior has been observed using current-voltage measurements (I-V) for all devices. Very high ION/IOFF ratios have been obtained up to 108. Our results provide insights for further integration of In2O3 nanoparticles-based devices for NVM applications. He is currently a Postdoctoral Researcher in the Institute of Nanotechnologies of Lyon (INL), INSA de Lyon, France, in the Electronics Department. His current research include indium oxide nanoparticles for non-volatile memory applications, and the integrations of these devices in CMOS BEOL.

  9. Superconducting thin films of (100) and (111) oriented indium doped topological crystalline insulator SnTe

    DOE PAGES

    Si, W.; Zhang, C.; Wu, L.; ...

    2015-09-01

    Recent discovery of the topological crystalline insulator SnTe has triggered a search for topological superconductors, which have potential application to topological quantum computing. The present work reports on the superconducting properties of indium doped SnTe thin films. The (100) and (111) oriented thin films were epitaxially grown by pulsed-laser deposition on (100) and (111) BaF2 crystalline substrates respectively. The onset superconducting transition temperatures are about 3.8 K for (100) and 3.6 K for (111) orientations, slightly lower than that of the bulk. Magneto-resistive measurements indicate that these thin films may have upper critical fields higher than that of the bulk.more » With large surface-to-bulk ratio, superconducting indium doped SnTe thin films provide a rich platform for the study of topological superconductivity and potential device applications based on topological superconductors.« less

  10. Unintentional indium incorporation into barriers of InGaN/GaN multiple quantum wells studied by photoreflectance and photoluminescence excitation spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freytag, Stefan, E-mail: stefan.freytag@ovgu.de; Feneberg, Martin; Berger, Christoph

    2016-07-07

    In{sub x}Ga{sub 1–x}N/GaN single and multi quantum well (MQW) structures with x ≈ 0.13 were investigated optically by photoreflectance, photoluminescence excitation spectroscopy, and luminescence. Clear evidence of unintentional indium incorporation into the nominal GaN barrier layers is found. The unintentional In content is found to be around 3%. Inhomogeneous distribution of In atoms occurs within the distinct quantum well (QW) layers, which is commonly described as statistical alloy fluctuation and leads to the characteristic S-shape temperature shift of emission energy. Furthermore, differences in emission energy between the first and the other QWs of a MQW stack are found experimentally. Thismore » effect is discussed with the help of model calculations and is assigned to differences in the confining potential due to unwanted indium incorporation for the upper QWs.« less

  11. Superconducting thin films of (100) and (111) oriented indium doped topological crystalline insulator SnTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Si, Weidong, E-mail: wds@bnl.gov, E-mail: qiangli@bnl.gov; Zhang, Cheng; Wu, Lijun

    2015-08-31

    Recent discovery of the topological crystalline insulator SnTe has triggered a search for topological superconductors, which have potential application to topological quantum computing. The present work reports on the superconducting properties of indium doped SnTe thin films. The (100) and (111) oriented thin films were epitaxially grown by pulsed-laser deposition on (100) and (111) BaF{sub 2} crystalline substrates, respectively. The onset superconducting transition temperatures are about 3.8 K for (100) and 3.6 K for (111) orientations, slightly lower than that of the bulk. Magneto-resistive measurements indicate that these thin films may have upper critical fields higher than that of the bulk. Withmore » large surface-to-bulk ratio, superconducting indium doped SnTe thin films provide a rich platform for the study of topological superconductivity and potential device applications based on topological superconductors.« less

  12. Emission beyond 4  μm and mid-infrared lasing in a dysprosium-doped indium fluoride (InF3) fiber.

    PubMed

    Majewski, Matthew R; Woodward, Robert I; Carreé, Jean-Yves; Poulain, Samuel; Poulain, Marcel; Jackson, Stuart D

    2018-04-15

    Optical emission from rare-earth-doped fluoride fibers has thus far been limited to less than 4 μm. We extend emission beyond this limit by employing an indium fluoride (InF 3 ) glass fiber as the host, which exhibits an increased infrared transparency over commonly used zirconium fluoride (ZBLAN). Near-infrared pumping of a dysprosium-doped InF 3 fiber results in broad emission centered around 4.3 μm, representing the longest emission yet achieved from a fluoride fiber. The first laser emission in an InF 3 fiber is also demonstrated from the 3 μm dysprosium transition. Finally, a frequency domain excited state lifetime measurement comparison between fluoride hosts suggests that multiphonon effects are significantly reduced in indium fluoride fiber, paving the way to more efficient, longer wavelength lasers compared to ZBLAN fibers.

  13. Enhancing heat capacity of colloidal suspension using nanoscale encapsulated phase-change materials for heat transfer.

    PubMed

    Hong, Yan; Ding, Shujiang; Wu, Wei; Hu, Jianjun; Voevodin, Andrey A; Gschwender, Lois; Snyder, Ed; Chow, Louis; Su, Ming

    2010-06-01

    This paper describes a new method to enhance the heat-transfer property of a single-phase liquid by adding encapsulated phase-change nanoparticles (nano-PCMs), which absorb thermal energy during solid-liquid phase changes. Silica-encapsulated indium nanoparticles and polymer-encapsulated paraffin (wax) nanoparticles have been made using colloid method, and suspended into poly-alpha-olefin (PAO) and water for potential high- and low-temperature applications, respectively. The shells prevent leakage and agglomeration of molten phase-change materials, and enhance the dielectric properties of indium nanoparticles. The heat-transfer coefficients of PAO containing indium nanoparticles (30% by mass) and water containing paraffin nanoparticles (10% by mass) are 1.6 and 1.75 times higher than those of corresponding single-phase fluids. The structural integrity of encapsulation allows repeated use of such nanoparticles for many cycles in high heat generating devices.

  14. Photochemical metal organic deposition of metal oxides

    NASA Astrophysics Data System (ADS)

    Law, Wai Lung (Simon)

    This thesis pertains to the study of the deposition of metal oxide thin films via the process of Photochemical Metal Organic Deposition (PMOD). In this process, an amorphous metal organic precursor thin film is subjected to irradiation under ambient conditions. Fragmentation of the metal precursor results from the photoreaction, leading to the formation of metal oxide thin films in the presence of oxygen. The advantage of PMOD lies in its ability to perform lithography of metal oxide thin film without the application of photoresist. The metal organic precursor can be imaged directly by photolysis through a lithography mask under ambient conditions. Thus the PMOD process provides an attractive alternative to the conventional VLSI fabrication process. Metal carboxylates and metal acetylacetonates complexes were used as the precursors for PMOD process in this thesis. Transition metal carboxylate and metal acetylacetonate complexes have shown previously that when deposited as amorphous thin films, they will undergo fragmentation upon photolysis, leading to the formation of metal oxide thin films under ambient conditions. In this thesis, the formation of main group metal oxides of aluminum, indium and tin, as well as the formation of rare-earth metal oxides of cerium and europium by PMOD from its corresponding metal organic precursor will be presented. The nature of the photoreactions as well as the properties of the thin films deposited by PMOD will be investigated. Doped metal oxide thin films can also be prepared using the PMOD process. By mixing the metal precursors prior to deposition in the desired ratio, precursor films containing more than one metal precursor can be obtained. Mixed metal oxide thin films corresponding to the original metal ratio, in the precursor mixture, can be obtained upon photolysis under ambient conditions. In this thesis, the properties of doped metal oxide thin films of europium doped aluminum oxide as well as tin doped indium oxide thin films will also be presented.

  15. Ga2O3-In2O3 thin films on sapphire substrates: Synthesis and ultraviolet photoconductivity

    NASA Astrophysics Data System (ADS)

    Muslimov, A. E.; Butashin, A. V.; Kolymagin, A. B.; Nabatov, B. V.; Kanevsky, V. M.

    2017-11-01

    The structure and electrical and optical properties of β-Ga2O3-In2O3 thin films on sapphire substrates with different orientations have been investigated. The samples have been prepared by annealing of gallium-indium metallic films on sapphire substrates in air at different gallium-to-indium ratios in the initial mixture. The photoconductivity of these structures in the solar-blind ultraviolet spectral region has been examined.

  16. The effect of simultaneous substitution on the electronic band structure and thermoelectric properties of Se-doped Co3SnInS2 with the Kagome lattice

    NASA Astrophysics Data System (ADS)

    Fujioka, Masaya; Shibuya, Taizo; Nakai, Junya; Yoshiyasu, Keigo; Sakai, Yuki; Takano, Yoshihiko; Kamihara, Yoichi; Matoba, Masanori

    2014-12-01

    The thermoelectric properties and electronic band structures for Se-doped Co3SnInS2 were examined. The parent compound of this material (Co3Sn2S2) has two kinds of Sn sites (Sn1 and Sn2 sites). The density functional theory (DFT) calculations show that the indium substitution at the Sn2 site induces a metallic band structure, on the other hand, a semiconducting band structure is obtained from substitution at the Sn1 site. However, according to the previous reports, since the indium atom prefers to replace the tin atom at the Sn1 site rather than the Sn2 site, the resistivity of Co3SnInS2 shows semiconducting-like behavior. In this study we have demonstrated that metallic behavior and a decrease in resistivity for Se-doped Co3SnInS2 occurs without suppression of the Seebeck coefficient. From the DFT calculations, when the selenium content is above 0.5, the total crystallographic energy shows that a higher indium occupancy at Sn2 site is more stable. Therefore, it is suggested that the selenium doping suppress the site preference for indium substitution. This is one of the possible explanations for the metallic conductivity observed in Se-doped Co3SnInS2

  17. High-performance all-printed amorphous oxide FETs and logics with electronically compatible electrode/ channel interface.

    PubMed

    Sharma, Bhupendra Kumar; Stoesser, Anna; Mondal, Sandeep Kumar; Garlapati, Suresh K; Fawey, Mohammed H; Chakravadhanula, Venkata Sai Kiran; Kruk, Robert; Hahn, Horst; Dasgupta, Subho

    2018-06-12

    Oxide semiconductors typically show superior device performance compared to amorphous silicon or organic counterparts, especially, when they are physical vapor deposited. However, it is not easy to reproduce identical device characteristics when the oxide field-effect transistors (FETs) are solution-processed/ printed; the level of complexity further intensifies with the need to print the passive elements as well. Here, we developed a protocol for designing the most electronically compatible electrode/ channel interface based on the judicious material selection. Exploiting this newly developed fabrication schemes, we are now able to demonstrate high-performance all-printed FETs and logic circuits using amorphous indium-gallium-zinc oxide (a-IGZO) semiconductor, indium tin oxide (ITO) as electrodes and composite solid polymer electrolyte as the gate insulator. Interestingly, all-printed FETs demonstrate an optimal electrical performance in terms of threshold voltages and device mobility and may very well be compared with devices fabricated using sputtered ITO electrodes. This observation originates from the selection of electrode/ channel materials from the same transparent semiconductor oxide family, resulting in the formation of In-Sn-Zn-O (ITZO) based diffused a-IGZO/ ITO interface that controls doping density while ensuring high electrical performance. Compressive spectroscopic studies reveal that Sn doping mediated excellent band alignment of IGZO with ITO electrodes is responsible for the excellent device performance observed. All-printed n-MOS based logic circuits have also been demonstrated towards new-generation portable electronics.

  18. Formation of uniform carrot-like Cu31S16-CuInS2 heteronanostructures assisted by citric acid at the oil/aqueous interface.

    PubMed

    Li, Yongjie; Tang, Aiwei; Liu, Zhenyang; Peng, Lan; Yuan, Yi; Shi, Xifeng; Yang, Chunhe; Teng, Feng

    2018-01-07

    A simple two-phase strategy was developed to prepare Cu 31 S 16 -CuInS 2 heterostructures (HNS) at the oil/aqueous interface, in which the In(OH) 3 phase was often obtained in the products due to the reaction between indium ions and hydroxyl ions in the aqueous phase. To prevent the formation of the In(OH) 3 phase, citric acid was incorporated into the aqueous phase to assist in the synthesis of uniform carrot-like Cu 31 S 16 -CuInS 2 semiconductor HNS at the oil/aqueous interface for the first time. By manipulating the dosage of citric acid and Cu/In precursor ratios, the morphology of the Cu 31 S 16 -CuInS 2 HNS could be tailored from mushroom to carrot-like, and the presence of citric acid played a critical role in the synthesis of high-quality Cu 31 S 16 -CuInS 2 HNS, which inhibited the formation of the In(OH) 3 phase due to the formation of the indium(iii)-citric acid complex. The formation mechanism was studied by monitoring the morphology and phase evolution of the Cu 31 S 16 -CuInS 2 HNS with reaction time, which revealed that the Cu 31 S 16 seeds were first formed and then the cation-exchange reaction directed the subsequent anisotropic growth of the Cu 31 S 16 -CuInS 2 HNS.

  19. Optimizing amorphous indium zinc oxide film growth for low residual stress and high electrical conductivity

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Sigdel, A. K.; Gennett, T.; Berry, J. J.; Perkins, J. D.; Ginley, D. S.; Packard, C. E.

    2013-10-01

    With recent advances in flexible electronics, there is a growing need for transparent conductors with optimum conductivity tailored to the application and nearly zero residual stress to ensure mechanical reliability. Within amorphous transparent conducting oxide (TCO) systems, a variety of sputter growth parameters have been shown to separately impact film stress and optoelectronic properties due to the complex nature of the deposition process. We apply a statistical design of experiments (DOE) approach to identify growth parameter-material property relationships in amorphous indium zinc oxide (a-IZO) thin films and observed large, compressive residual stresses in films grown under conditions typically used for the deposition of highly conductive samples. Power, growth pressure, oxygen partial pressure, and RF power ratio (RF/(RF + DC)) were varied according to a full-factorial test matrix and each film was characterized. The resulting regression model and analysis of variance (ANOVA) revealed significant contributions to the residual stress from individual growth parameters as well as interactions of different growth parameters, but no conditions were found within the initial growth space that simultaneously produced low residual stress and high electrical conductivity. Extrapolation of the model results to lower oxygen partial pressures, combined with prior knowledge of conductivity-growth parameter relationships in the IZO system, allowed the selection of two promising growth conditions that were both empirically verified to achieve nearly zero residual stress and electrical conductivities >1480 S/cm. This work shows that a-IZO can be simultaneously optimized for high conductivity and low residual stress.

  20. Effect of Zinc Oxide Doping on Electroluminescence and Electrical Behavior of Metalloporphyrins-Doped Samarium Complex

    NASA Astrophysics Data System (ADS)

    Janghouri, Mohammad; Amini, Mostafa M.

    2018-02-01

    Samarium complex [(Sm(III)] as a new host material was used for preparation of red organic light-emitting diodes (OLEDs). Devices with configurations of indium-doped tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):(poly(styrenesulfonate) (PEDOT:PSS (50 nm)/polyvinyl carbazole (PVK):[zinc oxide (ZnO)] (50 nm)/[(Sm(III)]:[zinc(II) 2,3-tetrakis(dihydroxyphenyl)-porphyrin and Pt(II) 2,3-dimethoxyporphyrin] (60 nm)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) (15 nm)/Al (150 nm) have been fabricated and investigated. An electroplex occurring at the (PVK/Sm: Pt(II) 2,3-dimethoxyporphyrin) interface has been suggested when ZnO nanoparticles were doped in PVK. OLED studies have revealed that the photophysical characteristics and electrical behavior of devices with ZnO nanoparticles are much better than those of devices with pure PVK. The efficiency of devices based on [(Sm(III)] was superior than that of known aluminum tris(8-hydroxyquinoline) (Alq3) and also our earlier reports on red OLEDs under the same conditions.

  1. Laser damage mechanisms in conductive widegap semiconductor films

    DOE PAGES

    Yoo, Jae-Hyuck; Menor, Marlon G.; Adams, John J.; ...

    2016-07-25

    Here, laser damage mechanisms of two conductive wide-bandgap semiconductor films - indium tin oxide (ITO) and silicon doped GaN (Si:GaN) were studied via microscopy, spectroscopy, photoluminescence (PL), and elemental analysis. Nanosecond laser pulse exposures with a laser photon energy (1.03 eV, 1064 nm) smaller than the conductive films bandgaps were applied and radically different film damage morphologies were produced. The laser damaged ITO film exhibited deterministic features of thermal degradation. In contrast, laser damage in the Si:GaN film resulted in highly localized eruptions originating at interfaces. For ITO, thermally driven damage was related to free carrier absorption and, for GaN,more » carbon complexes were proposed as potential damage precursors or markers.« less

  2. Electrochemical oxidation of 243Am(III) in nitric acid by a terpyridyl-derivatized electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dares, C. J.; Lapides, A. M.; Mincher, B. J.

    A high surface area, tin-doped indium oxide electrode surface-derivatized with a terpyridine ligand has been applied to the oxidation of trivalent americium to Am(V) and Am(VI) in nitric acid. Potentials as low as 1.8 V vs. the saturated calomel electrode are used, 0.7 V lower than the 2.6 V potential for one-electron oxidation of Am(III) to Am(IV) in 1 M acid. This simple electrochemical procedure provides, for the first time, a method for accessing the higher oxidation states of Am in non-complexing media for developing the coordination chemistries of Am(V) and Am(VI) and, more importantly, for separation of americium frommore » nuclear waste streams.« less

  3. SU-E-I-14: Comparison of Iodine-Labeled and Indium-Labeled Antibody Biodistributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, L

    2014-06-01

    Purpose: It is often assumed that animal biodistributions of novel proteins are not dependent upon the radiolabel used in their determination. In units of percent injected dose per gram of tissue (%ID/g), organ uptake results (u) may be obtained using either iodine or metal as radioactive labels. Iodination is preferred as it is a one-step process whereas metal labeling requires two chemical procedures and therefore more protein material. It is important to test whether the radioactive tag leads to variation in the uptake value. Methods: Uptakes of 3antibodies to Carcinoembryonic Antigen (CEA) were evaluated in a nude mouse model bearingmore » 150 to 300 mg LS174T human colon cancer xenografts. Antibodies included diabody (56 kDa), minibody (80kDa) and intact M5A (150 kDa) anti-CEA cognates. Both radioiodine and indium-111 labels were used with uptakes evaluated at 7 time(t) points out to 96 h. Ratios (R) of u(iodine-label)/u(indium-label) were determined for liver, spleen, kidneys, lung and tumor. Results: Hepatic loss was rapid for diabody and minibody; by 24 h their R values were only 2%; i.e., uptake of iodine was 2% of that of indium for these 2 antibodies. By contrast, R for the intact cognate was 50% at that time point. Splenic results were similar. Tumor uptake ratios did not depend upon the antibody type and were 50% at 24 h. Conclusions: Relatively rapid loss of iodine relative to indium in liver and spleen was observed in lower mass antibodies. Tumor ratios were larger and independent of antibody type. Aside from tumor, the R ratio of uptakes depended on the antibody type. R values decreased monotonically with time in all tissues and for all cognates. Using this ratio, one can possibly correct iodine-based u (t) results so that they resemble radiometal-derived biodistributions.« less

  4. Optical second harmonic generation phase measurement at interfaces of some organic layers with indium tin oxide

    NASA Astrophysics Data System (ADS)

    Ngah Demon, Siti Zulaikha; Miyauchi, Yoshihiro; Mizutani, Goro; Matsushima, Toshinori; Murata, Hideyuki

    2014-08-01

    We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕinterface with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°.

  5. Indium-111 leukocyte scintigraphy in Wegener's granulomatosis involving the spleen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morayati, S.J.; Fink-Bennett, D.

    1986-12-01

    Indium-111-labeled leukocyte scintigraphy was performed on a 44-yr-old man to exclude an occult abscess. Four- and twenty-four-hour images of the abdomen revealed splenic photopenia except for a rim of activity medially. A subsequent computed tomography (CT) study demonstrated necrosis or hemorrhage of the spleen except for a medial rim. Exploratory laparotomy demonstrated necrotizing vasculitis with granuloma formation consistent with Wegener's granulomatosis and a rim of viable splenic tissue corresponding to the radionuclide and CT studies.

  6. Metal-organic chemical vapour deposition of polycrystalline tetragonal indium sulphide (InS) thin films

    NASA Technical Reports Server (NTRS)

    Macinnes, Andrew N.; Cleaver, William M.; Barron, Andrew R.; Power, Michael B.; Hepp, Aloysius F.

    1992-01-01

    The dimeric indium thiolate /(t Bu)2In(mu-S sup t Bu)/2 has been used as a single-source precursor for the MOCVD of InS thin films. The dimeric In2S2 core is proposed to account for the formation of the nonequilibrium high-pressure tetragonal phase in the deposited films. Analysis of the deposited films has been obtained by TEM, with associated energy-dispersive X-ray analysis and X-ray photoelectron spectroscopy.

  7. Probing/Manipulating the Interfacial Atomic Bonding between High k Dielectrics and InGaAs for Ultimate CMOS

    DTIC Science & Technology

    2015-04-24

    region of n-In0.53Ga0.47As MOSCAP. 15. SUBJECT TERMS CMOS, Magneto-optical imaging , Nanotechnology, Indium Gallium Arsenide 16...Nanotechnology, Indium Gallium Arsenide 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18. NUMBER OF PAGES 11 19a...more accessible to water vapor than it is in the complete TEMAHf molecule. There it is surrounded by 8 aliphatic methyl and ethyl groups with a total of

  8. Ab initio Thermal Transport in Compound Semiconductors

    DTIC Science & Technology

    2013-04-02

    upper bound to the thermal conductivities of cubic aluminum-V, gallium -V, and indium-V compounds as limited by anharmonic phonon scattering. The effects...and GaP [red circles (Ref. 51) and red triangles (Ref. 52)]. B. Gallium -V compounds We previously presented results for κL and P for wurtzite GaN and...data was found. We used this approach to examine κL in aluminum-V, gallium -V, and indium-V compounds as well as the technologically important materials

  9. A sensitive plasmonic copper(II) sensor based on gold nanoparticles deposited on ITO glass substrate.

    PubMed

    Ding, Lijun; Gao, Yan; Di, Junwei

    2016-09-15

    Gold nanoparticles (Au NPs) based plasmonic probe was developed for sensitive and selective detection of Cu(2+) ion. The Au NPs were self-assembled on transparent indium tin oxide (ITO) film coated glass substrate using poly dimethyl diallyl ammonium chloride (PDDA) as a linker and then calcined at 400°C to obtain pure Au NPs on ITO surface (ITO/Au NPs). The probe was fabricated by functionalizing l-cysteine (Cys) on to gold surface (ITO/Au NPs/Cys). The strong chelation of Cu(2+) with Cys formed a stable Cys-Cu complex, and resulted in the red-shift of localized surface plasmon resonance (LSPR) peak of the Au NPs. The introduction of bovine serum albumin (BSA) as the second complexant could form complex of Cys-Cu-BAS and further markedly enhanced the red-shift of the LSPR peak. This plasmonic probe provided a highly sensitive and selective detection towards Cu(2+) ions, with a wide linear detection range (10(-11)-10(-5)M) over 6 orders of magnitude. The simple and cost-effective probe was successfully applied to the determination of Cu(2+) in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. High resolution near on-axis digital holography using constrained optimization approach with faster convergence

    NASA Astrophysics Data System (ADS)

    Pandiyan, Vimal Prabhu; Khare, Kedar; John, Renu

    2017-09-01

    A constrained optimization approach with faster convergence is proposed to recover the complex object field from a near on-axis digital holography (DH). We subtract the DC from the hologram after recording the object beam and reference beam intensities separately. The DC-subtracted hologram is used to recover the complex object information using a constrained optimization approach with faster convergence. The recovered complex object field is back propagated to the image plane using the Fresnel back-propagation method. The results reported in this approach provide high-resolution images compared with the conventional Fourier filtering approach and is 25% faster than the previously reported constrained optimization approach due to the subtraction of two DC terms in the cost function. We report this approach in DH and digital holographic microscopy using the U.S. Air Force resolution target as the object to retrieve the high-resolution image without DC and twin image interference. We also demonstrate the high potential of this technique in transparent microelectrode patterned on indium tin oxide-coated glass, by reconstructing a high-resolution quantitative phase microscope image. We also demonstrate this technique by imaging yeast cells.

  11. X-ray probe of GaN thin films grown on InGaN compliant substrates

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoqing; Li, Yang; Liu, Jianming; Wei, Hongyuan; Liu, Xianglin; Yang, Shaoyan; Wang, Zhanguo; Wang, Huanhua

    2013-04-01

    GaN thin films grown on InGaN compliant substrates were characterized by several X-ray technologies: X-ray reciprocal space mapping (RSM), grazing incidence X-ray diffraction (GIXRD), and X-ray photoemission spectrum (XPS). Narrow Lorentz broadening and stress free state were observed for GaN grown on InGaN compliant substrate, while mosaic structure and large tensile stress were observed at the presence of residual indium atoms. RSM disclosed the mosaicity, and the GIXRD was conducted to investigate the depth dependences of crystal quality and strain states. XPS depth profile of indium contents indicated that residual indium atoms deteriorated the crystal quality of GaN not only by producing lattice mismatch at the interface of InGaN and GaN but also by diffusing into GaN overlayers. Accordingly, two solutions were proposed to improve the efficiency of self-patterned lateral epitaxial overgrowth method. This research goes a further step in resolving the urgent substrate problem in GaN fabrication.

  12. Indium vacancy induced d0 ferromagnetism in Li-doped In2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Cao, Haiming; Xing, Pengfei; Zhou, Wei; Yao, Dongsheng; Wu, Ping

    2018-04-01

    Li-doped In2O3 nanoparticles with room temperature d0 ferromagnetism were prepared by a sol-gel method. X-ray diffraction, X-ray photoelectron spectroscopy and photoluminescence were carried out to investigate the effects of Li incorporation on the lattice defects. As the content of Li increases, non-monotonic changes in shifts of XRD peak (2 2 2) and the intensity ratios of indium vacancies related photoluminescence peak (PII) with respect to oxygen vacancies related peak (PI) are observed. Results show that at low doping level (≤2 at.%) Li prefers to occupy In sites, while with further doping the interstitial sites are more favorable for Li. Combined with the consistent non-monotonic change in saturation magnetization, we think that indium vacancies resulting from Li-doping play an important role in inducing d0 ferromagnetism in our Li-doped In2O3 nanoparticles, and the FM coupling is mainly mediated by the LiIn-ONN-VIn-ONN-LiIn chains.

  13. Promotional Effects of In on Non-Oxidative Methane Transformation Over Mo-ZSM-5

    DOE PAGES

    Zhang, Yang; Kidder, Michelle; Ruther, Rose E.; ...

    2016-08-16

    In this paper, we present a new class of catalysts, InMo-ZSM- 5, which can be prepared by indium impregnation of Mo-ZSM- 5. The incorporation of indium dramatically decreases coke formation during methane dehydroaromatization. The benzene and C 2 hydrocarbons selectivity among total hydrocarbons over InMo-ZSM- 5 remains comparable to that of Mo-ZSM- 5 despite reduced methane conversion due to decreased coke formation. We found 1 wt% indium to be optimal loading for reducing coke selectivity to half that of Mo-ZSM- 5. Characterization methods were not helpful in discerning the interaction of In with Mo but experiments with bimetallic 1In2Mo-ZSM- 5more » and mechanical mixture 1In+2Mo-ZSM- 5 suggest that In and Mo need to be in close proximity to suppress coke formation. Finally, this is supported by temperature programmed reduction experiments which show that In incorporation leads to lower Mo reduction temperature in In2Mo-ZMS- 5.« less

  14. Forming-free, bipolar resistivity switching characteristics of fully transparent resistive random access memory with IZO/α-IGZO/ITO structure

    NASA Astrophysics Data System (ADS)

    Lo, Chun-Chieh; Hsieh, Tsung-Eong

    2016-09-01

    Fully transparent resistive random access memory (TRRAM) containing amorphous indium gallium zinc oxide as the resistance switching (RS) layer and transparent conducting oxides (indium zinc oxide and indium tin oxide) as the electrodes was prepared. Optical measurement indicated the transmittance of device exceeds 80% in visible-light wavelength range. TRRAM samples exhibited the forming-free feature and the best electrical performance (V SET  =  0.61 V V RESET  =  -0.76 V R HRS/R LRS (i.e. the R-ratio)  >103) was observed in the device subject to a post-annealing at 300 °C for 1 hr in atmospheric ambient. Such a sample also exhibited satisfactory endurance and retention properties at 85 °C as revealed by the reliability tests. Electrical measurement performed in vacuum ambient indicated that the RS mechanism correlates with the charge trapping/de-trapping process associated with oxygen defects in the RS layer.

  15. Enhanced detection of nitrogen dioxide via combined heating and pulsed UV operation of indium oxide nano-octahedra.

    PubMed

    Gonzalez, Oriol; Roso, Sergio; Vilanova, Xavier; Llobet, Eduard

    2016-01-01

    We report on the use of combined heating and pulsed UV light activation of indium oxide gas sensors for enhancing their performance in the detection of nitrogen dioxide in air. Indium oxide nano-octahedra were synthesized at high temperature (900 °C) via vapour-phase transport and screen-printed onto alumina transducers that comprised interdigitated electrodes and a heating resistor. Compared to the standard, constant temperature operation of the sensor, mild heating (e.g., 100 °C) together with pulsed UV light irradiation employing a commercially available, 325 nm UV diode (square, 1 min period, 15 mA drive current signal), results in an up to 80-fold enhancement in sensitivity to nitrogen dioxide. Furthermore, this combined operation method allows for making savings in power consumption that range from 35% to over 80%. These results are achieved by exploiting the dynamics of sensor response under pulsed UV light, which convey important information for the quantitative analysis of nitrogen dioxide.

  16. Absolute shielding scales for Al, Ga, and In and revised nuclear magnetic dipole moments of {sup 27}Al, {sup 69}Ga, {sup 71}Ga, {sup 113}In, and {sup 115}In nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antušek, A., E-mail: andrej.antusek@stuba.sk; Holka, F., E-mail: filip.holka@stuba.sk

    2015-08-21

    We present coupled cluster calculations of NMR shielding constants of aluminum, gallium, and indium in water-ion clusters. In addition, relativistic and dynamical corrections and the influence of the second solvation shell are evaluated. The final NMR shielding constants define new absolute shielding scales, 600.0 ± 4.1 ppm, 2044.4 ± 31.4 ppm, and 4507.7 ± 63.7 ppm for aluminum, gallium, and indium, respectively. The nuclear magnetic dipole moments for {sup 27}Al, {sup 69}Ga, {sup 71}Ga, {sup 113}In, and {sup 115}In isotopes are corrected by combining the computed shielding constants with experimental NMR frequencies. The absolute magnitude of the correction increases alongmore » the series and for indium isotopes it reaches approximately −8.0 × 10{sup −3} of the nuclear magneton.« less

  17. Reactive ion etching of indium-tin oxide films by CCl4-based Inductivity Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Juneja, Sucheta; Poletayev, Sergey D.; Fomchenkov, Sergey; Khonina, Svetlana N.; Skidanov, Roman V.; Kazanskiy, Nikolay L.

    2016-08-01

    Indium tin oxide (ITO) films have been a subject of extensive studies in fabrication of micro-electronic devices for opto-electronic applications ranging from anti-reflection coatings to transparent contacts in photovoltaic devices. In this paper, a new and effective way of reactive ion etching of a conducting indium-tin oxide (ITO) film with Carbon tetrachloride (CCl4) has been investigated. CCl4 plasma containing an addition of gases mixture of dissociated argon and oxygen were used. Oxygen is added to increase the etchant percentage whereas argon was used for stabilization of plasma. The etching characteristics obtained with these gaseous mixtures were explained based on plasma etch chemistry and etching regime of ITO films. An etch rate as high as ∼20 nm/min can be achieved with a controlled process parameter such as power density, total flow rate, composition of reactive gases gas and pressure. Our Investigation represents some of the extensive work in this area.

  18. Comparative acute toxicity of gallium(III), antimony(III), indium(III), cadmium(II), and copper(II) on freshwater swamp shrimp (Macrobrachium nipponense).

    PubMed

    Yang, Jen-Lee

    2014-04-01

    Acute toxicity testing were carried out the freshwater swamp shrimp, Macrobrachium nipponense, as the model animal for the semiconductor applied metals (gallium, antimony, indium, cadmium, and copper) to evaluate if the species is an suitable experimental animal of pollution in aquatic ecosystem. The static renewal test method of acute lethal concentrations determination was used, and water temperature was maintained at 24.0 ± 0.5°C. Data of individual metal obtained from acute toxicity tests were determined using probit analysis method. The median lethal concentration (96-h LC50) of gallium, antimony, indium, cadmium, and copper for M. nipponense were estimated as 2.7742, 1.9626, 6.8938, 0.0539, and 0.0313 mg/L, respectively. Comparing the toxicity tolerance of M. nipponense with other species which exposed to these metals, it is obviously that the M. nipponense is more sensitive than that of various other aquatic animals.

  19. Incorporation of indium in TiO2-based photoanodes for enhancing the photovoltaic conversion efficiency of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Beula, R. Jeba; Devadason, Suganthi; Vidhya, B.

    2018-06-01

    Sol-gel-assisted spin-coating method was used to prepare TiO2 photoelectrodes doped with four different concentrations of indium 0.025, 0.05, 0.075 and 0.1 M. The crystalline phase and average crystallite size of the pure- and indium-doped TiO2 films were found using X-ray diffractometer. Raman analysis was performed for the pure- and In-doped TiO2 films to confirm the structure of anatase phase. UV-visible and photoluminescence spectrophotometer were used to analyze the optical properties of the films. A shift towards a lower wavelength in the absorption spectrum and widening of band gap were noted for the doped TiO2 films. Reduction in the peak intensity was observed in the PL spectra to indicate the inhibiting action of electron-hole recombination. A maximum (2.71%) light to current efficiency is noted for the dye-sensitized solar cells (DSSC) fabricated based on 0.025M In-doped TiO2 electrode.

  20. PHOTONICS AND NANOTECHNOLOGY Pulsed laser ablation of binary semiconductors: mechanisms of vaporisation and cluster formation

    NASA Astrophysics Data System (ADS)

    Bulgakov, A. V.; Evtushenko, A. B.; Shukhov, Yu G.; Ozerov, I.; Marin, W.

    2010-12-01

    Formation of small clusters during pulsed ablation of two binary semiconductors, zinc oxide and indium phosphide, in vacuum by UV, visible, and IR laser radiation is comparatively studied. The irradiation conditions favourable for generation of neutral and charged ZnnOm and InnPm clusters of different stoichiometry in the ablation products are found. The size and composition of the clusters, their expansion dynamics and reactivity are analysed by time-of-flight mass spectrometry. A particular attention is paid to the mechanisms of ZnO and InP ablation as a function of laser fluence, with the use of different ablation models. It is established that ZnO evapourates congruently in a wide range of irradiation conditions, while InP ablation leads to enrichment of the target surface with indium. It is shown that this radically different character of semiconductor ablation determines the composition of the nanostructures formed: zinc oxide clusters are mainly stoichiometric, whereas InnPm particles are significantly enriched with indium.

  1. Enhancement of thermoelectric figure of merit in β-Zn{sub 4}Sb{sub 3} by indium doping control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Pai-Chun, E-mail: pcwei68@gmail.com, E-mail: cheny2@phys.sinica.edu.tw; Hsu, Chia-Hao; Chang, Chung-Chieh

    2015-09-21

    We demonstrate the control of phase composition in Bridgman-grown β-Zn{sub 4}Sb{sub 3} crystals by indium doping, an effective way to overcome the difficulty of growing very pure β-Zn{sub 4}Sb{sub 3} thermoelectric material. The crystal structures are characterized by Rietveld refinement with synchrotron X-ray diffraction data. The results show an anisotropic lattice expansion in In-doped β-Zn{sub 4}Sb{sub 3} wherein the zinc atoms are partially substituted by indium ones at 36f site of R-3c symmetry. Through the elimination of ZnSb phase, all the three individual thermoelectric properties are simultaneously improved, i.e., increasing electrical conductivity and Seebeck coefficient while reducing thermal conductivity. Undermore » an optimal In concentration (x = 0.05), pure phase β-Zn{sub 4}Sb{sub 3} crystal can be obtained, which possesses a high figure of merit (ZT) of 1.4 at 700 K.« less

  2. Laser Structuring of Thin Layers for Flexible Electronics by a Shock Wave-induced Delamination Process

    NASA Astrophysics Data System (ADS)

    Lorenz, Pierre; Ehrhardt, Martin; Zimmer, Klaus

    The defect-free laser-assisted structuring of thin films on flexible substrates is a challenge for laser methods. However, solving this problem exhibits an outstanding potential for a pioneering development of flexible electronics. Thereby, the laser-assisted delamination method has a great application potential. At the delamination process: the localized removal of the layer is induced by a shock wave which is produced by a laser ablation process on the rear side of the substrate. In this study, the thin-film patterning process is investigated for different polymer substrates dependent on the material and laser parameters using a KrF excimer laser. The resultant structures were studied by optical microscopy and white light interferometry (WLI). The delamination process was tested at different samples (indium tin oxide (ITO) on polyethylene terephthalate (PET), epoxy-based negative photoresist (SU8) on polyimide (PI) and indium tin oxide/copper indium gallium selenide/molybdenum (ITO/CIGS/Mo) on PI.

  3. Innovative Concept for the Recovery of Silver and Indium by a Combined Treatment of Jarosite and Electric Arc Furnace Dust

    NASA Astrophysics Data System (ADS)

    Wegscheider, S.; Steinlechner, S.; Leuchtenmüller, M.

    2017-02-01

    Industrial wastes such as slags, dust, or precipitation residues contain significant amounts of valuable metals like zinc, lead, and copper as well as precious metals like silver and indium. Nevertheless, a lot of these waste materials are not recycled, and therefore, many valuable metals end up being sent to landfills. Because of harmful components in the waste, it is often necessary to send it to specialized landfills for hazardous wastes, which leads to environmental problems as well as additional costs. Consequently, the recovery of the valuable metals from the residues represents a sensible task to decrease the negative impact on the environment and to reduce costs for maintaining a landfill. In addition, recycling helps to decrease the dependency from primary resources. The present study deals with the behavior of different metals in a pyro-metallurgical treatment for a mixture of jarosite and electric arc furnace dust with a special focus on indium and silver.

  4. Recent developments in indium phosphide space solar cell research

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Weinberg, Irving

    1987-01-01

    Recent developments and progress in indium phosphide solar cell research for space application are reviewed. Indium phosphide homojunction cells were fabricated in both the n+p and p+n configurations with total area efficiencies of 17.9 and 15.9% (air mass 0 and 25 C) respectively. Organometallic chemical vapor deposition, liquid phase epitaxy, ion implantation and diffusion techniques were employed in InP cell fabrication. A theoretical model of a radiation tolerant, high efficiency homojunction cell was developed. A realistically attainable AMO efficiency of 20.5% was calculated using this model with emitter and base doping of 6 x 10 to the 17th power and 5 x 10 the the 16th power/cu cm respectively. Cells of both configurations were irradiated with 1 MeV electrons and 37 MeV protons. For both proton and electron irradiation, the n+p cells are more radiation resistant at higher fluences than the p+n cells. The first flight module of four InP cells was assembled for the Living Plume Shield III satellite.

  5. Indium antimonide large-format detector arrays

    NASA Astrophysics Data System (ADS)

    Davis, Mike; Greiner, Mark

    2011-06-01

    Large format infrared imaging sensors are required to achieve simultaneously high resolution and wide field of view image data. Infrared sensors are generally required to be cooled from room temperature to cryogenic temperatures in less than 10 min thousands of times during their lifetime. The challenge is to remove mechanical stress, which is due to different materials with different coefficients of expansion, over a very wide temperature range and at the same time, provide a high sensitivity and high resolution image data. These challenges are met by developing a hybrid where the indium antimonide detector elements (pixels) are unconnected islands that essentially float on a silicon substrate and form a near perfect match to the silicon read-out circuit. Since the pixels are unconnected and isolated from each other, the array is reticulated. This paper shows that the front side illuminated and reticulated element indium antimonide focal plane developed at L-3 Cincinnati Electronics are robust, approach background limited sensitivity limit, and provide the resolution expected of the reticulated pixel array.

  6. Bridging the Gap between the Nanometer-Scale Bottom-Up and Micrometer-Scale Top-Down Approaches for Site-Defined InP/InAs Nanowires.

    PubMed

    Zhang, Guoqiang; Rainville, Christophe; Salmon, Adrian; Takiguchi, Masato; Tateno, Kouta; Gotoh, Hideki

    2015-11-24

    This work presents a method that bridges the gap between the nanometer-scale bottom-up and micrometer-scale top-down approaches for site-defined nanostructures, which has long been a significant challenge for applications that require low-cost and high-throughput manufacturing processes. We realized the bridging by controlling the seed indium nanoparticle position through a self-assembly process. Site-defined InP nanowires were then grown from the indium-nanoparticle array in the vapor-liquid-solid mode through a "seed and grow" process. The nanometer-scale indium particles do not always occupy the same locations within the micrometer-scale open window of an InP exposed substrate due to the scale difference. We developed a technique for aligning the nanometer-scale indium particles on the same side of the micrometer-scale window by structuring the surface of a misoriented InP (111)B substrate. Finally, we demonstrated that the developed method can be used to grow a uniform InP/InAs axial-heterostructure nanowire array. The ability to form a heterostructure nanowire array with this method makes it possible to tune the emission wavelength over a wide range by employing the quantum confinement effect and thus expand the application of this technology to optoelectronic devices. Successfully pairing a controllable bottom-up growth technique with a top-down substrate preparation technique greatly improves the potential for the mass-production and widespread adoption of this technology.

  7. Effect of indium on photovoltaic property of n-ZnO/p-Si heterojunction device prepared using solution-synthesized ZnO nanowire film

    NASA Astrophysics Data System (ADS)

    Kathalingam, Adaikalam; Kim, Hyun-Seok; Park, Hyung-Moo; Valanarasu, Santiyagu; Mahalingam, Thaiyan

    2015-01-01

    Preparation of n-ZnO/p-Si heterostructures using solution-synthesized ZnO nanowire films and their photovoltaic characterization is reported. The solution-grown ZnO nanowire film is characterized using scanning electron microscope, electron dispersive x-ray, and optical absorption studies. Electrical and photovoltaic properties of the fabricated heterostructures are studied using e-beam-evaporated aluminum as metal contacts. In order to use transparent contact and to simultaneously collect the photogenerated carriers, sandwich-type solar cells were fabricated using ZnO nanorod films grown on p-silicon and indium tin oxide (ITO) coated glass as ITO/n-ZnO NR/p-Si. The electrical properties of these structures are analyzed from current-voltage (I-V) characteristics. ZnO nanowire film thickness-dependent photovoltaic properties are also studied. Indium metal was also deposited over the ZnO nanowires and its effects on the photovoltaic response of the devices were studied. The results demonstrated that all the samples exhibit a strong rectifying behavior indicating the diode nature of the devices. The sandwich-type ITO/n-ZnO NR/p-Si solar cells exhibit improved photovoltaic performance over the Al-metal-coated n-ZnO/p-Si structures. The indium deposition is found to show enhancement in photovoltaic behavior with a maximum open-circuit voltage (Voc) of 0.3 V and short-circuit current (Isc) of 70×10-6 A under ultraviolet light excitation.

  8. Bump Bonding Using Metal-Coated Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Lamb, James L.; Dickie, Matthew R.; Kowalczyk, Robert S.; Liao, Anna; Bronikowski, Michael J.

    2012-01-01

    Bump bonding hybridization techniques use arrays of indium bumps to electrically and mechanically join two chips together. Surface-tension issues limit bump sizes to roughly as wide as they are high. Pitches are limited to 50 microns with bumps only 8-14 microns high on each wafer. A new process uses oriented carbon nanotubes (CNTs) with a metal (indium) in a wicking process using capillary actions to increase the aspect ratio and pitch density of the connections for bump bonding hybridizations. It merges the properties of the CNTs and the metal bumps, providing enhanced material performance parameters. By merging the bumps with narrow and long CNTs oriented in the vertical direction, higher aspect ratios can be obtained if the metal can be made to wick. Possible aspect ratios increase from 1:1 to 20:1 for most applications, and to 100:1 for some applications. Possible pitch density increases of a factor of 10 are possible. Standard capillary theory would not normally allow indium or most other metals to be drawn into the oriented CNTs, because they are non-wetting. However, capillary action can be induced through the ability to fabricate oriented CNT bundles to desired spacings, and the use of deposition techniques and temperature to control the size and mobility of the liquid metal streams and associated reservoirs. This hybridization of two technologies (indium bumps and CNTs) may also provide for some additional benefits such as improved thermal management and possible current density increases.

  9. Electron transport and electron energy distributions within the wurtzite and zinc-blende phases of indium nitride: Response to the application of a constant and uniform electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siddiqua, Poppy; Hadi, Walid A.; Salhotra, Amith K.

    2015-03-28

    Within the framework of an ensemble semi-classical three-valley Monte Carlo electron transport simulation approach, we critically contrast the nature of the electron transport that occurs within the wurtzite and zinc-blende phases of indium nitride in response to the application of a constant and uniform electric field. We use the electron energy distribution and its relationship with the electron transport characteristics in order to pursue this analysis. For the case of zinc-blende indium nitride, only a peak corresponding to the electrons within the lowest energy conduction band valley is observed, this peak being seen to broaden and shift to higher energiesmore » in response to increases in the applied electric field strength, negligible amounts of upper energy conduction band valley occupancy being observed. In contrast, for the case of wurtzite indium nitride, in addition to the aforementioned lowest energy conduction band valley peak in the electron energy distribution, and its broadening and shifting to higher energies in response to increases in the applied electric field strength, beyond a certain critical electric field strength, 30 kV/cm for the case of this particular material, upper energy conduction band valley occupancy is observed, this occupancy being further enhanced in response to further increases in the applied electric field strength. Reasons for these results are provided. The potential for device consequences is then commented upon.« less

  10. Strategies to indium nitride and gallium nitride nanoparticles: Low-temperature, solution-phase and precursor routes

    NASA Astrophysics Data System (ADS)

    Dingman, Sean Douglas

    I present new strategies to low-temperature solution-phase synthesis of indium and gallium nitride (InN and GaN) ceramic materials. The strategies include: direct conversion of precursor molecules to InN by pyrolysis, solution-phase synthesis of nanostructured InN fibers via molecular precursors and co-reactants, and synthesis of powders through reactions derived from molten-salt chemistry. Indium nitride powders are prepared by pyrolysis of the precursors R 2InN3 (R = t-Bu (1), i-Amyl(2), Et(3), i-Pr( 4)). The precursors are synthesized via azide-alkoxide exchange of R2InOMe with Me3SiN3. The precursors are coordination polymers containing five-coordinate indium centers. Pyrolysis of 1 and 2 under N2 at 400°C yields powders consisting primarily of InN with average crystal sizes of 15--35 nm. 1 yields nanocrystalline InN with average particle sizes of 7 nm at 250°C. 3 and 4 yield primarily In metal from pyrolysis. Refluxing 1 in diisopropylbenzene (203°C) in the presence of primary amines yields InN nanofibers 10--100 nm in length. InN nanofibers of up to 1 mum can be synthesized by treating 1 with 1,1-dimethylhydrazine (DMHy) The DMHy appears to control the fiber length by acting as a secondary source of active nitrogen in order to sustain fiber growth. The resulting fibers are attached to droplets of indium metal implying a solution-liquid-solid growth mechanism. Precursor 4 yields crystalline InN whiskers when reacted with DMHy. Reactions of 4 with reducing agents such as HSnBu3, yield InN nanoparticles with an average crystallite size of 16 nm. Gallium precursors R2GaN3 (R = t-Bu( 5), Me3SiCH2(6) and i-Pr( 7)), synthesized by azide-alkoxide exchange, are found to be inert toward solution decomposition and do not yield GaN. These compounds are molecular dimers and trimers unlike the indium analogs. Compound 6 displays a monomer-dimer equilibrium in benzene solution, but exists as a solid-state trimer. InN powders are also synthesized by reactions of InCl3 and LiNH2 in a molten alkali-halide eutectic, KBr: Liar (60:40), at 400°C. The molten salt acts as an appropriate recrystallization medium for InN. Large InN platelets up to 500 nm could be synthesized. This is a significant step in finding mild reaction conditions that yield large InN crystals.

  11. Elastically frustrated rehybridization: Origin of chemical order and compositional limits in InGaN quantum wells

    NASA Astrophysics Data System (ADS)

    Lymperakis, L.; Schulz, T.; Freysoldt, C.; Anikeeva, M.; Chen, Z.; Zheng, X.; Shen, B.; Chèze, C.; Siekacz, M.; Wang, X. Q.; Albrecht, M.; Neugebauer, J.

    2018-01-01

    Nominal InN monolayers grown by molecular beam epitaxy on GaN(0001) are investigated combining in situ reflection high-energy electron diffraction (RHEED), transmission electron microscopy (TEM), and density functional theory (DFT). TEM reveals a chemical intraplane ordering never observed before. Employing DFT, we identify a novel surface stabilization mechanism elastically frustrated rehybridization, which is responsible for the observed chemical ordering. The mechanism also sets an incorporation barrier for indium concentrations above 25% and thus fundamentally limits the indium content in coherently strained layers.

  12. A comparison of ZnO films deposited on indium tin oxide and soda lime glass under identical conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deka, Angshuman; Nanda, Karuna Kar

    2013-06-15

    ZnO films have been grown via a vapour phase transport (VPT) on soda lime glass (SLG) and indium-tin oxide (ITO) coated glass. ZnO film on ITO had traces of Zn and C which gives them a dark appearance while that appears yellowish-white on SLG. X-ray photoelectron spectroscopy studies confirm the traces of C in the form of C-O. The photoluminescence studies reveal a prominent green luminescence band for ZnO film on ITO.

  13. Optical and Electrical Characterization of Melt-Grown Bulk Indium Gallium Arsenide and Indium Arsenic Phosphide Alloys

    DTIC Science & Technology

    2011-03-01

    order to find Eg/dT, we like to start with taking second derivatives of the absorption coefficient 53 g E EE t EEe E C dE d t g , 22 2...lower band, Nh) is closely related to the Fermi-Dirac distribution, Tk EE Ef B Fexp1 1 )( . (2.1) Here f(E) is the probability of occupying...47 ., , /)( gg g EEE EEEEA EECe tg (4.3) Here the C and A parameters are constants for a given material, for instance, A is

  14. Indium-Catalyzed Reductive Dithioacetalization of Carboxylic Acids with Dithiols: Scope, Limitations, and Application to Oxidative Desulfurization.

    PubMed

    Nishino, Kota; Minato, Kohei; Miyazaki, Takahiro; Ogiwara, Yohei; Sakai, Norio

    2017-04-07

    In this study an InI 3 -TMDS (1,1,3,3-tetramethyldisiloxane) reducing system effectively catalyzed the reductive dithioacetalization of a variety of aromatic and aliphatic carboxylic acids with 1,2-ethanedithiol or 1,3-propanedithiol leading to the one-pot preparation of either 1,3-dithiolane derivatives or a 1,3-dithiane derivative. Also, the intact indium catalyst continuously catalyzed the subsequent oxidative desulfurization of an in situ formed 1,3-dithiolane derivative, which led to the preparation of the corresponding aldehydes.

  15. High-efficiency solar cells fabricated from direct-current magnetron sputtered n-indium tin oxide onto p-InP grown by atmospheric pressure metalorganic vapor phase epitaxy

    NASA Technical Reports Server (NTRS)

    Li, X.; Wanlass, M. W.; Gessert, T. A.; Emery, K. A.; Coutts, T. J.

    1989-01-01

    An attempt is made to improve device efficiencies by depositing indium tin oxide onto epitaxially grown p-InP on p(+)-InP substrates. This leads to a reduction in the device series resistance, high-quality reproducible surfaces, and an improvement in the transport properties of the base layer. Moreover, many of the facets associated with badly characterized bulk liquid encapsulated Czochralski substrates used in previous investigations are removed in this way.

  16. Comparative radiation resistance, temperature dependence and performance of diffused junction indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Ghandhi, S. K.; Borrego, J. M.

    1987-01-01

    Indium phosphide solar cells whose p-n junctions were processed by the open tube capped diffusion and by the closed tube uncapped diffusion of sulfur into Czochralski-grown p-type substrates are compared. Differences found in radiation resistance were attributed to the effects of increased base dopant concentration. Both sets of cells showed superior radiation resistance to that of gallium arsenide cells, in agreement with previous results. No correlation was, however, found between the open-circuit voltage and the temperature dependence of the maximum power.

  17. Photovoltaic options for solar electric propulsion

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Flood, Dennis J.

    1990-01-01

    This paper discusses both state-of-the-art and advanced development cell and array technology. Present technology includes rigid, roll-out, and foldout flexible substrate designs, with silicon and GaAs solar cells. The use of concentrator array systems is discussed based on both DOD efforts and NASA work. The benefits of advanced lightweight array technology, for both near term and far term utilization, and of advanced high efficiency thin radiation resistant cells is examined. This includes gallium arsenide/germanium, indium phosphide, and thin film devices such as copper indium disclenide.

  18. Fully transparent thin film transistors based on zinc oxide channel layer and molybdenum doped indium oxide electrodes

    NASA Astrophysics Data System (ADS)

    MÄ dzik, Mateusz; Elamurugu, Elangovan; Viegas, Jaime

    2016-03-01

    In this work we report the fabrication of thin film transistors (TFT) with zinc oxide channel and molybdenum doped indium oxide (IMO) electrodes, achieved by room temperature sputtering. A set of devices was fabricated, with varying channel width and length from 5μm to 300μm. Output and transfer characteristics were then extracted to study the performance of thin film transistors, namely threshold voltage and saturation current, enabling to determine optimal fabrication process parameters. Optical transmission in the UV-VIS-IR are also reported.

  19. Transient Negative Optical Nonlinearity of Indium Oxide Nanorod Arrays in the Full-Visible Range

    DOE PAGES

    Guo, Peijun; Chang, Robert P. H.; Schaller, Richard D.

    2017-06-09

    Dynamic control of the optical response of materials at visible wavelengths is key to future metamaterials and photonic integrated circuits. Here we demonstrate large amplitude, negative optical nonlinearity (Δ n from -0.05 to -0.09) of indium oxide nanorod arrays in the full-visible range. We experimentally quantify and theoretically calculate the optical nonlinearity, which arises from the modifications of interband optical transitions. Furthermore, the approach towards negative optical nonlinearity can be generalized to other transparent semiconductors and opens door to reconfigurable, sub-wavelength optical components.

  20. Heteroepitaxial growth of tin-doped indium oxide films on single crystalline yttria stabilized zirconia substrates

    NASA Astrophysics Data System (ADS)

    Kamei, Masayuki; Yagami, Teruyuki; Takaki, Satoru; Shigesato, Yuzo

    1994-05-01

    Heteroepitaxial growth of tin-doped indium oxide (ITO) film was achieved for the first time by using single crystalline yttria stabilized zirconia (YSZ) as substrates. The epitaxial relationship between ITO film and YSZ substrate was ITO[100]∥YSZ[100]. By comparing the electrical properties of this epitaxial ITO film with that of a randomly oriented polycrystalline ITO film grown on a glass substrate, neither the large angle grain boundaries nor the crystalline orientation were revealed to be dominant in determining the carrier mobility in ITO films.

  1. The effect of magnetic field on the impurity binding energy of shallow donor impurities in a Ga1−xInxNyAs1−y/GaAs quantum well

    PubMed Central

    2012-01-01

    Using a variational approach, we have investigated the effects of the magnetic field, the impurity position, and the nitrogen and indium concentrations on impurity binding energy in a Ga1−xInxNyAs1−y/GaAs quantum well. Our calculations have revealed the dependence of impurity binding on the applied magnetic field, the impurity position, and the nitrogen and indium concentrations. PMID:23095253

  2. Anisotropic optical transmission of femtosecond laser induced periodic surface nanostructures on indium-tin-oxide films.

    PubMed

    Wang, Chih; Wang, Hsuan-I; Luo, Chih-Wei; Leu, Jihperng

    2012-09-03

    Two types of periodic nanostructures, self-organized nanodots and nanolines, were fabricated on the surfaces of indium-tin-oxide (ITO) films using femtosecond laser pulse irradiation. Multiple periodicities (approximately 800 nm and 400 nm) were clearly observed on the ITO films with nanodot and nanoline structures and were identified using two-dimensional Fourier transformation patterns. Both nanostructures show the anisotropic transmission characteristics in the visible range, which are strongly correlated with the geometry and the metallic content of the laser-induced nanostructures.

  3. Anisotropic optical transmission of femtosecond laser induced periodic surface nanostructures on indium-tin-oxide films

    PubMed Central

    Wang, Chih; Wang, Hsuan-I; Luo, Chih-Wei; Leu, Jihperng

    2012-01-01

    Two types of periodic nanostructures, self-organized nanodots and nanolines, were fabricated on the surfaces of indium-tin-oxide (ITO) films using femtosecond laser pulse irradiation. Multiple periodicities (approximately 800 nm and 400 nm) were clearly observed on the ITO films with nanodot and nanoline structures and were identified using two-dimensional Fourier transformation patterns. Both nanostructures show the anisotropic transmission characteristics in the visible range, which are strongly correlated with the geometry and the metallic content of the laser-induced nanostructures. PMID:23066167

  4. The 4d8-(4d74f + 4d76p + 4p54d9) transitions in the spectrum of five times ionized indium (In VI)

    NASA Astrophysics Data System (ADS)

    Ryabtsev, A. N.; Tauheed, A.; Swapnil; Kildiyarova, R. R.; Kononov, E. Ya

    2018-06-01

    The spectrum of five times ionized indium excited in a vacuum spark has been studied in the wavelength region 180-250 Å using a 3 m grazing incidence spectrograph. Transitions from highly excited interacting configurations 4d74f + 4d76p + 4p54d9 to the ground state 4d8 configuration were studied. 165 spectral lines were identified and 81 levels of the excited configurations were found.

  5. Indium phosphide-based monolithically integrated PIN waveguide photodiode readout for resonant cantilever sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siwak, N. P.; Laboratory for the Physical Sciences, 8050 Greenmead Drive, College Park, Maryland 20740; Fan, X. Z.

    2014-10-06

    An integrated photodiode displacement readout scheme for a microelectromechanical cantilever waveguide resonator sensing platform is presented. III-V semiconductors are used to enable the monolithic integration of passive waveguides with active optical components. This work builds upon previously demonstrated results by measuring the displacement of cantilever waveguide resonators with on-chip waveguide PIN photodiodes. The on-chip integration of the readout provides an additional 70% improvement in mass sensitivity compared to off-chip photodetector designs due to measurement stability and minimized coupling loss. In addition to increased measurement stability, reduced packaging complexity is achieved due to the simplicity of the readout design. We havemore » fabricated cantilever waveguides with integrated photodetectors and experimentally characterized these cantilever sensors with monolithically integrated PIN photodiodes.« less

  6. Toxicological and efficacy assessment of post-transition metal (Indium) phthalocyanine for photodynamic therapy in neuroblastoma

    PubMed Central

    Neagu, Monica; Constantin, Carolina; Tampa, Mircea; Matei, Clara; Lupu, Andreea; Manole, Emilia; Ion, Rodica-Mariana; Fenga, Concettina; Tsatsakis, Aristidis M.

    2016-01-01

    Metallo-phthalocyanines due to their photophysical characteristics as high yield of triplet state and long lifetimes, appear to be good candidates for photodynamic therapy (PDT). Complexes with diamagnetic metals such as Zn2+, Al3+ Ga3+ and In3+meet such requirements and are recognized as potential PDT agents. Clinically, Photofrin® PDT in neuroblastoma therapy proved in pediatric subjects diagnosed with progressive/recurrent malignant brain tumors increased progression free survival and overall survival outcome. Our study focuses on the dark toxicity testing of a Chloro-Indium-phthalocyanine photosensitizer (In-Pc) upon SH-SY5Y neuroblastoma cell line and its experimental in vitro PDT. Upon testing, In-Pc has shown a relatively high singlet oxygen quantum yield within the cells subjected to PDT (0.553), and 50 μg/mL IC50. Classical toxicological and efficacy assessment were completed with dynamic cellular impedance measurement methodology. Using this technology we have shown that long time incubation of neuroblastoma cell lines in In-Pc (over 5 days) does not significantly hinder cell proliferation when concentration are ≤ 10 μg/mL. When irradiating neuroblastoma cells loaded with non-toxic concentration of In-Pc, 50% of cells entered apoptosis. Transmission electron microscopy has confirmed apoptotic characteristics of cells. Investigating the proliferative capacity of the in vitro treated cells we have shown that cells that “escape” the irradiation protocol, present a reduced proliferative capacity. In conclusion, In-Pc represents another photosensitizer that can display sound PDT properties enhancing neuroblastoma therapy armentarium. PMID:27626486

  7. Toxicological and efficacy assessment of post-transition metal (Indium) phthalocyanine for photodynamic therapy in neuroblastoma.

    PubMed

    Neagu, Monica; Constantin, Carolina; Tampa, Mircea; Matei, Clara; Lupu, Andreea; Manole, Emilia; Ion, Rodica-Mariana; Fenga, Concettina; Tsatsakis, Aristidis M

    2016-10-25

    Metallo-phthalocyanines due to their photophysical characteristics as high yield of triplet state and long lifetimes, appear to be good candidates for photodynamic therapy (PDT). Complexes with diamagnetic metals such as Zn2+, Al3+ Ga3+ and In3+meet such requirements and are recognized as potential PDT agents. Clinically, Photofrin® PDT in neuroblastoma therapy proved in pediatric subjects diagnosed with progressive/recurrent malignant brain tumors increased progression free survival and overall survival outcome. Our study focuses on the dark toxicity testing of a Chloro-Indium-phthalocyanine photosensitizer (In-Pc) upon SH-SY5Y neuroblastoma cell line and its experimental in vitro PDT. Upon testing, In-Pc has shown a relatively high singlet oxygen quantum yield within the cells subjected to PDT (0.553), and 50 μg/mL IC50. Classical toxicological and efficacy assessment were completed with dynamic cellular impedance measurement methodology. Using this technology we have shown that long time incubation of neuroblastoma cell lines in In-Pc (over 5 days) does not significantly hinder cell proliferation when concentration are ≤ 10 μg/mL. When irradiating neuroblastoma cells loaded with non-toxic concentration of In-Pc, 50% of cells entered apoptosis. Transmission electron microscopy has confirmed apoptotic characteristics of cells. Investigating the proliferative capacity of the in vitro treated cells we have shown that cells that "escape" the irradiation protocol, present a reduced proliferative capacity. In conclusion, In-Pc represents another photosensitizer that can display sound PDT properties enhancing neuroblastoma therapy armentarium.

  8. Spectroscopic ellipsometry characterization of ZnO:Sn thin films with various Sn composition deposited by remote-plasma reactive sputtering

    NASA Astrophysics Data System (ADS)

    Janicek, Petr; Niang, Kham M.; Mistrik, Jan; Palka, Karel; Flewitt, Andrew J.

    2017-11-01

    ZnO:Sn thin films were deposited onto thermally oxidized silicon substrates using a remote plasma reactive sputtering. Their optical constants (refractive index n and extinction coefficient k) were determined from ellipsometric data recorded over a wide spectral range (0.05-6 eV). Parametrization of ZnO:Sn complex dielectric permittivity consists of a parameterized semiconductor oscillator function describing the short wavelength absorption edge, a Drude oscillator describing free carrier absorption in near-infrared part of spectra and a Lorentz oscillator describing the long wavelength absorption edge and intra-band absorption in the ultra-violet part of the spectra. Using a Mott-Davis model, the increase in local disorder with increasing Sn doping is quantified from the short wavelength absorption edge onset. Using the Wemple-DiDomenico single oscillator model for the transparent part of the optical constants spectra, an increase in the centroid distance of the valence and conduction bands with increasing Sn doping is shown and only slight increase in intensity of the inter-band optical transition due to Sn doping occurs. The Drude model applied in the near-infrared part of the spectra revealed the free carrier concentration and mobility of ZnO:Sn. Results show that the range of transparency of prepared ZnO:Sn layers is not dramatically affected by Sn doping whereas electrical conductivity could be controlled by Sn doping. Refractive index in the transparent part is comparable with amorphous Indium Gallium Zinc Oxide allowing utilization of prepared ZnO:Sn layers as an indium-free alternative.

  9. Real Time Spectroscopic Ellipsometry Analysis of First Stage CuIn1−xGaxSe2 Growth: Indium-Gallium Selenide Co-Evaporation

    PubMed Central

    Pradhan, Puja; Aryal, Puruswottam; Attygalle, Dinesh; Ibdah, Abdel-Rahman; Koirala, Prakash; Li, Jian; Bhandari, Khagendra P.; Liyanage, Geethika K.; Ellingson, Randy J.; Heben, Michael J.; Marsillac, Sylvain; Collins, Robert W.; Podraza, Nikolas J.

    2018-01-01

    Real time spectroscopic ellipsometry (RTSE) has been applied for in-situ monitoring of the first stage of copper indium-gallium diselenide (CIGS) thin film deposition by the three-stage co-evaporation process used for fabrication of high efficiency thin film photovoltaic (PV) devices. The first stage entails the growth of indium-gallium selenide (In1−xGax)2Se3 (IGS) on a substrate of Mo-coated soda lime glass maintained at a temperature of 400 °C. This is a critical stage of CIGS deposition because a large fraction of the final film thickness is deposited, and as a result precise compositional control is desired in order to achieve the optimum performance of the resulting CIGS solar cell. RTSE is sensitive to monolayer level film growth processes and can provide accurate measurements of bulk and surface roughness layer thicknesses. These in turn enable accurate measurements of the bulk layer optical response in the form of the complex dielectric function ε = ε1 − iε2, spectra. Here, RTSE has been used to obtain the (ε1, ε2) spectra at the measurement temperature of 400 °C for IGS thin films of different Ga contents (x) deduced from different ranges of accumulated bulk layer thickness during the deposition process. Applying an analytical expression in common for each of the (ε1, ε2) spectra of these IGS films, oscillator parameters have been obtained in the best fits and these parameters in turn have been fitted with polynomials in x. From the resulting database of polynomial coefficients, the (ε1, ε2) spectra can be generated for any composition of IGS from the single parameter, x. The results have served as an RTSE fingerprint for IGS composition and have provided further structural information beyond simply thicknesses, for example information related to film density and grain size. The deduced IGS structural evolution and the (ε1, ε2) spectra have been interpreted as well in relation to observations from scanning electron microscopy, X-ray diffractometry and energy-dispersive X-ray spectroscopy profiling analyses. Overall the structural, optical and compositional analysis possible by RTSE has assisted in understanding the growth and properties of three stage CIGS absorbers for solar cells and shows future promise for enhancing cell performance through monitoring and control. PMID:29337931

  10. Real Time Spectroscopic Ellipsometry Analysis of First Stage CuIn1-xGaxSe₂ Growth: Indium-Gallium Selenide Co-Evaporation.

    PubMed

    Pradhan, Puja; Aryal, Puruswottam; Attygalle, Dinesh; Ibdah, Abdel-Rahman; Koirala, Prakash; Li, Jian; Bhandari, Khagendra P; Liyanage, Geethika K; Ellingson, Randy J; Heben, Michael J; Marsillac, Sylvain; Collins, Robert W; Podraza, Nikolas J

    2018-01-16

    Real time spectroscopic ellipsometry (RTSE) has been applied for in-situ monitoring of the first stage of copper indium-gallium diselenide (CIGS) thin film deposition by the three-stage co-evaporation process used for fabrication of high efficiency thin film photovoltaic (PV) devices. The first stage entails the growth of indium-gallium selenide (In 1- x Ga x )₂Se₃ (IGS) on a substrate of Mo-coated soda lime glass maintained at a temperature of 400 °C. This is a critical stage of CIGS deposition because a large fraction of the final film thickness is deposited, and as a result precise compositional control is desired in order to achieve the optimum performance of the resulting CIGS solar cell. RTSE is sensitive to monolayer level film growth processes and can provide accurate measurements of bulk and surface roughness layer thicknesses. These in turn enable accurate measurements of the bulk layer optical response in the form of the complex dielectric function ε = ε₁ - iε₂, spectra. Here, RTSE has been used to obtain the (ε₁, ε₂) spectra at the measurement temperature of 400 °C for IGS thin films of different Ga contents ( x ) deduced from different ranges of accumulated bulk layer thickness during the deposition process. Applying an analytical expression in common for each of the (ε₁, ε₂) spectra of these IGS films, oscillator parameters have been obtained in the best fits and these parameters in turn have been fitted with polynomials in x . From the resulting database of polynomial coefficients, the (ε₁, ε₂) spectra can be generated for any composition of IGS from the single parameter, x . The results have served as an RTSE fingerprint for IGS composition and have provided further structural information beyond simply thicknesses, for example information related to film density and grain size. The deduced IGS structural evolution and the (ε₁, ε₂) spectra have been interpreted as well in relation to observations from scanning electron microscopy, X-ray diffractometry and energy-dispersive X-ray spectroscopy profiling analyses. Overall the structural, optical and compositional analysis possible by RTSE has assisted in understanding the growth and properties of three stage CIGS absorbers for solar cells and shows future promise for enhancing cell performance through monitoring and control.

  11. Improvement of Self-Heating of Indium Gallium Zinc Aluminum Oxide Thin-Film Transistors Using Al2O3 Barrier Layer

    NASA Astrophysics Data System (ADS)

    Jian, Li-Yi; Lee, Hsin-Ying; Lin, Yung-Hao; Lee, Ching-Ting

    2018-02-01

    To study the self-heating effect, aluminum oxide (Al2O3) barrier layers of various thicknesses have been inserted between the channel layer and insulator layer in bottom-gate-type indium gallium zinc aluminum oxide (IGZAO) thin-film transistors (TFTs). Each IGZAO channel layer was deposited on indium tin oxide (ITO)-coated glass substrate by using a magnetron radiofrequency cosputtering system with dual targets composed of indium gallium zinc oxide (IGZO) and Al. The 3 s orbital of Al cation provided an extra transport pathway and widened the conduction-band bottom, thus increasing the electron mobility of the IGZAO films. The Al-O bonds were able to sustain the oxygen stability of the IGZAO films. The self-heating behavior of the resulting IGZAO TFTs was studied by Hall measurements on the IGZAO films as well as the electrical performance of the IGZAO TFTs with Al2O3 barrier layers of various thicknesses at different temperatures. IGZAO TFTs with 50-nm-thick Al2O3 barrier layer were stressed by positive gate bias stress (PGBS, at gate-source voltage V GS = 5 V and drain-source voltage V DS = 0 V); at V GS = 5 V and V DS = 10 V, the threshold voltage shifts were 0.04 V and 0.2 V, respectively, much smaller than for the other IGZAO TFTs without Al2O3 barrier layer, which shifted by 0.2 V and 1.0 V when stressed under the same conditions.

  12. Indium Phosphide Window Layers for Indium Gallium Arsenide Solar Cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.

    2005-01-01

    Window layers help in reducing the surface recombination at the emitter surface of the solar cells resulting in significant improvement in energy conversion efficiency. Indium gallium arsenide (In(x)Ga(1-x)As) and related materials based solar cells are quite promising for photovoltaic and thermophotovoltaic applications. The flexibility of the change in the bandgap energy and the growth of InGaAs on different substrates make this material very attractive for multi-bandgap energy, multi-junction solar cell approaches. The high efficiency and better radiation performance of the solar cell structures based on InGaAs make them suitable for space power applications. This work investigates the suitability of indium phosphide (InP) window layers for lattice-matched In(0.53)Ga(0.47)As (bandgap energy 0.74 eV) solar cells. We present the first data on the effects of the p-type InP window layer on p-on-n lattice-matched InGaAs solar cells. The modeled quantum efficiency results show a significant improvement in the blue region with the InP window. The bare InGaAs solar cell performance suffers due to high surface recombination velocity (10(exp 7) cm/s). The large band discontinuity at the InP/InGaAs heterojunction offers a great potential barrier to minority carriers. The calculated results demonstrate that the InP window layer effectively passivates the solar cell front surface, hence resulting in reduced surface recombination and therefore, significantly improving the performance of the InGaAs solar cell.

  13. Data availability and the need for research to localize, quantify and recycle critical metals in information technology, telecommunication and consumer equipment.

    PubMed

    Chancerel, Perrine; Rotter, Vera Susanne; Ueberschaar, Maximilian; Marwede, Max; Nissen, Nils F; Lang, Klaus-Dieter

    2013-10-01

    The supply of critical metals like gallium, germanium, indium and rare earths elements (REE) is of technological, economic and strategic relevance in the manufacturing of electrical and electronic equipment (EEE). Recycling is one of the key strategies to secure the long-term supply of these metals. The dissipation of the metals related to the low concentrations in the products and to the configuration of the life cycle (short use time, insufficient collection, treatment focusing on the recovery of other materials) creates challenges to achieve efficient recycling. This article assesses the available data and sets priorities for further research aimed at developing solutions to improve the recycling of seven critical metals or metal families (antimony, cobalt, gallium, germanium, indium, REE and tantalum). Twenty-six metal applications were identified for those six metals and the REE family. The criteria used for the assessment are (i) the metal criticality related to strategic and economic issues; (ii) the share of the worldwide mine or refinery production going to EEE manufacturing; (iii) rough estimates of the concentration and the content of the metals in the products; (iv) the accuracy of the data already available; and (v) the occurrence of the application in specific WEEE groups. Eight applications were classified as relevant for further research, including the use of antimony as a flame retardant, gallium and germanium in integrated circuits, rare earths in phosphors and permanent magnets, cobalt in batteries, tantalum capacitors and indium as an indium-tin-oxide transparent conductive layer in flat displays.

  14. Structural, electronic, and thermal properties of indium-filled InxIr4Sb12 skutterudites

    NASA Astrophysics Data System (ADS)

    Wallace, M. K.; Li, Jun; Subramanian, M. A.

    2018-06-01

    The "phonon-glass/electron-crystal" approach has been implemented through incorporation of "rattlers" into skutterudite void sites to increase phonon scattering and thus increase the thermoelectric efficiency. Indium filled IrSb3 skutterudites are reported for the first time. Polycrystalline samples of InxIr4Sb12 (0 ≤ x ≤ 0.2) were prepared by solid-state reaction under a gas mixture of 5% H2 and 95% Ar. The solubility limit of InxIr4Sb12 was found to be close to 0.18. Synchrotron X-ray diffraction refinements reveal all InxIr4Sb12 phases crystallized in body-centered cubic structure (space group : Im 3 bar) with ∼8% antimony site vacancy and with indium partially occupying the 16f site. Unlike known rattler filled skutterudites, under synthetic conditions employed, indium filling in IrSb3 significantly increases the electrical resistivity and decreases the Seebeck coefficient (n-type) while reducing the thermal conductivity by ∼30%. The resultant power factor offsets the decrease in total thermal conductivity giving rise to a substantial decrease in ZT. Principal thermoelectric properties of InxM4Sb12 (M = Co, Rh, Ir) phases are compared. As iridium is a 5d transition metal, zero field cooled (ZFC) magnetization were performed to unravel the effect of spin-orbit interaction on the electronic properties. These results serve to advance the understanding of filled skutterudites, and provide additional insight on the less explored smaller "rattlers" and their influence on key thermoelectric properties.

  15. Synthesis and superconductivity of In-doped SnTe nanostructures

    DOE PAGES

    Kumaravadivel, Piranavan; Pan, Grace A.; Zhou, Yu; ...

    2017-07-01

    In xSn 1-xTe is a time-reversal invariant candidate 3D topological superconductor derived from doping the topological crystalline insulator SnTe with indium. The ability to synthesize low-dimensional nanostructures of indium-doped SnTe is key for realizing the promise they hold in future spintronic and quantum information processing applications. But hitherto only bulk synthesized crystals and nanoplates have been used to study the superconducting properties. Here for the first time we synthesize In xSn 1-xTe nanostructures including nanowires and nanoribbons, which show superconducting transitions. In some of the lower dimensional morphologies, we observe signs of more than one superconducting transition and the absencemore » of complete superconductivity. We propose that material inhomogeneity, such as indium inhomogeneity and possible impurities from the metal catalyst, is amplified in the transport characteristics of the smaller nanostructures and is responsible for this mixed behavior. Our work represents the first demonstration of In xSn 1-xTe nanowires with the onset of superconductivity, and points to the need for improving the material quality for future applications« less

  16. Effect of thermal annealing on structural and optical properties of In{sub 2}S{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, Sonu, E-mail: sonuchoudhary1983@gmail.com

    2015-08-28

    There is a highly need of an alternate of toxic materials CdS for solar cell applications and indium sulfide is found the most suitable candidate to replace CdS due to its non-toxic and environmental friendly nature. In this paper, the effect of thermal annealing on the structural and optical properties of indium sulfide (In{sub 2}S{sub 3}) thin films is undertaken. The indium sulfide thin films of 121 nm were deposited on glass substrates employing thermal evaporation method. The films were subjected to the X-ray diffractometer and UV-Vis spectrophotometer respectively for structural and optical analysis. The XRD pattern show that themore » as-deposited thin film was amorphous in nature and crystallinity is found to be varied with annealing temperature. The optical analysis reveals that the optical band gap is varied with annealing. The optical parameters like absorption coefficient, extinction coefficient and refractive index were calculated. The results are in good agreement with available literature.« less

  17. Synthesis and superconductivity of In-doped SnTe nanostructures

    NASA Astrophysics Data System (ADS)

    Kumaravadivel, Piranavan; Pan, Grace A.; Zhou, Yu; Xie, Yujun; Liu, Pengzi; Cha, Judy J.

    2017-07-01

    InxSn1-xTe is a time-reversal invariant candidate 3D topological superconductor derived from doping the topological crystalline insulator SnTe with indium. The ability to synthesize low-dimensional nanostructures of indium-doped SnTe is key for realizing the promise they hold in future spintronic and quantum information processing applications. But hitherto only bulk synthesized crystals and nanoplates have been used to study the superconducting properties. Here for the first time we synthesize InxSn1-xTe nanostructures including nanowires and nanoribbons, which show superconducting transitions. In some of the lower dimensional morphologies, we observe signs of more than one superconducting transition and the absence of complete superconductivity. We propose that material inhomogeneity, such as indium inhomogeneity and possible impurities from the metal catalyst, is amplified in the transport characteristics of the smaller nanostructures and is responsible for this mixed behavior. Our work represents the first demonstration of InxSn1-xTe nanowires with the onset of superconductivity, and points to the need for improving the material quality for future applications.

  18. Theoretical study on the electronic and optical properties of bulk and surface (001) InxGa1-xAs

    NASA Astrophysics Data System (ADS)

    Liu, XueFei; Ding, Zhao; Luo, ZiJiang; Zhou, Xun; Wei, JieMin; Wang, Yi; Guo, Xiang; Lang, QiZhi

    2018-05-01

    The optical properties of surface and bulk InxGa1-xAs materials are compared systematically first time in this paper. The band structures, density of states and optical properties including dielectric function, reflectivity, absorption coefficient, loss function and refractive index of bulk and surface InxGa1-xAs materials are investigated by first-principles based on plane-wave pseudo-potentials method within the LDA approximation. The results agree well with the available theoretical and experimental studies and indicate that the electronic and optical properties of bulk and surface InxGa1-xAs materials are much different, and the results show that the considered optical properties of the both materials vary with increasing indium composition in an opposite way. The calculations show that the optical properties of surface In0.75Ga0.25As material are unexpected to be far from the other two indium compositions of surface InxGa1-xAs materials while the optical properties of bulk InxGa1-xAs materials vary with increasing indium composition in an expected regular way.

  19. Dependence of Laminar Flow Fluctuation on Indium Composition in In0.07GaAs/GaAs Quantum Wells for 940-nm Infrared Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Kwang; Lee, Hyung-Joo; An, Won-Chan; Kim, Hong-Gun; Kwac, Lee-Ku

    2018-05-01

    The effect of laminar flow fluctuation on the indium composition of In0.07GaAs quantum wells was investigated in order to obtain a higher output power from infrared lighting-emitting diodes (IR-LEDs) having a 940-nm wavelength. By controlling the injection pressure, we obtained various laminar flow conditions. Through subsequent photoluminescence (PL) and X-ray diffraction (XRD) measurements, a noticeable improvement in the optical and the crystalline characteristics of the In0.07GaAs quantum wells was observed at an optimum laminar flow. This result could be attributed to a reduction of non-crystallization in InGaAs quantum wells that had their indium composition improved via the optimized laminar flow. Overall, a significantly improved output power (11.2 mW) was obtained from a 940-nm IR-LED chip fabricated at an optimum laminar flow of 500 sccm, and a remarkable increase of approximately 250% was displayed compared to a conventional chip (3.9 mW) fabricated at a laminar flow of 100 sccm.

  20. Optical and Electrical Performance of MOS-Structure Silicon Solar Cells with Antireflective Transparent ITO and Plasmonic Indium Nanoparticles under Applied Bias Voltage.

    PubMed

    Ho, Wen-Jeng; Sue, Ruei-Siang; Lin, Jian-Cheng; Syu, Hong-Jang; Lin, Ching-Fuh

    2016-08-10

    This paper reports impressive improvements in the optical and electrical performance of metal-oxide-semiconductor (MOS)-structure silicon solar cells through the incorporation of plasmonic indium nanoparticles (In-NPs) and an indium-tin-oxide (ITO) electrode with periodic holes (perforations) under applied bias voltage. Samples were prepared using a plain ITO electrode or perforated ITO electrode with and without In-NPs. The samples were characterized according to optical reflectance, dark current voltage, induced capacitance voltage, external quantum efficiency, and photovoltaic current voltage. Our results indicate that induced capacitance voltage and photovoltaic current voltage both depend on bias voltage, regardless of the type of ITO electrode. Under a bias voltage of 4.0 V, MOS cells with perforated ITO and plain ITO, respectively, presented conversion efficiencies of 17.53% and 15.80%. Under a bias voltage of 4.0 V, the inclusion of In-NPs increased the efficiency of cells with perforated ITO and plain ITO to 17.80% and 16.87%, respectively.

  1. Generation of laser-induced periodic surface structures in indium-tin-oxide thin films and two-photon lithography of ma-N photoresist by sub-15 femtosecond laser microscopy for liquid crystal cell application

    NASA Astrophysics Data System (ADS)

    Klötzer, Madlen; Afshar, Maziar; Feili, Dara; Seidel, Helmut; König, Karsten; Straub, Martin

    2015-03-01

    Indium-tin-oxide (ITO) is a widely used electrode material for liquid crystal cell applications because of its transparency in the visible spectral range and its high electrical conductivity. Important examples of applications are displays and optical phase modulators. We report on subwavelength periodic structuring and precise laser cutting of 150 nm thick indium-tin-oxide films on glass substrates, which were deposited by magnetron reactive DC-sputtering from an indiumtin target in a low-pressure oxygen atmosphere. In order to obtain nanostructured electrodes laser-induced periodic surface structures with a period of approximately 100 nm were generated using tightly focused high-repetition rate sub-15 femtosecond pulsed Ti:sapphire laser light, which was scanned across the sample by galvanometric mirrors. Three-dimensional spacers were produced by multiphoton photopolymerization in ma-N 2410 negative-tone photoresist spin-coated on top of the ITO layers. The nanostructured electrodes were aligned in parallel to set up an electrically switchable nematic liquid crystal cell.

  2. Indium oxide co-doped with tin and zinc: A simple route to highly conducting high density targets for TCO thin-film fabrication

    NASA Astrophysics Data System (ADS)

    Saadeddin, I.; Hilal, H. S.; Decourt, R.; Campet, G.; Pecquenard, B.

    2012-07-01

    Indium oxide co-doped with tin and zinc (ITZO) ceramics have been successfully prepared by direct sintering of the powders mixture at 1300 °C. This allowed us to easily fabricate large highly dense target suitable for sputtering transparent conducting oxide (TCO) films, without using any cold or hot pressing techniques. Hence, the optimized ITZO ceramic reaches a high relative bulk density (˜ 92% of In2O3 theoretical density) and higher than the well-known indium oxide doped with tin (ITO) prepared under similar conditions. All X-ray diagrams obtained for ITZO ceramics confirms a bixbyte structure typical for In2O3 only. This indicates a higher solubility limit of Sn and Zn when they are co-doped into In2O3 forming a solid-solution. A very low value of electrical resistivity is obtained for [In2O3:Sn0.10]:Zn0.10 (1.7 × 10-3 Ω cm, lower than ITO counterpart) which could be fabricated to high dense ceramic target suing pressure-less sintering.

  3. Characterization of Gallium Indium Phosphide and Progress of Aluminum Gallium Indium Phosphide System Quantum-Well Laser Diode.

    PubMed

    Hamada, Hiroki

    2017-07-28

    Highly ordered gallium indium phosphide layers with the low bandgap have been successfully grown on the (100) GaAs substrates, the misorientation toward [01-1] direction, using the low-pressure metal organic chemical vapor deposition method. It is found that the optical properties of the layers are same as those of the disordered ones, essentially different from the ordered ones having two orientations towards [1-11] and [11-1] directions grown on (100) gallium arsenide substrates, which were previously reported. The bandgap at 300 K is 1.791 eV. The value is the smallest ever reported, to our knowledge. The high performance transverse stabilized AlGaInP laser diodes with strain compensated quantum well structure, which is developed in 1992, have been successfully obtained by controlling the misorientation angle and directions of GaAs substrates. The structure is applied to quantum dots laser diodes. This paper also describes the development history of the quantum well and the quantum dots laser diodes, and their future prospects.

  4. Analysis of indium zinc oxide thin films by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Popescu, A. C.; Beldjilali, S.; Socol, G.; Craciun, V.; Mihailescu, I. N.; Hermann, J.

    2011-10-01

    We have performed spectroscopic analysis of the plasma generated by Nd:YAG (λ = 266 nm) laser irradiation of thin indium zinc oxide films with variable In content deposited by combinatorial pulsed laser deposition on glass substrates. The samples were irradiated in 5 × 104 Pa argon using laser pulses of 5 ns duration and 10 mJ energy. The plasma emission spectra were recorded with an Echelle spectrometer coupled to a gated detector with different delays with respect to the laser pulse. The relative concentrations of indium and zinc were evaluated by comparing the measured spectra to the spectral radiance computed for a plasma in local thermal equilibrium. Plasma temperature and electron density were deduced from the relative intensities and Stark broadening of spectral lines of atomic zinc. Analyses at different locations on the deposited thin films revealed that the In/(In + Zn) concentration ratio significantly varies over the sample surface, from 0.4 at the borders to about 0.5 in the center of the film. The results demonstrate that laser-induced breakdown spectroscopy allows for precise and fast characterization of thin films with variable composition.

  5. Optically transparent thin-film transistors based on 2D multilayer MoS₂ and indium zinc oxide electrodes.

    PubMed

    Kwon, Junyeon; Hong, Young Ki; Kwon, Hyuk-Jun; Park, Yu Jin; Yoo, Byungwook; Kim, Jiwan; Grigoropoulos, Costas P; Oh, Min Suk; Kim, Sunkook

    2015-01-21

    We report on optically transparent thin film transistors (TFTs) fabricated using multilayered molybdenum disulfide (MoS2) as the active channel, indium tin oxide (ITO) for the back-gated electrode and indium zinc oxide (IZO) for the source/drain electrodes, respectively, which showed more than 81% transmittance in the visible wavelength. In spite of a relatively large Schottky barrier between MoS2 and IZO, the n-type behavior with a field-effect mobility (μ(eff)) of 1.4 cm(2) V(-1) s(-1) was observed in as-fabricated transparent MoS2 TFT. In order to enhance the performances of transparent MoS2 TFTs, a picosecond pulsed laser was selectively irradiated onto the contact region of the IZO electrodes. Following laser annealing, μ(eff) increased to 4.5 cm(2) V(-1) s(-1), and the on-off current ratio (I(on)/I(off)) increased to 10(4), which were attributed to the reduction of the contact resistance between MoS2 and IZO.

  6. Auger electron spectroscopy study of surface segregation in the binary alloys copper-1 atomic percent indium, copper-2 atomic percent tin, and iron-6.55 atomic percent silicon

    NASA Technical Reports Server (NTRS)

    Ferrante, J.

    1973-01-01

    Auger electron spectroscopy was used to examine surface segregation in the binary alloys copper-1 at. % indium, copper-2 at. % tin and iron-6.55 at. % silicon. The copper-tin and copper-indium alloys were single crystals oriented with the /111/ direction normal to the surface. An iron-6.5 at. % silicon alloy was studied (a single crystal oriented in the /100/ direction for study of a (100) surface). It was found that surface segregation occurred following sputtering in all cases. Only the iron-silicon single crystal alloy exhibited equilibrium segregation (i.e., reversibility of surface concentration with temperature) for which at present we have no explanation. McLean's analysis for equilibrium segregation at grain boundaries did not apply to the present results, despite the successful application to dilute copper-aluminum alloys. The relation of solute atomic size and solubility to surface segregation is discussed. Estimates of the depth of segregation in the copper-tin alloy indicate that it is of the order of a monolayer surface film.

  7. Synthesis of indium phosphide nanocrystals by sonochemical method and survey of optical properties

    NASA Astrophysics Data System (ADS)

    Trung, Ho Minh; Duy Thien, Nguyen; Van Vu, Le; Long, Nguyen Ngoc; Hieu, Truong Kim

    2013-10-01

    Indium phosphide semiconductor materials (InP) have various applications in the field of semiconductor optoelectronics because of its advantages. But the making of this material is difficult due to the very weak chemical activity of In element. In this report we present a simple method to synthesize InP nanocrystals from inorganic precursors such as indium chloride (InCl3), yellow phosphorus (P4), reduction agent NaBH4 at low temperature with the aid of ultrasound. Structural, morphological and optical properties of the formed InP nanocrystals were examined by transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersed X-ray analysis (EDS), Raman scattering, absorption and photoluminscence (PL) spectroscopy. After the surface treatment of InP nanocrystals with liquid hydrofluoric (HF) acid, the luminescence spectra have an enhanced intensity and consist of the peaks in the region from 500 nm to 700 nm. The intensity of these peaks strongly depends on the concentration and etching time of HF. International Workshop on Advanced Materials and Nanotechnology 2012 (IWAMN 2012).

  8. Optical and Electrical Performance of MOS-Structure Silicon Solar Cells with Antireflective Transparent ITO and Plasmonic Indium Nanoparticles under Applied Bias Voltage

    PubMed Central

    Ho, Wen-Jeng; Sue, Ruei-Siang; Lin, Jian-Cheng; Syu, Hong-Jang; Lin, Ching-Fuh

    2016-01-01

    This paper reports impressive improvements in the optical and electrical performance of metal-oxide-semiconductor (MOS)-structure silicon solar cells through the incorporation of plasmonic indium nanoparticles (In-NPs) and an indium-tin-oxide (ITO) electrode with periodic holes (perforations) under applied bias voltage. Samples were prepared using a plain ITO electrode or perforated ITO electrode with and without In-NPs. The samples were characterized according to optical reflectance, dark current voltage, induced capacitance voltage, external quantum efficiency, and photovoltaic current voltage. Our results indicate that induced capacitance voltage and photovoltaic current voltage both depend on bias voltage, regardless of the type of ITO electrode. Under a bias voltage of 4.0 V, MOS cells with perforated ITO and plain ITO, respectively, presented conversion efficiencies of 17.53% and 15.80%. Under a bias voltage of 4.0 V, the inclusion of In-NPs increased the efficiency of cells with perforated ITO and plain ITO to 17.80% and 16.87%, respectively. PMID:28773801

  9. Effective absorption correction for energy dispersive X-ray mapping in a scanning transmission electron microscope: analysing the local indium distribution in rough samples of InGaN alloy layers.

    PubMed

    Wang, X; Chauvat, M-P; Ruterana, P; Walther, T

    2017-12-01

    We have applied our previous method of self-consistent k*-factors for absorption correction in energy-dispersive X-ray spectroscopy to quantify the indium content in X-ray maps of thick compound InGaN layers. The method allows us to quantify the indium concentration without measuring the sample thickness, density or beam current, and works even if there is a drastic local thickness change due to sample roughness or preferential thinning. The method is shown to select, point-by-point in a two-dimensional spectrum image or map, the k*-factor from the local Ga K/L intensity ratio that is most appropriate for the corresponding sample geometry, demonstrating it is not the sample thickness measured along the electron beam direction but the optical path length the X-rays have to travel through the sample that is relevant for the absorption correction. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  10. Characterization of Gallium Indium Phosphide and Progress of Aluminum Gallium Indium Phosphide System Quantum-Well Laser Diode

    PubMed Central

    Hamada, Hiroki

    2017-01-01

    Highly ordered gallium indium phosphide layers with the low bandgap have been successfully grown on the (100) GaAs substrates, the misorientation toward [01−1] direction, using the low-pressure metal organic chemical vapor deposition method. It is found that the optical properties of the layers are same as those of the disordered ones, essentially different from the ordered ones having two orientations towards [1−11] and [11−1] directions grown on (100) gallium arsenide substrates, which were previously reported. The bandgap at 300 K is 1.791 eV. The value is the smallest ever reported, to our knowledge. The high performance transverse stabilized AlGaInP laser diodes with strain compensated quantum well structure, which is developed in 1992, have been successfully obtained by controlling the misorientation angle and directions of GaAs substrates. The structure is applied to quantum dots laser diodes. This paper also describes the development history of the quantum well and the quantum dots laser diodes, and their future prospects. PMID:28773227

  11. In vitro corrosion behaviour and microhardness of high-copper amalgams with platinum and indium.

    PubMed

    Ilikli, B G; Aydin, A; Işimer, A; Alpaslan, G

    1999-02-01

    Samples prepared from Luxalloy, GS-80, Permite-C and Logic and polished after 24 h by traditional methods were stored in polypropylene tubes containing phosphate-buffered saline solutions (pH 3.5 and 6.5) and distilled water. The amounts of mercury, silver, tin, copper, zinc, platinum and indium in the test solutions were determined at the first, second, eighth, 52nd and 78th week by atomic absorption spectrometry. At the end of the eighth week the amalgam samples were removed from solutions and evaluated by Rockwell Super Scial Microhardness tester. Statistically significant low amounts of metal ions were measured for Permite-C containing indium and Logic containing platinum. The microhardness test results showed that there were statistically significant increases in the microhardness of Permite-C and Logic. As a result it was shown that the amalgam samples were affected from corrosion conditions to different degrees. Sample of the Logic group that was stored in distilled water, showed smoother surface properties than other amalgam samples containing high copper. However, it was observed that samples of Permite-C group had the smoothest surface properties.

  12. An experimental investigation of creep and viscoelastic properties using depth-sensing indentation techniques

    NASA Astrophysics Data System (ADS)

    Lucas, Barry Neal

    Indentation Creep. Using depth-sensing indentation techniques at both room and elevated temperatures, the dependency of the indentation hardness on the variables of indentation strain rate and temperature, and the existence of a steady state behavior in an indentation creep test with a Berkovich indenter were investigated. The indentation creep response of five materials, Pb-65 at% In (at RT), high purity indium (from RT to 75sp°C), high purity aluminum (from RT to 250sp°C), an amorphous alumina film (at RT), and sapphire (at RT), was measured. It was shown that the indentation strain rate, defined as h/h, could be held constant during an experiment using a Berkovich indenter by controlling the loading rate such that the loading rate divided by the load, P/P, remained constant. The temperature dependence of indentation creep in indium and aluminum was found to be the same as that for uniaxial creep. By performing P/P change experiments, it was shown that a steady state path independent hardness could be reached in an indentation test with a Berkovich indenter. Viscoelasticity. Using a frequency specific dynamic indentation technique, a method to measure the linear viscoelastic properties of polymers was determined. The polymer tested was poly-cis 1,4-isoprene. By imposing a small harmonic force excitation on the specimen during the indentation process and measuring the displacement response at the same frequency, the complex modulus, G*, of the polymer was determined. The portion of the displacement signal "in phase" with the excitation represents the elastic response of the contact and is related to the stiffness, S, of the contact and to the storage modulus, Gsp', of the material. The "out of phase" portion of the displacement signal represents the damping, Comega where omega = 2 pi f, of the contact, and thus the loss modulus, Gsp{''}, of the material. It was shown that both the storage, S, and loss, Comega components of the response scale as the respective component of the complex modulus multiplied by the square root of the contact area.

  13. Interaction potential for indium phosphide: a molecular dynamics and first-principles study of the elastic constants, generalized stacking fault and surface energies.

    PubMed

    Branicio, Paulo Sergio; Rino, José Pedro; Gan, Chee Kwan; Tsuzuki, Hélio

    2009-03-04

    Indium phosphide is investigated using molecular dynamics (MD) simulations and density-functional theory calculations. MD simulations use a proposed effective interaction potential for InP fitted to a selected experimental dataset of properties. The potential consists of two- and three-body terms that represent atomic-size effects, charge-charge, charge-dipole and dipole-dipole interactions as well as covalent bond bending and stretching. Predictions are made for the elastic constants as a function of density and temperature, the generalized stacking fault energy and the low-index surface energies.

  14. Allergic contact dermatitis to indium in jewellery: diagnosis made possible through the use of the Contact Allergen Bank Australia.

    PubMed

    Gamboni, Sarah E; Simmons, Ivan; Palmer, Amanda; Nixon, Rosemary L

    2013-05-01

    We report a case of a 39-year-old woman from Adelaide who developed allergic contact dermatitis to the rare allergen indium in her ring. The allergen was sourced for patch testing using the Contact Allergen Bank Australia (CABA), based at the Skin and Cancer Foundation in Melbourne, and posted to Adelaide. This case illustrates the usefulness of CABA in facilitating patch testing throughout Australia, especially when rare allergens are involved. © 2013 The Authors. Australasian Journal of Dermatology © 2013 The Australasian College of Dermatologists.

  15. Cyclic etching of tin-doped indium oxide using hydrogen-induced modified layer

    NASA Astrophysics Data System (ADS)

    Hirata, Akiko; Fukasawa, Masanaga; Nagahata, Kazunori; Li, Hu; Karahashi, Kazuhiro; Hamaguchi, Satoshi; Tatsumi, Tetsuya

    2018-06-01

    The rate of etching of tin-doped indium oxide (ITO) and the effects of a hydrogen-induced modified layer on cyclic, multistep thin-layer etching were investigated. It was found that ITO cyclic etching is possible by precisely controlling the hydrogen-induced modified layer. Highly selective etching of ITO/SiO2 was also investigated, and it was suggested that cyclic etching by selective surface adsorption of Si can precisely control the etch rates of ITO and SiO2, resulting in an almost infinite selectivity for ITO over SiO2 and in improved profile controllability.

  16. Influence of alloying elements on friction and wear of copper

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1972-01-01

    The friction and wear characteristics were determined for copper binary alloys containing 10 atomic percent aluminum, silicon, indium, and tin. A ternary alloy containing 10 atomic percent aluminum and 5 atomic percent silicon was also examined. The effectiveness of each of the alloying elements aluminum and silicon were very effective in reducing friction. Silicon, however, also reduced wear appreciably. With lubrication, silicon, indium, and tin were all effective alloying elements in reducing friction and wear from values obtained for copper. Silicon was the most effective single element in reducing friction and wear in dry sliding and with lubrication.

  17. The steady-state and transient electron transport within bulk zinc-blende indium nitride: The impact of crystal temperature and doping concentration variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siddiqua, Poppy; O'Leary, Stephen K., E-mail: stephen.oleary@ubc.ca

    2016-03-07

    Within the framework of a semi-classical three-valley Monte Carlo electron transport simulation approach, we analyze the steady-state and transient aspects of the electron transport within bulk zinc-blende indium nitride, with a focus on the response to variations in the crystal temperature and the doping concentration. We find that while the electron transport associated with zinc-blende InN is highly sensitive to the crystal temperature, it is not very sensitive to the doping concentration selection. The device consequences of these results are then explored.

  18. Comment on "Experimental study of the orientation dependence of indium incorporation in GaInN" [J. Cryst. Growth 433 (2016) 7-12

    NASA Astrophysics Data System (ADS)

    Monavarian, Morteza

    2016-07-01

    The authors of the title paper (J. Cryst. Growth 433 (2016) 7-12) reported on experimental comparison of indium incorporation efficiency in wide variety of orientations tilted from the basal plane toward a-plane (a-family planes) or m-plane (m-family planes) and some mixed planes. Despite a good investigation and useful information reported in this manuscript, some points of criticism, concerning the inclination angle calculations, optical characterizations of the layers, and the final conclusions are highlighted in this comment to consider.

  19. SPECTROPHOTOMETRIC DETERMINATION OF ULTRA-SMALL QUANTITIES OF NICKEL IN INDIUM (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peshkova, V.M.; Bochkova, V.M.; Astakhova, E.K.

    1961-09-01

    alpha -Benzil doxime permits the determination of nickel by measuring optical density in the region of maximum absortption (at 275 m mu ), after the reagent excess is removed by washing the extract with alkali. Conditions were found for the spectrophotometric determination of ultra-small quantities (down to 0.005 gamma ) of nickel with alpha -benzil dioxime in the soultion of its pure salt, in the presence of cobalt and copper. A method was developed for the determination of traces of nickel down to 5 x 10 /sup -7%/ in metallic indium. The reproducibility of method is +25%. (auth)

  20. Pressure effects on topological crystalline insulator SnTe and derived superconductor Sn{sub 0.5}In{sub 0.5}Te

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurya, V. K.; Shruti,; Patnaik, S., E-mail: spatnaik@mail.jnu.ac.in

    2016-05-23

    We are reporting decrease in superconducting transition temperature accompanied by increased metallicity in indium doped SnTe superconductor. SnTe is a topological crystalline insulator and superconductivity is achieved by indium substitution in place of tin. With application of hydrostatic pressure we find negative dT{sub c}/dP of ~ -0.6K/GPa upto 2.5 GPa. The overall phenomenon is ascribed to unconventional superconductivity. Decrease in resistivity is also seen in single crystal SnTe with application of pressure but no evidence of superconductivity is observed.

  1. Heterojunction between the delafossite TCO n-copper indium oxide and p-Si for solar cell applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keerthi, K.; Nair, B. G.; Philip, R. R., E-mail: reenatara@rediffmail.com

    2016-05-23

    Junction formation of n-copper indium oxide (CIO) (extrinsically undoped) with p-Si leading to conversion of photons in the UV-Vis range is being reported for the first time. I-V and temporal photoconductivity data confirm positively the carrier generation in CIO under irradiation while optical absorbance data furnish its band gap to be ~ 3.1 eV. Ultraviolet photoelectron spectroscopy is used to study the electronic band structure of CIO on Si and to construct a schematic diagram of the hetero-junction to explain the observed photovoltaic phenomena.

  2. Thickness dependence of optical properties of amorphous indium oxide thin films deposited by reactive evaporation

    NASA Astrophysics Data System (ADS)

    Uluta, K.; Deer, D.; Skarlatos, Y.

    2006-08-01

    The electrical conductivity and absorption coefficient of amorphous indium oxide thin films, thermally evaporated on glass substrates at room temperature, were evaluated. For direct transitions the variation of the optical band gap with thickness was determined and this variation was supposed to appear due to the variation of localized gap states, whereas the variation of conductivity with thickness was supposed to be due to the variation of carrier concentration. We attribute the variation of absorption coefficient with thickness to the variation of optical band gap energy rather than optical interference.

  3. FOOD IRRADIATION REACTOR

    DOEpatents

    Leyse, C.F.; Putnam, G.E.

    1961-05-01

    An irradiation apparatus is described. It comprises a pressure vessel, a neutronic reactor active portion having a substantially greater height than diameter in the pressure vessel, an annular tank surrounding and spaced from the pressure vessel containing an aqueous indium/sup 1//sup 1//sup 5/ sulfate solution of approximately 600 grams per liter concentration, means for circulating separate coolants through the active portion and the space between the annular tank and the pressure vessel, radiator means adapted to receive the materials to be irradiated, and means for flowing the indium/sup 1//sup 1//sup 5/ sulfate solution through the radiator means.

  4. Large-Scale Synthesis of Tin-Doped Indium Oxide Nanofibers Using Water as Solvent

    NASA Astrophysics Data System (ADS)

    Altecor, Aleksey; Mao, Yuanbing; Lozano, Karen

    2012-09-01

    Here we report the successful fabrication of tin-doped indium oxide (ITO) nanofibers using a scalable Forcespinning™ method. In this environmentally-friendly process, water was used as the only solvent for both Polyvinylpyrrolidone (PVP, the sacrificial polymer) and the metal chloride precursor salts. The obtained precursor nanofiber mats were calcinated at temperatures ranging from 500-800°C to produce ITO nanofibers with diameters as small as 400 nm. The developed ITO nanofibers were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction analysis.

  5. Low resistance contacts for shallow junction semiconductors

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S. (Inventor); Weizer, Victor G. (Inventor)

    1994-01-01

    A method of enhancing the specific contact resistivity in InP semiconductor devices and improved devices produced thereby are disclosed. Low resistivity values are obtained by using gold ohmic contacts that contain small amounts of gallium or indium and by depositing a thin gold phosphide interlayer between the surface of the InP device and the ohmic contact. When both the thin interlayer and the gold-gallium or gold-indium contact metallizations are used, ultra low specific contact resistivities are achieved. Thermal stability with good contact resistivity is achieved by depositing a layer of refractory metal over the gold phosphide interlayer.

  6. Significantly enhanced thermal conductivity of indium arsenide nanowires via sulfur passivation.

    PubMed

    Xiong, Yucheng; Tang, Hao; Wang, Xiaomeng; Zhao, Yang; Fu, Qiang; Yang, Juekuan; Xu, Dongyan

    2017-10-16

    In this work, we experimentally investigated the effect of sulfur passivation on thermal transport in indium arsenide (InAs) nanowires. Our measurement results show that thermal conductivity can be enhanced by a ratio up to 159% by sulfur passivation. Current-voltage (I-V) measurements were performed on both unpassivated and S-passivated InAs nanowires to understand the mechanism of thermal conductivity enhancement. We observed a remarkable improvement in electrical conductivity upon sulfur passivation and a significant contribution of electrons to thermal conductivity, which account for the enhanced thermal conductivity of the S-passivated InAs nanowires.

  7. Ultra-low thermal conductivity of TlIn5Se8 and structure of the new complex chalcogenide Tl0.98In13.12Se16.7Te2.3

    NASA Astrophysics Data System (ADS)

    Lefèvre, Robin; Berthebaud, David; Pérez, Olivier; Pelloquin, Denis; Boudin, Sophie; Gascoin, Franck

    2017-06-01

    TlIn5Se8 has been synthesized by means of solid-state reaction and densified by Spark Plasma Sintering. The compound is a semiconductor with a band gap of 1.62 eV estimated from reflectance measurements. Its thermal conductivity is about 0.45 W m-1. K-1 in the temperature range 300-673 K, an extremely low value attributed to its complex pseudo-1D structure reminiscent of the pseudo-hollandite. While attempting to dope TlIn5Se8 with Te, a new complex chalcogenide was discovered and characterized by the combination of TEM and XRD diffraction. It belongs to the A2In12X19 family, crystallizing in the R 3 ̅:H space group. Single crystal X-ray diffraction study led to a refined composition of Tl0.98In13.12Se16.7Te2.3 with cell parameters: a=13.839(5) Å and c=35.18(3) Å. A static disorder is found on one indium site situated in an octahedral environment. The single crystal XRD study is in agreement with TEM analyses in STEM-HAADF image mode that do not show any extended defects or disorder at atomic scale.

  8. Synthesis, characterization and applications of carboxylated and polyethylene-glycolated bifunctionalized InP/ZnS quantum dots in cellular internalization mediated by cell-penetrating peptides.

    PubMed

    Liu, Betty R; Winiarz, Jeffrey G; Moon, Jong-Sik; Lo, Shih-Yen; Huang, Yue-Wern; Aronstam, Robert S; Lee, Han-Jung

    2013-11-01

    Semiconductor nanoparticles, also known as quantum dots (QDs), are widely used in biomedical imaging studies and pharmaceutical research. Cell-penetrating peptides (CPPs) are a group of small peptides that are able to traverse cell membrane and deliver a variety of cargoes into living cells. CPPs deliver QDs into cells with minimal nonspecific absorption and toxic effect. In this study, water-soluble, monodisperse, carboxyl-functionalized indium phosphide (InP)/zinc sulfide (ZnS) QDs coated with polyethylene glycol lipids (designated QInP) were synthesized for the first time. The physicochemical properties (optical absorption, fluorescence and charging state) and cellular internalization of QInP and CPP/QInP complexes were characterized. CPPs noncovalently interact with QInP in vitro to form stable CPP/QInP complexes, which can then efficiently deliver QInP into human A549 cells. The introduction of 500nM of CPP/QInP complexes and QInP at concentrations of less than 1μM did not reduce cell viability. These results indicate that carboxylated and polyethylene-glycolylated (PEGylated) bifunctionalized QInP are biocompatible nanoparticles with potential for use in biomedical imaging studies and drug delivery applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Indium-bearing sulfides from the Hämmerlein skarn deposit, Erzgebirge, Germany: evidence for late-stage diffusion of indium into sphalerite

    NASA Astrophysics Data System (ADS)

    Bauer, Matthias E.; Seifert, Thomas; Burisch, Mathias; Krause, Joachim; Richter, Nancy; Gutzmer, Jens

    2017-12-01

    At the Hämmerlein skarn deposit, located in the western Erzgebirge (Germany), a major cassiterite-dominated Sn mineralization stage is spatially associated with a younger Zn-Cu-In sulfide mineralization stage. In this contribution, we provide the first detailed description of the Zn-Cu-In sulfide mineralization stage, based on field geological observations combined with detailed petrographic studies and electron probe microanalysis data. Indium-rich sulfide mineralization occurs as irregular, semi-massive lenses or as infill of short, discontinuous veinlets that crosscut the cassiterite-bearing skarn assemblage. Indium- and Cu-rich sphalerite and roquesite are found to be closely associated with In-bearing chalcopyrite. The highest In concentrations in sphalerite occur at the rims and along cracks of sphalerite grains. The distribution resembles diffusion profiles, suggesting that the In enrichment is due to an hydrothermal overprint that postdates the initial formation of both sphalerite and chalcopyrite. Textural relations illustrate that the diffusion fronts in sphalerite grains are thicker where they are in contact to anhedral masses of hematite and magnetite. Our observations suggest that In enrichment in sphalerite at the Hämmerlein skarn deposit is due to the decomposition of In-bearing chalcopyrite. The resultant release of Fe led to the formation of hematite and magnetite, whereas Cu and In were incorporated into sphalerite along grain boundaries and micro fractures. Incorporation into the sphalerite lattice took place by coupled substitution of Cu+ + In3+ ↔ 2Zn2+, suggesting that the concurrent availability of Cu and In may be an essential factor to enrich In in sphalerite in hydrothermal ore-forming environments.

  10. Electrodeposition Process and Performance of CuIn(Se x S1- x )2 Film for Absorption Layer of Thin-Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Li, Libo; Yang, Xueying; Gao, Guanxiong; Wang, Wentao; You, Jun

    2017-11-01

    CuIn(Se x S1- x )2 thin film is prepared by the electrodeposition method for the absorption layer of the solar cell. The CuIn(Se x S1- x )2 films are characterized by cyclic voltammetry measurement for the reduction of copper, indium, selenium and sulfur in selenium and sulfur in aqueous solutions with sodium citrate and without sodium citrate. In the four cases, the defined reduction process for every single element is obtained and it is observed that sodium citrate changes the reduction potentials. A linear relationship between the current density of the reduction peak and (scan rate v)1/2 for copper and indium is achieved, indicating that the process is diffusion controlled. The diffusion coefficients of copper and indium ions are calculated. The diffusional coefficient D value of copper is higher than that of indium, and this is the reason why the deposition rate of copper is higher. When four elements are co-deposited in the aqueous solution with sodium citrate, the quaternary compound of CuIn(Se x S1- x )2 is deposited together with Cu3Se2 impure phases after annealing, as found by XRD spectra. Morphology is observed by SEM and AFM. The chemical state of the films components is analyzed by XPS. The UV-Visible spectrophotometer and electrochemistry workstation are employed to measure the photoelectric properties. The results show that the smooth, uniform and compact CuIn(Se x S1- x )2 film is a semiconductor with a band gap of 1.49 eV and a photovoltaic conversion efficiency of 0.45%.

  11. Growth kinetics of indium metal atoms on Si(1 1 2) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raj, Vidur; Chauhan, Amit Kumar Singh; Gupta, Govind, E-mail: govind@nplindia.org

    Graphical abstract: Controlled growth of indium atoms on Si(1 1 2) surface has been carried out systematically and the influence of substrate temperature on the kinetics is analysed under various growth conditions. Temperature induced anomalous layer-to-clusters transformation during thermal desorption has also been reported. - Highlights: • Controlled growth of indium atoms on Si(1 1 2) surface & their thermal stability. • Influence of substrate temperature on the kinetics under various growth conditions. • Temperature induced layer-to-clusters transformation during thermal desorption. - Abstract: The growth kinetics and desorption behavior of indium (In) atoms grown on high index Si(1 1 2)more » surface at different substrate temperatures has been studied. Auger electron spectroscopy analysis revealed that In growth at room temperature (RT) and high substrate temperature (HT) ∼250 °C follows Frank–van der Merve growth mode whereas at temperatures ≥450 °C, In growth evolves through Volmer–Weber growth mode. Thermal desorption studies of RT and 250 °C grown In/Si(1 1 2) systems show temperature induced rearrangement of In atoms over Si(1 1 2) surface leading to clusters to layer transformation. The monolayer and bilayer desorption energies for RT grown In/Si(1 1 2) system are calculated to be 2.5 eV and 1.52 eV, while for HT-250 °C the values are found to be 1.6 eV and 1.3 eV, respectively. This study demonstrates the effect of temperature on growth kinetics as well as on the multilayer/monolayer desorption pathway of In on Si(1 1 2) surface.« less

  12. ZnO layers prepared by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Messaoudi, C.; Abd-Lefdil, S.; Sayah, D.; Cadene, M.

    1998-02-01

    Highly transparent undoped and indium doped ZnO thin films have been grown on glass substrates by using the spray pyrolysis process. Conditions of preparation have been optimized to get good quality and reproducible films with required properties. Polycrystalline films with an hexagonal Wurtzite-type structure were easily obtained under the optimum spraying conditions. Both of samples have shown high transmission coefficient in the visible and infrared wavelength range with sharp absorption edge around 380 nm which closely corresponds to the intrinsic band-gap of ZnO (3.2 eV). Orientation and crystallites size were remarkably modified by deposition temperature and indium doping. Des couches minces de ZnO, hautement transparentes, non dopées et dopées à l'indium ont été élaborées sur un substrat en verre par le procédé de pulvérisation chimique réactive spray. Les conditions de préparation ont été optimisées pour l'obtention de couches reproductibles, de bonne qualité et ayant les propriétés requises. Des films polycristallins, présentant une structure hexagonale de type Wurtzite, ont été aisément obtenus dans les conditions optimales de pulvérisation. Tous les échantillons ont présenté un coefficient de transmission élevé dans le domaine du visible et du proche infrarouge, avec une absorption brutale au voisinage de 380 nm, correspondant au gap optique du ZnO (3,2 eV). L'orientation et la taille des cristallites ont été remarquablement modifiées par la température du dépôt et par le dopage à l'indium.

  13. Preparation and characterization of ceramic sensors for use at elevated temperatures

    NASA Astrophysics Data System (ADS)

    You, Tao

    Ceramic ITO strain sensors were prepared by reactive sputtering in various nitrogen/oxygen/argon partial pressures. The thickness of the active ITO strain elements played a significant role in the high temperature stability and piezoresistive properties, specifically, these results indicated that both gauge factor and drift rate were affected by the thickness of ITO films comprising the active strain elements. The influence of nitrogen in the reactive sputtered ITO films on the microstructure and the high temperature piezoresistive properties was also investigated. Scanning electron microscopy (SEM) revealed a partially sintered microstructure consisting of a contiguous network of sub-micron ITO particles with well-defined necks and isolated nanoporosity. Sintering and densification of the ITO particles containing these nitrogen rich grain boundaries was retarded and a contiguous network of nano-sized ITO particles was established. Aluminum doped indium tin oxide thin film exhibited an enhanced high temperature stability compared with undoped ITO thin film. The effect of aluminum doped ITO was investigated under various preparation and testing environments. Electron spectroscopy for chemical analysis (ESCA) studies indicated that interfacial reactions between ITO and aluminum increased the stability of ITO at elevated temperatures. These binding energies of indium-indium are significantly higher than those associated with stoichiometric indium oxide. A robust ceramic temperature sensor was fabricated by two different ITO elements, each with substantially different charge carrier concentrations. Thermal cycling of ITO thin films in a varied of partial oxygen pressures conditions showed that temperature coefficient of resistance (TCR) was nearly independent of oxygen partial pressure. A thermoelectric power of 6.0muV/°C and a linear voltage-temperature response were measured for an ITO thin film ceramic thermocouple over the temperature range 25--1250°C.

  14. A novel 3D framework indium phosphite-oxalate based on a pcu-type topology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Mengmeng; Zhou, Mingdong; Hu, Dianwen

    2016-05-15

    A new inorganic–organic hybrid indium phosphite-oxalate, formulated as H[In{sub 5}(HPO{sub 3}){sub 6}(H{sub 2}PO{sub 3}){sub 2}(C{sub 2}O{sub 4}){sub 2}]·(C{sub 4}N{sub 2}H{sub 11}){sub 2}·H{sub 2}O 1 has been hydrothermally synthesized in the presence of piperazine acting as a structure directing agent (SDA). The single crystal X-ray diffraction reveals that compound 1 shows three-dimensional open-framework with intersecting 12-ring channels along the [010] and [001] directions, which is constructed from strictly alternating double 6-ring units (D6Rs), [C{sub 2}O{sub 4}]{sup 2−} groups and [H{sub 2}PO{sub 3}]{sup −} pseudo-pyramids. It is noted that the classical D6R SBU is firstly reported in main metal phosphite/phosphite-oxalate. By regardingmore » D6R as the 6-connected nodes, the inorganic–organic hybrid framework is based on a pcu-type topology. The as-synthesized product was characterized by single-crystal X-ray diffraction, powder X-ray diffraction, IR spectroscopy, thermogravimetric analysis (TGA), ICP-AES and elemental analyses. - Graphical abstract: A 3D open-framework indium phosphite-oxalate has been synthesized under hydrothermal conditions. A classical SBU, D6R, is present in the structure. By regarding D6R as the 6-connected nodes, the inorganic–organic hybrid framework is based on a pcu-type topology. - Highlights: • A new indium phosphite-oxalate based on a pcu-type topology has been synthesized. • A classical SBU, D6R, is present in the structure. • The classical SBU is firstly reported in main metal phosphite/phosphite-oxalate.« less

  15. Sputtering yields and surface chemical modification of tin-doped indium oxide in hydrocarbon-based plasma etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hu; Karahashi, Kazuhiro; Hamaguchi, Satoshi, E-mail: hamaguch@ppl.eng.osaka-u.ac.jp

    2015-11-15

    Sputtering yields and surface chemical compositions of tin-doped indium oxide (or indium tin oxide, ITO) by CH{sup +}, CH{sub 3}{sup +}, and inert-gas ion (He{sup +}, Ne{sup +}, and Ar{sup +}) incidence have been obtained experimentally with the use of a mass-selected ion beam system and in-situ x-ray photoelectron spectroscopy. It has been found that etching of ITO is chemically enhanced by energetic incidence of hydrocarbon (CH{sub x}{sup +}) ions. At high incident energy incidence, it appears that carbon of incident ions predominantly reduce indium (In) of ITO and the ITO sputtering yields by CH{sup +} and CH{sub 3}{sup +}more » ions are found to be essentially equal. At lower incident energy (less than 500 eV or so), however, a hydrogen effect on ITO reduction is more pronounced and the ITO surface is more reduced by CH{sub 3}{sup +} ions than CH{sup +} ions. Although the surface is covered more with metallic In by low-energy incident CH{sub 3}{sup +} ions than CH{sup +} ions and metallic In is in general less resistant against physical sputtering than its oxide, the ITO sputtering yield by incident CH{sub 3}{sup +} ions is found to be lower than that by incident CH{sup +} ions in this energy range. A postulation to account for the relation between the observed sputtering yield and reduction of the ITO surface is also presented. The results presented here offer a better understanding of elementary surface reactions observed in reactive ion etching processes of ITO by hydrocarbon plasmas.« less

  16. G-quadruplex and calf thymus DNA interaction of quaternized tetra and octa pyridyloxy substituted indium (III) phthalocyanines.

    PubMed

    Bağda, Efkan; Bağda, Esra; Durmuş, Mahmut

    2017-10-01

    The interactions of small molecules with G-quadruplex and double stranded DNA are important due to their potential biological and medical usages. In the present paper, the interactions of indium (III) phthalocyanines (quaternized 2,3,9,10,16,17,23,24-octakis-[(3-pyridyloxy) phthalocyaninato] chloroindium(III): OInPc and quaternized 2(3),9(10),16(17),23(24)-tetrakis-[(3-pyridyloxy) phthalocyaninato] chloroindium(III): TInPc) with hybrid G-quadruplex (Tel 21) and parallel G-quadruplexes (nucleolin, KRAS, c-MYC, vegf) were studied. The interactions of these phthalocyanines with ctDNA were also investigated. These interactions were measured by different spectroscopic techniques such as UV-Vis, fluorescence and circular dichroism. The UV-Vis spectroscopic data treated with Benesi-Hildebrand equation and Benesi-Hildebrand constants (K BH ) were calculated. These constants were found higher for octa peripheral pyridyloxy substituted phthalocyanine, OInPc. Besides, UV-Vis analysis showed that the interaction of G-quadruplexes with tetra peripheral pyridyloxy substituted phthalocyanine derivative (TInPc) resulted in removal of central indium (III) atom from the cavity of phthalocyanine macrocycle. The UV-Vis melting studies as well as fluorescence replacement techniques were also employed for clarification of mechanism. The binding mode of molecules with ct DNA was also supported with viscosity measurements. From the results, the stabilization and destabilization of G-quadruplex depending on the concentration of the OInPc and TInPc showed that these two indium (III) phthalocyanines have the potential of both the elucidation role of G-quadruplexes in gene expression and the usage in cancer therapy. Copyright © 2017. Published by Elsevier B.V.

  17. Structural and optical properties of indium-doped highly conductive ZnO bulk crystals grown by the hydrothermal technique

    NASA Astrophysics Data System (ADS)

    Wang, Buguo; Claflin, Bruce; Look, David; Jiménez, Juan

    2018-02-01

    Indium-doped ZnO bulk crystals grown by the hydrothermal method are highly-conductive, with resistivity at 0.01 Ωcm at room temperature as revealed by Hall-effect measurement. In this paper we report on structural and optical properties of these crystals. The grown In:ZnO crystals have been studied by high resolution X-ray diffraction, micro-Raman scattering and low-temperature photoluminescence and cathodoluminescence. It was found that the c lattice parameter of the grown In:ZnO crystal expanded 0.06% with respect to the lithium-doped ZnO crystal seed, and the In-doped ZnO overgrew the seed crystal pseudomorphically but with high quality crystallinity; the X-ray rocking curves show the FWHM of the Zn face and O faces are only 0.05° and 0.1° ; and the indium concentration in the crystal reaches the solubility limit. Raman spectra show strain relaxation gradually from the regrowth interface as well as a weak spectral feature at 723 cm-1. The peak at 312 cm-1 noticed in hydrothermally grown In:ZnO nanostructures does not appear in our In-doped crystals, indicating that this peak may be associated with specific defects (e.g. surface related) of the nanostructures. Photoluminescence measurements show that an indium donor bound exciton peak I9 (In0X) is the dominant peak in the PL spectrum, located at 3.3586 eV on the zinc face and 3.3577 eV on the oxygen face. Both of them deviated from the consensus literature value of 3.3567 eV, probably due to strain in the crystal induced by impurities.

  18. Recovery of valuable materials from waste liquid crystal display panel.

    PubMed

    Li, Jinhui; Gao, Song; Duan, Huabo; Liu, Lili

    2009-07-01

    Associated with the rapid development of the information and electronic industry, liquid crystal displays (LCDs) have been increasingly sold as displays. However, during the discarding at their end-of-life stage, significant environmental hazards, impacts on health and a loss of resources may occur, if the scraps are not managed in an appropriate way. In order to improve the efficiency of the recovery of valuable materials from waste LCDs panel in an environmentally sound manner, this study presents a combined recycling technology process on the basis of manual dismantling and chemical treatment of LCDs. Three key processes of this technology have been studied, including the separation of LCD polarizing film by thermal shock method the removal of liquid crystals between the glass substrates by the ultrasonic cleaning, and the recovery of indium metal from glass by dissolution. The results show that valuable materials (e.g. indium) and harmful substances (e.g. liquid crystals) could be efficiently recovered or separated through above-mentioned combined technology. The optimal conditions are: (1) the peak temperature of thermal shock to separate polarizing film, ranges from 230 to 240 degrees C, where pyrolysis could be avoided; (2) the ultrasonic-assisted cleaning was most efficient at a frequency of 40 KHz (P = 40 W) and the exposure of the substrate to industrial detergents for 10 min; and (3) indium separation from glass in a mix of concentrated hydrochloric acid at 38% and nitric acid at 69% (HCl:HNO(3):H(2)O = 45:5:50, volume ratio). The indium separation process was conducted with an exposure time of 30 min at a constant temperature of 60 degrees C.

  19. Recovery of indium ions by nanoscale zero-valent iron

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Su, Yiming; Wen, Zhipan; Zhang, Yalei; Zhou, Xuefei; Dai, Chaomeng

    2017-03-01

    Indium and its compounds have plenty of industrial applications and high demand. Therefore, indium recovery from various industrial effluents is necessary. It was sequestered by nanoscale zero-valent iron (nZVI) whose size mainly ranged from 50 to 70 nm. Adsorption kinetics and isotherm, influence of pH, and ionic strength were thoroughly investigated. The reaction process was well fitted to a pseudo second-order model, and the maximum adsorption capacity of In(III) was 390 mg In(III)/g nZVI similar to 385 mg In(III)/g nZVI at 298 K calculated by Langmuir model. The mole ratio of Fe(II) released to In(III) immobilized was 3:2, which implied a special chemical process of co-precipitation combined Fe(OH)2 with In(OH)3. Transmission electron microscopy with an energy-disperse X-ray (TEM-EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize surface morphology, corrosion products, and valence state of indium precipitate formed on nanoparticles. The structural evolution changed from core-shell structure of iron oxide to sheet structure of co-precipitation, to sphere structure that hydroxide gradually dissolved as the pH decreased, and to cavity structures for the pH continually decreased. Furthermore, below pH 4.7, the In(III) enrichment was inhibited for the limited capacity of co-precipitation. Also, it was found that Ca2+ and HPO4 2- have more negative influence on In(III) recovery compared with Na+, NO3 -, HCO3 -, and SO4 2-. Therefore, the In(III) recovery can be described by a mechanism which consists of adsorption, co-precipitation, and reduction and was over 78% even after 3 cycles. The results confirmed that it was applicable to employ nZVI for In(III) immobilization.

  20. Self catalytic growth of indium oxide (In2O3) nanowires by resistive thermal evaporation.

    PubMed

    Kumar, R Rakesh; Rao, K Narasimha; Rajanna, K; Phani, A R

    2014-07-01

    Self catalytic growth of Indium Oxide (In2O3) nanowires (NWs) have been grown by resistive thermal evaporation of Indium (In) in the presence of oxygen without use of any additional metal catalyst. Nanowires growth took place at low substrate temperature of 370-420 degrees C at an applied current of 180-200 A to the evaporation boat. Morphology, microstructures, and compositional studies of the grown nanowires were performed by employing field emission scanning electron microscopy (FESEM), X-Ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) respectively. Nanowires were uniformly grown over the entire Si substrate and each of the nanowire is capped with a catalyst particle at their end. X-ray diffraction study reveals the crystalline nature of the grown nanowires. Transmission electron microscopy study on the nanowires further confirmed the single crystalline nature of the nanowires. Energy dispersive X-ray analysis on the nanowires and capped nanoparticle confirmed that Indium act as catalyst for In2O3 nanowires growth. A self catalytic Vapor-Liquid-Solid (VLS) growth mechanism was responsible for the growth of In2O3 nanowires. Effect of oxygen partial pressure variation and variation of applied currents to the evaporation boat on the nanowires growth was systematically studied. These studies concluded that at oxygen partial pressure in the range of 4 x 10(-4), 6 x 10(-4) mbar at applied currents to the evaporation boat of 180-200 A were the best conditions for good nanowires growth. Finally, we observed another mode of VLS growth along with the standard VLS growth mode for In2O3 nanowires similar to the growth mechanism reported for GaAs nanowires.

  1. Infrared Imagery of Shuttle (IRIS). Task 2, summary report

    NASA Technical Reports Server (NTRS)

    Chocol, C. J.

    1978-01-01

    End-to-end tests of a 16 element indium antimonide sensor array and 10 channels of associated electronic signal processing were completed. Quantitative data were gathered on system responsivity, frequency response, noise, stray capacitance effects, and sensor paralleling. These tests verify that the temperature accuracies, predicted in the Task 1 study, can be obtained with a very carefully designed electro-optical flight system. Pre-flight and inflight calibration of a high quality are mandatory to obtain these accuracies. Also, optical crosstalk in the array-dewar assembly must be carefully eliminated by its design. Tests of the scaled up tracking system reticle also demonstrate that the predicted tracking system accuracies can be met in the flight system. In addition, improvements in the reticle pattern and electronics are possible, which will reduce the complexity of the flight system and increase tracking accuracy.

  2. Experimental verification of epsilon-near-zero plasmon polariton modes in degenerately doped semiconductor nanolayers

    DOE PAGES

    Campione, Salvatore; Kim, Iltai; de Ceglia, Domenico; ...

    2016-01-01

    Here, we investigate optical polariton modes supported by subwavelength-thick degenerately doped semiconductor nanolayers (e.g. indium tin oxide) on glass in the epsilon-near-zero (ENZ) regime. The dispersions of the radiative (R, on the left of the light line) and non-radiative (NR, on the right of the light line) ENZ polariton modes are experimentally measured and theoretically analyzed through the transfer matrix method and the complex-frequency/real-wavenumber analysis, which are in remarkable agreement. We observe directional near-perfect absorption using the Kretschmann geometry for incidence conditions close to the NR-ENZ polariton mode dispersion. Along with field enhancement, this provides us with an unexplored pathwaymore » to enhance nonlinear optical processes and to open up directions for ultrafast, tunable thermal emission.« less

  3. Experimental verification of epsilon-near-zero plasmon polariton modes in degenerately doped semiconductor nanolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campione, Salvatore; Kim, Iltai; de Ceglia, Domenico

    Here, we investigate optical polariton modes supported by subwavelength-thick degenerately doped semiconductor nanolayers (e.g. indium tin oxide) on glass in the epsilon-near-zero (ENZ) regime. The dispersions of the radiative (R, on the left of the light line) and non-radiative (NR, on the right of the light line) ENZ polariton modes are experimentally measured and theoretically analyzed through the transfer matrix method and the complex-frequency/real-wavenumber analysis, which are in remarkable agreement. We observe directional near-perfect absorption using the Kretschmann geometry for incidence conditions close to the NR-ENZ polariton mode dispersion. Along with field enhancement, this provides us with an unexplored pathwaymore » to enhance nonlinear optical processes and to open up directions for ultrafast, tunable thermal emission.« less

  4. Galvanic Liquid Applied Coating System for Protection of Embedded Steel Surfaces from Corrosion

    NASA Technical Reports Server (NTRS)

    Curran, Joseph; MacDowell, Louis; Voska, N. (Technical Monitor)

    2002-01-01

    The corrosion of reinforcing steel in concrete is an insidious problem for the Kennedy Space Center, government agencies, and the general public. Existing corrosion protection systems on the market are costly, complex, and time-consuming to install, require continuous maintenance and monitoring, and require specialized skills for installation. NASA's galvanic liquid-applied coating offers companies the ability to conveniently protect embedded steel rebar surfaces from corrosion. Liquid-applied inorganic galvanic coating contains one ore more of the following metallic particles: magnesium, zinc, or indium and may contain moisture attracting compounds that facilitate the protection process. The coating is applied to the outer surface of reinforced concrete so that electrical current is established between metallic particles and surfaces of embedded steel rebar; and electric (ionic) current is responsible for providing the necessary cathodic protection for embedded rebar surfaces.

  5. Electrostatically driven resonance energy transfer in “cationic” biocompatible indium phosphide quantum dots† †Electronic supplementary information (ESI) available: Detailed experimental methods, the synthesis and characterization of QDs, bioimaging, stability studies, control experiments, and the calculation of various parameters involved in the resonance energy transfer process etc. See DOI: 10.1039/c7sc00592j Click here for additional data file.

    PubMed Central

    Devatha, Gayathri; Roy, Soumendu; Rao, Anish; Mallick, Abhik; Basu, Sudipta

    2017-01-01

    Indium Phosphide Quantum Dots (InP QDs) have emerged as an alternative to toxic metal ion based QDs in nanobiotechnology. The ability to generate cationic surface charge, without compromising stability and biocompatibility, is essential in realizing the full potential of InP QDs in biological applications. We have addressed this challenge by developing a place exchange protocol for the preparation of cationic InP/ZnS QDs. The quaternary ammonium group provides the much required permanent positive charge and stability to InP/ZnS QDs in biofluids. The two important properties of QDs, namely bioimaging and light induced resonance energy transfer, are successfully demonstrated in cationic InP/ZnS QDs. The low cytotoxicity and stable photoluminescence of cationic InP/ZnS QDs inside cells make them ideal candidates as optical probes for cellular imaging. An efficient resonance energy transfer (E ∼ 60%) is observed, under physiological conditions, between the cationic InP/ZnS QD donor and anionic dye acceptor. A large bimolecular quenching constant along with a linear Stern–Volmer plot confirms the formation of a strong ground state complex between the cationic InP/ZnS QDs and the anionic dye. Control experiments prove the role of electrostatic attraction in driving the light induced interactions, which can rightfully form the basis for future nano-bio studies between cationic InP/ZnS QDs and anionic biomolecules. PMID:28626557

  6. Development of a direct patterning method for functional oxide thin films using ultraviolet irradiation and hybrid-cluster gels and its application to thin-film transistor fabrication

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Yuuki; Li, Jinwang; Shimoda, Tatsuya

    2018-04-01

    A gel state exists in the solution-solid conversion process. We found that solidification can be promoted by irradiating the gel with ultraviolet (UV) light. In this study, a patterning method without using a vacuum system or employing photoresist materials has been proposed wherein solidification was applied to a gel by UV irradiation. Indium oxide gel, indium gallium oxide gel, lanthanum zirconium oxide gel, and lanthanum ruthenium oxide gels were successfully patterned by using our technique. Moreover, an oxide thin-film transistor was fabricated by our novel patterning method and was successfully operated.

  7. Negative Magnetoresistance in Amorphous Indium Oxide Wires

    PubMed Central

    Mitra, Sreemanta; Tewari, Girish C; Mahalu, Diana; Shahar, Dan

    2016-01-01

    We study magneto-transport properties of several amorphous Indium oxide nanowires of different widths. The wires show superconducting transition at zero magnetic field, but, there exist a finite resistance at the lowest temperature. The R(T) broadening was explained by available phase slip models. At low field, and far below the superconducting critical temperature, the wires with diameter equal to or less than 100 nm, show negative magnetoresistance (nMR). The magnitude of nMR and the crossover field are found to be dependent on both temperature and the cross-sectional area. We find that this intriguing behavior originates from the interplay between two field dependent contributions. PMID:27876859

  8. Thermoelectric Properties and Thermal Tolerance of Indium Tin Oxide Nanowires.

    PubMed

    Hernandez, Jose A; Carpena Nunez, Jennifer; Fonseca, Luis F; Pettes, Michael Thompson; Yacaman, Miguel Jose; Benitez, Alfredo

    2018-06-14

    Single-crystalline indium tin oxide (ITO) nanowires were grown via a vapor-liquid-solid (VLS) method, with thermal tolerance up to ~1300°C. We report the electric and thermoelectric properties of the ITO nanowires before and after heat treatments and draw conclusions about their applicability as thermoelectric building blocks in nanodevices that can operate in high temperature conditions. The Seebeck coefficient and the thermal and electrical conductivities were measured in each individual nanowire by means of specialized micro-bridge thermometry devices. Measured data was analyzed and explained in terms of changes in charge carrier density, impurities and vacancies due to the thermal treatments. © 2018 IOP Publishing Ltd.

  9. Study of indium tin oxide films exposed to atomic axygen

    NASA Technical Reports Server (NTRS)

    Snyder, Paul G.; De, Bhola N.; Woollam, John A.; Coutts, T. J.; Li, X.

    1989-01-01

    A qualitative simulation of the effects of atomic oxygen has been conducted on indium tin oxide (ITO) films prepared by dc sputtering onto room-temperature substrates, by exposing them to an RF-excited oxygen plasma and characterizing the resulting changes in optical, electrical, and structural properties as functions of exposure time with ellipsometry, spectrophotometry, resistivity, and X-ray measurements. While the films thus exposed exhibit reduced resistivity and optical transmission; both of these effects, as well as partial crystallization of the films, may be due to sample heating by the plasma. Film resistivity is found to stabilize after a period of exposure.

  10. Diffusion length variation in 0.5- and 3-MeV-proton-irradiated, heteroepitaxial indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Weinberg, Irving; Flood, Dennis J.

    1993-01-01

    Indium phosphide (InP) solar cells are more radiation resistant than gallium arsenide (GaAs) and silicon (Si) solar cells, and their growth by heteroepitaxy offers additional advantages leading to the development of light weight, mechanically strong, and cost-effective cells. Changes in heteroepitaxial InP cell efficiency under 0.5- and 3-MeV proton irradiations have been explained by the variation in the minority-carrier diffusion length. The base diffusion length versus proton fluence was calculated by simulating the cell performance. The diffusion length damage coefficient, K(sub L), was also plotted as a function of proton fluence.

  11. Effect of Target Density on Microstructural, Electrical, and Optical Properties of Indium Tin Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Zhu, Guisheng; Zhi, Li; Yang, Huijuan; Xu, Huarui; Yu, Aibing

    2012-09-01

    In this paper, indium tin oxide (ITO) targets with different densities were used to deposit ITO thin films. The thin films were deposited from these targets at room temperature and annealed at 750°C. Microstructural, electrical, and optical properties of the as-prepared films were studied. It was found that the target density had no effect on the properties or deposition rate of radiofrequency (RF)-sputtered ITO thin films, different from the findings for direct current (DC)-sputtered films. Therefore, when using RF sputtering, the target does not require a high density and may be reused.

  12. Efficient photovoltaic heterojunctions of indium tin oxides on silicon

    NASA Technical Reports Server (NTRS)

    Dubow, J. B.; Sites, J. R.; Burk, D. E.

    1976-01-01

    Heterojunction diodes of indium tin oxide films sputtered on to p-silicon using ion-beam techniques display significant photovoltaic effects when exposed to sunlight. Galvanomagnetic and optical measurements confirm that the oxide films are highly degenerate transparent semiconductors. At a tin oxide concentration of 10%, an open-circuit voltage of 0.51 V was observed along with a short-circuit current of 32 mA/sq cm, a fill factor of 0.70, and a conversion efficiency of 12%. As the concentration was raised to 70%, the voltage remained steady, the current fell to 27 mA/sq cm, and the fill factor fell to 0.60

  13. The 3-5 semiconductor solid solution single crystal growth. [low gravity float zone growth experiments using gallium indium antimonides and cadmium tellurides

    NASA Technical Reports Server (NTRS)

    Gertner, E. R.

    1980-01-01

    Techniques used for liquid and vapor phase epitaxy of gallium indium arsenide are described and the difficulties encountered are examined. Results show that the growth of bulk III-V solid solution single crystals in a low gravity environment will not have a major technological impact. The float zone technique in a low gravity environment is demonstrated using cadmium telluride. It is shown that this approach can result in the synthesis of a class of semiconductors that can not be grown in normal gravity because of growth problems rooted in the nature of their phase diagrams.

  14. An ab initio study of the electronic structure of indium and gallium chalcogenide bilayers

    NASA Astrophysics Data System (ADS)

    Ayadi, T.; Debbichi, L.; Said, M.; Lebègue, S.

    2017-09-01

    Using first principle calculations, we have studied the structural and electronic properties of two dimensional bilayers of indium and gallium chalcogenides. With density functional theory corrected for van der Waals interactions, the different modes of stacking were investigated in a systematic way, and several of them were found to compete in energy. Then, their band structures were obtained with the GW approximation and found to correspond to indirect bandgap semiconductors with a small dependency on the mode of stacking. Finally, by analysing the electron density, it appeared that GaSe-InS is a promising system for electron-hole separation.

  15. Intratumoral consumption of indium-111-labeled platelets in a child with splenic hemangioma and thrombocytopenia.

    PubMed

    Pampin, C; Devillers, A; Treguier, C; Fremond, B; Moisan, A; Goasguen, J; Le Gall, E

    2000-01-01

    The authors report Kasabach-Merritt syndrome (KMS) in a patient with thrombocytopenia and splenic hemangioma. A 13-month-old boy with a history of anemia, thrombocytopenia, and abdominal mass was admitted to the hospital. The scintigraphic studies showed that a large mass contiguous to the spleen was responsible for the platelet uptake. After partial splenectomy, the platelet count returned to normal. This report of KMS in a child with splenic hemangioma suggests that the scintigraphic studies are mandatory to confirm diagnosis. Indium-111-labeled platelets are useful in identifying hemangiomatous sequestration of platelets in patients with thrombocytopenia.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, M.T.; Butler, H.M.; Gupton, E.D.

    The UCC-ND Employee Identification Badge contains an indium foil disc that is intended for use as a dosimetry screening device in the event of a criticality accident. While it is recognized that indium is not a precise mixed neutron-gamma dosimeter, its activation by neutrons provides adequate means for separating potentially exposed persons into three groups. These groups are: (1) personnel exposed below annual dose limits, (2) personnel exposed above annual dose limits but below 25 rem, and (3) personnel exposed above 25 rem. This screening procedure is designed to facilitate dosimeter processing in order to meet regulatory reporting requirements. Amore » quick method of interpreting induced activity measurements is presented and discussed.« less

  17. Study the Effect of Substrate Temperature on Structural and Electrical Properties of Electron Beam Evaporated In{sub 1−x}Sb{sub x} Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahul, E-mail: rhl.jaunpur@gmail, E-mail: srvfzb@rediffmail.com; Vishwakarma, S. R., E-mail: rhl.jaunpur@gmail, E-mail: srvfzb@rediffmail.com; Verma, Aneet Kumar, E-mail: rhl.jaunpur@gmail, E-mail: srvfzb@rediffmail.com

    2011-10-20

    Indium Antimonide (InSb) is a promising materials for mid and long wavelength infrared and high speed devices applications because of its small band gap. The Indium Antimonide (InSb) thin films have been deposited onto well cleaned glass substrate at different substrate temperatures (300 K, 323 K, 373 K) by electron beam evaporation technique in the high vacuum chamber at vacuum pressure ∼10{sup −5} torr using prepared non‐stoichiometric InSb powder using formula In{sub 1−x}Sb{sub x}(0.2

  18. Synthesis and properties of nanocrystalline copper indium oxide thin films deposited by Rf magnetron sputtering.

    PubMed

    Singh, Mandeep; Singh, V N; Mehta, B R

    2008-08-01

    Nanocrystalline copper indium oxide (CuInO2) thin films with particle size ranging from 25 nm to 71 nm have been synthesized from a composite target using reactive Rf magnetron sputtering technique. X-ray photoelectron spectroscopy (XPS) combined with glancing angle X-ray diffraction (GAXRD) analysis confirmed the presence of delafossite CuInO2 phase in these films. The optical absorption studies show the presence of two direct band gaps at 3.3 and 4.3 eV, respectively. The resistance versus temperature measurements show thermally activated hopping with activation energy of 0.84 eV to be the conduction mechanism.

  19. Mechanisms of Current Transfer in Electrodeposited Layers of Submicron Semiconductor Particles

    NASA Astrophysics Data System (ADS)

    Zhukov, N. D.; Mosiyash, D. S.; Sinev, I. V.; Khazanov, A. A.; Smirnov, A. V.; Lapshin, I. V.

    2017-12-01

    Current-voltage ( I- V) characteristics of conductance in multigrain layers of submicron particles of silicon, gallium arsenide, indium arsenide, and indium antimonide have been studied. Nanoparticles of all semiconductors were obtained by processing initial single crystals in a ball mill and applied after sedimentation onto substrates by means of electrodeposition. Detailed analysis of the I- V curves of electrodeposited layers shows that their behavior is determined by the mechanism of intergranular tunneling emission from near-surface electron states of submicron particles. Parameters of this emission process have been determined. The proposed multigrain semiconductor structures can be used in gas sensors, optical detectors, IR imagers, etc.

  20. Modelling directional solidification

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.

    1990-01-01

    The long range goal is to develop an improved understanding of phenomena of importance to directional solidification, to enable explanation and prediction of differences in behavior between solidification on Earth and in space. Emphasis during the period of this grant was on experimentally determining the influence of convection and freezing rate fluctuations on compositional homogeneity and crystalline perfection in the vertical Bridgman-Stockbarger technique. Heater temperature profiles, buoyancy-driven convection, and doping inhomogeneties were correlated using naphthalene doped with azulene. In addition the influence of spin-up/spin-down on compositional homogeneity and microstructure of indium gallium antimonide and the effect of imposed melting-freezing cycles on indium gallium antimonide are discussed.

  1. Defects, optical absorption and electron mobility in indium and gallium nitrides

    NASA Astrophysics Data System (ADS)

    Tansley, T. L.; Egan, R. J.

    1993-04-01

    We review the experimental evidence for the origin and location of the four native point defects in the wide gap semiconducting indium and gallium nitrides and compare then with experimental predictions. The donor triplets associated with nitrogen vacancies and the deep compensating centres ascribed to the antisite substitutional defects appear to have the greatest effect on macroscopic properties, apparently including the four luminescent bands in GaN. Calculated mobilities in InN and GaN depend principally on ionised impurity and polar-mode phonon scattering. We reconcile these results with experimental data and point out the consequences for improvements in material growth.

  2. Effects on Organic Photovoltaics Using Femtosecond-Laser-Treated Indium Tin Oxides.

    PubMed

    Chen, Mei-Hsin; Tseng, Ya-Hsin; Chao, Yi-Ping; Tseng, Sheng-Yang; Lin, Zong-Rong; Chu, Hui-Hsin; Chang, Jan-Kai; Luo, Chih-Wei

    2016-09-28

    The effects of femtosecond-laser-induced periodic surface structures (LIPSS) on an indium tin oxide (ITO) surface applied to an organic photovoltaic (OPV) system were investigated. The modifications of ITO induced by LIPPS in OPV devices result in more than 14% increase in power conversion efficiency (PCE) and short-circuit current density relative to those of the standard device. The basic mechanisms for the enhanced short-circuit current density are attributed to better light harvesting, increased scattering effects, and more efficient charge collection between the ITO and photoactive layers. Results show that higher PCEs would be achieved by laser-pulse-treated electrodes.

  3. Color properties of transparent and heat-reflecting MgF2-coated indium-tin-oxide films.

    PubMed

    Hamberg, I; Granqvist, C G

    1983-02-15

    The visual appearance of antireflection-coated transparent and heat-reflecting indium-tin-oxide (ITO) films on glass was studied by a colorimetric analysis in which the chromaticity coordinates for transmitted and reflected daylight were evaluated for various film thicknesses. A color purity of <1% in normal transmission and <10% in normal reflection could be achieved with ITO thicknesses in the 220-260- or 335-365-nm ranges and MgF2 thicknesses in the 90-105-nm range. These design criteria yield very efficient window coatings with high visual transmittance, low thermal emittance, and little or no perceived color.

  4. Structure deformation of indium oxide from nanoparticles into nanostructured polycrystalline films by in situ thermal radiation treatment

    PubMed Central

    2013-01-01

    A microstructure deformation of indium oxide (In2O3) nanoparticles by an in situ thermal radiation treatment in nitrous oxide plasma was investigated. The In2O3 nanoparticles were completely transformed into nanostructured In2O3 films upon 10 min of treatment time. The treated In2O3 nanoparticle sample showed improvement in crystallinity while maintaining a large surface area of nanostructure morphology. The direct transition optical absorption at higher photon energy and the electrical conductivity of the In2O3 nanoparticles were significantly enhanced by the treatment. PMID:24134646

  5. Defect levels of semi-insulating CdMnTe:In crystals

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Bolotinikov, A. E.; Camarda, G. S.; Hossain, A.; Gul, R.; Yang, G.; Cui, Y.; Prochazka, J.; Franc, J.; Hong, J.; James, R. B.

    2011-06-01

    Using photoluminescence (PL) and current deep-level transient spectroscopy (I-DLTS), we investigated the electronic defects of indium-doped detector-grade CdMnTe:In (CMT:In) crystals grown by the vertical Bridgman method. We similarly analyzed CdZnTe:In (CZT:In) and undoped CdMnTe (CMT) crystals grown under the amount of same level of excess Te and/or indium doping level to detail the fundamental properties of the electronic defect structure more readily. Extended defects, existing in all the samples, were revealed by synchrotron white beam x-ray diffraction topography and scanning electron microscopy. The electronic structure of CMT is very similar to that of CZT, with shallow traps, A-centers, Cd vacancies, deep levels, and Te antisites. The 1.1-eV deep level, revealed by PL in earlier studies of CZT and CdTe, were attributed to dislocation-induced defects. In our I-DLTS measurements, the 1.1-eV traps showed different activation energies with applied bias voltage and an exponential dependence on the trap-filling time, which are typical characteristics of dislocation-induced defects. We propose a new defect-trap model for indium-doped CMT crystals.

  6. Patterning of Indium Tin Oxide Films

    NASA Technical Reports Server (NTRS)

    Immer, Christopher

    2008-01-01

    A relatively rapid, economical process has been devised for patterning a thin film of indium tin oxide (ITO) that has been deposited on a polyester film. ITO is a transparent, electrically conductive substance made from a mixture of indium oxide and tin oxide that is commonly used in touch panels, liquid-crystal and plasma display devices, gas sensors, and solar photovoltaic panels. In a typical application, the ITO film must be patterned to form electrodes, current collectors, and the like. Heretofore it has been common practice to pattern an ITO film by means of either a laser ablation process or a photolithography/etching process. The laser ablation process includes the use of expensive equipment to precisely position and focus a laser. The photolithography/etching process is time-consuming. The present process is a variant of the direct toner process an inexpensive but often highly effective process for patterning conductors for printed circuits. Relative to a conventional photolithography/ etching process, this process is simpler, takes less time, and is less expensive. This process involves equipment that costs less than $500 (at 2005 prices) and enables patterning of an ITO film in a process time of less than about a half hour.

  7. Tapping the potential of trioctylphosphine (TOP) in the realization of highly luminescent blue-emitting colloidal indium phosphide (InP) quantum dots

    NASA Astrophysics Data System (ADS)

    Singh, Akanksha; Chawla, Parul; Jain, Shefali; Sharma, Shailesh Narain

    2017-06-01

    In this work, extremely small blue emitting colloidal InP-based quantum dots (size 2-5 nm) have been synthesized using trioctylphosphine (TOP) as a source of phosphorus. The method reported here is unconventional, quite rapid ( 90 min), more viable, less expensive and relatively greener as compared to other conventional methods that employ tristrimethylsilyylphosphine(P(SiMe3)3) which is scarce, expensive, flammable, highly toxic and even banned in a few countries. Highly luminescent InP QDs having bluish-green emission (λ 490 nm) can be synthesized using this method without resorting to any post-synthesis etching to tune the emission to the blue region. Besides being the source of phosphorus and the particle size regulating agent, the efficacy of TOP is further realized during synthesis via its reduction of indium salt, which aids in the formation of indium metal and then subsequently in the development of InP QDs. The PL intensity of as-synthesized InP QDs is further enhanced by growing a shell of wide band gap material, i.e. ZnS resulting in a concurrent increment in quantum yield from 25% to 38% respectively.

  8. Autoantibodies developing to myeloperoxidase and proteinase 3 in systemic vasculitis stimulate neutrophil cytotoxicity toward cultured endothelial cells.

    PubMed Central

    Savage, C. O.; Pottinger, B. E.; Gaskin, G.; Pusey, C. D.; Pearson, J. D.

    1992-01-01

    The ability of vasculitis-associated anti-neutrophil cytoplasm antibodies (ANCA) to activate neutrophils and mediate release of radiolabel from 111Indium-labeled cultured human umbilical vein endothelial cells (HUVEC) was determined as a measure of the potential cytotoxicity of ANCA-activated neutrophils against vascular endothelium. Priming of neutrophils with low doses of phorbol 12-myristate 13-acetate (PMA) (1 ng/ml) and ionomycin (0.1 mumol/1) was required, together with pretreatment of endothelial cells with BCNU (1,3-bis-[2-chloroethyl]-1-nitrosourea; 0.26 mmol/l). Under these conditions and using a 4-hour serum-free assay system, mouse monoclonal antibodies (MAb) to the target autoantigens proteinase-3 (Pr-3) and myeloperoxidase (MPO) mediated enhanced release of 111Indium from HUVEC compared with control MAb. Human IgG Fab2 C-ANCA (recognizing Pr-3) and P-ANCA (recognizing MPO) did likewise. Preactivation of HUVEC with TNF (50 U/ml, 4 hr) enhanced the release of 111Indium from HUVEC generated by neutrophils activated with anti-Pr-3 and anti-MPO MAb. These data support the suggestion that activation of neutrophils by ANCA within the vascular lumen may contribute to endothelial cell injury. PMID:1323218

  9. INTEGRAL REACTION RATES AND NEUTRON ENERGY SPECTRA IN A WELL MODERATED REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, J.W.; Rose, A.; Wall, T.

    1963-04-01

    Cadmium ratio measurements in the internal reflector of MOATA were made with gold, indium, tungsten, manganese, molybdenum, and copper detectors. These measurements were analyzed on the assumption that the neutron spectrum consists of a Maxwellian distribution to which is smoothly joined a 1/E slowing down spectrum, the cross sections being averaged according to the methods of Westcott. A search through recent literature suggests that the s factors for gold and indium listed by Westcott are in error. If this is accepted, then it appears that the measured epithermal spectrum is closely 1/E in form for neutron energies between 1 andmore » 600 ev. The corrections to be applied when foils of finite thickness are used in cadmium ratio measuremerts are discussed, and the spectrum derived from these measurements was used to calculate reaction rate ratios of copper: indium and copper: gold alloy foils. These ratios were compared with measured values. Values of the effective resonance integral of Pt/sup 198/ wire detectors were measured, and from these values an estimate was made of the infinitely dilute resonance integral of this isotope. (auth)« less

  10. Influences of Indium Tin Oxide Layer on the Properties of RF Magnetron-Sputtered (BaSr)TiO3 Thin Films on Indium Tin Oxide-Coated Glass Substrate

    NASA Astrophysics Data System (ADS)

    Kim, Tae Song; Oh, Myung Hwan; Kim, Chong Hee

    1993-06-01

    Nearly stoichiometric ((Ba+Sr)/Ti=1.08-1.09) and optically transparent (BaSr)TiO3 thin films were deposited on an indium tin oxide (ITO)-coated glass substrate by means of rf magnetron sputtering for their application to the insulating layer of an electroluminescent flat panel display. The influence of the ITO layer on the properties of (BaSr)TiO3 thin films deposited on the ITO-coated substrate was investigated. The ITO layer did not affect the crystallographic orientation of (BaSr)TiO3 thin film, but enhanced the grain growth. Another effect of the ITO layer on (BaSr)TiO3 thin films was the interdiffusion phenomenon, which was studied by means of secondary ion mass spectrometry (SIMS). As the substrate temperature increased, interdiffusion intensified at the interface not only between the grown film and ITO layer but also between the ITO layer and base glass substrate. The refractive index (nf) of (BaSr)TiO3 thin film deposited on a bare glass substrate was 2.138-2.286, as a function of substrate temperature.

  11. Soft X-ray absorption spectroscopy investigation of the surface chemistry and treatments of copper indium gallium diselenide (CIGS)

    DOE PAGES

    Schwartz, Craig; Nordlund, Dennis; Sokaras, Dimosthenis; ...

    2017-02-01

    The surface and near surface structure of copper-indium-gallium-selenide (CIGS) absorber layers is integral to the producing a high-quality photovoltaic junction. By using X-ray absorption spectroscopy (XAS) and monitoring multiple elemental absorption edges with both theory and experiment, we are able to identify several features of the surface of CIGS as a function of composition and surface treatments. The XAS data shows trends in the near surface region of oxygen, copper, indium and gallium species as the copper content is varied in the films. The oxygen surface species are also monitored through a series of experiments that systematically investigates the effectsmore » of water and various solutions of: ammonium hydroxide, cadmium sulfate, and thiourea. These being components of cadmium sulfide chemical bath deposition (CBD). Characteristics of the CBD are correlated with a restorative effect that produces as normalized, uniform surface chemistry as measured by XAS. This surface chemistry is found in CIGS solar cells with excellent power conversion efficiency (<19%). The results provide new insight for CIGS processing strategies that seek to replace CBD and/or cadmium sulfide.« less

  12. Soft X-ray absorption spectroscopy investigation of the surface chemistry and treatments of copper indium gallium diselenide (CIGS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Craig; Nordlund, Dennis; Sokaras, Dimosthenis

    The surface and near surface structure of copper-indium-gallium-selenide (CIGS) absorber layers is integral to the producing a high-quality photovoltaic junction. By using X-ray absorption spectroscopy (XAS) and monitoring multiple elemental absorption edges with both theory and experiment, we are able to identify several features of the surface of CIGS as a function of composition and surface treatments. The XAS data shows trends in the near surface region of oxygen, copper, indium and gallium species as the copper content is varied in the films. The oxygen surface species are also monitored through a series of experiments that systematically investigates the effectsmore » of water and various solutions of: ammonium hydroxide, cadmium sulfate, and thiourea. These being components of cadmium sulfide chemical bath deposition (CBD). Characteristics of the CBD are correlated with a restorative effect that produces as normalized, uniform surface chemistry as measured by XAS. This surface chemistry is found in CIGS solar cells with excellent power conversion efficiency (<19%). The results provide new insight for CIGS processing strategies that seek to replace CBD and/or cadmium sulfide.« less

  13. Effective properties of undoped and Indium3+-doped tin manganese telluride (Sn1 - xMnxTe) nanoparticles via using a chemical bath deposition route

    NASA Astrophysics Data System (ADS)

    Boon-on, Patsorn; Tubtimtae, Auttasit; Vailikhit, Veeramol; Teesetsopon, Pichanan; Choopun, Supab

    2017-06-01

    Tin manganese telluride nanoparticles (Sn1-xMnxTe NPs) were first synthesized on a niobium pentoxide (Nb2O5) film using a chemical bath deposition (CBD) route. An individual particle size before and after indium (In3+) doping of ∼70-150 nm was investigated with stoichiometric formation of the SnMnTe phase. Furthermore, a cubic or rocksalt structure of the Sn0.938Mn0.062Te phase was also kept incorporated in the structure. The plotted energy band gaps for undoped and In3+-doped samples were 2.17 and 1.83 eV, respectively. The reduction of photoluminescence (PL) spectra after In3+ doping, while the indium dopant acted as a trap state incorporated in Sn1-xMnxTe NPs, showed enhanced charge separation and reduced charge recombination, which resulted in a higher charge density trapped in the conduction band of Nb2O5 and was also confirmed by the result of anodic peaks in the cyclic voltammetry. These results suggest new possibilities in optoelectronic and electrochemical devices.

  14. Compositional and strain analysis of In(Ga)N/GaN short period superlattices

    NASA Astrophysics Data System (ADS)

    Dimitrakopulos, G. P.; Vasileiadis, I. G.; Bazioti, C.; Smalc-Koziorowska, J.; Kret, S.; Dimakis, E.; Florini, N.; Kehagias, Th.; Suski, T.; Karakostas, Th.; Moustakas, T. D.; Komninou, Ph.

    2018-01-01

    Extensive high resolution transmission and scanning transmission electron microscopy observations were performed in In(Ga)N/GaN multi-quantum well short period superlattices comprising two-dimensional quantum wells (QWs) of nominal thicknesses 1, 2, and 4 monolayers (MLs) in order to obtain a correlation between their average composition, geometry, and strain. The high angle annular dark field Z-contrast observations were quantified for such layers, regarding the indium content of the QWs, and were correlated to their strain state using peak finding and geometrical phase analysis. Image simulations taking into thorough account the experimental imaging conditions were employed in order to associate the observed Z-contrast to the indium content. Energetically relaxed supercells calculated with a Tersoff empirical interatomic potential were used as the input for such simulations. We found a deviation from the tetragonal distortion prescribed by continuum elasticity for thin films, i.e., the strain in the relaxed cells was lower than expected for the case of 1 ML QWs. In all samples, the QW thickness and strain were confined in up to 2 ML with possible indium enrichment of the immediately abutting MLs. The average composition of the QWs was quantified in the form of alloy content.

  15. Electrical and Optical Characterization of Sputtered Silicon Dioxide, Indium Tin Oxide, and Silicon Dioxide/Indium Tin Oxide Antireflection Coating on Single-Junction GaAs Solar Cells

    PubMed Central

    Ho, Wen-Jeng; Lin, Jian-Cheng; Liu, Jheng-Jie; Bai, Wen-Bin; Shiao, Hung-Pin

    2017-01-01

    This study characterized the electrical and optical properties of single-junction GaAs solar cells coated with antireflective layers of silicon dioxide (SiO2), indium tin oxide (ITO), and a hybrid layer of SiO2/ITO applied using Radio frequency (RF) sputtering. The conductivity and transparency of the ITO film were characterized prior to application on GaAs cells. Reverse saturation-current and ideality factor were used to evaluate the passivation performance of the various coatings on GaAs solar cells. Optical reflectance and external quantum efficiency response were used to evaluate the antireflective performance of the coatings. Photovoltaic current-voltage measurements were used to confirm the efficiency enhancement obtained by the presence of the anti-reflective coatings. The conversion efficiency of the GaAs cells with an ITO antireflective coating (23.52%) exceeded that of cells with a SiO2 antireflective coating (21.92%). Due to lower series resistance and higher short-circuit current-density, the carrier collection of the GaAs cell with ITO coating exceeded that of the cell with a SiO2/ITO coating. PMID:28773063

  16. Amorphous indium-tin-zinc oxide films deposited by magnetron sputtering with various reactive gases: Spatial distribution of thin film transistor performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Junjun; Torigoshi, Yoshifumi; Shigesato, Yuzo, E-mail: yuzo@chem.aoyama.ac.jp

    This work presents the spatial distribution of electrical characteristics of amorphous indium-tin-zinc oxide film (a-ITZO), and how they depend on the magnetron sputtering conditions using O{sub 2}, H{sub 2}O, and N{sub 2}O as the reactive gases. Experimental results show that the electrical properties of the N{sub 2}O incorporated a-ITZO film has a weak dependence on the deposition location, which cannot be explained by the bombardment effect of high energy particles, and may be attributed to the difference in the spatial distribution of both the amount and the activity of the reactive gas reaching the substrate surface. The measurement for themore » performance of a-ITZO thin film transistor (TFT) also suggests that the electrical performance and device uniformity of a-ITZO TFTs can be improved significantly by the N{sub 2}O introduction into the deposition process, where the field mobility reach to 30.8 cm{sup 2} V{sup –1} s{sup –1}, which is approximately two times higher than that of the amorphous indium-gallium-zinc oxide TFT.« less

  17. Indium-catalyzed synthesis of keto esters from cyclic 1,3-diketones and alcohols and application to the synthesis of seratrodast.

    PubMed

    Kuninobu, Yoichiro; Kawata, Atsushi; Noborio, Taihei; Yamamoto, Syun-Ichi; Matsuki, Takashi; Takata, Kazumi; Takai, Kazuhiko

    2010-04-01

    Esterification reactions from cyclic 1,3-diketones and alcohols are carried out in the presence of several Lewis acids. In particular, indium(III) triflate, In(OTf)(3), iron(III) triflate, Fe(OTf)(3), copper(II) triflate, Cu(OTf)(2), and silver(I) triflate, AgOTf, show high catalytic activities. These reactions proceed through the carbon-carbon bond cleavage by a retro-aldol reaction and were found to be highly regioselective even in the presence of other functional groups. This type of reaction can also be applied to the preparation of the keto esters during the synthesis of seratrodast, which is an antiasthmatic and eicosanoid antagonist.

  18. High Stability Performance of Quinary Indium Gallium Zinc Aluminum Oxide Films and Thin-Film Transistors Deposited Using Vapor Cooling Condensation Method

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Hao; Lee, Ching-Ting

    2017-08-01

    High-quality indium gallium zinc aluminum oxide (IGZAO) thin films with various Al contents have been deposited using the vapor cooling condensation method. The electron mobility of the IGZAO films was improved by 89.4% on adding Al cation to IGZO film. The change in the electron concentration and mobility of the IGZAO films was 7.3% and 7.0%, respectively, when the temperature was changed from 300 K to 225 K. These experimental results confirm the high performance and stability of the IGZAO films. The performance stability mechanisms of IGZAO thin-film transistors (TFTs) were investigated in comparison with IGZO TFTs.

  19. Chemical stability and electrical performance of dual-active-layered zinc-tin-oxide/indium-gallium-zinc-oxide thin-film transistors using a solution process.

    PubMed

    Kim, Chul Ho; Rim, You Seung; Kim, Hyun Jae

    2013-07-10

    We investigated the chemical stability and electrical properties of dual-active-layered zinc-tin-oxide (ZTO)/indium-gallium-zinc-oxide (IGZO) structures (DALZI) with the durability of the chemical damage. The IGZO film was easily corroded or removed by an etchant, but the DALZI film was effectively protected by the high chemical stability of ZTO. Furthermore, the electrical performance of the DALZI thin-film transistor (TFT) was improved by densification compared to the IGZO TFT owing to the passivation of the pin holes or pore sites and the increase in the carrier concentration due to the effect of Sn(4+) doping.

  20. Influence of micro- and macro-processes on the high-order harmonic generation in laser-produced plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganeev, R. A., E-mail: rashid-ganeev@mail.ru; Physical Department, Voronezh State University, Voronezh 394006

    We compare the resonance-induced enhancement of single harmonic and the quasi-phase-matching-induced enhancement of the group of harmonics during propagation of the tunable mid-infrared femtosecond pulses through the perforated laser-produced indium plasma. We show that the enhancement of harmonics using the macro-process of quasi-phase-matching is comparable with the one using micro-process of resonantly enhanced harmonic. These studies show that joint implementation of the two methods of the increase of harmonic yield could be a useful tool for generation of strong short-wavelength radiation in different spectral regions. We compare these effects in indium, as well as in other plasmas.

Top