Science.gov

Sample records for indium nitride inn

  1. Field-effect transistors based on cubic indium nitride

    PubMed Central

    Oseki, Masaaki; Okubo, Kana; Kobayashi, Atsushi; Ohta, Jitsuo; Fujioka, Hiroshi

    2014-01-01

    Although the demand for high-speed telecommunications has increased in recent years, the performance of transistors fabricated with traditional semiconductors such as silicon, gallium arsenide, and gallium nitride have reached their physical performance limits. Therefore, new materials with high carrier velocities should be sought for the fabrication of next-generation, ultra-high-speed transistors. Indium nitride (InN) has attracted much attention for this purpose because of its high electron drift velocity under a high electric field. Thick InN films have been applied to the fabrication of field-effect transistors (FETs), but the performance of the thick InN transistors was discouraging, with no clear linear-saturation output characteristics and poor on/off current ratios. Here, we report the epitaxial deposition of ultrathin cubic InN on insulating oxide yttria-stabilized zirconia substrates and the first demonstration of ultrathin-InN-based FETs. The devices exhibit high on/off ratios and low off-current densities because of the high quality top and bottom interfaces between the ultrathin cubic InN and oxide insulators. This first demonstration of FETs using a ultrathin cubic indium nitride semiconductor will thus pave the way for the development of next-generation high-speed electronics. PMID:24492240

  2. Field-effect transistors based on cubic indium nitride.

    PubMed

    Oseki, Masaaki; Okubo, Kana; Kobayashi, Atsushi; Ohta, Jitsuo; Fujioka, Hiroshi

    2014-02-04

    Although the demand for high-speed telecommunications has increased in recent years, the performance of transistors fabricated with traditional semiconductors such as silicon, gallium arsenide, and gallium nitride have reached their physical performance limits. Therefore, new materials with high carrier velocities should be sought for the fabrication of next-generation, ultra-high-speed transistors. Indium nitride (InN) has attracted much attention for this purpose because of its high electron drift velocity under a high electric field. Thick InN films have been applied to the fabrication of field-effect transistors (FETs), but the performance of the thick InN transistors was discouraging, with no clear linear-saturation output characteristics and poor on/off current ratios. Here, we report the epitaxial deposition of ultrathin cubic InN on insulating oxide yttria-stabilized zirconia substrates and the first demonstration of ultrathin-InN-based FETs. The devices exhibit high on/off ratios and low off-current densities because of the high quality top and bottom interfaces between the ultrathin cubic InN and oxide insulators. This first demonstration of FETs using a ultrathin cubic indium nitride semiconductor will thus pave the way for the development of next-generation high-speed electronics.

  3. Growth of gallium nitride and indium nitride nanowires on conductive and flexible carbon cloth substrates

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Ling, Yichuan; Wang, Gongming; Lu, Xihong; Tong, Yexiang; Li, Yat

    2013-02-01

    We report a general strategy for synthesis of gallium nitride (GaN) and indium nitride (InN) nanowires on conductive and flexible carbon cloth substrates. GaN and InN nanowires were prepared via a nanocluster-mediated growth method using a home built chemical vapor deposition (CVD) system with Ga and In metals as group III precursors and ammonia as a group V precursor. Electron microscopy studies reveal that the group III-nitride nanowires are single crystalline wurtzite structures. The morphology, density and growth mechanism of these nanowires are determined by the growth temperature. Importantly, a photoelectrode fabricated by contacting the GaN nanowires through a carbon cloth substrate shows pronounced photoactivity for photoelectrochemical water oxidation. The ability to synthesize group III-nitride nanowires on conductive and flexible substrates should open up new opportunities for nanoscale photonic, electronic and electrochemical devices.We report a general strategy for synthesis of gallium nitride (GaN) and indium nitride (InN) nanowires on conductive and flexible carbon cloth substrates. GaN and InN nanowires were prepared via a nanocluster-mediated growth method using a home built chemical vapor deposition (CVD) system with Ga and In metals as group III precursors and ammonia as a group V precursor. Electron microscopy studies reveal that the group III-nitride nanowires are single crystalline wurtzite structures. The morphology, density and growth mechanism of these nanowires are determined by the growth temperature. Importantly, a photoelectrode fabricated by contacting the GaN nanowires through a carbon cloth substrate shows pronounced photoactivity for photoelectrochemical water oxidation. The ability to synthesize group III-nitride nanowires on conductive and flexible substrates should open up new opportunities for nanoscale photonic, electronic and electrochemical devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr

  4. Optically- and Electrically-Stimulated Terahertz Radiation Emission from Indium Nitride

    NASA Astrophysics Data System (ADS)

    Wilke, Ingrid; Ding, Yujie J.; Shubina, Tatiana V.

    2012-06-01

    Indium nitride is a novel narrow band gap semiconductor. The material is a potential strong source of terahertz frequency electromagnetic radiation with applications in time-domain terahertz spectroscopy and imaging systems. This article reviews recent experimental research on terahertz emission from the binary compound semiconductor indium nitride excited by near-infrared laser beams or microseconds electrical pulses. Advantages of indium nitride as terahertz radiation source material are discussed. It is demonstrated that different mechanisms contribute to the emission of terahertz radiation from indium nitride. The emission of up to 2.4 μW of THz radiation power is observed when InN is excited with near-infrared femtosecond laser pulses at an average power of 1 W.

  5. Mechanisms of 1D crystal growth in reactive vapor transport: indium nitride nanowires.

    PubMed

    Vaddiraju, Sreeram; Mohite, Aditya; Chin, Alan; Meyyappan, M; Sumanasekera, Gamini; Alphenaar, Bruce W; Sunkara, Mahendra K

    2005-08-01

    Indium nitride (InN) nanowire synthesis using indium (In) vapor transport in a dissociated ammonia environment (reactive vapor transport) is studied in detail to understand the nucleation and growth mechanisms involved with the so-called "self-catalysis" schemes. The results show that the nucleation of InN crystal occurs first on the substrate. Later, In droplets are formed on top of the InN crystals because of selective wetting of In onto InN crystals. Further growth via liquid-phase epitaxy through In droplets leads the growth in one dimension (1D), resulting in the formation of InN nanowires. The details about the nucleation and growth aspects within these self-catalysis schemes are rationalized further by demonstrating the growth of heteroepitaxially oriented nanowire arrays on single-crystal substrates and "tree-like" morphologies on a variety of substrates. However, the direct nitridation of In droplets using dissociated ammonia results in the spontaneous nucleation and basal growth of nanowires directly from the In melt surface, which is quite different from the above-mentioned nucleation mechanism with the reactive vapor transport case. The InN nanowires exhibit a band gap of 0.8 eV, whereas the mixed phase of InN and In(2)O(3) nanowires exhibit a peak at approximately 1.9 eV in addition to that at 0.8 eV.

  6. Indium nitride and gallium nitride grown from the melt at subatmospheric pressures

    NASA Astrophysics Data System (ADS)

    Dyck, Jeffrey Scott

    The wide-band-gap, group III nitride semiconductors (Al,Ga,In)N are a promising system for visible/near-UV optoelectronic devices. Despite significant technological advances, improvement in material quality is required. Moreover, pure InN has received little attention due to unavailability of high quality crystals, and uncertainty on the fundamental properties of InN exist in the literature. In this work, bulk, polycrystalline gallium nitride and indium nitride were synthesized without a substrate by saturating gallium or indium metal with atomic nitrogen from both ECR and ball plasma microwave sources. The results show that atomic nitrogen is an attractive alternative to high pressure N2 for the synthesis of the bulk nitrides. The GaN and InN crystals were confirmed to be wurtzitic by x-ray and electron diffraction. Weak yellow-band photoluminescence intensity and near-band-edge linewidths of 4 meV for some GaN crystals indicated high optical quality. The high crystalline quality of the InN crystals allowed for the most precise measurement of the lattice parameters currently possible: a = 3.5366 A, c = 5.7009 A. Raman spectra of InN were taken from both randomly oriented polycrystals and groups of oriented, faceted platelets. Phonon modes were assigned as ETO1=445cm -1,ATO1 =472cm-1, E22=448 cm-1, and ALO1=558 cm-1 , and previous disagreement in the literature is explained. The E22 and ALO1 linewidths of were 2.5 and 19 cm-1 are the narrowest ever reported. The measured TO phonon frequencies and lattice parameters were compared to those calculated from first principles and excellent agreement was found. Preliminary experiments on the growth of GaN from Ga/In alloys were performed. Addition of inert, soluble third elements to the Ga/N melt depresses the liquidus temperature, which is equivalent to increasing the solubility of GaN at constant temperature. Upon introduction of an (0001) sapphire substrate into the melt, oriented thin films of the solid nitride formed

  7. Compositional analysis of dilute nitride doped indium antimonide bulk crystal by VDS technique

    NASA Astrophysics Data System (ADS)

    Deshpande, Manisha; Maske, Dilip; Choudhari, Rashmi; Arora, Brij Mohan; Gadkari, Dattatray

    2016-05-01

    Dilute nitrides are suitable materials for fabrication of devices in detection of long wavelength infrared region. Dilute nitride doped Indium antimonide bulk crystals were grown using vertical directional solidification technique. The compositional characteristics of the crystals were carried out using EDS. The analysis was simulated and compared with observations using DTSA II software for accuracy. The ingots have uniform composition of Indium and Antimony. The actual nitrogen composition measured using EDS was 0.136% for doped nitrogen composition 0.1% except near conical end where it was 0.1%. The study of bonding between nitrogen, Indium and antimony was carried out using SIMS. The analysis shows strong presence of In-N bonding along with In-Sb bonds which indicates nitrogen has replaced antimony atoms in crystal lattice.

  8. An analytical model of anisotropic low-field electron mobility in wurtzite indium nitride

    NASA Astrophysics Data System (ADS)

    Wang, Shulong; Liu, Hongxia; Song, Xin; Guo, Yulong; Yang, Zhaonian

    2014-03-01

    This paper presents a theoretical analysis of anisotropic transport properties and develops an anisotropic low-field electron analytical mobility model for wurtzite indium nitride (InN). For the different effective masses in the Γ-A and Γ-M directions of the lowest valley, both the transient and steady state transport behaviors of wurtzite InN show different transport characteristics in the two directions. From the relationship between velocity and electric field, the difference is more obvious when the electric field is low in the two directions. To make an accurate description of the anisotropic transport properties under low field, for the first time, we present an analytical model of anisotropic low-field electron mobility in wurtzite InN. The effects of different ionized impurity scattering models on the low-field mobility calculated by Monte Carlo method (Conwell-Weisskopf and Brooks-Herring method) are also considered.

  9. Growth mechanism, structure and IR photoluminescence studies of indium nitride nanorods

    NASA Astrophysics Data System (ADS)

    Lan, Z. H.; Wang, W. M.; Sun, C. L.; Shi, S. C.; Hsu, C. W.; Chen, T. T.; Chen, K. H.; Chen, C. C.; Chen, Y. F.; Chen, L. C.

    2004-08-01

    High-quality single crystal indium nitride nanorods were grown on Si substrates by catalytic chemical vapor deposition. Both Raman and high resolution transmission electron microscopic analyses suggested that even a minute amount of oxygen, from the residual oxygen in the growth environment and/or native oxide on the Si, would effectively help the growth of InN nanorods. The In 2O 3 formed on Au nanoparticles helped dissolve nitrogen as a catalyst with the subsequent growth of InN nanorods. Variations in the apparent color and photoluminescence (PL) spectra of the InN nanorods were observed. For the optically brown InN nanorods that exhibited diameters in the range of 30-50 nm, the PL study showed a peak at 1.9 eV, the possible origins of which are discussed. In contrast, for the optically black InN nanorods that exhibited diameters in the range of 50-100 nm, the PL peak at approximately 0.766 eV measured at 20 K was attributed to band edge emission.

  10. Development of a Computational Chemical Vapor Deposition Model: Applications to Indium Nitride and Dicyanovinylaniline

    NASA Technical Reports Server (NTRS)

    Cardelino, Carlos

    1999-01-01

    A computational chemical vapor deposition (CVD) model is presented, that couples chemical reaction mechanisms with fluid dynamic simulations for vapor deposition experiments. The chemical properties of the systems under investigation are evaluated using quantum, molecular and statistical mechanics models. The fluid dynamic computations are performed using the CFD-ACE program, which can simulate multispecies transport, heat and mass transfer, gas phase chemistry, chemistry of adsorbed species, pulsed reactant flow and variable gravity conditions. Two experimental setups are being studied, in order to fabricate films of: (a) indium nitride (InN) from the gas or surface phase reaction of trimethylindium and ammonia; and (b) 4-(1,1)dicyanovinyl-dimethylaminoaniline (DCVA) by vapor deposition. Modeling of these setups requires knowledge of three groups of properties: thermodynamic properties (heat capacity), transport properties (diffusion, viscosity, and thermal conductivity), and kinetic properties (rate constants for all possible elementary chemical reactions). These properties are evaluated using computational methods whenever experimental data is not available for the species or for the elementary reactions. The chemical vapor deposition model is applied to InN and DCVA. Several possible InN mechanisms are proposed and analyzed. The CVD model simulations of InN show that the deposition rate of InN is more efficient when pulsing chemistry is used under conditions of high pressure and microgravity. An analysis of the chemical properties of DCVA show that DCVA dimers may form under certain conditions of physical vapor transport. CVD simulations of the DCVA system suggest that deposition of the DCVA dimer may play a small role in the film and crystal growth processes.

  11. Effect of strain on indium incorporation in heteroepitaxial (indium, gallium) nitride nanomaterials

    NASA Astrophysics Data System (ADS)

    Ewoldt, David A.

    2011-12-01

    One of the challenges facing LED lighting today is the achievement of low-cost true white lighting. Ideally, multiple LEDs of different colors, blue, red and green, would be utilized in order to achieve white light. Currently, the quality of green LEDs is low when compared to the red and blue counterparts. Green emission from LEDs is difficult to achieve due to phase segregation that occurs during growth of the (In,Ga)N LED structure, which separates into compositions of high and low InN concentration and prevents the moderate composition required for green emission. On the nanoscale, strain effects in the (In,Ga)N material system give rise to shifts in optical properties. Relieving strain allows for the incorporation of additional indium nitride, which shifts the wavelength of light emitted by the structure. In order to control strain effects, growth templates were fabricated by several methods (PAA, FIB, EBL). A robust process for fabrication of pores down to 25 nm in diameter has been developed in order to investigate this effect. From this process, a template using e-beam lithography has been created and then growth of (In,Ga)N on this template in a metallorganic chemical vapor deposition system was performed. As (In,Ga)N grows from the GaN substrate, it is naturally strained due to the lattice mismatch. Lateral growth out of the templates relieves strain by allowing the rods to expand as they grow out of the prepared pores. The effect of the diameter of pores on the emission characteristics has been analyzed and a strong logarithmic trend was discovered correlating emission wavelength to pore diameter. In addition to allowing control over the wavelength of emission based on pore diameter, the process that has been developed and demonstrated will allow a distribution of pore sizes that could facilitate color mixing.

  12. Indium nitride: A narrow gap semiconductor

    SciTech Connect

    Wu, J.; Walukiewicz, W.; Yu, K.M.; Ager III, J.W.; Haller, E.E.; Lu, H.; Schaff, W.J.

    2002-08-14

    The optical properties of wurtzite InN grown on sapphire substrates by molecular-beam epitaxy have been characterized by optical absorption, photoluminescence, and photomodulated reflectance techniques. All these three characterization techniques show an energy gap for InN between 0.7 and 0.8 eV, much lower than the commonly accepted value of 1.9 eV. The photoluminescence peak energy is found to be sensitive to the free electron concentration of the sample. The peak energy exhibits a very weak hydrostatic pressure dependence and a small, anomalous blueshift with increasing temperature. The bandgap energies of In-rich InGaN alloys were found to be consistent with the narrow gap of InN. The bandgap bowing parameter was determined to be 1.43 eV in InGaN.

  13. Development of an Advanced Computational Model for OMCVD of Indium Nitride

    NASA Technical Reports Server (NTRS)

    Cardelino, Carlos A.; Moore, Craig E.; Cardelino, Beatriz H.; Zhou, Ning; Lowry, Sam; Krishnan, Anantha; Frazier, Donald O.; Bachmann, Klaus J.

    1999-01-01

    An advanced computational model is being developed to predict the formation of indium nitride (InN) film from the reaction of trimethylindium (In(CH3)3) with ammonia (NH3). The components are introduced into the reactor in the gas phase within a background of molecular nitrogen (N2). Organometallic chemical vapor deposition occurs on a heated sapphire surface. The model simulates heat and mass transport with gas and surface chemistry under steady state and pulsed conditions. The development and validation of an accurate model for the interactions between the diffusion of gas phase species and surface kinetics is essential to enable the regulation of the process in order to produce a low defect material. The validation of the model will be performed in concert with a NASA-North Carolina State University project.

  14. Superconductivity of Ca2 InN with a layered structure embedding an anionic indium chain array

    NASA Astrophysics Data System (ADS)

    Jeong, Sehoon; Matsuishi, Satoru; Lee, Kimoon; Toda, Yoshitake; Wng Kim, Sung; Hosono, Hideo

    2014-05-01

    We report the emergence of superconductivity in Ca2InN consisting of a two-dimensional (2D) array of zigzag indium chains embedded between Ca2N layers. A sudden drop of resistivity and a specific heat (Cp) jump attributed to the superconducting transition were observed at 0.6 K. The Sommerfeld coefficient γ = 4.24 mJ mol-1K-2 and Debye temperature ΘD = 322 K were determined from the Cp of the normal conducting state and the superconducting volume fraction was estimated to be ˜80% from the Cp jump, assuming a BCS-type weak coupling. Density functional theory calculations demonstrated that the electronic bands near the Fermi level (EF) are mainly derived from In 5p orbitals with π and σ bonding states and the Fermi surface is composed of cylindrical parts, corresponding to the quasi-2D electronic state of the In-chain array. By integrating the projected density of states of the In-p component up to EF, a valence electron population of ˜1.6 electrons/In was calculated, indicating that partially anionic state of In. The In 3d binding energies observed in Ca2InN by x-ray photoemission spectroscopy were negatively shifted from that in In metal. The superconductivity of Ca2InN is associated with the p-p bonding states of the anionic In layer.

  15. Mie Resonant Absorption and Infrared Emission in InN Related to Metallic Indium Clusters

    NASA Astrophysics Data System (ADS)

    Shubina, T. V.; Ivanov, S. V.; Jmerik, V. N.; Solnyshkov, D. D.; Kop'ev, P. S.; Vasson, A.; Leymarie, J.; Kavokin, A.; Amano, H.; Kamiyama, S.; Iwaya, M.; Akasaki, I.; Lu, H.; Schaff, W. J.; Kasic, A.; Monemar, B.

    2005-06-01

    We demonstrate that resonant optical losses related to metallic In clusters can significantly modify absorption spectra of InN with any optical gap. Thermally detected absorption spectra with a pronounced Mie resonance are successfully simulated using a dielectric function of InN corresponding to the 1.2-1.4 eV optical gap. The resonance is observed in spectra of conventional absorption at low temperatures being smoothed out at room temperature.

  16. Band Offset Characterization of the Atomic Layer Deposited Aluminum Oxide on m-Plane Indium Nitride

    NASA Astrophysics Data System (ADS)

    Jia, Ye; Wallace, Joshua S.; Qin, Yueling; Gardella, Joseph A.; Dabiran, Amir M.; Singisetti, Uttam

    2016-04-01

    In this letter, we report the band offset characterization of the atomic layer deposited aluminum oxide on non-polar m-plane indium nitride grown by plasma-assisted molecular beam epitaxy by using x-ray photoelectron spectroscopy. The valence band offset between aluminum oxide and m-plane indium nitride was determined to be 2.83 eV. The Fermi level of indium nitride was 0.63 eV above valence band maximum, indicated a reduced band bending in comparison to polar indium nitride. The band gap of aluminum oxide was found to be to 6.7 eV, which gave a conduction band offset of 3.17 eV.

  17. Formation and Temperature Effect of InN Nanodots by PA-MBE via Droplet Epitaxy Technique

    NASA Astrophysics Data System (ADS)

    Chen, Hugo Juin-Yu; Yang, Dian-Long; Huang, Tseh-Wet; Yu, Ing-Song

    2016-05-01

    In this report, self-organized indium nitride nanodots have been grown on Si (111) by droplet epitaxy method and their density can reach as high as 2.83 × 1011 cm-2 for the growth at low temperature of 250 °C. Based on the in situ reflection high-energy electron diffraction, the surface condition, indium droplets, and the formation of InN nanodots are identified during the epitaxy. The X-ray photoelectron spectroscopy and photoluminescence measurements have shown the formation of InN nanodots as well. The growth mechanism of InN nanodots could be described via the characterizations of indium droplets and InN nanodots using scanning electron microscopy, atomic force microscopy, and transmission electron microscopy. The density of the InN nanodots was less than that of the In droplets due to the surface diffusion and desorption of atoms during the nitridation and annealing process. The average size and density of InN nanodots can be controlled by the substrate temperatures during the growth. For the growth at lower temperature, we obtained the higher density and smaller average size of InN nanodots. To minimize the total surface energy, the coarsening and some preferred orientations of InN nanodots were observed for the growth at high temperature.

  18. Evaluation of the indium gallium nitride/silicon broken-gap heterojunction and its potential application for solar cells

    NASA Astrophysics Data System (ADS)

    Yao, Yuan

    InGaN (especially In-rich alloy) has been actively studied for decades since the band gap of InN was revised downward from ˜2.0 eV to 0.64 eV. The potential applications for alloys of In-rich InGaN hence became apparent. Despite the promising potential, photovoltaic devices based on InGaN have struggled due to a number of key limitations and fundamental physical problems. Firstly, due to the deep excursion of the InN conduction band at the gamma point, defects in InN are almost universally n-type leading to unintentional degenerate doping. This also leads to the problem of electron accumulation at all surfaces and interfaces of InN. Secondly, p-type doping is problematic, partially due to the degenerate doping effect of defects, but it has also been observed that Mg-doping, while leading to a p-type layer, dramatically reduces the quantum efficiency. This thesis explores an alternative approach using n-type InGaN to form a heterojunction with a p-type Si substrate. One potential benefit to using p-type Si as a substrate material for InGaN is that the valence band of Si possibly lines up with the conduction band of InGaN for a specific mole fraction of indium. Such a band alignment is known as a broken gap heterojunction, an example of which is the interface between InAs and AlxGa 1--xSb. The benefits of this broken-gap junction include a low series resistance, high electron mobility, and mobility only weakly dependent on temperature. These properties enable new approach to photovoltaic devices. The InGaN/Si heterojunctions were fabricated by plasma-assisted molecular beam epitaxy under stoichiometric flux conditions. An ultra-thin SiN interface layer was introduced, by Si nitridation process, to passivate the substrate surface and prevent In-Si and Ga-Si eutectic problems. InGaN films with a variety of indium mole fractions were grown by calibrating the In/Ga flux ratio during the deposition. The chemical composition of as-grown films was characterized by x

  19. Optical, structural, and transport properties of indium nitride, indium gallium nitride alloys grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Khan, Neelam

    InGaN based, blue and green light emitting diodes (LEDs) have been successfully produced over the past decade. But the progress of these LEDs is often limited by the fundamental problems of InGaN such as differences in lattice constants, thermal expansion coefficients and physical properties between InN and GaN. This difficulty could be addressed by studying pure InN and InxGa 1-xN alloys. In this context Ga-rich InxGa1-xN (x ≤ 0.4) epilayers were grown by metal organic chemical vapor deposition (MOCVD). X-ray diffraction (XRD) measurements showed InxGa1-xN films with x= 0.37 had single phase. Phase separation occurred for x ˜ 0.4. To understand the issue of phase separation in Ga-rich InxGa 1-xN, studies on growth of pure InN and In-rich InxGa 1-xN alloys were carried out. InN and In-rich InxGa1-xN (x ˜ 0.97-0.40) epilayers were grown on AlN/Al2O3 templates. A Hall mobility of 1400 cm2/Vs with a carrier concentration of 7x1018cm -3 was observed for InN epilayers grown on AlN templates. Photoluminescence (PL) emission spectra revealed a band to band emission peak at ˜0.75 eV for InN. This peak shifted to 1.15 eV when In content was varied from 1.0 to 0.63 in In-rich InxGa1-xN epilayers. After growth parameter optimization of In-rich InxGa1-xN alloys with (x = 0.97-0.40) were successfully grown without phase separation. Effects of Mg doping on the PL properties of InN epilayers grown on GaN/Al 2O3 templates were investigated. An emission line at ˜ 0.76 eV, which was absent in undoped InN epilayers and was about 60 meV below the band edge emission peak at ˜ 0.82 eV, was observed to be the dominant emission in Mg-doped InN epilayers. PL peak position and the temperature dependent emission intensity corroborated each other and suggested that Mg acceptor level in InN is about 60 meV above the valance band maximum. Strain effects on the emission properties of InGaN/GaN multiple quantum wells (MQWs) were studied using a single blue LED wafer possessing a continuous

  20. InN thin-film transistors fabricated on polymer sheets using pulsed sputtering deposition at room temperature

    NASA Astrophysics Data System (ADS)

    Lye, Khe Shin; Kobayashi, Atsushi; Ueno, Kohei; Ohta, Jitsuo; Fujioka, Hiroshi

    2016-07-01

    Indium nitride (InN) is potentially suitable for the fabrication of high performance thin-film transistors (TFTs) because of its high electron mobility and peak electron velocity. However, InN is usually grown using a high temperature growth process, which is incompatible with large-area and lightweight TFT substrates. In this study, we report on the room temperature growth of InN films on flexible polyimide sheets using pulsed sputtering deposition. In addition, we report on the fabrication of InN-based TFTs on flexible polyimide sheets and the operation of these devices.

  1. Plasma deposited silicon nitride for indium phosphide encapsulation

    NASA Technical Reports Server (NTRS)

    Valco, G. J.; Kapoor, V. J.; Biedenbender, M. D.; Williams, W. D.

    1989-01-01

    The composition and the annealing characteristics of plasma-deposited silicon-nitride encapsulating films on the ion-implanted InP substrates were investigated, using two different substrate-cleaning procedures (organic solvents and HF or HIO3 solutions) prior to encapsulation. The effect of plasma deposition of silicon nitride on the InP substrates was assessed through the current-voltage characteristics of Schottky diodes. Results of XPS analyses showed that the cleaning procedure that employed HF solution left less oxygen on the InP surface than the procedure involving HIO3. No chemical interaction between the film and the substrate was observed before or after annealing.

  2. Influence of In-N Clusters on Band Gap Energy of Dilute Nitride In x Ga1-x N y As1-y

    NASA Astrophysics Data System (ADS)

    Zhao, Chuan-Zhen; Guo, Heng-Fei; Chen, Li-Ying; Tang, Chun-Xiao; Lu, Ke-Qing

    2016-05-01

    The In-N clusters form in the dilute nitride InxGa1-xNyAs1-y alloys after annealing. It is found that the formation of the In-N clusters not only raises the N levels lying above the conduction band minimum (CBM) of InGaAs, but also raises the N levels below the CBM of InGaAs, leading to the variation of the impurity-host interaction. The blueshift of the band gap energy is relative to the variation of the impurity-host interaction. In order to describe the blueshift of the band gap energy due to the formation of the In-N clusters, a model is developed. It is found that the model can describe the blueshift of the band gap energy well. In addition, it is found the blueshift of the band gap energy due to the atom interdiffusion at the interface can be larger than that due to the formation of the In-N clusters. Supported by the National Natural Science Foundation of China under Grant No. 61504094, Tinjin Research Program of Application Foundation and Advanced Technology under No. 15JCYBJC16300, and Tianjin City High School Science and Technology Fund Planning Project No. 20120609

  3. Influence of In-N Clusters on Band Gap Energy of Dilute Nitride In x Ga1‑x N y As1‑y

    NASA Astrophysics Data System (ADS)

    Zhao, Chuan-Zhen; Guo, Heng-Fei; Chen, Li-Ying; Tang, Chun-Xiao; Lu, Ke-Qing

    2016-05-01

    The In-N clusters form in the dilute nitride InxGa1‑xNyAs1‑y alloys after annealing. It is found that the formation of the In-N clusters not only raises the N levels lying above the conduction band minimum (CBM) of InGaAs, but also raises the N levels below the CBM of InGaAs, leading to the variation of the impurity-host interaction. The blueshift of the band gap energy is relative to the variation of the impurity-host interaction. In order to describe the blueshift of the band gap energy due to the formation of the In-N clusters, a model is developed. It is found that the model can describe the blueshift of the band gap energy well. In addition, it is found the blueshift of the band gap energy due to the atom interdiffusion at the interface can be larger than that due to the formation of the In-N clusters. Supported by the National Natural Science Foundation of China under Grant No. 61504094, Tinjin Research Program of Application Foundation and Advanced Technology under No. 15JCYBJC16300, and Tianjin City High School Science and Technology Fund Planning Project No. 20120609

  4. InN Based Water Condensation Sensors on Glass and Flexible Plastic Substrates

    PubMed Central

    Dumitru, Viorel; Costea, Stefan; Brezeanu, Mihai; Stan, George E.; Besleaga, Cristina; Galca, Aurelian C.; Ionescu, Gabriela; Ionescu, Octavian

    2013-01-01

    In this paper, we report the realization and characterization of a condensation sensor based on indium nitride (InN) layers deposited by magnetron sputtering on glass and flexible plastic substrates, having fast response and using potentially low cost fabrication technology. The InN devices work as open gate thin film sensitive transistors. Condensed water droplets, formed on the open gate region of the sensors, deplete the electron accumulation layer on the surface of InN film, thus decreasing the current of the sensor. The current increases back to its initial value when water droplets evaporate from the exposed InN film surface. The response time is as low as 2 s.

  5. Tuning of the electronic and optical properties of single-layer indium nitride by strain and stress

    NASA Astrophysics Data System (ADS)

    Jalilian, Jaafar; Naseri, Mosayeb; Safari, Shima; Zarei, Mina

    2016-09-01

    Using first principles calculations, electronic and optical properties of indium nitride graphene-like structure have been studied under various stress and strain values. The results exhibit that this compound in the range of ±6 applied biaxial strain remains a direct band gap semiconductor. Also, exerting stress and strain reduces the energy band gap of the considered materials. The optical calculations illustrate that applying stress and strain on system results in blue and red shift in optical spectra. All obtained results presented that we can tune the optoelectronic properties of indium nitride by applying stress and strain.

  6. Characterization of InN nanoparticles prepared by laser as photodetector

    NASA Astrophysics Data System (ADS)

    Khashan, Khawla S.; Abbas, Sarah F.

    2016-05-01

    Indium nitride (InN) nanoparticles (NPs) are a potentially important material for optoelectronic and high speed electronic devices. Using 1064 nm Nd:YAG laser, InN NPs suspension has been prepared by laser ablation of indium target submerged under ammonium hydroxide. FTIR determined the presence of In=N at 1114.8 cm‑1 symmetric stretching mode, and In-N bending vibration mode appears at 445.5 cm‑1. X-ray diffraction (XRD) observed the peaks (101), (110), and (220) as a reflection formation cubic InN, with an average size of 2 nm. Scanning electron microscope (SEM) image shows that the NPs have a spherical shape with particle size in the range 2-20 nm. The transmission spectra of InN NPs suspension have the maximum optical transmission edge at 1378 nm with the band gap energy of 1.2 eV. The current-voltage characteristics of InN/Si heterojunction have a good rectifying property with a spectral responsivity of about 0.797 A/W at 750 nm wavelength.

  7. Nanoscale optical properties of indium gallium nitride/gallium nitride nanodisk-in-rod heterostructures.

    PubMed

    Zhou, Xiang; Lu, Ming-Yen; Lu, Yu-Jung; Jones, Eric J; Gwo, Shangjr; Gradečak, Silvija

    2015-03-24

    III-nitride based nanorods and nanowires offer great potential for optoelectronic applications such as light emitting diodes or nanolasers. We report nanoscale optical studies of InGaN/GaN nanodisk-in-rod heterostructures to quantify uniformity of light emission on the ensemble level, as well as the emission characteristics from individual InGaN nanodisks. Despite the high overall luminescence efficiency, spectral and intensity inhomogeneities were observed and directly correlated to the compositional variations among nanodisks and to the presence of structural defect, respectively. Observed light quenching is correlated to type I1 stacking faults in InGaN nanodisks, and the mechanisms for stacking fault induced nonradiative recombinations are discussed in the context of band structure around stacking faults and Fermi level pinning at nanorod surfaces. Our results highlight the importance of controlling III-nitride nanostructure growths to further reduce defect formation and ensure compositional homogeneity for optoelectronic devices with high efficiencies and desirable spectrum response.

  8. Epitaxial growth of III-V nitrides and phase separation and ordering in indium gallium nitride alloys

    NASA Astrophysics Data System (ADS)

    Doppalapudi, Dharanipal

    The family of III-V nitrides are wide band-gap semiconductors with a broad range of opto-electronic applications in LEDs, laser diodes, UV detectors as well as high temperature/high frequency devices. Due to the lack of good quality native substrates, GaN is grown on foreign substrates that have a lattice and thermal mismatch with GaN. This results in a material with a high density of defects, which in turn adversely affects the opto-electronic properties of the epilayer. In this study, GaN films were epitaxially grown on various substrates (C-plane sapphire, A-plane sapphire, SiC and ZnO) by molecular beam epitaxy. Additionally, GaN homoepitaxy onto laterally overgrown thick GaN substrates was investigated. It was demonstrated that the polarity of the GaN film plays a major role in determining the properties of the films. The growth parameters were optimized to eliminate inversion domain boundaries, which result in domains of opposite polarity in the GaN lattice. For growth on A-plane sapphire, it was found that substrate nitridation and low temperature buffer deposition are critical in order to obtain good epitaxial growth, in spite of the relatively small mismatch between the film and substrate. A crystallographic model was developed to explain this observation. By optimizing growth parameters, GaN films with excellent structural, transport, optical and device properties were grown. The second part of this research involves growth of ternary alloys and superlattice structures, which are essential in the fabrication of many devices. It was found that the InN-GaN pseudo-binary system is not homogeneous over the entire composition range. Due to the mismatch between the tetrahedral radii of GaN and InN, InGaN alloys exhibited phase separation and long-range atomic ordering. Investigations of InxGa1-xN films grown over a wide range of compositions by XRD and TEM showed that the predominant strain relieving mechanism was phase separation in films with x > 0.2, and

  9. Pressure-Induced Metallization and Superconductivity in InP and InN

    NASA Astrophysics Data System (ADS)

    Iyakutti, K.; Rejila, V.; Rajarajeswari, M.; Nirmala Louis, C.; Mahalakshmi, S.

    The electronic band structure, structural phase transition, metallization and superconducting transition of cubic zinc blende-type indium phosphide (InP) and indium nitride (InN), under pressure, are studied using TB-LMTO method. These indium compounds become metals and superconductors under high pressure but before that they undergo structural phase transition from ZnS to NaCl structure. The ground-state properties and band gap values are compared with the experimental and previous theoretical results. From our analysis, it is found that the metallization pressure increases with increase of lattice constant. The superconducting transition temperatures (Tc) of InP and InN are obtained as a function of pressure for both the ZnS and NaCl structures and these compounds are identified as pressure-induced superconductors. When pressure is increased Tc increases in both the normal (ZnS) and high pressure (NaCl) structures. The dependence of Tc on electron-phonon mass enhancement factor λ shows that InP and InN are electron-phonon mediated superconductors. The non-occurrence of metallization, phase transition and onset of superconductivity simultaneously in InP and InN are confirmed.

  10. ANALYSIS OF THE WATER-SPLITTING CAPABILITIES OF GALLIUM INDIUM PHOSPHIDE NITRIDE (GaInPN)

    SciTech Connect

    Head, J.; Turner, J.

    2007-01-01

    With increasing demand for oil, the fossil fuels used to power society’s vehicles and homes are becoming harder to obtain, creating pollution problems and posing hazard’s to people’s health. Hydrogen, a clean and effi cient energy carrier, is one alternative to fossil fuels. Certain semiconductors are able to harness the energy of solar photons and direct it into water electrolysis in a process known as photoelectrochemical water-splitting. P-type gallium indium phosphide (p-GaInP2) in tandem with GaAs is a semiconductor system that exhibits water-splitting capabilities with a solar-tohydrogen effi ciency of 12.4%. Although this material is effi cient at producing hydrogen through photoelectrolysis it has been shown to be unstable in solution. By introducing nitrogen into this material, there is great potential for enhanced stability. In this study, gallium indium phosphide nitride Ga1-yInyP1-xNx samples were grown using metal-organic chemical vapor deposition in an atmospheric-pressure vertical reactor. Photocurrent spectroscopy determined these materials to have a direct band gap around 2.0eV. Mott-Schottky analysis indicated p-type behavior with variation in fl atband potentials with varied frequencies and pH’s of solutions. Photocurrent onset and illuminated open circuit potential measurements correlated to fl atband potentials determined from previous studies. Durability analysis suggested improved stability over the GaInP2 system.

  11. Large area InN terahertz emitters based on the lateral photo-Dember effect

    SciTech Connect

    Wallauer, Jan Grumber, Christian; Walther, Markus; Polyakov, Vladimir; Iannucci, Robert; Cimalla, Volker; Ambacher, Oliver

    2015-09-14

    Large area terahertz emitters based on the lateral photo-Dember effect in InN (indium nitride) are presented. The formation of lateral photo-Dember currents is induced by laser-illumination through a microstructured metal cover processed onto the InN substrate, causing an asymmetry in the lateral photogenerated charge carrier distribution. Our design uses simple metal structures, which are produced by conventional two-dimensional micro-structuring techniques. Having favoring properties as a photo-Dember material InN is particularly well-suited as a substrate for our emitters. We demonstrate that the emission intensity of the emitters can be significantly influenced by the structure of the metal cover leaving room for improvement by optimizing the masking structures.

  12. The influence of random indium alloy fluctuations in indium gallium nitride quantum wells on the device behavior

    SciTech Connect

    Yang, Tsung-Jui; Wu, Yuh-Renn; Shivaraman, Ravi; Speck, James S.

    2014-09-21

    In this paper, we describe the influence of the intrinsic indium fluctuation in the InGaN quantum wells on the carrier transport, efficiency droop, and emission spectrum in GaN-based light emitting diodes (LEDs). Both real and randomly generated indium fluctuations were used in 3D simulations and compared to quantum wells with a uniform indium distribution. We found that without further hypothesis the simulations of electrical and optical properties in LEDs such as carrier transport, radiative and Auger recombination, and efficiency droop are greatly improved by considering natural nanoscale indium fluctuations.

  13. Indium gallium nitride/gallium nitride vacuum microelectronic cold cathodes: Piezoelectric surface barrier lowering

    NASA Astrophysics Data System (ADS)

    Underwood, Robert Douglas

    Vacuum microelectronic devices are electronic devices fabricated using microelectronic processing and using vacuum as a transport medium. The electron velocity in vacuum can be larger than in solid state, which allows higher frequency operation of vacuum devices compared to solid-state devices. The effectiveness of vacuum microelectronic devices relies on the realization of an efficient source of electrons supplied to the vacuum. Cold cathodes do not rely on thermal energy for the emission of electrons into vacuum. Cold cathodes based on field emission are the most common types of vacuum microelectronic cold cathode because they have a very high efficiency and high current density electron emission. Materials used to fabricate field emitters must have the properties of high electron concentration, low surface reactivity, resistance to sputtering by ions, high thermal conductivity, and a method of fabrication of uniform arrays of field emitters. The III--V nitride semiconductors possess these material properties and uniform arrays of GaN field emitter pyramids have been produced by selective area, self-limited metalorganic chemical vapor deposition. The first GaN field emitter arrays were fabricated and measured. Emission currents as large as 82 muA at 1100 V from 245,000 pyramids have been realized using an external anode, separated by 0.25 mm, to apply voltage bias. The operation voltage was reduced by the development of an integrated anode structure. The anode-cathode separation achievable with the integrated anode was in the range of 0.5--2.4 m. The turn-on voltages of these devices were reduced to the range of 175--435 V. The operation voltage of field emitter cathodes is related to the surface energy barrier, which for n-type semiconductors is the electron affinity. A new method to reduce the effective electron affinity using a piezoelectric dipole in an InGaN/GaN heterostructure has been proposed and tested. The piezoelectric field produced in the strained In

  14. Growth and fabrication of gallium nitride and indium gallium nitride-based optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Berkman, Erkan Acar

    In this study, heteroepitaxial growth of III-Nitrides was performed by metalorganic chemical vapor deposition (MOCVD) technique on (0001) Al 2O3 substrates to develop GaN and InxGa1-x N based optoelectronic devices. Comprehensive experimental studies on emission and relaxation mechanisms of InxGa1-xN quantum wells (QWs) and InxGa 1-xN single layers were performed. The grown films were characterized by x-ray diffraction (XRD), Hall Effect measurements, photoluminescence measurements (PL) and transmission electron microscopy (TEM). An investigation on the effect of number and width of QWs on PL emission properties of InxGa 1-xN single QWs and multi-quantum wells (MQW) was conducted. The experimental results were explained by the developed theoretical bandgap model. The study on the single layer InxGa1-xN films within and beyond critical layer thickness (CLT) demonstrated that thick InxGa 1-xN films display simultaneous presence of strained and (partially) relaxed layers. The In incorporation into the lattice was observed to be dependent on the strain state of the film. The findings on InxGa1-xN QWs and single layers were implemented in the development of InxGa1-xN based LEDs and photodiodes, respectively. The as-grown samples were fabricated using conventional lithography techniques into various optoelectronic devices including long wavelength LEDs, dichromatic monolithic white LEDs, and p-i-n photodiodes. Emission from InxGa1-xN/GaN MQW LEDs at wavelengths as long as 625nm was demonstrated. This is one of the longest peak emission wavelengths reported for MOCVD grown InxGa1-xN MQW structures. Dichromatic white emission in LEDs was realized by utilizing two InGaN MQW active regions emitting at complementary wavelengths. InGaN p-i-n photodiodes operating at various regions of the visible spectrum tailored by the i-layer properties were developed. This was achieved by the novel approach of employing InxGa1-xN in all layers of the p-i-n photodiodes, enabling nearly

  15. Micro and nano-structured green gallium indium nitride/gallium nitride light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Stark, Christoph J. M.

    Light-emitting diodes (LEDs) are commonly designed and studied based on bulk material properties. In this thesis different approaches based on patterns in the nano and micrometer length scale range are used to tackle low efficiency in the green spectral region, which is known as “green gap”. Since light generation and extraction are governed by microscopic processes, it is instructive to study LEDs with lateral mesa sizes scaled to the nanometer range. Besides the well-known case of the quantum size effect along the growth direction, a continuous lateral scaling could reveal the mechanisms behind the purported absence of a green gap in nanowire LEDs and the role of their extraction enhancement. Furthermore the possibility to modulate strain and piezoelectric polarization by post growth patterning is of practical interest, because the internal electric fields in conventional wurtzite GaN LEDs cause performance problems. A possible alternative is cubic phase GaN, which is free of built-in polarization fields. LEDs on cubic GaN could show the link between strong polarization fields and efficiency roll-off at high current densities, also known as droop. An additional problem for all nitride-based LEDs is efficient light extraction. For a planar GaN LED only roughly 8% of the generated light can be extracted. Novel lightextraction structures with extraction-favoring geometry can yield significant increase in light output power. To investigate the effect of scaling the mesa dimension, micro and nano-sized LED arrays of variable structure size were fabricated. The nano-LEDs were patterned by electron beam lithography and dry etching. They contained up to 100 parallel nano-stripe LEDs connected to one common contact area. The mesa width was varied over 1 μm, 200 nm, and 50 nm. These LEDs were characterized electrically and optically, and the peak emission wavelength was found to depend on the lateral structure size. An electroluminescence (EL) wavelength shift of 3 nm

  16. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting

    PubMed Central

    Kim, Hoon-sik; Brueckner, Eric; Song, Jizhou; Li, Yuhang; Kim, Seok; Lu, Chaofeng; Sulkin, Joshua; Choquette, Kent; Huang, Yonggang; Nuzzo, Ralph G.; Rogers, John A.

    2011-01-01

    Properties that can now be achieved with advanced, blue indium gallium nitride light emitting diodes (LEDs) lead to their potential as replacements for existing infrastructure in general illumination, with important implications for efficient use of energy. Further advances in this technology will benefit from reexamination of the modes for incorporating this materials technology into lighting modules that manage light conversion, extraction, and distribution, in ways that minimize adverse thermal effects associated with operation, with packages that exploit the unique aspects of these light sources. We present here ideas in anisotropic etching, microscale device assembly/integration, and module configuration that address these challenges in unconventional ways. Various device demonstrations provide examples of the capabilities, including thin, flexible lighting “tapes” based on patterned phosphors and large collections of small light emitters on plastic substrates. Quantitative modeling and experimental evaluation of heat flow in such structures illustrates one particular, important aspect of their operation: small, distributed LEDs can be passively cooled simply by direct thermal transport through thin-film metallization used for electrical interconnect, providing an enhanced and scalable means to integrate these devices in modules for white light generation. PMID:21666096

  17. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting.

    PubMed

    Kim, Hoon-sik; Brueckner, Eric; Song, Jizhou; Li, Yuhang; Kim, Seok; Lu, Chaofeng; Sulkin, Joshua; Choquette, Kent; Huang, Yonggang; Nuzzo, Ralph G; Rogers, John A

    2011-06-21

    Properties that can now be achieved with advanced, blue indium gallium nitride light emitting diodes (LEDs) lead to their potential as replacements for existing infrastructure in general illumination, with important implications for efficient use of energy. Further advances in this technology will benefit from reexamination of the modes for incorporating this materials technology into lighting modules that manage light conversion, extraction, and distribution, in ways that minimize adverse thermal effects associated with operation, with packages that exploit the unique aspects of these light sources. We present here ideas in anisotropic etching, microscale device assembly/integration, and module configuration that address these challenges in unconventional ways. Various device demonstrations provide examples of the capabilities, including thin, flexible lighting "tapes" based on patterned phosphors and large collections of small light emitters on plastic substrates. Quantitative modeling and experimental evaluation of heat flow in such structures illustrates one particular, important aspect of their operation: small, distributed LEDs can be passively cooled simply by direct thermal transport through thin-film metallization used for electrical interconnect, providing an enhanced and scalable means to integrate these devices in modules for white light generation.

  18. MBE Growth of InN/GaN(0001) and Shape Transitions of InN islands

    NASA Astrophysics Data System (ADS)

    Cao, Yongge; Xie, Maohai; Liu, Ying; Ng, Y. F.

    2003-03-01

    Plasma-assisted molecular-beam epitaxial growth of InN on GaN(0001) is investigated. Both layer-by-layer and Stranski-Krastanov (SK) growth modes are observed under different growth windows. Strain relaxation is studied by real-time recording of the in-plane lattice spacing evolutions on RHEED pattern, which suggest a gradual relaxation of the strain in InN film commenced during the first bilayer (BL) deposition and almost completed after 2-4 BLs. For SK growth, 3D islanding initiates after the strain has mostly been relieved, presumably by dislocations. Based on statistical analysis, the shape transitions of 3D islands are firstly observed in the III-nitrides system. The InN islands transform gradually from pyramids to platelets with increasing of In flux. Under In-rich growth condition, the reverse trend of island shape evolution dependence on volume size, compared with Equilibrium Crystal Shape (ECS) theory, is induced by the Indium self-surfactant effects, in which Indium adlayer on the top surface of InN islands will depress the thermodynamic driving force for the vertical growth of 3D islands. Lateral growth of 3D islands is not only the result of kinetic process but also favored by thermodynamics while Indium self-surfactant exist.

  19. Heteroepitaxial growth of InN on GaN intermediate layer by PA-MOMBE

    NASA Astrophysics Data System (ADS)

    Lai, Fang-I.; Kuo, Shou-Yi; Chen, Wei-Chun; Lin, Woei-Tyng; Wang, Wei-Lin; Chang, Li; Hsiao, Chien-Nan; Chiang, Chung-Hao

    2011-07-01

    In this paper, high-quality wurtzite indium nitride was epi-grown on sapphire substrates by plasma-assisted metal-organic molecule beam epitaxy system (PA-MOMBE). Structural and electrical properties of the InN films were significantly improved by employing a GaN buffer layer. In addition, high-resolution X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy (TEM), Hall Effect, Raman and photoluminescence spectroscopy were carried out to characterize the effect of the growth temperature on structural and optoelectronic properties. It was found that highly c-axis oriented InN epilayer can be obtained by optimizing growth conditions. TEM images reveal that the epitaxially grown InN/GaN interface is sharp, and the spacing of the InN(0 0 0 2) lattice plane is about 0.57 nm. Raman spectra also show a sharp peak at 491 cm -1 attributed to the E 2(high) mode of wurtzite InN. These results indicate that the improvement of InN material quality can be achieved using heteroepitaxy on GaN/sapphire templates.

  20. Initial exploration of growth of InN by electrochemical solution growth.

    SciTech Connect

    Waldrip, Karen Elizabeth

    2010-02-01

    This report summarizes a brief and unsuccessful attempt to grow indium nitride via the electrochemical solution growth method and a modification thereof. Described in this report is a brief effort using a $50,000 LDRD award to explore the possibilities of applying the Electrochemical Solution Growth (ESG) technique to the growth of indium nitride (InN). The ability to grow bulk InN would be exciting from a scientific perspective, and a commercial incentive lies in the potential of extending the ESG technique to grow homogeneous, bulk alloys of In{sub x}Ga{sub 1-x}N for light emitting diodes (LEDs) operating in the green region of the spectrum. Indium nitride is the most difficult of the III-nitrides to grow due to its very high equilibrium vapor pressure of nitrogen1. It is several orders of magnitude higher than for gallium nitride or aluminum nitride. InN has a bandgap energy of 0.7eV, and achieving its growth in bulk for large area, high quality substrates would permit the fabrication of LEDs operating in the infrared. By alloying with GaN and AlN, the bulk material used as substrates would enable high efficiency emission wavelengths that could be tailored all the way through the deep ultraviolet. In addition, InN has been shown to have very high electronic mobilities (2700 cm{sup 2}/V s), making it a promising material for transistors and even terahertz emitters. Several attempts at synthesizing InN have been made by several groups. It was shown that metallic indium does not interact with unactivated nitrogen even at very high temperatures. Thus sets up an incompatibility between the precursors in all growth methods: a tradeoff between thermally activating the nitrogen-containing precursor and the low decomposition temperature of solid InN. We have been working to develop a novel growth technique that circumvents the difficulties of other bulk growth techniques by precipitating the column III nitrides from a solvent, such as a molten chloride salt, that

  1. Surface-plasmon resonances in indium nitride with metal-enriched nano-particles

    NASA Astrophysics Data System (ADS)

    Shubina, T. V.; Plotnikov, D. S.; Vasson, A.; Leymarie, J.; Larsson, M.; Holtz, P. O.; Monemar, B.; Lu, Hai; Schaff, W. J.; Kop'ev, P. S.

    2006-03-01

    Plasmonic resonances in In-enriched nano-particles, spontaneously formed during growth, can dramatically modify optical properties of InN. Experimental support for this is provided from detailed studies of absorption and infrared emission in InN. In particular, thermally detected optical absorption and photoluminescence excitation spectroscopy reveal a peak below the region of strong absorption in InN. A higher-energy part of the infrared emission having a noticeable p-polarization is markedly enhanced with excitation along the surface. These peculiarities are discussed in terms of the Mie resonances, arising in metallic spheroids with different aspect ratio, and their coupling with recombining states, whose strength depends on energy separation between the states and the resonances.

  2. Pressure dependence of the refractive index in wurtzite and rocksalt indium nitride

    SciTech Connect

    Oliva, R.; Yamaguchi, T.; Nanishi, Y.

    2014-12-08

    We have performed high-pressure Fourier transform infrared reflectance measurements on a freestanding InN thin film to determine the refractive index of wurtzite InN and its high-pressure rocksalt phase as a function of hydrostatic pressure. From a fit to the experimental refractive-index curves including the effect of the high-energy optical gaps, phonons, free carriers, and the direct (fundamental) band-gap in the case of wurtzite InN, we obtain pressure coefficients for the low-frequency (electronic) dielectric constant ε{sub ∞}. Negative pressure coefficients of −8.8 × 10{sup −2 }GPa{sup −1} and −14.8 × 10{sup −2 }GPa{sup −1} are obtained for the wurtzite and rocksalt phases, respectively. The results are discussed in terms of the electronic band structure and the compressibility of both phases.

  3. Self-Catalyzed Growth of Vertically Aligned InN Nanorods by Metal-Organic Vapor Phase Epitaxy.

    PubMed

    Tessarek, C; Fladischer, S; Dieker, C; Sarau, G; Hoffmann, B; Bashouti, M; Göbelt, M; Heilmann, M; Latzel, M; Butzen, E; Figge, S; Gust, A; Höflich, K; Feichtner, T; Büchele, M; Schwarzburg, K; Spiecker, E; Christiansen, S

    2016-06-01

    Vertically aligned hexagonal InN nanorods were grown mask-free by conventional metal-organic vapor phase epitaxy without any foreign catalyst. The In droplets on top of the nanorods indicate a self-catalytic vapor-liquid-solid growth mode. A systematic study on important growth parameters has been carried out for the optimization of nanorod morphology. The nanorod N-polarity, induced by high temperature nitridation of the sapphire substrate, is necessary to achieve vertical growth. Hydrogen, usually inapplicable during InN growth due to formation of metallic indium, and silane are needed to enhance the aspect ratio and to reduce parasitic deposition beside the nanorods on the sapphire surface. The results reveal many similarities between InN and GaN nanorod growth showing that the process despite the large difference in growth temperature is similar. Transmission electron microscopy, spatially resolved energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy have been performed to analyze the structural properties. Spatially resolved cathodoluminescence investigations are carried out to verify the optical activity of the InN nanorods. The InN nanorods are expected to be the material of choice for high-efficiency hot carrier solar cells. PMID:27187840

  4. Chemical nature of silicon nitride-indium phosphide interface and rapid thermal annealing for InP MISFETs

    NASA Technical Reports Server (NTRS)

    Biedenbender, M. D.; Kapoor, V. J.

    1990-01-01

    A rapid thermal annealing (RTA) process in pure N2 or pure H2 was developed for ion-implanted and encapsulated indium phosphide compound semiconductors, and the chemical nature at the silicon nitride-InP interface before and after RTA was examined using XPS. Results obtained from SIMS on the atomic concentration profiles of the implanted silicon in InP before and after RTA are presented, together with electrical characteristics of the annealed implants. Using the RTA process developed, InP metal-insulator semiconductor FETs (MISFETS) were fabricated. The MISFETS prepared had threshold voltages of +1 V, transconductance of 27 mS/mm, peak channel mobility of 1200 sq cm/V per sec, and drain current drift of only 7 percent.

  5. Indium-zinc oxide transparent electrode for nitride-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Mizutani, S.; Nakashima, S.; Iwaya, M.; Takeuchi, T.; Kamiyama, S.; Akasaki, I.; Kondo, T.; Teramae, F.; Suzuki, A.; Kitano, T.; Mori, M.; Matsubara, M.

    2013-03-01

    The basic properties of indium-zinc oxide (IZO) were investigated from the view point of the potential of light-emitting diodes (LEDs) for nanostructured transparent contact. The resistivity and contact resistance to p-GaN were obtained to be 2.5×10-4 Ωcm and 9.4×10-4 Ωcm2, respectively, which are comparable to those of indium-tin oxide (ITO). The light output of the LED with the moth-eye IZO was 10 % and 40 % higher than that of the LED with the moth-eye ITO and that of the LED without the moth-eye structure, respectively.

  6. Electron transport and electron energy distributions within the wurtzite and zinc-blende phases of indium nitride: Response to the application of a constant and uniform electric field

    SciTech Connect

    Siddiqua, Poppy; Hadi, Walid A.; Salhotra, Amith K.; O'Leary, Stephen K.; Shur, Michael S.

    2015-03-28

    Within the framework of an ensemble semi-classical three-valley Monte Carlo electron transport simulation approach, we critically contrast the nature of the electron transport that occurs within the wurtzite and zinc-blende phases of indium nitride in response to the application of a constant and uniform electric field. We use the electron energy distribution and its relationship with the electron transport characteristics in order to pursue this analysis. For the case of zinc-blende indium nitride, only a peak corresponding to the electrons within the lowest energy conduction band valley is observed, this peak being seen to broaden and shift to higher energies in response to increases in the applied electric field strength, negligible amounts of upper energy conduction band valley occupancy being observed. In contrast, for the case of wurtzite indium nitride, in addition to the aforementioned lowest energy conduction band valley peak in the electron energy distribution, and its broadening and shifting to higher energies in response to increases in the applied electric field strength, beyond a certain critical electric field strength, 30 kV/cm for the case of this particular material, upper energy conduction band valley occupancy is observed, this occupancy being further enhanced in response to further increases in the applied electric field strength. Reasons for these results are provided. The potential for device consequences is then commented upon.

  7. Theoretical Study of Indium Compounds of Interest for Organometallic Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Cardelino, B. H.; Moore, C. E.; Cardelino, C. A.; Frazier, D. O.; Backmann, K. J.

    2000-01-01

    The structural. electronic and therinochemical properties of indium compounds which are of interest in halide transport and organometallic chemical vapor deposition processes have been studied by ab initio and statistical mechanics methods. The compounds reported include: indium halides and hydrides (InF, InCl, InCl3, InH, InH2, InH3); indium clusters (In2, In3); methylindium, dimethylindium, and their hydrogen derivatives [In(CH3), In(CH3)H, In(CH3)H2, In(CH3)2, In(CH3)2H]; dimethyl-indium dimer [In2(CH3)4], trimethyl-indium [In(CH3)3]; dehydrogenated methyl, dimethyl and trimethylindium [In(CH3)2CH2, In(CH3)CH2, In(CH2)], trimethylindium adducts with ammonia, trimethylamine and hydrazine [(CH3)3In:NH3, (CH3)3In:N(CH3)3, (CH3)3In:N(H2)N(H2)]; dimethylamino-indium and methylimino-indium [In(CH3)2(NH2), In(CH3)(NH)]; indium nitride and indium nitride dimer (InN, In2N2), indium phosphide, arsenide and antimonide ([InP, InAs, InSb). The predicted electronic properties are based on density functional theory calculations; the calculated thermodynamic properties are reported following the format of the JANAF (Joint Army, Navy, NASA, Air Force) Tables. Equilibrium compositions at two temperatures (298 and 1000 K) have been analyzed for groups of competing simultaneous reactions.

  8. 15. LOOKING WEST TOWARD OLD FAITHFUL INN. THE INN'S NAMESAKE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. LOOKING WEST TOWARD OLD FAITHFUL INN. THE INN'S NAMESAKE, OLD FAITHFUL GEYSER IS AT LEFT. - Old Faithful Inn, 900' northeast of Snowlodge & 1050' west of Old Faithful Lodge, Lake, Teton County, WY

  9. Synthesis of indium phosphide

    NASA Astrophysics Data System (ADS)

    Adamski, Joseph A.

    1983-11-01

    Polycrystalline ingots of indium phosphide have been synthesized using the direct reaction technique. Indium phosphide has been grown under various phosphorus pressures (3 to 30 atm). Several temperature profiles were used to study the effect of temperature on mobility, carrier concentration, grain size, homogeneity, and stoichiometry. Quartz and pyrolytic boron nitride boats are used. Several experiments were performed placing the PBN and quartz boats inside born nitride and aluminum oxide tubes in an attempt to lower silicon contamination. In-situ vacuum baking of the raw indium charge has resulted in a significant improvement in the purity of the synthesized InP.

  10. Auger recombination as the dominant recombination process in indium nitride at low temperatures during steady-state photoluminescence

    SciTech Connect

    Seetoh, I. P.; Soh, C. B.; Fitzgerald, E. A.; Chua, S. J.

    2013-03-11

    Auger recombination in InN films grown by metal-organic chemical vapor deposition was studied by steady-state photoluminescence at different laser excitation powers and sample temperatures. It was dominant over radiative recombination and Shockley-Read-Hall recombination at low temperatures, contributing to the sub-linear relationship between the integrated photoluminescence intensity and laser excitation power. Auger recombination rates increased gradually with temperature with an activation energy of 10-17 meV, in good agreement with values from transient photoluminescence reported in literature. As the Auger recombination rates were independent of material quality, they may form an upper limit to the luminous efficiency of InN.

  11. Electronic and thermoelectric properties of InN studied using ab initio density functional theory and Boltzmann transport calculations

    NASA Astrophysics Data System (ADS)

    Borges, P. D.; Scolfaro, L.

    2014-12-01

    The thermoelectric properties of indium nitride in the most stable wurtzite phase (w-InN) as a function of electron and hole concentrations and temperature were studied by solving the semiclassical Boltzmann transport equations in conjunction with ab initio electronic structure calculations, within Density Functional Theory. Based on maximally localized Wannier function basis set and the ab initio band energies, results for the Seebeck coefficient are presented and compared with available experimental data for n-type as well as p-type systems. Also, theoretical results for electric conductivity and power factor are presented. Most cases showed good agreement between the calculated properties and experimental data for w-InN unintentionally and p-type doped with magnesium. Our predictions for temperature and concentration dependences of electrical conductivity and power factor revealed a promising use of InN for intermediate and high temperature thermoelectric applications. The rigid band approach and constant scattering time approximation were utilized in the calculations.

  12. Electronic and thermoelectric properties of InN studied using ab initio density functional theory and Boltzmann transport calculations

    SciTech Connect

    Borges, P. D. E-mail: lscolfaro@txstate.edu; Scolfaro, L. E-mail: lscolfaro@txstate.edu

    2014-12-14

    The thermoelectric properties of indium nitride in the most stable wurtzite phase (w-InN) as a function of electron and hole concentrations and temperature were studied by solving the semiclassical Boltzmann transport equations in conjunction with ab initio electronic structure calculations, within Density Functional Theory. Based on maximally localized Wannier function basis set and the ab initio band energies, results for the Seebeck coefficient are presented and compared with available experimental data for n-type as well as p-type systems. Also, theoretical results for electric conductivity and power factor are presented. Most cases showed good agreement between the calculated properties and experimental data for w-InN unintentionally and p-type doped with magnesium. Our predictions for temperature and concentration dependences of electrical conductivity and power factor revealed a promising use of InN for intermediate and high temperature thermoelectric applications. The rigid band approach and constant scattering time approximation were utilized in the calculations.

  13. Self-compensation in highly n-type InN

    SciTech Connect

    Rauch, C.; Tuomisto, F.; King, P. D. C.; Veal, T. D.; Lu, H.; Schaff, W. J.

    2012-07-02

    Acceptor-type defects in highly n-type InN are probed using positron annihilation spectroscopy. Results are compared to Hall effect measurements and calculated electron mobilities. Based on this, self-compensation in n-type InN is studied, and the microscopic origin of compensating and scattering centers in irradiated and Si-doped InN is discussed. We find significant compensation through negatively charged indium vacancy complexes as well as additional acceptor-type defects with no or small effective open volume, which act as scattering centers in highly n-type InN samples.

  14. Fabrication of conducting-filament-embedded indium tin oxide electrodes: application to lateral-type gallium nitride light-emitting diodes.

    PubMed

    Kim, Hee-Dong; Kim, Kyeong Heon; Kim, Su Jin; Kim, Tae Geun

    2015-11-01

    A novel conducting filament (CF)-embedded indium tin oxide (ITO) film is fabricated using an electrical breakdown method. To assess the performance of this layer as an ohmic contact, it is applied to GaN (gallium nitride) light-emitting diodes (LEDs) as a p-type electrode for comparison with typical GaN LEDs using metallic ITO. The operating voltage and output power of the LED with the CF embedded ITO are 3.93 V and 8.49 mW, respectively, at an injection current of 100 mA. This is comparable to the operating voltage and output power of the conventionally fabricated LEDs using metallic ITO (3.93 V and 8.43 mW). Moreover, the CF-ITO LED displays uniform and bright light emission indicating excellent current injection and spreading. These results suggest that the proposed method of forming ohmic contacts is at least as effective as the conventional method. PMID:26561146

  15. InN Quantum Dot Based Infra-Red Photodetectors.

    PubMed

    Shetty, Arjun; Kumar, Mahesh; Roull, Basanta; Vinoy, K J; Krupanidhj, S B

    2016-01-01

    Self-assembled InN quantum dots (QDs) were grown on Si(111) substrate using plasma assisted molecular beam epitaxy (PA-MBE). Single-crystalline wurtzite structure of InN QDs was confirmed by X-ray diffraction. The dot densities were varied by varying the indium flux. Variation of dot density was confirmed by FESEM images. Interdigitated electrodes were fabricated using standard lithog- raphy steps to form metal-semiconductor-metal (MSM) photodetector devices. The devices show strong infrared response. It was found that the samples with higher density of InN QDs showed lower dark current and higher photo current. An explanation was provided for the observations and the experimental results were validated using Silvaco Atlas device simulator. PMID:27398511

  16. Plasma-deposited germanium nitride gate insulators for indium phosphide metal-insulator-semiconductor field-effect transistors

    NASA Technical Reports Server (NTRS)

    Johnson, Gregory A.; Kapoor, Vik J.

    1991-01-01

    Plasma-deposited germanium nitride was investigated for the first time as a possible gate insulator for InP compound semiconductor metal-insulator-semiconductor FET (MISFET) technology. The germanium nitride films were successfully deposited in a capacitively coupled parallel plate reactor at 13.56 MHz operation using GeH4/N2/NH3 and GeH4/N2 mixtures as reactant gases. The former process produced better quality films with enhanced uniformity, increased deposition rates, and increased resistivity. The breakdown field strength of the films was greater than 10 to the 6th V/cm. Auger electron spectroscopy did not indicate significant chemical composition differences between the two processes. For MISFETs with 2-micron channel lengths fabricated on InP, the device transconductance and threshold voltage for the GeH4/N2/NH3 process were 17 mS/mm and -3.6 V, respectively. The drain-source breakdown voltages were greater than 10 V.

  17. Crystallinity, Surface Morphology, and Photoelectrochemical Effects in Conical InP and InN Nanowires Grown on Silicon.

    PubMed

    Parameshwaran, Vijay; Xu, Xiaoqing; Clemens, Bruce

    2016-08-24

    The growth conditions of two types of indium-based III-V nanowires, InP and InN, are tailored such that instead of yielding conventional wire-type morphologies, single-crystal conical structures are formed with an enlarged diameter either near the base or near the tip. By using indium droplets as a growth catalyst, combined with an excess indium supply during growth, "ice cream cone" type structures are formed with a nanowire "cone" and an indium-based "ice cream" droplet on top for both InP and InN. Surface polycrystallinity and annihilation of the catalyst tip of the conical InP nanowires are observed when the indium supply is turned off during the growth process. This growth design technique is extended to create single-crystal InN nanowires with the same morphology. Conical InN nanowires with an enlarged base are obtained through the use of an excess combined Au-In growth catalyst. Electrochemical studies of the InP nanowires on silicon demonstrate a reduction photocurrent as a proof of photovolatic behavior and provide insight as to how the observed surface polycrystallinity and the resulting interface affect these device-level properties. Additionally, a photovoltage is induced in both types of conical InN nanowires on silicon, which is not replicated in epitaxial InN thin films. PMID:27455379

  18. Polarity and microstructure in InN thin layers grown by MOVPE

    NASA Astrophysics Data System (ADS)

    Kuwano, N.; Nakahara, Y.; Amano, H.

    2006-06-01

    Microstructures in InN grown on sapphire (0001) and yttria-stabilized zirconia (YSZ) (111) by metal-organic vapor phase epitaxy (MOVPE) were analyzed by means of transmission electron microscopy (TEM) in order to clarify the growth process. Special attention was paid to the selectivity of the crystal polarity of InN. The InN thin films grown on sapphire after nitridation has a flat surface while those grown on YSZ has hillocks on the surface. The crystal polarity was determined by comparing the experimentally observed intensity distribution in convergent beam electron diffraction (CBED) disks with those simulated by the Broch-wave method. It was found that the InN grown on the sapphire has a nitrogen-polarity and the one on YSZ has a mixture of In- and N-polarities. The effect of surface-nitridation of sapphire on the growth process is also discussed

  19. Growth mechanism and microstructure of low defect density InN (0001) In-face thin films on Si (111) substrates

    SciTech Connect

    Kehagias, Th.; Dimitrakopulos, G. P.; Koukoula, T.; Komninou, Ph.; Ajagunna, A. O.; Georgakilas, A.; Tsagaraki, K.; Adikimenakis, A.

    2013-10-28

    Transmission electron microscopy has been employed to analyze the direct nucleation and growth, by plasma-assisted molecular beam epitaxy, of high quality InN (0001) In-face thin films on (111) Si substrates. Critical steps of the heteroepitaxial growth process are InN nucleation at low substrate temperature under excessively high N-flux conditions and subsequent growth of the main InN epilayer at the optimum conditions, namely, substrate temperature 400–450 °C and In/N flux ratio close to 1. InN nucleation occurs in the form of a very high density of three dimensional (3D) islands, which coalesce very fast into a low surface roughness InN film. The reduced reactivity of Si at low temperature and its fast coverage by InN limit the amount of unintentional Si nitridation by the excessively high nitrogen flux and good bonding/adhesion of the InN film directly on the Si substrate is achieved. The subsequent overgrowth of the main InN epilayer, in a layer-by-layer growth mode that enhances the lateral growth of InN, reduces significantly the crystal mosaicity and the density of threading dislocations is about an order of magnitude less compared to InN films grown using an AlN/GaN intermediate nucleation/buffer layer on Si. The InN films exhibit the In-face polarity and very smooth atomically stepped surfaces.

  20. Two-dimensional electron gas in monolayer InN quantum wells

    SciTech Connect

    Pan, W. E-mail: e.dimakis@hzdr.de; Wang, G. T.; Dimakis, E. E-mail: e.dimakis@hzdr.de; Moustakas, T. D.; Tsui, D. C.

    2014-11-24

    We report in this letter experimental results that confirm the two-dimensional nature of the electron systems in a superlattice structure of 40 InN quantum wells consisting of one monolayer of InN embedded between 10 nm GaN barriers. The electron density and mobility of the two-dimensional electron system (2DES) in these InN quantum wells are 5 × 10{sup 15 }cm{sup −2} (or 1.25 × 10{sup 14 }cm{sup −2} per InN quantum well, assuming all the quantum wells are connected by diffused indium contacts) and 420 cm{sup 2}/Vs, respectively. Moreover, the diagonal resistance of the 2DES shows virtually no temperature dependence in a wide temperature range, indicating the topological nature of the 2DES.

  1. Accommodation mechanism of InN nanocolumns grown on Si(111) substrates by molecular beam epitaxy

    SciTech Connect

    Grandal, J.; Sanchez-Garcia, M. A.; Calleja, E.; Luna, E.; Trampert, A.

    2007-07-09

    High quality InN nanocolumns have been grown by molecular beam epitaxy on bare and AlN-buffered Si(111) substrates. The accommodation mechanism of the InN nanocolumns to the substrate was studied by transmission electron microscopy. Samples grown on AlN-buffered Si(111) show abrupt interfaces between the nanocolumns and the buffer layer, where an array of periodically spaced misfit dislocations develops. Samples grown on bare Si(111) exhibit a thin Si{sub x}N{sub y} at the InN nanocolumn/substrate interface because of Si nitridation. The Si{sub x}N{sub y} thickness and roughness may affect the nanocolumn relative alignment to the substrate. In all cases, InN nanocolumns grow strain- and defect-free.

  2. Growth of InN nanorods prepared by plasma-assisted molecular beam epitaxy with varying Cr thicknesses

    NASA Astrophysics Data System (ADS)

    Liu, K. W.; Young, S. J.; Chang, S. J.; Hsueh, T. H.; Chen, Y. Z.; Chen, K. J.; Hung, H.; Wang, S. M.; Wu, Y. L.

    2012-05-01

    This study investigates how the thickness of Cr deposited on the Si substrate after the nitridation process influences the AIN buffer layer and the InN nanorods. Atomic force microscopy results reveal that different thicknesses of Cr form varying sizes of CrN nanoislands. The results of scanning electron microscopy and X-ray diffraction show that a Cr deposition thickness of 10 nm results in CrN nanoislands after the nitridation process, improving the quality and density of InN nanorods. A Cr layer that was too thick led to polycrystalline InN growth. The results of transmission electron microscopy indicate a baseball bat-like InN nanorod growth mechanism.

  3. III-Nitride nanowire optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhao, Songrui; Nguyen, Hieu P. T.; Kibria, Md. G.; Mi, Zetian

    2015-11-01

    Group-III nitride nanowire structures, including GaN, InN, AlN and their alloys, have been intensively studied in the past decade. Unique to this material system is that its energy bandgap can be tuned from the deep ultraviolet (~6.2 eV for AlN) to the near infrared (~0.65 eV for InN). In this article, we provide an overview on the recent progress made in III-nitride nanowire optoelectronic devices, including light emitting diodes, lasers, photodetectors, single photon sources, intraband devices, solar cells, and artificial photosynthesis. The present challenges and future prospects of III-nitride nanowire optoelectronic devices are also discussed.

  4. Obstacles to the universal application of INNs.

    PubMed

    2014-10-01

    Anomalies in the international non-proprietary name (INN) nomenclature show that the international harmonisation of nonproprietary drug names has not been achieved. When pharmaceutical companies request a new INN, they try to obtain an INN that serves their interests, and then use it for promotional or anticompetitive purposes. Drug regulatory agencies are not fulfilling their duty to protect existing INNs, particularly with regard to biosimilars (copies of biotechnology-derived drugs), giving rise in particular to anomalous names. The independence of the World Health Organization INN programme must be safeguarded to ensure that the universal terminology it is responsible for developing is applied worldwide. PMID:25964979

  5. How INNs are created. Making drug names safer by contributing to INN selection.

    PubMed

    2015-06-01

    The international nonproprietary names (INNs) of drugs proposed by the World Health Organization (WHO) are released for public consultation. These consultations provide an opportunity to identify any risks associated with INNs that could lead to confusion. Prescrire has submitted numerous comments since it began participating in the WHO's public consultations on proposed INNs in 2007. The WHO INN programme has occasionally taken our objections into account. It is easier to replace a proposed INN when a risk of confusion is identified early, before the drug is introduced to the market and the INN enters into use. Regular analysis of the INNs proposed by the WHO reveals some of the challenges of naming drugs and the influence exerted by pharmaceutical companies and the US drug nomenclature committee (USANC) in particular. The lack of an identifiable common stem in certain INNs, sometimes perceived as an obstacle to INN comprehensibility, is a consequence of the procedure for assigning INNs, because the INN programme wants to ensure that new common stems are not created prematurely. Critical analysis of proposed INNs during WHO public consultations offers an insight into the challenges involved in devising common stems. This analysis is useful for improving the quality and safety of INNs. PMID:26436175

  6. Colloids in the River Inn

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2015-04-01

    In the light of an increasing number of technical applications using nanoparticles and reports of adverse effects of engineered nanoparticles, research on the occurrence and stability of particles in all compartments has to be intensified. Colloids in river water represent the geologic setting, environmental conditions, and the anthropogenic use in its catchment. The river not only acts as a sink for nanoparticles but also as the source term due to exchange in the hyporheic zone and in bank filtration setups. The concentration, size distribution and elemental composition of particles in the River Inn were studied from the source in the Swiss Alps to the river mouth at Passau from 2008 to 2014. Samples were collected after each tributary from a sub-catchment and filtered on site using a new filtration device for gentle filtration. The elemental composition was determined after acid digestion with ICP/MS. SEM/EDX analysis provided morphological and elemental information for single particles. A complementary chemical analysis of the river water was performed to assess the geochemical stability of individual particles. As presented at EGU 2014, particles in the upper, rural parts mainly reveal changes in the geological setting of the tributary catchments. Not unexpectedly, particles originating from crystalline rocks, were more stable than particles originating from calcareous rocks. Anthropogenic and industrial influences increase in the lower parts. This went together with a change of the size distribution, an increase of the number of organic particles, and a decrease of the microfauna. Interestingly, specific leisure activities in a sub-catchment, like extensive downhill skiing, manifest itself in the particle composition. This general setting was validated in last year's sampling campaigns. An interesting change in on site parameters and hydrochemical composition was seen during all sampling campaigns at an inflow from the valley Kaunertal, Austria. Therefore

  7. Thermally detected optical absorption in sophisticated nitride structures

    NASA Astrophysics Data System (ADS)

    Vasson, A.; Shubina, T. V.; Leymarie, J.

    2005-02-01

    The thermally detected optical absorption (TDOA) is applied to elucidate peculiarities of absorption in nitride structures of unusual morphology like GaN nanocolumns or InN layers with various imperfections. A study of GaN structures permits us to establish position of an absorption edge in TDOA spectra. We demonstrate that the absorption edge is different in GaN regions of opposite polarities. In InN with metallic In inclusions, this technique enable separation of InN interband absorption and extinction related to the Mie resonances, if the latter are below the principal absorption edge.

  8. Konocti Harbon Inn, Kelseyville, California

    SciTech Connect

    Not Available

    1982-04-01

    Konocti Harbor is a large resort complex, located on the shore of Clear Lake, in Kelseyville, California. A number of buildings on the property, including a 25,000 square foot lodge, 101 motel units and 48 apartment units are heated by the large water-to-water heat pumps, using water from the lake as a heat source. Due to low winter occupancy rates, these machines are run at very low capacity. In addition, a number of buildings are operated on electric resistance and propane backup boilers. This mode of operation results in a relatively high cost compared to the actual heating requirements. Since these systems were originally designed for low temperature water (125/sup 0/F supply 10/sup 0/..delta..t), a low temperature geothermal resource could potentially displace some of the conventional fuel currently used. The potential for geothermal use at the Konocti Harbor Inn is explored.

  9. Effect of interfacial lattice mismatch on bulk carrier concentration and band gap of InN

    SciTech Connect

    Kuyyalil, Jithesh; Tangi, Malleswararao; Shivaprasad, S. M.

    2012-10-15

    The issue of ambiguous values of the band gap (0.6 to 2 eV) of InN thin film in literature has been addressed by a careful experiment. We have grown wurtzite InN films by PA-MBE simultaneously on differently modified c-plane sapphire substrates and characterized by complementary structural and chemical probes. Our studies discount Mie resonances caused by metallic In segregation at grain boundaries as the reason for low band gap values ( Almost-Equal-To 0.6 eV) and also the formation of Indium oxides and oxynitrides as the cause for high band gap value ( Almost-Equal-To 2.0 eV). It is observed that polycrystallinity arising from azimuthal miss-orientation of c-oriented wurtzite InN crystals increases the carrier concentration and the band gap values. We have reviewed the band gap, carrier concentration, and effective mass of InN in literature and our own measurements, which show that the Moss-Burstein relation with a non-parabolic conduction band accounts for the observed variation of band gap with carrier concentration.

  10. Colloids in the River Inn

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Baumann, Thomas

    2014-05-01

    In the light of an increasing number of technical applications using nanoparticles and reports of adverse effects of engineered nanoparticles, research on the occurrence and stability of particles in all compartments has to be intensified. Colloids in river water represent the geologic setting, environmental conditions, and the anthropogenic use in its catchment. The river not only acts as a sink for nanoparticles but also as the source term due to exchange in the hyporheic zone and in bank filtration setups. The concentration, size distribution and elemental composition of particles in the River Inn were studied from the source in the Swiss Alps to the river mouth at Passau. Samples were collected after each tributary from a sub-catchment and filtered on-site. The elemental composition was determined after acid digestion with ICP/MS. SEM/EDX analyses provided morphological and elemental information for single particles. A complementary chemical analysis of the river water was performed to assess the geochemical stability of indvidual particles. Particles in the upper, rural parts mainly reveal changes in the geological setting of the tributary catchments. Not unexpectedly, particles originating from crystalline rocks, were more stable than particles originating from calcareous rocks. Anthropogenic and industrial influences increase in the lower parts. This went together with a change of the size distribution, an increase of the number of organic particles, and a decrease of the microfauna. Interestingly, specific leisure activities in a sub-catchment, like extensive downhill skiing, manifest itself in the particle composition.

  11. Molten salt-based growth of bulk GaN and InN for substrates.

    SciTech Connect

    Waldrip, Karen Elizabeth

    2007-08-01

    An atmospheric pressure approach to growth of bulk group III-nitrides is outlined. Native III-nitride substrates for optoelectronic and high power, high frequency electronics are desirable to enhance performance and reliability of these devices; currently, these materials are available in research quantities only for GaN, and are unavailable in the case of InN. The thermodynamics and kinetics of the reactions associated with traditional crystal growth techniques place these activities on the extreme edges of experimental physics. The novel techniques described herein rely on the production of the nitride precursor (N{sup 3-}) by chemical and/or electrochemical methods in a molten halide salt. This nitride ion is then reacted with group III metals in such a manner as to form the bulk nitride material. The work performed during the period of funding (February 2006-September 2006) focused on establishing that mass transport of GaN occurs in molten LiCl, the construction of a larger diameter electrochemical cell, the design, modification, and installation of a made-to-order glove box (required for handling very hygroscopic LiCl), and the feasibility of using room temperature molten salts to perform nitride chemistry experiments.

  12. Growth of InN hexagonal microdisks

    NASA Astrophysics Data System (ADS)

    Yang, Chen-Chi; Lo, Ikai; Hu, Chia-Hsuan; Huang, Hui-Chun; Chou, Mitch M. C.

    2016-08-01

    InN hexagonal thin wurtzite disks were grown on γ-LiAlO2 by plasma-assisted molecular-beam epitaxy at low temperature (470oC). The ( 000 1 ¯ ) InN thin disk was established with the capture of N atoms by the β ¯ -dangling bonds of most-outside In atoms, and then the lateral over-growth of the In atoms were caught by the β ¯ -dangling bonds of the N atoms. From the analyses of high-resolution transmission electron microscopy, the lateral over-grown width was extended to three unit cells at [ 1 1 ¯ 00 ]InN direction for a unit step-layer, resulting in an oblique surface with 73o off c-axis.

  13. Novel compound semiconductor devices based on III-V nitrides

    SciTech Connect

    Pearton, S.J.; Abernathy, C.R.; Ren, F.

    1995-10-01

    New developments in dry and wet etching, ohmic contacts and epitaxial growth of Ill-V nitrides are reported. These make possible devices such as microdisk laser structures and GaAs/AlGaAs heterojunction bipolar transistors with improved InN ohmic contacts.

  14. Molten Salt-Based Growth of Bulk GaN and InN for Substrates

    SciTech Connect

    Waldrip, Karen Elizabeth; Tsao, Jeffrey Yeenien; Kerley, Thomas M.

    2006-09-01

    An atmospheric pressure approach to growth of bulk group III-nitrides is outlined. Native III-nitride substrates for optoelectronic and high power, high frequency electronics are desirable to enhance performance and reliability of these devices; currently, these materials are available in research quantities only for GaN, and are unavailable in the case of InN. The thermodynamics and kinetics of the reactions associated with traditional crystal growth techniques place these activities on the extreme edges of experimental physics. The technique described herein relies on the production of the nitride precursor (N3-) by chemical and/or electrochemical methods in a molten halide salt. This nitride ion is then reacted with group III metals in such a manner as to form the bulk nitride material. The work performed during the period of funding (July 2004-September 2005) focused on the initial measurement of the solubility of GaN in molten LiCl as a function of temperature, the construction of electrochemical cells, the modification of a commercial glove box (required for handling very hygroscopic LiCl), and on securing intellectual property for the technique.

  15. 16. LOOKING WEST AT OLD FAITHFUL INN, MOST OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. LOOKING WEST AT OLD FAITHFUL INN, MOST OF THE EAST WING IS VISIBLE TO THE LEFT. THE EAST WING ADDITION WAS BUILT BY THE INN'S ORIGINAL ARCHITECT, ROBERT C. REAMER IN 1913-14. - Old Faithful Inn, 900' northeast of Snowlodge & 1050' west of Old Faithful Lodge, Lake, Teton County, WY

  16. 3. View to southeast from hillside behind Inn. Roof of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View to southeast from hillside behind Inn. Roof of 'Big Sur Inn' Building (HABS-CA-2611-A) at lower center, State Highway 1 bridge across Castro Creek Canyon at upper center. - Deetjen's Big Sur Inn, East Side of State Highway 1, Big Sur, Monterey County, CA

  17. Taming transport in InN

    SciTech Connect

    Ager III, Joel W.; Miller, Nate R.

    2011-05-29

    The large electron affinity of InN, close to 6 eV and the largest of any III-V semiconductor, creates a strong driving force for native donor formation, both in the bulk and at surfaces and interfaces. Moreover, all InN surfaces, regardless of crystal orientation or doping, have been observed to have a surface accumulation layer of electrons, which interferes with standard electrical measurements. For these reasons, until recently, it was uncertain whether or not compensation by donor defects would prevent “real” p-type activity (i.e. existence of sufficiently shallow acceptors and mobile holes). A coordinated experimental approach using a combination of electrical (Hall effect) and electrothermal (Seebeck coefficient) measurements will be described that allows definitive evaluation of carrier transport in InN. In Mg-doped InN films, the sensitivity of thermopower to bulk hole conduction, combined with modeling of the parallel conducting layers (surface/bulk/interface), enables quantitative measurement of the free hole concentration and mobility. In undoped (n-type) material, combined Hall and thermopower measurements, along with a considering of the scattering mechanisms, leads to a quantitative understanding of the crucial role of charged line defects in limiting electron transport.

  18. X-ray diffraction study of A- plane non-polar InN epilayer grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Moret, Matthieu; Briot, Olivier; Gil, Bernard

    2015-03-01

    Strong polarisation-induced electric fields in C-plane oriented nitrides semiconductor layers reduce the performance of devices. Eliminating the polarization fields can be achieved by growing nitrides along non polar direction. We have grown non polar A-plane oriented InN on R-plane (1‾102) nitridated sapphire substrate by MOCVD. We have studied the structural anisotropy observed in these layers by analyzing High Resolution XRay Diffraction rocking curve (RC) experiments as a function of the in-plane beam orientation. A-plane InN epilayer have a unique epitaxial relationship on R-Plane sapphire and show a strong structural anisotropy. Full width at half maximum (FWHM) of the InN(11‾20) XRD RC values are contained between 44 and 81 Arcmin. FWHM is smaller when the diffraction occurs along the [0001] and the largest FWHM values, of the (11‾20) RC, are obtained when the diffraction occurs along the [1‾100] in-plane direction. Atomic Force Microscopy imaging revealed morphologies with well organized crystallites. The grains are structured along a unique crystallographic orientation of InN, leading to larger domains in this direction. This structural anisotropy can be, in first approximation, attributed to the difference in the domain sizes observed. XRD reciprocal space mappings (RSM) were performed in asymmetrical configuration on (13‾40) and (2‾202) diffraction plane. RSM are measured with a beam orientation corresponding to a maximal and a minimal width of the (11‾20) Rocking curves, respectively. A simple theoretical model is exposed to interpret the RSM. We concluded that the dominant contribution to the anisotropy is due to the scattering coherence length anisotropy present in our samples.

  19. First-principles calculations for AlN, GaN, and InN: Bulk and alloy properties

    SciTech Connect

    Wright, A.F.; Nelson, J.S.

    1995-02-01

    First-principles density-functional calculations utilizing ab initio pseudopotentials and plane-wave expansions are used to determine lattice parameters, bulk moduli, and band structures for AlN, GaN and InN. It is found that large numbers of plane waves are necessary to resolve the nitrogen 2p wave functions and that explicit treatment of the gallium 3d and indium 4d electrons is important for an accurate description of GaN and InN. Several properties of ternary zinc-blende alloys are determined including their bond-length and bond-angle relaxation and their energy-gap bowing parameters. The similarity of the calculated zinc-blende and wurtzite direct gaps also allows estimates to be made of the energy gap versus composition for wurtzite alloys.

  20. Mg doped InN and confirmation of free holes in InN

    SciTech Connect

    Wang, K.; Yamaguchi, T.; Miller, N.; Mayer, M. A.; Haller, E. E.; Iwamoto, R.; Araki, T.; Nanishi, Y.; Yu, K. M.; Walukiewicz, W.; Ager, J. W. III

    2011-01-24

    We report a systematic investigation on Mg doped InN epilayers grown by radio-frequency plasma-assisted molecular beam epitaxy. Electrolyte capacitance voltage (ECV) combined with thermopower measurements find p-type conduction over an Mg concentration range. For InN:Mg in this p-type 'window' the Seebeck coefficients dramatically change their signs from negative to positive when the thickness of undoped InN interlayer decreases to zero. This notable sign change of Seebeck coefficient explains the previous inconsistency between ECV and thermopower results and confirms the existence of mobile holes in the InN:Mg. Taking into account the undoped InN interlayer, the hole density and mobility are extracted.

  1. 1. View north from across State Highway 1 toward Inn. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View north from across State Highway 1 toward Inn. 'Big Sur Inn' Building (HABS-CA-2611-A) visible at left, 'Hayloft' Building (HABS-CA-2611-B at right center, and 'Antique' Building (HABS-CA-2611-C) and 'Champagne' Building (HABS-CA-2611-D) out of sight behind trees at right. - Deetjen's Big Sur Inn, East Side of State Highway 1, Big Sur, Monterey County, CA

  2. The macroscopic polarization effect on thermal conductivity of binary nitrides

    NASA Astrophysics Data System (ADS)

    Sahoo, S. K.; Sahoo, B. K.; Sahoo, S.

    2013-10-01

    We theoretically investigate the effect of macroscopic polarization on phonon thermal conductivity of wurtzite (WZ) binary nitrides (AlN, GaN and InN). Our results show that macroscopic polarization contributes to the effective elastic constant of the wurtzite nitrides and modifies the phonon group velocity, Debye frequency, and Debye temperature. Using revised phonon velocity and Debye temperature, different phonon scattering rates and combined scattering rate are calculated as functions of the phonon frequency at room temperature. We estimate phonon thermal conductivity of binary nitrides using these modified parameters. The theoretical analysis shows that up to a certain temperature (different for AlN, GaN, and InN) the polarization effect acts as ill effect and reduces the thermal conductivity. However, after this temperature, the thermal conductivity is significantly enhanced by the polarization effect. The revised thermal conductivity at room temperature is found to be increased by 12% in GaN, 18% in InN and 20% in case of AlN due to macroscopic polarization, i.e., maximum polarization effect is observed in AlN and minimum in GaN. The method we have developed can be used for calculation of thermal energy in the active region of nitride optoelectronic devices.

  3. Investigation of gas sensing properties of InN nanoparticles

    SciTech Connect

    Madapu, Kishore K. E-mail: dhara@igcar.gov.in; Prasad, A. K.; Tyagi, A. K.; Dhara, S. E-mail: dhara@igcar.gov.in

    2015-06-24

    InN nanoparticles were grown by chemical vapor deposition technique using In{sub 2}O{sub 3} as precursor material. Raman spectroscopic studies show the presence of the wurtzite phase of as-grown InN. Size of the nanoparticles were in range from quantum dot (<8 nm) to larger sized particles (100 nm). We studied the gas sensing properties of InN nanoparticles with CH{sub 4} gas. Sensors substrates were fabricated with interdigitated Au electrodes. InN nanoparticles show high response towards CH{sub 4} with minimum detectable concentration of 50 ppm at 200 °C.

  4. 21. REAR OF OLD FAITHFUL INN, LOOKING NORTH. SEMICIRCULAR SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. REAR OF OLD FAITHFUL INN, LOOKING NORTH. SEMI-CIRCULAR SIDE DINING ROOM, NOW CALLED THE BEAR PIT WAS ADDED IN 1927. (TAKEN FROM CHERRY-PICKER) - Old Faithful Inn, 900' northeast of Snowlodge & 1050' west of Old Faithful Lodge, Lake, Teton County, WY

  5. Solar Hot Water for Motor Inn--Texas City, Texas

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Final report describes solar domestic-hot-water heater installation at LaQuinta Motor Inn, Texas City, Texas which furnished 63% of total hot-water load of new 98-unit inn. Report presents a description of system, drawings and photographs of collectors, operations and maintenance instructions, manufacturers' specifications for pumps, and an engineer's report on performance.

  6. Metals fact sheet - indium

    SciTech Connect

    1994-01-01

    Indium is generally found in concentrations averaging 10 to 20 ppm in sphalerite and chalcopyrite ores associated with zinc, copper, lead and tin deposits. Indium is recovered as a by-product of base metal mining by open pit, underground and other methods. After the recovery of zinc by the electrolytic process (copper concentrate by flotation, and lead and tin by electrolysis), indium antimonide slimes left on the anode and the indium-containing spent electrolyte become the input material for the processing of indium. Sulfuric acid is combined with the residues and heated to form sulfates which are then leached with water to filter off the remaining tin, lead and antimony. The indium in solution is recovered by cementation on aluminum, washed, melted, and refined into a metal.

  7. Rapid thermal processing of III-nitrides

    SciTech Connect

    Hong, J.; Lee, J.W.; Vartuli, C.B.; Abernathy, C.R.; MacKenzie, J.D.; Donovan, S.M.; Pearton, S.J.; Zolper, J.C.

    1997-05-01

    High-temperature annealing is necessary in a number of applications for III-nitrides, including activation of Si{sup +} or Mg{sup +} implants for doping, maximization of implant-isolated regions, and Ohmic contact sintering. We have compared two methods for protection against surface dissociation of GaN, AlN, InN, In{sub x}Ga{sub 1{minus}x}N, and In{sub x}Al{sub 1{minus}x}N during rapid thermal processing in N{sub 2} ambients. In the first method, AlN or InN powder is placed in the reservoirs of a SiC-coated graphite susceptor and provides a N{sub 2} overpressure for the nitride samples within the susceptor. In the second method, the nitrides are placed face down on other III{endash}V substrates during annealing. In both techniques N loss from the nitride surface is found to occur at {ge}1050{degree}C for GaN and {ge}1100{degree}C for AlN and {ge}InN, as measured by Auger electron spectroscopy. Real surface roughening is generally significant only for the In-containing materials, with GaN and AlN retaining smooth morphologies even up to 1150{degree}C unless H{sub 2} is present in the annealing ambient. When InN powder is used in the susceptor, there is In droplet condensation on the surfaces of all samples above {approximately}750{degree}C leading to higher root-mean-square surface roughness measured by atomic force microscopy. The N{sub 2}-deficient surfaces of the binary nitrides become strongly n type, while those of ternaries become less conducting. At temperature of 850{endash}900{degree}C, the In droplets on thermally degraded ternaries also begin to evaporate, leading to an apparent improvement in morphology. The presence of H{sub 2} or O{sub 2} in the annealing ambient lowers the dissociation temperature of each of the nitrides by 100{endash}200{degree}C, due to an enhancement in N{sub 2} removal. {copyright} {ital 1997 American Vacuum Society.}

  8. Wet Chemical Etching Survey of III-Nitrides

    SciTech Connect

    Abernathy, C.R.; Cho, H.; Hays, D.C.; MacKenzie, J.D.; Pearton, S.J.; Ren, F.; Shul, R.J.; Vartuli, C.B.; Zolper, J.C.

    1999-02-04

    Wet chemical etching of GaN, InN, AlN, InAlN and InGaN was investigated in various acid and base solutions at temperatures up to 75 C. Only KOH-based solutions were found to etch AlN and InAlN. No etchants were found for the other nitrides, emphasizing their extreme lack of chemical reactivity. The native oxide on most of the nitrides could be removed in potassium tetraborate at 75 C, or HCl/H{sub 2}O at 25 C.

  9. Angular-dependent Raman study of a- and s-plane InN

    SciTech Connect

    Filintoglou, K.; Katsikini, M. Arvanitidis, J.; Lotsari, A.; Dimitrakopulos, G. P.; Vouroutzis, N.; Ves, S.; Christofilos, D.; Kourouklis, G. A.; Ajagunna, A. O.; Georgakilas, A.; Zoumakis, N.

    2015-02-21

    Angular-dependent polarized Raman spectroscopy was utilized to study nonpolar a-plane (11{sup ¯}20) and semipolar s-plane (101{sup ¯}1) InN epilayers. The intensity dependence of the Raman peaks assigned to the vibrational modes A{sub 1}(TO), E{sub 1}(TO), and E{sub 2}{sup h} on the angle ψ that corresponds to rotation around the growth axis, is very well reproduced by using expressions taking into account the corresponding Raman tensors and the experimental geometry, providing thus a reliable technique towards assessing the sample quality. The s- and a-plane InN epilayers grown on nitridated r-plane sapphire (Al{sub 2}O{sub 3}) exhibit good crystalline quality as deduced from the excellent fitting of the experimental angle-dependent peak intensities to the theoretical expressions as well as from the small width of the Raman peaks. On the contrary, in the case of the s-plane epilayer grown on non-nitridated r-plane sapphire, fitting of the angular dependence is much worse and can be modeled only by considering the presence of two structural modifications, rotated so as their c-axes are almost perpendicular to each other. Although the presence of the second variant is verified by transmission electron and atomic force microscopies, angular dependent Raman spectroscopy offers a non-destructive and quick way for its quantification. Rapid thermal annealing of this sample did not affect the angular dependence of the peak intensities. The shift of the E{sub 1}(TO) and E{sub 2}{sup h} Raman peaks was used for the estimation of the strain state of the samples.

  10. Vertically integrated (Ga, In)N nanostructures for future single photon emitters operating in the telecommunication wavelength range

    NASA Astrophysics Data System (ADS)

    Winden, A.; Mikulics, M.; Grützmacher, D.; Hardtdegen, H.

    2013-10-01

    Important technological steps are discussed and realized for future room-temperature operation of III-nitride single photon emitters. First, the growth technology of positioned single pyramidal InN nanostructures capped by Mg-doped GaN is presented. The optimization of their optical characteristics towards narrowband emission in the telecommunication wavelength range is demonstrated. In addition, a device concept and technology was developed so that the nanostructures became singularly addressable. It was found that the nanopyramids emit in the telecommunication wavelength range if their size is chosen appropriately. A p-GaN contacting layer was successfully produced as a cap to the InN pyramids and the top p-contact was achievable using an intrinsically conductive polymer PEDOT:PSS, allowing a 25% increase in light transmittance compared to standard Ni/Au contact technology. Single nanopyramids were successfully integrated into a high-frequency device layout. These decisive technology steps provide a promising route to electrically driven and room-temperature operating InN based single photon emitters in the telecommunication wavelength range.

  11. Vertically integrated (Ga, In)N nanostructures for future single photon emitters operating in the telecommunication wavelength range.

    PubMed

    Winden, A; Mikulics, M; Grützmacher, D; Hardtdegen, H

    2013-10-11

    Important technological steps are discussed and realized for future room-temperature operation of III-nitride single photon emitters. First, the growth technology of positioned single pyramidal InN nanostructures capped by Mg-doped GaN is presented. The optimization of their optical characteristics towards narrowband emission in the telecommunication wavelength range is demonstrated. In addition, a device concept and technology was developed so that the nanostructures became singularly addressable. It was found that the nanopyramids emit in the telecommunication wavelength range if their size is chosen appropriately. A p-GaN contacting layer was successfully produced as a cap to the InN pyramids and the top p-contact was achievable using an intrinsically conductive polymer PEDOT:PSS, allowing a 25% increase in light transmittance compared to standard Ni/Au contact technology. Single nanopyramids were successfully integrated into a high-frequency device layout. These decisive technology steps provide a promising route to electrically driven and room-temperature operating InN based single photon emitters in the telecommunication wavelength range.

  12. III-V nitrides and performance of graphene on copper plasmonic biosensor

    NASA Astrophysics Data System (ADS)

    Mohanty, Goutam; Sahoo, Bijaya Kumar

    2016-05-01

    In the present study, the influence of iii-v nitrides as well as Ge and Si on the sensitivity and performance of a graphene protected copper plasmonic biosensor has been investigated. These semiconductors have been used between copper (Cu) and graphene layers on a SF 10 glass prism. The sensitivity and performance of the biosensor has been computed for with and without semiconductors. III-V nitrides demonstrated high sensitivity and high figure of merit (FOM) in comparison to Si and Ge due to their superior electronic and optical properties. The enhancement of evanescent electric field due to Si, Ge, AlN, GaN and InN have been computed and found highest enhancement for InN. This happens due to high refractive index of InN than other semiconductors. Analysis shows that for a high sensitive imaging biosensor the required optimal thickness of copper, InN and graphene are respectively 32 nm, 13 nm and 0.34 nm for light of wavelength λ = 633 nm (red Hesbnd Ne laser). This study suggests that InN would be a better choice for fabrication of new imaging plasmonic biosensors for chemical and biological sensing.

  13. [Indium lung disease].

    PubMed

    Nakano, Makiko; Omae, Kazuyuki

    2014-02-01

    "Indium lung" is a new occupational lung disease. The global demand for indium, the major material used in manufacturing flat-screen display panels, has skyrocketed since the 1990s (Japan comprises 85% of the worldwide demand). The first case was reported in Japan in 2003, followed by seven cases (interstitial pneumonia and emphysema) in Japan. Two pulmonary alveolar proteinosis (PAP) cases in the USA followed in 2011. Indium lung has been described as interstitial pneumonia, pneumothorax, emphysema, and PAP. In 2013, The Japan Ministry of Health, Labor and Welfare issued an "Ordinance on the Prevention of Hazards Due to Specified Chemical Substances" requiring employers to provide regular health checks for employees and measurements of work environment concentrations of respirable indium dust.

  14. Ultralow wear of gallium nitride

    NASA Astrophysics Data System (ADS)

    Zeng, Guosong; Tan, Chee-Keong; Tansu, Nelson; Krick, Brandon A.

    2016-08-01

    Here, we reveal a remarkable (and surprising) physical property of GaN: it is extremely wear resistant. In fact, we measured the wear rate of GaN is approaching wear rates reported for diamond. Not only does GaN have an ultralow wear rate but also there are quite a few experimental factors that control the magnitude of its wear rate, further contributing to the rich and complex physics of wear of GaN. Here, we discovered several primary controlling factors that will affect the wear rate of III-Nitride materials: crystallographic orientation, sliding environment, and coating composition (GaN, InN and InGaN). Sliding in the ⟨ 1 2 ¯ 10 ⟩ is significantly lower wear than ⟨ 1 1 ¯ 00 ⟩ . Wear increases by 2 orders of magnitude with increasing humidity (from ˜0% to 50% RH). III-Nitride coatings are promising as multifunctional material systems for device design and sliding wear applications.

  15. Rapid thermal annealing of indium phosphide compound semiconductors

    NASA Technical Reports Server (NTRS)

    Biedenbender, Michael D.; Kapoor, Vik J.; Williams, W. D.

    1987-01-01

    The rapid thermal annealing (RTA) of indium phosphide (InP) substrates using a proximity contact method and silicon nitride encapsulation is investigated. The surface conditions of the InP substrates following cleaning with procedures A and B are analyzed. Procedure A involves using an iodic acid solution to remove work-damage InP surface layers and B is a degasssing process and hydrofluoric acid solution for native oxide removal. AES, XPS, and SIMS data of the proximity contact and silicon nitride encapsulated annealed samples are examined. The data reveal that RTA using proximity contact with silicon wafers does not provide adequate protection; however, the InP sample is successfully annealed when protected by a silicon nitride encapsulant.

  16. Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control.

    PubMed

    Sarkar, Sujoy; Sampath, S

    2016-05-11

    A ternary, ionically conducting, deep eutectic solvent based on acetamide, urea and gallium nitrate is reported for the electrodeposition of gallium nitride/gallium indium nitride under ambient conditions; blue and white light emitting photoluminescent deposits are obtained under potential control. PMID:27074315

  17. The INNs and outs of antibody nonproprietary names

    PubMed Central

    Jones, Tim D.; Carter, Paul J.; Plückthun, Andreas; Vásquez, Max; Holgate, Robert G.E.; Hötzel, Isidro; Popplewell, Andrew G.; Parren, Paul W.H.I.; Enzelberger, Markus; Rademaker, Hendrik J.; Clark, Michael R.; Lowe, David C.; Dahiyat, Bassil I.; Smith, Victoria; Lambert, John M.; Wu, Herren; Reilly, Mary; Haurum, John S.; Dübel, Stefan; Huston, James S.; Schirrmann, Thomas; Janssen, Richard A.J.; Steegmaier, Martin; Gross, Jane A.; Bradbury, Andrew R.M.; Burton, Dennis R.; Dimitrov, Dimiter S.; Chester, Kerry A.; Glennie, Martin J.; Davies, Julian; Walker, Adam; Martin, Steve; McCafferty, John; Baker, Matthew P.

    2016-01-01

    An important step in drug development is the assignment of an International Nonproprietary Name (INN) by the World Health Organization (WHO) that provides healthcare professionals with a unique and universally available designated name to identify each pharmaceutical substance. Monoclonal antibody INNs comprise a –mab suffix preceded by a substem indicating the antibody type, e.g., chimeric (-xi-), humanized (-zu-), or human (-u-). The WHO publishes INN definitions that specify how new monoclonal antibody therapeutics are categorized and adapts the definitions to new technologies. However, rapid progress in antibody technologies has blurred the boundaries between existing antibody categories and created a burgeoning array of new antibody formats. Thus, revising the INN system for antibodies is akin to aiming for a rapidly moving target. The WHO recently revised INN definitions for antibodies now to be based on amino acid sequence identity. These new definitions, however, are critically flawed as they are ambiguous and go against decades of scientific literature. A key concern is the imposition of an arbitrary threshold for identity against human germline antibody variable region sequences. This leads to inconsistent classification of somatically mutated human antibodies, humanized antibodies as well as antibodies derived from semi-synthetic/synthetic libraries and transgenic animals. Such sequence-based classification implies clear functional distinction between categories (e.g., immunogenicity). However, there is no scientific evidence to support this. Dialog between the WHO INN Expert Group and key stakeholders is needed to develop a new INN system for antibodies and to avoid confusion and miscommunication between researchers and clinicians prescribing antibodies. PMID:26716992

  18. Self-annihilation of inversion domains by high energy defects in III-Nitrides

    SciTech Connect

    Koukoula, T.; Kioseoglou, J. Kehagias, Th.; Komninou, Ph.; Ajagunna, A. O.; Georgakilas, A.

    2014-04-07

    Low-defect density InN films were grown on Si(111) by molecular beam epitaxy over an ∼1 μm thick GaN/AlN buffer/nucleation layer. Electron microscopy observations revealed the presence of inverse polarity domains propagating across the GaN layer and terminating at the sharp GaN/InN (0001{sup ¯}) interface, whereas no inversion domains were detected in InN. The systematic annihilation of GaN inversion domains at the GaN/InN interface is explained in terms of indium incorporation on the Ga-terminated inversion domains forming a metal bonded In-Ga bilayer, a structural instability known as the basal inversion domain boundary, during the initial stages of InN growth on GaN.

  19. Nanogenerators based on vertically aligned InN nanowires.

    PubMed

    Liu, Guocheng; Zhao, Songrui; Henderson, Robert D E; Leonenko, Zoya; Abdel-Rahman, Eihab; Mi, Zetian; Ban, Dayan

    2016-01-28

    Piezoelectric nanogenerators (NGs) based on vertically aligned InN nanowires (NWs) are fabricated, characterized, and evaluated. In these NGs, arrays of p-type and intrinsic InN NWs prepared by plasma-assisted molecular beam epitaxy (MBE) demonstrate similar piezoelectric properties. The p-type NGs show 160% more output current and 70% more output power product than the intrinsic NGs. The features driving performance enhancement are reduced electrostatic losses due to better NW array morphology, improved electromechanical energy conversion efficiency due to smaller NW diameters, and the higher impedance of intrinsic NGs due to elevated NW surface charge levels. These findings highlight the potential of InN based NGs as a power source for self-powered systems and the importance of NW morphology and surface state in overall NG performance. PMID:26700694

  20. Indium Lung Disease

    PubMed Central

    Nakano, Makiko; Omae, Kazuyuki; Takeuchi, Koichiro; Chonan, Tatsuya; Xiao, Yong-long; Harley, Russell A.; Roggli, Victor L.; Hebisawa, Akira; Tallaksen, Robert J.; Trapnell, Bruce C.; Day, Gregory A.; Saito, Rena; Stanton, Marcia L.; Suarthana, Eva; Kreiss, Kathleen

    2012-01-01

    Background: Reports of pulmonary fibrosis, emphysema, and, more recently, pulmonary alveolar proteinosis (PAP) in indium workers suggested that workplace exposure to indium compounds caused several different lung diseases. Methods: To better understand the pathogenesis and natural history of indium lung disease, a detailed, systematic, multidisciplinary analysis of clinical, histopathologic, radiologic, and epidemiologic data for all reported cases and workplaces was undertaken. Results: Ten men (median age, 35 years) who produced, used, or reclaimed indium compounds were diagnosed with interstitial lung disease 4-13 years after first exposure (n = 7) or PAP 1-2 years after first exposure (n = 3). Common pulmonary histopathologic features in these patients included intraalveolar exudate typical of alveolar proteinosis (n = 9), cholesterol clefts and granulomas (n = 10), and fibrosis (n = 9). Two patients with interstitial lung disease had pneumothoraces. Lung disease progressed following cessation of exposure in most patients and was fatal in two. Radiographic data revealed that two patients with PAP subsequently developed fibrosis and one also developed emphysematous changes. Epidemiologic investigations demonstrated the potential for exposure to respirable particles and an excess of lung abnormalities among coworkers. Conclusions: Occupational exposure to indium compounds was associated with PAP, cholesterol ester crystals and granulomas, pulmonary fibrosis, emphysema, and pneumothoraces. The available evidence suggests exposure to indium compounds causes a novel lung disease that may begin with PAP and progress to include fibrosis and emphysema, and, in some cases, premature death. Prospective studies are needed to better define the natural history and prognosis of this emerging lung disease and identify effective prevention strategies. PMID:22207675

  1. The Children's Inn at NIH turns 25 | NIH MedlinePlus the Magazine

    MedlinePlus

    ... a supportive environment, including therapeutic, educational, and recreational programming. Dalvin plays board games at The Inn's Woodmont ... Clinical Center. The Inn has a playroom, kids' computer room, bistro, game room, learning center, business center, ...

  2. The Children's Inn at NIH Anniversary Key Messages | NIH MedlinePlus the Magazine

    MedlinePlus

    ... 37 sleeping rooms. The Inn opened a major expansion in May 2004, adding a new wing with ... Merck donated another $3.7 million for the expansion project. fast facts 1 The Children's Inn, located ...

  3. Optical properties of InN related to surface plasmons

    NASA Astrophysics Data System (ADS)

    Shubina, T. V.; Leymarie, J.; Jmerik, V. N.; Toropov, A. A.; Vasson, A.; Amano, H.; Schaff, W. J.; Monemar, B.; Ivanov, S. V.

    2005-11-01

    We report on the complex nature of infrared luminescence and absorption in InN films, which cannot be entirely explained by the concept of a conventional narrow-gap semiconductor. In particular, it concerns the detection of peaks near absorption edges by both thermally detected optical absorption and photoluminescence excitation spectroscopy and the observation of extraordinarily strong resonant enhancement of emission. To describe the experimental data a model is proposed, which takes into account surface plasmons in metal-like inclusions, modifying the optical properties of InN.

  4. Indium sealing techniques.

    NASA Technical Reports Server (NTRS)

    Hochuli, U.; Haldemann, P.

    1972-01-01

    Gold films are used as an alloying flux to form 5-micron-thick indium film seals at temperatures below 300 C. Pyrex was sealed to quartz, ULE, CER-VIT, Irtran 2, Ge, GaAs, Invar, Kovar, Al, and Cu. The seals can also be used as current feedthroughs and graded seals.

  5. Comparison of dry-etch techniques for GaN, InN, and AlN

    SciTech Connect

    Shul, R.J.; Vawter, G.A.; Willison, C.G.; Bridges, M.M.; Lee, J.W.; Pearton, S.J.; Abernathy, C.R.

    1997-12-01

    FABRICATION OF GROUP III NITRIDE DEVICES RELIES ON THE ABILITY TO PATTERN FEATURES TO DEPTHS RANGING FROM 1000 A TO {gt} 5 MICRONS WITH ANISOTROPIC PROFILES, SMOOTH MORPHOLOGIES, SELECTIVE ETCHING OF ONE MATERIAL OVER ANOTHER, AND A LOW DEGREE OF PLASMA INDUCED DAMAGE. IN THIS STUDY, GAN ETCH RATES AND ETCH PROFILES ARE COMPARED USING REACTIVE ION ETCH (RIE), REACTIVE ION BEAM ETCHING (RIBE), ELECTRON CYCLOTRON RESONANCE (ECR), AND INDUCTIVELY COUPLED PLASMA (ICP) ETCH SYSTEMS. RIE YIELDED THE SLOWEST ETCH RATES AND SLOPED ETCH PROFILES DESPITE DC-BIASES {gt} -900 V. ECR and ICP etching yielded the highest rates with anisotropic profiles due to their high plasma flux and the ability to control ion energies independently of plasma density. RIBE etch results also showed anisotropic profiles with slower etch rates than either ECR or ICP possibly due to lower ion flux. InN and AlN etch characteristics are also compared using ICP and RIBE.

  6. Hot Water for Motor Inn--Garland, Texas

    NASA Technical Reports Server (NTRS)

    1982-01-01

    35-page report describes solar collector system and its operation and presents projected system performance. Details calibration and maintenance procedures and lists and describes equipment that makes up system. System provides hot water for laundry, for showers and sinks in inn rooms.

  7. Solar Hot Water for a Motor Inn -- Las Vegas, Nevada

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Solar hot-water installation at motor inn in Las Vegas, Nevada is described in report containing descriptions of design, philosophy, operation of system and problems and solutions. Provides drawings of solar roof plan, operator's instructions, manufacturers' brochures and copy of acceptance report.

  8. Respirable Indium Exposures, Plasma Indium, and Respiratory Health Among Indium-Tin Oxide (ITO) Workers

    PubMed Central

    Cummings, Kristin J.; Virji, M. Abbas; Park, Ji Young; Stanton, Marcia L.; Edwards, Nicole T.; Trapnell, Bruce C.; Carey, Brenna; Stefaniak, Aleksandr B.; Kreiss, Kathleen

    2016-01-01

    Background Workers manufacturing indium-tin oxide (ITO) are at risk of elevated indium concentration in blood and indium lung disease, but relationships between respirable indium exposures and biomarkers of exposure and disease are unknown. Methods For 87 (93%) current ITO workers, we determined correlations between respirable and plasma indium and evaluated associations between exposures and health outcomes. Results Current respirable indium exposure ranged from 0.4 to 108 μg/m3 and cumulative respirable indium exposure from 0.4 to 923 μg-yr/m3. Plasma indium better correlated with cumulative (rs = 0.77) than current exposure (rs = 0.54) overall and with tenure ≥1.9 years. Higher cumulative respirable indium exposures were associated with more dyspnea, lower spirometric parameters, and higher serum biomarkers of lung disease (KL-6 and SP-D), with significant effects starting at 22 μg-yr/m3, reached by 46% of participants. Conclusions Plasma indium concentration reflected cumulative respirable indium exposure, which was associated with clinical, functional, and serum biomarkers of lung disease. PMID:27219296

  9. Inexpensive Method for Coating the Interior of Silica Growth Ampoules with Pyrolytic Boron Nitride

    NASA Technical Reports Server (NTRS)

    Wang, Jianbin; Regel, Liya L.; Wilcox, William R.

    2003-01-01

    An inexpensive method was developed for coating the interior of silica ampoules with hexagonal boron nitride. An aqueous solution of boric acid was used to coat the ampoule prior to drying in a vacuum at 200 C. This coating was converted to transparent boron nitride by heating in ammonia at 1000 C. Coated ampoules were used to achieve detached solidification of indium antimonide on earth.

  10. Indium Sorption to Iron Oxides

    NASA Astrophysics Data System (ADS)

    White, S. J.; Sacco, S. A.; Hemond, H.; Hussain, F. A.; Runkel, R. L.; Walton-Day, K. E.; Kimball, B. A.; Shine, J. P.

    2014-12-01

    Indium is an increasingly important metal in semiconductors and electronics, and its use is growing rapidly as a semiconductive coating (as indium tin oxide) for liquid crystal displays (LCDs) and flat panel displays. It also has uses in important energy technologies such as light emitting diodes (LEDs) and photovoltaic cells. Despite its rapid increase in use, very little is known about the environmental behavior of indium, and concerns are being raised over the potential health effects of this emerging metal contaminant. One source of indium to the environment is acid mine drainage from the mining of lead, zinc, and copper sulfides. In our previous studies of a stream in Colorado influenced by acid mine drainage from lead and zinc mining activities, indium concentrations were found to be 10,000 times those found in uncontaminated rivers. However, the speciation and mobility of indium could not be reliably modeled because sorption constants to environmental sorbents have not been determined. In this study, we generate sorption constants for indium to ferrihydrite in the laboratory over a range of pHs, sorbent to sorbate ratios, and ionic strengths. Ferrihydrite is one of the most important sorbents in natural systems, and sorption to amorphous iron oxides such as ferrihydrite is thought to be one of the main removal mechanisms of metals from the dissolved phase in aqueous environments. Because of its relatively low solubility, we also find that indium hydroxide precipitation can dominate indium's partitioning at micromolar concentrations of indium. This precipitation may be important in describing indium's behavior in our study stream in Colorado, where modeling sorption to iron-oxides does not explain the complete removal of indium from the dissolved phase when the pH of the system is artificially raised to above 8. This study contributes much-needed data about indium's aqueous behavior, in order to better understand its fate, transport, and impacts in the

  11. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    DOEpatents

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  12. High rate dry etching of GaN, AlN and InN in ECR Cl{sub 2}/CH{sub 4}/H{sub 2}/Ar plasmas

    SciTech Connect

    Vartuli, C.B.; Pearton, S.J.; Abernathy, C.R.; Shul, R.J.; Kilcoyne, S.P.; Crawford, M.H.; Howard, A.J.; Parmeter, J.E.

    1995-05-01

    Etch rates for binary nitrides in ECR Cl{sub 2}/CH{sub 4}/H{sub 2}/Ar are reported as a function of temperature, rf-bias, microwave power, pressure and relative gas proportions. GaN etch rates remain relatively constant from 30 to 125{degrees}C and then increase to a maximum of 2340 {angstrom}-min{sup {minus}1} at 170{degrees}C. The AlN etch rate decreases throughout the temperature range studied with a maximum of 960 {angstrom}-min{sup {minus}1} at 30{degrees}C. When CH{sub 4} is removed from the plasma chemistry, the GaN and InN etch rates are slightly lower, with less dramatic changes with temperature. The surface composition of the III-V nitrides remains unchanged over the temperatures studied. The GaN and InN rates increase significantly with rf power, and the fastest rates for all three binaries are obtained at 2 mTorr. Surface morphology is smooth for GaN over a wide range of conditions, whereas InN surfaces are more sensitive to plasma parameters.

  13. Temperature switching of cavity modes in InN microcrystals

    SciTech Connect

    Kazanov, D. R. Kaibyshev, V. H.; Davydov, V. Yu.; Smirnov, A. N.; Jmerik, V. N.; Kuznetsova, N. V.; Kopiev, P. S.; Ivanov, S. V.; Shubina, T. V.

    2015-11-15

    InN optical cavities supporting low-order whispering-gallery modes up to room temperature are formed by molecular-beam epitaxy on patterned substrates. The observed switching of the mode type with increasing temperature is explained in terms of changes in the optical parameters due to a shift of the absorption edge and modification of its shape. Modeling taking into account a variation in the refractive index reproduces the typical distributions of the electromagnetic-field intensity in the cavities.

  14. Nanostructures of Indium Gallium Nitride Crystals Grown on Carbon Nanotubes.

    PubMed

    Park, Ji-Yeon; Man Song, Keun; Min, Yo-Sep; Choi, Chel-Jong; Seok Kim, Yoon; Lee, Sung-Nam

    2015-01-01

    Nanostructure (NS) InGaN crystals were grown on carbon nanotubes (CNTs) using metalorganic chemical vapor deposition. The NS-InGaN crystals, grown on a ~5-μm-long CNT/Si template, were estimated to be ~100-270 nm in size. Transmission electron microscope examinations revealed that single-crystalline InGaN NSs were formed with different crystal facets. The observed green (~500 nm) cathodoluminescence (CL) emission was consistent with the surface image of the NS-InGaN crystallites, indicating excellent optical properties of the InGaN NSs on CNTs. Moreover, the CL spectrum of InGaN NSs showed a broad emission band from 490 to 600 nm. Based on these results, we believe that InGaN NSs grown on CNTs could aid in overcoming the green gap in LED technologies.

  15. Auger Recombination in Indium Gallium Nitride: Experimental Evidence

    NASA Astrophysics Data System (ADS)

    Krames, Michael

    2010-03-01

    Progress in InGaN-based light-emitting diode (LED) technology has resulted in white-light emitters with efficiencies far exceeding those of conventional light sources such as tungsten-filament-based incandescence and mercury-vapor based fluorescence. Indeed, by now efficacies exceeding 150 lumens per Watt for InGaN-based phosphor-converted white LEDs are claimed, which represent a 90% energy savings compared to the conventional incandescent (i.e., ``light bulb'') solution. However, these high performance levels are obtained under conditions of very low forward current-density for the InGaN LED and do not represent true operating conditions (nor cost-effective utilization) for the device. In order to reduce the cost (and thus increase market penetration of) solid-state lighting, more lumens per unit of semiconductor area are required which in practice necessitates higher drive current densities. Unfortunately, at these higher driver current densities, the internal quantum efficiency of InGaN-based LEDs is observed to decrease significantly. In the fall of 2007, researchers at the Advanced Laboratories of Philips Lumileds were the first to propose Auger recombination as the root-cause mechanism in InGaN which was behind this ``efficiency droop'' [1]. They further proposed to circumvent the problem by employing InGaN-based active region designs that maintain low carrier density, and demonstrated an LED device design that reaches a maximum quantum efficiency above 200 A/cm2, compared to ˜1-10 A/cm^2 for typical multiple-quantum-well heterostructures [2]. In this talk we will review the experimental evidence for Auger recombination in InGaN, beginning with the early work from 2007 and then considering additional work from more recent efforts to better understand the details behind this loss mechanism. [4pt] [1] Y. C. Shen, G. O. M"uller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, ``Auger recombination in InGaN measured by photoluminescence'', Appl. Phys. Lett. 91, 141101 (2007). [0pt] [2] N. F. Gardner, G. O. M"uller, Y. C. Shen, G. Chen, S. Watanabe, W. G"otz, and M. R. Krames, ``Blue-emitting InGaN--GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm^2'', Appl. Phys. Lett. 91, 243506 (2007).

  16. Nanostructures of Indium Gallium Nitride Crystals Grown on Carbon Nanotubes

    PubMed Central

    Park, Ji-Yeon; Man Song, Keun; Min, Yo-Sep; Choi, Chel-Jong; Seok Kim, Yoon; Lee, Sung-Nam

    2015-01-01

    Nanostructure (NS) InGaN crystals were grown on carbon nanotubes (CNTs) using metalorganic chemical vapor deposition. The NS-InGaN crystals, grown on a ~5-μm-long CNT/Si template, were estimated to be ~100–270 nm in size. Transmission electron microscope examinations revealed that single-crystalline InGaN NSs were formed with different crystal facets. The observed green (~500 nm) cathodoluminescence (CL) emission was consistent with the surface image of the NS-InGaN crystallites, indicating excellent optical properties of the InGaN NSs on CNTs. Moreover, the CL spectrum of InGaN NSs showed a broad emission band from 490 to 600 nm. Based on these results, we believe that InGaN NSs grown on CNTs could aid in overcoming the green gap in LED technologies. PMID:26568414

  17. Nanostructures of Indium Gallium Nitride Crystals Grown on Carbon Nanotubes.

    PubMed

    Park, Ji-Yeon; Man Song, Keun; Min, Yo-Sep; Choi, Chel-Jong; Seok Kim, Yoon; Lee, Sung-Nam

    2015-01-01

    Nanostructure (NS) InGaN crystals were grown on carbon nanotubes (CNTs) using metalorganic chemical vapor deposition. The NS-InGaN crystals, grown on a ~5-μm-long CNT/Si template, were estimated to be ~100-270 nm in size. Transmission electron microscope examinations revealed that single-crystalline InGaN NSs were formed with different crystal facets. The observed green (~500 nm) cathodoluminescence (CL) emission was consistent with the surface image of the NS-InGaN crystallites, indicating excellent optical properties of the InGaN NSs on CNTs. Moreover, the CL spectrum of InGaN NSs showed a broad emission band from 490 to 600 nm. Based on these results, we believe that InGaN NSs grown on CNTs could aid in overcoming the green gap in LED technologies. PMID:26568414

  18. Nanostructures of Indium Gallium Nitride Crystals Grown on Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Park, Ji-Yeon; Man Song, Keun; Min, Yo-Sep; Choi, Chel-Jong; Seok Kim, Yoon; Lee, Sung-Nam

    2015-11-01

    Nanostructure (NS) InGaN crystals were grown on carbon nanotubes (CNTs) using metalorganic chemical vapor deposition. The NS-InGaN crystals, grown on a ~5-μm-long CNT/Si template, were estimated to be ~100-270 nm in size. Transmission electron microscope examinations revealed that single-crystalline InGaN NSs were formed with different crystal facets. The observed green (~500 nm) cathodoluminescence (CL) emission was consistent with the surface image of the NS-InGaN crystallites, indicating excellent optical properties of the InGaN NSs on CNTs. Moreover, the CL spectrum of InGaN NSs showed a broad emission band from 490 to 600 nm. Based on these results, we believe that InGaN NSs grown on CNTs could aid in overcoming the green gap in LED technologies.

  19. Mineral of the month: indium

    USGS Publications Warehouse

    George, Micheal W.

    2004-01-01

    Indium was discovered in Germany in 1863. Although it is a lustrous silver-white color, the finders named the new material for the “indigo” spectral lines the mineral created on the spectrograph. Indium ranks 61st in abundance in Earth’s crust and is about three times more abundant than silver or mercury.

  20. Estimations of the spontaneous polarization of binary and ternary compounds of group III nitrides

    NASA Astrophysics Data System (ADS)

    Davydov, S. Yu.; Posrednik, O. V.

    2016-04-01

    The dependences of spontaneous polarizations P sp of solid solutions of aluminum, gallium, and indium nitrides on the compositions were estimated using the Harrison bond-orbital method. A simple formula was proposed to estimate P sp using only lengths of the interatomic bonds between the nearest neighbor atoms and the angles between these bonds.

  1. Preparation of uranium nitride

    DOEpatents

    Potter, Ralph A.; Tennery, Victor J.

    1976-01-01

    A process for preparing actinide-nitrides from massive actinide metal which is suitable for sintering into low density fuel shapes by partially hydriding the massive metal and simultaneously dehydriding and nitriding the dehydrided portion. The process is repeated until all of the massive metal is converted to a nitride.

  2. Convergence of valence bands for high thermoelectric performance for p-type InN

    NASA Astrophysics Data System (ADS)

    Li, Hai-Zhu; Li, Ruo-Ping; Liu, Jun-Hui; Huang, Ming-Ju

    2015-12-01

    Band engineering to converge the bands to achieve high valley degeneracy is one of effective approaches for designing ideal thermoelectric materials. Convergence of many valleys in the valence band may lead to a high Seebeck coefficient, and induce promising thermoelectric performance of p-type InN. In the current work, we have systematically investigated the electronic structure and thermoelectric performance of wurtzite InN by using the density functional theory combined with semiclassical Boltzmann transport theory. Form the results, it can be found that intrinsic InN has a large Seebeck coefficient (254 μV/K) and the largest value of ZeT is 0.77. The transport properties of p-type InN are better than that of n-type one at the optimum carrier concentration, which mainly due to the large Seebeck coefficient for p-type InN, although the electrical conductivity of n-type InN is larger than that of p-type one. We found that the larger Seebeck coefficient for p-type InN may originate from the large valley degeneracy in the valence band. Moreover, the low minimum lattice thermal conductivity for InN is one key factor to become a good thermoelectric material. Therefore, p-type InN could be a potential material for further applications in the thermoelectric area.

  3. The Little Inn at the Crossroads: A Spiritual Approach to the Design of a Leadership Course.

    ERIC Educational Resources Information Center

    Bento, Regina F.

    2000-01-01

    A course on spiritual dimensions of leadership was designed using the metaphor of an inn at a crossroads. The inn included a virtual library of Web-based texts and studio space for creativity and self-expression. Seven workshops explored the following themes: language of leadership and change, personal leadership qualities, vision and mission,…

  4. The Children's Inn at NIH - Three Stories | NIH MedlinePlus the Magazine

    MedlinePlus

    ... and her family have come to consider The Children's Inn their "home away from home." "Staying at The Inn helps ... I love being a school nurse and helping children be successful in the school ... Dr. Brian Brooks uses a puppet during a young patient's eye exam ...

  5. Geothermal heating facilities for Frontier Inn, Susanville, California

    NASA Astrophysics Data System (ADS)

    1982-03-01

    A 38 unit motel composed of six major sections (coffee shop, A frame units, apartments, back units, two story units and office) was built over a number of years and exhibits widely varying types of construction. Space heating is provided by primarily electric resistance equipment with some propane use. Domestic hot water is provided primarily by propane with some electric resistance. The coffee shop uses fuel oil for both space and domestic hot water heating. A geothermal district heating system is being installed. Although the motel site is not located in the area of construction activity, it is expected that the pipeline will be extended. The potential of retrofitting the existing heating facilities at the inn to geothermal is studied.

  6. Photoluminescence properties of Mg-doped InN nanowires

    SciTech Connect

    Zhao, Songrui; Liu, Xuedong; Mi, Zetian

    2013-11-11

    In this work, photoluminescence (PL) properties of nearly defect-free Mg-doped InN nanowires were investigated in detail. The low-doped sample exhibits two PL emission peaks up to 152 K, which can be ascribed to the band-to-band recombination and the Mg-acceptor energy level related recombination, respectively. For the high-doped sample, the Mg-acceptor energy level related transition dominates. Detailed power dependent PL studies further indicate that the Mg-acceptor energy level related PL emission is due to the donor-acceptor pair recombination process, which subsequently evolves into the free-to-acceptor recombination with increasing temperature.

  7. Methods of forming boron nitride

    DOEpatents

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J; Crandall, David L

    2015-03-03

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boron nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.

  8. FOREWORD: The physics of III-V nitrides The physics of III-V nitrides

    NASA Astrophysics Data System (ADS)

    Ridley, B. K.

    2009-04-01

    The evolution of semiconductor physics is driven by the increasing sophistication of the art of crystal growing and fabrication techniques. From Ge at the birth of the transistor, possibly the purest material ever grown, through Si, the work-horse of the crystal revolution, to the III-Vs, whose optical properties opened up a second front, namely, optoelectronics. Crystal growth with monolayer control gave us quantum wells, superlattices, quantum wires and quantum dots, along with the quantum Hall effect and quantized resistance. The potential for high-power devices triggered interest in the III-V nitrides with their large bandgaps. The nitrides mostly crystallize in the hexagonal form, and this has introduced the phenomenon of spontaneous polarization into mainstream semiconductor physics. Its effect manifests itself in huge electric fields in heterostructures like AlGaN/GaN which, in turn, causes the induction of substantial electron populations in the channel of a HFET without the need for doping. High-power microwave transistors have been successfully fabricated, even though there are features associated with spontaneous polarization that still needs clarifying. Another strange effect is the large electron population on the surface of InN. The lack of a suitable substrate for growing GaN has meant that the dislocation density is higher than we would wish, but that situation is expected to steadily improve. Given the current interest in the physics of nitrides, it is natural to come across a special issue devoted to this topic. The difficulty presented by the surface layer in InN in the attempt to measure transport properties is discussed in the paper by King et al. A property that can affect transport is the lifetime of optical phonons and its dependence on electron density. Measurements of phonon lifetime in InN are reported by Tsen and Ferry, and in GaN channels, via the measure of hot-electron fluctuations, by Matulionis. The dependence on electron density is

  9. Indium Foil Serves As Thermally Conductive Gasket

    NASA Technical Reports Server (NTRS)

    Eastman, G. Yale; Dussinger, Peter M.

    1993-01-01

    Indium foil found useful as gasket to increase thermal conductance between bodies clamped together. Deforms to fill imperfections on mating surfaces. Used where maximum temperature in joint less than melting temperature of indium. Because of low melting temperature of indium, most useful in cryogenic applications.

  10. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOEpatents

    Murduck, James M.; Lepetre, Yves J.; Schuller, Ivan K.; Ketterson, John B.

    1989-01-01

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources.

  11. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOEpatents

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-07-04

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs.

  12. Method for preparing actinide nitrides

    DOEpatents

    Bryan, G.H.; Cleveland, J.M.; Heiple, C.R.

    1975-12-01

    Actinide nitrides, and particularly plutonium and uranium nitrides, are prepared by reacting an ammonia solution of an actinide compound with an ammonia solution of a reactant or reductant metal, to form finely divided actinide nitride precipitate which may then be appropriately separated from the solution. The actinide nitride precipitate is particularly suitable for forming nuclear fuels.

  13. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    DOEpatents

    Curtis, Calvin J.; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S.; Nekuda, Jennifer A.

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  14. Indium droplet formation in InGaN thin films with single and double heterojunctions prepared by MOCVD

    NASA Astrophysics Data System (ADS)

    Chen, Yung-Sheng; Liao, Che-Hao; Kuo, Chie-Tong; Tsiang, Raymond Chien-Chao; Wang, Hsiang-Chen

    2014-07-01

    Indium gallium nitride (InGaN) samples with single heterojunction (SH) and double heterojunction (DH) were prepared using metal-organic chemical vapor deposition. SH has a layer of InGaN thin film (thicknesses, 25, 50, 100, and 200 nm) grown on an uGaN film (thickness, 2 μm). The DH samples are distinguished by DH uGaN film (thickness, 120 nm) grown on the InGaN layer. Reciprocal space mapping measurements reveal that the DH samples are fully strained with different thicknesses, whereas the strain in the SH samples are significantly relaxed with the increasing thickness of the InGaN film. Scanning electron microscopy results show that the surface roughness of the sample increases when the sample is relaxed. High-resolution transmission electron microscopy images of the structure of indium droplets in the DH sample indicate that the thickness of the InGaN layer decreases with the density of indium droplets. The formation of these droplets is attributed to the insufficient kinetic energy of indium atom to react with the elements of group V, resulting to aggregation. The gallium atoms in the GaN thin film will not be uniformly replaced by indium atoms; the InGaN thin film has an uneven distribution of indium atoms and the quality of the epitaxial layer is degraded.

  15. Orthogonal and Non-Orthogonal Tight Binding Parameters for III-V Semiconductors Nitrides

    NASA Astrophysics Data System (ADS)

    Martins, A. S.; Fellows, C. E.

    2016-08-01

    A simulated annealing (SA) approach is employed in the determination of different tight binding (TB) sets of parameters for the nitride semiconductors AlN, GaN and InN, as well their limitations and potentialities are also discussed. Two kinds of atomic basis set are considered: (i) the orthogonal sp 3 s∗ with interaction up to second neighbors and (ii) a spd non-orthogonal set, with the Hamiltonian matrix elements calculated within the Extended Hückel Theory (EHT) prescriptions. For the non-orthogonal method, TB parameters are given for both zincblend and wurtzite crystalline structures.

  16. Highly efficient potentiometric glucose biosensor based on functionalized InN quantum dots

    NASA Astrophysics Data System (ADS)

    Alvi, N. H.; Soto Rodriguez, P. E. D.; Gómez, V. J.; Kumar, Praveen; Amin, G.; Nur, O.; Willander, M.; Nötzel, R.

    2012-10-01

    We present a fast, highly sensitive, and efficient potentiometric glucose biosensor based on functionalized InN quantum-dots (QDs). The InN QDs are grown by molecular beam epitaxy. The InN QDs are bio-chemically functionalized through physical adsorption of glucose oxidase (GOD). GOD enzyme-coated InN QDs based biosensor exhibits excellent linear glucose concentration dependent electrochemical response against an Ag/AgCl reference electrode over a wide logarithmic glucose concentration range (1 × 10-5 M to 1 × 10-2 M) with a high sensitivity of 80 mV/decade. It exhibits a fast response time of less than 2 s with good stability and reusability and shows negligible response to common interferents such as ascorbic acid and uric acid. The fabricated biosensor has full potential to be an attractive candidate for blood sugar concentration detection in clinical diagnoses.

  17. Highly Sensitive and Fast Anion-Selective InN Quantum Dot Electrochemical Sensors

    NASA Astrophysics Data System (ADS)

    Hassan Alvi, Naveed ul; Rodriguez, Paul E. D. Soto; Gómez, Victor J.; Kumar, Praveen; Willander, Magnus; Nötzel, Richard

    2013-11-01

    Epitaxial InN quantum dots (QDs) are demonstrated as ion-selective electrode for potentiometric anion concentration measurements. The sensor reveals high sensitivity above 90 mV/decade for the detection of chlorine and hydroxyl ions in sodium chloride (NaCl), calcium chloride (CaCl2), and sodium hydroxide (NaOH) solutions. The response time is less than two seconds after which the signal is very stable and repeatable. The sensitivity for the InN QDs is about two times that for a reference InN thin film and the response time is about five times shorter. In pH buffer solutions the sensor reveals no clear response to cations. A model is presented for the high sensitivity, fast response, and ion selectivity based on the unique electronic properties of the InN surface together with the zero-dimensional nature of the QDs.

  18. Plasma etching of the Group-III nitrides

    SciTech Connect

    Shul, R.; Pearton, S.J.; Abernathy, C.R.

    1996-01-01

    In reactive ion etching (RIE) of GaN, the ion bombardment can damage the material, so it is necessary to develop plasma etch processes. This paper reports etching of GaN in an ECR (electron cyclotron resonance) etch system using both the ECR/RIE mode and the RIE-only mode. Group III (Ga, In, Al) nitride ECR etching is reviewed as a function of plasma chemistry, power, temperature, and pressure; as the ECR microwave power increased, the ion density and etch rates increased, with the etch rate increasing the most for InN. GaN etch rates > 6500 {angstrom}/min have been observed in the ECR/RIE mode. 2 figs, 6 refs.

  19. Ultra-low threshold gallium nitride photonic crystal nanobeam laser

    SciTech Connect

    Niu, Nan Woolf, Alexander; Wang, Danqing; Hu, Evelyn L.; Zhu, Tongtong; Oliver, Rachel A.; Quan, Qimin

    2015-06-08

    We report exceptionally low thresholds (9.1 μJ/cm{sup 2}) for room temperature lasing at ∼450 nm in optically pumped Gallium Nitride (GaN) nanobeam cavity structures. The nanobeam cavity geometry provides high theoretical Q (>100 000) with small modal volume, leading to a high spontaneous emission factor, β = 0.94. The active layer materials are Indium Gallium Nitride (InGaN) fragmented quantum wells (fQWs), a critical factor in achieving the low thresholds, which are an order-of-magnitude lower than obtainable with continuous QW active layers. We suggest that the extra confinement of photo-generated carriers for fQWs (compared to QWs) is responsible for the excellent performance.

  20. Boron nitride - Composition, optical properties, and mechanical behavior

    NASA Technical Reports Server (NTRS)

    Pouch, John J.; Alterovitz, Samuel A.; Miyoshi, Kazuhisa; Warner, Joseph D.

    1987-01-01

    A low energy ion beam deposition technique was used to grow boron nitride films on quartz, germanium, silicon, gallium arsenide, and indium phosphate. The film structure was amorphous with evidence of a hexagonal phase. The peak boron concentration was 82 at. percent. The carbon and oxygen impurities were in the 5 to 8 at. percent range. Boron-nitrogen and boron-boron bonds were revealed by X-ray photoelectron spectroscopy. The index of refraction varied from 1.65 to 1.67 for films deposited on III-V compound semiconductors. The coefficient of friction for boron nitride in sliding contact with diamond was less than 0.1. The substrate was silicon.

  1. Boron nitride: Composition, optical properties and mechanical behavior

    NASA Technical Reports Server (NTRS)

    Pouch, John J.; Alterovitz, Samuel A.; Miyoshi, Kazuhisa; Warner, Joseph D.

    1987-01-01

    A low energy ion beam deposition technique was used to grow boron nitride films on quartz, germanium, silicon, gallium arsenide, and indium phosphate. The film structure was amorphous with evidence of a hexagonal phase. The peak boron concentration was 82 at %. The carbon and oxygen impurities were in the 5 to 8 at % range. Boron-nitrogen and boron-boron bonds were revealed by X-ray photoelectron spectroscopy. The index of refraction varied from 1.65 to 1.67 for films deposited on III-V compound semiconductors. The coefficient of friction for boron nitride in sliding contact with diamond was less than 0.1. The substrate was silicon.

  2. Boron nitride: composition, optical properties and mechanical behavior

    SciTech Connect

    Pouch, J.J.; Alterovitz, S.A.; Miyoshi, K.; Warner, J.D.

    1987-04-01

    A low energy ion beam deposition technique was used to grow boron nitride films on quartz, germanium, silicon, gallium arsenide, and indium phosphate. The film structure was amorphous with evidence of a hexagonal phase. The peak boron concentration was 82 at %. The carbon and oxygen impurities were in the 5 to 8 at % range. Boron-nitrogen and boron-boron bonds were revealed by x-ray photoelectron spectroscopy. The index of refraction varied from 1.65 to 1.67 for films deposited on III-V compound semiconductors. The coefficient of friction for boron nitride in sliding contact with diamond was less than 0.1. The substrate was silicon.

  3. Growth of hexagonal and cubic InN nanowires using MOCVD with different growth temperatures

    NASA Astrophysics Data System (ADS)

    Yun, Seok-Hyo; Ra, Yong-Ho; Lee, Young-Min; Song, Ki-Young; Cha, Jun-Ho; Lim, Hong-Chul; Kim, Dong-Wook; Suthan Kissinger, N. J.; Lee, Cheul-Ro

    2010-07-01

    We have performed a detailed investigation of the metal-organic chemical vapor deposition (MOCVD) growth and characterization of InN nanowires formed on Si(1 1 1) substrates under nitrogen rich conditions. The growth of InN nanowires has been demonstrated by using an ion beam sputtered (˜10 nm) Au seeding layer prior to the initiation of growth. We tried to vary the growth temperature and pressure in order to obtain an optimum growth condition for InN nanowires. The InN nanowires were grown on the Au+In solid solution droplets caused by annealing in a nitrogen ambient at 700 °C. By applying this technique, we have achieved the formation of InN nanowires that are relatively free of dislocations and stacking faults. Scanning electron microscopy (SEM) showed wires with diameters of 90-200 nm and lengths varying between 3 and 5 μm. Hexagonal and cubic structure is verified by high resolution X-ray diffraction (HR-XRD) spectrum. Raman measurements show that these wurtzite InN nanowires have sharp peaks E2 (high) at 491 cm -1 and A 1 (LO) at 591 cm -1.

  4. Growth of very large InN microcrystals by molecular beam epitaxy using epitaxial lateral overgrowth

    SciTech Connect

    Kamimura, J.; Kishino, K.; Kikuchi, A.

    2015-02-28

    Very thick InN (∼40 μm) was grown by molecular beam epitaxy using the epitaxial lateral overgrowth (ELO) technique. In some regions, the ELO of InN was observed as expected, indicating an important step toward fabricating quasi-bulk InN substrates. Interestingly, most parts of the sample consist of large flat-topped microcrystals and well-faceted microstructures. This is likely due to local growth condition variations during ELO, which is supported by an experiment where ELO of InN was performed on a substrate with various stripe mask patterns. TEM characterization of a flat top InN microcrystal revealed few stacking faults and only related threading dislocations. Defect-free small faceted microcrystals were also observed. The thick InN crystals show a narrow photoluminescence spectrum with a peak at 0.679 eV and linewidth of 16.8 meV at 4 K.

  5. First-principles study of optical properties of InN nanosheet

    NASA Astrophysics Data System (ADS)

    Sarmazdeh, Masoud Majidiyan; Mendi, Roohallah Taghavi; Zelati, Amir; Boochani, Arash; Nofeli, Fariba

    2016-05-01

    Based on density functional theory (DFT), some optical properties of InN nanosheet, such as dielectric function, energy loss function, refractive index, reflectivity and absorption coefficient, have been calculated using the modified Becke-Johnson (mBJ) exchange-correlation potential and full potential-linearized augmented plane waves (FP-LAPW) method. The study of dielectric function show that optical properties of InN nanosheet are anisotropic and important energy range in the optical process is between low energies to 20 eV. The results indicate the plasmon energy of InN nanosheet occurs in the lower energy than bulk InN and in addition the plasmon energy in the in-plane direction is different from that perpendicular to the in-plane direction. The obtained optical gaps are 1.2 eV and 3.6 eV in perpendicular and parallel to c-axis, respectively. Study of refractive index and optical reflectivity shows that the superluminal phenomena occur in the several energy ranges for the InN nanosheet and this nanosheet has high transparency in a wide energy range. The results propose that the InN nanosheet is a good candidate for the optical communications applications, optoelectronics devices and transparent coatings.

  6. Electronic structure calculations of group III nitride clusters

    NASA Astrophysics Data System (ADS)

    Kandalam, Anil Kumar

    2002-04-01

    Group III nitrides have become materials of choice in the manufacturing of devices used in opto-electronic and high-temperature high-power electronic industries. Hence, these materials received wide attention and have become the focus of several theoretical and experimental studies. Though these materials are studied in bulk and thin film forms, research at the cluster level is still lacking. Hence, a first principles calculation, based on the Generalized Gradient Approximation (GGA) to Density Functional Theory (DFT) was initiated to study the structural and electronic properties of AlnN n, GanNn, and InnNn, (n = 1--6) clusters. The calculated results show that the small polyatomic nitride clusters (monomer, triatomic and dimer) have a strong tendency to form N-N multiple bonds leading to the weakening of any existent metal-N or metal-metal bonds. In the absence of the N-N bonds, the metal-nitrogen bond dominates, forming short bond-lengths and large force constants. However, the strength of these heteronuclear bonds decreases in going from Al to Ga and In, whereas the weak metal-metal bond increases its strength from Al to Ga to In in the nitride clusters. Starting from the trimers M3N3, a distinct structural difference between the lowest energy configurations of AlnNn and that of GanNn, and In nNn, clusters has been observed. For AlnNn, clusters, the metal-nitrogen bond is found to dominate the lowest energy configurations. As the cluster size is increased from Al3N3 to Al 6N6, a transition from planar ring structures towards a bulk-like three dimensional configurations is seen. However, in GanN n, and InnNn clusters, no such trend is observed and the lowest energy configurations are dominated either by N2 or (N3)- sub-units. The segregation of N atoms within the stoichiometric clusters indicates the possibility of N2 and N3 based defects in the thin-film deposition process which may affect the quality of the thin-film devices based on Group III nitrides.

  7. Investigation of the 1987 Indianapolis Airport Ramada Inn incident.

    PubMed

    Clark, M A; Hawley, D A; McClain, J L; Pless, J E; Marlin, D C; Standish, S M

    1994-05-01

    On October 20, 1987, a military reserve aircraft lost power during a transcontinental flight and attempted an emergency landing at The Indianapolis International Airport. The pilot ejected and the disabled and pilotless aircraft struck a bank building. It then skidded across the street and entered the lobby of The Airport Ramada Inn where it exploded. This incident was unusual in that the fatal injuries occurred in individuals on the ground and not in the occupant of the aircraft. Seven people were killed in the lobby area and two were trapped in a laundry where they died of smoke inhalation. A tenth person died of burns ten days later. Minor injuries were reported among four hotel guests, two firefighters and the Air Force pilot. A multiagency mass disaster-plan had been formulated and rehearsed in preparation for the Panamerican Games, which had been held in Indianapolis in August 1987. A number of volunteers arrived before a security perimeter was established. They began an undocumented removal of the bodies from the scene and were about to remove valuables for "safekeeping" when stopped by coroners' office personnel. Fatalities resulted from smoke inhalation, burns or a combination. Bodies were identified by a combination of dental records, personal effects and visual means within 24 hours. The problems encountered in managing this disaster scene will also be compared with previously reported incidents. PMID:8006612

  8. Gallium nitride optoelectronic devices

    NASA Technical Reports Server (NTRS)

    Chu, T. L.; Chu, S. S.

    1972-01-01

    The growth of bulk gallium nitride crystals was achieved by the ammonolysis of gallium monochloride. Gallium nitride single crystals up to 2.5 x 0.5 cm in size were produced. The crystals are suitable as substrates for the epitaxial growth of gallium nitride. The epitaxial growth of gallium nitride on sapphire substrates with main faces of (0001) and (1T02) orientations was achieved by the ammonolysis of gallium monochloride in a gas flow system. The grown layers had electron concentrations in the range of 1 to 3 x 10 to the 19th power/cu cm and Hall mobilities in the range of 50 to 100 sq cm/v/sec at room temperature.

  9. III-Nitride Vertical-Cavity Surface-Emitting Lasers

    NASA Astrophysics Data System (ADS)

    Leonard, John T.

    Vertical-cavity surface-emitting lasers (VCSELs) have a long history of development in GaAs-based and InP-based systems, however III-nitride VCSELs research is still in its infancy. Yet, over the past several years we have made dramatic improvements in the lasing characteristics of these highly complex devices. Specifically, we have reduced the threshold current density from ˜100 kA/cm2 to ˜3 kA/cm2, while simultaneously increasing the output power from ˜10 muW to ˜550 muW. These developments have primarily come about by focusing on the aperture design and intracavity contact design for flip-chip dual dielectric DBR III-nitride VCSELs. We have carried out a number of studies developing an Al ion implanted aperture (IIA) and photoelectrochemically etched aperture (PECA), while simultaneously improving the quality of tin-doped indium oxide (ITO) intracavity contacts, and demonstrating the first III-nitride VCSEL with an n-GaN tunnel junction intracavity contact. Beyond these most notable research fronts, we have analyzed numerous other parameters, including epitaxial growth, flip-chip bonding, substrate removal, and more, bringing further improvement to III-nitride VCSEL performance and yield. This thesis aims to give a comprehensive discussion of the relevant underlying concepts for nonpolar VCSELs, while detailing our specific experimental advances. In Section 1, we give an overview of the applications of VCSELs generally, before describing some of the potential applications for III-nitride VCSELs. This is followed by a summary of the different material systems used to fabricate VCSELs, before going into detail on the basic design principles for developing III-nitride VCSELs. In Section 2, we outline the basic process and geometry for fabricating flip-chip nonpolar VCSELs with different aperture and intracavity contact designs. Finally, in Section 3 and 4, we delve into the experimental results achieved in the last several years, beginning with a discussion on

  10. Amber light-emitting diode comprising a group III-nitride nanowire active region

    DOEpatents

    Wang, George T.; Li, Qiming; Wierer, Jr., Jonathan J.; Koleske, Daniel

    2014-07-22

    A temperature stable (color and efficiency) III-nitride based amber (585 nm) light-emitting diode is based on a novel hybrid nanowire-planar structure. The arrays of GaN nanowires enable radial InGaN/GaN quantum well LED structures with high indium content and high material quality. The high efficiency and temperature stable direct yellow and red phosphor-free emitters enable high efficiency white LEDs based on the RGYB color-mixing approach.

  11. Electron scattering by native defects in III-V nitrides and their alloys

    SciTech Connect

    Hsu, L.; Walukiewicz, W.

    1996-03-01

    We have calculated the electron mobilities in GaN and InN taking into consideration scattering by short range potentials, in addition to all standard scattering mechanisms. These potentials are produced by the native defects which are responsible for the high electron concentrations in nominally undoped nitrides. Comparison of the calculated mobilities with experimental data shows that scattering by short range potentials is the dominant mechanism limiting the electron mobilities in unintentionally doped nitrides with large electron concentrations. In the case of Al{sub x}Ga{sub 1-x}N alloys, the reduction in the electron concentration due to the upward shift of the conduction band relative to the native defect level can account for the experimentally measured mobilities. Resonant scattering is shown to be important when the defect and Fermi levels are close in energy.

  12. Boron Nitride Nanotubes

    NASA Technical Reports Server (NTRS)

    Smith, Michael W. (Inventor); Jordan, Kevin (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  13. Boron nitride nanotubes

    DOEpatents

    Smith, Michael W.; Jordan, Kevin; Park, Cheol

    2012-06-06

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  14. Boron nitride composites

    DOEpatents

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2016-02-16

    According to one embodiment, a composite product includes hexagonal boron nitride (hBN), and a plurality of cubic boron nitride (cBN) particles, wherein the plurality of cBN particles are dispersed in a matrix of the hBN. According to another embodiment, a composite product includes a plurality of cBN particles, and one or more borate-containing binders.

  15. [Three cases of indium lung].

    PubMed

    Taguchi, Osamu; Chonan, Tatsuya

    2006-07-01

    The production of indium tin oxide (ITO) has been increasing during the past decade because of its use in liquid crystal and plasma display panels. Following the first report on lethal lung injury in a ITO worker in 2001, we began pulmonary check-ups for 115 workers in the plant in our capacity of industrial physicians of the plant. Hence, we report interstitial pulmonary disease in 3 workers who had engaged in wet-surface grinding of ITO for 8 to 12 years and had significant lung injuries. The serum indium level and serum concentration of KL-6 were significantly elevated in all 3 cases. One non-smoker case among them showed severe obstructive changes on spirometry and had an episode of repeated bilateral pneumothorax before and during the follow-up period. All 3 cases showed both interstitial and/or emphysematous changes on HRCT. It is suggested that inhaled indium compounds can cause a new and unique interstitial pulmonary disease.

  16. Polarization effects in nitride and ferroelectric based devices

    NASA Astrophysics Data System (ADS)

    Singh, Madhusudan

    This dissertation addresses the application of theoretical and computational methods to examine heterostructure devices based on planar semiconductors. The thesis pursues III-V nitrides and ferroelectrics like LiNbO3 and BaxSr1-xTiO 3. GaN and other nitrides exhibit a large polarization charge arising from the built in polarization revealed in the [1000] growth direction, and are also wide band-gap materials (with the exception of InN). The nitrides are important for high-power/high-temperature electronics and for short wavelength light emitters. Our studies address important issues in large bandgap junctions, transistors and light emitters. One of the salient results of our studies has been the first calculations of tunnel current in polar junctions and the potential of using built in polar charge at interface to design junctions. We find that novel junctions cam be designed to produce tailorable I-V characteristics. Our studies have led to experimental realization of such tailorable junctions. We also present results on charge control in ferroelectric-nitride structures where post growth junction tailoring can be carried out (using poling) to create functional devices. This leads to a new class of devices such as switches. We have developed extensive charge control, Monte Carlo based transport models and device simulation techniques to examine nitride based transistors. These studies allow us to examine mobility, transit time, high frequency behavior, noise, transconductance, etc. We have examined device non-linearity issues, scaling issues, temperature dependence, noise sources, and device design optimization issues. Our results are closely coupled to experimental results. Role of unusual velocity-field relations, self-heating and non-equilibrium phonons is examined. III-V nitride based light emitters often exhibit a very high radiative efficiency, higher than the presence of dislocations in the system suggests. Calculations indicate however, that local disorder

  17. Anisotropy of the nitrogen conduction states in the group III nitrides studied by polarized x-ray absorption

    SciTech Connect

    Lawniczak-Jablonska, K. |; Liliental-Weber, Z.; Gullikson, E.M.

    1997-04-01

    Group III nitrides (AlN, GaN, and InN) consist of the semiconductors which appear recently as a basic materials for optoelectronic devices active in the visible/ultraviolet spectrum as well as high-temperature and high-power microelectronic devices. However, understanding of the basic physical properties leading to application is still not satisfactory. One of the reasons consists in unsufficient knowledge of the band structure of the considered semiconductors. Several theoretical studies of III-nitrides band structure have been published but relatively few experimental studies have been carried out, particularly with respect to their conduction band structure. This motivated the authors to examine the conduction band structure projected onto p-states of the nitrogen atoms for AlN, GaN and InN. An additional advantage of their studies is the availability of the studied nitrides in two structures, hexagonal (wurtzite) and cubic (zincblende). This offers an opportunity to gain information about the role of the anisotropy of electronic band states in determining various physical properties.

  18. Optical and structural properties of InN grown by HPCVD

    NASA Astrophysics Data System (ADS)

    Buegler, M.; Alevli, M.; Atalay, R.; Durkaya, G.; Senevirathna, I.; Jamil, M.; Ferguson, I.; Dietz, N.

    2009-08-01

    The optical and structural properties of InN layers grown by 'High Pressure Chemical Vapor Deposition' (HPCVD) using a pulsed precursor approach have been studied. The study focuses on the effect of ammonia precursor exposure time and magnitude on the InN layer quality. The samples have been analyzed by X-ray diffraction, Raman scattering, infra red reflectance spectroscopy and photoluminescence spectroscopy. Raman measurements and X-ray diffraction showed the grown layers to be single phase InN of high crystalline quality. The E2(high) Raman mode showed FWHM's as small as 9.2 cm-1. The FWHM's of the InN(0002) X-ray Bragg reflex in the 2Θ-Ω- scans were around 350 arcsec, with rocking curve values as low as 1152 arcsec Photoluminescence features have been observed down to 0.7 eV, where the low energy cutoff might be due to the detector limitation. The analysis of the IR reflectance spectra shows that the free carrier concentrations are as low as as 3.3•1018 cm-3 for InN layers grown on sapphire substrates.

  19. Cubic nitride templates

    DOEpatents

    Burrell, Anthony K; McCleskey, Thomas Mark; Jia, Quanxi; Mueller, Alexander H; Luo, Hongmei

    2013-04-30

    A polymer-assisted deposition process for deposition of epitaxial cubic metal nitride films and the like is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures under a suitable atmosphere to yield metal nitride films and the like. Such films can be used as templates for the development of high quality cubic GaN based electronic devices.

  20. Process for Patterning Indium for Bump Bonding

    NASA Technical Reports Server (NTRS)

    Denis, Kevin

    2012-01-01

    An innovation was created for the Cosmology Large Angular Scale Surveyor for integration of low-temperature detector chips with a silicon backshort and a silicon photonic choke through flipchip bonding. Indium bumps are typically patterned using liftoff processes, which require thick resist. In some applications, it is necessary to locate the bumps close to high-aspect-ratio structures such as wafer through-holes. In those cases, liftoff processes are challenging, and require complicated and time-consuming spray coating technology if the high-aspect-ratio structures are delineated prior to the indium bump process. Alternatively, processing the indium bumps first is limited by compatibility of the indium with subsequent processing. The present invention allows for locating bumps arbitrarily close to multiple-level high-aspect-ratio structures, and for indium bumps to be formed without liftoff resist. The process uses the poor step coverage of indium deposited on a silicon wafer that has been previously etched to delineate the location of the indium bumps. The silicon pattern can be processed through standard lithography prior to adding the high-aspect-ratio structures. Typically, high-aspectratio structures require a thick resist layer so this layer can easily cover the silicon topography. For multiple levels of topography, the silicon can be easily conformally coated through standard processes. A blanket layer of indium is then deposited onto the full wafer; bump bonding only occurs at the high points of the topography.

  1. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Tetragonal Distortion of InN Thin Films by RBS/Channeling

    NASA Astrophysics Data System (ADS)

    Ding, Zhi-Bo; Wu, Wei; Wang, Kun; Fa, Tao; Yao, Shu-De

    2009-08-01

    Rutherford backscattering and channeling spectrometry (RBS/C) are used to identify the crystalline quality (χ min = 4.87%) of an InN thin film as a function of depth, and make a non-destructive quantitative analysis of the structure, in order to analyze the tetragonal distortion of the InN thin film at the depth determined.

  2. Microstructures of InN film on 4H-SiC (0001) substrate grown by RF-MBE

    NASA Astrophysics Data System (ADS)

    Jantawongrit, P.; Sanorpim, S.; Yaguchi, H.; Orihara, M.; Limsuwan, P.

    2015-08-01

    InN film was grown on 4H-SiC (0001) substrate by RF plasma-assisted molecular beam epitaxy (RF-MBE). Prior to the growth of InN film, an InN buffer layer with a thickness of ∼5.5 nm was grown on the substrate. Surface morphology, microstructure and structural quality of InN film were investigated. Micro-structural defects, such as stacking faults and anti-phase domain in InN film were carefully investigated using transmission electron microscopy (TEM). The results show that a high density of line contrasts, parallel to the growth direction (c-axis), was clearly observed in the grown InN film. Dark field TEM images recorded with diffraction vectors g=11\\bar{2}0 and g = 0002 revealed that such line contrasts evolved from a coalescence of the adjacent misoriented islands during the initial stage of the InN nucleation on the substrate surface. This InN nucleation also led to a generation of anti-phase domains. Project supported by the Thailand Center of Excellence in Physics (ThEP) and the King Mongkut's University of Technology Thonburi under The National Research University Project. One of the authors (S. Sanorpim) was supported by the National Research Council of Thailand (NRCT) and the Thai Government Stimulus Package 2 (TKK2555), under the Project for Establishment of Comprehensive Center for Innovative Food, Health Products and Agriculture.

  3. Electrical and electrothermal transport in InN: The roles of defects

    NASA Astrophysics Data System (ADS)

    Miller, N.; Ager, J. W.; Jones, R. E.; Smith, H. M.; Mayer, M. A.; Yu, K. M.; Hawkridge, M. E.; Liliental-Weber, Z.; Haller, E. E.; Walukiewicz, W.; Schaff, W. J.; Gallinat, C.; Koblmüller, G.; Speck, J. S.

    2009-12-01

    The transport properties of Mg doped and undoped InN films are studied with capacitance-voltage, thermopower, and Hall mobility measurements. A positive Seebeck coefficient is observed for Mg doped InN confirming p-type conductivity, though high doping and structural defect density can lead to n-type films. Transport measurements of undoped films are analyzed employing Rode's iterative Boltzmann equation method. Observed thermopower, Hall mobility, and dislocation density data for undoped films are consistent with calculations including the effects of charged line defect (donor-type dislocation) scattering.

  4. Electrical and optical properties of p-type InN

    SciTech Connect

    Mayer, Marie A.; Choi, Soojeong; Bierwagen, Oliver; Smith, Holland M.; Haller, Eugene E.; Speck, James S.; Walukiewicz, Wladek

    2011-01-01

    We have performed comprehensive studies of optical, thermoelectric and electrical properties of Mg doped InN with varying Mg doping levels and sample thicknesses. Room temperature photoluminescence spectra show a Mg acceptor related emission and the thermopower provides clear evidence for the presence of mobile holes. Although the effects of the hole transport are clearly observed in the temperature dependent electrical properties, the sign of the apparent Hall coefficient remains negative in all samples. We show that the standard model of two electrically well connected layers (n-type surface electron accumulation and p-type bulk) does not properly describe Hall effect in p-type InN.

  5. Two-dimensional electron gas in monolayer InN quantum wells

    SciTech Connect

    Pan, Wei; Dimakis, Emmanouil; Wang, George T.; Moustakas, Theodore D.; Tsui, Daniel C.

    2014-11-24

    We report in this letter experimental results that confirm the two-dimensional nature of the electron systems in monolayer InN quantum wells embedded in GaN barriers. The electron density and mobility of the two-dimensional electron system (2DES) in these InN quantum wells are 5×1015 cm-2 and 420 cm2 /Vs, respectively. Moreover, the diagonal resistance of the 2DES shows virtually no temperature dependence in a wide temperature range, indicating the topological nature of the 2DES.

  6. Two-dimensional electron gas in monolayer InN quantum wells

    DOE PAGESBeta

    Pan, Wei; Dimakis, Emmanouil; Wang, George T.; Moustakas, Theodore D.; Tsui, Daniel C.

    2014-11-24

    We report in this letter experimental results that confirm the two-dimensional nature of the electron systems in monolayer InN quantum wells embedded in GaN barriers. The electron density and mobility of the two-dimensional electron system (2DES) in these InN quantum wells are 5×1015 cm-2 and 420 cm2 /Vs, respectively. Moreover, the diagonal resistance of the 2DES shows virtually no temperature dependence in a wide temperature range, indicating the topological nature of the 2DES.

  7. Golf Tournament Drives in a Win for the Children’s Inn | Poster

    Cancer.gov

    By Carolynne Keenan, Contributing Writer On September 23, golfers took to the Clustered Spires golf course in Frederick, Md., for a cause. The R&W Club Frederick hosted its inaugural golf tournament, with proceeds benefiting the National Institutes of Health (NIH) Children’s Inn.

  8. Self-assembled InN micro-mushrooms by upside-down pendeoepitaxy

    NASA Astrophysics Data System (ADS)

    Sarwar, A. T. M. Golam; Yang, Fan; Esser, Bryan D.; Kent, Thomas F.; McComb, David W.; Myers, Roberto C.

    2016-06-01

    Self-assembly of hexagonal InN micro-mushrooms on Si (111) substrates by molecular beam epitaxy is reported. Scanning electron microscopy (SEM) reveals hexagonal mushroom caps with smooth top surfaces and a step-like morphology at the bottom surface. A detailed growth study along with SEM measurements reveals that an upside-down pendeoepitaxy mechanism underlies the formation of these structures. Cryogenic temperature photoluminescence measurements on the InN disks show a dominant band-to-acceptor recombination peak at 0.68 eV. Cross-section annular bright field (ABF-) scanning transmission electron microscopy (STEM) reveals that the growth of these structures occurs along the [ 000 1 bar ] crystallographic orientation (N-face). Plan-view high angle annular dark field (HAADF) STEM in the center of the micro-disks reveals a hexagonal lattice indicative of stacking faults. However, at the outskirt of the micro-disk, surprisingly, a honeycomb lattice is observed in plan view STEM indicating a perfect freestanding Wurtzite InN disk that is free of stacking faults. This result opens a pathway for realizing strain-free, freestanding InN substrates.

  9. Indium Phosphide Window Layers for Indium Gallium Arsenide Solar Cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.

    2005-01-01

    Window layers help in reducing the surface recombination at the emitter surface of the solar cells resulting in significant improvement in energy conversion efficiency. Indium gallium arsenide (In(x)Ga(1-x)As) and related materials based solar cells are quite promising for photovoltaic and thermophotovoltaic applications. The flexibility of the change in the bandgap energy and the growth of InGaAs on different substrates make this material very attractive for multi-bandgap energy, multi-junction solar cell approaches. The high efficiency and better radiation performance of the solar cell structures based on InGaAs make them suitable for space power applications. This work investigates the suitability of indium phosphide (InP) window layers for lattice-matched In(0.53)Ga(0.47)As (bandgap energy 0.74 eV) solar cells. We present the first data on the effects of the p-type InP window layer on p-on-n lattice-matched InGaAs solar cells. The modeled quantum efficiency results show a significant improvement in the blue region with the InP window. The bare InGaAs solar cell performance suffers due to high surface recombination velocity (10(exp 7) cm/s). The large band discontinuity at the InP/InGaAs heterojunction offers a great potential barrier to minority carriers. The calculated results demonstrate that the InP window layer effectively passivates the solar cell front surface, hence resulting in reduced surface recombination and therefore, significantly improving the performance of the InGaAs solar cell.

  10. Indium tin oxide nanowires grown by one-step thermal evaporation-deposition process at low temperature.

    PubMed

    Dong, Haibo; Zhang, Xiaoxian; Niu, Zhiqiang; Zhao, Duan; Li, Jinzhu; Cai, Le; Zhou, Weiya; Xie, Sishen

    2013-02-01

    Indium tin oxide (ITO), as one of the most important transparent conducting oxide, is widely used in electro-optical field. We have developed a simple one-step method to synthesize ITO nanowires at low temperature of 600 degrees C. In detail, mixtures of InN nanowires and SnO powder, with the molar ratio of 10:1, have been used as precursors for the thermal evaporation-deposition of ITO nanowires on silicon/quartz slices. During the growth process, the evaporation temperature is maintained at 600 degrees C, which favors the decomposition of InN and oxidation of In, with a limited incorporation of Sn in the resulting compound (In:Sn approximately 11:1 in atomic ratio). As far as we know, this is the lowest growth temperature reported on the thermal deposition of ITO nanowires. The diameters of the nanowires are about 120 nm and the lengths are up to tens of micrometers. XRD characterization indicates the high crystallization of the nanowires. HRTEM results show the nanowires grow along the [200] direction. The transmittance of the nanowire film on quartz slice is more than 75% in the visible region. Based on photolithography and lift-off techniques, four-terminal measurement was utilized to test the resistivity of individual nanowire (6.11 x 10(-4) omega x cm). The high crystallization quality, good transmittance and low resistivity make as-grown ITO nanowires a promising candidate as transparent electrodes of nanoscale devices. PMID:23646624

  11. High temperature surface degradation of III-V nitrides

    SciTech Connect

    Vartuli, C.B.; Pearton, S.J.; Abernathy, C.R.; MacKenzie, J.D.; Lambers, E.S.; Zolper, J.C.

    1996-05-01

    The surface stoichiometry, surface morphology and electrical conductivity of AlN, GaN, InN, InGaN and InAlN was examined at rapid thermal annealing temperatures up to 1,150 C. The sheet resistance of the AlN dropped steadily with annealing, but the surface showed signs of roughening only above 1,000 C. Auger Electronic Spectroscopy (AES) analysis showed little change in the surface stoichiometry even at 1,150 C. GaN root mean square (RMS) surface roughness showed an overall improvement with annealing, but the surface became pitted at 1,000 C, at which point the sheet resistance also dropped by several orders of magnitude, and AES confirmed a loss of N from the surface. The InN surface had roughened considerably even at 650 C, and scanning electron microscopy (SEM) showed significant degradation. In contrast to the binary nitrides the sheet resistance of InAlN was found to increase by {approximately} 10{sup 2} from the as grown value after annealing at 800 C and then remain constant up to 1,000 C, while that of InGaN increased rapidly above 700 C. The RMS roughness increased above 800 C and 700 C respectively for InAlN and InGaN samples. In droplets began to form on the surface at 900 C for InAlN and at 800 C for InGaN, and then evaporate at 1,000 C leaving pits. AES analysis showed a decrease in the N concentration in the top 500 {angstrom} of the sample for annealing {ge} 800 C in both materials.

  12. EDITORIAL: Non-polar and semipolar nitride semiconductors Non-polar and semipolar nitride semiconductors

    NASA Astrophysics Data System (ADS)

    Han, Jung; Kneissl, Michael

    2012-02-01

    topics including growth and heteroepitaxy, bulk GaN substrates, theory and modelling, optical properties, laser diodes and LEDs as well as transport properties and electronics. Farrell et al review materials and growth issues for high-performance non- and semipolar light-emitting devices, and Scholz provides an overview of heteroepitaxial growth of semipolar GaN. Okada et al review growth mechanisms of non- and semipolar GaN layers on patterned sapphire substrates, and Vennéguès discusses defect reduction methods for heteroepitaxially grown non- and semipolar III-nitride films. Leung et al explain how kinetic Wulff plots can be used to design and control non-polar and semipolar GaN heteroepitaxy, and a contribution by Sawaki et al explores the impurity incorporation in (1-101) GaN grown on Si substrates. In the area of bulk crystal growth Kucharski et al review non- and semipolar GaN substrates by ammonothermal growth, and Chichibu et al discuss the challenges for epitaxial growth of InGaN on free-standing m-plane GaN substrates. Calculation of semipolar orientations for wurtzitic semiconductor heterostructures and their application to nitrides and oxides are reviewed by Bigenwald et al, and Ito et al present an ab initio approach to reconstruction, adsorption, and incorporation on GaN surfaces. Finally, the theoretical description of non-polar and semipolar nitride semiconductor quantum-well structures is presented by Ahn et al. In a discussion of the optical properties, Kisin et al discuss the effect of the quantum well population on the optical characteristics of polar, semipolar and non-polar III-nitride light emitters, and Jönen et al investigate the indium incorporation and optical properties of non- and semipolar GaInN QW structures. Wernicke et al explore the emission wavelength of polar, non-polar, and semipolar InGaN quantum wells and the incorporation of indium. In a contribution by Melo et al, the gain in polar and non-polar/semipolar gallium-nitride

  13. Nanostructural and electronic properties of polytypes in InN nanocolumns

    SciTech Connect

    Kioseoglou, J.; Koukoula, T.; Komninou, Ph.; Kehagias, Th.; Georgakilas, A.; Androulidaki, M.

    2013-08-21

    Transmission electron microscopy techniques and density functional theory calculations were employed to investigate the nanostructural and electronic properties of InN polytypes observed in InN nanocolumns, grown on Si(111) by molecular beam epitaxy. Moiré fringes and alternating hexagonal and cubic lattice stacking sequences along the c-axis, observed among the wurtzite layers, implied the presence of different structures embedded in the basic 2H structure of the nanocolumns. Quantitative electron diffraction analysis and high-resolution image simulations verified the coexistence of the wurtzite structure with the 4H, 6H, and the 3C zinc-blende structural polytypes. Total energies calculations established the 2H wurtzite structure as the most stable polytype. The band gap of all polytypes was found direct with the energies and the band gaps of the 4H (E{sub g} = 0.64 eV) and 6H (E{sub g} = 0.60 eV) structures calculated between the corresponding values of the 2H (E{sub g} = 0.75 eV) and 3C (E{sub g} = 0.49 eV) basic structures. Theoretical and experimental analysis showed that at the initial stages of growth InN nanocolumns were under tensile strain along both the basal plane and growth direction. Structural polytypes were then introduced in the form of embedded inclusions to accommodate the excess tensile strain along the growth direction, allowing the entire process of polymorphism to be the dominant strain relaxation mechanism of InN nanocolumns. Moreover, the lattice and energetic properties and band gap values of InN polytypes showed a linear dependence on hexagonality, while the presence of polytypes led to a characteristic broadening of the photoluminescence emission peak toward lower emission energies.

  14. Distribution of indium ions in indium substituted Mn-Zn ferrites

    NASA Astrophysics Data System (ADS)

    Rao, K. H.; Mendiratta, R. G.

    1983-04-01

    The variations in dc resistivity and Mossbauer line intensities for various dopant concentrations of indium in a manganese-zinc ferrite have been investigated to analyze the site occupancy of indium ions. The indium ions are observed to occupy both tetrahedral and octahedral sites throughout the whole range of concentration studied. The picture proposed on the basis of resistivity measurements has been confirmed by Mossbauer data.

  15. Epitaxial growth of InN on nearly lattice-matched (Mn,Zn)Fe 2O 4

    NASA Astrophysics Data System (ADS)

    Ohta, J.; Mitamura, K.; Kobayashi, A.; Honke, T.; Fujioka, H.; Oshima, M.

    2006-01-01

    We have grown InN films on nearly lattice-matched (Mn,Zn)Fe 2O 4 (111) substrates at low temperatures by pulsed laser deposition (PLD) and investigated their structural properties. InN films grown at substrate temperatures above 400 °C show poor crystallinity, and their in-plane epitaxial relationship is [10-10]InN//[11-2](Mn,Zn)Fe 2O 4, which means that their lattice mismatch is quite large (11%). By contrast, high quality InN films with flat surfaces can be grown at growth temperatures lower than 150 °C with the ideal in-plane epitaxial relationship of [11-20]InN//[11-2](Mn,Zn)Fe 2O 4, which produces lattice mismatches of as low as 2.0%. X-ray reflectivity measurements have revealed that the thickness of the interfacial layer between the InN and the substrates is reduced from 14 to 8.4 nm when the growth temperature is decreased from 400 °C to room temperature. This suppression of the interface reactions by reducing the growth temperature is probably responsible for the improvement in crystalline quality. These results indicate that the use of (Mn,Zn)Fe 2O 4 (111) substrates at low growth temperatures allows us to achieve nearly lattice matched epitaxial growth of InN.

  16. Large-scale cubic InN nanocrystals by a combined solution- and vapor-phase method under silica confinement.

    PubMed

    Chen, Zhuo; Li, Yanan; Cao, Chuanbao; Zhao, Songrui; Fathololoumi, Saeed; Mi, Zetian; Xu, Xingyan

    2012-01-18

    Large-scale cubic InN nanocrystals were synthesized by a combined solution- and vapor-phase method under silica confinement. Nearly monodisperse cubic InN nanocrystals with uniform spherical shape were dispersed stably in various organic solvents after removal of the silica shells. The average size of InN nanocrystals is 5.7 ± 0.6 nm. Powder X-ray diffraction results indicate that the InN nanocrystals are of high crystallinity with a cubic phase. X-ray photoelectron spectroscopy and energy-dispersive spectroscopy confirm that the nanocrystals are composed of In and N elements. The InN nanocrystals exhibit infrared photoluminescence at room temperature, with a peak energy of ~0.62 eV, which is smaller than that of high-quality wurtzite InN (~0.65-0.7 eV) and is in agreement with theoretical calculations. The small emission peak energy of InN nanocrystals, as compared to other low-cost solution or vapor methods, reveals the superior crystalline quality of our samples, with low or negligible defect density. This work will significantly promote InN-based applications in IR optoelectronic device and biology. PMID:22224725

  17. Irradiation performance of nitride fuels

    SciTech Connect

    Matthews, R.B.

    1993-01-01

    The properties and advantages of nitride fuels are well documented in the literature. Basically the high thermal conductivity and uranium density of nitride fuels permit high power density, good breeding ratios, low reactivity swings, and large diameter pins compared to oxides. Nitrides are compatible with cladding alloys and liquid metal coolants, thereby reducing fuel/cladding chemical interactions and permitting the use of sodium-bonded pins and the operation of breached pins. Recent analyses done under similar operating conditions show that - compared to metal - fuels mixed nitrides operate at lower temperatures, produce less cladding strain, have greater margins to failure, result in lower transient temperatures, and have lower sodium void reactivity. Uranium nitride fuel pellet fabrication processes were demonstrated during the SP-100 program, and irradiated nitride fuels can be reprocessed by the PUREX process. Irradiation performance data suggest that nitrides have low fission gas release and swelling rates thereby permitting favorable pin designs and long lifetime. The objective of this report is to summarize the available nitride irradiation performance data base and to recommend optimum nitride characteristics for use in advanced liquid metal reactors.

  18. Electrically injected near-infrared light emission from single InN nanowire p-i-n diode

    SciTech Connect

    Le, Binh Huy; Zhao, Songrui; Tran, Nhung Hong; Mi, Zetian

    2014-12-08

    We report on the achievement of electroluminescence emission of single InN p-i-n nanowire devices. InN p-i-n nanowire structures were grown directly on Si substrate by plasma-assisted molecular beam epitaxy and subsequently transferred to foreign substrate for the fabrication of single nanowire light emitting diodes. Electroluminescence emission with a peak energy of 0.71 eV (1.75 μm) was observed at 77 K. The measurement of near-bandgap electroluminescence provides unambiguous evidence for the achievement of p-type conduction of InN.

  19. Mineral resource of the month: indium

    USGS Publications Warehouse

    Tolcin, Amy C.

    2011-01-01

    Geologically, the occurrence of indium minerals is rare. The element most often occurs as a sulfide inclusion or substitutes in other base-metal minerals, including cassiterite, chalcopyrite, sphalerite and stannite. Indium’s abundance in the crust is estimated to be 0.05 parts per million, which makes it more abundant than silver, but it is so widely disseminated that it does not occur in high enough concentrations to form mineable deposits. Therefore, indium is most often recovered from byproduct residues produced during the refining of lead and zinc. But only about one-quarter of the indium mined worldwide is refined into metal, as many indium-bearing concentrates are sent to refineries that do not have the capability of recovering the metal.

  20. Superplastic forging nitride ceramics

    DOEpatents

    Panda, Prakash C.; Seydel, Edgar R.; Raj, Rishi

    1988-03-22

    The invention relates to producing relatively flaw free silicon nitride ceramic shapes requiring little or no machining by superplastic forging This invention herein was made in part under Department of Energy Grant DE-AC01-84ER80167, creating certain rights in the United States Government. The invention was also made in part under New York State Science and Technology Grant SB1R 1985-10.

  1. Indium Single-Ion Frequency Standard

    NASA Technical Reports Server (NTRS)

    Nagourney, Warren

    2001-01-01

    A single laser-cooled indium ion is a promising candidate for an ultimate resolution optical time or frequency standard. It can be shown that single ions from group IIIA of the periodic table (indium, thallium, etc.) can have extremely small systematic errors. In addition to being free from Doppler, transit-time and collisional shifts, these ions are also quite insensitive to perturbations from ambient magnetic and electric fields (mainly due to the use of a J=0-0 transition for spectroscopy). Of all group IIIA ions, indium seems to be the most practical, since it is heavy enough to have a tolerable intercombination cooling transition rate and (unlike thallium) has transitions which are easily accessible with frequency multiplied continuous-wave lasers. A single indium ion standard has a potential inaccuracy of one part in 10(exp 18) for integration times of 10(exp 6) seconds. We have made substantial progress during the grant period in constructing a frequency standard based upon a single indium ion. At the beginning of the grant period, single indium ions were being successfully trapped, but the lasers and optical systems were inadequate to achieve the desired goal. We have considerably improved the stability of the dye laser used to cool the ions and locked it to a molecular resonance line, making it possible to observe stable cooling-line fluorescence from a single indium ion for reasonable periods of time, as required by the demands of precision spectroscopy. We have substantially improved the single-ion fluorescence signal with significant benefits for the detection efficiency of forbidden transitions using the 'shelving' technique. Finally, we have constructed a compact, efficient UV 'clock' laser and observed 'clock' transitions in single indium ions using this laser system. We will elaborate on these accomplishments.

  2. Pressure-induced decomposition of indium hydroxide.

    PubMed

    Gurlo, Aleksander; Dzivenko, Dmytro; Andrade, Miria; Riedel, Ralf; Lauterbach, Stefan; Kleebe, Hans-Joachim

    2010-09-15

    A static pressure-induced decomposition of indium hydroxide into metallic indium that takes place at ambient temperature is reported. The lattice parameter of c-In(OH)(3) decreased upon compression from 7.977(2) to approximately 7.45 A at 34 GPa, corresponding to a decrease in specific volume of approximately 18%. Fitting the second-order Birch-Murnaghan equation of state to the obtained compression data gave a bulk modulus of 99 +/- 3 GPa for c-In(OH)(3). The c-In(OH)(3) crystals with a size of approximately 100 nm are comminuted upon compression, as indicated by the grain-size reduction reflected in broadening of the diffraction reflections and the appearance of smaller (approximately 5 nm) incoherently oriented domains in TEM. The rapid decompression of compressed c-In(OH)(3) leads to partial decomposition of indium hydroxide into metallic indium, mainly as a result of localized stress gradients caused by relaxation of the highly disordered indium sublattice in indium hydroxide. This partial decomposition of indium hydroxide into metallic indium is irreversible, as confirmed by angle-dispersive X-ray diffraction, transmission electron microscopy imaging, Raman scattering, and FTIR spectroscopy. Recovered c-In(OH)(3) samples become completely black and nontransparent and show typical features of metals, i.e., a falling absorption in the 100-250 cm(-1) region accompanied by a featureless spectrum in the 250-2500 cm(-1) region in the Raman spectrum and Drude-like absorption of free electrons in the region of 4000-8000 cm(-1) in the FTIR spectrum. These features were not observed in the initial c-In(OH)(3), which is a typical white wide-band-gap semiconductor.

  3. Gallium nitride electronics

    NASA Astrophysics Data System (ADS)

    Rajan, Siddharth; Jena, Debdeep

    2013-07-01

    In the past two decades, there has been increasing research and industrial activity in the area of gallium nitride (GaN) electronics, stimulated first by the successful demonstration of GaN LEDs. While the promise of wide band gap semiconductors for power electronics was recognized many years before this by one of the contributors to this issue (J Baliga), the success in the area of LEDs acted as a catalyst. It set the field of GaN electronics in motion, and today the technology is improving the performance of several applications including RF cell phone base stations and military radar. GaN could also play a very important role in reducing worldwide energy consumption by enabling high efficiency compact power converters operating at high voltages and lower frequencies. While GaN electronics is a rapidly evolving area with active research worldwide, this special issue provides an opportunity to capture some of the great advances that have been made in the last 15 years. The issue begins with a section on epitaxy and processing, followed by an overview of high-frequency HEMTs, which have been the most commercially successful application of III-nitride electronics to date. This is followed by review and research articles on power-switching transistors, which are currently of great interest to the III-nitride community. A section of this issue is devoted to the reliability of III-nitride devices, an area that is of increasing significance as the research focus has moved from not just high performance but also production-worthiness and long-term usage of these devices. Finally, a group of papers on new and relatively less studied ideas for III-nitride electronics, such as interband tunneling, heterojunction bipolar transistors, and high-temperature electronics is included. These areas point to new areas of research and technological innovation going beyond the state of the art into the future. We hope that the breadth and quality of articles in this issue will make it

  4. Initial nitride formation during plasma-nitridation of cobalt surfaces

    NASA Astrophysics Data System (ADS)

    Mattson, E. C.; Michalak, D. J.; Cabrera, W.; Veyan, J. F.; Chabal, Y. J.

    2016-08-01

    Nitridation of metal surfaces is of central importance in microelectronics and spintronics due to the excellent mechanical, thermal, and electrical properties of refractory nitrides. Here, we examine the chemical and structural modification of cobalt surfaces upon nitrogen plasma treatment, using in situ spectroscopic methods, as a method for synthesis of cobalt nitride thin films. We find that nitrogen is incorporated below the surface and forms an ultrathin film of CoN at temperatures as low as 50 °C. In addition, we observe the incorporation of oxygen and NO+ within the surface region. The nitrided cobalt surfaces are fully passivated by N, O, and NO+. These results provide a route for incorporation of cobalt nitride into a wide range applications.

  5. R&W Club Frederick Raises $1,500 for The Children’s Inn at Annual Golf Tournament | Poster

    Cancer.gov

    Forty-four government and contractor employees, along with their friends and family members, took to the Maryland National Golf Club course this fall for a cause. The R&W Club Frederick held its third annual golf tournament at the Middletown, Md., golf course on Sept. 14 to raise funds for The Children’s Inn at NIH, which celebrated its 25th anniversary this year. The Inn provides support and a home away from home for seriously ill children and their families receiving treatment at the NIH Clinical Center. Through the tournament, the club raised approximately $1,500 for The Children’s Inn, according to Tanya Ransom, biologist, NCI Center for Cancer Research, and secretary of the R&W Club Frederick. She also coordinated the golf tournament. After the tournament, a silent auction of sports memorabilia and collectibles, sponsored by Great Moments, Frederick, was held, and a portion of the proceeds also went to the Inn.

  6. Study of InN nanorods growth mechanism using ultrathin Au layer by plasma-assisted MBE on Si(111)

    NASA Astrophysics Data System (ADS)

    Kumar, Mahesh; Rajpalke, Mohana K.; Roul, Basanta; Bhat, Thirumaleshwara N.; Krupanidhi, S. B.

    2014-01-01

    InN nanorods (NRs) were grown on Si(111) substrate by plasma-assisted molecular beam epitaxy. The growth of InN NRs has been demonstrated using an electron-beam evaporated (~2 nm) Au layer prior to the initiation of growth. The structure and morphology of as deposited Au film, annealed at 600 °C, and InN NRs were investigated using X-ray photoelectron spectroscopy and scanning electron microscopy. Chemical characterization was performed with energy dispersive X-ray analysis. Single-crystalline wurtzite structure of InN NRs is verified by transmission electron microscopy. The formation process of NRs is investigated and a qualitative mechanism is proposed.

  7. Epitaxial relationship of semipolar s-plane (1101) InN grown on r-plane sapphire

    SciTech Connect

    Dimitrakopulos, G. P.

    2012-07-02

    The heteroepitaxy of semipolar s-plane (1101) InN grown directly on r-plane sapphire by plasma-assisted molecular beam epitaxy is studied using transmission electron microscopy techniques. The epitaxial relationship is determined to be (1101){sub InN} Parallel-To (1102){sub Al{sub 2O{sub 3}}}, [1120]{sub InN} Parallel-To [2021]{sub Al{sub 2O{sub 3}}}, [1102]{sub InN}{approx} Parallel-To [0221]{sub Al{sub 2O{sub 3}}}, which ensures a 0.7% misfit along [1120]{sub InN}. Two orientation variants are identified. Proposed geometrical factors contributing to the high density of basal stacking faults, partial dislocations, and sphalerite cubic pockets include the misfit accommodation and reduction, as well as the accommodation of lattice twist.

  8. Powder-XRD and (14) N magic angle-spinning solid-state NMR spectroscopy of some metal nitrides.

    PubMed

    Kempgens, Pierre; Britton, Jonathan

    2016-05-01

    Some metal nitrides (TiN, ZrN, InN, GaN, Ca3 N2 , Mg3 N2 , and Ge3 N4 ) have been studied by powder X-ray diffraction (XRD) and (14) N magic angle-spinning (MAS) solid-state NMR spectroscopy. For Ca3 N2 , Mg3 N2 , and Ge3 N4 , no (14) N NMR signal was observed. Low speed (νr  = 2 kHz for TiN, ZrN, and GaN; νr  = 1 kHz for InN) and 'high speed' (νr  = 15 kHz for TiN; νr  = 5 kHz for ZrN; νr  = 10 kHz for InN and GaN) MAS NMR experiments were performed. For TiN, ZrN, InN, and GaN, powder-XRD was used to identify the phases present in each sample. The number of peaks observed for each sample in their (14) N MAS solid-state NMR spectrum matches perfectly well with the number of nitrogen-containing phases identified by powder-XRD. The (14) N MAS solid-state NMR spectra are symmetric and dominated by the quadrupolar interaction. The envelopes of the spinning sidebands manifold are Lorentzian, and it is concluded that there is a distribution of the quadrupolar coupling constants Qcc 's arising from structural defects in the compounds studied.

  9. Electrochemical nitridation of metal surfaces

    DOEpatents

    Wang, Heli; Turner, John A.

    2015-06-30

    Electrochemical nitridation of metals and the produced metals are disclosed. An exemplary method of electrochemical nitridation of metals comprises providing an electrochemical solution at low temperature. The method also comprises providing a three-electrode potentiostat system. The method also comprises stabilizing the three-electrode potentiostat system at open circuit potential. The method also comprises applying a cathodic potential to a metal.

  10. Sulfur passivation of surface electrons in highly Mg-doped InN

    SciTech Connect

    Linhart, W. M.; Veal, T. D.; Chai, J.; McConville, C. F.; Durbin, S. M.

    2013-09-14

    Electron accumulation with a sheet density greater than 10{sup 13} cm{sup −2} usually occurs at InN surfaces. Here, the effects of treatment with ammonium sulfide ((NH{sub 4}){sub 2}S{sub x}) on the surface electronic properties of highly Mg-doped InN (>4×10{sup 18} cm{sup −3}) have been investigated with high resolution x-ray photoemission spectroscopy. The valence band photoemission spectra show that the surface Fermi level decreases by approximately 0.08 eV with (NH{sub 4}){sub 2}S{sub x} treatment, resulting in a decrease of the downward band bending and up to a 70% reduction in the surface electron sheet density.

  11. Epitaxial growth, electrical and optical properties of a-plane InN on r-plane sapphire

    SciTech Connect

    Ajagunna, A. O.; Iliopoulos, E.; Tsiakatouras, G.; Tsagaraki, K.; Androulidaki, M.; Georgakilas, A.

    2010-01-15

    The heteroepitaxy of a-plane (1120) InN films on r-plane (1102) sapphire substrates, by nitrogen radio frequency plasma-assisted molecular beam epitaxy, has been investigated and compared to that of c-plane (0001) InN. The epitaxial growth of a-plane InN proceeded through the nucleation, growth, and coalescence of three-dimensional islands, resulting in surface roughness that increased monotonically with epilayer thickness. The full width at half maximum of (1120) x-ray diffraction rocking curves decreased significantly with increasing InN thickness, characteristic of structural improvement, and it reached the value of 24 arcmin for a 1 {mu}m thick film. Hall-effect measurements exhibited a similar dependence of electron concentration and mobility on thickness for both the a- and c-plane InN films. The analysis of the Hall-effect measurements, by considering the contribution of two conducting layers, indicates a similar accumulation of low mobility electrons with N{sub s}>10{sup 14} cm{sup -2} at the films' surface/interfacial region for both the a- and c-plane InN films. From optical transmittance measurements, the absorption edge of 0.768 eV was determined for the 1 {mu}m a-plane film, consistent with the expected Burstein-Moss effect. Photoluminescence spectra exhibited a lower energy peak at 0.631 eV, suggesting defect-related transitions.

  12. Stability of Mg-incorporated InN surfaces: first-principles study

    NASA Astrophysics Data System (ADS)

    Akiyama, T.; Nakamura, K.; Ito, T.; Song, J.-H.; Freeman, A. J.

    2009-03-01

    InN films are attractive materials for electronic and optelectronic applications. The growth of InN eptitaxial films with n-type and p-type conductivity has traditionally been performed along the polar <0001> directionootnotetextR.E. Jones et al., Phys. Rev. Lett, 96, 125505 (2006), which may result in large polarization fields along the growth direction, reducing the radiative efficiency of quantum-well light emitters. To overcome this drawback, the growth along nonpolar orientation such as (1010) and (1120) planes and its p-type doping have been recently carried out. We have addressed this issue by performing first-principles pseudopotential calculations for Mg-incorporated InN surfaces in various orientations, including (1010) and (1120) as well as (0001) and (0001) surfacesootnotetextJ.-H. Song et al., Phys. Rev. Lett. 101, 106803 (2008). The calculated surface energies demonstrate that qualitative trends in the stability of Mg-incorporated surfaces agree with those on GaN surfaces ootnotetextJ.E. Northrup, Appl. Phys. Lett. 86, 122108 (2005), although several surface reconstructions different from those on GaN surfaces are obtained. The effects of growth conditions on p-type doping are also discussed.

  13. Photoelectrochemical properties of InN nanowire photoelectrodes for solar water splitting

    NASA Astrophysics Data System (ADS)

    Kamimura, J.; Bogdanoff, P.; Ramsteiner, M.; Geelhaar, L.; Riechert, H.

    2016-07-01

    InN nanowires were grown on Si(111) substrates by plasma-assisted molecular beam epitaxy. Raman spectroscopy showed that the nanowires were strain-free and allowed the deduction of a free carrier concentration of 1–2 × 1018 cm‑3. This value was confirmed by a Mott–Schottky analysis of electrolyte-based capacitance-voltage measurements. In addition, these measurements directly revealed the existence of a surface accumulation layer in the InN nanowires. In cyclic voltammetry measurements under irradiation from a Xe lamp with about 100 mW cm‑2, high photocurrents of about 4 and 11 mA cm‑2 were observed at 1.23 and 1.63 V bias potential versus reversible hydrogen electrode, respectively, using H2O2 as a hole scavenger. By comparing the photocurrent with and without H2O2, the main limiting factor in the performance of InN nanowire photoanodes was identified to be the poor catalytic efficiency for water oxidation at the surface, followed by parasitic bulk recombination.

  14. Photoelectrochemical properties of InN nanowire photoelectrodes for solar water splitting

    NASA Astrophysics Data System (ADS)

    Kamimura, J.; Bogdanoff, P.; Ramsteiner, M.; Geelhaar, L.; Riechert, H.

    2016-07-01

    InN nanowires were grown on Si(111) substrates by plasma-assisted molecular beam epitaxy. Raman spectroscopy showed that the nanowires were strain-free and allowed the deduction of a free carrier concentration of 1-2 × 1018 cm-3. This value was confirmed by a Mott-Schottky analysis of electrolyte-based capacitance-voltage measurements. In addition, these measurements directly revealed the existence of a surface accumulation layer in the InN nanowires. In cyclic voltammetry measurements under irradiation from a Xe lamp with about 100 mW cm-2, high photocurrents of about 4 and 11 mA cm-2 were observed at 1.23 and 1.63 V bias potential versus reversible hydrogen electrode, respectively, using H2O2 as a hole scavenger. By comparing the photocurrent with and without H2O2, the main limiting factor in the performance of InN nanowire photoanodes was identified to be the poor catalytic efficiency for water oxidation at the surface, followed by parasitic bulk recombination.

  15. Synthesis and characterization of actinide nitrides

    SciTech Connect

    Jaques, Brian; Butt, Darryl P.; Marx, Brian M.; Hamdy, A.S.; Osterberg, Daniel; Balfour, Gordon

    2007-07-01

    A carbothermic reduction of the metal oxides in a hydrogen/nitrogen mixed gas stream prior to nitriding in a nitrogen gas stream was used to synthesize uranium nitride at 1500 deg. C, cerium nitride at 1400 deg. C, and dysprosium nitride at 1500 deg. C. Cerium nitride and dysprosium nitride were also synthesized via hydriding and nitriding the metal shavings at 900 deg. C and 1500 deg. C, respectively. Also, a novel ball-milling synthesis route was used to produce cerium nitride and dysprosium nitride from the metal shavings at room temperature. Dysprosium nitride was also produced by reacting the metal shavings in a high purity nitrogen gas stream at 1300 deg. C. All materials were characterized by phase analysis via X-ray diffraction. Only the high purity materials were further analyzed via chemical analysis to characterize the trace oxygen concentration. (authors)

  16. Gallium nitride nanotube lasers

    SciTech Connect

    Li, Changyi; Liu, Sheng; Hurtado, Antonio; Wright, Jeremy Benjamin; Xu, Huiwen; Luk, Ting Shan; Figiel, Jeffrey J.; Brener, Igal; Brueck, Steven R. J.; Wang, George T.

    2015-01-01

    Lasing is demonstrated from gallium nitride nanotubes fabricated using a two-step top-down technique. By optically pumping, we observed characteristics of lasing: a clear threshold, a narrow spectral, and guided emission from the nanotubes. In addition, annular lasing emission from the GaN nanotube is also observed, indicating that cross-sectional shape control can be employed to manipulate the properties of nanolasers. The nanotube lasers could be of interest for optical nanofluidic applications or application benefitting from a hollow beam shape.

  17. Functionalized boron nitride nanotubes

    DOEpatents

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  18. Aluminum nitride grating couplers.

    PubMed

    Ghosh, Siddhartha; Doerr, Christopher R; Piazza, Gianluca

    2012-06-10

    Grating couplers in sputtered aluminum nitride, a piezoelectric material with low loss in the C band, are demonstrated. Gratings and a waveguide micromachined on a silicon wafer with 600 nm minimum feature size were defined in a single lithography step without partial etching. Silicon dioxide (SiO(2)) was used for cladding layers. Peak coupling efficiency of -6.6 dB and a 1 dB bandwidth of 60 nm have been measured. This demonstration of wire waveguides and wideband grating couplers in a material that also has piezoelectric and elasto-optic properties will enable new functions for integrated photonics and optomechanics.

  19. 40 CFR 421.190 - Applicability: Description of the secondary indium subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... secondary indium subcategory. 421.190 Section 421.190 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Indium Subcategory § 421.190 Applicability: Description of the secondary indium... indium at secondary indium facilities processing spent electrolyte solutions and scrap indium metal...

  20. 40 CFR 421.190 - Applicability: Description of the secondary indium subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... secondary indium subcategory. 421.190 Section 421.190 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Indium Subcategory § 421.190 Applicability: Description of the secondary indium... indium at secondary indium facilities processing spent electrolyte solutions and scrap indium metal...

  1. 40 CFR 421.190 - Applicability: Description of the secondary indium subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... secondary indium subcategory. 421.190 Section 421.190 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Indium Subcategory § 421.190 Applicability: Description of the secondary indium... indium at secondary indium facilities processing spent electrolyte solutions and scrap indium metal...

  2. Thermal Stability of Chelated Indium Activable Tracers

    SciTech Connect

    Chrysikopoulos, Costas; Kruger, Paul

    1986-01-21

    The thermal stability of indium tracer chelated with organic ligands ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) was measured for reservoir temperatures of 150, 200, and 240 C. Measurements of the soluble indium concentration was made as a function of time by neutron activation analysis. From the data, approximate thermal decomposition rates were estimated. At 150 C, both chelated tracers were stable over the experimental period of 20 days. At 200 C, the InEDTA concentration remained constant for 16 days, after which the thermal decomposition occurred at a measured rate constant of k = 0.09 d{sup -1}. The thermal decomposition of InNTA at 200 C showed a first order reaction with a measured rate constant of k = 0.16 d{sup -1}. At 240 C, both indium chelated tracers showed rapid decomposition with rate constants greater than 1.8 d{sup -1}. The data indicate that for geothermal reservoir with temperatures up to about 200 C, indium chelated tracers can be used effectively for transit times of at least 20 days. These experiments were run without reservoir rock media, and do not account for concomitant loss of indium tracer by adsorption processes.

  3. Rare earth ion implantation and optical activation in nitride semiconductors for multicolor emission

    NASA Astrophysics Data System (ADS)

    Ruterana, Pierre; Chauvat, Marie-Pierre; Lorenz, Katharina

    2015-04-01

    In order to understand the behavior of nitride semiconductors when submitted to ion implantation, we have used 300 keV europium at fluences from 1012 to above 1017 ions cm-2. Subsequently, Rutherford backscattering (RBS), x-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to investigate the evolution of damage. The optical properties were investigated prior to and after annealing. It was found that the behavior of the three compounds (AlN, GaN InN) under ion implantation is rather different: whereas InN breaks down at very low fluences (˜1012 ions cm-2), the damage formation mechanisms are similar in AlN and GaN. In both compounds, extended defects such as stacking faults play a critical role. However, they exhibit different stability, as a consequence, GaN transforms to nanocrystalline state from the surface at a fluence of around 2.5 × 1015 ions cm-2, whereas AlN undergoes a chemical amorphization starting at the projected range (Rp), when implanted to extremely high Eu fluences >1017 ionscm-2. As for the optical activation, the formation of highly stable extended defects in these compounds constitutes a real challenge for the annealing of heavily doped layers, and it was noticed that for a substantial optical activation, the implantation fluences should be kept low (<1015 Eu at cm-2).

  4. Indium: bringing liquid-crystal displays into focus

    USGS Publications Warehouse

    Mercer, Celestine N.

    2015-01-01

    Compared to more abundant industrial metals such as lead and zinc, information about the behavior and toxicity of indium in the environment is limited. However, many indium compounds have been proven to be toxic to animals.

  5. Indium: bringing liquid-crystal displays into focus

    USGS Publications Warehouse

    Mercer, Celestine N.

    2015-07-30

    Compared to more abundant industrial metals such as lead and zinc, information about the behavior and toxicity of indium in the environment is limited. However, many indium compounds have been proven to be toxic to animals.

  6. Indium oxide/n-silicon heterojunction solar cells

    DOEpatents

    Feng, Tom; Ghosh, Amal K.

    1982-12-28

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  7. Correct Implementation of Polarization Constants in Wurtzite Materials and Impact on III-Nitrides

    NASA Astrophysics Data System (ADS)

    Dreyer, Cyrus E.; Janotti, Anderson; Van de Walle, Chris G.; Vanderbilt, David

    2016-04-01

    Accurate values for polarization discontinuities between pyroelectric materials are critical for understanding and designing the electronic properties of heterostructures. For wurtzite materials, the zincblende structure has been used in the literature as a reference to determine the effective spontaneous polarization constants. We show that, because the zincblende structure has a nonzero formal polarization, this method results in a spurious contribution to the spontaneous polarization differences between materials. In addition, we address the correct choice of "improper" versus "proper" piezoelectric constants. For the technologically important III-nitride materials GaN, AlN, and InN, we determine polarization discontinuities using a consistent reference based on the layered hexagonal structure and the correct choice of piezoelectric constants, and discuss the results in light of available experimental data.

  8. Effects of hole localization on limiting p-type conductivity in oxide and nitride semiconductors

    SciTech Connect

    Lyons, J. L.; Janotti, A.; Van de Walle, C. G.

    2014-01-07

    We examine how hole localization limits the effectiveness of substitutional acceptors in oxide and nitride semiconductors and explain why p-type doping of these materials has proven so difficult. Using hybrid density functional calculations, we find that anion-site substitutional impurities in AlN, GaN, InN, and ZnO lead to atomic-like states that localize on the impurity atom itself. Substitution with cation-site impurities, on the other hand, triggers the formation of polarons that become trapped on nearest-neighbor anions, generally leading to large ionization energies for these acceptors. Unlike shallow effective-mass acceptors, these two types of deep acceptors couple strongly with the lattice, significantly affecting the optical properties and severely limiting prospects for achieving p-type conductivity in these wide-band-gap materials.

  9. Hot electrons in group-III nitrides at moderate electric fields

    NASA Astrophysics Data System (ADS)

    Barry, E. A.; Kim, K. W.; Kochelap, V. A.

    2002-04-01

    By the use of the Monte Carlo method, we studied the distribution function and the basic characteristics of hot electrons in InN, GaN, and AlN under moderate electric fields. We found that in relatively low fields (of the order of kV/cm) the optical phonon emission dominates in the electron kinetics. This strongly inelastic process gives rise to a spindle-shaped distribution function and an extended portion of a quasisaturation of the current-voltage (I-V) characteristics (the streaming-like regime). Formation of this regime is induced by a suppression of the electron spreading over the momenta perpendicular to the electric field. We prove that this is a universal character of the hot electron behavior for all three nitrides. The effects can be detected by the measurement of the I-V characteristics, or the thermopower of hot electrons in the transverse direction.

  10. A modern perspective on the history of semiconductor nitride blue light sources

    NASA Astrophysics Data System (ADS)

    Maruska, Herbert Paul; Rhines, Walden Clark

    2015-09-01

    In this paper we shall discuss the development of blue light-emitting (LED) and laser diodes (LD), starting early in the 20th century. Various materials systems were investigated, but in the end, the nitrides of aluminum, gallium and indium proved to be the most effective. Single crystal thin films of GaN first emerged in 1968. Blue light-emitting diodes were first reported in 1971. Devices grown in the 1970s were prepared by the halide transport method, and were never efficient enough for commercial products due to contamination. Devices created by metal-organic vapor-phase epitaxy gave far superior performance. Actual true blue LEDs based on direct band-to-band transitions, free of recombination through deep levels, were finally developed in 1994, leading to a breakthrough in LED performance, as well as nitride based laser diodes in 1996. In 2014, the scientists who achieved these critical results were awarded the Nobel Prize in Physics.

  11. Cordierite silicon nitride filters

    SciTech Connect

    Sawyer, J.; Buchan, B. ); Duiven, R.; Berger, M. ); Cleveland, J.; Ferri, J. )

    1992-02-01

    The objective of this project was to develop a silicon nitride based crossflow filter. This report summarizes the findings and results of the project. The project was phased with Phase I consisting of filter material development and crossflow filter design. Phase II involved filter manufacturing, filter testing under simulated conditions and reporting the results. In Phase I, Cordierite Silicon Nitride (CSN) was developed and tested for permeability and strength. Target values for each of these parameters were established early in the program. The values were met by the material development effort in Phase I. The crossflow filter design effort proceeded by developing a macroscopic design based on required surface area and estimated stresses. Then the thermal and pressure stresses were estimated using finite element analysis. In Phase II of this program, the filter manufacturing technique was developed, and the manufactured filters were tested. The technique developed involved press-bonding extruded tiles to form a filter, producing a monolithic filter after sintering. Filters manufactured using this technique were tested at Acurex and at the Westinghouse Science and Technology Center. The filters did not delaminate during testing and operated and high collection efficiency and good cleanability. Further development in areas of sintering and filter design is recommended.

  12. Electrospun Gallium Nitride Nanofibers

    SciTech Connect

    Melendez, Anamaris; Morales, Kristle; Ramos, Idalia; Campo, Eva; Santiago, Jorge J.

    2009-04-19

    The high thermal conductivity and wide bandgap of gallium nitride (GaN) are desirable characteristics in optoelectronics and sensing applications. In comparison to thin films and powders, in the nanofiber morphology the sensitivity of GaN is expected to increase as the exposed area (proportional to the length) increases. In this work we present electrospinning as a novel technique in the fabrication of GaN nanofibers. Electrospinning, invented in the 1930s, is a simple, inexpensive, and rapid technique to produce microscopically long ultrafine fibers. GaN nanofibers are produced using gallium nitrate and dimethyl-acetamide as precursors. After electrospinning, thermal decomposition under an inert atmosphere is used to pyrolyze the polymer. To complete the preparation, the nanofibers are sintered in a tube furnace under a NH{sub 3} flow. Both scanning electron microscopy and profilometry show that the process produces continuous and uniform fibers with diameters ranging from 20 to a few hundred nanometers, and lengths of up to a few centimeters. X-ray diffraction (XRD) analysis shows the development of GaN nanofibers with hexagonal wurtzite structure. Future work includes additional characterization using transmission electron microscopy and XRD to understand the role of precursors and nitridation in nanofiber synthesis, and the use of single nanofibers for the construction of optical and gas sensing devices.

  13. Indium-111 leukocyte scanning and fracture healing

    SciTech Connect

    Mead, L.P.; Scott, A.C.; Bondurant, F.J.; Browner, B.D. )

    1990-01-01

    This study was undertaken to determine the specificity of indium-111 leukocyte scans for osteomyelitis when fractures are present. Midshaft tibial osteotomies were performed in 14 New Zealand white rabbits, seven of which were infected postoperatively with Staphylococcus aureus per Norden's protocol. All 14 rabbits were scanned following injection with 75 microCi of indium 111 at 72 h after osteotomy and at weekly intervals for 4 weeks. Before the rabbits were killed, the fracture sites were cultured to document the presence or absence of infection. The results of all infected osteotomy sites were positive, whereas no positive scans were found in the noninfected osteotomies. We concluded from this study that uncomplicated fracture healing does not result in a positive indium-111 leukocyte scan.

  14. Growth and characterization of room temperature ferromagnetic manganese:gallium nitride and manganese:gallium indium nitride for spintronic applications

    NASA Astrophysics Data System (ADS)

    Reed, Meredith Lynn

    Dilute magnetic semiconductors Mn:GaN and Mn:InGaN showing ferromagnetic behavior at room temperature and above were achieved. Light emitting diode devices doped with Mn via diffusion produced operational devices with ferromagnetic properties at room temperature. Mn:GaN films were grown by: Mn diffusion into metal organic chemical vapor deposition (MOCVD) grown GaN; ion implantation of Mn into MOCVD grown GaN substrates; and MOCVD growth of Mn:GaN using (Et,Cp)2Mn as a Mn precursor. Curie temperatures of these Mn:GaN films ranged from 228 to 520 K, as determined by temperature dependent super conducting quantum interference device (SQUID) and extraordinary Hall effect (EHE) measurements. Ferromagnetic properties were observed over a Mn concentration range of 0.09--3.5% depending on the growth technique used. The Mn:GaN coercivity ranged from 100--1500 Oe, where the saturation magnetization varied from 2 to 45 emu/cm3. The easy axes for these films were determined to be along the c direction (i.e. out of plane). The electrical properties of the Mn:GaN films indicated that the films were highly resistive or n-type. Temperature dependent SQUID and EHE measurements verified the absence of superparamagnetism in the films, confirming the absence of small phase separated particles within the films. XRD and TEM determined that no secondary phases were present in any of the films studied, confirming that the ferromagnetic properties result from a solid solution of Mn in the GaN lattice. Mn:InGaN films were grown by Mn diffusion into InGaN films and by MOCVD using (Et,Cp)2Mn as a Mn precursor. All Mn:InGaN films were grown on an undoped GaN template. We report on the room temperature ferromagnetic properties of Mn-doped InxGa1- xN with x < 0.15. The Curie temperatures for these Mn:InGaN films ranged from 300 to 700 K, which was confirmed by temperature dependent SQUID measurements. The ferromagnetic properties were observed in a Mn concentration range of 0.12--8% depending on how the films were grown. The coercivity of Mn:InGaN films were found to range from 100--800 Oe, where the saturation magnetization varied from 1 to 28 emu/cm3. The easy axis of magnetization depends on the stress state of the InxGa 1-xN film. The easy axis rotates from in-plane to out of plane by changing the film thickness, thus going from strained to fully relaxed films. For intermediate film thickness a transition region of partially relaxed film was identified with isotropic magnetic behavior. The electrical properties of the Mn:InGaN films indicated that the films were n-type or highly resistive. Temperature dependent SQUID measurements verified the absence of superparamagnetism in the films, confirming the absence of small phase separated particles within the films. XRD and TEM determined that no secondary phases were present in any of the films studied, confirming that the ferromagnetic properties result from a solid solution of Mn in the InGaN lattice.

  15. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN...

  16. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN...

  17. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN...

  18. Effects of strain on the band structure of group-III nitrides

    NASA Astrophysics Data System (ADS)

    Yan, Qimin; Rinke, Patrick; Janotti, Anderson; Scheffler, Matthias; Van de Walle, Chris G.

    2014-09-01

    We present a systematic study of strain effects on the electronic band structure of the group-III-nitrides (AlN, GaN and InN) in the wurtzite phase. The calculations are based on density functional theory with band-gap-corrected approaches including the Heyd-Scuseria-Ernzerhof hybrid functional (HSE) and quasiparticle G0W0 methods. We study strain effects under realistic strain conditions, hydrostatic pressure, and biaxial stress. The strain-induced modification of the band structures is found to be nonlinear; transition energies and crystal-field splittings show a strong nonlinear behavior under biaxial stress. For the linear regime around the experimental lattice parameters, we present a complete set of deformation potentials (acz, act, D1, D2, D3, D4, D5, D6) that allows us to predict the band positions of group-III nitrides and their alloys (InGaN and AlGaN) under realistic strain conditions. The benchmarking G0W0 results for GaN agree well with the HSE data and indicate that HSE provides an appropriate description for the band structures of nitrides. We present a systematic study of strain effects on the electronic band structure of the group-III nitrides (AlN, GaN, and InN). We quantify the nonlinearity of strain effects by introducing a set of bowing parameters. We apply the calculated deformation potentials to the prediction of strain effects on transition energies and valence-band structures of InGaN alloys and quantum wells (QWs) grown on GaN, in various orientations (including c-plane, m-plane, and semipolar). The calculated band gap bowing parameters, including the strain effect for c-plane InGaN, agree well with the results obtained by hybrid functional alloy calculations. For semipolar InGaN QWs grown in (202¯1), (303¯1), and (303¯1¯) orientations, our calculated deformation potentials have provided results for polarization ratios in good agreement with the experimental observations, providing further confidence in the accuracy of our values.

  19. Hard carbon nitride and method for preparing same

    DOEpatents

    Haller, Eugene E.; Cohen, Marvin L.; Hansen, William L.

    1992-01-01

    Novel crystalline .alpha. (silicon nitride-like)-carbon nitride and .beta. (silicon nitride-like)-carbon nitride are formed by sputtering carbon in the presence of a nitrogen atmosphere onto a single crystal germanium or silicon, respectively, substrate.

  20. Transport in indium-decorated graphene

    NASA Astrophysics Data System (ADS)

    Chandni, U.; Henriksen, Erik A.; Eisenstein, J. P.

    2015-06-01

    The electronic-transport properties of single-layer graphene that has a dilute coating of indium adatoms have been investigated. Our studies establish that isolated indium atoms donate electrons to graphene and become a source of charged impurity scattering, affecting the conductivity as well as magnetotransport properties of the pristine graphene. Notably, a positive magnetoresistance is observed over a wide density range after In doping. The low-field magnetoresistance carries signatures of quantum interference effects which are significantly altered by the adatoms.

  1. Boron nitride converted carbon fiber

    DOEpatents

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  2. Molecular beam epitaxy grown indium self-assembled plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Gibson, Ricky; Gehl, Michael; Sears, Jasmine; Zandbergen, Sander; Nader, Nima; Keiffer, Patrick; Hendrickson, Joshua; Arnoult, Alexandre; Khitrova, Galina

    2015-09-01

    We describe molecular beam epitaxy (MBE) growth conditions for self-assembled indium nanostructures, or islands, which allow for the tuning of the density and size of the indium nanostructures. How the plasmonic resonance of indium nanostructures is affected by the island density, size, distribution in sizes, and indium purity of the nanostructures is explored. These self-assembled nanostructures provide a platform for integration of resonant and non-resonant plasmonic structures within a few nm of quantum wells (QWs) or quantum dots (QDs) in a single process. A 4× increase in peak photoluminescence intensity is demonstrated for near-surface QDs resonantly coupled to indium nanostructures.

  3. Superplastic forging nitride ceramics

    DOEpatents

    Panda, P.C.; Seydel, E.R.; Raj, R.

    1988-03-22

    A process is disclosed for preparing silicon nitride ceramic parts which are relatively flaw free and which need little or no machining, said process comprising the steps of: (a) preparing a starting powder by wet or dry mixing ingredients comprising by weight from about 70% to about 99% silicon nitride, from about 1% to about 30% of liquid phase forming additive and from 1% to about 7% free silicon; (b) cold pressing to obtain a preform of green density ranging from about 30% to about 75% of theoretical density; (c) sintering at atmospheric pressure in a nitrogen atmosphere at a temperature ranging from about 1,400 C to about 2,200 C to obtain a density which ranges from about 50% to about 100% of theoretical density and which is higher than said preform green density, and (d) press forging workpiece resulting from step (c) by isothermally uniaxially pressing said workpiece in an open die without initial contact between said workpiece and die wall perpendicular to the direction of pressing and so that pressed workpiece does not contact die wall perpendicular to the direction of pressing, to substantially final shape in a nitrogen atmosphere utilizing a temperature within the range of from about 1,400 C to essentially 1,750 C and strain rate within the range of about 10[sup [minus]7] to about 10[sup [minus]1] seconds[sup [minus]1], the temperature and strain rate being such that surface cracks do not occur, said pressing being carried out to obtain a shear deformation greater than 30% whereby superplastic forging is effected.

  4. InN nanorods prepared with CrN nanoislands by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Liu, Kuang-Wei; Chang, Shoou-Jinn; Young, Sheng-Joue; Hsueh, Tao-Hung; Hung, Hung; Mai, Yu-Chun; Wang, Shih-Ming; Chen, Kuan-Jen; Wu, Ya-Ling; Chen, Yue-Zhang

    2011-07-01

    The authors report the influence of CrN nanoisland inserted on growth of baseball-bat InN nanorods by plasma-assisted molecular beam epitaxy under In-rich conditions. By inserting CrN nanoislands between AlN nucleation layer and the Si (111) substrate, it was found that we could reduce strain form Si by inserting CrN nanoisland, FWHM of the x-ray rocking curve measured from InN nanorods from 3,299 reduced to 2,115 arcsec. It is due to the larger strain from lattice miss-match of the film-like InN structure; however, the strain from lattice miss-match was obvious reduced owing to CrN nanoisland inserted. The TEM images confirmed the CrN structures and In droplets dissociation from InN, by these results, we can speculate the growth mechanism of baseball-bat-like InN nanorods.

  5. In-situ SiNx/InN structures for InN field-effect transistors

    NASA Astrophysics Data System (ADS)

    Zervos, Ch.; Adikimenakis, A.; Beleniotis, P.; Kostopoulos, A.; Kayambaki, M.; Tsagaraki, K.; Konstantinidis, G.; Georgakilas, A.

    2016-04-01

    Critical aspects of InN channel field-effect transistors (FETs) have been investigated. SiNx dielectric layers were deposited in-situ, in the molecular beam epitaxy system, on the surface of 2 nm InN layers grown on GaN (0001) buffer layers. Metal-insulator-semiconductor Ni/SiNx/InN capacitors were analyzed by capacitance-voltage (C-V) and current-voltage measurements and were used as gates in InN FET transistors (MISFETs). Comparison of the experimental C-V results with self-consistent Schrödinger-Poisson calculations indicates the presence of a positive charge at the SiNx/InN interface of Qif ≈ 4.4 - 4.8 × 1013 cm-2, assuming complete InN strain relaxation. Operation of InN MISFETs was demonstrated, but their performance was limited by a catastrophic breakdown at drain-source voltages above 2.5-3.0 V, the low electron mobility, and high series resistances of the structures.

  6. InN nanorods prepared with CrN nanoislands by plasma-assisted molecular beam epitaxy.

    PubMed

    Liu, Kuang-Wei; Chang, Shoou-Jinn; Young, Sheng-Joue; Hsueh, Tao-Hung; Hung, Hung; Mai, Yu-Chun; Wang, Shih-Ming; Chen, Kuan-Jen; Wu, Ya-Ling; Chen, Yue-Zhang

    2011-01-01

    The authors report the influence of CrN nanoisland inserted on growth of baseball-bat InN nanorods by plasma-assisted molecular beam epitaxy under In-rich conditions. By inserting CrN nanoislands between AlN nucleation layer and the Si (111) substrate, it was found that we could reduce strain form Si by inserting CrN nanoisland, FWHM of the x-ray rocking curve measured from InN nanorods from 3,299 reduced to 2,115 arcsec. It is due to the larger strain from lattice miss-match of the film-like InN structure; however, the strain from lattice miss-match was obvious reduced owing to CrN nanoisland inserted. The TEM images confirmed the CrN structures and In droplets dissociation from InN, by these results, we can speculate the growth mechanism of baseball-bat-like InN nanorods. PMID:21736722

  7. InN nanorods prepared with CrN nanoislands by plasma-assisted molecular beam epitaxy

    PubMed Central

    2011-01-01

    The authors report the influence of CrN nanoisland inserted on growth of baseball-bat InN nanorods by plasma-assisted molecular beam epitaxy under In-rich conditions. By inserting CrN nanoislands between AlN nucleation layer and the Si (111) substrate, it was found that we could reduce strain form Si by inserting CrN nanoisland, FWHM of the x-ray rocking curve measured from InN nanorods from 3,299 reduced to 2,115 arcsec. It is due to the larger strain from lattice miss-match of the film-like InN structure; however, the strain from lattice miss-match was obvious reduced owing to CrN nanoisland inserted. The TEM images confirmed the CrN structures and In droplets dissociation from InN, by these results, we can speculate the growth mechanism of baseball-bat-like InN nanorods. PMID:21736722

  8. InN nanorods prepared with CrN nanoislands by plasma-assisted molecular beam epitaxy.

    PubMed

    Liu, Kuang-Wei; Chang, Shoou-Jinn; Young, Sheng-Joue; Hsueh, Tao-Hung; Hung, Hung; Mai, Yu-Chun; Wang, Shih-Ming; Chen, Kuan-Jen; Wu, Ya-Ling; Chen, Yue-Zhang

    2011-01-01

    The authors report the influence of CrN nanoisland inserted on growth of baseball-bat InN nanorods by plasma-assisted molecular beam epitaxy under In-rich conditions. By inserting CrN nanoislands between AlN nucleation layer and the Si (111) substrate, it was found that we could reduce strain form Si by inserting CrN nanoisland, FWHM of the x-ray rocking curve measured from InN nanorods from 3,299 reduced to 2,115 arcsec. It is due to the larger strain from lattice miss-match of the film-like InN structure; however, the strain from lattice miss-match was obvious reduced owing to CrN nanoisland inserted. The TEM images confirmed the CrN structures and In droplets dissociation from InN, by these results, we can speculate the growth mechanism of baseball-bat-like InN nanorods.

  9. Interstitial pulmonary disorders in indium-processing workers.

    PubMed

    Chonan, T; Taguchi, O; Omae, K

    2007-02-01

    The production of indium-tin oxide has increased, owing to the increased manufacture of liquid-crystal panels. It has been reported that interstitial pneumonia occurred in two indium-processing workers; therefore, the present study aimed to evaluate whether interstitial pulmonary disorders were prevalent among indium workers. The study was carried out in 108 male workers in the indium plant where the two interstitial pneumonia patients mentioned above were employed, and included high-resolution computed tomography (HRCT) of the lungs, pulmonary function tests and analysis of serum sialylated carbohydrate antigen KL-6 and the serum indium concentration. Significant interstitial changes were observed in 23 indium workers on HRCT and serum KL-6 was abnormally high (>500 U x mL(-1)) in 40 workers. Workers with serum indium concentrations in the highest quartile had significantly longer exposure periods, greater HRCT changes, lower diffusing capacity of the lung for carbon monoxide and higher KL-6 levels compared with those in the lowest quartile. The serum indium concentration was positively correlated with the KL-6 level and with the degree of HRCT changes. In conclusion, the results of the present study indicated that serum KL-6 and high-resolution computed tomography abnormalities were prevalent among indium workers and that these abnormalities increased with the indium burden, suggesting that inhaled indium could be a potential cause of occupational lung disease.

  10. Sinterless Formation Of Contacts On Indium Phosphide

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1995-01-01

    Improved technique makes it possible to form low-resistivity {nearly equal to 10(Sup-6) ohm cm(Sup2)} electrical contacts on indium phosphide semiconductor devices without damaging devices. Layer of AgP2 40 Angstrom thick deposited on InP before depositing metal contact. AgP2 interlayer sharply reduces contact resistance, without need for sintering.

  11. Study of the doping of thermally evaporated zinc oxide thin films with indium and indium oxide

    NASA Astrophysics Data System (ADS)

    Palimar, Sowmya; Bangera, Kasturi V.; Shivakumar, G. K.

    2013-12-01

    The present paper reports observations made on investigations carried out to study structural, optical and electrical properties of thermally evaporated ZnO thin films and their modulations on doping with metallic indium and indium oxide separately. ZnO thin film in the undoped state is found to have a very good conductivity of 90 Ω-1 cm-1 with an excellent transmittance of up to 90 % in the visible region. After doping with metallic indium, the conductivity of the film is found to be 580 Ω-1 cm-1, whereas the conductivity of indium oxide-doped films is increased up to 3.5 × 103 Ω-1 cm-1. Further, the optical band gap of the ZnO thin film is widened from 3.26 to 3.3 eV when doped with indium oxide and with metallic indium it decreases to 3.2 eV. There is no considerable change in the transmittance of the films after doping. All undoped and doped films were amorphous in nature with smooth and flat surface without significant modifications due to doping.

  12. The oxidation and surface speciation of indium and indium oxides exposed to atmospheric oxidants

    NASA Astrophysics Data System (ADS)

    Detweiler, Zachary M.; Wulfsberg, Steven M.; Frith, Matthew G.; Bocarsly, Andrew B.; Bernasek, Steven L.

    2016-06-01

    Metallic indium and its oxides are useful in electronics applications, in transparent conducting electrodes, as well as in electrocatalytic applications. In order to understand more fully the speciation of the indium and oxygen composition of the indium surface exposed to atmospheric oxidants, XPS, HREELS, and TPD were used to study the indium surface exposed to water, oxygen, and carbon dioxide. Clean In and authentic samples of In2O3 and In(OH)3 were examined with XPS to provide standard spectra. Indium was exposed to O2 and H2O, and the ratio of O2 - to OH- in the O1s XPS region was used to monitor oxidation and speciation of the surface. HREELS and TPD indicate that water dissociates on the indium surface even at low temperature, and that In2O3 forms at higher temperatures. Initially, OH- is the major species at the surface. Pure In2O3 is also OH- terminated following water exposure. Ambient pressure XPS studies of water exposure to these surfaces suggest that high water pressures tend to passivate the surface, inhibiting extensive oxide formation.

  13. Mie Resonances, Infrared Emission, and the Band Gap of InN

    NASA Astrophysics Data System (ADS)

    Shubina, T. V.; Ivanov, S. V.; Jmerik, V. N.; Solnyshkov, D. D.; Vekshin, V. A.; Kop'ev, P. S.; Vasson, A.; Leymarie, J.; Kavokin, A.; Amano, H.; Shimono, K.; Kasic, A.; Monemar, B.

    2004-03-01

    Mie resonances due to scattering or absorption of light in InN-containing clusters of metallic In may have been erroneously interpreted as the infrared band gap absorption in tens of papers. Here we show by direct thermally detected optical absorption measurements that the true band gap of InN is markedly wider than the currently accepted 0.7eV. Microcathodoluminescence studies complemented by the imaging of metallic In have shown that bright infrared emission at 0.7 0.8eV arises in a close vicinity of In inclusions and is likely associated with surface states at the metal/InN interfaces.

  14. Growth of Well-Aligned InN Nanorods on Amorphous Glass Substrates.

    PubMed

    Li, Huijie; Zhao, Guijuan; Wei, Hongyuan; Wang, Lianshan; Chen, Zhen; Yang, Shaoyan

    2016-12-01

    The growth of well-aligned nanorods on amorphous substrates can pave the way to fabricate large-scale and low-cost devices. In this work, we successfully prepared vertically well-aligned c-axis InN nanorods on amorphous glass substrate by metal-organic chemical vapor deposition. The products formed directly on bare glass are randomly oriented without preferential growth direction. By inserting a GaN/Ti interlayer, the nanowire alignment can be greatly improved as indicated by scanning electron microscopy and X-ray diffraction. PMID:27229517

  15. Nitride precipitation in salt-bath nitrided interstitial-free steel

    SciTech Connect

    Lee, Tae-Ho; Oh, Chang-Seok; Lee, Min-Ku; Han, Sang-Won

    2010-10-15

    Nitride precipitation and its effect on microstrain in salt-bath nitrided interstitial-free steel were investigated using transmission electron microscopy and neutron diffraction. As the cooling rate after nitriding decreased, two nitrides, {gamma}'-Fe{sub 4}N and {alpha}{sup -}Fe{sub 16}N{sub 2}, were identified in diffusion zone. Combined analyses using Rietveld whole-profile fitting and size-strain analysis revealed that the microstrain in the nitrided specimen increased due to nitrogen supersaturation and then decreased after nitride precipitation, whereas the effective particle size continuously decreased. It was found that microstrain is the dominant factor in peak broadening of the nitrided specimen.

  16. Near-infrared InN quantum dots on high-In composition InGaN

    SciTech Connect

    Soto Rodriguez, Paul E. D.; Gomez, Victor J.; Kumar, Praveen; Calleja, Enrique; Noetzel, Richard

    2013-04-01

    We report the growth of InN quantum dots (QDs) on thick InGaN layers with high In composition (>50%) by molecular beam epitaxy. Optimized growth conditions are identified for the InGaN layers at reduced growth temperature and increased active N flux resulting in minimized phase separation and defect generation. The InN QDs grown on top of the optimized InGaN layer exhibit small size, high density, and photoluminescence up to room temperature. The InN/InGaN QDs reveal excellent potential for intermediate band solar cells with the InGaN and InN QD bandgap energies tuned to the best match of absorption to the solar spectrum.

  17. Different evolutionary pathways from B4 to B1 phase in AlN and InN: metadynamics investigations.

    PubMed

    Duan, Yifeng; Qin, Lixia; Liu, Hanyu

    2016-05-25

    Pressure-induced B4-B1 phase transitions of AlN and InN at ambient temperature are systematically investigated using density functional-based metadynamics simulations. A homogeneous deformation path, which is energetically favorable, is through a hexagonal structure for AlN, and through a tetragonal structure for InN. Furthermore, the dynamical stability, instead of the mechanical stability, is crucial to determining the phase-transition paths: the intermediate hexagonal structure can remain stable, whereas the tetragonal structure is always unstable. The B4 phase always shows the direct band gap before the occurrence of structure transition, while the band gap of stable intermediate hexagonal phase is indirect for AlN. Finally, the band gap of the ultimate cubic phase is direct for AlN and indirect for InN, due to the strong p-d repulsion at the R point. PMID:27120439

  18. Morphology and composition controlled growth of polar c-axis and nonpolar m-axis well-aligned ternary III-nitride nanotube arrays

    NASA Astrophysics Data System (ADS)

    Li, Huijie; Zhao, Guijuan; Kong, Susu; Han, Dongyue; Wei, Hongyuan; Wang, Lianshan; Chen, Zhen; Yang, Shaoyan

    2015-10-01

    Control over the nanostructure morphology and growth orientation is in high demand for fundamental research and technological applications. Herein we report a general strategy to fabricate polar c-axis and nonpolar m-axis well-aligned III-nitride ternary nanotube arrays with controllable morphologies and compositions. By depositing AlN on the InN nanorod array templates and thermally removing the InN templates, InAlN nanotubes can be obtained. Polar c-axis and nonpolar m-axis nanotubes were formed on the c- and r-plane sapphire substrates, respectively. The nanotubes are single crystalline and highly ordered on the substrates, as revealed by X-ray diffraction, electron microscopy, and selected area electron microscopy characterization. It was found that the In droplets on top of the InN nanorods play a critical role in controlling the morphology of the nanotubes. By keeping or removing the In droplets, the obtained nanotubes exhibited both ends open or only one end open. And by varying the AlN deposition temperature, the In composition in the nanotubes can be changed from 0 to 0.29. The nanotube synthesis method is simple and can be applied to the formation of other III-nitride ternary (InGaN, and AlGaN) or quaternary (InAlGaN) alloy nanotube arrays.Control over the nanostructure morphology and growth orientation is in high demand for fundamental research and technological applications. Herein we report a general strategy to fabricate polar c-axis and nonpolar m-axis well-aligned III-nitride ternary nanotube arrays with controllable morphologies and compositions. By depositing AlN on the InN nanorod array templates and thermally removing the InN templates, InAlN nanotubes can be obtained. Polar c-axis and nonpolar m-axis nanotubes were formed on the c- and r-plane sapphire substrates, respectively. The nanotubes are single crystalline and highly ordered on the substrates, as revealed by X-ray diffraction, electron microscopy, and selected area electron microscopy

  19. Ion-beam nitriding of steels

    NASA Technical Reports Server (NTRS)

    Salik, J.

    1984-01-01

    The application of the ion beam technique to the nitriding of steels is described. It is indicated that the technique can be successfully applied to nitriding. Some of the structural changes obtained by this technique are similar to those obtained by ion nitriding. The main difference is the absence of the iron nitride diffraction lines. It is found that the dependence of the resultant microhardness on beam voltage for super nitralloy is different from that of 304 stainless steel.

  20. Low-temperature (≥400 °C) growth of InN by metalorganic vapor phase epitaxy using an NH3 decomposition catalyst

    NASA Astrophysics Data System (ADS)

    Yamamoto, Akio; Kodama, Kazuki; Shigekawa, Naoteru; Matsuoka, Takashi; Kuzuhara, Masaaki

    2016-05-01

    In this paper, we report the metalorganic vapor phase epitaxial (MOVPE) growth of InN using a NiO-based pellet-type NH3 decomposition catalyst. The use of the catalyst significantly changes the growth behavior of InN, which is dependent on the growth temperature (T g). Continuous InN films without the incorporation of metallic In and a cubic phase are grown at T g = 400–480 °C. An InN film grown at T g ≈ 450 °C has a full-width at half maximum (FWHM) of 376 arcsec in the X-ray rocking curve for InN(0002) reflection. At T g ≥ 500 °C, the deposition rate of InN rapidly decreases and the deposited films become discontinuous with large (ca. 1 µm) pyramidal grains of InN. Depositions are scarcely obtained at T g ≥ 600 °C. Such changes in the growth behavior of InN are governed by the NH3 decomposition.

  1. A Dance Class, a Drag King, & the Pedagogical Possibilities of Performative Hip-Hop: An Interview with Carmen Morrison & Alex U. Inn

    ERIC Educational Resources Information Center

    Schönfeldt-Aultman, Scott M.; Morrison, Carmen

    2015-01-01

    Alex U. Inn is the co-founder and one of the two MCs of the hip-hop drag king group, Momma's Boyz. Momma's Boyz celebrated their tenth anniversary in 2014. Carmen Morrison is the offstage name of Alex U. Inn, though "Carmen" now goes by Alex offstage, as well. Within this interview, the names "Carmen" and "Alex" are…

  2. Growth of wurtzite InN on bulk In{sub 2}O{sub 3}(111) wafers

    SciTech Connect

    Sadofev, Sergey; Cho, Yong Jin; Brandt, Oliver; Ramsteiner, Manfred; Calarco, Raffaella; Riechert, Henning; Erwin, Steven C.; Galazka, Zbigniew; Korytov, Maxym; Albrecht, Martin; Uecker, Reinhard; Fornari, Roberto

    2012-10-22

    A single phase InN epitaxial film is grown on a bulk In{sub 2}O{sub 3}(111) wafer by plasma-assisted molecular beam epitaxy. The InN/In{sub 2}O{sub 3} orientation relationship is found to be (0001) parallel (111) and [1100] parallel [112]. High quality of the layer is confirmed by the small widths of the x-ray rocking curves, the sharp interfaces revealed by transmission electron microscopy, the narrow spectral width of the Raman E{sub 2}{sup h} vibrational mode, and the position of the photoluminescence band close to the fundamental band gap of InN.

  3. Resonant raman scattering and dispersion of polar optical and acoustic phonons in hexagonal inn

    SciTech Connect

    Davydov, V. Yu. Klochikhin, A. A.; Smirnov, A. N.; Strashkova, I. Yu.; Krylov, A. S.; Lu Hai; Schaff, William J.; Lee, H.-M.; Hong, Y.-L.; Gwo, S.

    2010-02-15

    It is shown that a study of the dependence of impurity-related resonant first-order Raman scattering on the frequency of excitation light makes it possible to observe the dispersion of polar optical and acoustic branches of vibrational spectrum in hexagonal InN within a wide range of wave vectors. It is established that the wave vectors of excited phonons are uniquely related to the energy of excitation photon. Frequencies of longitudinal optical phonons E{sub 1}(LO) and A{sub 1}(LO) in hexagonal InN were measured in the range of excitation-photon energies from 2.81 to 1.17 eV and the frequencies of longitudinal acoustic phonons were measured in the range 2.81-1.83 eV of excitation-photon energies. The obtained dependences made it possible to extrapolate the dispersion of phonons A{sub 1}(LO) and E{sub 1}(LO) to as far as the point {Gamma} in the Brillouin zone and estimate the center-band energies of these phonons (these energies have not been uniquely determined so far).

  4. From Amateur Astronomer to Observatory Director: The Curious Case of R. T. A. Innes

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne

    Robert Innes was one of a select band of amateur astronomers who made the transition to professional ranks towards the end of the nineteenth century. Initially he had a passion for mathematical astronomy, but after settling in Sydney he developed a taste for observational astronomy, specialising in the search for new double stars. He quickly became known for his success in this field and for his publications on solar system perturbations, and with John Tebbutt's patronage managed to secure a clerical position at the Royal Observatory, Cape of Good Hope. Once there he continued to observe in his spare time and to publish, and, with strong support from Sir David Gill, was appointed founding Director of the Transvaal Observatory. By the time he died in 1933, Innes had received an honorary D.Sc. from Leiden University, and had established an international reputation as a positional astronomer. This paper provides an interesting case study of a well-known `amateur-turned-professional', and an example of the ways in which patronage played a key role in nineteenth and early twentieth century Australian and South African astronomy.

  5. ATOMIC AND MOLECULAR PHYSICS: First-Principles Study on Native Defect Complexes in InN

    NASA Astrophysics Data System (ADS)

    Zhao, Feng-Qi; Shi, Jun-Jie; Yang, Mao

    2010-01-01

    We present first-principles calculations of the formation energy of different native defects and their complexes in wurtzite InN using density-functional theory and the pseudopotential plane-wave method. Our calculations are aimed in the three cases: N/In = 1, N/In > 1 (N-rich), and N/In < 1 (In-rich). Our results indicate that the antisite defect has the lowest formation energy under N/In = 1. The formation energy of nitrogen interstitial (nitrogen vacancy) defect is significantly low under the N-rich (In-rich) condition. Thus the antisite defect is an important defect if N/In = 1, and the nitrogen interstitial (nitrogen vacancy) defect is a vital defect under the N-rich (In-rich) condition. The atomic site relaxation around the nitrogen interstitial and vacancy is investigated. Our calculations show that the nitrogen vacancy cannot be observed although it is one of the most important defects in InN. Our results are confirmed by experiments.

  6. 40 CFR 421.190 - Applicability: Description of the secondary indium subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... indium at secondary indium facilities processing spent electrolyte solutions and scrap indium metal raw... secondary indium subcategory. 421.190 Section 421.190 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Indium Subcategory § 421.190 Applicability: Description of the secondary...

  7. 40 CFR 421.190 - Applicability: Description of the secondary indium subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... indium at secondary indium facilities processing spent electrolyte solutions and scrap indium metal raw... secondary indium subcategory. 421.190 Section 421.190 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Indium Subcategory § 421.190 Applicability: Description of the secondary...

  8. Silicon nitride/silicon carbide composite powders

    DOEpatents

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-06-11

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  9. Process for making transition metal nitride whiskers

    DOEpatents

    Bamberger, C.E.

    1988-04-12

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites. 1 fig., 1 tab.

  10. Process for making transition metal nitride whiskers

    DOEpatents

    Bamberger, Carlos E.

    1989-01-01

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites.

  11. Performance of GaN-on-Si-based vertical light-emitting diodes using silicon nitride electrodes with conducting filaments: correlation between filament density and device reliability.

    PubMed

    Kim, Kyeong Heon; Kim, Su Jin; Lee, Tae Ho; Lee, Byeong Ryong; Kim, Tae Geun

    2016-08-01

    Transparent conductive electrodes with good conductivity and optical transmittance are an essential element for highly efficient light-emitting diodes. However, conventional indium tin oxide and its alternative transparent conductive electrodes have some trouble with a trade-off between electrical conductivity and optical transmittance, thus limiting their practical applications. Here, we present silicon nitride transparent conductive electrodes with conducting filaments embedded using the electrical breakdown process and investigate the dependence of the conducting filament density formed in the transparent conductive electrode on the device performance of gallium nitride-based vertical light-emitting diodes. Three gallium nitride-on-silicon-based vertical light-emitting diodes using silicon nitride transparent conductive electrodes with high, medium, and low conducting filament densities were prepared with a reference vertical light-emitting diode using metal electrodes. This was carried to determine the optimal density of the conducting filaments in the proposed silicon nitride transparent conductive electrodes. In comparison, the vertical light-emitting diodes with a medium conducting filament density exhibited the lowest optical loss, direct ohmic behavior, and the best current injection and distribution over the entire n-type gallium nitride surface, leading to highly reliable light-emitting diode performance.

  12. Performance of GaN-on-Si-based vertical light-emitting diodes using silicon nitride electrodes with conducting filaments: correlation between filament density and device reliability.

    PubMed

    Kim, Kyeong Heon; Kim, Su Jin; Lee, Tae Ho; Lee, Byeong Ryong; Kim, Tae Geun

    2016-08-01

    Transparent conductive electrodes with good conductivity and optical transmittance are an essential element for highly efficient light-emitting diodes. However, conventional indium tin oxide and its alternative transparent conductive electrodes have some trouble with a trade-off between electrical conductivity and optical transmittance, thus limiting their practical applications. Here, we present silicon nitride transparent conductive electrodes with conducting filaments embedded using the electrical breakdown process and investigate the dependence of the conducting filament density formed in the transparent conductive electrode on the device performance of gallium nitride-based vertical light-emitting diodes. Three gallium nitride-on-silicon-based vertical light-emitting diodes using silicon nitride transparent conductive electrodes with high, medium, and low conducting filament densities were prepared with a reference vertical light-emitting diode using metal electrodes. This was carried to determine the optimal density of the conducting filaments in the proposed silicon nitride transparent conductive electrodes. In comparison, the vertical light-emitting diodes with a medium conducting filament density exhibited the lowest optical loss, direct ohmic behavior, and the best current injection and distribution over the entire n-type gallium nitride surface, leading to highly reliable light-emitting diode performance. PMID:27505739

  13. Electronic properties of III-nitride semiconductors: A first-principles investigation using the Tran-Blaha modified Becke-Johnson potential

    SciTech Connect

    Araujo, Rafael B. Almeida, J. S. de Ferreira da Silva, A.

    2013-11-14

    In this work, we use density functional theory to investigate the influence of semilocal exchange and correlation effects on the electronic properties of III-nitride semiconductors considering zinc-blende and wurtzite crystal structures. We find that the inclusion of such effects through the use of the Tran-Blaha modified Becke-Johnson potential yields an excellent description of the electronic structures of these materials giving energy band gaps which are systematically larger than the ones obtained with standard functionals such as the generalized gradient approximation. The discrepancy between the experimental and theoretical band gaps is then significantly reduced with semilocal exchange and correlation effects. However, the effective masses are overestimated in the zinc-blende nitrides, but no systematic trend is found in the wurtzite compounds. New results for energy band gaps and effective masses of zinc-blende and wurtzite indium nitrides are presented.

  14. Indium and indium tin oxide induce endoplasmic reticulum stress and oxidative stress in zebrafish (Danio rerio).

    PubMed

    Brun, Nadja Rebecca; Christen, Verena; Furrer, Gerhard; Fent, Karl

    2014-10-01

    Indium and indium tin oxide (ITO) are extensively used in electronic technologies. They may be introduced into the environment during production, use, and leaching from electronic devices at the end of their life. At present, surprisingly little is known about potential ecotoxicological implications of indium contamination. Here, molecular effects of indium nitrate (In(NO3)3) and ITO nanoparticles were investigated in vitro in zebrafish liver cells (ZFL) cells and in zebrafish embryos and novel insights into their molecular effects are provided. In(NO3)3 led to induction of endoplasmic reticulum (ER) stress response, induction of reactive oxygen species (ROS) and induction of transcripts of pro-apoptotic genes and TNF-α in vitro at a concentration of 247 μg/L. In(NO3)3 induced the ER stress key gene BiP at mRNA and protein level, as well as atf6, which ultimately led to induction of the important pro-apoptotic marker gene chop. The activity of In(NO3)3 on ER stress induction was much stronger than that of ITO, which is explained by differences in soluble free indium ion concentrations. The effect was also stronger in ZFL cells than in zebrafish embryos. Our study provides first evidence of ER stress and oxidative stress induction by In(NO3)3 and ITO indicating a critical toxicological profile that needs further investigation.

  15. Tracking the Sources of Indium to the Environment

    NASA Astrophysics Data System (ADS)

    White, S. O.; Hemond, H.

    2009-12-01

    Indium is an important metal whose production is increasing dramatically due to new uses in the rapidly growing electronics, photovoltaic, and LED industries. Little is known about the natural or industrial cycling of indium, and although toxicity has been shown, toxicological data is incomplete and indium is not currently regulated in the United States. A review of the literature has shown that industrial releases of indium to the environment presently dominate natural fluxes. Mining and coal burning are the primary industrial sources of indium to the environment, with releases from the semiconductor industry small at present. This scenario may change with the rapid growth of semiconductor industries. In order to quantify releases of indium to the environment, it may be useful to exploit differences in the ratio of indium’s two stable isotopes, indium-113 and indium-115, from various sources. This method of source-tracking has proven useful for elements such as lead, where pollutant sources have significantly different isotopic ratios. Few measurements of indium isotopes have been published, and are mainly for purified indium metal or indium compounds; none are for environmental samples. The most recent measurements have shown 95.67 - 95.77% indium-115 and 4.23 - 4.33% indium-113, suggesting a range of natural isotopic abundances of at least 25 per mil. Our own measurements of highly purified, semiconductor grade indium show 95.9% indium-115 and 4.1% indium-113, indicating this range may be even larger. However, while the differences may be attributed to natural variation in isotopic ratios due to source differences or fractionation during processing, they could also be due to analytical error such as instrument fractionation. No isotopic reference material apparently exists with which to normalize measurements, therefore the reporting of absolute isotope percentages and lab-to-lab comparisons are difficult. Additionally, we have seen only a 0.5 per mil

  16. Efficiency droop in indium gallium nitride light emitters: An introduction to photon quenching processes

    NASA Astrophysics Data System (ADS)

    Sarkissian, Raymond

    This thesis contains work from two separate projects, a study of the efficiency of light emitting diodes, and a tapered-fiber approach to photonic crystal integrated photonics. The first part of this thesis describes an experimental investigation of the quantum efficiency of InGaN-based light emitters. Blue and Green LEDs that utilize InGaN quantum wells for their active medium suffer from a reduction in efficiency with increasing bias. This phenomenon is called efficiency droop. In this thesis experimental evidence for significant quenching of photon population in InGaN is presented and its relevance to the efficiency droop problem in InGaN-based light emitting structures is discussed. An equilibrium rate equation model is set up to demonstrate that radiative efficiency for this loss mechanism not only has a similar dependence on carrier density as Auger recombination process, but it also possesses the right order of magnitude making it difficult to distinguish between the two and possibly leading to errors in interpretation. The impact of photon quenching processes on device performance is emphasized by demonstrating loss of efficiency for spectral regions where there is experimental evidence for photon quenching. We have observed this phenomenon for both c-plane and m-plane light emitting structures. Both structures exhibit droop-like behavior for spectral regions where there is evidence for photon quenching. We have also observed and characterized the dynamical Stark effect for an m-plane light emitter considered in this manuscript. Our results revealed localization centers with a corresponding band-edge energy of 388nm and an excitonic binding energy of 17.81mev. Furthermore, fabrication of a photonic crystal waveguide fiber taper coupler is demonstrated with a peak coupling efficiency of 97 %. All four ports of the device are accessible providing an opportunity for investigation of simultaneous interaction of different light sources inside the photonic crystal cavity. A numerical model is set forth to analyze such devices with an excellent agreement with the experimental data. One important result of that theory is the ability to experimentally extract the phase contribution of optical resonators that employ periodic structures such as photonic crystal cavities. This device has also been used to demonstrate all-optical nonlinear shift and bleaching of cavity resonances via non-degenerate two photon absorption, non-degenerate Kerr mechanism, free carrier absorption, and free carrier plasma effects. As the response time of two photon processes are very fast, about 10 fs, this device can be used in ultrafast low energy all optical switching applications.

  17. Efficiency Improvement of Nitride-Based Solid State Light Emitting Materials -- CRADA Final Report

    SciTech Connect

    Kisielowski, Christian; Weber, Eicke

    2010-05-13

    The development of In{sub x}Ga{sub 1-x} N/GaN thin film growth by Molecular Beam Epitaxy has opened a new route towards energy efficient solid-state lighting. Blue and green LED's became available that can be used to match the whole color spectrum of visible light with the potential to match the eye response curve. Moreover, the efficiency of such devices largely exceeds that of incandescent light sources (tungsten filaments) and even competes favorably with lighting by fluorescent lamps. It is, however, also seen in Figure 1 that it is essential to improve on the luminous performance of green LED's in order to mimic the eye response curve. This lack of sufficiently efficient green LED's relates to particularities of the In{sub x}Ga{sub 1-x}N materials system. This ternary alloy system is polar and large strain is generated during a lattice mismatched thin film growth because of the significantly different lattice parameters between GaN and InN and common substrates such as sapphire. Moreover, it is challenging to incorporate indium into GaN at typical growth temperatures because a miscibility gap exists that can be modified by strain effects. As a result a large parameter space needs exploration to optimize the growth of In{sub x}Ga{sub 1-x}N and to date it is unclear what the detailed physical processes are that affect device efficiencies. In particular, an inhomogeneous distribution indium in GaN modifies the device performance in an unpredictable manner. As a result technology is pushed forward on a trial and error basis in particular in Asian countries such as Japan and Korea, which dominate the market and it is desirable to strengthen the competitiveness of the US industry. This CRADA was initiated to help Lumileds Lighting/USA boosting the performance of their green LED's. The tasks address the distribution of the indium atoms in the active area of their blue and green LED's and its relation to internal and external quantum efficiencies. Procedures to

  18. Indium-111 autologous leukocyte imaging in pancreatitis

    SciTech Connect

    Anderson, J.R.; Spence, R.A.; Laird, J.D.; Ferguson, W.R.; Kennedy, T.L.

    1986-03-01

    Thirty-nine patients with acute pancreatitis have been assessed using a prognostic factor grading system, abdominal ultrasound, and autologous leukocyte imaging. Both prognostic factor grading and leukocyte imaging can accurately assess the severity of the disease early in its course. All patients with a negative indium-labeled leukocyte image recovered without sequelae, whereas five of the 12 patients with a positive image developed complications, including two deaths. Abdominal ultrasound is of no value in assessing severity, but is a useful method of detecting those patients with gallstone-associated disease. In patients with suspected abscess formation following acute pancreatitis, indium leukocyte imaging does not differentiate between fat necrosis and abscess formation. In this situation, computerized tomography should be carried out before laparotomy is undertaken.

  19. Enhanced memory effect via quantum confinement in 16 nm InN nanoparticles embedded in ZnO charge trapping layer

    SciTech Connect

    El-Atab, Nazek; Nayfeh, Ammar; Cimen, Furkan; Alkis, Sabri; Ortaç, Bülend; Alevli, Mustafa; Dietz, Nikolaus; Okyay, Ali K.

    2014-06-23

    In this work, the fabrication of charge trapping memory cells with laser-synthesized indium-nitride nanoparticles (InN-NPs) embedded in ZnO charge trapping layer is demonstrated. Atomic layer deposited Al{sub 2}O{sub 3} layers are used as tunnel and blocking oxides. The gate contacts are sputtered using a shadow mask which eliminates the need for any lithography steps. High frequency C-V{sub gate} measurements show that a memory effect is observed, due to the charging of the InN-NPs. With a low operating voltage of 4 V, the memory shows a noticeable threshold voltage (V{sub t}) shift of 2 V, which indicates that InN-NPs act as charge trapping centers. Without InN-NPs, the observed memory hysteresis is negligible. At higher programming voltages of 10 V, a memory window of 5 V is achieved and the V{sub t} shift direction indicates that electrons tunnel from channel to charge storage layer.

  20. Electroplated indium bump arrays and the bonding reliability

    NASA Astrophysics Data System (ADS)

    Qiuping, Huang; Gaowei, Xu; Gang, Quan; Yuan, Yuan; Le, Luo

    2010-11-01

    A novel electroplating indium bumping process is described, as a result of which indium bump arrays with a pitch of 100 μm and a diameter of 40 μm were successfully prepared. UBM (under bump metallization) for indium bumping was investigated with an XRD technique. The experimental results indicate that Ti/Pt (300 Å / 200 Å) has an excellent barrier effect both at room temperature and at 200 °C. The bonding reliability of the indium bumps was evaluated by a shear test. Results show that the shear strength of the indium bump significantly increases after the first reflow and then changes slowly with increasing reflow times. Such a phenomenon may be caused by the change in textures of the indium after reflow. The corresponding flip-chip process is also discussed in this paper.

  1. The toxicology of indium tin oxide.

    PubMed

    Bomhard, Ernst M

    2016-07-01

    Indium tin oxide (ITO) is a technologically important semiconductor. An increasing number of cases of severe lung effects (characterized by pulmonary alveolar proteinosis and/or interstitial fibrosis) in ITO-exposed workers warrants a review of the toxicological hazards. Short- and long-term inhalation studies in rats and mice revealed persistent alveolar proteinosis, inflammation and fibrosis in the lungs down to concentrations as low as 0.01mg/m(3). In rats, the incidences of bronchiolo-alveolar adenomas and carcinomas were significantly increased at all concentrations. In mice, ITO was not carcinogenic. A few bronchiolo-alveolar adenomas occurring after repeated intratracheal instillation of ITO to hamsters have to be interpreted as treatment-related. In vitro and in vivo studies on the formation of reactive oxygen species suggest epigenetic effects as cause of the lung tumor development. Repeated intratracheal instillation of ITO to hamsters slightly affected the male sexual organs, which might be interpreted as a secondary effect of the lung damage. Epidemiological and medical surveillance studies, serum/blood indium levels in workers as well as data on the exposure to airborne indium concentrations indicate a need for measures to reduce exposure at ITO workplaces. PMID:27343753

  2. Nitride tuning of lanthanide chromites.

    PubMed

    Black, Ashley P; Johnston, Hannah E; Oró-Solé, Judith; Bozzo, Bernat; Ritter, Clemens; Frontera, Carlos; Attfield, J Paul; Fuertes, Amparo

    2016-03-21

    LnCrO(3-x)N(x) perovskites with Ln = La, Pr and Nd and nitrogen contents up to x = 0.59 have been synthesised through ammonolysis of LnCrO4 precursors. These new materials represent one of the few examples of chromium oxynitrides. Hole-doping through O(2-)/N(3-) anion substitution suppresses the magnetic transition far less drastically than Ln(3+)/M(2+) (M = Ca, Sr) cation substitutions because of the greater covalency of metal-nitride bonds. Hence, nitride-doping is a more benign method for doping metal oxides without suppressing electronic transitions. PMID:26916315

  3. Method for vacuum baking indium in-situ

    NASA Astrophysics Data System (ADS)

    Adamski, J. A.

    1985-12-01

    This invention pertains to a method for producing highly pure indium for subsequent utilization as a reaction component in the synthesis of polycrystalline indium phosphide which includes the step of heating raw indium under vaccuum in an open ended quartz ampoule to a temperature in excess of 850 C, followed by the step of sealing the ampoule while simultaneously maintaining the vacuum in the interior of the ampoule.

  4. Precipitation of metal nitrides from chloride melts

    SciTech Connect

    Slater, S.A.; Miller, W.E.; Willit, J.L.

    1996-12-31

    Precipitation of actinides, lanthanides, and fission products as nitrides from molten chloride melts is being investigated for use as a final cleanup step in treating radioactive salt wastes generated by electrometallurgical processing of spent nuclear fuel. The radioactive components (eg, fission products) need to be removed to reduce the volume of high-level waste that requires disposal. To extract the fission products from the salt, a nitride precipitation process is being developed. The salt waste is first contacted with a molten metal; after equilibrium is reached, a nitride is added to the metal phase. The insoluble nitrides can be recovered and converted to a borosilicate glass after air oxidation. For a bench-scale experimental setup, a crucible was designed to contact the salt and metal phases. Solubility tests were performed with candidate nitrides and metal nitrides for which there are no solubility data. Experiments were performed to assess feasibility of precipitation of metal nitrides from chloride melts.

  5. InP (Indium Phosphide): Into the future

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1989-01-01

    Major industry is beginning to be devoted to indium phosphide and its potential applications. Key to these applications are high speed and radiation tolerance; however the high cost of indium phosphide may be an inhibitor to progress. The broad applicability of indium phosphide to many devices will be discussed with an emphasis on photovoltaics. Major attention is devoted to radiation tolerance and means of reducing cost of devices. Some of the approaches applicable to solar cells may also be relevant to other devices. The intent is to display the impact of visionary leadership in the field and enable the directions and broad applicability of indium phosphide.

  6. Elimination of surface band bending on N-polar InN with thin GaN capping

    SciTech Connect

    Kuzmík, J. Haščík, Š.; Kučera, M.; Kúdela, R.; Dobročka, E.; Adikimenakis, A.; Mičušík, M.; Gregor, M.; Plecenik, A.; Georgakilas, A.

    2015-11-09

    0.5–1 μm thick InN (0001) films grown by molecular-beam epitaxy with N- or In-polarity are investigated for the presence of native oxide, surface energy band bending, and effects introduced by 2 to 4 monolayers of GaN capping. Ex situ angle-resolved x-ray photo-electron spectroscopy is used to construct near-surface (GaN)/InN energy profiles, which is combined with deconvolution of In3d signal to trace the presence of InN native oxide for different types of polarity and capping. Downwards surface energy band bending was observed on bare samples with native oxide, regardless of the polarity. It was found that the In-polar InN surface is most readily oxidized, however, with only slightly less band bending if compared with the N-polar sample. On the other hand, InN surface oxidation was effectively mitigated by GaN capping. Still, as confirmed by ultra-violet photo-electron spectroscopy and by energy band diagram calculations, thin GaN cap layer may provide negative piezoelectric polarization charge at the GaN/InN hetero-interface of the N-polar sample, in addition to the passivation effect. These effects raised the band diagram up by about 0.65 eV, reaching a flat-band profile.

  7. Method to Improve Indium Bump Bonding via Indium Oxide Removal Using a Multi-Step Plasma Process

    NASA Technical Reports Server (NTRS)

    Greer, H. Frank (Inventor); Jones, Todd J. (Inventor); Vasquez, Richard P. (Inventor); Hoenk, Michael E. (Inventor); Dickie, Matthew R. (Inventor); Nikzad, Shouleh (Inventor)

    2012-01-01

    A process for removing indium oxide from indium bumps in a flip-chip structure to reduce contact resistance, by a multi-step plasma treatment. A first plasma treatment of the indium bumps with an argon, methane and hydrogen plasma reduces indium oxide, and a second plasma treatment with an argon and hydrogen plasma removes residual organics. The multi-step plasma process for removing indium oxide from the indium bumps is more effective in reducing the oxide, and yet does not require the use of halogens, does not change the bump morphology, does not attack the bond pad material or under-bump metallization layers, and creates no new mechanisms for open circuits.

  8. Long-term oxidization and phase transition of InN nanotextures

    PubMed Central

    2011-01-01

    The long-term (6 months) oxidization of hcp-InN (wurtzite, InN-w) nanostructures (crystalline/amorphous) synthesized on Si [100] substrates is analyzed. The densely packed layers of InN-w nanostructures (5-40 nm) are shown to be oxidized by atmospheric oxygen via the formation of an intermediate amorphous In-Ox-Ny (indium oxynitride) phase to a final bi-phase hcp-InN/bcc-In2O3 nanotexture. High-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, electron energy loss spectroscopy and selected area electron diffraction are used to identify amorphous In-Ox-Ny oxynitride phase. When the oxidized area exceeds the critical size of 5 nm, the amorphous In-Ox-Ny phase eventually undergoes phase transition via a slow chemical reaction of atomic oxygen with the indium atoms, forming a single bcc In2O3 phase. PMID:21711908

  9. Alloying Element Nitride Development in Ferritic Fe-Based Materials Upon Nitriding: A Review

    NASA Astrophysics Data System (ADS)

    Steiner, T.; Mittemeijer, E. J.

    2016-06-01

    With the aim of achieving a better understanding of the nitriding process of iron-based components (steels), as applied in engineering practice, the theoretical background and experimental observations currently available on the crystallographic, morphological, and compositional properties of the nitride precipitates in nitrided model binary and ternary, ferritic Fe-based alloys are summarily presented. Thermodynamic and kinetic considerations are employed in order to highlight their importance for the nitriding reaction and the resulting properties of the nitrided zone, thereby providing a more fundamental understanding of the nitriding process.

  10. Advanced Computational Modeling of Vapor Deposition in a High-Pressure Reactor

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.; Moore, Craig E.; McCall, Sonya D.; Cardelino, Carlos A.; Dietz, Nikolaus; Bachmann, Klaus

    2004-01-01

    In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties.

  11. Advanced Computational Modeling of Vapor Deposition in a High-pressure Reactor

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.; Moore, Craig E.; McCall, Sonya D.; Cardelino, Carlos A.; Dietz, Nikolaus; Bachmann, Klaus

    2004-01-01

    In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties.

  12. Effect of Mg doping on the structural and free-charge carrier properties of InN films

    SciTech Connect

    Xie, M.-Y.; Ben Sedrine, N.; Hung, L.; Monemar, B.; Darakchieva, V.; Schöche, S.; Hofmann, T.; Schubert, M.; Wang, X.; Yoshikawa, A.; Wang, K.; Araki, T.; Nanishi, Y.

    2014-04-28

    We present a comprehensive study of free-charge carrier and structural properties of two sets of InN films grown by molecular beam epitaxy and systematically doped with Mg from 1.0 × 10{sup 18} cm{sup −3} to 3.9 × 10{sup 21} cm{sup −3}. The free electron and hole concentration, mobility, and plasmon broadening parameters are determined by infrared spectroscopic ellipsometry. The lattice parameters, microstructure, and surface morphology are determined by high-resolution X-ray diffraction and atomic force microscopy. Consistent results on the free-charge carrier type are found in the two sets of InN films and it is inferred that p-type conductivity could be achieved for 1.0 × 10{sup 18} cm{sup −3} ≲ [Mg] ≲ 9.0 × 10{sup 19} cm{sup −3}. The systematic change of free-charge carrier properties with Mg concentration is discussed in relation to the evolution of extended defect density and growth mode. A comparison between the structural characteristics and free electron concentrations in the films provides insights in the role of extended and point defects for the n-type conductivity in InN. It further allows to suggest pathways for achieving compensated InN material with relatively high electron mobility and low defect densities. The critical values of Mg concentration for which polarity inversion and formation of zinc-blende InN occurred are determined. Finally, the effect of Mg doping on the lattice parameters is established and different contributions to the strain in the films are discussed.

  13. Strain Relief Analysis of InN Quantum Dots Grown on GaN

    PubMed Central

    2007-01-01

    We present a study by transmission electron microscopy (TEM) of the strain state of individual InN quantum dots (QDs) grown on GaN substrates. Moiré fringe and high resolution TEM analyses showed that the QDs are almost fully relaxed due to the generation of a 60° misfit dislocation network at the InN/GaN interface. By applying the Geometric Phase Algorithm to plan-view high-resolution micrographs, we show that this network consists of three essentially non-interacting sets of misfit dislocations lying along the directions. Close to the edge of the QD, the dislocations curve to meet the surface and form a network of threading dislocations surrounding the system. PMID:21794190

  14. Inhomogeneous InGaN and InN with In-enriched Nanostructures

    NASA Astrophysics Data System (ADS)

    Shubina, T. V.; Ivanov, S. V.; Jmerik, V. N.; Mizerov, A. M.; Leymarie, J.; Vasson, A.; Monemar, B.; Kop'ev, P. S.

    2007-04-01

    We present optical evidences for formation of In-enriched nanostructures in InxGa1-xN alloys (x=0.2-1.0) grown by MBE. Two-band photoluminescence (PL) has been recorded in several InxGa1-xN films (x⩾0.4), with the lowest line being in the infrared range. An additional absorption band has been revealed below the principal edge by thermally detected optical absorption studies even in perfect layers exhibiting exciton-like features in PL excitation spectra. A significant PL intensity increase along an InN layer is consistent with with the appearance of distinct In precipitates. These findings are discussed as related to extra optical losses and plasmon-induced PL enhancement.

  15. Solar hot water system installed at Quality Inn, Key West, Florida

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy hot water system installed in the Quality Inn, Key West, Florida, which consists of four buildings is described. Three buildings are low-rise, two-story buildings containing 100 rooms. The fourth is a four-story building with 48 rooms. The solar system was designed to provide approximately 50 percent of the energy required for the domestic hot water system. The solar system consists of approximately 1400 square feet of flat plate collector, two 500 gallon storage tanks, a circulating pump, and a controller. Operation of the system was begun in April 1978, and has continued to date with only three minor interruptions for pump repair. In the first year of operation, it was determined that the use of the solar facility resulted in forty percent fuel savings.

  16. Temperature dependences of the contact resistivity in ohmic contacts to n{sup +}-InN

    SciTech Connect

    Sachenko, A. V.; Belyaev, A. E.; Boltovets, N. S.; Brunkov, P. N.; Jmerik, V. N.; Ivanov, S. V.; Kapitanchuk, L. M.; Konakova, R. V. Klad’ko, V. P.; Romanets, P. N.; Saja, P. O.; Safryuk, N. V.; Sheremet, V. N.

    2015-04-15

    The temperature dependences of the contact resistivity (ρ{sub c}) of ohmic contacts based on the Au-Ti-Pd-InN system are measured at an InN doping level of 2 × 10{sup 18} cm{sup −3} in the temperature range of 4.2–300 K. At temperatures T > 150 K, linearly increasing dependences ρ{sub c}(T) are obtained. The dependences are explained within the mechanism of thermionic current flow through metal shunts associated with dislocations. Good agreement between theoretical and experimental dependences is achieved assuming that the flowing current is limited by the total resistance of the metal shunts, and the density of conductive dislocations is ∼5 × 10{sup 9} cm{sup −2}. Using the X-ray diffraction method, the density of screw and edge dislocations in the structure under study is measured: their total density exceeds 10{sup 10} cm{sup −2}.

  17. Electron Accumulation Layers in InN Nanocolumns Studied by Raman Scattering

    SciTech Connect

    Gallardo, E.; Lazic, S.; Calleja, J. M.; Agullo-Rueda, F.; Grandal, J.; Sanchez-Garcia, M. A.; Calleja, E.

    2010-01-04

    Inelastic light scattering measurements on single crystal InN nanocolumns grown by plasma-assisted molecular beam epitaxy on both Si(001) and Si(111) substrates reveal the existence of a surface electron accumulation layer in the lateral non-polar sidewalls of the nanocolumns. Small and reversible electron density variations of this surface layer has been induced by chemical treatments of the nanocolumns, which can be accurately determined from the frequency of the LO phonon-plasmon coupled mode L{sub -}. The L{sub -} to E{sub 1}(LO) phonon intensity ratio dependence on the column diameter and the excitation wavelength is interpreted in terms of the inhomogeneous electron distribution in the nanocolumns volume and the presence of strong elastic light scattering by the nanocolumns. The TO modes fail to obey conventional selection rules, a fact that is also observed in GaN nanocolumns.

  18. Structure of boron nitride nanotubes

    SciTech Connect

    Buranova, Yu. S. Kulnitskiy, B. A.; Perezhogin, I. A.; Blank, V. D.

    2015-01-15

    The crystallographic structure of boron nitride nanotubes has been investigated. Various defects that may arise during nanotube synthesis are revealed by electron microscopy. Nanotubes with different numbers of walls and different diameters are modeled by molecular dynamics methods. Structural features of single-wall nanotubes are demonstrated. The causes of certain defects in multiwall nanotubes are indicated.

  19. The Hardest Superconducting Metal Nitride

    NASA Astrophysics Data System (ADS)

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-01

    Transition-metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock-salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10-20 GPa. Here, we report high-pressure synthesis of hexagonal δ-MoN and cubic γ-MoN through an ion-exchange reaction at 3.5 GPa. The final products are in the bulk form with crystallite sizes of 50 - 80 μm. Based on indentation testing on single crystals, hexagonal δ-MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ-MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo-N network than that in cubic phase. The measured superconducting transition temperatures for δ-MoN and cubic γ-MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.

  20. Investigation into nitrided spur gears

    SciTech Connect

    Yilbas, B.S.; Coban, A.; Nickel, J.; Sunar, M.; Sami, M.; Abdul Aleem, B.J.

    1996-12-01

    The cold forging method has been widely used in industry to produce machine parts. In general, gears are produced by shaping or hobbing. One of the shaping techniques is precision forging, which has several advantages over hobbing. In the present study, cold forging of spur gears from Ti-6Al-4V material is introduced. To improve the surface properties of the resulting gears, plasma nitriding was carried out. Nuclear reaction analysis was carried out to obtain the nitrogen concentration, while the micro-PIXE technique was used to determine the elemental distribution in the matrix after forging and nitriding processes. Scanning electron microscopy and x-ray powder diffraction were used to investigate the metallurgical changes and formation of nitride components in the surface region. Microhardness and friction tests were carried out to measure the hardness depth profile and friction coefficient at the surface. Finally, scoring failure tests were conducted to determine the rotational speed at which the gears failed. Three distinct regions were obtained in the nitride region, and at the initial stages of the scoring tests, failure in surface roughness was observed in the vicinity of the tip of the gear tooth. This occurred at a particular rotational speed and work input.

  1. The Hardest Superconducting Metal Nitride

    SciTech Connect

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-03

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form with crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.

  2. The Hardest Superconducting Metal Nitride

    PubMed Central

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-01-01

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form with crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements. PMID:26333418

  3. The Hardest Superconducting Metal Nitride

    DOE PAGESBeta

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-03

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form withmore » crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.« less

  4. P-type gallium nitride

    DOEpatents

    Rubin, M.; Newman, N.; Fu, T.; Ross, J.; Chan, J.

    1997-08-12

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5{times}10{sup 11} /cm{sup 3} and hole mobilities of about 500 cm{sup 2} /V-sec, measured at 250 K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al. 9 figs.

  5. P-type gallium nitride

    DOEpatents

    Rubin, Michael; Newman, Nathan; Fu, Tracy; Ross, Jennifer; Chan, James

    1997-01-01

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5.times.10.sup.11 /cm.sup.3 and hole mobilities of about 500 cm.sup.2 /V-sec, measured at 250.degree. K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al.

  6. J/{psi} production in indium-indium collisions at SPS energies

    SciTech Connect

    Pillot, P.; Ducroux, L.; Guichard, A.; Tieulent, R.; Arnaldi, R.; Colla, A.; Cortese, P.; Ferretti, A.; Oppedisano, C.; Scomparin, E.; Averbeck, R.; Drees, A.; Banicz, K.; Keil, M.; Castor, J.; Devaux, A.; Force, P.; Manso, F.; Chaurand, B.; Cicalo, C.

    2006-01-12

    The NA60 experiment collected data on dimuon production in indium-indium collisions at 158 GeV/c per incident nucleon, in year 2003, to contribute to the clarification of several questions raised by previous experiments studying high-energy heavy-ion physics at the CERN SPS in search of the quark gluon plasma. Among these previous results stands the observation, by NA50, that the production yield of J/{psi} mesons is suppressed in central Pb-Pb collisions beyond the normal nuclear absorption defined by proton-nucleus data. By comparing the centrality dependence of the suppression pattern between different colliding systems, S-U, Pb-Pb and In-In, we should be able to identify the corresponding scaling variable, and the physics mechanism driving the suppression. In this paper, we will present the ratio of J/{psi} and Drell-Yan production cross-sections in indium-indium collisions, in three centrality bins, and how these values compare to previous measurements. We will also present a study of the transverse momentum distributions of the J/{psi} mesons, in seven centrality bins.

  7. Positive indium-111 leukocyte scintigraphy in a skeletal metastasis

    SciTech Connect

    Sfakianakis, G.N.; Mnaymneh, W.; Ghandur-Mnaymneh, L.; Al-Sheikh, W.; Hourani, M.; Heal, A.

    1982-09-01

    Indium-111 scintigraphy is a method proposed for specific diagnosis and localization of focal infection. It has been found that, in general, cancers did not visualize with leukocyte scintigraphy. In this article, a case of positive indium-111 leukocyte scintigrams of a foot metstasis from a mucoepidermoid carcinoma of the lung is reported. (JMT)

  8. Two-Step Plasma Process for Cleaning Indium Bonding Bumps

    NASA Technical Reports Server (NTRS)

    Greer, Harold F.; Vasquez, Richard P.; Jones, Todd J.; Hoenk, Michael E.; Dickie, Matthew R.; Nikzad, Shouleh

    2009-01-01

    A two-step plasma process has been developed as a means of removing surface oxide layers from indium bumps used in flip-chip hybridization (bump bonding) of integrated circuits. The two-step plasma process makes it possible to remove surface indium oxide, without incurring the adverse effects of the acid etching process.

  9. Low frequency pressure modulation of indium antimonide

    SciTech Connect

    Hallock, Gary A.; Meier, Mark A.

    2012-07-15

    A lumped parameter resonator capable of generating megapascal pressures at low frequency (kilohertz) is described. Accelerometers are used to determine the applied pressure, and are calibrated with a piezoelectric sample. A laser diagnostic was also developed to measure the pressure in semiconductor samples through the band gap pressure dependence. In addition, the laser diagnostic has been used to measure the attenuation coefficient {alpha} of commercially available indium antimonide (InSb) wafers. The resonator and laser diagnostic have been used with InSb samples to verify the pressure response.

  10. Fabrication, structure and mechanical properties of indium nanopillars

    SciTech Connect

    Lee, Gyuhyon; Kim, Ju-Young; Budiman, Arief Suriadi; Tamura, Nobumichi; Kunz, Martin; Chen, Kai; Burek, Michael J.; Greer, Julia R.; Tsui, Ting Y.

    2010-01-01

    Solid and hollow cylindrical indium pillars with nanoscale diameters were prepared using electron beam lithography followed by the electroplating fabrication method. The microstructure of the solid-core indium pillars was characterized by scanning micro-X-ray diffraction, which shows that the indium pillars were annealed at room temperature with very few dislocations remaining in the samples. The mechanical properties of the solid pillars were characterized using a uniaxial microcompression technique, which demonstrated that the engineering yield stress is {approx}9 times greater than bulk and is {approx}1/28 of the indium shear modulus, suggesting that the attained stresses are close to theoretical strength. Microcompression of hollow indium nanopillars showed evidence of brittle fracture. This may suggest that the failure mode for one of the most ductile metals can become brittle when the feature size is sufficiently small.

  11. Study on the Fast Nitriding Process of Active Screen Plasma Nitriding

    NASA Astrophysics Data System (ADS)

    Han, L.; Dai, J. T.; Huang, X. R.; Zhao, C.

    A new nitriding technology using active screen plasma nitriding (ASPN) was carried out in order to increase the nitriding speed of AISI 5140 steel. The fast nitriding process is based upon the different solubility and diffuse rate of nitrogen atoms in austenite and in ferrite of steel respectively. First, the nitriding samples were heated above the eutectoid temperature for a few minutes to dissolve a large amount of nitrogen and form a nitrogen-rich layer on the surface of the nitrided samples. Then, the nitriding temperature was decreased below the eutectoid temperature and kept the temperature for a long time to make the dissolved nitrogen in the nitrogen-rich layer diffuse into ferrite. The two different nitriding processes were carried on alternately. Experimental results indicate that the fast nitriding process not only enhances the nitriding speed remarkably, but also keeps the high hardness of the nitrided layer. The new fast nitriding technology with nitrogen-rich layer can be explained with "absorption- diffusion" model.

  12. Aluminum Nitride Nanofibers fabricated using Electrospinning and Nitridation

    NASA Astrophysics Data System (ADS)

    Barbosa, Xenia; Campo, Eva; Santiago, Jorge; Ramos, Idalia

    2012-02-01

    Aluminum Nitride (AlN) and other nitride semiconductors are important materials in the fields of optoelectronics and electronics. AlN nanofibers were synthesized using electrospinning and subsequent heating under N2 and NH3 atmospheres. The precursor solution for electrospining contains aluminium nitrate and cellulose acetate. The electrospun nanofibers were heated in N2 to eliminate the polymer and produce Al2O3, and then nitridized at a temperature of 1200 C under NH3 flow. Scanning Electron Microscopy (SEM) observations demonstrate the production of fibers with diameters ranging from a few nanometers to several micrometers. X-Ray Diffraction and UV-VIs analyses show the production of AlN nanofibers with hexagonal wurzite structure and a band gap of approximately approximately 6 eV. Current-Voltage measurements on a single AlN fiber with gold electrodes suggest the formation of a Schottky contact The fabrication method and results from the fibers characterization will be presented.

  13. Structural and optical characterization of group III-nitride compound semiconductors

    NASA Astrophysics Data System (ADS)

    Senawiratne, Jayantha

    The structural properties of the group III-nitrides including AlN, Ga 1-xMnxN, GaN:Cu, and InN were investigated by Raman spectroscopy. Absorption and photoluminescence spectroscopy were utilized to study the optical properties in these materials. The analysis of physical vapor transport grown AlN single crystals showed that oxygen, carbon, silicon, and boron are the major impurities in the bulk AlN. The Raman analysis revealed high crystalline quality and well oriented AlN single crystals. The absorption coefficient of AlN single crystals were assessed in the spectral range from deep UV to the FIR. The absorption and photoluminescence analysis indicate that, in addition to oxygen, carbon, boron, and silicon, contribute to the optical properties of bulk AlN crystals. In situ Cu-doped GaN epilayers with Cu concentrations in the range of 2x1016 cm-3 - 5x10 17 cm-3, grown on sapphire substrate by metal organic chemical vapor deposition, were investigated by Raman and photoluminescence (PL) spectroscopy. The Raman study revealed high crystalline GaN:Cu layers with minimal damage to the hexagonal lattice structure due to the Cu incorporation. A strong Cu related emission band at 2.4 eV was assigned to Cu induced optical transitions between deep Cu states and shallow residual donor states. Compensation of Cu states by residual donors and poor activation probability of deep Cu states are responsible for semi-insulating electrical conductivity. Ferromagnetic Ga1-xMnxN epilayers, grown by MOCVD with Mn concentration from x = 0 to x = 1.5, were optically investigated by Raman, PL, and transmission spectroscopy. The Raman studies revealed Mn-related Raman peaks at 300 cm-1, 609 cm-1, and 669 cm -1. Mn-related absorption and emission bands in Ga1-xMn xN were observed at 1.5 eV and 3.0 eV, respectively. The structural properties of InN layers, grown by high pressure-CVD with different free carrier concentrations, were analyzed by Raman spectroscopy. The Raman results show that

  14. Analysis of plasma-nitrided steels

    NASA Technical Reports Server (NTRS)

    Salik, J.; Ferrante, J.; Honecy, F.; Hoffman, R., Jr.

    1986-01-01

    The analysis of plasma nitrided steels can be divided to two main categories - structural and chemical. Structural analysis can provide information not only on the hardening mechanisms but also on the fundamental processes involved. Chemical analysis can be used to study the kinetics for the nitriding process and its mechanisms. In this paper preliminary results obtained by several techniques of both categories are presented and the applicability of those techniques to the analysis of plasma-nitrided steels is discussed.

  15. Synthesis, Properties, and Applications Of Boron Nitride

    NASA Technical Reports Server (NTRS)

    Pouch, John J.; Alterovitz, Samuel A.

    1993-01-01

    Report describes synthesis, properties, and applications of boron nitride. Especially in thin-film form. Boron nitride films useful as masks in x-ray lithography; as layers for passivation of high-speed microelectronic circuits; insulating films; hard, wear-resistant, protective films for optical components; lubricants; and radiation detectors. Present status of single-crystal growth of boron nitride indicates promising candidate for use in high-temperature semiconductor electronics.

  16. Electro-optic and magneto-dielectric properties of multifunctional nitride and oxide materials

    NASA Astrophysics Data System (ADS)

    Dixit, Ambesh

    Materials that simultaneously exhibit different physical properties provide a rich area of research leading to the development of new devices. For example, materials having a strong coupling between charge and spin degrees of freedom are essential to realizing a new class of devices referred to generally as spintronics. However, these multifunctional systems pose new scientific challenges in understanding the origin and mechanisms for cross-control of different functionalities. The core of this Ph.D. dissertation deals with multifunctional nitride and oxide compound semiconductors as well as multiferroic magnetic oxide systems by investigating structural, optical, electrical, magnetic, magnetodielectric and magnetoelectric properties. Thin films of InN nitride compound semiconductors and closely related alloys have been investigated to understand the effects of intrinsic defects on the materials properties while considering possible applications of highly degenerate InN thin films. As grown rf sputtered InN films on c-axis (0001) sapphire exhibit highly degenerate n-type behaviour due to oxygen defects introduced during growth. The effect of oxygen in InN matrix has been further investigated by intentionally adding oxygen into the films. These studies confirm that oxygen is one of the main sources of donor electrons in degenerate InN. Above some critical concentration of oxygen, secondary phases of In 2O3 and In-O-N complexes were formed. It was also possible to tune the carrier concentration to produce changes in the plasmon frequency, which varied from 0.45 eV to 0.8 eV. This characteristic energy scale suggests that these highly degenerate InN thin films could be used for thermophotovoltaic cells, optical filters, and other IR electro-optic applications. To probe the magnetism in transition metal doped InN system, In 0.98Cr0.02N and In0.95Cr0.05N thin films were fabricated. Our results suggest that these films develop ferromagnetic order above room temperature

  17. Fluxless indium and silver-indium bonding processes for photonics and high-temperature electronics

    NASA Astrophysics Data System (ADS)

    So, William Wilson

    A fluxless oxidation-free bonding technology using multilayer composite solders based on indium, or low melting temperature indium. alloys such as Ag-In, In-Sn and Au-In has been developed and studied. This technology eliminates the need of flux and scrubbing motion that are used in conventional soldering processes, and still produces good quality joints. By depositing multilayer composite materials in high vacuum, we eliminate the formation of an oxide layer thus removing the origin of the problem---solder oxidation. To understand the oxidation kinetics in the bonding process, I have modeled the oxidation rate of tin, which follows a parabolic growth law. For completeness of the oxidation model, I incorporated the temperature dependency of Henry's coefficient in the oxidation model. To prevent the solder material from oxidation when exposing to atmosphere, I have developed a technique, which utilizes the in-situ formation of stable intermetallic compound on the outer surface, or a gold layer to protect the bonding materials. The bonding is achieved by means of solid-liquid interdiffusion (SLID) and in-situ compound formation. The first alloy system that I studied is indium-silver. GaAs and silicon dice have been successfully bonded on silicon or glass substrates. The bonding quality is examined by a Scanning Acoustic Microscope (SAM). The results confirm that void-free joints are achieved. Cross-sections of the joint are examined using a Scanning Electron Microscope (SEM) equipped with Energy Dispersive X-ray (EDX) spectroscopy. The results reveal that the joint is composed of AuIn2, AgIn2-intermetallic compound and pure indium. From the Ag-In phase diagram, as indium composition is reduced to 25 wt. %, the solidus temperature jumps from 144 to above 695°C. By modifying the design of the multilayer composite, we developed a 210°C process to produce 700°C joints. All the well-bonded devices, before or after annealing, exceed the shear test force requirement of 2

  18. Patterning of Indium Tin Oxide Films

    NASA Technical Reports Server (NTRS)

    Immer, Christopher

    2008-01-01

    A relatively rapid, economical process has been devised for patterning a thin film of indium tin oxide (ITO) that has been deposited on a polyester film. ITO is a transparent, electrically conductive substance made from a mixture of indium oxide and tin oxide that is commonly used in touch panels, liquid-crystal and plasma display devices, gas sensors, and solar photovoltaic panels. In a typical application, the ITO film must be patterned to form electrodes, current collectors, and the like. Heretofore it has been common practice to pattern an ITO film by means of either a laser ablation process or a photolithography/etching process. The laser ablation process includes the use of expensive equipment to precisely position and focus a laser. The photolithography/etching process is time-consuming. The present process is a variant of the direct toner process an inexpensive but often highly effective process for patterning conductors for printed circuits. Relative to a conventional photolithography/ etching process, this process is simpler, takes less time, and is less expensive. This process involves equipment that costs less than $500 (at 2005 prices) and enables patterning of an ITO film in a process time of less than about a half hour.

  19. Discovery of Cadmium, Indium, and Tin Isotopes

    NASA Astrophysics Data System (ADS)

    Amos, Stephanie; Thoennessen, Michael

    2009-10-01

    As of today, no comprehensive study has been made covering the initial observations and identifications of isotopes. A project has been undertaken at MSU to document the discovery of all the known isotopes. The criteria defining discovery of a given isotope is the publication of clear mass and element assignment in a refereed journal. Prior to the current work the documentation of the discovery of eleven elements had been completed^1. These elements are cerium^2, arsenic, gold, tungsten, krypton, silver, vanadium, einsteinium, iron, barium, and cobalt. We will present the new documentation for the cadmium, indium, and tin isotopes. Thirty-seven cadmium isotopes, thirty-eight indium isotopes, and thirty-eight tin isotopes have been discovered so far. The description for each discovered isotope includes the year of discovery, the article published on the discovery, the article's author, the method of production, the method of identification, and any previous information concerning the isotope discovery. A summary and overview of all ˜500 isotopes documented so far as a function of discovery year, method and place will also be presented. ^1http://www.nscl.msu.edu/˜thoennes/2009/discovery.htm ^2J.Q. Ginepro, J. Snyder, and M. Thoennessen, At. Data Nucl. Data. Tables, in press (2009), doi:10.1016/j.adt.2009.06.002

  20. Manufacture of sintered silicon nitrides

    NASA Technical Reports Server (NTRS)

    Iwai, T.

    1985-01-01

    Sintered silicon nitrides are manufactured by sintering Si3N powder containing 2 to 15% in wt of a powder mixture composed of nitride powder of lanthanide or Y 100 parts and AIN powder less than 100 parts at 1500 to 1900 deg. temperature under a pressure of less than 200 Kg/sq. cm. The sintered Si3N has high mechanical strength in high temperature. Thus, Si3N4 93.0, Y 5.0 and AlN 2.0% in weight were wet mixed in acetone in N atom, molded and sintered at 1750 deg. and 1000 Kg/sq. cm. to give a sintered body having high hardness.

  1. Low Temperature Growth of In2O3and InN Nanocrystals on Si(111) via Chemical Vapour Deposition Based on the Sublimation of NH4Cl in In

    PubMed Central

    2009-01-01

    Indium oxide (In2O3) nanocrystals (NCs) have been obtained via atmospheric pressure, chemical vapour deposition (APCVD) on Si(111) via the direct oxidation of In with Ar:10% O2at 1000 °C but also at temperatures as low as 500 °C by the sublimation of ammonium chloride (NH4Cl) which is incorporated into the In under a gas flow of nitrogen (N2). Similarly InN NCs have also been obtained using sublimation of NH4Cl in a gas flow of NH3. During oxidation of In under a flow of O2the transfer of In into the gas stream is inhibited by the formation of In2O3around the In powder which breaks up only at high temperatures, i.e.T > 900 °C, thereby releasing In into the gas stream which can then react with O2leading to a high yield formation of isolated 500 nm In2O3octahedrons but also chains of these nanostructures. No such NCs were obtained by direct oxidation forTG < 900 °C. The incorporation of NH4Cl in the In leads to the sublimation of NH4Cl into NH3and HCl at around 338 °C which in turn produces an efficient dispersion and transfer of the whole In into the gas stream of N2where it reacts with HCl forming primarily InCl. The latter adsorbs onto the Si(111) where it reacts with H2O and O2leading to the formation of In2O3nanopyramids on Si(111). The rest of the InCl is carried downstream, where it solidifies at lower temperatures, and rapidly breaks down into metallic In upon exposure to H2O in the air. Upon carrying out the reaction of In with NH4Cl at 600 °C under NH3as opposed to N2, we obtain InN nanoparticles on Si(111) with an average diameter of 300 nm. PMID:20596336

  2. Investigation of the near-surface structures of polar InN films by chemical-state-discriminated hard X-ray photoelectron diffraction

    SciTech Connect

    Yang, A. L.; Yamashita, Y.; Kobata, M.; Yoshikawa, H.; Sakata, O.; Kobayashi, K.; Matsushita, T.; Pis, I.; Imura, M.; Yamaguchi, T.; Nanishi, Y.

    2013-01-21

    Near-surface structures of polar InN films were investigated by laboratory-based hard X-ray photoelectron diffraction (HXPD) with chemical-state-discrimination. HXPD patterns from In 3d{sub 5/2} and N 1s core levels of the In-polar and N-polar InN films were different from each other and compared with the simulation results using a multiple-scattering cluster model. It was found that the near-surface structure of the In-polar InN film was close to the ideal wurtzite structure. On the other hand, on the N-polar InN film, defects-rich surface was formed. In addition, the existence of the In-polar domains was observed in the HXPD patterns.

  3. Structural properties of InN films grown on O-face ZnO(0001) by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Cho, Yong Jin; Brandt, Oliver; Kaganer, Vladimir M.; Ramsteiner, Manfred; Riechert, Henning; Korytov, Maxim; Albrecht, Martin

    2012-04-09

    We study the impact of substrate temperature and layer thickness on the morphological and structural properties of InN films directly grown on O-face ZnO(0001) substrates by plasma-assisted molecular beam epitaxy. With increasing substrate temperature, an interfacial reaction between InN and ZnO takes place that eventually results in the formation of cubic In{sub 2}O{sub 3} and voids. The properties of the InN films, however, are found to be unaffected by this reaction for substrate temperatures less than 550 deg. C. In fact, both the morphological and the structural quality of InN improve with increasing substrate temperature in the range from 350 to 500 deg. C. High quality films with low threading dislocation densities are demonstrated.

  4. Silicon Nitride Equation of State

    NASA Astrophysics Data System (ADS)

    Swaminathan, Pazhayannur; Brown, Robert

    2015-06-01

    This report presents the development a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4) . Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonalβ-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products and then combined with the single component solid models to study the global phase diagram. Sponsored by the NASA Goddard Space Flight Center Living With a Star program office.

  5. Synthesis of cubic silicon nitride

    NASA Astrophysics Data System (ADS)

    Zerr, Andreas; Miehe, Gerhard; Serghiou, George; Schwarz, Marcus; Kroke, Edwin; Riedel, Ralf; Fueß, Hartmut; Kroll, Peter; Boehler, Reinhard

    1999-07-01

    Silicon nitride (Si3N4) is used in a variety of important technological applications. The high fracture toughness, hardness and wear resistance of Si3N4-based ceramics are exploited in cutting tools and anti-friction bearings; in electronic applications, Si3N4 is used as an insulating, masking and passivating material. Two polymorphs of silicon nitride are known, both of hexagonal structure: α- and β-Si3N4. Here we report the synthesis of a third polymorph of silicon nitride, which has a cubic spinel structure. This new phase, c-Si3N4, is formed at pressures above 15GPa and temperatures exceeding 2,000K, yet persists metastably in air at ambient pressure to at least 700K. First-principles calculations of the properties of this phase suggest that the hardness of c-Si3N4 should be comparable to that of the hardest known oxide (stishovite, a high-pressure phase of SiO2), and significantly greater than the hardness of the two hexagonal polymorphs.

  6. Correlation between switching to n-type conductivity and structural defects in highly Mg-doped InN

    SciTech Connect

    Khromov, S.; Persson, P. O. Å.; Monemar, B.; Rosen, J.; Janzén, E.; Darakchieva, V.; Wang, X.; Yoshikawa, A.

    2015-06-08

    The effect of Mg doping on the microstructure of InN epitaxial films in relation to their free-charge carrier properties has been investigated by transmission electron microscopy (TEM) and aberration corrected scanning TEM. We observe a direct correlation between Mg concentration and the formation of stacking faults. The threading dislocation density is found to be independent of Mg concentration. The critical Mg concentration for the on-set of stacking faults formation is determined and found to correlate with the switch from p- to n-type conductivity in InN. Potential mechanisms involving stacking faults and point defect complexes are invoked in order to explain the observed conductivity reversal. Finally, the stacking faults are structurally determined and their role in the reduction of the free electron mobility in highly doped InN:Mg is discussed.

  7. Optical properties of ultra-thin InN layer embedded in InGaN matrix for light emitters

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Wu, Yi-Yang; Liu, Ning-Yang; Liu, Lei; Chen, Zhao; Hu, Xiao-Dong

    2013-04-01

    We theoretically investigate the optical properties of an ultra-thin InN layer embedded in InGaN matrix for light emitters. The peak emission wavelength extends from ultraviolet (374 nm) to green (536 nm) with InN quantum well thickness increasing from 1 monolayer to 2 monolayers, while the overlap of electron-hole wave function remains at a high level (larger than 90%). Increase of In content in InGaN matrix provides a better approach to longer wavelength emission, which only reduces the spontaneous emission rate slightly compared with the case of increasing In content of the conventional InGaN quantum well. Also, the transparency carrier density derived from gain spectrum is of the same order as that in the conventional blue laser diode. Our study provides skillful design on the development of novel structure InN-based light emitting diodes as well as laser diodes.

  8. Surface structure and surface kinetics of InN grown by plasma-assisted atomic layer epitaxy: A HREELS study

    SciTech Connect

    Acharya, Ananta R. E-mail: anantaach@gmail.com; Thoms, Brian D.; Nepal, Neeraj; Eddy, Charles R.

    2015-03-15

    The surface bonding configuration and kinetics of hydrogen desorption from InN grown by plasma-assisted atomic layer epitaxy have been investigated. High resolution electron energy loss spectra exhibited loss peaks assigned to a Fuchs–Kliewer surface phonon, N-N and N-H surface species. The surface N-N vibrations are attributed to surface defects. The observation of N-H but no In-H surface species suggested N-terminated InN. Isothermal desorption data were best fit by the first-order desorption kinetics with an activation energy of (0.88 ± 0.06) eV and pre-exponential factor of (1.5 ± 0.5) × 10{sup 5 }s{sup −1}.

  9. Polarity control and transport properties of Mg-doped (0001) InN by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Choi, Soojeong; Wu Feng; Bierwagen, Oliver; Speck, James S.

    2013-05-15

    The authors report on the plasma-assisted molecular beam epitaxy growth and carrier transport of Mg-doped In-face (0001) InN. The 1.2 {mu}m thick InN films were grown on GaN:Fe templates under metal rich conditions with Mg concentration from 1 Multiplication-Sign 10{sup 17}/cm{sup 3} to 3 Multiplication-Sign 10{sup 20}/cm{sup 3}. A morphological transition, associated with the formation of V-shape polarity inversion domains, was observed at Mg concentration over 7 Multiplication-Sign 10{sup 19}/cm{sup 3} by atomic force microscopy and transmission electron microscopy. Seebeck measurements indicated p-type conductivity for Mg-concentrations from 9 Multiplication-Sign 10{sup 17}/cm{sup 3} to 7 Multiplication-Sign 10{sup 19}/cm{sup 3}, i.e., as it exceeded the compensating (unintentional) donor concentration.

  10. Time-integrated photoluminescence and pump-probe reflection spectroscopy of Si doped InN thin films

    SciTech Connect

    Mohanta, Antaryami; Jang, Der-Jun Wang, Ming-Sung; Tu, L. W.

    2014-01-28

    Temperature and excitation power dependent time-integrated photoluminescence of Si doped InN thin films are investigated. Photoluminescence (PL) spectra at low temperatures are described by single emission peak ensued due to “free-to-bound” recombination; whereas PL spectra at higher temperatures above 150 K are characterized by both “band-to-band” and “free-to-bound” transition. Carrier dynamics of Si doped InN thin films is studied using pump-probe reflection spectroscopy at room temperature. The hot electron cooling process is well described by electron-electron scattering. The dependence of the hot electron cooling rate on total electron density shows sublinear to linear behavior with increase of background electron density. The variation of the carrier recombination lifetime with total electron density implicates the dominance of the defect-related nonradiative recombination channel over other recombination processes.

  11. R&W Club Frederick Hosts 4th Annual Golf Tournament Benefiting The Children’s Inn at NIH | Poster

    Cancer.gov

    The R&W Club Frederick’s 4th Annual Golf Tournament to benefit the Children’s Inn at NIH teed off on time despite cloudy weather and scattered showers. Employees from NCI at Frederick, the main NIH campus, and Leidos Biomed, along with family and friends, came to enjoy an afternoon at the beautiful Maryland National Golf Club in Middletown and to support a wonderful charity.

  12. R&W Club Frederick Hosts Second Annual Golf Tourney for The Children’s Inn | Poster

    Cancer.gov

    By Carolynne Keenan, Contributing Writer On Sept. 8, more than 40 NCI at Frederick and Leidos Biomedical Research employees, along with family and friends, swapped work clothes for golf gear at Maryland National Golf Club in Middletown. The golfers didn’t just play for fun; they participated in the second annual R&W Club Frederick Golf Tournament to support The Children’s Inn at NIH.

  13. Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact

    SciTech Connect

    Leonard, J. T. Young, E. C.; Yonkee, B. P.; Cohen, D. A.; Margalith, T.; Speck, J. S.; DenBaars, S. P.; Nakamura, S.

    2015-08-31

    We report on a III-nitride vertical-cavity surface-emitting laser (VCSEL) with a III-nitride tunnel junction (TJ) intracavity contact. The violet nonpolar VCSEL employing the TJ is compared to an equivalent VCSEL with a tin-doped indium oxide (ITO) intracavity contact. The TJ VCSEL shows a threshold current density (J{sub th}) of ∼3.5 kA/cm{sup 2}, compared to the ITO VCSEL J{sub th} of 8 kA/cm{sup 2}. The differential efficiency of the TJ VCSEL is also observed to be significantly higher than that of the ITO VCSEL, reaching a peak power of ∼550 μW, compared to ∼80 μW for the ITO VCSEL. Both VCSELs display filamentary lasing in the current aperture, which we believe to be predominantly a result of local variations in contact resistance, which may induce local variations in refractive index and free carrier absorption. Beyond the analyses of the lasing characteristics, we discuss the molecular-beam epitaxy (MBE) regrowth of the TJ, as well as its unexpected performance based on band-diagram simulations. Furthermore, we investigate the intrinsic advantages of using a TJ intracavity contact in a VCSEL using a 1D mode profile analysis to approximate the threshold modal gain and general loss contributions in the TJ and ITO VCSEL.

  14. Convection sensitivity and thermal analyses for indium and indium-lead mixing experiment (74-18)

    NASA Technical Reports Server (NTRS)

    Bourgeois, S. V.; Doty, J. P.

    1976-01-01

    Sounding rocket Experiment 74-18 was designed to demonstrate the effects of the Black Brandt rocket acceleration levels (during the low-g coast phase of its flight) on the motion of a liquid metal system to assist in preflight design. Some post flight analyses were also conducted. Preflight studies consisted of heat transfer analysis and convection sensitivity and convection modeling analyses which aided in the: (1) final selection of fluid materials (indium-lead melts rather than paraffins); (2) design and timing of heater and quench system; and (3) preflight predictions of the degree of lead penetration into the pure indium segment of the fluid. Postflight studies involved: (1) updating the convection sensitivity calculations by utilizing actual flight gravity levels; and (2) modeling the mixing in the flight samples.

  15. High-efficiency indium tin oxide/indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Li, X.; Wanlass, M. W.; Gessert, T. A.; Emery, K. A.; Coutts, T. J.

    1989-01-01

    Improvements in the performance of indium tin oxide (ITO)/indium phosphide solar cells have been realized by the dc magnetron sputter deposition of n-ITO onto an epitaxial p/p(+) structure grown on commercial p(+) bulk substrates. The highest efficiency cells were achieved when the surface of the epilayer was exposed to an Ar/H2 plasma before depositing the bulk of the ITO in a more typical Ar/O2 plasma. With H2 processing, global efficiencies of 18.9 percent were achieved. It is suggested that the excellent performance of these solar cells results from the optimization of the doping, thickness, transport, and surface properties of the p-type base, as well as from better control over the ITO deposition procedure.

  16. Current transport in W and WSI{sub x} ohmic contacts to InGaN and InN

    SciTech Connect

    Vartuli, C.B.; Pearton, S.J.; Abernathy, C.R.

    1997-10-01

    The temperature dependence of the specific contact resistance of W and WSi{sub 0.44} contacts on n{sup +} In{sub 0.65}Ga{sub 0.35}N and InN was measured in the range -50 {degrees}C to 125 {degrees}C. The results were compared to theoretical values for different conduction mechanisms, to further elucidate the conduction mechanism in these contact schemes for all but as-deposited metal to InN where thermionic emission appears to be the dominant mechanism. The contacts were found to produce low specific resistance ohmic contacts to InGaN at room temperature, e{sup c} {approximately} 10{sup -7} {Omega} {center_dot} cm{sup 2} for W and e{sub c} of 4x 10{sup -7} {Omega} {center_dot} cm{sup 2} for WSi{sub x}. InN metallized with W produced ohmic contacts with e{sub c} {approximately} 10{sup -7} {Omega} {center_dot} cm{sup 2} and e{sub c} {approximately} 10{sup -6} {Omega} {center_dot} cm{sup 2} for WSi{sub x} at room temperature.

  17. High-quality cubic and hexagonal InN crystals studied by micro-Raman scattering and electron backscatter diffraction

    NASA Astrophysics Data System (ADS)

    Kamimura, Jumpei; Ramsteiner, Manfred; Jahn, Uwe; Lu, Cheng-Ying James; Kikuchi, Akihiko; Kishino, Katsumi; Riechert, Henning

    2016-04-01

    Large InN microcrystals grown by molecular beam epitaxy are investigated by micro-Raman spectroscopy and electron backscatter diffraction (EBSD). High-quality (phonon linewidths between 1.5 and 2 cm-1) cubic and hexagonal crystals are identified with Raman mapping by the observation of the respective characteristic phonon modes. The unexpected occurrence of metastable cubic InN crystals is confirmed by EBSD measurements. The cubic microcrystals are revealed by EBSD to be single-crystalline and to exhibit  <1 1 1>  orientation. The transverse (TO) and longitudinal-optical (LO) zone-center phonon frequencies of cubic InN are found to be 463 and 584 cm-1, respectively. The bulk carrier density in the microcrystals lies in the range of 2-3  ×  1017 cm-3 as determined by the analysis of LO phonon-plasmon-coupled modes in the Raman spectra.

  18. High pressure phase transformations of cubic boron nitride from amorphous boron nitride using magnesium boron nitride as the catalyst

    NASA Astrophysics Data System (ADS)

    Singh, B. P.; Nover, G.; Will, G.

    1995-07-01

    Results are described of high pressure phase transformations of amorphous boron nitride (aBN) to cubic boron nitride (cBN) using magnesium boron nitride (Mg 3B 2N 4) as a catalyst-solvent. It was observed that amorphous boron nitride undergoes various structural modifications under high pressures and high temperatures leading to the formation of hexagonal, cubic and wurtzitic phases of boron nitride. The minimum pressure at which aBN starts transforming into cBN was found to be 25 kbar at 1800°C. This is the lowest pressure for cBN formation employing the catalyst-solvent process and is reported here for the first time.

  19. Reflectance of metallic indium for solar energy applications

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.; Hasegawa, T.

    1984-01-01

    An investigation has been conducted in order to compile quantitative data on the reflective properties of metallic indium. The fabricated samples were of sufficiently high quality that differences from similar second-surface silvered mirrors were not apparent to the human eye. Three second-surface mirror samples were prepared by means of vacuum deposition techniques, yielding indium thicknesses of approximately 1000 A. Both hemispherical and specular measurements were made. It is concluded that metallic indium possesses a sufficiently high specular reflectance to be potentially useful in many solar energy applications.

  20. Kinetic investigation of indium-palladium alloy electrodeposition

    SciTech Connect

    Vinogradov, S.N.; Perelygin, Yu.P.; Efimov, E.A.

    1988-01-01

    The kinetics of alloy deposition of ammonium-citrate electrolyte used to produce alloys with indium content were studied. The electrolytes were composed of palladium, indium, ammonium sulfate, monosodium citrate, ammonium chloride, and saccharin at pH 9.5. Stationary and rotating disk electrodes and a potentiostat were used for the investigation. Spectrophotometry determined the mixed formation of citrate-ammonia palladium complexes. It was found that the considerable depolarization of indium ion discharge into the alloy occurred when saccharin was present in the electrolyte, and its direct electroreduction occurs from hydroxide compounds.

  1. Determination of indium in rocks by substoichiometric radioisotope dilution analysis

    USGS Publications Warehouse

    Greenland, L. Paul; Campbell, E.Y.

    1973-01-01

    Rocks containing 10-140 ng of indium per g are decomposed with hydrofluoric and nitric acids in the presence of 114In. Indium is separated from other constituents by sequential extractions of the bromide, cupferronate, and acetylacetonate, and is then reacted with a substoichiometric amont of EDTA. Excess of indium is removed by acetylacetone extraction and the specific activity of the complexed fraction is determined by counting 114In. Analyses of the U.S.G.S. standard rocks are reported. These show good agreement with previous neutron activation analyses. Repetitive rock analyses indicated an analytical precision of ??4-7%. ?? 1973.

  2. Electrodeposition of Indium Bumps for Ultrafine Pitch Interconnection

    NASA Astrophysics Data System (ADS)

    Tian, Yingtao; Liu, Changqing; Hutt, David; Stevens, Bob

    2014-02-01

    Electroplating is a promising method to produce ultrafine pitch indium bumps for assembly of pixel detectors in imaging applications. In this work, the process of indium bumping through electrodeposition was demonstrated and the influences of various current waveforms on the bump morphology, microstructure and height uniformity were investigated. Electron microscopy was used to study the microstructure of electroplated indium bumps and a Zygo white light interferometer was utilised to evaluate the height uniformity. The results indicated that the bump uniformities on wafer, pattern and feature scales were improved by using unipolar pulse and bipolar pulse reverse current waveforms.

  3. Elucidating the optical properties of MoTe2/InN heterostructures for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Rocha, Alexandre; Villegas, Cesar E. P.

    2015-03-01

    Recently, two-dimensional (2D) atom-thick hexagonal crystals have drawn both experimental and theoretical interest due to their fundamental properties and potential applicability in electronics and optoelectronics. While most studies are focused on 2D crystals with gap in the visible electromagnetic spectrum, the ones with gaps in the near infrared region have not been explored yet. Motivated by this and considering the individual properties of transition metal dichalcogenides and group III-V compounds, we carry out density functional theory (DFT) calculations combine with the GW-Bethe-Salpeter (GW-BSE) methodology to study the optical properties and the power conversion efficiency of MoTe2/InN heterostructures. First, we study the geometric and electronic structure of three heterostructures based on different stacking. Secondly, we use the GW-BSE methodology to study the optical spectrum and estimate the power conversion efficiency of the device. Our results indicates that the photoexcited exciton are originated in the range of 1.12 to 1.5 eV. In addition, we estimate the exciton recombination time finding values in the nanosecond range. Finally, we estimated the short-circuit current and power conversion efficiency of the 2 nm thick device. The Authors thank FAPESP for financial support.

  4. Hole transport and photoluminescence in Mg-doped InN

    SciTech Connect

    Miller, N.; Ager III, J. W.; Smith III, H. M.; Mayer, M. A.; Yu, K. M.; Haller, E. E.; Walukiewicz, W.; Schaff, W. J.; Gallinat, C.; Koblmuller, G.; Speck, J. S.

    2010-03-24

    Hole conductivity and photoluminescence were studied in Mg-doped InN films grown by molecular beam epitaxy. Because surface electron accumulation interferes with carrier type determination by electrical measurements, the nature of the majority carriers in the bulk of the films was determined using thermopower measurements. Mg concentrations in a"window" from ca. 3 x 1017 to 1 x 1019 cm-3 produce hole-conducting, p-type films as evidenced by a positive Seebeck coecient. This conclusion is supported by electrolyte-based capacitance voltage measurements and by changes in the overall mobility observed by Hall effect, both of which are consistent with a change from surface accumulation on an n-type film to surface inversion on a p-type film. The observed Seebeck coefficients are understood in terms of a parallel conduction model with contributions from surface and bulk regions. In partially compensated films with Mg concentrations below the window region, two peaks are observed in photoluminescence at 672 meV and at 603 meV. They are attributed to band-to-band and band-to-acceptor transitions, respectively, and an acceptor binding energy of ~;;70 meV is deduced. In hole-conducting films with Mg concentrations in the window region, no photoluminescence is observed; this is attributed to electron trapping by deep states which are empty for Fermi levels close to the valence band edge.

  5. Electrical transport properties of single undoped and n-type doped InN nanowires.

    PubMed

    Richter, T; Lüth, H; Schäpers, Th; Meijers, R; Jeganathan, K; Estévez Hernández, S; Calarco, R; Marso, M

    2009-10-01

    Electrical transport properties of undoped and n-type doped InN nanowires grown by molecular beam epitaxy were studied by current-voltage and back-gate field-effect transistor measurements. The current-voltage characteristics show ohmic behavior in the temperature range between 4 and 300 K. Down to about 120 K a linear decrease in resistance with temperature is observed. The investigation of a large number of nanowires revealed for undoped as well as doped wires an approximately linear relation between the normalized conductance and diameter for wires with a diameter below 100 nm. This shows that the main conduction takes place in the tubular surface accumulation layer of the wires. In contrast, for doped wires with a diameter larger than 100 nm a quadratic dependence of conduction on the diameter was found, which is attributed to bulk conductance as the main contribution. The successful doping of the wires is confirmed by an enhanced conduction and by the results of the back-gate field-effect transistor measurements. PMID:19738304

  6. Evaluation of testing strategies for the radiation tolerant ATLAS n +-in-n pixel sensor

    NASA Astrophysics Data System (ADS)

    Klaiber-Lodewigs, Jonas M.; Atlas Pixel Collaboration

    2003-10-01

    The development of particle tracker systems for high fluence environments in new high-energy physics experiments raises new challenges for the development, manufacturing and reliable testing of radiation tolerant components. The ATLAS pixel detector for use at the LHC, CERN, is designed to cover an active sensor area of 1.8 m2 with 1.1×10 8 read-out channels usable for a particle fluence up to 10 15 cm-2 ( 1 MeV neutron equivalent) and an ionization dose up to 500 kGy of mainly charged hadron radiation. To cope with such a harsh environment the ATLAS Pixel Collaboration has developed a radiation hard n +-in-n silicon pixel cell design with a standard cell size of 50×400 μm2. Using this design on an oxygenated silicon substrate, sensor production has started in 2001. This contribution describes results gained during the development of testing procedures of the ATLAS pixel sensor and evaluates quality assurance procedures regarding their relevance for detector operation in the ATLAS experiment. The specific set of tests discussed in detail measures sensor depletion, interface generation velocity, p-spray dose and biasing by punch-through mechanism and is designed to give insights into effects of irradiation with ionizing particles.

  7. Ion-beam nitriding of steels

    NASA Technical Reports Server (NTRS)

    Salik, Joshua (Inventor); Hubbell, Theodore E. (Inventor)

    1987-01-01

    A surface of a steel substrate is nitrided without external heating by exposing it to a beam of nitrogen ions under low pressure, a pressure much lower than that employed for ion-nitriding. An ion source is used instead of a glow discharge. Both of these features reduce the introduction of impurities into the substrate surface.

  8. Method of preparation of uranium nitride

    DOEpatents

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  9. Nitride superluminescent diodes with broadened emission spectrum fabricated using laterally patterned substrate.

    PubMed

    Kafar, A; Stanczyk, S; Sarzynski, M; Grzanka, S; Goss, J; Targowski, G; Nowakowska-Siwinska, A; Suski, T; Perlin, P

    2016-05-01

    We demonstrate InGaN/GaN superluminescent diodes with broadened emission spectra fabricated on surface-shaped bulk GaN (0001) substrates. The patterning changes the local vicinal angle linearly along the device waveguide, which results in an indium incorporation profile in InGaN quantum wells. The structure was investigated by microphotoluminescence mapping, showing a shift of central emission wavelength from 413 nm to 430 nm. Spectral full width at half maximum of processed superluminescent diodes is equal to 6.1 nm, while the reference chips show 3.4 nm. This approach may open the path for using nitride devices in applications requiring broad emission spectrum and high beam quality, such as optical coherence tomography.

  10. Gallium Nitride Nanowires and Heterostructures: Toward Color-Tunable and White-Light Sources.

    PubMed

    Kuykendall, Tevye R; Schwartzberg, Adam M; Aloni, Shaul

    2015-10-14

    Gallium-nitride-based light-emitting diodes have enabled the commercialization of efficient solid-state lighting devices. Nonplanar nanomaterial architectures, such as nanowires and nanowire-based heterostructures, have the potential to significantly improve the performance of light-emitting devices through defect reduction, strain relaxation, and increased junction area. In addition, relaxation of internal strain caused by indium incorporation will facilitate pushing the emission wavelength into the red. This could eliminate inefficient phosphor conversion and enable color-tunable emission or white-light emission by combining blue, green, and red sources. Utilizing the waveguiding modes of the individual nanowires will further enhance light emission, and the properties of photonic structures formed by nanowire arrays can be implemented to improve light extraction. Recent advances in synthetic methods leading to better control over GaN and InGaN nanowire synthesis are described along with new concept devices leading to efficient white-light emission. PMID:26032973

  11. Gallium Nitride Nanowires and Heterostructures: Toward Color-Tunable and White-Light Sources.

    PubMed

    Kuykendall, Tevye R; Schwartzberg, Adam M; Aloni, Shaul

    2015-10-14

    Gallium-nitride-based light-emitting diodes have enabled the commercialization of efficient solid-state lighting devices. Nonplanar nanomaterial architectures, such as nanowires and nanowire-based heterostructures, have the potential to significantly improve the performance of light-emitting devices through defect reduction, strain relaxation, and increased junction area. In addition, relaxation of internal strain caused by indium incorporation will facilitate pushing the emission wavelength into the red. This could eliminate inefficient phosphor conversion and enable color-tunable emission or white-light emission by combining blue, green, and red sources. Utilizing the waveguiding modes of the individual nanowires will further enhance light emission, and the properties of photonic structures formed by nanowire arrays can be implemented to improve light extraction. Recent advances in synthetic methods leading to better control over GaN and InGaN nanowire synthesis are described along with new concept devices leading to efficient white-light emission.

  12. High quality factor indium oxide mechanical microresonators

    SciTech Connect

    Bartolomé, Javier Cremades, Ana; Piqueras, Javier

    2015-11-09

    The mechanical resonance behavior of as-grown In{sub 2}O{sub 3} microrods has been studied in this work by in-situ scanning electron microscopy (SEM) electrically induced mechanical oscillations. Indium oxide microrods grown by a vapor–solid method are naturally clamped to an aluminum oxide ceramic substrate, showing a high quality factor due to reduced energy losses during mechanical vibrations. Quality factors of more than 10{sup 5} and minimum detectable forces of the order of 10{sup −16} N/Hz{sup 1/2} demonstrate their potential as mechanical microresonators for real applications. Measurements at low-vacuum using the SEM environmental operation mode were performed to study the effect of extrinsic damping on the resonators behavior. The damping coefficient has been determined as a function of pressure.

  13. Alloy Effects on the Gas Nitriding Process

    NASA Astrophysics Data System (ADS)

    Yang, M.; Sisson, R. D.

    2014-12-01

    Alloy elements, such as Al, Cr, V, and Mo, have been used to improve the nitriding performance of steels. In the present work, plain carbon steel AISI 1045 and alloy steel AISI 4140 were selected to compare the nitriding effects of the alloying elements in AISI 4140. Fundamental analysis is carried out by using the "Lehrer-like" diagrams (alloy specific Lehrer diagram and nitriding potential versus nitrogen concentration diagram) and the compound layer growth model to simulate the gas nitriding process. With this method, the fundamental understanding for the alloy effect based on the thermodynamics and kinetics becomes possible. This new method paves the way for the development of new alloy for nitriding.

  14. Hard carbon nitride and method for preparing same

    DOEpatents

    Haller, E.E.; Cohen, M.L.; Hansen, W.L.

    1992-05-05

    Novel crystalline [alpha](silicon nitride-like)-carbon nitride and [beta](silicon nitride-like)-carbon nitride are formed by sputtering carbon in the presence of a nitrogen atmosphere onto a single crystal germanium or silicon, respectively, substrate. 1 figure.

  15. Molten-Salt-Based Growth of Group III Nitrides

    DOEpatents

    Waldrip, Karen E.; Tsao, Jeffrey Y.; Kerley, Thomas M.

    2008-10-14

    A method for growing Group III nitride materials using a molten halide salt as a solvent to solubilize the Group-III ions and nitride ions that react to form the Group III nitride material. The concentration of at least one of the nitride ion or Group III cation is determined by electrochemical generation of the ions.

  16. Electric field dynamics in nitride structures containing quaternary alloy (Al, In, Ga)N

    NASA Astrophysics Data System (ADS)

    Borysiuk, J.; Sakowski, K.; DróŻdŻ, P.; Korona, K. P.; Sobczak, K.; Muziol, G.; Skierbiszewski, C.; Kaminska, A.; Krukowski, S.

    2016-07-01

    Molecular beam epitaxy growth and basic physical properties of quaternary AlInGaN layers, sufficiently thick for construction of electron blocking layers (EBL), embedded in ternary InGaN layers are presented. Transmission electron microscopy (TEM) measurement revealed good crystallographic structure and compositional uniformity of the quaternary layers contained in other nitride layers, which are typical for construction of nitride based devices. The AlInGaN layer was epitaxially compatible to InGaN matrix, strained, and no strain related dislocation creation was observed. The strain penetrated for limited depth, below 3 nm, even for relatively high content of indium (7%). For lower indium content (0.6%), the strain was below the detection limit by TEM strain analysis. The structures containing quaternary AlInGaN layers were studied by time dependent photoluminescence (PL) at different temperatures and excitation powers. It was shown that PL spectra contain three peaks: high energy donor bound exciton peak from the bulk GaN (DX GaN) and the two peaks (A and B) from InGaN layers. No emission from quaternary AlInGaN layers was observed. An accumulation of electrons on the EBL interface in high-In sample and formation of 2D electron gas (2DEG) was detected. The dynamics of 2DEG was studied by time resolved luminescence revealing strong dependence of emission energy on the 2DEG concentration. Theoretical calculations as well as power-dependence and temperature-dependence analysis showed the importance of electric field inside the structure. At the interface, the field was screened by carriers and could be changed by illumination. From these measurements, the dynamics of electric field was described as the discharge of carriers accumulated on the EBL.

  17. The Powder-Pack Nitriding Process: Growth Kinetics of Nitride Layers on Pure Iron

    NASA Astrophysics Data System (ADS)

    Campos-Silva, I.; Ortiz-Dominguez, M.; Elias-Espinosa, M.; Vega-Morón, R. C.; Bravo-Bárcenas, D.; Figueroa-López, U.

    2015-09-01

    In this study, the growth kinetics of nitride layers that develop during the powder-pack nitriding process on the surface of ARMCO pure iron was estimated. The powder-pack nitriding of pure iron was performed according to the Pulnieren© (H.E.F. Durferrit) method using a "Pulnier" powder and an activator, at 798-848 K with different exposure times (2-12 h) for each temperature. In addition, for the entire set of nitriding conditions, three different activator/"Pulnier" powder ratios (0.20, 0.25, and 0.35) were used to evaluate the activation level during the growth of nitride layers. The kinetics of the nitride layers over the surface of ARMCO pure iron were estimated by two mathematical approaches, that consider the mass balance equations at the growth interphases. The resulting expressions for the effective diffusion coefficients in the nitride layers were evaluated as a function of nitriding temperatures and activator/"Pulnier" powder ratio. Finally, based on the experimental parameters ascribed to the powder-pack nitriding process, two expressions were proposed to estimate the nitride layer thicknesses at 798 and 823 K after 9 h of exposure for each temperature, to validate the diffusion models used in this work.

  18. Indium foil with beryllia washer improves transistor heat dissipation

    NASA Technical Reports Server (NTRS)

    Hilliard, J.; John, J. E. A.

    1964-01-01

    Indium foil, used as an interface material in transistor mountings, greatly reduces the thermal resistance of beryllia washers. This method improves the heat dissipation of power transistors in a vacuum environment.

  19. Clinical imaging with indium-111 leukocytes: uptake in bowel infarction

    SciTech Connect

    Gray, H.W.; Cuthbert, I.; Richards, J.R.

    1981-08-01

    Leukocytes labeled with indium-111 accumulated in an area of small-bowel infarction, mimicking a paracolic abscess. Evidence of subacute bowel obstruction should alert the nuclear medicine physician to the former possibility.

  20. Reliability assessment of indium solder for low temperature electronic packaging

    NASA Astrophysics Data System (ADS)

    Chang, Rui W.; Patrick McCluskey, F.

    2009-11-01

    Indium is the choice of material for cryogenic joining applications. It is superior under repeated wide temperature excursions including extreme cold temperatures (below -55 °C) because of its excellent electrical conductivity and ductility at cryogenic temperatures. In particular, it is being considered for die/substrate attaches in low temperature SiGe BiCMOS modules for Martian and Lunar exploration. An efficient and systematic assessment was conducted to evaluate the reliability of indium solder under thermal fatigue and extended cold temperature mechanical fatigue conditions encountered in space exploration missions. In addition, fatigue failure sites, modes and mechanisms in indium solder at low temperature were investigated. A fatigue model was also calibrated for indium solder joint at cryogenic temperatures.

  1. Recovery of indium from LCD screens of discarded cell phones.

    PubMed

    Silveira, A V M; Fuchs, M S; Pinheiro, D K; Tanabe, E H; Bertuol, D A

    2015-11-01

    Advances in technological development have resulted in high consumption of electrical and electronic equipment (EEE), amongst which are cell phones, which have LCD (liquid crystal display) screens as one of their main components. These multilayer screens are composed of different materials, some with high added value, as in the case of the indium present in the form of indium tin oxide (ITO, or tin-doped indium oxide). Indium is a precious metal with relatively limited natural reserves (Dodbida et al., 2012), so it can be profitable to recover it from discarded LCD screens. The objective of this study was to develop a complete process for recovering indium from LCD screens. Firstly, the screens were manually removed from cell phones. In the next step, a pretreatment was developed for removal of the polarizing film from the glass of the LCD panels, because the adherence of this film to the glass complicated the comminution process. The choice of mill was based on tests using different equipment (knife mill, hammer mill, and ball mill) to disintegrate the LCD screens, either before or after removal of the polarizing film. In the leaching process, it was possible to extract 96.4 wt.% of the indium under the following conditions: 1.0M H2SO4, 1:50 solid/liquid ratio, 90°C, 1h, and stirring at 500 rpm. The results showed that the best experimental conditions enabled extraction of 613 mg of indium/kg of LCD powder. Finally, precipitation of the indium with NH4OH was tested at different pH values, and 99.8 wt.% precipitation was achieved at pH 7.4.

  2. Determination of indium in standard rocks by neutron activation analysis.

    PubMed

    Johansen, O; Steinnes, E

    1966-08-01

    A rapid neutron activation method for the determination of indium in rocks, based on 54 min (116m)In, is described. The method has been applied to a series of geochemical standards including granite G-1 and diabase W-1. The precision is better than +/- 5% for samples containing more than 5 x 10(-10)g indium. Good agreement with previously published values for G-1 and W-1 has been obtained.

  3. Status of indium phosphide solar cell development at Spire

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Keavney, C. J.; Vernon, S. M.

    1987-01-01

    On-going development of indium phosphide solar cells for space applications is presented. The development is being carried out with a view towards both high conversion efficiency and simplicity of manufacture. The cell designs comprise the ion-implanted cell, the indium tin oxide top contact cell, and the epitaxial cell grown by metal organic chemical vapor deposition. Modelling data on the limit to the efficiency are presented and comparison is made to measured performance data.

  4. Determination of indium in standard rocks by neutron activation analysis.

    PubMed

    Johansen, O; Steinnes, E

    1966-08-01

    A rapid neutron activation method for the determination of indium in rocks, based on 54 min (116m)In, is described. The method has been applied to a series of geochemical standards including granite G-1 and diabase W-1. The precision is better than +/- 5% for samples containing more than 5 x 10(-10)g indium. Good agreement with previously published values for G-1 and W-1 has been obtained. PMID:18959988

  5. Development of indium bumping technology through AZ9260 resist electroplating

    NASA Astrophysics Data System (ADS)

    Huang, Qiuping; Xu, Gaowei; Yuan, Yuan; Cheng, Xiao; Luo, Le

    2010-05-01

    Indium bumping is very critical technology in the application of high-density interconnection between a FPA (focal plane array) and a Si ROIC (read-out integrated circuit) by flip-chip bonding. In this paper, the indium BGA (ball grid array) chips are prepared with an electroplating method on the Si substrate. With such a method, the first difficulty arises in removing the seed layer. Two ways, including IBE (ion beam etching) and lift-off, are adopted to overcome it. The results show that the lift-off process is effective but not IBE. During the reflow process, many indium bumps fall off the substrate. Two ways are tried to solve this problem: one is to optimize the reflow profile and the other is to thicken the wetting layer. The results show that these two ways can effectively improve such status. The barrier effects of the UBM (under bump metallization) for indium, which are Ti/Pt (300 Å/200 Å) and Ti/Pt/Au/Ep Au (300 Å/200 Å/1000 Å/4 µm), are also investigated. Experimental results indicate that both of them can be used in application of integration of the FPA and ROIC. Reliability of indium bumps with these two kinds of UBM is evaluated by the shear test. The results show that their shear strength has a significant increase after reflow. For the indium bump with UBM of Ti/Pt/Au/Ep Au (300 Å/200 Å/1000 Å/4 µm), IMC (intermetallic compounds) at the interface of Au-In can strengthen the indium bump but may change the plasticity of indium.

  6. Analysis of the production of ATLAS indium bonded pixel modules

    NASA Astrophysics Data System (ADS)

    Alimonti, G.; Andreazza, A.; Bulgheroni, A.; Corda, G.; Di Gioia, S.; Fiorello, A.; Gemme, C.; Koziel, M.; Manca, F.; Meroni, C.; Nechaeva, P.; Paoloni, A.; Rossi, L.; Rovani, A.; Ruscino, E.

    2006-09-01

    The ATLAS collaboration is currently building 1500 pixel modules using the indium bump bonding technique developed by SELEX Sistemi Integrati (former AMS). The indium deposition and flip-chip process are described together with an overview of the chip stripping machine that allows defective modules to be reworked. The production is half-way through at the time of this writing. This paper also discusses the problems encountered during production and the adopted solutions.

  7. Indium acetate toxicity in male reproductive system in rats.

    PubMed

    Lee, Kuo-Hsin; Chen, Hsiu-Ling; Leung, Chung-Man; Chen, Hsin-Pao; Hsu, Ping-Chi

    2016-01-01

    Indium, a rare earth metal characterized by high plasticity, corrosion resistance, and a low melting point, is widely used in the electronics industry, but has been reported to be an environmental pollutant and a health hazard. We designed a study to investigate the effects of subacute exposure of indium compounds on male reproductive function. Twelve-week old male Sprague-Dawley rats were randomly divided into test and control groups, and received weekly intraperitoneal injections of indium acetate (1.5 mg/kg body weight) and normal saline, respectively, for 8 weeks. Serum indium levels, cauda epididymal sperm count, motility, morphology, chromatin DNA structure, mitochondrial membrane potential, oxidative stress, and testis DNA content were investigated. The indium acetate-treated group showed significant reproductive toxicity, as well as an increased percentage of sperm morphology abnormality, chromatin integrity damage, and superoxide anion generation. Furthermore, positive correlations among sperm morphology abnormalities, chromatin DNA damage, and superoxide anion generation were also noted. The results of this study demonstrated the toxic effect of subacute low-dose indium exposure during the period of sexual maturation on male reproductive function in adulthood, through an increase in oxidative stress and sperm chromatin DNA damage during spermiogenesis, in a rodent model.

  8. Process for the production of metal nitride sintered bodies and resultant silicon nitride and aluminum nitride sintered bodies

    NASA Technical Reports Server (NTRS)

    Yajima, S.; Omori, M.; Hayashi, J.; Kayano, H.; Hamano, M.

    1983-01-01

    A process for the manufacture of metal nitride sintered bodies, in particular, a process in which a mixture of metal nitrite powders is shaped and heated together with a binding agent is described. Of the metal nitrides Si3N4 and AIN were used especially frequently because of their excellent properties at high temperatures. The goal is to produce a process for metal nitride sintered bodies with high strength, high corrosion resistance, thermal shock resistance, thermal shock resistance, and avoidance of previously known faults.

  9. Elimination of leakage of optical modes to GaN substrate in nitride laser diodes using a thick InGaN waveguide

    NASA Astrophysics Data System (ADS)

    Muziol, Grzegorz; Turski, Henryk; Siekacz, Marcin; Grzanka, Szymon; Perlin, Piotr; Skierbiszewski, Czesław

    2016-09-01

    A novel design consisting of a thick InGaN waveguide is proposed to fully eliminate leakage to the GaN substrate in nitride laser diodes. The design is based on the effective refractive index engineering and does not require the commonly used thick AlGaN claddings. The conditions required to fully eliminate the optical leakage are discussed. Experimental results from eight blue laser diodes with different indium contents and thicknesses of the InGaN waveguide grown by plasma-assisted molecular beam epitaxy are presented to validate the theoretical results.

  10. risk factor Inn (INNrisk) - transdisciplinary analysis of the 2005 flood in the province of Tyrol, Austria

    NASA Astrophysics Data System (ADS)

    Kleewein, Klaus; Pfurtscheller, Clemens; Borsdorf, Axel

    2010-05-01

    The transdisciplinary project INNrisk, in collaboration with public risk and disaster management, investigates the severe floods of 22nd and 23rd of August, 2005, and their effects within the federal province of Tyrol. The inundation and accompanying processes (e.g. debris flows, log jams, underwashing of infrastructure) caused by the river Inn and its tributaries created a dangerous situation for Tyrol. The overall economic loss of direct assets is said to amount to ca. 500 million Euros. Climate change has basically been causing a statistical increase of damaging floods within the Alpine Space in recent decades while increasing vulnerability at the same time. The expansion of settlements is one factor in the threat to large numbers of people and growing economic losses. However, the disasters of the last decade provide an opportunity for analysing the flood process in terms of natural-science and geographical aspects as well as in terms of economic and statistical ones. This should lead to a better understanding of triggers and effects in those areas where humans are active and form the basis for mitigation and adaptation strategies. The results of such analyses represent valuable information for public risk and disaster management, particularly in presenting the effects on public and private households. The INNrisk project primarily aims to assess the framework conditions in systemic-legal terms and to analyse human actions during the floods in relation to various plans and the damage potentials resulting from them. The assessed losses depend to a great extent on the actions taken during the emergency and on flood operations by the public emergency management and local fire departments, which are in charge of floods and related processes in the case of Austria. Assessment will be carried out by analysing a database of series of human actions for the duration of the emergeny and increased risk. The project also strives to arrive at a macro- and mesoeconomic

  11. Beaulieu-Boycott-Innes syndrome: an intellectual disability syndrome with characteristic facies.

    PubMed

    Casey, Jillian; Jenkinson, Allan; Magee, Alex; Ennis, Sean; Monavari, Ahmad; Green, Andrew; Lynch, Sally A; Crushell, Ellen; Hughes, Joanne

    2016-10-01

    We report a female child from an Irish Traveller family presenting with severe intellectual disability, dysmorphic features, renal anomalies, dental caries and cyclical vomiting. Current health issues include global developmental delay, mild concentric left ventricular hypertrophy, dental malocclusion and caries and a single duplex left kidney. The proband and her mother also have multiple epiphyseal dysplasia. Whole-exome sequencing was performed to identify the underlying genetic cause. DNA from the proband was enriched with the Agilent Sure Select v5 Exon array and sequenced on an Illumina HiSeq. Rare homozygous variants were prioritized. Whole-exome sequencing identified three linked homozygous missense variants in THOC6 (c.298T>A, p.Trp100Arg; c.700G>C, p.Val234Leu; c.824G>A, p.Gly275Asp) as the likely cause of this child's intellectual disability syndrome, resulting in a molecular diagnosis of Beaulieu-Boycott-Innes syndrome (BBIS). This is the first report of BBIS in Europe. BBIS has been reported previously in two Hutterite families and one Saudi family. A review of all patients to date shows a relatively homogenous phenotype. Core clinical features include low birth weight with subsequent growth failure, short stature, intellectual disability with language delay, characteristic facies, renal anomalies and dental malocclusion with caries. Some patients also have cardiac defects. All patients show characteristic dysmorphic facial features including a tall forehead with high anterior hairline and deep-set eyes with upslanting palpebral fissures. The coexistence of intellectual disability together with these characteristic facies should provide a diagnostic clue for BBIS during patient evaluation. PMID:27295358

  12. Beaulieu-Boycott-Innes syndrome: an intellectual disability syndrome with characteristic facies.

    PubMed

    Casey, Jillian; Jenkinson, Allan; Magee, Alex; Ennis, Sean; Monavari, Ahmad; Green, Andrew; Lynch, Sally A; Crushell, Ellen; Hughes, Joanne

    2016-10-01

    We report a female child from an Irish Traveller family presenting with severe intellectual disability, dysmorphic features, renal anomalies, dental caries and cyclical vomiting. Current health issues include global developmental delay, mild concentric left ventricular hypertrophy, dental malocclusion and caries and a single duplex left kidney. The proband and her mother also have multiple epiphyseal dysplasia. Whole-exome sequencing was performed to identify the underlying genetic cause. DNA from the proband was enriched with the Agilent Sure Select v5 Exon array and sequenced on an Illumina HiSeq. Rare homozygous variants were prioritized. Whole-exome sequencing identified three linked homozygous missense variants in THOC6 (c.298T>A, p.Trp100Arg; c.700G>C, p.Val234Leu; c.824G>A, p.Gly275Asp) as the likely cause of this child's intellectual disability syndrome, resulting in a molecular diagnosis of Beaulieu-Boycott-Innes syndrome (BBIS). This is the first report of BBIS in Europe. BBIS has been reported previously in two Hutterite families and one Saudi family. A review of all patients to date shows a relatively homogenous phenotype. Core clinical features include low birth weight with subsequent growth failure, short stature, intellectual disability with language delay, characteristic facies, renal anomalies and dental malocclusion with caries. Some patients also have cardiac defects. All patients show characteristic dysmorphic facial features including a tall forehead with high anterior hairline and deep-set eyes with upslanting palpebral fissures. The coexistence of intellectual disability together with these characteristic facies should provide a diagnostic clue for BBIS during patient evaluation.

  13. Boron Nitride Nanoribbons Becomes Metallic

    SciTech Connect

    Huang, Jingsong; Terrones Maldonado, Humberto; Sumpter, Bobby G; Lopez-Benzanilla, Alejandro

    2011-01-01

    Standard spin-polarized density functional theory calculations have been conducted to study the electronic structures and magnetic properties of O and S functionalized zigzag boron nitride nanoribbons (zBNNRs). Unlike the semiconducting and nonmagnetic H edge-terminated zBNNRs, the O edge-terminated zBNNRs have two energetically degenerate magnetic ground states with a ferrimagnetic character on the B edge, both of which are metallic. In contrast, the S edge-terminated zBNNRs are nonmagnetic albeit still metallic. An intriguing coexistence of two different Peierls-like distortions is observed for S edge-termination that manifests as a strong S dimerization at the B zigzag edge and a weak S trimerization at the N zigzag edge, dictated by the band fillings at the vicinity of the Fermi level. Nevertheless, metallicity is retained along the S wire on theNedge due to the partial filling of the band derived from the pz orbital of S. A second type of functionalization with O or S atoms embedded in the center of zBNNRs yields semiconducting features. Detailed examination of both types of functionalized zBNNRs reveals that the p orbitals on O or S play a crucial role in mediating the electronic structures of the ribbons.We suggest that O and S functionalization of zBNNRs may open new routes toward practical electronic devices based on boron nitride materials.

  14. Status of ion implantation doping and isolation of III-V nitrides

    SciTech Connect

    Zolper, J.C.; Pearton, S.J.; Abernathy, C.R.

    1995-09-01

    Ion implantation doping and isolation has played a critical role in the realization of high performance photonic and electronic devices in all mature semiconductor material systems. This is also expected to be the case for the binary III-V nitrides (InN, GaN, and AlN) and their alloys as the epitaxial material quality improves and more advanced device structures are fabricated. With this in mind, we review the status of implant doping and isolation of GaN and the ternary alloys AlGaN, InGaN, and InAlN. In particular, we reported on the successful n- and p-type doping of GaN by ion implantation of Mg+P and Si, respectively, and subsequent high temperature rapid thermal anneals in excess of 1000{degrees}C. In the area of implant isolation, N-implantation has been shown to compensate both n- and p-type GaN, N and O-implantation effectively compensates InAlN, and InGaN shows limited compensation with either N or F implantation.

  15. Group-III Nitride Etch Selectivity in BCl(3)/Cl(2) ICP Plasmas

    SciTech Connect

    Abernathy, C.R.; Han, J.; Hong, J.; Lester, L.F.; Pearton, S.J.; Shul, R.J.; Willison, C.G.; Zhang, L.

    1998-12-09

    Patterning the group-IH nitrides has been challenging due to their strong bond energies and relatively inert chemical nature as compared to other compound semiconductors. Plasma etch processes have been used almost exclusively to pattern these films. The use of high-density plasma etch systems, including inductively coupled plasmas (ICP), has resulted in relatively high etch rates (often greater than 1.0 pmhnin) with anisotropic profiles and smooth etch morphologies. However, the etch mechanism is often dominated by high ion bombardment energies which can minimize etch selectivity. The use of an ICP-generated BCl~/C12 pkyma has yielded a highly versatile GaN etch process with rates ranging from 100 to 8000 A/rnin making this plasma chemistry a prime candidate for optimization of etch selectivity. In this study, we will report ICP etch rates and selectivities for GaN, AIN, and InN as a function of BCl~/Clz flow ratios, cathode rf-power, and ICP-source power. GaN:InN and GaN:AIN etch selectivities were typically less than 7:1 and showed the strongest dependence on flow ratio. This trend maybe attributed to faster GaN etch rates observed at higher concentrations of atomic Cl which was monitored using optical emission spectroscopy (OES). ~E~~~~f:~ INTRODUCTION DEC j 4898 Etch selectivi

  16. Role of C, O and H in III-V nitrides

    SciTech Connect

    Abernathy, C.R.; Pearton, S.J.; MacKenzie, J.D.; Lee, J.W.; Vartuli, C.B.; Wilson, R.G.; Shul, R.J.; Zolper, J.C.; Zavada, J.M.

    1995-12-01

    The light ion impurities C, 0 and H have been implanted or diffused into GaN and related compounds and their effect on the electrical properties of these materials measured by Hall, C-V and SIMS as a function of annealing temperatures from 300--11OO{degree}C. While C in as-grown GaN appears to create an acceptor under MOMBE conditions, implanted C shows no measurable activity. Similarly, implanted 0 does not show any shallow donor activity after annealing at {le}700{degree}C, but can create high resistivity regions (10{sup 6} {Omega}/{open_square}) in GaN, AlInN and InGaN for device isolation when annealed at 500--70O{degree}C. Finally, hydrogen is found to passivate shallow donor and acceptor states in GaN, InN. InAlN and InGaN, with dissociation of the neutral complexes at >450{degree}C. The liberated hydrogen does not leave the nitride films until much higher annealing temperatures (>800{degree}C). Typical reactivation energies are {approximately}2.0 eV for impurity-hydrogen complexes.

  17. Transparent conducting oxide clad limited area epitaxy semipolar III-nitride laser diodes

    NASA Astrophysics Data System (ADS)

    Myzaferi, A.; Reading, A. H.; Cohen, D. A.; Farrell, R. M.; Nakamura, S.; Speck, J. S.; DenBaars, S. P.

    2016-08-01

    The bottom cladding design of semipolar III-nitride laser diodes is limited by stress relaxation via misfit dislocations that form via the glide of pre-existing threading dislocations (TDs), whereas the top cladding is limited by the growth time and temperature of the p-type layers. These design limitations have individually been addressed by using limited area epitaxy (LAE) to block TD glide in n-type AlGaN bottom cladding layers and by using transparent conducting oxide (TCO) top cladding layers to reduce the growth time and temperature of the p-type layers. In addition, a TCO-based top cladding should have significantly lower resistivity than a conventional p-type (Al)GaN top cladding. In this work, LAE and indium-tin-oxide cladding layers are used simultaneously in a ( 20 2 ¯ 1 ) III-nitride laser structure. Lasing was achieved at 446 nm with a threshold current density of 8.5 kA/cm2 and a threshold voltage of 8.4 V.

  18. Silicon Nitride Membranes for Filtration and Separation

    SciTech Connect

    Galambos, Paul; Zavadil, Kevin; Shul, Randy; Willison, Christi Gober; Miller, Sam

    1999-07-19

    Semi-Permeable silicon nitride membranes have been developed using a Bosch etch process followed by a reactive ion etch (NE) process. These membranes were observed to allow air but not water to pass through them into surface micromachined, silicon nitride microfluidic channels. Membranes with this property have potential use in microfluidic systems as gas bubble traps and vents, filters to remove particles and gas partitioning membranes. Membrane permeation was measured as 1.6 x 10{sup {minus}8} mol/m{sup 2}Pa s of helium for inline membranes at the entrance and exit of the silicon nitride microfluidic channels.

  19. Photodetectors using III-V nitrides

    DOEpatents

    Moustakas, T.D.; Misra, M.

    1997-10-14

    A photodetector using a III-V nitride and having predetermined electrical properties is disclosed. The photodetector includes a substrate with interdigitated electrodes formed on its surface. The substrate has a sapphire base layer, a buffer layer formed from a III-V nitride and a single crystal III-V nitride film. The three layers are formed by electron cyclotron resonance microwave plasma-assisted molecular beam epitaxy (ECR-assisted MBE). Use of the ECR-assisted MBE process allows control and predetermination of the electrical properties of the photodetector. 24 figs.

  20. Photodetectors using III-V nitrides

    DOEpatents

    Moustakas, Theodore D.; Misra, Mira

    1997-01-01

    A photodetector using a III-V nitride and having predetermined electrical properties is disclosed. The photodetector includes a substrate with interdigitated electrodes formed on its surface. The substrate has a sapphire base layer, a buffer layer formed from a III-V nitride and a single crystal III-V nitride film. The three layers are formed by electron cyclotron resonance microwave plasma-assisted molecular beam epitaxy (ECR-assisted MBE). Use of the ECR-assisted MBE process allows control and predetermination of the electrical properties of the photodetector.

  1. Uranium nitride behavior at thermionic temperatures

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.

    1973-01-01

    The feasibility of using uranium nitride for in-core thermionic applications was evaluated in electrically heated thermal gradient tests and in flat plate thermionic converters. These tests indicated that grain boundary penetration of uranium nitride into both tungsten and rhenium will occur under thermal gradient conditions. In the case of the tungsten thermionic converter, this led to grain boundary rupture of the emitter and almost total loss of electrical output from the converter. It appears that uranium nitride is unsuitable for thermionic applications at the 2000 K temperatures used in these tests.

  2. Fabrication and characterization of aluminum nitride/boron nitride nanocomposites by carbothermal reduction and nitridation of aluminum borate powders.

    PubMed

    Kusunose, Takafumi; Sakayanagi, Nobuaki; Sekino, Tohru; Ando, Yoichi

    2008-11-01

    In order to fabricate aluminum nitride/boron nitride (AIN/BN) nanocomposites by pressureless sintering, the present study investigated the synthesis of AIN-BN nanocomposite powders by carbothermal reduction and nitridation of aluminum borate powders. Homogeneous mixtures of alumina (Al2O3), boric acid (H3BO3), and carbon powder were used to synthesize AIN/BN nanocomposite powders containing 10 and 20 vol% BN. Aluminum borate was produced by reacting Al2O3 and B2O3 above 800 degrees C, and AIN and turbostratic BN (t-BN) were produced by reacting aluminum borate with carbon powder and nitrogen gas at 1500 degrees C. Carbothermal reduction followed by nitridation yielded an AIN/BN nanocomposite powder composed of nanosized AIN and t-BN. By pressureless sintering nanocomposite AIN/BN powders containing 5 wt% Y22O3, AIN/BN nanocomposites were obtained without compromising the high thermal conductivity and high hardness.

  3. Formation of InN atomic-size wires by simple N adsorption on the In/Si(111)-(4 × 1) surface

    NASA Astrophysics Data System (ADS)

    Guerrero-Sánchez, J.; Takeuchi, Noboru

    2016-11-01

    We have carried out first principles total energy calculations to study the formation of InN atomic-size wires on the In/Si(111)-(4 × 1) surface. In its most favorable adsorption site, a single N atom forms InN arrangements. The deposit of 0.25 monolayers (MLs) of N atoms, result in the breaking of one of the original In chains and the formation of an InN atomic size wire. Increasing the coverage up to 0.5 ML of N atoms results in the formation of two of those wires. Calculated surface formation energies show that for N-poor conditions the most stable configuration is the original In/Si(111)-(4 × 1) surface with no N atoms. Increasing the N content, and in a reduced range of chemical potential, the formation of an InN wire is energetically favorable. Instead, from intermediate to N-rich conditions, two InN atomic wires are more stable. Projected density of states calculations have shown a trend to form covalent bonds between the Insbnd p and Nsbnd p orbitals in these stable models.

  4. Indium Antimonide Nanowires: Synthesis and Properties.

    PubMed

    Shafa, Muhammad; Akbar, Sadaf; Gao, Lei; Fakhar-E-Alam, Muhammad; Wang, Zhiming M

    2016-12-01

    This article summarizes some of the critical features of pure indium antimonide nanowires (InSb NWs) growth and their potential applications in the industry. In the first section, historical studies on the growth of InSb NWs have been presented, while in the second part, a comprehensive overview of the various synthesis techniques is demonstrated briefly. The major emphasis of current review is vapor phase deposition of NWs by manifold techniques. In addition, author review various protocols and methodologies employed to generate NWs from diverse material systems via self-organized fabrication procedures comprising chemical vapor deposition, annealing in reactive atmosphere, evaporation of InSb, molecular/ chemical beam epitaxy, solution-based techniques, and top-down fabrication method. The benefits and ill effects of the gold and self-catalyzed materials for the growth of NWs are explained at length. Afterward, in the next part, four thermodynamic characteristics of NW growth criterion concerning the expansion of NWs, growth velocity, Gibbs-Thomson effect, and growth model were expounded and discussed concisely. Recent progress in device fabrications is explained in the third part, in which the electrical and optical properties of InSb NWs were reviewed by considering the effects of conductivity which are diameter dependent and the applications of NWs in the fabrications of field-effect transistors, quantum devices, thermoelectrics, and detectors.

  5. Indium Antimonide Nanowires: Synthesis and Properties

    NASA Astrophysics Data System (ADS)

    Shafa, Muhammad; Akbar, Sadaf; Gao, Lei; Fakhar-e-Alam, Muhammad; Wang, Zhiming M.

    2016-03-01

    This article summarizes some of the critical features of pure indium antimonide nanowires (InSb NWs) growth and their potential applications in the industry. In the first section, historical studies on the growth of InSb NWs have been presented, while in the second part, a comprehensive overview of the various synthesis techniques is demonstrated briefly. The major emphasis of current review is vapor phase deposition of NWs by manifold techniques. In addition, author review various protocols and methodologies employed to generate NWs from diverse material systems via self-organized fabrication procedures comprising chemical vapor deposition, annealing in reactive atmosphere, evaporation of InSb, molecular/ chemical beam epitaxy, solution-based techniques, and top-down fabrication method. The benefits and ill effects of the gold and self-catalyzed materials for the growth of NWs are explained at length. Afterward, in the next part, four thermodynamic characteristics of NW growth criterion concerning the expansion of NWs, growth velocity, Gibbs-Thomson effect, and growth model were expounded and discussed concisely. Recent progress in device fabrications is explained in the third part, in which the electrical and optical properties of InSb NWs were reviewed by considering the effects of conductivity which are diameter dependent and the applications of NWs in the fabrications of field-effect transistors, quantum devices, thermoelectrics, and detectors.

  6. Effect of the growth temperature and the AlN mole fraction on In incorporation and properties of quaternary III-nitride layers grown by molecular beam epitaxy

    SciTech Connect

    Fernandez-Garrido, S.; Pereiro, J.; Munoz, E.; Calleja, E.; Gago, R.; Bertram, F.; Christen, J.; Luna, E.; Trampert, A.

    2008-10-15

    Indium incorporation into wurtzite (0001)-oriented In{sub x}Al{sub y}Ga{sub 1-x-y}N layers grown by plasma-assisted molecular beam epitaxy was studied as a function of the growth temperature (565-635 deg. C) and the AlN mole fraction (0.01indium incorporation decreased continuously with increasing growth temperature due to thermally enhanced dissociation of In-N bonds and for increasing AlN mole fractions. High resolution x-ray diffraction and transmission electron microscopy (TEM) measurements did not show evidence of phase separation. The mosaicity of the quaternary layers was found to be mainly determined by the growth temperature and independent on alloy composition within the range studied. However, depending on the AlN mole fraction, nanometer-sized composition fluctuations were detected by TEM. Photoluminescence spectra showed a single broad emission at room temperature, with energy and bandwidth S- and W-shaped temperature dependences typical of exciton localization by alloy inhomogeneities. Cathodoluminescence measurements demonstrated that the alloy inhomogeneities, responsible of exciton localization, occur on a lateral length scale below 150 nm, which is corroborated by TEM.

  7. Nitriding of Aluminum Extrusion Die: Effect of Die Geometry

    NASA Astrophysics Data System (ADS)

    Akhtar, S. S.; Arif, A. F. M.; Yilbas, B. S.

    2010-04-01

    Nitriding of complex-shaped extrusion dies may result in non-uniform nitride layers and hence a required hardness may not be achieved in some regions of the bearing area. The present study is carried out to assess the effect of extrusion die profile on the characteristics and growth behavior of nitride layers so that the critical die design feature can be identified to enhance the uniformity of the nitride layer. For this purpose, AISI H13 steel samples have been manufactured with profiles similar to those of hot extrusion dies. The samples were then gas nitrided under controlled nitriding potential. The uniformity and depth of nitride layers have been investigated in terms of compound layer and total nitride case depth for selected die features. The results of this study indicated the need to include the effect of profile on the nitride layer for the optimal die design with improved service life.

  8. Enhancing structural transition by carrier and quantum confinement: Stabilization of cubic InN quantum dots by Mn incorporation

    SciTech Connect

    Meng, Xiuqing; Wu, Fengmin; Chen, Zhanghui; Li, Shu-Shen; Chen, Zhuo; Li, Jingbo E-mail: swei@nrel.gov; Wu, Junqiao; Wei, Su-Huai E-mail: swei@nrel.gov

    2013-12-16

    We demonstrate in this work controllable synthesis of cubic InN nanocrystals through Mn doping. We show that the pristine nanocrystal has the wurtzite structure, but can be converted into the zinc-blende (ZB) structure when it is doped with Mn. Our first-principles calculations show that the phase transition is caused by the stronger p-d coupling between the host p valence state and the impurity d level in the ZB structure, which makes the hole generation in the ZB structure easier. Quantum confinement in the nanocrystals further enhanced this effect. This observation lays an important foundation for defects control of crystal phases.

  9. III-Nitride Nanowire Lasers

    SciTech Connect

    Wright, Jeremy Benjamin

    2014-07-01

    In recent years there has been a tremendous interest in nanoscale optoelectronic devices. Among these devices are semiconductor nanowires whose diameters range from 10-100 nm. To date, nanowires have been grown using many semiconducting material systems and have been utilized as light emitting diodes, photodetectors, and solar cells. Nanowires possess a relatively large index contrast relative to their dielectric environment and can be used as lasers. A key gure of merit that allows for nanowire lasing is the relatively high optical con nement factor. In this work, I discuss the optical characterization of 3 types of III-nitride nanowire laser devices. Two devices were designed to reduce the number of lasing modes to achieve singlemode operation. The third device implements low-group velocity mode lasing with a photonic crystal constructed of an array of nanowires. Single-mode operation is necessary in any application where high beam quality and single frequency operation is required. III-Nitride nanowire lasers typically operate in a combined multi-longitudinal and multi-transverse mode state. Two schemes are introduced here for controlling the optical modes and achieving single-mode op eration. The rst method involves reducing the diameter of individual nanowires to the cut-o condition, where only one optical mode propagates in the wire. The second method employs distributed feedback (DFB) to achieve single-mode lasing by placing individual GaN nanowires onto substrates with etched gratings. The nanowire-grating substrate acted as a distributed feedback mirror producing single mode operation at 370 nm with a mode suppression ratio (MSR) of 17 dB. The usage of lasers for solid state lighting has the potential to further reduce U.S. lighting energy usage through an increase in emitter e ciency. Advances in nanowire fabrication, speci cally a two-step top-down approach, have allowed for the demonstration of a multi-color array of lasers on a single chip that emit

  10. III-nitride nanowire lasers

    NASA Astrophysics Data System (ADS)

    Wright, Jeremy Benjamin

    In recent years there has been a tremendous interest in nanoscale optoelectronic devices. Among these devices are semiconductor nanowires whose diameters range from 10-100 nm. To date, nanowires have been grown using many semiconducting material systems and have been utilized as light emitting diodes, photodetectors, and solar cells. Nanowires possess a relatively large index contrast relative to their dielectric environment and can be used as lasers. A key figure of merit that allows for nanowire lasing is the relatively high optical confinement factor. In this work, I discuss the optical characterization of 3 types of III-nitride nanowire laser devices. Two devices were designed to reduce the number of lasing modes to achieve single-mode operation. The third device implements low-group velocity mode lasing with a photonic crystal constructed of an array of nanowires. Single-mode operation is necessary in any application where high beam quality and single frequency operation is required. III-Nitride nanowire lasers typically operate in a combined multi-longitudinal and multi-transverse mode state. Two schemes are introduced here for controlling the optical modes and achieving single-mode operation. The first method involves reducing the diameter of individual nanowires to the cut-off condition, where only one optical mode propagates in the wire. The second method employs distributed feedback (DFB) to achieve single-mode lasing by placing individual GaN nanowires onto substrates with etched gratings. The nanowire-grating substrate acted as a distributed feedback mirror producing single mode operation at 370 nm with a mode suppression ratio (MSR) of 17 dB. The usage of lasers for solid state lighting has the potential to further reduce U.S. lighting energy usage through an increase in emitter efficiency. Advances in nanowire fabrication, specifically a two-step top-down approach, have allowed for the demonstration of a multi-color array of lasers on a single chip

  11. Method of nitriding refractory metal articles

    DOEpatents

    Tiegs, T.N.; Holcombe, C.E.; Dykes, N.L.; Omatete, O.O.; Young, A.C.

    1994-03-15

    A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  12. Method of nitriding refractory metal articles

    DOEpatents

    Tiegs, Terry N.; Holcombe, Cressie E.; Dykes, Norman L.; Omatete, Ogbemi O.; Young, Albert C.

    1994-01-01

    A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  13. Low temperature route to uranium nitride

    DOEpatents

    Burrell, Anthony K.; Sattelberger, Alfred P.; Yeamans, Charles; Hartmann, Thomas; Silva, G. W. Chinthaka; Cerefice, Gary; Czerwinski, Kenneth R.

    2009-09-01

    A method of preparing an actinide nitride fuel for nuclear reactors is provided. The method comprises the steps of a) providing at least one actinide oxide and optionally zirconium oxide; b) mixing the oxide with a source of hydrogen fluoride for a period of time and at a temperature sufficient to convert the oxide to a fluoride salt; c) heating the fluoride salt to remove water; d) heating the fluoride salt in a nitrogen atmosphere for a period of time and at a temperature sufficient to convert the fluorides to nitrides; and e) heating the nitrides under vacuum and/or inert atmosphere for a period of time sufficient to convert the nitrides to mononitrides.

  14. Determination of nitrogen in titanium nitride

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Tetzlaff, J. E.

    1970-01-01

    Quantitative determination of nitrogen in titanium nitride involves dissolution of TiN in 10M hydrofluoric acid containing an oxidant. Released nitrogen is determined as ammonia. Best oxidizers are ferric chloride, potassium iodate, and potassium dichromate.

  15. Dissolution of bulk specimens of silicon nitride

    NASA Technical Reports Server (NTRS)

    Davis, W. F.; Merkle, E. J.

    1981-01-01

    An accurate chemical characterization of silicon nitride has become important in connection with current efforts to incorporate components of this material into advanced heat engines. However, there are problems concerning a chemical analysis of bulk silicon nitride. Current analytical methods require the pulverization of bulk specimens. A pulverization procedure making use of grinding media, on the other hand, will introduce contaminants. A description is given of a dissolution procedure which overcomes these difficulties. It has been found that up to at least 0.6 g solid pieces of various samples of hot pressed and reaction bonded silicon nitride can be decomposed in a mixture of 3 mL hydrofluoric acid and 1 mL nitric acid overnight at 150 C in a Parr bomb. High-purity silicon nitride is completely soluble in nitric acid after treatment in the bomb. Following decomposition, silicon and hydrofluoric acid are volatilized and insoluble fluorides are converted to a soluble form.

  16. Joining of silicon nitrides using oxynitride glasses

    SciTech Connect

    O`Brien, M.H.

    1993-03-01

    This report presents a study on commercial silicon nitrides that were successfully joined using oxynitride glasses. Sintered silicon nitride was joined by either closed or glass-filled joints. Glass-filled joints were successfully used on hot-pressed silicon nitrides and were comparable in fast fracture strength to unjoined silicon nitrides up to approximately 1000C. Above that temperature, strengths decreased rapidly and glass flow failure began. The study observed that time-dependent failure currently limits the service temperatures of glass-filled joints. Creep failure occurred in excess of 1000C. Between 900 and 1000C, slow crack growth failure was observed. Cavitation (or viscous deformation) was the rate-controlling mechanism of slow crack growth.

  17. Silicon nitride reinforced with molybdenum disilicide

    DOEpatents

    Petrovic, John J.; Honnell, Richard E.

    1991-01-01

    Compositions of matter comprised of silicon nitride and molybdenum disilicide and methods of making the compositions, where the molybdenum disilicide is present in amounts ranging from about 5 to about 50 vol. %.

  18. Plasmonic spectral tunability of conductive ternary nitrides

    NASA Astrophysics Data System (ADS)

    Kassavetis, S.; Bellas, D. V.; Abadias, G.; Lidorikis, E.; Patsalas, P.

    2016-06-01

    Conductive binary transition metal nitrides, such as TiN and ZrN, have emerged as a category of promising alternative plasmonic materials. In this work, we show that ternary transition metal nitrides such as TixTa1-xN, TixZr1-xN, TixAl1-xN, and ZrxTa1-xN share the important plasmonic features with their binary counterparts, while having the additional asset of the exceptional spectral tunability in the entire visible (400-700 nm) and UVA (315-400 nm) spectral ranges depending on their net valence electrons. In particular, we demonstrate that such ternary nitrides can exhibit maximum field enhancement factors comparable with gold in the aforementioned broadband range. We also critically evaluate the structural features that affect the quality factor of the plasmon resonance and we provide rules of thumb for the selection and growth of materials for nitride plasmonics.

  19. Nonlinear radiation response of n-doped indium antimonide and indium arsenide in intense terahertz field

    NASA Astrophysics Data System (ADS)

    Gong, Jiao-Li; Liu, Jin-Song; Chu, Zheng; Yang, Zhen-Gang; Wang, Ke-Jia; Yao, Jian-Quan

    2016-10-01

    The nonlinear radiation responses of two different n-doped bulk semiconductors: indium antimonide (InSb) and indium arsenide (InAs) in an intense terahertz (THz) field are studied by using the method of ensemble Monte Carlo (EMC) at room temperature. The results show that the radiations of two materials generate about 2-THz periodic regular spectrum distributions under a high field of 100 kV/cm at 1-THz center frequency. The center frequencies are enhanced to about 7 THz in InSb, and only 5 THz in InAs, respectively. The electron valley occupancy and the percentage of new electrons excited by impact ionization are also calculated. We find that the band nonparabolicity and impact ionization promote the generation of nonlinear high frequency radiation, while intervalley scattering has the opposite effect. Moreover, the impact ionization dominates in InSb, while impact ionization and intervalley scattering work together in InAs. These characteristics have potential applications in up-convension of THz wave and THz nonlinear frequency multiplication field. Project supported by the National Natural Science Foundation of China (Grant Nos. 11574105 and 61177095), the Natural Science Foundation of Hubei Province, China (Grant Nos. 2012FFA074 and 2013BAA002), the Wuhan Municipal Applied Basic Research Project, China (Grant No. 20140101010009), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2013KXYQ004 and 2014ZZGH021).

  20. The Nitrogen-Nitride Anode.

    SciTech Connect

    Delnick, Frank M.

    2014-10-01

    Nitrogen gas N 2 can be reduced to nitride N -3 in molten LiCl-KCl eutectic salt electrolyte. However, the direct oxidation of N -3 back to N 2 is kinetically slow and only occurs at high overvoltage. The overvoltage for N -3 oxidation can be eliminated by coordinating the N -3 with BN to form the dinitridoborate (BN 2 -3 ) anion which forms a 1-D conjugated linear inorganic polymer with -Li-N-B-N- repeating units. This polymer precipitates out of solution as Li 3 BN 2 which becomes a metallic conductor upon delithiation. Li 3 BN 2 is oxidized to Li + + N 2 + BN at about the N 2 /N -3 redox potential with very little overvoltage. In this report we evaluate the N 2 /N -3 redox couple as a battery anode for energy storage.

  1. Band anticrossing in dilute nitrides

    SciTech Connect

    Shan, W.; Yu, K.M.; Walukiewicz, W.; Wu, J.; Ager III, J.W.; Haller, E.E.

    2003-12-23

    Alloying III-V compounds with small amounts of nitrogen leads to dramatic reduction of the fundamental band-gap energy in the resulting dilute nitride alloys. The effect originates from an anti-crossing interaction between the extended conduction-band states and localized N states. The interaction splits the conduction band into two nonparabolic subbands. The downward shift of the lower conduction subband edge is responsible for the N-induced reduction of the fundamental band-gap energy. The changes in the conduction band structure result in significant increase in electron effective mass and decrease in the electron mobility, and lead to a large enhance of the maximum doping level in GaInNAs doped with group VI donors. In addition, a striking asymmetry in the electrical activation of group IV and group VI donors can be attributed to mutual passivation process through formation of the nearest neighbor group-IV donor nitrogen pairs.

  2. III-Nitride UV Devices

    NASA Astrophysics Data System (ADS)

    Asif Khan, M.; Shatalov, M.; Maruska, H. P.; Wang, H. M.; Kuokstis, E.

    2005-10-01

    The need for efficient, compact and robust solid-state UV optical sources and sensors had stimulated the development of optical devices based on III-nitride material system. Rapid progress in material growth, device fabrication and packaging enabled demonstration of high efficiency visible-blind and solar-blind photodetectors, deep-UV light-emitting diodes with emission from 400 to 250 nm, and UV laser diodes with operation wavelengths ranging from 340 to 350 nm. Applications of these UV optical devices include flame sensing; fluorescence-based biochemical sensing; covert communications; air, water and food purification and disinfection; and biomedical instrumentation. This paper provides a review of recent advances in the development of UV optical devices. Performance of state-of-the-art devices as well as future prospects and challenges are discussed.

  3. Precursors for Carbon Nitride Synthesis

    SciTech Connect

    Prashantha, M.; Gopal, E. S. R.; Ramesh, K.

    2011-07-15

    Nano structured carbon nitride films were prepared by pyrolysis assisted chemical vapour deposition. Pyrrole (C{sub 4}H{sub 5}N), Pyrrolidine (C{sub 4}H{sub 9}N), Azabenzimidazole (C{sub 6}H{sub 5}N{sub 3}) and Triazine (C{sub 6}H{sub 15}N{sub 3}) were used as precursors. The vibrational modes observed for C-N and C = N from FTIR spectra confirms the bonding of nitrogen with carbon. XPS core level spectra of C 1s and N 1s also show the formation of bonding between carbon and nitrogen atoms. The nitrogen content in the prepared samples was found to be around 25 atomic %.

  4. Reduction of electron accumulation at InN(0001) surfaces via saturation of surface states by potassium and oxygen as donor- or acceptor-type adsorbates

    SciTech Connect

    Eisenhardt, A.; Reiß, S.; Krischok, S. Himmerlich, M.

    2014-01-28

    The influence of selected donor- and acceptor-type adsorbates on the electronic properties of InN(0001) surfaces is investigated implementing in-situ photoelectron spectroscopy. The changes in work function, surface band alignment, and chemical bond configurations are characterized during deposition of potassium and exposure to oxygen. Although an expected opponent charge transfer characteristic is observed with potassium donating its free electron to InN, while dissociated oxygen species extract partial charge from the substrate, a reduction of the surface electron accumulation occurs in both cases. This observation can be explained by adsorbate-induced saturation of free dangling bonds at the InN resulting in the disappearance of surface states, which initially pin the Fermi level and induce downward band bending.

  5. Corrosion behavior of mesoporous transition metal nitrides

    SciTech Connect

    Yang, Minghui; Allen, Amy J.; Nguyen, Minh T.; Ralston, Walter T.; MacLeod, Michelle J.; DiSalvo, Francis J.

    2013-09-15

    Transition metal nitrides (TMN) have many desirable characteristics such as high hardness and good thermal stability under reducing conditions. This work reports an initial survey of the chemical stability of mesoporous TMNs (TM=Nb, V, Cr and Ti) in water at 80 °C at neutral, acidic and alkaline pH. The mesoporous TMNs had specific surface areas of 25–60 m{sup 2}/g with average pore sizes ranging from 10 to 50 nm. The high surface areas of these materials enhance the rate of corrosion per unit mass over that of a bulk material, making detection of corrosion much easier. The products were characterized by Rietveld refinement of powder X-ray diffraction (PXRD) patterns and by scanning electron microscopy (SEM). Several nitrides have corrosion rates that are, within error, not distinguishable from zero (±1 Å/day). Of the nitrides examined, CrN appears to be the most corrosion resistant under acidic conditions. None of the nitrides studied are corrosion resistant under alkaline conditions. - Graphical abstract: Corrosion behavior of mesoporous transition metal nitrides (TM=Nb, V, Cr and Ti) in acidic and alkaline solutions at 80 °C for 2 weeks. Display Omitted - highlights: • Corrosion rates of mesoporous transition metal nitrides in aqueous solution is reported. • The mesoporous TMNs had surface areas of 25–60 m{sup 2}/g. • CrN is the most corrosion resistant under the conditions studied.

  6. Highly Conducting Transparent Indium-Doped Zinc Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Singh, Budhi; Ghosh, Subhasis

    2014-09-01

    Highly conducting transparent indium-doped zinc oxide (IZO) thin films have been achieved by controlling different growth parameters using radio frequency magnetron sputtering. The structural, electrical, and optical properties of the IZO thin films have been investigated for varied indium content and growth temperature ( T G) in order to find out the optimum level of doping to achieve the highest conducting transparent IZO thin films. The highest mobility and carrier concentration of 11.5 cm2/V-s and 3.26 × 1020 cm-3, respectively, have been achieved in IZO doped with 2% indium. It has been shown that as T G of the 2% IZO thin films increase, more and more indium atoms are substituted into Zn sites leading to shift in (002) peaks towards higher angles which correspond to releasing the stress within the IZO thin film. The minimum resistivity of 5.3 × 10-4 Ω-cm has been achieved in 2% indium-doped IZO grown at 700°C.

  7. Indium-granulocyte scanning in the painful prosthetic joint

    SciTech Connect

    Pring, D.J.; Henderson, R.G.; Keshavarzian, A.; Rivett, A.G.; Krausz, T.; Coombs, R.R.; Lavender, J.P.

    1986-07-01

    The value of indium-111-labeled granulocyte scanning to determine the presence of infection was assessed in 50 prosthetic joints (41 of which were painful) in 40 patients. Granulocytes were obtained from the patients' blood and labeled in plasma with indium 111 tropolonate. Abnormal accumulation of indium 111 in the region of the prosthesis was noted. Proven infection occurred in 11 prostheses, and all of the infections were detected by indium-111-labeled granulocyte scanning. Nineteen were not infected (including nine asymptomatic controls) and only two produced false-positive scans. This represents a specificity of 89.5%, sensitivity of 100%, and overall accuracy of 93.2%. These results compare favorably with plain radiography. There was no radiologic evidence of infection in three of the infected prostheses, and 10 of the noninfected prostheses had some radiologic features that suggested sepsis. We conclude that indium-granulocyte scanning can reliably detect or exclude infection in painful prosthetic joints and should prove useful in clinical management.

  8. Method for forming indium oxide/n-silicon heterojunction solar cells

    DOEpatents

    Feng, Tom; Ghosh, Amal K.

    1984-03-13

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  9. Direct access to macroporous chromium nitride and chromium titanium nitride with inverse opal structure.

    PubMed

    Zhao, Weitian; DiSalvo, Francis J

    2015-03-21

    We report a facile synthesis of single-phase, nanocrystalline macroporous chromium nitride and chromium titanium nitride with an inverse opal morphology. The material is characterized using XRD, SEM, HR-TEM/STEM, TGA and XPS. Interconversion of macroporous CrN to Cr2O3 and back to CrN while retaining the inverse opal morphology is also demonstrated. PMID:25705745

  10. Direct access to macroporous chromium nitride and chromium titanium nitride with inverse opal structure.

    PubMed

    Zhao, Weitian; DiSalvo, Francis J

    2015-03-21

    We report a facile synthesis of single-phase, nanocrystalline macroporous chromium nitride and chromium titanium nitride with an inverse opal morphology. The material is characterized using XRD, SEM, HR-TEM/STEM, TGA and XPS. Interconversion of macroporous CrN to Cr2O3 and back to CrN while retaining the inverse opal morphology is also demonstrated.

  11. Indium-111-Photofrin-II scintillation scan

    SciTech Connect

    Origitano, T.C.; Karesh, S.M.; Reichman, O.H.; Henkin, R.E.; Caron, M.J.

    1989-04-01

    Photodynamic therapy is under intense investigation as an adjuvant treatment for malignant glial tumors of the central nervous system. Photofrin-II (HpD-II) is currently the most actively investigated photosensitizing agent. A crucial issue regarding the safe and efficacious usage of HpD-II-based photodynamic therapy is the individual in vivo kinetics of tumor uptake and retention, compared with normal brain clearance. The optimal time for photoactivation of sensitized tumor must be known to ensure a high target-to-nontarget ratio, resulting in the maximal tumor destruction while preserving normal brain. Our laboratory developed a radionuclide scan based on 111indium (111In)-labeled HpD-II to evaluate HpD-II localization and clearance noninvasively within a canine model of intracerebral gliosarcoma. Synthesis of the 111In-HpD-II complex in greater than 90% yield is achieved by a simple, rapid labeling method. Radiochemical purity and stability were verified by high-performance liquid chromatography. Using the canine model of intracerebral gliosarcoma, we followed the uptake of 111In-HpD-II in tumors with serial scintillation scanning. Localization of the tumor by 111In-HpD-II has been verified by contrast-enhanced computed tomographic scan followed by gross and histological examination of the enhancing brain region. Total body biodistribution of 111In-HpD-II at various times after injection has been evaluated. The ratio of uptake in tumor compared with surrounding brain peaked at 72 hours after injection. The knowledge of regional distribution and concentration of a photosensitizing agent within a tumor mass and surrounding brain allows for the most efficacious timing and localization of a photoactivating source.

  12. InGaN nanowires with high InN molar fraction: growth, structural and optical properties.

    PubMed

    Zhang, Xin; Lourenço-Martins, Hugo; Meuret, Sophie; Kociak, Mathieu; Haas, Benedikt; Rouvière, Jean-Luc; Jouneau, Pierre-Henri; Bougerol, Catherine; Auzelle, T; Jalabert, D; Biquard, Xavier; Gayral, Bruno; Daudin, Bruno

    2016-05-13

    The structural and optical properties of axial GaN/InGaN/GaN nanowire heterostructures with high InN molar fractions grown by molecular beam epitaxy have been studied at the nanoscale by a combination of electron microscopy, extended x-ray absorption fine structure and nano-cathodoluminescence techniques. InN molar fractions up to 50% have been successfully incorporated without extended defects, as evidence of nanowire potentialities for practical device realisation in such a composition range. Taking advantage of the N-polarity of the self-nucleated GaN NWs grown by molecular beam epitaxy on Si(111), the N-polar InGaN stability temperature diagram has been experimentally determined and found to extend to a higher temperature than its metal-polar counterpart. Furthermore, annealing of GaN-capped InGaN NWs up to 800 °C has been found to result in a 20 times increase of photoluminescence intensity, which is assigned to point defect curing.

  13. Wine Valley Inn: A mineral water spa in Calistoga, California. Geothermal-energy-system conceptual design and economic feasibility

    SciTech Connect

    Not Available

    1981-10-26

    The purpose of this study is to determine the engineering and economic feasibility for utilizing geothermal energy for air conditioning and service water heating at the Wine Valley Inn, a mineral water spa in Calistoga, California. The study evaluates heating, ventilating, air conditioning and water heating systems suitable for direct heat geothermal application. Due to the excellent geothermal temperatures available at this site, the mechanics and economics of a geothermally powered chilled water cooling system are evaluated. The Wine Valley Inn has the resource potential to have one of the few totally geothermal powered air conditioning and water heating systems in the world. This total concept is completely developed. A water plan was prepared to determine the quantity of water required for fresh water well development based on the special requirements of the project. An economic evaluation of the system is included to justify the added capital investment needed to build the geothermally powered mineral spa. Energy payback calculations are presented. A thermal cascade system is proposed to direct the geothermal water through the energy system to first power the chiller, then the space heating system, domestic hot water, the two spas and finally to heat the swimming pool. The Energy Management strategy required to automatically control this cascade process using industrial quality micro-processor equipment is described. Energy Management controls are selected to keep equipment sizing at a minimum, pump only the amount of geothermal water needed and be self balancing.

  14. Materials flow of indium in the United States in 2008 and 2009

    USGS Publications Warehouse

    Goonan, Thomas G.

    2012-01-01

    Indium is a material that has many applications. It is used by anyone who watches television or views a computer screen. It is found in solar energy arrays and in soldering applications that are required to be lead free. In 2009, about 550 metric tons (t) of indium metal was produced from primary sources world-wide; it was estimated that the United States consumed about 110 t of indium metal (20 percent of world primary production). However, when imports of consumer products that contain indium are considered, the United States consumed about 200 t of indium (36 percent of world primary production). When one considers the recovery from the low-efficiency sputtering process that coats indium-tin oxide onto glass and other surfaces, the recycling rate (within the manufacturing process that uses indium-tin oxide in flat panel displays approaches 36 percent. However, indium recovery from old scrap generated from end-of-life consumer products is not sufficiently economic to add significantly to secondary production. Between 1988 and 2010, indium prices averaged $381 per kilogram (in constant 2000 dollars). However, prices have been quite volatile (deviating from the average of $381 per kilogram by ±$199 per kilogram, a 52 percent difference from the average), reflecting short-term disequilibrium of supply and demand but also responsiveness of supply to demand. The dynamics of zinc smelting govern the primary supply of indium because indium is a byproduct of zinc smelting. Secondary indium supply, which accounts for about one-half of total indium supply, is governed by indium prices and technological advances in recovery. Indium demand is expected to grow because the number and volume of cutting edge technology applications that depend on indium are expected to grow.

  15. Nitride Fuel Modeling Recommendation for Nitride Fuel Material Property Measurement Priority

    SciTech Connect

    William Carmack; Richard Moore

    2005-09-01

    The purpose of this effort was to provide the basis for a model that effectively predicts nitride fuel behavior. Material property models developed for the uranium nitride fuel system have been used to approximate the general behavior of nitride fuels with specific property models for the transuranic nitride fuels utilized as they become available. The AFCI fuel development program now has the means for predicting the behavior of the transuranic nitride fuel compositions. The key data and models needed for input into this model include: Thermal conductivity with burnup Fuel expansion coefficient Fuel swelling with burnup Fission gas release with burnup. Although the fuel performance model is a fully functional FEA analysis tool, it is limited by the input data and models.

  16. Indium oxide inverse opal films synthesized by structure replication method

    NASA Astrophysics Data System (ADS)

    Amrehn, Sabrina; Berghoff, Daniel; Nikitin, Andreas; Reichelt, Matthias; Wu, Xia; Meier, Torsten; Wagner, Thorsten

    2016-04-01

    We present the synthesis of indium oxide (In2O3) inverse opal films with photonic stop bands in the visible range by a structure replication method. Artificial opal films made of poly(methyl methacrylate) (PMMA) spheres are utilized as template. The opal films are deposited via sedimentation facilitated by ultrasonication, and then impregnated by indium nitrate solution, which is thermally converted to In2O3 after drying. The quality of the resulting inverse opal film depends on many parameters; in this study the water content of the indium nitrate/PMMA composite after drying is investigated. Comparison of the reflectance spectra recorded by vis-spectroscopy with simulated data shows a good agreement between the peak position and calculated stop band positions for the inverse opals. This synthesis is less complex and highly efficient compared to most other techniques and is suitable for use in many applications.

  17. Occult purulent pericarditis detected by indium-111 leukocyte imaging

    SciTech Connect

    Greenberg, M.L.; Niebulski, H.I.; Uretsky, B.F.; Salerni, R.; Klein, H.A.; Forstate, W.J.; Starzl, T.E.

    1984-05-01

    Leukocyte imaging with indium-111 is a relatively new technique which, to this point in time, has been discussed almost exclusively in the radiologic literature. Although this procedure has been used mainly to detect intra-abdominal infection, the thorax is routinely imaged along with the abdomen, and therefore detection of cardiac disease may be feasible. This case report is of a young woman after liver transplantation who developed occult purulent pericarditis initially detected by a leukocyte scan with indium-111. This case demonstrates that striking pericardial uptake on a whole-body indium-111 leukocyte scan can occur with purulent pericarditis, and it reemphasizes how insidiously purulent pericarditis may present in an immunosuppressed patient.

  18. Mobility of indium on the ZnO(0001) surface

    SciTech Connect

    Heinhold, R.; Reeves, R. J.; Allen, M. W.; Williams, G. T.; Evans, D. A.

    2015-02-02

    The mobility of indium on the Zn-polar (0001) surface of single crystal ZnO wafers was investigated using real-time x-ray photoelectron spectroscopy. A sudden transition in the wettability of the ZnO(0001) surface was observed at ∼520 °C, with indium migrating from the (0001{sup ¯}) underside of the wafer, around the non-polar (11{sup ¯}00) and (112{sup ¯}0) sidewalls, to form a uniform self-organized (∼20 Å) adlayer. The In adlayer was oxidized, in agreement with the first principles calculations of Northrup and Neugebauer that In{sub 2}O{sub 3} precipitation can only be avoided under a combination of In-rich and Zn-rich conditions. These findings suggest that unintentional In adlayers may form during the epitaxial growth of ZnO on indium-bonded substrates.

  19. Synthesis and conductivity of indium-doped tin pyrophosphates

    SciTech Connect

    Garzon, Fernando H; Mukundan, Rangachary; Brosha, Eric L

    2008-01-01

    We have synthesized indium-doped tin pyrophosphates as high-temperature anhydrous proton conductors. The ratio of tin to indium was varied using two different synthetic methods. The first is a high-temperature reaction in which a paste containing the reactants in excess phosphoric acid was heated for various amounts of time at various temperatures. The second method is a solution precipitation procedure followed by calcination, which offers several advantages over traditional synthetic techniques. These advantages inc 1 ude better stoichiometric control, lower temperature requirements, and chemically uniform products. Several phosphate sources were investigated, including phosphoric acid, pyrophosphoric acid, and potassium pyrophosphate. The resulting indium-doped tin pyrophosphates had good proton conductivity over a wide temperature range with no humidification.

  20. Temperature dependence of the internal friction of polycrystalline indium

    NASA Astrophysics Data System (ADS)

    Sapozhnikov, K. V.; Golyandin, S. N.; Kustov, S. B.

    2010-12-01

    The temperature dependences of the internal friction and the elastic modulus of polycrystalline indium have been investigated in the temperature range 7-320 K at oscillatory loading frequencies of approximately 100 kHz. The effect of temperature on the amplitude dependence and the effect of high-amplitude loading at 7 K on the temperature and amplitude dependences of the internal friction of indium have been analyzed. It has been demonstrated that the thermocycling leads to microplastic deformation of indium due to the anisotropy of thermal expansion and the appearance of a "recrystallization" maximum in the spectrum of the amplitude-dependent internal friction. The conclusion has been drawn that the bulk diffusion of vacancies and impurities begins at temperatures of approximately 90 K and that, at lower temperatures, the diffusion occurs in the vicinity of dislocations. It has been revealed that the high-temperature internal friction background becomes noticeable after the dissolution of Cottrell atmospheres.

  1. The Availability of Indium: The Present, Medium Term, and Long Term

    SciTech Connect

    Lokanc, Martin; Eggert, Roderick; Redlinger, Michael

    2015-10-01

    Demand for indium is likely to increase if the growth in deployment of the copper-indium-gallium-selenide (CIGS) and III-V thin-film photovoltaic technologies accelerates. There are concerns about indium supply constraints since it is relatively rare element in the earth's crust and because it is produced exclusively as a byproduct.

  2. Low-resistivity and transparent indium-oxide-doped ZnO ohmic contact to p-type GaN

    SciTech Connect

    Lim, Jae-Hong; Hwang, Dae-Kue; Kim, Hyun-Sik; Oh, Jin-Yong; Yang, Jin-Ho; Navamathavan, R.; Park, Seong-Ju

    2004-12-20

    We report on the indium-oxide-doped ZnO (IZO) transparent ohmic contact to the p-GaN. The IZO transparent ohmic contact layer was deposited on p-GaN by e-beam evaporation. The transmittance of an IZO film with a thickness of 250 nm was 84%-92% for the light in the wavelength range of 400 and 600 nm. In addition, the IZO contact film yielded a low specific contact resistance of 3.4x10{sup -4} {omega} cm{sup 2} on p-GaN when annealed at 600 deg. C for 5 min under a nitrogen ambient. Auger electron spectroscopy and x-ray photoemission spectroscopy analyses of the IZO and p-GaN interface indicated that Ga atoms had out-diffused and an InN phase was formed at the interface region after the thermal annealing process, resulting in a decrease in contact resistance. The light output power of a light-emitting diode (LED) with an IZO ohmic contact layer was increased by 34% at 83 mW of electrical input power compared to that of a LED with a Ni/Au ohmic contact layer.

  3. Equation of state of liquid Indium under high pressure

    SciTech Connect

    Li, Huaming E-mail: mo.li@gatech.edu; Li, Mo E-mail: mo.li@gatech.edu; Sun, Yongli

    2015-09-15

    We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids, these detailed predictions are yet to be confirmed by further experiment.

  4. Indium-doped GaAs: Investigation of deep traps

    NASA Astrophysics Data System (ADS)

    Laurenti, J. P.; Wolter, K.; Roentgen, P.; Seibert, K.; Kurz, H.; Camassel, J.

    1989-03-01

    The effect of indium incorporation on the concentration of deep traps in a series of GaAs epitaxial layers has been investigated by performing quantitative photoluminescence (PL) and capacitance [deep-level transient spectroscopy (DLTS)] spectroscopic studies. All samples were epitaxial layers of n-type GaAs:In, grown by organometallic vapor-phase epitaxy (OMVPE) on liquid-encapsulated Czochralski (LEC) -grown GaAs:Cr substrates. The calibrated indium concentration ranged between 0 and 6.5×1019 atoms cm-3, which is about 0.3% in alloy composition. We have investigated (i) the bands associated with chromium in both the epitaxial layers and the original substrates; (ii) a large recombination band, associated with an unidentified (D-VGa) complex, at about 1.2 eV; and (iii) the DLTS signal associated with the well-known deep trap EL2. We find the following. First, there is a one-to-one correspondence between the PL intensity associated with Cr2+, at 0.84 eV, and the D-VGa signal at 1.2 eV. This is true for both the epitaxial layers and the original substrates and suggests identification of the unknown donor participating in the D-VGa complex as Cr4+. Second, we find all PL intensities to decrease with increasing indium concentration, while the concentration and depth profile of EL2 are not affected. In contrast to the near-band-edge PL intensity, which increased with increasing indium content, there is a drop by about 1 order of magnitude for all chromium-related features when going from indium-free to about 0.3% indium-rich sample. Moreover, there is a one-to-one correspondence between the increase in the near-band-edge PL intensity and the decrease in the chromium-related signals. This establishes, on a fully experimental basis, the relative roles played by indium and chromium in our epitaxial samples: both compete to incorporate on gallium sites in the strain field of neighboring vacancies but, because of a higher incorporation rate, increasing the indium

  5. Equation of state of liquid Indium under high pressure

    NASA Astrophysics Data System (ADS)

    Li, Huaming; Sun, Yongli; Li, Mo

    2015-09-01

    We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids, these detailed predictions are yet to be confirmed by further experiment.

  6. Transition properties of low-lying states in atomic indium

    SciTech Connect

    Sahoo, B. K.; Das, B. P.

    2011-07-15

    We present here the results of our relativistic many-body calculations of various properties of the first six low-lying excited states of indium. The calculations were performed using the relativistic coupled-cluster method in the framework of the singles, doubles, and partial triples approximation. The lifetime of the [4p{sup 6}]5s{sup 2}5p{sub 3/2} state in this atom is determined. Our results could be used to shed light on the reliability of the lifetime measurements of the excited states of atomic indium that we have considered in the present work.

  7. Discovery of the calcium, indium, tin, and platinum isotopes

    SciTech Connect

    Amos, S.; Gross, J.L.; Thoennessen, M.

    2011-07-15

    Currently, twenty-four calcium, thirty-eight indium, thirty-eight tin, and thirty-nine platinum isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented. - Highlights: Documentation of the discovery of all calcium, indium, tin and platinum isotopes. {yields} Summary of author, journal, year, place and country of discovery for each isotope. {yields} Brief description of discovery history of each isotope.

  8. Method of manufacture of atomically thin boron nitride

    DOEpatents

    Zettl, Alexander K

    2013-08-06

    The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.

  9. Deep Subgap Feature in Amorphous Indium Gallium Zinc Oxide. Evidence Against Reduced Indium

    SciTech Connect

    Sallis, Shawn; Quackenbush, Nicholas F.; Williams, Deborah S.; Senger, Mikell; Woicik, Joseph C.; White, Bruce E.; Piper, Louis F.

    2015-01-14

    Amorphous indium gallium zinc oxide (a-IGZO) is the archetypal transparent amorphous oxide semiconductor. In spite of the gains made with a-IGZO over amorphous silicon in the last decade, the presence of deep subgap states in a-IGZO active layers facilitate instabilities in thin film transistor properties under negative bias illumination stress. Several candidates could contribute to the formation of states within the band gap. We present evidence against In+ lone pair active electrons as the origin of the deep subgap features. No In+ species are observed, only In0 nano-crystallites under certain oxygen deficient growth conditions. Our results further support under coordinated oxygen as the source of the deep subgap states.

  10. Indium tin oxide and indium phosphide heterojunction nanowire array solar cells

    SciTech Connect

    Yoshimura, Masatoshi Nakai, Eiji; Fukui, Takashi; Tomioka, Katsuhiro

    2013-12-09

    Heterojunction solar cells were formed with a position-controlled InP nanowire array sputtered with indium tin oxide (ITO). The ITO not only acted as a transparent electrode but also as forming a photovoltaic junction. The devices exhibited an open-circuit voltage of 0.436 V, short-circuit current of 24.8 mA/cm{sup 2}, and fill factor of 0.682, giving a power conversion efficiency of 7.37% under AM1.5 G illumination. The internal quantum efficiency of the device was higher than that of the world-record InP cell in the short wavelength range.

  11. III-Nitride Dry Etching - Comparison of Inductively Coupled Plasma Chemistries

    SciTech Connect

    Abernathy, C.R.; Cho, H.; Donovan, S.M.; Hahn, Y-B.; Han, J.; Hays, D.C.; MacKenzie, J.D.; Pearton, S.J.; Shul, R.J.

    1998-11-10

    A systematic study of the etch characteristics of GaN, AlN and InN has been performed with boron halides- (BI{sub 3} and BBr{sub 3}) and interhalogen- (ICl and IBr) based Inductively Coupled Plasmas. Maximum etch selectivities of -100:1 were achieved for InN over both GaN and AlN in the BI{sub 3} mixtures due to the relatively high volatility of the InN etch products and the lower bond strength of InN. Maximum selectivies of- 14 for InN over GaN and >25 for InN over AlN were obtained with ICl and IBr chemistries. The etched surface morphologies of GaN in these four mixtures are similar or better than those of the control sample.

  12. Silicon nitride ceramic having high fatigue life and high toughness

    DOEpatents

    Yeckley, Russell L.

    1996-01-01

    A sintered silicon nitride ceramic comprising between about 0.6 mol % and about 3.2 mol % rare earth as rare earth oxide, and between about 85 w/o and about 95 w/o beta silicon nitride grains, wherein at least about 20% of the beta silicon nitride grains have a thickness of greater than about 1 micron.

  13. The daytime boundary layer in the Inn Valley - A model evaluation study with high-quality turbulence measurements

    NASA Astrophysics Data System (ADS)

    Goger, Brigitta; Rotach, Mathias W.; Gohm, Alexander; Fuhrer, Oliver; Stiperski, Ivana

    2016-04-01

    Atmospheric processes associated with complex terrain include various phenomena on the meso- and microscale, which contribute significantly to the local weather in mountainous areas of the Earth. One of the most prominent and well-known boundary-layer phenomena in mountainous terrain is the daytime valley wind circulation, which is very pronounced on clear-sky days with weak synoptic forcing. We use several chosen "valley wind days" in the Inn Valley, Austria, as case studies for the evaluation of the performance of the NWP model COSMO on a horizontal resolution of 1.1 km with a focus on boundary-layer processes and turbulent exchange. The overall goal is to evaluate the model setup and to investigate whether the model's physics schemes (initially developed for horizontally homogeneous and flat surroundings) are suitable for truly complex terrain. We evaluate the model by using measurements from the so-called "i-Box" located in the Inn Valley. The i-Box consists of six core sites that are located at representative locations in the Inn Valley, and two remote sensing systems (wind Lidar and HATPRO passive T/RH profiler) in the city of Innsbruck. The long-term data set provides a data pool of high-resolution velocity variances, turbulence variables, radiation, soil moisture, and vertical profiles of temperature, humidity, and wind in the lower troposphere, which allows a process-oriented analysis. A special focus is laid on the daytime valley boundary layer and its interaction with the developing up-valley wind. Vertical cross-sections show that the valley wind has an asymmetric structure, hence, the i-Box stations show a high spatial variability. While the station on the valley bottom and on the south-facing slope are clearly under the strong influence of the valley wind, the two stations on the north-facing slope are rather dominated by slope flows. We find that the valley wind has a strong (indirect) influence on the development of the local turbulence kinetic

  14. Study of structural properties of cubic InN films on GaAs(001) substrates by molecular beam epitaxy and migration enhanced epitaxy

    SciTech Connect

    Casallas-Moreno, Y. L.; Perez-Caro, M.; Gallardo-Hernandez, S.; Ramirez-Lopez, M.; Martinez-Velis, I.; Lopez-Lopez, M.; Escobosa-Echavarria, A.

    2013-06-07

    InN epitaxial films with cubic phase were grown by rf-plasma-assisted molecular beam epitaxy (RF-MBE) on GaAs(001) substrates employing two methods: migration-enhanced epitaxy (MEE) and conventional MBE technique. The films were synthesized at different growth temperatures ranging from 490 to 550 Degree-Sign C, and different In beam fluxes (BEP{sub In}) ranging from 5.9 Multiplication-Sign 10{sup -7} to 9.7 Multiplication-Sign 10{sup -7} Torr. We found the optimum conditions for the nucleation of the cubic phase of the InN using a buffer composed of several thin layers, according to reflection high-energy electron diffraction (RHEED) patterns. Crystallographic analysis by high resolution X-ray diffraction (HR-XRD) and RHEED confirmed the growth of c-InN by the two methods. We achieved with the MEE method a higher crystal quality and higher cubic phase purity. The ratio of cubic to hexagonal components in InN films was estimated from the ratio of the integrated X-ray diffraction intensities of the cubic (002) and hexagonal (1011) planes measured by X-ray reciprocal space mapping (RSM). For MEE samples, the cubic phase of InN increases employing higher In beam fluxes and higher growth temperatures. We have obtained a cubic purity phase of 96.4% for a film grown at 510 Degree-Sign C by MEE.

  15. Study of Nitrogen Incorporation in Indium Antimonide on Gallium Arsenide by Molecular Beam Epitaxy for Long Wavelength Infrared Devices

    NASA Astrophysics Data System (ADS)

    Patra, Nimai Chand

    The distinguishing features of dilute nitride III-V semiconductors lie in the large simultaneous reduction in the band gap and lattice parameter when N is incorporated in small amounts in an otherwise wide band gap III-V material. In particular, N incorporation in InSb is attracting great attention due to its potential applications in the long wavelength infrared (LWIR) applications. However, the relatively small atomic size of N with respect to Sb makes the growth of good quality InSbN layers challenging with effective N incorporation. In this dissertation we present a correlation of the molecular beam epitaxial growth parameters on the type of N-bonding in the InSbN epilayers. Lower growth temperatures of ~290 °C were observed to favor formation of more substitutional N (In-N) and less interstitial N (Sb-N, N-N and In-N-Sb) in the InSbN epilayers. The types of N-bonding were observed to have dominant effect on the structural, vibrational, electrical and optical properties of these dilute nitride epilayers grown on GaAs substrates. As-grown epilayers with high N incorporation of 2.6 % were observed to exhibit a blue shift in the absorption edge to 0.132 eV due to Moss-Burstein effect. Both ex-situ and in-situ annealing at 430 °C improved the quality of the layers as attested to by the micro-Raman spectra, reduced the carrier concentration to ~10 16 cm-3, increased the mobility (micro) to ~13,000 cm2/V-s and red shift the absorption edge to ~10 microm at room temperature (RT). Amongst the heterostructures examined, consisting of different combination of thickness of InSb and InSbN layers, the growth of a relatively thick (~1.4 microm) InSb buffer layer was found to prevent the propagation of rotational and threading dislocations into the subsequent InSbN epilayers. Thus, high RT micro exceeding 40,000 cm2/Vs and an optical absorption edge at ~12 microm in the LWIR range have been achieved for 450 °C ex-situ annealed 0.4 microm InSbN/ 1.4 microm InSb/ Ga

  16. Modeling of Copper Indium/Gallium Diselenide Superlattices

    NASA Astrophysics Data System (ADS)

    Scurlock, Steven

    2005-03-01

    The copper indium/gallium diselenide superlattice is investigated numerically for different layer lengths of this particular lattice matched crystal. The main emphasis is on applying the Kronig-Penny model for the relevant band gap energies. By varying the sizes of the layers, the region where superlattice behavior should exist is determined.

  17. Sub-micronewton thrust measurements of indium field emission thrusters

    NASA Technical Reports Server (NTRS)

    Ziemer, J. K.

    2003-01-01

    The performance of three indium field emission thrusters (In-FETs) developed by the Austrian Research Center Seibersdorf (ARCS) have been measured up to 200 muN, 2 mA, and 20 W using a submicronewton resolution thrust stand.

  18. Visible light electroluminescent diodes of indium-gallium phosphide

    NASA Technical Reports Server (NTRS)

    Clough, R.; Richman, D.; Tietjen, J.

    1970-01-01

    Vapor deposition and acceptor impurity diffusion techniques are used to prepare indium-gallium phosphide junctions. Certain problems in preparation are overcome by altering gas flow conditions and by increasing the concentration of phosphine in the gas. A general formula is given for the alloy's composition.

  19. p-type conduction in sputtered indium oxide films

    SciTech Connect

    Stankiewicz, Jolanta; Alcala, Rafael; Villuendas, Francisco

    2010-05-10

    We report p-type conductivity in intrinsic indium oxide (IO) films deposited by magnetron sputtering on fused quartz substrates under oxygen-rich ambient. Highly oriented (111) films were studied by x-ray diffraction, optical absorption, and Hall effect measurements. We fabricated p-n homojunctions on these films.

  20. Detection of accessory spleens with indium 111-labeled autologous platelets

    SciTech Connect

    Davis, H.H., II; Varki, A.; Heaton, W.A.; Siegel, B.A.

    1980-01-01

    In two patients with recurrent immune thrombocytopenia, accessory splenic tissue was demonstrated by radionuclide imaging following administration of indium 111-labeled autologous platelets. In one of these patients, no accessory splenic tissue was seen on images obtained with technetium 99m sulfur colloid. This new technique provides a simple means for demonstrating accessory spleens and simultaneously evaluating the life-span of autologous platelets.

  1. Indium-111 labeled anti-melanoma monoclonal antibodies

    DOEpatents

    Srivastava, S.C.; Fawwaz, R.A.; Ferrone, S.

    1984-04-30

    A monoclonal antibody to a high molecular weight melanoma-associated antigen was chelated and radiolabeled with indium-111. This material shows high affinity for melanoma and thus can be used in the detection, localization and imaging of melanoma. 1 figure.

  2. PECVD silicon-rich nitride and low stress nitride films mechanical characterization using membrane point load deflection

    NASA Astrophysics Data System (ADS)

    Bagolini, Alvise; Picciotto, Antonino; Crivellari, Michele; Conci, Paolo; Bellutti, Pierluigi

    2016-02-01

    An analysis of the mechanical properties of plasma enhanced chemical vapor (PECVD) silicon nitrides is presented, using micro fabricated silicon nitride membranes under point load deflection. The membranes are made of PECVD silicon-rich nitride and low stress nitride films. The mechanical performance of the bended membranes is examined both with analytical models and finite element simulation in order to extract the elastic modulus and residual stress values. The elastic modulus of low stress silicon nitride is calculated using stress free analytical models, while for silicon-rich silicon nitride and annealed low stress silicon nitride it is estimated with a pre-stressed model of point-load deflection. The effect of annealing both in nitrogen and hydrogen atmosphere is evaluated in terms of residual stress, refractive index and thickness variation. It is demonstrated that a hydrogen rich annealing atmosphere induces very little change in low stress silicon nitride. Nitrogen annealing effects are measured and shown to be much higher in silicon-rich nitride than in low stress silicon nitride. An estimate of PECVD silicon-rich nitride elastic modulus is obtained in the range between 240-320 GPa for deposited samples and 390 GPa for samples annealed in nitrogen atmosphere. PECVD low stress silicon nitride elastic modulus is estimated to be 88 GPa as deposited and 320 GPa after nitrogen annealing.

  3. Scale-up of microwave nitridation of sintered reaction bonded silicon nitride parts. Final report

    SciTech Connect

    Tiegs, T.N.; Kiggans, J.O.; Garvey, G.A.

    1997-10-01

    Scale-up were performed in which microwave heating was used to fabricate reaction-bonded silicon nitride and sintered reaction-bonded silicon nitride (SRBSN). Tests were performed in both a 2.45 GHz, 500 liter and a 2.45 GHz, 4000 liter multimode cavities. The silicon preforms processed in the studies were clevis pins for diesel engines. Up to 230 samples were processed in a single microwave furnace run. Data were collected which included weight gains for nitridation and sintering studies were performed using a conventional resistance-heated furnace.

  4. Infrared bolometers with silicon nitride micromesh absorbers

    NASA Technical Reports Server (NTRS)

    Bock, J. J.; Turner, A. D.; DelCastillo, H. M.; Beeman, J. W.; Lange, A. E.; Mauskopf, P. D.

    1996-01-01

    Sensitive far infrared and millimeter wave bolometers fabricated from a freestanding membrane of low stress silicon nitride are reported. The absorber, consisting of a metallized silicon nitride micromesh thermally isolated by radial legs of silicon nitride, is placed in an integrating cavity to efficiently couple to single mode or multiple mode infrared radiation. This structure provides low heat capacity, low thermal conduction and minimal cross section to energetic particles. A neutron transmutation doped Ge thermister is bump bonded to the center of the device and read out with evaporated Cr-Au leads. The limiting performance of the micromesh absorber is discussed and the recent results obtained from a 300 mK cold stage are summarized.

  5. Evaluation of silicon-nitride ceramic valves.

    SciTech Connect

    Sun, J. G.; Zhang, J. M.; Andrews, M. J.; Tretheway, J. S.; Phillips, N. S .L.; Jensen, J. A.; Nuclear Engineering Division; Univ. of Texas; Caterpillar, Inc.

    2008-01-01

    Silicon-nitride ceramic valves can improve the performance of both light- and heavy-duty automotive engines because of the superior material properties of silicon nitrides over current metal alloys. However, ceramics are brittle materials that may introduce uncertainties in the reliability and durability of ceramic valves. As a result, the lifetime of ceramic valves are difficult to predict theoretically due to wide variations in the type and distribution of microstructural flaws in the material. Nondestructive evaluation (NDE) methods are therefore required to assess the quality and reliability of these valves. Because ceramic materials are optically translucent and the strength-limiting flaws are normally located near the valve surface, a laser-scatter method can be used for NDE evaluation of ceramic valves. This paper reviews the progress in the development of this NDE method and its application to inspect silicon-nitride ceramic valves at various stages of manufacturing and bench and engine tests.

  6. Ternary metal nitrides by the urea route

    SciTech Connect

    Gomathi, A. . E-mail: gomathi@jncasr.ac.in

    2007-05-03

    Interstitial molybdenum ternary nitrides, M {sub n}Mo{sub 3}N (M = Fe and Co, n = 3; M = Ni, n = 2), can be obtained by heating the molybdate precursors, FeMoO{sub 4}, CoMoO{sub 4} and NiMoO{sub 4} with urea in the 1:12 molar ratio in the 900-1000 deg. C range. Fe{sub 3}Mo{sub 3}N and Co{sub 3}Mo{sub 3}N are obtained in pure form. The nickel nitride has the composition Ni{sub 2}Mo{sub 3}N and therefore is in admixture with nickel. All the nitrides have been characterized by various physical methods.

  7. Novel growth of aluminium nitride nanowires.

    PubMed

    Radwan, M; Bahgat, M

    2006-02-01

    This work describes novel growth of aluminium nitride (AIN) nanowires by nitridation of a mixture consists of aluminium and ammonium chloride powders (Al:NH4Cl = 1.5:1 weight ratio) at 1000 degrees C for 1 h in flowing nitrogen gas (1 l/min). XRD analysis of the product showed the formation of pure hexagonal AIN. SEM micrographs of as-synthesized product revealed the growth of homogeneous AIN nanowires (phi 40-150 nm). No droplets were observed at the tips of obtained nanowires which suggests that they were grown mainly by a vapor-phase reactions mechanism. Thermodynamic analysis of possible intermediate reactions in the operating temperatures range illustrates that these nanowires could be grown via spontaneous vapor-phase chlorination-nitridation sequences.

  8. Microstructural characterization of nitrided Timetal 834.

    PubMed

    Moskalewicz, T; Grogger, W; Czyrska-Filemonowicz, A

    2006-09-01

    The microstructure of Timetal 834, in as-received condition and after nitriding under glow discharge has been examined by light microscopy and analytical transmission electorn microscopy (TEM) methods (SAED, EDS, EELS and EFTEM). The microstructure of the as-received alloy consists of the alpha phase and a small amount of the beta phase. Silicide precipitates (Zr5Si4) are present both inside the grains and at the grain boundaries. TEM investigations of cross-sectional thin foils allow for detailed analysis of the nitrided layer microstructure. It was found that the nitrided layer exhibits a graded character with continuously varying nitrogen content. The outermost sublayer consists of nanocrystals of delta-TiN. The following sublayers consist mainly of delta'-Ti2N and epsilon-Ti2N grains. The last sublayer, closest to the substrate, is identified as a nitrogen-rich alpha(N) solid solution containing up to 14 at% of nitrogen. PMID:17059528

  9. Individual electron and hole localization in submonolayer InN quantum sheets embedded in GaN

    NASA Astrophysics Data System (ADS)

    Feix, F.; Flissikowski, T.; Chèze, C.; Calarco, R.; Grahn, H. T.; Brandt, O.

    2016-07-01

    We investigate sub-monolayer InN quantum sheets embedded in GaN(0001) by temperature-dependent photoluminescence spectroscopy under both continuous-wave and pulsed excitation. Both the peak energy and the linewidth of the emission band associated with the quantum sheets exhibit an anomalous dependence on temperature indicative of carrier localization. Photoluminescence transients reveal a power law decay at low temperatures reflecting that the recombining electrons and holes occupy spatially separate, individual potential minima reminiscent of conventional (In,Ga)N(0001) quantum wells exhibiting the characteristic disorder of a random alloy. At elevated temperatures, carrier delocalization sets in and is accompanied by a thermally activated quenching of the emission. We ascribe the strong nonradiative recombination to extended states in the GaN barriers and confirm our assumption by a simple rate-equation model.

  10. Structural and electronic properties of InN nanowire network grown by vapor-liquid-solid method

    SciTech Connect

    Barick, B. K. E-mail: subho-dh@yahoo.co.in; Dhar, S. E-mail: subho-dh@yahoo.co.in; Rodríguez-Fernández, Carlos; Cantarero, Andres

    2015-05-15

    Growth of InN nanowires have been carried out on quartz substrates at different temperatures by vapor-liquid-solid (VLS) technique using different thicknesses of Au catalyst layer. It has been found that a narrow window of Au layer thickness and growth temperature leads to multi-nucleation, in which each site acts as the origin of several nanowires. In this multi-nucleation regime, several tens of micrometer long wires with diameter as small as 20 nm are found to grow along [112{sup -}0] direction (a-plane) to form a dense network. Structural and electronic properties of these wires are studied. As grown nanowires show degenerate n-type behavior. Furthermore, x-ray photoemission study reveals an accumulation of electrons on the surface of these nanowires. Interestingly, the wire network shows persistence of photoconductivity for several hours after switching off the photoexcitation.

  11. Cross-current leaching of indium from end-of-life LCD panels.

    PubMed

    Rocchetti, Laura; Amato, Alessia; Fonti, Viviana; Ubaldini, Stefano; De Michelis, Ida; Kopacek, Bernd; Vegliò, Francesco; Beolchini, Francesca

    2015-08-01

    Indium is a critical element mainly produced as a by-product of zinc mining, and it is largely used in the production process of liquid crystal display (LCD) panels. End-of-life LCDs represent a possible source of indium in the field of urban mining. In the present paper, we apply, for the first time, cross-current leaching to mobilize indium from end-of-life LCD panels. We carried out a series of treatments to leach indium. The best leaching conditions for indium were 2M sulfuric acid at 80°C for 10min, which allowed us to completely mobilize indium. Taking into account the low content of indium in end-of-life LCDs, of about 100ppm, a single step of leaching is not cost-effective. We tested 6 steps of cross-current leaching: in the first step indium leaching was complete, whereas in the second step it was in the range of 85-90%, and with 6 steps it was about 50-55%. Indium concentration in the leachate was about 35mg/L after the first step of leaching, almost 2-fold at the second step and about 3-fold at the fifth step. Then, we hypothesized to scale up the process of cross-current leaching up to 10 steps, followed by cementation with zinc to recover indium. In this simulation, the process of indium recovery was advantageous from an economic and environmental point of view. Indeed, cross-current leaching allowed to concentrate indium, save reagents, and reduce the emission of CO2 (with 10 steps we assessed that the emission of about 90kg CO2-Eq. could be avoided) thanks to the recovery of indium. This new strategy represents a useful approach for secondary production of indium from waste LCD panels.

  12. Optimization of Indium Bump Morphology for Improved Flip Chip Devices

    NASA Technical Reports Server (NTRS)

    Jones, Todd J.; Nikzad, Shouleh; Cunningham, Thomas J.; Blazejewski, Edward; Dickie, Matthew R.; Hoenk, Michael E.; Greer, Harold F.

    2011-01-01

    Flip-chip hybridization, also known as bump bonding, is a packaging technique for microelectronic devices that directly connects an active element or detector to a substrate readout face-to-face, eliminating the need for wire bonding. In order to make conductive links between the two parts, a solder material is used between the bond pads on each side. Solder bumps, composed of indium metal, are typically deposited by thermal evaporation onto the active regions of the device and substrate. While indium bump technology has been a part of the electronic interconnect process field for many years and has been extensively employed in the infrared imager industry, obtaining a reliable, high-yield process for high-density patterns of bumps can be quite difficult. Under the right conditions, a moderate hydrogen plasma exposure can raise the temperature of the indium bump to the point where it can flow. This flow can result in a desirable shape where indium will efficiently wet the metal contact pad to provide good electrical contact to the underlying readout or imager circuit. However, it is extremely important to carefully control this process as the intensity of the hydrogen plasma treatment dramatically affects the indium bump morphology. To ensure the fine-tuning of this reflow process, it is necessary to have realtime feedback on the status of the bumps. With an appropriately placed viewport in a plasma chamber, one can image a small field (a square of approximately 5 millimeters on each side) of the bumps (10-20 microns in size) during the hydrogen plasma reflow process. By monitoring the shape of the bumps in real time using a video camera mounted to a telescoping 12 magnifying zoom lens and associated optical elements, an engineer can precisely determine when the reflow of the bumps has occurred, and can shut off the plasma before evaporation or de-wetting takes place.

  13. Plasma Treatment to Remove Carbon from Indium UV Filters

    NASA Technical Reports Server (NTRS)

    Greer, Harold F.; Nikzad, Shouleh; Beasley, Matthew; Gantner, Brennan

    2012-01-01

    The sounding rocket experiment FIRE (Far-ultraviolet Imaging Rocket Experiment) will improve the science community fs ability to image a spectral region hitherto unexplored astronomically. The imaging band of FIRE (.900 to 1,100 Angstroms) will help fill the current wavelength imaging observation hole existing from approximately equal to 620 Angstroms to the GALEX band near 1,350 Angstroms. FIRE is a single-optic prime focus telescope with a 1.75-m focal length. The bandpass of 900 to 1100 Angstroms is set by a combination of the mirror coating, the indium filter in front of the detector, and the salt coating on the front of the detector fs microchannel plates. Critical to this is the indium filter that must reduce the flux from Lymanalpha at 1,216 Angstroms by a minimum factor of 10(exp -4). The cost of this Lyman-alpha removal is that the filter is not fully transparent at the desired wavelengths of 900 to 1,100 Angstroms. Recently, in a project to improve the performance of optical and solar blind detectors, JPL developed a plasma process capable of removing carbon contamination from indium metal. In this work, a low-power, low-temperature hydrogen plasma reacts with the carbon contaminants in the indium to form methane, but leaves the indium metal surface undisturbed. This process was recently tested in a proof-of-concept experiment with a filter provided by the University of Colorado. This initial test on a test filter showed improvement in transmission from 7 to 9 percent near 900 with no process optimization applied. Further improvements in this performance were readily achieved to bring the total transmission to 12% with optimization to JPL's existing process.

  14. Low pressure growth of cubic boron nitride films

    NASA Technical Reports Server (NTRS)

    Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)

    1997-01-01

    A method for forming thin films of cubic boron nitride on substrates at low pressures and temperatures. A substrate is first coated with polycrystalline diamond to provide a uniform surface upon which cubic boron nitride can be deposited by chemical vapor deposition. The cubic boron nitride film is useful as a substitute for diamond coatings for a variety of applications in which diamond is not suitable. any tetragonal or hexagonal boron nitride. The cubic boron nitride produced in accordance with the preceding example is particularly well-suited for use as a coating for ultra hard tool bits and abrasives, especially those intended to use in cutting or otherwise fabricating iron.

  15. Use of and Occupational Exposure to Indium in the United States

    PubMed Central

    Hines, Cynthia J.; Roberts, Jennifer L.; Andrews, Ronnee N.; Jackson, Matthew V.; Deddens, James A.

    2015-01-01

    Indium use has increased greatly in the past decade in parallel with the growth of flat-panel displays, touchscreens, optoelectronic devices, and photovoltaic cells. Much of this growth has been in the use of indium tin oxide (ITO). This increased use has resulted in more frequent and intense exposure of workers to indium. Starting with case reports and followed by epidemiological studies, exposure to ITO has been linked to serious and sometimes fatal lung disease in workers. Much of this research was conducted in facilities that process sintered ITO, including manufacture, grinding, and indium reclamation from waste material. Little has been known about indium exposure to workers in downstream applications. In 2009–2011, the National Institute for Occupational Safety and Health (NIOSH) contacted 89 potential indium-using companies; 65 (73%) responded, and 43 of the 65 responders used an indium material. Our objective was to identify current workplace applications of indium materials, tasks with potential indium exposure, and exposure controls being used. Air sampling for indium was either conducted by NIOSH or companies provided their data for a total of 63 air samples (41 personal, 22 area) across 10 companies. Indium exposure exceeded the NIOSH recommended exposure limit (REL) of 0.1 mg/m3 for certain methods of resurfacing ITO sputter targets, cleaning sputter chamber interiors, and in manufacturing some inorganic indium compounds. Indium air concentrations were low in sputter target bonding with indium solder, backside thinning and polishing of fabricated indium phosphide-based semiconductor devices, metal alloy production, and in making indium-based solder pastes. Exposure controls such as containment, local exhaust ventilation (LEV), and tool-mounted LEV can be effective at reducing exposure. In conclusion, occupational hygienists should be aware that the manufacture and use of indium materials can result in indium air concentrations that exceed the NIOSH

  16. Use of and occupational exposure to indium in the United States.

    PubMed

    Hines, Cynthia J; Roberts, Jennifer L; Andrews, Ronnee N; Jackson, Matthew V; Deddens, James A

    2013-01-01

    Indium use has increased greatly in the past decade in parallel with the growth of flat-panel displays, touchscreens, optoelectronic devices, and photovoltaic cells. Much of this growth has been in the use of indium tin oxide (ITO). This increased use has resulted in more frequent and intense exposure of workers to indium. Starting with case reports and followed by epidemiological studies, exposure to ITO has been linked to serious and sometimes fatal lung disease in workers. Much of this research was conducted in facilities that process sintered ITO, including manufacture, grinding, and indium reclamation from waste material. Little has been known about indium exposure to workers in downstream applications. In 2009-2011, the National Institute for Occupational Safety and Health (NIOSH) contacted 89 potential indium-using companies; 65 (73%) responded, and 43 of the 65 responders used an indium material. Our objective was to identify current workplace applications of indium materials, tasks with potential indium exposure, and exposure controls being used. Air sampling for indium was either conducted by NIOSH or companies provided their data for a total of 63 air samples (41 personal, 22 area) across 10 companies. Indium exposure exceeded the NIOSH recommended exposure limit (REL) of 0.1 mg/m(3) for certain methods of resurfacing ITO sputter targets, cleaning sputter chamber interiors, and in manufacturing some inorganic indium compounds. Indium air concentrations were low in sputter target bonding with indium solder, backside thinning and polishing of fabricated indium phosphide-based semiconductor devices, metal alloy production, and in making indium-based solder pastes. Exposure controls such as containment, local exhaust ventilation (LEV), and tool-mounted LEV can be effective at reducing exposure. In conclusion, occupational hygienists should be aware that the manufacture and use of indium materials can result in indium air concentrations that exceed the NIOSH

  17. Use of and occupational exposure to indium in the United States.

    PubMed

    Hines, Cynthia J; Roberts, Jennifer L; Andrews, Ronnee N; Jackson, Matthew V; Deddens, James A

    2013-01-01

    Indium use has increased greatly in the past decade in parallel with the growth of flat-panel displays, touchscreens, optoelectronic devices, and photovoltaic cells. Much of this growth has been in the use of indium tin oxide (ITO). This increased use has resulted in more frequent and intense exposure of workers to indium. Starting with case reports and followed by epidemiological studies, exposure to ITO has been linked to serious and sometimes fatal lung disease in workers. Much of this research was conducted in facilities that process sintered ITO, including manufacture, grinding, and indium reclamation from waste material. Little has been known about indium exposure to workers in downstream applications. In 2009-2011, the National Institute for Occupational Safety and Health (NIOSH) contacted 89 potential indium-using companies; 65 (73%) responded, and 43 of the 65 responders used an indium material. Our objective was to identify current workplace applications of indium materials, tasks with potential indium exposure, and exposure controls being used. Air sampling for indium was either conducted by NIOSH or companies provided their data for a total of 63 air samples (41 personal, 22 area) across 10 companies. Indium exposure exceeded the NIOSH recommended exposure limit (REL) of 0.1 mg/m(3) for certain methods of resurfacing ITO sputter targets, cleaning sputter chamber interiors, and in manufacturing some inorganic indium compounds. Indium air concentrations were low in sputter target bonding with indium solder, backside thinning and polishing of fabricated indium phosphide-based semiconductor devices, metal alloy production, and in making indium-based solder pastes. Exposure controls such as containment, local exhaust ventilation (LEV), and tool-mounted LEV can be effective at reducing exposure. In conclusion, occupational hygienists should be aware that the manufacture and use of indium materials can result in indium air concentrations that exceed the NIOSH

  18. Pressure based first-principles study of the electronic, elastic, optic and phonon properties of zincblende InN

    NASA Astrophysics Data System (ADS)

    Usman, Zahid; Cao, Chuanbao; Mahmood, Tariq

    2013-12-01

    Generalized gradient approximation proposed by Perdew-Burke-Ernzerhof (GGA-PBE) is used to determine the effect of pressure on electronic, elastic, acoustic, optical and vibrational properties of zincblende InN along with the Ultra soft pseudopotential method. The structural properties show good consistency and stability at elevated pressures. The zincblende InN displays zero band gap and its metallicity maintains even at high pressures. The density of states appear in a quarterly divided region, where the contribution of different states have been discussed, and it is found that the peak positions are consistent with experimental L1, L3, K absorption and emission edges. The effect of pressure appears in strong hybridization due to which DOS above and below the Fermi level are shifting to the corresponding higher and lower energies due to p-d hybridization. The calculated elastic constants agree well with the literature. Except C44 and Cs, all others show an increasing trend with the pressure. Acoustic wave speeds have been calculated in [100], [110] and [111] directions with the help of elastic constants for the first time. For the optical properties, the main peaks of the imaginary part of dielectric function lie in close vicinity of experiment and shift to higher energies with a reduction in peak intensities when the pressure effects come into play. Similarly the absorption peaks are red shifted with respect to hydro-static pressure. The refractive index is maximum at lower energies and its magnitude reduces with pressure and the maximum value of energy loss function is obtained corresponding to minimum dielectric function. Phonon frequencies in high symmetry directions agree well with the only available first principle study. Except XTA, WTA, and LTA, all the other modes show an increase in phonon frequencies when pressure is exerted, this is further confirmed by Gruneisen parameters calculated for the first time.

  19. Characterization of high quality InN grown on production-style plasma assisted molecular beam epitaxy system

    SciTech Connect

    Gherasoiu, I.; O'Steen, M.; Bird, T.; Gotthold, D.; Chandolu, A.; Song, D. Y.; Xu, S. X.; Holtz, M.; Nikishin, S. A.; Schaff, W. J.

    2008-05-15

    In this work, the authors report step-flow growth mode of InN on [0001] oriented GaN templates, using a production-style molecular beam epitaxy system, Veeco GEN200 registered , equipped with a plasma source. Using adaptive growth conditions, they have obtained a surface morphology that exhibits the step-flow features. The root mean squared roughness over an area of 5x5 {mu}m{sup 2} is 1.4 nm with monolayer height terrace steps (0.281 nm), based on atomic force microscopy. It has been found that the presence of In droplets leads to defective surface morphology. From x-ray diffraction, they estimate edge and screw dislocation densities. The former is dominant over the latter. Micro-Raman spectra reveal narrow E{sub 2}{sup 2} phonon lines consistent with excellent crystalline quality of the epitaxial layers. The Hall mobility of 1 {mu}m thick InN layers, grown in step-flow mode, is slightly higher than 1400 cm{sup 2}/V s, while for other growth conditions yielding a smooth surface with no well-defined steps, mobility as high as 1904 cm{sup 2}/V s at room temperature has been measured. The samples exhibit high intensity photoluminescence (PL) with a corresponding band edge that shifts with free carrier concentration. For the lowest carrier concentration of 5.6x10{sup 17} cm{sup -3}, they observe PL emission at {approx}0.64 eV.

  20. Silicon-nitride and metal composite

    DOEpatents

    Landingham, Richard L.; Huffsmith, Sarah A.

    1981-01-01

    A composite and a method for bonding the composite. The composite includes a ceramic portion of silicon nitride, a refractory metal portion and a layer of MoSi.sub.2 indirectly bonding the composite together. The method includes contacting the layer of MoSi.sub.2 with a surface of the silicon nitride and with a surface of the metal; heating the layer to a temperature below 1400.degree. C.; and, simultaneously with the heating, compressing the layer such that the contacting is with a pressure of at least 30 MPa. This composite overcomes useful life problems in the fabrication of parts for a helical expander for use in power generation.

  1. Silicon-nitride and metal composite

    DOEpatents

    Landingham, R.L.; Huffsmith, S.A.

    A composite and a method for bonding the composite are described. The composite includes a ceramic portion of silicon nitride, a refractory metal portion and a layer of MoSi/sub 2/ indirectly bonding the composite together. The method includes contacting the layer of MoSi/sub 2/ with a surface of the silicon nitride and with a surface of the metal; heating the layer to a temperature below 1400/sup 0/C; and, simultaneously, compressing the layer such that the contacting is with a pressure of at least 30 MPa. This composite overcomes useful life problems in the fabrication of parts for a helical expander for use in power generation.

  2. Abrasion resistant silicon nitride based articles

    SciTech Connect

    Sarin, V.K.; Buijan, S.T.; Penty, R.A.

    1984-02-28

    A composite article and cutting tool are prepared by densification to form a body consisting essentially of particles of hard refractory material uniformly distributed in a matrix consisting essentially of a first phase and a second phase, said first phase consisting essentially of crystalline silicon nitride and said second phase being an intergranular refractory phase comprising silicon nitride and a suitable densification aid selected from the group consisting of yttrium oxide, zirconium oxide, hafnium oxide and the lanthanade rare earth oxides and mixture thereof.

  3. Alkaline Capacitors Based on Nitride Nanoparticles

    NASA Technical Reports Server (NTRS)

    Aldissi, Matt

    2003-01-01

    High-energy-density alkaline electrochemical capacitors based on electrodes made of transition-metal nitride nanoparticles are undergoing development. Transition- metal nitrides (in particular, Fe3N and TiN) offer a desirable combination of high electrical conductivity and electrochemical stability in aqueous alkaline electrolytes like KOH. The high energy densities of these capacitors are attributable mainly to their high capacitance densities, which, in turn, are attributable mainly to the large specific surface areas of the electrode nanoparticles. Capacitors of this type could be useful as energy-storage components in such diverse equipment as digital communication systems, implanted medical devices, computers, portable consumer electronic devices, and electric vehicles.

  4. Nitridation of silicon under high pressure

    SciTech Connect

    Heinrich, J. )

    1987-07-01

    The microstructure of reaction-bonded Si{sub 3}N{sub 4} was changed by nitriding Si powder compacts at 0, 1, and 50 MPa. The microstructural parameters were analyzed using light and scanning electron microscopy, XRD, and mercury pressure porosimetry. The influence of the nitriding gas pressure on the ratio of the crystallographic Si{sub 3}N{sub 4} phases {alpha} and {beta}, the pore size distribution, and the resulting mechanical properties has been investigated. High nitrogen pressure promotes the formation of {beta}-Si{sub 3}N{sub 4} and leads to a fine-grained homogeneous microstructure, with improved fracture strength and fracture toughness.

  5. Growth kinetics and structural perfection of (InN)1/(GaN)1-20 short-period superlattices on +c-GaN template in dynamic atomic layer epitaxy

    NASA Astrophysics Data System (ADS)

    Kusakabe, Kazuhide; Hashimoto, Naoki; Itoi, Takaomi; Wang, Ke; Imai, Daichi; Yoshikawa, Akihiko

    2016-04-01

    The growth kinetics and structural perfection of (InN)1/(GaN)1-20 short-period superlattices (SPSs) were investigated with their application to ordered alloys in mind. The SPSs were grown on +c-GaN template at 650 °C by dynamic atomic layer epitaxy in conventional plasma-assisted molecular beam epitaxy. It was found that coherent structured InN/GaN SPSs could be fabricated when the thickness of the GaN barrier was 4 ML or above. Below 3 ML, the formation of SPSs was quite difficult owing to the increased strain in the SPS structure caused by the use of GaN as a template. The effective or average In composition of the (InN)1/(GaN)4 SPSs was around 10%, and the corresponding InN coverage in the ˜1 ML-thick InN wells was 50%. It was found that the effective InN coverage in ˜1 ML-thick InN wells could be varied with the growth conditions. In fact, the effective In composition could be increased up to 13.5%, i.e., the corresponding effective InN coverage was about 68%, by improving the capping/freezing speed by increasing the growth rate of the GaN barrier layer.

  6. Boron nitride nanotubes for spintronics.

    PubMed

    Dhungana, Kamal B; Pati, Ranjit

    2014-01-01

    With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics. PMID:25248070

  7. Boron Nitride Nanotubes for Spintronics

    PubMed Central

    Dhungana, Kamal B.; Pati, Ranjit

    2014-01-01

    With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics. PMID:25248070

  8. Ultrahard nanotwinned cubic boron nitride.

    PubMed

    Tian, Yongjun; Xu, Bo; Yu, Dongli; Ma, Yanming; Wang, Yanbin; Jiang, Yingbing; Hu, Wentao; Tang, Chengchun; Gao, Yufei; Luo, Kun; Zhao, Zhisheng; Wang, Li-Min; Wen, Bin; He, Julong; Liu, Zhongyuan

    2013-01-17

    Cubic boron nitride (cBN) is a well known superhard material that has a wide range of industrial applications. Nanostructuring of cBN is an effective way to improve its hardness by virtue of the Hall-Petch effect--the tendency for hardness to increase with decreasing grain size. Polycrystalline cBN materials are often synthesized by using the martensitic transformation of a graphite-like BN precursor, in which high pressures and temperatures lead to puckering of the BN layers. Such approaches have led to synthetic polycrystalline cBN having grain sizes as small as ∼14 nm (refs 1, 2, 4, 5). Here we report the formation of cBN with a nanostructure dominated by fine twin domains of average thickness ∼3.8 nm. This nanotwinned cBN was synthesized from specially prepared BN precursor nanoparticles possessing onion-like nested structures with intrinsically puckered BN layers and numerous stacking faults. The resulting nanotwinned cBN bulk samples are optically transparent with a striking combination of physical properties: an extremely high Vickers hardness (exceeding 100 GPa, the optimal hardness of synthetic diamond), a high oxidization temperature (∼1,294 °C) and a large fracture toughness (>12 MPa m(1/2), well beyond the toughness of commercial cemented tungsten carbide, ∼10 MPa m(1/2)). We show that hardening of cBN is continuous with decreasing twin thickness down to the smallest sizes investigated, contrasting with the expected reverse Hall-Petch effect below a critical grain size or the twin thickness of ∼10-15 nm found in metals and alloys.

  9. Boron nitride nanotubes for spintronics.

    PubMed

    Dhungana, Kamal B; Pati, Ranjit

    2014-09-22

    With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  10. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells.

    PubMed

    Mansor, Noramalina; Jorge, A Belen; Corà, Furio; Gibbs, Christopher; Jervis, Rhodri; McMillan, Paul F; Wang, Xiaochen; Brett, Daniel J L

    2014-04-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li(+)Cl(-)), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li(+)Cl(-) catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA.

  11. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells

    PubMed Central

    2014-01-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li+Cl–), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li+Cl– catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA. PMID:24748912

  12. Precipitation Modeling in Nitriding in Fe-M Binary System

    NASA Astrophysics Data System (ADS)

    Tomio, Yusaku; Miyamoto, Goro; Furuhara, Tadashi

    2016-10-01

    Precipitation of fine alloy nitrides near the specimen surface results in significant surface hardening in nitriding of alloyed steels. In this study, a simulation model of alloy nitride precipitation during nitriding is developed for Fe-M binary system based upon the Kampmann-Wagner numerical model in order to predict variations in the distribution of precipitates with depth. The model can predict the number density, average radius, and volume fraction of alloy nitrides as a function of depth from the surface and nitriding time. By a comparison with the experimental observation in a nitrided Fe-Cr alloy, it was found that the model can predict successfully the observed particle distribution from the surface into depth when appropriate solubility of CrN, interfacial energy between CrN and α, and nitrogen flux at the surface are selected.

  13. Optimization of processing temperature in the nitridation process for the synthesis of iron nitride nanoparticles

    SciTech Connect

    Rohith Vinod, K.; Sakar, M.; Balakumar, S.; Saravanan, P.

    2015-06-24

    We have demonstrated an effective strategy on the nitridation process to synthesize ε-Fe{sub 3}N nanoparticles (NPs) from the zero valent iron NPs as a starting material. The transformation of iron into iron nitride phase was systematically studied by performing the nitridation process at different processing temperatures. The phase, crystal structure was analyzed by XRD. Morphology and size of the ZVINPs and ε-Fe{sub 3}N NPs were analyzed by field emission scanning electron microscope. Further, their room temperature magnetic properties were studied by using vibrating sample magnetometer and it revealed that the magnetic property of ε-Fe{sub 3}N is associated with ratio of Fe-N in the iron nitride system.

  14. David Adler Lectureship Award in the Field of Materials Physics Talk: Novel Nitride and Oxide Electronics

    NASA Astrophysics Data System (ADS)

    Pearton, Stephen

    2011-03-01

    Recent progress in development of GaN-based transistors for gas and bio-sensing applications and amorphous IGZO layers for use thin film transistors (TFTs)on flexible substrates, including paper,will be presented. For the detection of gases such as hydrogen, the gateless GaN transistors are typically coated with a catalyst metal such as Pd or Pt to increase the detection sensitivity at room temperature. Functionalizing the surface with oxides, polymers and nitrides is also useful in enhancing the detection sensitivity for gases and ionic solutions.The use of enzymes or adsorbed antibody layers on the semiconductor surface leads to highly specific detection of a broad range of antigens of interest in the medical and security fields. We give examples of recent work showing sensitive detection of glucose, lactic acid, prostate cancer and breast cancer markers and the integration of the sensors with wireless data transmission systems to achieve robust, portable sensors. The amorphous transparent conducting oxide InZnGaO4 (IGZO) is attracting attention because of its high electron mobility (10-50 cm2.V-1.sec-1), high transparency in the visible region of the spectrum and its ability to be deposited with a wide range of conductivities.This raises the possibility of making low-cost electronics on a very wide range of arbitrary surfaces, including paper and plastics. N-type oxides such as zinc oxide, zinc tin oxide, indium gallium oxide, and indium gallium zinc tin oxide (IGZO) exhibit surprisingly high carrier mobilities even for amorphous films deposited at 300K. This has been explained by the fact that the conduction in these materials is predominantly through non-directional s orbitals which are less affected by disorder than the directional sp3 orbitals which control electron transport in Si. Examples of progress and discussion of remaining obstacles to use of IGZO TFTs will be presented Work performed in collaboration with Fan Ren.

  15. Cross-current leaching of indium from end-of-life LCD panels

    SciTech Connect

    Rocchetti, Laura; Amato, Alessia; Fonti, Viviana; Ubaldini, Stefano; De Michelis, Ida; Kopacek, Bernd; Vegliò, Francesco; Beolchini, Francesca

    2015-08-15

    Graphical abstract: Display Omitted - Highlights: • End-of-life LCD panels represent a source of indium. • Several experimental conditions for indium leaching have been assessed. • Indium is completely extracted with 2 M sulfuric acid at 80 °C for 10 min. • Cross-current leaching improves indium extraction and operating costs are lowered. • Benefits to the environment come from reduction of CO{sub 2} emissions and reagents use. - Abstract: Indium is a critical element mainly produced as a by-product of zinc mining, and it is largely used in the production process of liquid crystal display (LCD) panels. End-of-life LCDs represent a possible source of indium in the field of urban mining. In the present paper, we apply, for the first time, cross-current leaching to mobilize indium from end-of-life LCD panels. We carried out a series of treatments to leach indium. The best leaching conditions for indium were 2 M sulfuric acid at 80 °C for 10 min, which allowed us to completely mobilize indium. Taking into account the low content of indium in end-of-life LCDs, of about 100 ppm, a single step of leaching is not cost-effective. We tested 6 steps of cross-current leaching: in the first step indium leaching was complete, whereas in the second step it was in the range of 85–90%, and with 6 steps it was about 50–55%. Indium concentration in the leachate was about 35 mg/L after the first step of leaching, almost 2-fold at the second step and about 3-fold at the fifth step. Then, we hypothesized to scale up the process of cross-current leaching up to 10 steps, followed by cementation with zinc to recover indium. In this simulation, the process of indium recovery was advantageous from an economic and environmental point of view. Indeed, cross-current leaching allowed to concentrate indium, save reagents, and reduce the emission of CO{sub 2} (with 10 steps we assessed that the emission of about 90 kg CO{sub 2}-Eq. could be avoided) thanks to the recovery of indium

  16. Study of gallium nitride-based materials for light-emitting applications

    NASA Astrophysics Data System (ADS)

    Barletta, Philip

    The purpose of this study was to explore the possibility of fabricating phosphor-free white-emitting LED's based in the gallium nitride material system. The structures were to be grown using metal-organic chemical vapor deposition (MOCVD). Toward this end, a Thomas Swan Scientific close-coupled showerhead reactor was installed. The first experimental step in this project was the optimization of nominally undoped GaN. This was achieved successfully, as smooth, non-compensated, optically-active films were demonstrated. Additionally, a full on- and off-axis x-ray diffraction study showed that the crystal quality of this material compared favorably to that of published standards. Successful n- and p-type doping of GaN were also demonstrated. Device-worthy mobility and carrier concentration values were demonstrated. Atomic force microscopy of n-type material verified that the films was sufficiently smooth as to serve as a layer upon which active-layer quantum wells could be grown. Photoluminescence of both n- and p-type material was examined as well. An extensive indium gallium nitride growth study was carried out. The effects of several growth parameters on emission characteristics were presented. PL emission wavelengths as high as 561 nm were demonstrated. The issues of uniformity and indium platelet formation were also addressed. This InGaN experimental work was complemented with a series of calculations which gave the expected emission wavelength of an InGaN/GaN quantum well structure based on In content and well width. Strain, the quantum size effect, and the quantum-confined Stark effect were all factored into these calculations in order to study their individual contributions to emission wavelength values. This work concluded with an examination of white device structure and fabrication. Both two- and three-color devices were considered. Monochromtic devices emitting in the green and yellow were fabricated. The yellow device, emitting at 575nm, yielded the

  17. Fibrotic gene expression coexists with alveolar proteinosis in early indium lung.

    PubMed

    Noguchi, Shuhei; Eitoku, Masamitsu; Kiyosawa, Hidenori; Suganuma, Narufumi

    2016-08-01

    Occupational inhalation of indium compounds can cause the so-called "indium lung disease". Most affected individuals show pulmonary alveolar proteinosis (PAP) and fibrotic interstitial lung disease. In animal experiments, inhalation of indium tin oxide or indium oxide has been shown to cause lung damage. However, the mechanisms by which indium compounds lead to indium lung disease remain unknown. In this study, we constructed a mouse model of indium lung disease and analyzed gene expression in response to indium exposure. Indium oxide (In2O3, 10 mg/kg, primary particle size <100 nm) was administered intratracheally to C57BL/6 mice (male, 8 weeks of age) twice a week for 8 weeks. Four weeks after the final instillation, histopathological analysis exhibited periodic acid-Schiff positive material in the alveoli, characteristic of PAP. Comprehensive gene expression analysis by RNA-Seq, however, revealed expression of fibrosis-related genes, such as surfactant associated protein D, surfactant associated protein A1, mucin 1, and collagen type I and III, was significantly increased, indicating that fibrotic gene expression progresses in early phase of indium lung. These data supported the latest hypothesis that PAP occurs as an acute phase response and is replaced by fibrosis after long-term latency.

  18. Synthesis and photophysical characterization of stable indium bacteriochlorins.

    PubMed

    Krayer, Michael; Yang, Eunkyung; Kim, Han-Je; Kee, Hooi Ling; Deans, Richard M; Sluder, Camille E; Diers, James R; Kirmaier, Christine; Bocian, David F; Holten, Dewey; Lindsey, Jonathan S

    2011-05-16

    Bacteriochlorins have wide potential in photochemistry because of their strong absorption of near-infrared light, yet metallobacteriochlorins traditionally have been accessed with difficulty. Established acid-catalysis conditions [BF(3)·OEt(2) in CH(3)CN or TMSOTf/2,6-di-tert-butylpyridine in CH(2)Cl(2)] for the self-condensation of dihydrodipyrrin-acetals (bearing a geminal dimethyl group in the pyrroline ring) afford stable free base bacteriochlorins. Here, InBr(3) in CH(3)CN at room temperature was found to give directly the corresponding indium bacteriochlorin. Application of the new acid catalysis conditions has afforded four indium bacteriochlorins bearing aryl, alkyl/ester, or no substituents at the β-pyrrolic positions. The indium bacteriochlorins exhibit (i) a long-wavelength absorption band in the 741-782 nm range, which is shifted bathochromically by 22-32 nm versus the analogous free base species, (ii) fluorescence quantum yields (0.011-0.026) and average singlet lifetime (270 ps) diminished by an order of magnitude versus that (0.13-0.25; 4.0 ns) for the free base analogues, and (iii) higher average yield (0.9 versus 0.5) yet shorter average lifetime (30 vs 105 μs) of the lowest triplet excited state compared to the free base compounds. The differences in the excited-state properties of the indium chelates versus free base bacteriochlorins derive primarily from a 30-fold greater rate constant for S(1) → T(1) intersystem crossing, which stems from the heavy-atom effect on spin-orbit coupling. The trends in optical properties of the indium bacteriochlorins versus free base analogues, and the effects of 5-OMe versus 5-H substituents, correlate well with frontier molecular-orbital energies and energy gaps derived from density functional theory calculations. Collectively the synthesis, photophysical properties, and electronic characteristics of the indium bacteriochlorins and free base analogues reported herein should aid in the further design of such

  19. Gallium nitride junction field-effect transistor

    DOEpatents

    Zolper, John C.; Shul, Randy J.

    1999-01-01

    An all-ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorous co-implantation, in selected III-V semiconductor materials.

  20. Gallium nitride junction field-effect transistor

    DOEpatents

    Zolper, J.C.; Shul, R.J.

    1999-02-02

    An ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same are disclosed. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorus co-implantation, in selected III-V semiconductor materials. 19 figs.

  1. Slip casting and nitridation of silicon powder

    NASA Technical Reports Server (NTRS)

    Seiko, Y.

    1985-01-01

    Powdered Silicon was slip-cast with a CaSO4 x 0.5H2O mold and nitrided in a N atm. containing 0 or 5 vol. % H at 1000 to 1420 deg. To remove the castings, the modeling faces were coated successively with an aq. salt soap and powdered cellulose containing Na alginate, and thus prevented the sticking problem.

  2. Silicon nitride having a high tensile strength

    DOEpatents

    Pujari, Vimal K.; Tracey, Dennis M.; Foley, Michael R.; Paille, Norman I.; Pelletier, Paul J.; Sales, Lenny C.; Willkens, Craig A.; Yeckley, Russell L.

    1996-01-01

    A silicon nitride ceramic comprising: a) inclusions no greater than 25 microns in length, b) agglomerates no greater than 20 microns in diameter, and c) a surface finish of less than about 8 microinches, said ceramic having a four-point flexural strength of at least about 900 MPa.

  3. Silicon nitride having a high tensile strength

    DOEpatents

    Pujari, V.K.; Tracey, D.M.; Foley, M.R.; Paille, N.I.; Pelletier, P.J.; Sales, L.C.; Willkens, C.A.; Yeckley, R.L.

    1996-11-05

    A silicon nitride ceramic is disclosed comprising: (a) inclusions no greater than 25 microns in length, (b) agglomerates no greater than 20 microns in diameter, and (c) a surface finish of less than about 8 microinches, said ceramic having a four-point flexural strength of at least about 900 MPa. 4 figs.

  4. Boron nitride solid state neutron detector

    DOEpatents

    Doty, F. Patrick

    2004-04-27

    The present invention describes an apparatus useful for detecting neutrons, and particularly for detecting thermal neutrons, while remaining insensitive to gamma radiation. Neutrons are detected by direct measurement of current pulses produced by an interaction of the neutrons with hexagonal pyrolytic boron nitride.

  5. Solar cell with a gallium nitride electrode

    DOEpatents

    Pankove, Jacques I.

    1979-01-01

    A solar cell which comprises a body of silicon having a P-N junction therein with a transparent conducting N-type gallium nitride layer as an ohmic contact on the N-type side of the semiconductor exposed to solar radiation.

  6. Gallium Nitride Crystals: Novel Supercapacitor Electrode Materials.

    PubMed

    Wang, Shouzhi; Zhang, Lei; Sun, Changlong; Shao, Yongliang; Wu, Yongzhong; Lv, Jiaxin; Hao, Xiaopeng

    2016-05-01

    A type of single-crystal gallium nitride mesoporous membrane is fabricated and its supercapacitor properties are demonstrated for the first time. The supercapacitors exhibit high-rate capability, stable cycling life at high rates, and ultrahigh power density. This study may expand the range of crystals as high-performance electrode materials in the field of energy storage.

  7. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets

    SciTech Connect

    Si, M. S.; Gao, Daqiang E-mail: xueds@lzu.edu.cn; Yang, Dezheng; Peng, Yong; Zhang, Z. Y.; Xue, Desheng E-mail: xueds@lzu.edu.cn; Liu, Yushen; Deng, Xiaohui; Zhang, G. P.

    2014-05-28

    Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.

  8. Photodetectors using III-V nitrides

    DOEpatents

    Moustakas, Theodore D.

    1998-01-01

    A bandpass photodetector using a III-V nitride and having predetermined electrical properties. The bandpass photodetector detects electromagnetic radiation between a lower transition wavelength and an upper transition wavelength. That detector comprises two low pass photodetectors. The response of the two low pass photodetectors is subtracted to yield a response signal.

  9. Photodetectors using III-V nitrides

    DOEpatents

    Moustakas, T.D.

    1998-12-08

    A bandpass photodetector using a III-V nitride and having predetermined electrical properties is disclosed. The bandpass photodetector detects electromagnetic radiation between a lower transition wavelength and an upper transition wavelength. That detector comprises two low pass photodetectors. The response of the two low pass photodetectors is subtracted to yield a response signal. 24 figs.

  10. REACTIVE SPUTTER DEPOSITION OF CHROMIUM NITRIDE COATINGS

    EPA Science Inventory

    The effect of substrate temperature and sputtering gas compositon on the structure and properties of chromium-chromium nitride films deposited on C-1040 steel using r.f. magnetron sputter deposition was investigated. X-ray diffraction analysis was used to determine the structure ...

  11. Titanium nitride electrodes for thermoelectric generators

    DOEpatents

    Novak, Robert F.; Schmatz, Duane J.; Hunt, Thomas K.

    1987-12-22

    The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a thin film of titanium nitride as an electrode deposited onto solid electrolyte. The invention is also directed to the method of making same.

  12. Producing Silicon Carbide/Silicon Nitride Fibers

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Manufacturing process makes CxSiyNz fibers. Precursor fibers spun from extruding machine charged with polycarbosilazane resin. When pyrolyzed, resin converted to cross-linked mixture of silicon carbide and silicon nitride, still in fiber form. CxSiyNz fibers promising substitutes for carbon fibers in high-strength, low-weight composites where high electrical conductivity unwanted.

  13. Boron Nitride Nanotubes for Engineering Applications

    NASA Technical Reports Server (NTRS)

    Hurst, Janet; Hull, David; Gorican, Daniel

    2005-01-01

    Boron nitride nanotubes (BNNT) are of significant interest to the scientific and technical communities for many of the same reasons that carbon nanotubes (CNT) have attracted wide attention. Both materials have potentially unique and important properties for structural and electronic applications. However of even more consequence than their similarities may be the complementary differences between carbon and boron nitride nanotubes While BNNT possess a very high modulus similar to CNT, they also possess superior chemical and thermal stability. Additionally, BNNT have more uniform electronic properties, with a uniform band gap of 5.5 eV while CNT vary from semi-conductive to highly conductive behavior. Boron nitride nanotubes have been synthesized both in the literature and at NASA Glenn Research Center, by a variety of methods such as chemical vapor deposition, arc discharge and reactive milling. Consistent large scale production of a reliable product has proven difficult. Progress in the reproducible synthesis of 1-2 gram sized batches of boron nitride nanotubes will be discussed as well as potential uses for this unique material.

  14. III-nitride nanopyramid light emitting diodes grown by organometallic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Wildeson, Isaac H.; Colby, Robert; Ewoldt, David A.; Liang, Zhiwen; Zakharov, Dmitri N.; Zaluzec, Nestor J.; García, R. Edwin; Stach, Eric A.; Sands, Timothy D.

    2010-08-01

    Nanopyramid light emitting diodes (LEDs) have been synthesized by selective area organometallic vapor phase epitaxy. Self-organized porous anodic alumina is used to pattern the dielectric growth templates via reactive ion etching, eliminating the need for lithographic processes. (In,Ga)N quantum well growth occurs primarily on the six {11¯01} semipolar facets of each of the nanopyramids, while coherent (In,Ga)N quantum dots with heights of up to ˜20 nm are incorporated at the apex by controlling growth conditions. Transmission electron microscopy (TEM) indicates that the (In,Ga)N active regions of the nanopyramid heterostructures are completely dislocation-free. Temperature-dependent continuous-wave photoluminescence of nanopyramid heterostructures yields a peak emission wavelength of 617 nm and 605 nm at 300 K and 4 K, respectively. The peak emission energy varies with increasing temperature with a double S-shaped profile, which is attributed to either the presence of two types of InN-rich features within the nanopyramids or a contribution from the commonly observed yellow defect luminescence close to 300 K. TEM cross-sections reveal continuous planar defects in the (In,Ga)N quantum wells and GaN cladding layers grown at 650-780 °C, present in 38% of the nanopyramid heterostructures. Plan-view TEM of the planar defects confirms that these defects do not terminate within the nanopyramids. During the growth of p-GaN, the structure of the nanopyramid LEDs changed from pyramidal to a partially coalesced film as the thickness requirements for an undepleted p-GaN layer result in nanopyramid impingement. Continuous-wave electroluminescence of nanopyramid LEDs reveals a 45 nm redshift in comparison to a thin-film LED, suggesting higher InN incorporation in the nanopyramid LEDs. These results strongly encourage future investigations of III-nitride nanoheteroepitaxy as an approach for creating efficient long wavelength LEDs.

  15. Growth mechanism of catalyst- and template-free group III-nitride nanorods

    NASA Astrophysics Data System (ADS)

    Won, Yong Sun; Kim, Young Seok; Kryliouk, Olga; Anderson, Timothy J.

    2008-08-01

    A feasible mechanism for catalyst- and template-free group III-nitride nanorod growth by hydride vapor phase epitaxy (HVPE) is proposed. The mechanism is composed of random nanoparticle nucleation from stable gas-phase oligomers and subsequent directional growth along the c-axis. A combined study of equilibrium analysis and computational thermochemistry was employed to determine the optimum growth conditions—growth temperature and Cl/group III ratio—based on the proposed mechanism, and the computed values showed good agreement with reported experimental results. The involvement of a group III trichloride as a key species in the proposed mechanism required the Cl/group III ratio to be ˜3 according to stoichiometry. A higher Cl/group III ratio led to etching of the solid phase and a lower ratio favored two-dimensional film growth instead. The zone of GaN and InN nanorod growth by HVPE was shown to lie in the vicinity of the growth-etch transition. A two-temperature approach, employed in GaN nanorod growth, was supported by the deconvolution of two conflicting kinetic and thermodynamic constraints in terms of growth temperature: a high-temperature region for GaCl 3 formation that is kinetically limited at low temperature and a low-temperature region for GaN nanorod growth without GaN etching that is thermodynamically favorable in a chlorinated environment at high temperature. The temperature for AlN nanorod growth by chemical vapor deposition using AlCl 3 and NH 3 was limited only by the thermodynamic constraint of ammonia adduct (Cl 3Al:NH 3) formation.

  16. Growth and characterization of nonpolar and semipolar group-III nitrides-based heterostructures and devices

    NASA Astrophysics Data System (ADS)

    Chakraborty, Arpan

    Conventional state-of-the-art wurtzite nitrides based light-emitters, grown along the polar c-direction, are characterized by the presence of polarization-induced electrostatic fields in the quantum wells. These built-in fields are detrimental to the performance of optoelectronic devices. Growth of light-emitters along nonpolar and semipolar directions is an effective means to circumvent the adverse effects of polarization. This dissertation focuses on the growth and characterization of nonpolar and semipolar (Al, Ga, In)N based heterostructures and devices. Two nonpolar planes, a- and m-, and two semipolar planes, (10 11) and (1013), have been investigated in this thesis. Initially, the growth of n-type and p-type nonpolar a-plane GaN was optimized to yield cladding layers of the highest possible conductivity in the devices. Various interesting observations, e.g. low acceptor activation energy, anisotropic conductivity, etc, were made during the course of this study. In order to achieve defect reduction in planar a-plane GaN films, in-situ SiNx interlayers were used as nano-mask. The effect of SiNx interlayer on the structural and optical properties of the overgrown GaN layer was investigated. Growth of InGaN/GaN multiple-quantum wells (MQWs) along nonpolar and semipolar planes was investigated and their structural and optical properties were studied. The effect of defects on the emission properties of the MQWs has been addressed. Optical measurements revealed the absence of polarization in the MQWs. Based on the MQW optimization, light-emitting diodes were grown on nonpolar and semipolar templates and their electrical and optical properties were studied. Electroluminescence measurement confirmed the absence of built-in electric fields in the quantum well. We demonstrated the first nonpolar and semipolar light-emitting diodes with milliwatt-range output power. DC output power as high as 0.6 mW at 20 mA and pulsed output power as high as 23.5 mW at 1 A were

  17. Electrochemiluminescence of graphitic carbon nitride and its application in ultrasensitive detection of lead(II) ions.

    PubMed

    Zhang, Yan; Zhang, Lina; Kong, Qingkun; Ge, Shenguang; Yan, Mei; Yu, Jinghua

    2016-10-01

    Graphitic carbon nitride (g-C3N4) materials with a layered structure have unusual physicochemical properties. Herein it was shown that g-C3N4 quantum dots (QDs) obtained through a thermal-chemical etching route exhibited attractive upconversion and electrochemiluminescence (ECL) properties. After modification on nanoporous gold (NPG) with a sponge-like porous structure, g-C3N4 QDs were employed to fabricate an ECL sensor for the determination of Pb(2+) using target - dependent DNAzyme as the recognition unit. Moreover, magnetic reduced graphene oxide nanosheets (rGO) attached with Fe3O4 nanoparticles (rGO-Fe3O4) were obtained via a one-pot in situ reduction approach, and used as carriers of DNAzyme. To make full use of the unique magnetic property the prepared rGO-Fe3O4, a flow injection ECL detecting cell was designed using indium tin oxide (ITO) glass as working electrode. Due to the unique separation and enrichment properties of magnetic Fe3O4-rGO materials as well as wire-like conductivity of NPG, high sensitivity and selectivity for the determination of Pb(2+) in real water samples were achieved. This indicates that g-C3N4 has excellent anodic ECL performance in the presence of triethanolamine, and could be applied in real environmental samples analyses. Graphical Abstract Graphitic carbon nitride based electrochemiluminescence sensor for the sensitive monitor of lead(II) ions in real samples was constructed.

  18. III-Nitride Blue Laser Diode with Photoelectrochemically Etched Current Aperture

    NASA Astrophysics Data System (ADS)

    Megalini, Ludovico

    Group III-nitride is a remarkable material system to make highly efficient and high-power optoelectronics and electronic devices because of the unique electrical, physical, chemical and structural properties it offers. In particular, InGaN-based blue Laser Diodes (LDs) have been successfully employed in a variety of applications ranging from biomedical and military devices to scientific instrumentation and consumer electronics. Recently their use in highly efficient Solid State Lighting (SSL) has been proposed because of their superior beam quality and higher efficiency at high input power density. Tremendous advances in research of GaN semi-polar and non-polar crystallographic planes have led both LEDs and LDs grown on these non-basal planes to rival with, and with the promise to outperform, their equivalent c-plane counterparts. However, still many issues need to be addressed, both related to material growth and device fabrication, including a lack of conventional wet etching techniques. GaN and its alloys with InN and AlN have proven resistant essentially to all known standard wet etching techniques, and the predominant etching methods rely on chlorine-based dry etching (RIE). These introduce sub-surface damage which can degrade the electrical properties of the epitaxial structure and reduce the reliability and lifetime of the final device. Such reasons and the limited effectiveness of passivation techniques have so far suggested to etch the LD ridges before the active region, although it is well-known that this can badly affect the device performance, especially in narrow stripe width LDs, because the gain guiding obtained in the planar configuration is weak and the low index step and high lateral current leakage result in devices with threshold current density higher than devices whose ridge is etched beyond the active region. Moreover, undercut etching of III-nitride layers has proven even more challenging, with limitations in control of the lateral etch

  19. Early stages during plasma nitriding of pure iron

    SciTech Connect

    Palacios, M.D.; Martinez, O.; Oseguera, J.

    1995-12-31

    The sequence of nitride formation during the early stages of plasma nitriding of pure iron was studied by optical microscopy, SEM, TEM and x-ray diffraction. Plasma nitriding at {approximately}490 C in a 25 vol.%H{sub 2} + 75 vol.%N{sub 2} mixture starts with the formation of {gamma}{prime}-Fe{sub 4}N after 40s. Once {gamma}{prime} nucleates, it mainly spreads laterally due to diffusion shortcuts in the discontinuous surface nitride layer. Before {gamma}{prime} is continuous on the surface, {epsilon} nucleates on top of it shortly after 40S. Epsilon is then observed to grow, both inwardly and laterally along with {gamma}{prime}. A compact {gamma}{prime}/{epsilon} bilayer forms on the surface at around 100s. The kinetics of nucleation, growth and compactation of the nitrides observed in the present work was significantly more rapid than in any of the nitriding process reported in the literature, including plasma nitriding. The acceleration of the nitriding kinetics in the early stages of plasma nitriding may be attributed to enhanced diffusion resulting from a high nitrogen flux from the plasma atmosphere. The results presented are consistent with the findings of a companion work on modeling the kinetics of nitride layer growth.

  20. Oxygen-free atomic layer deposition of indium sulfide

    DOEpatents

    Martinson, Alex B.; Hock, Adam S.; McCarthy, Robert; Weimer, Matthew S.

    2016-07-05

    A method for synthesizing an In(III) N,N'-diisopropylacetamidinate precursor including cooling a mixture comprised of diisopropylcarbodiimide and diethyl ether to approximately -30.degree. C., adding methyllithium drop-wise into the mixture, allowing the mixture to warm to room temperature, adding indium(III) chloride as a solid to the mixture to produce a white solid, dissolving the white solid in pentane to form a clear and colorless solution, filtering the mixture over a celite plug, and evaporating the solution under reduced pressure to obtain a solid In(III) N,N'-diisopropylacetamidinate precursor. This precursor has been further used to develop a novel atomic layer deposition technique for indium sulfide by dosing a reactor with the precursor, purging with nitrogen, dosing with dilute hydrogen sulfide, purging again with nitrogen, and repeating these steps to increase growth.

  1. Preparation Of Copper Indium Gallium Diselenide Films For Solar Cells

    DOEpatents

    Bhattacharya, Raghu N.; Contreras, Miguel A.; Keane, James; Tennant, Andrew L. , Tuttle, John R.; Ramanathan, Kannan; Noufi, Rommel

    1998-08-08

    High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.

  2. Preparation and photoluminescence study of mesoporous indium hydroxide nanorods

    SciTech Connect

    Li, Changyu; Lian, Suoyuan; Liu, Yang; Liu, Shouxin; Kang, Zhenhui

    2010-02-15

    Mesoporous indium hydroxide nanorods were successfully synthesized by a mild one-step one-pot method. The obtained samples were characterized by X-ray diffraction, transmission electron microscopy with selected area electron diffraction, N{sub 2} adsorption, ultraviolet-visible absorption and photoluminescence, respectively. Transmission electron microscopy showed that there were some pores in the samples, which were mainly composed of rod-like shapes with length of 300 nm and diameter of 90 nm. N{sub 2} adsorption/desorption measurements confirmed that the prepared powder was mesoporous with average pore diameter of 3.1 nm. The ultraviolet-visible absorption spectroscopy analysis indicated that the band gap energy of the samples was 5.15 eV. Photoluminescence spectrum showed that there were two strong emissions under ultraviolet light irradiation. The growth mechanism of indium hydroxide nanorods and the role of cetyltrimethyl ammonium bromide were also discussed.

  3. Enhanced superconducting pairing interaction in indium-doped tin telluride

    SciTech Connect

    Erickson, A.S.; Chu, J.-H.; Toney, M.F.; Geballe, T.H.; Fisher, I.R.; /SLAC, SSRL /Stanford U., Appl. Phys. Dept. /Stanford U., Geballe Lab.

    2010-02-15

    The ferroelectric degenerate semiconductor Sn{sub 1-{delta}}Te exhibits superconductivity with critical temperatures, T{sub c}, of up to 0.3 K for hole densities of order 10{sup 21} cm{sup -3}. When doped on the tin site with greater than x{sub c} = 1.7(3)% indium atoms, however, superconductivity is observed up to 2 K, though the carrier density does not change significantly. We present specific heat data showing that a stronger pairing interaction is present for x > x{sub c} than for x < x{sub c}. By examining the effect of In dopant atoms on both T{sub c} and the temperature of the ferroelectric structural phase transition, T{sub SPT}, we show that phonon modes related to this transition are not responsible for this T{sub c} enhancement, and discuss a plausible candidate based on the unique properties of the indium impurities.

  4. Enhanced superconducting pairing interaction in indium-doped tin telluride

    SciTech Connect

    Erickson, A.S.

    2010-05-03

    The ferroelectric degenerate semiconductor Sn{sub 1-{delta}}Te exhibits superconductivity with critical temperatures, T{sub c}, of up to 0.3 K for hole densities of order 10{sup 21} cm{sup -3}. When doped on the tin site with greater than x{sub c} = 1.7(3)% indium atoms, however, superconductivity is observed up to 2 K, though the carrier density does not change significantly. We present specific heat data showing that a stronger pairing interaction is present for x > x{sub c} than for x < x{sub c}. By examining the effect of In dopant atoms on both T{sub c} and the temperature of the ferroelectric structural phase transition, T{sub SPT}, we show that phonon modes related to this transition are not responsible for this T{sub c} enhancement, and discuss a plausible candidate based on the unique properties of the indium impurities.

  5. Determination of series resistance of indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Weinberg, Irving

    1991-01-01

    The series resistance of a solar cell is an important parameter, which must be minimized to achieve high cell efficiencies. The cell series resistance is affected by the starting material, its design, and processing. The theoretical approach proposed by Jia, et. al., is used to calculate the series resistance of indium phosphide solar cells. It is observed that the theoretical approach does not predict the series resistance correctly in all cases. The analysis was modified to include the use of effective junction ideality factor. The calculated results were compared with the available experimental results on indium phosphide solar cells processed by different techniques. It is found that the use of process dependent junction ideality factor leads to better estimation of series resistance. An accurate comprehensive series resistance model is warranted to give proper feedback for modifying the cell processing from the design state.

  6. Enhanced superconducting pairing interaction in indium-doped tin telluride

    SciTech Connect

    Lavagnini, M.

    2010-02-24

    The ferroelectric degenerate semiconductor Sn{sub 1-{delta}}Te exhibits superconductivity with critical temperatures, T{sub c}, of up to 0.3 K for hole densities of order 10{sup 21} cm{sup -3}. When doped on the tin site with greater than x{sub c} = 1.7(3)% indium atoms, however, superconductivity is observed up to 2 K, though the carrier density does not change significantly. We present specific heat data showing that a stronger pairing interaction is present for x > x{sub c} than for x < x{sub c}. By examining the effect of In dopant atoms on both T{sub c} and the temperature of the ferroelectric structural phase transition, T{sub SPT}, we show that phonon modes related to this transition are not responsible for this T{sub c} enhancement, and discuss a plausible candidate based on the unique properties of the indium impurities.

  7. Indium-111 leukocyte scintigraphy in Wegener's granulomatosis involving the spleen

    SciTech Connect

    Morayati, S.J.; Fink-Bennett, D.

    1986-12-01

    Indium-111-labeled leukocyte scintigraphy was performed on a 44-yr-old man to exclude an occult abscess. Four- and twenty-four-hour images of the abdomen revealed splenic photopenia except for a rim of activity medially. A subsequent computed tomography (CT) study demonstrated necrosis or hemorrhage of the spleen except for a medial rim. Exploratory laparotomy demonstrated necrotizing vasculitis with granuloma formation consistent with Wegener's granulomatosis and a rim of viable splenic tissue corresponding to the radionuclide and CT studies.

  8. Immune stimulation following dermal exposure to unsintered indium tin oxide.

    PubMed

    Brock, Kristie; Anderson, Stacey E; Lukomska, Ewa; Long, Carrie; Anderson, Katie; Marshall, Nikki; Meade, B Jean

    2014-01-01

    In recent years, several types of pulmonary pathology, including alveolar proteinosis, fibrosis, and emphysema, have been reported in workers in the indium industry. To date, there remains no clear understanding of the underlying mechanism(s). Pulmonary toxicity studies in rats and mice have demonstrated the development of mediastinal lymph node hyperplasia and granulomas of mediastinal lymph nodes and bronchus-associated lymphoid tissues following exposure to indium tin oxide. Given the association between exposure to other metals and the development of immune-mediated diseases, these studies were undertaken to begin to investigate the immuno-modulatory potential of unsintered indium tin oxide (uITO) in a mouse model. Using modifications of the local lymph node assay, BALB/c mice (five animals/group) were exposed topically via intact or breached skin or injected intradermally at the base of the ear pinnae with either vehicle or increasing concentrations 2.5-10% uITO (90:10 indium oxide/tin oxide, particle size <50 nm). Dose-responsive increases in lymphocyte proliferation were observed with a calculated EC3 of 4.7% for the intact skin study. Phenotypic analysis of draining lymph node cells following intradermal injection with 5% uITO yielded a profile consistent with a T-cell-mediated response. These studies demonstrate the potential for uITO to induce sensitization and using lymphocyte proliferation as a biomarker of exposure, and demonstrate the potential for uITO to penetrate both intact and breached skin.

  9. Indium Helps Strengthen Al/Cu/Li Alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B.; Starke, Edgar A., Jr.

    1992-01-01

    Experiments on Al/Cu/Li alloys focus specifically on strengthening effects of minor additions of In and Cd. Indium-bearing alloy combines low density with ability to achieve high strength through heat treatment alone. Tensile tests on peak-aged specimens indicated that alloy achieved yield strength approximately 15 percent higher than baseline alloy. Alloy highly suitable for processing to produce parts of nearly net shape, with particular applications in aircraft and aerospace vehicles.

  10. Polycrystalline indium phosphide on silicon by indium assisted growth in hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Metaferia, Wondwosen; Sun, Yan-Ting; Pietralunga, Silvia M.; Zani, Maurizio; Tagliaferri, Alberto; Lourdudoss, Sebastian

    2014-07-01

    Polycrystalline InP was grown on Si(001) and Si(111) substrates by using indium (In) metal as a starting material in hydride vapor phase epitaxy (HVPE) reactor. In metal was deposited on silicon substrates by thermal evaporation technique. The deposited In resulted in islands of different size and was found to be polycrystalline in nature. Different growth experiments of growing InP were performed, and the growth mechanism was investigated. Atomic force microscopy and scanning electron microscopy for morphological investigation, Scanning Auger microscopy for surface and compositional analyses, powder X-ray diffraction for crystallinity, and micro photoluminescence for optical quality assessment were conducted. It is shown that the growth starts first by phosphidisation of the In islands to InP followed by subsequent selective deposition of InP in HVPE regardless of the Si substrate orientation. Polycrystalline InP of large grain size is achieved and the growth rate as high as 21 μm/h is obtained on both substrates. Sulfur doping of the polycrystalline InP was investigated by growing alternating layers of sulfur doped and unintentionally doped InP for equal interval of time. These layers could be delineated by stain etching showing that enough amount of sulfur can be incorporated. Grains of large lateral dimension up to 3 μm polycrystalline InP on Si with good morphological and optical quality is obtained. The process is generic and it can also be applied for the growth of other polycrystalline III-V semiconductor layers on low cost and flexible substrates for solar cell applications.

  11. Polycrystalline indium phosphide on silicon by indium assisted growth in hydride vapor phase epitaxy

    SciTech Connect

    Metaferia, Wondwosen; Sun, Yan-Ting Lourdudoss, Sebastian; Pietralunga, Silvia M.; Zani, Maurizio; Tagliaferri, Alberto

    2014-07-21

    Polycrystalline InP was grown on Si(001) and Si(111) substrates by using indium (In) metal as a starting material in hydride vapor phase epitaxy (HVPE) reactor. In metal was deposited on silicon substrates by thermal evaporation technique. The deposited In resulted in islands of different size and was found to be polycrystalline in nature. Different growth experiments of growing InP were performed, and the growth mechanism was investigated. Atomic force microscopy and scanning electron microscopy for morphological investigation, Scanning Auger microscopy for surface and compositional analyses, powder X-ray diffraction for crystallinity, and micro photoluminescence for optical quality assessment were conducted. It is shown that the growth starts first by phosphidisation of the In islands to InP followed by subsequent selective deposition of InP in HVPE regardless of the Si substrate orientation. Polycrystalline InP of large grain size is achieved and the growth rate as high as 21 μm/h is obtained on both substrates. Sulfur doping of the polycrystalline InP was investigated by growing alternating layers of sulfur doped and unintentionally doped InP for equal interval of time. These layers could be delineated by stain etching showing that enough amount of sulfur can be incorporated. Grains of large lateral dimension up to 3 μm polycrystalline InP on Si with good morphological and optical quality is obtained. The process is generic and it can also be applied for the growth of other polycrystalline III–V semiconductor layers on low cost and flexible substrates for solar cell applications.

  12. Toxicity of indium arsenide, gallium arsenide, and aluminium gallium arsenide.

    PubMed

    Tanaka, Akiyo

    2004-08-01

    Gallium arsenide (GaAs), indium arsenide (InAs), and aluminium gallium arsenide (AlGaAs) are semiconductor applications. Although the increased use of these materials has raised concerns about occupational exposure to them, there is little information regarding the adverse health effects to workers arising from exposure to these particles. However, available data indicate these semiconductor materials can be toxic in animals. Although acute and chronic toxicity of the lung, reproductive organs, and kidney are associated with exposure to these semiconductor materials, in particular, chronic toxicity should pay much attention owing to low solubility of these materials. Between InAs, GaAs, and AlGaAs, InAs was the most toxic material to the lung followed by GaAs and AlGaAs when given intratracheally. This was probably due to difference in the toxicity of the counter-element of arsenic in semiconductor materials, such as indium, gallium, or aluminium, and not arsenic itself. It appeared that indium, gallium, or aluminium was toxic when released from the particles, though the physical character of the particles also contributes to toxic effect. Although there is no evidence of the carcinogenicity of InAs or AlGaAs, GaAs and InP, which are semiconductor materials, showed the clear evidence of carcinogenic potential. It is necessary to pay much greater attention to the human exposure of semiconductor materials.

  13. Crystalline Indium Sulphide thin film by photo accelerated deposition technique

    NASA Astrophysics Data System (ADS)

    Dhanya, A. C.; Preetha, K. C.; Deepa, K.; Remadevi, T. L.

    2015-02-01

    Indium sulfide thin films deserve special attention because of its potential application as buffer layers in CIGS based solar cells. Highly transparent indium sulfide (InS) thin films were prepared using a novel method called photo accelerated chemical deposition (PCD). Ultraviolet source of 150 W was used to irradiate the solution. Compared to all other chemical methods, PCD scores its advantage for its low cost, flexible substrate and capable of large area of deposition. Reports on deposition of high quality InS thin films at room temperature are very rare in literature. The precursor solution was initially heated to 90°C for ten minutes and then deposition was carried out at room temperature for two hours. The appearance of the film changed from lemon yellow to bright yellow as the deposition time increased. The sample was characterized for its structural and optical properties. XRD profile showed the polycrystalline behavior of the film with mixed phases having crystallite size of 17 nm. The surface morphology of the films exhibited uniformly distributed honey comb like structures. The film appeared to be smooth and the value of extinction coefficient was negligible. Optical measurements showed that the film has more than 80% transmission in the visible region. The direct band gap energy was 2.47eV. This method is highly suitable for the synthesis of crystalline and transparent indium sulfide thin films and can be used for various photo voltaic applications.

  14. Effect of preparation conditions on physic-chemical properties of tin-doped nanocrystalline indium oxide

    NASA Astrophysics Data System (ADS)

    Malinovskaya, T. D.; Sachkov, V. I.; Zhek, V. V.; Nefedov, R. A.

    2016-01-01

    In this paper the results of investigation of phase formation and change of concentration of free electrons (Ne) in indium tin oxide system during heat treatment of coprecipitated hydroxides of indium and tin from nitric and hydrochloric solutions and also, for comparison melts of salts nitrates by an alkaline reactant (NH4OH) are considered.The performed investigation allowed to set the optimal condition of preparation of polycrystalline tin-doped indium oxide with maximal electron concentration.

  15. Extraordinary N atom tunneling in formation of InN shell layer on GaN nanorod m-plane sidewall.

    PubMed

    Cai, Duanjun; Lin, Na; Xu, Hongmei; Liao, Che-Hao; Yang, C C

    2014-12-12

    We report the extraordinary tunneling process that finds the lower cohesive energy route for stablizing InN shell layer on m-plane sidewall of GaN nanorod. The [0001] orientated GaN nanorod array is grown on sapphire substrate patterned with Ga nanoparticle by metal-organic vapor deposition method, based on which the simulation structures of c-plane top surface and m-plane sidewall surface is constructed for the first-principles calculations. The results show that the introduction of In wetting monolayer could effectively lower the cohesive energy of adalayers on non-polar GaN surfaces. Most importantly, it is revealed that there exists an extraordinary tunneling process in which the N atoms will drag out the In wetting atoms and tunnel through to form stable InN shell layer on the nanorod sidewall. PMID:25412649

  16. Effects of Ga on the growth of InN on O-face ZnO(0001) by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Cho, Yong Jin; Riechert, Henning; Brandt, Oliver; Korytov, Maxim; Albrecht, Martin

    2012-07-30

    We compare the structural properties of InN and In{sub 0.95}Ga{sub 0.05}N films grown on O-face ZnO(0001) substrates at different temperatures. The small amount of Ga results in dramatic changes in the morphology and structural properties of InN. In particular, inversion domains start to appear at higher temperatures in the In{sub 0.95}Ga{sub 0.05}N film. This process is a consequence of the chemical reaction of ZnO with Ga which can be prevented by choosing the substrate temperature to be 450{sup Degree-Sign }C or below.

  17. Self-Interaction Corrections to the Electronic Structure of II-VI and III-V Nitride Semiconductors

    NASA Astrophysics Data System (ADS)

    Pollmann, J.

    1998-03-01

    II-VI and group-III nitride semiconductors have paramount technological potential for applications in micro- and optoelectronics. A most accurate description of their bulk electronic structure as a basis for studying defect properties, band-edge properties in respective ternary or quaternary alloys and electronic properties of their surfaces and interfaces is of major importance, therefore. Standard LDA band-structure calculations for these wide-band-gap compounds using nonlocal normconserving pseudopotentials yield gap energies and semicore d-band positions that are largely at variance with experimental data. Actually, InN even turns out to be a semimetal with a negative gap of about --0.4 eV in standard LDA, in contrast to the experimental gap of 1.9 eV. To improve the theoretical basis for the above mentioned studies, we have developed self-interaction- and relaxation-corrected pseudopotentials (SIRC-PPs) which are very efficient and physically well-founded. The properties of the constituent atoms are incorporated in these SIRC-PPs as accurately as possible from the start by taking atomic SIC contributions and electronic relaxation in the atoms fully into account. By this construction, we arrive at very useful pseudopotentials and effective one-particle Hamiltonians for the solids that can readily be employed in ab-initio LDA codes. This approach is computationally not more involved than any LDA calculation and, nevertheless, overcomes to a large extent the above mentioned shortcomings of standard LDA calculations employing 'state-of-the-art' pseudopotentials. Applications of our approach to II-VI and group-III nitride semiconductors have shown very gratifying results. The approach has also proven very useful for Hg-chalcogenides, as well as, for Ag- and Cu-halides. The calculations yield band structures, d-band positions, gap energies, densities of states, lattice constants, bulk moduli and effective masses in very good agreement with experiment. Due to the

  18. Liquid flow cells having graphene on nitride for microscopy

    DOEpatents

    Adiga, Vivekananda P.; Dunn, Gabriel; Zettl, Alexander K.; Alivisatos, A. Paul

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to liquid flow cells for microscopy. In one aspect, a device includes a substrate having a first and a second oxide layer disposed on surfaces of the substrate. A first and a second nitride layer are disposed on the first and second oxide layers, respectively. A cavity is defined in the first oxide layer, the first nitride layer, and the substrate, with the cavity including a third nitride layer disposed on walls of the substrate and the second oxide layer that define the cavity. A channel is defined in the second oxide layer. An inlet port and an outlet port are defined in the second nitride layer and in fluid communication with the channel. A plurality of viewports is defined in the second nitride layer. A first graphene sheet is disposed on the second nitride layer covering the plurality of viewports.

  19. Determination of indium and tin by activation analysis using replacement substoichiometry.

    PubMed

    Obrusník, I

    1969-05-01

    A new method for the determination of indium by activation analysis has been developed. It is based on the replacement of indium from indium dithizonate (in carbon tetrachloride) by a substoichiometric amount of aqueous mercury(II) solution. Preliminary steps are the extraction of indium from alkaline cyanide solution with an excess of dithizone solution and washing the extract with buffer solution. The time necessary for the separation is 10-20 min. With this method indium can be determined by using either short ((116m)In, t(1 2 ) = 54 min) or long-lived radioisotopes ((114m)In, t(1 2 = 50 d). As by the reaction (112)Sn (n, gamma)) (113)Sn (119d) --> (113)In (104 min), indium-113m is formed, which has a different gamma-spectrum from that of indium-114m, the determination of both indium and tin is possible. The proposed method has been applied to the determination of indium and tin in granite and gallium.

  20. Method for enhancing the solubility of boron and indium in silicon

    DOEpatents

    Sadigh, Babak; Lenosky, Thomas J.; Diaz de la Rubia, Tomas; Giles, Martin; Caturla, Maria-Jose; Ozolins, Vidvuds; Asta, Mark; Theiss, Silva; Foad, Majeed; Quong, Andrew

    2002-01-01

    A method for enhancing the equilibrium solubility of boron and indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100.degree. C.; and for indium, a 1% tensile strain at 1100.degree. C., corresponds to an enhancement of the solubility by 200%.