Science.gov

Sample records for individual arabidopsis metallothioneins

  1. Metallothionein deficiency impacts copper accumulation and redistribution in leaves and seeds of Arabidopsis.

    PubMed

    R Benatti, Matheus; Yookongkaew, Nimnara; Meetam, Metha; Guo, Woei-Jiun; Punyasuk, Napassorn; AbuQamar, Synan; Goldsbrough, Peter

    2014-05-01

    Most angiosperm genomes contain several genes encoding metallothionein (MT) proteins that can bind metals including copper (Cu) and zinc (Zn). Metallothionein genes are highly expressed under various conditions but there is limited information about their function. We have studied Arabidopsis mutants that are deficient in multiple MTs to learn about the functions of MTs in plants. T-DNA insertions were identified in four of the five Arabidopsis MT genes expressed in vegetative tissues. These were crossed to produce plants deficient in four MTs (mt1a/mt2a/mt2b/mt3). The concentration of Cu was lower in seeds but higher in old leaves of the quad-MT mutant compared to wild-type plants. Experiments with stable isotopes showed that Cu in seeds came from two sources: directly from roots and via remobilization from other organs. Mobilization of Cu out of senescing leaves was disrupted in MT-deficient plants. Tolerance to Cu, Zn and paraquat was unaffected by MT deficiency but these plants were slightly more sensitive to cadmium (Cd). The quad-MT mutant showed no change in resistance to a number of microbial pathogens, or in the progression of leaf senescence. Although these MTs are not required to complete the plant's life cycle, MTs are important for Cu homeostasis and distribution in Arabidopsis.

  2. Overexpression of Nelumbo nucifera metallothioneins 2a and 3 enhances seed germination vigor in Arabidopsis.

    PubMed

    Zhou, Yuliang; Chu, Pu; Chen, Huhui; Li, Yin; Liu, Jun; Ding, Yu; Tsang, Edward W T; Jiang, Liwen; Wu, Keqiang; Huang, Shangzhi

    2012-03-01

    Metallothioneins (MTs) are small, cysteine-rich and metal-binding proteins which are involved in metal homeostasis and scavenging of reactive oxygen species. Although plant MTs have been intensively studied, their roles in seeds remain to be clearly established. Here, we report the isolation and characterization of NnMT2a, NnMT2b and NnMT3 from sacred lotus (Nelumbo nucifera Gaertn.) and their roles in seed germination vigor. The transcripts of NnMT2a, NnMT2b and NnMT3 were highly expressed in developing and germinating sacred lotus seeds, and were dramatically up-regulated in response to high salinity, oxidative stresses and heavy metals. Analysis of transformed Arabidopsis protoplasts showed that NnMT2a-YFP and NnMT3-YFP were localized in cytoplasm and nucleoplasm. Transgenic Arabidopsis seeds overexpressing NnMT2a and NnMT3 displayed improved resistance to accelerated aging (AA) treatment, indicating their significant roles in seed germination vigor. These transgenic seeds also exhibited higher superoxide dismutase activity compared to wild-type seeds after AA treatment. In addition, we showed that NnMT2a and NnMT3 conferred improved germination ability to NaCl and methyl viologen on transgenic Arabidopsis seeds. Taken together, these data demonstrate that overexpression of NnMT2a and NnMT3 in Arabidopsis significantly enhances seed germination vigor after AA treatment and under abiotic stresses.

  3. Zeptomole Electrochemical Detection of Metallothioneins

    PubMed Central

    Adam, Vojtech; Petrlova, Jitka; Wang, Joseph; Eckschlager, Tomas; Trnkova, Libuse; Kizek, Rene

    2010-01-01

    Background Thiol-rich peptides and proteins possess a large number of biological activities and may serve as markers for numerous health problems including cancer. Metallothionein (MT), a small molecular mass protein rich in cysteine, may be considered as one of the promising tumour markers. The aim of this paper was to employ chronopotentiometric stripping analysis (CPSA) for highly sensitive detection of MT. Methodology/Principal Findings In this study, we used adsorptive transfer stripping technique coupled with CPSA for detection of cysteine, glutathione oxidized and reduced, phytochelatin, bovine serum albumin, and metallothionein. Under the optimal conditions, we were able to estimate detection limits down to tens of fg per ml. Further, this method was applied to detect metallothioneins in blood serum obtained from patients with breast cancer and in neuroblastoma cells resistant and sensitive to cisplatin in order to show the possible role of metallothioneins in carcinogenesis. It was found that MT level in blood serum was almost twice higher as compared to the level determined in healthy individuals. Conclusions/Significance This paper brings unique results on the application of ultra-sensitive electroanalytical method for metallothionein detection. The detection limit and other analytical parameters are the best among the parameters of other techniques. In spite of the fact that the paper is mainly focused on metallothionein, it is worth mentioning that successful detection of other biologically important molecules is possible by this method. Coupling of this method with simple isolation methods such as antibody-modified paramagnetic particles may be implemented to lab–on-chip instrument. PMID:20625429

  4. Metallothioneins in Arctic bivalves.

    PubMed

    Amiard-Triquet, C; Rainglet, F; Larroux, C; Regoli, F; Hummel, H

    1998-09-01

    In the framework of an International Association for the Promotion of Cooperation with Scientists from the Independent States of the Former Soviet Union (INTAS) Project on biodiversity and adaptation strategies of Arctic coastal marine benthos, research was focused on the role of metallothioneins as a possible indicator of the effect on animals and availability of trace metals in the Arctic. Metallothioneins are low-molecular-weight, cysteine-rich proteins known to be induced by high environmental levels of trace metals. Specimens of Macoma balthica and Mytilus edulis were collected along several Arctic estuaries in the White and Pechora seas; whole tissues for M. balthica and the digestive gland and gills for M. edulis were dissected, frozen in liquid nitrogen, and lyophilized onboard. Metallothionein concentrations were determined by a polarographic assay. From the same stations organisms and sediments were also collected for metal analysis. The results revealed significant differences in metallothionein concentrations among the stations for M. balthica. Similar, although less marked, differences were also obtained in the organs of M. edulis. Data on metallothionein were compared with trace metal concentrations in both the organisms and sediments. Also, the relationship with abiotic factors (salinity) and biological variables (size of sampled organisms) was determined. In particular, biological variables seemed to influence metallothionein concentration in the organisms and their effect should be carefully considered for a correct assessment of differences between stations.

  5. Sensitivity to abscisic acid modulates positive interactions between Arabidopsis thaliana individuals.

    PubMed

    Zhang, Hao; Shen, Zhuxia; Wang, Genxuan; Dai, Xinfeng; Huang, Qiaoqiao; Zheng, Kefeng

    2010-03-01

    The ability of abscisic acid (ABA) to modulate positive interactions between Arabidopsis thaliana individuals under salinity stress was investigated using abi1-1 (insensitive to ABA), era1-2 (hypersensitive to ABA) mutant and wild type plants. The results showed that sensitivity to ABA affects relative interaction intensity (RII) between Arabidopsis thaliana individuals. The neighbor removal experiments also confirmed the role of phenotypic responses in linking plant-plant interactions and sensitivity to ABA. For abi1-1 mutants, the absolute value differences between neighbor removal and control of stem length, root length, leaf area, leaf thickness, flower density, above biomass/belowground biomass (A/U), photosynthetic rate, stomatal conductance, leaf water content and water-use efficiency were smaller than those of the wild type, while for era1-2 mutants, these absolute value differences were larger than those of the wild type. Thus, it is suggested that positive interactions between Arabidopsis thaliana individuals are at least partly modulated by different sensitivity to ABA through different physiological and phenotypic plasticity. PMID:20377695

  6. Urinary metallothionein as an indicator of cadmium body burden and of cadmium-induced nephrotoxicity

    SciTech Connect

    Shaikh, Z.A.; Tohyama, C.

    1984-03-01

    There is a need to identify specific biological indicator(s) of cadmium exposure so that the renal damage can be prevented. Towards this end, the usefulness of urinary metallothionein as an indicator of cadmium body burden has been examined. It is found that, in both animals and humans, urinary metallothionein level is related to the hepatic and renal cadmium burdens. Significant correlations are also found between the urinary metallothionein and urinary cadmium and ..beta../sub 2/-microglobulin. Furthermore, it is noted that cadmium-exposed individuals with renal dysfunction excrete significantly more metallothionein than those with normal renal function. Thus it appears that there is merit to include metallothionein among the clinical parameters monitored in cadmium-exposed individuals. More tests are needed to define a critical concentration of metallothionein in urine which is related to the onset of renal dysfunction.

  7. Anti-metallothionein IgG and levels of metallothionein in autistic families.

    PubMed

    Russo, Anthony F

    2008-02-01

    Metallothioneins (MTs) are a family of small proteins containing 61-68 amino acids with an unusually high concentration of cysteine. MT-1, the most functional and active MT in humans, has the ability to react with and enhance the detoxification of a number of metals including zinc, mercury, copper and cadmium. MT dysfunction may result, then, in many of the aetiological syndromes observed in autistic children, such as the leaky gut. It has been proposed that allergic autoimmune reactions occurring after exposure to heavy metals, may contribute to some symptoms associated with autism. Therefore abnormalities in MT concentration and/or structure, as well as the presence of anti-MT antibodies, may be associated with autism. We used direct ELISAs to quantitate the concentration of serum anti-metallothionein IgG in 66 individuals (parents and children) from 14 families with autistic children, as well as 11 controls from families with no history of autism. We measured the concentration of serum metallothionein in 39 of the above family members from 8 families. Our results indicate that a significantly high number (23 of 66) of autistic family members had high levels of anti-metallothionein IgG, when compared to controls (1 ) and the production of these antibodies correlated with levels of metallothionein, suggesting that the production of these antibodies is inherited. However, the presence of these antibodies does not correlate with autism, types of autism, including regression, or demographics such as allergies, respiratory problems or GI disease. This suggests that the presence of anti-metallothionein antibodies is not causative to autism and may be the result of other immunological pathology seen in many autistics.

  8. Structure of mammalian metallothionein.

    PubMed Central

    Kägi, J H; Vasák, M; Lerch, K; Gilg, D E; Hunziker, P; Bernhard, W R; Good, M

    1984-01-01

    All mammalian metallothioneins characterized contain a single polypeptide chain of 61 amino acid residues, among them 20 cysteines providing the ligands for seven metal-binding sites. Native metallothioneins are usually heterogeneous in metal composition, with Zn, Cd, and Cu occurring in varying proportions. However, forms containing only a single metal species, i.e., Zn, Cd, Ni, Co, Hg, Pb, Bi, have now been prepared by in vitro reconstitution from the metal-free apoprotein. By spectroscopic analysis of such derivatives it was established that all cysteine residues participate in metal binding, that each metal ion is bound to four thiolate ligands, and that the symmetry of each complex is close to that of a tetrahedron. To satisfy the requirements of the overall Me7(Cys-)20 stoichiometry, the complexes must be combined to form metal-thiolate cluster structures. Experimental proof for the occurrence of such clusters comes from the demonstration of metal-metal interactions by spectroscopic and magnetic means. Thus, in Co(II)7-metallothionein, the Co(II)-specific ESR signals are effectively suppressed by antiferromagnetic coupling of juxtaposed paramagnetic metal ions. By monitoring changes in ESR signal size occurring on stepwise incorporation of Co(II) into the protein, it is possible to follow the building up of the clusters. This process is biphasic. Up to binding of four equivalents of Co(II), the ESR amplitude increases in proportion to the metal content, indicating generation of magnetically noninteracting high-spin complexes. However, upon addition of the remaining three equivalents of Co(II), these features are progressively suppressed, signaling the formation of clusters. The same mode of cluster formation has also been documented for Cd and Hg. The actual spatial organization of the clusters and the polypeptide chain remains to be established. An attractive possibility is the arrangement of the tetrahedral metal-thiolates in adamantane-like structures

  9. Metallothionein protection of cadmium toxicity

    SciTech Connect

    Klaassen, Curtis D. Liu, Jie; Diwan, Bhalchandra A.

    2009-08-01

    The discovery of the cadmium (Cd)-binding protein from horse kidney in 1957 marked the birth of research on this low-molecular weight, cysteine-rich protein called metallothionein (MT) in Cd toxicology. MT plays minimal roles in the gastrointestinal absorption of Cd, but MT plays important roles in Cd retention in tissues and dramatically decreases biliary excretion of Cd. Cd-bound to MT is responsible for Cd accumulation in tissues and the long biological half-life of Cd in the body. Induction of MT protects against acute Cd-induced lethality, as well as acute toxicity to the liver and lung. Intracellular MT also plays important roles in ameliorating Cd toxicity following prolonged exposures, particularly chronic Cd-induced nephrotoxicity, osteotoxicity, and toxicity to the lung, liver, and immune system. There is an association between human and rodent Cd exposure and prostate cancers, especially in the portions where MT is poorly expressed. MT expression in Cd-induced tumors varies depending on the type and the stage of tumor development. For instance, high levels of MT are detected in Cd-induced sarcomas at the injection site, whereas the sarcoma metastases are devoid of MT. The use of MT-transgenic and MT-null mice has greatly helped define the role of MT in Cd toxicology, with the MT-null mice being hypersensitive and MT-transgenic mice resistant to Cd toxicity. Thus, MT is critical for protecting human health from Cd toxicity. There are large individual variations in MT expression, which might in turn predispose some people to Cd toxicity.

  10. Multiscale digital Arabidopsis predicts individual organ and whole-organism growth.

    PubMed

    Chew, Yin Hoon; Wenden, Bénédicte; Flis, Anna; Mengin, Virginie; Taylor, Jasper; Davey, Christopher L; Tindal, Christopher; Thomas, Howard; Ougham, Helen J; de Reffye, Philippe; Stitt, Mark; Williams, Mathew; Muetzelfeldt, Robert; Halliday, Karen J; Millar, Andrew J

    2014-09-30

    Understanding how dynamic molecular networks affect whole-organism physiology, analogous to mapping genotype to phenotype, remains a key challenge in biology. Quantitative models that represent processes at multiple scales and link understanding from several research domains can help to tackle this problem. Such integrated models are more common in crop science and ecophysiology than in the research communities that elucidate molecular networks. Several laboratories have modeled particular aspects of growth in Arabidopsis thaliana, but it was unclear whether these existing models could productively be combined. We test this approach by constructing a multiscale model of Arabidopsis rosette growth. Four existing models were integrated with minimal parameter modification (leaf water content and one flowering parameter used measured data). The resulting framework model links genetic regulation and biochemical dynamics to events at the organ and whole-plant levels, helping to understand the combined effects of endogenous and environmental regulators on Arabidopsis growth. The framework model was validated and tested with metabolic, physiological, and biomass data from two laboratories, for five photoperiods, three accessions, and a transgenic line, highlighting the plasticity of plant growth strategies. The model was extended to include stochastic development. Model simulations gave insight into the developmental control of leaf production and provided a quantitative explanation for the pleiotropic developmental phenotype caused by overexpression of miR156, which was an open question. Modular, multiscale models, assembling knowledge from systems biology to ecophysiology, will help to understand and to engineer plant behavior from the genome to the field.

  11. Gold nanocluster formation using metallothionein: mass spectrometry and electron microscopy.

    PubMed

    Mercogliano, Christopher P; DeRosier, David J

    2006-01-13

    Clonable contrasting agents for light microscopy, such as green fluorescent protein, have revolutionized biology, but few such agents have been developed for transmission electron microscopy (TEM). As an attempt to develop a novel clonable contrasting agent for TEM, we have evaluated metallothionein, a small metal-binding protein, reacted with aurothiomalate, an anti-arthritic gold compound. Electro spray ionization and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry measurements show a distribution of gold atoms bound to individual metallothionein molecules. Unlike previous reports, these data show gold binding occurred as the addition of single atoms without retention of additional ligands. Moreover, under certain conditions, MALDI spectra show gold binding ratios of greater than 1:1 with the cysteine residues of metallothionein. Together, this may hint at a gold-binding mechanism similar to gold nanocluster formation. Finally, metallothionein-gold complexes visualized in the TEM show a range of sizes similar to those used as current TEM labels, and show the potential of the protein as a clonable TEM label in which the gold cluster is grown on the label, thereby circumventing the problems associated with attaching gold clusters.

  12. Quantification of metallothionein as a biomarker for cadmium exposure in terrestrial gastropods

    SciTech Connect

    Berger, B.; Dallinger, R.; Thomaser, A.

    1995-05-01

    A useful cadmium saturation method, the cadmium-Chelex assay, is adopted and modified for quantification of metallothionein induction and protein cadmium saturation in midgut gland of cadmium-exposed Roman snails (Helix pomatia). The assay is based on denaturation of nonmetallothionein, cadmium-binding ligands; complete saturation of metallothionein by adding excess amounts of nonradioactive cadmium; and chelating of excessive amounts of cytosolic metal by the Chelex-100 cation exchange resin. After short-term cadmium feeding, snails quickly responded by showing rising metallothionein levels, protein concentrations in the midgut gland increasing from about 300 {mu}g/g tissue (wet weight) to 750 {mu}g/g within a period of 2 d. At the same time cadmium loading of protein rose from 20% in control snails to 50% saturation in exposed individuals. After long-term cadmium exposure, maximal metallothionein concentrations of about 1,000 {mu}g/g tissue (wet weight) and a relative metallothionein cadmium saturation of 70% were reached in midgut glands of exposed snails. It is proposed that metallothionein quantification in H. pomatia might be used as a tool for biomarker studies in three ways. First, the slope of metallothionein induction might be used as a biomarker for incipient cadmium exposure and for the responsiveness of an invertebrate to metal exposure stress. Second, the steady-state level of metallothionein concentration in the midgut gland of H. pomatia might serve as an integrating biomarker reflecting single or repeated exposure events occurring over a prolonged period of time. Third, the percentage cadmium saturation of metallothionein could be utilized as a biomarker indicating if and by how much the detoxification capacity of H. pomatia is becoming exhausted due to elevated cadmium exposure.

  13. Detection of deleterious genotypes in multigenerational studies. I. Disruptions in individual Arabidopsis actin genes.

    PubMed Central

    Gilliland, L U; McKinney, E C; Asmussen, M A; Meagher, R B

    1998-01-01

    Plant actins are involved in numerous cytoskeletal processes effecting plant development, including cell division plane determination, cell elongation, and cell wall deposition. Arabidopsis thaliana has five ancient subclasses of actin with distinct patterns of spatial and temporal expression. To test their functional roles, we identified insertion mutants in three Arabidopsis actin genes, ACT2, ACT4, and ACT7, representing three subclasses. Adult plants homozygous for the act2-1, act4-1, and act7-1 mutant alleles appear to be robust, morphologically normal, and fully fertile. However, when grown as populations descended from a single heterozygous parent, all three mutant alleles were found at extremely low frequencies relative to the wild-type in the F2 generation. Thus, all three mutant alleles appear to be deleterious. The act2-1 mutant allele was found at normal frequencies in the F1, but at significantly lower frequencies than expected in the F2 and F3 generations. These data suggest that the homozygous act2-1/act2-1 mutant adult plants have a reduced fitness in the 2N sporophytic portion of the life cycle, consistent with the vegetative expression of ACT2. These data are interpreted in light of the extreme conservation of plant actin subclasses and genetic redundancy. PMID:9611186

  14. Individual and joint activity of terpenoids, isolated from Calamintha nepeta extract, on Arabidopsis thaliana.

    PubMed

    Araniti, Fabrizio; Graña, Elisa; Reigosa, Manuel J; Sánchez-Moreiras, Adela M; Abenavoli, Maria Rosa

    2013-01-01

    Four terpenoids, camphor, pulegone, trans-caryophyllene and farnesene, previously found in Calamintha nepeta (L.) Savi methanolic extract and essential oils were assayed on germination and root growth of Arabidopsis thaliana (L.) Heynh. None of the terpenes, singularly or in combination, was able to inhibit the germination process. Farnesene and trans-caryophyllene caused a strong inhibitory effect on root growth, and pulegone, at the highest concentrations, reduced lateral root formation. Although the mixture of camphor-trans-caryophyllene with or without farnesene did not cause any effect on root growth, the addition of pulegone induced a marked synergistic activity. Moreover, the addition, at low concentration, of farnesene to pulegone-camphor-trans-caryophyllene mixture further increased the inhibitory effect on root elongation. These results suggested that the inhibitory effects caused by C. nepeta methanolic extract may depend on the combined action of different molecules.

  15. Individual and joint activity of terpenoids, isolated from Calamintha nepeta extract, on Arabidopsis thaliana.

    PubMed

    Araniti, Fabrizio; Graña, Elisa; Reigosa, Manuel J; Sánchez-Moreiras, Adela M; Abenavoli, Maria Rosa

    2013-01-01

    Four terpenoids, camphor, pulegone, trans-caryophyllene and farnesene, previously found in Calamintha nepeta (L.) Savi methanolic extract and essential oils were assayed on germination and root growth of Arabidopsis thaliana (L.) Heynh. None of the terpenes, singularly or in combination, was able to inhibit the germination process. Farnesene and trans-caryophyllene caused a strong inhibitory effect on root growth, and pulegone, at the highest concentrations, reduced lateral root formation. Although the mixture of camphor-trans-caryophyllene with or without farnesene did not cause any effect on root growth, the addition of pulegone induced a marked synergistic activity. Moreover, the addition, at low concentration, of farnesene to pulegone-camphor-trans-caryophyllene mixture further increased the inhibitory effect on root elongation. These results suggested that the inhibitory effects caused by C. nepeta methanolic extract may depend on the combined action of different molecules. PMID:23972283

  16. Isoelectric focusing of urinary metallothionein.

    PubMed

    Felley-Bosco, E; Hunziker, P E; Savolainen, H

    1990-05-01

    Isoelectric focusing of human urinary metallothionein at a pH range of 4.8 to 7.0 yielded a single protein band with a pI of 5.57 which co-migrated with authentic purified metallothionein I from human liver. Minimum pretreatment of the urine samples (160 ml) was needed. The preparatory steps included sample concentration with the original protein, enriched from 69 +/- 23 micrograms/ml to 2.0 +/- 1.4 mg/ml (+/- SD; n = 9), followed by heat treatment at 80 degrees C for 5 min (2.4 +/- 1.7 mg protein/ml). After focusing, the gels were stained with silver and the lanes were scanned with a laser scanner. Peak areas were used for quantitation with commercial beta 2-microglobulin as a standard. The urinary metallothionein ranged from 1.0 to 2.6 nmol/mmol creatinine, which is comparable with values reached by radio-immunoassay.

  17. Dietary cadmium and benzo(a)pyrene increased intestinal metallothionein expression in the fish Fundulus heteroclitus

    SciTech Connect

    Roesijadi, Guritno; Rezvankhah, Saeid; Perez-Matus, Alejandro; Mitelberg, A.; Torruellas, K.; Van Veld, P. A.

    2008-10-17

    To test the effect of dietary exposure to cadmium and benzo(a)pyrene on induction of metallothionein mRNA in the Fundulus heteroclitus, fish were individually fed a pelletized gel food containing cadmium, benzo(a)pyrene, or a combination of the two over a period of seven days, then analyzed for relative levels of metallothionein mRNA in the intestine, liver, and gill using real-time RT-qPCR. An initial experiment with only cadmium exposure showed an apparent 10-fold induction in the intestine, but no induction in liver or gill. Ingestion of contaminated pellets varied in individual fish, and because it was possible to monitor individual ingestion rates with our method, individual cadmium doses were estimated from the amount of ingested cadmium. When the levels of metallothionein mRNA were related to the dose to each fish, a linear dose-response relationship was observed for the intestine, but not the other organs, which showed no induction. In a second experiment, dose was controlled by placing the entire daily cadmium dose into a single contaminated pellet that was fed first (thereby, effectively controlling the effect of variable ingestion rates), and the interaction between cadmium and benzo(a)pyrene was also investigated. The intestine was again the primary organ for metallothionein induction by cadmium, with a 20-fold increase in metallothionein mRNA over control levels. When benzo(a)pyrene was administered together with cadmium, induction of metallothionein was potentiated by the presence of benzo(a)pyrene, with the main effect seen in the intestine, where already high levels of induction by cadmium alone increased by 1.74-fold when benzo(a)pyrene was present.

  18. Crystals of cadmium, zinc metallothionein.

    PubMed Central

    Melis, K A; Carter, D C; Stout, C D; Winge, D R

    1984-01-01

    Single crystals have been grown of Cd,Zn metallothionein isoform II from rat liver. The space group is P41212(P43212) with unit cell dimensions a = b = 31.0 A and c = 120.0 A, and one molecule in the crystallographic asymmetric unit. The crystals are square bipyramids elongated on the tetragonal c-axis and are grown by repetitive seeding. The crystals are suitable for high resolution structure analysis. Assays of dissolved crystals show that the crystals have the same Cd and Zn content and amino acid composition as the native, as-isolated protein. Images FIGURE 1. FIGURE 2. (a) FIGURE 2. (b) FIGURE 4. FIGURE 5. PMID:6734549

  19. Metallothionein and occupational exposure to cadmium.

    PubMed Central

    Falck, F Y; Fine, L J; Smith, R G; Garvey, J; Schork, A; England, B; McClatchey, K D; Linton, J

    1983-01-01

    The relationship between metallothionein (MT), chronic exposure to cadmium (Cd), and renal function was investigated in 53 men who were occupationally exposed to Cd. The aim was to determine if MT is a potential biological monitor for chronic exposure to Cd which would be useful for preventing Cd nephropathy. In this study MT excretion, serum MT, and serum creatinine concentrations were significantly higher in subjects with abnormal renal function who had been exposed to Cd. MT excretion was also linearly related on an individual basis to protein excretion, beta 2-microglobulin (beta 2-M) excretion, and cumulative time weighted exposure (dose). MT excretion was also a better predictor of dose than either beta 2-M excretion or Cd excretion. The findings suggest that MT is a potential biological monitor for chronic Cd exposure that would be useful for preventing Cd-induced nephropathy. Further studies of non-specific nephropathies and MT are needed to determine if MT is a specific indicator of proximal tubule function secondary to chronic exposure to Cd. PMID:6347245

  20. Metallothionein: an exceptional metal thiolate protein.

    PubMed

    Kägi, J H; Kojima, Y; Kissling, M M; Lerch, K

    1979-01-01

    Metallothioneins are unusual, low molecular weight proteins of extremely high sulphur and metabl content. They occur in substantial quantity and in multiple variant forms in parenchymatous tissues (liver, kidney, intestines) of vertebrates and certain microorganisms (Neurospora crassa, yeast). They are though to play a central role in the cellular metabolism of metals such as zinc, copper and cadmium. All mammalian forms studied are single chains with 20 cysteinyl residues among a total of 61 amino acid residues and highly characteristic amino acid sequences. Their most conspicuous common features are seven -Cys-X-Cys- sequences where X stands for an alphatic residue other than Cys. Together with additional cysteinyl residues located elsewhere in the chain and brought into juxtaposition by appropriate chain folding, these dithiol sequences are believed to form the basis of the trithiolate chelating structures typical of most of the six or seven metal-binding sites of the mammalian cadium- and/or zinc-containing metallothioneins. The positions of the cysteinyl residues are preserved in evolution: the copper-containing metallothionein from Neurospora crassa, containing only 25 amino acid residues, has a distribution of metal-binding cysteinyl residues identical to that of the N-terminal portion of the mammalian chains. The detailed physiological role of metallothionein remains to be clarified but its biosynthesis is known to be modulated by nutritional and endocrine factors. Recent evidence suggests that metallothionein is a critical determinant in the homeostasis of zinc.

  1. Cadmium, metallothionein and renal tubular toxicity.

    PubMed

    Nordberg, M; Jin, T; Nordberg, G F

    1992-01-01

    Cadmium-induced nephrotoxicity develops at cadmium concentrations in the renal cortex of 10-300 micrograms/g wet weight. The actual concentration at which it develops depends on a number of factors, e.g., exposure route, chemical species of cadmium administered, rate of administration and simultaneous exposure to other metals. The role of these factors can be explained by a mechanism of cadmium nephrotoxicity in which both extracellular and intracellular metallothionein binding play an essential role. In reindeer used for human food, cadmium was shown to be bound to metallothionein-like proteins. If cadmium bound to such proteins enters the blood plasma via the gastrointestinal tract, this is of special toxicological significance. Metallothionein-bound cadmium in the plasma of experimental animals is efficiently transported to the kidney. Tubular dysfunction in the kidney following a normally tubulotoxic dose of cadmium bound to metallothionein was prevented by preinduction of metallothionein synthesis by small non-toxic doses of cadmium. PMID:1303954

  2. Metallothionein protein evolution: a miniassay.

    PubMed

    Capdevila, Mercè; Atrian, Sílvia

    2011-10-01

    Metallothionein (MT) evolution is one of the most obscure yet fascinating aspects of the study of these atypical metal-binding peptides. The different members of the extremely heterogeneous MT protein superfamily probably evolved through a web of duplication, functional differentiation, and/or convergence events leading to the current scenario, which is particularly hard to interpret in terms of molecular evolution. Difficulties in drawing straight evolutionary relationships are reflected in the lack of definite MT classification criteria. Presently, MTs are categorized either according to a pure taxonomic clustering or depending on their metal binding preferences and specificities. Extremely well documented MT revisions were recently published. But beyond classic approaches, this review of MT protein evolution will bring together new aspects that have seldom been discussed before. Hence, the emergence of life on our planet, since metal ion utilization is accepted to be at the root of the emergence of living organisms, and global trends that underlie structural and functional MT diversification, will be presented. Major efforts are currently being devoted to identifying rules for function-constrained MT evolution that may be applied to different groups of organisms.

  3. Prognostic evaluation of metallothionein expression in human colorectal neoplasms.

    PubMed Central

    Ioachim, E E; Goussia, A C; Agnantis, N J; Machera, M; Tsianos, E V; Kappas, A M

    1999-01-01

    AIM: To investigate the role of metallothionein in colorectal tumours and the possible relation with other factors associated with tumour progression: expression of cathepsin D (CD), CD44, p53, Rb, bcl-2, c-erbB-2, epidermal growth factor receptor (EGFR), proliferation indices (Ki-67, proliferating cell nuclear antigen (PCNA)), and conventional clinicopathological variables. METHODS: The immunohistochemical expression of metallothionein was investigated in 23 cases of colorectal adenoma and 94 adenocarcinomas. Metallothionein expression was examined by the avidinbiotin peroxidase immunoperoxidase (ABC) using the monoclonal mouse antibody E9, on formalin fixed, paraffin embedded tissue. RESULTS: Positive metallothionein expression (> 5% of neoplastic cells) was observed in 30.4% of adenomas and 25.5% of adenocarcinomas, while 8.7% of adenomas and 14.9% carcinomas showed focal metallothionein positivity. In contrast, 60.9% of adenomas and 59.6% of carcinomas almost completely lacked metallothionein expression. In the series of adenocarcinomas, metallothionein expression was inversely correlated with CD44 in neoplastic cells (p = 0.01). There was no statistically significant difference of metallothionein expression, or the other variables examined, between adenocarcinomas and adenomas. CONCLUSIONS: Metallothionein expression does not seem to indicate aggressive biological behaviour in colorectal adenocarcinomas, in comparison with the other types of carcinoma. The inverse correlation with CD44 could suggest that the decreased metallothionein expression may contribute to the metastatic spread of the lymph node involvement in colorectal cancer. Metallothionein expression does not seem to represent an independent prognostic marker in colorectal cancer. Images PMID:10711249

  4. Heavy metal and metallothionein concentrations in Atlantic Canadian seabirds.

    PubMed

    Elliott, J E; Scheuhammer, A M; Leighton, F A; Pearce, P A

    1992-01-01

    Seabird tissues, collected during the 1988 breeding season from colonies on the Atlantic coast of Canada, were analyzed for toxic metals--Cd, Hg and Pb--and 18 other trace elements. Metallothionein (MT) was measured in kidney, and kidneys and livers underwent histopathological examination. Levels of most essential trace elements appear to be closely regulated in seabird tissues; values were in good agreement with those previously reported in the published literature. Liver-Se concentrations in Leach's storm-petrels (Oceanodroma leukorrhea) (77.6 + 7.49 micrograms/g dry weight) were much higher than values normally reported for free-living birds and mammals. Cd levels varied greatly among individuals, but were always higher in kidney than in liver. Highest mean Cd concentrations (183 + 65 micrograms/g dry weight) were in kidneys of the planktivorous Leach's storm-petrels from the Gulf of St. Lawrence. A few individuals of this species had values greater than 300 micrograms/g dry weight. Cd and metallothionein (MT) concentrations were positively correlated in kidneys of Leach's storm-petrels (r = 0.692), Atlantic puffin (Fratercula arctica) (r = 0.845) and herring gull (Larus argentatus) (r = 0.866). Concentrations of total Hg varied greatly among species and individuals, but were consistently higher in liver than in kidney. Highest mean levels (21 + 28 micrograms/g) were in livers of the piscivorous double-crested cormorant (Phalacrocorax auritus) from Saint John Harbour in the Bay of Fundy. Concentrations of Hg and Se were positively correlated (r = 0.736) in livers of Leach's storm-petrel, but not in other species. Pb concentrations were consistently greatest in bone, with mean levels being highest in herring gulls from a colony in the Bay of Fundy (63 + 36 micrograms/g). Histological examination of liver and kidney failed to reveal indications of tissue damage associated with elevated levels of heavy metals. PMID:1554255

  5. Tetrahymena Metallothioneins Fall into Two Discrete Subfamilies

    PubMed Central

    Campos, Virginia; Benítez, Laura; Martín-González, Ana; Hamilton, Eileen P.; Orias, Eduardo; Gutiérrez, Juan C.

    2007-01-01

    Background Metallothioneins are ubiquitous small, cysteine-rich, multifunctional proteins which can bind heavy metals. Methodology/Principal Findings We report the results of phylogenetic and gene expression analyses that include two new Tetrahymena thermophila metallothionein genes (MTT3 and MTT5). Sequence alignments of all known Tetrahymena metallothioneins have allowed us to rationalize the structure of these proteins. We now formally subdivide the known metallothioneins from the ciliate genus Tetrahymena into two well defined subfamilies, 7a and 7b, based on phylogenetic analysis, on the pattern of clustering of Cys residues, and on the pattern of inducibility by the heavy metals Cd and Cu. Sequence alignment also reveals a remarkably regular, conserved and hierarchical modular structure of all five subfamily 7a MTs, which include MTT3 and MTT5. The former has three modules, while the latter has only two. Induction levels of the three T. thermophila genes were determined using quantitative real time RT-PCR. Various stressors (including heavy metals) brought about dramatically different fold-inductions for each gene; MTT5 showed the highest fold-induction. Conserved DNA motifs with potential regulatory significance were identified, in an unbiased way, upstream of the start codons of subfamily 7a MTs. EST evidence for alternative splicing in the 3′ UTR of the MTT5 mRNA with potential regulatory activity is reported. Conclusion/Significance The small number and remarkably regular structure of Tetrahymena MTs, coupled with the experimental tractability of this model organism for studies of in vivo function, make it an attractive system for the experimental dissection of the roles, structure/function relationships, regulation of gene expression, and adaptive evolution of these proteins, as well as for the development of biotechnological applications for the environmental monitoring of toxic substances. PMID:17356700

  6. A novel metallothionein gene from a mangrove plant Kandelia candel.

    PubMed

    Zhang, Feng-Qin; Wang, You-Shao; Sun, Cui-Ci; Lou, Zhi-Ping; Dong, Jun-De

    2012-08-01

    A new metallothionein (MT) gene was cloned from Kandelia candel, a mangrove plant with constitutional tolerance to heavy metals, by rapid amplification of cDNA ends and named KMT, which is composed of two exons and one intron. The full length of KMT cDNA was 728 bp including 121 bp 5' noncoding domain, 240 bp open reading frame and 384 bp 3' termination. The coding region of KMT represented a putative 79 amino acid protein with a molecular weight of 7.75 kDa. At each of the amino- and carboxy-terminal of the putative protein, cysteine residues were arranged in Cys-Cys, Cys-X-Cys and Cys-X-X-Cys, indicating that the putative protein was a novel type 2 MT. Sequence and homology analysis showed the KMT protein sequence shared more than 60 % homology with other plant type 2 MT-like protein genes. At amino acid level, the KMT was shown homology with the MT of Quercus suber (83 %), of Ricinus communis (81 %) and of Arabidopsis thaliana (64 %). Function studies using protease-deficient Escherichia coli strain BL21 Star ™(DE3) confirmed the functional nature of this KMT gene in sequestering both essential (Zn) and non-essential metals (Cd and Hg) and the E. coli BL21 with KMT can live in 1,000 μmol/L Zn, 120 μmol/L Hg, and 2,000 μmol/L Cd. The information could provide more details of the causative molecular and biochemical mechanisms (including heavy metal sequestration) of the KMT in K. candel or a scientific basis for marine heavy-metal environment remediation with K. candel. This study also provides a great significance of protecting mangrove species and mangrove ecosystem.

  7. Cadmium-binding protein (metallothionein) in carp

    SciTech Connect

    Kito, H.; Ose, Y.; Sato, T.

    1986-03-01

    When carp (Cyprinus carpio) were exposed to 5 and 30 ppm Cd in the water, the contents of Cd-binding protein, which has low molecular weight, increased in the hepatopancreas, kidney, gills and gastrointestinal tract with duration of exposure. This Cd-binding protein was purified from hepatopancreas, kidney, gills, and spleen of carp administered 2 mg/kg Cd (as CdCl/sub 2/), intraperitoneally for 6 days. Two Cd-binding proteins were separated by DEAE-Sephadex A-25 column chromatography. These proteins had Cd-mercaptide bond, high cysteine contents (ca. 29-34%), but no aromatic amino acids or histidine. From these characteristics the Cd-binding proteins were identified as metallothionein. By using antiserum obtained from a rabbit to which carp hepatopancreas MT-II had been administered, immunological characteristics between hepatopancreas MT-I, II and kidney MT-II were studied, and a slight difference in antigenic determinant was observed among them. By immunological staining techniques with horseradish peroxidase, the localization of metallothionein was investigated. Carp were bred in 1 ppm Cd, 5 ppm Zn solution, and tap water for 14 days, following transfer to 15 ppm Cd solution, respectively. The survival ratio was the highest in the Zn group followed by Cd-treated and control groups.

  8. Study of metallothionein-quantum dots interactions.

    PubMed

    Tmejova, Katerina; Hynek, David; Kopel, Pavel; Krizkova, Sona; Blazkova, Iva; Trnkova, Libuse; Adam, Vojtech; Kizek, Rene

    2014-05-01

    Nanoparticles have gained increasing interest in medical and in vivo applications. Metallothionein (MT) is well known as a maintainer of metal ions balance in intracellular space. This is due to high affinity of this protein to any reactive species including metals and reactive oxygen species. The purpose of this study was to determine the metallothionein-quantum dots interactions that were investigated by spectral and electrochemical techniques. CuS, CdS, PbS, and CdTe quantum dots (QDs) were analysed. The highest intensity was shown for CdTe, than for CdS measured by fluorescence. These results were supported by statistical analysis and considered as significant. Further, these interactions were analysed using gel electrophoresis, where MT aggregates forming after interactions with QDs were detected. Using differential pulse voltammetry Brdicka reaction, QDs and MT were studied. This method allowed us to confirm spectral results and, moreover, to observe the changes in MT structure causing new voltammetric peaks called X and Y, which enhanced with the prolonged time of interaction up to 6 h.

  9. Mammalian Metallothionein-2A and Oxidative Stress

    PubMed Central

    Ling, Xue-Bin; Wei, Hong-Wei; Wang, Jun; Kong, Yue-Qiong; Wu, Yu-You; Guo, Jun-Li; Li, Tian-Fa; Li, Ji-Ke

    2016-01-01

    Mammalian metallothionein-2A (MT2A) has received considerable attention in recent years due to its crucial pathophysiological role in anti-oxidant, anti-apoptosis, detoxification and anti-inflammation. For many years, most studies evaluating the effects of MT2A have focused on reactive oxygen species (ROS), as second messengers that lead to oxidative stress injury of cells and tissues. Recent studies have highlighted that oxidative stress could activate mitogen-activated protein kinases (MAPKs), and MT2A, as a mediator of MAPKs, to regulate the pathogenesis of various diseases. However, the molecule mechanism of MT2A remains elusive. A deeper understanding of the functional, biochemical and molecular characteristics of MT2A would be identified, in order to bring new opportunities for oxidative stress therapy. PMID:27608012

  10. Treatment of Wilson's disease with zinc: X. Intestinal metallothionein induction.

    PubMed

    Yuzbasiyan-Gurkan, V; Grider, A; Nostrant, T; Cousins, R J; Brewer, G J

    1992-09-01

    Oral zinc therapy is effective in controlling copper balance in patients with Wilson's disease and blocks the intestinal absorption of copper, as demonstrated by uptake of copper 64 and copper balance measurements. In this study, 64Cu uptake measurements were concomitantly carried out with intestinal biopsies to investigate the relationship of reduced copper absorption to the levels of intestinal metallothionein in patients with Wilson's disease at different stages of zinc therapy. A pronounced increase in intestinal metallothionein levels and a sharp drop in 64Cu absorption were found 4 to 5 days after the initiation of zinc treatment. Conversely, metallothionein levels decreased and 64Cu uptake increased on the discontinuation of zinc therapy. The data indicate that 64Cu absorption varies as a function of intestinal metallothionein level. Intestinal metallothionein levels were found to correlate linearly with urinary zinc levels, which reflect body zinc status. These findings support our hypothesis that intestinal metallothionein induction mediates decreased copper absorption observed during zinc therapy. The suppressive effect of zinc on copper absorption appears to have a half-life of about 11 days.

  11. Chronic cadmium intake results in dose-related excretion of metallothionein in urine.

    PubMed

    Shaikh, Z A; Harnett, K M; Perlin, S A; Huang, P C

    1989-02-15

    Urinary excretion of metallothionein was measured by radioimmunoassay in rats given drinking water containing 5 or 50 mg cadmium/l for up to 2 years. The metallothionein levels corresponded to the concentration of cadmium in the drinking water and increased linearly over the course of the study. These results demonstrate that urinary metallothionein is a sensitive biological indicator of oral cadmium exposure.

  12. Drosophila melanogaster metallothionein genes: Selection for duplications

    SciTech Connect

    Lange, B.W.

    1989-01-01

    The metallothionein genes of Drosophila melanogaster, Mtn and Mto, may play an important role in heavy-metal detoxification. In order to investigate the possibility of increased selection for duplications of these genes in natural populations exposed to high levels of heavy metals, I compared the frequencies of such duplications among flies collected from metal-contaminated and non-contaminated orchards in Pennsylvania, Tennessee, and Georgia. Contaminated of collection sites and of local flies was confirmed by atomic absorption spectrosphotometry. Six-nucleotide-recognizing restriction enzyme analysis was used to screen 1666 wild third chromosomes for Mtn duplications. A subset (327) of these lines was screened for Mto duplications: none were found. Cadmium tolerance test performed on F{sub 2} progeny of wild females failed to detect a difference in tolerance levels between flies from contaminated orchards and flies from control orchards. Estimates of sequence diversity among a subsample (92) of the chromosomes used in the duplication survey, including all 27 Mtn duplication chromosomes, were obtained using four-nucleotide-recognizing restriction enzyme analysis.

  13. Molecular Evolution of Drosophila Metallothionein Genes

    PubMed Central

    Lange, B. W.; Langley, C. H.; Stephan, W.

    1990-01-01

    The metallothionein genes of Drosophila melanogaster, Mtn and Mto, may play an important role in heavy metal detoxification. Several different tandem duplications of Mtn have been shown to increase cadmium and copper tolerance, as well as Mtn expression. In order to investigate the possibility of increased selection for duplications of these genes in natural populations exposed to high levels of heavy metals, we compared the frequencies of such duplications among flies collected from metal-contaminated and non-contaminated orchards in Pennsylvania, Tennessee and Georgia. Restriction enzyme analysis was used to screen 1666 wild third chromosomes for Mtn duplications and a subset (327) of these lines for Mto duplications. The frequency of pooled Mtn duplications found ranged from 0% to 20%, and was not significantly higher at the contaminated sites. No Mto duplications were identified. Estimates of sequence diversity at the Mtn locus among a subsample (92) of the duplication survey were obtained using four-cutter analysis. This analysis revealed a low level of polymorphism, consistent with both selection at the Mtn locus, and a fairly recent origin for the duplications. To further examine this hypothesis, we sequenced an Mtn allele of Drosophila simulans and measured the amount of nucleotide sequence divergence between D. simulans and its sibling species D. melanogaster. The levels of silent nucleotide polymorphism and divergence in the Mtn region were compared with those in the Adh region, using the neutrality test of R. R. Hudson, M. Kreitman and M. Aguade. PMID:1981765

  14. Expression of mouse metallothionein genes in tobacco

    SciTech Connect

    Maiti, I.B.; Yeargan, R.; Wagner, G.J.; Hunt, A.G. )

    1990-05-01

    We have expressed a mouse metallothionein (NT) gene in tobacco under control of the cauliflower mosaic virus (CaMV) 35S promoter and a pea ribulose-1,5-bisphosphate carboxylase small subunit (rbcS) gene promoter. Seedlings in which MT gene expression is driven by the 35S promoter are resistant to toxic levels of cadmium. Mature plants carrying the 35S-MT gene accumulate less Cd in their leaves when exposed to low levels of Cd in laboratory growth conditions. Plants with the rbcS-MT construction express this gene in a light-regulated and tissue-specific manner, as expected. Moreover, the MT levels in leaves in these plants are about 20% of those seen in 35S-MT plants. These plants are currently being tested for Cd resistance. In addition, a small field evaluation of 35S-MT lines for Cd levels is being evaluated. These experiments will address the possibility of using MTs to alter Cd levels in crop species.

  15. Metallothionein and the Biology of Aging

    PubMed Central

    Swindell, William R.

    2010-01-01

    Metallothionein (MT) is a low molecular weight protein with anti-apoptotic properties that has been demonstrated to scavenge free radicals in vitro. MT has not been extensively investigated within the context of aging biology. The purpose of this review, therefore, is to discuss findings on MT that are relevant to basic aging mechanisms and to draw attention to the possible role of MT in pro-longevity interventions. MT is one of just a handful of proteins that, when overexpressed, has been demonstrated to increase mouse lifespan. MT also protects against development of obesity in mice provided a high fat diet as well as diet-induced oxidative stress damage. Abundance of MT is responsive to caloric restriction (CR) and inhibition of the insulin / insulin-like signaling (IIS) pathway, and elevated MT gene expression has been observed in tissues from fasted and CR-fed mice, long-lived dwarf mice, worms maintained under CR conditions, and long-lived daf-2 mutant worms. The dysregulation of MT in these systems is likely to have tissue-specific effects on aging outcomes. Further investigation will therefore be needed to understand how MT contributes to the response of invertebrates and mice to CR and the endocrine mutations studied by aging researchers. PMID:20933613

  16. X-Ray Absorption Spectroscopy of Cuprous-Thiolate Clusters in Saccharomyces Cerevisiae Metallothionein

    SciTech Connect

    Zhang, L.; Pickering, I.J.; Winge, D.R.; George, G.N.

    2009-05-28

    Copper (Cu) metallothioneins are cuprous-thiolate proteins that contain multimetallic clusters, and are thought to have dual functions of Cu storage and Cu detoxification. We have used a combination of X-ray absorption spectroscopy (XAS) and density-functional theory (DFT) to investigate the nature of Cu binding to Saccharomyces cerevisiae metallothionein. We found that the XAS of metallothionein prepared, containing a full complement of Cu, was quantitatively consistent with the crystal structure, and that reconstitution of the apo-metallothionein with stoichiometric Cu results in the formation of a tetracopper cluster, indicating cooperative binding of the Cu ions by the metallothionein.

  17. Critical exposure level of cadmium for elevated urinary metallothionein-An occupational population study in China

    SciTech Connect

    Chen Liang; Jin Taiyi . E-mail: tyjin@shmu.edu.cn; Huang, Bo; Nordberg, Gunnar; Nordberg, Monica

    2006-08-15

    Cadmium is a well-known nephrotoxic agent with extremely long biological half-time of 15-30 years in humans. To prevent nephrotoxicity induced by cadmium, it is necessary to identify specific and sensitive biomarkers of cadmium exposure and renal damage, and to define critical exposure levels related to minimal nephrotoxicity in humans. In this study, urinary cadmium (UCd) and blood cadmium (BCd) were used as cadmium exposure indicators, urinary {beta}{sub 2}-microglobulin (UB2M), N-acetyl-{beta}-D-glucosaminidase (UNAG) and albumin (UALB) were applied as the effect biomarkers of tubular and glomerular dysfunction. The relationship between urinary metallothionein (UMT) and cadmium exposure biomarkers as well as effect biomarkers was examined. Significant correlations were found between the UMT and BCd, and UCd. At the same time, UB2M, UALB and UNAG showed positive correlation with UMT as well. According to this result, cadmium-exposed individuals with renal dysfunction excreted more metallothionein than those without. Dose-response relationships between UCd and urinary indicators of renal dysfunction were studied. The critical concentration of UCd was quantitatively estimated by the benchmark dose (BMD) method. The lower confidence limit of the BMD-10 (BMDL) of UCd (3.1 {mu}g/g Cr) related to increased excretion of urinary metallothionein was slightly higher than that for UNAG (2.7 {mu}g/g Cr), but lower than those of UB2M (3.4 {mu}g/g Cr) and UALB (4.2 {mu}g/g Cr). The results demonstrate that UMT may be used as a sensitive biomarker of renal tubular dysfunction in cadmium-exposed populations.

  18. Metallothioneins for correlative light and electron microscopy.

    PubMed

    Fernández de Castro, Isabel; Sanz-Sánchez, Laura; Risco, Cristina

    2014-01-01

    Structural biologists have been working for decades on new strategies to identify proteins in cells unambiguously. We recently explored the possibilities of using the small metal-binding protein, metallothionein (MT), as a tag to detect proteins in transmission electron microscopy. It had been reported that, when fused with a protein of interest and treated in vitro with gold salts, a single MT tag will build an electron-dense gold cluster ~1 nm in diameter; we provided proof of this principle by demonstrating that MT can be used to detect intracellular proteins in bacteria and eukaryotic cells. The method, which is compatible with a variety of sample processing techniques, allows specific detection of proteins in cells with exceptional sensitivity. We illustrated the applicability of the technique in a series of studies to visualize the intracellular distribution of bacterial and viral proteins. Immunogold labeling was fundamental to confirm the specificity of the MT-gold method. When proteins were double-tagged with green fluorescent protein and MT, direct correlative light and electron microscopy allowed visualization of the same macromolecular complexes with different spatial resolutions. MT-gold tagging might also become a useful tool for mapping proteins into the 3D-density maps produced by (cryo)-electron tomography. New protocols will be needed for double or multiple labeling of proteins, using different versions of MT with fluorophores of different colors. Further research is also necessary to render the MT-gold labeling procedure compatible with immunogold labeling on Tokuyasu cryosections and with cryo-electron microscopy of vitreous sections.

  19. Metallothionein blocks oxidative DNA damage in vitro

    PubMed Central

    Qu, Wei; Pi, Jingbo; Waalkes, Michael P.

    2012-01-01

    The role of metallothionein (MT) in mitigation of oxidative DNA damage (ODD) induced either by cadmium (Cd) or the direct oxidant hydrogen peroxide (H2O2) was systematically examined by using MT-I/II double knockout (MT-null) or MT-competent wild-type (WT) cells. Both toxicants were much more lethal to MT-null cells (Cd LC50 = 6.6 μM; H2O2 LC50 = 550 μM) than WT cells (Cd LC50 = 16.5 μM; H2O2 LC50 = 930 μM). Cd induced concentration-related MT increases in WT cells, while the basal levels were undetectable and not increased by Cd in MT-null cells. ODD, measured by the immuno-spin trapping method, was minimally induced by sub-toxic Cd levels (1 or 5 μM; 24 h) in WT cells, but markedly increased in MT-null cells (> 430%). Similarly, ODD was induced to higher levels by lower concentrations of H2O2 in MT-null cells than WT cells. Transfection of MT-I into MT-null cells reduced both Cd- and H2O2-induced cytolethality and ODD. Cd increased expression of the oxidant defense genes, HO-1 and GSTa2 to a much greater extent in MT-null cells than WT. Cd or H2O2 exposure increased expression of key transport genes, Mrp1 and Mrp2, in WT cells but not in MT-null cells. MT protects against Cd- and H2O2-induced ODD in MT competent cells possibly by multiple mechanisms, potentially including direct metal ion sequestration and sequestration of oxidant radicals by MT. MT-deficient cells appear to adapt to Cd primarily by turning on oxidant response systems, while MT-competent cells activate MT and transport systems. PMID:22914987

  20. Nucleotide sequence and expression of a Drosophila metallothionein.

    PubMed

    Lastowski-Perry, D; Otto, E; Maroni, G

    1985-02-10

    A Drosophila melanogaster cDNA clone was isolated based on its more intense hybridization to RNA sequences from copper-fed larvae than from control larval RNA. This clone showed strong hybridization to mouse metallothionein I cDNA at reduced stringency. Its nucleotide sequence includes an open reading segment which codes for a 40-amino acid protein; this protein is identified as metallothionein based on its similarity to the amino-terminal portion of mammalian and crab metalloproteins. The 10 cysteine residues present occur in five pairs of near vicinal cysteines (Cys-X-Cys). This cDNA sequence hybridized to a 400-nucleotide polyadenylated RNA whose presence in the cells of the alimentary canal of larvae was stimulated by ingestion of cadmium or copper; in other tissues this RNA was present at much lower levels. Mercury, silver, and zinc induced metallothionein to a lesser extent. The level of metallothionein RNA increased very soon after the initiation of metal treatment and reached a maximum after approximately 36 h. PMID:2578462

  1. Cadmium and copper metallothioneins in the American lobster, Homarus americanus

    SciTech Connect

    Engel, D.W.; Brouwer, M.

    1986-03-01

    Lobsters were fed cadmium-rich oysters for 28 days, and the induction of cadmium metallothionein and its relation to concentrations of cadmium, copper, and zinc in the digestive gland and gills was determined. A portion of the tissues also was retained for determining the cytosolic distribution of these metals by gel filtration and ion-exchange chromatography. The digestive gland contained a majority of the cadmium, copper, and zinc, and both cadmium and zinc were actively accumulated from the oysters. Gel chromatography of the digestive gland cytosol showed that initially only copper was bound to a protein with a molecular weight in the range of metallothionein (i.e., 10,000-7000). However, after feeding on cadmium-laden oysters for 28 days, both cadmium and copper were bound to the metallothioneinlike protein. Further purification of the cadmium/copper protein by ion-exchange chromatography showed that a large portion of the copper and all of the cadmium did not bind to DEAE-Sephacel. The induction of cadmium metallothionein in the digestive gland is correlated with tissue cadmium concentration. Coincident with the induction of the cadmium metallothionein was a cytosolic redistribution of copper. The distribution of zinc was not affected.

  2. Response of metallothionein gene-1 to laboratory exposure to heavy metals and thermal stress in the freshwater prawn Macrobrachium rosenbergii.

    PubMed

    Mahmood, Khalid; Yang, Jin-Shu; Chen, Dianfu; Wang, Moran; Yang, Fan; Yang, Wei-Jun

    2009-08-15

    Metallothioneins, metal-inducible proteins, are being characterized from different organisms and shown as potential biomarkers of exposure to pollution by certain heavy metals. Here we report the identification of a new metallothionein cDNA (433bp) from the shrimp Macrobrachium rosenbergii, putatively encoding a 61 residue polypeptide. Tissue specific analysis indicated that Mar-MT-I (M. rosenbergii Metallothionein Gene-1) is expressed with the highest levels in the hepatopancreas and lowest in the thoracic ganglia, and none in the gills or muscles. In addition, our data showed that Mar-MT-I is differentially regulated in the hepatopancreas by certain heavy metals and thermal stress: Cd and Cu produce somewhat similar expression profile patterns, Zn has a reductional effect and thermal stress alone entirely stops its expression. These results show that Mar-MT-I mRNA levels can potentially be used as biomarkers for Cd, Cu or Zn pollution individually. However, in the case of combined metal treatment, different combinations of these metals have quite different effect on Mar-MT-I expression. Therefore, factors of such differential behaviors should be kept as a priority for further biomonitoring studies.

  3. Cd-metallothioneins in three additional tetrahymena species: intragenic repeat patterns and induction by metal ions.

    PubMed

    Chang, Yue; Liu, Guanglong; Guo, Lina; Liu, Hongbo; Yuan, Dongxia; Xiong, Jie; Ning, Yingzhi; Fu, Chengjie; Miao, Wei

    2014-01-01

    Ciliate metallothioneins (MTs) possess many unique features compared to the "classic" MTs in other organisms, but they have only been studied in a small number of species. In this study, we investigated cDNAs encoding subfamily 7a metallothioneins (CdMTs) in three Tetrahymena species (T. hegewischi, T. malaccensis, and T. mobilis). Four CdMT genes (ThegMT1, ThegMT2, TmalMT1, and TmobMT1) were cloned and characterized. They share high sequence similarity to previously identified subfamily 7a MT members. Tetrahymena CdMTs exhibit a remarkably regular intragenic repeat homology. The CdMT sequences were divided into two main types of modules, which had been previously described, and which we name "A" and "B". ThegMT2 was identified as the first MT isoform solely composed of module "B". A phylogenetic analysis of individual modules of every characterized Tetrahymena CdMT rigorously documents the conclusion that modules are important units of CdMT evolution, which have undergone frequent and rapid gain/loss and shuffling. The transcriptional activity of the four newly identified genes was measured under different heavy metal exposure (Cd, Cu, Zn, Pb) using real-time quantitative PCR. The results showed that these genes were differentially induced after short (1 h) or long (24 h) metal exposure. The evolutionary diversity of Tetrahymena CdMTs is further discussed with regard to their induction by metal ions.

  4. Cadmium and metallothionein turnover in different tissues of the gastropod Littorina littorea.

    PubMed

    Bebianno, M J; Langston, W J

    1998-06-01

    This paper attempts to link the kinetics of Cd and metallothionein turnover in the intertidal marine snail Littorina littorea. The results demonstrate that the turnover of metallothionein is tissue dependent. Metallothionein has an estimated half-life of 69 and 160 days in the gills and kidney, respectively. The half-life could not be calculated for metallothionein in the digestive gland and is probably much longer than the other two tissues. Cadmium elimination from the gill and kidney is considerably slower than the respective metallothioneins (half-life in excess of 300 days) indicating closed cycling of the metal in these tissues. In contrast, cadmium levels in the digestive gland continue to increase during the detoxification period reflecting some remobilization from other tissues. Metallothionein turnover is extremely slow in Littorina when compared with mammals and other bivalve molluscs: even though metallothionein degradation is measurable in some gastropod tissues, the released cadmium may induce de novo metallothionein synthesis to which cadmium becomes resequestered. The slow metallothionein turnover rates and the lack of significant cadmium excretion testify to the relatively stable nature of the cadmium-metallothionein complex in this invertebrate. PMID:18967152

  5. Isolation and primary structure determination of a metallothionein from Paracentrotus lividus (Echinodermata, Echinoidea).

    PubMed

    Scudiero, R; Capasso, C; Del Vecchio-Blanco, F; Savino, G; Capasso, A; Parente, A; Parisi, E

    1995-06-01

    A low-molecular-mass zinc-binding protein was purified from the eggs of the sea urchin Paracentrotus lividus using procedures that included gel-permeation and anion-exchange chromatography followed by HPLC. The primary structure of this protein was derived from the sequences of peptide fragments obtained by digestion with trypsin and thermolysin. The reconstructed sequence showed the presence of 20 cysteinyl residues, thus resembling that of a metallothionein. The Paracentrotus protein was most similar to the metallothionein of Strongylocentrotus purpuratus, another member of the order of Echinoida, living along the coast of the Pacific Ocean. However, the presence of non-conservative amino acid substitution, together with a deletion of two residues in the Strongylocentrotus metallothionein, make the similarity scores of the two sea urchin proteins lower than that of metallothioneins from vertebrates of the same order. In addition, the present data show that sea urchin metallothioneins display no homology with metallothioneins of any other species. PMID:7599993

  6. Quantifying protein synthesis and degradation in Arabidopsis by dynamic 13CO2 labeling and analysis of enrichment in individual amino acids in their free pools and in protein.

    PubMed

    Ishihara, Hirofumi; Obata, Toshihiro; Sulpice, Ronan; Fernie, Alisdair R; Stitt, Mark

    2015-05-01

    Protein synthesis and degradation represent substantial costs during plant growth. To obtain a quantitative measure of the rate of protein synthesis and degradation, we supplied (13)CO2 to intact Arabidopsis (Arabidopsis thaliana) Columbia-0 plants and analyzed enrichment in free amino acids and in amino acid residues in protein during a 24-h pulse and 4-d chase. While many free amino acids labeled slowly and incompletely, alanine showed a rapid rise in enrichment in the pulse and a decrease in the chase. Enrichment in free alanine was used to correct enrichment in alanine residues in protein and calculate the rate of protein synthesis. The latter was compared with the relative growth rate to estimate the rate of protein degradation. The relative growth rate was estimated from sequential determination of fresh weight, sequential images of rosette area, and labeling of glucose in the cell wall. In an 8-h photoperiod, protein synthesis and cell wall synthesis were 3-fold faster in the day than at night, protein degradation was slow (3%-4% d(-1)), and flux to growth and degradation resulted in a protein half-life of 3.5 d. In the starchless phosphoglucomutase mutant at night, protein synthesis was further decreased and protein degradation increased, while cell wall synthesis was totally inhibited, quantitatively accounting for the inhibition of growth in this mutant. We also investigated the rates of protein synthesis and degradation during leaf development, during growth at high temperature, and compared synthesis rates of Rubisco large and small subunits of in the light and dark. PMID:25810096

  7. Quantifying protein synthesis and degradation in Arabidopsis by dynamic 13CO2 labeling and analysis of enrichment in individual amino acids in their free pools and in protein.

    PubMed

    Ishihara, Hirofumi; Obata, Toshihiro; Sulpice, Ronan; Fernie, Alisdair R; Stitt, Mark

    2015-05-01

    Protein synthesis and degradation represent substantial costs during plant growth. To obtain a quantitative measure of the rate of protein synthesis and degradation, we supplied (13)CO2 to intact Arabidopsis (Arabidopsis thaliana) Columbia-0 plants and analyzed enrichment in free amino acids and in amino acid residues in protein during a 24-h pulse and 4-d chase. While many free amino acids labeled slowly and incompletely, alanine showed a rapid rise in enrichment in the pulse and a decrease in the chase. Enrichment in free alanine was used to correct enrichment in alanine residues in protein and calculate the rate of protein synthesis. The latter was compared with the relative growth rate to estimate the rate of protein degradation. The relative growth rate was estimated from sequential determination of fresh weight, sequential images of rosette area, and labeling of glucose in the cell wall. In an 8-h photoperiod, protein synthesis and cell wall synthesis were 3-fold faster in the day than at night, protein degradation was slow (3%-4% d(-1)), and flux to growth and degradation resulted in a protein half-life of 3.5 d. In the starchless phosphoglucomutase mutant at night, protein synthesis was further decreased and protein degradation increased, while cell wall synthesis was totally inhibited, quantitatively accounting for the inhibition of growth in this mutant. We also investigated the rates of protein synthesis and degradation during leaf development, during growth at high temperature, and compared synthesis rates of Rubisco large and small subunits of in the light and dark.

  8. Stability and conformational dynamics of metallothioneins from the antarctic fish Notothenia coriiceps and mouse.

    PubMed

    Capasso, Clemente; Abugo, Omoefe; Tanfani, Fabio; Scire, Andrea; Carginale, Vincenzo; Scudiero, Rosaria; Parisi, Elio; D'Auria, Sabato

    2002-02-15

    The structural properties and the conformational dynamics of antarctic fish Notothenia coriiceps and mouse metallothioneins were studied by Fourier-transform infrared and fluorescence spectroscopy. Infrared data revealed that the secondary structure of the two metallothioneins is similar to that of other metallothioneins, most of which lack periodical secondary structure elements such as alpha-helices and beta-sheets. However, the infrared spectra of the N. coriiceps metallothionein indicated the presence of a band, which for its typical position in the spectrum and for its sensitivity to temperature was assigned to alpha-helices whose content resulted in 5% of the total secondary structure of the protein. The short alpha-helix found in N. coriiceps metallothionein showed an onset of denaturation at 30 degrees C and a T(m) at 48 degrees C. The data suggest that in N. coriiceps metallothionein a particular cysteine is involved in the alpha-helix and in the metal-thiolate complex. Moreover, infrared spectra revealed that both proteins investigated possess a structure largely accessible to the solvent. The time-resolved fluorescence data show that N. coriiceps metallothionein possesses a more flexible structure than mouse metallothionein. The spectroscopic data are discussed in terms of the biological function of the metallothioneins.

  9. Immunochemical Detection of Metallothionein in Specific Epithelial Cells of Rat Organs

    NASA Astrophysics Data System (ADS)

    Danielson, Keith G.; Ohi, Seigo; Huang, P. C.

    1982-04-01

    The distribution of a heavy metal binding protein, metallothionein, was studied immunocytochemically by using antimetallothionein antibody and the immunoperoxidase staining technique on histological sections of liver, kidney, intestine, lung, and testis from cadmium-treated rats. These tissues either accumulate heavy metals (e.g., liver, kidney, and testis) or are exposed to metal by ingestion or inhalation (intestine and lung). Staining for metallothionein was observed intracellularly in epithelial parenchymal cells of the liver and kidney; all hepatocytes and most renal tubular cells stained for the protein. Accumulation of metallothionein was not seen in connective tissue cells surrounding either blood vessels or renal tubules. Extracellular localization of metallothionein was also observed in the liver sinusoids and within the lumina of the renal tubules, suggesting a metal transport or excretory function for this protein. Surface columnar epithelial cells of the intestinal villi indicated the presence of metallothionein but connective tissue cells of the lamina propria were negative for the protein. The granular secretory Paneth cells of the small intestine also stained strongly for metallothionein as did respiratory epithelial cells of the lung. In the testis, metallothionein was detected in the Sertoli cells and interstitial cells but not within the spermatogonia. Sertoli cells are closely associated with the developing spermatogonia and appear to serve a nutritive role in spermatogenesis. Because of the secretory, absorptive, or nutritive function of the metallothionein-localizing cells in the organs studied, we suggest that metallothionein may be involved in metal storage or transport in addition to its commonly proposed detoxification role.

  10. Mn,Cd-metallothionein-2: a room temperature magnetic protein.

    PubMed

    Chang, Chia-Ching; Lee, Shang-Fan; Sun, Kein-Wen; Ho, Chien-Chang; Chen, Yu-Ting; Chang, Cheng-Hung; Kan, Lou-Sing

    2006-02-24

    Naturally occurring metallothionein (MT) is a metal binding protein, which binds to seven Zn2+ through 20 conserved cysteines and forms two metal binding clusters with a Zinc-Blende structure. We demonstrate that the MT, when substituting the Zn2+ ions by Mn2+ and Cd2+, exhibits magnetic hysteresis loop observable by SQUID from 10 to 330 K. The magnetic moment may have originated from the bridging effect of the sulfur atoms between the metal ions that leads to the alignment of the electron spins of the Mn2+ ions inside the clusters. The protein backbone may restrain the net spin moment of Mn2+ ions from thermal fluctuation. The modified magnetic-metallothionein is a novel approach to creating molecular magnets with operating temperatures up to 330 K. PMID:16403435

  11. Inheritance of a functional mouse metallothionein gene in tobacco

    SciTech Connect

    Maiti, I.B.; Wagner, G.J.; Yeargan, R.; Hunt, A.G. )

    1989-04-01

    Morphologically normal plants were obtained from progeny (Ro, R1 and R2) originating from tobacco leaf tissue transformed with Agrobacterium tumefaciens containing a chimeric gene for kanamycin resistance an the mouse metallothionein cDNA gene directed by the constitutive promote 35S from CaMV. Integration and expression in R1 progeny was demonstrated by Southern, Northern blot analysis and metallothionein assay. Kanamycin resistance analysis of R1 and R2 progeny showed inheritance to be as a dominant Mendelian trait. Seedlings obtained from self-fertilized transgenic tobacco are more tolerant to cadmium stress than nontransformed controls. Cadmium accumulation in leaves of transgenic seedlings exposed to a low, field-like Cd concentration was about 20% lower than that in nontransformed controls.

  12. The induction and extraction of metallothioneins in Artemia

    NASA Astrophysics Data System (ADS)

    Chen, Bing-Liang; Chien, Paul K.

    1994-06-01

    A small amount of heavy metal binding protein, identified by BioRad Protein Assay, has been isolated from the adult brine shrimp, Artemia franciscanus. This protein has an apparent molecular weight between 6000 to 9000 dalton. a UV absorption peak at 260 instead of 280 nm like most proteins; and has high affinity towards binding with radioactive labeled109Cd. These characteristics are similar to that of metallothioneins reported for many vertebrate and invertebrate, marine and terrestrial animals. After the brine shrimp is exposed to a small amount of Cd2+ for 24 h, a large amount of metallothionein can be isolated, showing the inducibility of this detoxifying protein in the adult Artemia in a short period of time.

  13. Urinary metallothionein as a biological indicator of occupational cadmium exposure

    SciTech Connect

    Tohyama, C.; Shaikh, Z.A.; Ellis, K.J.; Cohn, S.H.

    1981-01-01

    Radioimmunoassay and neutron activation data indicate that the urinary metallothionein concentration is related to the liver Cd concentration in occupational Cd exposure. It is also related to the kidney Cd content - but only before the onset of renal dysfunction. Further epidemiological studies are needed to establish a dose-response relationship, which may be useful in minimizing the hazard of Cd-induced renal dysfunction.

  14. A microscaled mercury saturation assay for metallothionein in fish.

    PubMed

    Shaw-Allen, Patricia; Elliott, Muriel; Jagoe, Charles H

    2003-09-01

    A mercury (Hg) saturation assay for measuring metallothionein (MT) in fish liver was modified by optimizing binding conditions to minimize the mercury and tissue consumed. The revised method uses stable Hg at low concentrations instead of 203Hg. At the reduced Hg concentrations used, MT concentrations in livers homogenized in saline appeared to increase systematically with dilution in both bluegill sunfish (Lepomis macrochirus) and largemouth bass (Micropterus salmoides). This error suggested a binding limitation due to sulfhydryl oxidation or competition for and removal of mercury by non-MT proteins. Homogenizing tissues in trichloroacetic acid (TCA) eliminated the interference. To further evaluate the method, the protocol was tested in the laboratory and field. Metallothionein in bluegill injected with 0.6 mg/kg zinc chloride increased at a rate of 0.03 nmole MT/g liver/h (r2 = 0.53, p = 0.001). Linearity improved when data were corrected for protein content (r2 = 0.74, p < 0.0001). Metallothionein levels in bluegill from a coal ash-contaminated environment were significantly increased over that of hatchery-reared sunfish (F = 20.17, p = 0.0003). The microscaled procedure minimizes concerns related to radioisotope use and waste generation while retaining the high sensitivity of the 203Hg assay. PMID:12959524

  15. Evidence of an altered protective effect of metallothioneins after cadmium exposure in the digenean parasite-infected cockle (Cerastoderma edule).

    PubMed

    Baudrimont, M; de Montaudouin, X

    2007-02-01

    The aim of the present study was to analyse the relation between parasitism and subsequent metallothioneins (MT) in the case of metal contamination. Experimental exposure of parasitized and unparasitized cockles (Cerastoderma edule) to cadmium (Cd) was performed, with the cockle as first or second intermediate host of 2 digenean species. After 7 days of Cd exposure in microcosms, cockles infected as first intermediate host by Labratrema minimus exhibited metal concentrations in tissues double that in uninfected cockles. Jointly, MT concentrations of parasitized cockles were not modified in comparison with uninfected individuals in which concentrations were increased 4.3-fold compared with controls. In cockles experimentally infected as the second intermediate host by Himasthla elongata, cadmium concentrations significantly increased again in parasitized cockles compared with uninfected individuals in contaminated conditions. Simultaneously, MT concentrations in healthy cockles increased, whereas they significantly decreased in parasitized individuals. Therefore, the presence of digenean parasites in Cd-exposed cockles leads to a maintenance or a decrease in MT concentrations compared with healthy individuals, whereas Cd accumulation in tissues is significantly increased. These experiments indicate a significant alteration of the protective effect of metallothioneins towards metals which could consequently enhance cockle vulnerability. Moreover, these results highlight the limit of the use of MT as a biomarker of metal pollution in field monitoring if parasitism is not taken into account.

  16. Assessment of metallothionein and antibodies to metallothionein in normal and autistic children having exposure to vaccine-derived thimerosal.

    PubMed

    Singh, Vijendra K; Hanson, Jeff

    2006-06-01

    Allergic autoimmune reaction after exposure to heavy metals such as mercury may play a causal role in autism, a developmental disorder of the central nervous system. As metallothionein (MT) is the primary metal-detoxifying protein in the body, we conducted a study of the MT protein and antibodies to metallothionein (anti-MT) in normal and autistic children whose exposure to mercury was only from thimerosal-containing vaccines. Laboratory analysis by immunoassays revealed that the serum level of MT did not significantly differ between normal and autistic children. Furthermore, autistic children harboured normal levels of anti-MT, including antibodies to isoform MT-I (anti-MT-I) and MT-II (anti-MT-II), without any significant difference between normal and autistic children. Our findings indicate that because autistic children have a normal profile of MT and anti-MT, the mercury-induced autoimmunity to MT may not be implicated in the pathogenesis of autism.

  17. Arabidopsis thaliana

    PubMed Central

    Strzalka, Wojciech; Aggarwal, Chhavi

    2013-01-01

    The proliferating cell nuclear antigen (PCNA) is a key component of the eukaryotic DNA replication machinery. It also plays an important role in DNA repair mechanisms. Despite the intense scientific research on yeast and human PCNA, information describing the function of this protein in plants is still very limited. In the previous study Arabidopsis PCNA2 but not PCNA1 was proposed to be functionally important in DNA polymerase η-dependent postreplication repair. In addition to the above study, PCNA2 but not PCNA1 was also shown to be necessary for Arabidopsis DNA polymerase λ-dependent oxidative DNA damage bypass. Taking into account the reported differences between PCNA1 and PCNA2, we tested the idea of a possible cooperation between PCNA1 and PCNA2 in the plant cell. In a bimolecular fluorescence complementation assay an interaction between PCNA1 and PCNA2 was observed in the nucleus, as well as in the cytoplasm. This finding, together with our previous results, indicates that PCNA1 and PCNA2 may cooperate in planta by forming homo- and heterotrimeric rings. The observed interaction might be relevant when distinct functions for PCNA1 and PCNA2 are considered. PMID:23656863

  18. METALLOTHIONEIN GENE TRANSCRIPTION AS AN INDICATOR OF METAL EXPOSURE IN FATHEAD MINNOWS

    EPA Science Inventory

    Metallothionein is a cysteine rich, low molecular weight, metal binding protein. Basal levels of endogenous metallothioneins (MT) have been reported in all eucaryotes. MT has been shown to play an essential role in regulating physiological requirements of essential metals such a...

  19. Liver metallothionein of fish in rivers of Taiwan -- a field study on Erh-jen river

    SciTech Connect

    Chen, C.L.; Tsong, H.A.

    1994-12-31

    Erh-jen river in southern Taiwan is contaminated especially down stream with heavy metal effluent from nearby electroplate, metal surface treatment and used metal reclamation plants. Liver metallothionein content of five species of fish caught at 6 stations along the river was analyzed using silver saturation method. The most often found species down stream include Tilapia sp., Megalops cyprinoids and Liza macrolepis. The possibility of using fish liver metallothionein content to indicate heavy metal exposure was investigated in this study. Liver metallothionein content of 47 tilapia caught at 3 stations down stream is 81 + 8 {mu}g/g. Compared to the average of 10 + 1 {mu}g/g and 10 + 2 {mu}g/g of 6 and 9 tilapia caught at 2 control sites, this shows an increase of tilapia liver metallothionein content in Erh-jen river. 6 tilapia caught at pond beside Erh-jen river had significantly (p < 0.05) lower liver metallothionein content, which is 36 + 15 {mu}g/g. Liver metallothionein content of 33 Liza macrolepis caught at 3 stations down stream was 151 + 22 {mu}g/g, compared to 15 + 2 {mu}g/g of 9 samples caught at control site, this difference was also significant (p < 0.05). These results show the induction of liver metallothionein in fish of Erh-jen river. This study shows the applicability of fish liver metallothionein as a biomarker of heavy metal contamination in rivers in Taiwan.

  20. Cadmium induces a novel metallothionein and phytochelatin 2 in an aquatic fungus.

    PubMed

    Jaeckel, Petra; Krauss, Gudrun; Menge, Sieglinde; Schierhorn, Angelika; Rücknagel, Peter; Krauss, Gerd-Joachim

    2005-07-22

    Cadmium stress response was measured at the thiol peptide level in an aquatic hyphomycete (Heliscus lugdunensis). In liquid culture, 0.1 mM cadmium increased the glutathione (GSH) content and induced the synthesis of additional thiol peptides. HPLC, electrospray ionization mass spectrometry, and Edman degradation confirmed that a novel small metallothionein as well as phytochelatin (PC2) were synthesized. The metallothionein has a high homology to family 8 metallothioneins (http://www.expasy.ch/cgi-bin/lists?metallo.txt). The bonding of at least two cadmium ions to the metallothionein was demonstrated by mass spectrometry (MALDI MS). This is the first time that simultaneous induction of metallothionein and phytochelatin accompanied by an increase in GSH level has been shown in a fungus under cadmium stress, indicating a potential function of these complexing agents for in vivo heavy metal detoxification. The method presented here should be applicable as biomarker tool. PMID:15939401

  1. Cadmium induces a novel metallothionein and phytochelatin 2 in an aquatic fungus

    SciTech Connect

    Jaeckel, Petra; Krauss, Gudrun; Menge, Sieglinde; Krauss, Gerd-Joachim . E-mail: krauss@biochemtech.uni-halle.de

    2005-07-22

    Cadmium stress response was measured at the thiol peptide level in an aquatic hyphomycete (Heliscus lugdunensis). In liquid culture, 0.1mM cadmium increased the glutathione (GSH) content and induced the synthesis of additional thiol peptides. HPLC, electrospray ionization mass spectrometry, and Edman degradation confirmed that a novel small metallothionein as well as phytochelatin (PC2) were synthesized. The metallothionein has a high homology to family 8 metallothioneins (http://www.expasy.ch/cgi-bin/lists?metallo.txt). The bonding of at least two cadmium ions to the metallothionein was demonstrated by mass spectrometry (MALDI MS). This is the first time that simultaneous induction of metallothionein and phytochelatin accompanied by an increase in GSH level has been shown in a fungus under cadmium stress, indicating a potential function of these complexing agents for in vivo heavy metal detoxification. The method presented here should be applicable as biomarker tool. ol.

  2. Variations in plant metallothioneins: the heavy metal hyperaccumulator Thlaspi caerulescens as a study case.

    PubMed

    Roosens, Nancy H; Leplae, Raphael; Bernard, Catherine; Verbruggen, Nathalie

    2005-11-01

    Plant metallothioneins (MTs) are extremely diverse and are thought to be involved in metal homeostasis or detoxification. Thlaspi caerulescens is a model Zn/Cd hyperaccumulator and thus constitutes an ideal system to study the variability of these MTs. Two T. caerulescens cDNAs (accession: 665511; accession: 665515), that are highly homologous to type 1 and type 2 Arabidopsis thaliana MTs, have been isolated using a functional screen for plant cDNAs that confer Cd tolerance to yeast. However, TcMT1 has a much shorter N-terminal domain than that of A. thaliana and so lacks Cys motifs conserved through all the plant MTs classified as type 1. A systematic search in plant databases allowed the detection of MT-related sequences. Sixty-four percent fulfil the criteria for MT classification described in Cobbett and Goldsbrough (2002) and further extend our knowledge about other conserved residues that might play an important role in plant MT structure. In addition, 34% of the total MT-related sequences cannot be classified strictly as they display modifications in the conserved residues according to the current plant MTs' classification. The significance of this variability in plant MT sequences is discussed. Functional complementation in yeast was used to assess whether these variations may alter the MTs' function in T. caerulescens. Regulation of the expression of MTs in T. caerulescens was also investigated. TcMT1 and TcMT2 display higher expression in T. caerulescens than in A. thaliana. Moreover, their differential expression patterns in organs and in response to metal exposure, suggest that the two types of MTs may have diverse roles and functions in T. caerulescens. PMID:16052319

  3. The significance of the nuclear and cytoplasmic localization of metallothionein in human liver and tumor cells.

    PubMed

    Cherian, M G

    1994-09-01

    Metallothioneins are a group of low-molecular-weight intracellular proteins present in high levels in fetal mammalian livers, bound to zinc and copper. They are also present in two major isoforms in low basal levels in various organs of adults in several species. Although a number of functions have been proposed for metallothioneins, their major biological roles may be in the storage of zinc and copper during rapid growth and development, and also in the detoxification of certain toxic metals. In adult liver, metallothionein is mainly localized in the cytoplasm, it is localized also in the hepatocyte nuclei in human fetal liver and fetal and neonatal rat liver, as determined by immunohistochemical staining with a specific metallothionein antibody. Because of its high expression in fetal development, the potential role of metallothioneins in human tumors was investigated. The cellular localization of metallothionein was demonstrated in various human tumors such as thyroid tumors, testicular germ cell carcinoma, bladder transitional cell carcinomas, and salivary gland tumors. In most of these tumor tissues, metallothioneins were found in high levels in nucleus and cytoplasm in both benign and malignant tumors, although the proliferating edge of the malignant tumors showed most intense metallothionein staining. The expression of metallothionein is not universal to all tumor growth; its presence may depend on various factors, such as the type of tumor, cellular origin, morphological heterogeneity, or stage of growth. Human testicular seminomas, which are well differentiated, showed little expression of metallothionein irrespective of the staging, as compared to less well-differentiated embryonal carcinomas.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Effect of metallothionein core promoter region polymorphism on cadmium, zinc and copper levels in autopsy kidney tissues from a Turkish population

    SciTech Connect

    Kayaalti, Zeliha; Mergen, Goerkem; Soeylemezoglu, Tuelin

    2010-06-01

    Metallothioneins (MTs) are metal-binding, low molecular weight proteins and are involved in pathophysiological processes like metabolism of essential metals, metal ion homeostasis and detoxification of heavy metals. Metallothionein expression is induced by various heavy metals especially cadmium, mercury and zinc; MTs suppress toxicity of heavy metals by binding themselves to these metals. The aim of this study was to investigate the association between the - 5 A/G metallothionein 2A (MT2A) single nucleotide polymorphism (SNP) and Cd, Zn and Cu levels in the renal cortex from autopsy cases. MT2A core promoter region - 5 A/G SNP was analyzed by PCR-RFLP method using 114 autopsy kidney tissues and the genotype frequencies of this polymorphism were found as 87.7% homozygote typical (AA), 11.4% heterozygote (AG) and 0.9% homozygote atypical (GG). In order to assess the Cd, Zn and Cu levels in the same autopsy kidney tissues, a dual atomic absorption spectrophotometer system was used and the average levels of Cd, Zn and Cu were measured as 95.54 {+-} 65.58 {mu}g/g, 181.20 {+-} 87.72 {mu}g/g and 17.14 {+-} 16.28 {mu}g/g, respectively. As a result, no statistical association was found between the - 5 A/G SNP in the MT2A gene and the Zn and Cu levels in the renal cortex (p > 0.05), but considerably high accumulation of Cd was monitored for individuals having AG (151.24 {+-} 60.21 {mu}g/g) and GG genotypes (153.09 {mu}g/g) compared with individuals having AA genotype (87.72 {+-} 62.98 {mu}g/g) (p < 0.05). These results show that the core promoter region polymorphism of metallothionein 2A increases the accumulation of Cd in human renal cortex.

  5. Metallothionein-like protein in lobsters (Homarus americanus)

    SciTech Connect

    Ray, J.; White, M.

    1981-12-01

    A metallothionein-like protein (MLP) was isolated from naturally cadmium-contaminated lobster hepatopancreas, gills, and green glands. Between 76-99% of the total cadmium was associated with this protein (molecular weight 9,500 daltons) while the remainder was associated with both high (>68,000 daltons) and low (<6,000 daltons) molecular weight proteins. MLP was not present in uncontaminated lobster hepatopancreas and only 1% of the total cadmium was associated with the gel filtration fraction corresponding to the protein.

  6. Promiscuity and preferences of metallothioneins: the cell rules

    PubMed Central

    2011-01-01

    Metalloproteins are essential for many cellular functions, but it has not been clear how they distinguish between the different metals to bind the correct ones. A report in BMC Biology finds that preferences of two metallothionein isoforms for two different cations are due to inherent properties of these usually less discriminating proteins. Here these observations are discussed in the context of the cellular mechanisms that regulate metal binding to proteins. See research article: http://www.biomedcentral.com/1741-7007/9/4 PMID:21527046

  7. Effect of Cadmium Chloride on Metallothionein Levels in Carp

    PubMed Central

    Kovarova, Jana; Kizek, Rene; Adam, Vojtech; Harustiakova, Danka; Celechovska, Olga; Svobodova, Zdenka

    2009-01-01

    Due to anthropogenic activities, heavy metals still represent a threat for various trophic levels. If aquatic animals are exposed to heavy metals, we can obviously observe considerable toxicity. It is well known that organisms treated with heavy metals synthesize low molecular mass compounds rich in cysteine. In this work the effects of cadmium chloride (2.5, 5, 7.5, 10 and 12.5 mg/L) on common carp (Cyprinus carpio) was investigated. We determined cadmium content in tissue of muscle, liver and kidney by atomic absorption spectrometry with electrothermal atomization and content of metallothionein (MT) in the same tissues by the Brdicka reaction. Electrochemical methods can be considered as suitable and sensitive tools for MT determination in carp tissues. Results of our study showed a gradually enhancing of cadmium content in muscle with time and dose of cadmium chloride in water. MT levels in liver reached both high levels (above 130 ng/g) in fish exposed to 2.5, 5 and 7.5 mg/L and low level (to 50 ng/g) in fish exposed to 10 and 12.5 mg/L of cadmium chloride. This finding confirms that the synthesis of metallothioneins and binding capacity of these proteins is restricted. PMID:22408554

  8. Increased levels of metallothionein in placenta of smokers.

    PubMed

    Ronco, Ana Maria; Arguello, Graciela; Suazo, Myriam; Llanos, Miguel N

    2005-03-01

    Experiments were designed to evaluate and compare metallothionein (MT), zinc and cadmium levels in human placentas of smoking and non-smoking women. Smoking was assessed by self-reported cigarette consumption and urine cotinine levels before delivery. Smoking pregnant women with urine cotinine levels higher than 130 ng/ml were included in the smoking group. Determination of placental MT was performed by western blot analysis after tissue homogenization and saturation with cadmium chloride (1000 ppm). Metallothionein was analyzed with a monoclonal antibody raised against MT-1 and MT-2 and with a second anti mouse antibody conjugated to alkaline phosphatase. Zinc and cadmium were determined by neutron activation analysis and atomic absorption spectrometry respectively. Smokers showed higher placental MT and cadmium levels, together with decreased newborn birth weights, as compared to non-smokers. The semi-quantitative analysis of western blots by band densitometry indicated that darker bands corresponded to MT present in smokers' samples. This study confirms that cigarette smoking increases cadmium accumulation in placental tissue and suggests that this element has a stimulatory effect on placental MT production.

  9. Metallothionein expression in the rat brain following KA and PTZ treatment.

    PubMed

    Juárez-Rebollar, Daniel; Manjarrez, Joaquín; Nava-Ruíz, Concepción; Zaga-Clavellina, Verónica; Flores-Espinosa, Pilar; Heras-Romero, Yesica; Díaz-Ruíz, Araceli; Méndez-Armenta, Marisela

    2015-09-01

    Epilepsy is a neurological disorder that has been associated with oxidative stress therefore epilepsy models have been develop such as kainic acid and pentylenetetrazol are usually used to understanding of the molecular mechanisms of this disease. We examined the metallothionein expression in rat brains of treated with kainic acid and pentylenetetrazol. Increase in metallothionein and nitrotirosyne immunoreactivity of both seizures epilepsy models was observed. Moreover, we show a significant increase on levels of MT expression. These results suggest that the increase of metallothionein expression is related with kainic acid and pentylenetetrazol treatments as response to damage mediated by oxidative stress.

  10. Metallothionein expression in the rat brain following KA and PTZ treatment.

    PubMed

    Juárez-Rebollar, Daniel; Manjarrez, Joaquín; Nava-Ruíz, Concepción; Zaga-Clavellina, Verónica; Flores-Espinosa, Pilar; Heras-Romero, Yesica; Díaz-Ruíz, Araceli; Méndez-Armenta, Marisela

    2015-09-01

    Epilepsy is a neurological disorder that has been associated with oxidative stress therefore epilepsy models have been develop such as kainic acid and pentylenetetrazol are usually used to understanding of the molecular mechanisms of this disease. We examined the metallothionein expression in rat brains of treated with kainic acid and pentylenetetrazol. Increase in metallothionein and nitrotirosyne immunoreactivity of both seizures epilepsy models was observed. Moreover, we show a significant increase on levels of MT expression. These results suggest that the increase of metallothionein expression is related with kainic acid and pentylenetetrazol treatments as response to damage mediated by oxidative stress. PMID:26318565

  11. Impact of digenean parasite infection on metallothionein synthesis by the cockle (Cerastoderma edule): a multivariate field monitoring.

    PubMed

    Baudrimont, Magalie; de Montaudouin, Xavier; Palvadeau, Audrey

    2006-05-01

    Metallothioneins (MT) are proteins that play an important role in metabolism of essential metals and detoxification of trace metals from living organisms. Their synthesis is induced by metal pollution but can also be exacerbated by other factors such as reproduction processes. In this context, we monitored MT concentrations in a cockle Cerastoderma edule (marine bivalve) population and highlighted the effect of a castrating digenean parasite, Labratrema minimus. In spent cockles, MT levels were low (ca. 5 nmol sites g(-1), fresh weight) but slightly higher in parasitized individuals. During gametogenesis, MT synthesis increased in all cockles, but concentrations were lower in parasitized individuals (18 against 27 nmol sites g(-1), fw in unparasitized cockles) in relation with gonad damage by parasites. Therefore, it is suggested that parasite infection in cockles can modulate MT synthesis that could consequently interfere with the response of these protective proteins in case of metal contamination.

  12. Bivalve vulnerability is enhanced by parasites through the deficit of metallothionein synthesis: A field monitoring on cockles (Cerastoderma edule)

    NASA Astrophysics Data System (ADS)

    Baudrimont, M.; de Montaudouin, X.; Palvadeau, A.

    2003-05-01

    The effect of the parasite Labratrema minimus (digenean trematode) on metallothioneins (MTs) biosynthesis by the cockle Cerastoderma edule (bivalve) was investigated. An in situ monitoring allowed to describe and compare monthly variations of MTs concentrations in cockles with and without L. minimus in a site free of metai pollution (Banc d'Arguin, Arcachon Bay, France). These concentrations are correlated with the reproductive cycle of the bivalve: (I) in spent cockles, MTs concentrations are higher in infected cockles. probably due to host tissue lysis: (2) during maturation, MTs biosynthesis increases in all cockles. However, concentrations are lower in parasitized individuals in relation with castration by parasites. Therefore, parasite infection in cockles, which can affect 100% of individuals, may contribute to a higher vulnerability of organisms to metal contamination.

  13. Metallothioneins and trace metals in the dogwhelk Nucella lapillus (L.) collected from Icelandic coasts.

    PubMed

    Leung, Kenneth M Y; Dewhurst, Rachel E; Halldórsson, Halldór; Svavarsson, Jörundur

    2005-01-01

    Different sizes of the dogwhelk Nucella lapillus were collected from eight locations along the southwest and north coasts of Iceland. Concentrations of total metallothioneins (MTs) and heavy metals (Cd, Cu, Cr, Mn, Ni, and Zn) were analysed using the silver saturation method and inductively coupled plasma-atomic emission spectrometry. The level of tributyltin (TBT) contamination was also assessed using imposex indices, the vas deferens stage index (VDSI) and relative penis size index (RPSI). Gufunes N. lapillus presented the highest values of VDSI (4.0) and RPSI (11.1), followed by Grenivík individuals (VDSI = 3.0; RPSI = 0.9), while the Strandakirkja population showed the lowest VDSI (0.3) and zero RPSI. At a standardised size (0.25 g dry soft-body weight), Grenivík N. lapillus exhibited significantly higher concentrations of all metals whereas overall metal concentrations were significantly lower in individuals from Strandakirkja and Garethskagi compared to other study sites. Partial correlation analyses with size correction indicated that MT concentrations were better correlated with Cd and Cu concentrations than with other metals. At the standard size, the pattern of MT concentrations in N. lapillus from different sites was, however, very different from those of metal profiles. Such discrepancies between the patterns of MT and metals in N. lapillus might be explained by the fact that MT induction could be influenced by various factors such as temperature, dietary metal intake, growth rate and co-existence of other MT-inducing chemicals.

  14. Differential Hepatic Metal and Metallothionein Levels in Three Feral Fish Species along a Metal Pollution Gradient

    PubMed Central

    Bervoets, Lieven; Knapen, Dries; De Jonge, Maarten; Van Campenhout, Karen; Blust, Ronny

    2013-01-01

    The accumulation of cadmium, copper and zinc and the induction of metallothioneins (MT) in liver of three freshwater fish species was studied. Gudgeon (Gobio gobio), roach (Rutilus rutilus) and perch (Perca fluviatilis) were captured at 6 sampling sites along a cadmium and zinc gradient and one reference site in a tributary of the Scheldt River in Flanders (Belgium). At each site up to 10 individuals per species were collected and analyzed on their general condition factor (K), hepatosomatic index (HSI) and gonadosomatic index (GSI). From each individual fish the liver was dissected and analyzed on Cd, Cu and Zn and MT-content. Although not all species were present at each site, hepatic Cd and Zn levels generally followed the pollution gradient and highest levels were measured in perch, followed by roach and gudgeon. Nevertheless also an effect of site was observed on this order. MT-levels appeared to be the highest in gudgeon although differences with the other species were not very pronounced and depended on the site. Significant relationships were found between hepatic zinc accumulation and MT levels. For each species the ratio MTtheoretical/ MTmeasured was calculated, which gives an indication of the relative capacity to induce MTs and thus immobilize the metals. Perch had the lowest capacity in inducing MTs (highest ratio). Relationships between hepatic metal levels and fish condition indices were absent or very weak. PMID:23556004

  15. Metallothionein gene activation in the earthworm (Lumbricus rubellus).

    PubMed

    Höckner, M; Dallinger, R; Stürzenbaum, S R

    2015-05-01

    In order to cope with changing environmental conditions, organisms require highly responsive stress mechanisms. Heavy metal stress is handled by metallothioneins (MTs), the regulation of which is evolutionary conserved in insects and vertebrates and involves the binding of metal transcription factor 1 (MTF-1) to metal responsive elements (MREs) positioned in the promoter of MT genes. However, in most invertebrate phyla, the transcriptional activation of MTs is different and the exact mechanism is still unknown. Interestingly, although MREs are typically present also in invertebrate MT gene promoters, MTF-1 is notably absent. Here we use Lumbricus rubellus, the red earthworm, to study the elusive mechanism of wMT-2 activation in control and Cd-exposed conditions. EMSA and DNase I footprinting approaches were used to pinpoint functional binding sites within the wMT-2 promoter region, which revealed that the cAMP responsive element (CRE) is a promising candidate which may act as a transcriptional activator of invertebrate MTs.

  16. Identification of a Copper-Binding Metallothionein in Pathogenic Mycobacteria

    PubMed Central

    Gold, Ben; Deng, Haiteng; Bryk, Ruslana; Vargas, Diana; Eliezer, David; Roberts, Julia; Jiang, Xiuju; Nathan, Carl

    2009-01-01

    A screen of a genomic library from Mycobacterium tuberculosis (Mtb) identified a small, unannotated open reading frame (MT0196) that encodes a 4.9-kDa, cysteine-rich protein. Despite extensive nucleotide divergence, the amino acid sequence is highly conserved among mycobacteria that are pathogenic in vertebrate hosts. We synthesized the protein and found that it preferentially bound up to 6 Cu(I) ions in a solvent-shielded core. Copper, cadmium and compounds that generate nitric oxide or superoxide induced the gene’s expression in Mtb up to a thousand-fold. The native protein bound copper within Mtb and partially protected Mtb from copper toxicity. We propose that the product of the MT0196 gene be named mycobacterial metallothionien (MymT). To our knowledge, MymT is the first metallothionein of a Gram-positive bacterium with a demonstrated function. PMID:18724363

  17. The rapid isolation of highly purified cadmium metallothioneins using HPLC

    SciTech Connect

    Vella, G.; Bylander, J.; Hazen-martin, D.; O'Connor, K.; Phoebe, C. Millipore Corp., Milford, MA )

    1991-03-11

    The central role of the proximal tubule in the renal toxicity due to cadmium (Cd) poisoning has been well documented, however, the mechanisms leading to the onset of this nephrotoxic effect are presently not well understood. The most likely mechanism for the initiation of toxicity involves the accumulation of Cd in the liver where it induces the formation of, and is complexed with the metallothioneins (MT-I and MT-II) followed by release from the liver and subsequent absorption by the proximal tubule. Methods for obtaining MTs for specific RIA and immunohistochemistry have been hampered by difficulties in removing impurities. To obtain highly purified Cd-MTs for use in RIA as well as to assay the relative affects of exposure to Cd-MT and ionic Cd in vitro on human proximal tubule cells, Cd-MT-I and Cd-MT-II were prepared from rat liver for use in these studies using a rapid two step chromatographic procedure employing gel filtration and high performance anion exchange chromatography. Repeated HPLC separations revealed a time dependent conversion of a non-metallothionein protein component to form which coeluted with Cd-MT-I during the ion exchange separation. This was preventable by cooling the sample or by adding proteinase inhibitors. This method demonstrated the importance of speed in the purification which permitted the isolation of highly purified Cd-MTs in high yields. Due to the extreme sensitivity, this method may also be amenable as an alternative for a non-radioactive assay of Cd-MT formation and breakdown in toxicological studies.

  18. Metallothionein-1 and nitric oxide expression are inversely correlated in a murine model of Chagas disease

    PubMed Central

    Gonzalez-Mejia, Martha Elba; Torres-Rasgado, Enrique; Porchia, Leonardo M; Salgado, Hilda Rosas; Totolhua, José-Luis; Ortega, Arturo; Hernández-Kelly, Luisa Clara Regina; Ruiz-Vivanco, Guadalupe; Báez-Duarte, Blanca G; Pérez-Fuentes, Ricardo

    2014-01-01

    Chagas disease, caused by Trypanosoma cruzi, represents an endemic among Latin America countries. The participation of free radicals, especially nitric oxide (NO), has been demonstrated in the pathophysiology of seropositive individuals with T. cruzi. In Chagas disease, increased NO contributes to the development of cardiomyopathy and megacolon. Metallothioneins (MTs) are efficient free radicals scavengers of NO in vitro and in vivo. Here, we developed a murine model of the chronic phase of Chagas disease using endemic T. cruzi RyCH1 in BALB/c mice, which were divided into four groups: infected non-treated (Inf), infected N-monomethyl-L-arginine treated (Inf L-NAME), non-infected L-NAME treated and non-infected vehicle-treated. We determined blood parasitaemia and NO levels, the extent of parasite nests in tissues and liver MT-I expression levels. It was observed that NO levels were increasing in Inf mice in a time-dependent manner. Inf L-NAME mice had fewer T. cruzi nests in cardiac and skeletal muscle with decreased blood NO levels at day 135 post infection. This affect was negatively correlated with an increase of MT-I expression (r = -0.8462, p < 0.0001). In conclusion, we determined that in Chagas disease, an unknown inhibitory mechanism reduces MT-I expression, allowing augmented NO levels. PMID:24676665

  19. Metallothionein-1 and nitric oxide expression are inversely correlated in a murine model of Chagas disease.

    PubMed

    Gonzalez-Mejia, Martha Elba; Torres-Rasgado, Enrique; Porchia, Leonardo M; Salgado, Hilda Rosas; Totolhua, José-Luis; Ortega, Arturo; Hernández-Kelly, Luisa Clara Regina; Ruiz-Vivanco, Guadalupe; Báez-Duarte, Blanca G; Pérez-Fuentes, Ricardo

    2014-04-01

    Chagas disease, caused by Trypanosoma cruzi, represents an endemic among Latin America countries. The participation of free radicals, especially nitric oxide (NO), has been demonstrated in the pathophysiology of seropositive individuals with T. cruzi. In Chagas disease, increased NO contributes to the development of cardiomyopathy and megacolon. Metallothioneins (MTs) are efficient free radicals scavengers of NO in vitro and in vivo. Here, we developed a murine model of the chronic phase of Chagas disease using endemic T. cruzi RyCH1 in BALB/c mice, which were divided into four groups: infected non-treated (Inf), infected N-monomethyl-L-arginine treated (Inf L-NAME), non-infected L-NAME treated and non-infected vehicle-treated. We determined blood parasitaemia and NO levels, the extent of parasite nests in tissues and liver MT-I expression levels. It was observed that NO levels were increasing in Inf mice in a time-dependent manner. Inf L-NAME mice had fewer T. cruzi nests in cardiac and skeletal muscle with decreased blood NO levels at day 135 post infection. This affect was negatively correlated with an increase of MT-I expression (r = -0.8462, p < 0.0001). In conclusion, we determined that in Chagas disease, an unknown inhibitory mechanism reduces MT-I expression, allowing augmented NO levels.

  20. The Stoichiometric Transition from Zn6Cu1-Metallothionein to Zn7-Metallothionein Underlies the Up-regulation of Metallothionein (MT) Expression

    PubMed Central

    Alvarez, Lydia; Gonzalez-Iglesias, Hector; Garcia, Montserrat; Ghosh, Sikha; Sanz-Medel, Alfredo; Coca-Prados, Miguel

    2012-01-01

    We examined the profiling of gene expression of metallothioneins (MTs) in human tissues from cadaver eyes with microarray-based analysis. All MT1 isoforms, with the exception of MT1B, were abundantly expressed in lens and corneal tissue. Along with MT1B, MT4 was not detected in any tissues. Antibodies to MT1/2 labeled the corneal epithelial and endothelial cells, whereas MT3 label the retinal ganglion cells. We studied the effects of zinc and cytokines on the gene expression of MT isoforms in a corneal epithelial cell line (HCEsv). Zinc exerted an up-regulation of the expression of MT isoforms, and this effect was further potentiated in the presence of IL1α or TNFα. Zinc also elicited a strong down-regulation of the expression of inflammatory cytokines, and this effect was blocked in the presence of TNFα or IL1α. The concentration of MTs, bound zinc, and the metal stoichiometry of MTs in cultured HCEsv were determined by mass spectrometry. The total concentration of MTs was 0.24 ± 0.03 μm and, after 24 h of zinc exposure, increased to 0.96 ± 0.01 μm. The combination of zinc and IL1α further enhanced the level of MTs to 1.13 ± 0.03 μm. The average metal stoichiometry of MTs was Zn6Cu1-MT, and after exposure to the different treatments, it changed to Zn7-MT. Actinomycin D blocked transcription, and cycloheximide attenuated synthesis of MTs in the presence or absence of zinc, suggesting transcriptional regulation. Overall the data provide molecular and analytical evidence on the interplay between zinc, MTs, and proinflammatory cytokines in HCEsv cells, with potential implications on cell-based inflammatory eye diseases. PMID:22722935

  1. The Arabidopsis Circadian System

    PubMed Central

    McClung, C. Robertson; Salomé, Patrice A.; Michael, Todd P.

    2002-01-01

    Rhythms with periods of approximately 24 hr are widespread in nature. Those that persist in constant conditions are termed circadian rhythms and reflect the activity of an endogenous biological clock. Plants, including Arabidopsis, are richly rhythmic. Expression analysis, most recently on a genomic scale, indicates that the Arabidopsis circadian clock regulates a number of key metabolic pathways and stress responses. A number of sensitive and high-throughput assays have been developed to monitor the Arabidopsis clock. These assays have facilitated the identification of components of plant circadian systems through genetic and molecular biological studies. Although much remains to be learned, the framework of the Arabidopsis circadian system is coming into focus. Dedication This review is dedicated to the memory of DeLill Nasser, a wonderful mentor and an unwavering advocate of both Arabidopsis and circadian rhythms research. PMID:22303209

  2. Yeast and Mammalian Metallothioneins Functionally Substitute for Yeast Copper-Zinc Superoxide Dismutase

    NASA Astrophysics Data System (ADS)

    Tamai, Katherine T.; Gralla, Edith B.; Ellerby, Lisa M.; Valentine, Joan S.; Thiele, Dennis J.

    1993-09-01

    Copper-zinc superoxide dismutase catalyzes the disproportionation of superoxide anion to hydrogen peroxide and dioxygen and is thought to play an important role in protecting cells from oxygen toxicity. Saccharomyces cerevisiae strains lacking copper-zinc superoxide dismutase, which is encoded by the SOD1 gene, are sensitive to oxidative stress and exhibit a variety of growth defects including hypersensitivity to dioxygen and to superoxide-generating drugs such as paraquat. We have found that in addition to these known phenotypes, SOD1-deletion strains fail to grow on agar containing the respiratory carbon source lactate. We demonstrate here that expression of the yeast or monkey metallothionein proteins in the presence of copper suppresses the lactate growth defect and some other phenotypes associated with SOD1-deletion strains, indicating that copper metallothioneins substitute for copper-zinc superoxide dismutase in vivo to protect cells from oxygen toxicity. Consistent with these results, we show that yeast metallothionein mRNA levels are dramatically elevated under conditions of oxidative stress. Furthermore, in vitro assays demonstrate that yeast metallothionein, purified or from whole-cell extracts, exhibits copper-dependent antioxidant activity. Taken together, these data suggest that both yeast and mammalian metallothioneins may play a direct role in the cellular defense against oxidative stress by functioning as antioxidants.

  3. A highly sensitive fluorescence probe for metallothioneins based on tiron-copper complex

    NASA Astrophysics Data System (ADS)

    Xiao, Xilin; Xue, Jinhua; Liao, Lifu; Huang, Mingyang; Zhou, Bin; He, Bo

    2015-06-01

    The fabrication of tiron-copper complex as a novel fluorescence probe for the sensitive directly detection of metallothioneins at nanomolar levels was demonstrated. In Britton-Robinson (B-R) buffer (pH 7.50), the interaction of bis(tiron)copper(II) complex cation [Cu(tiron)2]2+ and metallothioneins enhanced the fluorescence intensity of the system. The fluorescence enhancement at 347 nm was proportional to the concentration of metallothioneins. The mechanism was studied and discussed in terms of the fluorescence spectra. Under the optimal experimental conditions, at 347 nm, there was a linear relationship between the fluorescence intensity and the concentration of the metallothioneins in the range of 8.80 × 10-9-7.70 × 10-7 mol L-1, with a correlation coefficient of r = 0.995 and detection limit 2.60 × 10-9 mol L-1. The relative standard deviation was 0.77% (n = 11), and the average recovery 94.4%. The method proposed was successfully reliable, selective and sensitive in determining of trace metallothioneins in fish visceral organ samples with the results in good agreement with those obtained by HPLC.

  4. Influence of metallothioneins on zinc and copper distribution in brain tumours.

    PubMed

    Floriańczyk, Bolesław; Osuchowski, Jacek; Kaczmarczyk, Robert; Trojanowski, Tomasz; Stryjecka-Zimmer, Marta

    2003-01-01

    Metallothioneins take part in the homeostasis of the ions of the metals which are necessary for the proper metabolism of the organism (zinc, copper), in biosynthesis regulation of the zinc-containing proteins and also in the detoxication of metals from the tissues. They also protect the tissue from the effects of free radicals, radiation, electrophilic pharmacological agents used in the cancer therapy and from mutagens. The experimental materials were brain astrocytomas, benign gliomas and malignant gliomas. The levels of the metallothionein were determined by cadmium-haemoglobin affinity assay using the cadmium isotope (109Cd). The values of zinc and copper were determined by means of atomic absorption spectrophotometry. In our studies, the level of metallothioneins in the group of malignant neoplasms was slightly higher than the level of these proteins in the group of benign neoplasms. The correlation coefficient of the studied parameters proved an interrelation between the levels of zinc and copper and the content of metallothioneins. In malignant neoplasms, the level of zinc showed a positive relationship with the metallothionein level, whereas the copper content showed an inverse relationship. There was a statistical difference, but no significant difference, in the levels of copper between malignant and benign groups.

  5. Bismuth induces metallothionein but does not protect against cadmium cytotoxicity in cultured vasular endothelial cells

    SciTech Connect

    Kaji, T.; Mishima, A.; Yamamoto, C.

    1996-04-01

    Cadmium has been shown to be an inducer of cardiovascular lesions such as atherosclerosis and hypertension. The relationship between cadmium exposure and vascular diseases was shown by epidemiological data. We found that cadmium destroys the monolayer of cultured vascular endothelial cells. This suggested that damage of vascular endothelial cells may be an important event of cadmium-induced vascular disorders. Metallothionein induction is postulated to be in general the most important mechanism for protection against cadmium toxicity. However, zinc protects vascular endothelial cells from cadmium cytotoxicity without metallothionein induction; zinc was not an effective inducer of the protein. Recently, we found that bismuth strongly induces metallothionein selectively in vascular endothelial cells. Although zinc protection against cadmium cytotoxicity in vascular endothelial cells mainly resulted from a decrease in the accumulation of intracellular cadmium, it was likely that bismuth reduces the cytotoxicity of cadmium by the metallothionein-dependent mechanism in the cells. In the present study, the effect of bismuth on the cytotoxicity of cadmium in cultured vascular endothelial cells was investigated. Bismuth alone induces metallothionein but does not protect against cadmium cytotoxicity in the cells. 14 refs., 1 tab.

  6. Determination of cadmium-metallothioneins in zebra mussels exposed to subchronic concentrations of Cd2+.

    PubMed

    Tessier, C; Blais, J S

    1996-04-01

    Metallothioneins have been detected and investigated in zebra mussels (Dreissena polymorpha) using high-performance liquid chromatography (size exclusion) coupled with microatomization-AAS or inductively coupled plasma mass spectrometry. The mussels were exposed to 0.2, 2, and 20 micrograms/liter Cd2+ (as CdCl2) for 1 month under controlled temperature and dietary conditions. Elevated (relative to control) concentrations of tissue Cd2+ were detected in all specimens exposed to 2 micrograms Cd/liter and more than 50% of the specimens exposed to 0.2 micrograms Cd/liter, demonstrating that Dreissena cannot regulate Cd2+ at trace exposure concentrations. In most specimens, at least 85% of the measured Cd2+ was bound to metallothioneins. After reduction and exposure to excess Cd2+, the metallothionein fraction of all extracts adsorbed similar quantities of Cd2+, indicating that the physiological concentration of metallothionein in the exposed specimens remained similar to the basal concentration in the control specimens. Thus, a short-term exposure to environmentally relevant concentrations of Cd2+ did not produce a genetic induction of metallothionein biosynthesis as generally observed in specimens exposed to higher concentrations of d10 metals.

  7. Characterization of metallothionein-like proteins from zebra mussels (Dreissena polymorpha)

    SciTech Connect

    High, K.A.; Barthet, V.J.; Blais, J.S.; McLaren, J.W.

    1997-06-01

    Zebra mussels (Dreissena polymorpha) are freshwater mollusks that have recently infested the Great Lakes ecosystem. Possessing a large capacity for filtration, these mussel populations act as bioconcentrators for contaminants, such as heavy metals, found in the Great Lakes ecosystem. Metallothionein is a low-molecular-weight, heavy metal-binding protein found in most living organisms. Characterization and partial purification of metallothionein-like Cd-binding proteins from zebra mussels were performed. Zebra mussels were exposed to 500 {micro}g/L Cd for 14 d. During the exposure period, two mussels were removed on alternate days for analysis of Cd-binding proteins. Gel-filtration high-performance liquid chromatography-microatomization-atomic absorption spectrophotometry results showed a single Cd-binding molecular weight protein fraction after 2 d of Cd exposure. After 10 d of Cd exposure, however, mussels exhibited an additional higher molecular weight, Cd-binding protein fraction. The lower molecular weight metallothionein-like Cd-binding protein was further isolated and purified by acetone fractionation, Sephadex G75, and diethylaminoethyl anion-exchange chromatography. The quantities of Zn, Cu, and Cd in the anion-exchange metallothionein-like protein isoforms were determined by inductively coupled plasma-mass spectrometry. The ability to bioconcentrate heavy metals in a metallothionein-like form coupled with their large population in the Great Lakes make zebra mussels suitable for use in a freshwater biomonitoring program for aquatic metal contamination.

  8. Immunohistochemical expression of metallothionein in pleomorphic adenoma of minor salivary glands: a role in the control of apoptosis?

    PubMed

    Miranda Viana, Alessandra de Castro; Ribeiro, Daniela Cotta; Florêncio, Taynara Nunes Guedes; Santos, Vanessa Torres; Sousa, Alexandre Andrade; Aguiar, Maria Cássia Ferreira

    2013-07-01

    Pleomorphic adenoma is the most common benign neoplasm of both the major and minor salivary glands. The histological features are diverse and are characterized by the involvement of epithelial-myoepithelial structures. Metallothionein is a cysteine-rich protein present in myoepithelial cells of several benign and malignant neoplasms. The function of metallothionein is associated with DNA protection, oxidative stress and apoptosis. The purpose of this study was to evaluate the expression of metallothionein in pleomorphic adenoma of the minor salivary glands. Additionally, we investigated the association of the clinicopathological features of the lesions with metallothionein, specifically its association with Bcl-2, in an attempt to evaluate the role of metallothionein in the control of apoptosis. Thirty-five cases of pleomorphic adenoma were selected and immunohistochemistry was performed for metallothionein and Bcl-2 proteins. The proteins were quantified by the Quickscore method. The samples showed epidemiological characteristics similar to those described in the literature. We did not find an association between the clinicopathological characteristics of pleomorphic adenomas and the proteins studied, but an association between metallothionein and Bcl-2 was demonstrated. The results suggest that metallothionein may have a role in the control of apoptosis in pleomorphic adenoma.

  9. Metallothionein is a reliable indicator of metal exposure in fish

    SciTech Connect

    Hogstrand, C.

    1995-12-31

    Metallothionein (MT) is a low molecular mass metal binding protein, which seems to be present in all vertebrates and a large number of other species. The basic biological function of MT is most probably related to the nutritional regulation of intracellular zinc. However, because of its high metal chelating capacity, the protein can offer protection against metal toxicity during exposure. The de novo synthesis of MT is increased during conditions when the intracellular concentrations of zinc or copper exceed tolerable limits or if non-essential elements such as silver, cadmium, or mercury enter the cell. In this manner, the metal sequestering capacity of the cell is enhanced and toxic effects can be attenuated. The use of MT as a bioindicator of metal exposure has been markedly improved by the introduction of sensitive and specific immunological methods to quantitatively analyze MT concentrations in fish tissues. Furthermore, molecular techniques are now available to directly measure the synthesis rate of MT (MT-mRNA). The use of MT as a bioindicator has been extensively tested in laboratory studies and on feral fish in environments ranging from subarctic freshwater systems to marine tropical environments. The results consistently show that an increased MT level is diagnostic of exposure to metals of groups 1B and 2B of the Periodic System. MT levels in female fish are increased, as a normal event during sexual maturation. For the purpose of using MT as a bioindicator, it is therefore advisable to avoid sampling during the reproductive season.

  10. A mercury saturation assay for measuring metallothionein in fish

    SciTech Connect

    Dutton, M.D. . Dept. of Zoology); Stephenson, M. . Environmental Science Branch); Klaverkamp, J.F. )

    1993-07-01

    An accurate, rapid, sensitive, and simple method using mercury saturation for quantifying metallothionein (MT) is described. A complex solution of enzymatic and nonenzymatic thiols, including rabbit liver MT-2, and supernatants from homogenized samples of rainbow trout liver were incubated in the presence of [sup 203]Hg in 10% trichloroacetic acid. Excess Hg was bound to an removed by chicken egg albumin, which denatured on contact with the acidic assay medium. After centrifugation, MT labeled with [sup 203]Hg remained in the TCA supernatant and was estimated using known stoichiometry for Hg-MT binding. A dilution series was used to establish that nonspecific metal binding, a common problem with other metal saturation assays, is negligible. Analysis of hepatic MT with high Cu content from rainbow trout demonstrated virtually complete displacement of Cu, Cd, and Zn by Hg. When compared to other metal-saturation assays developed for vertebrates, this method requires the least number of technical steps, and one-third or less of total preparatory and analytical time.

  11. Zinc and dexamethasone induce metallothionein accumulation by endothelial cells

    SciTech Connect

    Briske-Anderson, M.; Bobilya, D.J.; Reeves, P.G. )

    1991-03-11

    Several tissues increase their metallothionein (MT) concentration when exposed to elevated amounts of plasma Zn. Endothelial cells form the blood vessels that supply all tissues and constitute a barrier between cells of tissues and the blood. This study examined the ability of endothelial cells to synthesize MT and accumulate Zn in response to high amounts of Zn and dexamethasone. Bovine pulmonary endothelial cells were grown to confluence in Minimum Essential Medium with Earle's salts and 10% fetal calf serum. The monolayer was maintained for 2 d prior to use in medium containing EDTA-dialyzed serum. This low Zn medium was replaced with one containing 1, 6, 25, 50, 100, 150, or 200 {mu}M Zn and incubated for 24 hr before harvesting the cells. MT was quantified by the cadmium binding assay. Cellular Zn concentrations were analyzed by atomic absorption after a nitric acid digestion. The MT concentration was elevated in response to Zn concentrations of 100 {mu}M or more. Cellular Zn concentration was elevated when media Zn was 25 {mu}M or more. MT and cellular Zn concentrations were positively correlated. In another study, inclusion of 0.1 {mu}M dexamethasone in the media increased concentration at all Zn concentrations studied. However, the inclusion of 0.3 {mu}M cis-platinum had no effect. In conclusion, endothelial cells in culture respond to elevated amounts of Zn and dexamethasone in the media by accumulating Zn and MT.

  12. Serum Metallothioneins in Childhood Tumours—A Potential Prognostic Marker

    PubMed Central

    Kruseova, Jarmila; Hynek, David; Adam, Vojtech; Kizek, Rene; Prusa, Richard; Hrabeta, Jan; Eckschlager, Tomas

    2013-01-01

    Metallothioneins (MT) are low molecular weight, cysteine-rich proteins maintaining metal ions homeostasis. They play a role in carcinogenesis and may also cause chemoresistance. The aim of the study was to explore the importance of MT serum levels in children suffering from malignant tumours. This prospective study involves examination of 865 samples from 172 patients with malignant tumours treated from 2008 to 2011 at University Hospital Motol. MT serum levels were determined using differential pulse voltammetry–Brdicka reaction. Mean MT level was 2.7 ± 0.5 μM. There was no statistically significant difference between MT levels in different tumours. We also did not find any correlation between MT levels and response to therapy or clinical stages. However, we found a positive correlation between MT levels and age (p = 0.009) and a negative correlation with absolute lymphocyte number (p = 0.001). The fact that patients who had early disease recurrence had lower MT levels during the treatment (complete remission 2.67 vs. recurring 2.34, p = 0.001) seems to be important for clinical practice. Accordingly we believe that there is benefit in further studies of serum MT levels in tumours. PMID:23743828

  13. Structural characterization and thermal stability of Notothenia coriiceps metallothionein.

    PubMed Central

    D'Auria, S; Carginale, V; Scudiero, R; Crescenzi, O; Di Maro, D; Temussi, P A; Parisi, E; Capasso, C

    2001-01-01

    Fish and mammalian metallothioneins (MTs) differ in the amino acid residues placed between their conserved cysteines. We have expressed the MT of an Antarctic fish, Notothenia coriiceps, and characterized it by means of multinuclear NMR spectroscopy. Overall, the architecture of the fish MT is very similar to that of mammalian MTs. However, NMR spectroscopy shows that the dynamic behaviour of the two domains is markedly different. With the aid of absorption and CD spectroscopies, we studied the conformational and electronic features of fish and mouse recombinant Cd-MT and the changes produced in these proteins by heating. When the temperature was increased from 20 to 90 degrees C, the Cd-thiolate chromophore absorbance at 254 nm of mouse MT was not modified up to 60 degrees C, whereas the absorbance of fish MT decreased significantly starting from 30 degrees C. The CD spectra also changed quite considerably with temperature, with a gradual decrease of the positive band at 260 nm that was more pronounced for fish than for mouse MT. The differential effect of temperature on fish and mouse MTs may reflect a different stability of metal-thiolate clusters of the two proteins. Such a conclusion is also corroborated by results showing differences in metal mobility between fish and mouse Zn-MT. PMID:11171106

  14. Identification and cloning of first cadmium metallothionein like gene from locally isolated ciliate, Paramecium sp.

    PubMed

    Shuja, Rukhsana Nighat; Shakoori, Abdul Rauf

    2009-03-01

    First cadmium metallothionein like gene PMCd1 of a ciliate, Paramecium sp., isolated from industrial wastewater has been cloned and sequenced. PMCd1 is an intronless gene, encoding 612 nucleotides, with TAA coding for glutamine. The coding region of PMCd1 comprises 203 amino acids, including 37 cysteine residues with a conserved structural pattern in the form of recurring structural motifs, arranged in 17 x-cys-x-y-cys-x, 1 x-cys-cys-x and x-cys-x contexts. Both, the deduced amino acids and nucleotide sequence differ, not only from other animal metallothioneins (MTs), but also from the previously characterized Tetrahymena Cu and Cd-MTs. The translated protein of PMCd1 contains conserved cysteine residues, peculiar characteristic of stress inducible metallothionein genes of ciliates and other groups of organisms.

  15. A synthetic cadmium metallothionein gene (PMCd1syn) of Paramecium species: expression, purification and characteristics of metallothionein protein.

    PubMed

    Dar, Saira; Shuja, Rukhsana N; Shakoori, Abdul Rauf

    2013-02-01

    Metallothioneins (MTs) are metal binding proteins that are rich in cysteine residues constituting 10-30 % of the total protein, and in which the thiol groups bind to the metal ions. The increasing amount of metal ions in the medium have shown increased production of MTs by different organisms such as bacteria, protozoa and mammals like humans. PMCd1 is the first gene ever discovered in Paramecium, a ciliated protozoan, that could produce this MT in response to cadmium. In this study the PMCd1syn gene has been cloned in pET41a expression vector and expressed in an Escherichia coli BL21-codonplus strain for the first time. Since the gene PMCd1 amplified from Paramecium contained 10 codons, which could act as stop codons during expression in E. coli, this gene of 612 bps was synthesized to substitute these (stop) codons for the Paramecium sp. specific amino acids. For stability of the expressed protein, glutathione-S-transferase gene was fused with PMCd1syn gene and coexpressed. The cells expressing PMCd1syn demonstrated increased accumulation of cadmium. This is the first report of cadmium MT protein expressed from Paramecium species, particularly from synthetic MT gene (PMCd1syn). This fusion protein, the molecular weight of which has been confirmed to be 53.03 kDa with MALDI analysis, is rich in cysteine residues, and has been shown for the first time in this ciliate to bind to and sequester Cd(2+)-ions.

  16. Zinc supplementation attenuates metallothionein and oxidative stress changes in kidney of streptozotocin-induced diabetic rats.

    PubMed

    Özcelik, Dervis; Nazıroglu, Mustafa; Tunçdemir, Matem; Çelik, Ömer; Öztürk, Melek; Flores-Arce, M F

    2012-12-01

    Zinc is an element that under physiological conditions preferentially binds to and is a potent inducer of metallothionein under physiological conditions. The present study was conducted to explore whether zinc supplementation morphologically and biochemically protects against diabetic nephropathy through modulation of kidney metallothionein induction and oxidative stress in streptozotocin-induced diabetic rats. Thirty-two Wistar albino male rats were equally divided into four groups. The first group was used as untreated controls and the second group was supplemented with 30 mg/kg/day zinc as zinc sulfate. The third group was treated with streptozotocin to induce diabetes and the fourth group was treated with streptozotocin and supplemented with zinc as described for group 2. The blood glucose and micro-albuminuria levels, body and kidney weights were measured during the 42-day experimental period. At the end of the experiment, the kidneys were removed from all animals from the four groups. Diabetes resulted in degenerative kidney morphological changes. The metallothionein immunoreactivity level was lower and the kidney lipid peroxidation levels were higher in the diabetes group than in the controls. The metallothionein immunoreactivity levels were higher in the tubules of the zinc-supplemented diabetic rats as compared to the non-supplemented diabetic group. The zinc and metallothionein concentrations in kidney tissue were higher in the supplemented diabetic group compared to the non-supplemented diabetes group. The activity of glutathione peroxidase did not change in any of the four groups. In conclusion, the present study shows that zinc has a protective effect against diabetic damage of kidney tissue through stimulation of metallothionein synthesis and regulation of the oxidative stress.

  17. Mechanism of protection by metallothionein against acetaminophen hepatotoxicity

    SciTech Connect

    Saito, Chieko; Yan, H.-M.; Artigues, Antonio; Villar, Maria T.; Farhood, Anwar; Jaeschke, Hartmut

    2010-01-15

    Acetaminophen (APAP) overdose is the most frequent cause of drug-induced liver failure in the US. Metallothionein (MT) expression attenuates APAP-induced liver injury. However, the mechanism of this protection remains incompletely understood. To address this issue, C57BL/6 mice were treated with 100 mumol/kg ZnCl{sub 2} for 3 days to induce MT. Twenty-four hours after the last dose of zinc, the animals received 300 mg/kg APAP. Liver injury (plasma ALT activities, area of necrosis), DNA fragmentation, peroxynitrite formation (nitrotyrosine staining), MT expression, hepatic glutathione (GSH), and glutathione disulfide (GSSG) levels were determined after 6 h. APAP alone caused severe liver injury with oxidant stress (increased GSSG levels), peroxynitrite formation, and DNA fragmentation, all of which were attenuated by zinc-induced MT expression. In contrast, MT knockout mice were not protected by zinc. Hydrogen peroxide-induced cell injury in primary hepatocytes was dependent only on the intracellular GSH levels but not on MT expression. Thus, the protective effect of MT in vivo was not due to the direct scavenging of reactive oxygen species. Zinc treatment had no effect on the early GSH depletion kinetics after APAP administration, which is an indicator of the metabolic activation of APAP to its reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI). However, MT was able to effectively trap NAPQI by covalent binding. We conclude that MT scavenges some of the excess NAPQI after GSH depletion and prevents covalent binding to cellular proteins, which is the trigger for the propagation of the cell injury mechanisms through mitochondrial dysfunction and nuclear DNA damage.

  18. Control of zinc transfer between thionein, metallothionein, and zinc proteins

    PubMed Central

    Jacob, Claus; Maret, Wolfgang; Vallee, Bert L.

    1998-01-01

    Metallothionein (MT), despite its high metal binding constant (KZn = 3.2 × 1013 M−1 at pH 7.4), can transfer zinc to the apoforms of zinc enzymes that have inherently lower stability constants. To gain insight into this paradox, we have studied zinc transfer between zinc enzymes and MT. Zinc can be transferred in both directions—i.e., from the enzymes to thionein (the apoform of MT) and from MT to the apoenzymes. Agents that mediate or enhance zinc transfer have been identified that provide kinetic pathways in either direction. MT does not transfer all of its seven zinc atoms to an apoenzyme, but apparently contains at least one that is more prone to transfer than the others. Modification of thiol ligands in MT zinc clusters increases the total number of zinc ions released and, hence, the extent of transfer. Aside from disulfide reagents, we show that selenium compounds are potential cellular enhancers of zinc transfer from MT to apoenzymes. Zinc transfer from zinc enzymes to thionein, on the other hand, is mediated by zinc-chelating agents such as Tris buffer, citrate, or glutathione. Redox agents are asymmetrically involved in both directions of zinc transfer. For example, reduced glutathione mediates zinc transfer from enzymes to thionein, whereas glutathione disulfide oxidizes MT with enhanced release of zinc and transfer of zinc to apoenzymes. Therefore, the cellular redox state as well as the concentration of other biological chelating agents might well determine the direction of zinc transfer and ultimately affect zinc distribution. PMID:9520393

  19. Minimal role of metallothionein in decreased chelator efficacy for cadmium.

    PubMed

    Waalkes, M P; Watkins, J B; Klaassen, C D

    1983-05-01

    Chelator efficacy in Cd poisoning drops precipitously if therapy is not commenced almost immediately after exposure. Metallothionein (MT), a low-molecular-weight metal-binding protein with high affinity for Cd, may be important for this phenomenon. To more fully assess this role of MT in the acute drop in chelator efficacy following Cd poisoning, rats were injected iv with radioisotopic Cd (1mg/kg as CdCl2; 50 muCi/kg) followed by diethylenetriaminepentaacetic acid (DTPA; 90 mg/kg ip) at various times (0, 15, 30, 60, and 120 min) after Cd. Ther percentage of the Cd dose remaining in major organs 24 hr following Cd was determined. Although DTPA reduced Cd content in the various organs when given immediately after Cd, the chelator was ineffective at all later times. Increases in hepatic and renal MT did not occur until 2 hr after Cd, and did not coincide with the earlier drop in chelator efficacy. Blockade of MT synthesis by actinomycin D treatment (1.25 mg/kg, 1 hr before Cd) failed to prolong the chelators effectiveness. Furthermore, newborn rats have high levels of hepatic MT which had no effect on the time course of chelator effectiveness since DTPA still decreased Cd organ contents if given immediately following Cd but had no effect if given 2 hr after Cd. Therefore, if appears that MT does not have an important role in the acute decrease in efficacy of chelation therapy for Cd poisoning. The quick onset of chelator ineffectiveness may be due to the rapid uptake of Cd into tissues which makes it relatively unavailable of chelation.

  20. Cadmium modulates adipocyte functions in metallothionein-null mice

    SciTech Connect

    Kawakami, Takashige; Nishiyama, Kaori; Kadota, Yoshito; Sato, Masao; Inoue, Masahisa; Suzuki, Shinya

    2013-11-01

    Our previous study has demonstrated that exposure to cadmium (Cd), a toxic heavy metal, causes a reduction of adipocyte size and the modulation of adipokine expression. To further investigate the significance of the Cd action, we studied the effect of Cd on the white adipose tissue (WAT) of metallothionein null (MT{sup −/−}) mice, which cannot form atoxic Cd–MT complexes and are used for evaluating Cd as free ions, and wild type (MT{sup +/+}) mice. Cd administration more significantly reduced the adipocyte size of MT{sup −/−} mice than that of MT{sup +/+} mice. Cd exposure also induced macrophage recruitment to WAT with an increase in the expression level of Ccl2 (MCP-1) in the MT{sup −/−} mice. The in vitro exposure of Cd to adipocytes induce triglyceride release into culture medium, decrease in the expression levels of genes involved in fatty acid synthesis and lipid hydrolysis at 24 h, and at 48 h increase in phosphorylation of the lipid-droplet-associated protein perilipin, which facilitates the degradation of stored lipids in adipocytes. Therefore, the reduction in adipocyte size by Cd may arise from an imbalance between lipid synthesis and lipolysis. In addition, the expression levels of leptin, adiponectin and resistin decreased in adipocytes. Taken together, exposure to Cd may induce unusually small adipocytes and modulate the expression of adipokines differently from the case of physiologically small adipocytes, and may accelerate the risk of developing insulin resistance and type 2 diabetes. - Highlights: • Cd causes a marked reduction in adipocyte size in MT-null mice. • Cd enhances macrophage migration into adipose tissue and disrupt adipokine secretion. • MT gene alleviates Cd-induced adipocyte dysfunctions. • Cd enhances the degradation of stored lipids in adipocytes, mediated by perilipin. • Cd induces unusually small adipocytes and the abnormal expression of adipokines.

  1. Oxidation reactivity of zinc-cysteine clusters in metallothionein.

    PubMed

    Kassim, Rima; Ramseyer, Christophe; Enescu, Mironel

    2013-03-01

    Evaluating the reactivity of the metal-thiolate clusters in metallothionein (MT) is a key step in understanding the biological functions of this protein. The effects of the metal clustering and protein environment on the thiolate reactivity with hydrogen peroxide (H(2)O(2)) were investigated by performing quantum theory calculations with chemical accuracy at two levels of complexity. At the first level, the reactivity with H(2)O(2) of a model system ([(Zn)(3)(MeS)(9)](3-), MeS is methanethiolate) of the β domain cluster of MT was evaluated using density functional theory (DFT) with the mPW1PW91 functional. At the second level of complexity, the protein environment was included in the reactant system and the calculations were performed with the hybrid ONIOM method combining the DFT-mPW1PW91 and the semiempirical PM6 levels of theory. In these conditions, the energy barrier for the oxidation of the most reactive terminal thiolate was 21.5 kcal mol(-1). This is 3 kcal mol(-1) higher than that calculated for the terminal thiolate in the model system [(Zn)(3)(MeS)(9)](3-) and about 7 kcal mol(-1) higher than that obtained for the free thiolate. In spite of this rise of the energy barrier induced by the protein environment, the thiolate oxidation by H(2)O(2) is confirmed as a possible way for metal release from MT. On the other hand, the results suggest that the antioxidant role of MT in the living cell cannot be as important as that of glutathione (which bears a free thiol). PMID:23334196

  2. Induction of hepatic metallothionein I in tumour-bearing mice.

    PubMed

    Kloth, D M; Chin, J L; Cherian, M G

    1995-04-01

    Metallothionein (MT) is an intracellular metal-binding protein which has been implicated in various biological roles, including heavy-metal detoxification and zinc and copper homeostasis, and has putative antioxidant properties. High levels of MT have been detected in certain human tumours, but its functions are unclear. The presence of tumour may cause stress conditions along with alterations in host metabolism, such as the redistribution of metals and, subsequently, in changes in hepatic MT isoforms. The distribution of basal levels of MT-1 and MT-11 isoforms in livers of different strains of mice and their induction in mice inoculated with tumour cells are investigated. While Balb-c, C57/BL and CD1 mice strains had an equal distribution of both hepatic MT isoforms, MT-I and MT-II. In addition, MT-I was the predominant isoform synthesised (> 88%) in the livers of all strains of mice at 24 h after injection with either cadmium or zinc salts. After inoculation with human testicular T7800 or T7799 tumour cells, the major form of MT induced in the livers of nude (nu/nu) mice was Zn-MT-I, and its concentration was positively correlated with the size of the inoculated tumours (r2 = 0.85). A similar positive relation was found in the livers of Balb-c mice inoculated with MM45T mouse bladder tumour cells (r2 = 0.96). Following surgical removal of T7800 tumour, hepatic MT concentrations returned to basal values. There was an increase in plasma MT levels in tumour-bearing mice and it was positively correlated with the increase in hepatic MT levels. These results demonstrate a specific increase in hepatic MT-I isoform in tumour-bearing mice, and this may be due to a generalised stress during tumour growth. PMID:7710933

  3. Metallothionein-induced zinc partitioning exacerbates hyperoxic acute lung injury

    PubMed Central

    Lee, Sang-Min; McLaughlin, Joseph N.; Frederick, Daniel R.; Zhu, Lin; Thambiayya, Kalidasan; Wasserloos, Karla J.; Kaminski, Iris; Pearce, Linda L.; Peterson, Jim; Li, Jin; Latoche, Joseph D.; Peck Palmer, Octavia M.; Stolz, Donna Beer; Fattman, Cheryl L.; Alcorn, John F.; Oury, Tim D.; Angus, Derek C.; Pitt, Bruce R.

    2013-01-01

    Hypozincemia, with hepatic zinc accumulation at the expense of other organs, occurs in infection, inflammation, and aseptic lung injury. Mechanisms underlying zinc partitioning or its impact on extrahepatic organs are unclear. Here we show that the major zinc-binding protein, metallothionein (MT), is critical for zinc transmigration from lung to liver during hyperoxia and preservation of intrapulmonary zinc during hyperoxia is associated with an injury-resistant phenotype in MT-null mice. Particularly, lung-to-liver zinc ratios decreased in wild-type (WT) and increased significantly in MT-null mice breathing 95% oxygen for 72 h. Compared with female adult WT mice, MT-null mice were significantly protected against hyperoxic lung injury indicated by reduced inflammation and interstitial edema, fewer necrotic changes to distal airway epithelium, and sustained lung function at 72 h hyperoxia. Lungs of MT-null mice showed decreased levels of immunoreactive LC3, an autophagy marker, compared with WT mice. Analysis of superoxide dismutase (SOD) activity in the lungs revealed similar levels of manganese-SOD activity between strains under normoxia and hyperoxia. Lung extracellular SOD activity decreased significantly in both strains at 72 h of hyperoxia, although there was no difference between strains. Copper-zinc-SOD activity was ∼4× higher under normoxic conditions in MT-null compared with WT mice but was not affected in either group by hyperoxia. Collectively the data suggest that genetic deletion of MT-I/II in mice is associated with compensatory increase in copper-zinc-SOD activity, prevention of hyperoxia-induced zinc transmigration from lung to liver, and hyperoxia-resistant phenotype strongly associated with differences in zinc homeostasis during hyperoxic acute lung injury. PMID:23275622

  4. The Cd(II)-binding abilities of recombinant Quercus suber metallothionein: bridging the gap between phytochelatins and metallothioneins.

    PubMed

    Domènech, Jordi; Orihuela, Rubén; Mir, Gisela; Molinas, Marisa; Atrian, Sílvia; Capdevila, Mercè

    2007-08-01

    In this work, we have analyzed both at stoichiometric and at conformational level the Cd(II)-binding features of a type 2 plant metallothionein (MT) (the cork oak, Quercus suber, QsMT). To this end four peptides, the wild-type QsMT and three constructs previously engineered to characterize its Zn(II)- and Cu(I)-binding behaviour, were heterologously produced in Escherichia coli cultures supplemented with Cd(II), and the corresponding complexes were purified up to homogeneity. The Cd(II)-binding ability of these recombinant peptides was determined through the chemical, spectroscopic and spectrometric characterization of the recovered clusters. Recombinant synthesis of the four QsMT peptides in cadmium-rich media rendered complexes with a higher metal content than those obtained from zinc-supplemented cultures and, consequently, the recovered Cd(II) species are nonisostructural to those of Zn(II). Also of interest is the fact that three out of the four peptides yielded recombinant preparations that included S(2-)-containing Cd(II) complexes as major species. Subsequently, the in vitro Zn(II)/Cd(II) replacement reactions were studied, as well as the in vitro acid denaturation and S(2-) renaturation reactions. Finally, the capacity of the four peptides for preventing cadmium deleterious effects in yeast cells was tested through complementation assays. Consideration of all the results enables us to suggest a hairpin folding model for this typical type 2 plant Cd(II)-MT complex, as well as a nonnegligible role of the spacer in the detoxification function of QsMT towards cadmium.

  5. GENETIC BACKGROUND BUT NOT METALLOTHIONEIN PHENOTYPE DICTATES SENSITIVITY TO CADMIUM-INDUCED TESTICULAR INJURY IN MICE

    EPA Science Inventory

    Genetic Background but not Metallothionein Phenotype Dictates Sensitivity to
    Cadmium-Induced Testicular Injury in Mice

    Jie Liu1,2, Chris Corton3, David J. Dix4, Yaping Liu1, Michael P. Waalkes2
    and Curtis D. Klaassen1

    ABSTRACT

    Parenteral administrati...

  6. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    SciTech Connect

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J.; Komai, Michio

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  7. Unexpected Interactions of the Cyanobacterial Metallothionein SmtA with Uranium.

    PubMed

    Acharya, Celin; Blindauer, Claudia A

    2016-02-15

    Molecules for remediating or recovering uranium from contaminated environmental resources are of high current interest, with protein-based ligands coming into focus recently. Metallothioneins either bind or redox-silence a range of heavy metals, conferring protection against metal stress in many organisms. Here, we report that the cyanobacterial metallothionein SmtA competes with carbonate for uranyl binding, leading to formation of heterometallic (UO2)(n)Zn4SmtA species, without thiol oxidation, zinc loss, or compromising secondary or tertiary structure of SmtA. In turn, only metalated and folded SmtA species were found to be capable of uranyl binding. (1)H NMR studies and molecular modeling identified Glu34/Asp38 and Glu12/C-terminus as likely adventitious, but surprisingly strong, bidentate binding sites. While it is unlikely that these interactions correspond to an evolved biological function of this metallothionein, their occurrence may offer new possibilities for designing novel multipurpose bacterial metallothioneins with dual ability to sequester both soft metal ions including Cu(+), Zn(2+), Cd(2+), Hg(2+), and Pb(2+) and hard, high-oxidation state heavy metals such as U(VI). The concomitant protection from the chemical toxicity of uranium may be valuable for the development of bacterial strains for bio-remediation.

  8. Metallothionein deficiency aggravates depleted uranium-induced nephrotoxicity

    SciTech Connect

    Hao, Yuhui; Huang, Jiawei; Gu, Ying; Liu, Cong; Li, Hong; Liu, Jing; Ren, Jiong; Yang, Zhangyou; Peng, Shuangqing; Wang, Weidong; Li, Rong

    2015-09-15

    Depleted uranium (DU) has been widely used in both civilian and military activities, and the kidney is the main target organ of DU during acute high-dose exposures. In this study, the nephrotoxicity caused by DU in metallothionein-1/2-null mice (MT −/−) and corresponding wild-type (MT +/+) mice was investigated to determine any associations with MT. Each MT −/− or MT +/+ mouse was pretreated with a single dose of DU (10 mg/kg, intraperitoneal injection) or an equivalent volume of saline. After 4 days of DU administration, kidney changes were assessed. After DU exposure, serum creatinine and serum urea nitrogen in MT −/− mice significantly increased than in MT +/+ mice, with more severe kidney pathological damage. Moreover, catalase and superoxide dismutase (SOD) decreased, and generation of reactive oxygen species and malondialdehyde increased in MT −/− mice. The apoptosis rate in MT −/− mice significantly increased, with a significant increase in both Bax and caspase 3 and a decrease in Bcl-2. Furthermore, sodium-glucose cotransporter (SGLT) and sodium-phosphate cotransporter (NaPi-II) were significantly reduced after DU exposure, and the change of SGLT was more evident in MT −/− mice. Finally, exogenous MT was used to evaluate the correlation between kidney changes induced by DU and MT doses in MT −/− mice. The results showed that, the pathological damage and cell apoptosis decreased, and SOD and SGLT levels increased with increasing dose of MT. In conclusion, MT deficiency aggravated DU-induced nephrotoxicity, and the molecular mechanisms appeared to be related to the increased oxidative stress and apoptosis, and decreased SGLT expression. - Highlights: • MT −/− and MT +/+ mice were used to evaluate nephrotoxicity of DU. • Renal damage was more evident in the MT −/− mice after exposure to DU. • Exogenous MT also protects against DU-induced nephrotoxicity. • MT deficiency induced more ROS and apoptosis after exposure to

  9. Are metallothioneins equally good biomarkers of metal and oxidative stress?

    PubMed

    Figueira, Etelvina; Branco, Diana; Antunes, Sara C; Gonçalves, Fernando; Freitas, Rosa

    2012-10-01

    Several researchers investigated the induction of metallothioneins (MTs) in the presence of metals, namely Cadmium (Cd). Fewer studies observed the induction of MTs due to oxidizing agents, and literature comparing the sensitivity of MTs to different stressors is even more scarce or even nonexistent. The role of MTs in metal and oxidative stress and thus their use as a stress biomarker, remains to be clearly elucidated. To better understand the role of MTs as a biomarker in Cerastoderma edule, a bivalve widely used as bioindicator, a laboratory assay was conducted aiming to assess the sensitivity of MTs to metal and oxidative stressors. For this purpose, Cd was used to induce metal stress, whereas hydrogen peroxide (H2O2), being an oxidizing compound, was used to impose oxidative stress. Results showed that induction of MTs occurred at very different levels in metal and oxidative stress. In the presence of the oxidizing agent (H2O2), MTs only increased significantly when the degree of oxidative stress was very high, and mortality rates were higher than 50 percent. On the contrary, C. edule survived to all Cd concentrations used and significant MTs increases, compared to the control, were observed in all Cd exposures. The present work also revealed that the number of ions and the metal bound to MTs varied with the exposure conditions. In the absence of disturbance, MTs bound most (60-70 percent) of the essential metals (Zn and Cu) in solution. In stressful situations, such as the exposure to Cd and H2O2, MTs did not bind to Cu and bound less to Zn. When organisms were exposed to Cd, the total number of ions bound per MT molecule did not change, compared to control. However the sort of ions bound per MT molecule differed; part of the Zn and all Cu ions where displaced by Cd ions. For organisms exposed to H2O2, each MT molecule bound less than half of the ions compared to control and Cd conditions, which indicates a partial oxidation of thiol groups in the cysteine

  10. Are metallothioneins equally good biomarkers of metal and oxidative stress?

    PubMed

    Figueira, Etelvina; Branco, Diana; Antunes, Sara C; Gonçalves, Fernando; Freitas, Rosa

    2012-10-01

    Several researchers investigated the induction of metallothioneins (MTs) in the presence of metals, namely Cadmium (Cd). Fewer studies observed the induction of MTs due to oxidizing agents, and literature comparing the sensitivity of MTs to different stressors is even more scarce or even nonexistent. The role of MTs in metal and oxidative stress and thus their use as a stress biomarker, remains to be clearly elucidated. To better understand the role of MTs as a biomarker in Cerastoderma edule, a bivalve widely used as bioindicator, a laboratory assay was conducted aiming to assess the sensitivity of MTs to metal and oxidative stressors. For this purpose, Cd was used to induce metal stress, whereas hydrogen peroxide (H2O2), being an oxidizing compound, was used to impose oxidative stress. Results showed that induction of MTs occurred at very different levels in metal and oxidative stress. In the presence of the oxidizing agent (H2O2), MTs only increased significantly when the degree of oxidative stress was very high, and mortality rates were higher than 50 percent. On the contrary, C. edule survived to all Cd concentrations used and significant MTs increases, compared to the control, were observed in all Cd exposures. The present work also revealed that the number of ions and the metal bound to MTs varied with the exposure conditions. In the absence of disturbance, MTs bound most (60-70 percent) of the essential metals (Zn and Cu) in solution. In stressful situations, such as the exposure to Cd and H2O2, MTs did not bind to Cu and bound less to Zn. When organisms were exposed to Cd, the total number of ions bound per MT molecule did not change, compared to control. However the sort of ions bound per MT molecule differed; part of the Zn and all Cu ions where displaced by Cd ions. For organisms exposed to H2O2, each MT molecule bound less than half of the ions compared to control and Cd conditions, which indicates a partial oxidation of thiol groups in the cysteine

  11. Cutaneous metallothionein induction by ultraviolet B irradiation in interleukin-6 null mice.

    PubMed

    Nishimura, N; Reeve, V E; Nishimura, H; Satoh, M; Tohyama, C

    2000-02-01

    The mediators of cutaneous metallothionein induction by ultraviolet radiation have not been defined. In this study we sought to identify cytokines that might be involved. We examined the role of interleukin-6, using the IL-6 null (IL-6-/-) mouse, which has been observed to be highly sensitive to ultraviolet radiation damage. Whereas cutaneous metallothionein concentration, measured by radioimmunoassay, began to rise in wild-type (IL-6+/+) mice by 12 h after ultraviolet irradiation, there was a significant delay in the IL-6-/- mice until 48 h after UV irradiation. Immunohistologically, metallothionein appeared in IL-6+/+ mice at 24 h in dermal fibroblasts, and then by 48 h in epidermal basal keratinocytes, with intensity increasing until 72 h, and was coincident with proliferating cell nuclear antigen-positive staining. Corresponding metallothionein expression in IL-6-/- mouse skin was significantly delayed. Serum interleukin-6 was elevated in IL-6+/+ mice following ultraviolet irradiation, with peak concentration at 4 h, but no increase in serum interleukin-1beta was found in either IL-6+/+ or IL-6-/- mice. Interestingly, tumor necrosis factor alpha concentration in serum was elevated at 12 h postirradiation in IL-6+/+ mice, but there was an earlier (at 4 and 8 h) time-dependent increase in tumor necrosis factor alpha in serum of the IL-6-/- mice. Skin zinc and copper concentrations were not altered by ultraviolet irradiation in either IL-6+/+ or IL-6-/- mice. The results suggest that interleukin-6 may be a very early mediator of cutaneous metallothionein induction by ultraviolet radiation, but that this role is possibly assumed by alternative cytokines like tumor necrosis factor alpha when interleukin-6 is deficient. PMID:10651996

  12. Identification of a functional homolog of the yeast copper homeostasis gene ATX1 from Arabidopsis

    SciTech Connect

    Himelblau, E.; Amasino, R.M.; Mira, H.; Penarrubia, L.; Lin, S.J.; Culotta, V.C.

    1998-08-01

    A cDNA clone encoding a homolog of the yeast (Saccharomyces cerevisiae) gene Anti-oxidant 1 (ATX1) has been identified from Arabidopsis. This gene, referred to as Copper CHaperone (CCH), encodes a protein that is 36% identical to the amino acid sequence of ATX1 and has a 48-amino acid extension at the C-terminal end, which is absent from ATX1 homologs identified in animals. ATX1-deficient yeast (atx1) displayed a loss of high-affinity iron uptake. Expression of CCH in the atx1 strain restored high-affinity iron uptake, demonstrating that CCH is a functional homolog of ATX1. When overexpressed in yeast lacking the superoxide dismutase gene SOD1, both ATX1 and CCH protected the cell from the reactive oxygen toxicity that results from superoxide dismutase deficiency. CCH was unable to rescue the sod1 phenotype in the absence of copper, indicating that CCH function is copper dependent. In Arabidopsis CCH mRNA is present in the root, leaf, and in fluorescence and is up-regulated 7-fold in leaves undergoing senescence. In plants treated with 800 nL/L ozone for 30 min, CCH mRNA levels increased by 30%. In excised leaves and whole plants treated with high levels of exogenous CuSO{sub 4}, CCH mRNA levels decreased, indicating that CCH is regulated differently than characterized metallothionein proteins in Arabidopsis.

  13. Efficient expression of truncated recombinant cadmium-metallothionein gene of a ciliate, Tetrahymena tropicalis lahorensis in Escherichia coli.

    PubMed

    Shuja, Rukhsana Nighat; Taimuri, Shuja Uddin Ahmad; Shakoori, Farah Rauf; Shakoori, Abdul Rauf

    2013-12-01

    Truncated recombinant metallothionein GST-fusion protein has been successfully expressed in Escherichia coli. The previously identified novel Cd-inducible metallothionein (TMCd1) gene from the locally isolated ciliate, Tetrahymena tropicalis lahorensis, was inserted into a pET-41a vector, in frame with a sequence encoding an N-terminal glutathione-S-transferase (GST) tail. Truncated recombinant GST fusion protein has been purified by affinity column chromatography using glutathione sepharose. After enzymatic cleavage of GST tail with enterokinase, the truncated TMCd1 MT shows molecular weight of 11.5 kDa, corresponding to the expected value. This is the first successful report of expression of cadmium metallothionein gene of a ciliate, T. t. lahorensis, reported from this part of the world, in E. coli. This study will further help in characterization of metallothionein protein of this ciliate.

  14. Expression of metallothionein-human growth hormone fusion genes in transgenic mice results in disproportionate skeletal gigantism.

    PubMed

    Wolf, E; Rapp, K; Brem, G

    1991-01-01

    Transgenic mice harbouring mouse metallothionein I-human growth hormone (MT-hGH) fusion genes were produced using the microinjection technique. The bones of adult MT-hGH transgenic mice, which continuously expressed high levels of hGH in their serum, and age-matched controls lacking detectable concentrations of hGH were measured microscopically. In addition to analyzing absolute skeletal dimensions, measurements were related to the cube root of the maximum body weight of the same animal. Absolute values obtained from transgenic mice were significantly higher than those obtained from controls for most of the defined measurements. However, the increase in skeletal dimensions was mostly not as pronounced as the increase in body weight and all bones were not affected to the same extent. There was no significant correlation between the serum GH concentration in individual mice and their degree of bony overgrowth. A disproportionate skeletal gigantism in MT-hGH transgenic mice may result from time differences in epiphyseal union of various bones of both sexes as well as differences in mechanical bone loading due to a drastically increased body weight. Individual concentrations of locally produced tissue insulin-like growth factor I (IGF I) might also play a role. Possible effects of these factors are discussed. The results presented in this study show that MT-hGH transgenic mice provide a powerful tool for the investigation of hormonal regulation of bone growth. PMID:1938045

  15. Sensitivity to cadmium-induced genotoxicity in rat testicular cells is associated with minimal expression of the metallothionein gene.

    PubMed

    Shiraishi, N; Hochadel, J F; Coogan, T P; Koropatnick, J; Waalkes, M P

    1995-02-01

    Cadmium is a carcinogenic metal. Although the mechanism of tumor induction is unknown, DNA/metal interactions may be involved. Metallothionein can protect against cadmium toxicity in our previous work it was shown to reduce cadmium genotoxicity in cultured cells. To extend these results, the genotoxicity of cadmium was studied in R2C cells, a rat testicular Leydig cell line. The R2C cells were very sensitive to cadmium-induced single-strand DNA damage (SSD), as measured by alkaline elution. SSD occurred in R2C cells after treatment with 25 and 50 microM CdCl2 for 2 hr. Prior work showed other cells required much higher levels of cadmium (approximately 500 microM) to induce genotoxicity. The genotoxic levels of cadmium (25-50 microM) were not cytotoxic in R2C cells as assessed by a metabolic activity (MTT) assay. Pretreatment of R2C cells with a low cadmium dose (2 microM, 24 hr) had no effect on cadmium-induced SSD, in contrast to prior work in other cells where such pretreatments reduced SSD through metallothionein gene activation. In fact, cadmium or zinc treatments resulted in little or no increase in metallothionein gene expression in R2C cells as determined by Northern blot analysis for metallothionein mRNA using cDNA or oligonucleotide probes and radioimmunoassay for metallothionein protein production. Basal metallothionein mRNA was essentially nondetectable. Induction of a cadmium-binding protein in R2C cells did occur, as determined by Cd-heme assay, but did not induce tolerance to SSD. In vivo, the Leydig cell is a target for cadmium carcinogenicity and its cadmium-binding protein is thought not to be a true metallothionein. These results indicate that R2C cells are sensitive to cadmium-induced genotoxicity and that this sensitivity is associated with minimal expression of the metallothionein gene. PMID:7871536

  16. Analogous copper(I) coordination in metallothionein from yeast and the separate domains of the mammalian protein.

    PubMed

    Hartmann, H J; Li, Y J; Weser, U

    1992-01-01

    The three-dimensional structures of both vertebrate Cu12-metallothionein (class 1) and yeast Cu8-thionein (class 2) are still unknown. The different copper:protein stoichiometry compared with that of the (ZnCd)7-metallothioneins was expected to alter the metal-thiolate cluster structure considerably. In order to avoid possible domain interactions in the hepatic rat metallothionein, separate chemically synthesized alpha- and beta-domains were used rather than the apoprotein. Apo yeast thionein, and the alpha- and beta-domains of rat liver metallothionein-2 were reconstituted by Cu(I) titration. Reconstitution steps were monitored using spectroscopic methods including luminescence emission and circular dichroism. Upon UV irradiation a linear increase in intensity of the orange-red luminescence was observed near 600 nm up to 6 Cu eq using either compound regardless of the different cysteine sulfer content (yeast thionein 12S, alpha-domain 11S, beta-domain 9S). The characteristic dichroic properties of the yeast copper-protein between 240 and 400 nm were in good agreement with those of the respective class 1 metallothionein domains. All observed Cotton bands were of similar shape and appeared in the same wavelength regions. However, the molar ellipticities were less pronounced in the alpha- and beta-fragments employed. There appears to be a striking similarity between the oligonuclear Cu(I) binding centers in all metallothionein species.

  17. Amount and metal composition of midgut gland metallothionein in shore crabs (Carcinus maenas) after exposure to cadmium in the food.

    PubMed

    Pedersen, Knud Ladegaard; Bach, Louise Thornhøj; Bjerregaard, Poul

    2014-05-01

    Accumulation of cadmium in aquatic invertebrates may compromise human food safety and anthropogenic additions of cadmium to coastal areas cause concern. Induction of crustacean metallothionein has been suggested as a useful biomarker for contamination of the aquatic environment with cadmium. We investigated how exposure to low concentrations of cadmium in the food affects the subcellular binding of cadmium with the shore crab Carcinus maenas as model organism. Approximately 80% of the assimilated cadmium was bound in the soluble fraction of the midgut gland and of this, 82% was found in the metallothionein fraction. Metallothionein synthesis was only induced at the highest exposure level. However, the number of cadmium atoms bound per molecule of metallothionein increased linearly with exposure, from approximately 0.18 in the control group to 1.4 in a group administered food containing 5.1 μg Cd g(-1). We noted a marked interaction between the presence of copper and zinc in the midgut gland and the binding of cadmium. The usefulness of crustacean midgut gland metallothionein as a biomarker for cadmium exposure at modest levels was questioned since exposures at levels producing significant increases in the tissue contents of the metal did not result in elevated concentrations of metallothionein in the midgut gland. PMID:24685622

  18. Purification and primary structure of metallothioneins induced by cadmium in the protists Tetrahymena pigmentosa and Tetrahymena pyriformis.

    PubMed

    Piccinni, E; Staudenmann, W; Albergoni, V; De Gabrieli, R; James, P

    1994-12-15

    Tetrahymena pyriformis and Tetrahymena pigmentosa grown in the presence of a non-toxic dose of cadmium, accumulate the metal in the cytosol. Purification by gel-permeation, ion-exchange and reverse-phase high-performance liquid chromatography showed that the metal is bound principally to newly formed proteins with ultraviolet spectra and cysteine contents similar to those of Cd(2+)-metallothioneins from multicellular organisms. The isolated proteins revealed that the two species of ciliates each express two Cd(2+)-isothioneins. The primary structures determined by both Edman degradation and mass spectrometry revealed that the equivalent proteins from T. pyriformis and T. pigmentosa have identical sequences and that the two isoforms in each species differ only by the presence or absence of a lysine residue at the N-terminus. The development of automated mass spectrometric sequence analysis algorithms combined with an accurate determination of the molecular mass allowed the rapid confirmation of the sequences. The Tetrahymena metallothionein sequences are unusually long (105 and 104 amino acids) and show a unique internal homology which suggests that the proteins arose by gene duplication. The chains contain 31 cysteine residues, 15 of which are arranged in motifs characteristic of the mammalian metallothioneins; the remaining residues show several unique repeating motifs, which could have interesting consequences for the tertiary structure of the metal-binding sites. Amino acid sequences of Tetrahymena metallothioneins have some similarity with other eukaryotic metallothioneins. A comparison on the basis of optimised FASTA scores, shows a closer relationship with horse metallothionein-1B.

  19. Quantifying Protein Synthesis and Degradation in Arabidopsis by Dynamic 13CO2 Labeling and Analysis of Enrichment in Individual Amino Acids in Their Free Pools and in Protein1[OPEN

    PubMed Central

    Fernie, Alisdair R.; Stitt, Mark

    2015-01-01

    Protein synthesis and degradation represent substantial costs during plant growth. To obtain a quantitative measure of the rate of protein synthesis and degradation, we supplied 13CO2 to intact Arabidopsis (Arabidopsis thaliana) Columbia-0 plants and analyzed enrichment in free amino acids and in amino acid residues in protein during a 24-h pulse and 4-d chase. While many free amino acids labeled slowly and incompletely, alanine showed a rapid rise in enrichment in the pulse and a decrease in the chase. Enrichment in free alanine was used to correct enrichment in alanine residues in protein and calculate the rate of protein synthesis. The latter was compared with the relative growth rate to estimate the rate of protein degradation. The relative growth rate was estimated from sequential determination of fresh weight, sequential images of rosette area, and labeling of glucose in the cell wall. In an 8-h photoperiod, protein synthesis and cell wall synthesis were 3-fold faster in the day than at night, protein degradation was slow (3%–4% d−1), and flux to growth and degradation resulted in a protein half-life of 3.5 d. In the starchless phosphoglucomutase mutant at night, protein synthesis was further decreased and protein degradation increased, while cell wall synthesis was totally inhibited, quantitatively accounting for the inhibition of growth in this mutant. We also investigated the rates of protein synthesis and degradation during leaf development, during growth at high temperature, and compared synthesis rates of Rubisco large and small subunits of in the light and dark. PMID:25810096

  20. Starch Metabolism in Arabidopsis

    PubMed Central

    Streb, Sebastian; Zeeman, Samuel C.

    2012-01-01

    Starch is the major non-structural carbohydrate in plants. It serves as an important store of carbon that fuels plant metabolism and growth when they are unable to photosynthesise. This storage can be in leaves and other green tissues, where it is degraded during the night, or in heterotrophic tissues such as roots, seeds and tubers, where it is stored over longer time periods. Arabidopsis accumulates starch in many of its tissues, but mostly in its leaves during the day. It has proven to be a powerful genetic system for discovering how starch is synthesised and degraded, and new proteins and processes have been discovered. Such work has major significance for our starch crops, whose yield and quality could be improved by the application of this knowledge. Research into Arabidopsis starch metabolism has begun to reveal how its daily turnover is integrated into the rest of metabolism and adapted to the environmental conditions. Furthermore, Arabidopsis mutant lines deficient in starch metabolism have been employed as tools to study other biological processes ranging from sugar sensing to gravitropism and flowering time control. This review gives a detailed account of the use of Arabidopsis to study starch metabolism. It describes the major discoveries made and presents an overview of our understanding today, together with some as-yet unresolved questions. PMID:23393426

  1. Suppressor Screens in Arabidopsis.

    PubMed

    Li, Xin; Zhang, Yuelin

    2016-01-01

    Genetic screens have proven to be a useful tool in the dissection of biological processes in plants. Specifically, suppressor screens have been widely used to study signal transduction pathways. Here we provide a detailed protocol for ethyl methanesulfonate (EMS) mutagenesis used in our suppressor screens in Arabidopsis and discuss the basic principles behind suppressor screen design and downstream analyses. PMID:26577776

  2. Incorporation of sulfide ions into the cadmium(II) thiolate cluster of Cicer arietinum metallothionein2.

    PubMed

    Wan, Xiaoqiong; Freisinger, Eva

    2013-01-18

    The plant metallothionein2 from Cicer arietinum (chickpea), cic-MT2, is known to coordinate five divalent metal ions such as Zn(II) or Cd(II), which are arranged in a single metal thiolate cluster. When the Zn(II) form of the protein is titrated with Cd(II) ions in the presence of sulfide ions, an increased Cd(II) binding capacity and concomitant incorporation of sulfide ions into the cluster are observed. The exact stoichiometry of this novel cluster, its spectroscopic properties, and the significantly increased pH stability are analyzed with different techniques, including UV and circular dichroism spectroscopy and colorimetric assays. Limited proteolytic digestion provides information about the spacial arrangement of the cluster within the protein. Increasing the Cd(II) scavenging properties of a metallothionein by additionally recruiting sulfide ions might be an economic and very efficient detoxification strategy for plants.

  3. Quantitation of Human Metallothionein Isoforms: A Family of Small, Highly Conserved, Cysteine-rich Proteins*

    PubMed Central

    Mehus, Aaron A.; Muhonen, Wallace W.; Garrett, Scott H.; Somji, Seema; Sens, Donald A.; Shabb, John B.

    2014-01-01

    Human metallothioneins (MTs) are important regulators of metal homeostasis and protectors against oxidative damage. Their altered mRNA expression has been correlated with metal toxicity and a variety of cancers. Current immunodetection methods lack the specificity to distinguish all 12 human isoforms. Each, however, can be distinguished by the mass of its acetylated, cysteine-rich, hydrophilic N-terminal tryptic peptides. These properties were exploited to develop a bottom-up MALDI-TOF/TOF-MS-based method for their simultaneous quantitation. Key features included enrichment of N-terminal acetylated peptides by strong cation exchange chromatography, optimization of C18 reversed-phase chromatography, and control of methionine oxidation. Combinations of nine isoforms were identified in seven cell lines and two tissues. Relative quantitation was accomplished by comparing peak intensities of peptides generated from pooled cytosolic proteins alkylated with 14N- or 15N-iodoacetamide. Absolute quantitation was achieved using 15N-iodoacetamide-labeled synthetic peptides as internal standards. The method was applied to the cadmium induction of MTs in human kidney HK-2 epithelial cells expressing recombinant MT-3. Seven isoforms were detected with abundances spanning almost 2 orders of magnitude and inductions up to 12-fold. The protein-to-mRNA ratio for MT-1E was one-tenth that of other MTs, suggesting isoform-specific differences in protein expression efficiency. Differential expression of MT-1G1 and MT-1G2 suggested tissue- and cell-specific alternative splicing for the MT-1G isoform. Protein expression of MT isoforms was also evaluated in human breast epithelial cancer cell lines. Estrogen-receptor-positive cell lines expressed only MT-2 and MT-1X, whereas estrogen-receptor-negative cell lines additionally expressed MT-1E. The combined expression of MT isoforms was 38-fold greater in estrogen-receptor-negative cell lines than in estrogen-receptor-positive cells. These

  4. Metallothionein of the terrestrial mollusc Helix pomatia as a possible biomarker for environmental stressors

    SciTech Connect

    Berger, B.; Dallinger, R.; Moore, C.

    1995-12-31

    Metallothioneins (MTs) are metal-binding proteins believed to function in homeostasis and detoxification of metals. MT synthesis is induced by various metals and chemical and physical stressors. MTs can therefore be considered as part of the cellular stress response. To test the effects of stressors on MT levels in the Roman snail (Helix pomatia) the authors exposed 8 individuals each to cadmium, copper, low temperature and X-ray radiation. MT concentrations were measured by a Thiomolybdate-Cd-Chelex assay in midgut gland and mantle tissues. This method allows to determine both the Cu-containing and the Cd,Zn-containing MT pool. The basal levels of MT in midgut gland and mantle of controls were about 2 mg MT g{sup {minus}1} fresh weight. In both organs about 80% of MT belongs to the Cu-MT pool indicating their importance for the metabolism of essential metals in non-stressed snails. As expected, changes of MT concentrations were most pronounced after cadmium exposure, MT levels in midgut glands rising to 4.2 mg MT g{sup {minus}1} f.w. and the proportion of Cd,Zn-MT increasing from 20% (controls) to 55%. This is an indication for the switching of MT function from the homeostatic control of metals towards their detoxification, Cadmium exposure as well as most of the other stressors did not affect MT concentrations in the mantle. MT levels in this organ decreased due to X-ray radiation, showing the ability of MT to function as a radical scavenger. There exists a complex pattern of increase and decrease of MT concentrations depending on the kind of stressor and the type of organ. By means of statistical methods it was possible to distinguish between the control and stressed MT status of the tissue. Moreover, the results prove that MTs should be measured in metabolically different organs and that different MT pools (Cu-MT, Cd,Zn-MT) should be considered, if these proteins are used as biomarkers for environmental stress.

  5. Histological changes, apoptosis and metallothionein levels in Triturus carnifex (Amphibia, Urodela) exposed to environmental cadmium concentrations.

    PubMed

    Capaldo, Anna; Gay, Flaminia; Scudiero, Rosaria; Trinchella, Francesca; Caputo, Ivana; Lepretti, Marilena; Marabotti, Anna; Esposito, Carla; Laforgia, Vincenza

    2016-04-01

    The aim of this study was to verify if the freshwater safety values established from the European Community (1998) and the Italian Ministry of Health (2001) for cadmium (44.5nM/L in drinking water and 178nM/L in sewage waters) were safe for amphibians, since at these same concentrations cadmium induced endocrine disruption in the newt Triturus carnifex. Adult male specimens of T. carnifex were exposed daily to cadmium (44.5nM/L and 178nM/L as CdCl2, nominal concentrations), respectively, during 3- and 9-months; at the same time, control newts were exposed to tap water only. The accumulation of cadmium in the skin, liver and kidney, the levels of metallothioneins in the skin and the liver, the expression of metallothionein mRNA in the liver, as well as the presence of histological alterations and of apoptosis in the target organs were evaluated. The 9-months exposure induced cadmium accumulation in all the tissues examined; moreover, histological changes were observed in all the tissues examined, irrespective of the dose or the time of exposure. Apoptosis was only detected in the kidney, whereas metallothioneins and metallothionein mRNA did not increase. This study demonstrates that the existing chronic water quality criterion established for cadmium induces in the newt T. carnifex cadmium accumulation and histological alterations in the target organs examined. Together with our previous results, showing that, at these same concentrations, cadmium induced endocrine disruption, the present results suggest that the existing chronic water quality criterion for cadmium appears to be not protective of amphibians. PMID:26851569

  6. Protective effects of selenium on cadmium toxicity in rats: Role of altered toxicokinetics and metallothionein

    SciTech Connect

    Wahba, Z.Z.; Coogan, T.P.; Rhodes, S.W.; Waalkes, M.P. )

    1993-02-01

    Selenium prevents the toxicity of the carcinogenic metal cadmium through undefined mechanisms. In this study, the authors determined the effects of selenium on cadmium toxicokinetics and on the ability of cadmium to induce metallothionein, a metal-binding protein that is thought to confer tolerance to cadmium toxicity. To assess the acute protective effects of selenium, male Wistar (WF/NCr) rats were given selenium (as SeO[sub 2]; 10 [mu]mol/kg, sc) at [minus]24, 0, and +24 h relative to cadmium (as CdCl[sub 2]; 45 [mu]mol/kg, sc). Over a 14-d period this dose of cadmium killed 6 out of 10 rats, while 100% of the cadmium-treated rats given concurrent selenium treatments survived. The acute increases in testicular weight that were seen with cadmium, indicative of edematous damage, were also prevented by concurrent selenium treatments. Further studies assessed the distribution and excretion of cadmium and its ability to induce metallothionein in rats given 40 [mu]mol Cd/kg, sc, at time 0 and selenium (10 [mu]mol/kg, sc) at [minus]24 and 0 h. Selenium treatments enhanced cadmium accumulation at 24 h in the liver (23%), testes (145%), and epididymis (35%) but reduced renal accumulation by more than half. Urine samples, collected at 0-3, 3-6, and 6-24 h following cadmium administration, indicted a markedly reduced excretion of cadmium in selenium treated rats during all time periods. The synthesis of metallothionein was stimulated to a much lesser extent by cadmium in selenium-treated rat kidney (41% decrease) but was unaffected in liver. The levels of cadmium-binding proteins within the testes were markedly reduced by cadmium treatment, an effect unmodified by selenium treatments. These results suggest selenium prevents acute cadmium toxicity through a mechanism that does not involve induction of metallothionein and in spite of a markedly enhanced retention of cadmium. 50 refs., 1 fig., 4 tabs.

  7. Smoking specifically induces metallothionein-2 isoform in human placenta at term.

    PubMed

    Ronco, Ana Maria; Garrido, Fernando; Llanos, Miguel N

    2006-06-01

    Recently, we reported the presence of higher levels of metallothionein (MT) in placentas of smokers compared to non-smokers. In the present study, we designed experiments to separate and evaluate two isoforms of MT (MT-1 and MT-2) in placentas of smokers and non-smokers. Metallothionein was extracted and separated by ion-exchange high performance liquid chromatography (HPLC), previous saturation with cadmium chloride. Two peaks eluting at 6 and 12.5 min, corresponding to MT-1 and MT-2, respectively, were obtained. Metallothionein present in both peaks was identified by Western blot analysis using a monoclonal antibody directed against MT-1 and MT-2. Each isoform concentration was calculated after measuring its cadmium content by atomic absorption spectrometry with inductively coupled-plasma. In placentas of smokers, MT-2 levels increased by seven-fold compared to non-smokers, whereas MT-1 was not changed. Total placental cadmium and zinc concentrations, determined by atomic absorption spectrometry and neutron activation analysis, respectively, were higher in smokers. Metallothioneins levels were clearly in excess to bind all cadmium ions present in placentas. However, most of placental zinc remains unbound to MTs, although as much as twice zinc ions could be bound to MT in smokers. In conclusion, MT-2 is the main isoform induced by smoking, suggesting that this isoform could be involved in placental cadmium and zinc retention. This fact, which could contribute to reduce the transference of zinc to the fetus, may be associated to detrimental effects on fetal growth and development.

  8. Histological changes, apoptosis and metallothionein levels in Triturus carnifex (Amphibia, Urodela) exposed to environmental cadmium concentrations.

    PubMed

    Capaldo, Anna; Gay, Flaminia; Scudiero, Rosaria; Trinchella, Francesca; Caputo, Ivana; Lepretti, Marilena; Marabotti, Anna; Esposito, Carla; Laforgia, Vincenza

    2016-04-01

    The aim of this study was to verify if the freshwater safety values established from the European Community (1998) and the Italian Ministry of Health (2001) for cadmium (44.5nM/L in drinking water and 178nM/L in sewage waters) were safe for amphibians, since at these same concentrations cadmium induced endocrine disruption in the newt Triturus carnifex. Adult male specimens of T. carnifex were exposed daily to cadmium (44.5nM/L and 178nM/L as CdCl2, nominal concentrations), respectively, during 3- and 9-months; at the same time, control newts were exposed to tap water only. The accumulation of cadmium in the skin, liver and kidney, the levels of metallothioneins in the skin and the liver, the expression of metallothionein mRNA in the liver, as well as the presence of histological alterations and of apoptosis in the target organs were evaluated. The 9-months exposure induced cadmium accumulation in all the tissues examined; moreover, histological changes were observed in all the tissues examined, irrespective of the dose or the time of exposure. Apoptosis was only detected in the kidney, whereas metallothioneins and metallothionein mRNA did not increase. This study demonstrates that the existing chronic water quality criterion established for cadmium induces in the newt T. carnifex cadmium accumulation and histological alterations in the target organs examined. Together with our previous results, showing that, at these same concentrations, cadmium induced endocrine disruption, the present results suggest that the existing chronic water quality criterion for cadmium appears to be not protective of amphibians.

  9. Does Variation of the Inter-Domain Linker Sequence Modulate the Metal Binding Behaviour of Helix pomatia Cd-Metallothionein?

    PubMed Central

    Gil-Moreno, Selene; Jiménez-Martí, Elena; Palacios, Òscar; Zerbe, Oliver; Dallinger, Reinhard; Capdevila, Mercè; Atrian, Sílvia

    2015-01-01

    Snail metallothioneins (MTs) constitute an ideal model to study structure/function relationships in these metal-binding polypeptides. Helix pomatia harbours three MT isoforms: the highly specific CdMT and CuMT, and an unspecific Cd/CuMT, which represent paralogous proteins with extremely different metal binding preferences while sharing high sequence similarity. Preceding work allowed assessing that, although, the Cys residues are responsible for metal ion coordination, metal specificity or preference is achieved by diversification of the amino acids interspersed between them. The metal-specific MT polypeptides fold into unique, energetically-optimized complexes of defined metal content, when binding their cognate metal ions, while they produce a mixture of complexes, none of them representing a clear energy minimum, with non-cognate metal ions. Another critical, and so far mostly unexplored, region is the stretch linking the individual MT domains, each of which represents an independent metal cluster. In this work, we have designed and analyzed two HpCdMT constructs with substituted linker segments, and determined their coordination behavior when exposed to both cognate and non-cognate metal ions. Results unequivocally show that neither length nor composition of the inter-domain linker alter the features of the Zn(II)- and Cd(II)-complexes, but surprisingly that they influence their ability to bind Cu(I), the non-cognate metal ion. PMID:26703589

  10. Behaviour of the oxidant scavenger metallothionein in hypoxia-induced neotropical fish.

    PubMed

    Hauser-Davis, Rachel Ann; Bastos, Frederico Freire; Dantas, Rafael Ferreira; Tobar, Santiago Alonso Leitão; da Cunha Bastos Neto, Jayme; da Cunha Bastos, Vera Lucia Freire; Ziolli, Roberta Lourenço; Arruda, Marco Aurélio Zezzi

    2014-05-01

    The pacu (Piaractus mesopotamicus) is a hypoxia-tolerant neotropical fish species. There is little or no information in this species regarding biochemical adaptations to waters with different oxygen concentrations, such as the production of reactive oxygen species and antioxidant scavengers, which might be of interest in the study of antioxidant defense mechanisms. Metallothioneins (MT) have been widely applied as biomarkers for metal exposure in fish liver, and, recently, in bile. These metalloproteins, however, have also been reported as free radical scavengers, although studies in this regard are scarce in fish. In this context, normoxic and hypoxic controlled experiments were conducted with pacu specimens and MT levels were quantified in both liver and bile. Reduced glutathione (GSH) indicative of oxidative stress, and thiobarbituric acid reactive substances (TBARS), indicative of lipid peroxidation, were also determined in liver. The results demonstrate that hypoxic fish present significantly lower metallothionein levels in liver and bile and lower reduced glutathione levels in liver, whereas lipid peroxidation was not significantly different between hypoxic and normoxic fish. The results of the present study seem to suggest that metallothioneins may actively participate in redox regulation in hypoxic fish in both bile and liver. MT levels in these organs may be temporarily suppressed, supporting the notion that down-regulation of oxidant scavengers during the oxidative burst is important in defense signaling in these adapted organisms.

  11. Production of a bifunctional hybrid molecule B72.3/metallothionein-1 by protein engineering.

    PubMed Central

    Xiang, J; Koropatnick, J; Qi, Y; Luo, X; Moyana, T; Li, K; Chen, Y

    1993-01-01

    A hybrid anti-tumour B72.3 antibody/metallothionein protein B72.3MT-1 was produced by the construction of the expression vector mpSV2neo-EP1-B72.3MT-1. This vector contained the neo gene as a selection marker, the murine immunoglobulin promoter and enhancer, and the hybrid B72.3 heavy chain gene fragment with mouse metallothionein-1 cDNA gene ligated into its CH2 domain. The expression vector was transfected to the heavy chain loss mutant B72.3Mut(K) cell line. The hybrid protein B72.3MT-1 was purified from transfectant supernates using a Protein G column. We showed that the hybrid protein retained the binding reactivity for the TAG72 antigen as the original B72.3 antibody, and the metal-binding capacity of the native metallothionein molecule. Therefore, the bifunctional hybrid protein B72.3MT-1 may be very useful in cancer imaging when labelled with radionuclides such as 99mTc. Images Figure 3 Figure 6 Figure 7 PMID:8495976

  12. Alterations in prey capture and induction of metallothioneins in grass shrimp fed cadmium-contaminated prey

    SciTech Connect

    Wallace, W.G.; Hoexum Brouwer, T.M.; Brouwer, M.; Lopez, G.R.

    2000-04-01

    The aquatic oligochaete Limnodrilus hoffmeisteri from a Cd-contaminated cove on the Hudson River, Foundry Cove, New York, USA, has evolved Cd resistance. Past studies have focused on how the mode of detoxification of Cd by these Cd-resistant worms influences Cd trophic transfer to the grass shrimp Palaemonetes pugio. In the present study, the authors investigate reductions in prey capture in grass shrimp fed Cd-contaminated prey. They also investigate the induction of metal-binding proteins, metallothioneins, in these Cd-exposed shrimp. Grass shrimp were fed field-exposed Cd-contaminated Foundry Cove oligochaetes or laboratory-exposed Cd-contaminated Artemia salina. Following these exposures, the ability of Cd- dosed and control shrimp to capture live A. salina was compared. Results show that shrimp fed laboratory-exposed Cd-contaminated A. salina for 2 weeks exhibit significant reductions in their ability to successfully capture prey (live A. salina). Reductions in prey capture were also apparent, though not as dramatic in shrimp fed for 1 week on field-exposed Cd-contained Foundry Cove oligochaetes. Shrimp were further investigated for their subcellular distribution of Cd to examine if alterations in prey capture could be linked to saturation of Cd-metallothionein. Cd-dosed shrimp produced a low molecular weight CD-binding metallothionein protein in a dose- and time-dependent manner. Most importantly, successful prey capture decreased with increased Cd body burdens and increased Cd concentration bound to high molecular weight proteins.

  13. Metallothionein-like cadmium binding protein in rat testes administered with cadmium and selenium

    SciTech Connect

    Ohta, H.; Seki, Y.; Imamiya, S.

    1988-08-01

    It is well known that the testicular damage caused by acute cadmium toxicity are protected by simultaneous selenium administration with cadmium, and that the cadmium concentration in the testis increases remarkably as compared with that of only cadmium administration. The increased cadmium in the testis was found in the high molecular weight fraction containing selenium, and it has been thought that the shift of cadmium from the low molecular weight fraction to the high molecular weight fraction containing selenium is an important protection mechanism. However, the cadmium concentration in this high molecular weight fraction decreased with time, then re-shifted to the fraction of metallothionein, a low molecular weight protein having a protective effect against cadmium toxicity. While recently studying the cadmium binding protein, like metallothionein, in testes, it has been reported that the amino acid composition of cadmium binding protein in testis is not similar to that of the hepatic metallothionein. The present study was undertaken to clarify the properties of the increased cadmium binding protein in the testis protected by simultaneous selenium administration with cadmium.

  14. The interaction of cadium-induced rat renal metallothionein with bivalent mercury in vitro.

    PubMed

    Holt, D; Magos, L; Webb, M

    1980-10-01

    Addition of Hg2+ in vitro to metallothionein (Cd : Cu : Zn = 6.5 : 4 : 1) from the kidneys of Cd2+ exposed rats appears to result initially in the replacement of Zn2+, then Cd2+ and finally copper. The ionic stoichiometries between Hg2+-binding and the release of Cd2+ (or Zn2+) and copper are 3 : 2 and 1 : 1 respectively. After treatment with amounts of Hg2+ sufficient to displace completely either the bound Zn2+ and Cd2+, or all of the original cations, the metallothionein has little or no negative charge at pH 8.0 and is not resolved into the two isometallothioneins, which characterize the (Cd, Cu, Zn)-thionein, by ion exchange chromatography at this pH. Cation substitution occurs in both isometallothioneins and there is no evidence that Hg2+ interacts preferentially with one of them. Treatment of the metallothionein with increasing amounts of Hg2+, equivalent to approx. 25% and 50% of the bound cations gives rise to a range of molecular species of progressively decreasing negative charge. The consistent stiochiometry between Hg2+ uptake and Cd2+ or Zn2+ release at all concentrations of Hg2+ indicates that free thiol groups are not formed during the substitution reaction.

  15. Induction of metallothionein and stomatin by interleukin-6 and glucocorticoids in a human amniotic cell line.

    PubMed

    Snyers, L; Content, J

    1994-07-15

    Interleukin 6 (IL-6) is an important mediator of various kinds of inflammatory and immune responses. The human amniotic cell line UAC has an increased number of IL-6 receptors after treatment by glucocorticoids. To find a possible activity of IL-6 on these cells, a cDNA library of IL-6- and dexamethasone-treated cells was screened with cDNA probes from both induced and non-induced cells. Two cDNAs showed a differential hybridization signal. The first one corresponds to metallothionein, a group of small cysteine-rich proteins thought to participate in the metabolism and storage of zinc and to protect cells against oxidative damage. A second cDNA corresponds to the recently cloned cDNA of band 7 integral membrane protein also called stomatin. In hereditary stomatocytosis, absence of this protein in erythrocyte membranes is associated with high Na+ and low K+ intracellular concentrations [Stewart, G. W., Hepworth-Jones, B. E., Keen, J. N., Dash, B. C. J., Argent, A. C. & Casimir, C. M. (1992) Blood 79, 1593-1601]. In UAC cells both metallothionein and stomatin are induced by dexamethasone and IL-6 in a more than additive manner. Western blot analysis shows that stomatin protein is induced in a similar way as its mRNA. IL-6 and dexamethasone induce a state of resistance against hydrogen peroxide toxicity in UAC cells. Metallothionein induction might be partly responsible for this cytoprotection against oxidative stress.

  16. Experimental exposure to cadmium affects metallothionein-like protein levels but not survival and growth in wolf spiders from polluted and reference populations.

    PubMed

    Eraly, Debbie; Hendrickx, Frederik; Bervoets, Lieven; Lens, Luc

    2010-06-01

    Both local adaptation and acclimation in tolerance mechanisms may allow populations to persist under metal pollution. However, both mechanisms are presumed to incur (energetic) costs and to trade-off with other life-history traits. To test this hypothesis, we exposed Pardosa saltans (Lycosidae) spiderlings originating from metal-polluted and unpolluted sites to a controlled cadmium (Cd) treatment, and compared contents of metal-binding metallothionein-like proteins (MTLPs), internal metal concentrations, and individual survival and growth rates with a reference treatment. While increased MTLP concentrations in offspring originating from both polluted and unpolluted populations upon exposure indicates a plastic tolerance mechanism, survival and growth rates remain largely unaffected, independent of the population of origin. However, MTLP and Cd concentrations were not significantly correlated. We suggest that MTLP production may be an important mechanism enabling P. saltans populations to persist in ecosystems polluted with heavy metals above a certain level.

  17. Trichome morphogenesis in Arabidopsis.

    PubMed Central

    Schwab, B; Folkers, U; Ilgenfritz, H; Hülskamp, M

    2000-01-01

    Trichomes (plant hairs) in Arabidopsis thaliana are large non-secreting epidermal cells with a characteristic three-dimensional architecture. Because trichomes are easily accessible to a combination of genetic, cell biological and molecular methods they have become an ideal model system to study various aspects of plant cell morphogenesis. In this review we will summarize recent progress in the understanding of trichome morphogenesis. PMID:11128981

  18. Variation in the amounts of hepatic copper, zinc and metallothionein mRNA during development in the rat.

    PubMed Central

    Mercer, J F; Grimes, A

    1986-01-01

    Amounts of hepatic metallothionein mRNA were assessed in RNA from foetal and neonatal rat livers by using dot-blot hybridization. Metallothionein mRNA began to increase about day 15 of gestation and reached a foetal maximum of 5-fold higher than adult values between 18 and 21 days of gestation. The amounts fell significantly for the first 3 days after parturition, and rose again to 6-fold above adult values 6 days after birth. By 15 days after birth the metallothionein mRNA had declined to adult amounts. In comparison, amounts of ornithine transcarbamoylase mRNA did not vary greatly during development. Hepatic zinc concentrations increased from day 14 of gestation to a maximum just before birth, and remained above adult values until 30 days after birth. From 14 days of gestation to 8 days after birth, hepatic copper concentrations were about 4-fold higher than in the adult, but a substantial increase (to about 9-fold higher than in the adult) occurs between 10 and 15 days after birth. CdCl2 administered to pregnant rats on day 18 of gestation was shown to block placental transfer of zinc, and we found decreased foetal hepatic zinc concentration after the CdCl2 treatment, but this failed to cause a significant decrease in metallothionein mRNA, suggesting that zinc may not be the primary inducer of hepatic metallothionein mRNA during foetal life. PMID:3800934

  19. p53, p21 and metallothionein immunoreactivities in patients with malignant pleural mesothelioma: correlations with the epidemiological features and prognosis of mesotheliomas with environmental asbestos exposure.

    PubMed

    Isik, R; Metintas, M; Gibbs, A R; Metintas, S; Jasani, B; Oner, U; Harmanci, E; Demircan, S; Işiksoy, S

    2001-07-01

    The aim of this study is to investigate immunoreactivity for p53, p21 and metallothionein in diffuse malignant pleural mesothelioma (DMPM) and to determine the relationships between the age, sex, asbestos exposure time, survival of DMPM patients with environmental asbestos exposure and immunoreactivity to p53, p21 and metallothionein. Sixty-seven histopathologically-confirmed DMPMs, 38 of whom had environmental and 29 had occupational asbestos exposure, were included. The tumour tissue samples were immunostained with antibodies against p53, p21 and metallothionein. Epidemiological data and the survival times for the DMPM patients with environmental asbestos exposures were obtained from hospital records. Thirty-three per cent of the DMPMs were positive for p53, 35% for p21 and 52% for metallothionein. There was no statistical difference between the histological subtypes of DMPM in terms of immunoreactivity for p53, p21 and metallothionein. For p21 and metallothionein there was a statistically significant difference between the exposure characteristics: patients with environmental asbestos exposure had shown more immunopositivity. There were statistically significant differences between age groups and between asbestos exposure times for metallothionein, and between asbestos exposure times and p21. The patients with positive immunostaining had longer exposure times and were older than those having negative immunostaining. The differences between survival of the patients were not statistically significant in terms of the immunohistochemical results for p53, p21 and metallothionein.

  20. Soluble silicon modulates expression of Arabidopsis thaliana genes involved in copper stress.

    PubMed

    Khandekar, Sushant; Leisner, Scott

    2011-05-01

    Since soluble silicon (Si) has been shown to alleviate copper (Cu) toxicity in Arabidopsis thaliana, the expression of genes involved in responses to Cu toxicity was examined by quantitative reverse transcription-polymerase chain reaction. Expression levels of three metallothionein (MT) genes were increased under Cu stress conditions whereas Cu-stressed plants treated with Si either maintained high levels or contained even higher levels of MT RNA. Cu/zinc superoxide dismutase (SOD) enzyme activity was induced by Cu toxicity. However, SOD activity was increased even more if plants were provided with extra Si and toxic levels of Cu. Previously, plants treated with elevated Cu showed increased phenylalanine ammonia lyase (PAL) activity that was reduced when the plants were also provided with extra Si. Since the Arabidopsis genome encodes 4 PAL genes (PAL1-4), we examined which ones were responsive to Cu and Si. PAL 1, PAL 2, and PAL 3 all showed similar patterns of gene expression that matched previous enzymatic data while PAL4 was elevated by the presence of high Cu whether Si was present or not. Taken together, these data suggested that Si permitted plants to respond to Cu toxicity more effectively and that these changes occurred at the gene expression level.

  1. Prevalence of alternative splicing choices in Arabidopsis thaliana

    PubMed Central

    2010-01-01

    Background Around 14% of protein-coding genes of Arabidopsis thaliana genes from the TAIR9 genome release are annotated as producing multiple transcript variants through alternative splicing. However, for most alternatively spliced genes in Arabidopsis, the relative expression level of individual splicing variants is unknown. Results We investigated prevalence of alternative splicing (AS) events in Arabidopsis thaliana using ESTs. We found that for most AS events with ample EST coverage, the majority of overlapping ESTs strongly supported one major splicing choice, with less than 10% of ESTs supporting the minor form. Analysis of ESTs also revealed a small but noteworthy subset of genes for which alternative choices appeared with about equal prevalence, suggesting that for these genes the variant splicing forms co-occur in the same cell types. Of the AS events in which both forms were about equally prevalent, more than 80% affected untranslated regions or involved small changes to the encoded protein sequence. Conclusions Currently available evidence from ESTs indicates that alternative splicing in Arabidopsis occurs and affects many genes, but for most genes with documented alternative splicing, one AS choice predominates. To aid investigation of the role AS may play in modulating function of Arabidopsis genes, we provide an on-line resource (ArabiTag) that supports searching AS events by gene, by EST library keyword search, and by relative prevalence of minor and major forms. PMID:20525311

  2. A cadmium metallothionein gene of ridgetail white prawn Exopalaemon carinicauda (Holthuis, 1950) and its expression

    NASA Astrophysics Data System (ADS)

    Zhang, Jiquan; Wang, Jing; Xiang, Jianhai

    2013-11-01

    Metallothioneins (MTs) are a group of low molecular weight cysteine-rich proteins capable of binding heavy metal ions. A cadmium metallothionein ( EcMT — Cd) cDNA with a 189 bp open reading frame (ORF) that encoded a 62 amino acid protein was obtained from Exopalaemon carinicauda. Seventeen cysteines were in the deduced amino acid sequence, and the cysteine (Cys)-rich characteristic was revealed in different metallothioneins in other species. In addition, the deduced amino acid sequence did not contain any aromatic amino acid residues, such as tyrosine (Tyr), tryptophan (Trp), and phenylalanine (Phe). EcMT—Cd mRNA was expressed in all tested tissues (the ovary, muscle, stomach, and hepatopancreas), and its expression profiles in the hepatopancreas were very different when shrimps were exposed to seawater containing either 50 μmol/L CuSO4 or 2.5 μmol/L CdCl 2. The expression of EcMT-Cd was significantly up-regulated in shrimp exposed to CuSO4 for 12 h and down-regulated in shrimps exposed to CdCl2 for 12 h. After 24 h exposure to both metals, its expression was down-regulated. By contrast, at 48 h the EcMT-Cd was up-regulated in test shrimps exposed to CdCl2. The transcript of EcMT-Cd was very low or even absent before the zoea stage, and the expression of EcMT-Cd was detected from mysis larvae-I, then its expression began to rise. In conclusion, a cadmium MT exists in E. carinicauda that is expressed in different tissues and during different developmental stages, and responds to the challenge with heavy metal ions, which provides a clue to understanding the function of cadmium MT.

  3. Cadium pathways during gestation and lactation in control vs. metallothionein 1,2-knockout mice.

    SciTech Connect

    Brako, E. E.; Wilson, A. K.; Jonah, M. M.; Blum, C. A.; Cerny, E. A.; Williams, K. L.; Bhattacharyya, M. H.; Winona State Univ.; Benedictine Univ.; Dominican Univ.

    2003-01-01

    Effects of metallothionein (MT) on cadmium absorption and transfer pathways during gestation and lactation in mice were investigated. Female 129/SvJ metallothionein-knockout (MT1,2KO) and metallothionein-normal (MTN) mice received drinking water containing trace amounts of {sup 109}CdCl{sub 2} (0.15 ng Cd/ml; 0.074 {mu}Ci {sup 109}Cd/ml). {sup 109}Cd and MT in maternal, fetal, and pup tissues were measured on gestation days 7, 14, and 17 and lactation day 11. In dams, MT influenced both the amount of {sup 109}Cd transferred from intestine into body (two- to three-fold higher in MT1,2KO than MTN dams) and tissue-specific {sup 109}Cd distribution (higher liver/kidney ratio in MT1,2KO dams). Placental {sup 109}Cd concentrations in MT1,2KO dams were three- and seven-fold higher on gestation days 14 and 17, respectively, than in MTN dams. Fetal {sup 109}Cd levels were low in both mouse types, but at least 10-fold lower in MTN fetuses. MT had no effect on the amount of {sup 109}Cd transferred to pups via milk; furthermore, 85--90% of total pup {sup 109}Cd was recovered in gastrointestinal tracts of both types, despite high duodenal MT only in MTN pups. A relatively large percentage of milk-derived intestinal {sup 109}Cd was transferred to other pup tissues in both MT1,2KO and MTN pups (14 and 10%, respectively). These results demonstrate that specific sequestration of cadmium by both maternal and neonatal intestinal tract does not require MT. Although MT decreased oral cadmium transfer from intestine to body tissues at low cadmium exposure levels, MT did not play a major role in restricting transfer of cadmium from dam to fetus via placenta and to neonate via milk.

  4. Increased levels of hepatic and renal metallothionein in the rat and guinea pig after percutaneous application of zinc chloride

    SciTech Connect

    Wormser, U.; BenZakine, S. )

    1991-02-01

    Metallothionein (MT) is a cytoplasmic, low molecular weight, cysteine rich, heat stable protein. It was detected in various organs including liver, spleen, pancreas, testes, lung, intestine, brain, heart, adrenal, lacrimal and parotid glands. The most powerful inducers of metallothionein are cadmium and zinc. Water soluble zinc salts are common contaminants of the environment. In the present study dose-response relationship and the cumulative effect of topically applied zinc chloride have been demonstrated. For comparison, metal-binding protein induction by the same route of exposure has been also tested in the guinea pig.

  5. Metal accumulation and metallothionein concentrations in tree swallow nestlings near acidified lakes

    SciTech Connect

    St. Louis, V.; Breebaart, L. . Dept. of Zoology); Barlow, J.C. . Dept. of Zoology Royal Ontario Museum, Toronto, Ontario . Dept. of Ornithology); Klaverkamp, J.F. . Dept. of Fisheries and Oceans)

    1993-07-01

    The authors studied metal accumulation in hepatic and renal tissues of tree swallow (Tachycineta bicolor) nestlings at acidified and nonacid reference lakes in northwestern Ontario. Hepatic concentrations of metallothionein (metal-binding proteins, MT) in tree swallow nestlings were negatively correlated with pH of the nest-site lake. Combined concentrations of Cu and Zn in the liver were correlated with liver MT concentrations, but Cd was not. Although no overt signs of metal toxicity were observed in nestlings near acid lakes, the results clearly provided evidence that metals are transferred from acid lakes to birds and that these metals are correlated with increases in hepatic MT production.

  6. Metallothionein blocks oxidative DNA damage induced by acute inorganic arsenic exposure

    SciTech Connect

    Qu, Wei Waalkes, Michael P.

    2015-02-01

    We studied how protein metallothionein (MT) impacts arsenic-induced oxidative DNA damage (ODD) using cells that poorly express MT (MT-I/II double knockout embryonic cells; called MT-null cells) and wild-type (WT) MT competent cells. Arsenic (as NaAsO{sub 2}) was less cytolethal over 24 h in WT cells (LC{sub 50} = 11.0 ± 1.3 μM; mean ± SEM) than in MT-null cells (LC{sub 50} = 5.6 ± 1.2 μM). ODD was measured by the immuno-spin trapping method. Arsenic (1 or 5 μM; 24 h) induced much less ODD in WT cells (121% and 141% of control, respectively) than in MT-null cells (202% and 260%). In WT cells arsenic caused concentration-dependent increases in MT expression (transcript and protein), and in the metal-responsive transcription factor-1 (MTF-1), which is required to induce the MT gene. In contrast, basal MT levels were not detectable in MT-null cells and unaltered by arsenic exposure. Transfection of MT-I gene into the MT-null cells markedly reduced arsenic-induced ODD levels. The transport genes, Abcc1 and Abcc2 were increased by arsenic in WT cells but either showed no or very limited increases in MT-null cells. Arsenic caused increases in oxidant stress defense genes HO-1 and GSTα2 in both WT and MT-null cells, but to much higher levels in WT cells. WT cells appear more adept at activating metal transport systems and oxidant response genes, although the role of MT in these responses is unclear. Overall, MT protects against arsenic-induced ODD in MT competent cells by potential sequestration of scavenging oxidant radicals and/or arsenic. - Highlights: • Metallothionein blocks arsenic toxicity. • Metallothionein reduces arsenic-induced DNA damage. • Metallothionein may bind arsenic or radicals produced by arsenic.

  7. Highly selective and rapid arsenic removal by metabolically engineered Escherichia coli cells expressing Fucus vesiculosus metallothionein.

    PubMed

    Singh, Shailendra; Mulchandani, Ashok; Chen, Wilfred

    2008-05-01

    An arsenic-chelating metallothionein (fMT) from the arsenic-tolerant marine alga Fucus vesiculosus was expressed in Escherichia coli, resulting in 30- and 26-fold-higher As(III) and As(V) binding, respectively. Coexpression of the As(III)-specific transporter GlpF with fMT further improved arsenic accumulation and offered high selectivity toward As. Resting E. coli cells coexpressing fMT and GlpF completely removed trace amounts (35 ppb) of As(III) within 20 min, providing a promising technology for compliance with the As limit of 10 ppb newly recommended by the U.S. EPA.

  8. pH-Dependent Coordination of Pb2+ to Metallothionein2: Structures and Insight into Lead Detoxification

    PubMed Central

    2015-01-01

    Lead is a toxic heavy metal whose detoxification in organisms is mainly carried out by its coordination with some metalloproteins such as metallothioneins (MTs). Two Pb–MT complexes, named as Pb7–MT2(I) and Pb7–MT2(II), form under neutral and weakly acidic conditions, respectively. However, the structures of the two complexes, which are crucial for a better understanding of the detoxification mechanism of Pb–MTs, have not been clearly elucidated. In this Work, coordination of Pb2+ with rabbit liver apo–MT2, as well as with the two individual domains (apo−αMT2 and apo−βMT2) at different pH, were studied by combined spectroscopic (UV–visible, circular dichroism, and NMR) and computational methods. The results showed that in Pb7–MT2(I) the Pb2+ coordination is in the trigonal pyramidal Pb–S3 mode, whereas the Pb7–MT2(II) complex contains mixed trigonal pyramidal Pb–S3, distorted trigonal pyramidal Pb–S2O1, and distorted quadrilateral pyramidal Pb–S3O1 modes. The O-donor ligand in Pb7–MT2(II) was identified as the carboxyl groups of the aspartic acid residues at positions 2 and 56. Our studies also revealed that Pb7–MT2(II) has a greater acid tolerance and coordination stability than Pb7–MT2(I), thereby retaining the Pb2+ coordination at acidic pH. The higher flexibility of Pb7–MT2(II) renders it more accessible to lysosomal proteolysis than Pb7–MT2(I). Similar spectral features were observed in the coordination of Pb2+ by human apo-MT2, suggesting a commonality among mammalian MT2s in the Pb2+ coordination chemistry. PMID:24559479

  9. The potential effect of metallothionein 2A - 5 A/G single nucleotide polymorphism on blood cadmium, lead, zinc and copper levels

    SciTech Connect

    Kayaalti, Zeliha Aliyev, Vugar; Soeylemezoglu, Tuelin

    2011-10-01

    Metallothioneins (MTs) are low molecular weight, cysteine-rich, metal-binding proteins. Because of their rich thiol groups, MTs bind to the biologically essential metals and perform these metals' homeostatic regulations; absorb the heavy metals and assist with their transportation and extraction. The aim of this study was to investigate the association between the metallothionein 2A (MT2A) core promoter region - 5 A/G single nucleotide polymorphism (SNP) and Cd, Pb, Zn and Cu levels in the blood samples. MT2A polymorphism was determined by the standard polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique using the 616 blood samples and the genotype frequencies were found as 86.6% homozygote typical (AA), 12.8% heterozygote (AG) and 0.6% homozygote atypical (GG). Metal levels were analyzed by dual atomic absorption spectrophotometer system and the average levels of Cd, Pb, Zn and Cu in the blood samples were 1.69 {+-} 1.57 ppb, 30.62 {+-} 14.13 ppb, 0.98 {+-} 0.49 ppm and 1.04 {+-} 0.45 ppm, respectively. As a result; highly statistically significant associations were detected between the - 5 A/G core promoter region SNP in the MT2A gene and Cd, Pb and Zn levels (p = 0.004, p = 0.012 and p = 0.002, respectively), but no association was found with Cu level (p = 0.595). Individuals with the GG genotype had statistically lower Zn level and higher Cd and Pb levels in the blood samples than individuals with AA and AG genotypes. This study suggests that having the GG genotype individuals may be more sensitive for the metal toxicity and they should be more careful about protecting their health against the toxic effects of the heavy metals. - Highlights: > MT2A -5A/G SNP has strong effect on the Cd, Pb and Zn levels in the blood. > MT2A GG individuals should be more careful for their health against metal toxicity. > This SNP might be considered as a biomarker for risk of disease related to metals.

  10. Application of electroanalytical methods to the characterization of metallothioneins and related molecules.

    PubMed

    Rodríguez, A R; Esteban, M

    2000-03-01

    Electroanalytical methods have been applied to the characterization and to the study of complexing properties of several Cd,Zn metallothioneins (MT) of different mammalian origin, rabbit and rat liver and horse kidney and human foetal liver and adult kidney. Differential pulse polarography (DPP) has been selected as the most suitable technique for distinguishing the chemical form of compounds and, assuming a diffusion controlled mechanism, monitoring the evolution of different species as a function of parameters, such as the solution pH and the gradual addition of cations, cadmium and/or zinc, initially contained in the studied molecules. Due to the fact that the metallothioneins structure is complex and often not perfectly known, the peptidic fragment Lys-Cys-Thr-Cys-Cys-Ala (56-61) MT-1 (FT) of the mouse liver has been taken as a model for MT characterization. The study of FT alone and in the presence of Cd and/or Zn, using several electroanalytical methods has been very useful for the investigation of adsorption-diffusion processes and for the identification and elucidation of electrochemical systems. The interpretation of voltammetric data is very often not easy. For some cases, proper interpretation can be made using chemometric techniques. Multivariate factor analysis has been applied to the electroanalytical investigation of the complexing properties between cadmium and/or zinc and FT, using results obtained by DPP and linear sweep voltammetry. For more complex systems, like MT, the application of chemometry becomes more complex.

  11. Metallothionein modulation in relation to cadmium bioaccumulation and age-dependent sensitivity of Chironomus riparius larvae.

    PubMed

    Toušová, Zuzana; Kuta, Jan; Hynek, David; Adam, Vojtěch; Kizek, René; Bláha, Luděk; Hilscherová, Klára

    2016-06-01

    The goal of this study was to contribute to understanding of the mechanisms behind sensitivity differences between early and late instar larvae of Chironomus riparius and to address the influence of the differences in standard testing approaches on the toxicity evaluation. A 10-day contact sediment toxicity test was carried out to assess sensitivity to cadmium exposure in relation to different age and laboratory culture line origin of test organisms. Chironomid larvae of early (OECD 218 method) and late instar (US-EPA600/R-99/064 method) differed substantially in sensitivity of traditional endpoints (OECD: LOEC 50 and 10 μg Cd/g dry weight (dw); US-EPA: LOEC > 1000 and 100 μg Cd/g dw for survival and growth, respectively). Bioaccumulated cadmium and metallothioneins (MTs) concentrations were analyzed to investigate the role of MTs in reduced sensitivity to cadmium in late instar larvae. Metallothioneins were induced after treatment to greater Cd concentrations, but their levels in relation to cadmium body burdens did not fully explain low sensitivity of late instars to cadmium, which indicates some other effective way of detoxification in late instars. This study brings new information related to the role of MTs in age-dependent toxicant sensitivity and discusses the implications of divergence in data generated by chironomid sediment toxicity tests by standardized methods using different instars. PMID:26957427

  12. Effect of melamine toxicity on Tetrahymena thermophila proliferation and metallothionein expression.

    PubMed

    Li, Wei; Li, Hua; Zhang, Jie; Tian, Xuewen

    2015-06-01

    Melamine is a raw material in the chemical industry. Because of its high nitrogen content, melamine has been utilized by unscrupulous businessmen as a food additive to enhance the indices of protein content in food and feed testing. Tetrahymena has long been used as an excellent model organism in toxicological studies. The purpose of the present study was to determine the effect of melamine on Tetrahymena. In the present study, the effects of melamine on the proliferation and mating rate of Tetrahymena were examined by microscopic counting of the cell numbers. The comet assay and DAPI nuclear staining were performed to analyze the changes in the Tetrahymena genome. Flow cytometric analysis was conducted to detect apoptosis. Furthermore, RT-PCR was performed to determine the changes in the expression of the metallothionein gene in Tetrahymena that underwent stress treatment with varying concentrations of melamine. The results indicated that melamine affected the proliferation and sexual reproduction of Tetrahymena. High melamine concentrations damaged the Tetrahymena genome to a certain extent and induced apoptosis in the organism. Expression of the metallothionein gene was upregulated in Tetrahymena exposed to melamine stress to ameliorate melamine-induced damage. These results indicated that melamine displayed significant toxicity to Tetrahymena cells.

  13. Involvement of metallothionein in cadmium accumulation and elimination in the clam ruditapes decussata

    SciTech Connect

    Bebianno, M.J.; Serafim, M.A.P.; Rita, M.F. )

    1994-11-01

    Cadmium is one of the most toxic pollutants in seawater because of its persistence, toxicity and potential for bioaccumulation. It is included on the [open quotes]black list[close quotes] of several international agreements established to regulate the input of pollutants into the marine environment. The deleterious effects of cadmium contamination in marine organisms result from its accumulation within specific tissues. However, most of these organisms have developed subcellular detoxification processes, including the synthesis of metallothioneins, low-molecular weight, metal-binding proteins. Bivalves have the ability to accumulate and concentrate cadmium to levels several orders of magnitude above those found in their environment. The present study was designed to examine the involvement of metallothionein synthesis in cadmium accumulation and elimination in the bivalve Ruditapes decussata when exposed to a sublethal cadmium concentration (100 [mu]g/l) and to a mixture of cadmium (100 [mu]g/1), copper (50 [mu]g/l) and zinc (50 [mu]g/1). 15 refs., 2 figs., 1 tab.

  14. Effects of heavy metals on Drosophila larvae and a metallothionein cDNA

    SciTech Connect

    Maroni, G.; Lastowski-Perry, D.; Otto, E.; Watson, D.

    1986-03-01

    Drosophila melanogaster larvae reared on food containing radioactive cadmium retained over 80% of it, mostly in the intestinal epithelium. The majority of this radioactivity was associated with a soluble protein of less than 10,000 molecular weight. Synthesis of this cadmium-binding protein was induced by the metal as demonstrated by incorporation of radioactive cysteine. Most copper ingested by larvae was also found to associate with a low molecular weight, inducible protein, but some of it was found in an insoluble fraction. A D. melanogaster cDNA clone was isolated based on its more intense hybridization to copies of RNA sequences from copper-fed larvae than from control larvae. This clone showed strong hybridization to mouse metallothionein-I cDNA at reduced stringency. Its nucleotide sequence includes an open-reading segment which codes for a 40 amino acid protein; this protein was identified as metallothionein based on its similarity to the amino-terminal portion of mammalian and crab metalloproteins. The ten cysteine residues present occur in five pairs of near-vicinal cysteines (Cys-X-Cys). This cDNA sequence hybridized to a 400-nucleotide polyadenylated RNA whose presence in the cells of the alimentary canal of larvae was stimulated by ingestion of cadmium or copper; in other tissues this RNA was present at much lower levels.

  15. Mercury accumulation and metallothionein expression from aquafeeds by Litopenaeus vannamei Boone, 1931 under intensive aquaculture conditions.

    PubMed

    Soares, T M; Coutinho, D A; Lacerda, L D; Moraes, M O; Rebelo, M F

    2011-02-01

    This study describes the accumulation of Hg and metallothionein gene expression in Litopenaeus vannamei Boone, 1931 with aquafeeds as the major source of Hg. Trials were conducted under controlled conditions in experimental tank facilities with high (indoor tanks) and low (outdoor tanks) Hg aquafeeds concentrations. Aquafeeds were the sole source of Hg for the shrimps and concentrations varied from 5.4 to 124 ng.g-1 d.w.. In the three animal fractions analysed; muscle (6,3 - 15,9 ng.g-1); hepatopancreas (5,1 - 22,0 ng.g-1) and exoskeleton (3,0 - 16,2 ng.g-1), Hg concentrations were significantly lower in the outdoor trials submitted to Hg-poor aquafeeds. Maximum shrimp muscle Hg concentrations were low (36.4 ng.g-1 w.w.) relative to maximum permissible concentrations for human consumption and Hg content in muscle and hepatopancreas were significantly correlated with Hg content in aquafeeds. Highest Hg concentrations in the exoskeleton of animals exposed to Hg-richer aquafeed, suggested that a detoxification mechanism is taking place. On the other hand the metallothionein suffered no variation in its relative expression in any of the experiments, meaning that the contact with feed containing the observed Hg concentrations were not sufficient to activate gene transcription. It was not possible, under the experimental design used, to infer Hg effects on the biological performance of the animals.

  16. [Metallothionein-I/II in brain injury repair mechanism and its application in forensic medicine].

    PubMed

    Li, Dong; Li, Ru-bo; Lin, Ju-li

    2013-10-01

    Metallothionein (MT) is a kind of metal binding protein. As an important member in metallothionein family, MT-I/II regulates metabolism and detoxication of brain metal ion and scavenges free radicals. It is capable of anti-inflammatory response and anti-oxidative stress so as to protect the brain tissue. During the repair process of brain injury, the latest study showed that MT-I/II could stimulate brain anti-inflammatory factors, growth factors, neurotrophic factors and the expression of the receptor, and promote the extension of axon of neuron, which makes contribution to the regeneration of neuron and has important effect on the recovery of brain injury. Based on the findings, this article reviews the structure, expression, distribution, adjustion, function, mechanism in the repair of brain injury of MT-I/II and its application prospect in forensic medicine. It could provide a new approach for the design and manufacture of brain injury drugs as well as for age estimation of the brain injury.

  17. Importance of metallothioneins in the cadmium detoxification process in Daphnia magna.

    PubMed

    Fraysse, B; Geffard, O; Berthet, B; Quéau, H; Biagianti-Risbourg, S; Geffard, A

    2006-11-01

    Good knowledge of the relationship between toxic metals and biological systems, particularly the sub-cellular fraction, could be a suitable early indicator of toxic effects. These effects and the sub-cellular behaviour of cadmium were studied with a widely used species in freshwater toxicity bioassays, Daphnia magna. In spite of this very commonplace usage in ecotoxicological studies, very few data are available on its toxicant metabolism and in particular metal homeostasis. Combining multi-tools analysis, a soluble protein was found: it is heat-stable, rich in sulfhydryl groups (differential pulse polarography), characterised by a molecular mass of approximately 6.5 kDa, with a G-75 chromatographic profile corresponding to the rabbit metallothioneins monomer, with few if any aromatic-containing amino acids, it binds metals (e.g. Cd, Cu), and its concentration increases with Cd exposure. This evidence led us to hypothesise that metallothioneins (MTs) are present in D. magna. Up to 75% of the Cd body burden with Cd exposure is bound to the MTs fraction. The increase in the Cd concentration in the surrounding medium and concomitantly in daphnids induces sub-cellular reorganisation of essential metals such as Cu and Zn. The rate of metals in the soluble cellular fraction and associated with MTs increases with the Cd body burden. Monitoring sub-cellular distribution of metals after exposure in the natural environment could be very useful for ecotoxicological assessment. PMID:17113354

  18. Metallothionein immunoexpression in non-syndromic and syndromic keratocystic odontogenic tumour

    PubMed Central

    Johann, Aline-Cristina-Batista-Rodrigues; Caliari, Marcelo-Vidigal; Gomez, Ricardo-Santiago; Aguiar, Maria-Cássia-Ferreira; Mesquita, Ricardo-Alves

    2015-01-01

    Background To compare the metallothionein (MT) immunoexpression in non-syndromic and syndromic keratocystic odontogenic tumour (KOT), to correlate MT with cellular proliferation, and to evaluate the influence of inflammation in MT. Material and Methods Fourteen cases of KOT were submitted to immunohistochemistry for MT and Ki-67 analysis. The lesions were grouped according to their grade of inflammation, and statistical analysis was performed. Results MT was higher in non-syndromic KOT than in syndromic KOT (p<0.05). No statistical difference in Ki-67 could be identified; however, an inverse correlation was observed between MT and Ki-67 in both lesions. When analysing inflammation, non-syndromic KOT showed no differences in either MT or Ki-67. Conclusions The MT immunophenotype of syndromic KOT was different from non-syndromic KOT. MT might not be involved in the proliferation control of both KOT. MT and Ki-67 immunoexpressions proved to be unaffected by inflammation in non-syndromic KOT. Key words: Odontogenic tumours, basal cell nevus syndrome, metallothionein, Ki-67 Antigen, immunohistoche-mistry. PMID:25858080

  19. Identification and expression of an atypical isoform of metallothionein in the African clawed frog Xenopus laevis.

    PubMed

    Scudiero, Rosaria; Tussellino, Margherita; Carotenuto, Rosa

    2015-05-01

    Exploiting the annotation of the western clawed frog Silurana tropicalis genome, we identified a new metallothionein (MT) gene, exhibiting all the features to be considered an active gene, but with an atypical coding region, showing only 17 cysteine residues instead of the canonical 20 cysteines of vertebrate metallothioneins and two anomalous cysteine triplets. However, the presence of a gene in the genome does not ensure its effective expression. By using conventional and Real-Time PCR analyses, we demonstrated that this atypical MT is constitutively expressed throughout the life cycle of the African clawed frog Xenopus laevis; moreover, this gene is highly expressed in the adult liver, the major site of MT expression and synthesis in vertebrates. To our knowledge, the X. laevis MT described in this paper is the first sequence of a vertebrate MT showing only 17 cysteine residues, arranged in two Cys-Cys-Cys motifs. Phylogenetic analyses also demonstrated that the atypical X. laevis MT merges in the anuran clade, but is the most derived sequence among tetrapods MTs. Finally, Tajima's Relative Rate Test suggested a different evolutionary rate between the canonical X. laevis MT and this novel isoform.

  20. Effect of melamine toxicity on Tetrahymena thermophila proliferation and metallothionein expression.

    PubMed

    Li, Wei; Li, Hua; Zhang, Jie; Tian, Xuewen

    2015-06-01

    Melamine is a raw material in the chemical industry. Because of its high nitrogen content, melamine has been utilized by unscrupulous businessmen as a food additive to enhance the indices of protein content in food and feed testing. Tetrahymena has long been used as an excellent model organism in toxicological studies. The purpose of the present study was to determine the effect of melamine on Tetrahymena. In the present study, the effects of melamine on the proliferation and mating rate of Tetrahymena were examined by microscopic counting of the cell numbers. The comet assay and DAPI nuclear staining were performed to analyze the changes in the Tetrahymena genome. Flow cytometric analysis was conducted to detect apoptosis. Furthermore, RT-PCR was performed to determine the changes in the expression of the metallothionein gene in Tetrahymena that underwent stress treatment with varying concentrations of melamine. The results indicated that melamine affected the proliferation and sexual reproduction of Tetrahymena. High melamine concentrations damaged the Tetrahymena genome to a certain extent and induced apoptosis in the organism. Expression of the metallothionein gene was upregulated in Tetrahymena exposed to melamine stress to ameliorate melamine-induced damage. These results indicated that melamine displayed significant toxicity to Tetrahymena cells. PMID:25720813

  1. The Metallothionein Gene, TaMT3, from Tamarix androssowii Confers Cd2+ Tolerance in Tobacco

    PubMed Central

    Zhou, Boru; Yao, Wenjing; Wang, Shengji; Wang, Xinwang; Jiang, Tingbo

    2014-01-01

    Cadmium (Cd) is a nonessential microelement and low concentration Cd2+ has strong toxicity to plant growth. Plant metallothioneins, a class of low molecular, cystein(Cys)-rich and heavy-metal binding proteins, play an important role in both metal chaperoning and scavenging of reactive oxygen species (ROS) with their large number of cysteine residues and therefore, protect plants from oxidative damage. In this study, a metallothionein gene, TaMT3, isolated from Tamarix androssowii was transformed into tobacco (Nicotiana tobacum) through Agrobacterium-mediated leaf disc method, and correctly expressed under the control of 35S promoter. Under Cd2+ stress, the transgenic tobacco showed significant increases of superoxide dismutase (SOD) activity and chlorophyll concentration, but decreases of peroxidase (POD) activity and malondialdehyde (MDA) accumulation when compared to the non-transgenic tobacco. Vigorous growth of transgenic tobacco was observed at the early development stages, resulting in plant height and fresh weight were significantly larger than those of the non-transgenic tobacco under Cd2+ stress. These results demonstrated that the expression of the exogenous TaMT3 gene increased the ability of ROS cleaning-up, indicating a stronger tolerance to Cd2+ stress. PMID:24918294

  2. Overexpressed human metallothionein IIA gene protects Chinese hamster ovary cells from killing by alkylating agents

    SciTech Connect

    Kaina, B.; Lohrer, H.; Karin, M.; Herrlich, P. )

    1990-04-01

    Experiments were designed to detect survival advantages that cells gain by overexpressing metallothionein (MT). Chinese hamster ovary K1-2 cells and an x-ray-sensitive derivative were transfected with a bovine papillomavirus (BPV)-linked construct carrying the human metallothionein IIA (hMT-IIA) gene. Transfectants survived 40-fold higher levels of cadmium chloride, harbored at least 30 copies of hMT-IIA, and contained 25- to 166-fold more MT than the parent cells. Even under conditions of reduced glutathione synthesis, the transfectants were not more resistant to the lethal effects of ionizing radiation and bleomycin than the parent cells. Thus free radicals generated by these agents cannot be scavenged efficiently by MT in vivo. The hMT-IIA transfectants, however, but not control transfectants harboring a BPV-MT promoter-neo construct, tolerated significantly higher doses of the alkylating agents N-methyl-N-nitrosourea and N-methyl-N'-nitro-N-nitrosoguanidine. Resistance and MT overexpression occurred irrespective of selection and cultivation in cadmium and zinc. There was no increase in resistance to methyl methanesulfonate and N-hydroxyethyl-N-chloroethylnitrosourea. MT did not affect the degree of overall DNA methylation after N-methyl-N-nitrosourea treatment nor the level of O6-methylguanine-DNA methyltransferase. The results suggest that MT participates as a cofactor or regulatory element in repair or tolerance of toxic alkylation lesions.

  3. Heavy metal bioaccumulation and metallothionein content in tissues of the sea bream Sparus aurata from three different fish farming systems.

    PubMed

    Cretì, Patrizia; Trinchella, Francesca; Scudiero, Rosaria

    2010-06-01

    The distribution and potential bioaccumulation of dietary and waterborne cadmium and lead in tissues of sea bream (Sparus aurata), a major aquaculture species, was studied in relation to three different fish farming systems. Metallothionein levels in fish tissues were also evaluated. Results demonstrate that metal concentrations in various tissues significantly vary among fish culture systems. Different tissues show different capacity for accumulating heavy metals. The content of both cadmium and lead is not strictly correlated with that of metallothionein. Indeed, the marked accumulation of both metals in liver, as well as the high lead content found in gills and kidney, are not accompanied by a concomitant accumulation of metallothioneins in these tissues. No correlation is present between heavy metals and metallothionein content in muscle tissue. The results also demonstrate that cadmium accumulates mainly via dietary food, whereas lead accumulation is not of food origin. Noteworthy is that the concentration of the two metals found in muscle in all instances is lower than the limits established by European Union legislation for fish destined for human consumption.

  4. Partial contribution of the Keap1-Nrf2 system to cadmium-mediated metallothionein expression in vascular endothelial cells.

    PubMed

    Shinkai, Yasuhiro; Kimura, Tomoki; Itagaki, Ayaka; Yamamoto, Chika; Taguchi, Keiko; Yamamoto, Masayuki; Kumagai, Yoshito; Kaji, Toshiyuki

    2016-03-15

    Cadmium is an environmental electrophile that modifies protein reactive thiols such as Kelch-like ECH-associated protein 1 (Keap1), a negative regulator of nuclear factor-erythroid 2-related factor 2 (Nrf2). In the present study, we investigated a role of the Keap1-Nrf2 system in cellular response to cadmium in vascular endothelial cells. Exposure of bovine aortic endothelial cells to cadmium resulted in modification of Keap1 and Nrf2 activation, thereby up-regulating not only its typical downstream proteins but also metallothionein-1/2. Experiments with siRNA-mediated knockdown of Nrf2 or Keap1 supported participation of the Keap1-Nrf2 system in the modulation of metallothionein-1/2 expression. Furthermore, chromatin immunoprecipitation assay showed that Nrf2 was recruited to the antioxidant response element of the promoter region of the bovine metallothionein-2 gene in the presence of cadmium. These results suggest that the transcription factor Nrf2 plays, at least in part, a role in the changes in metallothionein expression mediated by exposure to cadmium.

  5. Survival and hepatic metallothionein in developing rainbow trout exposed to a mixture of zinc, copper, and cadmium

    SciTech Connect

    Roch, M.; McCarter, J.A.

    1986-02-01

    Rainbow trout (Salmo gairdneri) in Buttle Lake on Vancouver Island, B.C. are exposed to metal contamination originating from a copper and zinc mining operation at Myra Falls near the head of the lake. In order to properly assess the risk to a population of rainbow trout in Buttle Lake, the authors initiated a long-term exposure of rainbow trout from hatch including the swim-up stage. Copper, zinc or cadmium are known to induce metallothionein in mammals and as a mixture of metals, induce hepatic metallothionein in rainbow trout. Investigation of hepatic metallothionein concentrations in wild rainbow trout from Buttle Lake and in lakes of the Campbell River downstream showed a correlation with metal concentrations in the water. Rainbow trout held in situ for 4 weeks showed the same correlation. In this report they determined whether or not the degree of contamination was correlated with concentrations of metallothionein in the livers of rainbow trout exposed to the mixture of metals during the early life stages.

  6. Transgenic Arabidopsis Gene Expression System

    NASA Technical Reports Server (NTRS)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  7. Metallothionein and Zinc Transporter Expression in Circulating Human Blood Cells as Biomarkers of Zinc Status: a Systematic Review.

    PubMed

    Hennigar, Stephen R; Kelley, Alyssa M; McClung, James P

    2016-07-01

    Zinc is an essential nutrient for humans; however, a sensitive biomarker to assess zinc status has not been identified. The objective of this systematic review was to compile and assess studies that determined zinc transporter and/or metallothionein expression in various blood cell types and to determine their reliability and sensitivity to changes in dietary zinc. Sixteen studies were identified that determined the expression of zrt-, irt-like protein (ZIP) 1 [solute carrier family (SLC) 39A1], ZIP3 (SLC39A3), ZIP5 (SLC39A5), ZIP6 (SLC39A6), ZIP7 (SLC39A7), ZIP8 (SLC39A8), ZIP10 (SLC39A10), ZIP14 (SLC39A14), zinc transporter (ZnT)1 (SLC30A1), ZnT2 (SLC30A2), ZnT4 (SLC30A4), ZnT5 (SLC30A5), ZnT6 (SLC30A6), ZnT7 (SLC30A7), ZnT9 (SLC30A9), and/or metallothionein in various blood cells isolated from healthy adult men and women in response to zinc supplementation or depletion. Cell types included leukocytes, peripheral blood mononuclear cells, T lymphocytes, monocytes, and erythrocytes. ZIP1, ZnT1, and metallothionein were the most commonly measured proteins. Changes in ZIP1 and ZnT1 in response to zinc supplementation or depletion were not consistent across studies. Leukocyte metallothionein decreased with zinc depletion (-39% change from baseline, <5 mg Zn/d, n = 2 studies) and increased with zinc supplementation in a dose-dependent manner (35%, 15-22 mg Zn/d, n = 7 studies; 267%, 50 mg Zn/d, n = 2 studies) and at the earliest time points measured; however, no change or delayed response was observed in metallothionein in erythrocytes. A greater percentage of studies demonstrated that metallothionein in leukocyte subtypes was a more reliable (100%, n = 12; 69%, n = 16) and responsive (92%, n = 12; 82%, n = 11) indicator of zinc exposure than was plasma zinc, respectively. In conclusion, current evidence indicates that metallothionein in leukocyte subtypes may be a component in determining zinc status. PMID:27422508

  8. Chromosomal rearrangement in autotetraploid plants of Arabidopsis thaliana.

    PubMed

    Weiss, H; Maluszynska, J

    2000-01-01

    Recent development of cytogenetic techniques has facilitated significant progress in Arabidopsis thaliana karyotype studies. Double-target FISH with rRNA genes provides makers that allow individual chromosome in the genome to be distinguished. Those studies have revealed that the number and position of rDNA loci is ecotype-specific. Arabidopsis is believed to be a true diploid (x = 5) with numerous ecotypes (accessions) and only a very few natural polyploid populations reported. Few studies were undertaken to induce polyploidy in Arabidopsis, however none of those gave the cytogenetic characteristics of polyploid plants. Our analysis of chromosome pairing of colchicine-induced autotetraploid Arabidopsis (Wilna ecotype) revealed preferential bivalent pairing in PMCs (pollen mother cells). In order to attempt to explain this phenomenon, first of all more detailed cytogenetic studies of autopolyploid plants have been undertaken. The localization of 45S and 5S rDNA loci in the diploid and autotetraploid plants revealed that Wilna ecotypes belongs to the group of Arabidopsis accessions with only two 5S rDNA loci present in a genome. Furthermore, the rearrangement of 45S rDNA locus in autopolyploid, when compared to the diploid plants of the same ecotype, was revealed. These results are interesting also in the context of the recently emphasised role of polyploidy in plant evolution and speciation. Arabidopsis, despite having small chromosomes, is a good system to study chromosome behaviour in relation to diploidization of autopolyploids and to evaluate the degree of chromosomal rearrangements during this process. PMID:11433970

  9. Contribution of hepatic cytochrome CYP1A and metallothionein mRNA abundance to biomonitoring-A case study with European flounder (Platichthys flesus) from the Gulf of Gdańsk.

    PubMed

    Kopecka-Pilarczyk, Justyna; Schirmer, Kristin

    2016-10-01

    The aim of the research was to explore the contribution of hepatic cytochrome CYP1A and metallothionein (MT) mRNA expression to biological effect monitoring. The study was conducted in the European flounder (Platichthys flesus) from the Gulf of Gdańsk. mRNA abundance was measured using reverse transcriptase polymerase chain reaction (RT-PCR) in liver RNA of fish sampled from three coastal stations and from one offshore station in the inner Gulf. The contribution of the mRNA-based biomarkers to the assessment of the environment was determined in conjunction with a selection of commonly applied biochemical markers: 7-ethoxyresorufin-O-deethylase (EROD), glutathione-S-transferase (GST), catalase (CAT), metallothioneins (MT), fluorescent aromatic compounds (FACs), all measured in the same individual fish. The mRNA biomarkers contributed to the separation between the sampling sites, but no correlations between CYP1A mRNA and EROD nor between MT mRNA and MT proteins were found, which should be attributed to the different levels these biomarkers correspond to and to the differences in factors that may affect them. One case of strong correlation between CYP1A mRNA and FACs was encountered. The overall results of this study suggest that biomarkers measured at the mRNA abundance level constitute a valuable addition to biomonitoring studies by providing additional information and contributing to the differentiation of results. PMID:27276230

  10. Identification of mercury and other metals complexes with metallothioneins in dolphin liver by hydrophilic interaction liquid chromatography with the parallel detection by ICP MS and electrospray hybrid linear/orbital trap MS/MS.

    PubMed

    Pedrero, Z; Ouerdane, L; Mounicou, S; Lobinski, R; Monperrus, M; Amouroux, D

    2012-05-01

    A novel analytical procedure for the identification of metal (Hg, Cd, Cu, Zn) complexes with individual metallothionein (MT) isoforms in biological tissues by electrospray MS/MS was developed. The sample preparation was reduced to three rapid steps: the two-fold dilution of the sample cytosol with acetonitrile, the recovery of the supernatant containing MT-complexes by centrifugation and its concentration under nitrogen flow. The replacement of reversed phase HPLC by hydrophilic interaction LC (HILIC) allowed the preservation of the unstable and low abundant metallothionein zinc-mercury mixed complexes (MT-Zn(6)Hg). The MT complexes eluted were detected by ICP MS and identified in terms of molecular mass by electrospray high resolution (100,000) MS. The identification was completed by on line demetallation and the determination of the molecular mass of the apoform, followed by amino acid sequencing in the top-down mode using high energy collision fragmentation (HCD). The method was applied to the identification of MT complexes in a white-sided dolphin (Lagenorhynchus acutus) liver homogenate. The Zn complex of the N-acetylated MT2 isoform was found to be predominant, the presence of mixed complexes with Cd, Cu and, for the first time ever, Hg, was demonstrated. The latter finding has the potential to shed new light on the mercury detoxification mechanism in marine organisms. PMID:22456936

  11. A polymorphism in metallothionein 1A (MT1A) is associated with cadmium-related excretion of urinary beta 2‐microglobulin

    SciTech Connect

    Lei, Lijian; Chang, Xiuli; Rentschler, Gerda; Tian, Liting; Zhu, Guoying; Chen, Xiao; Jin, Taiyi; Broberg, Karin

    2012-12-15

    Objectives: Cadmium (Cd) toxicity of the kidney varies between individuals despite similar exposure levels. In humans Cd is mainly bound to metallothioneins (MT), which scavenge its toxic effects. Here we analyzed whether polymorphisms in MT genes MT1A and MT2A influence Cd-related kidney damage. Methods: In a cross-sectional study N = 512 volunteers were selected from three areas in South-Eastern China, which to varying degree were Cd-polluted from a smelter (control area [median Cd in urine U-Cd = 2.67 μg/L], moderately [U-Cd = 4.23 μg/L] and highly [U-Cd = 9.13 μg/L] polluted areas). U-Cd and blood Cd (B-Cd) concentrations were measured by graphite-furnace atomic absorption spectrometry. MT1A rs11076161 (G/A), MT2A rs10636 (G/C) and MT2A rs28366003 (A/G) were determined by Taqman assays; urinary N-Acetyl-beta-(D)-Glucosaminidase (UNAG) by spectrometry, and urinary β2-microglobulin (UB2M) by ELISA. Results: Higher B-Cd (natural log-transformed) with increasing number of MT1A rs11076161 A-alleles was found in the highly polluted group (p-value trend = 0.033; all p-values adjusted for age, sex, and smoking). In a linear model a significant interaction between rs11076161 genotype and B-Cd was found for UNAG (p = 0.001) and UB2M concentrations (p = 0.001). Carriers of the rs11076161 AA genotype showed steeper slopes for the associations between Cd in blood and natural log-transformed UB2M (β = 1.2, 95% CI 0.72–1.6) compared to GG carriers (β = 0.30, 95% CI 0.15–0.45). Also for UNAG (natural log-transformed) carriers of the AA genotype had steeper slopes (β = 0.55, 95% CI 0.27–0.84) compared to GG carriers (β = 0.018, 95% CI − 0.79–0.11). Conclusions: MT1A rs11076161 was associated with B-Cd concentrations and Cd-induced kidney toxicity at high exposure levels. -- Highlights: ► Cadmium is toxic to the kidney but the susceptibility differs between individuals. ► The toxic effect of cadmium is scavenged by metallothioneins. ► A common variant of

  12. Multiplex micro-respiratory measurements of Arabidopsis tissues.

    PubMed

    Sew, Yun Shin; Ströher, Elke; Holzmann, Cristián; Huang, Shaobai; Taylor, Nicolas L; Jordana, Xavier; Millar, A Harvey

    2013-11-01

    Researchers often want to study the respiratory properties of individual parts of plants in response to a range of treatments. Arabidopsis is an obvious model for this work; however, because of its size, it represents a challenge for gas exchange measurements of respiration. The combination of micro-respiratory technologies with multiplex assays has the potential to bridge this gap, and make measurements possible in this model plant species. We show the adaptation of the commercial technology used for mammalian cell respiration analysis to study three critical tissues of interest: leaf sections, root tips and seeds. The measurement of respiration in single leaf discs has allowed the age dependence of the respiration rate in Arabidopsis leaves across the rosette to be observed. The oxygen consumption of single root tips from plate-grown seedlings shows the enhanced respiration of root tips and their time-dependent susceptibility to salinity. The monitoring of single Arabidopsis seeds shows the kinetics of respiration over 48 h post-imbibition, and the effect of the phytohormones gibberellic acid (GA3 ) and abscisic acid (ABA) on respiration during seed germination. These studies highlight the potential for multiplexed micro-respiratory assays to study oxygen consumption in Arabidopsis tissues, and open up new possibilities to screen and study mutants and to identify differences in ecotypes or populations of different plant species. PMID:23834713

  13. Polyphenol-rich beverages enhance zinc uptake and metallothionein expression in Caco-2 cells.

    PubMed

    Sreenivasulu, Kilari; Raghu, Pullakhandam; Nair, K Madhavan

    2010-05-01

    The effect of red wine (RW), red grape juice (RGJ), green tea (GT), and representative polyphenols on Caco-2 cell (65)Zn uptake was explored. RW, RGJ, and GT enhanced the uptake of zinc from rice matrix. Fractionation of RW revealed that enhancing activity of zinc uptake was exclusively resided in the polyphenol fraction. Among the polyphenols tested, only tannic acid and quercitin stimulated the uptake of zinc while others did not influence the uptake. In tune with these results, only tannic acid and quercitin competed with zinquin (a zinc selective fluorophore) for zinc in vitro. Although all the polyphenols tested appear to enhance the expression of metallothionein (MT), the induction was higher with tannic acid, quercitin, and RW extract. Furthermore, phytic acid abrogated the tannic acid-induced MT expression. These results suggest that polyphenol-rich beverages, tannic acid, and quercitin bind and stimulate the zinc uptake and MT expression in Caco-2 cells.

  14. Metallothioneins, unconventional proteins from unconventional animals: a long journey from nematodes to mammals.

    PubMed

    Isani, Gloria; Carpenè, Emilio

    2014-01-01

    Metallothioneins (MTs) are ubiquitous low molecular weight cysteine-rich proteins characterized by high affinity for d10 electron configuration metals, including essential (Zn and Cu) and non-essential (Cd and Hg) trace elements. The biological role of these ancient and well-conserved multifunctional proteins has been debated since MTs were first discovered in 1957. Their main hypothesized functions are: (1) homeostasis of Zn and Cu; (2) detoxification of Cd, and Hg; and (3) free radical scavenging. This review will focus on MTs in unconventional animals, those not traditionally studied in veterinary medicine but of increasing interest in this field of research. Living in different environments, these animals represent an incredible source of physiological and biochemical adaptations still partly unexplored. The study of metal-MT interactions is of great interest for clinicians and researchers working in veterinary medicine, food quality and endangered species conservation. PMID:24970224

  15. Hepatic and renal metallothionein induction following single oral administration of gallium arsenide in rats.

    PubMed

    Flora, S J; Tripathi, N

    1998-09-01

    Metallothionein genes (MT) are inducible by a variety of agents, including heavy metals. We report the induction of MT expression by gallium arsenide (GaAs), a superior intermetallic semiconductor material at two time intervals following single oral exposure in rats. The data is also supplemented with two additional groups exposed to gallium (III) as gallium oxide and arsenic (III) as sodium arsenite to determine which of the two moieties in GaAs is responsible for any such possible effects. The results indicate that GaAs administration does significantly induces MT in hepatic tissues accompanied by an increase in cytosolic glutathione, arsenic, zinc and copper concentration. It thus proves that arsenic moiety is chiefly responsible for such an effect.

  16. Metallothioneins, Unconventional Proteins from Unconventional Animals: A Long Journey from Nematodes to Mammals †

    PubMed Central

    Isani, Gloria; Carpenè, Emilio

    2014-01-01

    Metallothioneins (MTs) are ubiquitous low molecular weight cysteine-rich proteins characterized by high affinity for d10 electron configuration metals, including essential (Zn and Cu) and non-essential (Cd and Hg) trace elements. The biological role of these ancient and well-conserved multifunctional proteins has been debated since MTs were first discovered in 1957. Their main hypothesized functions are: (1) homeostasis of Zn and Cu; (2) detoxification of Cd, and Hg; and (3) free radical scavenging. This review will focus on MTs in unconventional animals, those not traditionally studied in veterinary medicine but of increasing interest in this field of research. Living in different environments, these animals represent an incredible source of physiological and biochemical adaptations still partly unexplored. The study of metal-MT interactions is of great interest for clinicians and researchers working in veterinary medicine, food quality and endangered species conservation. PMID:24970224

  17. Fluorescence quenching determination of metallothioneins using 8-hydroxyquinoline-5-sulphonic acid-Cd(II) chelate.

    PubMed

    Qian, Qiu-Mei; Wang, Yong-Sheng; Zhou, Bin; Xue, Jin-Hua; Li, Le; Wang, Yong-Song; Wang, Jia-Cheng; Yin, Ji-Cheng; Liu, Shan-Du; Zhao, Hui; Liu, Hui

    2014-01-24

    A novel method for the determination of metallothioneins (MTs) in urine was developed by fluorescence quenching strategy. The response signals linearly correlated with the concentration of MTs in the ranges of 3.12×10(-8)-1.23×10(-6) mol L(-1), and the limit of detection (LOD) was 9.36×10(-9) mol L(-1). The proposed method avoids the label and derivatization steps in common methods, and is reliable, inexpensive and sensitive. Furthermore, the interaction of MTs and 8-hydroxyquinoline-5-sulphonic acid (HQS)-Cd(II) chelate was investigated, and a static quenching mode was proposed to be primarily responsible for the fluorescence quenching event. It could provide a promising potential for the detection of the biomacromolecules which have no native fluorescence, and be benefit to extend the application of fluorescence strategy.

  18. Metallothionein gene expression in peripheral lymphocytes and renal dysfunction in a population environmentally exposed to cadmium

    SciTech Connect

    Lu Jian; Jin Taiyi . E-mail: tyjin@smhu.edu.cn; Nordberg, Gunnar; Nordberg, Monica . E-mail: monica.nordberg@imm.ki.se

    2005-08-07

    In order to study the validity of metallothionein (MT) gene expression in peripheral blood lymphocytes (PBLs) as a biomarker of cadmium exposure and susceptibility to renal dysfunction, MT mRNA levels were measured using reverse transcription polymerase chain reaction (RT-PCR) in PBLs from residents living in a cadmium-contaminated area. MT mRNA levels were found to increase with the increase of blood cadmium (BCd) and urinary cadmium (UCd) levels. Basal MT mRNA levels were significantly correlated with the logarithm of BCd levels and the logarithm of UCd levels confirming that MT expression in PBLs is a biomarker of cadmium exposure and internal dose. An inverse relationship was observed between in vitro induced MT-mRNA level in PBLs and urinary N-acetyl-{beta}-d-glucosaminidase (UNAG) suggesting that MT gene expression in PBLs may be used as a biomarker of susceptibility to renal toxicity of cadmium.

  19. Structure and origin of a tandem duplication of a Drosophila metallothionein gene

    SciTech Connect

    Otto, E.; Maroni, G.

    1987-01-01

    A strain of cadmium-resistant Drosophila was isolated that contained a chromosomal duplication of the metallothionein gene, Mtn. This duplication was a direct, tandem repeat of 2.2 kilobases of DNA: 228 bases of 5' flanking DNA, the entire transcription unit, and 1.4 kilobases of 3' flanking DNA. The entire duplication was cloned and DNA sequences of the regions relevant to the duplication process were determined. Comparison of the sequences of the 5' and 3' boundaries revealed no extensive regions of similarity, thus indicating that this duplication was formed by nonhomologous breakage and reunion. Recently, results of similar analyses by other investigators have suggested that this process was involved in the origin of three other eukaryotic duplications. The authors have observed a chi-like sequence near one of the boundaries of each duplication, and therefore suggest that this sequence may be important in generating one of the breaks required for duplication formation.

  20. Monoclonal antibody to liver metallothionein: a novel marker for myoepithelial cells.

    PubMed

    van den Oord, J J; Sunardhi-Widyaputra, S; Van Damme, B; De Ley, M

    1993-12-01

    Myoepithelial cells (MEC) are situated between acinar or ductal luminal cells and the basal lamina in various secretory glands, including salivary gland. The in-situ demonstration of MEC in benign and malignant conditions has long been hampered by the lack of suitable markers, most of which do not label MEC exclusively. We report here the reactivity of L2E3, a monoclonal antibody directed against liver metallothionein (MT). In the major and minor salivary glands, L2E3 stained two types of cells: a slender, elongated cell that surrounded acini; and a small, basal, cuboidal cell observed in the excretory (interlobular) ducts. Our results indicate that L2E3 represents a novel, useful marker for the immunohistochemical identification of MEC, and a highly sensitive marker for ductal basal or "reserve" cells in salivary glands.

  1. Metallothionein gene expression is regulated by serum factors and activators of protein kinase C.

    PubMed Central

    Imbra, R J; Karin, M

    1987-01-01

    The exact physiological role of metallothionein (MT) is not clear. It has been suggested that these low-molecular-weight, highly inducible, heavy-metal-binding proteins serve in the regulation of intracellular Zn metabolism. Among the Zn-requiring systems are several enzymes involved in DNA replication and repair. Therefore, during periods of active DNA synthesis there is likely to be an increased demand for Zn, which could be met by elevated MT synthesis. For that reason, we examined whether stimulation of cellular proliferation leads to increased expression of MT. We report here that treatment of cultured mammalian cells with serum growth factors and activators of protein kinase C, all of which are known to have growth stimulatory activity, led to induction of MT mRNA. One of the required steps in the signal transduction pathways triggered by these agents, ending in MT induction, appears to be the activation of protein kinase C. Images PMID:3600629

  2. Physiological, Diurnal and Stress-Related Variability of Cadmium-Metallothionein Gene Expression in Land Snails

    PubMed Central

    Pedrini-Martha, Veronika; Niederwanger, Michael; Kopp, Renate; Schnegg, Raimund; Dallinger, Reinhard

    2016-01-01

    The terrestrial Roman snail Helix pomatia has successfully adapted to strongly fluctuating conditions in its natural soil habitat. Part of the snail’s stress defense strategy is its ability to express Metallothioneins (MTs). These are multifunctional, cysteine-rich proteins that bind and inactivate transition metal ions (Cd2+, Zn2+, Cu+) with high affinity. In Helix pomatia a Cadmium (Cd)-selective, inducible Metallothionein Isoform (CdMT) is mainly involved in detoxification of this harmful metal. In addition, the snail CdMT has been shown to also respond to certain physiological stressors. The aim of the present study was to investigate the physiological and diurnal variability of CdMT gene expression in snails exposed to Cd and non-metallic stressors such as desiccation and oxygen depletion. CdMT gene expression was upregulated by Cd exposure and desiccation, whereas no significant impact on the expression of CdMT was measured due to oxygen depletion. Overall, Cd was clearly more effective as an inducer of the CdMT gene expression compared to the applied non-metallic stressors. In unexposed snails, diurnal rhythmicity of CdMT gene expression was observed with higher mRNA concentrations at night compared to daytime. This rhythmicity was severely disrupted in Cd-exposed snails which exhibited highest CdMT gene transcription rates in the morning. Apart from diurnal rhythmicity, feeding activity also had a strong impact on CdMT gene expression. Although underlying mechanisms are not completely understood, it is clear that factors increasing MT expression variability have to be considered when using MT mRNA quantification as a biomarker for environmental stressors. PMID:26935042

  3. Phytostabilization of nickel by the zinc and cadmium hyperaccumulator Solanum nigrum L. Are metallothioneins involved?

    PubMed

    Ferraz, Pedro; Fidalgo, Fernanda; Almeida, Agostinho; Teixeira, Jorge

    2012-08-01

    Some heavy metals (HM) are highly reactive and consequently can be toxic to living cells when present at high levels. Consequently, strategies for reducing HM toxicity in the environmental must be undertaken. This work focused on evaluating the Nickel (Ni) accumulation potential of the hyperaccumulator Solanum nigrum L., and the participation of metallothioneins (MT) in the plant Ni homeostasis. Metallothioneins (MT) are gene-encoded metal chelators that participate in the transport, sequestration and storage of metals. After different periods of exposure to different Ni concentrations, plant biometric and biochemical parameters were accessed to determine the effects caused by this pollutant. Semi-quantitative RT-PCR reactions were performed to investigate the specific accumulation of MT-related transcripts throughout the plant and in response to Ni exposure. The data obtained revealed that Ni induced toxicity symptoms and accumulated mostly in roots, where it caused membrane damage in the shock-treated plants, with a parallel increase of free proline content, suggesting that proline participates in protecting root cells from oxidative stress. The MT-specific mRNA accumulation analysis showed that MT2a- and MT2d-encoding genes are constitutively active, that Ni stimulated their transcript accumulation, and also that Ni induced the de novo accumulation of MT2c- and MT3-related transcripts in shoots, exerting no influence on MT1 mRNA accumulation. These results strongly suggest the involvement of MT2a, MT2c, MT2d and MT3 in S. nigrum Ni homeostasis and detoxification, this way contributing to the clarification of the roles the various types of MTs play in metal homeostasis and detoxification in plants. PMID:22763093

  4. Selective Degeneration of Central Photoreceptors after Hyperbaric Oxygen in Normal and Metallothionein-Knockout Mice

    PubMed Central

    Nachman-Clewner, Michele; Giblin, Frank J.; Kathleen Dorey, C.; Blanks, Robert H. I.; Dang, Loan; Dougherty, Christopher J.; Blanks, Janet C.

    2009-01-01

    Purpose Metallothioneins (MTs) in the brain and retina are believed to bind metals and reduce free radicals, thereby protecting neurons from oxidative damage. This study was undertaken to investigate whether retinal photoreceptor (PR) cells lacking MTs are more susceptible to hyperbaric oxygen (HBO)–induced cell death in vivo. Methods Wild-type (WT) and MT-knockout (MT-KO) mice lacking metallothionein (MT)-1 and MT-2 were exposed to three atmospheres of 100% oxygen for 3 hours, 3 times per week for 1, 3, or 5 weeks. The control animals were not exposed. Histologic analysis of PR viability was performed by counting rows of nuclei in the outer nuclear layer (ONL). Ultrastructure studies verified PR damage. Results HBO exposure produced a major loss of PR cells in the central retinas of WT and MT-KO mice, with no effect on the peripheral retina even at the longest (5 weeks) exposures. The degree of PR damage and cell death increased with duration of HBO exposure. One week of HBO exposure was insufficient to cause PR death, but tissue damage was observed in the inner and outer segments. At 3 weeks, the rows of PR nuclei in the central retina were significantly reduced by 38% in WT and 28% in MT-KO animals. At 5 weeks, PR loss was identical in WT (34%) and MT-KO (34%) animals and was comparable to that in WT at 3 weeks. Conclusions The data suggest that MT-1 and -2 alone are not sufficient for protecting PRs against HBO-induced cell death. The selective degeneration of central PRs may provide clues to mechanisms of oxidative damage in retinal disease. PMID:18579766

  5. Metal, metallothionein and glutathione levels in blue crab (Callinectes sp.) specimens from southeastern Brazil.

    PubMed

    Lavradas, Raquel Teixeira; Hauser-Davis, Rachel Ann; Lavandier, Ricardo Cavalcanti; Rocha, Rafael Christian Chávez; Saint' Pierre, Tatiana D; Seixas, Tércia; Kehrig, Helena Amaral; Moreira, Isabel

    2014-09-01

    Metal concentrations (Cu, Pb, Zn and Cd) were determined in muscle, gills, soft tissues and eggs in male, non-ovigerous and ovigerous female Callinectes sp. specimens from a reference site in Southeastern Brazil. Metallothionein (MT) and reduced glutathione (GSH) levels were also determined. Results demonstrate that sex has a significant influence on metal, MT and GSH concentrations. Significant maternal transfer of Pb and Zn from ovigerous females to eggs was verified, while female crabs, both ovigerous and non-ovigerous, showed elevated GSH and MT in viscera when compared to males, indicating possible MT role in excreting metals to eggs in ovigerous females of this species. Several strong statistical correlations between metals and MT indicate MTs role in detoxification of both toxic and essential elements in different organs. Pb and Zn were significantly correlated to GSH, indicating oxidative stress caused by the former and a direct link between Zn and GSH in maintaining homeostasis. Regarding human consumption, metal concentrations were lower than the maximum permissible levels established by international and Brazilian regulatory agencies, indicating that this species is safe for human consumption concerning this parameter. The presence of metals in Callinectes sp., however, is still of importance considering that this is a key species within the studied ecosystem and, therefore, plays a major role in the transference of pollutants to higher trophic levels. In addition, the presence of significant metal concentrations found in eggs must be considered in this context, since crab eggs are eaten by several other species, such as shorebirds, seabirds, and fish. Also, to the best of our knowledge, this is the first study regarding both MT and GSH levels in Callinectes sp. eggs and is of interest in the investigation of molecular mechanisms regarding metal exposure in these crustaceans. Data reported in this study support the conclusions from previous reports

  6. Metallothionein-like proteins induced by cadmium stress in the scallop Mizuhopecten yessoensis

    NASA Astrophysics Data System (ADS)

    Zhukovskaya, Avianna F.; Belcheva, Nina N.; Slobodskova, Valentina S.; Chelomin, Viktor P.

    2012-09-01

    Organisms have evolved a cellular response called stress protein response that increases their tolerance in adverse environmental conditions. Well known stress proteins that bind essential and toxic metals are metallothionein (MT). The scallop Mizuhopecten yessoensis is the most interesting organism because it is able to accumulate toxic cadmium in its digestive gland. However, in the tissue of the digestive gland of Mizuhopecten yessoensis MT (metallothioneins) have not been found. Eastern scallops, Mizuhopecten yessoensis, were collected from two locations — one clean and one polluted site. The concentrations of cadmium (Cd), copper (Cu) and zinc (Zn) were measured in the digestive gland. There was a significant increase in Cd concentrations in this studied tissue. We found that in the presence of cadmium Mizuhopecten yessoensis can induce high molecular proteins. The results of experiments have shown that Cd-binding ligands have a number of properties similar to MT: acetone and temperature stability; the ability to bind some metals, including Cd, Cu and Zn. Protein chromatography (FPLC, Superosa 12) from the digestive gland of scallop M. yessoensis has shown that cadmium is associated with high molecular weight Cd-binding proteins (72 kDa and 43 kDa). The major cadmium-binding protein 72 kDa is glycoprotein. In experiments we have demonstrated that Cd-binding proteins can be induced when there is cadmium exposure. The results of this study strongly suggest that the far eastern scallop Mizuhopecten yessoensis has a unique and well-developed system for the detoxification of heavy metals and it allows for biochemical systems to be maintained in a relatively stable manner in the presence of heavy metals.

  7. Transcription patterns of genes encoding four metallothionein homologs in Daphnia pulex exposed to copper and cadmium are time- and homolog- dependent

    PubMed Central

    Asselman, Jana; Shaw, Joseph R.; Glaholt, Stephen P.; Colbourne, John K.; De Schamphelaere, Karel AC.

    2013-01-01

    Metallothioneins are proteins that play an essential role in metal homeostasis and detoxification in nearly all organisms studied to date. Yet discrepancies between outcomes of chronic and acute exposure experiments hamper the understanding of the regulatory mechanisms of their isoforms following metal exposure. Here, we investigated transcriptional differences among four identified homologs (mt1–mt4) in Daphnia pulex exposed across time to copper and cadmium relative to a control. Transcriptional upregulation of mt1 and mt3 was detected on day four following exposure to cadmium, whereas that of mt2 and mt4 was detected on day two and day eight following exposure to copper. These results confirm temporal and metal-specific differences in the transcriptional induction of genes encoding metallothionein homologs upon metal exposure which should be considered in ecotoxicological monitoring programs of metal-contaminated water bodies. Indeed, the mRNA expression patterns observed here illustrate the complex regulatory system associated with metallothioneins, as these patterns are not only dependent on the metal, but also on exposure time and the homolog studied. Further phylogenetic analysis and analysis of regulatory elements in upstream promoter regions revealed a high degree of similarity between metallothionein genes of Daphnia pulex and Daphnia magna, a species belonging to the same genus. These findings, combined with a limited amount of available expression data for D. magna metallothionein genes, tentatively suggest a potential generalization of the metallothionein response system between these Daphnia species. PMID:24113165

  8. Stomatal Development in Arabidopsis

    PubMed Central

    Pillitteri, Lynn Jo; Dong, Juan

    2013-01-01

    Stomata consist of two guard cells that function as turgor-operated valves that regulate gas exchange in plants. In Arabidopsis, a dedicated cell lineage is initiated and undergoes a series of cell divisions and cell-state transitions to produce a stoma. A set of basic helix-loop-helix (bHLH) transcription factors regulates the transition and differentiation events through the lineage, while the placement of stomata relative to each other is controlled by intercellular signaling via peptide ligands, transmembrane receptors, and mitogen-activated protein kinase (MAPK) modules. Some genes involved in regulating stomatal differentiation or density are also involved in hormonal and environmental stress responses, which may provide a link between modulation of stomatal development or function in response to changes in the environment. Premitotic polarlylocalized proteins provide an added layer of regulation, which can be addressed more thoroughly with the identification of additional proteins in this pathway. Linking the networks that control stomatal development promises to bring advances to our understanding of signal transduction, cell polarity, and cell-fate specification in plants. PMID:23864836

  9. Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray.

    PubMed

    Chiang, Huai-Chih; Lo, Jing-Chi; Yeh, Kuo-Chen

    2006-11-01

    To survive in variable soil conditions, plants possess homeostatic mechanisms to maintain a suitable concentration of essential heavy metal ions. Certain plants, inhabiting heavy metal-enriched or -contaminated soil, thus are named hyperaccumulators. Studying hyperaccumulators has great potential to provide information for phytoremediation. To better understand the hyperaccumulating mechanism, we used an Arabidopsis cDNA microarray to compare the gene expression of the Zn/Cd hyperaccumulator Arabidopsis halleri and a nonhyperaccumulator, Arabidopsis thaliana. By analyzing the expression of metal-chelators, antioxidation-related genes, and transporters, we revealed a few novel molecular features. We found that metallothionein 2b and 3, APX and MDAR4 in the ascorbate-glutathione pathway, and certain metal transporters in P(1B)-type ATPase, ZIP, Nramp, and CDF families, are expressed at higher levels in A. halleri than in A. thaliana. We further validated that the enzymatic activity of ascorbate peroxidase and class III peroxidases are highly elevated in A. halleri. This observation positively correlates with the higher ability of A. halleri to detoxify H2O2 produced by cadmium and paraquat treatments. We thus suggest that higher peroxidase activities contribute to the heavy metal tolerance in A. halleri by alleviating the ROS damage. We have revealed genes that could be candidates for the future engineering of plants with large biomass for use in phytoremediation. PMID:17144312

  10. Arabidopsis thaliana—Aphid Interaction

    PubMed Central

    Louis, Joe; Singh, Vijay; Shah, Jyoti

    2012-01-01

    Aphids are important pests of plants that use their stylets to tap into the sieve elements to consume phloem sap. Besides the removal of photosynthates, aphid infestation also alters source-sink patterns. Most aphids also vector viral diseases. In this chapter, we will summarize on recent significant findings in plant-aphid interaction, and how studies involving Arabidopsis thaliana and Myzus persicae (Sülzer), more commonly known as the green peach aphid (GPA), are beginning to provide important insights into the molecular basis of plant defense and susceptibility to aphids. The recent demonstration that expression of dsRNA in Arabidopsis can be used to silence expression of genes in GPA has further expanded the utility of Arabidopsis for evaluating the contribution of the aphid genome-encoded proteins to this interaction. PMID:22666177

  11. Functional GFP-metallothionein fusion protein from Tetrahymena thermophila: a potential whole-cell biosensor for monitoring heavy metal pollution and a cell model to study metallothionein overproduction effects

    PubMed Central

    Amaro, Francisco; Turkewitz, Aaron P.; Martín-González, Ana; Gutiérrez, Juan Carlos

    2016-01-01

    The significance of metal(oid)s as environmental pollutants has made them a priority in ecotoxicology, with the aim of minimizing exposure to animals or humans. Therefore, it is necessary to develop sensitive and inexpensive methods that can efficiently detect and monitor these pollutants in the environment. Conventional analytical techniques suffer from the disadvantages of high cost and complexity. Alternatively, prokaryotic or eukaryotic whole-cell biosensors (WCB) are one of the newest molecular tools employed in environmental monitoring that use the cell as an integrated reporter incorporating a reporter gene fused to a heavy metal responsive promoter. In the present paper, we report results from expressing, in the ciliate Tetrahymena thermophila, constructs consisting of the reporter gfp gene fused to the complete MTT1 or MTT5 protein coding regions under the transcriptional control of the MTT1 metallothionein promoter, which plays a critical role in heavy metal stress in this ciliate. When exposed to Cd2+, such cells overexpress both the GFP reporter transgene and the linked metallothionein gene. We report that, for the GFPMTT5 strain, this metallothionein overexpression results in marked resistance to cadmium toxicity (24h LC50 ~ 15 µM of Cd2+), compared to wild type cells (24h LC50 ~ 1.73 µM of Cd2+). These results provide the first experimental evidence that ciliate metallothioneins, like in other organisms, function to protect the cell against toxic metal ions. Because these strains may have novel advantages as WCBs, we have compared their properties to those of other previously reported Tetrahymena WCBs. PMID:24430977

  12. Enhancement of metallothionein gene expression in male Wistar (WF/NCr) rats by treatment with calmodulin inhibitors: potential role of calcium regulatory pathways in metallothionein induction.

    PubMed

    Shiraishi, N; Waalkes, M P

    1994-03-01

    Recent reports indicate that calmodulin inhibitors (CIs) can modify cadmium toxicity in rodents. For instance, pretreatment with CIs prevents cadmium-induced testicular damage in mice and substantially reduces such damage in rats, the latter effect coinciding with significant alterations in cadmium distribution. Although the basis of these effects is unclear, it is frequently observed that metal-binding proteins such as metallothionein (MT) are involved in acquired tolerance to cadmium and this could be true of tolerance induced by CIs. Thus, we examined the effects of various CIs on MT gene expression. Treatment of WF/NCr rats with known CIs, including trifluoperazine (TPZ), N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W7), calmidazolium (CMZ), chlorpromazine (CPZ), and the calcium ionophore, A23187, increased hepatic MT gene expression, as assessed by mRNA levels, in all cases. Furthermore, hepatic MT protein levels were 40 to 180 micrograms MT/g wet wt (g ww) in rats treated with CIs or A23187 compared to control levels of 10 micrograms MT/g ww. Treatment with CPZ and CMZ did not increase renal MT protein after exposure, although increases in renal MT mRNA were observed. However, the CIs TPZ and W7 and the calcium ionophore increased both renal MT protein and MT mRNA levels. In contrast, no increases in testicular MT mRNA or the testicular cadmium binding protein (TCBP) levels were seen with any of the treatments. Treatment with CIs or A23187 produced increases in zinc levels in the liver, but not in the kidneys or testes. These results indicate that CIs, such as TPZ, W7, CMZ, and CPZ, as well as the calcium ionophore A23187, have a marked stimulatory effect on hepatic and renal MT gene expression and that calcium regulatory pathways may play an important role in this induction of MT. PMID:8128501

  13. Metallothionein, oxidative stress and trace metals in gills and liver of demersal and pelagic fish species from Kuwaits' marine area.

    PubMed

    Beg, M U; Al-Jandal, N; Al-Subiai, S; Karam, Q; Husain, S; Butt, S A; Ali, A; Al-Hasan, E; Al-Dufaileej, S; Al-Husaini, M

    2015-11-30

    Two fish species yellowfin seabream (Acanthopagrus latus) and tonguesole (Cynoglossus arel) were collected from two locations in Kuwait's territorial waters in non-reproductive periods and used as bio-indicator organism for the assessment of metals in the marine environment. Species variation in fish was observed; seabream contained high metal content and metallothionein in liver and gill tissues compared to tonguesole, especially from Kuwait Bay area. Oxidative injury was registered in the gills of both species, but in tonguesole liver was also involved. Consequently, antioxidant enzyme catalase was elevated in tonguesole enabling bottom dwelling fish to combat oxidative assault. The study provided information about the current status of metals in marine sediment and levels of metals accumulated in representative species along with oxidative damage in exposed tissues and the range of biomarker protein metallothionein and enzymes of antioxidant defence mechanism enhancing our understanding about the biological response to the existing marine environment in Kuwait.

  14. Accumulated Metals and Metallothionein Expression in Organs of Hares (Lepus europaeus Pallas) Within Natural Gas Fields of Podravina, Croatia.

    PubMed

    Tota, Marin; Jakovac, Hrvoje; Špirić, Zdravko; Srebočan, Emil; Milin, Čedomila

    2015-01-01

    Environmental impact of natural gas facility near Molve (Podravina, Croatia) was assessed using hares (Lepus europaeus Pallas) as biomonitors. Elevated levels of heavy metals in the environment lead to their accumulation in different tissues of hares. The authors have tested accumulation and distribution of several metals in hare liver, kidney, and muscle tissues. The accumulation of copper in hare liver and kidneys with concomitant decrease of zinc was observed in animals from Podravina region as opposed to the control group of animals (Island Krk, Croatia). Secondly, the expression of metallothioneins was assessed because of their crucial role in metal homeostasis. Observed elevation of metallothionein expression in tested organs emphasizes the possible prolonged negative effects of heavy metals in the surroundings as well as a state of oxidative stress in animals. Further monitoring of the area is necessary for better control of hydrocarbon processing to diminish the possible negative environmental effects.

  15. Tissue expression analysis of FeMT3, a drought and oxidative stress related metallothionein gene from buckwheat (Fagopyrum esculentum).

    PubMed

    Samardzić, Jelena T; Nikolić, Dragana B; Timotijević, Gordana S; Jovanović, Zivko S; Milisavljević, Mira Đ; Maksimović, Vesna R

    2010-11-01

    Metallothionein type 3 (MT3) expression has previously been detected in leaves, fruits, and developing somatic embryos in different plant species. However, specific tissular and cellular localization of MT3 transcripts have remained unidentified. In this study, in situ RNA-RNA analysis revealed buckwheat metallothionein type 3 (FeMT3) transcript localization in vascular elements, mesophyll and guard cells of leaves, vascular tissue of roots and throughout the whole embryo. Changes in FeMT3 mRNA levels in response to drought and oxidative stress, as well as ROS scavenging abilities of the FeMT3 protein in yeast were also detected, indicating possible involvement of FeMT3 in stress defense and ROS related cellular processes.

  16. Cardiac-Specific Overexpression of Metallothionein Rescues against Cigarette Smoking Exposure-Induced Myocardial Contractile and Mitochondrial Damage

    PubMed Central

    Hu, Nan; Han, Xuefeng; Lane, Erin K.; Gao, Feng; Zhang, Yingmei; Ren, Jun

    2013-01-01

    Objectives Second hand cigarette smoke is an independent risk factor for cardiovascular disease. Although a tie between smoking and cardiovascular disease is well established, the underlying mechanisms still remains elusive due to the lack of adequate animal models. This study was designed to use a mouse model of exposure to cigarette smoke, a surrogate of environmental tobacco smoke, to evaluate the impact of cardiac overexpression of heavy metal scavenger metallothionein on myocardial geometry, contractile and intracellular Ca2+ properties and apoptosis following side-stream smoke exposure. Methods Adult male wild-type FVB and metallothionein transgenic mice were placed in a chamber exposed to cigarette smoke for 1 hour daily for 40 days. Echocardiographic, cardiomyocyte contractile and intracellular Ca2+ properties, fibrosis, apoptosis and mitochondrial damage were examined. Results Our data revealed that smoke exposure enlarged ventricular end systolic and diastolic diameters, reduced myocardial and cardiomyocyte contractile function, disrupted intracellular Ca2+ homeostasis, facilitated fibrosis, apoptosis and mitochondrial damage (cytochrome C release and aconitase activity), the effects of which were attenuated or mitigated by metallothionein. In addition, side-stream smoke expose enhanced phosphorylation of Akt and GSK3β without affecting pan protein expression in the heart, the effect of which was abolished or ameliorated by metallothionein. Cigarette smoke extract interrupted cardiomyocyte contractile function and intracellular Ca2+ properties, the effect of which was mitigated by wortmannin and NAC. Conclusions These data suggest that side-stream smoke exposure led to myocardial dysfunction, intracellular Ca2+ mishandling, apoptosis, fibrosis and mitochondrial damage, indicating the therapeutic potential of antioxidant against in second smoking-induced cardiac defects possibly via mitochondrial damage and apoptosis. PMID:23431404

  17. Expression of metallothionein and α-tubulin in heavy metal-tolerant Anopheles gambiae sensu stricto (Diptera: Culicidae)

    PubMed Central

    Mireji, Paul O.; Keating, Joseph; Hassanali, Ahmed; Impoinvil, Daniel E.; Mbogo, Charles M.; Njeri, Martha; Nyambaka, Hudson; Kenya, Eucharia; Githure, John I; Beier, John C.

    2009-01-01

    Anopheles mosquitoes have been shown to adapt to heavy metals in their natural habitats. In this study we explored the possibility of using Anopheles gambiae sensu stricto as bio-reporters for environmental heavy metal pollution through expressions of their metal responsive metallothionein and α-tubulin genes. The study was undertaken with third instar larvae after selection by cadmium, copper, or lead at LC30 through five successive generations. Expression levels were determined in the fifth generation by semi quantitative RT-PCR on the experimental and control populations. The data were analyzed using one-way ANOVA. The highest metallothionein (F3, 11= 4.574, P = 0.038) and α-tubulin (F3,11= 12.961, P = 0.002) responses were observed in cadmium-tolerant treatments. There was significantly higher expression of metallothionein in cadmium or copper treatments relative to the control (P = 0.012), and in cadmium than in lead treatments (P = 0.044). Expressions of α-tubulin were significantly higher in cadmium than in control treatments (P = 0.008). These results demonstrate capacity of An. gambiae s.s. to develop tolerance to increased levels of heavy metal challenge. The results also confirm the potential of heavy metal responsive genes in mosquitoes as possible bio-indicators of heavy metal environmental pollution. How the tolerance and expressions relate to An. gambiae s.s. fitness and vectorial capacity in the environment remains to be elucidated. PMID:19735939

  18. Castration- and aging-induced changes in the expression of zinc transporter and metallothionein in rat prostate.

    PubMed

    Iguchi, Kazuhiro; Morihara, Naoaki; Usui, Shigeyuki; Hayama, Minoru; Sugimura, Yoshiki; Hirano, Kazuyuki

    2011-01-01

    Prostate tissue contains high concentrations of zinc. Zinc content in the prostate gland changes in prostatic disease, such as benign prostate hyperplasia and prostate cancer, which occur more frequently with increasing age. Prostate zinc content is also known to decrease after castration in animal models. It is not clear how prostate zinc content is regulated; therefore, to clarify the mechanisms underlying zinc homeostasis, we examined zinc content and the expression of zinc transporters and metallothioneins in the prostates of aged or castrated rats. Zinc concentration was measured by flame atomic absorption spectrometry. The mRNA expression of zinc transporters and metallothioneins was determined by real-time reverse transcriptase polymerase chain reaction analysis. The expression of the zinc transporter Slc30a2 (Znt2) in ventral prostate (VP) of aged rats (21 months) was approximately 21-fold higher than that in VP of young rats (4 months), and zinc levels in VP of young rats increased significantly compared with that in aged rats. Zinc content in lateral prostate (LP) and dorsal prostate did not differ between young and aged rats. Decreased metallothionein-3 (Mt3) expression was observed in LP of castrated rats, and this reduction was prevented by testosterone replacement. Zinc content and Mt3 expression levels correlated significantly in rat LP. Our findings suggest that Mt3 could play a critical role in zinc homeostasis in rat LP. PMID:20798384

  19. Testis-specific expression of a metallothionein I-driven transgene correlates with undermethylation of the locus in testicular DNA.

    PubMed Central

    Salehi-Ashtiani, K; Widrow, R J; Markert, C L; Goldberg, E

    1993-01-01

    Mice carrying a chimeric transgene of the human testis-specific lactate dehydrogenase cDNA driven by mouse metallothionein I promoter have been reported to express the transgene in a testis-specific manner in six founder lines. To study the mechanism by which this testis-specific expression is mediated, we have examined genomic placement, expression pattern, and methylation status of the transgene. Our results indicate that transgene expression is repressed in all somatic tissues examined even when heavy metals are administered. Nuclear run-on assays indicate that failure of expression in the liver (in which the metallothionein I promoter is highly active) occurs at the transcriptional level. In contrast, the transgene mRNA is transcribed in male germ cells and is developmentally regulated during spermatogenesis. Examination of the transgene methylation status reveals that expression is inversely correlated with hypermethylation of the locus; all CpG dinucleotides examined in the promoter region were found to be fully methylated in kidney and liver but were undermethylated in testis. Since methylation of the murine metallothionein I promoter is sufficient to inhibit its activity, it is likely that suppression of the transgene in somatic tissues is mediated by methylation. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8415626

  20. Copper-metallothioneins in the American lobster, Homarus americanus: potential role as Cu(I) donors to apohemocyanin

    SciTech Connect

    Brouwer, M.; Whaling, P.; Engel, D.W.

    1986-03-01

    The physiological function of copper(I)-metallothionein is not well understood. The respiratory function of hemocyanin, a copper(I)-containing respiratory protein found in the hemolymph of many invertebrates, has been known a long time. However, the mechanism by which Cu(I) is inserted into the oxygen-binding site of apohemocyanin is completely unknown. This investigation tests that hypothesis that copper(I)-metallothionein may act as a Cu(I) donor to apohemocyanin. To this end, copper-binding proteins and hemocyanin were purified from the digestive gland and hemolymph of the American lobster, Homarus americanus. In the presence of ..beta..-mercaptoethanol, the copper-binding proteins can be resolved into three components of DEAE-cellulose. The first two have been characterized as metallothioneins. The cysteine content of the third component is half of that of components I and II. The purified proteins are not capable of transferring Cu(I) to the active sites of completely copper-free apohemocyanin. They are capable, however, of transferring Cu(I) to active sites of hemocyanin containing reduced amounts of Cu(I), suggesting that the conformational state of hemocyanin is the determining factor in the Cu(I) transfer mechanism.

  1. [Trace elements storage peculiarities and metallothionein content in human thyroid gland under iodine deficiency euthyroid nodular goiter].

    PubMed

    Fal'fushins'ka, H I; Hnatyshyna, L L; Osadchuk, O Ĭ; Shydlovs'kyĭ, V O; Stoliar, O B

    2014-01-01

    Accumulation of iodine and copper in the node, paranodular and contralateral (not affected tissue by node) tissues of thyroid gland in relation to the level of metal-binding proteins, potential antioxidants and oxidative changes in tissue was investigated. To assess the severity of the pathological process the molecular markers of cytotoxicity were used. The reduction of total iodine (by 19.5%), increase of inorganic iodine fraction (by 82.4%) and total copper content (twice) in paranodular and nodular tissues compared with contrlateral part have been established. Excess of copper in goitrous-changes tissue was partially accumulated in the metallothioneins. The level of metal-binding form of metallothioneins and reserve of free thiols of these proteins was higher two-three times and lower content of reduced glutathione in node-affected tissue compared to the contralateral part. Signs of cytotoxicity among them: higher cathepsine D free activity (up to 84.6% and 134.4% in paranodular tissue and node respectively) and higher level of DNA strand breaks in the node (up to 22.6%) were observed. In paranodular tissue the range of indices variability compared with parenchyma of contralateral part is shorter than in the node. Thus, under low level of iodine organification and high copper level in goitrous-modified tissue of thyroid gland metallothionein may provide a partial compensatory effect on prooxidative processes.

  2. Zn, Cu, Cd and Hg binding to metallothioneins in harbour porpoises Phocoena phocoena from the southern North Sea

    PubMed Central

    Das, Krishna; De Groof, Arnaud; Jauniaux, Thierry; Bouquegneau, Jean-Marie

    2006-01-01

    Background Harbour porpoises Phocoena phocoena from the southern North Sea are known to display high levels of Zn and Hg in their tissues linked to their nutritional status (emaciation). The question arises regarding a potential role of metallothioneins (MTs) with regard to these high metal levels. In the present study, metallothionein detection and associated Zn, Cd, Cu and Hg concentrations were investigated in the liver and kidney of 14 harbour porpoises collected along the Belgian coast. Results Metallothioneins seemed to play a key role in essential metal homeostasis, as they were shown to bind 50% of the total hepatic Zn and 36% of the total hepatic Cu concentrations. Renal MTs also participated in Cd detoxification, as they were shown to bind 56% of the total renal Cd. Hg was mainly found in the insoluble fraction of both liver and kidney. Concomitant increases in total Zn concentration and Zn bound to MTs were observed in the liver, whereas Zn concentration bound to high molecular weight proteins remained constant. Cu, Zn and Cd were accumulated preferentially in the MT fraction and their content in this fraction increased with the amount in the hepatocytosol. Conclusion MTs have a key role in Zn and Cu homeostasis in harbour porpoises. We demonstrated that increasing hepatic Zn concentration led to an increase in Zn linked to MTs, suggesting that these small proteins take over the Zn overload linked to the poor body condition of debilitated harbour porpoises. PMID:16464247

  3. Metallothionein-2 gene from the mandarin fish Siniperca chuatsi: cDNA cloning, tissue expression, and immunohistochemical localization.

    PubMed

    Gao, Dian; Wang, Gui Tang; Chen, Xing Tao; Nie, Pin

    2009-01-01

    The metallothionein-2 (MT-2) gene was isolated from the mandarin fish, one of the most important industrial aquatic animals in China, by using rapid amplification of cDNA ends (RACE). The deduced amino acid sequence of MT-2 comprised 60 amino acids and showed approximately 62.3% identity to human metallothionein. Its promoter region was amplified by thermal asymmetric interlaced polymerase chain reaction (TAIL-PCR). The MT-2 gene consists of 3 exons and 2 introns, extending approximately 900 bp of genomic sequence. Phylogenetic analysis clearly demonstrated that MT-2 formed a clade with fish metallothionein. The promoter region contained 5 putative metal-regulatory elements (MREs) and 1 TATA box. Real-time quantitative RT-PCR analysis revealed that MT-2 transcripts were significantly increased in the brain and gills and were stable in the muscles, liver, and trunk kidney in Cd(2+)-stimulated fish. Western blotting analysis demonstrated that the protein of the MT-2 gene was expressed mainly in the gills, liver, heart, trunk kidney, muscle, and intestine; it was weakly detected in the brain and head kidney. Moreover, the MT-2 protein was immunohistochemically detected in the cytoplasm in the liver and trunk kidney. All the above results revealed that the mandarin fish MT-2 would be a useful biomarker for metal pollution.

  4. Metal and metallothionein distribution in different tissues of the Mediterranean clam Venerupis philippinarum during copper treatment and detoxification.

    PubMed

    Santovito, Gianfranco; Boldrin, Francesco; Irato, Paola

    2015-01-01

    Filter feeding animals can accumulate large amount of contaminants in their body through particles filtered from seawater. In particular, copper is interesting since it plays important roles as co-factor of numerous proteins but its toxicity is well established, also because it can readily generate free radicals or oxidize cellular components through their redox activity. Its availability is tightly regulated within cells: it is immediately transferred to metallothionein (MT) that in turn provides efficient and specific mechanisms for its intracellular storage and transport. The aim of this study was to evaluate the acute effect of sublethal copper concentrations in Venerupis philippinarum, by studying the kinetics of copper, zinc (for its interactions at the sites of intake or elimination with the accumulation of other essential and not essential trace metals) and metallothionein accumulation under laboratory conditions. The time-course of metal accumulation/elimination is similar in digestive gland and gills and importantly it is dose-dependent. Both copper and zinc increase slowly within cells, reaching a maximum concentration at the end of the exposure period. During the detoxification period, the metal levels in digestive gland and gills rapidly decrease, with different kinetics in the two tissues. Positive correlations between metallothionein accumulation and copper or zinc concentrations have been verified in both treated groups. The obtained data demonstrated the involvement of MTs in detoxification strategies after a recovery period in clean seawater.

  5. Araport: the Arabidopsis Information Portal

    PubMed Central

    Krishnakumar, Vivek; Hanlon, Matthew R.; Contrino, Sergio; Ferlanti, Erik S.; Karamycheva, Svetlana; Kim, Maria; Rosen, Benjamin D.; Cheng, Chia-Yi; Moreira, Walter; Mock, Stephen A.; Stubbs, Joseph; Sullivan, Julie M.; Krampis, Konstantinos; Miller, Jason R.; Micklem, Gos; Vaughn, Matthew; Town, Christopher D.

    2015-01-01

    The Arabidopsis Information Portal (https://www.araport.org) is a new online resource for plant biology research. It houses the Arabidopsis thaliana genome sequence and associated annotation. It was conceived as a framework that allows the research community to develop and release ‘modules’ that integrate, analyze and visualize Arabidopsis data that may reside at remote sites. The current implementation provides an indexed database of core genomic information. These data are made available through feature-rich web applications that provide search, data mining, and genome browser functionality, and also by bulk download and web services. Araport uses software from the InterMine and JBrowse projects to expose curated data from TAIR, GO, BAR, EBI, UniProt, PubMed and EPIC CoGe. The site also hosts ‘science apps,’ developed as prototypes for community modules that use dynamic web pages to present data obtained on-demand from third-party servers via RESTful web services. Designed for sustainability, the Arabidopsis Information Portal strategy exploits existing scientific computing infrastructure, adopts a practical mixture of data integration technologies and encourages collaborative enhancement of the resource by its user community. PMID:25414324

  6. Handling Arabidopsis plants: growth, preservation of seeds, transformation, and genetic crosses.

    PubMed

    Rivero, Luz; Scholl, Randy; Holomuzki, Nicholas; Crist, Deborah; Grotewold, Erich; Brkljacic, Jelena

    2014-01-01

    Growing healthy plants is essential for the advancement of Arabidopsis thaliana (Arabidopsis) research. Over the last 20 years, the Arabidopsis Biological Resource Center (ABRC) has collected and developed a series of best-practice protocols, some of which are presented in this chapter. Arabidopsis can be grown in a variety of locations, growth media, and environmental conditions. Most laboratory accessions and their mutant or transgenic derivatives flower after 4-5 weeks and set seeds after 7-8 weeks, under standard growth conditions (soil, long day, 23 ºC). Some mutant genotypes, natural accessions, and Arabidopsis relatives require strict control of growth conditions best provided by growth rooms, chambers, or incubators. Other lines can be grown in less-controlled greenhouse settings. Although the majority of lines can be grown in soil, certain experimental purposes require utilization of sterile solid or liquid growth media. These include the selection of primary transformants, identification of homozygous lethal individuals in a segregating population, or bulking of a large amount of plant material. The importance of controlling, observing, and recording growth conditions is emphasized and appropriate equipment required to perform monitoring of these conditions is listed. Proper conditions for seed harvesting and preservation, as well as seed quality control, are also described. Plant transformation and genetic crosses, two of the methods that revolutionized Arabidopsis genetics, are introduced as well.

  7. A reference map of the Arabidopsis thaliana mature pollen proteome

    SciTech Connect

    Noir, Sandra; Braeutigam, Anne; Colby, Thomas; Schmidt, Juergen; Panstruga, Ralph . E-mail: panstrug@mpiz-koeln.mpg.de

    2005-12-02

    The male gametophyte (or pollen) plays an obligatory role during sexual reproduction of higher plants. The extremely reduced complexity of this organ renders pollen a valuable experimental system for studying fundamental aspects of plant biology such as cell fate determination, cell-cell interactions, cell polarity, and tip-growth. Here, we present the first reference map of the mature pollen proteome of the dicotyledonous model plant species, Arabidopsis thaliana. Based on two-dimensional gel electrophoresis, matrix-assisted laser desorption/ionization time-of-flight, and electrospray quadrupole time-of-flight mass spectrometry, we reproducibly identified 121 different proteins in 145 individual spots. The presence, subcellular localization, and functional classification of the identified proteins are discussed in relation to the pollen transcriptome and the full protein complement encoded by the nuclear Arabidopsis genome.

  8. Metallothionein as a compensatory component prevents intermittent hypoxia-induced cardiomyopathy in mice

    SciTech Connect

    Yin, Xia; Zhou, Shanshan; Zheng, Yang; Tan, Yi; Kong, Maiying; Wang, Bo; Feng, Wenke; Epstein, Paul N.; Cai, Jun; Cai, Lu

    2014-05-15

    Obstructive sleep apnea (OSA) causes chronic intermittent hypoxia (IH) to induce cardiovascular disease, which may be related to oxidative damage. Metallothionein (MT) has been extensively proved to be an endogenous and highly inducible antioxidant protein expressed in the heart. Therefore, we tested the hypotheses that oxidative stress plays a critical role in OSA induced cardiac damage and MT protects the heart from OSA-induced cardiomyopathy. To mimic hypoxia/reoxygenation events that occur in adult OSA patients, mice were exposed to IH for 3 days to 8 weeks. The IH paradigm consisted of alternating cycles of 20.9% O{sub 2}/8% O{sub 2} F{sub I}O{sub 2} (30 episodes per hour) with 20 s at the nadir F{sub I}O{sub 2} for 12 h a day during daylight. IH significantly increased the ratio of heart weight to tibia length at 4 weeks with a decrease in cardiac function from 4 to 8 weeks. Cardiac oxidative damage and fibrosis were observed after 4 and 8 weeks of IH exposures. Endogenous MT expression was up-regulated in response to 3-day IH, but significantly decreased at 4 and 8 weeks of IH. In support of MT as a major compensatory component, mice with cardiac overexpression of MT gene and mice with global MT gene deletion were completely resistant, and highly sensitive, respectively, to chronic IH induced cardiac effects. These findings suggest that chronic IH induces cardiomyopathy characterized by oxidative stress-mediated cardiac damage and the antioxidant MT protects the heart from such pathological and functional changes. - Highlights: • The effect of intermittent hypoxia (IH) on cardiac metallothionein (MT) • Cardiac MT expression was up-regulated in response to 3-day IH. • Exposure to 4- or 8-week IH downregulated cardiac MT expression. • Overexpression of cardiac MT protects from IH-induced cardiac damage. • Global deletion of MT gene made the heart more sensitive to IH damage.

  9. Role of ARF6 in internalization of metal-binding proteins, metallothionein and transferrin, and cadmium-metallothionein toxicity in kidney proximal tubule cells

    SciTech Connect

    Wolff, Natascha A.; Lee, Wing-Kee; Abouhamed, Marouan

    2008-07-01

    Filtered metal-protein complexes, such as cadmium-metallothionein-1 (CdMT-1) or transferrin (Tf) are apically endocytosed partly via megalin/cubilin by kidney proximal tubule (PT) cells where CdMT-1 internalization causes apoptosis. Small GTPase ARF (ADP-ribosylation factor) proteins regulate endocytosis and vesicular trafficking. We investigated roles of ARF6, which has been shown to be involved in internalization of ligands and endocytic trafficking in PT cells, following MT-1/CdMT-1 and Tf uptake by PT cells. WKPT-0293 Cl.2 cells derived from rat PT S1 segment were transfected with hemagglutinin-tagged wild-type (ARF6-WT) or dominant negative (ARF6-T27N) forms of ARF6. Using immunofluorescence, endogenous ARF6 was associated with the plasma membrane (PM) as well as juxtanuclear and co-localized with Rab5a and Rab11 involved in early and recycling endosomal trafficking. Immunofluorescence staining of megalin showed reduced surface labelling in ARF6 dominant negative (ARF6-DN) cells. Intracellular Alexa Fluor 546-conjugated MT-1 uptake was reduced in ARF6-DN cells and CdMT-1 (14.8 {mu}M for 24 h) toxicity was significantly attenuated from 27.3 {+-} 3.9% in ARF6-WT to 11.1 {+-} 4.0% in ARF6-DN cells (n = 6, P < 0.02). Moreover, reduced Alexa Fluor 546-conjugated Tf uptake was observed in ARF-DN cells (75.0 {+-} 4.6% versus 3.9 {+-} 3.9% of ARF6-WT cells, n = 3, P < 0.01) and/or remained near the PM (89.3 {+-} 5. 6% versus 45.2 {+-} 14.3% of ARF6-WT cells, n = 3, P < 0.05). In conclusion, the data support roles for ARF6 in receptor-mediated endocytosis and trafficking of MT-1/Tf to endosomes/lysosomes and CdMT-1 toxicity of PT cells.

  10. Hepatic Metallothionein and Glutathione-S-Transferase Responses in Two Populations of Rice Frogs, Fejervarya limnocharis, Naturally Exposed to Different Environmental Cadmium Levels

    PubMed Central

    Othman, Mohd Sham; Khonsue, Wichase; Kitana, Jirarach; Thirakhupt, Kumthorn; Robson, Mark; Borjan, Marija

    2014-01-01

    Glutathione-S-Transferase (GST) and metallothionein are important biomarker endpoints in studying the effect of Cd exposure. The purpose of this research was to study the correlation between hepatic GST and metallothionein with hepatic Cd in wild Fejervarya limnocharis exposed to environmental Cd. Results showed that frogs from contaminated sites had significantly higher hepatic metallothionein (3.58 mg/kg wet weight) and GST activity (0.259 μmol/min/mg total protein) than those from the reference site (2.36 mg/kg wet weight and 0.157 μmol/min/mg total protein respectively). There was a significantly positive correlation between hepatic Cd and GST activity (r = 0.802, p = 0.009) but not between hepatic Cd and metallothionein (r = 0.548, p = 0.139). The results concluded that while frogs from the contaminated site had higher GST and metallothionein, only GST showed significant positive correlation with hepatic Cd levels, indicating that hepatic GST activity may be used as a biomarker endpoint. PMID:22722596

  11. Hepatic metallothionein and Glutathione-S-Transferase responses in two populations of rice frogs, Fejervarya limnocharis, naturally exposed to different environmental cadmium levels.

    PubMed

    Othman, Mohd Sham; Khonsue, Wichase; Kitana, Jirarach; Thirakhupt, Kumthorn; Robson, Mark; Borjan, Marija; Kitana, Noppadon

    2012-08-01

    Glutathione-S-Transferase (GST) and metallothionein are important biomarker endpoints in studying the effect of Cd exposure. The purpose of this research was to study the correlation between hepatic GST and metallothionein with hepatic Cd in wild Fejervarya limnocharis exposed to environmental Cd. Results showed that frogs from contaminated sites had significantly higher hepatic metallothionein (3.58 mg/kg wet weight) and GST activity (0.259 μmol/min/mg total protein) than those from the reference site (2.36 mg/kg wet weight and 0.157 μmol/min/mg total protein respectively). There was a significantly positive correlation between hepatic Cd and GST activity (r = 0.802, p = 0.009) but not between hepatic Cd and metallothionein (r = 0.548, p = 0.139). The results concluded that while frogs from the contaminated site had higher GST and metallothionein, only GST showed significant positive correlation with hepatic Cd levels, indicating that hepatic GST activity may be used as a biomarker endpoint.

  12. Metallothionein expression and nuclear size in benign, borderline, and malignant serous ovarian tumours.

    PubMed

    Tan, Y; Sinniah, R; Bay, B H; Singh, G

    1999-09-01

    Metallothioneins (MTs) are low-molecular-weight proteins involved in metalloregulatory functions such as cell proliferation, growth, and differentiation. In recent years, MT expression has been linked with carcinogenesis, resistance to cancer therapy, and tumour progression. However, the significance of MT expression in ovarian cancers is at present inadequately documented. In this study, MT immunohistochemistry was performed in 12 benign, 14 borderline, and eight malignant serous tumours of the ovary. The intensity of the immunostaining was evaluated by image analysis. There was a significantly higher number of MT-immunopositive cells in the multilayered epithelial cells of borderline serous tumours (atypical proliferative serous tumours) than in the single layered epithelial cells within the same tumour, and in the single cell layer of benign serous tumours. There was no difference in the expression of MTs in the single layered tumour cells of benign and borderline serous tumours. Significantly higher numbers of MT-immunopositive cells were observed in both the single and the multilayered epithelial cells of serous carcinomas, the highest number being observed in the multiple layers of serous carcinomas. The positively stained malignant tumour cells in both single and multiple layers were larger than the negatively stained cells in benign, borderline, and malignant serous ovarian tumours. There was moderate to intense staining. These findings indicate that there is increased expression of MTs in the progression of malignancy, which could be used as a marker in grading the three groups of ovarian serous tumours and for determining prognosis.

  13. Quantification of metallothioneins in the earthworm by lomefloxacin-europium(iii) fluorescent probe.

    PubMed

    Geng, Meng-Jiao; Liang, Shu-Xuan; Liu, Wei; Jin, Yu

    2014-08-01

    A new fluorimetric method was established for the determination of trace amounts of metallothioneins (MT) in earthworm, using a lomefloxacin-europium(iii) (LMLX-Eu(3+)) complex as a fluorescent probe. In a pH 6.5 Tris-HCl buffer solution, MT can markedly decrease the fluorescence intensity of LMLX-Eu(3+) at λ = 613 nm, and the magnitude of the decrease in this intensity was in direct proportion to the concentration of MT. The linear range was 0.08-20 mg L(-1) with a detection limit of 0.022 mg L(-1), and the recovery was in the range of 91.9-104.4%. The results show that the fluorimetric method is relatively accurate and sensitive to measurements of concentration for MT over a wide range. This method has been successfully applied to the determination of the concentration of MT induced by heavy metal ions (Cd(2+), Pb(2+), Cu(2+), Zn(2+)) in Eisenia andrei. The amount of MT increased significantly in a dose-dependent manner to the heavy-metal exposure, and these proteins can be used as biomarkers to assess the impact of heavy-metal contamination in soils. The method offered high sensitivity as well as accuracy with simple instrumentation and is suitable for direct quantification of total MT in Eisenia andrei.

  14. Isoflavonoid photoprotection in mouse and human skin is dependent on metallothionein.

    PubMed

    Widyarini, Sitarina; Allanson, Munif; Gallagher, Nerida L; Pedley, Julie; Boyle, Glen M; Parsons, Peter G; Whiteman, David C; Walker, Catherine; Reeve, Vivienne E

    2006-01-01

    Previous studies report that selected topical isoflavonoids are immunoprotective in both mice and humans, when applied following UV irradiation. Isoflavonoids have documented antioxidant activity, but their mechanism of immunomodulation remains unclear. This study examines whether photoimmunoprotection by the isoflavonoids might result from their interaction with one cutaneous antioxidant known to modulate UV photodamage, metallothionein (MT). In mice bearing a null mutation for MT-I and -II, we found that immunoprotection by the isoflavonoid 4',7-dihydroxyisoflavane (equol) against solar-simulated UV radiation (SSUV) or exogenous cis-urocanic acid was abrogated. Topical equol did not activate MT expression in normal mouse skin, but markedly enhanced the increase in MT expression in murine epidermis following SSUV irradiation. Normal human skin, unlike murine, expressed MT in the basal epidermis. Following SSUV irradiation, topical application of the related synthetic isoflavonoid NV-07alpha to human skin also markedly enhanced epidermal MT expression. The NV-07alpha has been reported previously to protect humans against the UV suppression of Mantoux reactions. Thus, epidermal MT expression appears to protect against photoimmunosuppression in both human and mouse skin. We speculate that equol and its related derivative NV-07alpha may activate the MT gene synergistically with SSUV, to produce the enhanced immunoprotective effect.

  15. Three Brassica rapa metallothionein genes are differentially regulated under various stress conditions.

    PubMed

    Ahn, Young Ock; Kim, Sun Ha; Lee, Jeongyeo; Kim, Hyeran; Lee, Haeng-Soon; Kwak, Sang-Soo

    2012-03-01

    The expression profiles of three Brassica rapa metallothionein genes (BrMT 1-3) were determined in 7-day-old seedlings exposed to various exogenous factors including plant hormones, heavy metals and abiotic stresses. BrMT1, BrMT2, and BrMT3 were representatives of MT gene type 1, type 2, and type 3, respectively, according to their cysteine alignment. BrMT2 showed a relatively higher basal expression level compared to BrMT1 and BrMT3 under normal conditions. The BrMT1 transcript was markedly increased by various factors including ethephon, polyethylene glycol and hydrogen peroxide, with no down-regulation evident. On the contrary, BrMT2 expression was down-regulated by abscisic acid, salicylic acid, and methyl jasmonate. Heavy metals did not increase BrMT2 expression. BrMT3 expression was only marginally and non-significantly up- and down-regulated by the stress conditions tested. Promoter regions of BrMT1 and BrMT2 display different cis-acting elements supporting the different responses of both genes against various stresses. The results demonstrate the differential regulation of BrMT1-3 by various plant exogenous factors, and indicate the utility of the BrMT1 promoter as a multiple stress inducible promoter.

  16. Water-soluble genistin glycoside isoflavones up-regulate antioxidant metallothionein expression and scavenge free radicals.

    PubMed

    Chung, Mi Ja; Kang, Ah-Young; Lee, Kyung Min; Oh, Eunji; Jun, Hee-Jin; Kim, Sang-Yeon; Auh, Joong Hyuck; Moon, Tae-Wha; Lee, Sung-Joon; Park, Kwan-Hwa

    2006-05-31

    Genistin has antioxidant activities; however, its insolubility in water often limits its biological availability in vivo. Using a novel transglycosylation process, the solubility of genistin glycosides was increased 1000 to 10000-fold, but it was not known whether these modified genistin glycosides maintained antioxidant activity. We found that both genistin and its glycosides similarly up-regulated the transcription of several metallothionein (MT) antioxidant genes (MT1A, MT2A, MT1E, and MT1X), as well as the glucose 6-phosphate dehydrogenase (G6PD) gene in HepG2 cells. This gene induction was mediated by the sequestration of zinc in the cytosol, which up-regulated the metal-responsive transcription factor-1 (MTF-1) that induced MT gene expression. Although not as effective as ascorbic acid, genistin glycosides possessed slightly greater reducing power than genistin. We concluded that genistin and genistin glycosides have a direct antioxidant effect and an indirect antioxidant effect, perhaps via induction of MT by activity of MTF-1.

  17. Prevention of gastrointestinal lead poisoning using recombinant Lactococcus lactis expressing human metallothionein-I fusion protein.

    PubMed

    Xiao, Xue; Zhang, Changbin; Liu, Dajun; Bai, Weibin; Zhang, Qihao; Xiang, Qi; Huang, Yadong; Su, Zhijian

    2016-01-01

    Low-level lead poisoning is an insidious disease that affects millions of children worldwide, leading to biochemical and neurological dysfunctions. Blocking lead uptake via the gastrointestinal tract is an important prevention strategy. With this in mind, we constructed the recombinant Lactococcus lactis strain pGSMT/MG1363, which constitutively expressed the fusion protein glutathione S-transferase (GST)-small molecule ubiquitin-like modifier protein (SUMO)-metallothionein-I (GST-SUMO-MT). The thermodynamic data indicated that the average number of lead bound to a GST-SUMO-MT molecule was 3.655 and this binding reaction was a spontaneous, exothermic and entropy-increasing process. The total lead-binding capacity of pGSMT/MG1363 was 4.11 ± 0.15 mg/g dry mass. Oral administration of pGSMT/MG1363 (1 × 10(10) Colony-Forming Units) to pubertal male rats that were also treated with 5 mg/kg of lead acetate daily significantly inhibited the increase of blood lead levels, the impairment of hepatic function and the decrease of testosterone concentration in the serum, which were all impaired in rats treated by lead acetate alone. Moreover, the administration of pGSMT/MG1363 for 6 weeks did not affect the serum concentration of calcium, magnesium, potassium or sodium ions. This study provides a convenient and economical biomaterial for preventing lead poisoning via the digestive tract. PMID:27045906

  18. The Functions of Metallothionein and ZIP and ZnT Transporters: An Overview and Perspective

    PubMed Central

    Kimura, Tomoki; Kambe, Taiho

    2016-01-01

    Around 3000 proteins are thought to bind zinc in vivo, which corresponds to ~10% of the human proteome. Zinc plays a pivotal role as a structural, catalytic, and signaling component that functions in numerous physiological processes. It is more widely used as a structural element in proteins than any other transition metal ion, is a catalytic component of many enzymes, and acts as a cellular signaling mediator. Thus, it is expected that zinc metabolism and homeostasis have sophisticated regulation, and elucidating the underlying molecular basis of this is essential to understanding zinc functions in cellular physiology and pathogenesis. In recent decades, an increasing amount of evidence has uncovered critical roles of a number of proteins in zinc metabolism and homeostasis through influxing, chelating, sequestrating, coordinating, releasing, and effluxing zinc. Metallothioneins (MT) and Zrt- and Irt-like proteins (ZIP) and Zn transporters (ZnT) are the proteins primarily involved in these processes, and their malfunction has been implicated in a number of inherited diseases such as acrodermatitis enteropathica. The present review updates our current understanding of the biological functions of MTs and ZIP and ZnT transporters from several new perspectives. PMID:26959009

  19. Arbuscular mycorrhiza affects nickel translocation and expression of ABC transporter and metallothionein genes in Festuca arundinacea.

    PubMed

    Shabani, Leila; Sabzalian, Mohammad R; Mostafavi pour, Sodabeh

    2016-01-01

    Mycorrhizal fungi are key microorganisms for enhancing phytoremediation of soils contaminated with heavy metals. In this study, the effects of the arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae (=Glomus mosseae) on physiological and molecular mechanisms involved in the nickel (Ni) tolerance of tall fescue (Festuca arundinacea = Schedonorus arundinaceus) were investigated. Nickel addition had a pronounced negative effect on tall fescue growth and photosynthetic pigment contents, as well as on AMF colonization. Phosphorus content increased markedly in mycorrhizal plants (M) compared to non-inoculated (NM) ones. However, no significant difference was observed in root carbohydrate content between AMF-inoculated and non-inoculated plants. For both M and NM plants, Ni concentrations in shoots and roots increased according to the addition of the metal into soil, but inoculation with F. mosseae led to significantly lower Ni translocation from roots to the aboveground parts compared to non-inoculated plants. ABC transporter and metallothionein transcripts accumulated to considerably higher levels in tall fescue plants colonized by F. mosseae than in the corresponding non-mycorrhizal plants. These results highlight the importance of mycorrhizal colonization in alleviating Ni-induced stress by reducing Ni transport from roots to shoots of tall fescue plants.

  20. Restoring wtp53 activity in HIPK2 depleted MCF7 cells by modulating metallothionein and zinc.

    PubMed

    Puca, Rosa; Nardinocchi, Lavinia; Bossi, Gianluca; Sacchi, Ada; Rechavi, Gideon; Givol, David; D'Orazi, Gabriella

    2009-01-01

    The maintenance of p53 transactivation activity is important for p53 apoptotic function. We have shown that stable knockdown of HIPK2 induces p53 misfolding with inhibition of p53 target gene transcription. In this study we established a lentiviral-based system for doxycyclin (Dox)-induced conditional interference of HIPK2 expression to evaluate the molecular mechanisms involved in p53 deregulation. We found that HIPK2 knockdown induced metallothionein 2A (MT2A) upregulation as assessed by RT-PCR analysis, increased promoter acetylation, and increased promoter luciferase activity. The MT2A upregulation correlated with resistance to Adriamycin (ADR)-driven apoptosis and with p53 inhibition. Thus, acute knockdown of HIPK2 (HIPK2i) induced misfolded p53 protein in MCF7 breast cancer cells and inhibited p53 DNA-binding and transcription activities in response to ADR treatment. Previous works show that MT may modulate p53 activity through zinc exchange. Here, we found that inhibition of MT2A expression by siRNA in the HIPK2i cells restored p53 transcription activity. Similarly zinc supplementation to HIPK2i cells restored p53 transcription activity and drug-induced apoptosis. These data support the notion that MT2A is involved in p53 deregulation and strengthen the possibility that combination of chemotherapy and zinc might be useful to treat tumors with inactive wtp53. PMID:18996371

  1. Identification of quantum dots labeled metallothionein by fast scanning laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Konecna, Marie; Novotny, Karel; Krizkova, Sona; Blazkova, Iva; Kopel, Pavel; Kaiser, Jozef; Hodek, Petr; Kizek, Rene; Adam, Vojtech

    2014-11-01

    The technique described in this paper allows detection of quantum dots (QDs) specifically deposited on the polystyrene surface by laser-induced breakdown spectroscopy (LIBS). Using LIBS, the distribution of QDs or their conjugates with biomolecules deposited on the surface can be observed, regardless of the fact if they exhibit fluorescence or not. QDs deposited on the specific surface of polystyrene microplate in the form of spots are detected by determination of the metal included in the QDs structure. Cd-containing QDs (CdS, CdTe) stabilized with mercaptopropionic (MPA) or mercaptosuccinic (MSA) acid, respectively, alone or in the form of conjugates with metallothionein (MT) biomolecule are determined by using the 508.58 nm Cd emission line. The observed absolute detection limit for Cd in CdTe QDs conjugates with MT in one spot was 3 ng Cd. Due to the high sensitivity of this technique, the immunoanalysis in combination with LIBS was also investigated. Cd spatial distribution in sandwich immunoassay was detected.

  2. Prevention of gastrointestinal lead poisoning using recombinant Lactococcus lactis expressing human metallothionein-I fusion protein.

    PubMed

    Xiao, Xue; Zhang, Changbin; Liu, Dajun; Bai, Weibin; Zhang, Qihao; Xiang, Qi; Huang, Yadong; Su, Zhijian

    2016-04-05

    Low-level lead poisoning is an insidious disease that affects millions of children worldwide, leading to biochemical and neurological dysfunctions. Blocking lead uptake via the gastrointestinal tract is an important prevention strategy. With this in mind, we constructed the recombinant Lactococcus lactis strain pGSMT/MG1363, which constitutively expressed the fusion protein glutathione S-transferase (GST)-small molecule ubiquitin-like modifier protein (SUMO)-metallothionein-I (GST-SUMO-MT). The thermodynamic data indicated that the average number of lead bound to a GST-SUMO-MT molecule was 3.655 and this binding reaction was a spontaneous, exothermic and entropy-increasing process. The total lead-binding capacity of pGSMT/MG1363 was 4.11 ± 0.15 mg/g dry mass. Oral administration of pGSMT/MG1363 (1 × 10(10) Colony-Forming Units) to pubertal male rats that were also treated with 5 mg/kg of lead acetate daily significantly inhibited the increase of blood lead levels, the impairment of hepatic function and the decrease of testosterone concentration in the serum, which were all impaired in rats treated by lead acetate alone. Moreover, the administration of pGSMT/MG1363 for 6 weeks did not affect the serum concentration of calcium, magnesium, potassium or sodium ions. This study provides a convenient and economical biomaterial for preventing lead poisoning via the digestive tract.

  3. Metals and metallothioneins in Morelet's crocodile (Crocodylus moreletii) from a transboundary river between Mexico and Belize.

    PubMed

    Buenfil-Rojas, A M; Álvarez-Legorreta, T; Cedeño-Vázquez, J R

    2015-02-01

    The aim of this study was to determine concentrations of heavy metals (cadmium [Cd] and mercury [Hg]) and metallothioneins (MTs) in blood plasma and caudal scutes of Morelet's crocodile (Crocodylus moreletii) from Rio Hondo, a river and natural border between Mexico and Belize. Three transects of the river (approximately 20 km each) were surveyed in September 2012 and April 2013, and samples were collected from 24 crocodiles from these areas. In blood plasma, Cd (7.6 ± 9.6 ng/ml) was detected in 69 % of samples (n = 9); Hg (12.2 ± 9.2 ng/ml) was detected in 46 % of samples (n = 6); and MTs (10,900 ± 9,400 ng/ml) were detected in 92 % of samples (n = 12). In caudal scutes samples, Cd (31.7 ± 39.4 ng/g) was detected in 84 % of samples (n = 12) and Hg (374.1 ± 429.4 ng/g) in 83 % of samples (n = 20). No MTs were detected in caudal scutes. Hg concentrations in scutes from the Rio Hondo were 2- to 5-fold greater than those previously reported in scutes from other localities in northern Belize. In blood plasma, a significant positive relationship between Hg and body size was observed. Mean concentrations of Cd and MTs in size classes suggest that MTs may be related to Cd exposure. This is the first report of MT presence in crocodile blood.

  4. Functional characterization of four metallothionein genes in Daphnia pulex exposed to environmental stressors

    PubMed Central

    Asselman, J.; Glaholt, S.P.; Smith, Z.; Smagghe, G.; Janssen, C.R.; Colbourne, J.K.; Shaw, J.R.; De Schamphelaere, K.A.C.

    2014-01-01

    We characterized the metallothionein genes (Mt1, Mt2, Mt3, and Mt4) in Daphnia pulex on both molecular and ecotoxicological level. We therefore conducted a bioinformatical analysis of the gene location and predicted protein sequence, and screened the upstream flanking region for regulatory elements. The number of these elements and their positions relative to the start codon varied strongly among the four genes and even among two gene duplicates (Mt1A and Mt1B), suggesting different roles of the four proteins in the organisms’ response to stress. We subsequently conducted a chronic 16-day exposure of D. pulex to different environmental stressors (at sublethal levels causing approximately 50% reduction in reproduction). Based on prior knowledge, we exposed them to the metals Cd, Cu, and Ni, the moulting hormone hydroxyecdysone (20E), and the oxidative stressors cyanobacteria (Microcystis aeruginosa), and paraquat (Pq). We then compared mRNA expression levels of the four Mt genes under these stress conditions with control conditions in “The Chosen One” clone (TCO), for which the full genome was sequenced and annotated. All together, the mRNA expression results under the different stress regimes indicate that different Mt genes may play different and various roles in the response of D. pulex to stress and that some (but not all) of the differences among the four genes could be related to the pattern of regulatory elements in their upstream flanking region. PMID:22266576

  5. Cadmium, zinc, and copper in horse liver and in horse liver metallothionein: comparisons with kidney cortex

    SciTech Connect

    Elinder, C.G.; Nordberg, M.; Palm, B.; Piscator, M.

    1981-10-01

    Cadmium, zinc, and copper were determined in liver and in kidney cortex samples obtained from 33 normal Swedish horses. Cadmium concentrations in liver ranged from 0.002 to 0.165 mmole/kg and in kidney from 0.01 to 2.15 mmole/kg. There was a significant correlation between liver and kidney concentrations of cadmium. The average kidney concentration of cadmium was about 15 times that of liver. Zinc concentrations increased with increasing cadmium concentrations in both liver and kidney. The relative increase of zinc with cadmium was more pronounced in liver than in kidney. However, the absolute increase of zinc was larger in kidney due to the much higher concentration of cadmium in kidney compared to liver. Any significant correlation between copper and cadmium, or copper and zinc, could not be revealed. Sephadex gel filtration was performed on supernatants from homogenates of kidney and liver from 19 of the horses. In both organs the major part of cadmium was recovered in protein fractions corresponding to metallothionein (MT), in which the increase of zinc also took place. The molar ratio between zinc and cadmium was higher in MT fractions obtained from liver than in MT fractions obtained from kidney.

  6. Zn tolerance of novel Colocasia esculenta metallothionein and its domains in Escherichia coli and tobacco.

    PubMed

    Kim, Yeon-Ok; Lee, Yoon Gyo; Patel, Darshan H; Kim, Ho Myeong; Ahn, Sung-Ju; Bae, Hyeun-Jong

    2012-11-01

    Contrary to extensive researches on the roles of metallothioneins (MTs) in metal tolerance of animals, the roles of plant MTs in metal tolerance are largely under investigation. In this study, we evaluated the functional role of type 2 MT from Colocasia esculenta (CeMT2b) in Zn tolerance of tobacco and E. coli cells. Under Zn-stress conditions, transgenic tobacco overexpressing CeMT2b displayed much better seedling growth, a significant decrease in the levels of H(2)O(2) and an increase in Zn accumulation compared with the wild type. Overexpression of CeMT2b in E. coli greatly enhanced Zn tolerance and Zn accumulation under Zn stresses compared with control cells. CeMT2b bound 5.38 ± 0.29 atoms of Zn per protein. To identify a structural domain of CeMT2b for Zn binding, we investigated the growth of E. coli expressing each of the N-terminal, C-terminal, and central linker domains or a CNC motif deletion from the C-terminus of full-length CeMT2b. The results showed that the CNC motif is required for Zn tolerance, and the N-terminal domain is more effective in Zn tolerance than the C-terminal domain. Taken together, our results provide direct evidence for functional contributions of CeMT2b in Zn tolerance of tobacco and E. coli cells.

  7. Crambescin C1 Exerts a Cytoprotective Effect on HepG2 Cells through Metallothionein Induction.

    PubMed

    Roel, María; Rubiolo, Juan A; Ternon, Eva; Thomas, Olivier P; Vieytes, Mercedes R; Botana, Luis M

    2015-07-27

    The Mediterranean marine sponge Crambe crambe is the source of two families of guanidine alkaloids known as crambescins and crambescidins. Some of the biological effects of crambescidins have been previously reported while crambescins have undergone little study. Taking this into account, we performed comparative transcriptome analysis to examine the effect of crambescin-C1 (CC1) on human tumor hepatocarcinoma cells HepG2 followed by validation experiments to confirm its predicted biological activities. We report herein that, while crambescin-A1 has a minor effect on these cells, CC1 protects them against oxidative injury by means of metallothionein induction even at low concentrations. Additionally, at high doses, CC1 arrests the HepG2 cell cycle in G0/G1 and thus inhibits tumor cell proliferation. The findings presented here provide the first detailed approach regarding the different effects of crambescins on tumor cells and provide a basis for future studies on other possible cellular mechanisms related to these bioactivities.

  8. Crambescin C1 Exerts a Cytoprotective Effect on HepG2 Cells through Metallothionein Induction

    PubMed Central

    Roel, María; Rubiolo, Juan A.; Ternon, Eva; Thomas, Olivier P.; Vieytes, Mercedes R.; Botana, Luis M.

    2015-01-01

    The Mediterranean marine sponge Crambe crambe is the source of two families of guanidine alkaloids known as crambescins and crambescidins. Some of the biological effects of crambescidins have been previously reported while crambescins have undergone little study. Taking this into account, we performed comparative transcriptome analysis to examine the effect of crambescin-C1 (CC1) on human tumor hepatocarcinoma cells HepG2 followed by validation experiments to confirm its predicted biological activities. We report herein that, while crambescin-A1 has a minor effect on these cells, CC1 protects them against oxidative injury by means of metallothionein induction even at low concentrations. Additionally, at high doses, CC1 arrests the HepG2 cell cycle in G0/G1 and thus inhibits tumor cell proliferation. The findings presented here provide the first detailed approach regarding the different effects of crambescins on tumor cells and provide a basis for future studies on other possible cellular mechanisms related to these bioactivities. PMID:26225985

  9. Development of Antigen-Immobilized Metallothionein Sensor that Exploits Gold Nanoparticle-Based Enhancement of Signal.

    PubMed

    Kim, Namsoo; Son, So-Hee

    2015-08-01

    An antigen-immobilized indirect-competitive immunosensor that detects metallothionein (MT), a potent biomarker of contamination with heavy metals, was developed exploiting enhancement of signal based on an additional binding of gold nanoparticles to an anti-MT antibody through the biotin-avidin interaction. The sensor was constructed by the immobilization of MT at 1 mg/mL on a 9-MHz quartz crystal microbalance and the concentration of the antibody for competitive reaction was optimized as 10 µg/mL based on the degree of sensor response. At this moment, the control response of the sensor obtained with enhancement of signal was 343.8 Hz and was larger than that without enhancement of signal 2.47 fold. The sensor responses decreased gradually with increasing analyte concentrations, and a linear relationship between analyte concentration and sensor response was acquired in the range of 0.005-1 ng/mL MT in double-logarithmic scales with a correlation coefficient (r) of 0.9858. The limit of detection of the present sensor was presumed to be present below 5 pg/mL MT.

  10. Cadmium Accumulation and Metallothionein Biosynthesis in Cadmium-Treated Freshwater Mussel Anodonta woodiana

    PubMed Central

    Li, Yongquan; Yang, Huizhen; Liu, Na; Luo, Jixian; Wang, Qian; Wang, Lan

    2015-01-01

    This study investigated the distribution of cadmium (Cd) and the protein level of metallothionein (MT) and examined the relationship of Cd accumulation and the MT concentration in different tissues of freshwater mussel Anodonta woodiana following Cd treatment. The mussels were exposed to Cd (4.21, 8.43, 16.86, 33.72 and 67.45 mg L-1) for 24, 48, 72 and 96 h, respectively. After Cd treatment, the gills, mantle, foot, visceral mass and digestive gland tissues were collected for analysis. We found that, in the controls, Cd distributed in all tissues in the concentration order of gills>mantle>foot>visceral mass>digestive gland. Upon Cd treatment, Cd concentration significantly increased in all tissues. The highest Cd accumulation was found in the digestive gland, which was 0.142 mg g-1 (P<0.05). MT levels in the gills and mantle of the mussels increased significantly (P<0.05), which were in positive correlation with Cd accumulation in the tissues (P<0.05). In conclusion, our results demonstrated a correlation between Cd accumulation and MT up-regulation in gills and mantle of the mussels after Cd treatment. It is suggested that the protein level of MT in gills and mantle of Anodonta woodiana is a good biomarker for Cd contamination. PMID:25647043

  11. Gene expression analysis of metallothionein and mineral elements uptake in tomato (Solanum lycopersicum) exposed to cadmium.

    PubMed

    Kısa, Dursun; Öztürk, Lokman; Tekin, Şaban

    2016-09-01

    Heavy metals such as Cd are considered to be the most important pollutants in soil contamination. Cd is a non-essential element adversely affecting plant growth and development, and it has caused some physiological and molecular changes. Metallothioneins (MTs) are low molecular weight, cysteine-rich, and metal binding proteins. In this study, we aimed to evaluate the MT gene expression levels and minerals uptake in the tissues of Solanum lycopersicum exposed to Cd. The transcriptional expression of the MT genes was determined by real-time quantitative PCR. The MT genes were regulated by the Cd and the mineral elements uptake changed tissue type and applied doses. The MT1 and MT2 transcript levels increased in the roots, the leaves and the fruits of the tomato. The MT3 and MT4 transcript pattern changed according to the tissue types. The Cd treatment on the growth medium increased the Mg, Ca, and Fe content in both the leaves and fruits of the tomato. However, the Cd affected the mineral levels in the roots depending on the mineral types and doses. Also, the Cd content increased in the roots, the leaves, and the fruits of the tomato, respectively. The results presented in this study show that Cd has synergistic and/or antagonistic effects on minerals depending on the tissue types. These results indicate that the MT1 and MT2 expression pattern increased together with the Mg, Ca, and Fe content in both the leaves and the fruits of the tomato. PMID:27363704

  12. An electrophoretic profiling method for thiol-rich phytochelatins and metallothioneins.

    PubMed

    Fan, Teresa W M; Lane, Andrew N; Higashi, Richard M

    2004-01-01

    Thiol-rich peptides such as phytochelatins (PCs) and metallothioneins (MTs) are important cellular chelating agents which function in metal detoxification and/or homeostasis. The variations in molecular sizes and lack of chromophores of these peptides make their analysis difficult. This paper reports an electrophoresis-based method for a broad screen of thiol-rich peptides and proteins. The method uses the thiol-selective fluorescent tag, monobromobimane, coupled with Tricine--sodium dodecyl sulphate--urea polyacrylamide gel electrophoresis for a sensitive determination of both PCs and MTs. Results for PCs were confirmed by two-dimensional NMR and HPLC-tandem MS analyses. Sample throughput is substantially improved over chromatography-based methods through parallel sample analysis in 1 h of electrophoretic separation. The method is versatile in that peptides ranging from glutathione to large proteins can be analysed by simple modification(s) of the extraction and electrophoretic conditions, and the nature of the method supports serendipitous detection of unexpected or novel thiol metabolites. PMID:15202602

  13. New metallothionein assay in Scrobicularia plana: heating effect and correlation with other biomarkers.

    PubMed

    Romero-Ruiz, Antonio; Alhama, José; Blasco, Julián; Gómez-Ariza, José Luis; López-Barea, Juan

    2008-12-01

    Metallothionein (MT) and other biomarker levels were measured in Scrobicularia plana clams to assess pollution of the Guadalquivir Estuary possibly affected by metals released from Aznalcóllar pyrite mine in 1998. After optimizing reagent concentrations for monobromobimane derivatization, MT levels were quantified by reversed-phase high-performance liquid chromatography coupled to fluorescence detection (RP-HPLC-FD) in heated or unheated digestive gland extracts and compared to those obtained by differential pulse polarography (DPP). MT content assayed by RP-HPLC-FD in unheated samples was higher than that obtained by DPP and correlated better with metals and anti-oxidant activities. MT assay by RP-HPLC-FD in unheated extracts would be preferable for assessing metal pollution, due to its greater sensitivity and specificity. In addition to MT induction, glyoxalase II inhibition was well correlated with metal contents. Our results suggest that metals at the estuary do not originate from Aznalcóllar spill, but from those carried along by the river and deposited at its concave bank. PMID:18403075

  14. Heavy metal-induced differential gene expression of metallothionein in Javanese medaka, Oryzias javanicus.

    PubMed

    Woo, Seonock; Yum, Seungshic; Jung, Jee Hyun; Shim, Won Joon; Lee, Chang-Hoon; Lee, Taek-Kyun

    2006-01-01

    A metallothionein (MT) gene was isolated for the first time from Javanese medaka, Oryzias javanicus, which shows high adaptability from freshwater to seawater. The full-length cDNA of MT from O. javanicus (OjaMT) comprises 349 bp, excluding the poly(A)+ stretch, and codes for a total of 60 amino acids. The positions of cysteine residues are highly conserved. The pattern of OjaMT expression induced by six heavy metals was analyzed via real-time quantitative polymerase chain reaction (PCR). The level of hepatic OjaMT mRNA was increased in a dose-dependent manner by Ag, Cd, Cu, and Zn after 24 h of exposure. However, after Cr and Ni exposure, a significant decrease in OjaMT levels was observed. Cadmium-induced OjaMT expression was detectable in fishes as young as 3 months. After Cd exposure, OjaMT induction was prominent in intestine and liver and moderate in muscle and gill. OjaMT mRNA levels could represent a good biomarker for monitoring heavy metals in seawater. PMID:16967182

  15. Metallothionein as a clonable tag for protein localization by electron microscopy of cells.

    PubMed

    Morphew, M K; O'Toole, E T; Page, C L; Pagratis, M; Meehl, J; Giddings, T; Gardner, J M; Ackerson, C; Jaspersen, S L; Winey, M; Hoenger, A; McIntosh, J R

    2015-10-01

    A benign, clonable tag for the localization of proteins by electron microscopy of cells would be valuable, especially if it provided labelling with high signal-to-noise ratio and good spatial resolution. Here we explore the use of metallothionein as such a localization marker. We have achieved good success with desmin labelled in vitro and with a component of the yeast spindle pole body labelled in cells. Heavy metals added after fixation and embedding or during the process of freeze-substitution fixation provide readily visible signals with no concern that the heavy atoms are affecting the behaviour of the protein in its physiological environment. However, our methods did not work with protein components of the nuclear pore complex, suggesting that this approach is not yet universally applicable. We provide a full description of our optimal labelling conditions and other conditions tried, hoping that our work will allow others to label their own proteins of interest and/or improve on the methods we have defined.

  16. Prevention of gastrointestinal lead poisoning using recombinant Lactococcus lactis expressing human metallothionein-I fusion protein

    PubMed Central

    Xiao, Xue; Zhang, Changbin; Liu, Dajun; Bai, Weibin; Zhang, Qihao; Xiang, Qi; Huang, Yadong; Su, Zhijian

    2016-01-01

    Low-level lead poisoning is an insidious disease that affects millions of children worldwide, leading to biochemical and neurological dysfunctions. Blocking lead uptake via the gastrointestinal tract is an important prevention strategy. With this in mind, we constructed the recombinant Lactococcus lactis strain pGSMT/MG1363, which constitutively expressed the fusion protein glutathione S-transferase (GST)–small molecule ubiquitin-like modifier protein (SUMO)–metallothionein-I (GST-SUMO-MT). The thermodynamic data indicated that the average number of lead bound to a GST-SUMO-MT molecule was 3.655 and this binding reaction was a spontaneous, exothermic and entropy-increasing process. The total lead-binding capacity of pGSMT/MG1363 was 4.11 ± 0.15 mg/g dry mass. Oral administration of pGSMT/MG1363 (1 × 1010 Colony-Forming Units) to pubertal male rats that were also treated with 5 mg/kg of lead acetate daily significantly inhibited the increase of blood lead levels, the impairment of hepatic function and the decrease of testosterone concentration in the serum, which were all impaired in rats treated by lead acetate alone. Moreover, the administration of pGSMT/MG1363 for 6 weeks did not affect the serum concentration of calcium, magnesium, potassium or sodium ions. This study provides a convenient and economical biomaterial for preventing lead poisoning via the digestive tract. PMID:27045906

  17. Metallothionein does not sequester arsenic(III) ions in condition of acute arsenic toxicity.

    PubMed

    Garla, Roobee; Ganger, Renuka; Mohanty, Biraja P; Verma, Shivcharan; Bansal, Mohinder P; Garg, Mohan L

    2016-07-29

    The major cause of toxicity of trivalent arsenicals is due to their interaction with the sulfhydryl groups in proteins. Because of its high content, Metallothionein (MT) provides one of the most favorable conditions for the binding of As(III) ions to it. MT has long been anticipated for providing resistance in case of arsenic (As) toxicity with similar mechanism as in case of cadmium toxicity. The present study investigates whether the sequestration of As ions by MT is one of the mechanisms in providing protection against acute arsenic toxicity. A rat model study on the metal stoichiometric analysis of MT1 isoform isolated from the liver of arsenic treated, untreated and zinc treated animals has been carried out using the combination of particle induced X-ray emission (PIXE) and electrospray ionisation mass spectrometry (ESI-MS). The results revealed the absence of arsenic bound MT1 in the samples isolated from arsenic treated animals. Although, both Cu and Zn ions were present in MT1 samples isolated from all the treatment groups. Moreover, only partially metallated MT1 with varying number of Zn ions were observed in all the groups. These results suggest that the role of MT during acute arsenic toxicity is different from its already established role in case of cadmium toxicity.

  18. Influence of zinc on the ontogeny of hepatic metallothionein in the fetal rat

    SciTech Connect

    Charles-Shannon, V.L.; Sasser, L.B.; Burbank, D.K.; Kelman, B.J.

    1981-10-01

    The ontogeny of hepatic metallothioneins (Mt) in fetal tissue as related to dietary and hepatic Zn was investigated. Sixty 6-month-old female rats were divided into two groups and given either double-distilled water or water containing 700 )g of Zn per milliliter. Dams from each group were killed on 16, 19, or 21 days of gestation, and maternal and fetal livers were removed. Mt content of the tissue was estimated by Piotrowski's Hg-saturation method. Results established the presence of an endogenous hepatic Mt in the fetal rat as early as 16 days of gestation. We further demonstrated a marked progressive increase in fetal Mt from Day 16 through gestation accompanied by a decrease in maternal hepatic Mt. It is suggested that Zn increased fetal Mt by inducing fetal synthesis, redistributing fetal Mt, or increasing Mt transport to the fetus, because both fetal and maternal hepatic Mt were increased. Fetal hepatic Mt concentration was several times greater than maternal Mt at corresponding stages of gestation. Mt may serve to either ensure adequate storage of Zn or Cu for fetal development or protect the fetus against metal toxicity, but the significance of these high endogenous levels of fetal Mt are not clear at this time.

  19. Effect of heat shock pretreatment on apoptosis and metallothionein expression in rat cardiomyocytes

    PubMed Central

    Zhang, Xian; Sha, Ming-Lei; Yao, Yu-Ting; Da, Jia; Ni, Xiu-Shi

    2015-01-01

    To investigate the effect of heat shock pretreatment on apoptosis and mitochondrial metallothionein (MT) expression in rat cardiomyocytes. In vitro cultured H9C2 cells were randomly divided into three groups: control, hydrogen peroxide (H2O2) injury, and H2O2 injury after heat shock pretreatment (n = 6 per group). Cardiomyocyte apoptosis and caspase-3 activity were assayed after treatment. Mitochondrial cytochrome (cyt) c and MT expression was assayed by Western blotting. Compared with the control group, the H2O2 injury group had a growing number of apoptotic cardiomyocytes (P < 0.01) and significantly elevated caspase-3 activity (P < 0.01) with markedly increased mitochondrial cyt c and MT expression (P < 0.01). After heat shock pretreatment, the numbers of apoptotic and necrotic cardiomyocytes (P < 0.01) and the caspase-3 activity significantly declined (P < 0.01), while mitochondrial cyt c and MT expression continued to increase (P < 0.01) compared with the H2O2 injury group. Heat shock pretreatment inhibits cardiomyocyte apoptosis, which may have a protective effect on cardiomyocytes by increasing the expression of myocardial protective MT and reducing the release of mitochondrial cyt c. PMID:26221315

  20. Metallothionein-like multinuclear clusters of mercury(II) and sulfur in peat

    USGS Publications Warehouse

    Nagy, K.L.; Manceau, A.; Gasper, J.D.; Ryan, J.N.; Aiken, G.R.

    2011-01-01

    Strong mercury(II)-sulfur (Hg-SR) bonds in natural organic matter, which influence mercury bioavailability, are difficult to characterize. We report evidence for two new Hg-SR structures using X-ray absorption spectroscopy in peats from the Florida Everglades with added Hg. The first, observed at a mole ratio of organic reduced S to Hg (Sred/Hg) between 220 and 1140, is a Hg4Sx type of cluster with each Hg atom bonded to two S atoms at 2.34 ?? and one S at 2.53 ??, and all Hg atoms 4.12 ?? apart. This model structure matches those of metal-thiolate clusters in metallothioneins, but not those of HgS minerals. The second, with one S atom at 2.34 ?? and about six C atoms at 2.97 to 3.28 ??, occurred at S red/Hg between 0.80 and 4.3 and suggests Hg binding to a thiolated aromatic unit. The multinuclear Hg cluster indicates a strong binding environment to cysteinyl sulfur that might impede methylation. Along with a linear Hg(SR)2 unit with Hg - S bond lengths of 2.34 ?? at Sred/Hg of about 10 to 20, the new structures support a continuum in Hg-SR binding strength in natural organic matter. ?? 2011 American Chemical Society.

  1. Characterization of the role of metallothionein-3 in an animal model of Alzheimer's disease.

    PubMed

    Manso, Yasmina; Carrasco, Javier; Comes, Gemma; Meloni, Gabriele; Adlard, Paul A; Bush, Ashley I; Vašák, Milan; Hidalgo, Juan

    2012-11-01

    Among the dementias, Alzheimer's disease (AD) is the most commonly diagnosed, but there are still no effective drugs available for its treatment. It has been suggested that metallothionein-3 (MT-3) could be somehow involved in the etiology of AD, and in fact very promising results have been found in in vitro studies, but the role of MT-3 in vivo needs further analysis. In this study, we analyzed the role of MT-3 in a mouse model of AD, Tg2576 mice, which overexpress human Amyloid Precursor Protein (hAPP) with the Swedish mutation. MT-3 deficiency partially rescued the APP-induced mortality of females, and mildly affected APP-induced changes in behavior assessed in the hole-board and plus-maze tests in a gender-dependent manner. Amyloid plaque burden and/or hAPP expression were decreased in the cortex and hippocampus of MT-3-deficient females. Interestingly, exogenously administered Zn(7)MT-3 increased soluble Aβ40 and Aβ42 and amyloid plaques and gliosis, particularly in the cortex, and changed several behavioral traits (increased deambulation and exploration and decreased anxiety). These results highlight that the control of the endogenous production and/or action of MT-3 could represent a powerful therapeutic target in AD.

  2. Metallothionein as a clonable tag for protein localization by electron microscopy of cells

    PubMed Central

    MORPHEW, M.K.; O’TOOLE, E.T.; PAGE, C.L.; PAGRATIS, M.; MEEHL, J.; GIDDINGS, T.; GARDNER, J.M.; ACKERSON, C.; JASPERSEN, S.L.; WINEY, M.; HOENGER, A.; MCINTOSH, J.R.

    2015-01-01

    Summary A benign, clonable tag for the localization of proteins by electron microscopy of cells would be valuable, especially if it provided labelling with high signal-to-noise ratio and good spatial resolution. Here we explore the use of metallothionein as such a localization marker. We have achieved good success with desmin labelled in vitro and with a component of the yeast spindle pole body labelled in cells. Heavy metals added after fixation and embedding or during the process of freeze-substitution fixation provide readily visible signals with no concern that the heavy atoms are affecting the behaviour of the protein in its physiological environment. However, our methods did not work with protein components of the nuclear pore complex, suggesting that this approach is not yet universally applicable. We provide a full description of our optimal labelling conditions and other conditions tried, hoping that our work will allow others to label their own proteins of interest and/or improve on the methods we have defined. PMID:25974385

  3. Metallothionein does not sequester arsenic(III) ions in condition of acute arsenic toxicity.

    PubMed

    Garla, Roobee; Ganger, Renuka; Mohanty, Biraja P; Verma, Shivcharan; Bansal, Mohinder P; Garg, Mohan L

    2016-07-29

    The major cause of toxicity of trivalent arsenicals is due to their interaction with the sulfhydryl groups in proteins. Because of its high content, Metallothionein (MT) provides one of the most favorable conditions for the binding of As(III) ions to it. MT has long been anticipated for providing resistance in case of arsenic (As) toxicity with similar mechanism as in case of cadmium toxicity. The present study investigates whether the sequestration of As ions by MT is one of the mechanisms in providing protection against acute arsenic toxicity. A rat model study on the metal stoichiometric analysis of MT1 isoform isolated from the liver of arsenic treated, untreated and zinc treated animals has been carried out using the combination of particle induced X-ray emission (PIXE) and electrospray ionisation mass spectrometry (ESI-MS). The results revealed the absence of arsenic bound MT1 in the samples isolated from arsenic treated animals. Although, both Cu and Zn ions were present in MT1 samples isolated from all the treatment groups. Moreover, only partially metallated MT1 with varying number of Zn ions were observed in all the groups. These results suggest that the role of MT during acute arsenic toxicity is different from its already established role in case of cadmium toxicity. PMID:27523482

  4. Heavy metal pollution in sediments and mussels: assessment by using pollution indices and metallothionein levels.

    PubMed

    Okay, Oya S; Ozmen, Murat; Güngördü, Abbas; Yılmaz, Atilla; Yakan, Sevil D; Karacık, Burak; Tutak, Bilge; Schramm, Karl-Werner

    2016-06-01

    In the present work, the concentration of eight metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn) was determined in the sediments and transplanted and native mussels (Mytilus galloprovincialis). The study was conducted in Turkish marinas, shipyards, and shipbreaking yards. The effect of metal pollution was evaluated by determining the levels of metallothionein (MT) in the mussels. The extent of contamination for each single metal was assessed by using the geoaccumulation index (I geo) and enrichment factor (EF). Whereas, to evaluate the overall metal pollution and effect, the pollution load index (PLI), modified contamination degree (mC d), potential toxicity response index (RI), mean effects range median (ERM) quotient (m-ERM-Q), and mean PEL quotient (m-PEL-Q) were calculated. The influence of different background values on the calculations was discussed. The results indicated a significant metal pollution caused by Cu, Pb, and Zn especially in shipyard and shipbreaking sites. Higher concentrations of MT were observed in the ship/breaking yard samples after the transplantation.

  5. Metallothionein isoform 3 gene is differentially expressed in corticotropin-producing pituitary adenomas.

    PubMed

    Giorgi, R R; Correa-Giannella, M L C; Casarini, A P M; Machado, M C; Bronstein, M D; Cescato, V A; Giannella-Neto, D

    2005-01-01

    In order to search for candidate genes related to pituitary adenoma aggressiveness, the present investigation was intended to compare the mRNA expression profile from a pool of four nonfunctional pituitary adenomas (NFPA) with a spinal cord metastasis of a nonfunctional pituitary carcinoma (MNFPC). The metallothionein isoform 3 (MT3) gene was differentially expressed in nonfunctional adenomas in comparison to the metastasis of nonfunctional carcinoma. A microarray dataset comprising 19,881 probes was employed for comparing expression profiles of a spinal cord metastasis of a nonfunctional pituitary carcinoma with a pool of four nonfunctional pituitary adenomas. RT-qPCR confirmed the microarray findings and was used to investigate MT3 mRNA gene expression in tumor samples of a series of 52 different pituitary adenoma subtypes comprising 10 corticotropin (ACTH)-producing, 18 growth hormone (GH)-producing, 8 prolactin (PRL)-producing, and 16 nonfunctional adenomas. Microarray data analysis by GeneSifter program unveiled Gene Ontology terms related to zinc ion-binding activity closely related to MT3 function. MT3 mRNA expression was statistically significantly higher in ACTH-producing pituitary adenomas and in nonfunctional pituitary adenomas in comparison to the other pituitary adenoma subtypes. The more abundant expression of this gene in ACTH-producing pituitary adenomas suggests that MT3 could be related to distinct pituitary cell lineage regulating the activity of some transcription factor of importance in hormone production and/or secretion. PMID:16601360

  6. Metallothioneins 1 and 2 Modulate Inflammation and Support Remodeling in Ischemic Cardiomyopathy in Mice.

    PubMed

    Duerr, Georg D; Dewald, Daniela; Schmitz, Eva J; Verfuerth, Luise; Keppel, Katharina; Peigney, Christine; Ghanem, Alexander; Welz, Armin; Dewald, Oliver

    2016-01-01

    Aims. Repetitive brief ischemia and reperfusion (I/R) is associated with left ventricular dysfunction during development of ischemic cardiomyopathy. We investigated the role of zinc-donor proteins metallothionein MT1 and MT2 in a closed-chest murine model of I/R. Methods. Daily 15-minute LAD-occlusion was performed for 1, 3, and 7 days in SV129 (WT)- and MT1/2 knockout (MT(-/-))-mice (n = 8-10/group). Hearts were examined with M-mode echocardiography and processed for histological and mRNA studies. Results. Expression of MT1/2 mRNA was transiently induced during repetitive I/R in WT-mice, accompanied by a transient inflammation, leading to interstitial fibrosis with left ventricular dysfunction without infarction. In contrast, MT(-/-)-hearts presented with enhanced apoptosis and small infarctions leading to impaired global and regional pump function. Molecular analysis revealed maladaptation of myosin heavy chain isoforms and antioxidative enzymes in MT1/2(-/-)-hearts. Despite their postponed chemokine induction we found a higher total neutrophil density and macrophage infiltration in small infarctions in MT(-/-)-hearts. Subsequently, higher expression of osteopontin 1 and tenascin C was associated with increased myofibroblast density resulting in predominately nonreversible fibrosis and adverse remodeling in MT1/2(-/-)-hearts. Conclusion. Cardioprotective effects of MT1/2 seem to be exerted via modulation of contractile elements, antioxidative enzymes, inflammatory response, and myocardial remodeling. PMID:27403038

  7. Cloning metallothionein gene in Zacco platypus and its potential as an exposure biomarker against cadmium.

    PubMed

    Lee, Sangwoo; Kim, Cheolmin; Kim, Jungkon; Kim, Woo-Keun; Shin, Hyun Suk; Lim, Eun-Suk; Lee, Jin Wuk; Kim, Sunmi; Kim, Ki-Tae; Lee, Sung-Kyu; Choi, Cheol Young; Choi, Kyungho

    2015-07-01

    Zacco platypus, pale chub, is an indigenous freshwater fish of East Asia including Korea and has many useful characteristics as indicator species for water pollution. While utility of Z. platypus as an experimental species has been recognized, genetic-level information is very limited and warrants extensive research. Metallothionein (MT) is widely used and well-known biomarker for heavy metal exposure in many experimental species. In the present study, we cloned MT in Z. platypus and evaluated its utility as a biomarker for metal exposure. For this purpose, we sequenced complete complementary DNA (cDNA) of MT in Z. platypus and carried out phylogenetic analysis with its sequences. The transcription-level responses of MT gene following the exposure to CdCl2 were also assessed to validate the utility of this gene as an exposure biomarker. Analysis of cDNA sequence of MT gene demonstrated high conformity with those of other fish. MT messenger RNA (mRNA) expression and enzymatic MT content significantly increased following CdCl2 exposure in a concentration-dependent manner. The level of CdCl2 that resulted in significant MT changes in Z. platypus was within the range that was reported from other fish. The MT gene of Z. platypus sequenced in the present study can be used as a useful biomarker for heavy metal exposure in the aquatic environment of Korea and other countries where this freshwater fish species represents the ecosystem. PMID:26092240

  8. An electrophoretic profiling method for thiol-rich phytochelatins and metallothioneins.

    PubMed

    Fan, Teresa W M; Lane, Andrew N; Higashi, Richard M

    2004-01-01

    Thiol-rich peptides such as phytochelatins (PCs) and metallothioneins (MTs) are important cellular chelating agents which function in metal detoxification and/or homeostasis. The variations in molecular sizes and lack of chromophores of these peptides make their analysis difficult. This paper reports an electrophoresis-based method for a broad screen of thiol-rich peptides and proteins. The method uses the thiol-selective fluorescent tag, monobromobimane, coupled with Tricine--sodium dodecyl sulphate--urea polyacrylamide gel electrophoresis for a sensitive determination of both PCs and MTs. Results for PCs were confirmed by two-dimensional NMR and HPLC-tandem MS analyses. Sample throughput is substantially improved over chromatography-based methods through parallel sample analysis in 1 h of electrophoretic separation. The method is versatile in that peptides ranging from glutathione to large proteins can be analysed by simple modification(s) of the extraction and electrophoretic conditions, and the nature of the method supports serendipitous detection of unexpected or novel thiol metabolites.

  9. Localization and Spectroscopic Analysis of the Cu(I) Binding Site in Wheat Metallothionein Ec-1

    PubMed Central

    Tarasava, Katsiaryna; Loebus, Jens; Freisinger, Eva

    2016-01-01

    The early cysteine-labeled metallothionein (MT) from Triticum aestivum (common wheat), denoted Ec-1, features two structurally well-defined domains, γ and βE, coordinating two and four Zn(II) ions, respectively. While the protein is currently assumed to function mainly in zinc homeostasis, a low amount of copper ions was also recently detected in a native Ec-1 sample. To evaluate the observed copper binding in more detail, the recombinant Zn6Ec-1 form was exposed to different amounts of Cu(I) ions and the resulting species characterized with spectroscopic methods. Data reveal that the first Cu(I) equivalent coordinates exclusively to the N-terminal γ-domain of the protein and replaces one Zn(II) ion. To analyze the ability of the γ-domain for coordination of monovalent metal ions in more detail, the γ-Ec-1 peptide fragment was incubated with increasing amounts of Cu(I) and the process monitored with UV–VIS, circular dichroism, and luminescence spectroscopy. Closely similar spectra are observed regardless if the apo- or the metal ion-loaded and, hence, pre-folded forms, were used for the titration experiments with Cu(I). The results indicate that low amounts of Cu(I) ions displace the two metal ions subsequently and stoichiometrically, despite the different coordination geometry requirements of Cu(I) and Zn(II). PMID:26978358

  10. Maternal metallothionein and zinc after acute ethanol exposure during gestation in the rat

    SciTech Connect

    Harris, J.E. )

    1992-02-26

    Acute exposure of the rat fetus to ethanol at critical periods can cause growth retardation and brain damage; the mechanism(s) is not known. Ethanol may cause redistribution of maternal zinc which results in fetal zinc deficiency and subsequent interruption of growth and development. The purpose was to determine if acute ethanol administration to the pregnant rat alters Zn and the Zn binding protein metallothionein (MT) in selected tissues. On gestational day (gd) 14, eighteen pregnant Sprague-Dawley rats were divided into groups. By intragastric tube, ethanol treated dams were given ethanol and pairfed controls were given a 0.85% NaCl solution. On gd 15, intragastric feedings were repeated. Throughout, the Lieber-DeCarli control diet was fed (adlibitum to untreated controls and ethanol treated dams and in appropriate quantities to pair fed controls). Blood ethanol concentrations at 90 minutes after the ethanol dose were 154 {plus minus} 46 and 265 {plus minus} 110 mg% on gd 14 and 15, respectively.

  11. Coordinate amplification of metallothionein I and II gene sequences in cadmium-resistant CHO variants

    SciTech Connect

    Hildebrand, C.E.; Crawford, B.D.; Enger, M.D.

    1983-01-01

    Cadmium-resistanc (Cd/sup r/) variants of the Chinese hamster cell line, CHO, have been derived by stepwise selection for growth in medium containing CdCl/sub 2/. These variants show coordinately increased production of both metallothionein (MT) I and II and were stably resistant to Cd/sup 2 +/ in the absence of continued selection. Genomic DNAs from these Cd/sup r/ sublines were analyzed for both MT gene copy number and MT gene organization, using cDNA sequence probes specific for each of the two Chinese hamster isometallothioneins. These analyses revealed coordinate amplification of MT I and II genes in all Cd/sup r/ variants which had increased copies of MT-encoding sequences. In situ hybridization of an MT-encoding probe to mitotic chromosomes of a Cd/sup r/ variant, which has amplified MT genes at least 14-fold, revealed a single chromosomal site of hybridization. These results suggest that the isoMTs constitute a functionally related gene cluster which amplifies coordinately in response to toxic metal stress.

  12. Metallothioneins and trace elements dyshomeostasis induced by exposure to gasoline vapor in mice.

    PubMed

    Grebić, Damir; Tota, Marin; Jakovac, Hrvoje; Broznić, Dalibor; Marinić, Jelena; Canadi, Gordana; Milin, Cedomila; Radosević-Stasić, Biserka

    2014-03-01

    To investigate the effects of air pollution related with the gasoline/petrochemical industry the expression of metallothionein I (MT-I) mRNA and tissue metals were analyzed in organs of mice, exposed to gasoline (G) vapor in laboratory conditions. Control groups consisted of intact mice and of those exposed in the metabolic chamber to fresh air. The data obtained by RT-PCR and inductively coupled plasma spectrometry have shown that exposure to G vapor leads to upregulation of MT-I mRNA in organs that receive a strong respiratory and olfactory input or participate in gasoline degradation and elimination (lungs, brain, kidney and liver). Besides, in the brain and in the lungs, kidney and liver a decreased tissue content of Zn²⁺ or Cu²⁺ and Mg²⁺ was found (p<0.001). Some of these changes were obtained also in mice closed in the metabolic chamber, pointing to the involvement of stress-induced mechanisms in the transcriptional regulation of MTs.

  13. The metallothionein gene from the white shrimp Litopenaeus vannamei: characterization and expression in response to hypoxia.

    PubMed

    Felix-Portillo, Monserrath; Martinez-Quintana, José A; Peregrino-Uriarte, Alma B; Yepiz-Plascencia, Gloria

    2014-10-01

    Aquatic animals encounter variation in oxygen tension that leads to the accumulation of reactive oxygen species (ROS) that can harm the organisms. Under these circumstances some organisms have evolved to tolerate hypoxia. In mammals, metallothioneins (MTs) protect against hypoxia-generated ROS. Here we report the MT gene from the shrimp Litopenaeus vannamei (LvMT). LvMT is differentially expressed in hemocytes, intestine, gills, pleopods, heart, hepatopancreas and muscle, with the highest levels in hepatopancreas and heart. LvMT mRNA increases during hypoxia in hepatopancreas and gills after 3 h at 1.5 mg L(-1) dissolved oxygen (DO). This gene structure resembles the homologs from invertebrates and vertebrates possessing three exons, two introns and response elements for metal response transcription factor 1 (MTF-1), hypoxia-inducible factor 1 (HIF-1) and p53 in the promoter region. During hypoxia, HIF-1/MTF-1 might participate inducing MT to contribute towards the tolerance to ROS toxicity. MT importance in aquatic organisms may include also ROS-detoxifying processes.

  14. The effects of cadmium of the growth and metallothionein expression of the bivalve larvae, crassostrea virginica

    SciTech Connect

    Craig, K.D.; Burnett, K.; Ringwood, A.; MacDougal, K.; Kendall, L.

    1994-12-31

    Oyster larvae, Crassostrea virginica, were exposed to 20 ppb of cadmium (Cd) and fed (mixture of Isochrysis galbana & Chaetoceros gracilis, 40mL) in the laboratory for 10 days. On the 0, 4, 7 and 10 day the larvae samples were taken and frozen. Then they were homogenized, centrifuged, ultrafiltered through a membrane separation technique used to segregate substances according to the molecular weight and size. The cytosolic protein was first partially purified by gel permeation, then by PAGE (Polyacrylamide Gel Electrophoresis). The controls and metal exposed larvae were evaluated on total wet weight and the metallothioneins (MT) were identified from the preparations using silver staining techniques. No significant changes could be detected in the controls. However, there was a great number dead at the beginning of the experiment. Cd accumulation began at the time of exposure. This suggests that surface area may play a role in determining short-term accumulation rates. Cd effects on growth (wet weight) was slightly different, the exposed weighed less than or equal to the controls. In addition, the Cd uptake via food played an insignificant role compared to direct uptake from sea water. Between day 0 and 7 there was a number of mortalities for the controls and exposed. In addition, there was a major weight change with the exposed, they appeared to weigh less than the controls on day 7, whereas on day 4 they weighed more. So weight is a very sensitive indicator of toxic stress.

  15. Transcriptional Induction of Metallothionein by Tris(pentafluorophenyl)stibane in Cultured Bovine Aortic Endothelial Cells.

    PubMed

    Fujie, Tomoya; Murakami, Masaki; Yoshida, Eiko; Yasuike, Shuji; Kimura, Tomoki; Fujiwara, Yasuyuki; Yamamoto, Chika; Kaji, Toshiyuki

    2016-01-01

    Vascular endothelial cells cover the luminal surface of blood vessels and contribute to the prevention of vascular disorders such as atherosclerosis. Metallothionein (MT) is a low molecular weight, cysteine-rich, metal-binding, inducible protein, which protects cells from the toxicity of heavy metals and active oxygen species. Endothelial MT is not induced by inorganic zinc. Adequate tools are required to investigate the mechanisms underlying endothelial MT induction. In the present study, we found that an organoantimony compound, tris(pentafluorophenyl)stibane, induces gene expression of MT-1A and MT-2A, which are subisoforms of MT in bovine aortic endothelial cells. The data reveal that MT-1A is induced by activation of both the MTF-1-MRE and Nrf2-ARE pathways, whereas MT-2A expression requires only activation of the MTF-1-MRE pathway. The present data suggest that the original role of MT-1 is to protect cells from heavy metal toxicity and oxidative stress in the biological defense system, while that of MT-2 is to regulate intracellular zinc metabolism. PMID:27563876

  16. Transcriptional Induction of Metallothionein by Tris(pentafluorophenyl)stibane in Cultured Bovine Aortic Endothelial Cells

    PubMed Central

    Fujie, Tomoya; Murakami, Masaki; Yoshida, Eiko; Yasuike, Shuji; Kimura, Tomoki; Fujiwara, Yasuyuki; Yamamoto, Chika; Kaji, Toshiyuki

    2016-01-01

    Vascular endothelial cells cover the luminal surface of blood vessels and contribute to the prevention of vascular disorders such as atherosclerosis. Metallothionein (MT) is a low molecular weight, cysteine-rich, metal-binding, inducible protein, which protects cells from the toxicity of heavy metals and active oxygen species. Endothelial MT is not induced by inorganic zinc. Adequate tools are required to investigate the mechanisms underlying endothelial MT induction. In the present study, we found that an organoantimony compound, tris(pentafluorophenyl)stibane, induces gene expression of MT-1A and MT-2A, which are subisoforms of MT in bovine aortic endothelial cells. The data reveal that MT-1A is induced by activation of both the MTF-1–MRE and Nrf2–ARE pathways, whereas MT-2A expression requires only activation of the MTF-1–MRE pathway. The present data suggest that the original role of MT-1 is to protect cells from heavy metal toxicity and oxidative stress in the biological defense system, while that of MT-2 is to regulate intracellular zinc metabolism. PMID:27563876

  17. Proteome analysis of gametophores identified a metallothionein involved in various abiotic stress responses in Physcomitrella patens.

    PubMed

    Cho, Sung Hyun; Hoang, Quoc Truong; Kim, Yoon Young; Shin, Hyun Young; Ok, Sung Han; Bae, Jung Myung; Shin, Jeong Sheop

    2006-05-01

    Physcomitrella patens is a model plant for studying gene function using a knockout strategy. To establish a proteome database for P. patens, we resolved over 1,500 soluble proteins from gametophore and protonema tissues by two-dimensional electrophoresis (2-DE) and obtained peptide mass fingerprints (PMFs) by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Using expressed sequence tags (ESTs), we were able to predict the identities of 90 protein spots. Most of these were related to energy or primary metabolism. Comparative proteome analysis was used to identify proteins specific for each of the tissue types. One of these was a metallothionein type-2 (PpMT2) protein that was highly upregulated in gametophore tissue. PpMT2 was induced in both the gametophore and protonema following culture on solid media and in response to various abiotic stresses such as copper, cadmium, cold, indole-3-acetic acid, and ethylene. We suggest that PpMT2 is not only involved in metal binding and detoxification, but also in many biological aspects as a metal messenger or a protein with additional functions.

  18. Zn tolerance of novel Colocasia esculenta metallothionein and its domains in Escherichia coli and tobacco.

    PubMed

    Kim, Yeon-Ok; Lee, Yoon Gyo; Patel, Darshan H; Kim, Ho Myeong; Ahn, Sung-Ju; Bae, Hyeun-Jong

    2012-11-01

    Contrary to extensive researches on the roles of metallothioneins (MTs) in metal tolerance of animals, the roles of plant MTs in metal tolerance are largely under investigation. In this study, we evaluated the functional role of type 2 MT from Colocasia esculenta (CeMT2b) in Zn tolerance of tobacco and E. coli cells. Under Zn-stress conditions, transgenic tobacco overexpressing CeMT2b displayed much better seedling growth, a significant decrease in the levels of H(2)O(2) and an increase in Zn accumulation compared with the wild type. Overexpression of CeMT2b in E. coli greatly enhanced Zn tolerance and Zn accumulation under Zn stresses compared with control cells. CeMT2b bound 5.38 ± 0.29 atoms of Zn per protein. To identify a structural domain of CeMT2b for Zn binding, we investigated the growth of E. coli expressing each of the N-terminal, C-terminal, and central linker domains or a CNC motif deletion from the C-terminus of full-length CeMT2b. The results showed that the CNC motif is required for Zn tolerance, and the N-terminal domain is more effective in Zn tolerance than the C-terminal domain. Taken together, our results provide direct evidence for functional contributions of CeMT2b in Zn tolerance of tobacco and E. coli cells. PMID:22610130

  19. Metallothionein in the central nervous system: roles in protection, regeneration and cognition

    PubMed Central

    West, Adrian K.; Hidalgo, Juan; Eddins, Donnie; Levin, Edward D.; Aschner, Michael

    2008-01-01

    Metallothionein (MT) is an enigmatic protein, and its physiological role remains a matter of intense study and debate fifty years after its discovery. This is particularly true of its function in the central nervous system (CNS), where the challenge remains to link its known biochemical properties of metal binding and free radical scavenging to the intricate workings of brain. In this compilation of four reports, first delivered at the 11th International Neurotoxicology Association (INA-11) meeting, June 2007, the authors present the work of their laboratories, each of which gives an important insight into the actions of MT in the brain. What emerges is that MT has the potential to contribute to a variety of processes, including neuroprotection, regeneration, and even cognitive functions. In this article, the properties and CNS expression of MT are briefly reviewed before Dr Juan Hidalgo describes his pioneering work using transgenic models of MT expression to demonstrate how this protein plays a major role in the defence of the CNS against neurodegenerative disorders and other CNS injuries. His group’s work leads to two further questions, what are the mechanisms at the cellular level by which MT acts, and does this protein influence higher order issues of architecture and cognition. These topics are addressed in the second and third sections of this review by Dr Adrian West, and Drs Edward Levin and Donnie Eddins, respectively. Finally, Dr Michael Aschner examines the ability of MT to protect against a specific toxicant, methymercury, in the CNS. PMID:18313142

  20. Metallothionein-3 Increases Triple-Negative Breast Cancer Cell Invasiveness via Induction of Metalloproteinase Expression

    PubMed Central

    Suchanski, Jaroslaw; Olbromski, Mateusz; Gomulkiewicz, Agnieszka; Owczarek, Tomasz; Kruczak, Anna; Ambicka, Aleksandra; Rys, Janusz; Ugorski, Maciej; Podhorska-Okolow, Marzena; Dziegiel, Piotr

    2015-01-01

    It has been recently found that metallothionein-3 (MT3) enhances the invasiveness and tumorigenesis of prostate cancer cells. This finding is in contrast to those of earlier studies, which indicated that overexpression of MT3 in breast cancer and prostate cancer cell lines inhibits their growth in vitro. Therefore, to clarify the role of MT3 in breast cancer progression, we analyzed the effect of MT3-overexpression on proliferation, invasiveness, migration, and tumorigenesis of breast cancer MDA-MB-231/BO2 cells. It was found that MDA-MB-231/BO2 cells overexpressing MT3 were characterized by increased invasiveness in vitro, compared to the control cells. Interestingly, this increased invasiveness correlated with a highly increased concentration of MMP3 in the culture supernatants (p<0.0001). Our data suggest that MT3 may regulate breast cancer cell invasiveness by modulating the expression of MMP3. These experimental results, obtained using triple-negative MDA-MB-231/BO2 cells, were further supported by clinical data. It was found that, in triple-negative breast cancer (TNBC), nuclear MT3 immunoreactivity in cancer cells tended to be associated with patients’ shorter disease-specific survival, suggesting that nuclear MT3 expression may be a potential marker of poor prognosis of triple-negative TNBC cases. PMID:25933064

  1. Lymphocytic infiltration and immune activation in metallothionein promoter-exendin-4 (MT-Exendin) transgenic mice.

    PubMed

    Baggio, Laurie L; Holland, Dianne; Wither, Joan; Drucker, Daniel J

    2006-06-01

    Glucagon-like peptide 1 (GLP-1) exhibits considerable potential for the treatment of type 2 diabetes because of its effects on stimulation of insulin secretion and the inhibition of gastric emptying, appetite, and glucagon secretion. However, native GLP-1 undergoes rapid enzymatic inactivation, prompting development of long-acting degradation-resistant GLP-1 receptor agonists such as exendin-4 (Ex-4). To study the consequences of sustained exposure to Ex-4, we generated metallothionein promoter-exendin-4 (MT-Exendin) mice that continuously express a proexendin-4 transgene in multiple murine tissues. We now report that MT-Exendin mice develop extensive tissue lymphocytic infiltration with increased numbers of CD4(+) and CD8a(+) cells in the liver and/or kidney and increased numbers of B220(+) cells present in the pancreas and liver. MT-Exendin mice generate antibodies directed against Ex-4, exendin NH(2)-terminal peptide (ENTP), and proexendin-4 as well as antibodies that cross-react with native GLP-1. Furthermore, lymphocytes isolated from MT-Exendin mice proliferate in response to proexendin-4 but not after exposure to Ex-4 or ENTP. These findings demonstrate that expression of a proexendin-4 transgene may be associated with activation of humoral and cellular immune responses in mice.

  2. Expression of a Neurospora crassa metallothionein and its variants in Escherichia coli

    SciTech Connect

    Romeyer, F.M.; Jacobs, F.A.; Brousseau, R. )

    1990-09-01

    The Neurospora crassa metallothionein (NC) synthesis gene was cloned and expressed in Escherichia coli in two different expression vectors (pING2 and pUA7), both under the regulation of the Salmonella typhimurium arabinose operon. Upon induction with arabinose, the pING2-NC vector expressed as inclusion body-localized AraB{prime}::NC fusion protein of 21 kilodaltons. The pUA7-NC vector expressed a 5.3 kilodalton Lpp::NC fusion protein anchored to the outer membrane of the cell. Cells expressing the NC fusion proteins accumulated Cd{sup 2+} and Cu{sup +} (between 2.3- and 11-fold) compared with nonexpressing cells. To generate novel forms of metal-binding peptides, a set of specific mutant genes for N. crassa NC was designed in which each cysteine residue was replaced with a subset of amino acids implicated in peptide-metal coordination (Asn, Asp, His, Lys, or Tyr residues). These mutant NC sequences were cloned into the two vectors and expressed in E. coli. One of the mutant proteins (containing His residues) showed accumulation of Cd{sup 2+} and Cu{sup +} (threefold) from a mixture of 16 heavy metals species. None of the other heavy metals present in the culture was accumulated.

  3. Heavy metal pollution in sediments and mussels: assessment by using pollution indices and metallothionein levels.

    PubMed

    Okay, Oya S; Ozmen, Murat; Güngördü, Abbas; Yılmaz, Atilla; Yakan, Sevil D; Karacık, Burak; Tutak, Bilge; Schramm, Karl-Werner

    2016-06-01

    In the present work, the concentration of eight metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn) was determined in the sediments and transplanted and native mussels (Mytilus galloprovincialis). The study was conducted in Turkish marinas, shipyards, and shipbreaking yards. The effect of metal pollution was evaluated by determining the levels of metallothionein (MT) in the mussels. The extent of contamination for each single metal was assessed by using the geoaccumulation index (I geo) and enrichment factor (EF). Whereas, to evaluate the overall metal pollution and effect, the pollution load index (PLI), modified contamination degree (mC d), potential toxicity response index (RI), mean effects range median (ERM) quotient (m-ERM-Q), and mean PEL quotient (m-PEL-Q) were calculated. The influence of different background values on the calculations was discussed. The results indicated a significant metal pollution caused by Cu, Pb, and Zn especially in shipyard and shipbreaking sites. Higher concentrations of MT were observed in the ship/breaking yard samples after the transplantation. PMID:27188302

  4. Expression analysis of type 2 metallothionein gene in mangrove species (Bruguiera gymnorrhiza) under heavy metal stress.

    PubMed

    Huang, Guo-Yong; Wang, You-Shao

    2009-11-01

    In this paper, we aimed to assess the roles of metallothioneins (MTs) in heavy metal tolerance by analyzing the expression level of BgMT2 in leaves of Bruguiera gymnorrhiza in response to heavy metals. Eight-month-old B. gymnorrhiza seedlings were exposed to different concentrations of zinc (Zn), copper (Cu) or lead (Pb) for 1, 3 and 7 d. A Real-time quantitative PCR protocol was developed to directly evaluate the expression of BgMT2, using 18S rRNA as a reference gene. Real-time quantitative PCR analysis demonstrated BgMT2 mRNA expression was regulated by Zn, Cu and Pb, but the regulation pattern was different for the three metals tested. Significant increase in the transcript level of BgMT2 was also found in response to Zn, Cu and Pb in some experimental conditions. Our results confirm that BgMT2 gene is involved in the regulation of Zn, Cu and Pb in B. gymnorrhiza leaves.

  5. Localization and Spectroscopic Analysis of the Cu(I) Binding Site in Wheat Metallothionein Ec-1.

    PubMed

    Tarasava, Katsiaryna; Loebus, Jens; Freisinger, Eva

    2016-01-01

    The early cysteine-labeled metallothionein (MT) from Triticum aestivum (common wheat), denoted Ec-1, features two structurally well-defined domains, γ and βE, coordinating two and four Zn(II) ions, respectively. While the protein is currently assumed to function mainly in zinc homeostasis, a low amount of copper ions was also recently detected in a native Ec-1 sample. To evaluate the observed copper binding in more detail, the recombinant Zn₆Ec-1 form was exposed to different amounts of Cu(I) ions and the resulting species characterized with spectroscopic methods. Data reveal that the first Cu(I) equivalent coordinates exclusively to the N-terminal γ-domain of the protein and replaces one Zn(II) ion. To analyze the ability of the γ-domain for coordination of monovalent metal ions in more detail, the γ-Ec-1 peptide fragment was incubated with increasing amounts of Cu(I) and the process monitored with UV-VIS, circular dichroism, and luminescence spectroscopy. Closely similar spectra are observed regardless if the apo- or the metal ion-loaded and, hence, pre-folded forms, were used for the titration experiments with Cu(I). The results indicate that low amounts of Cu(I) ions displace the two metal ions subsequently and stoichiometrically, despite the different coordination geometry requirements of Cu(I) and Zn(II). PMID:26978358

  6. Isolation and characterization of metallothioneins in calves ingesting Zn toxic diets

    SciTech Connect

    Graham, T.W.; Clegg, M.S.; Lonnerdal, B.; Thurmond, M.C.; Keen, C.L.

    1986-03-05

    The authors have recently described an outbreak of Zn toxicosis in 95 Holstein bull calves which occurred as a result of an accidental over-supplementation of the diet with Zn. Signs of Zn toxicosis including anorexia, polydipsia, polyphagia, polyurea and diarrhea, began to appear 23 days after initiation of the diet. Liver, kidney, muscle and brain were collected from animals that died or were euthanized. Multielement analysis indicated that liver had the highest concentration of Zn (362 ..mu..g Zn/g wet wt.) followed by kidney (233 ..mu..g Zn/g wet wt.), muscle (22 ..mu..g Zn/g wet wt.) and brain (10 ..mu..g Zn/g wet wt.). To examine the toxic effects of Zn at the molecular level, liver was fractionated by conventional molecular sieve (Sephadex G75) and anion exchange chromatography (DEAE Sephadex A-25). In addition, Fast Protein Liquid Chromatography (FPLC) was used to verify the results obtained by conventional methods. The principle advantages of FPLC are that the molecular sieve (Superose 12) and anion (Mono Q) steps are performed in 1 h as opposed to several hours, thus substantially minimizing artifacts resulting from oxidative degradation of labile proteins. Zn was primarily associated with two peaks, designated metallothionein (MT) I and MT II, in a ratio of 10 to 1. The results show that one effect of Zn toxicity in calves can be a preferential induction of MT I.

  7. Assessing Gravitropic Responses in Arabidopsis.

    PubMed

    Barker, Richard; Cox, Benjamin; Silber, Logan; Sangari, Arash; Assadi, Amir; Masson, Patrick

    2016-01-01

    Arabidopsis thaliana was the first higher organism to have its genome sequenced and is now widely regarded as the model dicot. Like all plants, Arabidopsis develops distinct growth patterns in response to different environmental stimuli. This can be seen in the gravitropic response of roots. Methods to investigate this particular tropism are presented here. First, we describe a high-throughput time-lapse photographic analysis of root growth and curvature response to gravistimulation allowing the quantification of gravitropic kinetics and growth rate at high temporal resolution. Second, we present a protocol that allows a quantitative evaluation of gravitropic sensitivity using a homemade 2D clinostat. Together, these approaches allow an initial comparative analysis of the key phenomena associated with root gravitropism between different genotypes and/or accessions. PMID:26867611

  8. Asparagine Metabolic Pathways in Arabidopsis.

    PubMed

    Gaufichon, Laure; Rothstein, Steven J; Suzuki, Akira

    2016-04-01

    Inorganic nitrogen in the form of ammonium is assimilated into asparagine via multiple steps involving glutamine synthetase (GS), glutamate synthase (GOGAT), aspartate aminotransferase (AspAT) and asparagine synthetase (AS) in Arabidopsis. The asparagine amide group is liberated by the reaction catalyzed by asparaginase (ASPG) and also the amino group of asparagine is released by asparagine aminotransferase (AsnAT) for use in the biosynthesis of amino acids. Asparagine plays a primary role in nitrogen recycling, storage and transport in developing and germinating seeds, as well as in vegetative and senescence organs. A small multigene family encodes isoenzymes of each step of asparagine metabolism in Arabidopsis, except for asparagine aminotransferase encoded by a single gene. The aim of this study is to highlight the structure of the genes and encoded enzyme proteins involved in asparagine metabolic pathways; the regulation and role of different isogenes; and kinetic and physiological properties of encoded enzymes in different tissues and developmental stages. PMID:26628609

  9. Metabolic profiling of Arabidopsis thaliana epidermal cells

    PubMed Central

    Ebert, Berit; Zöller, Daniela; Erban, Alexander; Fehrle, Ines; Hartmann, Jürgen; Niehl, Annette; Kopka, Joachim; Fisahn, Joachim

    2010-01-01

    Metabolic phenotyping at cellular resolution may be considered one of the challenges in current plant physiology. A method is described which enables the cell type-specific metabolic analysis of epidermal cell types in Arabidopsis thaliana pavement, basal, and trichome cells. To achieve the required high spatial resolution, single cell sampling using microcapillaries was combined with routine gas chromatography-time of flight-mass spectrometry (GC-TOF-MS) based metabolite profiling. The identification and relative quantification of 117 mostly primary metabolites has been demonstrated. The majority, namely 90 compounds, were accessible without analytical background correction. Analyses were performed using cell type-specific pools of 200 microsampled individual cells. Moreover, among these identified metabolites, 38 exhibited differential pool sizes in trichomes, basal or pavement cells. The application of an independent component analysis confirmed the cell type-specific metabolic phenotypes. Significant pool size changes between individual cells were detectable within several classes of metabolites, namely amino acids, fatty acids and alcohols, alkanes, lipids, N-compounds, organic acids and polyhydroxy acids, polyols, sugars, sugar conjugates and phenylpropanoids. It is demonstrated here that the combination of microsampling and GC-MS based metabolite profiling provides a method to investigate the cellular metabolism of fully differentiated plant cell types in vivo. PMID:20150518

  10. Large-scale atlas of microarray data reveals biological landscape of gene expression in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcriptome datasets from thousands of samples of the model plant Arabidopsis thaliana have been collectively generated by multiple individual labs. Although integration and meta-analysis of these samples has become routine in the plant research community, it is often hampered by the lack of metad...

  11. The Arabidopsis CDPK-SnRK superfamily of protein kinases.

    PubMed

    Hrabak, Estelle M; Chan, Catherine W M; Gribskov, Michael; Harper, Jeffrey F; Choi, Jung H; Halford, Nigel; Kudla, Jorg; Luan, Sheng; Nimmo, Hugh G; Sussman, Michael R; Thomas, Martine; Walker-Simmons, Kay; Zhu, Jian-Kang; Harmon, Alice C

    2003-06-01

    The CDPK-SnRK superfamily consists of seven types of serine-threonine protein kinases: calcium-dependent protein kinase (CDPKs), CDPK-related kinases (CRKs), phosphoenolpyruvate carboxylase kinases (PPCKs), PEP carboxylase kinase-related kinases (PEPRKs), calmodulin-dependent protein kinases (CaMKs), calcium and calmodulin-dependent protein kinases (CCaMKs), and SnRKs. Within this superfamily, individual isoforms and subfamilies contain distinct regulatory domains, subcellular targeting information, and substrate specificities. Our analysis of the Arabidopsis genome identified 34 CDPKs, eight CRKs, two PPCKs, two PEPRKs, and 38 SnRKs. No definitive examples were found for a CCaMK similar to those previously identified in lily (Lilium longiflorum) and tobacco (Nicotiana tabacum) or for a CaMK similar to those in animals or yeast. CDPKs are present in plants and a specific subgroup of protists, but CRKs, PPCKs, PEPRKs, and two of the SnRK subgroups have been found only in plants. CDPKs and at least one SnRK have been implicated in decoding calcium signals in Arabidopsis. Analysis of intron placements supports the hypothesis that CDPKs, CRKs, PPCKs and PEPRKs have a common evolutionary origin; however there are no conserved intron positions between these kinases and the SnRK subgroup. CDPKs and SnRKs are found on all five Arabidopsis chromosomes. The presence of closely related kinases in regions of the genome known to have arisen by genome duplication indicates that these kinases probably arose by divergence from common ancestors. The PlantsP database provides a resource of continuously updated information on protein kinases from Arabidopsis and other plants.

  12. Genetic Architecture of Natural Variation in Thermal Responses of Arabidopsis.

    PubMed

    Sanchez-Bermejo, Eduardo; Zhu, Wangsheng; Tasset, Celine; Eimer, Hannes; Sureshkumar, Sridevi; Singh, Rupali; Sundaramoorthi, Vignesh; Colling, Luana; Balasubramanian, Sureshkumar

    2015-09-01

    Wild strains of Arabidopsis (Arabidopsis thaliana) exhibit extensive natural variation in a wide variety of traits, including response to environmental changes. Ambient temperature is one of the major external factors that modulates plant growth and development. Here, we analyze the genetic architecture of natural variation in thermal responses of Arabidopsis. Exploiting wild accessions and recombinant inbred lines, we reveal extensive phenotypic variation in response to ambient temperature in distinct developmental traits such as hypocotyl elongation, root elongation, and flowering time. We show that variation in thermal response differs between traits, suggesting that the individual phenotypes do not capture all the variation associated with thermal response. Genome-wide association studies and quantitative trait locus analyses reveal that multiple rare alleles contribute to the genetic architecture of variation in thermal response. We identify at least 20 genomic regions that are associated with variation in thermal response. Further characterizations of temperature sensitivity quantitative trait loci that are shared between traits reveal a role for the blue-light receptor CRYPTOCHROME2 (CRY2) in thermosensory growth responses. We show the accession Cape Verde Islands is less sensitive to changes in ambient temperature, and through transgenic analysis, we demonstrate that allelic variation at CRY2 underlies this temperature insensitivity across several traits. Transgenic analyses suggest that the allelic effects of CRY2 on thermal response are dependent on genetic background suggestive of the presence of modifiers. In addition, our results indicate that complex light and temperature interactions, in a background-dependent manner, govern growth responses in Arabidopsis. PMID:26195568

  13. Effect of metallothionein 2A gene polymorphism on allele-specific gene expression and metal content in prostate cancer

    SciTech Connect

    Krześlak, Anna; Forma, Ewa; Jóźwiak, Paweł; Szymczyk, Agnieszka; Bryś, Magdalena

    2013-05-01

    Metallothioneins (MTs) are highly conserved, small molecular weight, cysteine rich proteins. The major physiological functions of metallothioneins include homeostasis of essential metals Zn and Cu and protection against cytotoxicity of heavy metals. The aim of this study was to determine whether there is an association between the − 5 A/G single nucleotide polymorphism (SNP; rs28366003) in core promoter region and expression of metallothionein 2A (MT2A) gene and metal concentration in prostate cancer tissues. MT2A polymorphism was determined by the polymerase chain reaction–restriction fragment length polymorphism technique (PCR–RFLP) using 412 prostate cancer tissue samples. MT2A gene expression analysis was performed by real-time RT-PCR method. A significant association between rs28366003 genotype and MT2A expression level was found. The average mRNA level was found to be lower among minor allele carriers (the risk allele) than average expression among homozygotes for the major allele. Metal levels were analyzed by flamed atomic absorption spectrometer system. Highly statistically significant associations were detected between the SNP and Cd, Zn, Cu and Pb levels. The results of Spearman's rank correlation showed that the expressions of MT2A and Cu, Pb and Ni concentrations were negatively correlated. On the basis of the results obtained in this study, we suggest that SNP polymorphism may affect the MT2A gene expression in prostate and this is associated with some metal accumulation. - Highlights: • MT2A gene expression and metal content in prostate cancer tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd, Zn, Cu and Pb levels • Negative correlation between MT2A gene expression and Cu, Pb and Ni levels.

  14. Copper-metallothioneins in the American lobster, Homarus americanus: potential role as Cu(I) donors to apohemocyanin.

    PubMed Central

    Brouwer, M; Whaling, P; Engel, D W

    1986-01-01

    The physiological function of copper(I)-metallothionein is not well understood. The respiratory function of hemocyanin, a copper(I)-containing respiratory protein found in the hemolymph of many invertebrates, has been known a long time. However, the mechanism by which Cu(I) is inserted into the oxygen-binding site of apohemocyanin is completely unknown. This investigation tests the hypothesis that copper(I)-metallothionein may act as a Cu(I) donor to apohemocyanin. To this end, copper-binding proteins and hemocyanin were purified from the digestive gland and hemolymph of the American lobster, Homarus americanus. In the presence of beta-mercaptoethanol, the copper-binding proteins can be resolved into three components on DEAE-cellulose. The first two have been characterized as metallothioneins, based on their high cysteine content and lack of aromatic amino acid residues. The cysteine content of the third component is half of that of components I and II. In the absence of beta-mercaptoethanol the three proteins elute as a single protein complex during ion-exchange chromatography. Components I and II show a strong tendency to polymerize, a process that is accompanied by the loss of protein-bound copper. The purified proteins are not capable of transferring Cu(I) to the active sites of completely copper-free apohemocyanin. They are capable, however, of transferring Cu(I) to active sites of hemocyanin containing reduced amounts of Cu(I), suggesting that the conformational state of hemocyanin is the determining factor in the Cu(I) transfer mechanism. PMID:3709470

  15. Time-dependent Changes of Cadmium and Metallothionein after Short-term Exposure to Cadmium in Rats

    PubMed Central

    Cho, Mi Ran; Jeong, Sang-Hee; Cho, Myung Haing

    2010-01-01

    The time-dependent changes in cadmium (Cd) concentration were studied in Female Sprague-Dawley (SD) rats during and after Cd exposure via drinking water (10 and 50 ppm) for 30 days. The cadmium concentration in muscle, liver, kidney, blood plasma, and urine, and the metallothionein concentration in blood plasma were determined every 10 days during exposure and every 7 days after exposure for 3 weeks. The muscle Cd concentration did not change during, and neither after, exposure. The liver Cd concentration increased from 1.4 to 3.3 (at 10 ppm) and from 6.1 to 10.1 folds (at 50 ppm) during exposure and remained higher than those of controls in both groups even during post-exposure period. The kidney Cd concentrations were 2.3 to 5.1 (at 10 ppm) and 4.9-14.0 folds (at 50 ppm) higher than those of controls during exposure and also remained elevated during the post-exposure period. Plasma Cd concentrations were not significantly different from those of controls in both groups. Urine Cd concentrations were more than 2 folds (at 10 ppm) and 6.5 to 12.6 folds (at 50 ppm) higher than those of controls but rapidly decreased over the 7 days of withdrawal. Blood plasma metallothionein concentrations were more than 2.4 folds (at 10 ppm) and 3.1 to 7.4 folds (at 50 ppm) , and they remained elevated till 7 days (10 ppm) and 14 days (at 50 ppm) after exposure. Our data support that Cd in urine could be a useful biomarker during Cd exposure period and metallothionein in blood plasma could be as a supportive biological marker for during and post Cd exposure. PMID:24278516

  16. Multiple forms of metallothionein from the digestive gland of naturally occurring and cadmium-exposed mussels, Mytilus galloprovincialis

    NASA Astrophysics Data System (ADS)

    Ivanković, Dušica; Pavičić, Jasenka; Kozar, Sonja; Raspor, Biserka

    2002-06-01

    Polymorphism of metallothioneins in the digestive gland of naturally occurring (control) and experimentally Cd-exposed mussels Mytilus galloprovincialis (200 µg Cd l-1; 14 days) was studied by applying the conventional methods of Sephadex column liquid chromatography (G-75 and DEAE A-25), and by an electrochemical method (DPASV) for determination of Cd, Zn and Cu concentrations in chromatographic fractions. In both control and Cd-exposed mussels, two distinct molecular mass components of the metallothioneins, monomeric (MT-10) and dimeric (MT-20), were resolved by Sephadex G-75 gel filtration chromatography. In control mussels, the MT-10 component was predominantly expressed as containing markedly higher constitutive levels of Zn (100×) and Cu (10×) than of Cd. Each of these two molecular mass components was further resolved into seven metal-rich peaks by anion-exchange chromatography. In Cd-exposed mussels the larger proportion of Cd was bound to the MT-20 than to the MT-10 component, suggesting that the dimeric component may be considered as a primarily inducible metallothionein. The elution positions of metal-binding maxima of Cd-exposed and control mussels on the respective DEAE chromatographic profiles were comparable. A great similarity in elution positions of Cd maxima between the composite and single-specimen samples was also observed. Our study confirms a high multiplicity of MT forms in mussels from the Mytilus genus not only under the laboratory high-level metal exposure conditions, but also at a natural seawater metal exposure level. The ecotoxicological significance of dimeric and monomeric MT forms, as well as their possible application in the biomonitoring of seawater for trace metals, has been considered.

  17. Using "Arabidopsis" Genetic Sequences to Teach Bioinformatics

    ERIC Educational Resources Information Center

    Zhang, Xiaorong

    2009-01-01

    This article describes a new approach to teaching bioinformatics using "Arabidopsis" genetic sequences. Several open-ended and inquiry-based laboratory exercises have been designed to help students grasp key concepts and gain practical skills in bioinformatics, using "Arabidopsis" leucine-rich repeat receptor-like kinase (LRR RLK) genetic…

  18. Social Individualism.

    ERIC Educational Resources Information Center

    Cornille, Thomas A.; Harrigan, John

    Relationships between individuals and society have often been presented from the perspective of the social institution. Social psychology has addressed the variables that affect the individual in relationships with larger groups. Social individualism is a conceptual framework that explores the relationship of the individual and society from the…

  19. An International Bioinformatics Infrastructure to Underpin the Arabidopsis Community

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The future bioinformatics needs of the Arabidopsis community as well as those of other scientific communities that depend on Arabidopsis resources were discussed at a pair of recent meetings held by the Multinational Arabidopsis Steering Committee (MASC) and the North American Arabidopsis Steering C...

  20. Metallothionein-Like Proteins and Energy Reserve Levels after Ni and Pb Exposure in the Pacific White Prawn Penaeus vannamei

    PubMed Central

    Nunez-Nogueira, Gabriel; Mouneyrac, Catherine; Muntz, Alice; Fernandez-Bringas, Laura

    2010-01-01

    This study analyzed the changes in metallothionein-like proteins (MTLPs) and Energy Reserves (ERs) in hepatopancreas and abdominal muscle of the white prawn Penaeus vannamei. Realistic metal concentration exposure for 10 days to Ni and Pb in solution revealed that juvenile prawns partially induce MTLP in hepatopancreas after Pb exposure. Ni was distributed equally between soluble and insoluble fractions, while Pb was present only in the insoluble fraction, suggesting different detoxification strategy. No changes in lipids and glycogen concentration were detected under these experimental conditions in both tissues analyzed. MTLP could not be considered as a suitable indicator for lead exposure in hepatopancreas. PMID:20862200

  1. Isolation, molecular characterization and functional analysis of OeMT2, an olive metallothionein with a bioremediation potential.

    PubMed

    Dundar, Ekrem; Sonmez, Görkem Deniz; Unver, Turgay

    2015-02-01

    Metallothioneins are essential in plants for metal detoxification in addition to their other roles in plant life cycle. This study reports the characterization of an olive (Olea europaea L. cv. Ayvalik) metallothionein with respect to molecular and functional properties. A cDNA encoding a type 2 metallothionein from olive was isolated from a leaf cDNA library, characterized and named OeMT2 after its molecular and functional properties. OeMT2 was expressed in Escherichia coli, and a single protein band was confirmed by protein gel blot analysis. Metal tolerance ability of bacterial cells expressing OeMT2 was determined against 0.2 mM CdCl2, 0.4 mM CdCl2 and 1 mM CuSO4 in the growth medium. Metal ion contents of bacterial cells expressing OeMT2 were measured by ICP. Metal tolerance assays and ICP measurements suggested that OeMT2 effectively binds Cu and Cd. Molecular analysis of OeMT2 revealed two introns, three exons, a short 3' UTR and a long 5' UTR. Comparing the genomic sequences from 14 olive cultivars revealed OeMT2 had both intron and exon polymorphisms dividing the cultivars into three groups. Real-time PCR analysis demonstrated that OeMT2 expresses more or less the same amounts in all tissues of the olive tree examined. The genomic copy number of OeMT2 was also determined employing real-time PCR which suggested a single copy gene in the olive genome while three other MT2 members were determined from the draft olive genome sequences of Ayvalik cultivar and that of wild olive. This is the first report on molecular and functional characterization of an olive metallothionein and shows that OeMT2 expressed in E. coli has the capability of effectively binding toxic heavy metals. This may suggest that OeMT2 plays an important role in metal homeostasis in addition to a good potential for environmental and industrial usage.

  2. Comparative Genetic Mapping in Boechera stricta, a Close Relative of Arabidopsis1[C][W][OA

    PubMed Central

    Schranz, M. Eric; Windsor, Aaron J.; Song, Bao-hua; Lawton-Rauh, Amy; Mitchell-Olds, Thomas

    2007-01-01

    The angiosperm family Brassicaceae contains both the research model Arabidopsis (Arabidopsis thaliana) and the agricultural genus Brassica. Comparative genomics in the Brassicaceae has largely focused on direct comparisons between Arabidopsis and the species of interest. However, the reduced genome size and chromosome number (n = 5) of Arabidopsis complicates comparisons. Arabidopsis shows extensive genome and chromosome reshuffling compared to its close relatives Arabidopsis lyrata and Capsella rubella, both with n = 8. To facilitate comparative genomics across the Brassicaceae we recently outlined a system of 24 conserved chromosomal blocks based on their positions in an ancestral karyotype of n = 8, rather than by their position in Arabidopsis. In this report we use this system as a tool to understand genome structure and evolution in Boechera stricta (n = 7). B. stricta is a diploid, sexual, and highly self-fertilizing species occurring in mostly montane regions of western North America. We have created an F2 genetic map of B. stricta based on 192 individuals scored at 196 microsatellite and candidate gene loci. Single-nucleotide polymorphism genotyping of 94 of the loci was done simultaneously using an Illumina bead array. The total map length is 725.8 cM, with an average marker spacing of 3.9 cM. There are no gaps greater than 19.3 cM. The chromosomal reduction from n = 8 to n = 7 and other genomic changes in B. stricta likely involved a pericentric inversion, a chromosomal fusion, and two reciprocal translocations that are easily visualized using the genomic blocks. Our genetic map will facilitate the analysis of ecologically relevant quantitative variation in Boechera. PMID:17369426

  3. Novel Vein Patterns in Arabidopsis Induced by Small Molecules1[OPEN

    PubMed Central

    Cutler, Sean

    2016-01-01

    The critical role of veins in transporting water, nutrients, and signals suggests that some key regulators of vein formation may be genetically redundant and, thus, undetectable by forward genetic screens. To identify such regulators, we screened more than 5000 structurally diverse small molecules for compounds that alter Arabidopsis (Arabidopsis thaliana) leaf vein patterns. Many compound-induced phenotypes were observed, including vein networks with an open reticulum; decreased or increased vein number and thickness; and misaligned, misshapen, or nonpolar vascular cells. Further characterization of several individual active compounds suggests that their targets include hormone cross talk, hormone-dependent transcription, and PIN-FORMED trafficking. PMID:26574596

  4. Gene response profiles for Daphnia pulex exposed to the environmental stressor cadmium reveals novel crustacean metallothioneins

    PubMed Central

    Shaw, Joseph R; Colbourne, John K; Davey, Jennifer C; Glaholt, Stephen P; Hampton, Thomas H; Chen, Celia Y; Folt, Carol L; Hamilton, Joshua W

    2007-01-01

    Background Genomic research tools such as microarrays are proving to be important resources to study the complex regulation of genes that respond to environmental perturbations. A first generation cDNA microarray was developed for the environmental indicator species Daphnia pulex, to identify genes whose regulation is modulated following exposure to the metal stressor cadmium. Our experiments revealed interesting changes in gene transcription that suggest their biological roles and their potentially toxicological features in responding to this important environmental contaminant. Results Our microarray identified genes reported in the literature to be regulated in response to cadmium exposure, suggested functional attributes for genes that share no sequence similarity to proteins in the public databases, and pointed to genes that are likely members of expanded gene families in the Daphnia genome. Genes identified on the microarray also were associated with cadmium induced phenotypes and population-level outcomes that we experimentally determined. A subset of genes regulated in response to cadmium exposure was independently validated using quantitative-realtime (Q-RT)-PCR. These microarray studies led to the discovery of three genes coding for the metal detoxication protein metallothionein (MT). The gene structures and predicted translated sequences of D. pulex MTs clearly place them in this gene family. Yet, they share little homology with previously characterized MTs. Conclusion The genomic information obtained from this study represents an important first step in characterizing microarray patterns that may be diagnostic to specific environmental contaminants and give insights into their toxicological mechanisms, while also providing a practical tool for evolutionary, ecological, and toxicological functional gene discovery studies. Advances in Daphnia genomics will enable the further development of this species as a model organism for the environmental sciences

  5. Identification of Two Metallothioneins as Novel Inhalative Coffee Allergens Cof a 2 and Cof a 3

    PubMed Central

    Peters, Ulrike; Frenzel, Karsten; Brettschneider, Reinhold; Oldenburg, Marcus; Bittner, Cordula

    2015-01-01

    Background Dust of green coffee beans is known to be a relevant cause for occupational allergic disorders in coffee industry workers. Recently, we described the first coffee allergen (Cof a 1) establishing an allergenic potential of green coffee dust. Objective Our aim was to identify allergenic components of green coffee in order to enhance inhalative coffee allergy diagnosis. Methods A Coffea arabica pJuFo cDNA phage display library was created and screened for IgE binding with sera from allergic coffee workers. Two further coffee allergens were identified by sequence analysis, expressed in E. coli, and evaluated by Western blots. The prevalence of sensitization to recombinant Cof a 1, Cof a 2, and Cof a 3 and to commercially available extract was investigated by ELISA (enzyme-linked immunosorbent assay) respectively CAP (capacity test) screening in 18 sera of symptomatic coffee workers. Results In addition to the previously described chitinase Cof a 1, two Coffea arabica cysteine-rich metallothioneins of 9 and 7 kDa were identified and included in the IUIS Allergen Nomenclature as Cof a 2 and Cof a 3. Serum IgE antibodies to at least one of the recombinant allergens were found in 8 out of 18 symptomatic coffee workers (44%). Only 2 of the analysed sera (11%) had reacted previously to the commercial allergy test. Conclusions In addition to the previously described Cof a 1 we have identified two further coffee proteins to be type I coffee allergens (Cof a 2 and Cof a 3) which may have a relevant potential for the specific diagnosis and/or therapy of coffee allergy. PMID:25962169

  6. Mutation at Glu23 eliminates the neuron growth inhibitory activity of human metallothionein-3

    SciTech Connect

    Ding Zhichun; Teng Xinchen; Cai Bin; Wang Hui; Zheng Qi; Wang Yang; Zhou Guoming; Zhang Mingjie; Wu Houming; Sun Hongzhe . E-mail: hsun@hku.hk; Huang Zhongxian . E-mail: zxhuang@fudan.edu.cn

    2006-10-20

    Human metallothionein-3 (hMT3), first isolated and identified as a neuronal growth inhibitory factor (GIF), is a metalloprotein expressed predominantly in brain. However, untill now, the exact mechanism of the bioactivity of hMT3 is still unknown. In order to study the influence of acid-base catalysis on S-nitrosylation of hMT3, we constructed the E23K mutant of hMT3. During the course of bioassay, we found out unexpectedly that mutation at E23 of hMT3 eliminates the neuronal growth inhibitory activity completely. To the best of our knowledge, it is First report that other residues, besides the TCPCP motif, in the {beta}-domain can alter the bioactivity of hMT3. In order to figure out the causes for the loss of bioactivity of the E23K mutant, the biochemical properties were characterized by UV-vis spectroscopy, CD spectroscopy, pH titration, DTNB reaction, EDTA reaction, and SNOC reaction. All data demonstrated that stability of the metal-thiolate cluster and overall structure of the E23K mutant were not altered too much. However, the reaction of the E23K mutant with SNOC exhibited biphasic kinetics and the mutant protein released zinc ions much faster than hMT3 in the initial step, while hMT3 exhibited single kinetic process. The 2D [{sup 1}H-{sup 15}N] HSQC was also employed to characterize structural changes during the reaction of hMT3 with varying mounts of nitric oxide. It was shown that the resonance of Glu23 disappeared at a molar ratio of NO to protein of 4. Based on these results, we suggest that mutation at Glu23 may alter the NO metabolism and/or affect zinc homeostasis in brain, thus altering the neuronal growth inhibitory activity.

  7. Modification of neurobehavioral effects of mercury by genetic polymorphisms of metallothionein in children.

    PubMed

    Woods, James S; Heyer, Nicholas J; Russo, Joan E; Martin, Michael D; Pillai, Pradeep B; Farin, Federico M

    2013-01-01

    Mercury (Hg) is neurotoxic, and children may be particularly susceptible to this effect. A current major challenge is the identification of children who may be uniquely susceptible to Hg toxicity because of genetic disposition. We examined the hypothesis that genetic variants of metallothionein (MT) that are reported to affect Hg toxicokinetics in adults would modify the neurotoxic effects of Hg in children. Five hundred seven children, 8-12 years of age at baseline, participated in a clinical trial to evaluate the neurobehavioral effects of Hg from dental amalgam tooth fillings. Subjects were evaluated at baseline and at 7 subsequent annual intervals for neurobehavioral performance and urinary Hg levels. Following the completion of the clinical trial, we performed genotyping assays for variants of MT isoforms MT1M (rs2270837) and MT2A (rs10636) on biological samples provided by 330 of the trial participants. Regression modeling strategies were employed to evaluate associations between allelic status, Hg exposure, and neurobehavioral test outcomes. Among girls, few significant interactions or independent main effects for Hg exposure and either of the MT gene variants were observed. In contrast, among boys, numerous significant interaction effects between variants of MT1M and MT2A, alone and combined, with Hg exposure were observed spanning multiple domains of neurobehavioral function. All dose-response associations between Hg exposure and test performance were restricted to boys and were in the direction of impaired performance. These findings suggest increased susceptibility to the adverse neurobehavioral effects of Hg among children with relatively common genetic variants of MT, and may have important public health implications for future strategies aimed at protecting children and adolescents from the potential health risks associated with Hg exposure. We note that because urinary Hg reflects a composite exposure index that cannot be attributed to a specific

  8. Metallothioneins 1 and 2 Modulate Inflammation and Support Remodeling in Ischemic Cardiomyopathy in Mice

    PubMed Central

    Dewald, Daniela; Schmitz, Eva J.; Verfuerth, Luise; Keppel, Katharina; Peigney, Christine; Ghanem, Alexander; Welz, Armin; Dewald, Oliver

    2016-01-01

    Aims. Repetitive brief ischemia and reperfusion (I/R) is associated with left ventricular dysfunction during development of ischemic cardiomyopathy. We investigated the role of zinc-donor proteins metallothionein MT1 and MT2 in a closed-chest murine model of I/R. Methods. Daily 15-minute LAD-occlusion was performed for 1, 3, and 7 days in SV129 (WT)- and MT1/2 knockout (MT−/−)-mice (n = 8–10/group). Hearts were examined with M-mode echocardiography and processed for histological and mRNA studies. Results. Expression of MT1/2 mRNA was transiently induced during repetitive I/R in WT-mice, accompanied by a transient inflammation, leading to interstitial fibrosis with left ventricular dysfunction without infarction. In contrast, MT−/−-hearts presented with enhanced apoptosis and small infarctions leading to impaired global and regional pump function. Molecular analysis revealed maladaptation of myosin heavy chain isoforms and antioxidative enzymes in MT1/2−/−-hearts. Despite their postponed chemokine induction we found a higher total neutrophil density and macrophage infiltration in small infarctions in MT−/−-hearts. Subsequently, higher expression of osteopontin 1 and tenascin C was associated with increased myofibroblast density resulting in predominately nonreversible fibrosis and adverse remodeling in MT1/2−/−-hearts. Conclusion. Cardioprotective effects of MT1/2 seem to be exerted via modulation of contractile elements, antioxidative enzymes, inflammatory response, and myocardial remodeling. PMID:27403038

  9. Metallothionein (MT) response after chronic palladium exposure in the zebra mussel, Dreissena polymorpha

    SciTech Connect

    Frank, Sabrina N.; Singer, Christoph

    2008-11-15

    The effects of different exposure concentrations of palladium (Pd) on relative metallothionein (MT) response and bioaccumulation were investigated in zebra mussels (Dreissena polymorpha). The mussels were exposed to 0.05, 5, 50, and 500 {mu}g/L Pd{sup 2+} for 10 weeks under controlled temperature and fasting conditions. Relative MT contents were assessed by a modified Ag-saturation method, which allows to discriminate between MT bound to Pd (Pd-MT) and MT bound to unidentified metals (Ag-MT). Determination of metal contents resulted from atomic absorption spectrometry following a microwave digestion. For unexposed mussels and mussels exposed to 0.05 {mu}g/L Pd no metal accumulation could be detected. All other exposure concentrations resulted in detectable Pd accumulation in mussels with final tissue concentrations of 96 {mu}g/g (500 {mu}g/L), 45 {mu}g/g (50 {mu}g/L), and 9 {mu}g/g (5 {mu}g/L). Compared with initial levels Pd-MT concentrations at the end of the exposure period were 600 (500 {mu}g/L), 160 (50 {mu}g/L), and 27 (5 {mu}g/L) times higher. These results show that an increase in MTs in D. polymorpha already occurs at relatively low aqueous Pd concentrations indicating that there is the need for detoxification of Pd in the mussel. Furthermore, correlations between Ag-MT and Pd accumulation indicate that higher exposure concentrations are associated with adverse effects on the mussels. Thus, harmful effects of chronic Pd exposure of organisms even in lowest concentrations cannot be excluded in the environment.

  10. Metallothionein expression correlates with metastatic and proliferative potential in squamous cell carcinoma of the oesophagus

    PubMed Central

    Hishikawa, Y; Koji, T; Dhar, D K; Kinugasa, S; Yamaguchi, M; Nagasue, N

    1999-01-01

    The goal of this study is to clarify whether the expression of metallothionein (MT) could affect the prognosis and the metastatic potential of squamous cell carcinoma (SCC) of the oesophagus. In paraffin-embedded specimens resected from 57 patients, MT mRNA and protein expressions were detected by in situ hybridization and immunohistochemistry respectively. The expression of MT was evaluated in respect of clinicopathologic variables and patients' survival. MT mRNA expression was significantly associated with the proportion of lymph node metastasis (71% in MT mRNA-positive tumours vs 42% in MT mRNA-negative tumours; P = 0.0343) and that of distant metastasis (29% in MT mRNA-positive tumours vs 5% in MT mRNA-negative tumours; P = 0.0452). In respect of MT protein expression, the frequency of distant metastasis was more common in MT-positive tumours than in MT-negative tumours (30% in MT-positive tumours vs 8% in MT-negative tumours; P = 0.0446). The survival rate of the patients with MT protein-negative tumours was significantly better than that of the patients with MT protein-positive tumours (P = 0.0340). There was a positive correlation between the expression of MT protein and that of proliferating cell nuclear antigen (P = 0.0018). Therefore, we conclude that MT expression, both at the mRNA and protein levels, may be a potential marker predicting metastatic and proliferative activities of oesophageal SCC. © 1999 Cancer Research Campaign PMID:10574261

  11. Effects of metallothionein on zinc metabolism in lethal-milk mutant mice

    SciTech Connect

    Grider, A. Jr.

    1986-01-01

    The lethal-milk mice (C57BL/6J-Im) exhibit various pleiotropic effects, including a congenital otolith defect, production of zinc-deficient milk, and clinical signs of a systemic Zn deficiency by one year of age. The clinical signs include alopecia, dermatitis, and skin lesions. The systemic zinc deficiency may be due to increased levels of metallothionein (MT) in the intestine and/or liver of Im mice. The untreated Im mice contain twice as much intestinal MT as do C57BL/6J-(+/sup im//+ /sup Im/) (B6) controls. This was determined by a sulfhydryl assay, by the /sup 109/Cd-saturation/hemolysate method, and by the /sup 65/Zn-binding assay. Various concentrations of Cd or Zn were added to the drinking water three days before assaying for MT. Compared to B6 mice, the Im mice exhibited more MT in their liver by the /sup 65/Zn-MT binding assay (3-fold) and by the /sup 109/Cd-saturation/hemolysate method (18-fold). The effects of the two zinc treatments did not differ significantly between Im and B6 mice. The retention and excretion of /sup 65/Zn (administered intraperitoneally) were determined over a 14-day period, but the results did not different between the Im and B6 mice. The increased concentrations of MT within the Im mice was not significantly different for the intestine and liver. Based on these data and other studies, the Im mice may exhibit alterations in zinc homeostasis due to some deregulation of MT metabolism, including the inner ear of the fetus, the lactating mammary gland, and the intestine and liver of adults by one year of age.

  12. Sequential changes in trace metal, metallothionein and calmodulin concentrations in healing skin wounds.

    PubMed

    Lansdown, A B; Sampson, B; Rowe, A

    1999-10-01

    Metalloenzymes have an important role in repair and regenerative processes in skin wounds. Demands for different enzymes vary according to the phase in the healing cascade and constituent events. Sequential changes in the concentrations of calcium, copper, magnesium and zinc were studied in the incisional wound model in the rat over a 10 d period. Copper levels remained low (< 10 microg/g dry weight) throughout, but calcium, magnesium and zinc increased from wounding and peaked at about 5 d at a time of high inflammation, granulation tissue formation and epidermal cell proliferation. Metal concentrations declined to normal by 7 d when inflammation had regressed, re-epithelialisation of the wound site was complete and the 'normalisation' phase had commenced. Although the wound was overtly healed by 10 d, the epidermis was still moderately hyperplastic. In view of competitive binding of trace metals at membrane receptors and carrier proteins, the ratios or balance between these trace metals was examined and the significance is discussed. Using immunocytochemistry, we demonstrated increases in metallothionein immunoreactivity as an indication of zinc and copper activity in the papillary dermis and in basal epidermal cells near the wound margin 1-5 d after wounding. This is consistent with metalloenzyme requirements in inflammation and fibrogenesis. Calmodulin, a major cytosolic calcium binding protein was highest in maturing keratinocytes and in sebaceous gland cells of normal skin; it was notably more abundant in the epidermis near the wound margin and in re-epithelialising areas at a time when local calcium levels were highest. PMID:10580852

  13. Reactivity of metallothioneins of frog Rana ridibunda treated by copper and zinc ions.

    PubMed

    Falfushynska, H I; Romanchuk, L D; Stoliar, O B

    2010-01-01

    The metal-buffering and stress proteins metallothioneins (MTs) of frog are characterised by unusually high content of copper as for vertebrate animals and instability that was shown in our previous studies. They easily lost copper and especially zinc under unfavourable conditions. The aim of this study was to examine the reactivity of SH groups in the MTs from the liver of frog Rana ridibunda after the effect of Cu2+ (0.01 mg/l) and Zn2+ (0.1 mg/l) ions on the organism during 14 days. The alpha- and beta-domains of MTs with molecular weights of about 4 kDa were separated by the size-exclusion chromatography on Sephadex G-50. Unlike higher vertebrates, frogs demonstrated higher reactivity of alpha-domain than beta-domain with the Ellman's reagent (DTNB). The signs of partial oxidations in beta-domain included the creation of by-products with molecular weight about 12 kDa, low reactivity of SH-groups, and typical of -S-S-bonds peculiarities of UV-spectra. The effect of both metal ions on frog provoked the elevation of SH-groups reactivity in a-domain with the appearance of by-product with molecular weight of 16 kDa and its reduction in beta-domain. The incubation of MTs of control animals with 0.5 and 5.0 mM of H2O2 did not affect its chromatographic characteristics. In the frogs loaded by Cu2+ and Zn2+ the effect of 5.0 mM H2O2 on MTs provoked the release of 4 kDa product. So the alpha-domain is responsible for the increased release of metals from injured MTs in frogs, whereas extremely high oxidizability of beta-domain makes its participation in the exchange of metals elusive and provokes the aggregation of MTs. PMID:21323122

  14. Heavy metal accumulation by recombinant mammalian metallothionein within Escherichia coli protects against elevated metal exposure.

    PubMed

    Sauge-Merle, Sandrine; Lecomte-Pradines, Catherine; Carrier, Patrick; Cuiné, Stéphan; Dubow, Michael

    2012-08-01

    Metallothioneins (MTs) are ubiquitous metal-binding, cysteine-rich, small proteins known to provide protection against toxic heavy metals such as cadmium. In an attempt to increase the ability of bacterial cells to accumulate heavy metals, sheep MTII was produced in fusion with the maltose binding protein (MBP) and localized to the cytoplasmic or periplasmic compartments of Escherichia coli. For all metals tested, higher levels of bioaccumulation were measured with strains over-expressing MBP-MT in comparison with control strains. A marked bioaccumulation of Cd, As, Hg and Zn was observed in the strain over-expressing MBP-MT in the cytoplasm, whereas Cu was accumulated to higher levels when MBP-MT was over-expressed in the periplasm. Metal export systems may also play a role in this bioaccumulation. To illustrate this, we over-expressed MBP-MT in the cytoplasm of two mutant strains of E. coli affected in metal export. The first, deficient in the transporter ZntA described to export numerous divalent metal ions, showed increasing quantities of Zn, Cd, Hg and Pb being bioaccumulated. The second, strain LF20012, deficient in As export, showed that As was bioaccumulated in the form of arsenite. Furthermore, high quantities of accumulated metals, chelated by MBP-MT in the cytoplasm, conferred greater metal resistance levels to the cells in the presence of added toxic metals, such as Cd or Hg, while other metals showed toxic effects when the export systems were deficient. The strain over-expressing MBP-MT in the cytoplasm, in combination, with disruption of metal export systems, could be used to develop strategies for bioremediation.

  15. Functional characterization of a type 2 metallothionein isoform (OsMTI-2b) from rice.

    PubMed

    Pirzadeh, Soheil; Shahpiri, Azar

    2016-07-01

    Metallothioneins (MTs) are a family of Cys-rich, low molecular weight, cytoplasmic metal binding proteins. MTs are present in all eukaryotes as well as some prokaryotes. Plant MTs are divided into four types based on Cys distribution pattern in their amino acid sequences. In the present work, the gene encoding OsMTI-2b, a type 2 MT found in rice, was cloned into pET41a vector. The resulting construct was transformed into Escherichia coli strain Rosetta (DE3). Following the induction with Isopropyl β-d-1-thiogalactopyranoside the OsMTI-2b was expressed as carboxyl-terminal extensions of glutathione-S-transferase (GST-tag), a 6His-tag, and an S-tag. The expressed recombinant fusion protein was named GST-OsMTI-2b. As compared with control, transgenic E. coli cells expressing GST-OsMTI-2b accumulated more Pb(2+), Ni(2+), Cd(2+), Zn(2+) and Cu(2+) from culture medium and showed increased tolerance against these metals. Furthermore the E. coli cells expressing OsMTI-2b accumulated significantly higher Pb(2+) than previously made strains which expressing other rice OsMT isoforms. The recombinant GST-OsMTI-2b was purified using affinity chromatography. According to in vitro assays the protein GST-OsMTI-2b was able to form complexes with Pb(2+), Ni(2+), Cd(2+) and Zn(2+). However, the binding ability for the different metals differed in the order: Pb(2+)>Cd(2+)>Zn(2+)>Ni(2+). PMID:27079330

  16. Suppression of metallothionein-I/II expression and its probable molecular mechanisms.

    PubMed Central

    Jacob, Samson T; Majumder, Sarmila; Ghoshal, Kalpana

    2002-01-01

    Metallothionein (MT) promoter was methylated in rat hepatoma and in mouse lymphosarcoma cells by methylation of cytosine within the CpG dinucleotide region. After demethylation of MT-I promoter in mouse lymphosarcoma cells or in the transplanted rat hepatoma with 5-azacytidine, a potent inhibitor of DNA methyltransferase, the promoter was activated in response to heavy metal treatment. MT-I promoter was also suppressed in human prostate cancer lines PC3 and DU145, probably by promoter methylation, whereas cadmium induced MT-I in the human prostate cancer line LNCaP. In the prostate cancer lines where MT-I was suppressed, glutathione-S-transferase-pi (GST-pi) was expressed. On the contrary, GST-pi gene was repressed in the cell line where MT-I was induced, which suggests an inverse relationship between MT-I induction and GST-pi expression in some prostate cancer lines. The expressions of GST-pi and gamma-glutamyl cysteine synthase were also significantly higher (5- to 12-fold) in the lymphosarcoma cells and the hepatoma relative to the parental tissues. The higher expressions of these two genes suggest a compensatory mechanism in the cells where the gene for the antioxidant MT-I/II is not induced. MT-I/II may function as a growth suppressor either alone or in concert with other factor(s), and consequently their lack of expression could facilitate the tumor growth. In addition to suppression of MT-I/II expression by promoter methylation, the lack of MT induction could also be brought about by nuclear factor I (NFI), probably by interaction with the metal transcription factor MTF-1. An inverse relationship was observed between the level of NFI and MT-I expression in some cells, which suggests a role for NFI in the relatively low constitutive levels of MT-I expression in these cells. PMID:12426140

  17. Sequential changes in trace metal, metallothionein and calmodulin concentrations in healing skin wounds

    PubMed Central

    LANSDOWN, A. B. G.; SAMPSON, B.; ROWE, A.

    1999-01-01

    Metalloenzymes have an important role in repair and regenerative processes in skin wounds. Demands for different enzymes vary according to the phase in the healing cascade and constituent events. Sequential changes in the concentrations of calcium, copper, magnesium and zinc were studied in the incisional wound model in the rat over a 10 d period. Copper levels remained low (<10 μg/g dry weight) throughout, but calcium, magnesium and zinc increased from wounding and peaked at about 5 d at a time of high inflammation, granulation tissue formation and epidermal cell proliferation. Metal concentrations declined to normal by 7 d when inflammation had regressed, re-epithelialisation of the wound site was complete and the ‘normalisation’ phase had commenced. Although the wound was overtly healed by 10 d, the epidermis was still moderately hyperplastic. In view of competitive binding of trace metals at membrane receptors and carrier proteins, the ratios or balance between these trace metals was examined and the significance is discussed. Using immunocytochemistry, we demonstrated increases in metallothionein immunoreactivity as an indication of zinc and copper activity in the papillary dermis and in basal epidermal cells near the wound margin 1–5 d after wounding. This is consistent with metalloenzyme requirements in inflammation and fibrogenesis. Calmodulin, a major cytosolic calcium binding protein was highest in maturing keratinocytes and in sebaceous gland cells of normal skin; it was notably more abundant in the epidermis near the wound margin and in re-epithelialising areas at a time when local calcium levels were highest. PMID:10580852

  18. Autophagy of metallothioneins prevents TNF-induced oxidative stress and toxicity in hepatoma cells.

    PubMed

    Ullio, Chiara; Brunk, Ulf T; Urani, Chiara; Melchioretto, Pasquale; Bonelli, Gabriella; Baccino, Francesco M; Autelli, Riccardo

    2015-01-01

    Lysosomal membrane permeabilization (LMP) induced by oxidative stress has recently emerged as a prominent mechanism behind TNF cytotoxicity. This pathway relies on diffusion of hydrogen peroxide into lysosomes containing redox-active iron, accumulated by breakdown of iron-containing proteins and subcellular organelles. Upon oxidative lysosomal damage, LMP allows relocation to the cytoplasm of low mass iron and acidic hydrolases that contribute to DNA and mitochondrial damage, resulting in death by apoptosis or necrosis. Here we investigate the role of lysosomes and free iron in death of HTC cells, a rat hepatoma line, exposed to TNF following metallothionein (MT) upregulation. Iron-binding MT does not normally occur in HTC cells in significant amounts. Intracellular iron chelation attenuates TNF and cycloheximide (CHX)-induced LMP and cell death, demonstrating the critical role of this transition metal in mediating cytokine lethality. MT upregulation, combined with starvation-activated MT autophagy almost completely suppresses TNF and CHX toxicity, while impairment of both autophagy and MT upregulation by silencing of Atg7, and Mt1a and/or Mt2a, respectively, abrogates protection. Interestingly, MT upregulation by itself has little effect, while stimulated autophagy alone depresses cytokine toxicity to some degree. These results provide evidence that intralysosomal iron-catalyzed redox reactions play a key role in TNF and CHX-induced LMP and toxicity. The finding that chelation of intralysosomal iron achieved by autophagic delivery of MT, and to some degree probably of other iron-binding proteins as well, into the lysosomal compartment is highly protective provides a putative mechanism to explain autophagy-related suppression of death by TNF and CHX.

  19. Nickel Mobilizes Intracellular Zinc to Induce Metallothionein in Human Airway Epithelial Cells

    PubMed Central

    Nemec, Antonia A.; Leikauf, George D.; Pitt, Bruce R.; Wasserloos, Karla J.; Barchowsky, Aaron

    2009-01-01

    We recently reported that induction of metallothionein (MT) was critical in limiting nickel (Ni)-induced lung injury in intact mice. Nonetheless, the mechanism by which Ni induces MT expression is unclear. We hypothesized that the ability of Ni to mobilize zinc (Zn) may contribute to such regulation and therefore, we examined the mechanism for Ni-induced MT2A expression in human airway epithelial (BEAS-2B) cells. Ni induced MT2A transcript levels and protein expression by 4 hours. Ni also increased the activity of a metal response element (MRE) promoter luciferase reporter construct, suggesting that Ni induces MRE binding of the metal transcription factor (MTF-1). Exposure to Ni resulted in the nuclear translocation of MTF-1, and Ni failed to induce MT in mouse embryonic fibroblasts lacking MTF-1. As Zn is the only metal known to directly bind MTF-1, we then showed that Ni increased a labile pool of intracellular Zn in cells as revealed by fluorescence-activated cell sorter using the Zn-sensitive fluorophore, FluoZin-3. Ni-induced increases in MT2A mRNA and MRE-luciferase activity were sensitive to the Zn chelator, TPEN, supporting an important role for Zn in mediating the effect of Ni. Although neither the source of labile Zn nor the mechanism by which Ni liberates labile Zn was apparent, it was noteworthy that Ni increased intracellular reactive oxygen species (ROS). Although both N-acetyl cysteine (NAC) and ascorbic acid (AA) decreased Ni-induced increases in ROS, only NAC prevented Ni-induced increases in MT2A mRNA, suggesting a special role for interactions of Ni, thiols, and Zn release. PMID:19097988

  20. Metallothionein, essential elements and lipid peroxidation in mercury-exposed suckling rats pretreated with selenium.

    PubMed

    Orct, Tatjana; Lazarus, Maja; Ljubojević, Marija; Sekovanić, Ankica; Sabolić, Ivan; Blanuša, Maja

    2015-08-01

    Detoxification of mercury (Hg) with selenium (Se) in the early postnatal period with regard to the expression of metallothionein protein (MT), essential element status, and lipid peroxidation level in tissues has not been studied. Seven-day-old Wistar pups were orally pretreated with Se [6 μmol Na2SeO3/kg body weight (b.w.)] for 3 days and then cotreated with Hg (6 μmol HgCl2/kg b.w.) for the following 4 days. This group (Se + Hg) was compared to the groups treated with Hg, Se, or vehicle (control). Compared to the Hg-group, Se + Hg-group exhibited lower renal MT expression, reduced accumulation of Hg, Cu and Zn, and reduced excretion of Se, Hg and Zn in urine. In the liver, MT was stimulated by Se treatment in both, Se and Se + Hg-group. Hepatic and brain levels of the endogenous essential elements Cu, Fe, Mg, and Zn remained unchanged in all of the studied groups. Brain Hg levels and oxidation of lipids measured as thiobarbituric acid reactive substances were diminished in Se + Hg-group of pups compared to the Hg-group. This study suggests that Se pretreatment can help reduce Hg in the tissues of suckling rats, simultaneously preventing impairment of essential element levels in the kidneys and their excessive excretion via urine. Also, Se was shown to prevent oxidative damage of lipids in the brain, which is particularly susceptible to Hg during the early postnatal period.

  1. Overexpression of Metallothionein-1 Modulates the Phenotype of the Tg2576 Mouse Model of Alzheimer's Disease.

    PubMed

    Manso, Yasmina; Comes, Gemma; López-Ramos, Juan C; Belfiore, Mónica; Molinero, Amalia; Giralt, Mercedes; Carrasco, Javier; Adlard, Paul A; Bush, Ashley I; Delgado-García, José María; Hidalgo, Juan

    2016-01-01

    Alzheimer's disease (AD) is the most commonly diagnosed dementia, where signs of neuroinflammation and oxidative stress are prominent. In this study we intend to further characterize the roles of the antioxidant, anti-inflammatory, and heavy metal binding protein, metallothionein-1 (MT-1), by crossing Mt1 overexpressing mice with a well-known mouse model of AD, Tg2576 mice, which express the human amyloid-β protein precursor (hAβPP) with the Swedish K670N/M671L mutations. Mt1 overexpression increased overall perinatal survival, but did not affect significantly hAβPP-induced mortality and weight loss in adult mice. Amyloid plaque burden in ∼14-month-old mice was increased by Mt1 overexpression in the hippocampus but not the cortex. Despite full length hAβPP levels and amyloid plaques being increased by Mt1 overexpression in the hippocampus of both sexes, oligomeric and monomeric forms of Aβ, which may contribute more to toxicity, were decreased in the hippocampus of females and increased in males. Several behavioral traits such as exploration, anxiety, and learning were altered in Tg2576 mice to various degrees depending on the age and the sex. Mt1 overexpression ameliorated the effects of hAβPP on exploration in young females, and potentiated those on anxiety in old males, and seemed to improve the rate of spatial learning (Morris water maze) and the learning elicited by a classical conditioning procedure (eye-blink test). These results clearly suggest that MT-1 may be involved in AD pathogenesis. PMID:26836194

  2. Heavy Metal-induced Metallothionein Expression Is Regulated by Specific Protein Phosphatase 2A Complexes*

    PubMed Central

    Chen, Liping; Ma, Lu; Bai, Qing; Zhu, Xiaonian; Zhang, Jinmiao; Wei, Qing; Li, Daochuan; Gao, Chen; Li, Jie; Zhang, Zhengbao; Liu, Caixia; He, Zhini; Zeng, Xiaowen; Zhang, Aihua; Qu, Weidong; Zhuang, Zhixiong; Chen, Wen; Xiao, Yongmei

    2014-01-01

    Induction of metallothionein (MT) expression is involved in metal homeostasis and detoxification. To identify the key pathways that regulate metal-induced cytotoxicity, we investigate how phosphorylated metal-responsive transcription factor-1 (MTF-1) contributed to induction of MT expression. Immortal human embryonic kidney cells (HEK cells) were treated with seven kinds of metals including cadmium chloride (CdCl2), zinc sulfate (ZnSO4), copper sulfate(CuSO4), lead acetate (PbAc), nickel sulfate (NiSO4), sodium arsenite (NaAsO2), and potassium bichromate (K2Cr2O7). The MT expression was induced in a dose-response and time-dependent manner upon various metal treatments. A cycle of phosphorylation and dephosphorylation was required for translocation of MTF-1 from cytoplasm to nucleus, leading to the up-regulation of MTs expression. Protein phosphatase 2A (PP2A) participated in regulating MT expression through dephosphorylation of MTF-1. A loss-of-function screen revealed that the specific PP2A complexes containing PR110 were involved in metal-induced MT expression. Suppression of PP2A PR110 in HEK cells resulted in the persistent MTF-1 phosphorylation and the disturbance of MTF-1 nuclear translocation, which was concomitant with a significant decrease of MT expression and enhanced cytotoxicity in HEK cells. Notably, MTF-1 was found in complex with specific PP2A complexes containing the PR110 subunit upon metal exposure. Furthermore, we identify that the dephosphorylation of MTF-1 at residue Thr-254 is directly regulated by PP2A PR110 complexes and responsible for MTF-1 activation. Taken together, these findings delineate a novel pathway that determines cytotoxicity in response to metal treatments and provide new insight into the role of PP2A in cellular stress response. PMID:24962574

  3. Protection against UVA-induced photooxidative damage in mammalian cell lines expressing increased levels of metallothionein

    SciTech Connect

    Dudek, E.J. Illinois Inst. of Tech., Chicago, IL . Dept. of Biology); Peak, J.G.; Peak, M.J. ); Roth, R.M. . Dept. of Biology)

    1990-01-01

    Metallothionein (MT) is an endogenous low molecular weight protein that is inducible in a variety of eukaryotic cells and has the ability to selectivity bind heavy metal ions such as zinc and the cadmium. Although the exact physiological role of MT is still not understood, there is strong evidence that MT is involved in providing cellular resistance against the damaging effects of heavy metals and in the regulation of intracellular zinc and copper. Recently, it has been demonstrated that MT can scavenge radiation-induced reactive oxygen intermediates in vitro, specifically hydroxyl and superoxide radicals, and because of these observations it has been suggested that MT may provide protection against radiation-induced oxidative stress in vivo. Cell lines expressing increased levels of MT have demonstrated resistance to ionizing radiation, to ultraviolet radiation, and also to various DNA damaging agents including melphalan and cis-diaminedichloroplatinum. It is therefore important to gain some insight into the relationship between cellular MT content and cellular resistance to radiation and other DNA damaging agents. In this study we investigated the role of MT in providing protection against monochromatic 365-nm UVA radiation, which is known to generate intracellular reactive oxygen species that are involved in both DNA damage and cell killing. For this purpose, we used zinc acetate, a potent inducer of MT, to elevate MT levels in V79 Chinese hamster fibroblasts prior to UVA exposure and determined cell survival for uninduced and induced cultures. In order to eliminate any zinc effects other than MT induction, we also isolated and characterized cadmium chloride-resistant clones of V79 cells that have increased steady-state levels of both MT mRNA and protein, and we examined their survival characteristics against 365-nm radiation in the absence of zinc acetate. 14 refs., 3 figs.

  4. Effects of acute ethanol exposure on hepatic metallothionein, zinc and glutathione in male and female rats

    SciTech Connect

    Harris, J.; Harrell, B. )

    1991-03-15

    The purpose of this study was to determine the simultaneous responses of hepatic metallothionein (MT), zinc (Zn) and glutathione (GSH) in male and female rats to an acute ethanol dose. In male rats, hepatic MT has been shown to be induced by an acute ethanol dose. The Sprague-Dawley rats were fed the Lieber-DeCarli control diet for a five day period and then divided into 6 groups: baseline females and males, ethanol-treated females and males, pair-fed females and males. At t=0, baseline rats were killed, ethanol-treated rats were given ethanol by intragastric tube, and pair-fed rats were given ethanol by intragastric tube, and pair-fed rats were given an isocaloric sucrose solution by intragastric tube. At t=24 h, the ethanol-treated and pair-fed rats were killed. Livers were assayed for MT. Zn and GSH. Concentrations of blood ethanol (BEC) were significantly greater for male than female rats. A two way ANOVA with the independent variables being time and sex was performed to analyze differences for hepatic MT, Zn and GSH. For rats dosed with ethanol and killed 24 h later compared with rats at baseline, hepatic MT was significantly greater and hepatic Zn and GSH were not significantly different. Hepatic MT, Zn and GSH were not significantly different by sex. A significant correlation existed between hepatic Zn/g and MT/g. In conclusion, 24 h after an acute dose of ethanol, female as well as male rats responded with the induction of hepatic MT; and enough cysteine was available for the induction of hepatic MT and the maintenance of hepatic GSH levels. The measurement of Zn bound to hepatic MT rather than total hepatic Zn would be desirable to discern if changes in Zn distribution occur.

  5. Genetic background but not metallothionein phenotype dictates sensitivity to cadmium-induced testicular injury in mice.

    PubMed

    Liu, J; Corton, C; Dix, D J; Liu, Y; Waalkes, M P; Klaassen, C D

    2001-10-01

    Sensitivity to cadmium (Cd)-induced testicular injury varies greatly among mouse strains. For instance, 129/SvJ (129) mice are highly sensitive while C57BL/6J (C57) mice are refractory to Cd-induced testicular injury. Metallothionein (MT), a Cd-binding protein, is thought to be responsible for the strain susceptibility to Cd toxicity. In this study, MT-I/II knockout (MT-null) and wild-type 129 mice were used to determine the role of MT in Cd-induced testicular injury. Two additional strains of mice (C57 and the C57 x 129 F1cross) were also used to help define the role of genetic background in Cd toxicity. Mice were given 5-20 micromol/kg ip CdCl(2) and testicular injury was examined 24 h later by histopathology and testicular hemoglobin concentration. Cd produced dose-dependent testicular injury in all strains of mice, except for C57 mice, in which testicular injury could not be produced. MT-null mice were more sensitive than C57 x 129 mice but were equally sensitive as 129 mice to Cd-induced testicular injury. Fourteen days after 15 micromol/kg ip Cd administration, testicular atrophy was evident in MT-null, 129, and C57 x 129 mice but was absent in C57 mice. The resistance of C57 mice to Cd-induced testicular injury could not be attributed solely to a decreased uptake of (109)Cd nor to a greater amount of testicular MT. Microarray analysis revealed a higher expression of glutathione peroxidase in the testes of C57 mice, as well as genes encoding antioxidant components and DNA damage/repair, but their significance to Cd-induced injury is not immediately clear. Thus, this study demonstrates that it is genetic strain, not MT genotype, that is mechanistically important in determining susceptibility to Cd-induced testicular injury. PMID:11578143

  6. The renal metallothionein expression profile is altered in human lupus nephritis

    PubMed Central

    Faurschou, Mikkel; Penkowa, Milena; Andersen, Claus Bøgelund; Starklint, Henrik; Jacobsen, Søren

    2008-01-01

    Introduction Metallothionein (MT) isoforms I + II are polypeptides with potent antioxidative and anti-inflammatory properties. In healthy kidneys, MT-I+II have been described as intracellular proteins of proximal tubular cells. The aim of the present study was to investigate whether the renal MT-I+II expression profile is altered during lupus nephritis. Methods Immunohistochemistry was performed on renal biopsies from 37 patients with lupus nephritis. Four specimens of healthy renal tissue served as controls. Clinicopathological correlation studies and renal survival analyses were performed by means of standard statistical methods. Results Proximal tubules displaying epithelial cell MT-I+II depletion in combination with luminal MT-I+II expression were observed in 31 out of 37 of the lupus nephritis specimens, but not in any of the control sections (P = 0.006). The tubular MT score, defined as the median number of proximal tubules displaying this MT expression pattern per high-power microscope field (40× magnification), was positively correlated to the creatinine clearance in the lupus nephritis cohort (P = 0.01). Furthermore, a tubular MT score below the median value of the cohort emerged as a significant predictor of a poor renal outcome in renal survival analyses. Thus, patients with a tubular MT score < 1.0 had a 6.2-times higher risk of developing end-stage renal disease than patients with a tubular MT score ≥ 1.0 (P = 0.03). Conclusion Lupus nephritis is associated with significant alterations in renal MT-I+II expression. Our data indicate that important prognostic information can be deduced from the renal MT-I+II expression profile in systemic lupus erythematosus patients with nephritis. PMID:18601746

  7. Effect of intravenously injected zinc on tissue zinc and metallothionein gene expression of broilers.

    PubMed

    Shen, S F; Wang, R L; Lu, L; Li, S F; Liu, S B; Xie, J J; Zhang, L Y; Wang, M L; Luo, X G

    2013-06-01

    1. The effect of intravenously injected zinc (Zn) on tissue Zn concentrations and pancreas metallothionein (MT) gene expression in broilers was investigated to detect differences in the tissue utilisation of Zn from different Zn sources. 2. A total of 432 male chickens were randomly allotted on d 22 post-hatch to one of nine treatments in a completely randomised design. Chickens were injected with either a 0.9% (w/v) NaCl solution (control) or a saline solution supplemented with Zn sulphate or one of three organic Zn chelates with weak (Zn-AA W), moderate (Zn-Pro M) or strong (Zn-Pro S) chelation strengths at two injected Zn dosages calculated according to two Zn absorbability levels (6 and 12%). 3. Bone and pancreas Zn concentrations, pancreas MT mRNA levels and MT concentrations increased on d 6 and 12 after Zn injections as the injected Zn dosages increased. Chickens injected with the Zn-Pro S had lower bone Zn concentration than those injected with the Zn-Pro M or Zn-AA W on d 6 after injections. However, no differences among Zn sources were observed in bone Zn concentration on d 12 after injections, pancreas Zn concentrations, pancreas MT mRNA levels and MT concentrations on both d 6 and d 12 after injections. 4. It was concluded that the injected Zn-Pro S was the least favourable for bone Zn utilisation of broilers. The pancreas Zn concentration and pancreas MT gene expressions might not be sensitive enough to detect differences in the tissue utilisation of injected Zn in broilers between organic and inorganic Zn sources or among organic Zn sources.

  8. Effects of cadmium and environmental pollution on metallothionein and cytochrome P450 in Tilapia

    SciTech Connect

    Ueng, Y.F.; Meng, L.M.; Hung, Y.Y.; Ueng, T.H.; Liu, C.; Lai, C.F.

    1996-07-01

    Tilapia are widely distributed freshwater fish frequently used for environmental toxicology, comparative biochemistry and physiology studies. Tilapia can persist in a highly polluted habitat and have the potential for the development as a biological monitor of environmental pollution. Metallothioneins (MTs) are a group of small-molecular-weight cytoplasmic proteins induced in many animals including fish, following exposure to metals such as cadmium, copper, zinc, and mercury. An increasing number of reports have indicated that fish MT induction is a sensitive measure of metal contamination in the environment. Fish cytochrome (P450)-dependent monooxygenases are inducible by many environmental pollutants including polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Extensive studies have suggested that fish monooxygenase can serve as a biochemical marker for exposure to PAH- and PCB-types of pollutants. Tilapia P450 is highly responsive to the inductive effects of PAH and PCBs. Tilapia collected from a polluted section of a river showed higher levels of P450 and dependent monooxygenase activities than tilapia collected from an unpolluted section. Previous studies showed that pretreatment with Cd decreased microsomal monooxygenase activities in fish such as plaice, bass, and trout. However, direct information regarding the effects of heavy metals on tilapia P450 are not available. Reports concerning the effect of heavy metal on tilapia MT are scarce. The purpose of the present study was to determine the ability of cadmium to modulate P450 and MT in tilapia liver and gill. In addition, we have extended our study to feral tilapia collected from Er-Jen Stream, a polluted river in Taiwan. 16 refs., 1 fig., 2 tabs.

  9. Metallothionein-like proteins in the blue crab Callinectes sapidus: effect of water salinity and ions.

    PubMed

    De Martinez Gaspar Martins, Camila; Bianchini, Adalto

    2009-03-01

    The effect of water salinity and ions on metallothionein-like proteins (MTLP) concentration was evaluated in the blue crab Callinectes sapidus. MTLP concentration was measured in tissues (hepatopancreas and gills) of crabs acclimated to salinity 30 ppt and abruptly subjected to a hypo-osmotic shock (salinity 2 ppt). It was also measured in isolated gills (anterior and posterior) of crabs acclimated to salinity 30 ppt. Gills were perfused with and incubated in an isosmotic saline solution (ISS) or perfused with ISS and incubated in a hypo-osmotic saline solution (HSS). The effect of each single water ion on gill MTLP concentration was also analyzed in isolated and perfused gills through experiments of ion substitution in the incubation medium. In vivo, MTLP concentration was higher in hepatopancreas than in gills, being not affected by the hypo-osmotic shock. However, MTLP concentration in posterior and anterior gills significantly increased after 2 and 24 h of hypo-osmotic shock, respectively. In vitro, it was also increased when anterior and posterior gills were perfused with ISS and incubated in HSS. In isolated and perfused posterior gills, MTLP concentration was inversely correlated with the calcium concentration in the ISS used to incubate gills. Together, these findings indicate that an increased gill MTLP concentration in low salinity is an adaptive response of the blue crab C. sapidus to the hypo-osmotic stress. This response is mediated, at least in part, by the calcium concentration in the gill bath medium. The data also suggest that the trigger for this increase is purely branchial and not systemic.

  10. Metallothionein and antioxidant enzymes in Long-Evans Cinnamon rats treated with zinc.

    PubMed

    Medici, Valentina; Santon, Alessandro; Sturniolo, Giacomo Carlo; D'Incà, Renata; Giannetto, Sabrina; Albergoni, Vincenzo; Irato, Paola

    2002-09-01

    The Long-Evans Cinnamon (LEC) rat is a mutant animal model for Wilson's disease. It is known that an abnormal accumulation of Cu and Fe in the liver and low concentrations of both ceruloplasmin and Cu in the serum occur in these rats. The accumulation of Cu is explained by the defective expression of the Cu-transporting P-type ATPase gene, homologous to the gene for Wilson's disease (ATP7B). The aim of this work was to clarify the action mechanism of Zn, and to verify the role that this metal plays in LEC rats in short-term treatment experiments (1 and 2 weeks) on concentrations of Cu, Zn, Fe, metallothionein (MT), 8-hydroxy-2'-deoxyguanosine (oh(8)dG) and on the activity of antioxidant enzymes. It is well known that Zn induces MT and has the ability to prevent redox-active metals, Cu and Fe, binding to and causing oxidative damage at active sites of Zn metalloenzymes and nonspecific binding sites on proteins. Zn administration reduces Cu and Fe transport from mucosal to serosal intestinal sides through competitive mechanisms. Our findings show that treatment with zinc acetate increases tissue Zn and MT contents and decreases Cu and Fe concentrations in the liver and kidneys, even if hepatic Zn and MT concentrations decrease with treatment period. Induction of MT synthesis by Zn contributes to the reduction in free radicals produced by Cu and Fe. We also observed that the superoxide dismutase (SOD)activity in liver decreases with treatment duration in association with the Cu and Fe liver decrease. However, the SOD activity in kidney increases in untreated rats at 2 weeks relative to those untreated for 1 week.

  11. Oxidative stress biomarkers and metallothionein in Folsomia candida--responses to Cu and Cd.

    PubMed

    Maria, Vera L; Ribeiro, Maria João; Amorim, Mónica J B

    2014-08-01

    Folsomia candida (Collembola) is a standard soil ecotoxicological species; effect assessment includes survival and reproduction as endpoints. In the present study, and for the first time, a range of oxidative stress biomarkers measurement was optimized and validated. The antioxidant capacity was measured by the activities of catalase (CAT), glutathione reductase (GR), glutathione-s-transferase (GST) and content of total glutathione (TG). The oxidative damage in the lipid membranes was estimated by lipid peroxidation (LPO) and metallothionein (MT) levels. The exposure included the essential and non-essential metals Cu and Cd, in LUFA 2.2 natural standard soil, using a series of sampling times along a 10 days period (0, 2, 4, 6 and 10 days). Exposure concentrations were selected based on their reproduction EC50 values, 60 and 1000 mg/kg soil DW, for Cd and Cu respectively. The protocols were optimized and results show that oxidative stress biomarkers can be successfully used in F. candida, this being highly relevant as complementary information to the mechanistic level. The selected sampling times gave a good indication of the markers dynamic and can be reduced/adapted in future testing. Results showed that both metals caused an increase in the MT levels after 6 days but Cd acted as a stronger oxidant agent compared to Cu, i.e. causing higher damage. In sum, Cd mobilized/activated more antioxidant enzymes, but the increased activities were not enough to prevent LPO. This study confirms that the oxidative stress caused by Cd is higher despite the use of same reproduction EC50 indicating that toxicity seems more reversible for Cu than for Cd. Among others, GST and MT would be a good selection of biomarkers for Cd effect. PMID:24949815

  12. Metallothionein: structure/antigenicity and detection/quantitation in normal physiological fluids.

    PubMed Central

    Garvey, J S

    1984-01-01

    Recent experiments in the application of radioimmunoassay (RIA) in the detection and quantitation of metallothionein (MT) in human sera and urines demonstrate that it is possible to extend the lower limit of practical quantitation from the previous limit of 50-100 pg to 1 pg.RIA of normal sera indicates that the typical range of concentrations of MT is from less than 0.01 ng/mL to about 1 ng/mL, and that concentrations above 2 ng/mL should be considered abnormal. The typical range for normal urines is from less than 1 ng/mL to 10 ng/mL; concentrations above 10 ng/mL should be considered abnormal. A complementary assay, the enzyme-linked immunosorbent assay (ELISA), is under development. The ELISA is a competitive binding assay, detection and quantitation of MT being either by colorimetric or fluorimetric methods. The present useful range for MT quantitation in the ELISA is from about 50-50000 pg (fluorimetric) or 500-5000 pg (colorimetric). Recent experiments using the RIA have identified the principal antigenic determinants of vertebrate MTs as involving the immediate amino terminal residues (-MDPNC-) and the segment including residues 20-25 (-KCKECK- in human MT). Theoretical predictions of secondary structure based on hydrophilicity and sequence analysis indicate that the conformational profile is dominated by tetrapeptide candidates for beta turns (reverse turns) with 2-3 hexapeptide sequences being candidates for helical conformation and 4-5 short sequences (3-5 residues) being candidates for beta chain conformation. The helical candidates are predicted to be unstable and the analysis favors reverse turns for both determinants of vertebrate MT and a sequestered location for the joining region between clusters A and B. PMID:6203731

  13. The influence of metallothionein on exposure to metals: an in vitro study on cellular models.

    PubMed

    Santon, Alessandro; Formigari, Alessia; Irato, Paola

    2008-06-01

    In the present study, the interactions between zinc (Zn) and copper (Cu) or iron (Fe) have been examined. Rat hepatoma cell line H4-II-E-C3, fibroblast cell line mutant MT-/-, and wild-type MT+/+ cells treated with ZnSO4 or CuSO4 or FeSO4 or CuSO4+ZnSO4 or ZnSO4+FeSO4 for different times have been employed to study the effect of metallothionein (MT), glutathione (GSH) and metal (Cu, Fe and Zn) accumulation during cellular adaptation to supraphysiological metal concentrations. To investigate the different biological functions in the processes of metal homeostasis and detoxification, the levels of both MT-1 and MT-2 mRNAs have been evaluated. The three cell lines responded differently to metal treatments suggesting that the uptake and storage of these metals are affected by the specific cellular model and MT presence. In particular, Zn treatment significantly decreased Fe accumulation (p<0.05), whereas MT induced by Zn increased intracellular Cu content (p<0.05). Moreover, in H4-II-E-C3 cells administration of metals resulted in a rapid and transient induction of MT (p<0.05) and in GSH accumulation (p<0.05) suggesting synergistic interactions in which both appear essential for a protective regulatory function against the redox activity of metals. Taken together these results demonstrate that Zn affects the cellular levels of Cu and Fe by competition with the same ligand sites and/or by coordinate regulation of MT and GSH content. PMID:18356017

  14. Effects of organism preparation in metallothionein and metal analysis in marine invertebrates for biomonitoring marine pollution.

    PubMed

    Oaten, J F P; Hudson, M D; Jensen, A C; Williams, I D

    2015-06-15

    Metallothionein (MT) is established as a potentially useful biomarker for monitoring aquatic pollution. This paper addresses widespread inconsistencies in storage conditions, tissue type selection and pre-treatment of samples before MT and metal analysis in biomarker studies. This variation hampers comparability and so the widespread implementation of this monitoring approach. Actively sampled Mytilus edulis in Southampton Water, UK were exposed to different storage temperatures, a variety of tissue types were analysed, and various pre-treatments of transportation on ice, transportation in seawater, depuration, and rapid dissection in the field were examined. Storage temperatures of -20 °C were found to be adequate for periods of at least ten weeks, as MT was not reduced by protein degradation compared with samples kept at -80 °C. Whole tissue and digestive gland concentrations of MT and metals were significantly positively correlated and directly relatable. MT in the digestive gland appeared to be more responsive to metals than in whole tissue, where it may be diluted, masking MT responses. However, longer study periods may suffer the effects of mass changes to the digestive gland, which alters MT concentration, and it may therefore be advisable to measure whole tissue. Depuration and transportation in seawater reduced both MT and metal concentrations in the digestive gland, and few correlations between MT and metals were identified for these treatments. It is therefore recommended that: i) samples are transported to the laboratory on ice and dissected as soon as possible thereafter, ii) depuration should not be used when examining MT response to metal exposure until further research clarifying its utility is reported, iii) either whole tissue or the digestive gland can be used to measure MT, though whole tissue may be preferable on long-term studies, and iv) organisms can be stored at -20 °C before analysis for up to ten weeks. These practices can be applied

  15. Rapid separation of developing Arabidopsis seeds from siliques for RNA or metabolite analysis

    PubMed Central

    2013-01-01

    Background Protein, starch and oil produced in plant seeds are major renewable sources of food, chemicals and biofuels. Developing Arabidopsis thaliana seeds are commonly utilized as a model for seed crop research. However, due to the very small size of Arabidopsis seeds efficient collection of large amounts of tissue for gene expression or metabolite analysis is very difficult and time consuming. Results/conclusions Here we describe a method that allows very rapid separation and collection of large amounts of developing Arabidopsis seeds from their encapsulating silique tissue after flash freezing whole siliques in liquid nitrogen. The efficient popping open of the frozen siliques on dry ice and filtering the seeds away from the silique tissue with liquid nitrogen cooled funnels and sieves allows large amounts of developing seeds to be quickly isolated while remaining frozen. This method increases the speed of developing seed collection approximately 10 fold over methods which dissect individual siliques one at a time. PMID:23531158

  16. Mycobacteria, but not mercury, induces metallothionein (MT) protein in striped bass, Morone saxitilis, phagocytes, while both stimuli induce MT in channel catfish, Ictalurus punctatus, phagocytes.

    PubMed

    Regala, R P; Rice, C D

    2004-01-01

    Recent advances in molecular immunology indicate that the expression of inducible pro-inflammatory proteins is increased in vertebrates in response to both infectious disease agents and various xenobiotics. For example, iNOS, COX-2, and CYP1A are induced by both inflammation and AhR ligands. Moreover, the expression of these proteins in response to stimuli varies among individuals within populations. Little is known of the differences among fish in the inducibility of proinflammatory proteins in response to both infectious agents and xenobiotics. Through random screening of a striped bass, Morone saxitilis, peritoneal macrophage cDNA library, a full length metallothionein (MT) gene was cloned and sequenced. MT is a low-molecular weight (6-8 kDa), cysteine-rich metal binding protein. Metals are required by pathogenic bacteria for growth, and by the host defense system by serving as a catalyst for the generation of reactive oxygen intermediates (ROIs) by phagocytes. A recombinant striped bass MT (rMT) was expressed and purified, then used to generate a specific mAb (MT-16). MT protein expression was followed in freshly isolated striped bass and channel catfish, Ictalurus punctatus, phagocytes after in vitro exposure to the naturally occurring intracellular pathogen Mycobacteria fortuitum or to 0.1 and 1 microM mercury (Hg), as HgCl(2). MT expression was increased by 24 h in both channel catfish and striped bass phagocytes as a result of exposure to M. fortuitum cells. On the other hand, MT was induced by Hg in channel catfish cells, but not those of striped bass. These results indicate that metal homeostasis in phagocytes is different between catfish and striped bass. In addition, these data suggest that care should be taken to distinguish between inflammation-induced vs. metal-induced MT when using MT expression as a biomarker of metal exposure.

  17. Environmental History Modulates Arabidopsis Pattern-Triggered Immunity in a HISTONE ACETYLTRANSFERASE1-Dependent Manner.

    PubMed

    Singh, Prashant; Yekondi, Shweta; Chen, Po-Wen; Tsai, Chia-Hong; Yu, Chun-Wei; Wu, Keqiang; Zimmerli, Laurent

    2014-06-24

    In nature, plants are exposed to a fluctuating environment, and individuals exposed to contrasting environmental factors develop different environmental histories. Whether different environmental histories alter plant responses to a current stress remains elusive. Here, we show that environmental history modulates the plant response to microbial pathogens. Arabidopsis thaliana plants exposed to repetitive heat, cold, or salt stress were more resistant to virulent bacteria than Arabidopsis grown in a more stable environment. By contrast, long-term exposure to heat, cold, or exposure to high concentrations of NaCl did not provide enhanced protection against bacteria. Enhanced resistance occurred with priming of Arabidopsis pattern-triggered immunity (PTI)-responsive genes and the potentiation of PTI-mediated callose deposition. In repetitively stress-challenged Arabidopsis, PTI-responsive genes showed enrichment for epigenetic marks associated with transcriptional activation. Upon bacterial infection, enrichment of RNA polymerase II at primed PTI marker genes was observed in environmentally challenged Arabidopsis. Finally, repetitively stress-challenged histone acetyltransferase1-1 (hac1-1) mutants failed to demonstrate enhanced resistance to bacteria, priming of PTI, and increased open chromatin states. These findings reveal that environmental history shapes the plant response to bacteria through the development of a HAC1-dependent epigenetic mark characteristic of a primed PTI response, demonstrating a mechanistic link between the primed state in plants and epigenetics.

  18. Cloning, characterization and gene expression of a metallothionein isoform in the edible cockle Cerastoderma edule after cadmium or mercury exposure.

    PubMed

    Paul-Pont, Ika; Gonzalez, Patrice; Montero, Natalia; de Montaudouin, Xavier; Baudrimont, Magalie

    2012-01-01

    Metallothionein (MT) genes encode crucial metal-binding proteins ubiquitously expressed in living organisms and which play important roles in homeostasis of essential metals and detoxification processes. Here, the molecular organization of the first metallothionein gene of the edible cockle Cerastoderma edule and its expression after cadmium (Cd) or mercury (Hg) exposures were determined. The resulting sequence (Cemt1) exhibits unusual features. The full length cDNA encodes a protein of 73 amino acids with nine classical Cys-X((1-3))-Cys motifs, but also one Cys-Cys not generally found in molluscan MT. Moreover, characterization of the molecular organization of the Cemt1 gene revealed two different alleles (A1 and A2) with length differences due to large deletion events in their intronic sequences involving direct Short Interspersed repeated Elements (SINE), while their exonic sequences were identical. To our knowledge, such large excision mechanisms have never before been reported in a bivalve gene sequence. After 10 days of Cd exposure at environmentally relevant doses, quantitative real-time PCR revealed a strong induction of Cemt1 in gills of C. edule. Surprisingly, neither induction of the Cemt1 gene nor of MT protein was shown after Hg exposure, despite the fact that this organism is able to bioaccumulate a high amount of this trace metal which is theoretically one of the most powerful inducers of MT biosynthesis.

  19. HbMT2, an ethephon-induced metallothionein gene from Hevea brasiliensis responds to H(2)O(2) stress.

    PubMed

    Zhu, Jiahong; Zhang, Quanqi; Wu, Rui; Zhang, Zhili

    2010-08-01

    Metallothioneins (MTs) are the cysteine-rich proteins with low molecular weight, which play important roles in maintaining intracellular ion homeostasis, detoxification of heavy metal ions and protecting against intracellular oxidative damages. In this study a novel ethephon-induced metallothionein gene, designated as HbMT2, was isolated and characterized from Hevea brasiliensis. The HbMT2 cDNA contained a 237 bp open reading frame encoding 78 amino acids and the deduced protein showed high similarity to the type 2 MTs from other plant species. Expression analysis revealed more significant accumulation of HbMT2 transcripts in leaves and latex than in roots and barks. The transcription of HbMT2 in latex was strongly induced by ethephon and hydrogen peroxide (H(2)O(2)) stress. Overproduction of recombinant HbMT2 protein gave the Escherichia coli cells more tolerance on Cu(2+) and Zn(2+), and the recombinant HbMT2 could scavenge the reactive oxidant species (ROS) in vitro. All these results indicated that HbMT2 could respond to ethephon stimulation and H(2)O(2) stress as a ROS scavenger in H. brasiliensis. It is also suggested that HbMT2 function in improving the tolerance of rubber trees to heavy metal ions, and repressing the ethephon-induced senilism and tapping panel dryness (TPD) development by ROS scavenge system in H. brasiliensis. PMID:20471279

  20. Cadmium binding studies to the earthworm Lumbricus rubellus metallothionein by electrospray mass spectrometry and circular dichroism spectroscopy

    SciTech Connect

    Ngu, Thanh T.; Sturzenbaum, Stephen R.; Stillman, Martin J. . E-mail: Martin.Stillman@uwo.ca

    2006-12-08

    The earthworm Lumbricus rubellus has been found to inhabit cadmium-rich soils and accumulate cadmium within its tissues. Two metallothionein (MT) isoforms (1 and 2) have been identified and cloned from L. rubellus. In this study, we address the metalation status, metal coordination, and structure of recombinant MT-2 from L. rubellus using electrospray ionization mass spectrometry (ESI-MS), UV absorption, and circular dichroism (CD) spectroscopy. This is the first study to show the detailed mass and CD spectral properties for the important cadmium-containing earthworm MT. We report that the 20-cysteine L. rubellus MT-2 binds seven Cd{sup 2+} ions. UV absorption and CD spectroscopy and ESI-MS pH titrations show a distinct biphasic demetalation reaction, which we propose results from the presence of two metal-thiolate binding domains. We propose stoichiometries of Cd{sub 3}Cys{sub 9} and Cd{sub 4}Cys{sub 11} based on the presence of 20 cysteines split into two isolated regions of the sequence with 11 cysteines in the N-terminal and 9 cysteines in the C-terminal. The CD spectrum reported is distinctly different from any other metallothionein known suggesting quite different binding site structure for the peptide.

  1. High cadmium-binding ability of a novel Colocasia esculenta metallothionein increases cadmium tolerance in Escherichia coli and tobacco.

    PubMed

    Kim, Yeon-Ok; Patel, Darshan H; Lee, Dae-Seok; Song, Younho; Bae, Hyeun-Jong

    2011-01-01

    Experimental evidence in vivo as to the functional roles and binding properties to cadmium (Cd) of type-2 plants metallothionein (MT) has been limited thus far. We investigated the biological role of metallothionein from Colocasia esculenta (CeMT2b) in Escherichia coli and tobacco, and developed a new model for the relationship between Cd tolerance and Cd-binding ability. Heterologous expression of CeMT2b in Escherichia coli greatly enhanced Cd tolerance and accumulated Cd content as compared to control cells. The molecular weight of CeMT2b increased with Cd, and CeMT2b bound up to 5.96±1 molar ratio (Cd/protein). Under Cd stress, transgenic tobacco plants displayed much better seedling growth and high Cd accumulation than the wild type. The presence of an extra CXC motif in CeMT2b contributed to the enhanced Cd-tolerance. The present study provides the first insight into the ability of type-2 plant MT to bind physiological Cd.

  2. Cell Surface Display of Four Types of Solanum nigrum Metallothionein on Saccharomyces cerevisiae for Biosorption of Cadmium.

    PubMed

    Wei, Qinguo; Zhang, Honghai; Guo, Dongge; Ma, Shisheng

    2016-05-28

    We displayed four types of Solanum nigrum metallothionein (SMT) for the first time on the surface of Saccharomyces cerevisiae using an α-agglutinin-based display system. The SMT genes were amplified by RT-PCR. The plasmid pYES2 was used to construct the expression vector. Transformed yeast strains were confirmed by PCR amplification and custom sequencing. Surface-expressed metallothioneins were indirectly indicated by the enhanced cadmium sorption capacity. Flame atomic absorption spectrophotometry was used to examine the concentration of Cd(2+) in this study. The transformed yeast strains showed much higher resistance ability to Cd(2+) compared with the control. Strikingly, their Cd(2+) accumulation was almost twice as much as that of the wild-type yeast cells. Furthermore, surface-engineered yeast strains could effectively adsorb ultra-trace cadmium and accumulate Cd(2+) under a wide range of pH levels, from 3 to 7, without disturbing the Cu(2+) and Hg(2+). Four types of surfaceengineered Saccharomyces cerevisiae strains were constructed and they could be used to purify Cd(2+)-contaminated water and adsorb ultra-trace cadmium effectively. The surface-engineered Saccharomyces cerevisiae strains would be useful tools for the bioremediation and biosorption of environmental cadmium contaminants. PMID:26838339

  3. Long-term effect of temperature on bioaccumulation of dietary metals and metallothionein induction in Sparus aurata.

    PubMed

    Guinot, Diana; Ureña, Rocío; Pastor, Agustín; Varó, Inmaculada; del Ramo, Jose; Torreblanca, Amparo

    2012-06-01

    Previous studies have demonstrated that the commercial feed of aquacultured fish contains trace amounts of toxic and essential metals which can accumulate in tissues and finally be ingested by consumers. Recently rising temperatures, associated to the global warming phenomenon, have been reported as a factor to be taken into consideration in ecotoxicology, since temperature-dependent alterations in bioavailability, toxicokinetics and biotransformation rates can be expected. Sparus aurata were kept at 22°C, 27°C and 30°C for 3 months in order to determine the temperature effect on metallothionein induction and metal bioaccumulation from a non-experimentally contaminated commercial feed. A significant temperature-dependent accumulation of cadmium (Cd), copper (Cu), mercury (Hg), zinc (Zn), lead (Pb) and iron (Fe) was found in liver, together with that of manganese (Mn), Fe and Zn in muscle. Hg presented the highest bioaccumulation factor, and essential metal homeostasis was disturbed in both tissues at warm temperatures. An enhancement of hepatic metallothionein induction was found in fish exposed to the highest temperature.

  4. Whole‐cell biosensors for detection of heavy metal ions in environmental samples based on metallothionein promoters from Tetrahymena thermophila

    PubMed Central

    Amaro, Francisco; Turkewitz, Aaron P.; Martín‐González, Ana; Gutiérrez, Juan‐Carlos

    2011-01-01

    Summary Heavy metals are among the most serious pollutants, and thus there is a need to develop sensitive and rapid biomonitoring methods for heavy metals in the environment. Critical parameters such as bioavailability, toxicity and genotoxicity cannot be tested using chemical analysis, but only can be assayed using living cells. A whole‐cell biosensor uses the whole cell as a single reporter incorporating both bioreceptor and transducer elements. In the present paper, we report results with two gene constructs using the Tetrahymena thermophila MTT1 and MTT5 metallothionein promoters linked with the eukaryotic luciferase gene as a reporter. This is the first report of a ciliated protozoan used as a heavy metal whole‐cell biosensor. T. thermophila transformed strains were created as heavy metal whole‐cell biosensors, and turn on bioassays were designed to detect, in about 2 h, the bioavailable heavy metals in polluted soil or aquatic samples. Validation of these whole‐cell biosensors was carried out using both artificial and natural samples, including methods for detecting false positives and negatives. Comparison with other published cell biosensors indicates that the Tetrahymena metallothionein promoter‐based biosensors appear to be the most sensitive eukaryotic metal biosensors and compare favourably with some prokaryotic biosensors as well. PMID:21366892

  5. Molecular cloning and expression of novel metallothionein (MT) gene in the polychaete Perinereis nuntia exposed to metals.

    PubMed

    Won, Eun-Ji; Rhee, Jae-Sung; Ra, Kongtae; Kim, Kyung-Tae; Au, Doris W T; Shin, Kyung-Hoon; Lee, Jae-Seong

    2011-08-01

    To report a novel metallothionein (MT) gene and evaluate its potency as a biomarker, we clone this MT gene and measured the expression levels in the metal-exposed polychaete Perinereis nuntia. Accumulated metal contents and metallothionein-like proteins (MTLPs), which have been recognized as potential biomarkers, were compared with the relative mRNA expressions of the MT gene of P. nuntia (Pn-MT). In addition, the metal-binding affinity was estimated by recombinant Pn-MT protein. Pn-MT having high cysteine residues with three metal response elements in the promoter region closely clusters with those of other invertebrates. The accumulation patterns of metals were dependent on the exposure times in lead (Pb), cadmium (Cd), and copper (Cu) exposure. Particularly, both MTLP levels and relative mRNA expressions of MT were increased with accumulated metal contents and exposure time in P. nuntia exposed to Pb and Cd. There was no significant modulation of the Pn-MT gene in polychaetes exposed to Zn and As. However, the metal-binding ability of the recombinant Pn-MT protein provides a clear evidence for a high affinity of MT to several metal elements. These results suggest that Pn-MT would play an important role in the detoxification and/or sequestration of specific metals (e.g., Pb and Cd) in P. nuntia and have potential as a molecular biomarker in the monitoring of the marine environment using a polychaete. PMID:22828888

  6. High cadmium-binding ability of a novel Colocasia esculenta metallothionein increases cadmium tolerance in Escherichia coli and tobacco.

    PubMed

    Kim, Yeon-Ok; Patel, Darshan H; Lee, Dae-Seok; Song, Younho; Bae, Hyeun-Jong

    2011-01-01

    Experimental evidence in vivo as to the functional roles and binding properties to cadmium (Cd) of type-2 plants metallothionein (MT) has been limited thus far. We investigated the biological role of metallothionein from Colocasia esculenta (CeMT2b) in Escherichia coli and tobacco, and developed a new model for the relationship between Cd tolerance and Cd-binding ability. Heterologous expression of CeMT2b in Escherichia coli greatly enhanced Cd tolerance and accumulated Cd content as compared to control cells. The molecular weight of CeMT2b increased with Cd, and CeMT2b bound up to 5.96±1 molar ratio (Cd/protein). Under Cd stress, transgenic tobacco plants displayed much better seedling growth and high Cd accumulation than the wild type. The presence of an extra CXC motif in CeMT2b contributed to the enhanced Cd-tolerance. The present study provides the first insight into the ability of type-2 plant MT to bind physiological Cd. PMID:21979068

  7. An emphasis of hydrogen sulfide-cysteine cycle on enhancing the tolerance to chromium stress in Arabidopsis.

    PubMed

    Fang, Huihui; Liu, Zhiqiang; Jin, Zhuping; Zhang, Liping; Liu, Danmei; Pei, Yanxi

    2016-06-01

    Increasing attention has been focused on the health of vegetables and grains grown in the contaminated agricultural soil, it is thus meaningful to find ways to reduce the heavy metals (HMs) accumulation in plants. As sulfur is considered to be an essential macronutrient for plant stress defenses, the important role of sulfur assimilation in plants responding to HMs stress has been followed. However, the potential mechanism of the only sulfur-containing gasotransmitter hydrogen sulfide (H2S) and its main endogenously generated substrate, cysteine (Cys), in plant defense is poorly understood. The physiological and biochemical methods together with qRT-PCR were used to explore the response pattern of H2S-Cys cycle in plants resisting to chromium (Cr(6+)) stress. Our results suggested that Cr(6+) stress inhibited Arabidopsis root elongation, increased the H2S and Cys contents time-dependently, and H2S production was activated earlier than Cys. Furthermore, H2S increased Cys accumulation more quickly than Cr(6+) stress. The qRT-PCR results revealed that H2S up-regulated the Cys generation-related genes OASTLa, SAT1 and SAT5 expression levels, and that SAT1 and SAT5 expression was elevated for a longer duration. Data suggested that H2S might regulate Cys metabolism-related genes expression to participate in Cr(6+)-mediated Cys accumulation. H2S and Cys relieved the root elongation inhibition caused by Cr(6+) in Arabidopsis. Both H2S and Cys enhanced glutathione generation and activated phytochelatins (PCs) synthesis by up-regulating PCS1 and PCS2 expression levels to fight against Cr(6+) stress. Besides regulating the expression of PCs synthase encoding genes, H2S might promote metallothioneins accumulation by significantly increasing the MT2A gene expression. Overall, H2S and H2S-induced Cys accumulation (H2S-Cys system) was critical in imparting Cr(6+) tolerance in Arabidopsis. This paper is the first to indicate that gasotransmitter H2S induced Cys accumulation in

  8. A comparison of the effects of penicillamine, trientine, and trithiomolybdate on ( sup 35 S)-labeled metallothionein in vitro; implications for Wilson's disease therapy

    SciTech Connect

    McQuaid, A.; Mason, J. )

    1991-02-01

    The synthesis of radiolabeled metallothionein was induced in rats in vivo by the injection of CuSO{sub 4} and ({sup 35}S)-cysteine. Treatment of 'cold' rat liver cytosol 'spiked' with purified ({sup 35}S) metallothionein with Penicillamine and Trientine showed that even at relatively high concentrations (up to 50 mg/g liver, wet weight), these compounds had no effect on the copper peak or the position of the ({sup 35S}) label in the cytosol eluate after Sephadex G-75 gel filtration. By contrast, incubation of the 'spiked' liver cytosol with Trithiomolybdate, even at relatively low concentrations (0.5 mg/g liver, wet weight), resulted in a transfer of metallothionein copper to high molecular weight protein fractions; the position of the ({sup 35}S) apoprotein was unaffected. This copper 'stripping' effect on metallothionein supports clinical and other evidence that thiomolybdates have a genuine decoppering effect in vivo whereas Penicillamine and Trientine have another mode of action and indicates that thiomolybdates might provide a more rational alternate therapy for Wilson's disease patients.

  9. A comparison of the effects of penicillamine, trientine, and trithiomolybdate on [35S]-labeled metallothionein in vitro; implications for Wilson's disease therapy.

    PubMed

    McQuaid, A; Mason, J

    1991-02-01

    The synthesis of radiolabeled metallothionein was induced in rats in vivo by the injection of CuSO4 and [35S]-cysteine. Treatment of "cold" rat liver cytosol "spiked" with purified [35S] metallothionein with Penicillamine and Trientine showed that even at relatively high concentrations (up to 50 mg/g liver, wet weight), these compounds had no effect on the copper peak or the position of the [35S] label in the cytosol eluate after Sephadex G-75 gel filtration. By contrast, incubation of the "spiked" liver cytosol with Trithiomolybdate, even at relatively low concentrations (0.5 mg/g liver, wet weight), resulted in a transfer of metallothionein copper to high molecular weight protein fractions; the position of the [35S] apoprotein was unaffected. This copper "stripping" effect on metallothionein supports clinical and other evidence that thiomolybdates have a genuine decoppering effect in vivo whereas Penicillamine and Trientine have another mode of action and indicates that thiomolybdates might provide a more rational alternate therapy for Wilson's disease patients.

  10. Evaluation of metallothionein formation as a proxy for zinc absorption in an in vitro digestion/caco-2 cell culture model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Caco-2 cell metallothionein (MT) formation was studied to determine if MT could be used as a proxy for zinc (Zn) absorption in a cell culture model. MT intracellular concentration was determined by using a cadmium/hemoglobin affinity assay. Cellular Zn uptake was determined in acid digests (5% HNO3)...

  11. Higher order chromatin structures in maize and Arabidopsis.

    PubMed Central

    Paul, A L; Ferl, R J

    1998-01-01

    We are investigating the nature of plant genome domain organization by using DNase I- and topoisomerase II-mediated cleavage to produce domains reflecting higher order chromatin structures. Limited digestion of nuclei with DNase I results in the conversion of the >800 kb genomic DNA to an accumulation of fragments that represents a collection of individual domains of the genome created by preferential cleavage at super-hypersensitive regions. The median size of these fragments is approximately 45 kb in maize and approximately 25 kb in Arabidopsis. Hybridization analyses with specific gene probes revealed that individual genes occupy discrete domains within the distribution created by DNase I. The maize alcohol dehydrogenase Adh1 gene occupies a domain of 90 kb, and the maize general regulatory factor GRF1 gene occupies a domain of 100 kb in length. Arabidopsis Adh was found within two distinct domains of 8.3 and 6.1 kb, whereas an Arabidopsis GRF gene occupies a single domain of 27 kb. The domains created by topoisomerase II-mediated cleavage are identical in size to those created by DNase I. These results imply that the genome is not packaged by means of a random gathering of the genome into domains of indiscriminate length but rather that the genome is gathered into specific domains and that a gene consistently occupies a discrete physical section of the genome. Our proposed model is that these large organizational domains represent the fundamental structural loop domains created by attachment of chromatin to the nuclear matrix at loop basements. These loop domains may be distinct from the domains created by the matrix attachment regions that typically flank smaller, often functionally distinct sections of the genome. PMID:9707534

  12. Arabidopsis thaliana as Bioindicator of Fungal VOCs in Indoor Air

    PubMed Central

    Hung, Richard; Yin, Guohua; Klich, Maren A.; Grimm, Casey; Bennett, Joan W.

    2016-01-01

    In this paper, we demonstrate the ability of Arabidopsis thaliana to detect different mixtures of volatile organic compounds (VOCs) emitted by the common indoor fungus, Aspergillus versicolor, and demonstrate the potential usage of the plant as a bioindicator to monitor fungal VOCs in indoor air. We evaluated the volatile production of Aspergillus versicolor strains SRRC 108 (NRRL 3449) and SRRC 2559 (ATCC 32662) grown on nutrient rich fungal medium, and grown under conditions to mimic the substrate encountered in the built environment where fungi would typically grow indoors (moist wallboard and ceiling tiles). Using headspace solid phase microextraction/gas chromatography-mass spectrometry, we analyzed VOC profiles of the two strains. The most abundant compound produced by both strains on all three media was 1-octen-3-ol. Strain SRRC 2559 made several terpenes not detected from strain SRRC 108. Using a split-plate bioassay, we grew Arabidopsis thaliana in a shared atmosphere with VOCs from the two strains of Aspergillus versicolor grown on yeast extract sucrose medium. The VOCs emitted by SRRC 2559 had an adverse impact on seed germination and plant growth. Chemical standards of individual VOCs from the Aspergillus versicolor mixture (2-methyl-1-butanol, 3-methyl-1-butanol, 1-octen-3-ol, limonene, and β-farnesene), and β-caryophyllene were tested one by one in seed germination and vegetative plant growth assays. The most inhibitory compound to both seed germination and plant growth was 1-octen-3-ol. Our data suggest that Arabidopsis is a useful model for monitoring indoor air quality as it is sensitive to naturally emitted fungal volatile mixtures as well as to chemical standards of individual compounds, and it exhibits relatively quick concentration- and duration-dependent responses. PMID:27790067

  13. Taxonomy and Phylogeny of Arabidopsis (Brassicaceae)

    PubMed Central

    Al-Shehbaz, Ihsan A.; O'Kane, Steve L.

    2002-01-01

    Detailed taxonomic, cytological, and phylogenetic accounts of Arabidopsis are presented. As currently delimited, the genus consists of nine species all of which are indigenous to Europe, with the ranges of two species extending into northern and eastern Asia and North American into central United States. A survey of chromosome numbers in the genus is presented, and the country of origin for each count is given. Detailed descriptions of all species and subspecies and keys to all taxa are provided. Generic assignments are updated for the 50 species previously included in Arabidopsis. A cladogram of the species of Arabidopsis based on molecular phylogenetic studies by the authors is given. PMID:22303187

  14. Sulfenome mining in Arabidopsis thaliana

    PubMed Central

    Waszczak, Cezary; Akter, Salma; Eeckhout, Dominique; Persiau, Geert; Wahni, Khadija; Bodra, Nandita; Van Molle, Inge; De Smet, Barbara; Vertommen, Didier; Gevaert, Kris; De Jaeger, Geert; Van Montagu, Marc; Messens, Joris; Van Breusegem, Frank

    2014-01-01

    Reactive oxygen species (ROS) have been shown to be potent signaling molecules. Today, oxidation of cysteine residues is a well-recognized posttranslational protein modification, but the signaling processes steered by such oxidations are poorly understood. To gain insight into the cysteine thiol-dependent ROS signaling in Arabidopsis thaliana, we identified the hydrogen peroxide (H2O2)-dependent sulfenome: that is, proteins with at least one cysteine thiol oxidized to a sulfenic acid. By means of a genetic construct consisting of a fusion between the C-terminal domain of the yeast (Saccharomyces cerevisiae) AP-1–like (YAP1) transcription factor and a tandem affinity purification tag, we detected ∼100 sulfenylated proteins in Arabidopsis cell suspensions exposed to H2O2 stress. The in vivo YAP1-based trapping of sulfenylated proteins was validated by a targeted in vitro analysis of DEHYDROASCORBATE REDUCTASE2 (DHAR2). In DHAR2, the active site nucleophilic cysteine is regulated through a sulfenic acid-dependent switch, leading to S-glutathionylation, a protein modification that protects the protein against oxidative damage. PMID:25049418

  15. Polyploidy in the Arabidopsis genus.

    PubMed

    Bomblies, Kirsten; Madlung, Andreas

    2014-06-01

    Whole genome duplication (WGD), which gives rise to polyploids, is a unique type of mutation that duplicates all the genetic material in a genome. WGD provides an evolutionary opportunity by generating abundant genetic "raw material," and has been implicated in diversification, speciation, adaptive radiation, and invasiveness, and has also played an important role in crop breeding. However, WGD at least initially challenges basic biological functions by increasing cell size, altering relationships between cell volume and DNA content, and doubling the number of homologous chromosome copies that must be sorted during cell division. Newly polyploid lineages often have extensive changes in gene regulation, genome structure, and may suffer meiotic or mitotic chromosome mis-segregation. The abundance of species that persist in nature as polyploids shows that these problems are surmountable and/or that advantages of WGD might outweigh drawbacks. The molecularly especially tractable Arabidopsis genus has several ancient polyploidy events in its history and contains several independent more recent polyploids. This genus can thus provide important insights into molecular aspects of polyploid formation, establishment, and genome evolution. The ability to integrate ecological and evolutionary questions with molecular and genetic understanding makes comparative analyses in this genus particularly attractive and holds promise for advancing our general understanding of polyploid biology. Here, we highlight some of the findings from Arabidopsis that have given us insights into the origin and evolution of polyploids. PMID:24788061

  16. The Fungus Tremella mesenterica Encodes the Longest Metallothionein Currently Known: Gene, Protein and Metal Binding Characterization.

    PubMed

    Iturbe-Espinoza, Paul; Gil-Moreno, Selene; Lin, Weiyu; Calatayud, Sara; Palacios, Òscar; Capdevila, Mercè; Atrian, Sílvia

    2016-01-01

    Fungal Cu-thioneins, and among them, the paradigmatic Neurospora crassa metallothionein (MT) (26 residues), were once considered as the shortest MTs--the ubiquitous, versatile metal-binding proteins--among all organisms, and thus representatives of their primeval forms. Nowadays, fungal MTs of diverse lengths and sequence features are known, following the huge heterogeneity of the Kingdom of Fungi. At the opposite end of N. crassa MT, the recently reported Cryptococcus neoformans CnMT1 and CnMT2 (122 and 186 aa) constitute the longest reported fungal MTs, having been identified as virulence factors of this pathogen. CnMTs are high-capacity Cu-thioneins that appear to be built by tandem amplification of a basic unit, a 7-Cys segment homologous to N. crassa MT. Here, we report the in silico, in vivo and in vitro study of a still longer fungal MT, belonging to Tremella mesenterica (TmMT), a saprophytic ascomycete. The TmMT gene has 10 exons, and it yields a 779-bp mature transcript that encodes a 257 residue-long protein. This MT is also built by repeated fragments, but of variable number of Cys: six units of the 7-Cys building blocks--CXCX3CSCPPGXCXCAXCP-, two fragments of six Cys, plus three Cys at the N-terminus. TmMT metal binding abilities have been analyzed through the spectrophotometric and spectrometric characterization of its recombinant Zn-, Cd- and Cu-complexes. Results allow it to be unambiguous classified as a Cu-thionein, also of extraordinary coordinating capacity. According to this feature, when the TmMT cDNA is expressed in MT-devoid yeast cells, it is capable of restoring a high Cu tolerance level. Since it is not obvious that T. mesenterica shares the same physiological needs for a high capacity Cu-binding protein with C. neoformans, the existence of this peculiar MT might be better explained on the basis of a possible role in Cu-handling for the Cu-enzymes responsible in lignin degradation pathways. PMID:26882011

  17. Toxicity, silver accumulation and metallothionein induction in freshwater rainbow trout during exposure to different silver salts

    SciTech Connect

    Hogstrand, C.; Galvez, F.; Wood, C.M.

    1996-07-01

    Static-renewal 168-h toxicity tests of silver nitrate (AgNO{sub 3}), silver chloride (AgCl{sub n}), and silver thiosulfate (Ag(S{sub 2}O{sub 3}){sub n}) with juvenile rainbow trout (Oncorhyncus mykiss) were performed by standard methods. Because of low solubility of AgCl(s), bioassays for AgCl{sub n} were performed in two separate ways. In one test series, AgCl(s) was added to freshwater and in another, AgCl{sub n}(aq) was generated by adding AgNO{sub 3} to freshwater supplemented with 50 mM NaCl. Concentrations of Ag and metallothionein (MT) were analyzed in gills and livers of fish that survived the exposures. Although Ag added as AgNO{sub 3} was found to be highly toxic to rainbow trout (168-h LC50 = 9.1 {micro}g Ag L{sup {minus}1}), the toxicities of the other Ag salts were low. The 168-h LC50 for Ag(S{sub 2}O{sub 3}){sub n} was 137,000 {micro}g Ag L{sup {minus}1} and no mortality was observed in AgCl{sub n} (100,000 {micro}g Ag L{sup {minus}1}). Exposure to AgNO{sub 3}, Ag(S{sub 2}O{sub 3}){sub n}, or AgCl{sub n} caused accumulation of Ag and induction of MT. Highest Ag levels were found in livers of trout exposed to 164,000 {micro}g Ag L{sup {minus}1} as Ag(S{sub 2}O{sub 3}){sub n}. In these fish, the hepatic Ag concentration was increased 335 times from the control value. The MT levels in gills and liver increased with the water Ag concentration and the highest level of MT was found in liver of fish exposed to Ag(S{sub 2}O{sub 3}){sub n}.

  18. Two metallothionein genes in Oxya chinensis: molecular characteristics, expression patterns and roles in heavy metal stress.

    PubMed

    Liu, Yaoming; Wu, Haihua; Kou, Lihua; Liu, Xiaojian; Zhang, Jianzhen; Guo, Yaping; Ma, Enbo

    2014-01-01

    Metallothioneins (MTs) are small, cysteine-rich, heavy metal-binding proteins involved in metal homeostasis and detoxification in living organisms. In the present study, we cloned two MT genes (OcMT1 and OcMT2) from Oxya chinensis, analyzed the expression patterns of the OcMT transcripts in different tissues and at varying developmental stages using real-time quantitative PCR (RT-qPCR), evaluated the functions of these two MTs using RNAi and recombinant proteins in an E. coli expression system. The full-length cDNAs of OcMT1 and OcMT2 encoded 40 and 64 amino acid residues, respectively. We found Cys-Cys, Cys-X-Cys and Cys-X-Y-Z-Cys motifs in OcMT1 and OcMT2. These motifs might serve as primary chelating sites, as in other organisms. These characteristics suggest that OcMT1 and OcMT2 may be involved in heavy metal detoxification by capturing the metals. Two OcMT were expressed at all developmental stages, and the highest levels were found in the eggs. Both transcripts were expressed in all eleven tissues examined, with the highest levels observed in the brain and optic lobes, followed by the fat body. The expression of OcMT2 was also relatively high in the ovaries. The functions of OcMT1 and OcMT2 were explored using RNA interference (RNAi) and different concentrations and treatment times for the three heavy metals. Our results indicated that mortality increased significantly from 8.5% to 16.7%, and this increase was both time- and dose-dependent. To evaluate the abilities of these two MT proteins to confer heavy metal tolerance to E. coli, the bacterial cells were transformed with pET-28a plasmids containing the OcMT genes. The optical densities of both the MT-expressing and control cells decreased with increasing concentrations of CdCl2. Nevertheless, the survival rates of the MT-overexpressing cells were higher than those of the controls. Our results suggest that these two genes play important roles in heavy metal detoxification in O. chinensis. PMID:25391131

  19. Induction of metallothionein in mouse cerebellum and cerebrum with low-dose thimerosal injection.

    PubMed

    Minami, Takeshi; Miyata, Eriko; Sakamoto, Yamato; Yamazaki, Hideo; Ichida, Seiji

    2010-04-01

    Thimerosal, an ethyl mercury compound, is used worldwide as a vaccine preservative. We previously observed that the mercury concentration in mouse brains did not increase with the clinical dose of thimerosal injection, but the concentration increased in the brain after the injection of thimerosal with lipopolysaccharide, even if a low dose of thimerosal was administered. Thimerosal may penetrate the brain, but is undetectable when a clinical dose of thimerosal is injected; therefore, the induction of metallothionein (MT) messenger RNA (mRNA) and protein was observed in the cerebellum and cerebrum of mice after thimerosal injection, as MT is an inducible protein. MT-1 mRNA was expressed at 6 and 9 h in both the cerebrum and cerebellum, but MT-1 mRNA expression in the cerebellum was three times higher than that in the cerebrum after the injection of 12 microg/kg thimerosal. MT-2 mRNA was not expressed until 24 h in both organs. MT-3 mRNA was expressed in the cerebellum from 6 to 15 h after the injection, but not in the cerebrum until 24 h. MT-1 and MT-3 mRNAs were expressed in the cerebellum in a dose-dependent manner. Furthermore, MT-1 protein was detected from 6 to 72 h in the cerebellum after 12 microg/kg of thimerosal was injected and peaked at 10 h. MT-2 was detected in the cerebellum only at 10 h. In the cerebrum, little MT-1 protein was detected at 10 and 24 h, and there were no peaks of MT-2 protein in the cerebrum. In conclusion, MT-1 and MT-3 mRNAs but not MT-2 mRNA are easily expressed in the cerebellum rather than in the cerebrum by the injection of low-dose thimerosal. It is thought that the cerebellum is a sensitive organ against thimerosal. As a result of the present findings, in combination with the brain pathology observed in patients diagnosed with autism, the present study helps to support the possible biological plausibility for how low-dose exposure to mercury from thimerosal-containing vaccines may be associated with autism.

  20. The Fungus Tremella mesenterica Encodes the Longest Metallothionein Currently Known: Gene, Protein and Metal Binding Characterization

    PubMed Central

    Lin, Weiyu; Calatayud, Sara; Palacios, Òscar; Capdevila, Mercè; Atrian, Sílvia

    2016-01-01

    Fungal Cu-thioneins, and among them, the paradigmatic Neurospora crassa metallothionein (MT) (26 residues), were once considered as the shortest MTs -the ubiquitous, versatile metal-binding proteins- among all organisms, and thus representatives of their primeval forms. Nowadays, fungal MTs of diverse lengths and sequence features are known, following the huge heterogeneity of the Kingdom of Fungi. At the opposite end of N. crassa MT, the recently reported Cryptococcus neoformans CnMT1 and CnMT2 (122 and 186 aa) constitute the longest reported fungal MTs, having been identified as virulence factors of this pathogen. CnMTs are high-capacity Cu-thioneins that appear to be built by tandem amplification of a basic unit, a 7-Cys segment homologous to N. crassa MT. Here, we report the in silico, in vivo and in vitro study of a still longer fungal MT, belonging to Tremella mesenterica (TmMT), a saprophytic ascomycete. The TmMT gene has 10 exons, and it yields a 779-bp mature transcript that encodes a 257 residue-long protein. This MT is also built by repeated fragments, but of variable number of Cys: six units of the 7-Cys building blocks-CXCX3CSCPPGXCXCAXCP-, two fragments of six Cys, plus three Cys at the N-terminus. TmMT metal binding abilities have been analyzed through the spectrophotometric and spectrometric characterization of its recombinant Zn-, Cd- and Cu-complexes. Results allow it to be unambiguous classified as a Cu-thionein, also of extraordinary coordinating capacity. According to this feature, when the TmMT cDNA is expressed in MT-devoid yeast cells, it is capable of restoring a high Cu tolerance level. Since it is not obvious that T. mesenterica shares the same physiological needs for a high capacity Cu-binding protein with C. neoformans, the existence of this peculiar MT might be better explained on the basis of a possible role in Cu-handling for the Cu-enzymes responsible in lignin degradation pathways. PMID:26882011

  1. Metallothionein I and II protect against zinc deficiency and zinc toxicity in mice.

    PubMed

    Kelly, E J; Quaife, C J; Froelick, G J; Palmiter, R D

    1996-07-01

    Metallothionein (MT)-bound zinc accumulates when animals are exposed to excess zinc and is depleted under conditions of zinc deficiency, suggesting that MT serves as a means of sequestering excess zinc as well as a zinc reservoir that can be utilized when zinc is deficient. To examine the importance of MT for these processes, mice with null alleles of both MT I and MT II genes were created and the zinc concentration and histological appearance of multiple organs assessed. At birth, the hepatic zinc concentration of these MT-null mice was lower than that of wild-type controls (0.27 +/- 0.02 vs. 0.65 +/- 0.11 micromol zinc/g tissue, P < 0.05). During the next 3 wk of suckling zinc-replete (95 micrograms zinc/g diet) dams, the hepatic zinc concentration of controls fell to 0.42 +/- 0.04 micromol/g but was unchanged in the MT-null mice (0.28 +/- 0.04 micromol/g). The most prominent histological anomaly observed at 3 wk of age was the presence of swollen Bowman's capsules in the kidneys of MT-null mice. When nursing MT-null dams were fed a severely zinc-deficient (1.5 microg/g) diet, kidney development in the MT-null pups was retarded as indicated by the retention of the nephrogenic zone and incomplete tubule development. We suggest that the lack of a hepatic reservoir of zinc jeopardizes the developing kidney in the MT-null mice. In addition to being more sensitive to dietary zinc restriction, MT-null mice are more sensitive to zinc toxicity. When adult mice were challenged with a ramping dose of zinc up to a total of 3700 micromol zinc/kg body weight, MT-null mice had a greater incidence of pancreatic acinar cell degeneration compared with control mice despite accumulating less zinc (2.72 +/- 0.46 vs. 1.23 +/- 0.52 micromol zinc/g pancreas, control and MT-null, respectively, P < 0.05). The results of these experiments suggest that MT I and MT II can protect against both zinc deficiency and zinc toxicity.

  2. Two Metallothionein Genes in Oxya chinensis: Molecular Characteristics, Expression Patterns and Roles in Heavy Metal Stress

    PubMed Central

    Liu, Yaoming; Wu, Haihua; Kou, Lihua; Liu, Xiaojian; Zhang, Jianzhen; Guo, Yaping; Ma, Enbo

    2014-01-01

    Metallothioneins (MTs) are small, cysteine-rich, heavy metal-binding proteins involved in metal homeostasis and detoxification in living organisms. In the present study, we cloned two MT genes (OcMT1 and OcMT2) from Oxya chinensis, analyzed the expression patterns of the OcMT transcripts in different tissues and at varying developmental stages using real-time quantitative PCR (RT-qPCR), evaluated the functions of these two MTs using RNAi and recombinant proteins in an E. coli expression system. The full-length cDNAs of OcMT1 and OcMT2 encoded 40 and 64 amino acid residues, respectively. We found Cys-Cys, Cys-X-Cys and Cys-X-Y-Z-Cys motifs in OcMT1 and OcMT2. These motifs might serve as primary chelating sites, as in other organisms. These characteristics suggest that OcMT1 and OcMT2 may be involved in heavy metal detoxification by capturing the metals. Two OcMT were expressed at all developmental stages, and the highest levels were found in the eggs. Both transcripts were expressed in all eleven tissues examined, with the highest levels observed in the brain and optic lobes, followed by the fat body. The expression of OcMT2 was also relatively high in the ovaries. The functions of OcMT1 and OcMT2 were explored using RNA interference (RNAi) and different concentrations and treatment times for the three heavy metals. Our results indicated that mortality increased significantly from 8.5% to 16.7%, and this increase was both time- and dose-dependent. To evaluate the abilities of these two MT proteins to confer heavy metal tolerance to E. coli, the bacterial cells were transformed with pET-28a plasmids containing the OcMT genes. The optical densities of both the MT-expressing and control cells decreased with increasing concentrations of CdCl2. Nevertheless, the survival rates of the MT-overexpressing cells were higher than those of the controls. Our results suggest that these two genes play important roles in heavy metal detoxification in O. chinensis. PMID:25391131

  3. Global analysis of Arabidopsis/downy mildew interactions reveals prevalence of incomplete resistance and rapid evolution of pathogen recognition.

    PubMed

    Krasileva, Ksenia V; Zheng, Connie; Leonelli, Lauriebeth; Goritschnig, Sandra; Dahlbeck, Douglas; Staskawicz, Brian J

    2011-01-01

    Interactions between Arabidopsis thaliana and its native obligate oomycete pathogen Hyaloperonospora arabidopsidis (Hpa) represent a model system to study evolution of natural variation in a host/pathogen interaction. Both Arabidopsis and Hpa genomes are sequenced and collections of different sub-species are available. We analyzed ∼400 interactions between different Arabidopsis accessions and five strains of Hpa. We examined the pathogen's overall ability to reproduce on a given host, and performed detailed cytological staining to assay for pathogen growth and hypersensitive cell death response in the host. We demonstrate that intermediate levels of resistance are prevalent among Arabidopsis populations and correlate strongly with host developmental stage. In addition to looking at plant responses to challenge by whole pathogen inoculations, we investigated the Arabidopsis resistance attributed to recognition of the individual Hpa effectors, ATR1 and ATR13. Our results suggest that recognition of these effectors is evolutionarily dynamic and does not form a single clade in overall Arabidopsis phylogeny for either effector. Furthermore, we show that the ultimate outcome of the interactions can be modified by the pathogen, despite a defined gene-for-gene resistance in the host. These data indicate that the outcome of disease and disease resistance depends on genome-for-genome interactions between the host and its pathogen, rather than single gene pairs as thought previously. PMID:22194907

  4. The fifth international conference on Arabidopsis research

    SciTech Connect

    Hangarter, R.; Scholl, R.; Davis, K.; Feldmann, K.

    1993-12-31

    This volume contains abstracts of oral and poster presentations made in conjunction with the Fifth International Conference on Arabidopsis Research held August 19--22, 1993 at the Ohio State University, Columbus, Ohio.

  5. Cytological analysis of Arabidopsis thaliana meiotic chromosomes.

    PubMed

    Armstrong, Susan J; Sanchez-Moran, Eugenio; Franklin, F Chris H

    2009-01-01

    Advances in molecular biology and in the genetics of Arabidopsis thaliana have led to this organism becoming an important model for the analysis of meiosis in plants. Cytogenetic investigations are pivotal to meiotic studies and a number of technological improvements for Arabidopsis cytology have provided a range of tools to investigate chromosome behaviour during meiosis. This chapter includes protocols on basic cytology, FISH analysis, immunocytology, a procedure for a meiotic time course and electron microscopy.

  6. Individual Education.

    ERIC Educational Resources Information Center

    Corsini, Raymond

    1981-01-01

    Paper presented at the 66th Convention of the International Association of Pupil Personnel Workers, October 20, 1980, Baltimore, Maryland, describes individual education based on the principles of Alfred Adler. Defines six advantages of individual education, emphasizing student responsibility, mutual respect, and allowing students to progress at…

  7. Apoplastic diffusion barriers in Arabidopsis.

    PubMed

    Nawrath, Christiane; Schreiber, Lukas; Franke, Rochus Benni; Geldner, Niko; Reina-Pinto, José J; Kunst, Ljerka

    2013-12-27

    During the development of Arabidopsis and other land plants, diffusion barriers are formed in the apoplast of specialized tissues within a variety of plant organs. While the cuticle of the epidermis is the primary diffusion barrier in the shoot, the Casparian strips and suberin lamellae of the endodermis and the periderm represent the diffusion barriers in the root. Different classes of molecules contribute to the formation of extracellular diffusion barriers in an organ- and tissue-specific manner. Cutin and wax are the major components of the cuticle, lignin forms the early Casparian strip, and suberin is deposited in the stage II endodermis and the periderm. The current status of our understanding of the relationships between the chemical structure, ultrastructure and physiological functions of plant diffusion barriers is discussed. Specific aspects of the synthesis of diffusion barrier components and protocols that can be used for the assessment of barrier function and important barrier properties are also presented.

  8. Apoplastic Diffusion Barriers in Arabidopsis

    PubMed Central

    Schreiber, Lukas; Franke, Rochus Benni; Geldner, Niko; Reina-Pinto, José J.; Kunst, Ljerka

    2013-01-01

    During the development of Arabidopsis and other land plants, diffusion barriers are formed in the apoplast of specialized tissues within a variety of plant organs. While the cuticle of the epidermis is the primary diffusion barrier in the shoot, the Casparian strips and suberin lamellae of the endodermis and the periderm represent the diffusion barriers in the root. Different classes of molecules contribute to the formation of extracellular diffusion barriers in an organ- and tissue-specific manner. Cutin and wax are the major components of the cuticle, lignin forms the early Casparian strip, and suberin is deposited in the stage II endodermis and the periderm. The current status of our understanding of the relationships between the chemical structure, ultrastructure and physiological functions of plant diffusion barriers is discussed. Specific aspects of the synthesis of diffusion barrier components and protocols that can be used for the assessment of barrier function and important barrier properties are also presented. PMID:24465172

  9. Identification of Arabidopsis rat Mutants

    PubMed Central

    Zhu, Yanmin; Nam, Jaesung; Humara, Jaime M.; Mysore, Kirankumar S.; Lee, Lan-Ying; Cao, Hongbin; Valentine, Lisa; Li, Jingling; Kaiser, Anthony D.; Kopecky, Andrea L.; Hwang, Hau-Hsuan; Bhattacharjee, Saikat; Rao, Praveen K.; Tzfira, Tzvi; Rajagopal, Jyothi; Yi, HoChul; Veena; Yadav, Badam S.; Crane, Yan M.; Lin, Kui; Larcher, Yves; Gelvin, Matthew J.K.; Knue, Marnie; Ramos, Cynthia; Zhao, Xiaowen; Davis, Susan J.; Kim, Sang-Ic; Ranjith-Kumar, C.T.; Choi, Yoo-Jin; Hallan, Vipin K.; Chattopadhyay, Sudip; Sui, Xiangzhen; Ziemienowicz, Alicja; Matthysse, Ann G.; Citovsky, Vitaly; Hohn, Barbara; Gelvin, Stanton B.

    2003-01-01

    Limited knowledge currently exists regarding the roles of plant genes and proteins in the Agrobacterium tumefaciens-mediated transformation process. To understand the host contribution to transformation, we carried out root-based transformation assays to identify Arabidopsis mutants that are resistant to Agrobacterium transformation (rat mutants). To date, we have identified 126 rat mutants by screening libraries of T-DNA insertion mutants and by using various “reverse genetic” approaches. These mutants disrupt expression of genes of numerous categories, including chromatin structural and remodeling genes, and genes encoding proteins implicated in nuclear targeting, cell wall structure and metabolism, cytoskeleton structure and function, and signal transduction. Here, we present an update on the identification and characterization of these rat mutants. PMID:12805582

  10. The Arabidopsis metacaspase9 degradome.

    PubMed

    Tsiatsiani, Liana; Timmerman, Evy; De Bock, Pieter-Jan; Vercammen, Dominique; Stael, Simon; van de Cotte, Brigitte; Staes, An; Goethals, Marc; Beunens, Tine; Van Damme, Petra; Gevaert, Kris; Van Breusegem, Frank

    2013-08-01

    Metacaspases are distant relatives of the metazoan caspases, found in plants, fungi, and protists. However, in contrast with caspases, information about the physiological substrates of metacaspases is still scarce. By means of N-terminal combined fractional diagonal chromatography, the physiological substrates of metacaspase9 (MC9; AT5G04200) were identified in young seedlings of Arabidopsis thaliana on the proteome-wide level, providing additional insight into MC9 cleavage specificity and revealing a previously unknown preference for acidic residues at the substrate prime site position P1'. The functionalities of the identified MC9 substrates hinted at metacaspase functions other than those related to cell death. These results allowed us to resolve the substrate specificity of MC9 in more detail and indicated that the activity of phosphoenolpyruvate carboxykinase 1 (AT4G37870), a key enzyme in gluconeogenesis, is enhanced upon MC9-dependent proteolysis.

  11. Tetrapyrrole Metabolism in Arabidopsis thaliana

    PubMed Central

    Tanaka, Ryouichi; Kobayashi, Koichi; Masuda, Tatsuru

    2011-01-01

    Higher plants produce four classes of tetrapyrroles, namely, chlorophyll (Chl), heme, siroheme, and phytochromobilin. In plants, tetrapyrroles play essential roles in a wide range of biological activities including photosynthesis, respiration and the assimilation of nitrogen/sulfur. All four classes of tetrapyrroles are derived from a common biosynthetic pathway that resides in the plastid. In this article, we present an overview of tetrapyrrole metabolism in Arabidopsis and other higher plants, and we describe all identified enzymatic steps involved in this metabolism. We also summarize recent findings on Chl biosynthesis and Chl breakdown. Recent advances in this field, in particular those on the genetic and biochemical analyses of novel enzymes, prompted us to redraw the tetrapyrrole metabolic pathways. In addition, we also summarize our current understanding on the regulatory mechanisms governing tetrapyrrole metabolism. The interactions of tetrapyrrole biosynthesis and other cellular processes including the plastid-to-nucleus signal transduction are discussed. PMID:22303270

  12. Arabidopsis myosin XI: a motor rules the tracks.

    PubMed

    Cai, Chao; Henty-Ridilla, Jessica L; Szymanski, Daniel B; Staiger, Christopher J

    2014-11-01

    Plant cell expansion relies on intracellular trafficking of vesicles and macromolecules, which requires myosin motors and a dynamic actin network. Arabidopsis (Arabidopsis thaliana) myosin XI powers the motility of diverse cellular organelles, including endoplasmic reticulum, Golgi, endomembrane vesicles, peroxisomes, and mitochondria. Several recent studies show that there are changes in actin organization and dynamics in myosin xi mutants, indicating that motors influence the molecular tracks they use for transport. However, the mechanism by which actin organization and dynamics are regulated by myosin XI awaits further detailed investigation. Here, using high spatiotemporal imaging of living cells, we quantitatively assessed the architecture and dynamic behavior of cortical actin arrays in a mutant with three Myosin XI (XI-1, XI-2, and XI-K) genes knocked out (xi3KO). In addition to apparent reduction of organ and cell size, the mutant showed less dense and more bundled actin filament arrays in epidermal cells. Furthermore, the overall actin dynamicity was significantly inhibited in the xi3KO mutant. Because cytoskeletal remodeling is contributed mainly by filament assembly/disassembly and translocation/buckling, we also examined the dynamic behavior of individual actin filaments. We found that the xi3KO mutant had significantly decreased actin turnover, with a 2-fold reduction in filament severing frequency. Moreover, quantitative analysis of filament shape change over time revealed that myosin XI generates the force for buckling and straightening of both single actin filaments and actin bundles. Thus, our data provide genetic evidence that three Arabidopsis class XI myosins contribute to actin remodeling by stimulating turnover and generating the force for filament shape change. PMID:25237128

  13. Effect of thermal processing and canning on cadmium and lead levels in California market squid: the role of metallothioneins.

    PubMed

    Galitsopoulou, A; Georgantelis, D; Kontominas, M G

    2013-01-01

    The effects of two common seafood preparation practices (roasting and industrial canning) on the heavy metal content--cadmium (Cd) and lead (Pb)--of various tissues of California market squid were studied. Emphasis was placed on the role of metallothioneins (MT) in Cd and Pb behaviour during processing. Cd and Pb analysis was conducted by a Zeeman GTA-AAS atomic absorption spectrometry system; MT analysis was performed by a mercury saturation assay. Results showed that Cd levels in the mantle and whole squid were considerably affected by both processing practices, reaching a 240% increase in mantle and a 40% increase in whole squid. Interestingly, Cd behaviour was associated with MT changes during squid processing. On the other hand, Pb content was not affected from either processing or associated with MT content in the raw or processed squid. Therefore, processing operations may affect Cd and Pb content differently due to the specific metal bioaccumulation and chemical features of each heavy metal type.

  14. Transgenic Brassica napus and tobacco plants harboring human metallothionein gene are resistant to toxic levels of heavy metals

    SciTech Connect

    Misra, S. )

    1989-04-01

    A chimeric gene containing a cloned human metallothionein-II (MT-II) processed gene was introduced into Brassica napus and tobacco cells on a disarmed Ti plasmid of Agrobacterium tumefaciens. Transformants expressed MT protein as a nuclear trait, and in a constitutive manner. Seeds from self-fertilized transgenic plants were germinated on media containing toxic levels of cadmium and scored for tolerance/susceptibility to this heavy metal. The growth of root and shoot of transformed seedlings was unaffected by up to 100{mu}M CdCl{sub 2}, whereas, control seedlings showed severe inhibition of root and shoot growth and chlorosis of leaves. The results of these experiments indicate that agriculturally important plants such a B. napus can be genetically engineered for heavy metals tolerance/sequestration and eventually for partitioning of heavy metals in non-consumed plant tissues.

  15. Role of pCeMT, a putative metallothionein from Colocasia esculenta, in response to metal stress.

    PubMed

    Kim, Yeon-Ok; Jung, Sera; Kim, Kyounghyoun; Bae, Hyeun-Jong

    2013-03-01

    Metallothioneins (MTs) play a major role in metal homeostasis and/or detoxification in plants. In this study, a novel gene, pCeMT, was isolated from Colocasia esculenta and characterized. Our results indicate that Escherichia coli cells expressing pCeMT exhibited enhanced Cd, Cu, and Zn tolerance and accumulation compared with control cells. Furthermore, pCeMT-overexpressing tobacco seedlings displayed better growth under Cd, Cu, and Zn stresses and accumulated more Cd and Zn compared with the wild type. Interestingly, transgenic tobacco displayed markedly decreased hydrogen peroxide (H(2)O(2)) and lipid peroxidation levels under Cd, Cu, and Zn treatments. These results suggest that pCeMT could play an important role in the protection of plant cells from oxidative stress by reactive oxygen species (ROS) scavenging and in the detoxification of free metals by metal binding, leading to improved plant metal tolerance.

  16. Thermodynamics of Pb(ii) and Zn(ii) binding to MT-3, a neurologically important metallothionein.

    PubMed

    Carpenter, M C; Shami Shah, A; DeSilva, S; Gleaton, A; Su, A; Goundie, B; Croteau, M L; Stevenson, M J; Wilcox, D E; Austin, R N

    2016-06-01

    Isothermal titration calorimetry (ITC) was used to quantify the thermodynamics of Pb(2+) and Zn(2+) binding to metallothionein-3 (MT-3). Pb(2+) binds to zinc-replete Zn7MT-3 displacing each zinc ion with a similar change in free energy (ΔG) and enthalpy (ΔH). EDTA chelation measurements of Zn7MT-3 and Pb7MT-3 reveal that both metal ions are extracted in a tri-phasic process, indicating that they bind to the protein in three populations with different binding thermodynamics. Metal binding is entropically favoured, with an enthalpic penalty that reflects the enthalpic cost of cysteine deprotonation accompanying thiolate ligation of the metal ions. These data indicate that Pb(2+) binding to both apo MT-3 and Zn7MT-3 is thermodynamically favourable, and implicate MT-3 in neuronal lead biochemistry. PMID:26757944

  17. Expression of a mouse metallothionein-Escherichia coli. beta. -galactosidase fusion gene (MT-. beta. gal) in early mouse embryos

    SciTech Connect

    Stevens, M.E.; Meneses, J.J.; Pedersen, R.A. )

    1989-08-01

    The authors have microinjected DNA containing the inducible mouse metallothionein-I (MT-I) promoter, coupled to the structural gene for Escherichia coli {beta}-galactosidase (lacZ), into the pronuclei of one-cell mouse embryos. A qualitative histochemical assay, with 5-bromo-4-chloro-3-indolyl {beta}-D-galactopyranoside (X-Gal) as a substrate, was used to detect expression of lacZ at several preimplantation stages. They observed staining indicative of exogenous {beta}-galactosidase activity in 5-17% of DNA-injected embryos assayed at preimplantation stages after 16-24 h treatment with ZnSO{sub 4}. Thus, lacZ can be used as an indicator gene for promoter function during early mouse embryogenesis, and the incorporation of the MT-I promoter into fusion genes can be a useful means of controlling the expression of exogenous genes in preimplantation mouse embryos.

  18. Trace-elements, methylmercury and metallothionein levels in Magellanic penguin (Spheniscus magellanicus) found stranded on the Southern Brazilian coast.

    PubMed

    Kehrig, Helena A; Hauser-Davis, Rachel A; Seixas, Tércia G; Fillmann, Gilberto

    2015-07-15

    Magellanic penguins have been reported as good biomonitors for several types of pollutants, including trace-elements. In this context, selenium (Se), total mercury, methylmercury, inorganic mercury (Hg(inorg)), cadmium (Cd) and lead (Pb), as well as metallothionein (MT) levels, were evaluated in the feathers, liver and kidney of juvenile Magellanic penguins found stranded along the coast of Southern Brazil. The highest concentrations of all trace-elements and methylmercury were found in internal organs. Concentrations of Cd and Se in feathers were extremely low in comparison with their concentrations in soft tissues. The results showed that both Se and MT are involved in the detoxification of trace-elements (Cd, Pb and Hg(inorg)) since statistically significant relationships were found in liver. Conversely, hepatic Se was shown to be the only detoxifying agent for methylmercury.

  19. Role of pCeMT, a putative metallothionein from Colocasia esculenta, in response to metal stress.

    PubMed

    Kim, Yeon-Ok; Jung, Sera; Kim, Kyounghyoun; Bae, Hyeun-Jong

    2013-03-01

    Metallothioneins (MTs) play a major role in metal homeostasis and/or detoxification in plants. In this study, a novel gene, pCeMT, was isolated from Colocasia esculenta and characterized. Our results indicate that Escherichia coli cells expressing pCeMT exhibited enhanced Cd, Cu, and Zn tolerance and accumulation compared with control cells. Furthermore, pCeMT-overexpressing tobacco seedlings displayed better growth under Cd, Cu, and Zn stresses and accumulated more Cd and Zn compared with the wild type. Interestingly, transgenic tobacco displayed markedly decreased hydrogen peroxide (H(2)O(2)) and lipid peroxidation levels under Cd, Cu, and Zn treatments. These results suggest that pCeMT could play an important role in the protection of plant cells from oxidative stress by reactive oxygen species (ROS) scavenging and in the detoxification of free metals by metal binding, leading to improved plant metal tolerance. PMID:23344478

  20. The role of metallothioneins, selenium and transfer to offspring in mercury detoxification in Franciscana dolphins (Pontoporia blainvillei).

    PubMed

    Romero, M B; Polizzi, P; Chiodi, L; Das, K; Gerpe, M

    2016-08-15

    The concentrations of mercury (Hg), selenium (Se) and metallothioneins (MT) were evaluated in fetuses, calves, juveniles and adults of the endangered coastal Franciscana dolphin (Pontoporia blainvillei) from Argentina. Mercury concentrations varied among analyzed tissues (liver, kidney, muscle and brain), with liver showing the higher concentrations in all specimens. An age-dependent accumulation was found in liver, kidney and brain. No significant relationship between Hg and MT concentrations was found for all tissues analyzed. Hepatic Hg molar concentrations were positively correlated with those of Se, indicating a great affinity between these two elements. Furthermore, dark granules of HgSe were observed in Kupffer cells in the liver by electron microscopy, suggesting the role of this macrophage in the detoxification of Hg. A transfer of Hg through placenta was proved. The presence of Hg in brain in all age classes did not show concentrations associated with neurotoxicity. PMID:27210558

  1. Metallothionein 2A affects the cell respiration by suppressing the expression of mitochondrial protein cytochrome c oxidase subunit II.

    PubMed

    Bragina, Olga; Gurjanova, Karina; Krishtal, Jekaterina; Kulp, Maria; Karro, Niina; Tõugu, Vello; Palumaa, Peep

    2015-06-01

    Metallothioneins (MT) are involved in a broad range of cellular processes and play a major role in protection of cells towards various stressors. Two functions of MTs, namely the maintaining of the homeostasis of transition metal ions and the redox balance, are directly linked to the functioning of mitochondria. Dyshomeostasis of MTs is often related with malfunctioning of mitochondria; however, the mechanism by which MTs affect the mitochondrial respiratory chain is still unknown. We demonstrated that overexpression of MT-2A in HEK cell line decreased the oxidative phosphorylation capacity of the cells. HEK cells overexpressing MT-2A demonstrated reduced oxygen consumption and lower cellular ATP levels. MT-2A did not affect the number of mitochondria, but reduced specifically the level of cytochrome c oxidase subunit II protein, which resulted in lower activity of the complex IV.

  2. Analysis of the effects of overexpression of metallothionein-I in transgenic mice on the reproductive toxicology of cadmium

    SciTech Connect

    Dalton, T.; Kai Fu; Andrews, G.K.; Enders, G.C.; Palmiter, R.D.

    1996-01-01

    Exposure to low levels of cadmium reduces fertility. In male mice spermatogensis is highly sensitive to cadmium, whereas in females the peri-implantation period of pregnancy is sensitive. To examine the potential roles of the cadmium-binding protein, metallothionein (MT), in the reproductive toxicology of cadmium, we examined a transgenic mouse strain that overexpresses metallothionein-I (MT-I). These mice had dramatically increased steady-state levels of MT-I mRNA and MT in the testes and in the female reproductive tract during the peri-implantation period of pregnancy, and this overexpression occurred in a cell-specific and temporally regulated manner similar to that of the endogenous MT-I gene. Transgenic and control males were injected with cadmium, and the histology of the testes was examined. An injection of 7.5 {mu}mol Cd/Kg had no effect on histology of the testes in either transgenic or control mice. In contrast, an injection of 10 {mu}mol Cd/kg caused rapid changes in the histology of the testes and resulted in pronounced testicular necrosis in both control and transgenic mice. Female transgenic and control mice were mated and then injected with cadmium (30-45 {mu}mol Cd/kg) on the day of blastocyst implantation (day 4). In both of these groups, injection of cadmium reduced pregnancy rate, and no dramatic protection was afforded by maternal and/or embryonic overexpression of MT. Thus, overexpression of MT-I does not significantly protect against either of these cadmium-induced effects on fertility. 65 refs., 6 figs., 1 tab.

  3. Analysis of the effects of overexpression of metallothionein-I in transgenic mice on the reproductive toxicology of cadmium.

    PubMed

    Dalton, T; Fu, K; Enders, G C; Palmiter, R D; Andrews, G K

    1996-01-01

    Exposure to low levels of cadmium reduces fertility. In male mice spermatogenesis is highly sensitive to cadmium, whereas in females the peri-implantation period of pregnancy is sensitive. To examine the potential roles of the cadmium-binding protein, metallothionein (MT), in the reproductive toxicology of cadmium, we examined a transgenic mouse strain that overexpresses metallothionein-I (MT-I). These mice had dramatically increased steady-state levels of MT-I mRNA and MT in the testes and in the female reproductive tract during the peri-implantation period of pregnancy, and this overexpression occurred in a cell-specific and temporally regulated manner similar to that of the endogenous MT-I gene. Transgenic and control males were injected with cadmium, and the histology of the testes was examined. An injection of 7.5 mumol Cd/kg had no effect on histology of the testes in either transgenic or control mice. In contrast, an injection of 10 mumol Cd/kg caused rapid changes in the histology of the testes and resulted in pronounced testicular necrosis in both control and transgenic mice. Female transgenic and control mice were mated and then injected with cadmium (30-45 mumol Cd/kg) on the day of blastocyst implantation (day 4). In both of these groups, injection of cadmium reduced pregnancy rate, and no dramatic protection was afforded by maternal and/or embryonic overexpression of MT. Thus, overexpression of MT-I does not significantly protect against either of these cadmium-induced effects on fertility. PMID:8834864

  4. Total and metallothionein-bound cadmium in the liver and the kidney of a population in Barcelona (Spain)

    SciTech Connect

    Torra, M.; To-Figueras, J.; Brunet, M.; Rodamilans, M.; Corbella, J. )

    1994-10-01

    Since the beginning of XXth century environmental pollution by cadmium has been increasing in most European countries due to industrial and agricultural emissions. Among the heavy metals of environmental concern, cadmium is one of the most widespread with variable but significant concentrations normally found in tobacco smoke, food, drinking water, and soils. Cadmium has a broad spectrum of toxic effects in man. After ingestion and absorption a significant fraction of the metal accumulates in tissues with an estimated half-life of about 10 years in humans. Kidney is the main target organ of both accumulation and toxicity with nephrotoxic effects being better understood. In recent years the possible nephrotoxic effects of cadmium at low concentrations on the general population have been a major concern. Toxic effects of cadmium on renal function cause increased proteinuria, aminoaciuria, glucosuria and decreased phosphate tubular reabsorption. Early signs of renal toxicity include an increase in the urinary excretion of low-molecular-weight (LMWP) proteins which are normally reabsorbed by tubular cells. Since nephrotoxicity is in most cases an irreversible process, great efforts are actually being made to develop biological markers for the early detection of structural or functional changes at various sites of the renal parenchyma. This study evaluates the concentration of cadmium in the kidney and the liver in the urban general population of Barcelona. Cadmium bound to metallothionein (MT) was also assessed in both tissues since it is well known that this protein plays a crucial role in cadmium kinetics and toxicity. The metallothionein is a low molecular weight protein with high cysteine and metal content. It serves a homeostatic function for the essential metals, and also a detoxification function for metals such as cadmium and mercury. 20 refs., 2 figs., 2 tabs.

  5. Effect of quercetin on metallothionein, nitric oxide synthases and cyclooxygenase-2 expression on experimental chronic cadmium nephrotoxicity in rats

    SciTech Connect

    Morales, Ana I.; Vicente-Sanchez, Cesar; Jerkic, Mirjana; Santiago, Jose M.; Sanchez-Gonzalez, Penelope D.; Perez-Barriocanal, Fernando; Lopez-Novoa, Jose M. . E-mail: jmlnovoa@usal.es

    2006-01-15

    Inflammation can play a key role in Cd-induced dysfunctions. Quercetin is a potent oxygen free radical scavenger and a metal chelator. Our aim was to study the effect of quercetin on Cd-induced kidney damage and metallothionein expression. The study was performed in Wistar rats that were administered during 9 weeks with either cadmium (1.2 mg Cd/kg/day, s.c.), quercetin (50 mg/kg/day, i.p.) or cadmium + quercetin. Renal toxicity was evaluated by measuring blood urea nitrogen concentration and urinary excretion of enzymes marker of tubular damage. Endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) renal expression were assessed by Western blot. Renal expression of metallothionein 1 and 2 (MT-1, MT-2) and eNOS mRNA was assessed by Northern blot. Our data demonstrated that Cd-induced renal toxicity was markedly reduced in rats that also received quercetin. MT-1 and MT-2 mRNA levels in kidney were substantially increased during treatment with Cd, being even higher when the animals received Cd and quercetin. Renal eNOS expression was significantly higher in rats receiving Cd and quercetin than in animals receiving Cd alone or in control rats. In the group that received Cd, COX-2 and iNOS expression was markedly higher than in control rats. In the group Cd + quercetin, no changes in COX-2 and iNOS expression were observed compared with the control group. Our results demonstrate that quercetin treatment prevents Cd-induced overexpression of iNOS and COX-2, and increases MT expression. These effects can explain the protection by quercetin of Cd-induced nephrotoxicity.

  6. A metallothionein containing a zinc finger within a four-metal cluster protects a bacterium from zinc toxicity

    PubMed Central

    Blindauer, Claudia A.; Harrison, Mark D.; Parkinson, John A.; Robinson, Andrea K.; Cavet, Jennifer S.; Robinson, Nigel J.; Sadler, Peter J.

    2001-01-01

    Zinc is essential for many cellular processes, including DNA synthesis, transcription, and translation, but excess can be toxic. A zinc-induced gene, smtA, is required for normal zinc-tolerance in the cyanobacterium Synechococcus PCC 7942. Here we report that the protein SmtA contains a cleft lined with Cys-sulfur and His-imidazole ligands that binds four zinc ions in a Zn4Cys9His2 cluster. The thiolate sulfurs of five Cys ligands provide bridges between the two ZnCys4 and two ZnCys3His sites, giving two fused six-membered rings with distorted boat conformations. The inorganic core strongly resembles the Zn4Cys11 cluster of mammalian metallothionein, despite different amino acid sequences, a different linear order of the ligands, and presence of histidine ligands. Also, SmtA contains elements of secondary structure not found in metallothioneins. One of the two Cys4-coordinated zinc ions in SmtA readily exchanges with exogenous metal (111Cd), whereas the other is inert. The thiolate sulfur ligands bound to zinc in this site are buried within the protein. Regions of β-strand and α-helix surround the inert site to form a zinc finger resembling the zinc fingers in GATA and LIM-domain proteins. Eukaryotic zinc fingers interact specifically with other proteins or DNA and an analogous interaction can therefore be anticipated for prokaryotic zinc fingers. SmtA now provides structural proof for the existence of zinc fingers in prokaryotes, and sequences related to the zinc finger motif can be identified in several bacterial genomes. PMID:11493688

  7. Expression and characterization analysis of type 2 metallothionein from grey mangrove species (Avicennia marina) in response to metal stress.

    PubMed

    Huang, Guo-Yong; Wang, You-Shao

    2010-08-01

    Metallothioneins (MTs) are a family of low-molecular-weight cysteine-rich proteins and are thought to play possible roles in metal metabolism or detoxification. To evaluate the roles of metallothioneins in metal homeostasis or tolerance in Avicennia marina, a real-time quantitative PCR protocol was developed to directly evaluate the expression of AmMT2 mRNA, when A. marina seedlings were exposed to different concentrations of zinc (Zn), copper (Cu) or lead (Pb) for 3 and 7d. Real-time quantitative PCR results indicated that the regulation of AmMT2 mRNA expression by Zn, Cu and Pb was strongly dependent on concentration and time of exposure. A significant increase in the transcripts of AmMT2 gene was also found in response to Zn, Cu and Pb, at least under some experimental conditions. When AmMT2 was overexpressed in Escherichia coli BL21 as a carboxy-terminal extension of glutathione-S-transferase (GST), the transgenic bacteria showed an increased tolerance to Zn, Cu, Pb and Cd exposure as compared to control strains. Moreover, GST-AmMT2 was purified from E. coli cells grown in the presence of 400 microM Zn, Cu, Pb or Cd. The purified GST-AmMT2 fusion protein could bind higher levels of all four metals than GST alone. Taken together, these data support the hypothesis that AmMT2 may be involved in processes of metal homeostasis or tolerance in A. marina.

  8. Loss of actin cytoskeletal function and EDS1 activity, in combination, severely compromises non-host resistance in Arabidopsis against wheat powdery mildew.

    PubMed

    Yun, Byung-Wook; Atkinson, Helen A; Gaborit, Charlotte; Greenland, Andy; Read, Nick D; Pallas, Jacqueline A; Loake, Gary J

    2003-06-01

    Plant immunity against the majority of the microbial pathogens is conveyed by a phenomenon known as non-host resistance (NHR). This defence mechanism affords durable protection to plant species against given species of phytopathogens. We investigated the genetic basis of NHR in Arabidopsis against the wheat powdery mildew fungus Blumeria graminis f. sp. tritici (Bgt). Both primary and appressorial germ tubes were produced from individual Bgt conidia on the surface of the Arabidopsis leaves. Attempted infection occasionally resulted in successful penetration, which led to the development of an abnormal unilateral haustorium. Inoculation of a series of Arabidopsis defence-related mutants with Bgt resulted in the attenuation of reactive oxygen intermediate (ROI) production and salicylic acid (SA)-dependent defence gene expression in eds1, pad4 and nahG plants, which are known to be defective in some aspects of host resistance. Furthermore, Bgt often developed bilateral haustoria in the mutant Arabidopsis lines that closely resembled those formed in wheat. A similar decrease in NHR was observed following treatment of the wild-type Arabidopsis plants with cytochalasin E, an inhibitor of actin microfilament polymerisation. In eds1 mutants, inhibition of actin polymerisation severely compromised NHR in Arabidopsis against Bgt. This permitted completion of the Bgt infection cycle on these plants. Therefore, actin cytoskeletal function and EDS1 activity, in combination, are major contributors to NHR in Arabidopsis against wheat powdery mildew.

  9. The Arabidopsis Nuclear Pore and Nuclear Envelope

    PubMed Central

    Meier, Iris; Brkljacic, Jelena

    2010-01-01

    The nuclear envelope is a double membrane structure that separates the eukaryotic cytoplasm from the nucleoplasm. The nuclear pores embedded in the nuclear envelope are the sole gateways for macromolecular trafficking in and out of the nucleus. The nuclear pore complexes assembled at the nuclear pores are large protein conglomerates composed of multiple units of about 30 different nucleoporins. Proteins and RNAs traffic through the nuclear pore complexes, enabled by the interacting activities of nuclear transport receptors, nucleoporins, and elements of the Ran GTPase cycle. In addition to directional and possibly selective protein and RNA nuclear import and export, the nuclear pore gains increasing prominence as a spatial organizer of cellular processes, such as sumoylation and desumoylation. Individual nucleoporins and whole nuclear pore subcomplexes traffic to specific mitotic locations and have mitotic functions, for example at the kinetochores, in spindle assembly, and in conjunction with the checkpoints. Mutants of nucleoporin genes and genes of nuclear transport components lead to a wide array of defects from human diseases to compromised plant defense responses. The nuclear envelope acts as a repository of calcium, and its inner membrane is populated by functionally unique proteins connected to both chromatin and—through the nuclear envelope lumen—the cytoplasmic cytoskeleton. Plant nuclear pore and nuclear envelope research—predominantly focusing on Arabidopsis as a model—is discovering both similarities and surprisingly unique aspects compared to the more mature model systems. This chapter gives an overview of our current knowledge in the field and of exciting areas awaiting further exploration. PMID:22303264

  10. Individualizing Medicare.

    PubMed

    Chollet, D J

    1999-05-01

    Despite the enactment of significant changes to the Medicare program in 1997, Medicare's Hospital Insurance trust fund is projected to be exhausted just as the baby boom enters retirement. To address Medicare's financial difficulties, a number of reform proposals have been offered, including several to individualize Medicare financing and benefits. These proposals would attempt to increase Medicare revenues and reduce Medicare expenditures by having individuals bear risk--investment market risk before retirement and insurance market risk after retirement. Many fundamental aspects of these proposals have yet to be worked out, including how to guarantee a baseline level of saving for health insurance after retirement, how retirees might finance unanticipated health insurance price increases after retirement, the potential implications for Medicaid of inadequate individual saving, and whether the administrative cost of making the system fair and adequate ultimately would eliminate any rate-of-return advantages from allowing workers to invest their Medicare contributions in corporate stocks and bonds.

  11. Individualizing Medicare.

    PubMed

    Chollet, D J

    1999-05-01

    Despite the enactment of significant changes to the Medicare program in 1997, Medicare's Hospital Insurance trust fund is projected to be exhausted just as the baby boom enters retirement. To address Medicare's financial difficulties, a number of reform proposals have been offered, including several to individualize Medicare financing and benefits. These proposals would attempt to increase Medicare revenues and reduce Medicare expenditures by having individuals bear risk--investment market risk before retirement and insurance market risk after retirement. Many fundamental aspects of these proposals have yet to be worked out, including how to guarantee a baseline level of saving for health insurance after retirement, how retirees might finance unanticipated health insurance price increases after retirement, the potential implications for Medicaid of inadequate individual saving, and whether the administrative cost of making the system fair and adequate ultimately would eliminate any rate-of-return advantages from allowing workers to invest their Medicare contributions in corporate stocks and bonds. PMID:10915458

  12. Functional divergence in tandemly duplicated Arabidopsis thaliana trypsin inhibitor genes.

    PubMed Central

    Clauss, M J; Mitchell-Olds, T

    2004-01-01

    In multigene families, variation among loci and alleles can contribute to trait evolution. We explored patterns of functional and genetic variation in six duplicated Arabidopsis thaliana trypsin inhibitor (ATTI) loci. We demonstrate significant variation in constitutive and herbivore-induced transcription among ATTI loci that show, on average, 65% sequence divergence. Significant variation in ATTI expression was also found between two molecularly defined haplotype classes. Population genetic analyses for 17 accessions of A. thaliana showed that six ATTI loci arranged in tandem within 10 kb varied 10-fold in nucleotide diversity, from 0.0009 to 0.0110, and identified a minimum of six recombination events throughout the tandem array. We observed a significant peak in nucleotide and indel polymorphism spanning ATTI loci in the interior of the array, due primarily to divergence between the two haplotype classes. Significant deviation from the neutral equilibrium model for individual genes was interpreted within the context of intergene linkage disequilibrium and correlated patterns of functional differentiation. In contrast to the outcrosser Arabidopsis lyrata for which recombination is observed even within ATTI loci, our data suggest that response to selection was slowed in the inbreeding, annual A. thaliana because of interference among functionally divergent ATTI loci. PMID:15082560

  13. A role for seed storage proteins in Arabidopsis seed longevity.

    PubMed

    Nguyen, Thu-Phuong; Cueff, Gwendal; Hegedus, Dwayne D; Rajjou, Loïc; Bentsink, Leónie

    2015-10-01

    Proteomics approaches have been a useful tool for determining the biological roles and functions of individual proteins and identifying the molecular mechanisms that govern seed germination, vigour and viability in response to ageing. In this work the dry seed proteome of four Arabidopsis thaliana genotypes, that carry introgression fragments at the position of seed longevity quantitative trait loci and as a result display different levels of seed longevity, was investigated. Seeds at two physiological states, after-ripened seeds that had the full germination ability and aged (stored) seeds of which the germination ability was severely reduced, were compared. Aged dry seed proteomes were markedly different from the after-ripened and reflected the seed longevity level of the four genotypes, despite the fact that dry seeds are metabolically quiescent. Results confirmed the role of antioxidant systems, notably vitamin E, and indicated that protection and maintenance of the translation machinery and energy pathways are essential for seed longevity. Moreover, a new role for seed storage proteins (SSPs) was identified in dry seeds during ageing. Cruciferins (CRUs) are the most abundant SSPs in Arabidopsis and seeds of a triple mutant for three CRU isoforms (crua crub cruc) were more sensitive to artificial ageing and their seed proteins were highly oxidized compared with wild-type seeds. These results confirm that oxidation is involved in seed deterioration and that SSPs buffer the seed from oxidative stress, thus protecting important proteins required for seed germination and seedling formation.

  14. Multigene Engineering of Triacylglycerol Metabolism Boosts Seed Oil Content in Arabidopsis1[W][OPEN

    PubMed Central

    van Erp, Harrie; Kelly, Amélie A.; Menard, Guillaume; Eastmond, Peter J.

    2014-01-01

    Increasing the yield of oilseed crops is an important objective for biotechnologists. A number of individual genes involved in triacylglycerol metabolism have previously been reported to enhance the oil content of seeds when their expression is altered. However, it has yet to be established whether specific combinations of these genes can be used to achieve an additive effect and whether this leads to enhanced yield. Using Arabidopsis (Arabidopsis thaliana) as an experimental system, we show that seed-specific overexpression of WRINKLED1 (a transcriptional regulator of glycolysis and fatty acid synthesis) and DIACYLGLYCEROL ACYLTRANSFERASE1 (a triacylglycerol biosynthetic enzyme) combined with suppression of the triacylglycerol lipase SUGAR-DEPENDENT1 results in a higher percentage seed oil content and greater seed mass than manipulation of each gene individually. Analysis of total seed yield per plant suggests that, despite a reduction in seed number, the total yield of oil is also increased. PMID:24696520

  15. Terpene Specialized Metabolism in Arabidopsis thaliana

    PubMed Central

    Tholl, Dorothea; Lee, Sungbeom

    2011-01-01

    Terpenes constitute the largest class of plant secondary (or specialized) metabolites, which are compounds of ecological function in plant defense or the attraction of beneficial organisms. Using biochemical and genetic approaches, nearly all Arabidopsis thaliana (Arabidopsis) enzymes of the core biosynthetic pathways producing the 5-carbon building blocks of terpenes have been characterized and closer insight has been gained into the transcriptional and posttranscriptional/translational mechanisms regulating these pathways. The biochemical function of most prenyltransferases, the downstream enzymes that condense the C5-precursors into central 10-, 15-, and 20-carbon prenyldiphosphate intermediates, has been described, although the function of several isoforms of C20-prenyltranferases is not well understood. Prenyl diphosphates are converted to a variety of C10-, C15-, and C20-terpene products by enzymes of the terpene synthase (TPS) family. Genomic organization of the 32 Arabidopsis TPS genes indicates a species-specific divergence of terpene synthases with tissue- and cell-type specific expression profiles that may have emerged under selection pressures by different organisms. Pseudogenization, differential expression, and subcellular segregation of TPS genes and enzymes contribute to the natural variation of terpene biosynthesis among Arabidopsis accessions (ecotypes) and species. Arabidopsis will remain an important model to investigate the metabolic organization and molecular regulatory networks of terpene specialized metabolism in relation to the biological activities of terpenes. PMID:22303268

  16. The metabolomic responses of Caenorhabditis elegans to cadmium are largely independent of metallothionein status, but dominated by changes in cystathionine and phytochelatins.

    PubMed

    Hughes, Samantha L; Bundy, Jacob G; Want, Elizabeth J; Kille, Peter; Stürzenbaum, Stephen R

    2009-07-01

    Cadmium is a widely distributed toxic environmental pollutant. Using proton NMR spectroscopy and UPLC-MS, we obtained metabolic profiles from the model organism Caenorhabditis elegans exposed to sublethal concentrations of cadmium. Neither in the presence nor absence of cadmium did the metallothionein status (single or double mtl knockouts) markedly modulate the metabolic profile. However, independent of strain, cadmium exposure resulted in a decrease in cystathionine concentrations and an increase in the nonribosomally synthesized peptides phytochelatin-2 and phytochelatin-3. This suggests that a primary response to low levels of cadmium is the differential regulation of the C. elegans trans-sulfuration pathway, which channels the flux from methionine through cysteine into phytochelatin synthesis. These results were backed up by the finding that phytochelatin synthase mutants (pcs-1) were at least an order of magnitude more sensitive to cadmium than single or double metallothionein mutants. However, an additive sensitivity toward cadmium was observed in the mtl-1; mtl-2; pcs-1 triple mutant.

  17. Metallothionein 2A inhibits NF-κB pathway activation and predicts clinical outcome segregated with TNM stage in gastric cancer patients following radical resection

    PubMed Central

    2013-01-01

    Background Metallothionein 2A (MT2A) as a stress protein, plays a protective role in gastric mucosal barrier. Its role in the development of gastric cancer (GC) is unclear. The mechanism of MT2A will be investigated in gastric tumorigenesis. Methods MT2A expression was detected in 973 gastric specimens. The biological function was determined through ectopic expressing MT2A in vitro and in vivo. The possible downstream effectors of MT2A were investigated in NF-κB signaling. The protein levels of MT2A, IκB-α and p-IκB-α (ser32/36) expression were analyzed in a subset of 258 patients by IHC staining. The prognostic effects of MT2A, status of IκB-α and TNM stage were evaluated using the Kaplan-Meier method and compared using the log-rank test. Results Decreased MT2A expression was detected in cell lines and primary tumors of GC. In clinical data, loss of MT2A (MT2A + in Normal (n =171, 76.0%); Intestinal metaplasia (n = 118, 50.8%); GC (n = 684. 22.4%, P < 0.001)) was associated with poor prognosis (P < 0.001), advanced TNM stage (P = 0.05), and down-regulation of IκB-α expression (P < 0.001). Furthermore, MT2A was the independent prognostic signature segregated from the status of IκB-α and pathological features. In addition, MT2A inhibited cell growth through apoptosis and G2/M arrest, which negatively regulated NF-κB pathway through up-regulation of IκB-α and down-regulation of p-IκB-α and cyclin D1 expression. Conclusions MT2A might play a tumor suppressive activity through inhibiting NF-κB signaling and may be a prognostic biomarker and potential target for individual therapy of GC patients. PMID:23870553

  18. [Individualizing Education.

    ERIC Educational Resources Information Center

    Horrigan, William J.

    The individually guided education (IGE) program developed by the Kettering Foundation was implemented in September of 1973 at the John F. Kennedy Memorial Junior High School in Woburn, Massachusetts. The components of the program described in this speech include pupil and teacher scheduling, physical layout, pupil selection and adjustment,…

  19. Inactivation of GSK-3β by Metallothionein Prevents Diabetes-Related Changes in Cardiac Energy Metabolism, Inflammation, Nitrosative Damage, and Remodeling

    PubMed Central

    Wang, Yuehui; Feng, Wenke; Xue, Wanli; Tan, Yi; Hein, David W.; Li, Xiao-Kun; Cai, Lu

    2009-01-01

    OBJECTIVE Glycogen synthase kinase (GSK)-3β plays an important role in cardiomyopathies. Cardiac-specific metallothionein-overexpressing transgenic (MT-TG) mice were highly resistant to diabetes-induced cardiomyopathy. Therefore, we investigated whether metallothionein cardiac protection against diabetes is mediated by inactivation of GSK-3β. RESEARCH DESIGN AND METHODS Diabetes was induced with streptozotocin in both MT-TG and wild-type mice. Changes of energy metabolism–related molecules, lipid accumulation, inflammation, nitrosative damage, and fibrotic remodeling were examined in the hearts of diabetic mice 2 weeks, 2 months, and 5 months after the onset of diabetes with Western blotting, RT-PCR, and immunohistochemical assays. RESULTS Activation (dephosphorylation) of GSK-3β was evidenced in the hearts of wild-type diabetic mice but not MT-TG diabetic mice. Correspondingly, cardiac glycogen synthase phosphorylation, hexokinase II, PPARα, and PGC-1α expression, which mediate glucose and lipid metabolisms, were significantly changed along with cardiac lipid accumulation, inflammation (TNF-α, plasminogen activator inhibitor 1 [PAI-1], and intracellular adhesion molecule 1 [ICAM-1]), nitrosative damage (3-nitrotyrosin accumulation), and fibrosis in the wild-type diabetic mice. The above pathological changes were completely prevented either by cardiac metallothionein in the MT-TG diabetic mice or by inhibition of GSK-3β activity in the wild-type diabetic mice with a GSK-3β–specific inhibitor. CONCLUSIONS These results suggest that activation of GSK-3β plays a critical role in diabetes-related changes in cardiac energy metabolism, inflammation, nitrosative damage, and remodeling. Metallothionein inactivation of GSK-3β plays a critical role in preventing diabetic cardiomyopathy. PMID:19324938

  20. BRX promotes Arabidopsis shoot growth.

    PubMed

    Beuchat, Julien; Scacchi, Emanuele; Tarkowska, Danuse; Ragni, Laura; Strnad, Miroslav; Hardtke, Christian S

    2010-10-01

    • BREVIS RADIX (BRX) has been identified through a loss-of-function allele in the Umkirch-1 accession in a natural variation screen for Arabidopsis root growth vigor. Physiological and gene expression analyses have suggested that BRX is rate limiting for auxin-responsive gene expression by mediating cross-talk with the brassinosteroid pathway, as impaired root growth and reduced auxin perception of brx can be (partially) rescued by external brassinosteroid application. • Using genetic tools, we show that brx mutants also display significantly reduced cotyledon and leaf growth. • Similar to the root, the amplitude and penetrance of this phenotype depends on genetic background and shares the physiological features, reduced auxin perception and brassinosteroid rescue. Furthermore, reciprocal grafting experiments between mutant and complemented brx shoot scions and root stocks suggest that the shoot phenotypes are not an indirect consequence of the root phenotype. Finally, BRX gain-of-function lines display epinastic leaf growth and, in the case of dominant negative interference, increased epidermal cell size. Consistent with an impact of BRX on brassinosteroid biosynthesis, this phenotype is accompanied by increased brassinosteroid levels. • In summary, our results demonstrate a ubiquitous, although quantitatively variable role of BRX in modulating the growth rate in both the root and shoot.

  1. Arabidopsis Chitinases: a Genomic Survey

    PubMed Central

    Passarinho, Paul A.; de Vries, Sacco C.

    2002-01-01

    Plant chitinases (EC 3.2.1.14) belong to relatively large gene families subdivided in classes that suggest class-specific functions. They are commonly induced upon the attack of pathogens and by various sources of stress, which led to associating them with plant defense in general. However, it is becoming apparent that most of them display several functions during the plant life cycle, including taking part in developmental processes such as pollination and embryo development. The number of chitinases combined with their multiple functions has been an obstacle to a better understanding of their role in plants. It is therefore important to identify and inventory all chitinase genes of a plant species to be able to dissect their function and understand the relations between the different classes. Complete sequencing of the Arabidopsis genome has made this task feasible and we present here a survey of all putative chitinase-encoding genes accompanied by a detailed analysis of their sequence. Based on their characteristics and on studies on other plant chitinases, we propose an overview of their possible functions as well as modified annotations for some of them. PMID:22303199

  2. Early flower development in Arabidopsis.

    PubMed Central

    Smyth, D R; Bowman, J L; Meyerowitz, E M

    1990-01-01

    The early development of the flower of Arabidopsis thaliana is described from initiation until the opening of the bud. The morphogenesis, growth rate, and surface structure of floral organs were recorded in detail using scanning electron microscopy. Flower development has been divided into 12 stages using a series of landmark events. Stage 1 begins with the initiation of a floral buttress on the flank of the apical meristem. Stage 2 commences when the flower primordium becomes separate from the meristem. Sepal primordia then arise (stage 3) and grow to overlie the primordium (stage 4). Petal and stamen primordia appear next (stage 5) and are soon enclosed by the sepals (stage 6). During stage 6, petal primordia grow slowly, whereas stamen primordia enlarge more rapidly. Stage 7 begins when the medial stamens become stalked. These soon develop locules (stage 8). A long stage 9 then commences with the petal primordia becoming stalked. During this stage all organs lengthen rapidly. This includes the gynoecium, which commences growth as an open-ended tube during stage 6. When the petals reach the length of the lateral stamens, stage 10 begins. Stigmatic papillae appear soon after (stage 11), and the petals rapidly reach the height of the medial stamens (stage 12). This final stage ends when the 1-millimeter-long bud opens. Under our growing conditions 1.9 buds were initiated per day on average, and they took 13.25 days to progress through the 12 stages from initiation until opening. PMID:2152125

  3. Resistance of Cu(Aβ4-16) to Copper Capture by Metallothionein-3 Supports a Function for the Aβ4-42 Peptide as a Synaptic Cu(II) Scavenger.

    PubMed

    Wezynfeld, Nina E; Stefaniak, Ewelina; Stachucy, Kinga; Drozd, Agnieszka; Płonka, Dawid; Drew, Simon C; Krężel, Artur; Bal, Wojciech

    2016-07-11

    Aβ4-42 is a major species of Aβ peptide in the brains of both healthy individuals and those affected by Alzheimer's disease. It has recently been demonstrated to bind Cu(II) with an affinity approximately 3000 times higher than the commonly studied Aβ1-42 and Aβ1-40 peptides, which are implicated in the pathogenesis of Alzheimer's disease. Metallothionein-3, a protein considered to orchestrate copper and zinc metabolism in the brain and provide antioxidant protection, was shown to extract Cu(II) from Aβ1-40 when acting in its native Zn7 MT-3 form. This reaction is assumed to underlie the neuroprotective effect of Zn7 MT-3 against Aβ toxicity. In this work, we used the truncated model peptides Aβ1-16 and Aβ4-16 to demonstrate that the high-affinity Cu(II) complex of Aβ4-16 is resistant to Zn7 MT-3 reactivity. This indicates that the analogous complex of the full-length peptide Cu(Aβ4-42) will not yield copper to MT-3 in the brain, thus supporting the concept of a physiological role for Aβ4-42 as a Cu(II) scavenger in the synaptic cleft. PMID:27238224

  4. Proteins are polyisoprenylated in Arabidopsis thaliana.

    PubMed

    Gutkowska, Malgorzata; Bieńkowski, Tomasz; Hung, Vo Si; Wanke, Malgorzata; Hertel, Jozefina; Danikiewicz, Witold; Swiezewska, Ewa

    2004-09-24

    Isoprenoid lipids were found to be covalently linked to proteins of Arabidopsis thaliana. Their identity (polyprenols: Prenol-9-11 with Pren-10 dominating and dolichols: Dol-15-17 with Dol-16 dominating) was confirmed by means of HPLC/ESI-MS with application of the multiple reaction monitoring technique as well as metabolic labeling of Arabidopsis plants with [(3)H]mevalonate and other precursors. The occurrence of typical farnesol-, geranylgeraniol-, and phytol-modified proteins was also noted. Radioisotopic labeling allowed detection of several proteins that were covalently bound to mevalonate-derived isoprenoid alcohols. A significant portion of polyisoprenylated proteins was recovered in the cytosolic/light vesicular fraction of Arabidopsis cells upon subfractionation. Taken together our data prove that a subset of plant proteins is polyisoprenylated.

  5. Individualized Communications

    NASA Technical Reports Server (NTRS)

    1997-01-01

    IntelliWeb and IntelliPrint, products from MicroMass Communications, utilize C Language Integrated Production System (CLIPS), a development and delivery expert systems tool developed at Johnson Space Center. IntelliWeb delivers personalized messages by dynamically creating single web pages or entire web sites based on information provided by each website visitor. IntelliPrint is a product designed to create tailored, individualized messages via printed media. The software uses proprietary technology to generate printed messages that are personally relevant and tailored to meet each individual's needs. Intelliprint is in use in many operations including Brystol-Myers Squibb's personalized newsletter, "Living at Your Best," geared to each recipient based on a health and lifestyle survey taken earlier; and SmithKline Beecham's "Nicorette Committed Quitters Program," in which customized motivational materials support participants in their attempt to quit smoking.

  6. Gibberellins control fruit patterning in Arabidopsis thaliana

    PubMed Central

    Arnaud, Nicolas; Girin, Thomas; Sorefan, Karim; Fuentes, Sara; Wood, Thomas A.; Lawrenson, Tom; Sablowski, Robert; Østergaard, Lars

    2010-01-01

    The Arabidopsis basic helix–loop–helix (bHLH) proteins INDEHISCENT (IND) and ALCATRAZ (ALC) specify tissues required for fruit opening that have major roles in seed dispersal and plant domestication. Here, we show that synthesis of the phytohormone gibberellin is a direct and necessary target of IND, and that ALC interacts directly with DELLA repressors, which antagonize ALC function but are destabilized by gibberellin. Thus, the gibberellin/DELLA pathway has a key role in patterning the Arabidopsis fruit, and the interaction between DELLA and bHLH proteins, previously shown to connect gibberellin and light responses, is a versatile regulatory module also used in tissue patterning. PMID:20889713

  7. Gibberellins control fruit patterning in Arabidopsis thaliana.

    PubMed

    Arnaud, Nicolas; Girin, Thomas; Sorefan, Karim; Fuentes, Sara; Wood, Thomas A; Lawrenson, Tom; Sablowski, Robert; Østergaard, Lars

    2010-10-01

    The Arabidopsis basic helix-loop-helix (bHLH) proteins INDEHISCENT (IND) and ALCATRAZ (ALC) specify tissues required for fruit opening that have major roles in seed dispersal and plant domestication. Here, we show that synthesis of the phytohormone gibberellin is a direct and necessary target of IND, and that ALC interacts directly with DELLA repressors, which antagonize ALC function but are destabilized by gibberellin. Thus, the gibberellin/DELLA pathway has a key role in patterning the Arabidopsis fruit, and the interaction between DELLA and bHLH proteins, previously shown to connect gibberellin and light responses, is a versatile regulatory module also used in tissue patterning. PMID:20889713

  8. Genome Organization of More Than 300 Defensin-Like Genes in Arabidopsis1[w

    PubMed Central

    Silverstein, Kevin A.T.; Graham, Michelle A.; Paape, Timothy D.; VandenBosch, Kathryn A.

    2005-01-01

    Defensins represent an ancient and diverse set of small, cysteine-rich, antimicrobial peptides in mammals, insects, and plants. According to published accounts, most species' genomes contain 15 to 50 defensins. Starting with a set of largely nodule-specific defensin-like sequences (DEFLs) from the model legume Medicago truncatula, we built motif models to search the near-complete Arabidopsis (Arabidopsis thaliana) genome. We identified 317 DEFLs, yet 80% were unannotated at The Arabidopsis Information Resource and had no prior evidence of expression. We demonstrate that many of these DEFL genes are clustered in the Arabidopsis genome and that individual clusters have evolved from successive rounds of gene duplication and divergent or purifying selection. Sequencing reverse transcription-PCR products from five DEFL clusters confirmed our gene predictions and verified expression. For four of the largest clusters of DEFLs, we present the first evidence of expression, most frequently in floral tissues. To determine the abundance of DEFLs in other plant families, we used our motif models to search The Institute for Genomic Research's gene indices and identified approximately 1,100 DEFLs. These expressed DEFLs were found mostly in reproductive tissues, consistent with our reverse transcription-PCR results. Sequence-based clustering of all identified DEFLs revealed separate tissue- or taxon-specific subgroups. Previously, we and others showed that more than 300 DEFL genes were expressed in M. truncatula nodules, organs not present in most plants. We have used this information to annotate the Arabidopsis genome and now provide evidence of a large DEFL superfamily present in expressed tissues of all sequenced plants. PMID:15955924

  9. The polymorphism in the promoter region of metallothionein 1 is associated with heat tolerance of scallop Argopecten irradians.

    PubMed

    Yang, Chuanyan; Wang, Lingling; Jiang, Qiufen; Wang, Jingjing; Yue, Feng; Zhang, Huan; Sun, Zhibin; Song, Linsheng

    2013-09-10

    Metallothioneins (MTs), a superfamily of cysteine-rich proteins, perform multiple functions, such as maintaining homeostasis of essential metals, detoxification of toxic metals and scavenging of oxyradicals. In this study, the promoter region of a metallothionein (MT) gene from Bay scallop Argopecten irradians (designed as AiMT1) was cloned by the technique of genomic DNA walking, and the polymorphisms in this region were screened to find their association with susceptibility or tolerance to high temperature stress. One insert-deletion (ins-del) polymorphism and sixteen single nucleotide polymorphisms (SNPs) were identified in the amplified promoter region. Two SNPs, -375 T-C and -337 A-C, were selected to analyze their distribution in the two Bay scallop populations collected from southern and northern China coast, which were identified as heat resistant and heat susceptible stocks, respectively. There were three genotypes, T/T, T/C and C/C, at locus -375, and their frequencies were 25%, 61.1% and 13.9% in the heat susceptible stock, while 34.2%, 42.1% and 23.7% in the resistant stock, respectively. There was no significant difference in the frequency distribution of different genotypes between the two stocks (P>0.05). In contrast, at locus -337, three genotypes A/A, A/C and C/C were revealed with the frequencies of 11.6%, 34.9% and 53.5% in the heat susceptible stock, while 45.7%, 32.6% and 21.7% in the heat resistant stock, respectively. The frequency of C/C genotype in the heat susceptible stock was significantly higher (P<0.01) than that in the heat resistant stock, while the frequency of A/A in the heat resistant stock was significantly higher (P<0.01) than that in the heat susceptible stock. Furthermore, the expression of AiMT1 mRNA in scallops with C/C genotype was significantly higher than that with A/A genotype (P<0.05) after an acute heat treatment at 28°C for 120min. These results implied that the polymorphism at locus -337 of AiMT1 was associated with

  10. Shotgun Proteomic Analysis of Arabidopsis thaliana Leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two shotgun tandem mass spectrometry proteomics approaches, Multidimensional Protein Identification Technology (MudPIT) and 1D-Gel-LC-MS/MS, were used to identify Arabidopsis thaliana leaf proteins. These methods utilize different protein/peptide separation strategies. Detergents not compatible wit...

  11. Biosynthetic Pathways of Brassinolide in Arabidopsis1

    PubMed Central

    Noguchi, Takahiro; Fujioka, Shozo; Choe, Sunghwa; Takatsuto, Suguru; Tax, Frans E.; Yoshida, Shigeo; Feldmann, Kenneth A.

    2000-01-01

    Our previous studies on the endogenous brassinosteroids (BRs) in Arabidopsis have provided suggestive evidence for the operation of the early C6-oxidation and the late C6-oxidation pathways, leading to brassinolide (BL) in Arabidopsis. However, to date the in vivo operation of these pathways has not been fully confirmed in this species. This paper describes metabolic studies using deuterium-labeled BRs in wild-type and BR-insensitive mutant (bri1) seedlings to establish the intermediates of the biosynthetic pathway of BL in Arabidopsis. The first evidence for the conversion of campestanol to 6-deoxocathasterone and the conversion of 6-deoxocathasterone to 6-deoxoteasterone is provided. The later biosynthetic steps (6-deoxoteasterone → 3-dehydro-6-deoxoteasterone → 6-deoxotyphasterol → 6-deoxocastasterone → 6α-hydroxycastasterone → castasterone → BL) were demonstrated by stepwise metabolic experiments. Therefore, these studies complete the documentation of the late C6-oxidation pathway. The biosynthetic sequence involved in the early C6-oxidation pathway (teasterone → 3-dehydroteasterone → typhasterol → castasterone → BL) was also demonstrated. These results show that both the early and late C6-oxidation pathways are functional in Arabidopsis. In addition we report two new observations: the presence of a new branch in the pathway, C6 oxidation of 6-deoxotyphasterol to typhasterol, and increased metabolic flow in BR-insensitive mutants. PMID:10982435

  12. Arabidopsis gene expression patterns during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  13. Engineering calcium oxalate crystal formation in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many plants accumulate crystals of calcium oxalate. Just how these crystals form remains unknown. To gain insight into the mechanisms regulating calcium oxalate crystal formation, a crystal engineering approach was initiated utilizing the non-crystal accumulating plant, Arabidopsis. The success of t...

  14. Metal induction of a Pisolithus albus metallothionein and its potential involvement in heavy metal tolerance during mycorrhizal symbiosis.

    PubMed

    Reddy, M Sudhakara; Kour, Manpreet; Aggarwal, Sipla; Ahuja, Shanky; Marmeisse, Roland; Fraissinet-Tachet, Laurence

    2016-09-01

    Metallothioneins (MTs) are small, cysteine-rich peptides involved in intracellular sequestration of heavy metals in eukaryotes. We examined the role in metal homeostasis and detoxification of an MT from the ectomycorrhizal fungus Pisolithus albus (PaMT1). PaMT1 encodes a 35 amino acid-long polypeptide, with 7 cysteine residues; most of them part of a C-x-C motif found in other known basidiomycete MTs. The expression levels of PaMT1 increased as a function of increased external Cu and Cd concentrations and were higher with Cu than with Cd. Heterologous complementation assays in metal-sensitive yeast mutants indicated that PaMT1 encodes a polypeptide capable of conferring higher tolerance to both Cu and Cd. Eucalyptus tereticornis plantlets colonized with P. albus grown in the presence of Cu and Cd showed better growth compared with those with non-mycorrhizal plants. Higher PaMT1 expression levels were recorded in mycorrhizal plants grown in the presence of Cu and Cd compared with those in control mycorrhizal plants not exposed to heavy metals. These data provide the first evidence to our knowledge that fungal MTs could protect ectomycorrhizal fungi from heavy metal stress and in turn help the plants to establish in metal-contaminated sites. PMID:26626627

  15. Lysosomal responses and metallothionein induction in the blue mussel Mytilus edulis from the south-west coast of Iceland.

    PubMed

    Da Ros, L; Moschino, V; Guerzoni, S; Halldórsson, H P

    2007-04-01

    It has recently been emphasized that high levels of inorganic and organic micropollutants (particularly organometals, POPs and PAHs) may be present in coastal waters at high latitudes, stressing the need to evaluate the effects of contaminants on marine organisms from sub-arctic zones. With this aim, specimens of the blue mussel Mytilus edulis were sampled in polluted and reference areas along the south-west coast of Iceland in July 2004. Samples were collected from the intertidal zone at three sites in Reykjavik harbour which are differently exposed to contaminants, and at three reference coastal sites, two located along the Reykjanes Peninsula and the third one on the northern part of Hvalfjordur fiord. Lipofuscin content, neutral lipid accumulation and lysosomal enlargement were evaluated in digestive cells from cryostat sections of the mussel hepatopancreas, and quantified by automated image analysis. Metallothionein induction was also determined in the same tissue. Results indicate that mussels from the inner part of Reykjavik harbour, which is the most sheltered and most influenced by extensive shipping traffic, were the worst affected, with the highest values in neutral lipids, lipofuscin and lysosomal swelling. At the other two harbour sites, mussels exhibited lower values, similar to those observed in organisms collected in Hvalfjordur fiord and in bay of Osar. Mussels from Kuagerdi had the lowest values. PMID:17215043

  16. Influence of maternal cadmium exposure or fetal cadmium injection on hepatic metallothionein concentrations in the fetal rat

    SciTech Connect

    Sasser, L.B.; Kelman, B.J.; Levin, A.A.; Miller, R.K.

    1985-01-01

    The ability of Cd to induce the synthesis of fetal hepatic metallothionein (MT) was investigated in rat fetuses exposed to Cd throughout gestation via the mother's drinking water or injected directly with Cd through the uterine wall on Day 18 of gestation. On Day 21 all dams were killed and fetal and maternal tissues were removed. Tissue MT, Zn, Cu, and Cd concentrations were measured. Fetal hepatic Cd concentration was increased only at the high maternal Cd exposure, whereas Zn concentration was significantly reduced by Cd exposure. Both fetal liver and kidney MT were reduced following maternal Cd exposure. Unlike maternal hepatic MT, fetal hepatic MT was not increased after maternal Cd exposure nor did the direct injection of Cd into the 18 days of gestation fetus induce fetal MT synthesis. These data suggest that fetal rat liver is incapable of synthesizing MT in response to Cd, possibly because Cd is not transported to the site of MT synthesis in the fetal system. Furthermore, neither the route of exposure, the duration of prenatal Cd exposure, nor the stage of gestation appear to account for the differences observed between fetal and adult hepatic MT induction by Cd. 47 references, 6 tables.

  17. Potential use of acetylcholinesterase, glutathione-S-transferase and metallothionein for assessment of contaminated sediment in tropical chironomid, Chironomus javanus.

    PubMed

    Somparn, A; Iwai, C B; Noller, B

    2015-11-01

    Heavy metals and organophosphorus insecticide is known to act as disruptors for the enzyme system, leading to physiologic disorders. The present study was conducted to investigate the potential use of these enzymes as biomarkers in assessment of contaminated sediments on tropical chironomid species. Acetylcholinesterase (AChE), glutathione-S-transferase (GST) and metallothionein (MT) activity was measured in the fourth-instar chironomid larvae, Chironomus javanus, Kieffer, after either 48-hr or 96-hr exposure to organophosphorus insecticide, chlorpyrifos (0.01- 0.25 mg kg(-1)) or heavy metal cadmium (0.1-25 mg kg(-1)). Exposure to chlorpyrifos (0.01 mg kg(-1)) at 48 and 96 hr significantly of AChE activity (64.2%-85.9%) and induced GST activity (33.9-63.8%) when compared with control (P < 0.05). Moreover, exposure to cadmium (0.1 mg kg(-1)) at 48 and 96 hr also showed significant increas GST activity (11.7-40%) and MT level (9.0%-70.5%) when compared with control (P < 0.05). The results indicated the impact of enzyme activity on chlorpyrifos and cadmium contamination. Activity of AChE, GST and MT could serve as potential biomarkers for assessment and biomonitoring the effects of insecticide and heavy metal contamination in tropical aquatic ecosystems. PMID:26688973

  18. Metallothionein-II Inhibits Lipid Peroxidation and Improves Functional Recovery after Transient Brain Ischemia and Reperfusion in Rats

    PubMed Central

    Diaz-Ruiz, Araceli; Vacio-Adame, Patricia; Monroy-Noyola, Antonio; Méndez-Armenta, Marisela; Ortiz-Plata, Alma; Rios, Camilo

    2014-01-01

    After transient cerebral ischemia and reperfusion (I/R), damaging mechanisms, such as excitotoxicity and oxidative stress, lead to irreversible neurological deficits. The induction of metallothionein-II (MT-II) protein is an endogenous mechanism after I/R. Our aim was to evaluate the neuroprotective effect of MT-II after I/R in rats. Male Wistar rats were transiently occluded at the middle cerebral artery for 2 h, followed by reperfusion. Rats received either MT (10 μg per rat i.p.) or vehicle after ischemia. Lipid peroxidation (LP) was measured 22 h after reperfusion in frontal cortex and hippocampus; also, neurological deficit was evaluated after ischemia, using the Longa scoring scale. Infarction area was analyzed 72 hours after ischemia. Results showed increased LP in frontal cortex (30.7%) and hippocampus (26.4%), as compared to control group; this effect was fully reversed by MT treatment. Likewise, we also observed a diminished neurological deficit assessed by the Longa scale in those animals treated with MT compared to control group values. The MT-treated group showed a significant (P < 0.05) reduction of 39.9% in the infarction area, only at the level of hippocampus, as compared to control group. Results suggest that MT-II may be a novel neuroprotective treatment to prevent ischemia injury. PMID:24719677

  19. Hepatic and renal metallothionein concentrations in Commerson's dolphins (Cephalorhynchus commersonii) from Tierra del Fuego, South Atlantic Ocean.

    PubMed

    Cáceres-Saez, Iris; Polizzi, Paula; Romero, Belén; Dellabianca, Natalia A; Ribeiro Guevara, Sergio; Goodall, R Natalie P; Cappozzo, H Luis; Gerpe, Marcela

    2016-07-15

    The Commerson's dolphin is the most common endemic odontocete of subantarctic waters of Tierra del Fuego, Argentina incidentally caught in fishing nets. The species is classified as "Data Deficient" by the IUCN. Metallothioneins (MTs) are considered as suitable biomarkers for health and environmental monitoring. The aims of the study were to assess MT concentrations in the liver and kidney of bycaught specimens. Moreover, correlations with Zn, Se, Cd, Ag and Hg, and the molar ratios of MT:metals were estimated to evaluate if there is an indication of their respective protective role against metal toxicity in tissues. Hepatic and renal MT concentrations were similar, ranging from 11.6 to 29.1nmol·g(-1) WW, and Kidney/Liver ratios ranging from 0.73 to 1.93 corresponded to normal ranges. Results suggest that MTs are related to physiological ranges for the species. This information constitutes the first MT report on Commerson's dolphins and possibly considered as baseline for species' conservation. PMID:27072824

  20. Real-time fluorescent quantitative RT-PCR assay for the expression of metallothioneins in rat hippocampal neurons

    NASA Astrophysics Data System (ADS)

    Qin, Hai-Hong; Wang, Fu-Di; Guo, Jun-Sheng; Shen, Hui; Li, Run-Ping

    2004-07-01

    Metallothioneins (MTs) are short, cysteine-rich proteins for heavy metal homeostasis and detoxification; they can bind a variety of heavy metals and also act as radical scavengers. In brain cells, they play a neuroprotective role in many aspects. However, because the previous methods can't quantify their gene expression at the mRNA level, their regulation in brain, especially in neurons, is not well known by now. In this study, we use a more accurate method, the real-time fluorescent quantitative RT-PCR technique, to determine the expression of three MT isomers on 100 μM zinc exposure after 0, 2, 4, 6 and 8 hours in primary culture rat hippocampal neurons. The result shows that the expression of all three MT isomers was higher compared with the values determined by other methods. This means that the roles played by neuron MTs in protecting neurons injury on zinc fluctuation was even stronger than what has been suspected before. In conclusion, our study proved that the real-time fluorescent quantitative RT-PCR technique is a simple, rapid and more precise method than previous techniques in the detection of gene expression, especially for those genes with low abundant mRNA. Our study also suggest that may of the past studies about gene expression should be verified by real-time Fluorescent quantitative RT-PCR once more in order to reach a more scientific explanation on certain problem.

  1. Evidence for nuclear interaction of a cytoskeleton protein (OsIFL) with metallothionein and its role in salinity stress tolerance

    PubMed Central

    Soda, Neelam; Sharan, Ashutosh; Gupta, Brijesh K.; Singla-Pareek, Sneh L.; Pareek, Ashwani

    2016-01-01

    Soil salinity is being perceived as a major threat to agriculture. Plant breeders and molecular biologist are putting their best efforts to raise salt-tolerant crops. The discovery of the Saltol QTL, a major QTL localized on chromosome I, responsible for salt tolerance at seedling stage in rice has given new hopes for raising salinity tolerant rice genotypes. In the present study, we have functionally characterized a Saltol QTL localized cytoskeletal protein, intermediate filament like protein (OsIFL), of rice. Studies related to intermediate filaments are emerging in plants, especially with respect to their involvement in abiotic stress response. Our investigations clearly establish that the heterologous expression of OsIFL in three diverse organisms (bacteria, yeast and tobacco) provides survival advantage towards diverse abiotic stresses. Screening of rice cDNA library revealed OsIFL to be strongly interacting with metallothionein protein. Bimolecular fluorescence complementation assay further confirmed this interaction to be occurring inside the nucleus. Overexpression of OsIFL in transgenic tobacco plants conferred salinity stress tolerance by maintaining favourable K+/Na+ ratio and thus showed protection from salinity stress induced ion toxicity. This study provides the first evidence for the involvement of a cytoskeletal protein in salinity stress tolerance in diverse organisms. PMID:27708383

  2. Metallothionein Induction in the Coelomic Fluid of the Earthworm Lumbricus terrestris following Heavy Metal Exposure: A Short Report

    PubMed Central

    Calisi, A.; Lionetto, M. G.; De Lorenzis, E.; Leomanni, A.; Schettino, T.

    2014-01-01

    Earthworms are useful bioindicator organisms for soil biomonitoring. Recently the use of pollution biomarkers in earthworms has been increasingly investigated for soil monitoring and assessment. Earthworm coelomic fluid is particularly interesting from a toxicological perspective, because it is responsible for pollutant disposition and tissue distribution to the whole organism. The aim of the present work was to study the effect of heavy metal exposure on metallothionein (Mt) induction in the coelomic fluid of Lumbricus terrestris in view of future use as sensitive biomarker suitable for application to metal polluted soil monitoring and assessment. L. terrestris coelomic fluid showed a detectable Mt concentration of about 4.0 ± 0.6 μg/mL (mean ± SEM, n = 10) in basal physiological condition. When the animals were exposed to CuSO4 or CdCl2 or to a mixture of the two metals in OECD soils for 72 h, the Mt specific concentration significantly (P < 0.001) increased. The Mt response in the coelomic fluid perfectly reflected the commonly used Mt response in the whole organism when the two responses were compared on the same specimens. These findings indicate the suitability of Mt determination in L. terrestris coelomic fluid as a sensitive biomarker for application to metal polluted soil monitoring and assessment. PMID:24804193

  3. Metallothionein induction in the coelomic fluid of the earthworm Lumbricus terrestris following heavy metal exposure: a short report.

    PubMed

    Calisi, A; Lionetto, M G; De Lorenzis, E; Leomanni, A; Schettino, T

    2014-01-01

    Earthworms are useful bioindicator organisms for soil biomonitoring. Recently the use of pollution biomarkers in earthworms has been increasingly investigated for soil monitoring and assessment. Earthworm coelomic fluid is particularly interesting from a toxicological perspective, because it is responsible for pollutant disposition and tissue distribution to the whole organism. The aim of the present work was to study the effect of heavy metal exposure on metallothionein (Mt) induction in the coelomic fluid of Lumbricus terrestris in view of future use as sensitive biomarker suitable for application to metal polluted soil monitoring and assessment. L. terrestris coelomic fluid showed a detectable Mt concentration of about 4.0 ± 0.6 μg/mL (mean ± SEM, n = 10) in basal physiological condition. When the animals were exposed to CuSO4 or CdCl2 or to a mixture of the two metals in OECD soils for 72 h, the Mt specific concentration significantly (P < 0.001) increased. The Mt response in the coelomic fluid perfectly reflected the commonly used Mt response in the whole organism when the two responses were compared on the same specimens. These findings indicate the suitability of Mt determination in L. terrestris coelomic fluid as a sensitive biomarker for application to metal polluted soil monitoring and assessment. PMID:24804193

  4. Hypoxia drives apoptosis independently of p53 and metallothionein transcript levels in hemocytes of the whiteleg shrimp Litopenaeus vannamei.

    PubMed

    Felix-Portillo, Monserrath; Martínez-Quintana, José A; Arenas-Padilla, Marina; Mata-Haro, Verónica; Gómez-Jiménez, Silvia; Yepiz-Plascencia, Gloria

    2016-10-01

    The cellular mechanisms used by the shrimp Litopenaeus vannamei to respond to hypoxia have been studied from the energetic metabolism and antioxidant angles. We herein investigated the participation of p53 and metallothionein (MT) in the apoptotic process in response to hypoxia in shrimp hemocytes. The Lvp53 or LvMT genes were efficiently silenced by injection of double stranded RNA for p53 or MT. The effects of silencing on apoptosis were measured as caspase-3 activity and flow cytometry in hemocytes after 24 and 48 h of hypoxia (1.5 mg DO L(-1)). Hemocytes from unsilenced animals had significantly higher apoptosis levels upon both times of hypoxia. The apoptotic levels were diminished but not suppressed in dsp53-silenced but not dsMT-silenced hemocytes after 24 h of hypoxia, indicating a contribution of Lvp53 to apoptosis. Apoptosis in normoxia was significantly higher in dsp53-and dsMT-silenced animals compared to the unsilenced controls, pointing to a possible cytoprotective role of LvMT and Lvp53 during the basal apoptotic program in normoxia. Overall, these results indicate that hypoxia augments apoptosis in shrimp hemocytes and high mRNA levels of Lvp53 and LvMT are not necessary for this response.

  5. Investigations into the possible use of marine flatfish metallothionein concentrations as an indicator of toxic metal exposure

    SciTech Connect

    Overnell, J.; Fletcher, T.C.; McIntosh, R. )

    1988-09-01

    Marine flatfish would seem to be a useful class of fish because they are potential targets for pollution. Flounders tend to stay within their estuaries and a species of dab is the most common fish feeding at least one sewage dumpsite. However, before it is worth starting a monitoring program they need more information about this class of fish. The authors need to known whether metallothionein levels can be elevated by metals, the effect of non-metal stress-associated factors and the seasonal variation of the endogenous levels. If MT is elevated then how long does the effect persist They also need to know the effect of dietary metals since a number of studies on zinc and copper uptake into fish have indicated, that except in extreme conditions such as downstream from a copper mine, quantitatively the most important route for the metals zinc and copper is not directly from the water but through the diet. They have attempted to answer some of these questions.

  6. Hypoxia drives apoptosis independently of p53 and metallothionein transcript levels in hemocytes of the whiteleg shrimp Litopenaeus vannamei.

    PubMed

    Felix-Portillo, Monserrath; Martínez-Quintana, José A; Arenas-Padilla, Marina; Mata-Haro, Verónica; Gómez-Jiménez, Silvia; Yepiz-Plascencia, Gloria

    2016-10-01

    The cellular mechanisms used by the shrimp Litopenaeus vannamei to respond to hypoxia have been studied from the energetic metabolism and antioxidant angles. We herein investigated the participation of p53 and metallothionein (MT) in the apoptotic process in response to hypoxia in shrimp hemocytes. The Lvp53 or LvMT genes were efficiently silenced by injection of double stranded RNA for p53 or MT. The effects of silencing on apoptosis were measured as caspase-3 activity and flow cytometry in hemocytes after 24 and 48 h of hypoxia (1.5 mg DO L(-1)). Hemocytes from unsilenced animals had significantly higher apoptosis levels upon both times of hypoxia. The apoptotic levels were diminished but not suppressed in dsp53-silenced but not dsMT-silenced hemocytes after 24 h of hypoxia, indicating a contribution of Lvp53 to apoptosis. Apoptosis in normoxia was significantly higher in dsp53-and dsMT-silenced animals compared to the unsilenced controls, pointing to a possible cytoprotective role of LvMT and Lvp53 during the basal apoptotic program in normoxia. Overall, these results indicate that hypoxia augments apoptosis in shrimp hemocytes and high mRNA levels of Lvp53 and LvMT are not necessary for this response. PMID:27459156

  7. Localization of genes encoding metallothionein-like protein (mt2 and smtb) in the brain of zebrafish.

    PubMed

    Teoh, Seong Lin; Ogawa, Satoshi; Parhar, Ishwar S

    2015-12-01

    Metallothionein (MT) is a small cysteine-rich heavy metal-binding protein involved in metal homeostasis, detoxification and free radical-scavenging. MT is ubiquitously expressed in several tissues, but its role in the central nervous system is not well understood. In this study, we identified two MT homologous genes (mt2 and smtb) in the zebrafish. Digoxigenin-in situ hybridization showed the expression of mt2 and smtb genes in the ventricular layers in the telencephalon, diencephalon, mesencephalon and rhombencephalon, most of which are cell proliferating regions in the brain of zebrafish. Cellular characteristics of MT genes expressing cells were examined by double-labelling with markers for neurons (HuC/D) and astrocytes (glial fibrillary acidic protein, GFAP and S100 protein) and cell proliferation marker (PCNA). mt2 and smtb mRNAs are expressed in neurons and not in astrocytes, and they were co-localized with PCNA. These results suggest that mt2 and smtb may play an important role in neurogenesis and neuroprotection.

  8. Freezing and anoxia stresses induce expression of metallothionein in the foot muscle and hepatopancreas of the marine gastropod Littorina littorea.

    PubMed

    English, Tamara E; Storey, Kenneth B

    2003-07-01

    Differential screening of cDNA libraries constructed from the foot muscle of marine snails Littorina littorea revealed several cDNAs that are upregulated during anoxia or freezing exposures, environmental stresses that are naturally endured by this species. One full-length clone of 1196 nucleotides (GenBank accession number AY034179) hybridized with a 1200-nucleotide band on northern blots and encoded a 100-amino-acid protein that was identified as belonging to the metallothionein (MT) family. L. littorea MT shared 45% and 56% identity with the copper- and cadmium-binding MT isoforms, respectively, from another gastropod, Helix pomatia and 43-47% identity with marine bivalve MTs. The L. littorea sequence included the mollusc-specific C-terminal motif Cys-X-Cys-X(3)-Cys-Thr-Gly-X(3)-Cys-X-Cys-X(3)-Cys-X-Cys-Lys that identifies it as a family 2 (mollusc) MT. Northern blot analysis showed that L. littorea MT was upregulated in both foot muscle and hepatopancreas in response to both freezing and anoxia stresses; within 1 h of the beginning of the stress transcript levels rose 2.5- to sixfold of control levels, reaching maximal levels at 12 or 24 h. After 24 h recovery from either stress, transcript levels were reduced again in three cases but remained elevated in hepatopancreas from anoxia-treated snails. Upregulation of MT during environmental stress could serve one or more possible roles, including a function in antioxidant defense. PMID:12796465

  9. Effect of metal accumulation on metallothionein level and condition of the periwinkle Littorina littorea along the Scheldt estuary (the Netherlands).

    PubMed

    Van den Broeck, Heidi; De Wolf, Hans; Backeljau, Thierry; Blust, Ronny

    2010-05-01

    Metal (i.e. Ag, As, Ca, Cd, Co, Cu, Mn, Pb and Zn) and metallothionein (MT) concentrations in the soft tissue of Littorina littorea were measured along the heavily polluted Western Scheldt (WS) and relatively clean Eastern Scheldt (ES) estuary. Along the WS metal and MT levels in periwinkles reflected the known downstream decreasing pollution gradient. Surprisingly in ES animals As, Mn and Zn concentrations decreased from east to west reflecting past pollution. Compared to the WS metal concentrations of ES periwinkles were significantly lower and both estuaries were maximally discriminated from each other based on their Cd soft tissue concentration using a canonical discriminant analysis. Furthermore, no overall difference was found in MT levels among animals from both estuaries. Using previously obtained condition data (i.e. dry/wet weight ratio and lipid content) the relation between soft tissue metal concentration (i.e. Cd, Cu and Zn) and fitness indicators (i.e. MT and condition data) was examined using a canonical correlation analysis. Periwinkles with a high metal load (i.e. Cd and Zn) also had high MT levels but were in a relatively poor condition. PMID:19948373

  10. Multivariate analysis of oestrogen receptor alpha, pS2, metallothionein and CD24 expression in invasive breast cancers

    PubMed Central

    Surowiak, P; Materna, V; Györffy, B; Matkowski, R; Wojnar, A; Maciejczyk, A; Paluchowski, P; Dzięgiel, P; Pudełko, M; Kornafel, J; Dietel, M; Kristiansen, G; Zabel, M; Lage, H

    2006-01-01

    Determination of oestrogen receptor alpha (ER) represents at present the most important predictive factor in breast cancers. Data of ours and of other authors suggest that promising predictive/prognostic factors may also include pS2, metallothionein (MT) and CD24. Present study aimed at determining prognostic and predictive value of immunohistochemical determination of ER, pS2, MT, and CD24 expression in sections originating from 104 patients with breast cancer. An univariate and multivariate analysis was performed. Both univariate and multivariate analyses demonstrated that cytoplasmic-membranous expression of CD24 (CD24c-m) represents a strong unfavourable prognostic factor in the entire group and in most of the subgroups of patients. In several subgroups of the patients also a prognostic value was demonstrated of elevated expression of pS2 and of membranous expression of CD24. Our studies demonstrated that all patients with good prognostic factors (higher ER and pS2 expressions, lower MT expression, CD24c-m negativity) survived total period of observation (103 months). The study documented that cytoplasmic-membranous expression of CD24 represented an extremely strong unfavourable prognostic factor in breast cancer. Examination of the entire panel of the studied proteins permitted to select a group of patients of an exceptionally good prognosis. PMID:16892043

  11. Pressurized liquid extraction-assisted mussel cytosol preparation for the determination of metals bound to metallothionein-like proteins.

    PubMed

    Santiago-Rivas, Sandra; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Jorge; Alonso-Rodríguez, Elia; Muniategui-Lorenzo, Soledad; López-Mahía, Purificación; Prada-Rodríguez, Darío

    2007-11-01

    The possibilities of pressurized liquid extraction (PLE) have been novelty tested to assist the cytosol preparation from wet mussel soft tissue before the determination of metals bound to metallothionein-like proteins (MLPs). Results obtained after PLE were compared with those obtained after a classical blending procedure for mussel cytosolic preparation. Isoforms MLP-1 (retention time of 4.1 min) and MLP-2 (retention time of 7.4 min) were separated by anion exchange high-performance liquid chromatography (HPLC) and the concentrations of Ba, Cu, Mn, Sr and Zn bound to MLP isoforms were directly measured by inductively coupled plasma-atomic emission spectrometry (ICP-OES) as a multi-element detector. The optimized PLE-assisted mussel cytosol preparation has consisted of one extraction cycle at room temperature and 1500 psi for 2 min. Since separation between the solid mussel residue and the extract (cytosol) is performed by the PLE system, the cytosol preparation method is faster than conventional cytosol preparation methods by cutting/blending using Ultraturrax or Stomacher devices. PMID:17950055

  12. Identification, cloning and characterisation of a novel copper-metallothionein in tetrahymena pigmentosa. Sequencing of cDNA and expression.

    PubMed

    Santovito, G; Irato, P; Palermo, S; Boldrin, F; Sack, R; Hunziker, P; Piccinni, E L

    2001-09-01

    The protist Tetrahymena pigmentosa accumulates large amounts of metal ions, particularly cadmium and copper. This capability is linked to the induction of metallothioneins (MTs), cysteine-rich metal-binding proteins found in protists, plants and animals. The present study focuses on a novel inducible MT-isoform isolated from Tetrahymena after exposure to a non-toxic dose of copper. The cDNA sequence was determined utilising the partial peptide sequence of purified protein. The Cu-MT cDNA encodes 96 amino acids containing 28 cysteine residues (29%) arranged in motifs characteristic of the metal-binding regions of vertebrate and invertebrate MTs. Both the amino acid and nucleotide sequences differ, not only from other animal MTs, but also from the previously characterised Tetrahymena Cd-MT. Both MTs contain the structural pattern GTXXXCKCXXCKC, which may be proposed as a conservative sequence of Tetrahymena MTs. Cu-dependent regulation of MT expression was also investigated by measuring MT-mRNA and MT levels. MT synthesis occurs very quickly and MT contents increase with Cu accumulation. The induction of Cu-MT mRNA is very rapid, with no observable lag period, and is characterised by transient fluctuation, similar to that described for Cd-MT mRNA. The data reported here indicate that, also in the unicellular organism Tetrahymena, two very different MT isoforms, which perform different biological functions, are expressed according to the inducing metal, Cu or Cd.

  13. Assessment of potential biomarkers, metallothionein and vitellogenin mRNA expressions in various chemically exposed benthic Chironomus riparius larvae

    NASA Astrophysics Data System (ADS)

    Park, Kiyun; Kwak, Inn-Sil

    2012-12-01

    The objective of this study was conducted to identify the possibility of using Chironomus metallothionein (MT) and vitellogenin (VTG) as biomarkers of stress caused by endocrinedisrupting chemicals (EDCs), heavy metals, herbicides and veterinary antibiotics. We characterized the MT and VTG cDNA in Chironomus riparius and evaluated their mRNA expression profiles following exposure to different environmental pollutants. The gene expression analysis showed that the MT mRNA levels increased significantly after long-term exposure to cadmium (Cd), copper (Cu), Lead (Pb), di(2-ethylhexyl) phthalate (DEHP), and 2,4-dichlorophenoxyacetic acid (2,4-D). Moreover, the VTG mRNA expression increased significantly in C. riparius larvae exposed to BPA, NP, DEHP, Cd, 2,4-D and fenbendazole. Evaluation of the long-term effects of environmental pollutants revealed up regulation of Chironomus MT mRNA in response to DEHP exposure among EDCs, and the level of the VTG mRNA was increased significantly following treatment with Cd and herbicide 2,4-D at all concentrations in a dose-dependent manner. These results indicate that VTG could be used as a potential biomarker of herbicide and Cd as well as EDCs, while MT was a potential biomarker of heavy metals such as Cd, Cu, and Pb in aquatic environments.

  14. [Influences of petroleum hydrocarbons on accumulation of cadmium and induction of metallothionein in the polychaete Perinereis aibuhitensis].

    PubMed

    Zhang, Qian-Ru; Mu, Wen-Yan; Zhang, Jing-Yi; Liu, Li; Wei, Shu-He

    2014-09-01

    Ragworm (Polychaeta) is an ecologically important species in intertidal mudflats and estuaries and is recognized as a sentinel species for environmental monitoring. In the intertidal belt of China, the ragworm Perinereis aibuhitensis is frequently exposed to various toxicants including cadmium (Cd) and petroleum hydrocarbons (PHCs). The present study investigated the influence of PHCs on accumulation of Cd and the induction of metallothionein (MT) in P. aibuhitensis by means of chronic microcosm experiment in which the ragworms were exposed to Cd or combinations of Cd and PHCs. The accumulation of Cd in P. aibuhitensis increased significantly with the Cd exposure concentration when exposed to Cd alone. Further, the bioconcentration factors (BCFs) for Cd in P. aibuhitensis increased with the duration of exposure. The addition of PHCs in Cd exposure solutions significantly increased the accumulation of Cd in P. aibuhitensis, compared with the control. Exposure to Cd induced the expression of MT, and the expression increased with the concen- tration up to 180 mg · kg(-1) DM Cd at which point the level of induction did not increase. PHCs without Cd did not significantly induce MT in P. aibuhitensis, but the addition of PHCs with Cd did influence the induction of MT compared to Cd without PHCs. Results indicated that PHCs could modulate the expression of MT during co-exposure with Cd. The potential substances other than metals influencing the interpretation of MT expression in wild P. aibuhitensis must be recognized when MT is used as a monitoring index.

  15. Metallothioneins and heat shock proteins 70 in marine mussels as sensors of environmental pollution in Northern Adriatic Sea.

    PubMed

    Mićović, Vladimir; Bulog, Aleksandar; Kučić, Natalia; Jakovac, Hrvoje; Radošević-Stašić, Biserka

    2009-11-01

    In an attempt to assess the intensity of environmental pollution in industrial zones of Kvarnerian Bay in Northern Adriatic Sea and the reactivity of Mytilus galloprovincialis to these changes, in this study we estimated the concentration of heavy metals at four locations in both sea-sediment and in the mussels. Further we tried to correlate these changes with seasonal variations in environmental temperature, pH and salinity, as well as with the expression of metallothioneins (MTs) and heat shock proteins (HSPs) in the digestive tract of the mussels. Sampling in vivo was performed monthly, during the year 2008, while under the laboratory conditions the reactivity of acclimated mussels were tested to increasing concentrations of CdCl(2) and to thermal stress. The data have shown that the induction of MTs and HSP isoforms of the 70-kDa size class were highly affected by model agents treatment including contamination of sea-sediment by Pb, Hg and Cd, implying that these stress proteins might be power biomarkers of marine pollution.

  16. Prooxidative effect of copper--metallothionein in the acute cytotoxicity of hydrogen peroxide in Ehrlich ascites tumour cells.

    PubMed

    Suntres, Zacharias E; Lui, Edmund M K

    2006-01-16

    This study was concerned with the role of copper (Cu) and Cu-metallothionein (Cu-MT) in oxidative stress. Hydrogen peroxide (H(2)O(2))-induced oxidative injury was examined in Ehrlich ascites tumour cells isolated from host mice pretreated with 0, 1 or 2mg of CuSO(4) (ip) 24h earlier. Control Ehrlich cells contained low levels of Cu and Cu treatment produced dose-related increases in cellular Cu and Cu-MT levels and corresponding increases in sensitivity to oxidative toxicity of H(2)O(2) (LC(50), cell blebbing, lipid peroxidation, GSH depletion, and increase in intracellular free [Ca(2+)](i)). Hydrogen peroxide treatment also resulted in the oxidation of MT thiolates, reduction in the binding of Cu to MT resulting in translocation of Cu to other subcellular sites. d-penicillamine, a Cu-chelating agent, obliterated the sensitization effect of Cu-pretreatment and reduced the redistribution of MT-bound Cu, suggesting the participation of Cu ions derived from MT in promoting oxidant stress. Additional experiments with desferoxamine and mannitol have revealed the involvement of a Cu-dependent Fenton reaction in the mediation of the prooxidative effect of Cu-MT. These data suggest that cells with high levels of Cu-MT may be particularly susceptible to oxidative stress. PMID:16221516

  17. A role of metallothionein in zinc regulation after oestradiol induction of vitellogenin synthesis in rainbow trout, Salmo gairdneri.

    PubMed Central

    Olsson, P E; Zafarullah, M; Gedamu, L

    1989-01-01

    The regulation of metallothionein (MT) biosynthesis in rainbow-trout liver was studied after a single intraperitoneal injection of oestradiol-17 beta. Sampling was performed after 2, 7, 14, 21, 28 and 35 days. Following induction of vitellogenin synthesis in the liver, liver somatic index (LSI) rose from 1.25 to 2.00 in 14 days. Associated with the increase in LSI was an elevation of hepatic vitellogenin mRNA and zinc concentrations. The vitellogenin mRNA concentrations peaked at 7 days after treatment. The zinc concentrations increased to a peak at day 14. MT was analysed by using differential pulse polarography and a rainbow-trout MT RNA probe. The MT mRNA concentrations rose after 14 days and remained elevated at 21 and 28 days. The MT concentrations increased after 14 days and remained elevated throughout the experimental period. The concentrations of MT-bound zinc increased in association with the elevation in MT concentrations in the oestradiol-treated rainbow trout. These findings indicate that MT is involved in the regulation of zinc during the period of vitellogenin induction and that MT may function by maintaining the pool of available zinc at an appropriate concentration. PMID:2467659

  18. Metallothionein mRNA induction is correlated with the decrease of DNA strand breaks in cadmium exposed zebra mussels.

    PubMed

    Vincent-Hubert, Françoise; Châtel, Amélie; Gourlay-Francé, Catherine

    2014-05-15

    We have previously shown that cadmium (Cd) and benzo[a]pyrene (BaP) induced early DNA damages in zebra mussels, and that the level of DNA strand breaks (SB) returned to a basal level after 3 days of exposure to Cd. The aim of the present study was to go further in the mechanisms of Cd and BaP detoxification. For that purpose, expression of genes encoding for metallothionein (MT), aryl hydrocarbon receptor (AHR), P-gp, catalase, glutathione S-transferase and heat shock protein 70 (HSP70) proteins have been measured using RT-qPCR. Data reported here show that Cd is a strong inducer of MT and HSP70 genes, and that BaP is a strong inducer of P-gp and AHR genes. Exposure to Cd and BaP resulted in moderate changes in antioxidant enzymes mRNA. Since the increase of MT mRNA occurred when the DNA SB level returned to its basal level, we can suggest that MT is implicated in cadmium detoxification.

  19. Construction and radiolabeling of adenovirus variants that incorporate human metallothionein into protein IX for analysis of biodistribution.

    PubMed

    Liu, Lei; Rogers, Buck E; Aladyshkina, Natalia; Cheng, Bing; Lokitz, Stephen J; Curiel, David T; Mathis, J Michael

    2014-01-01

    Using adenovirus (Ad)-based vectors is a promising strategy for novel cancer treatments; however, current tracking approaches in vivo are limited. The C-terminus of the Ad minor capsid protein IX (pIX) can incorporate heterologous reporters to monitor biodistribution. We incorporated metallothionein (MT), a low-molecular-weight metal-binding protein, as a fusion to pIX. We previously demonstrated 99mTc binding in vitro to a pIX-MT fusion on the Ad capsid. We investigated different fusions of MT within pIX to optimize functional display. We identified a dimeric MT construct fused to pIX that showed significantly increased radiolabeling capacity. After Ad radiolabeling, we characterized metal binding in vitro. We explored biodistribution in vivo in control mice, mice pretreated with warfarin, mice preimmunized with wild-type Ad, and mice that received both warfarin pretreatment and Ad preimmunization. Localization of activity to liver and bladder was seen, with activity detected in spleen, intestine, and kidneys. Afterwards, the mice were euthanized and selected organs were dissected for further analysis. Similar to the imaging results, most of the radioactivity was found in the liver, spleen, kidneys, and bladder, with significant differences between the groups observed in the liver. These results demonstrate this platform application for following Ad dissemination in vivo. PMID:25060486

  20. Hepatic and renal metallothionein concentrations in Commerson's dolphins (Cephalorhynchus commersonii) from Tierra del Fuego, South Atlantic Ocean.

    PubMed

    Cáceres-Saez, Iris; Polizzi, Paula; Romero, Belén; Dellabianca, Natalia A; Ribeiro Guevara, Sergio; Goodall, R Natalie P; Cappozzo, H Luis; Gerpe, Marcela

    2016-07-15

    The Commerson's dolphin is the most common endemic odontocete of subantarctic waters of Tierra del Fuego, Argentina incidentally caught in fishing nets. The species is classified as "Data Deficient" by the IUCN. Metallothioneins (MTs) are considered as suitable biomarkers for health and environmental monitoring. The aims of the study were to assess MT concentrations in the liver and kidney of bycaught specimens. Moreover, correlations with Zn, Se, Cd, Ag and Hg, and the molar ratios of MT:metals were estimated to evaluate if there is an indication of their respective protective role against metal toxicity in tissues. Hepatic and renal MT concentrations were similar, ranging from 11.6 to 29.1nmol·g(-1) WW, and Kidney/Liver ratios ranging from 0.73 to 1.93 corresponded to normal ranges. Results suggest that MTs are related to physiological ranges for the species. This information constitutes the first MT report on Commerson's dolphins and possibly considered as baseline for species' conservation.

  1. Metal binding properties and structure of a type III metallothionein from the metal hyperaccumulator plant Noccaea caerulescens.

    PubMed

    Fernandez, Lucia Rubio; Vandenbussche, Guy; Roosens, Nancy; Govaerts, Cédric; Goormaghtigh, Erik; Verbruggen, Nathalie

    2012-09-01

    Metallothioneins (MT) are low molecular weight proteins with cysteine-rich sequences that bind heavy metals with remarkably high affinities. Plant MTs differ from animal ones by a peculiar amino acid sequence organization consisting of two short Cys-rich terminal domains (containing from 4 to 8 Cys each) linked by a Cys free region of about 30 residues. In contrast with the current knowledge on the 3D structure of animal MTs, there is a striking lack of structural data on plant MTs. We have expressed and purified a type III MT from Noccaea caerulescens (previously Thlaspi caerulescens). This protein is able to bind a variety of cations including Cd(2+), Cu(2+), Zn(2+) and Pb(2+), with different stoichiometries as shown by mass spectrometry. The protein displays a complete absence of periodic secondary structures as measured by far-UV circular dichroism, infrared spectroscopy and hydrogen/deuterium exchange kinetics. When attached onto a BIA-ATR biosensor, no significant structural change was observed upon removing the metal ions. PMID:22668884

  2. Transgenic expression in Arabidopsis of a polyprotein construct leading to production of two different antimicrobial proteins.

    PubMed

    François, Isabelle E J A; De Bolle, Miguel F C; Dwyer, Geoff; Goderis, Inge J W M; Woutors, Piet F J; Verhaert, Peter D; Proost, Paul; Schaaper, Wim M M; Cammue, Bruno P A; Broekaert, Willem F

    2002-04-01

    We developed a method for expression in Arabidopsis of a transgene encoding a cleavable chimeric polyprotein. The polyprotein precursor consists of a leader peptide and two different antimicrobial proteins (AMPs), DmAMP1 originating from Dahlia merckii seeds and RsAFP2 originating from Raphanus sativus seeds, which are linked by an intervening sequence ("linker peptide") originating from a natural polyprotein occurring in seed of Impatiens balsamina. The chimeric polyprotein was found to be cleaved in transgenic Arabidopsis plants and the individual AMPs were secreted into the extracellular space. Both AMPs were found to exert antifungal activity in vitro. It is surprising that the amount of AMPs produced in plants transformed with some of the polyprotein transgene constructs was significantly higher compared with the amount in plants transformed with a transgene encoding a single AMP, indicating that the polyprotein expression strategy may be a way to boost expression levels of small proteins. PMID:11950983

  3. 17th International Conference on Arabidopsis Research

    SciTech Connect

    Judith Bender

    2006-07-01

    The 17th International Conference on Arabidopsis Research was held at the University of Madison, Wisconsin from June 27- July 2, 2006. ICAR-2006 included approximately 625 scientists from across the world. The scientific program was of excellent quality featuring 73 talks, including 30 from invited speakers. There were also 6 community-organized workshops (facilitated by conference staff) featuring additional talks on topics including ‘Submitting data to long-term repositories,’ ‘TAIR introductory workshop,’ ‘Web services and demonstration,’ ‘Public engagement: broadening the impact of your research,’ ‘Systems biology approaches to analysis of metabolic and regulatory networks of Arabidopsis,’ and ‘Mechanotransduction in Arabidopsis.’ Approximately 440 posters were presented in general topic areas including, among others, Development, Modeling/Other Systems, Energy, Environment, and Genetic/Epigenetic mechanisms. Graduate students, postdoctoral researchers, junior faculty, and underrepresented minorities made up a significant portion of the oral presentations thereby promoting the training of young scientists and facilitating important career development opportunities for speakers. Several poster sessions provided an opportunity for younger participants to freely meet with more established scientists. The North American Arabidopsis Steering Committee (NAASC) continued its outreach effort and again sponsored two special luncheons to encourage personal and professional development of young scientists and also underrepresented minorities. The ‘Emerging Scientists Luncheon’ featured 10 graduate students selected on the basis of scientific excellence of their submitted research abstracts. The ‘Minority Funding Luncheon,’ featured 8 awardees selected by the NAASC through a widely-publicized application process. This luncheon was established specifically to provide an opportunity for underrepresented minorities, and/or scientists from

  4. Efficient and high-throughput vector construction and Agrobacterium-mediated transformation of Arabidopsis thaliana suspension-cultured cells for functional genomics.

    PubMed

    Ogawa, Yoichi; Dansako, Tomoko; Yano, Kentaro; Sakurai, Nozomu; Suzuki, Hideyuki; Aoki, Koh; Noji, Masaaki; Saito, Kazuki; Shibata, Daisuke

    2008-02-01

    We established a large-scale, high-throughput protocol to construct Arabidopsis thaliana suspension-cultured cell lines, each of which carries a single transgene, using Agrobacterium-mediated transformation. We took advantage of RIKEN Arabidopsis full-length (RAFL) cDNA clones and the Gateway cloning system for high-throughput preparation of binary vectors carrying individual full-length cDNA sequences. Throughout all cloning steps, multiple-well plates were used to treat 96 samples simultaneously in a high-throughput manner. The optimal conditions for Agrobacterium-mediated transformation of 96 independent binary vector constructs were established to obtain transgenic cell lines efficiently. We evaluated the protocol by generating transgenic Arabidopsis T87 cell lines carrying individual 96 metabolism-related RAFL cDNA fragments, and showed that the protocol was useful for high-throughput and large-scale production of gain-of-function lines for functional genomics.

  5. Regulation of Sulfate Assimilation in Arabidopsis and Beyond

    PubMed Central

    KOPRIVA, STANISLAV

    2006-01-01

    • Background and Aims Sulfate assimilation is a pathway used by prokaryotes, fungi and photosynthetic organisms to convert inorganic sulfate to sulfide, which is further incorporated into carbon skeletons of amino acids to form cysteine or homocysteine. The pathway is highly regulated in a demand-driven manner; however, this regulation is not necessarily identical in various plant species. Therefore, our knowledge of the regulation of sulfate assimilation is reviewed here in detail with emphasis on different plant species. • Scope Although demand-driven control plays an essential role in regulation of sulfate assimilation in all plants, the molecular mechanisms of the regulation and the effects of various treatments on the individual enzymes and metabolites are often different. This review summarizes (1) the molecular regulation of sulfate assimilation in Arabidopsis thaliana, especially recent data derived from platform technologies and functional genomics, (2) the co-ordination of sulfate, nitrate and carbon assimilations in Lemna minor, (3) the role of sulfate assimilation and glutathione in plant–Rhizobia symbiosis, (4) the cell-specific distribution of sulfate reduction and glutathione synthesis in C4 plants, (5) the regulation of glutathione biosynthesis in poplar, (6) the knock-out of the adenosine 5′phosphosulfate reductase gene in Physcomitrella patens and identification of 3′-phosphoadenosyl 5′-phosphosulfate reductase in plants, and (7) the sulfur sensing mechanism in green algae. • Conclusions As the molecular mechanisms of regulation of the sulfate assimilation pathway are not known, the role of Arabidopsis as a model plant will be further strengthened. However, this review demonstrates that investigations of other plant species will still be necessary to address specific questions of regulation of sulfur nutrition. PMID:16464881

  6. Rethinking transcriptional activation in the Arabidopsis circadian clock.

    PubMed

    Fogelmark, Karl; Troein, Carl

    2014-07-01

    Circadian clocks are biological timekeepers that allow living cells to time their activity in anticipation of predictable daily changes in light and other environmental factors. The complexity of the circadian clock in higher plants makes it difficult to understand the role of individual genes or molecular interactions, and mathematical modelling has been useful in guiding clock research in model organisms such as Arabidopsis thaliana. We present a model of the circadian clock in Arabidopsis, based on a large corpus of published time course data. It appears from experimental evidence in the literature that most interactions in the clock are repressive. Hence, we remove all transcriptional activation found in previous models of this system, and instead extend the system by including two new components, the morning-expressed activator RVE8 and the nightly repressor/activator NOX. Our modelling results demonstrate that the clock does not need a large number of activators in order to reproduce the observed gene expression patterns. For example, the sequential expression of the PRR genes does not require the genes to be connected as a series of activators. In the presented model, transcriptional activation is exclusively the task of RVE8. Predictions of how strongly RVE8 affects its targets are found to agree with earlier interpretations of the experimental data, but generally we find that the many negative feedbacks in the system should discourage intuitive interpretations of mutant phenotypes. The dynamics of the clock are difficult to predict without mathematical modelling, and the clock is better viewed as a tangled web than as a series of loops.

  7. A zinc-binding citrus protein metallothionein can act as a plant defense factor by controlling host-selective ACR-toxin production.

    PubMed

    Nishimura, Satoshi; Tatano, Satoshi; Miyamoto, Yoko; Ohtani, Kouhei; Fukumoto, Takeshi; Gomi, Kenji; Tada, Yasuomi; Ichimura, Kazuya; Akimitsu, Kazuya

    2013-01-01

    Metallothionein is a small cysteine-rich protein known to have a metal-binding function. We isolated three different lengths of rough lemon cDNAs encoding a metallothionein (RlemMT1, RlemMT2 and RlemMT3), and only RlemMT1-recombinant protein had zinc-binding activity. Appropriate concentration of zinc is an essential micronutrient for living organisms, while excess zinc is toxic. Zinc also stimulates the production of host-selective ACR-toxin for citrus leaf spot pathogen of Alternaria alternata rough lemon pathotype. Trapping of zinc by RlemMT1-recombinant protein or by a zinc-scavenging agent in the culture medium caused suppression of ACR-toxin production by the fungus. Since ACR-toxin is the disease determinant for A. alternata rough lemon pathotype, addition of RlemMT1 to the inoculum suspension led to a significant decrease in symptoms on rough lemon leaves as a result of reduced ACR-toxin production from the zinc trap around infection sites. RlemMT1-overexpression mutant of A. alternata rough lemon pathotype also produced less ACR-toxin and reduced virulence on rough lemon. This suppression was caused by an interruption of zinc absorption by cells from the trapping of the mineral by RlemMT1 and an excess supplement of ZnSO(4) restored toxin production and pathogenicity. Based on these results, we propose that zinc adsorbents including metallothionein likely can act as a plant defense factor by controlling toxin biosynthesis via inhibition of zinc absorption by the pathogen.

  8. Evolutionary Divergence of Arabidopsis thaliana Classical Peroxidases.

    PubMed

    Kupriyanova, E V; Mamoshina, P O; Ezhova, T A

    2015-10-01

    Polymorphisms of 62 peroxidase genes derived from Arabidopsis thaliana were investigated to evaluate evolutionary dynamics and divergence of peroxidase proteins. By comparing divergence of duplicated genes AtPrx53-AtPrx54 and AtPrx36-AtPrx72 and their products, nucleotide and amino acid substitutions were identified that were apparently targets of positive selection. These substitutions were detected among paralogs of 461 ecotypes from Arabidopsis thaliana. Some of these substitutions are conservative and matched paralogous peroxidases in other Brassicaceae species. These results suggest that after duplication, peroxidase genes evolved under the pressure of positive selection, and amino acid substitutions identified during our study provided divergence of properties and physiological functions in peroxidases. Our predictions regarding functional significance for amino acid residues identified in variable sites of peroxidases may allow further experimental assessment of evolution of peroxidases after gene duplication.

  9. Root gravitropism in maize and Arabidopsis

    NASA Technical Reports Server (NTRS)

    Evans, Michael L.

    1993-01-01

    Research during the period 1 March 1992 to 30 November 1993 focused on improvements in a video digitizer system designed to automate the recording of surface extension in plants responding to gravistimulation. The improvements included modification of software to allow detailed analysis of localized extension patterns in roots of Arabidopsis. We used the system to analyze the role of the postmitotic isodiametric growth zone (a region between the meristem and the elongation zone) in the response of maize roots to auxin, calcium, touch and gravity. We also used the system to analyze short-term auxin and gravitropic responses in mutants of Arabidopsis with reduced auxin sensitivity. In a related project, we studied the relationship between growth rate and surface electrical currents in roots by examining the effects of gravity and thigmostimulation on surface potentials in maize roots.

  10. Unraveling the circadian clock in Arabidopsis

    PubMed Central

    Wang, Xiaoxue; Ma, Ligeng

    2013-01-01

    The circadian clock is an endogenous timing system responsible for coordinating an organism’s biological processes with its environment. Interlocked transcriptional feedback loops constitute the fundamental architecture of the circadian clock. In Arabidopsis, three feedback loops, the core loop, morning loop and evening loop, comprise a network that is the basis of the circadian clock. The components of these three loops are regulated in distinct ways, including transcriptional, post-transcriptional and posttranslational mechanisms. The discovery of the DNA-binding and repressive activities of TOC1 has overturned our initial concept of its function in the circadian clock. The alternative splicing of circadian clock-related genes plays an essential role in normal functioning of the clock and enables organisms to sense environmental changes. In this review, we describe the regulatory mechanisms of the circadian clock that have been identified in Arabidopsis. PMID:23221775

  11. DYn-2 Based Identification of Arabidopsis Sulfenomes*

    PubMed Central

    Akter, Salma; Huang, Jingjing; Bodra, Nandita; De Smet, Barbara; Wahni, Khadija; Rombaut, Debbie; Pauwels, Jarne; Gevaert, Kris; Carroll, Kate; Van Breusegem, Frank; Messens, Joris

    2015-01-01

    Identifying the sulfenylation state of stressed cells is emerging as a strategic approach for the detection of key reactive oxygen species signaling proteins. Here, we optimized an in vivo trapping method for cysteine sulfenic acids in hydrogen peroxide (H2O2) stressed plant cells using a dimedone based DYn-2 probe. We demonstrated that DYn-2 specifically detects sulfenylation events in an H2O2 dose- and time-dependent way. With mass spectrometry, we identified 226 sulfenylated proteins after H2O2 treatment of Arabidopsis cells, residing in the cytoplasm (123); plastid (68); mitochondria (14); nucleus (10); endoplasmic reticulum, Golgi and plasma membrane (7) and peroxisomes (4). Of these, 123 sulfenylated proteins have never been reported before to undergo cysteine oxidative post-translational modifications in plants. All in all, with this DYn-2 approach, we have identified new sulfenylated proteins, and gave a first glance on the locations of the sulfenomes of Arabidopsis thaliana. PMID:25693797

  12. From genome to function: the Arabidopsis aquaporins

    PubMed Central

    Quigley, Francoise; Rosenberg, Joshua M; Shachar-Hill, Yair; Bohnert, Hans J

    2002-01-01

    Background In the post-genomic era newly sequenced genomes can be used to deduce organismal functions from our knowledge of other systems. Here we apply this approach to analyzing the aquaporin gene family in Arabidopsis thaliana. The aquaporins are intrinsic membrane proteins that have been characterized as facilitators of water flux. Originally termed major intrinsic proteins (MIPs), they are now also known as water channels, glycerol facilitators and aqua-glyceroporins, yet recent data suggest that they facilitate the movement of other low-molecular-weight metabolites as well. Results The Arabidopsis genome contains 38 sequences with homology to aquaporin in four subfamilies, termed PIP, TIP, NIP and SIP. We have analyzed aquaporin family structure and expression using the A. thaliana genome sequence, and introduce a new NMR approach for the purpose of analyzing water movement in plant roots in vivo. Conclusions Our preliminary data indicate a strongly transcellular component for the flux of water in roots. PMID:11806824

  13. Meiosis in autopolyploid and allopolyploid Arabidopsis.

    PubMed

    Lloyd, Andrew; Bomblies, Kirsten

    2016-04-01

    All newly formed polyploids face a challenge in meiotic chromosome segregation due to the presence of an additional set of chromosomes. Nevertheless, naturally occurring auto and allopolyploids are common and generally show high fertility, showing that evolution can find solutions. Exactly how meiosis is adapted in these cases, however, remains a mystery. The rise of Arabidopsis as a model genus for polyploid and meiosis research has seen several new studies begin to shed light on this long standing question.

  14. Analyzing Synthetic Promoters Using Arabidopsis Protoplasts.

    PubMed

    Stracke, Ralf; Thiedig, Katharina; Kuhlmann, Melanie; Weisshaar, Bernd

    2016-01-01

    This chapter describes a transient protoplast co-transfection method that can be used to quantitatively study in vivo the activity and function of promoters and promoter elements (reporters), and their induction or repression by transcription factors (effectors), stresses, hormones, or metabolites. A detailed protocol for carrying out transient co-transfection assays with Arabidopsis At7 protoplasts and calculating the promoter activity is provided. PMID:27557761

  15. Flavonoid-specific staining of Arabidopsis thaliana.

    PubMed

    Sheahan, J J; Rechnitz, G A

    1992-12-01

    Crop yields may be threatened by increases in UV-B radiation resulting from depletion of the ozone layer. In higher plants, the presence of flavonols provides a protective mechanism, and we report a novel staining procedure for the visualization of such protectants in plant tissue. It is shown that the proposed technique provides sensitive and specific fluorescence of flavonoids in chlorophyll-bleached tissue of Arabidopsis thaliana.

  16. Fluorescence-Activated Nucleolus Sorting in Arabidopsis.

    PubMed

    Pontvianne, Frédéric; Boyer-Clavel, Myriam; Sáez-Vásquez, Julio

    2016-01-01

    Nucleolar isolation allows exhaustive characterization of the nucleolar content. Centrifugation-based protocols are not adapted to isolation of nucleoli directly from a plant tissue because of copurification of cellular debris. We describe here a method that allows the purification of nucleoli using fluorescent-activated cell sorting from Arabidopsis thaliana leaves. This approach requires the expression of a specific nucleolar protein such as fibrillarin fused to green fluorescent protein in planta. PMID:27576720

  17. Analysis of the Arabidopsis Mitochondrial Proteome1

    PubMed Central

    Millar, A. Harvey; Sweetlove, Lee J.; Giegé, Philippe; Leaver, Christopher J.

    2001-01-01

    The complete set of nuclear genes that encode proteins targeted to mitochondria in plants is currently undefined and thus the full range of mitochondrial functions in plants is unknown. Analysis of two-dimensional gel separations of Arabidopsis cell culture mitochondrial protein revealed approximately 100 abundant proteins and 250 low-abundance proteins. Comparison of subfractions of mitochondrial protein on two-dimensional gels provided information on the soluble, membrane, or integral membrane locations of this protein set. A total of 170 protein spots were excised, trypsin-digested, and matrix-assisted laser desorption ionization/time of flight mass spectrometry spectra obtained. Using this dataset, 91 of the proteins were identified by searching translated Arabidopsis genomic databases. Of this set, 81 have defined functions based on sequence comparison. These functions include respiratory electron transport, tricarboxylic acid cycle metabolism, amino acid metabolism, protein import, processing, and assembly, transcription, membrane transport, and antioxidant defense. A total of 10 spectra were matched to Arabidopsis putative open reading frames for which no specific function has been determined. A total of 64 spectra did not match to an identified open reading frame. Analysis of full-length putative protein sequences using bioinformatic tools to predict subcellular targeting (TargetP, Psort, and MitoProt) revealed significant variation in predictions, and also a lack of mitochondrial targeting prediction for several characterized mitochondrial proteins. PMID:11743115

  18. Regulatory Proteolysis in Arabidopsis-Pathogen Interactions

    PubMed Central

    Pogány, Miklós; Dankó, Tamás; Kámán-Tóth, Evelin; Schwarczinger, Ildikó; Bozsó, Zoltán

    2015-01-01

    Approximately two and a half percent of protein coding genes in Arabidopsis encode enzymes with known or putative proteolytic activity. Proteases possess not only common housekeeping functions by recycling nonfunctional proteins. By irreversibly cleaving other proteins, they regulate crucial developmental processes and control responses to environmental changes. Regulatory proteolysis is also indispensable in interactions between plants and their microbial pathogens. Proteolytic cleavage is simultaneously used both by plant cells, to recognize and inactivate invading pathogens, and by microbes, to overcome the immune system of the plant and successfully colonize host cells. In this review, we present available results on the group of proteases in the model plant Arabidopsis thaliana whose functions in microbial pathogenesis were confirmed. Pathogen-derived proteolytic factors are also discussed when they are involved in the cleavage of host metabolites. Considering the wealth of review papers available in the field of the ubiquitin-26S proteasome system results on the ubiquitin cascade are not presented. Arabidopsis and its pathogens are conferred with abundant sets of proteases. This review compiles a list of those that are apparently involved in an interaction between the plant and its pathogens, also presenting their molecular partners when available. PMID:26404238

  19. Transcriptional profiling of the Arabidopsis embryo.

    PubMed

    Spencer, Matthew W B; Casson, Stuart A; Lindsey, Keith

    2007-02-01

    We have used laser-capture microdissection to isolate RNA from discrete tissues of globular, heart, and torpedo stage embryos of Arabidopsis (Arabidopsis thaliana). This was amplified and analyzed by DNA microarray using the Affymetrix ATH1 GeneChip, representing approximately 22,800 Arabidopsis genes. Cluster analysis showed that spatial differences in gene expression were less significant than temporal differences. Time course analysis reveals the dynamics and complexity of gene expression in both apical and basal domains of the developing embryo, with several classes of synexpressed genes identifiable. The transition from globular to heart stage is associated in particular with an up-regulation of genes involved in cell cycle control, transcriptional regulation, and energetics and metabolism. The transition from heart to torpedo stage is associated with a repression of cell cycle genes and an up-regulation of genes encoding storage proteins, and pathways of cell growth, energy, and metabolism. The torpedo stage embryo shows strong functional differentiation in the root and cotyledon, as inferred from the classes of genes expressed in these tissues. The time course of expression of the essential EMBRYO-DEFECTIVE genes shows that most are expressed at unchanging levels across all stages of embryogenesis. We show how identified genes can be used to generate cell type-specific markers and promoter activities for future application in cell biology.

  20. Phosphorylation of plastoglobular proteins in Arabidopsis thaliana

    PubMed Central

    Lohscheider, Jens N.; Friso, Giulia; van Wijk, Klaas J.

    2016-01-01

    Plastoglobules (PGs) are plastid lipid–protein particles with a small specialized proteome and metabolome. Among the 30 core PG proteins are six proteins of the ancient ABC1 atypical kinase (ABC1K) family and their locations in an Arabidopsis mRNA-based co-expression network suggested central regulatory roles. To identify candidate ABC1K targets and a possible ABC1K hierarchical phosphorylation network within the chloroplast PG proteome, we searched Arabidopsis phosphoproteomics data from publicly available sources. Evaluation of underlying spectra and/or associated information was challenging for a variety of reasons, but supported pSer sites and a few pThr sites in nine PG proteins, including five FIBRILLINS. PG phosphorylation motifs are discussed in the context of possible responsible kinases. The challenges of collection and evaluation of published Arabidopsis phosphorylation data are discussed, illustrating the importance of deposition of all mass spectrometry data in well-organized repositories such as PRIDE and ProteomeXchange. This study provides a starting point for experimental testing of phosho-sites in PG proteins and also suggests that phosphoproteomics studies specifically designed toward the PG proteome and its ABC1K are needed to understand phosphorylation networks in these specialized particles. PMID:26962209

  1. Computational identification of 69 retroposons in Arabidopsis.

    PubMed

    Zhang, Yujun; Wu, Yongrui; Liu, Yilei; Han, Bin

    2005-06-01

    Retroposition is a shot-gun strategy of the genome to achieve evolutionary diversities by mixing and matching coding sequences with novel regulatory elements. We have identified 69 retroposons in the Arabidopsis (Arabidopsis thaliana) genome by a computational approach. Most of them were derivatives of mature mRNAs, and 20 genes contained relics of the reverse transcription process, such as truncations, deletions, and extra sequence additions. Of them, 22 are processed pseudogenes, and 52 genes are likely to be actively transcribed, especially in tissues from apical meristems (roots and flowers). Functional compositions of these retroposon parental genes imply that not the mRNA itself but its expression in gamete cells defines a suitable template for retroposition. The presence/absence patterns of retroposons can be used as cladistic markers for biogeographic research. Effects of human and the Mediterranean Pleistocene refugia in Arabidopsis biogeographic distributions were revealed based on two recent retroposons (At1g61410 and At5g52090). An evolutionary rate of new gene creation by retroposition was calculated as 0.6 genes per million years. Retroposons can also be used as molecular fossils of the parental gene expressions in ancient time. Extensions of 3' untranslated regions for those expressed parental genes are revealed as a possible trend of plant transcriptome evolution. In addition, we reported the first plant functional chimeric gene that adapts to intercompartmental transport by capturing two additional exons after retroposition. PMID:15923328

  2. Mitochondrial electron transport is inhibited by disappearance of metallothionein in human bronchial epithelial cells following exposure to silver nitrate.

    PubMed

    Miyayama, Takamitsu; Arai, Yuta; Suzuki, Noriyuki; Hirano, Seishiro

    2013-03-01

    Silver (Ag) possesses antibacterial activity and has been used in wound dressings and deodorant powders worldwide. However, the metabolic behavior and biological roles of Ag in mammals have not been well characterized. In the present study, we exposed human bronchial epithelial cells (BEAS-2B) to AgNO3 and investigated uptake and intracellular distribution of Ag, expression of metallothionein (MT), generation of reactive oxygen species (ROS), and changes in mitochondrial respiration. The culture medium concentration of Ag decreased with time and stabilized at 12h. The concentration of both Ag and MT in the soluble cellular fraction increased up to 3h and then decreased, indicating that cytosolic Ag relocated to the insoluble fraction of the cells. The levels of mRNAs for the major human MT isoforms MT-I and MT-II paralleled with the protein levels of Ag-MT. The intensity of fluorescence derived from ROS was elevated in the mitochondrial region at 24h. Ag decreased mitochondrial oxygen consumption in a dose-dependent manner and the activity of mitochondrial complex I-IV enzymes was significantly inhibited following exposure to Ag. In a separate experiment, we found that hydrogen peroxide (H2O2) at concentrations as low as 0.001% (equivalent to the concentration of H2O2 in Ag-exposed cells) removed Ag from MT. These results suggest MT was decomposed by cytosolic H2O2, and then Ag released from MT relocated to insoluble cellular fractions and inhibited electron chain transfer of mitochondrial complexes, which eventually led to cell damage.

  3. [Cellular distribution and behavior of metallothionein in mammalian cells following exposure to silver nanoparticles and silver ions].

    PubMed

    Miyayama, Takamitsu; Arai, Yuta; Suzuki, Noriyuki; Hirano, Seishiro

    2014-01-01

    Silver nanoparticles (AgNPs) are commercially used mainly as antibacterial reagents in wound dressing and deodorant powders. However, the mechanisms underlying Ag toxicity in mammals are not fully understood. In the present study, we assessed cellular distribution and toxicity of AgNPs and AgNO3 in mouse macrophage cell line (J774.1) and those of AgNO3 in human bronchial epithelial cell line (BEAS-2B) focusing on behavior of metallothionein (MT). J774.1 cells were exposed to 0-100 μg Ag/mL AgNPs or AgNO3 and BEAS-2B cells were exposed to 0-100 μM AgNO3 for 24 h. The cytotoxicity was assayed by a modified MTT method. The cellular concentration and distribution of Ag were evaluated by inductively coupled plasma-mass spectorometry (ICP-MS) and laser scanning microscopy. Distribution of Ag to MT and other proteins was determined using HPLC-ICP-MS. Most AgNPs were found in lysosomes in J774.1 at 3 h after post exposure. Ag was distributed to high molecular weight proteins in AgNPs-exposed cells, while most Ag was bound to MT in AgNO3-exposed cells. In AgNO3-exposed BEAS-2B cells cellular Ag concentration and Ag-bound MT (Ag-MT) were sharply increased up to 3 h and then decreased. ROS production appeared to cause relocation of MT-bound Ag to mitochondria, which evoked inhibition of electron transport chain. AgNPs were sequestered by high-molecular weight proteins rather than MT, probably because they were taken up by lysosomes before induction of MT.

  4. Identification and response to metals of metallothionein in two ancient fishes: white sturgeon (Acipenser transmontanus) and lake sturgeon (Acipenser fulvescens).

    PubMed

    Doering, Jon A; Beitel, Shawn C; Eisner, Bryanna K; Heide, Timon; Hollert, Henner; Giesy, John P; Hecker, Markus; Wiseman, Steve B

    2015-05-01

    White sturgeon (Acipenser transmontanus) are among the most sensitive species of fishes to Cu, Cd, and Zn, but there is no information about sensitivity of lake sturgeon (Acipenser fulvescens). To begin to elucidate molecular mechanism(s) of sensitivity of sturgeons to metals a cDNA encoding metallothionein (MT) was amplified from livers of white sturgeon (WS-MT) and lake sturgeon (LS-MT), and expression in response to Cu, Cd, or Zn was characterized in liver explants from each species. The primary structure of WS-MT and LS-MT contained 20 cysteine residues, which is the same as MTs of teleost fishes. However, the primary structure of WS-MT and LS-MT contained 63 amino acids, which is longer than any MT identified in teleost fishes. Abundance of transcripts of WS-MT in explants exposed to 0.3, 3, 30, or 100 μg/L of Cu was 1.7-, 1.7-, 2.1-, and 2.6-fold less than in controls, respectively. In contrast, abundances of transcripts of WS-MT were 3.3- and 2.4-fold greater in explants exposed to 30 μg/L of Cd and 1000 μg/L of Zn, respectively. Abundance of transcripts of LS-MT was not significantly different at any concentration of Cu, Cd, or Zn. MT is hypothesized to represent a critical mechanism for detoxification of metals. Therefore, results of this study suggest that sensitivity of sturgeons to exposure to Cu, Cd, or Zn might be a result of the relatively lesser maximal response of MT to metals. The study also suggestslake sturgeon might be more sensitive than white sturgeon to metals.

  5. Cardioprotection against doxorubicin by metallothionein Is associated with preservation of mitochondrial biogenesis involving PGC-1α pathway.

    PubMed

    Guo, Jiabin; Guo, Qian; Fang, Haiqing; Lei, Lei; Zhang, Tingfen; Zhao, Jun; Peng, Shuangqing

    2014-08-15

    Metallothionein (MT) has been shown to inhibit cardiac oxidative stress and protect against the cardiotoxicity induced by doxorubicin (DOX), a potent and widely used chemotherapeutic agent. However, the mechanism of MT׳s protective action against DOX still remains obscure. Mitochondrial biogenesis impairment has been implicated to play an important role in the etiology and progression of DOX-induced cardiotoxicity. Increasing evidence indicates an intimate link between MT-mediated cardioprotection and mitochondrial biogenesis. This study was aimed to explore the possible contribution of mitochondrial biogenesis in MT׳s cardioprotective action against DOX. Adult male MT-I/II-null (MT(-/-)) and wild-type (MT(+/+)) mice were given a single dose of DOX intraperitoneally. Our results revealed that MT deficiency significantly sensitized mice to DOX-induced cardiac dysfunction, ultrastructural alterations, and mortality. DOX disrupted cardiac mitochondrial biogenesis indicated by mitochondrial DNA copy number and decreased mitochondrial number, and these effects were greater in MT(-/-) mice. Basal MT effectively protected against DOX-induced inhibition on the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a key regulator of mitochondrial biogenesis, and its downstream factors including mitochondrial transcription factor A. Moreover, MT was found to preserve the protein expression of manganese superoxide dismutase, a transcriptional target of PGC-1α. in vitro study showed that MT absence augmented DOX-induced increase of mitochondrial superoxide production in primary cultured cardiomyocytes. These findings suggest that MT׳s cardioprotection against DOX is mediated, at least in part, by preservation of mitochondrial biogenesis involving PGC-1α pathway. PMID:24858368

  6. Transfection of neonatal rat Schwann cells with SV-40 large T antigen gene under control of the metallothionein promoter

    PubMed Central

    1987-01-01

    Secondary cultures of Schwann cells were transfected with a plasmid containing the SV-40 T antigen gene expressed under the control of the mouse metallothionein-I promoter. We used the calcium phosphate method for transfection and obtained a transfection efficiency of 0.01%. The colonies were cloned by limited dilution, and these cloned cell lines were carried in medium containing zinc chloride (100 microM). One cloned cell line, which has now been carried for 180 doublings, appears to have a transformed phenotype with a doubling time of 20 h. These cells express SV-40 T antigen while maintaining established Schwann cell properties (positive staining for 217c, Ran-2, A5E3, glial fibrillary acidic protein, presence of 2',3'-cyclic nucleotide phosphohydrolase [CNPase] activity, and the ability to synthesize sulfogalactosylceramide and mRNA for the myelin protein, P0). Removal of zinc chloride from the medium resulted in reduced expression of T antigen and a change in the appearance of the cells to a more bipolar shape, although they still did not exhibit contact inhibition and maintained a doubling time of 20 h. These cells now became Ran-2- negative and showed increases in CNPase activity and in their ability to synthesize sulfogalactosylceramide. The amount of P0 mRNA remained unchanged. Transfected Schwann cells, however, stopped dividing when they contacted either basal lamina or neurites and became bipolar in appearance. The Schwann cells in contact with the neurites then extended processes to wrap around bundles of neurites. Transfection with the SV-40 T antigen gene therefore provides a method for obtaining Schwann cell lines that continue to express properties associated with untransfected cells in culture and may be used to study axon-Schwann cell interaction. PMID:2824529

  7. Comparative Raman study of four plant metallothionein isoforms: Insights into their Zn(II) clusters and protein conformations.

    PubMed

    Tomas, Mireia; Tinti, Anna; Bofill, Roger; Capdevila, Mercè; Atrian, Silvia; Torreggiani, Armida

    2016-03-01

    Four Metallothioneins (MTs) from soybean (Glycine max) were heterologously synthesized and comparatively analysed by Raman spectroscopy. The participation of protein donor groups (S-thiol and N-imidazol) in Zn(II) chelation, as well as the presence of secondary structure elements was comparatively analysed. Metal clusters with different geometry can be hypothesised for the four GmMTs: a cubane-like or an adamantane-like metal cluster in Zn-GmMT1, and dinuclear Zn-S clusters in Zn-GmMT2, Zn-GmMT3 and Zn-GmMT4. The latter have also a similar average Cys/Zn content, whereas a lower ratio is present in Zn-GmMT1. This is possible thanks to the involvement in metal coordination of a greater number of bridging Cys, as well as of some carboxylate groups. As regards secondary structure elements, a large content of β-turn segments is present in all four Zn-GmMTs, especially for isoforms 1 and 4. β-strands give a contribution to the folding of three GmMTs isoforms, and the highest percentage was found in Zn-GmMT2 (~45%). Conversely, the α-helix content is negligible in all the GmMTs except in Zn-GmMT3, where this peculiar feature coincides with the possible involvement of the two His residues in metal coordination. Conversely, His is predominantly free and present as tautomer I in Zn-GmMT4. In conclusion, this work illustrates the attractive potential of Raman spectroscopy, combined with other techniques, to be a very informative tool for evidencing structural differences among in vivo synthesized metal-MT complexes.

  8. Identification and response to metals of metallothionein in two ancient fishes: white sturgeon (Acipenser transmontanus) and lake sturgeon (Acipenser fulvescens).

    PubMed

    Doering, Jon A; Beitel, Shawn C; Eisner, Bryanna K; Heide, Timon; Hollert, Henner; Giesy, John P; Hecker, Markus; Wiseman, Steve B

    2015-05-01

    White sturgeon (Acipenser transmontanus) are among the most sensitive species of fishes to Cu, Cd, and Zn, but there is no information about sensitivity of lake sturgeon (Acipenser fulvescens). To begin to elucidate molecular mechanism(s) of sensitivity of sturgeons to metals a cDNA encoding metallothionein (MT) was amplified from livers of white sturgeon (WS-MT) and lake sturgeon (LS-MT), and expression in response to Cu, Cd, or Zn was characterized in liver explants from each species. The primary structure of WS-MT and LS-MT contained 20 cysteine residues, which is the same as MTs of teleost fishes. However, the primary structure of WS-MT and LS-MT contained 63 amino acids, which is longer than any MT identified in teleost fishes. Abundance of transcripts of WS-MT in explants exposed to 0.3, 3, 30, or 100 μg/L of Cu was 1.7-, 1.7-, 2.1-, and 2.6-fold less than in controls, respectively. In contrast, abundances of transcripts of WS-MT were 3.3- and 2.4-fold greater in explants exposed to 30 μg/L of Cd and 1000 μg/L of Zn, respectively. Abundance of transcripts of LS-MT was not significantly different at any concentration of Cu, Cd, or Zn. MT is hypothesized to represent a critical mechanism for detoxification of metals. Therefore, results of this study suggest that sensitivity of sturgeons to exposure to Cu, Cd, or Zn might be a result of the relatively lesser maximal response of MT to metals. The study also suggestslake sturgeon might be more sensitive than white sturgeon to metals. PMID:25795035

  9. Bioaccumulation and metallothionein response in the Asiatic clam (Corbicula fluminea) after experimental exposure to cadmium and inorganic mercury

    SciTech Connect

    Baudrimont, M.; Metivaud, J.; Maury-Brachet, R.; Ribeyre, F.; Boudou, A.

    1997-10-01

    The involvement of metallothioneins (MTs) in cadmium (Cd) and inorganic mercury (Hg[II]) bioaccumulation by the freshwater bivalve Corbicula fluminea was experimentally investigated after 0, 15, 30 and 45 d of exposure from the water column source. Three levels of contamination were studied for each metal: 0, 5, and 35 {micro}g Cd/L and 0, 1.45, and 5 {micro}g Hg/L, with two replicates per condition. Forty eight experimental units (EUs) were conducted simultaneously. The mollusks were fed twice a week by additions of phytoplanktonic algae. Quantification of MTs was done by Hg-saturation assay, using cold Hg(II). A partial purification of these proteins was conducted by gel-filtration chromatography, followed by Cd determinations in the different eluted fractions. Results at the whole organism (soft tissues) and organ or tissue group (gills, mantle, foot, visceral mass) levels show high metal concentrations, with a fourfold greater accumulation of inorganic Hg than Cd after 30 d exposure at the same concentration of 5 {micro}g/L. Gills and visceral mass were the principal storage compartments. A significant increase in MT concentrations was revealed in these two organs after exposure to Cd: ratios between the MT concentrations in contaminated and control mollusks were 2.4 and 2.8, respectively, for 5 and 35 {micro}g Cd/L. Cd burdens in the cytosol and in {le}18-kDa protein fractions, similar to purified mammal MTs, correspond to 30 and 14% of the total Cd accumulated in the whole organisms. No significant increase in MT biosynthesis was observed after exposure to inorganic Hg, despite the high metal concentrations in the organs.

  10. Association of heavy metals with metallothionein and other proteins in hepatic cytosol of marine mammals and seabirds.

    PubMed

    Ikemoto, Tokutaka; Kunito, Takashi; Anan, Yasumi; Tanaka, Hiroyuki; Baba, Norihisa; Miyazaki, Nobuyuki; Tanabe, Shinsuke

    2004-08-01

    Distribution of Cu, Zn, Cd, Ag, Hg, and Se were determined in hepatocytosol of northern fur seals (Callorhinus ursinus), black-footed albatrosses (Diomedea nigripes), and Dall's porpoises (Phocoenoides dalli). Copper, Zn, and Cd were accumulated preferentially in metallothionein (MT) fraction and their contents in MT fraction increased with the amounts in the hepatocytosol. Silver was bound to both high-molecular-weight substances (HMWS) and MT in the hepatocytosol for all three species, whereas the distribution of Ag in the cytosol was different among the three species. In northern fur seals, Ag mainly was bound to MT, whereas it mainly was associated with HMWS in Dall's porpoises. In contrast, Ag was distributed almost equally in both HMWS and MT for black-footed albatrosses. Mercury content in HMWS and Se content in HMWS and low-molecular-weight substances (LMWS) increased with their contents in hepatocytosol for all the three species. A significant positive correlation was found between Se and Hg contents in high-molecular weight (HMW) fraction in cytosol. The molar ratio of Hg and Se was close to unity in HMW fraction of the specimens with high Hg concentration in cytosol, implying that the Hg-Se complex was bound to the HMWS. Analysis of metals in the hepatocytosol by high-performance liquid chromatography/inductively coupled plasma-mass spectrometry (HPLC/ICP-MS) suggests that multiple isoforms of MT are present in hepatocytosol of the three species and that the metal profiles in hepatocytosols are different among the species. To our knowledge, this is the first report on the association of Ag with HMWS and MT in hepatocytosol of marine mammals and seabirds. Also, distribution and interaction of Hg and Se were investigated for the first time in hepatocytosol of the higher trophic marine animals. PMID:15352491

  11. The sea urchin metallothionein system: Comparative evaluation of the SpMTA and SpMTB metal-binding preferences☆

    PubMed Central

    Tomas, Mireia; Domènech, Jordi; Capdevila, Mercè; Bofill, Roger; Atrian, Sílvia

    2013-01-01

    Metallothioneins (MTs) constitute a superfamily of ubiquitous metal-binding proteins of low molecular weight and high Cys content. They are involved in metal homeostasis and detoxification, amongst other proposed biological functions. Two MT isoforms (SpMTA and SpMTB) have been reported in the echinoderm Strongylocentrotus purpuratus (sea urchin), both containing 20 Cys residues and presenting extremely similar sequences, although showing distinct tissular and ontogenic expression patterns. Although exhaustive information is available for the Cd(II)-SpMTA complex, this including the full resolution of its 3D structure, no data has been reported concerning either SpMTA Zn(II) and Cu(I) binding properties, or the characterization of SpMTB at protein level. In this work, both the SpMTA and SpMTB isoforms, as well as their separate α and β domains, have been recombinantly synthesized in the presence of Zn(II), Cd(II) or Cu(II), and the corresponding metal complexes have been analyzed using electrospray mass spectrometry, and CD, ICP-AES and UV–vis spectroscopies. The results clearly show a better performance of isoform A when binding Zn(II) and Cd(II), and of isoform B when coordinating Cu(I). Thus, our results confirm the differential metal binding preference of SpMTA and SpMTB, which, together with the reported induction pattern of the respective genes, highlights how also in Echinodermata the MT polymorphism may be linked to the evolution of different physiological roles. PMID:23847757

  12. Barley metallothioneins: MT3 and MT4 are localized in the grain aleurone layer and show differential zinc binding.

    PubMed

    Hegelund, Josefine Nymark; Schiller, Michaela; Kichey, Thomas; Hansen, Thomas Hesselhøj; Pedas, Pai; Husted, Søren; Schjoerring, Jan Kofod

    2012-07-01

    Metallothioneins (MTs) are low-molecular-weight, cysteine-rich proteins believed to play a role in cytosolic zinc (Zn) and copper (Cu) homeostasis. However, evidence for the functional properties of MTs has been hampered by methodological problems in the isolation and characterization of the proteins. Here, we document that barley (Hordeum vulgare) MT3 and MT4 proteins exist in planta and that they differ in tissue localization as well as in metal coordination chemistry. Combined transcriptional and histological analyses showed temporal and spatial correlations between transcript levels and protein abundance during grain development. MT3 was present in tissues of both maternal and filial origin throughout grain filling. In contrast, MT4 was confined to the embryo and aleurone layer, where it appeared during tissue specialization and remained until maturity. Using state-of-the-art speciation analysis by size-exclusion chromatography inductively coupled plasma mass spectrometry and electrospray ionization time-of-flight mass spectrometry on recombinant MT3 and MT4, their specificity and capacity for metal ion binding were quantified, showing a strong preferential Zn binding relative to Cu and cadmium (Cd) in MT4, which was not the case for MT3. When complementary DNAs from barley MTs were expressed in Cu- or Cd-sensitive yeast mutants, MT3 provided a much stronger complementation than did MT4. We conclude that MT3 may play a housekeeping role in metal homeostasis, while MT4 may function in Zn storage in developing and mature grains. The localization of MT4 and its discrimination against Cd make it an ideal candidate for future biofortification strategies directed toward increasing food and feed Zn concentrations.

  13. Effect of dietary zinc deficiency on the accumulation of cadmium and metallothionein in selected tissues of the rat

    SciTech Connect

    Waalkes, M.P.

    1986-01-01

    The effect of continuous dietary zinc deficiency on the metabolism of the toxic heavy metal cadmium has not been widely studied. This investigation was designed to assess the effects of subadequate dietary zinc intake on the accumulation of dietary cadmium and on metallothionein (MT) and zinc concentrations in target organs of cadmium toxicity. Adult male Wistar rats (180-200 g) were allowed, ad libitum, diets either adequate (60 ppm) or deficient (7 ppm) in zinc for a total of 9 wk. The zinc-deficient diet resulted in an approximately 40% reduction in plasma zinc (assessed at 3, 6, and 9 wk) in the absence of overt signs of zinc deficiency (i.e., reduced weight gain, alopecia, etc.). Separate groups of rats were also maintained on zinc-defined diets for a total of 9 wk, but cadmium was added to the diet (0, 12.5, 25, 50, 100, and 200 ppm) a the end of wk 3 and maintained at that level throughout the remaining 6 wk of the study, when the rats were killed. The feeding of the zinc-deficient diet markedly enhanced the accumulation of cadmium in the liver, kidney, and testes. Hepatic, renal, and testicular zinc concentrations were not affected by suboptimal zinc intake alone. However, marked reductions in renal and testicular zinc concentrations were caused by zinc deficiency in concert with cadmium exposure. MT levels, when related to tissue cadmium concentrations, were elevated to a significantly lesser extent in the kidneys of zinc-deficient animals. These results indicate that marginal zinc deficiency markedly increases cadmium accumulation in various organs and reduces zinc content and MT induction in some organs.

  14. Apparent quiescence of the metallothionein gene in the rat ventral prostate: association with cadmium-induced prostate tumors in rats.

    PubMed

    Coogan, T P; Shiraishi, N; Waalkes, M P

    1994-09-01

    Several chronic studies in rats indicating that cadmium exposure can induce tumors of the ventral prostate have recently been completed in our laboratory. In one such study, a single dose of cadmium, s.c., increased prostatic tumor incidence only at doses below 5.0 mumol/kg, the approximate threshold for cadmium-induced testicular damage. In a further study, prostatic tumors were elevated with higher doses of cadmium (30 mumol/kg, s.c.) if testicular damage was prevented by zinc pretreatment. Most recently, we found that dietary cadmium (25 to 200 micrograms/g) also can increase prostatic neoplastic lesions, but these were reduced by zinc-deficient diets. Thus it appears that cadmium produces prostatic tumors only if testicular function is maintained. Furthermore, we find that metallothionein (MT), a protein associated with cadmium tolerance, may be deficient in the rat prostate, and the prostatic MT gene, at least in the ventral lobe, is unresponsive to metal stimuli. In liver, MT gene expression, as assessed by MT-1 mRNA, was quite apparent in control tissue and was induced in a dose-dependent manner 24 hr following cadmium exposure (1 to 10 mumol/kg, s.c.). However, in the ventral prostate very low constitutive levels of MT-1 mRNA were detected and increases did not occur with cadmium exposure. Cadmium concentrations in the ventral prostate were in excess of those that cause significant induction in the liver. In sharp contrast to the gene in the ventral prostate, in the dorsal prostate the MT gene was quite active. The dorsal prostate is not susceptible to cadmium carcinogenesis.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7843088

  15. Metallothionein-like proteins and zinc--copper interaction in the hindgut of Porcellio scaber (Crustacea: Isopoda) exposed to zinc.

    PubMed

    Znidarsic, N; Tusek-Znidaric, M; Falnoga, I; Scancar, J; Strus, J

    2005-09-01

    Metallothioneins (MTs) are ubiquitous low-molecular-weight metal-binding proteins, with a variety of functions in metal metabolism ascribed to them. Among terrestrial invertebrates, MTs have been studied in nematodes, insects, snails, and earthworms. The aim of this study was the characterization of MT-like proteins in the terrestrial isopod crustacean Porcellio scaber in order to analyze their probable role in the metabolism of copper (Cu) and zinc (Zn). Dietary Zn supplementation (793 microg Zn/g dry food, 6 d) was applied to stimulate MT synthesis. After separation of the hindgut post-microsomic supernatant (cytosol) of Zn-exposed animals by gel filtration on a Sephadex G-75 column, a Cu- and Zn-containing peak was detected in the position of Ve/Vo approximately 2, where MTs are expected to elute. Rechromatography of these fractions by size-exclusion chromatography-high-performance liquid chromatography revealed that the 215-nm absorbance peak coincided with the absorbance peak of the rabbit MT II standard. These low-molecular-weight Cu- and Zn-binding compounds, detected in the cytosol of the hindgut cells in Zn-exposed P. scaber, are considered to be Cu, Zn-MT-like proteins. To our knowledge, this is the first report on the characterization of MT-like proteins in isopod crustaceans. These results also indicate that both Zn and Cu dynamics in P. scaber hindgut are affected at the given dietary Zn supplementation and that MT-like proteins are involved in this Zn-Cu interaction.

  16. The Response of Metallothionein and Malondialdehyde after Exclusive and Combined Cd/Zn Exposure in the Crab Sinopotamon henanense

    PubMed Central

    Li, Yingjun; Chai, Xi; Wu, Hao; Jing, Weixin; Wang, Lan

    2013-01-01

    The purpose of this paper is to show the interactions of Cd and Zn in the freshwater crab Sinopotamon henanense through metallothionein (MT) and malondialdehyde (MDA) level measurements. Laboratory acclimated S.henanense were exposed to Cd (50 µg/L, 100 µg/L, 500 µg/L ), and Zn (100 µg/L, 1000 µg/L) alone and in combined treatments (100 µg/L Zn+50 µg/L Cd, 100 µg/L Zn+100 µg/L Cd, 100 µg/L Zn+500 µg/L Cd, 1000 µg/L Zn+50 µg/L Cd, 1000 µg/L Zn+100 µg/L Cd, 1000 µg/L Zn+500 µg/L Cd) for 7, 14, 21, 28, 35 days. The results demonstrated that the MDA contents increased with exposure time and dose and showed time- and dose-dependence in both gills and hepatopancreas of S.henanense after single Cd exposure, while the changes of MDA levels were not significant with single Zn exposure. The MDA levels decreased when the crabs were exposed to metal mixtures compared to Cd exposure alone, indicating that Zn mediated the cellular toxicity of Cd. MT contents increased after single Cd exposure and also showed a time- and dose-dependence, in a tissue-specific way. Zn showed a limited ability of MT induction both in gills and hepatopancreas of S.henanense. The MT contents represented not a simple addition of single metal exposures but were enhanced at a higher concentration of Zn combined with different Cd concentrations compared to single metal exposure. Whether MT can be used as a biomarker for complex field conditions need to be considered cautiously since different induction patterns of MT were found among single Zn, Cd and combined groups. It is suggested that several biomarkers together as a suite should be used in the monitoring of heavy metal pollution in the aquatic environment. PMID:24260400

  17. Induction of metallothionein I by phenolic antioxidants requires metal-activated transcription factor 1 (MTF-1) and zinc.

    PubMed Central

    Bi, Yongyi; Palmiter, Richard D; Wood, Kristi M; Ma, Qiang

    2004-01-01

    Phenolic antioxidants, such as tBHQ [2,5-di-(t-butyl)-1,4-hydroquinone], induce Mt1 (metallothionein 1) gene expression and accumulation of MT protein. Induction of Mt1 mRNA does not depend on protein synthesis, and correlates with oxidation-reduction functions of the antioxidants. In the present study, we analysed the biochemical pathway of the induction. Induction depends on the presence of MTF-1 (metal-activated transcription factor 1), a transcription factor that is required for metal-induced transcription of Mt1, but does not require nuclear factor erythroid 2-related factor 2, a tBHQ-activated CNC bZip (cap 'n' collar basic leucine zipper) protein, that is responsible for regulating genes encoding phase II drug-metabolizing enzymes. Moreover, tBHQ induces the expression of MRE-beta Geo, a reporter gene driven by five metal response elements that constitute an optimal MTF-1 binding site. Reconstitution of Mtf1 -null cells with MTF-1 restores induction by both zinc and tBHQ. Unlike activation of phase II genes by tBHQ, induction of Mt1 expression does not occur in the presence of EDTA, when cells are cultured in zinc-depleted medium, or in cells with reduced intracellular 'free' zinc due to overexpression of ZnT1, a zinc-efflux transporter, indicating that induction requires zinc. In addition, fluorescence imaging reveals that tBHQ increases cytoplasmic free zinc concentration by mobilizing intracellular zinc pools. These findings establish that phenolic antioxidants activate Mt1 transcription by a zinc-dependent mechanism, which involves MTF-1 binding to metal regulator elements in the Mt1 gene promoter. PMID:14998373

  18. Superinduction of metallothionein I by inhibition of protein synthesis: role of a labile repressor in MTF-1 mediated gene transcription.

    PubMed

    Bi, Yongyi; Lin, Gary X; Millecchia, Lyndell; Ma, Qiang

    2006-01-01

    Induction of metallothioneins (MTs) through the metal-activated transcription factor-1 (MTF-1) provides a model response for analyzing transcriptional gene regulation by heavy metals. Here, we report inhibition of protein synthesis by cycloheximide (CHX) increases induction of Mt1 by approximately five-fold, a phenomenon designated as "superinduction." Characterization of superinduction revealed it is time- and concentration-dependent of CHX, requires the presence of an MTF-1 activator, and occurs at a transcriptional level, suggesting a labile repressor in the control of Mt1 induction. Genetic analyses using Mtf1 null cells and a metal response element (MRE)-driven reporter construct showed that superinduction of Mt1 is mediated through MTF-1 and MRE-dependent transcription. Analyses of intracellular zinc content by inductively coupled plasma emission spectroscopy and fluorescence imaging demonstrated that treatment with CHX alone or CHX plus an inducer does not increase the total zinc accumulation or the concentration of free zinc in cells under the conditions in which superinduction occurs. Moreover, superinduction was observed in cells cultured in a zinc-depleted medium, suggesting that superinduction does not involve elevation of intracellular zinc concentration. Northern blotting showed that Cd, CHX, or Cd + CHX does not affect the expression of the mRNA of MTF-1. Immunoblotting using antibodies specific for MTF-1 demonstrated that Cd induces a down-regulation of the MTF-1 protein, whereas cotreatment with Cd and CHX blocked the Cd-induced degradation of MTF-1. The findings reveal a new mechanistic aspect of the superinduction of Mt1, in which a labile repressor negatively controls agonist-induced turnover of the MTF-1 protein. PMID:16615093

  19. Differential Gene-Expression of Metallothionein 1M and 1G in Response to Zinc in Sertoli TM4 Cells

    PubMed Central

    Kheradmand, Fatemeh; Nourmohammadi, Issa; Modarressi, Mohammad Hossein; Firoozrai, Mohsen; Ahmadi Faghih, Mohammad Amin

    2010-01-01

    Background: Zinc (Zn) as an important trace element is essential for testicular development and spermatogenesis. Molecular mechanism of Zn action in the reproductive system may be related to metal binding low-molecular weight proteins, metallothioneins (MT). Our objective was to determine the effect of Zn on two important isoforms of MT, MT1M and MT1G genes expression on testicular sertoli cells. Methods: Cultured sertoli TM4 cells were exposed to different concentrations of Zn at different time points. Cellular uptake of Zn was tested using flame atomic absorption spectrometry. The cellular viability and gene expression were assessed by MTT and real-time PCR methods, respectively. Results: The treated cells resulted in higher Zn concentration and cellular viability. The expression of MT1M and MT1G genes in the treated cells were greater than those of the untreated cells (P<0.05). In the high dosage treated group (100 and 500 μM), Zn concentration and expression of MT1M and MT1G genes increased three h after treatment; MT1G gene expression increased more at sixth h. At 18th h of treatment, the expression of both genes especially MT1G, increased dramatically while Zn concentration decreased. Conclusion: Since the increase of MT1G mRNA was coincident with cellular Zn level, it seems that MT1G has a more prominent role than MT1M in the homeostasis of Zn. In addition, Zn at dosage of 50 μM (pharmacologic concentration) may protect cells by increasing the expression of MT genes at longer periods. PMID:20683493

  20. Characterization and Expression of DNA Sequences Encoding Putative Type-II Metallothioneins in the Seagrass Posidonia oceanica1

    PubMed Central

    Giordani, Tommaso; Natali, Lucia; Maserti, Bianca Elena; Taddei, Sonia; Cavallini, Andrea

    2000-01-01

    Posidonia oceanica is a marine phanerogam, largely widespread in the Mediterranean sea, representing an important food substrate for many marine organisms. A progressive reduction of P. oceanica meadows has been reported, due to anthropogenic coastal activity. Studying mechanisms by which this species responds to environmental stresses, three DNA sequences putatively encoding metallothioneins (MTs) have been isolated, by PCR. Two sequences, Pomt2a (accession no. AJ249603) and Pomt2b (accession no. AJ249602), show high similarities with genes encoding type-II MTs and are interrupted by two and one intron, respectively. The third sequence, Pomt2c (accession no. AJ249604), is supposed to be a pseudogene, originated by retrotranscription of the Pomt2b mRNA. These sequences belong to a multigene family with at least five members. Northern hybridizations indicated that MT transcripts accumulation is constitutive and seasonally regulated. MT encoding RNAs increase after rhyzome harvesting and (at a lesser extent) after 15 d of cultivation in an aquarium. As for animal MTs, transcripts accumulation is observed also after exposure to trace metals such as copper and cadmium. In the case of copper, the effect depends on concentration. Finally, taking into consideration the great interest in studying the biogeochemical cycle of mercury in the Mediterranean basin and since P. oceanica is commonly considered a bioindicator of this metal, the effect of mercury treatments on the accumulation of MT transcripts has been analyzed: in only a few experiments a small increase in the level of transcripts was recorded, suggesting that MTs are not key elements in the mercury accumulation by this species. PMID:10938373

  1. Two metal-binding peptides from the insect Orchesella cincta (Collembola) as a result of metallothionein cleavage.

    PubMed

    Hensbergen, P J; Donker, M H; Hunziker, P E; van der Schors, R C; van Straalen, N M

    2001-10-01

    Metallothionein (MT) is an ubiquitous heavy metal-binding protein which has been identified in animals, plants, protists, fungi and bacteria. In insects, primary structures of MTs are known only for Drosophila and the collembolan, Orchesella cincta. The MT cDNA from O. cincta encodes a 77 amino acid protein with 19 cysteines. Isolations of the protein itself have demonstrated the presence of two smaller metal-binding peptides, whose amino acid sequences correspond to parts of the cDNA, and which apparently result from cleavage of the native protein. The present study was undertaken to complete the picture of cleavage sites within the MT protein by applying protein isolation techniques in combination with mass spectrometry and N-terminal sequence analysis. Further, recombinant expression allowed us to study the intrinsic stability of the MT and to perform in vitro cleavage studies. The results show that the MT from O. cincta is specifically cleaved at two sites, both after the amino acid sequence Thr-Gln (TQ). One of these sites is located in the N-terminal region and the other in the linker region between two putative metal-binding clusters. When expressed in Escherichia coli, the recombinant O. cincta MT can be isolated in an uncleaved form; however, this protein can be cleaved in vitro by the proteolytic activity of O. cincta. In combination with other studies, the results suggest that the length of the linker region is important for the stability of MT as a two domain metal-binding protein.

  2. Metallothionein (MT) -I and MT-II Expression Are Induced and Cause Zinc Sequestration in the Liver after Brain Injury

    PubMed Central

    Pankhurst, Michael W.; Gell, David A.; Butler, Chris W.; Kirkcaldie, Matthew T. K.; West, Adrian K.; Chung, Roger S.

    2012-01-01

    Experiments with transgenic over-expressing, and null mutant mice have determined that metallothionein-I and -II (MT-I/II) are protective after brain injury. MT-I/II is primarily a zinc-binding protein and it is not known how it provides neuroprotection to the injured brain or where MT-I/II acts to have its effects. MT-I/II is often expressed in the liver under stressful conditions but to date, measurement of MT-I/II expression after brain injury has focused primarily on the injured brain itself. In the present study we measured MT-I/II expression in the liver of mice after cryolesion brain injury by quantitative reverse-transcriptase PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) with the UC1MT antibody. Displacement curves constructed using MT-I/II knockout (MT-I/II−/−) mouse tissues were used to validate the ELISA. Hepatic MT-I and MT-II mRNA levels were significantly increased within 24 hours of brain injury but hepatic MT-I/II protein levels were not significantly increased until 3 days post injury (DPI) and were maximal at the end of the experimental period, 7 DPI. Hepatic zinc content was measured by atomic absorption spectroscopy and was found to decrease at 1 and 3 DPI but returned to normal by 7DPI. Zinc in the livers of MT-I/II−/− mice did not show a return to normal at 7 DPI which suggests that after brain injury, MT-I/II is responsible for sequestering elevated levels of zinc to the liver. Conclusion: MT-I/II is up-regulated in the liver after brain injury and modulates the amount of zinc that is sequestered to the liver. PMID:22363575

  3. Cognate and noncognate metal ion coordination in metal-specific metallothioneins: the Helix pomatia system as a model.

    PubMed

    Palacios, Oscar; Pérez-Rafael, Sílvia; Pagani, Ayelen; Dallinger, Reinhard; Atrian, Sílvia; Capdevila, Mercè

    2014-08-01

    The Helix pomatia metallothionein (MT) system, namely, its two highly specific forms, HpCdMT and HpCuMT, has offered once again an optimum model to study metal-protein specificity. The present work investigates the most unexplored aspect of the coordination behavior of MT polypeptides with respect to either cognate or noncognate metal ions, as opposed to the standard studies of cognate metal ion coordination. To this end, we analyzed the in vivo synthesis of the corresponding complexes with their noncognate metals, and we performed a detailed spectroscopic and spectrometric study of the Zn(2+)/Cd(2+) and Zn(2+)/Cu(+) in vitro replacement reactions on the initial Zn-HpMT species. An HpCuMTAla site-directed mutant, exhibiting differential Cu(+)-binding abilities in vivo, was also included in this study. We demonstrate that when an MT binds its cognate metal, it yields well-folded complexes of limited stoichiometry, representative of minimal-energy conformations. In contrast, the incorporation of noncognate metal ions is better attributed to an unspecific reaction of cysteinic thiolate groups with metal ions, which is dependent on their concentration in the surrounding milieu, where no minimal-energy structure is reached, and otherwise, the MT peptide acts as a multidentate ligand that will bind metal ions until its capacity has been saturated. Additionally, we suggest that previous binding of an MT polypeptide with its noncognate metal ion (e.g., binding of Zn(2+) to the HpCuMT isoform) may preclude the correct folding of the complex with its cognate metal ion.

  4. Inducibility of metallothionein biosynthesis in the whole soft tissue of zebra mussels Dreissena polymorpha exposed to cadmium, copper, and pentachlorophenol.

    PubMed

    Ivanković, Dusica; Pavicić, Jasenka; Beatović, Vanja; Klobucar, Roberta Sauerborn; Klobucar, Göran Igor Vinko

    2010-04-01

    Freshwater mussels Dreissena polymorpha (Pallas, 1771) were exposed to the elevated concentrations of Cd (10, 50, 100, and 500 microg/L), Cu (10, 30, 50, and 80 microg/L), and an organochlorinated pesticide, pentachlorophenol (PCP) (1, 10, and 100 microg/L). Induced synthesis of biomarker metallothionein (MT) and changes in concentrations of cytosolic Cd, Cu, and Zn in the whole soft tissue of mussels were monitored after a 7-day laboratory exposure to the contaminants. A clear dose-dependent elevation in the MT concentration was observed after exposure to Cd at doses of 10-100 microg/L, and this increase of MT content was accompanied with a linear increase of cytosolic Cd. Cd concentration of 500 microg/L caused no additional increase of MT and Cd in mussel cytosol, suggesting possible toxic effects due to exceeding cellular inducible/defense capacity. Cu exposure resulted with variable changes in MT concentrations, with no clear linear relationship between MT and Cu concentrations in water, although a progressive dose-dependent accumulation of Cu in the soluble fraction of mussel tissues was recorded. A decrease of cytosolic Zn was evident at higher exposure concentrations of both metals used. PCP in concentrations applied was unable to induce MT synthesis, but the higher concentrations of PCP influenced the cytosolic metal concentrations. In conclusion, the results obtained confirm the specificity of MT induction in D. polymorpha as an biological response on metal stimulation, especially by cadmium, being more closely correlated to MT than copper within the ecologically relevant concentration range. The strong induction potential of cadmium as well as an absence of MT induction following exposure to PCP as an organic chemical contaminant are supporting evidences for usage of zebra mussel MT as a specific biomarker of Cd exposure in biomonitoring programs.

  5. A study of metal concentrations and metallothionein binding capacity in liver, kidney and brain tissues of three Arctic seal species.

    PubMed

    Sonne, Christian; Aspholm, Ole; Dietz, Rune; Andersen, Steen; Berntssen, Marc H G; Hylland, Ketil

    2009-12-01

    Arctic seals are known to accumulate relatively high concentrations of potential toxic heavy metals in their vital organs, such as livers and kidneys, as well as in their central nervous system. We therefore decided to determine whether mercury, copper, cadmium and zinc levels in liver, kidney and brain tissues of three Arctic seal species were associated with the intracellular metal-binding protein metallothionein (MT) as a sign of toxic exposure. Samples from four ringed (Phoca hispida), five harp (P.groenlandica) and five hooded (Cystophora cristata) seals taken during field trips to Central West Greenland (Godhavn) and the Barents Sea in the spring of 1999 were used for the present study. In all three seal species concentrations of mercury, zinc and copper were highest in the liver, except for cadmium which was highest in the kidneys. Metal concentrations increased significantly in the order: ringed seal

  6. Identification of Metallothionein- and parathyroid hormone-related peptide (PTHrP)-positive cells in salivary gland tumours.

    PubMed

    Sunardhi-Widyaputra, S; van den Oord, J J; Van Houdt, K; De Ley, M; Van Damme, B

    1995-11-01

    Ductal basal cells and myoepithelial cells (MEC) of normal salivary gland share metallothionein (MT)-positivity, while PTHrP positivity is restricted to ductal basal cells. We studied 21 benign and 4 malignant tumours in which MEC are thought to play a role using immuno-histochemical methods for detecting the presence of MT and PTHrP positive cells. In benign tumours, a shared positivity for MT and PTHrP is found in the inner layer of tubulo-ductal and trabecular structures, in part of the cells in the myxoid and chondroid matrices of pleomorphic adenoma, and in the basal epithelial lining of Warthin's tumours. In myoepithelioma almost all tumour cells demonstrate MT reactivity and a restricted positivity for PTHrP. MT-positive cells in oncocytoma were demonstrated in the periphery of some oncocytic islets, while PTHrP positivity was restricted to a few oncocytic cells. In malignant tumours, positivity for MT is found in the periphery of epithelial clusters of mucoepidermoid carcinomas, while PTHrP-positive cells are seen in cyst-like structures and scattered cells in solid arrangements of squamous cells. Although the biologic significance of the presence of MT in neoplastic cells is not yet clearly understood, MT may be necessary for the growth and differentiation in actively growing cells. The variability of MT expression in salivary gland tumours could be a reflection of the morphological heterogeneity and correlate with the degree of differentiation and maturation of the tumour cells. The observations suggest that MT may be considered an oncodevelopmental product.

  7. A plasmid containing the human metallothionein II gene can function as an antibody-assisted electrophoretic biosensor for heavy metals.

    PubMed

    Wooten, Dennis C; Starr, Clarise R; Lyon, Wanda J

    2016-01-01

    Different forms of heavy metals affect biochemical systems in characteristic ways that cannot be detected with typical metal analysis methods like atomic absorption spectrometry. Further, using living systems to analyze interaction of heavy metals with biochemical systems can be laborious and unreliable. To generate a reliable easy-to-use biologically-based biosensor system, the entire human metallothionein-II (MT-II) gene was incorporated into a plasmid (pUC57-MT) easily replicated in Escherichia coli. In this system, a commercial polyclonal antibody raised against human metal-responsive transcription factor-1 protein (MTF-1 protein) could modify the electrophoretic migration patterns (i.e. cause specific decreases in agarose gel electrophoretic mobility) of the plasmid in the presence or absence of heavy metals other than zinc (Zn). In the study here, heavy metals, MTF-1 protein, and polyclonal anti-MTF-1 antibody were used to assess pUC57-MT plasmid antibody-assisted electrophoretic mobility. Anti-MTF-1 antibody bound both MTF-1 protein and pUC57-MT plasmid in a non-competitive fashion such that it could be used to differentiate specific heavy metal binding. The results showed that antibody-inhibited plasmid migration was heavy metal level-dependent. Zinc caused a unique mobility shift pattern opposite to that of other metals tested, i.e. Zn blocked the antibody ability to inhibit plasmid migration, despite a greatly increased affinity for DNA by the antibody when Zn was present. The Zn effect was reversed/modified by adding MTF-1 protein. Additionally, antibody inhibition of plasmid mobility was resistant to heat pre-treatment and trypsinization, indicating absence of residual DNA extraction-resistant bacterial DNA binding proteins. DNA binding by anti-DNA antibodies may be commonly enhanced by xenobiotic heavy metals and elevated levels of Zn, thus making them potentially effective tools for assessment of heavy metal bioavailability in aqueous solutions and

  8. Association of heavy metals with metallothionein and other proteins in hepatic cytosol of marine mammals and seabirds.

    PubMed

    Ikemoto, Tokutaka; Kunito, Takashi; Anan, Yasumi; Tanaka, Hiroyuki; Baba, Norihisa; Miyazaki, Nobuyuki; Tanabe, Shinsuke

    2004-08-01

    Distribution of Cu, Zn, Cd, Ag, Hg, and Se were determined in hepatocytosol of northern fur seals (Callorhinus ursinus), black-footed albatrosses (Diomedea nigripes), and Dall's porpoises (Phocoenoides dalli). Copper, Zn, and Cd were accumulated preferentially in metallothionein (MT) fraction and their contents in MT fraction increased with the amounts in the hepatocytosol. Silver was bound to both high-molecular-weight substances (HMWS) and MT in the hepatocytosol for all three species, whereas the distribution of Ag in the cytosol was different among the three species. In northern fur seals, Ag mainly was bound to MT, whereas it mainly was associated with HMWS in Dall's porpoises. In contrast, Ag was distributed almost equally in both HMWS and MT for black-footed albatrosses. Mercury content in HMWS and Se content in HMWS and low-molecular-weight substances (LMWS) increased with their contents in hepatocytosol for all the three species. A significant positive correlation was found between Se and Hg contents in high-molecular weight (HMW) fraction in cytosol. The molar ratio of Hg and Se was close to unity in HMW fraction of the specimens with high Hg concentration in cytosol, implying that the Hg-Se complex was bound to the HMWS. Analysis of metals in the hepatocytosol by high-performance liquid chromatography/inductively coupled plasma-mass spectrometry (HPLC/ICP-MS) suggests that multiple isoforms of MT are present in hepatocytosol of the three species and that the metal profiles in hepatocytosols are different among the species. To our knowledge, this is the first report on the association of Ag with HMWS and MT in hepatocytosol of marine mammals and seabirds. Also, distribution and interaction of Hg and Se were investigated for the first time in hepatocytosol of the higher trophic marine animals.

  9. Molecular analysis of menadione-induced resistance against biotic stress in Arabidopsis.

    PubMed

    Borges, Andrés A; Dobon, Albor; Expósito-Rodríguez, Marino; Jiménez-Arias, David; Borges-Pérez, Andrés; Casañas-Sánchez, Verónica; Pérez, Jose A; Luis, Juan C; Tornero, Pablo

    2009-10-01

    Menadione sodium bisulphite (MSB) is a water-soluble derivative of vitamin K3, or menadione, and has been previously demonstrated to function as a plant defence activator against several pathogens in several plant species. However, there are no reports of the role of this vitamin in the induction of resistance in the plant model Arabidopsis thaliana. In the current study, we demonstrate that MSB induces resistance by priming in Arabidopsis against the virulent strain Pseudomonas syringae pv. tomato DC3000 (Pto) without inducing necrosis or visible damage. Changes in gene expression in response to 0.2 mm MSB were analysed in Arabidopsis at 3, 6 and 24 h post-treatment using microarray technology. In general, the treatment with MSB does not correlate with other publicly available data, thus MSB produces a unique molecular footprint. We observed 158 differentially regulated genes among all the possible trends. More up-regulated genes are included in categories such as 'response to stress' than the background, and the behaviour of these genes in different treatments confirms their role in response to biotic and abiotic stress. In addition, there is an over-representation of the G-box in their promoters. Some interesting functions are represented among the individual up-regulated genes, such as glutathione S-transferases, transcription factors (including putative regulators of the G-box) and cytochrome P450s. This work provides a wide insight into the molecular cues underlying the effect of MSB as a plant resistance inducer.

  10. Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis.

    PubMed

    Mishina, Tatiana E; Lamb, Chris; Zeier, Jürgen

    2007-01-01

    Nitric oxide (NO) has been proposed to act as a factor delaying leaf senescence and fruit maturation in plants. Here we show that expression of a NO degrading dioxygenase (NOD) in Arabidopsis thaliana initiates a senescence-like phenotype, an effect that proved to be more pronounced in older than in younger leaves. This senescence phenotype was preceded by a massive switch in gene expression in which photosynthetic genes were down-regulated, whereas many senescence-associated genes (SAGs) and the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene ACS6 involved in ethylene synthesis were up-regulated. External fumigation of NOD plants with NO as well as environmental conditions known to stimulate endogenous NO production attenuated the induced senescence programme. For instance, both high light conditions and nitrate feeding reduced the senescence phenotype and attenuated the down-regulation of photosynthetic genes as well as the up-regulation of SAGs. Treatment of plants with the cytokinin 6-benzylaminopurin (BAP) reduced the down-regulation of photosynthesis, although it had no consistent effect on SAG expression. Metabolic changes during NOD-induced senescence comprehended increases in salicylic acid (SA) levels, accumulation of the phytoalexin camalexin and elevation of leaf gamma-tocopherol contents, all of which occurred during natural senescence in Arabidopsis leaves as well. Moreover, NO fumigation delayed the senescence process induced by darkening individual Arabidopsis Columbia-0 (Col-0) leaves. Our data thus support the notion that NO acts as a negative regulator of leaf senescence.

  11. Quantitative profiling and pattern analysis of triacylglycerol species in Arabidopsis seeds by electrospray ionization mass spectrometry.

    PubMed

    Li, Maoyin; Baughman, Ethan; Roth, Mary R; Han, Xianlin; Welti, Ruth; Wang, Xuemin

    2014-01-01

    Plant triacylglycerols (TAGs), or vegetable oils, provide approximately 25% of dietary calories to humans and are becoming an increasingly important source of renewable bioenergy and industrial feedstocks. TAGs are assembled by multiple enzymes in the endoplasmic reticulum from building blocks that include an invariable glycerol backbone and variable fatty acyl chains. It remains a challenge to elucidate the mechanism of synthesis of hundreds of different TAG species in planta. One reason is the lack of an efficient analytical approach quantifying individual molecular species. Here we report a rapid and quantitative TAG profiling approach for Arabidopsis seeds based on electrospray ionization tandem mass spectrometry with direct infusion and multiple neutral loss scans. The levels of 93 TAG molecular species, identified by their acyl components, were determined in Arabidopsis seeds. Quantitative TAG pattern analyses revealed that the TAG assembly machinery preferentially produces TAGs with one elongated fatty acid. The importance of the selectivity in oil synthesis was consistent with an observation that an Arabidopsis mutant overexpressing a patatin-like phospholipase had enhanced seed oil content with elongated fatty acids. This quantitative TAG profiling approach should facilitate investigations aimed at understanding the biochemical mechanisms of TAG metabolism in plants.

  12. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome.

    PubMed

    Becker, Claude; Hagmann, Jörg; Müller, Jonas; Koenig, Daniel; Stegle, Oliver; Borgwardt, Karsten; Weigel, Detlef

    2011-09-20

    Heritable epigenetic polymorphisms, such as differential cytosine methylation, can underlie phenotypic variation. Moreover, wild strains of the plant Arabidopsis thaliana differ in many epialleles, and these can influence the expression of nearby genes. However, to understand their role in evolution, it is imperative to ascertain the emergence rate and stability of epialleles, including those that are not due to structural variation. We have compared genome-wide DNA methylation among 10 A. thaliana lines, derived 30 generations ago from a common ancestor. Epimutations at individual positions were easily detected, and close to 30,000 cytosines in each strain were differentially methylated. In contrast, larger regions of contiguous methylation were much more stable, and the frequency of changes was in the same low range as that of DNA mutations. Like individual positions, the same regions were often affected by differential methylation in independent lines, with evidence for recurrent cycles of forward and reverse mutations. Transposable elements and short interfering RNAs have been causally linked to DNA methylation. In agreement, differentially methylated sites were farther from transposable elements and showed less association with short interfering RNA expression than invariant positions. The biased distribution and frequent reversion of epimutations have important implications for the potential contribution of sequence-independent epialleles to plant evolution.

  13. Preparation of Arabidopsis tissue sections of fixed material.

    PubMed

    Baum, Stuart

    2008-01-01

    INTRODUCTIONThe best tissue sections are obtained from plastic-embedded material. These sections are more difficult and more expensive to prepare than those from Paraplast-embedded material, but the superior results make the additional effort worthwhile. The procedure starts with a fixative cocktail that includes a quickly penetrating fixative, such as paraformaldehyde, and one that is good for preserving fine structure, such as glutaraldehyde. Next, the samples are stained to facilitate manipulation of embedded tissue. After dehydration and staining, the tissue is infiltrated with resin. Finally, the embedded tissue is mounted and sectioned. The following protocol can be used on roots, leaves, shoot apices, and flowers, but the duration of infiltration must be adjusted for the various tissue types. Roots can be processed within 2 d, whereas leaves and flowers require up to 2 wk infiltration. Because Arabidopsis seedlings are small, whole seedlings (1-2 weeks old) can be fixed (including the root system) without dissection. Similarly, entire inflorescences, including those that have just opened, can be processed. Before embedding, the fixed material should be dissected to isolate organs of interest, such as individual flowers, to allow better orientation. Leaves from plants older than 2 wk should be cut into 1-cm(2) pieces and fixed individually.

  14. The Arabidopsis TAC Position Viewer: a high-resolution map of transformation-competent artificial chromosome (TAC) clones aligned with the Arabidopsis thaliana Columbia-0 genome.

    PubMed

    Hirose, Yoshitsugu; Suda, Kunihiro; Liu, Yao-Guang; Sato, Shusei; Nakamura, Yukino; Yokoyama, Koji; Yamamoto, Naoki; Hanano, Shigeru; Takita, Eiji; Sakurai, Nozomu; Suzuki, Hideyuki; Nakamura, Yasukazu; Kaneko, Takakazu; Yano, Kentaro; Tabata, Satoshi; Shibata, Daisuke

    2015-09-01

    We present a high-resolution map of genomic transformation-competent artificial chromosome (TAC) clones extending over all Arabidopsis thaliana (Arabidopsis) chromosomes. The Arabidopsis genomic TAC clones have been valuable genetic tools. Previously, we constructed an Arabidopsis genomic TAC library consisting of more than 10,000 TAC clones harboring large genomic DNA fragments extending over the whole Arabidopsis genome. Here, we determined 13,577 end sequences from 6987 Arabidopsis TAC clones and mapped 5937 TAC clones to precise locations, covering approximately 90% of the Arabidopsis chromosomes. We present the large-scale data set of TAC clones with high-resolution mapping information as a Java application tool, the Arabidopsis TAC Position Viewer, which provides ready-to-go transformable genomic DNA clones corresponding to certain loci on Arabidopsis chromosomes. The TAC clone resources will accelerate genomic DNA cloning, positional walking, complementation of mutants and DNA transformation for heterologous gene expression. PMID:26227242

  15. MUCILAGE-RELATED10 Produces Galactoglucomannan That Maintains Pectin and Cellulose Architecture in Arabidopsis Seed Mucilage.

    PubMed

    Voiniciuc, Cătălin; Schmidt, Maximilian Heinrich-Wilhelm; Berger, Adeline; Yang, Bo; Ebert, Berit; Scheller, Henrik V; North, Helen M; Usadel, Björn; Günl, Markus

    2015-09-01

    Plants invest a lot of their resources into the production of an extracellular matrix built of polysaccharides. While the composition of the cell wall is relatively well characterized, the functions of the individual polymers and the enzymes that catalyze their biosynthesis remain poorly understood. We exploited the Arabidopsis (Arabidopsis thaliana) seed coat epidermis (SCE) to study cell wall synthesis. SCE cells produce mucilage, a specialized secondary wall that is rich in pectin, at a precise stage of development. A coexpression search for MUCILAGE-RELATED (MUCI) genes identified MUCI10 as a key determinant of mucilage properties. MUCI10 is closely related to a fenugreek (Trigonella foenumgraecum) enzyme that has in vitro galactomannan α-1,6-galactosyltransferase activity. Our detailed analysis of the muci10 mutants demonstrates that mucilage contains highly branched galactoglucomannan (GGM) rather than unbranched glucomannan. MUCI10 likely decorates glucomannan, synthesized by CELLULOSE SYNTHASE-LIKE A2, with galactose residues in vivo. The degree of galactosylation is essential for the synthesis of the GGM backbone, the structure of cellulose, mucilage density, as well as the adherence of pectin. We propose that GGM scaffolds control mucilage architecture along with cellulosic rays and show that Arabidopsis SCE cells represent an excellent model in which to study the synthesis and function of GGM. Arabidopsis natural varieties with defects similar to muci10 mutants may reveal additional genes involved in GGM synthesis. Since GGM is the most abundant hemicellulose in the secondary walls of gymnosperms, understanding its biosynthesis may facilitate improvements in the production of valuable commodities from softwoods. PMID:26220953

  16. Genetic Architecture of Natural Variation in Thermal Responses of Arabidopsis1[OPEN

    PubMed Central

    Sanchez-Bermejo, Eduardo; Zhu, Wangsheng; Tasset, Celine; Eimer, Hannes; Sureshkumar, Sridevi; Singh, Rupali; Sundaramoorthi, Vignesh; Colling, Luana; Balasubramanian, Sureshkumar

    2015-01-01

    Wild strains of Arabidopsis (Arabidopsis thaliana) exhibit extensive natural variation in a wide variety of traits, including response to environmental changes. Ambient temperature is one of the major external factors that modulates plant growth and development. Here, we analyze the genetic architecture of natural variation in thermal responses of Arabidopsis. Exploiting wild accessions and recombinant inbred lines, we reveal extensive phenotypic variation in response to ambient temperature in distinct developmental traits such as hypocotyl elongation, root elongation, and flowering time. We show that variation in thermal response differs between traits, suggesting that the individual phenotypes do not capture all the variation associated with thermal response. Genome-wide association studies and quantitative trait locus analyses reveal that multiple rare alleles contribute to the genetic architecture of variation in thermal response. We identify at least 20 genomic regions that are associated with variation in thermal response. Further characterizations of temperature sensitivity quantitative trait loci that are shared between traits reveal a role for the blue-light receptor CRYPTOCHROME2 (CRY2) in thermosensory growth responses. We show the accession Cape Verde Islands is less sensitive to changes in ambient temperature, and through transgenic analysis, we demonstrate that allelic variation at CRY2 underlies this temperature insensitivity across several traits. Transgenic analyses suggest that the allelic effects of CRY2 on thermal response are dependent on genetic background suggestive of the presence of modifiers. In addition, our results indicate that complex light and temperature interactions, in a background-dependent manner, govern growth responses in Arabidopsis. PMID:26195568

  17. Comparative genomics of Arabidopsis and maize: prospects and limitations

    PubMed Central

    Brendel, Volker; Kurtz, Stefan; Walbot, Virginia

    2002-01-01

    The completed Arabidopsis genome seems to be of limited value as a model for maize genomics. In addition to the expansion of repetitive sequences in maize and the lack of genomic micro-colinearity, maize-specific or highly-diverged proteins contribute to a predicted maize proteome of about 50,000 proteins, twice the size of that of Arabidopsis. PMID:11897028

  18. How to grow transgenic Arabidopsis in the field.

    PubMed

    Jänkänpää, Hanna Johansson; Jansson, Stefan

    2012-01-01

    Arabidopsis is naturally adapted to habitats in which both biotic variables (e.g., light, wind, and humidity) and abiotic variables (e.g., competition, herbivory, and pathogen densities) strongly fluctuate. Hence, conditions in controlled growth chambers (in which Arabidopsis is typically grown for scientific experiments) differ substantially from those in natural environments. In order to mimic more closely natural conditions, we grow Arabidopsis outdoors under "semi-natural" field conditions. Performing experiments on transgenic Arabidopsis grown in the field that are sufficiently reliable for publication is challenging. In this chapter, we present some of our experiences based on 10 years of field experimentation, which may be of use to researchers seeking to perform field experiments using transgenic Arabidopsis.

  19. The effect of zinc in the form of erythromycin-zinc complex (Zineryt lotion) and zinc acetate on metallothionein expression and distribution in hamster skin.

    PubMed

    Morgan, A J; Lewis, G; Van den Hoven, W E; Akkerboom, P J

    1993-11-01

    The occurrence of zinc-induced synthesis of metallothionein in skin after topical application of the anti-acne drug Zineryt lotion was investigated in hamster ears. The dinitrophenyl hapten-sandwich immunohistochemical method involving a monoclonal anti-metallothionein (MT) antibody (E9) was used to detect and localize zinc-binding MT in the 'treated' and untreated hamster skin. Atomic absorption spectrophotometry and dithizone histochemistry indicated that zinc penetrated the skin more readily, and accumulated more efficiently within the sebaceous glands, when applied to the skin surface as the organo-zinc complex, rather than as the inorganic zinc salt. MT and zinc had similar distributions in hamster skin exposed to the metal. Thus, MT immunoreactivity was especially intense in the sebaceous glands of Zineryt lotion-treated skin, with evidence of nuclear distribution in some cells. Zinc delivered to the sebaceous glands, and released from the organo-complex under the prevailing aqueous conditions, certainly induced MT synthesis; the cysteine-rich protein may protect the pilosebaceous units during the inflammatory phase of acne by scavenging generated oxyradical species.

  20. Acclimation-induced changes in toxicity and induction of metallothionein-like proteins in the fathead minnow following sublethal exposure to cobalt, silver, and zinc

    SciTech Connect

    Hobson, J.F.

    1986-01-01

    Increases in tolerance and resistance to metal toxicity by aquatic organisms have been linked to elevated levels of low-molecular-weight metal-binding proteins (e.g., metallothioneins). Acclimation-induced changes in toxic response and the concentration of metallothionein-like proteins (MTP) were studied in laboratory populations of the fathead minnow, Pimephales promelas, following sublethal exposure to Co, Ag, and Zn. Following 7 and 14 days of sublethal exposure, tolerance and resistance, as measured by acute toxicity values, were altered in a dose dependent fashion. Acute toxicity values returned to control levels after 21 days of continuous exposure. Tolerance and resistance of Co- and Zn-acclimated animals were depressed after a 7-day post-acclimation period in control water. Tolerance and resistance of Ag-acclimated animals were temporarily enhanced after 7 days post-acclimation and returned to control levels after 14 days. Accumulation of Co, Ag, and Zn measured as wholebody residues appeared to be regulated in 4 of 6 exposure regimes with residues reaching stable levels after 7 to 14 days of exposure. MTP was induced by exposure to 1.8 mg Zn/L and 0.01 mg Ag/L, however, no sustained (i.e., post 21 days) tolerance or resistance were observed at these dose levels indicating that these two biological responses may not be directly related.

  1. Subcellular distribution of heavy metals in liver and kidney of a narwhal whale (Monodon monoceros): an evaluation for the presence of metallothionein.

    PubMed

    Wagemann, R; Hunt, R; Klaverkamp, J F

    1984-01-01

    The subcellular distribution of Zn, Cd, Cu and Hg in liver and kidney from a narwhal was determined by ultracentrifugation and gel filtration. Most of the total mercury in the liver and kidney was bound by the cellular pellet (88 and 73%, respectively). Of the total mercury, 7 and 11% was in the form of methylmercury in the liver and kidney, respectively. More than half (74%) of the total Zn and Cu in the kidney was in the cytosol and somewhat less than this was in the cytosol of the liver. Almost all of the cadmium in liver and kidney (88 and 92%, respectively) was in cytosol. Cytosolic fractions from liver and kidney were evaluated for the presence of metallothionein by analysing for Zn, Cd, Hg, Cu, Fe and--SH groups, by molecular weight estimation and by u.v. absorption spectra. Metallothionein was found in these organs in estimated concentrations similar to those present in terrestrial and other marine mammals. PMID:6149069

  2. Effect of temperature and season on reproduction, neutral red retention and metallothionein responses of earthworms exposed to metals in field soils.

    PubMed

    Svendsen, Claus; Hankard, Peter K; Lister, Lindsay J; Fishwick, Samantha K; Jonker, Martijs J; Spurgeon, David J

    2007-05-01

    This study investigated the short-term survival, reproduction and physiological (lysosomal membrane stability, metallothionein transcript copy number, body tissue metal concentrations) responses of Lumbricus rubellus exposed to metal contaminated field soils under different laboratory temperatures (10, 15 and 20 degrees C) and physiological responses of earthworms collected from the field in three different seasons (spring, autumn, winter). In the laboratory, metal contaminated soils had significant effects on reproduction (p<0.001), metallothionein-2 (MT-2) expression (p=0.033) and earthworm As (p=0.003), Cd (p=0.001), Pb (p<0.001) and Zn (p<0.001) concentration, but not lysosomal membrane stability and tissue Hg and Cu. No effect of temperature was found for any parameter. Principal component analysis of extractable and tissue metal concentrations indicated PC1 as a measure of metal stress. Both cocoon production (r=-0.75) and MT-2 induction (r=0.41) were correlated with PC1. A correlation was also found between cocoon production and MT-2 expression (r=-0.41). Neutral red retention and MT-2 measurements in worms collected from the field sites in three seasons confirmed the absence of a temperature effect on these responses. PMID:17045713

  3. Tissue-specific expression patterns of Arabidopsis NF-Y transcription factors suggest potential for extensive combinatorial complexity.

    PubMed

    Siefers, Nicholas; Dang, Kristen K; Kumimoto, Roderick W; Bynum, William Edwards; Tayrose, Gregory; Holt, Ben F

    2009-02-01

    All aspects of plant and animal development are controlled by complex networks of transcription factors. Transcription factors are essential for converting signaling inputs, such as changes in daylength, into complex gene regulatory outputs. While some transcription factors control gene expression by binding to cis-regulatory elements as individual subunits, others function in a combinatorial fashion. How individual subunits of combinatorial transcription factors are spatially and temporally deployed (e.g. expression-level, posttranslational modifications and subcellular localization) has profound effects on their control of gene expression. In the model plant Arabidopsis (Arabidopsis thaliana), we have identified 36 Nuclear Factor Y (NF-Y) transcription factor subunits (10 NF-YA, 13 NF-YB, and 13 NF-YC subunits) that can theoretically combine to form 1,690 unique complexes. Individual plant subunits have functions in flowering time, embryo maturation, and meristem development, but how they combine to control these processes is unknown. To assist in the process of defining unique NF-Y complexes, we have created promoter:beta-glucuronidase fusion lines for all 36 Arabidopsis genes. Here, we show NF-Y expression patterns inferred from these promoter:beta-glucuronidase lines for roots, light- versus dark-grown seedlings, rosettes, and flowers. Additionally, we review the phylogenetic relationships and examine protein alignments for each NF-Y subunit family. The results are discussed with a special emphasis on potential roles for NF-Y subunits in photoperiod-controlled flowering time.

  4. Plant-in-chip: Microfluidic system for studying root growth and pathogenic interactions in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Parashar, Archana; Pandey, Santosh

    2011-06-01

    We report a microfluidic platform for the hydroponic growth of Arabidopsis plants with high-resolution visualization of root development and root-pathogen interactions. The platform comprises a set of parallel microchannels with individual input/output ports where 1-day old germinated seedlings are initially placed. Under optimum conditions, a root system grows in each microchannel and its images are recorded over a 198-h period. Different concentrations of plant growth media show different root growth characteristics. Later, the developed roots are inoculated with two plant pathogens (nematodes and zoospores) and their physicochemical interactions with the live root systems are observed.

  5. The Arabidopsis Zinc Finger-Homeodomain Genes Encode Proteins with Unique Biochemical Properties That Are Coordinately Expressed during Floral Development1

    PubMed Central

    Tan, Queenie K.-G.; Irish, Vivian F.

    2006-01-01

    Arabidopsis (Arabidopsis thaliana) contains approximately 100 homeobox genes, many of which have been shown to play critical roles in various developmental processes. Here we characterize the zinc finger-homeodomain (ZF-HD) subfamily of homeobox genes, consisting of 14 members in Arabidopsis. We demonstrate that the HDs of the ZF-HD proteins share some similarities with other known HDs in Arabidopsis, but they contain distinct features that cluster them as a unique class of plant HD-containing proteins. We have carried out mutational analyses to show that the noncanonical residues present in the HDs of this family of proteins are important for function. Yeast (Saccharomyces cerevisiae) two-hybrid matrix analyses of the ZF-HD proteins reveal that these proteins both homo- and heterodimerize, which may contribute to greater selectivity in DNA binding. These assays also show that most of these proteins do not contain an intrinsic activation domain, suggesting that interactions with other factors are required for transcriptional activation. We also show that the family members are all expressed predominantly or exclusively in floral tissue, indicating a likely regulatory role during floral development. Furthermore, we have identified loss-of-function mutations for six of these genes that individually show no obvious phenotype, supporting the idea that the encoded proteins have common roles in floral development. Based on these results, we propose the ZF-HD gene family encodes a group of transcriptional regulators with unique biochemical activities that play overlapping regulatory roles in Arabidopsis floral development. PMID:16428600

  6. Fusarium graminearum gene deletion mutants map1 and tri5 reveal similarities and differences in the pathogenicity requirements to cause disease on Arabidopsis and wheat floral tissue.

    PubMed

    Cuzick, Alayne; Urban, Martin; Hammond-Kosack, Kim

    2008-01-01

    The Ascomycete pathogen Fusarium graminearum can infect all cereal species and lower grain yield, quality and safety. The fungus can also cause disease on Arabidopsis thaliana. In this study, the disease-causing ability of two F. graminearum mutants was analysed to further explore the parallels between the wheat (Triticum aestivum) and Arabidopsis floral pathosystems. Wild-type F. graminearum (strain PH-1) and two isogenic transformants lacking either the mitogen-activated protein kinase MAP1 gene or the trichodiene synthase TRI5 gene were individually spray- or point-inoculated onto Arabidopsis and wheat floral tissue. Disease development was quantitatively assessed both macroscopically and microscopically and deoxynivalenol (DON) mycotoxin concentrations determined by enzyme-linked immunosorbent assay (ELISA). Wild-type strain inoculations caused high levels of disease in both plant species and significant DON production. The map1 mutant caused minimal disease and DON accumulation in both hosts. The tri5 mutant, which is unable to produce DON, exhibited reduced pathogenicity on wheat ears, causing only discrete eye-shaped lesions on spikelets which failed to infect the rachis. By contrast, the tri5 mutant retained full pathogenicity on Arabidopsis floral tissue. This study reveals that DON mycotoxin production is not required for F. graminearum to colonize Arabidopsis floral tissue. PMID:18179606

  7. Metal dealing at the origin of the Chordata phylum: the metallothionein system and metal overload response in amphioxus.

    PubMed

    Guirola, Maria; Pérez-Rafael, Sílvia; Capdevila, Mercè; Palacios, Oscar; Atrian, Sílvia

    2012-01-01

    Non-vertebrate chordates, specifically amphioxus, are considered of the utmost interest for gaining insight into the evolutionary trends, i.e. differentiation and specialization, of gene/protein systems. In this work, MTs (metallothioneins), the most important metal binding proteins, are characterized for the first time in the cephalochordate subphylum at both gene and protein level, together with the main features defining the amphioxus response to cadmium and copper overload. Two MT genes (BfMT1 and BfMT2) have been identified in a contiguous region of the genome, as well as several ARE (antioxidant response element) and MRE (metal response element) located upstream the transcribed region. Their corresponding cDNAs exhibit identical sequence in the two lancelet species (B. floridae and B. lanceolatum), BfMT2 cDNA resulting from an alternative splicing event. BfMT1 is a polyvalent metal binding peptide that coordinates any of the studied metal ions (Zn, Cd or Cu) rendering complexes stable enough to last in physiological environments, which is fully concordant with the constitutive expression of its gene, and therefore, with a metal homeostasis housekeeping role. On the contrary, BfMT2 exhibits a clear ability to coordinate Cd(II) ions, while it is absolutely unable to fold into stable Cu (I) complexes, even as mixed species. This identifies it as an essential detoxification agent, which is consequently only induced in emergency situations. The cephalochordate MTs are not directly related to vertebrate MTs, neither by gene structure, protein similarity nor metal-binding behavior of the encoded peptides. The closest relative is the echinoderm MT, which confirm proposed phylogenetic relationships between these two groups. The current findings support the existence in most organisms of two types of MTs as for their metal binding preferences, devoted to different biological functions: multivalent MTs for housekeeping roles, and specialized MTs that evolve either as Cd

  8. Hints for metal-preference protein sequence determinants: different metal binding features of the five tetrahymena thermophila metallothioneins.

    PubMed

    Espart, Anna; Marín, Maribel; Gil-Moreno, Selene; Palacios, Òscar; Amaro, Francisco; Martín-González, Ana; Gutiérrez, Juan C; Capdevila, Mercè; Atrian, Sílvia

    2015-01-01

    The metal binding preference of metallothioneins (MTs) groups them in two extreme subsets, the Zn/Cd- and the Cu-thioneins. Ciliates harbor the largest MT gene/protein family reported so far, including 5 paralogs that exhibit relatively low sequence similarity, excepting MTT2 and MTT4. In Tetrahymena thermophila, three MTs (MTT1, MTT3 and MTT5) were considered Cd-thioneins and two (MTT2 and MTT4) Cu-thioneins, according to gene expression inducibility and phylogenetic analysis. In this study, the metal-binding abilities of the five MTT proteins were characterized, to obtain information about the folding and stability of their cognate- and non-cognate metal complexes, and to characterize the T. thermophila MT system at protein level. Hence, the five MTTs were recombinantly synthesized as Zn(2+)-, Cd(2+)- or Cu(+)-complexes, which were analyzed by electrospray mass spectrometry (ESI-MS), circular dichroism (CD), and UV-vis spectrophotometry. Among the Cd-thioneins, MTT1 and MTT5 were optimal for Cd(2+) coordination, yielding unique Cd17- and Cd8- complexes, respectively. When binding Zn(2+), they rendered a mixture of Zn-species. Only MTT5 was capable to coordinate Cu(+), although yielding heteronuclear Zn-, Cu-species or highly unstable Cu-homometallic species. MTT3 exhibited poor binding abilities both for Cd(2+) and for Cu(+), and although not optimally, it yielded the best result when coordinating Zn(2+). The two Cu-thioneins, MTT2 and MTT4 isoforms formed homometallic Cu-complexes (major Cu20-MTT) upon synthesis in Cu-supplemented hosts. Contrarily, they were unable to fold into stable Cd-complexes, while Zn-MTT species were only recovered for MTT4 (major Zn10-MTT4). Thus, the metal binding preferences of the five T. thermophila MTs correlate well with their previous classification as Cd- and Cu-thioneins, and globally, they can be classified from Zn/Cd- to Cu-thioneins according to the gradation: MTT1>MTT5>MTT3>MTT4>MTT2. The main mechanisms underlying the

  9. Metal Dealing at the Origin of the Chordata Phylum: The Metallothionein System and Metal Overload Response in Amphioxus

    PubMed Central

    Capdevila, Mercè; Palacios, Òscar; Atrian, Sílvia

    2012-01-01

    Non-vertebrate chordates, specifically amphioxus, are considered of the utmost interest for gaining insight into the evolutionary trends, i.e. differentiation and specialization, of gene/protein systems. In this work, MTs (metallothioneins), the most important metal binding proteins, are characterized for the first time in the cephalochordate subphylum at both gene and protein level, together with the main features defining the amphioxus response to cadmium and copper overload. Two MT genes (BfMT1 and BfMT2) have been identified in a contiguous region of the genome, as well as several ARE (antioxidant response element) and MRE (metal response element) located upstream the transcribed region. Their corresponding cDNAs exhibit identical sequence in the two lancelet species (B. floridae and B. lanceolatum), BfMT2 cDNA resulting from an alternative splicing event. BfMT1 is a polyvalent metal binding peptide that coordinates any of the studied metal ions (Zn, Cd or Cu) rendering complexes stable enough to last in physiological environments, which is fully concordant with the constitutive expression of its gene, and therefore, with a metal homeostasis housekeeping role. On the contrary, BfMT2 exhibits a clear ability to coordinate Cd(II) ions, while it is absolutely unable to fold into stable Cu (I) complexes, even as mixed species. This identifies it as an essential detoxification agent, which is consequently only induced in emergency situations. The cephalochordate MTs are not directly related to vertebrate MTs, neither by gene structure, protein similarity nor metal-binding behavior of the encoded peptides. The closest relative is the echinoderm MT, which confirm proposed phylogenetic relationships between these two groups. The current findings support the existence in most organisms of two types of MTs as for their metal binding preferences, devoted to different biological functions: multivalent MTs for housekeeping roles, and specialized MTs that evolve either as Cd

  10. Dual Opposing Roles of Metallothionein Overexpression in C57BL/6J Mouse Pancreatic β-Cells

    PubMed Central

    Chen, Suqin; Han, Junying; Liu, Yeqi

    2015-01-01

    Background Growing evidence indicates that oxidative stress (OS), a persistent state of excess amounts of reactive oxygen species (ROS) along with reactive nitrogen species (RNS), plays an important role in insulin resistance, diabetic complications, and dysfunction of pancreatic β-cells. Pancreatic β-cells contain exceptionally low levels of antioxidant enzymes, rendering them susceptible to ROS-induced damage. Induction of antioxidants has been proposed to be a way for protecting β-cells against oxidative stress. Compared to other antioxidants that act against particular β-cell damages, metallothionein (MT) is the most effective in protecting β-cells from several oxidative stressors including nitric oxide, peroxynitrite, hydrogen peroxide, superoxide and streptozotocin (STZ). We hypothesized that MT overexpression in pancreatic β-cells would preserve β-cell function in C57BL/6J mice, an animal model susceptible to high fat diet-induced obesity and type 2 diabetes. Research Design and Methods The pancreatic β-cell specific MT overexpression was transferred to C57BL/6J background by backcrossing. We studied transgenic MT (MT-tg) mice and wild-type (WT) littermates at 8 weeks and 18 weeks of age. Several tests were performed to evaluate the function of islets, including STZ in vivo treatment, intraperitoneal glucose tolerance tests (IPGTT) and plasma insulin levels during IPGTT, pancreatic and islet insulin content measurement, insulin secretion, and islet morphology assessment. Gene expression in islets was performed by quantitative real-time PCR and PCR array analysis. Protein levels in pancreatic sections were evaluated by using immunohistochemistry. Results The transgenic MT protein was highly expressed in pancreatic islets. MT-tg overexpression significantly protected mice from acute STZ-induced ROS at 8 weeks of age; unexpectedly, however, MT-tg impaired glucose stimulated insulin secretion (GSIS) and promoted the development of diabetes. Pancreatic

  11. Metal dealing at the origin of the Chordata phylum: the metallothionein system and metal overload response in amphioxus.

    PubMed

    Guirola, Maria; Pérez-Rafael, Sílvia; Capdevila, Mercè; Palacios, Oscar; Atrian, Sílvia

    2012-01-01

    Non-vertebrate chordates, specifically amphioxus, are considered of the utmost interest for gaining insight into the evolutionary trends, i.e. differentiation and specialization, of gene/protein systems. In this work, MTs (metallothioneins), the most important metal binding proteins, are characterized for the first time in the cephalochordate subphylum at both gene and protein level, together with the main features defining the amphioxus response to cadmium and copper overload. Two MT genes (BfMT1 and BfMT2) have been identified in a contiguous region of the genome, as well as several ARE (antioxidant response element) and MRE (metal response element) located upstream the transcribed region. Their corresponding cDNAs exhibit identical sequence in the two lancelet species (B. floridae and B. lanceolatum), BfMT2 cDNA resulting from an alternative splicing event. BfMT1 is a polyvalent metal binding peptide that coordinates any of the studied metal ions (Zn, Cd or Cu) rendering complexes stable enough to last in physiological environments, which is fully concordant with the constitutive expression of its gene, and therefore, with a metal homeostasis housekeeping role. On the contrary, BfMT2 exhibits a clear ability to coordinate Cd(II) ions, while it is absolutely unable to fold into stable Cu (I) complexes, even as mixed species. This identifies it as an essential detoxification agent, which is consequently only induced in emergency situations. The cephalochordate MTs are not directly related to vertebrate MTs, neither by gene structure, protein similarity nor metal-binding behavior of the encoded peptides. The closest relative is the echinoderm MT, which confirm proposed phylogenetic relationships between these two groups. The current findings support the existence in most organisms of two types of MTs as for their metal binding preferences, devoted to different biological functions: multivalent MTs for housekeeping roles, and specialized MTs that evolve either as Cd