NASA Technical Reports Server (NTRS)
Roberts, William W., Jr.; Stewart, Glen R.
1987-01-01
The role of orbit crowding and cloud-cloud collisions in the formation of GMCs and their organization in global spiral structure is investigated. Both N-body simulations of the cloud system and a detailed analysis of individual particle orbits are used to develop a conceptual understanding of how individual clouds participate in the collective density response. Detailed comparisons are made between a representative cloud-particle simulation in which the cloud particles collide inelastically with one another and give birth to and subsequently interact with young star associations and stripped down simulations in which the cloud particles are allowed to follow ballistic orbits in the absence of cloud-cloud collisions or any star formation processes. Orbit crowding is then related to the behavior of individual particle trajectories in the galactic potential field. The conceptual picture of how GMCs are formed in the clumpy ISMs of spiral galaxies is formulated, and the results are compared in detail with those published by other authors.
NASA Astrophysics Data System (ADS)
Lin, Qinhao; Zhang, Guohua; Peng, Long; Bi, Xinhui; Wang, Xinming; Brechtel, Fred J.; Li, Mei; Chen, Duohong; Peng, Ping'an; Sheng, Guoying; Zhou, Zhen
2017-07-01
To investigate how atmospheric aerosol particles interact with chemical composition of cloud droplets, a ground-based counterflow virtual impactor (GCVI) coupled with a real-time single-particle aerosol mass spectrometer (SPAMS) was used to assess the chemical composition and mixing state of individual cloud residue particles in the Nanling Mountains (1690 m a. s. l. ), southern China, in January 2016. The cloud residues were classified into nine particle types: aged elemental carbon (EC), potassium-rich (K-rich), amine, dust, Pb, Fe, organic carbon (OC), sodium-rich (Na-rich) and Other
. The largest fraction of the total cloud residues was the aged EC type (49.3 %), followed by the K-rich type (33.9 %). Abundant aged EC cloud residues that mixed internally with inorganic salts were found in air masses from northerly polluted areas. The number fraction (NF) of the K-rich cloud residues increased within southwesterly air masses from fire activities in Southeast Asia. When air masses changed from northerly polluted areas to southwesterly ocean and livestock areas, the amine particles increased from 0.2 to 15.1 % of the total cloud residues. The dust, Fe, Pb, Na-rich and OC particle types had a low contribution (0.5-4.1 %) to the total cloud residues. Higher fraction of nitrate (88-89 %) was found in the dust and Na-rich cloud residues relative to sulfate (41-42 %) and ammonium (15-23 %). Higher intensity of nitrate was found in the cloud residues relative to the ambient particles. Compared with nonactivated particles, nitrate intensity decreased in all cloud residues except for dust type. To our knowledge, this study is the first report on in situ observation of the chemical composition and mixing state of individual cloud residue particles in China.
NASA Astrophysics Data System (ADS)
Ma, C. J.; Tohno, S.; Kasahara, M.; Hayakawa, S.
2002-12-01
Asian dust storm particles can affect precipitation composition because they are either incorporated into cloud via condensation of water vapour (nucleation) or due to the uptake of particles by existing droplets. And subsequently they affect aquatic and terrestrial ecosystems. In order to study the intercorrelation between the chemical natures of both the particles collected at ground-based site and those scavenged as CCN, the intensive field measurement was carried out on west coast of Japan (Yasaka, Tango Peninsula, 35.62°N; 135.07°E) during dense Asian dust storm event on March 22, 2002. Due to the size dependence of the chemical composition of aerosol particle, size-segregated aerosol particles were collect using Low pressure Andersen impactor sampler. Also, to collect cloud droplets individually, a particular method for the cloud droplet replication was newly applied using collodion (nitrocellulose) film. Sampling of cloud droplets was performed at summit of a mountain (680 m) in Yasaka. To analyze the ambient individual aerosol particles and individual retained particles in cloud droplet, X-ray fluorescence (XRF) analytical method set at SPring-8 on BL39XU was applied. Analytical result enables us not only to compare the characteristics of individual particles scavenged as CCN and those collected at ground-based site, but also to estimate the influence of long-range transport.
Lagrangian Particle Tracking Simulation for Warm-Rain Processes in Quasi-One-Dimensional Domain
NASA Astrophysics Data System (ADS)
Kunishima, Y.; Onishi, R.
2017-12-01
Conventional cloud simulations are based on the Euler method and compute each microphysics process in a stochastic way assuming infinite numbers of particles within each numerical grid. They therefore cannot provide the Lagrangian statistics of individual particles in cloud microphysics (i.e., aerosol particles, cloud particles, and rain drops) nor discuss the statistical fluctuations due to finite number of particles. We here simulate the entire precipitation process of warm-rain, with tracking individual particles. We use the Lagrangian Cloud Simulator (LCS), which is based on the Euler-Lagrangian framework. In that framework, flow motion and scalar transportation are computed with the Euler method, and particle motion with the Lagrangian one. The LCS tracks particle motions and collision events individually with considering the hydrodynamic interaction between approaching particles with a superposition method, that is, it can directly represent the collisional growth of cloud particles. It is essential for trustworthy collision detection to take account of the hydrodynamic interaction. In this study, we newly developed a stochastic model based on the Twomey cloud condensation nuclei (CCN) activation for the Lagrangian tracking simulation and integrated it into the LCS. Coupling with the Euler computation for water vapour and temperature fields, the initiation and condensational growth of water droplets were computed in the Lagrangian way. We applied the integrated LCS for a kinematic simulation of warm-rain processes in a vertically-elongated domain of, at largest, 0.03×0.03×3000 (m3) with horizontal periodicity. Aerosol particles with a realistic number density, 5×107 (m3), were evenly distributed over the domain at the initial state. Prescribed updraft at the early stage initiated development of a precipitating cloud. We have confirmed that the obtained bulk statistics fairly agree with those from a conventional spectral-bin scheme for a vertical column domain. The centre of the discussion will be the Lagrangian statistics which is collected from the individual behaviour of the tracked particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelenyuk, Alla; Imre, D.; Earle, Michael
2010-10-01
Aerosol indirect effect remains the most uncertain aspect of climate change modeling because proper test requires knowledge of individual particles sizes and compositions with high spatial and temporal resolution. We present the first deployment of a single particle mass spectrometer (SPLAT II) that is operated in a dual data acquisition mode to measure all the required individual particle properties with sufficient temporal resolution to definitively resolve the aerosol-cloud interaction in this exemplary case. We measured particle number concentrations, asphericity, and individual particle size, composition, and density with better than 60 seconds resolution. SPLAT II measured particle number concentrations between 70more » particles cm-3and 300 particles cm-3, an average particle density of 1.4 g cm-3. Found that most particles are composed of oxygenated organics, many of which are mixed with sulfates. Biomass burn particles some with sulfates were prevalent, particularly at higher altitudes, and processed sea-salt was observed over the ocean. Analysis of cloud residuals shows that with time cloud droplets acquire sulfate by the reaction of peroxide with SO2. Based on the particle mass spectra and densities we find that the compositions of cloud condensation nuclei are similar to those of background aerosol but, contain on average ~7% more sulfate, and do not include dust and metallic particles. A comparison between the size distributions of background, activated, and interstitial particles shows that while nearly none of the activated particles is smaller than 115 nm, more than 80% of interstitial particles are smaller than 115 nm. We conclude that for this cloud the most important difference between CCN and background aerosol is particle size although having more sulfate also helps.« less
Characterization of Individual Aerosol Particles Associated with Clouds (CRYSTAL-FACE)
NASA Technical Reports Server (NTRS)
Buseck, Peter R.
2004-01-01
The aim of our research was to obtain data on the chemical and physical properties of individual aerosol particles from near the bottoms and tops of the deep convective systems that lead to the generation of tropical cirrus clouds and to provide insights into the particles that serve as CCN or IN. We used analytical transmission electron microscopy (ATEM), including energy-dispersive X-ray spectrometry (EDS) and electron energy-loss spectroscopy (EELS), and field-emission electron microscopy (FESEM) to compare the compositions, concentrations, size distributions, shapes, surface coatings, and degrees of aggregation of individual particles from cloud bases and the anvils near the tropopause. Aggregates of sea salt and mineral dust, ammonium sulfate, and soot particles are abundant in in-cloud samples. Cirrus samples contain many H2SO4 droplets, but acidic sulfate particles are rare at the cloud bases. H2SO4 probably formed at higher altitudes through oxidation of SO2 in cloud droplets. The relatively high extent of ammoniation in the upper troposphere in-cloud samples appears to have resulted from vertical transport by strong convection. The morphology of H2SO4 droplets indicates that they had been at least yartiy ammoniated at the time of collection. They are internally mixed with organic materials, metal sulfates, and solid particles of various compositions. Ammoniation and internal mixing of result in freezing at higher temperature than in pure H2SO4 aerosols. K- and S-bearing organic particles and Si-Al-rich particles are common throughout. Sea salt and mineral dust were incorporated into the convective systems from the cloud bases and worked as ice nuclei while being vertically transported. The nonsulfate particles originated from the lower troposphere and were transported to the upper troposphere and lower stratosphere.
NASA Astrophysics Data System (ADS)
Ueda, S.; Hirose, Y.; Miura, K.; Okochi, H.
2014-02-01
Sizes and compositions of atmospheric aerosol particles can be altered by in-cloud processing by absorption/adsorption of gaseous and particulate materials and drying of aerosol particles that were formerly activated as cloud condensation nuclei. To elucidate differences of aerosol particles before and after in-cloud processing, aerosols were observed along a slope of Mt. Fuji, Japan (3776 m a.s.l.) during the summer in 2011 and 2012 using a portable laser particle counter (LPC) and an aerosol sampler. Aerosol samples for analyses of elemental compositions were obtained using a cascade impactor at top-of-cloud, in-cloud, and below-cloud altitudes. To investigate composition changes via in-cloud processing, individual particles (0.5-2 μm diameter) of samples from five cases (days) collected at different altitudes under similar backward air mass trajectory conditions were analyzed using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray analyzer. For most cases (four cases), most particles at all altitudes mainly comprised sea salts: mainly Na with some S and/or Cl. Of those, in two cases, sea-salt-containing particles with Cl were found in below-cloud samples, although sea-salt-containing particles in top-of-cloud samples did not contain Cl. This result suggests that Cl in the sea salt was displaced by other cloud components. In the other two cases, sea-salt-containing particles on samples at all altitudes were without Cl. However, molar ratios of S to Na (S/Na) of the sea-salt-containing particles of top-of-cloud samples were higher than those of below-cloud samples, suggesting that sulfuric acid or sulfate was added to sea-salt-containing particles after complete displacement of Cl by absorption of SO2 or coagulation with sulfate. The additional volume of sulfuric acid in clouds for the two cases was estimated using the observed S/Na values of sea-salt-containing particles. The estimation revealed that size changes by in-cloud processing from below-cloud to top-of-cloud altitudes were less than 6% for sizes of 0.5-2 μm diameter. The obtained results will be useful to evaluate the aging effect and transition of aerosol particles through in-cloud processing.
NASA Astrophysics Data System (ADS)
Hiranuma, N.; Brooks, S. D.; Moffet, R. C.; Glen, A.; Laskin, A.; Gilles, M. K.; Liu, P.; MacDonald, A. M.; Strapp, J. W.; McFarquhar, G. M.
2013-06-01
Ambient particles and the dry residuals of mixed-phase cloud droplets and ice crystals were collected during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) near Barrow, Alaska, in spring of 2008. The collected particles were analyzed using Computer Controlled Scanning Electron Microscopy with Energy Dispersive X-ray analysis and Scanning Transmission X-ray Microscopy coupled with Near Edge X-ray Absorption Fine Structure spectroscopy to identify physico-chemical properties that differentiate cloud-nucleating particles from the total aerosol population. A wide range of individually mixed components was identified in the ambient particles and residuals including organic carbon compounds, inorganics, carbonates, and black carbon. Our results show that cloud droplet residuals differ from the ambient particles in both size and composition, suggesting that both properties may impact the cloud-nucleating ability of aerosols in mixed-phase clouds. The percentage of residual particles which contained carbonates (47%) was almost four times higher than those in ambient samples. Residual populations were also enhanced in sea salt and black carbon and reduced in organic compounds relative to the ambient particles. Further, our measurements suggest that chemical processing of aerosols may improve their cloud-nucleating ability. Comparison of results for various time periods within ISDAC suggests that the number and composition of cloud-nucleating particles over Alaska can be influenced by episodic events bringing aerosols from both the local vicinity and as far away as Siberia.
NASA Astrophysics Data System (ADS)
Abdelmonem, Ahmed; Järvinen, Emma; Duft, Denis; Hirst, Edwin; Vogt, Steffen; Leisner, Thomas; Schnaiter, Martin
2016-07-01
The number and shape of ice crystals present in mixed-phase and ice clouds influence the radiation properties, precipitation occurrence and lifetime of these clouds. Since clouds play a major role in the climate system, influencing the energy budget by scattering sunlight and absorbing heat radiation from the earth, it is necessary to investigate the optical and microphysical properties of cloud particles particularly in situ. The relationship between the microphysics and the single scattering properties of cloud particles is usually obtained by modelling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. There is a demand to obtain both information correspondently and simultaneously for individual cloud particles in their natural environment. For evaluating the average scattering phase function as a function of ice particle habit and crystal complexity, in situ measurements are required. To this end we have developed a novel airborne optical sensor (PHIPS-HALO) to measure the optical properties and the corresponding microphysical parameters of individual cloud particles simultaneously. PHIPS-HALO has been tested in the AIDA cloud simulation chamber and deployed in mountain stations as well as research aircraft (HALO and Polar 6). It is a successive version of the laboratory prototype instrument PHIPS-AIDA. In this paper we present the detailed design of PHIPS-HALO, including the detection mechanism, optical design, mechanical construction and aerodynamic characterization.
SPARSE—A subgrid particle averaged Reynolds stress equivalent model: testing with a priori closure
Davis, Sean L.; Sen, Oishik; Udaykumar, H. S.
2017-01-01
A Lagrangian particle cloud model is proposed that accounts for the effects of Reynolds-averaged particle and turbulent stresses and the averaged carrier-phase velocity of the subparticle cloud scale on the averaged motion and velocity of the cloud. The SPARSE (subgrid particle averaged Reynolds stress equivalent) model is based on a combination of a truncated Taylor expansion of a drag correction function and Reynolds averaging. It reduces the required number of computational parcels to trace a cloud of particles in Eulerian–Lagrangian methods for the simulation of particle-laden flow. Closure is performed in an a priori manner using a reference simulation where all particles in the cloud are traced individually with a point-particle model. Comparison of a first-order model and SPARSE with the reference simulation in one dimension shows that both the stress and the averaging of the carrier-phase velocity on the cloud subscale affect the averaged motion of the particle. A three-dimensional isotropic turbulence computation shows that only one computational parcel is sufficient to accurately trace a cloud of tens of thousands of particles. PMID:28413341
SPARSE-A subgrid particle averaged Reynolds stress equivalent model: testing with a priori closure.
Davis, Sean L; Jacobs, Gustaaf B; Sen, Oishik; Udaykumar, H S
2017-03-01
A Lagrangian particle cloud model is proposed that accounts for the effects of Reynolds-averaged particle and turbulent stresses and the averaged carrier-phase velocity of the subparticle cloud scale on the averaged motion and velocity of the cloud. The SPARSE (subgrid particle averaged Reynolds stress equivalent) model is based on a combination of a truncated Taylor expansion of a drag correction function and Reynolds averaging. It reduces the required number of computational parcels to trace a cloud of particles in Eulerian-Lagrangian methods for the simulation of particle-laden flow. Closure is performed in an a priori manner using a reference simulation where all particles in the cloud are traced individually with a point-particle model. Comparison of a first-order model and SPARSE with the reference simulation in one dimension shows that both the stress and the averaging of the carrier-phase velocity on the cloud subscale affect the averaged motion of the particle. A three-dimensional isotropic turbulence computation shows that only one computational parcel is sufficient to accurately trace a cloud of tens of thousands of particles.
Zauscher, Melanie D; Moore, Meagan J K; Lewis, Gregory S; Hering, Susanne V; Prather, Kimberly A
2011-03-15
Aerosol particles, especially those ranging from 50 to 200 nm, strongly impact climate by serving as nuclei upon which water condenses and cloud droplets form. However, the small number of analytical methods capable of measuring the composition of particles in this size range, particularly at the individual particle level, has limited our knowledge of cloud condensation nuclei (CCN) composition and hence our understanding of aerosols effect on climate. To obtain more insight into particles in this size range, we developed a method which couples a growth tube (GT) to an ultrafine aerosol time-of-flight mass spectrometer (UF-ATOFMS), a combination that allows in situ measurements of the composition of individual particles as small as 38 nm. The growth tube uses water to grow particles to larger sizes so they can be optically detected by the UF-ATOFMS, extending the size range to below 100 nm with no discernible changes in particle composition. To gain further insight into the temporal variability of aerosol chemistry and sources, the GT-UF-ATOFMS was used for online continuous measurements over a period of 3 days.
New particle formation leads to cloud dimming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Ryan C.; Crippa, Paola; Matsui, Hitoshi
New particle formation (NPF), nucleation of condensable vapors to the solid or liquid phase, is a significant source of atmospheric aerosol particle number concentrations. With sufficient growth, these nucleated particles may be a significant source of cloud condensation nuclei (CCN), thus altering cloud albedo, structure, and lifetimes, and insolation reaching the Earth's surface. Herein we present one of the first numerical experiments to quantify the impact of NPF on cloud radiative properties that is conducted at a convection permitting resolution and that explicitly simulates cloud droplet number concentrations. Consistent with observations, these simulations suggest that in spring over the Midwesternmore » U.S.A., NPF occurs frequently and on regional scales. However, the simulations suggest that NPF is not associated with enhancement of regional cloud albedos as would be expected from an increase of CCN. These simulations indicate that NPF reduces ambient sulfuric acid concentrations sufficiently to inhibit growth of preexisting particles to CCN sizes. This reduction in CCN-sized particles reduces cloud albedo, resulting in a domain average positive top of atmosphere cloud radiative forcing of 10 W m-2 and up to ~ 50 W m-2 in individual grid cells relative to a simulation in which NPF is excluded.« less
Humans differ in their personal microbial cloud
Altrichter, Adam E.; Bateman, Ashley C.; Stenson, Jason; Brown, GZ; Green, Jessica L.; Bohannan, Brendan J.M.
2015-01-01
Dispersal of microbes between humans and the built environment can occur through direct contact with surfaces or through airborne release; the latter mechanism remains poorly understood. Humans emit upwards of 106 biological particles per hour, and have long been known to transmit pathogens to other individuals and to indoor surfaces. However it has not previously been demonstrated that humans emit a detectible microbial cloud into surrounding indoor air, nor whether such clouds are sufficiently differentiated to allow the identification of individual occupants. We used high-throughput sequencing of 16S rRNA genes to characterize the airborne bacterial contribution of a single person sitting in a sanitized custom experimental climate chamber. We compared that to air sampled in an adjacent, identical, unoccupied chamber, as well as to supply and exhaust air sources. Additionally, we assessed microbial communities in settled particles surrounding each occupant, to investigate the potential long-term fate of airborne microbial emissions. Most occupants could be clearly detected by their airborne bacterial emissions, as well as their contribution to settled particles, within 1.5–4 h. Bacterial clouds from the occupants were statistically distinct, allowing the identification of some individual occupants. Our results confirm that an occupied space is microbially distinct from an unoccupied one, and demonstrate for the first time that individuals release their own personalized microbial cloud. PMID:26417541
Why Did the 2010 Eyjafjallajokull Volcanic Eruption Cloud Last So Long?
NASA Astrophysics Data System (ADS)
Jellinek, M.; Carazzo, G.
2013-12-01
The global economic consequences of the relatively small Eyjafjallajokull eruption in the spring of 2010 caught the world off guard. That the eruption cloud lasted for several months rather than weeks, efficiently disrupting air travel and the holiday plans of thousands of tourists, drew arguably more attention and a certainly garnered a highly emotional response. The longevity of this eruption cloud was touted to be "an anomaly". However, this anomaly nearly repeated itself the following year in the form of the 2011 Puyehue-Cordon Caulle eruption cloud. A major reason that the behavior of the 2010 Eyjafjallajokul cloud was surprising is that "standard" models for ash sedimentation (i.e., heavy particles fall out of the cloud faster than light particles) are incomplete. Observations of the 2010 Eyjafjallajokull, as well as the structure of atmospheric aerosol clouds from the 1991 Mt Pinatubo event, suggest that an additional key process in addition to particle settling is the production of internal layering. We use analog experiments on turbulent particle-laden umbrella clouds and simple models to show that this layering occurs where natural convection driven by particle sedimentation and the differential diffusion of primarily heat and fine particles give rise to a large scale instability leading to this layering. This 'particle diffusive convection' strongly influences cloud longevity where volcanic umbrella clouds are enriched in fine ash. More generally, volcanic cloud residence times will depend on ash fluxes related to both individual particle settling and diffusive convection. We discuss a new sedimentation model that includes both contributions to the particle flux and explains the the rate of change of particle concentration in the 1982 El Chichon, 1991 Mt Pinatubo and 1992 Mt Spurr ash-clouds. Examples of periodic layering in volcanic clouds compared with experiments in which periodic layering emerges as a result of buoyancy effects related to a particle-salt double diffusive instability.
NASA Astrophysics Data System (ADS)
Carazzo, G.; Jellinek, M.
2010-12-01
The prolonged disruption of global air travel as a result of the 2010 Eyjafjöll eruption in Iceland underscores the value of discerning the dynamics of volcanic ash-clouds in the atmosphere. Understanding the longevity of these clouds is a particularly long standing problem that bears not only on volcanic hazards to humans but also on the nature and time scale of volcanic forcings on climate change. Since early work on the subject, the common practice to tackle the problem of cloud longevity has been to account for the dynamics of sedimentation by individual particle settling. We use 1D modeling and analog experiments of a turbulent particle-laden umbrella cloud to show that this classical view can be misleading and that the residence times of these ash-clouds in the atmosphere depends strongly on the collective behavior of the solid fraction. Diffusive convection driven by the differential diffusion of constituents altering the cloud density (ash, temperature, sulfur dioxide) may enhance particle scavenging and extend the cloud longevity over time scales orders of magnitude longer than currently expected (i.e., years rather than days for powerful eruptions). Records of this behavior can be found in real-time measurements of stratospheric post-volcanic aerosols following the 1974 Fuego, the 1982 El Chichon, the 1991 Hudson and Pinatubo events, and more recently, from the 14 April 2010 Eyjafjöll eruption. The importance of diffusive convection in volcanic ash-clouds depends strongly on particle size distribution and concentration. For the 2010 Eyjafjöll eruption, we predict that particles larger than 10 microns should settle individually as commonly assumed, but particles smaller than 1 micron should diffuse slowly in layers extending the cloud longevity to several weeks rather than days. These predictions are found to be in good agreement with a number of satellite and ground-based lidar data on ash size and mass estimates performed at different locations across Europe.
Radar observations of individual rain drops in the free atmosphere
Schmidt, Jerome M.; Flatau, Piotr J.; Harasti, Paul R.; Yates, Robert D.; Littleton, Ricky; Pritchard, Michael S.; Fischer, Jody M.; Fischer, Erin J.; Kohri, William J.; Vetter, Jerome R.; Richman, Scott; Baranowski, Dariusz B.; Anderson, Mark J.; Fletcher, Ed; Lando, David W.
2012-01-01
Atmospheric remote sensing has played a pivotal role in the increasingly sophisticated representation of clouds in the numerical models used to assess global and regional climate change. This has been accomplished because the underlying bulk cloud properties can be derived from a statistical analysis of the returned microwave signals scattered by a diverse ensemble comprised of numerous cloud hydrometeors. A new Doppler radar, previously used to track small debris particles shed from the NASA space shuttle during launch, is shown to also have the capacity to detect individual cloud hydrometeors in the free atmosphere. Similar to the traces left behind on film by subatomic particles, larger cloud particles were observed to leave a well-defined radar signature (or streak), which could be analyzed to infer the underlying particle properties. We examine the unique radar and environmental conditions leading to the formation of the radar streaks and develop a theoretical framework which reveals the regulating role of the background radar reflectivity on their observed characteristics. This main expectation from theory is examined through an analysis of the drop properties inferred from radar and in situ aircraft measurements obtained in two contrasting regions of an observed multicellular storm system. The observations are placed in context of the parent storm circulation through the use of the radar’s unique high-resolution waveforms, which allow the bulk and individual hydrometeor properties to be inferred at the same time. PMID:22652569
Radar observations of individual rain drops in the free atmosphere.
Schmidt, Jerome M; Flatau, Piotr J; Harasti, Paul R; Yates, Robert D; Littleton, Ricky; Pritchard, Michael S; Fischer, Jody M; Fischer, Erin J; Kohri, William J; Vetter, Jerome R; Richman, Scott; Baranowski, Dariusz B; Anderson, Mark J; Fletcher, Ed; Lando, David W
2012-06-12
Atmospheric remote sensing has played a pivotal role in the increasingly sophisticated representation of clouds in the numerical models used to assess global and regional climate change. This has been accomplished because the underlying bulk cloud properties can be derived from a statistical analysis of the returned microwave signals scattered by a diverse ensemble comprised of numerous cloud hydrometeors. A new Doppler radar, previously used to track small debris particles shed from the NASA space shuttle during launch, is shown to also have the capacity to detect individual cloud hydrometeors in the free atmosphere. Similar to the traces left behind on film by subatomic particles, larger cloud particles were observed to leave a well-defined radar signature (or streak), which could be analyzed to infer the underlying particle properties. We examine the unique radar and environmental conditions leading to the formation of the radar streaks and develop a theoretical framework which reveals the regulating role of the background radar reflectivity on their observed characteristics. This main expectation from theory is examined through an analysis of the drop properties inferred from radar and in situ aircraft measurements obtained in two contrasting regions of an observed multicellular storm system. The observations are placed in context of the parent storm circulation through the use of the radar's unique high-resolution waveforms, which allow the bulk and individual hydrometeor properties to be inferred at the same time.
NASA Astrophysics Data System (ADS)
Abdelmonem, A.; Schnaiter, M.; Amsler, P.; Hesse, E.; Meyer, J.; Leisner, T.
2011-10-01
Studying the radiative impact of cirrus clouds requires knowledge of the relationship between their microphysics and the single scattering properties of cloud particles. Usually, this relationship is obtained by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. We present here a novel optical sensor (the Particle Habit Imaging and Polar Scattering probe, PHIPS) designed to measure simultaneously the 3-D morphology and the corresponding optical and microphysical parameters of individual cloud particles. Clouds containing particles ranging from a few micrometers to about 800 μm diameter in size can be characterized systematically with an optical resolution power of 2 μm and polar scattering resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). The maximum acquisition rates for scattering phase functions and images are 262 KHz and 10 Hz, respectively. Some preliminary results collected in two ice cloud campaigns conducted in the AIDA cloud simulation chamber are presented. PHIPS showed reliability in operation and produced size distributions and images comparable to those given by other certified cloud particles instruments. A 3-D model of a hexagonal ice plate is constructed and the corresponding scattering phase function is compared to that modeled using the Ray Tracing with Diffraction on Facets (RTDF) program. PHIPS is a highly promising novel airborne optical sensor for studying the radiative impact of cirrus clouds and correlating the particle habit-scattering properties which will serve as a reference for other single, or multi-independent, measurement instruments.
NASA Astrophysics Data System (ADS)
Deal, E.; Carazzo, G.; Jellinek, M.
2013-12-01
The longevity of volcanic ash clouds generated by explosive volcanic plumes is difficult to predict. Diffusive convective instabilities leading to the production of internal layering are known to affect the stability and longevity of these clouds, but the detailed mechanisms controlling particle dynamics and sedimentation are poorly understood. We present results from a series of analog experiments reproducing diffusive convection in a 2D (Hele-Shaw) geometry, which allow us to constrain conditions for layer formation, sedimentation regime and cloud residence time as a function of only the source conditions. We inject a turbulent particle-laden jet sideways into a tank containing a basal layer of salt water and an upper layer of fresh water, which ultimately spreads as a gravity current. After the injection is stopped, particles in suspension settle through the cloud to form particle boundary layers (PBL) at the cloud base. We vary the initial particle concentration of the plume and the injection velocity over a wide range of conditions to identify and characterize distinct regimes of sedimentation. Our experiments show that convective instabilities driven as a result of differing diffusivities of salt and particles lead to periodic layering over a wide range of conditions expected in nature. The flux of particles from layered clouds and the thicknesses of the layers are understood using classical theory for double diffusive convection adjusted for the hydrodynamic diffusion of particles. Although diffusive convection increases sedimentation rates for the smallest particles (<30 μm) its overall effect is to extend the cloud residence time to several hours by maintaining larger particles in suspension within the layers, which is several orders of magnitude longer than expected when considering individual settling rates.
NASA Astrophysics Data System (ADS)
Semeniuk, T. A.; Bruintjes, R. T.; Salazar, V.; Breed, D. W.; Jensen, T. L.; Buseck, P. R.
2014-03-01
An airborne study of cloud microphysics provided an opportunity to collect aerosol particles in ambient and updraft conditions of natural convection systems for transmission electron microscopy (TEM). Particles were collected simultaneously on lacey carbon and calcium-coated carbon (Ca-C) TEM grids, providing information on particle morphology and chemistry and a unique record of the particle's physical state on impact. In total, 22 particle categories were identified, including single, coated, aggregate, and droplet types. The fine fraction comprised up to 90% mixed cation sulfate (MCS) droplets, while the coarse fraction comprised up to 80% mineral-containing aggregates. Insoluble (dry), partially soluble (wet), and fully soluble particles (droplets) were recorded on Ca-C grids. Dry particles were typically silicate grains; wet particles were mineral aggregates with chloride, nitrate, or sulfate components; and droplets were mainly aqueous NaCl and MCS. Higher numbers of droplets were present in updrafts (80% relative humidity (RH)) compared with ambient conditions (60% RH), and almost all particles activated at cloud base (100% RH). Greatest changes in size and shape were observed in NaCl-containing aggregates (>0.3 µm diameter) along updraft trajectories. Their abundance was associated with high numbers of cloud condensation nuclei (CCN) and cloud droplets, as well as large droplet sizes in updrafts. Thus, compositional dependence was observed in activation behavior recorded for coarse and fine fractions. Soluble salts from local pollution and natural sources clearly affected aerosol-cloud interactions, enhancing the spectrum of particles forming CCN and by forming giant CCN from aggregates, thus, making cloud seeding with hygroscopic flares ineffective in this region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ching, Ping Pui; Riemer, Nicole; West, Matthew
2016-05-27
Black carbon (BC) is usually mixed with other aerosol species within individual aerosol particles. This mixture, along with the particles' size and morphology, determines the particles' optical and cloud condensation nuclei properties, and hence black carbon's climate impacts. In this study the particle-resolved aerosol model PartMC-MOSAIC was used to quantify the importance of black carbon mixing state for predicting cloud microphysical quantities. Based on a set of about 100 cloud parcel simulations a process level analysis framework was developed to attribute the response in cloud microphysical properties to changes in the underlying aerosol population ("plume effect") and the cloud parcelmore » cooling rate ("parcel effect"). It shows that the response of cloud droplet number concentration to changes in BC emissions depends on the BC mixing state. When the aerosol population contains mainly aged BC particles an increase in BC emission results in increasing cloud droplet number concentrations ("additive effect"). In contrast, when the aerosol population contains mainly fresh BC particles they act as sinks for condensable gaseous species, resulting in a decrease in cloud droplet number concentration as BC emissions are increased ("competition effect"). Additionally, we quantified the error in cloud microphysical quantities when neglecting the information on BC mixing state, which is often done in aerosol models. The errors ranged from -12% to +45% for the cloud droplet number fraction, from 0% to +1022% for the nucleation-scavenged black carbon (BC) mass fraction, from -12% to +4% for the effective radius, and from -30% to +60% for the relative dispersion.« less
NASA Astrophysics Data System (ADS)
Zelenyuk, A.; Imre, D. G.; Leaitch, R.; Ovchinnikov, M.; Liu, P.; Macdonald, A.; Strapp, W.; Ghan, S. J.; Earle, M. E.
2012-12-01
Single particle mass spectrometer, SPLAT II, was used to characterize the size, composition, number concentration, density, and shape of individual Arctic spring aerosol. Background particles, particles above and below the cloud, cloud droplet residuals, and interstitial particles were characterized with goal to identify the properties that separate cloud condensation nuclei (CCN) from background aerosol particles. The analysis offers a comparison between warm clouds formed on clean and polluted days, with clean days having maximum particle concentrations (Na) lower than ~250 cm-3, as compared with polluted days, in which maximum concentration was tenfold higher. On clean days, particles were composed of organics, organics mixed with sulfates, biomass burning (BB), sea salt (SS), and few soot and dust particles. On polluted days, BB, organics associated with BB, and their mixtures with sulfate dominated particle compositions. Based on the measured compositions and size distributions of cloud droplet residuals, background aerosols, and interstitial particles, we conclude that these three particle types had virtually the same compositions, which means that cloud activation probabilities were surprisingly nearly composition independent. Moreover, these conclusions hold in cases in which less than 20% or more than 90% of background particles got activated. We concluded that for the warm clouds interrogated in this study particle size played a more important factor on aerosol CCN activity. Comparative analysis of all studied clouds reveals that aerosol activation efficiency strongly depends on the aerosol concentrations, such that at Na <200 cm-3, nearly all particles activate, and at higher concentrations the activation efficiency is lower. For example, when Na was greater than 1500 cm-3, less than ~30% of particles activated. The data suggest that as the number of nucleated droplets increases, condensation on existing droplets effectively competes with particle activation, limiting maximum droplet concentrations Nd = 525 ± 50 cm-3, which is lower than the 750 cm-3 limit found by Leaitch et al. (1986) for mid-latitude continental cloud that had generally larger updraft speeds than the clouds interrogated in Arctic. These findings are important for the aerosol indirect effect, in which increase in aerosol particle number concentrations is expected to result in increase in Nd and decrease in droplet size, leading to increased cloud albedo and potentially lifetimes. Our conclusions point to limited susceptibility to changes in ambient aerosol concentrations, providing simple explanation for the finding of weaker than expected indirect effect. In summary, the data presented here show that Nd increases as the cloud base particle number concentration increases; however, they also show a limit on Nd that is in the range of 500-600 cm-3.
NASA Astrophysics Data System (ADS)
Li, Weijun; Li, Peiren; Sun, Guode; Zhou, Shengzhen; Yuan, Qi; Wang, Wenxing
2011-05-01
Most studies of aerosol-cloud interactions have been conducted in remote locations; few have investigated the characterization of cloud condensation nuclei (CCN) over highly polluted urban and industrial areas. The present work, based on samples collected at Mt. Tai, a site in northern China affected by nearby urban and industrial air pollutant emissions, illuminates CCN properties in a polluted atmosphere. High-resolution transmission electron microscopy (TEM) was used to obtain the size, composition, and mixing state of individual cloud residues and interstitial aerosols. Most of the cloud residues displayed distinct rims which were found to consist of soluble organic matter (OM). Nearly all (91.7%) cloud residues were attributed to sulfate-related salts (the remainder was mostly coarse crustal dust particles with nitrate coatings). Half the salt particles were internally mixed with two or more refractory particles (e.g., soot, fly ash, crustal dust, CaSO 4, and OM). A comparison between cloud residues and interstitial particles shows that the former contained more salts and were of larger particle size than the latter. In addition, a somewhat high number scavenging ratio of 0.54 was observed during cloud formation. Therefore, the mixtures of salts with OMs account for most of the cloud-nucleating ability of the entire aerosol population in the polluted air of northern China. We advocate that both size and composition - the two influential, controlling factors for aerosol activation - should be built into all regional climate models of China.
NASA Astrophysics Data System (ADS)
Abdelmonem, A.; Schnaiter, M.; Amsler, P.; Hesse, E.; Meyer, J.; Leisner, T.
2011-05-01
Studying the radiative impact of cirrus clouds requires the knowledge of the link between their microphysics and the single scattering properties of the cloud particles. Usually, this link is created by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. We present here a novel optical sensor (the Particle Habit Imaging and Polar Scattering probe, PHIPS) designed to measure the 3-D morphology and the corresponding optical and microphysical parameters of individual cloud particles, simultaneously. Clouds containing particles ranging in size from a few micrometers to about 800 μm diameter can be systematically characterized with an optical resolution power of 2 μm and polar scattering resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). The maximum acquisition rates for scattering phase functions and images are 262 KHz and 10 Hz, respectively. Some preliminary results collected in two ice cloud campaigns which were conducted in the AIDA cloud simulation chamber are presented. PHIPS showed reliability in operation and produced comparable size distributions and images to those given by other certified cloud particles instruments. A 3-D model of a hexagonal ice plate is constructed and the corresponding scattering phase function is compared to that modeled using the Ray Tracing with Diffraction on Facets (RTDF) program. PHIPS is candidate to be a novel air borne optical sensor for studying the radiative impact of cirrus clouds and correlating the particle habit-scattering properties which will serve as a reference for other single, or multi-independent, measurements instruments.
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Lee, Kyu-Tae; Yang, Ping; Lau, William K. M. (Technical Monitor)
2002-01-01
Based on the single-scattering optical properties pre-computed with an improved geometric optics method, the bulk absorption coefficient, single-scattering albedo, and asymmetry factor of ice particles have been parameterized as a function of the effective particle size of a mixture of ice habits, the ice water amount, and spectral band. The parameterization has been applied to computing fluxes for sample clouds with various particle size distributions and assumed mixtures of particle habits. It is found that flux calculations are not overly sensitive to the assumed particle habits if the definition of the effective particle size is consistent with the particle habits that the parameterization is based. Otherwise, the error in the flux calculations could reach a magnitude unacceptable for climate studies. Different from many previous studies, the parameterization requires only an effective particle size representing all ice habits in a cloud layer, but not the effective size of individual ice habits.
Zelenyuk, Alla; Imre, Dan; Wilson, Jacqueline; Zhang, Zhiyuan; Wang, Jun; Mueller, Klaus
2015-02-01
Understanding the effect of aerosols on climate requires knowledge of the size and chemical composition of individual aerosol particles-two fundamental properties that determine an aerosol's optical properties and ability to serve as cloud condensation or ice nuclei. Here we present our aircraft-compatible single particle mass spectrometers, SPLAT II and its new, miniaturized version, miniSPLAT that measure in-situ and in real-time the size and chemical composition of individual aerosol particles with extremely high sensitivity, temporal resolution, and sizing precision on the order of a monolayer. Although miniSPLAT's size, weight, and power consumption are significantly smaller, its performance is on par with SPLAT II. Both instruments operate in dual data acquisition mode to measure, in addition to single particle size and composition, particle number concentrations, size distributions, density, and asphericity with high temporal resolution. We also present ND-Scope, our newly developed interactive visual analytics software package. ND-Scope is designed to explore and visualize the vast amount of complex, multidimensional data acquired by our single particle mass spectrometers, along with other aerosol and cloud characterization instruments on-board aircraft. We demonstrate that ND-Scope makes it possible to visualize the relationships between different observables and to view the data in a geo-spatial context, using the interactive and fully coupled Google Earth and Parallel Coordinates displays. Here we illustrate the utility of ND-Scope to visualize the spatial distribution of atmospheric particles of different compositions, and explore the relationship between individual particle compositions and their activity as cloud condensation nuclei.
Direct Observations of Isoprene Secondary Organic Aerosol Formation in Ambient Cloud Droplets
NASA Astrophysics Data System (ADS)
Zelenyuk, A.; Bell, D.; Thornton, J. A.; Fast, J. D.; Shrivastava, M. B.; Berg, L. K.; Imre, D. G.; Mei, F.; Shilling, J.; Suski, K. J.; Liu, J.; Tomlinson, J. M.; Wang, J.
2017-12-01
Multiphase chemistry of isoprene photooxidation products has been shown to be one of the major sources of secondary organic aerosol (SOA) in the atmosphere. A number of recent studies indicate that aqueous aerosol phase provides a medium for reactive uptake of isoprene photooxidation products, and in particular, isomeric isoprene epoxydiols (IEPOX), with reaction rates and yields being dependent on aerosol acidity, water content, sulfate concentration, and organic coatings. However, very few studies focused on chemistry occurring within actual cloud droplets. We will present data acquired during recent Holistic Interactions of Shallow Clouds, Aerosols, and Land Ecosystems (HI-SCALE) Campaign, which provide direct evidence for IEPOX-SOA formation in cloud droplets. Single particle mass spectrometer, miniSPLAT, and a high-resolution, time-of-flight aerosol mass spectrometer were used to characterize the composition of aerosol particles and cloud droplet residuals, while a high-resolution, time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) was used to characterize gas-phase compounds. We find that the composition of cloud droplet residuals was markedly different than that of aerosol particles sampled outside the cloud. Cloud droplet residuals were comprised of individual particles with high relative fractions of sulfate and nitrate and significant fraction of particles with mass spectra that are nearly identical to those of laboratory-generated IEPOX-SOA particles. The observed cloud-induced formation of IEPOX-SOA was accompanied by simultaneous decrease in measured concentrations of IEPOX and other gas-phase isoprene photooxidation products. Ultimately, the combined cloud, aerosol, and gas-phase measurements conducted during HI-SCALE will be used to develop and evaluate model treatments of aqueous-phase isoprene SOA formation.
NASA Technical Reports Server (NTRS)
Posfai, Mihaly; Simonics, Renata; Li, Jia; Hobbs, Peter V.; Buseck, Peter R.
2003-01-01
Individual aerosol particles in smoke plumes from biomass fires and in regional hazes in southern Africa were studied using analytical transmission electron microscopy (TEM), which allowed detailed characterization of carbonaceous particle types in smoke and determination of changes in particle properties and concentrations during smoke aging. Based on composition, morphology, and microstructure, three distinct types of carbonaceous particles were present in the smoke: organic particles with inorganic (K-salt) inclusions, tar ball particles, and soot. The relative number concentrations of organic particles were largest in young smoke, whereas tar balls were dominant in a slightly aged (1 hour) smoke from a smoldering fire. Flaming fires emitted relatively more soot particles than smoldering fires, but soot was a minor constituent of all studied plumes. Further aging caused the accumulation of sulfate on organic and soot particles, as indicated by the large number of internally mixed organic/sulfate and soot/sulfate particles in the regional haze. Externally mixed ammonium sulfate particles dominated in the boundary layer hazes, whereas organic/sulfate particles were the most abundant type in the upper hazes. Apparently, elevated haze layers were more strongly affected by biomass smoke than those within the boundary layer. Based on size distributions and the observed patterns of internal mixing, we hypothesize that organic and soot particles are the cloud-nucleating constituents of biomass smoke aerosols. Sea-salt particles dominated in the samples taken in stratus clouds over the Atlantic Ocean, off the coast of Namibia, whereas a distinct haze layer above the clouds consisted of aged biomass smoke particles.
NASA Technical Reports Server (NTRS)
Blau, H. H., Jr.; Fowler, M. G.; Chang, D. T.; Ryan, R. T.
1972-01-01
Over two thousand individual cloud droplet size distributions were measured with an optical cloud particle spectrometer flown on the NASA Convair 990 aircraft. Representative droplet spectra and liquid water content, L (gm/cu m) were obtained for oceanic stratiform and cumuliform clouds. For non-precipitating clouds, values of L range from 0.1 gm/cu m to 0.5 gm/cu m; with precipitation, L is often greater than 1 gm/cu m. Measurements were also made in a newly formed contrail and in cirrus clouds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erfani, Ehsan; Mitchell, David L.
Here, ice particle mass- and projected area-dimension ( m- D and A- D) power laws are commonly used in the treatment of ice cloud microphysical and optical properties and the remote sensing of ice cloud properties. Although there has long been evidence that a single m- D or A- D power law is often not valid over all ice particle sizes, few studies have addressed this fact. This study develops self-consistent m- D and A- D expressions that are not power laws but can easily be reduced to power laws for the ice particle size (maximum dimension or D) rangemore » of interest, and they are valid over a much larger D range than power laws. This was done by combining ground measurements of individual ice particle m and D formed at temperature T < –20 °C during a cloud seeding field campaign with 2-D stereo (2D-S) and cloud particle imager (CPI) probe measurements of D and A, and estimates of m, in synoptic and anvil ice clouds at similar temperatures. The resulting m- D and A- D expressions are functions of temperature and cloud type (synoptic vs. anvil), and are in good agreement with m- D power laws developed from recent field studies considering the same temperature range (–60 °C < T < –20 °C).« less
Erfani, Ehsan; Mitchell, David L.
2016-04-07
Here, ice particle mass- and projected area-dimension ( m- D and A- D) power laws are commonly used in the treatment of ice cloud microphysical and optical properties and the remote sensing of ice cloud properties. Although there has long been evidence that a single m- D or A- D power law is often not valid over all ice particle sizes, few studies have addressed this fact. This study develops self-consistent m- D and A- D expressions that are not power laws but can easily be reduced to power laws for the ice particle size (maximum dimension or D) rangemore » of interest, and they are valid over a much larger D range than power laws. This was done by combining ground measurements of individual ice particle m and D formed at temperature T < –20 °C during a cloud seeding field campaign with 2-D stereo (2D-S) and cloud particle imager (CPI) probe measurements of D and A, and estimates of m, in synoptic and anvil ice clouds at similar temperatures. The resulting m- D and A- D expressions are functions of temperature and cloud type (synoptic vs. anvil), and are in good agreement with m- D power laws developed from recent field studies considering the same temperature range (–60 °C < T < –20 °C).« less
Local Interactions of Hydrometeors by Diffusion in Mixed-Phase Clouds
NASA Astrophysics Data System (ADS)
Baumgartner, Manuel; Spichtinger, Peter
2017-04-01
Mixed-phase clouds, containing both ice particles and liquid droplets, are important for the Earth-Atmosphere system. They modulate the radiation budget by a combination of albedo effect and greenhouse effect. In contrast to liquid water clouds, the radiative impact of clouds containing ice particles is still uncertain. Scattering and absorption highly depends in microphysical properties of ice crystals, e.g. size and shape. In addition, most precipitation on Earth forms via the ice phase. Thus, better understanding of ice processes as well as their representation in models is required. A key process for determining shape and size of ice crystals is diffusional growth. Diffusion processes in mixed-phase clouds are highly uncertain; in addition they are usually highly simplified in cloud models, especially in bulk microphysics parameterizations. The direct interaction between cloud droplets and ice particles, due to spatial inhomogeneities, is ignored; the particles can only interact via their environmental conditions. Local effects as supply of supersaturation due to clusters of droplets around ice particles are usually not represented, although they form the physical basis of the Wegener-Bergeron-Findeisen process. We present direct numerical simulations of the interaction of single ice particles and droplets, especially their local competition for the available water vapor. In addition, we show an approach to parameterize local interactions by diffusion. The suggested parameterization uses local steady-state solutions of the diffusion equations for water vapor for an ice particle as well as a droplet. The individual solutions are coupled together to obtain the desired interaction. We show some results of the scheme as implemented in a parcel model.
NASA Astrophysics Data System (ADS)
Ma, C.-J.; Tohno, S.; Kasahara, M.; Hayakawa, S.
2004-06-01
To determine the chemical properties of residue retained in individual cloud droplets is primarily important for the understanding of rainout mechanism and aerosol modification in droplet. The sampling of individual cloud droplets were carried out on the summit of Mt. Taiko located in Tango peninsula, Kyoto prefecture, during Asian dust storm event in March of 2002. XRF microprobe system equipped at SPring-8, BL-37XU was applied to the subsequent quantification analysis of ultra trace elements in residues of individual cloud droplets. It was possible to form the replicas of separated individual cloud droplets on the thin collodion film. The two dimensional XRF maps for the residues in individual cloud droplets were clearly drawn by scanning of micro-beam. Also, XRF spectra of trace elements in residues were well resolved. From the XRF spectra for individual residues, the chemical mixed state of residues could be assumed. The chemical forms of Fe (Fe +++) and Zn (Zn +) could be clearly characterized by their K-edge micro-XANES spectra. By comparison of Z/Si mass ratios of residues in cloud droplets and those of the original sands collected in desert areas in China, the aging of ambient dust particles and their in cloud modification were indirectly assumed.
Entanglement between two spatially separated atomic modes
NASA Astrophysics Data System (ADS)
Lange, Karsten; Peise, Jan; Lücke, Bernd; Kruse, Ilka; Vitagliano, Giuseppe; Apellaniz, Iagoba; Kleinmann, Matthias; Tóth, Géza; Klempt, Carsten
2018-04-01
Modern quantum technologies in the fields of quantum computing, quantum simulation, and quantum metrology require the creation and control of large ensembles of entangled particles. In ultracold ensembles of neutral atoms, nonclassical states have been generated with mutual entanglement among thousands of particles. The entanglement generation relies on the fundamental particle-exchange symmetry in ensembles of identical particles, which lacks the standard notion of entanglement between clearly definable subsystems. Here, we present the generation of entanglement between two spatially separated clouds by splitting an ensemble of ultracold identical particles prepared in a twin Fock state. Because the clouds can be addressed individually, our experiments open a path to exploit the available entangled states of indistinguishable particles for quantum information applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelenyuk, Alla; Imre, D.; Wilson, Jacqueline M.
2015-02-01
Understanding the effect of aerosols on climate requires knowledge of the size and chemical composition of individual aerosol particles - two fundamental properties that determine an aerosol’s optical properties and ability to serve as cloud condensation or ice nuclei. Here we present miniSPLAT, our new aircraft compatible single particle mass spectrometer, that measures in-situ and in real-time size and chemical composition of individual aerosol particles with extremely high sensitivity, temporal resolution, and sizing precision on the order of a monolayer. miniSPLAT operates in dual data acquisition mode to measure, in addition to single particle size and composition, particle number concentrations,more » size distributions, density, and asphericity with high temporal resolution. When compared to our previous instrument, SPLAT II, miniSPLAT has been significantly reduced in size, weight, and power consumption without loss in performance. We also present ND-Scope, our newly developed interactive visual analytics software package. ND-Scope is designed to explore and visualize the vast amount of complex, multidimensional data acquired by our single particle mass spectrometers, along with other aerosol and cloud characterization instruments on-board aircraft. We demonstrate that ND-Scope makes it possible to visualize the relationships between different observables and to view the data in a geo-spatial context, using the interactive and fully coupled Google Earth and Parallel Coordinates displays. Here we illustrate the utility of ND-Scope to visualize the spatial distribution of atmospheric particles of different compositions, and explore the relationship between individual particle composition and their activity as cloud condensation nuclei.« less
NASA Astrophysics Data System (ADS)
Markiewicz, Wojciech J.; Petrova, Elena V.; Shalygina, Oksana S.
2018-01-01
From the angular positions of the glory features observed on the upper cloud deck of Venus in three VMC channels (at 0.365, 0.513, and 0.965 μm), the dominating sizes of cloud particles and their refractive indices have been retrieved, and their spatial and temporal variations have been analyzed. For this, the phase profiles of brightness were compared to the single-scattering phase functions of particles of different sizes, since diffuse multiple scattering in the clouds does not move the angular positions of the glory, which is produced by the single scattering by cloud particles, but only makes them less pronounced. We presented the measured phase profiles in two ways: they were built for individual images and for individual small regions observed in series of successive images. The analysis of the data of both types has yielded consistent results. The presently retrieved radii of cloud particle average approximately 1.0-1.2 μm (though some values reach 1.4 μm) and demonstrate a variable pattern versus latitude and local solar time (LST). The decrease of particle sizes at high latitudes (down to 0.6 μm at 60°S) earlier found from the 0.965-μm and partly 0.365-μm data has been definitely confirmed in the analysis of the data of all three channels considered. To obtain the consistent estimates of particle sizes from the UV glory maximum and minimum positions, we have to vary the effective variance of the particle sizes, while it was fixed constant in our previous studies. The twofold increase of this parameter (from 0.07 to 0.14) diminishes the estimates of particle sizes by 10-15%, while the effect on the retrieved refractive index is negligible. The obtained estimates of the refractive index are more or less uniformly distributed over the covered latitude and LST ranges, and most of them are higher than those of concentrated sulfuric acid solution. This confirms our previous result obtained only at 0.965 μm, and now we may state that the cases of a relatively high real part of the refractive index are often observed for the 1-μm mode of cloud particles on Venus. Consequently, an additional component with a high value of the refractive index is required to be present in the cloud droplets. We suggest that this component is in small submicron particles; during the condensation process, they become incorporated into sulfuric acid droplets, which results in forming the complex UV absorbing particles with an increased refractive index. We suppose that this material can be ferric chloride that is one of the candidates for the so-called unknown UV absorber in the upper clouds of Venus.
Inference of Ice Cloud Properties from High-spectral Resolution Infrared Observations. Appendix 4
NASA Technical Reports Server (NTRS)
Huang, Hung-Lung; Yang, Ping; Wei, Heli; Baum, Bryan A.; Hu, Yongxiang; Antonelli, Paolo; Ackerman, Steven A.
2005-01-01
The theoretical basis is explored for inferring the microphysical properties of ice crystal from high-spectral resolution infrared observations. A radiative transfer model is employed to simulate spectral radiances to address relevant issues. The extinction and absorption efficiencies of individual ice crystals, assumed as hexagonal columns for large particles and droxtals for small particles, are computed from a combination of the finite- difference time-domain (FDTD) technique and a composite method. The corresponding phase functions are computed from a combination of FDTD and an improved geometric optics method (IGOM). Bulk scattering properties are derived by averaging the single- scattering properties of individual particles for 30 particle size distributions developed from in situ measurements and for additional four analytical Gamma size distributions for small particles. The non-sphericity of ice crystals is shown to have a significant impact on the radiative signatures in the infrared (IR) spectrum; the spherical particle approximation for inferring ice cloud properties may result in an overest&ation of the optical thickness and an inaccurate retrieval of effective particle size. Furthermore, we show that the error associated with the use of the Henyey-Greenstein phase function can be as larger as 1 K in terms of brightness temperature for larger particle effective size at some strong scattering wavenumbers. For small particles, the difference between the two phase functions is much less, with brightness temperatures generally differing by less than 0.4 K. The simulations undertaken in this study show that the slope of the IR brightness temperature spectrum between 790-960/cm is sensitive to the effective particle size. Furthermore, a strong sensitivity of IR brightness temperature to cloud optical thickness is noted within the l050-1250/cm region. Based on this spectral feature, a technique is presented for the simultaneous retrieval of the visible optical thickness and effective particle size from high spectral resolution infrared data under ice cloudy con&tion. The error analysis shows that the uncertainty of the retrieved optical thickness and effective particle size has a small range of variation. The error for retrieving particle size in conjunction with an uncertainty of 5 K in cloud'temperature, or a surface temperature uncertainty of 2.5 K, is less than 15%. The corresponding e m r in the uncertainty of optical thickness is within 5-2096, depending on the value of cloud optical thickness. The applicability of the technique is demonstrated using the aircraft-based High- resolution Interferometer Sounder (HIS) data from the Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) in 1996 and the First ISCCP Regional Experiment - Arctic Clouds Experiment (FIRE-ACE) in 1998.
Snow precipitation on Mars driven by cloud-induced night-time convection
NASA Astrophysics Data System (ADS)
Spiga, Aymeric; Hinson, David P.; Madeleine, Jean-Baptiste; Navarro, Thomas; Millour, Ehouarn; Forget, François; Montmessin, Franck
2017-09-01
Although it contains less water vapour than Earth's atmosphere, the Martian atmosphere hosts clouds. These clouds, composed of water-ice particles, influence the global transport of water vapour and the seasonal variations of ice deposits. However, the influence of water-ice clouds on local weather is unclear: it is thought that Martian clouds are devoid of moist convective motions, and snow precipitation occurs only by the slow sedimentation of individual particles. Here we present numerical simulations of the meteorology in Martian cloudy regions that demonstrate that localized convective snowstorms can occur on Mars. We show that such snowstorms--or ice microbursts--can explain deep night-time mixing layers detected from orbit and precipitation signatures detected below water-ice clouds by the Phoenix lander. In our simulations, convective snowstorms occur only during the Martian night, and result from atmospheric instability due to radiative cooling of water-ice cloud particles. This triggers strong convective plumes within and below clouds, with fast snow precipitation resulting from the vigorous descending currents. Night-time convection in Martian water-ice clouds and the associated snow precipitation lead to transport of water both above and below the mixing layers, and thus would affect Mars' water cycle past and present, especially under the high-obliquity conditions associated with a more intense water cycle.
Influence of Ice Particle Surface Roughening on the Global Cloud Radiative Effect
NASA Technical Reports Server (NTRS)
Yi, Bingqi; Yang, Ping; Baum, Bryan A.; LEcuyer, Tristan; Oreopoulos, Lazaros; Mlawer, Eli J.; Heymsfield, Andrew J.; Liou, Kuo-Nan
2013-01-01
Ice clouds influence the climate system by changing the radiation budget and large-scale circulation. Therefore, climate models need to have an accurate representation of ice clouds and their radiative effects. In this paper, new broadband parameterizations for ice cloud bulk scattering properties are developed for severely roughened ice particles. The parameterizations are based on a general habit mixture that includes nine habits (droxtals, hollow/solid columns, plates, solid/hollow bullet rosettes, aggregate of solid columns, and small/large aggregates of plates). The scattering properties for these individual habits incorporate recent advances in light-scattering computations. The influence of ice particle surface roughness on the ice cloud radiative effect is determined through simulations with the Fu-Liou and the GCM version of the Rapid Radiative Transfer Model (RRTMG) codes and the National Center for Atmospheric Research Community Atmosphere Model (CAM, version 5.1). The differences in shortwave (SW) and longwave (LW) radiative effect at both the top of the atmosphere and the surface are determined for smooth and severely roughened ice particles. While the influence of particle roughening on the single-scattering properties is negligible in the LW, the results indicate that ice crystal roughness can change the SW forcing locally by more than 10 W m(exp -2) over a range of effective diameters. The global-averaged SW cloud radiative effect due to ice particle surface roughness is estimated to be roughly 1-2 W m(exp -2). The CAM results indicate that ice particle roughening can result in a large regional SW radiative effect and a small but nonnegligible increase in the global LW cloud radiative effect.
NASA Astrophysics Data System (ADS)
Al-Mashat, H.; Kristensen, L.; Sultana, C. M.; Prather, K. A.
2016-12-01
The ability to distinguish types of particles present within a cloud is important for determining accurate inputs to climate models. The chemical composition of particles within cloud liquid droplets and ice crystals can have a significant impact on the timing, location, and amount of precipitation that falls. Precipitation efficiency is increased by the presence of ice crystals in clouds, and both mineral dust and biological aerosols have been shown to be effective ice nucleating particles (INPs) in the atmosphere. A current challenge in aerosol science is distinguishing mineral dust and biological material in the analysis of real-time, ambient, single-particle mass spectral data. Single-particle mass spectrometers are capable of measuring the size-resolved chemical composition of individual atmospheric particles. However, there is no consistent analytical method for distinguishing dust and biological aerosols. Sampling and characterization of control samples (i.e. of known identity) of mineral dust and bacteria were performed by the Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) as part of the Fifth Ice Nucleation (FIN01) Workshop at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility in Karlsruhe, Germany. Using data collected by the ATOFMS of control samples, a new metric has been developed to classify single particles as dust or biological independent of spectral cluster analysis. This method, involving the use of a ratio of mass spectral peak areas for organic nitrogen and silicates, is easily reproducible and does not rely on extensive knowledge of particle chemistry or the ionization characteristics of mass spectrometers. This represents a step toward rapidly distinguishing particle types responsible for ice nucleation activity during real-time sampling in clouds. The ability to distinguish types of particles present within a cloud is important for determining accurate inputs to climate models. The chemical composition of particles within cloud liquid droplets and ice crystals can have a significant impact on the timing, location, and amount of precipitation that falls. Precipitation efficiency is increased by the presence of ice crystals in clouds, and both mineral dust and biological aerosols have been shown to be effective ice nucleating particles (INPs) in the atmosphere. A current challenge in aerosol science is distinguishing mineral dust and biological material in the analysis of real-time, ambient, single-particle mass spectral data. Single-particle mass spectrometers are capable of measuring the size-resolved chemical composition of individual atmospheric particles. However, there is no consistent analytical method for distinguishing dust and biological aerosols. Sampling and characterization of control samples (i.e. of known identity) of mineral dust and bacteria were performed by the Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) as part of the Fifth Ice Nucleation (FIN01) Workshop at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility in Karlsruhe, Germany. Using data collected by the ATOFMS of control samples, a new metric has been developed to classify single particles as dust or biological independent of spectral cluster analysis. This method, involving the use of a ratio of mass spectral peak areas for organic nitrogen and silicates, is easily reproducible and does not rely on extensive knowledge of particle chemistry or the ionization characteristics of mass spectrometers. This represents a step toward rapidly distinguishing particle types responsible for ice nucleation activity during real-time sampling in clouds.
Cloud Imagers Offer New Details on Earth's Health
NASA Technical Reports Server (NTRS)
2009-01-01
A stunning red sunset or purple sunrise is an aesthetic treat with a scientific explanation: The colors are a direct result of the absorption or reflectance of solar radiation by atmospheric aerosols, minute particles (either solid or liquid) in the Earth s atmosphere that occur both naturally and because of human activity. At the beginning or end of the day, the Sun s rays travel farther through the atmosphere to reach an observer s eyes and more green and yellow light is scattered, making the Sun appear red. Sunset and sunrise are especially colorful when the concentration of atmospheric particles is high. This ability of aerosols to absorb and reflect sunlight is not just pretty; it also determines the amount of radiation and heat that reaches the Earth s surface, and can profoundly affect climate. In the atmosphere, aerosols are also important as nuclei for the condensation of water droplets and ice crystals. Clouds with fewer aerosols cannot form as many water droplets (called cloud particles), and consequently, do not scatter light well. In this case, more sunlight reaches the Earth s surface. When aerosol levels in clouds are high, however, more nucleation points can form small liquid water droplets. These smaller cloud particles can reflect up to 90 percent of visible radiation to space, keeping the heat from ever reaching Earth s surface. The tendency for these particles to absorb or reflect the Sun s energy - called extinction by astronomers - depends on a number of factors, including chemical composition and the humidity and temperature in the surrounding air; because cloud particles are so small, they are affected quickly by minute changes in the atmosphere. Because of this sensitivity, atmospheric scientists study cloud particles to anticipate patterns and shifts in climate. Until recently, NASA s study of atmospheric aerosols and cloud particles has been focused primarily on satellite images, which, while granting large-scale atmospheric analysis, limited scientists ability to acquire detailed information about individual particles. Now, experiments with specialized equipment can be flown on standard jets, making it possible for researchers to monitor and more accurately anticipate changes in Earth s atmosphere and weather patterns.
Probing Individual Ice Nucleation Events with Environmental Scanning Electron Microscopy
NASA Astrophysics Data System (ADS)
Wang, Bingbing; China, Swarup; Knopf, Daniel; Gilles, Mary; Laskin, Alexander
2016-04-01
Heterogeneous ice nucleation is one of the processes of critical relevance to a range of topics in the fundamental and the applied science and technologies. Heterogeneous ice nucleation initiated by particles proceeds where microscopic properties of particle surfaces essentially control nucleation mechanisms. Ice nucleation in the atmosphere on particles governs the formation of ice and mixed phase clouds, which in turn influence the Earth's radiative budget and climate. Heterogeneous ice nucleation is still insufficiently understood and poses significant challenges in predictive understanding of climate change. We present a novel microscopy platform allowing observation of individual ice nucleation events at temperature range of 193-273 K and relative humidity relevant for ice formation in the atmospheric clouds. The approach utilizes a home built novel ice nucleation cell interfaced with Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system is applied for direct observation of individual ice formation events, determining ice nucleation mechanisms, freezing temperatures, and relative humidity onsets. Reported microanalysis of the ice nucleating particles (INP) include elemental composition detected by the energy dispersed analysis of X-rays (EDX), and advanced speciation of the organic content in particles using scanning transmission x-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). The performance of the IN-ESEM system is validated through a set of experiments with kaolinite particles with known ice nucleation propensity. We demonstrate an application of the IN-ESEM system to identify and characterize individual INP within a complex mixture of ambient particles.
NASA Astrophysics Data System (ADS)
Flossmann, Andrea I.; Wobrock, Wolfram
2010-09-01
This review compiles the main results obtained using a mesoscale cloud model with bin resolved cloud micophysics and aerosol particle scavenging, as developed by our group over the years and applied to the simulation of shallow and deep convective clouds. The main features of the model are reviewed in different dynamical frameworks covering parcel model dynamics, as well as 1.5D, 2D and 3D dynamics. The main findings are summarized to yield a digested presentation which completes the general understanding of cloud-aerosol interaction, as currently available from textbook knowledge. Furthermore, it should provide support for general cloud model development, as it will suggest potentially minor processes that might be neglected with respect to more important ones and can support development of parameterizations for air quality, chemical transport and climate models. Our work has shown that in order to analyse dedicated campaign results, the supersaturation field and the complex dynamics of the specific clouds needs to be reproduced. Only 3D dynamics represents the variation of the supersaturation over the entire cloud, the continuous nucleation and deactivation of hydrometeors, and the dependence upon initial particle size distribution and solubility. However, general statements on certain processes can be obtained also by simpler dynamics. In particular, we found: Nucleation incorporates about 90% of the initial aerosol particle mass inside the cloud drops. Collision and coalescence redistributes the scavenged aerosol particle mass in such a way that the particle mass follows the main water mass. Small drops are more polluted than larger ones, as pollutant mass mixing ratio decreases with drops size. Collision and coalescence mixes the chemical composition of the generated drops. Their complete evaporation will release processed particles that are mostly larger and more hygroscopic than the initial particles. An interstitial aerosol is left unactivated between the cloud drops which is reduced in number and almost devoid of large particles. Consequently, impaction scavenging can probably be neglected inside clouds. Below clouds, impaction scavenging contributes around 30% to the particle mass reaching the ground by a rainfall event. The exact amount depends on the precise case studied. Nucleation and impaction scavenging directly by the ice phase in mixed phase clouds seems to play a minor role with respect to the particle mass that enters the ice particles via freezing of the liquid phase.The aerosol scavenging efficiency generally follows rather closely the precipitation scavenging value. The nucleation scavenging efficiency is around 90% for the liquid phase clouds and impaction scavenging generally contributed to about 30% of the particle mass in the rain. Clouds are very efficient in pumping up the boundary layer aerosol which essentially determines the cloud properties. For a marine case studied the net pumping depleted about 70% of the aerosol from the section of the boundary layer considered. The larger particles (and thus 70% of the mass vented up) got activated inside the cloud. A weak net import through cloud top and the upwind side was found, as well as a larger net export at the downwind side. The outside cloud subsidence can add to the replenishment of the boundary layer and eventually cause a recycling of the particles into the cloud. The results of the parcel model studies seem to indicate that increasing particulate pollution and decreasing solubility suppresses rain formation. In individual and short time cloud simulations this behaviour was even confirmed in our 3D model studies. However, taking into account entire cloud fields over longer periods of time yields the strong spatial and temporal variability of the results with isolated regions of inverse correlation of the effects. Even though in general initially the expected behaviour was found, after several hours of simulation, the overall precipitation amounts of the more polluted cases caught up. This suggests that a changing pollution will affect the spatial and temporal pattern of precipitation, but will probably not reduce the overall long term precipitation amount which might be entirely governed by the moisture state of the atmosphere. Our results regarding mixed phase precipitation with respect to "all liquid" cases seem to confirm this idea, as with increasing modelling time the precipitation mass of both cases also become similar.
NASA Astrophysics Data System (ADS)
Yancey Piens, D.; Kelly, S. T.; OBrien, R. E.; Wang, B.; Petters, M. D.; Laskin, A.; Gilles, M. K.
2014-12-01
The hygroscopic behavior of atmospheric aerosols influences their optical and cloud-nucleation properties, and therefore affects climate. Although changes in particle size as a function of relative humidity have often been used to quantify the hygroscopic behavior of submicron aerosol particles, it has been noted that calculations of hygroscopicity based on size contain error due to particle porosity, non-ideal volume additivity and changes in surface tension. We will present a method to quantify the hygroscopic behavior of submicron aerosol particles based on changes in mass, rather than size, as a function of relative humidity. This method results from a novel experimental approach combining scanning transmission x-ray microscopy with near-edge x-ray absorption fine spectroscopy (STXM/NEXAFS), as well as scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM/EDX) on the same individual particles. First, using STXM/NEXAFS, our methods are applied to aerosol particles of known composition ‒ for instance ammonium sulfate, sodium bromide and levoglucosan ‒ and validated by theory. Then, using STXM/NEXAFS and SEM/EDX, these methods are extended to mixed atmospheric aerosol particles collected in the field at the DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility at the Southern Great Planes sampling site in Oklahoma, USA. We have observed and quantified a range of hygroscopic behaviors which are correlated to the composition and morphology of individual aerosol particles. These methods will have implications for parameterizing aerosol mixing state and cloud-nucleation activity in atmospheric models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiranuma, Naruki; Brooks, Sarah D.; Moffet, Ryan C.
2013-06-24
Although it has been shown that size of atmospheric particles has a direct correlation with their ability to act as cloud droplet and ice nuclei, the influence of composition of freshly emitted and aged particles in nucleation processes is poorly understood. In this work we combine data from field measurements of ice nucleation with chemical imaging of the sampled particles to link aerosol composition with ice nucleation ability. Field measurements and sampling were conducted during the Indirect and Semidirect Aerosols Campaign (ISDAC) over Barrow, Alaska, in the springtime of 2008. In-situ ice nucleation measurements were conducted using a Continuous Flowmore » Diffusion Chamber (CFDC). Measured number concentrations of ice nuclei (IN) varied from frequent values of 0.01 per liter to more than 10 per liter. Residuals of airborne droplets and ice crystals were collected through a counterflow virtual impactor (CVI). The compositions of individual atmospheric particles and the residuals were studied using Computer Controlled Scanning Electron Microscopy with Energy Dispersive X-ray analysis (CCSEM/EDX) and Scanning Transmission X-ray Microscopy coupled with Near Edge X-ray Absorption Fine Structure spectroscopy (STXM/NEXAFS). Chemical analysis of cloud particle residuals collected during an episode of high ice nucleation suggests that both size and composition may influence aerosol's ability to act as IN. The STXM/NEXAFS chemical composition maps of individual residuals have characteristic structures of either inorganic or black carbon cores coated by organic materials. In a separate flight, particle samples from a biomass burning plume were collected. Although it has previously been suggested that episodes of biomass burning contribute to increased numbers of highly effective ice nuclei, in this episode we observed that only a small fraction were effective ice nuclei. Most of the particles from the biomass plume episode were smaller in size and were composed of homogeneous organic material without identifiable cores.« less
Assessing the Dynamics of Organic Aerosols over the North Atlantic Ocean
Kasparian, Jérôme; Hassler, Christel; Ibelings, Bas; Berti, Nicolas; Bigorre, Sébastien; Djambazova, Violeta; Gascon-Diez, Elena; Giuliani, Grégory; Houlmann, Raphaël; Kiselev, Denis; de Laborie, Pierric; Le, Anh-Dao; Magouroux, Thibaud; Neri, Tristan; Palomino, Daniel; Pfändler, Stéfanie; Ray, Nicolas; Sousa, Gustavo; Staedler, Davide; Tettamanti, Federico; Wolf, Jean-Pierre; Beniston, Martin
2017-01-01
The influence of aerosols on climate is highly dependent on the particle size distribution, concentration, and composition. In particular, the latter influences their ability to act as cloud condensation nuclei, whereby they impact cloud coverage and precipitation. Here, we simultaneously measured the concentration of aerosols from sea spray over the North Atlantic on board the exhaust-free solar-powered vessel “PlanetSolar”, and the sea surface physico-chemical parameters. We identified organic-bearing particles based on individual particle fluorescence spectra. Organic-bearing aerosols display specific spatio-temporal distributions as compared to total aerosols. We propose an empirical parameterization of the organic-bearing particle concentration, with a dependence on water salinity and sea-surface temperature only. We also show that a very rich mixture of organic aerosols is emitted from the sea surface. Such data will certainly contribute to providing further insight into the influence of aerosols on cloud formation, and be used as input for the improved modeling of aerosols and their role in global climate processes. PMID:28361985
NASA Astrophysics Data System (ADS)
Sullivan, Ryan Christopher
Mineral dust particles are a major component of tropospheric aerosol mass and affect regional and global atmospheric chemistry and climate. Dust particles experience heterogeneous reactions with atmospheric gases that alter the gas and particle-phase chemistry. These in turn influence the warm and cold cloud nucleation ability and optical properties of the dust particles. This dissertation investigates the atmospheric chemistry of mineral dust particles and their role in warm cloud nucleation through a combination of synergistic field measurements, laboratory experiments, and theoretical modeling. In-situ measurements made with a single-particle mass spectrometer during the ACE-Asia field campaign in 2001 provide the motivation for this work. The observed mixing state of the individual ambient particles with secondary organic and inorganic components is described in Chapter 2. A large Asian dust storm occurred during the campaign and produced dramatic changes in the aerosol's composition and mixing state. The effect of particle size and mineralogy on the atmospheric processing of individual dust particles is explored in Chapters 3 & 4. Sulfate was found to accumulate preferentially in submicron iron and aluminosilicate-rich dust particles, while nitrate and chloride were enriched in supermicron calcite-rich dust. The mineral dust (and sea salt particles) were also enriched in oxalic acid, the dominant component of water soluble organic carbon. Chapter 5 explores the roles of gas-phase photochemistry and partitioning of the diacids to the alkaline particles in producing this unique behavior. The effect of the dust's mixing state with secondary organic and inorganic components on the dust particles' solubility, hygroscopicity, and thus warm cloud nucleation properties is explored experimentally and theoretically in Chapter 6. Cloud condensation nucleation (CCN) activation curves revealed that while calcium nitrate and calcium chloride particles were very hygroscopic and CCN-active, due to the high solubility of these compounds, calcium sulfate and calcium oxalate were not. Particles composed of these two sparingly soluble compounds had apparent hygroscopicities similar to pure calcium carbonate. This implies that the commonly made assumption that all dust particles become more hygroscopic after atmospheric processing must be revisited. Calcium sulfate and oxalate represent two forms of aged mineral dust particles that remain non-hygroscopic and thus have poor CCN nucleation ability. The particle generation method (dry versus wet) was found to significantly affect the chemistry and hygroscopicity of the aerosolized particles. Finally, in Chapter 7 the timescale for the atmospheric conversion of insoluble calcite particles to soluble, CCN-active calcium nitrate particles was derived from aerosol flow tube experiments. The reaction rate is rapid was used to estimate the conversion of calcite particles to very hygroscopic particles can occur in just a few hours of exposure to tropospheric levels of nitric acid. This process will therefore be controlled by the availability of nitric acid and its precursors, as opposed to the available atmospheric reaction time.
Atmospheric Science Data Center
2013-05-20
... Surface Emissivity Cloud Area Fraction Cloud Effective Pressure Cloud Effective Temperature Cloud Effective Height Cloud Top Pressure Cloud Base Pressure Cloud Particle Phase Liquid Water Path Ice Water Path Water Particle Radius Ice Particle ...
Atmospheric Science Data Center
2013-05-20
... Surface Albedo Cloud Area Fraction Cloud Effective Pressure Cloud Effective Temperature Cloud Effective Height Cloud Top Pressure Cloud Base Pressure Cloud Particle Phase Liquid Water Path Ice Water Path Water Particle Radius Ice Particle ...
Atmospheric Science Data Center
2013-05-17
... Flux - Down Cloud Area Fraction Cloud Effective Pressure Cloud Effective Temperature Cloud Effective Height Cloud Top Pressure Cloud Base Pressure Cloud Particle Phase Liquid Water Path Ice Water Path Water Particle Radius Ice Particle ...
Atmospheric Science Data Center
2013-05-17
... Surface Albedo Cloud Area Fraction Cloud Effective Pressure Cloud Effective Temperature Cloud Effective Height Cloud Top Pressure Cloud Base Pressure Cloud Particle Phase Liquid Water Path Ice Water Path Water Particle Radius Ice Particle ...
Importance of the mixing state for ice nucleating capabilities of individual aerosol particles
NASA Astrophysics Data System (ADS)
Ebert, Martin; Worringen, Annette; Benker, Nathalie; Weinbruch, Stephan
2010-05-01
The effects of aerosol particles on heterogeneous ice formation are currently insufficiently understood. Modelling studies have shown that the type and quantity of atmospheric aerosol particles acting as ice nuclei (IN) can influence ice cloud microphysical and radiative properties as well as their precipitation efficiency. Therefore, the physicochemical identification of IN and a quantitative description of the ice nucleation processes are crucial for a better understanding of formation, life cycles, and the optical properties of clouds as well as for numerical precipitation forecast. During the CLACE 5 campaign in 2006 at the high alpine research station Jungfraujoch (3580 m asl), Switzerland, the physicochemical parameters of IN within mixed-phase clouds were studied. By the use of special Ice-Counterflow Virtual Impactor, residual particles of small ice nuclei (IN) and the interstitial aerosol fraction were sampled seperately within mixed-phase clouds. The size, morphology, elemental composition and mixing state of more than 7000 particles of selected IN- and interstitial-samples were analyzed by scanning electron microscopy (SEM) combined with energy-dispersive X-ray analysis (EDX). For selected particles, the mineralogical phase composition was determined by transmission electron microscopy. In order to receive detailed information about the mixing state (coatings, agglomerates, heterogeneous inclusions) of the IN- and interstitial-samples, the complete individual particle analysis was performed operator controlled. Four different particle types were identified to act as IN. 1) Carbonaceous particles, which were identified to be a complex mixture of soot (main component), sulfate and nitrate. 2) Complex mixtures of two or more diverse particle groups. In almost 75% of these particles silicates or metal oxides are the main-component. 3) Aluminium oxide particles, which were internally mixed with calcium and sulphate rich material and 4) Pb bearing particles. The high abundance of Pb-bearing particles in the IN-samples (up to 24% by number) was an unexpected finding. Besides a smaller content of larger PbO and PbCl2-particles the main component of the particles within this type are predominantly sea salt, soot or silicates, while Pb in these particles is only present as small (50 - 500 nm) heterogeneous Pb or PbS inclusions. In all 4 particle types identified as IN, the mixing state seems to play an essential role. Therefore it can be concluded that the determination of the main-component of a particle is not sufficient for the prediction of its IN-capability.
Apollo 15 contamination photography
NASA Technical Reports Server (NTRS)
Naumann, R. J.
1972-01-01
The problem of optical contamination in the form of particulates in the vicinity of a spacecraft has been a source of concern for any astronomical experiment that must be performed in sunlight. This concern prompted a photographic photometric experiment on Apollo 15 to measure the brightness of the residual contamination cloud as well as the cloud produced by dumping waste water overboard. An upper limit of 10 to the minus 12.3 power B (B designates the brightness of the solar disc) was placed on the residual cloud at a 90 deg sun angle, which is comparable to the zodiacal light. The brightness of the cloud produced by the waste dump was estimated to be 10 to the minus 9.2 power B. It was observed to decrease rapidly to 10 to the -11.6 power B in minutes, then fluctuate in brightness for at least 25 minutes as additional material left the spacecraft. The cloud was observed to consist of individually resolved particle tracks estimated to be particles ranging from millimeters to centimeters in diameter in addition to a background of unresolved particles with an average diameter of 10.5 microns. Most of the tracks proceeded in straight-line paths from the dump nozzle. Several tracks violated this direction, apparently having been scattered by collisions. A few tracks appeared to have definite curvatures, which are believed to be caused by charged particle interactions.
The Impact of Aerosol Particle Mixing State on the Hygroscopicity of Sea Spray Aerosol.
Schill, Steven R; Collins, Douglas B; Lee, Christopher; Morris, Holly S; Novak, Gordon A; Prather, Kimberly A; Quinn, Patricia K; Sultana, Camille M; Tivanski, Alexei V; Zimmermann, Kathryn; Cappa, Christopher D; Bertram, Timothy H
2015-06-24
Aerosol particles influence global climate by determining cloud droplet number concentrations, brightness, and lifetime. Primary aerosol particles, such as those produced from breaking waves in the ocean, display large particle-particle variability in chemical composition, morphology, and physical phase state, all of which affect the ability of individual particles to accommodate water and grow into cloud droplets. Despite such diversity in molecular composition, there is a paucity of methods available to assess how particle-particle variability in chemistry translates to corresponding differences in aerosol hygroscopicity. Here, an approach has been developed that allows for characterization of the distribution of aerosol hygroscopicity within a chemically complex population of atmospheric particles. This methodology, when applied to the interpretation of nascent sea spray aerosol, provides a quantitative framework for connecting results obtained using molecular mimics generated in the laboratory with chemically complex ambient aerosol. We show that nascent sea spray aerosol, generated in situ in the Atlantic Ocean, displays a broad distribution of particle hygroscopicities, indicative of a correspondingly broad distribution of particle chemical compositions. Molecular mimics of sea spray aerosol organic material were used in the laboratory to assess the volume fractions and molecular functionality required to suppress sea spray aerosol hygroscopicity to the extent indicated by field observations. We show that proper accounting for the distribution and diversity in particle hygroscopicity and composition are important to the assessment of particle impacts on clouds and global climate.
Particle nonuniformity effects on particle cloud flames in low gravity
NASA Technical Reports Server (NTRS)
Berlad, A. L.; Tangirala, V.; Seshadri, K.; Facca, L. T.; Ogrin, J.; Ross, H.
1991-01-01
Experimental and analytical studies of particle cloud combustion at reduced gravity reveal the substantial roles that particle cloud nonuniformities may play in particle cloud combustion. Macroscopically uniform, quiescent particle cloud systems (at very low gravitational levels and above) sustain processes which can render them nonuniform on both macroscopic and microscopic scales. It is found that a given macroscopically uniform, quiescent particle cloud flame system can display a range of microscopically nonuniform features which lead to a range of combustion features. Microscopically nonuniform particle cloud distributions are difficult experimentally to detect and characterize. A uniformly distributed lycopodium cloud of particle-enriched microscopic nonuniformities in reduced gravity displays a range of burning velocities for any given overall stoichiometry. The range of observed and calculated burning velocities corresponds to the range of particle enriched concentrations within a characteristic microscopic nonuniformity. Sedimentation effects (even in reduced gravity) are also examined.
NASA Astrophysics Data System (ADS)
Kirpes, R.; Bondy, A. L.; Bonanno, D.; Moffet, R.; Wang, B.; Laskin, A.; Ault, A. P.; Pratt, K.
2016-12-01
The Arctic region is undergoing rapid transformations and loss of sea ice due to climate change. With increased sea ice fracturing resulting in greater open ocean surface, winter emissions of sea spray aerosol (SSA) are expected to be increasing. Additionally, during the winter-spring transition, Arctic haze contributes to the Arctic aerosol budget. The magnitude of aerosol climate effects depends on the aerosol composition and mixing state (distribution of chemical species within and between particles). However, few studies of aerosol chemistry have been conducted in the winter Arctic, despite it being a time when aerosol impacts on clouds are expected to be significant. To study aerosol composition and mixing state in the winter Arctic, atmospheric particles were collected near Barrow, Alaska in January and February 2014 for off-line individual particle chemical analysis. SSA was the most prevalent particle type observed. Sulfate and nitrate were observed to be internally mixed with SSA and organic aerosol. Greater than 98% of observed SSA particles contained organic content, with 15-35% organic volume fraction on average for individual particles. The SSA organic compounds consisted of carbohydrates, lipids, and fatty acids found in the seawater surface microlayer. SSA was determined to be emitted from open leads, while transported sulfate and nitrate contributed to aging of SSA and organic aerosol. Determining the aerosol chemical composition and mixing state in the winter Arctic will further the understanding of how individual aerosol particles impact climate through radiative effects and cloud formation.
NASA Technical Reports Server (NTRS)
Pueschel, R. F.; Howard, S. D.; Foster, T. C.; Hallett, J.; Arnott, W. P.; Condon, Estelle P. (Technical Monitor)
1996-01-01
Whether cirrus clouds heat or cool the Earth-atmosphere system depends on the relative importance of the cloud shortwave albedo effect and the cloud thermal greenhouse effect. Both are determined by the distribution of ice condensate with cloud particle size. The microphysics instrument package flown aboard the NASA DC-8 in TOGA/COARE included an ice crystal replicator, a 2D Greyscale Cloud Particle Probe and a Forward Scattering Spectrometer Aerosol Probe. In combination, the electro-optical instruments permitted particle size measurements between 0.5 micrometer and 2.6 millimeter diameter. Ice crystal replicas were used to validate signals from the electrooptical instruments. Both optical and scanning electron microscopy were utilized to analyze aerosol and ice particle replicas between 0.1 micrometer and several 100 micrometer diameter. In first approximation, the combined aerosol-cloud particle spectrum in several clouds followed a power law N alpha D(sup -2.5). Thus, large cloud particles carried most of the condensate mass, while small cloud and aerosol particles determined the surface area. The mechanism of formation of small particles is growth of (hygroscopic, possibly ocean-derived) aerosol particles along the Kohler curves. The concentration of small particles is higher and less variable in space and time, and their tropospheric residence time is longer, than those of large cloud particles because of lower sedimentation velocities. Small particles shift effective cloud particle radii to sizes much smaller than the mean diameter of the cloud particles. This causes an increase in shortwave reflectivity and IR emissivity, and a decrease in transmissivity. Occasionally, the cloud reflectivity increased with altitude (decreasing temperature) stronger than did cloud emissivity, yielding enhanced radiative cooling at higher altitudes. Thus, cirrus produced by deep convection in the tropics may be critical in controlling processes whereby energy from warm tropical oceans is injected to different levels in the atmosphere to subsequently influence not only tropical but mid-latitude climate.
NASA Astrophysics Data System (ADS)
Roth, A.; Schneider, J.; Klimach, T.; Mertes, S.; van Pinxteren, D.; Herrmann, H.; Borrmann, S.
2016-01-01
Cloud residues and out-of-cloud aerosol particles with diameters between 150 and 900 nm were analysed by online single particle aerosol mass spectrometry during the 6-week study Hill Cap Cloud Thuringia (HCCT)-2010 in September-October 2010. The measurement location was the mountain Schmücke (937 m a.s.l.) in central Germany. More than 160 000 bipolar mass spectra from out-of-cloud aerosol particles and more than 13 000 bipolar mass spectra from cloud residual particles were obtained and were classified using a fuzzy c-means clustering algorithm. Analysis of the uncertainty of the sorting algorithm was conducted on a subset of the data by comparing the clustering output with particle-by-particle inspection and classification by the operator. This analysis yielded a false classification probability between 13 and 48 %. Additionally, particle types were identified by specific marker ions. The results from the ambient aerosol analysis show that 63 % of the analysed particles belong to clusters having a diurnal variation, suggesting that local or regional sources dominate the aerosol, especially for particles containing soot and biomass burning particles. In the cloud residues, the relative percentage of large soot-containing particles and particles containing amines was found to be increased compared to the out-of-cloud aerosol, while, in general, organic particles were less abundant in the cloud residues. In the case of amines, this can be explained by the high solubility of the amines, while the large soot-containing particles were found to be internally mixed with inorganics, which explains their activation as cloud condensation nuclei. Furthermore, the results show that during cloud processing, both sulfate and nitrate are added to the residual particles, thereby changing the mixing state and increasing the fraction of particles with nitrate and/or sulfate. This is expected to lead to higher hygroscopicity after cloud evaporation, and therefore to an increase of the particles' ability to act as cloud condensation nuclei after their cloud passage.
Comparison of the mixing state of long-range transported Asian and African mineral dust
NASA Astrophysics Data System (ADS)
Fitzgerald, Elizabeth; Ault, Andrew P.; Zauscher, Melanie D.; Mayol-Bracero, Olga L.; Prather, Kimberly A.
2015-08-01
Mineral dust from arid regions represents the second largest global source of aerosols to the atmosphere. Dust strongly impacts the radiative balance of the earth's atmosphere by directly scattering solar radiation and acting as nuclei for the formation of liquid droplets and ice nuclei within clouds. The climate effects of mineral dust aerosols are poorly understood, however, due to their complex chemical and physical properties, which continuously evolve during atmospheric transport. This work focuses on characterizing atmospheric mineral dust from the two largest global dust sources: the Sahara Desert in Africa and the Gobi and Taklamakan Deserts in Asia. Measurements of individual aerosol particle size and chemical mixing state were made at El Yunque National Forest, Puerto Rico, downwind of the Sahara Desert, and Gosan, South Korea, downwind of the Gobi and Taklamakan Deserts. In general, the chemical characterization of the individual dust particles detected at these two sites reflected the dominant mineralogy of the source regions; aluminosilicate-rich dust was more common at El Yunque (∼91% of El Yunque dust particles vs. ∼69% of Gosan dust particles) and calcium-rich dust was more common at Gosan (∼22% of Gosan dust particles vs. ∼2% of El Yunque dust particles). Furthermore, dust particles from Africa and Asia were subjected to different transport conditions and atmospheric processing; African dust showed evidence of cloud processing, while Asian dust was modified via heterogeneous chemistry and direct condensation of secondary species. A larger fraction of dust detected at El Yunque contained the cloud-processing marker oxalate ion compared to dust detected at Gosan (∼20% vs ∼9%). Additionally, nearly 100% of dust detected at Gosan contained nitrate, showing it was aged via heterogeneous reactions with nitric acid, compared to only ∼60% of African dust. Information on the distinct differences in the chemical composition of mineral dust particles, as well as the mechanisms and extent of atmospheric processing, is critical for assessing its impacts on the earth's radiative budget through scattering, absorption, and nucleating cloud droplets and ice crystals.
REBOUND-ing Off Asteroids: An N-body Particle Model for Ejecta Dynamics on Small Bodies
NASA Astrophysics Data System (ADS)
Larson, Jennifer; Sarid, Gal
2017-10-01
Here we describe our numerical approach to model the evolution of ejecta clouds. Modeling with an N-body particle method enables us to study the micro-dynamics while varying the particle size distribution. A hydrodynamic approach loses many of the fine particle-particle interactions included in the N-body particle approach (Artemieva 2008).We use REBOUND, an N-body integration package (Rein et al. 2012) developed to model various dynamical systems (planetary orbits, ring systems, etc.) with high resolution calculations at a lower performance cost than other N-body integrators (Rein & Tamayo 2017). It offers both symplectic (WHFast) and non-symplectic (IAS15) methods (Rein & Spiegel 2014, Rein & Tamayo 2015). We primarily use the IAS15 integrator due to its robustness and accuracy with short interaction distances and non-conservative forces. We implemented a wrapper (developed in Python) to handle changes in time step and integrator at different stages of ejecta particle evolution.To set up the system, each particle is given a velocity away from the target body’s surface at a given angle within a defined ejecta cone. We study the ejecta cloud evolution beginning immediately after an impact rather than the actual impact itself. This model considers effects such as varying particle size distribution, radiation pressure, perturbations from a binary component, particle-particle collisions and non-axisymmetric gravity of the target body. Restrictions on the boundaries of the target body’s surface define the physical shape and help count the number of particles that land on the target body. Later, we will build the central body from individual particles to allow for a wider variety of target body shapes and topographies.With our particle modeling approach, individual particle trajectories are tracked and predicted on short, medium and long timescales. Our approach will be applied to modeling of the ejecta cloud produced during the Double Asteroid Redirection Test (DART) impact (Cheng et al. 2016, Schwartz et al. 2016). We will present some preliminary results of our applied model and possible applications to other asteroid impact events and Centaur ring formation mechanisms.
Cloud deposition of PAHs at Mount Lushan in southern China.
Wang, Ruixia; Wang, Yan; Li, Hongli; Yang, Minmin; Sun, Lei; Wang, Tao; Wang, Wenxing
2015-09-01
Cloud water samples were collected from Mount Lushan, a high alpine area of southern China, and analyzed using GC-MS to investigate the concentration levels, seasonal variations, particle-dissolved phase partitioning, ecological risk of PAHs and its relationship to the atmosphere and rainwater. The average concentration of total (dissolved+particle) PAHs in cloud water was 819.90 ng/L, which ranged from 2.30 ng/L for DbA to 295.38 ng/L for PhA. PhA (33.11%) contributed the most individual PAHs, followed by Flu (28.24%). Distinct seasonal variations in the total PAHs measured in this research had a higher concentration during the spring and a lower concentration during the summer. When cloud events occurred, the concentration of the atmospheric PAHs of the two phases decreased. The contribution from the gaseous phase of total PAHs in the air to the dissolved phase in cloud water was up to 60.43%, but the particulate phase in the air only contributed 39.57% to the total scavenging. The contribution of total PAHs from the atmosphere to clouds is higher in the gaseous phase than in the particulate phase. A comparative study of the concentrations of cloud water and the closest rain water revealed that the PAH concentration in rainwater was 1.80 times less than that of cloud water and that the dominant individual compounds in cloud water and rainwater were PhA and Flu. A total of 81.27% of the PAHs in cloud samples and 72.21% of the PAHs in rain samples remained in the dissolved phase. Ecological risk assessment indicated that PAHs in cloud water in spring and summer caused a certain degree of ecosystem risk and the mean ecosystem risk in spring was higher than that in summer. Copyright © 2015 Elsevier B.V. All rights reserved.
Knopf, Daniel A.; Alpert, P. A.; Wang, B.; ...
2014-08-11
The effect of anthropogenic and biogenic organic particles on atmospheric glaciation processes is poorly understood. We use an optical microscopy setup to identify the ice nuclei (IN) active in immersion freezing (IMF) and deposition ice nucleation within a large population of particles collected on a substrate from an ambient environment in central California dominated by urban and marine aerosols. Multimodal microspectroscopy methods are applied to characterize the physicochemical properties and mixing state of the individual IN and particle populations to identify particle-type classes. The temperature onsets of water uptake occurred between 235 and 257 K at subsaturated conditions, and themore » onsets of IMF proceeded at subsaturated and saturated conditions for 235–247 K, relevant for ice nucleation in mixed-phase clouds. Particles also took up water and nucleated ice between 226 and 235 K and acted as deposition IN with onset temperatures below 226 K, a temperature range relevant to cirrus cloud formation. The identified IN belong to the most common particle-type classes observed in the field samples: organic coated sea salt and Na-rich, secondary, and refractory carbonaceous particles. Based on these observations, we suggest that the IN are not always particles with unique chemical composition and exceptional ice nucleation propensity; rather, they are common particles in the ambient particle population. Lastly, the results suggest that particle-type abundance and total particle surface area are also crucial factors, in addition to particle-type ice nucleation efficiency, in determining ice formation within the particle population.« less
NASA Astrophysics Data System (ADS)
Abdelmonem, A.; Schnaiter, M.; Schön, R.; Leisner, T.
2009-04-01
Cirrus clouds impact climate by their influence on the water vapour distribution in the upper troposphere. Moreover, they directly affect the radiative balance of the Earth's atmosphere by the scattering of incoming solar radiation and the absorption of outgoing thermal emission. The link between the microphysical properties of ice cloud particles and the radiative forcing of the clouds is not as yet well understood and the influence of the shapes of ice crystals on the radiative budget of cirrus clouds is currently under debate. PHIPS is a new experimental device for the stereo-imaging of individual cloud particles and the simultaneous measurement of the polar scattering function of the same particle. PHIPS uses an automated particle event triggering system that ensures that only those particles are captured which are located in the field of view - depth of field volume of the microscope unit. Efforts were made to improve the resolution power of the microscope unit down to about 3 µm and to facilitate a 3D morphology impression of the ice crystals. This is realised by a stereo-imaging set up composed of two identical microscopes which image the same particle under an angular viewing distance of 30°. The scattering part of PHIPS enables the measurement of the polar light scattering function of cloud particles with an angular resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). For each particle the light scattering pulse per channel is stored either as integrated intensity or as time resolved intensity function which opens a new category of data analysis concerning details of the particle movement. PHIPS is the first step to PHIPS-HALO which is one of the in situ ice particle and water vapour instruments that are currently under development for the new German research aircraft HALO. The instrument was tested in the ice cloud characterisation campaign HALO-02 which was conducted in December 2008 at the AIDA cloud chamber in the temperature range from -5°C to -70°C. In a series of experiments small externally generated seed ice crystals were grown in AIDA at distinct temperature and saturation ratio conditions. For these experiments the long known ice morphology diagram with the temperature dependent morphology changes and the supersaturation dependent structural complexity could clearly be reproduced by PHIPS. Structural details like hollow crystals, crystals with inclusions, and crystals with stepped surfaces (Hopper crystals) could be resolved by PHIPS. Moreover, the advantage of stereo-imaging in terms of habit classification and particle orientation deduction could be demonstrated. The scattering function measurement reveals ice particle orientation dependent specular reflection peaks which might contain information about the surface roughness. The presentation will describe the instrument set up in detail and highlight some preliminary results.
NASA Astrophysics Data System (ADS)
Thornberry, T.; Froyd, K. D.; Murphy, D. M.; Thomson, D. S.; Anderson, B. E.; Thornhill, K. L.; Winstead, E. L.
2010-05-01
The Particle Analysis by Laser Mass Spectrometry (PALMS) single particle mass spectrometer was used to analyze the composition of the nonvolatile fraction of atmospheric aerosol in a number of different environments. The mass spectra of individual particles sampled through an inlet section heated to 300°C were compared to unheated particles during flights of the NASA DC-8 aircraft during the Tropical Composition Cloud and Climate Coupling (TC4) mission. Comparisons are presented of measurements made in the marine boundary layer, the free troposphere, and the continental boundary layer over the Colombian jungle. The heated section completely removed sulfate from the aerosols except for sodium sulfate and related compounds in sea salt particles. Organic material in sea salt particles was observed to be less volatile than chlorine. Biomass burning particles were more likely to survive heating than other mixed sulfate-organic particles. For all particle types, there was a significant contribution to the residues from carbonaceous material other than elemental carbon. These results demonstrate the remaining compositional complexity of aerosol residuals that survive heating in a thermal denuder.
NASA Astrophysics Data System (ADS)
Zhang, Guohua; Lin, Qinhao; Peng, Long; Bi, Xinhui; Chen, Duohong; Li, Mei; Li, Lei; Brechtel, Fred J.; Chen, Jianxin; Yan, Weijun; Wang, Xinming; Peng, Ping'an; Sheng, Guoying; Zhou, Zhen
2017-12-01
In the present study, a ground-based counterflow virtual impactor (GCVI) was used to sample cloud droplet residual (cloud RES) particles, while a parallel PM2.5 inlet was used to sample cloud-free or cloud interstitial (cloud INT) particles. The mixing state of black carbon (BC)-containing particles and the mass concentrations of BC in the cloud-free, RES and INT particles were investigated using a single-particle aerosol mass spectrometer (SPAMS) and two aethalometers, respectively, at a mountain site (1690 m a. s. l. ) in southern China. The measured BC-containing particles were extensively internally mixed with sulfate and were scavenged into cloud droplets (with number fractions of 0.05-0.45) to a similar (or slightly lower) extent as all the measured particles (0.07-0.6) over the measured size range of 0.1-1.6 µm. The results indicate the preferential activation of larger particles and/or that the production of secondary compositions shifts the BC-containing particles towards larger sizes. BC-containing particles with an abundance of both sulfate and organics were scavenged less than those with sulfate but limited organics, implying the importance of the mixing state on the incorporation of BC-containing particles into cloud droplets. The mass scavenging efficiency of BC with an average of 33 % was similar for different cloud events independent of the air mass. This is the first time that both the mixing state and cloud scavenging of BC in China have been reported. Our results would improve the knowledge on the concentration, mixing state, and cloud scavenging of BC in the free troposphere.
Classification of Arctic, Mid-Latitude and Tropical Clouds in the Mixed-Phase Temperature Regime
NASA Astrophysics Data System (ADS)
Costa, Anja; Afchine, Armin; Luebke, Anna; Meyer, Jessica; Dorsey, James R.; Gallagher, Martin W.; Ehrlich, André; Wendisch, Manfred; Krämer, Martina
2016-04-01
The degree of glaciation and the sizes and habits of ice particles formed in mixed-phase clouds remain not fully understood. However, these properties define the mixed clouds' radiative impact on the Earth's climate and thus a correct representation of this cloud type in global climate models is of importance for an improved certainty of climate predictions. This study focuses on the occurrence and characteristics of two types of clouds in the mixed-phase temperature regime (238-275K): coexistence clouds (Coex), in which both liquid drops and ice crystals exist, and fully glaciated clouds that develop in the Wegener-Bergeron-Findeisen regime (WBF clouds). We present an extensive dataset obtained by the Cloud and Aerosol Particle Spectrometer NIXE-CAPS, covering Arctic, mid-latitude and tropical regions. In total, we spent 45.2 hours within clouds in the mixed-phase temperature regime during five field campaigns (Arctic: VERDI, 2012 and RACEPAC, 2014 - Northern Canada; mid-latitude: COALESC, 2011 - UK and ML-Cirrus, 2014 - central Europe; tropics: ACRIDICON, 2014 - Brazil). We show that WBF and Coex clouds can be identified via cloud particle size distributions. The classified datasets are used to analyse temperature dependences of both cloud types as well as range and frequencies of cloud particle concentrations and sizes. One result is that Coex clouds containing supercooled liquid drops are found down to temperatures of -40 deg C only in tropical mixed clouds, while in the Arctic and mid-latitudes no liquid drops are observed below about -20 deg C. In addition, we show that the cloud particles' aspherical fractions - derived from polarization signatures of particles with diameters between 20 and 50 micrometers - differ significantly between WBF and Coex clouds. In Coex clouds, the aspherical fraction of cloud particles is generally very low, but increases with decreasing temperature. In WBF clouds, where all cloud particles are ice, about 20-40% of the cloud particles are nevertheless classified as spherical for all temperatures, possibly indicating columnar ice crystals (see Järvinen et al, submitted to JAS 2016).
2010-11-18
This image from the High-Resolution Instrument on NASA EPOXI mission spacecraft shows part of the nucleus of comet Hartley 2. The sun is illuminating the nucleus from the right. A distinct cloud of individual particles is visible.
Convergence on the Prediction of Ice Particle Mass and Projected Area in Ice Clouds
NASA Astrophysics Data System (ADS)
Mitchell, D. L.
2013-12-01
Ice particle mass- and area-dimensional power law (henceforth m-D and A-D) relationships are building-blocks for formulating microphysical processes and optical properties in cloud and climate models, and they are critical for ice cloud remote sensing algorithms, affecting the retrieval accuracy. They can be estimated by (1) directly measuring the sizes, masses and areas of individual ice particles at ground-level and (2) using aircraft probes to simultaneously measure the ice water content (IWC) and ice particle size distribution. A third indirect method is to use observations from method 1 to develop an m-A relationship representing mean conditions in ice clouds. Owing to a tighter correlation (relative to m-D data), this m-A relationship can be used to estimate m from aircraft probe measurements of A. This has the advantage of estimating m at small sizes, down to 10 μm using the 2D-Sterio probe. In this way, 2D-S measurements of maximum dimension D can be related to corresponding estimates of m to develop ice cloud type and temperature dependent m-D expressions. However, these expressions are no longer linear in log-log space, but are slowly varying curves covering most of the size range of natural ice particles. This work compares all three of the above methods and demonstrates close agreement between them. Regarding (1), 4869 ice particles and corresponding melted hemispheres were measured during a field campaign to obtain D and m. Selecting only those unrimed habits that formed between -20°C and -40°C, the mean mass values for selected size intervals are within 35% of the corresponding masses predicted by the Method 3 curve based on a similar temperature range. Moreover, the most recent m-D expression based on Method 2 differs by no more than 50% with the m-D curve from Method 3. Method 3 appears to be the most accurate over the observed ice particle size range (10-4000 μm). An m-D/A-D scheme was developed by which self-consistent m-D and A-D power laws are extracted from Method 3 for a given ice particle number concentration N and IWC, appropriate for the relevant size range inferred from N and IWC. The resulting m-D/A-D power laws are based on the same data set comprised of 24 flights in ice clouds during a 6-month field campaign. Standard deviations for these power law constants are determined, which are much needed for cloud property remote sensing algorithms. Comparison of Method 3 (curve fit) with Method 1 (red std. deviations from measurements of ice particles found in cirrus clouds) and Method 2 (Cotton et al. and Heymsfield et al.).
Turbulent complex (dusty) plasma
NASA Astrophysics Data System (ADS)
Zhdanov, Sergey; Schwabe, Mierk
2017-04-01
As a paradigm of complex system dynamics, solid particles immersed into a weakly ionized plasma, so called complex (dusty) plasmas, were (and continue to be) a subject of many detailed studies. Special types of dynamical activity have been registered, in particular, spontaneous pairing, entanglement and cooperative action of a great number of particles resulting in formation of vortices, self-propelling, tunneling, and turbulent movements. In the size domain of 1-10 mkm normally used in experiments with complex plasmas, the characteristic dynamic time-scale is of the order of 0.01-0.1 s, and these particles can be visualized individually in real time, providing an atomistic (kinetic) level of investigations. The low-R turbulent flow induced either by the instability in a complex plasma cloud or formed behind a projectile passing through the cloud is a typical scenario. Our simulations showed formation of a fully developed system of vortices and demonstrated that the velocity structure functions scale very close to the theoretical predictions. As an important element of self-organization, cooperative and turbulent particle motions are present in many physical, astrophysical, and biological systems. Therefore, experiments with turbulent wakes and turbulent complex plasma oscillations are a promising mean to observe and study in detail the anomalous transport on the level of individual particles.
NASA Technical Reports Server (NTRS)
Hindman, E. E., II; Ala, G. G.; Parungo, F. P.; Willis, P. T.; Bendura, R. J.; Woods, D.
1978-01-01
Airborne measurements of cloud volumes, ice nuclei and cloud condensation nuclei, liquid particles, and aerosol particles were obtained from stabilized ground clouds (SGCs) produced by Titan 3 launches at Kennedy Space Center, 20 August and 5 September 1977. The SGCs were bright, white, cumulus clouds early in their life and contained up to 3.5 g/m3 of liquid in micron to millimeter size droplets. The measured cloud volumes were 40 to 60 cu km five hours after launch. The SGCs contained high concentrations of cloud condensation nuclei active at 0.2%, 0.5%, and 1.0% supersaturation for periods of three to five hours. The SGCs also contained high concentrations of submicron particles. Three modes existed in the particle population: a 0.05 to 0.1 micron mode composed of aluminum-containing particles, a 0.2 to 0.8 micron mode, and a 2.0 to 10 micron mode composed of particles that contained primarily aluminum.
Observed aerosol effects on marine cloud nucleation and supersaturation
NASA Astrophysics Data System (ADS)
Russell, Lynn M.; Sorooshian, Armin; Seinfeld, John H.; Albrecht, Bruce A.; Nenes, Athanasios; Leaitch, W. Richard; Macdonald, Anne Marie; Ahlm, Lars; Chen, Yi-Chun; Coggon, Matthew; Corrigan, Ashley; Craven, Jill S.; Flagan, Richard C.; Frossard, Amanda A.; Hawkins, Lelia N.; Jonsson, Haflidi; Jung, Eunsil; Lin, Jack J.; Metcalf, Andrew R.; Modini, Robin; Mülmenstädt, Johannes; Roberts, Greg C.; Shingler, Taylor; Song, Siwon; Wang, Zhen; Wonaschütz, Anna
2013-05-01
Aerosol particles in the marine boundary layer include primary organic and salt particles from sea spray and combustion-derived particles from ships and coastal cities. These particle types serve as nuclei for marine cloud droplet activation, although the particles that activate depend on the particle size and composition as well as the supersaturation that results from cloud updraft velocities. The Eastern Pacific Emitted Aerosol Cloud Experiment (EPEACE) 2011 was a targeted aircraft campaign to assess how different particle types nucleate cloud droplets. As part of E-PEACE 2011, we studied the role of marine particles as cloud droplet nuclei and used emitted particle sources to separate particle-induced feedbacks from dynamical variability. The emitted particle sources included shipboard smoke-generated particles with 0.05-1 μm diameters (which produced tracks measured by satellite and had drop composition characteristic of organic smoke) and combustion particles from container ships with 0.05-0.2 μm diameters (which were measured in a variety of conditions with droplets containing both organic and sulfate components) [1]. Three central aspects of the collaborative E-PEACE results are: (1) the size and chemical composition of the emitted smoke particles compared to ship-track-forming cargo ship emissions as well as background marine particles, with particular attention to the role of organic particles, (2) the characteristics of cloud track formation for smoke and cargo ships, as well as the role of multi-layered low clouds, and (3) the implications of these findings for quantifying aerosol indirect effects. For comparison with the E-PEACE results, the preliminary results of the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets (SOLEDAD) 2012 provided evidence of the cloud-nucleating roles of both marine organic particles and coastal urban pollution, with simultaneous measurements of the effective supersaturations of the clouds in the California coastal region.
NASA Technical Reports Server (NTRS)
Cheng, R. J.
1982-01-01
Microscopical investigation of volcanic ash collected from ground stations during Mount St. Helens eruptions reveal a distinctive bimodel size distribution with high concentrations of particle ranges at (1) 200-100 microns and (2) 20-0.1 microns. Close examination of individual particles shows that most larger ones are solidified magma particles of porous pumice with numerous gas bubbles in the interior and the smaller ones are all glassy fragments without any detectable gas bubbles. Elemental analysis demonstrates that the fine fragments all have a composition similar to that of the larger pumice particles. Laboratory experiments suggest that the formation of the fine fragments is by bursting of glassy bubbles from a partially solidified surface of a crystallizing molten magma particle. The production of gas bubbles is due to the release of absorbed gases in molten magma particles when solubility decreases during phase transition. Diffusion cloud chamber experiments strongly indicate that sub-micron volcanic fragments are highly hygroscopic and extremely active as cloud condensation nuclei. Ice crystals also are evidently formed on those fragments in a supercooled (-20 C) cloud chamber. It has been reported that charge generation from ocean volcanic eruptions is due to contact of molten lava with sea water. This seems to be insufficient to explain the observed rapid and intense lightning activities over Mount St. Helens eruptions. Therefore, a hypothesis is presented here that highly electrically charged fine solid fragments are ejected by bursting of gas bubbles from the surface of a crystallizing molten magma particles.
NASA Astrophysics Data System (ADS)
McGouldrick, Kevin
2017-12-01
This paper explores the effects that variation in the coalescence efficiency of the Venus cloud particles can have on the structure of the Venus cloud. It is motivated by the acknowledgment of uncertainties in the measured parameters—and the assumptions made to account for them—that define our present knowledge of the particle characteristics. Specifically, we explore the consequence of allowing the coalescence efficiency of supercooled sulfuric acid in the upper clouds to tend to zero. This produces a cloud that occasionally exhibits an enhancement of small particles at altitude (similar to the upper hazes observed by Pioneer Venus and subsequently shown to be somewhat transient). This simulated cloud occasionally exhibits a rapid growth of particle size near cloud base, exhibiting characteristics similar to those seen in the controversial Mode 3 particles. These results demonstrate that a subset of the variations observed as near-infrared opacity variations in the lower and middle clouds of Venus can be explained by microphysical, in addition to dynamical, variations. Furthermore, the existence of a population of particles exhibiting less efficient coalescence efficiencies would support the likelihood of conditions suitable for charge exchange, hence lightning, in the Venus clouds. We recommend future laboratory studies on the coalescence properties of sulfuric acid under the range of conditions experienced in the Venus clouds. We also recommend future in situ measurements to better characterize the properties of the cloud particles themselves, especially composition and particle habits (shapes).[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Nichman, Leonid; Järvinen, Emma; Dorsey, James; Connolly, Paul; Duplissy, Jonathan; Fuchs, Claudia; Ignatius, Karoliina; Sengupta, Kamalika; Stratmann, Frank; Möhler, Ottmar; Schnaiter, Martin; Gallagher, Martin
2017-09-01
Optical probes are frequently used for the detection of microphysical cloud particle properties such as liquid and ice phase, size and morphology. These properties can eventually influence the angular light scattering properties of cirrus clouds as well as the growth and accretion mechanisms of single cloud particles. In this study we compare four commonly used optical probes to examine their response to small cloud particles of different phase and asphericity. Cloud simulation experiments were conducted at the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at European Organisation for Nuclear Research (CERN). The chamber was operated in a series of multi-step adiabatic expansions to produce growth and sublimation of ice particles at super- and subsaturated ice conditions and for initial temperatures of -30, -40 and -50 °C. The experiments were performed for ice cloud formation via homogeneous ice nucleation. We report the optical observations of small ice particles in deep convection and in situ cirrus simulations. Ice crystal asphericity deduced from measurements of spatially resolved single particle light scattering patterns by the Particle Phase Discriminator mark 2 (PPD-2K, Karlsruhe edition) were compared with Cloud and Aerosol Spectrometer with Polarisation (CASPOL) measurements and image roundness captured by the 3View Cloud Particle Imager (3V-CPI). Averaged path light scattering properties of the simulated ice clouds were measured using the Scattering Intensity Measurements for the Optical detectioN of icE (SIMONE) and single particle scattering properties were measured by the CASPOL. We show the ambiguity of several optical measurements in ice fraction determination of homogeneously frozen ice in the case where sublimating quasi-spherical ice particles are present. Moreover, most of the instruments have difficulties of producing reliable ice fraction if small aspherical ice particles are present, and all of the instruments cannot separate perfectly spherical ice particles from supercooled droplets. Correlation analysis of bulk averaged path depolarisation measurements and single particle measurements of these clouds showed higher R2 values at high concentrations and small diameters, but these results require further confirmation. We find that none of these instruments were able to determine unambiguously the phase of the small particles. These results have implications for the interpretation of atmospheric measurements and parametrisations for modelling, particularly for low particle number concentration clouds.
NASA Astrophysics Data System (ADS)
Vedernikov, Andrei; Blum, Jurgen; Ingo Von Borstel, Olaf; Schraepler, Rainer; Balapanov, Daniyar; Cecere, Anselmo
2016-07-01
Nanometre and micrometre-sized solid particles are ubiquitous in space and on Earth - from galaxies, interstellar space, protoplanetary and debris disks to planetary rings and atmospheres, planetary surfaces, comets, interplanetary space, Earth's atmosphere. Apparently, the most intriguing problem in the picture of the formation of planets is the transition from individual microscopic dust grains to kilometre-sized planetesimals. Revealing the mechanisms of this transition is one of the main tasks of the European Space Agency's project Interaction in Cosmic and Atmospheric Particle Systems (ICAPS). It was found that Brownian motion driven agglomeration could not provide the transition within reasonable time scale. As a result, at this stage top scientific goals shifted towards forced agglomeration and concentration of particles, targeting revealing the onset of compaction, experimental study of the evolution of fractal dimensions, size and mass distribution, occurrence of bouncing. The main tasks comprise 1) development of the rapid agglomeration model 2) development of the experimental facilities creating big fractal-type agglomerates from 10 to 1000 μm from a cloud of micrometre-size grains; 3) experimental realization of the rapid agglomeration in microgravity and ground conditions; and 4) in situ investigation of the morphology, mobility, mechanical and optical properties of the free-floating agglomerates, including investigation of thermophoresis, photophoresis of the agglomerates and of the two-phase flow phenomena. To solve the experimental part of the tasks we developed a Cloud Manipulation System, realized as a breadboard (CMS BB) for long duration microgravity platforms and a simplified laboratory version (CMS LV) mostly oriented on short duration microgravity and ground tests. The new system is based on the use of thermophoresis, most favourable for cloud manipulation without creating additional particle-particle forces in the cloud with a possibility of growing single agglomerate out of the whole cloud. The cloud manipulation system additionally provides temperature stabilization or, on the contrary, high temperature variation in the observation volume; formation of controlled temperature gradients, intensive three-dimensional periodic shear flow or three-dimensional gas density pulsations of the contraction-expansion type; application of electrostatic gradients including electro dynamic balancing; imposing of photophoretic force, etc. Their choice and/or combination depend upon particular experimental task. Experiments on forced agglomeration in short duration microgravity conditions of the Bremen drop tower succeeded in rapid growth of extended agglomerates, formation of complex three-dimensional cloud patterns, allowed observing controlled cloud displacement, cloud trapping, particle separation with respect to their electrical charge. The breadboard (CMS BB) and the laboratory version of the Cloud Manipulation System (CMS LV) are new types of scientific instrument with high scientific potential. ESA PRODEX program, the Belgian Federal Science Policy Office, DLR project 50WM1223, ZARM Drop Tower Operation and Service Company Ltd. are greatly acknowledged.
Aerosol processing in stratiform clouds in ECHAM6-HAM
NASA Astrophysics Data System (ADS)
Neubauer, David; Lohmann, Ulrike; Hoose, Corinna
2013-04-01
Aerosol processing in stratiform clouds by uptake into cloud particles, collision-coalescence, chemical processing inside the cloud particles and release back into the atmosphere has important effects on aerosol concentration, size distribution, chemical composition and mixing state. Aerosol particles can act as cloud condensation nuclei. Cloud droplets can take up further aerosol particles by collisions. Atmospheric gases may also be transferred into the cloud droplets and undergo chemical reactions, e.g. the production of atmospheric sulphate. Aerosol particles are also processed in ice crystals. They may be taken up by homogeneous freezing of cloud droplets below -38° C or by heterogeneous freezing above -38° C. This includes immersion freezing of already immersed aerosol particles in the droplets and contact freezing of particles colliding with a droplet. Many clouds do not form precipitation and also much of the precipitation evaporates before it reaches the ground. The water soluble part of the aerosol particles concentrates in the hydrometeors and together with the insoluble part forms a single, mixed, larger particle, which is released. We have implemented aerosol processing into the current version of the general circulation model ECHAM6 (Stevens et al., 2013) coupled to the aerosol module HAM (Stier et al., 2005). ECHAM6-HAM solves prognostic equations for the cloud droplet number and ice crystal number concentrations. In the standard version of HAM, seven modes are used to describe the total aerosol. The modes are divided into soluble/mixed and insoluble modes and the number concentrations and masses of different chemical components (sulphate, black carbon, organic carbon, sea salt and mineral dust) are prognostic variables. We extended this by an explicit representation of aerosol particles in cloud droplets and ice crystals in stratiform clouds similar to Hoose et al. (2008a,b). Aerosol particles in cloud droplets are represented by 5 tracers for the chemical components as well as 5 tracers for aerosol particles in ice crystals. This allows simulations of aerosol processing in warm, mixed-phase (e.g. through the Bergeron-Findeisen process) and ice clouds. The fixed scavenging ratios used for wet deposition in clouds in standard HAM are replaced by an explicit treatment of collision of cloud droplets/ice crystals with interstitial aerosol particles. Nucleation scavenging of aerosol particles by acting as cloud condensation nuclei or ice nuclei, freezing and evaporation of cloud droplets and melting and sublimation of ice crystals are treated explicitly. In extension to previous studies, aerosol particles from evaporating precipitation are released to modes which correspond to their size. Cloud processing of aerosol particles changes their size distribution and hence influences cloud droplet and ice crystal number concentrations as well as precipitation rate, which in turn affects aerosol concentrations. Results will be presented at the conference. Hoose et al., JGR, 2008a, doi: 10.1029/2007JD009251 Hoose et al., ACP, 2008b, doi: 10.5194/acp-8-6939-2008 Stevens et al., 2013, submitted Stier et al., ACP, 2005, doi: 10.5194/acp-5-1125-2005
Reaction Mechanisms and Particle Interaction in Burning Two-Phase Systems
NASA Technical Reports Server (NTRS)
Dreizin, Edward L.; Shoshin, Yuriy L.; Murdyy, Ruslan S.; Hoffmann, Vern K.
2001-01-01
The main objective of this research is to understand the mechanisms by which particle interactions affect ignition and combustion in the two-phase systems. Combustion of metal aerosols representing the two-phase systems is carried out in the microgravity environment enabling one to avoid the buoyant flows that mask the particle motion due to the particle-particle interaction effects. In addition, relatively large, e.g., 100 micron diameter particles can be used, that remain aerosolized (i.e., do not fall down as they would at normal gravity) so that their behavior ahead, behind, and within the propagating flame can be resolved optically. An experimental apparatus exploiting this approach has been designed for the 2.2-s drop tower microgravity experiments. A typical experiment includes fluidizing metal particles under microgravity in an acoustic field, turning off the acoustic exciter, and igniting the created aerosol at a constant pressure using a hot wire igniter. The flame propagation and details of the individual particle combustion and particle interactions are studied using high-speed movie and video cameras coupled with microscope lenses to resolve individual particles. Recorded flame images are digitized and various image processing techniques including flame position tracking, color separation, and pixel by pixel image comparisons are employed to understand the processes occurring in the burning aerosols. Condensed combustion products are collected after each experiment for the phase, composition, and morphology analyses. New experiments described in this paper address combustion of Ti and Al particle clouds in air and combustion of Mg particle clouds in CO2. In addition, microgravity combustion experiments have been conducted with the particles of the newly produced Al-Mg mechanical alloys aerosolized in air.
NASA Astrophysics Data System (ADS)
Knopf, D. A.; Alpert, P. A.; Wang, B.; OBrien, R. E.; Moffet, R. C.; Aller, J. Y.; Laskin, A.; Gilles, M.
2013-12-01
Atmospheric ice formation represents one of the least understood atmospheric processes with important implications for the hydrological cycle and climate. Current freezing descriptions assume that ice active sites on the particle surface initiate ice nucleation, however, the nature of these sites remains elusive. Here, we present a new experimental method that allows us to relate physical and chemical properties of individual particles with observed water uptake and ice nucleation ability using a combination of micro-spectroscopic and optical single particle analytical techniques. We apply this method to field-collected particles and particles generated via bursting of bubbles produced by glass frit aeration and plunging water impingement jets in a mesocosm containing artificial sea water and bacteria and/or phytoplankton. The most efficient ice nuclei (IN) within a particle population are identified and characterized. Single particle characterization is achieved by computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy. A vapor controlled cooling-stage coupled to an optical microscope is used to determine the onsets of water uptake, immersion freezing, and deposition ice nucleation of the individual particles as a function of temperature (T) as low as 200 K and relative humidity (RH) up to water saturation. In addition, we perform CCSEM/EDX to obtain on a single particle level the elemental composition of the entire particle population. Thus, we can determine if the IN are exceptional in nature or belong to a major particle type class with respect to composition and size. We find that ambient and sea spray particles are coated by organic material and can induce ice formation under tropospheric relevant conditions. Micro-spectroscopic single particle analysis of the investigated particle samples invokes a potential paradigm shift: Individual ice nucleating particle composition indicates that IN are similar to the majority of particles in the population and not exceptional. This suggests that composition alone may not be a determinant for IN identification. Furthermore, the results suggest that particle abundance may be a crucial parameter for IN efficiency when predicting cloud glaciation processes. These findings would have important consequences for cloud modeling, laboratory ice nucleation experiments, and field measurements.
Powder fed sheared dispersal particle generator
NASA Technical Reports Server (NTRS)
Morrisette, E. L.; Bushnell, D. M. (Inventor)
1984-01-01
A particle generating system is described which is capable of breaking up agglomerations of particles and producing a cloud of uniform, submicron-sized particles at high pressure and high flow rates. This is achieved by utilizing a tubular structure which has injection microslits on is periphery to accept and disperse the desired particle feed. By suppling a carrying fluid at a pressure, of approximately twice the ambient pressure of the velocimeter's settling chamber, the microslits operate at choked flow conditions. The shearing action of this choked flow is sufficient to overcome interparticle bonding forces, thereby breaking up the agglomerates of the particles feed into individual particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaofei; Deane, Grant B.; Moore, Kathryn A.
Covering 71% of the Earth’s surface, oceans represent a significant global source of atmospheric aerosols. The size and composition of sea spray aerosols (SSA) affect their ability to serve as cloud seeds and thus understanding the factors controlling their composition is critical to predicting their impact on clouds and climate. SSA particles have been shown to be an external mixture of particles with different compositions. Film and jet drop production mechanisms ultimately determine the individual particle compositions which are comprised of an array of salt/organic mixtures ranging from pure sea salt to nearly pure organic particles. It is often assumedmore » that the majority of submicron SSA are formed by film drops produced from bursting hydrophobic organic-rich bubble film caps at the sea surface, and in contrast, jet drops are postulated to produce larger supermicron particles from underlying seawater comprised largely of salts and water soluble organic species. However, here we show that jet drops produced by bursting sub-100 m bubbles account for up to 40 % of all submicron particles. They have distinct chemical compositions, organic volume fractions and ice nucleating activities from submicron film drops. Thus a substantial fraction of submicron particles will not necessarily be controlled by the composition of the sea surface microlayer as has been assumed in many studies. This finding has significant ramifications for the size-resolved mixing states of SSA particles which must be taken into consideration when accessing SSA impacts on clouds.« less
Wang, Xiaofei; Deane, Grant B.; Moore, Kathryn A.; ...
2017-06-19
Covering 71% of the Earth’s surface, oceans represent a significant global source of atmospheric aerosols. The size and composition of sea spray aerosols (SSA) affect their ability to serve as cloud seeds and thus understanding the factors controlling their composition is critical to predicting their impact on clouds and climate. SSA particles have been shown to be an external mixture of particles with different compositions. Film and jet drop production mechanisms ultimately determine the individual particle compositions which are comprised of an array of salt/organic mixtures ranging from pure sea salt to nearly pure organic particles. It is often assumedmore » that the majority of submicron SSA are formed by film drops produced from bursting hydrophobic organic-rich bubble film caps at the sea surface, and in contrast, jet drops are postulated to produce larger supermicron particles from underlying seawater comprised largely of salts and water soluble organic species. However, here we show that jet drops produced by bursting sub-100 m bubbles account for up to 40 % of all submicron particles. They have distinct chemical compositions, organic volume fractions and ice nucleating activities from submicron film drops. Thus a substantial fraction of submicron particles will not necessarily be controlled by the composition of the sea surface microlayer as has been assumed in many studies. This finding has significant ramifications for the size-resolved mixing states of SSA particles which must be taken into consideration when accessing SSA impacts on clouds.« less
NASA Astrophysics Data System (ADS)
Abbatt, J.
2015-12-01
The Canadian Network on Aerosols and Climate: Addressing Key Uncertainties in Remote Canadian Regions (or NETCARE) was established in 2013 to study the interactions between aerosols, chemistry, clouds and climate. The network brings together Canadian academic and government researchers, along with key international collaborators. Attention is being given to observations and modeling of Arctic aerosol, with the goal to understand underlying processes and so improve predictions of aerosol climate forcing. Motivation to understand the summer Arctic atmosphere comes from the retreat of summer sea ice and associated increase in marine influence. To address these goals, a suite of measurements was conducted from two platforms in summer 2014 in the Canadian Arctic, i.e. an aircraft-based campaign on the Alfred Wegener Institute POLAR 6 and an ocean-based campaign from the CGCS Amundsen icebreaker. NETCARE-POLAR was based out of Resolute Bay, Nunavut during an initial period of little transport and cloud-free conditions and a later period characterized by more transport with potentially biomass burning influence. Measurements included particle and cloud droplet numbers and size distributions, aerosol composition, cloud nuclei, and levels of gaseous tracers. Ultrafine particle events were more frequently observed in the marine boundary layer than above, with particle growth observed in some cases to cloud condensation nucleus sizes. The influence of biological processes on atmospheric constituents was also assessed from the ship during NETCARE-AMUNDSEN, as indicated by high measured levels of gaseous ammonia, DMS and oxygenated VOCs, as well as isolated particle formation and growth episodes. The cruise took place in Baffin Bay and through the Canadian archipelago. Interpretation of the observations from both campaigns is enhanced through the use of chemical transport and particle dispersion models. This talk will provide an overview of NETCARE Arctic observational and related modeling activities, focusing on 2014 Arctic activities and highlighting upcoming presentations within the session and the work of individual research teams. An attempt will be made to synthesize the observations and model results, drawing connections of aerosol sources through to cloud formation and deposition processes.
Contrasting Cloud Composition Between Coupled and Decoupled Marine Boundary Layer Clouds
NASA Astrophysics Data System (ADS)
WANG, Z.; Mora, M.; Dadashazar, H.; MacDonald, A.; Crosbie, E.; Bates, K. H.; Coggon, M. M.; Craven, J. S.; Xian, P.; Campbell, J. R.; AzadiAghdam, M.; Woods, R. K.; Jonsson, H.; Flagan, R. C.; Seinfeld, J.; Sorooshian, A.
2016-12-01
Marine stratocumulus clouds often become decoupled from the vertical layer immediately above the ocean surface. This study contrasts cloud chemical composition between coupled and decoupled marine stratocumulus clouds. Cloud water and droplet residual particle composition were measured in clouds off the California coast during three airborne experiments in July-August of separate years (E-PEACE 2011, NiCE 2013, BOAS 2015). Decoupled clouds exhibited significantly lower overall mass concentrations in both cloud water and droplet residual particles, consistent with reduced cloud droplet number concentration and sub-cloud aerosol (Dp > 100 nm) number concentration, owing to detachment from surface sources. Non-refractory sub-micrometer aerosol measurements show that coupled clouds exhibit higher sulfate mass fractions in droplet residual particles, owing to more abundant precursor emissions from the ocean and ships. Consequently, decoupled clouds exhibited higher mass fractions of organics, nitrate, and ammonium in droplet residual particles, owing to effects of long-range transport from more distant sources. Total cloud water mass concentration in coupled clouds was dominated by sodium and chloride, and their mass fractions and concentrations exceeded those in decoupled clouds. Conversely, with the exception of sea salt constituents (e.g., Cl, Na, Mg, K), cloud water mass fractions of all species examined were higher in decoupled clouds relative to coupled clouds. These results suggest that an important variable is the extent to which clouds are coupled to the surface layer when interpreting microphysical data relevant to clouds and aerosol particles.
NASA Astrophysics Data System (ADS)
Bonanno, D.; China, S.; Fraund, M. W.; Pham, D.; Kulkarni, G.; Laskin, A.; Gilles, M. K.; Moffet, R.
2016-12-01
The Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Campaign was carried out to gain a better understanding of the lifecycle of shallow clouds. The HISCALE experiment was designed to contrast two seasons, wet and dry, and determine their effect on atmospheric cloud and aerosol processes. The spring component to HISCALE was selected to characterize mixing state for particles collected onto substrates. Sampling was performed before and after rain events to obtain airborne soil organic particles (ASOP), which are ejected after rain events. The unique composition of the ASOP may affect optical properties and/or hygroscopic properties. The collection of particles took place at the Atmospheric Radiation Measurement Southern Great Plains (ARM SGP) field site. The Scanning Transmission X-Ray Microscope (STXM) was used to image the samples collected during the first HI-SCALE Campaign to determine the carbonaceous mixing state. Scanning Electron Microscopy Energy-dispersive X-ray (SEM/EDX) analysis is more sensitive to the inorganic makeup of particles, while STXM renders a more comprehensive analysis of the organics. Measurements such as nephelometry, Particle Soot Absorption Photometry (PSAP), and Aerosol Mass Spectrometry (AMS) from the ARM archive will be correlated with microscopy measurements. The primary focus is the relation between composition and morphology of ASOP with hygroscopicity and optical properties. Further investigation of these organic particles will be performed to provide a mixing state parameterization and aid in the advancement of current climate models.
Development and characterization of an aircraft aerosol time-of-flight mass spectrometer.
Pratt, Kerri A; Mayer, Joseph E; Holecek, John C; Moffet, Ryan C; Sanchez, Rene O; Rebotier, Thomas P; Furutani, Hiroshi; Gonin, Marc; Fuhrer, Katrin; Su, Yongxuan; Guazzotti, Sergio; Prather, Kimberly A
2009-03-01
Vertical and horizontal profiles of atmospheric aerosols are necessary for understanding the impact of air pollution on regional and global climate. To gain further insight into the size-resolved chemistry of individual atmospheric particles, a smaller aerosol time-of-flight mass spectrometer (ATOFMS) with increased data acquisition capabilities was developed for aircraft-based studies. Compared to previous ATOFMS systems, the new instrument has a faster data acquisition rate with improved ion transmission and mass resolution, as well as reduced physical size and power consumption, all required advances for use in aircraft studies. In addition, real-time source apportionment software allows the immediate identification and classification of individual particles to guide sampling decisions while in the field. The aircraft (A)-ATOFMS was field-tested on the ground during the Study of Organic Aerosols in Riverside, CA (SOAR) and aboard an aircraft during the Ice in Clouds Experiment-Layer Clouds (ICE-L). Initial results from ICE-L represent the first reported aircraft-based single-particle dual-polarity mass spectrometry measurements and provide an increased understanding of particle mixing state as a function of altitude. Improved ion transmission allows for the first single-particle detection of species out to approximately m/z 2000, an important mass range for the detection of biological aerosols and oligomeric species. In addition, high time resolution measurements of single-particle mixing state are demonstrated and shown to be important for airborne studies where particle concentrations and chemistry vary rapidly.
NASA Astrophysics Data System (ADS)
Cantrell, W. H.; Chandrakar, K. K.; Karki, S.; Kinney, G.; Shaw, R.
2017-12-01
Many of the climate impacts of boundary layer clouds are modulated by aerosol particles. As two examples, their interactions with incoming solar and upwelling terrestrial radiation and their propensity for precipitation are both governed by the population of aerosol particles upon which the cloud droplets formed. In turn, clouds are the primary removal mechanism for aerosol particles smaller than a few micrometers and larger than a few nanometers. Aspects of these interconnected phenomena are known in exquisite detail (e.g. Köhler theory), but other parts have not been as amenable to study in the laboratory (e.g. scavenging of aerosol particles by cloud droplets). As a complicating factor, boundary layer clouds are ubiquitously turbulent, which introduces fluctuations in the water vapor concentration and temperature, which govern the saturation ratio which mediates aerosol-cloud interactions. We have performed laboratory measurements of aerosol-cloud coupling and feedbacks, using Michigan Tech's Pi Chamber (Chang et al., 2016). In conditions representative of boundary layer clouds, our data suggest that the lifetime of most interstitial particles in the accumulation mode is governed by cloud activation - particles are removed from the Pi Chamber when they activate and settle out of the chamber as cloud droplets. As cloud droplets are removed, these interstitial particles activate until the initially polluted cloud cleans itself and all particulates are removed from the chamber. At that point, the cloud collapses. Our data also indicate that smaller particles, Dp < ˜ 20 nm are not activated, but are instead removed through diffusion, enhanced by the fact that droplets are moving relative to the suspended aerosol. I will discuss results from both warm (i.e. liquid water only) and mixed phase clouds, showing that cloud and aerosol properties are coupled through fluctuations in the supersaturation, and that threshold behaviors can be defined through the use of the Dämkohler number, the ratio of the characteristic turbulence timescale to the cloud's microphysical response time. Chang, K., et al., 2016. A laboratory facility to study gas-aerosol-cloud interactions in a turbulent environment: The Π Chamber. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-15-00203.1
Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boone, Eric J.; Laskin, Alexander; Laskin, Julia
2015-07-21
Cloud water and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry with nanospray desorption electrospray ionization and direct infusion electrospray ionization were utilized to compare the organic composition of the particle and cloud water samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloud water, showing the significant influencemore » of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloud water samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloud water when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol.« less
Relationship Between Cirrus Particle Size and Cloud Top Temperature
NASA Technical Reports Server (NTRS)
Han, Qingyuan; Chou, Joyce; Welch, Ronald M.
1997-01-01
The relationship between cirrus particle size and cloud top temperature is surveyed on a near-global scale. The cirrus particle size is retrieved assuming ice crystals are hexagonal columns and the cloud top temperature and the radiances in channel 1 and 3 of AVHRR used to retrieve ice particle sizes are from ISCCP product. The results show that for thick clouds over North America, the relation between particle size and cloud top temperature is consistent with a summary of this relationship based on aircraft measurement over that region for thick clouds. However, this relationship is not universal for other regions especially for for tropical zone, which has been found by other in situ measurements.
Cloud Activation Potentials for Atmospheric α-Pinene and β-Caryophyllene Ozonolysis Products.
Gray Bé, Ariana; Upshur, Mary Alice; Liu, Pengfei; Martin, Scot T; Geiger, Franz M; Thomson, Regan J
2017-07-26
The formation of atmospheric cloud droplets due to secondary organic aerosol (SOA) particles is important for quantifying the Earth's radiative balance under future, possibly warmer, climates, yet is only poorly understood. While cloud activation may be parametrized using the surface tension depression that coincides with surfactant partitioning to the gas-droplet interface, the extent to which cloud activation is influenced by both the chemical structure and reactivity of the individual molecules comprising this surfactant pool is largely unknown. We report herein considerable differences in the surface tension depression of aqueous pendant droplets that contain synthetically prepared ozonolysis products derived from α-pinene and β-caryophyllene, the most abundant of the monoterpenes and sesquiterpenes, respectively, that are emitted over the planet's vast forest ecosystems. Oxidation products derived from β-caryophyllene were found to exhibit significantly higher surface activity than those prepared from α-pinene, with the critical supersaturation required for cloud droplet activation reduced by 50% for β-caryophyllene aldehyde at 1 mM. These considerable reductions in the critical supersaturation were found to coincide with free energies of adsorption that exceed ∼25 kJ/mol, or just one hydrogen bond equivalent, depending on the ammonium sulfate and oxidation product concentration in the solution. Additional experiments showed that aldehyde-containing oxidation products exist in equilibrium with hydrated forms in aqueous solution, which may modulate their bulk solubility and surface activity. Equilibration time scales on the order of 10 -5 to 10 -4 s calculated for micrometer-sized aerosol particles indicate instantaneous surface tension depression in the activation processes leading to cloud formation in the atmosphere. Our findings highlight the underlying importance of molecular structure and reactivity when considering cloud condensation activity in the presence of SOA particles.
Hao, Liqing; Romakkaniemi, Sami; Kortelainen, Aki; Jaatinen, Antti; Portin, Harri; Miettinen, Pasi; Komppula, Mika; Leskinen, Ari; Virtanen, Annele; Smith, James N; Sueper, Donna; Worsnop, Douglas R; Lehtinen, Kari E J; Laaksonen, Ari
2013-03-19
This study presents results of direct observations of aerosol chemical composition in clouds. A high-resolution time-of-flight aerosol mass spectrometer was used to make measurements of cloud interstitial particles (INT) and mixed cloud interstitial and droplet residual particles (TOT). The differences between these two are the cloud droplet residuals (RES). Positive matrix factorization analysis of high-resolution mass spectral data sets and theoretical calculations were performed to yield distributions of chemical composition of the INT and RES particles. We observed that less oxidized hydrocarbon-like organic aerosols (HOA) were mainly distributed into the INT particles, whereas more oxidized low-volatile oxygenated OA (LVOOA) mainly in the RES particles. Nitrates existed as organic nitrate and in chemical form of NH(4)NO(3). Organic nitrates accounted for 45% of total nitrates in the INT particles, in clear contrast to 26% in the RES particles. Meanwhile, sulfates coexist in forms of acidic NH(4)HSO(4) and neutralized (NH(4))(2)SO(4). Acidic sulfate made up 64.8% of total sulfates in the INT particles, much higher than 10.7% in the RES particles. The results indicate a possible joint effect of activation ability of aerosol particles, cloud processing, and particle size effects on cloud formation.
NASA Astrophysics Data System (ADS)
Oh, D.; Noh, Y.; Hoffmann, F.; Raasch, S.
2017-12-01
Lagrangian cloud model (LCM) is a fundamentally new approach of cloud simulation, in which the flow field is simulated by large eddy simulation and droplets are treated as Lagrangian particles undergoing cloud microphysics. LCM enables us to investigate raindrop formation and examine the parameterization of cloud microphysics directly by tracking the history of individual Lagrangian droplets simulated by LCM. Analysis of the magnitude of raindrop formation and the background physical conditions at the moment at which every Lagrangian droplet grows from cloud droplets to raindrops in a shallow cumulus cloud reveals how and under which condition raindrops are formed. It also provides information how autoconversion and accretion appear and evolve within a cloud, and how they are affected by various factors such as cloud water mixing ratio, rain water mixing ratio, aerosol concentration, drop size distribution, and dissipation rate. Based on these results, the parameterizations of autoconversion and accretion, such as Kessler (1969), Tripoli and Cotton (1980), Beheng (1994), and Kharioutdonov and Kogan (2000), are examined, and the modifications to improve the parameterizations are proposed.
NASA Astrophysics Data System (ADS)
Patade, Sachin; Prabha, T. V.; Axisa, D.; Gayatri, K.; Heymsfield, A.
2015-10-01
A comprehensive analysis of particle size distributions measured in situ with airborne instrumentation during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) is presented. In situ airborne observations in the developing stage of continental convective clouds during premonsoon (PRE), transition, and monsoon (MON) period at temperatures from 25 to -22°C are used in the study. The PRE clouds have narrow drop size and particle size distributions compared to monsoon clouds and showed less development of size spectra with decrease in temperature. Overall, the PRE cases had much lower values of particle number concentrations and ice water content compared to MON cases, indicating large differences in the ice initiation and growth processes between these cloud regimes. This study provided compelling evidence that in addition to dynamics, aerosol and moisture are important for modulating ice microphysical processes in PRE and MON clouds through impacts on cloud drop size distribution. Significant differences are observed in the relationship of the slope and intercept parameters of the fitted particle size distributions (PSDs) with temperature in PRE and MON clouds. The intercept values are higher in MON clouds than PRE for exponential distribution which can be attributed to higher cloud particle number concentrations and ice water content in MON clouds. The PRE clouds tend to have larger values of dispersion of gamma size distributions than MON clouds, signifying narrower spectra. The relationships between PSDs parameters are presented and compared with previous observations.
NASA Astrophysics Data System (ADS)
Schmidt, Susan; Schneider, Johannes; Klimach, Thomas; Mertes, Stephan; Schenk, Ludwig Paul; Kupiszewski, Piotr; Curtius, Joachim; Borrmann, Stephan
2017-01-01
In situ single particle analysis of ice particle residuals (IPRs) and out-of-cloud aerosol particles was conducted by means of laser ablation mass spectrometry during the intensive INUIT-JFJ/CLACE campaign at the high alpine research station Jungfraujoch (3580 m a.s.l.) in January-February 2013. During the 4-week campaign more than 70 000 out-of-cloud aerosol particles and 595 IPRs were analyzed covering a particle size diameter range from 100 nm to 3 µm. The IPRs were sampled during 273 h while the station was covered by mixed-phase clouds at ambient temperatures between -27 and -6 °C. The identification of particle types is based on laboratory studies of different types of biological, mineral and anthropogenic aerosol particles. The outcome of these laboratory studies was characteristic marker peaks for each investigated particle type. These marker peaks were applied to the field data. In the sampled IPRs we identified a larger number fraction of primary aerosol particles, like soil dust (13 ± 5 %) and minerals (11 ± 5 %), in comparison to out-of-cloud aerosol particles (2.4 ± 0.4 and 0.4 ± 0.1 %, respectively). Additionally, anthropogenic aerosol particles, such as particles from industrial emissions and lead-containing particles, were found to be more abundant in the IPRs than in the out-of-cloud aerosol. In the out-of-cloud aerosol we identified a large fraction of aged particles (31 ± 5 %), including organic material and secondary inorganics, whereas this particle type was much less abundant (2.7 ± 1.3 %) in the IPRs. In a selected subset of the data where a direct comparison between out-of-cloud aerosol particles and IPRs in air masses with similar origin was possible, a pronounced enhancement of biological particles was found in the IPRs.
New methods to detect particle velocity and mass flux in arc-heated ablation/erosion facilities
NASA Technical Reports Server (NTRS)
Brayton, D. B.; Bomar, B. W.; Seibel, B. L.; Elrod, P. D.
1980-01-01
Arc-heated flow facilities with injected particles are used to simulate the erosive and ablative/erosive environments encountered by spacecraft re-entry through fog, clouds, thermo-nuclear explosions, etc. Two newly developed particle diagnostic techniques used to calibrate these facilities are discussed. One technique measures particle velocity and is based on the detection of thermal radiation and/or chemiluminescence from the hot seed particles in a model ablation/erosion facility. The second technique measures a local particle rate, which is proportional to local particle mass flux, in a dust erosion facility by photodetecting and counting the interruptions of a focused laser beam by individual particles.
Laser vaporization of cirrus-like ice particles with secondary ice multiplication
Matthews, Mary; Pomel, François; Wender, Christiane; Kiselev, Alexei; Duft, Denis; Kasparian, Jérôme; Wolf, Jean-Pierre; Leisner, Thomas
2016-01-01
We investigate the interaction of ultrashort laser filaments with individual 90-μm ice particles, representative of cirrus particles. The ice particles fragment under laser illumination. By monitoring the evolution of the corresponding ice/vapor system at up to 140,000 frames per second over 30 ms, we conclude that a shockwave vaporization supersaturates the neighboring region relative to ice, allowing the nucleation and growth of new ice particles, supported by laser-induced plasma photochemistry. This process constitutes the first direct observation of filament-induced secondary ice multiplication, a process that strongly modifies the particle size distribution and, thus, the albedo of typical cirrus clouds. PMID:27386537
Laser vaporization of cirrus-like ice particles with secondary ice multiplication.
Matthews, Mary; Pomel, François; Wender, Christiane; Kiselev, Alexei; Duft, Denis; Kasparian, Jérôme; Wolf, Jean-Pierre; Leisner, Thomas
2016-05-01
We investigate the interaction of ultrashort laser filaments with individual 90-μm ice particles, representative of cirrus particles. The ice particles fragment under laser illumination. By monitoring the evolution of the corresponding ice/vapor system at up to 140,000 frames per second over 30 ms, we conclude that a shockwave vaporization supersaturates the neighboring region relative to ice, allowing the nucleation and growth of new ice particles, supported by laser-induced plasma photochemistry. This process constitutes the first direct observation of filament-induced secondary ice multiplication, a process that strongly modifies the particle size distribution and, thus, the albedo of typical cirrus clouds.
Volcanic explosion clouds - Density, temperature, and particle content estimates from cloud motion
NASA Technical Reports Server (NTRS)
Wilson, L.; Self, S.
1980-01-01
Photographic records of 10 vulcanian eruption clouds produced during the 1978 eruption of Fuego Volcano in Guatemala have been analyzed to determine cloud velocity and acceleration at successive stages of expansion. Cloud motion is controlled by air drag (dominant during early, high-speed motion) and buoyancy (dominant during late motion when the cloud is convecting slowly). Cloud densities in the range 0.6 to 1.2 times that of the surrounding atmosphere were obtained by fitting equations of motion for two common cloud shapes (spheres and vertical cylinders) to the observed motions. Analysis of the heat budget of a cloud permits an estimate of cloud temperature and particle weight fraction to be made from the density. Model results suggest that clouds generally reached temperatures within 10 K of that of the surrounding air within 10 seconds of formation and that dense particle weight fractions were less than 2% by this time. The maximum sizes of dense particles supported by motion in the convecting clouds range from 140 to 1700 microns.
NASA Technical Reports Server (NTRS)
Lee, Joonsuk; Yang, Ping; Dessler, Andrew E.; Baum, Bryan A.; Platnick, Steven
2005-01-01
Cloud microphysical and optical properties are inferred from the bidirectional reflectances simulated for a single-layered cloud consisting of an external mixture of ice particles and liquid droplets. The reflectances are calculated with a rigorous discrete ordinates radiative transfer model and are functions of the cloud effective particle size, the cloud optical thickness, and the values of the ice fraction in the cloud (i.e., the ratio of ice water content to total water content). In the present light scattering and radiative transfer simulations, the ice fraction is assumed to be vertically homogeneous; the habit (shape) percentage as a function of ice particle size is consistent with that used for the Moderate Resolution Imaging Spectroradiometer (MODIS) operational (Collection 4 and earlier) cloud products; and the surface is assumed to be Lambertian with an albedo of 0.03. Furthermore, error analyses pertaining to the inference of the effective particle sizes and optical thicknesses of mixed-phase clouds are performed. Errors are calculated with respect to the assumption of a cloud containing solely liquid or ice phase particles. The analyses suggest that the effective particle size inferred for a mixed-phase cloud can be underestimated (or overestimated) if pure liquid phase (or pure ice phase) is assumed for the cloud, whereas the corresponding cloud optical thickness can be overestimated (or underestimated).
Heterogeneous ice nucleation of α-pinene SOA particles before and after ice cloud processing
NASA Astrophysics Data System (ADS)
Wagner, Robert; Höhler, Kristina; Huang, Wei; Kiselev, Alexei; Möhler, Ottmar; Mohr, Claudia; Pajunoja, Aki; Saathoff, Harald; Schiebel, Thea; Shen, Xiaoli; Virtanen, Annele
2017-05-01
The ice nucleation ability of α-pinene secondary organic aerosol (SOA) particles was investigated at temperatures between 253 and 205 K in the Aerosol Interaction and Dynamics in the Atmosphere cloud simulation chamber. Pristine SOA particles were nucleated and grown from pure gas precursors and then subjected to repeated expansion cooling cycles to compare their intrinsic ice nucleation ability during the first nucleation event with that observed after ice cloud processing. The unprocessed α-pinene SOA particles were found to be inefficient ice-nucleating particles at cirrus temperatures, with nucleation onsets (for an activated fraction of 0.1%) as high as for the homogeneous freezing of aqueous solution droplets. Ice cloud processing at temperatures below 235 K only marginally improved the particles' ice nucleation ability and did not significantly alter their morphology. In contrast, the particles' morphology and ice nucleation ability was substantially modified upon ice cloud processing in a simulated convective cloud system, where the α-pinene SOA particles were first activated to supercooled cloud droplets and then froze homogeneously at about 235 K. As evidenced by electron microscopy, the α-pinene SOA particles adopted a highly porous morphology during such a freeze-drying cycle. When probing the freeze-dried particles in succeeding expansion cooling runs in the mixed-phase cloud regime up to 253 K, the increase in relative humidity led to a collapse of the porous structure. Heterogeneous ice formation was observed after the droplet activation of the collapsed, freeze-dried SOA particles, presumably caused by ice remnants in the highly viscous material or the larger surface area of the particles.
Formation of Silicate and Titanium Clouds on Hot Jupiters
NASA Astrophysics Data System (ADS)
Powell, Diana; Zhang, Xi; Gao, Peter; Parmentier, Vivien
2018-06-01
We present the first application of a bin-scheme microphysical and vertical transport model to determine the size distribution of titanium and silicate cloud particles in the atmospheres of hot Jupiters. We predict particle size distributions from first principles for a grid of planets at four representative equatorial longitudes, and investigate how observed cloud properties depend on the atmospheric thermal structure and vertical mixing. The predicted size distributions are frequently bimodal and irregular in shape. There is a negative correlation between the total cloud mass and equilibrium temperature as well as a positive correlation between the total cloud mass and atmospheric mixing. The cloud properties on the east and west limbs show distinct differences that increase with increasing equilibrium temperature. Cloud opacities are roughly constant across a broad wavelength range, with the exception of features in the mid-infrared. Forward-scattering is found to be important across the same wavelength range. Using the fully resolved size distribution of cloud particles as opposed to a mean particle size has a distinct impact on the resultant cloud opacities. The particle size that contributes the most to the cloud opacity depends strongly on the cloud particle size distribution. We predict that it is unlikely that silicate or titanium clouds are responsible for the optical Rayleigh scattering slope seen in many hot Jupiters. We suggest that cloud opacities in emission may serve as sensitive tracers of the thermal state of a planet’s deep interior through the existence or lack of a cold trap in the deep atmosphere.
NASA Astrophysics Data System (ADS)
Okada, Kikuo; Naruse, Hiroshi; Tanaka, Toyoaki; Nemoto, Osamu; Iwasaka, Yasunobu; Wu, Pei-Ming; Ono, Akira; Duce, Robert A.; Uematsu, Mitsuo; Merrill, John T.; Arao, Kimio
Individual aerosol particles were collected during spring 1986 near the surface over the Japanese islands (Nagasaki and Nagoya) and the North Pacific Ocean near Hawaii. Asian dust-storm particles found in these samples were examined by use of an electron microscope equipped with an energy-dispersive X-ray analyzer (EDX). These dust-storm particles usually consisted of Mg, Al, Si, Ca, Ti and Fe, together with S and Cl. For the individual particles collected over Japan, changes in morphological features and in the amounts of elements before and after the dialysis (extraction) of water-soluble material were studied. The examination indicated that the dust particles were present as mixed particles (internal mixture of water-soluble and -insoluble material), wheras the the water-soluble material mainly contained Ca and S. Over the North Pacific Ocean, the dust-storm particles were present internally in sea-salt particles. It is suggested that the internal mixture of minerals and sea-salt is probably due to interaction within clouds. Formation of CaSO 4 on the dust particles was also suggested on the basis of quantitative results obtained by the use of the EDX.
Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles
NASA Astrophysics Data System (ADS)
Vergara-Temprado, Jesús; Miltenberger, Annette K.; Furtado, Kalli; Grosvenor, Daniel P.; Shipway, Ben J.; Hill, Adrian A.; Wilkinson, Jonathan M.; Field, Paul R.; Murray, Benjamin J.; Carslaw, Ken S.
2018-03-01
Large biases in climate model simulations of cloud radiative properties over the Southern Ocean cause large errors in modeled sea surface temperatures, atmospheric circulation, and climate sensitivity. Here, we combine cloud-resolving model simulations with estimates of the concentration of ice-nucleating particles in this region to show that our simulated Southern Ocean clouds reflect far more radiation than predicted by global models, in agreement with satellite observations. Specifically, we show that the clouds that are most sensitive to the concentration of ice-nucleating particles are low-level mixed-phase clouds in the cold sectors of extratropical cyclones, which have previously been identified as a main contributor to the Southern Ocean radiation bias. The very low ice-nucleating particle concentrations that prevail over the Southern Ocean strongly suppress cloud droplet freezing, reduce precipitation, and enhance cloud reflectivity. The results help explain why a strong radiation bias occurs mainly in this remote region away from major sources of ice-nucleating particles. The results present a substantial challenge to climate models to be able to simulate realistic ice-nucleating particle concentrations and their effects under specific meteorological conditions.
Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles
Miltenberger, Annette K.; Furtado, Kalli; Grosvenor, Daniel P.; Shipway, Ben J.; Hill, Adrian A.; Wilkinson, Jonathan M.; Field, Paul R.
2018-01-01
Large biases in climate model simulations of cloud radiative properties over the Southern Ocean cause large errors in modeled sea surface temperatures, atmospheric circulation, and climate sensitivity. Here, we combine cloud-resolving model simulations with estimates of the concentration of ice-nucleating particles in this region to show that our simulated Southern Ocean clouds reflect far more radiation than predicted by global models, in agreement with satellite observations. Specifically, we show that the clouds that are most sensitive to the concentration of ice-nucleating particles are low-level mixed-phase clouds in the cold sectors of extratropical cyclones, which have previously been identified as a main contributor to the Southern Ocean radiation bias. The very low ice-nucleating particle concentrations that prevail over the Southern Ocean strongly suppress cloud droplet freezing, reduce precipitation, and enhance cloud reflectivity. The results help explain why a strong radiation bias occurs mainly in this remote region away from major sources of ice-nucleating particles. The results present a substantial challenge to climate models to be able to simulate realistic ice-nucleating particle concentrations and their effects under specific meteorological conditions. PMID:29490918
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchard, Yann; Royer, Alain; O'Neill, Norman T.
Multiband downwelling thermal measurements of zenith sky radiance, along with cloud boundary heights, were used in a retrieval algorithm to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. Ground-based thermal infrared (IR) radiances for 150 semitransparent ice clouds cases were acquired at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of downwelling thermal radiance to several cloud parameters including optical depth, effective particle diameter and shape, water vapor content, cloud geometric thickness and cloud base altitude. A lookupmore » table retrieval method was used to successfully extract, through an optimal estimation method, cloud optical depth up to a maximum value of 2.6 and to separate thin ice clouds into two classes: (1) TIC1 clouds characterized by small crystals (effective particle diameter ≤ 30 µm), and (2) TIC2 clouds characterized by large ice crystals (effective particle diameter > 30 µm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave Cloud Radar (MMCR). Inversions were performed over three polar winters and results showed a significant correlation ( R 2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 clouds. A partial validation relative to an algorithm based on high spectral resolution downwelling IR radiance measurements between 8 and 21µm was also performed. It confirms the robustness of the optical depth retrieval and the fact that the broadband thermal radiometer retrieval was sensitive to small particle (TIC1) sizes.« less
NASA Astrophysics Data System (ADS)
Blanchard, Yann; Royer, Alain; O'Neill, Norman T.; Turner, David D.; Eloranta, Edwin W.
2017-06-01
Multiband downwelling thermal measurements of zenith sky radiance, along with cloud boundary heights, were used in a retrieval algorithm to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. Ground-based thermal infrared (IR) radiances for 150 semitransparent ice clouds cases were acquired at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of downwelling thermal radiance to several cloud parameters including optical depth, effective particle diameter and shape, water vapor content, cloud geometric thickness and cloud base altitude. A lookup table retrieval method was used to successfully extract, through an optimal estimation method, cloud optical depth up to a maximum value of 2.6 and to separate thin ice clouds into two classes: (1) TIC1 clouds characterized by small crystals (effective particle diameter ≤ 30 µm), and (2) TIC2 clouds characterized by large ice crystals (effective particle diameter > 30 µm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave Cloud Radar (MMCR). Inversions were performed over three polar winters and results showed a significant correlation (R2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 clouds. A partial validation relative to an algorithm based on high spectral resolution downwelling IR radiance measurements between 8 and 21 µm was also performed. It confirms the robustness of the optical depth retrieval and the fact that the broadband thermal radiometer retrieval was sensitive to small particle (TIC1) sizes.
Blanchard, Yann; Royer, Alain; O'Neill, Norman T.; ...
2017-06-09
Multiband downwelling thermal measurements of zenith sky radiance, along with cloud boundary heights, were used in a retrieval algorithm to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. Ground-based thermal infrared (IR) radiances for 150 semitransparent ice clouds cases were acquired at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of downwelling thermal radiance to several cloud parameters including optical depth, effective particle diameter and shape, water vapor content, cloud geometric thickness and cloud base altitude. A lookupmore » table retrieval method was used to successfully extract, through an optimal estimation method, cloud optical depth up to a maximum value of 2.6 and to separate thin ice clouds into two classes: (1) TIC1 clouds characterized by small crystals (effective particle diameter ≤ 30 µm), and (2) TIC2 clouds characterized by large ice crystals (effective particle diameter > 30 µm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave Cloud Radar (MMCR). Inversions were performed over three polar winters and results showed a significant correlation ( R 2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 clouds. A partial validation relative to an algorithm based on high spectral resolution downwelling IR radiance measurements between 8 and 21µm was also performed. It confirms the robustness of the optical depth retrieval and the fact that the broadband thermal radiometer retrieval was sensitive to small particle (TIC1) sizes.« less
NASA Technical Reports Server (NTRS)
Heymsfield, Andrew J.; Bansemer, Aaron; Field, Paul R.; Durden, Stephen L.; Stith, Jeffrey L.; Dye, James E.; Hall, William; Grainger, Cedric A.
2002-01-01
In this study, we report on the evolution of particle size distributions (PSDs) and habits as measured during slow, Lagrangian-type spiral descents through deep subtropical and tropical cloud layers in Florida, Brazil, and Kwajalein, Marshall Islands, most of which were precipitating. The objective of the flight patterns was to learn more about how the PSDs evolved in the vertical and to obtain information of the vertical structure of microphysical properties. New instrumentation yielding better information on the concentrations of particles in the size (D) range between 0.2 and 2 cm, as well as improved particle imagery, produced more comprehensive observations for tropical stratiform precipitation regions and anvils than have been available previously. Collocated radar observations provided additional information on the vertical structure of the cloud layers sampled. Most of the spirals began at cloud top, with temperatures (T) as low as -50 C, and ended at cloud base or below the melting layer (ML). The PSDs broadened from cloud top towards cloud base, with the largest particles increasing in size from several millimeters at cloud top to one centimeter or larger towards cloud base. Some continued growth was noted in the upper part of the ML. Concentrations of particles less than 1 mm in size decreased with decreasing height. The result was a consistent change in the PSDs in the vertical. Similarly, systematic changes in the size dependence of the particle cross-sectional area was noted with decreasing height. Aggregation-as ascertained from both the changes in the PSDs and evolution of particle habits as observed in high detail with the cloud particle imager (CPI) probe-was responsible for these trends. The PSDs were generally well-represented by gamma distributions of the form N = N0 gamma D microns e- lambda gamma D that were fitted to the PSDs over 1-km horizontal intervals throughout the spirals. The intercept (N0 gamma), slope (lambda gamma), and dispersion (microns) values were derived for each PSD. Exponential curves (N = N0e- lambdaD; micron = 0) were also fitted to the distributions. The lambda gamma values for given spirals varied systematically with temperature as did the values of lambda (exponential), and the data generally conformed to values found in previous studies involving exponential fits to size distributions in mid-latitude frontal and cirrus layers. Considerable variability often noted in the PSD properties during the loops of individual spirals was manifested primarily in large changes in N0 gamma and N0, but micron, lambda gamma and lambda remained fairly stable. Temperature is not found to be the sole factor controlling lambda gamma or lambda but is a primary one. Direct relationships were found between lambda gamma and N0 gamma or lambda gamma and micron for the gamma distributions and lambda and N0 for the exponential. The latter relationship was not found as distinctly in earlier studies; observed PSDs in this study had better fidelity with less scatter. The micron values changed monotonically with T over the range of temperatures and were directly related to N0 gamma or lambda gamma, thereby reducing the number of variables in the PSD functional equation to two. In the upper part of the ML, N0 and lambda continued to decrease, and in the lower part these values began to increase as the largest particles melted. We developed general expressions relating various bulk microphysical, radar, and radiative transfer-related variables to N0 gamma and lambda gamma, useful for both tropical and mid-latitude clouds. These relationships facilitate the specification of a number of bulk properties in cloud and climate models. The results presented in this paper apply best to temperatures between 0 and -40 C, for which the measured radar reflectivities fall in the range of 0 to 25 dBZe.
Japan's research on particle clouds and sprays
NASA Technical Reports Server (NTRS)
Sato, Jun'ichi
1995-01-01
Most of energy used by us is generated by combustion of liquid and solid fuels. These fuels are burned in combustors mainly as liquid sprays and pulverized solids, respectively. A knowledge of the combustion processes in combustors is needed to achieve proper designs that have stable operation, high efficiency, and low emission levels. However, current understanding of liquid and solid particle cloud combustion is far from complete. If combustion experiments for these fuels are performed under a normal gravity field, some experimental difficulties are encountered. These difficulties encountered include, that since the particles fall by the force of gravity it is impossible to stop the particles in the air, the falling speeds of particles are different from each other, and are depend on the particle size, the flame is lifted up and deformed by the buoyancy force, and natural convection makes the flow field more complex. Since these experimental difficulties are attributable to the gravity force, a microgravity field can eliminate the above problems. This means that the flame propagation experiments in static homogeneous liquid and solid particle clouds can be carried out under a microgravity field. This will provide much information for the basic questions related to combustion processes of particle clouds and sprays. In Japan, flame propagation processes in the combustible liquid and solid particle clouds have been studied experimentally by using a microgravity field generated by a 4.5 s dropshaft, a 10 s dropshaft, and by parabolic flight. Described in this presentation are the recent results of flame propagations studies in a homogeneous liquid particle cloud, in a mixture of liquid particles/gas fuel/air, in a PMMA particle cloud, and in a pulverized coal particle cloud.
Ice Particle Impact on Cloud Water Content Instrumentation
NASA Technical Reports Server (NTRS)
Emery, Edward F.; Miller, Dean R.; Plaskon, Stephen R.; Strapp, Walter; Lillie, Lyle
2004-01-01
Determining the total amount of water contained in an icing cloud necessitates the measurement of both the liquid droplets and ice particles. One commonly accepted method for measuring cloud water content utilizes a hot wire sensing element, which is maintained at a constant temperature. In this approach, the cloud water content is equated with the power required to keep the sense element at a constant temperature. This method inherently assumes that impinging cloud particles remain on the sensing element surface long enough to be evaporated. In the case of ice particles, this assumption requires that the particles do not bounce off the surface after impact. Recent tests aimed at characterizing ice particle impact on a thermally heated wing section, have raised questions about the validity of this assumption. Ice particles were observed to bounce off the heated wing section a very high percentage of the time. This result could have implications for Total Water Content sensors which are designed to capture ice particles, and thus do not account for bouncing or breakup of ice particles. Based on these results, a test was conducted to investigate ice particle impact on the sensing elements of the following hot-wire cloud water content probes: (1) Nevzorov Total Water Content (TWC)/Liquid Water Content (LWC) probe, (2) Science Engineering Associates TWC probe, and (3) Particle Measuring Systems King probe. Close-up video imaging was used to study ice particle impact on the sensing element of each probe. The measured water content from each probe was also determined for each cloud condition. This paper will present results from this investigation and attempt to evaluate the significance of ice particle impact on hot-wire cloud water content measurements.
NASA Astrophysics Data System (ADS)
Ohno, Kazumasa; Okuzumi, Satoshi
2018-05-01
The ubiquity of clouds in the atmospheres of exoplanets, especially of super-Earths, is one of the outstanding issues for the transmission spectra survey. Understanding the formation process of clouds in super-Earths is necessary to interpret the observed spectra correctly. In this study, we investigate the vertical distributions of particle size and mass density of mineral clouds in super-Earths using a microphysical model that takes into account the vertical transport and growth of cloud particles in a self-consistent manner. We demonstrate that the vertical profiles of mineral clouds significantly vary with the concentration of cloud condensation nuclei and atmospheric metallicity. We find that the height of the cloud top increases with increasing metallicity as long as the metallicity is lower than the threshold. If the metallicity is larger than the threshold, the cloud-top height no longer increases appreciably with metallicity because coalescence yields larger particles of higher settling velocities. We apply our cloud model to GJ1214 b and GJ436 b, for which recent transmission observations suggest the presence of high-altitude opaque clouds. For GJ436 b, we show that KCl particles can ascend high enough to explain the observation. For GJ1214 b, by contrast, the height of KCl clouds predicted from our model is too low to explain its flat transmission spectrum. Clouds made of highly porous KCl particles could explain the observations if the atmosphere is highly metal-rich, and hence the particle microstructure might be a key to interpret the flat spectrum of GJ1214 b.
Particle cloud mixing in microgravity
NASA Technical Reports Server (NTRS)
Ross, H.; Facca, L.; Tangirala, V.; Berlad, A. L.
1989-01-01
Quasi-steady flame propagation through clouds of combustible particles requires quasi-steady transport properties and quasi-steady particle number density. Microgravity conditions may be employed to help achieve the conditions of quiescent, uniform clouds needed for such combustion studies. Joint experimental and theoretical NASA-UCSD studies were concerned with the use of acoustic, electrostatic, and other methods of dispersion of fuel particulates. Results of these studies are presented for particle clouds in long cylindrical tubes.
The local environment of ice particles in arctic mixed-phase clouds
NASA Astrophysics Data System (ADS)
Schlenczek, Oliver; Fugal, Jacob P.; Schledewitz, Waldemar; Borrmann, Stephan
2015-04-01
During the RACEPAC field campaign in April and May 2014, research flights were made with the Polar 5 and Polar 6 aircraft from the Alfred Wegener Institute in Arctic clouds near Inuvik, Northwest Territories, Canada. One flight with the Polar 6 aircraft, done on May 16, 2014, flew under precipitating, stratiform, mid-level clouds with several penetrations through cloud base. Measurements with HALOHolo, an airborne digital in-line holographic instrument for cloud particles, show ice particles in a field of other cloud particles in a local three-dimensional sample volume (~14x19x130 mm3 or ~35 cm^3). Each holographic sample volume is a snapshot of a 3-dimensional piece of cloud at the cm-scale with typically thousands of cloud droplets per sample volume, so each sample volume yields a statistically significant droplet size distribution. Holograms are recorded at a rate of six times per second, which provides one volume sample approx. every 12 meters along the flight path. The size resolution limit for cloud droplets is better than 1 µm due to advanced sizing algorithms. Shown are preliminary results of, (1) the ice/liquid water partitioning at the cloud base and the distribution of water droplets around each ice particle, and (2) spatial and temporal variability of the cloud droplet size distributions at cloud base.
Cloud-In-Cell modeling of shocked particle-laden flows at a ``SPARSE'' cost
NASA Astrophysics Data System (ADS)
Taverniers, Soren; Jacobs, Gustaaf; Sen, Oishik; Udaykumar, H. S.
2017-11-01
A common tool for enabling process-scale simulations of shocked particle-laden flows is Eulerian-Lagrangian Particle-Source-In-Cell (PSIC) modeling where each particle is traced in its Lagrangian frame and treated as a mathematical point. Its dynamics are governed by Stokes drag corrected for high Reynolds and Mach numbers. The computational burden is often reduced further through a ``Cloud-In-Cell'' (CIC) approach which amalgamates groups of physical particles into computational ``macro-particles''. CIC does not account for subgrid particle fluctuations, leading to erroneous predictions of cloud dynamics. A Subgrid Particle-Averaged Reynolds-Stress Equivalent (SPARSE) model is proposed that incorporates subgrid interphase velocity and temperature perturbations. A bivariate Gaussian source distribution, whose covariance captures the cloud's deformation to first order, accounts for the particles' momentum and energy influence on the carrier gas. SPARSE is validated by conducting tests on the interaction of a particle cloud with the accelerated flow behind a shock. The cloud's average dynamics and its deformation over time predicted with SPARSE converge to their counterparts computed with reference PSIC models as the number of Gaussians is increased from 1 to 16. This work was supported by AFOSR Grant No. FA9550-16-1-0008.
Chemical composition and mixing-state of ice residuals sampled within mixed phase clouds
NASA Astrophysics Data System (ADS)
Ebert, M.; Worringen, A.; Benker, N.; Mertes, S.; Weingartner, E.; Weinbruch, S.
2010-10-01
During an intensive campaign at the high alpine research station Jungfraujoch, Switzerland, in February/March 2006 ice particle residuals within mixed-phase clouds were sampled using the Ice-counterflow virtual impactor (Ice-CVI). Size, morphology, chemical composition, mineralogy and mixing state of the ice residual and the interstitial (i.e., non-activated) aerosol particles were analyzed by scanning and transmission electron microscopy. Ice nuclei (IN) were identified from the significant enrichment of particle groups in the ice residual (IR) samples relative to the interstitial aerosol. In terms of number lead-bearing particles are enriched by a factor of approximately 25, complex internal mixtures with silicates or metal oxides as major components by a factor of 11, and mixtures of secondary aerosol and soot (C-O-S particles) by a factor of 2. Other particle groups (sulfates, sea salt, Ca-rich particles, external silicates) observed in the ice-residual samples cannot be assigned unambiguously as IN. Between 9 and 24% of all IR are Pb-bearing particles. Pb was found as major component in around 10% of these particles (PbO, PbCl2). In the other particles, Pb was found as some 100 nm sized agglomerates consisting of 3-8 nm sized primary particles (PbS, elemental Pb). C-O-S particles are present in the IR at an abundance of 17-27%. The soot component within these particles is strongly aged. Complex internal mixtures occur in the IR at an abundance of 9-15%. Most IN identified at the Jungfraujoch station are internal mixtures containing anthropogenic components (either as main or minor constituent), and it is concluded that admixture of the anthropogenic component is responsible for the increased IN efficiency within mixed phase clouds. The mixing state appears to be a key parameter for the ice nucleation behaviour that cannot be predicted from the separate components contained within the individual particles.
NASA Technical Reports Server (NTRS)
Jasperson, W. H.; Nastrom, G. D.; Davis, R. E.; Holdeman, J. D.
1984-01-01
Summary studies are presented for the entire cloud observation archieve from the NASA Global Atmospheric Sampling Program (GASP). Studies are also presented for GASP particle concentration data gathered concurrently with the cloud observations. Cloud encounters are shown on about 15 percent of the data samples overall, but the probability of cloud encounter is shown to vary significantly with altitude, latitude, and distance from the tropopause. Several meteorological circulation features are apparent in the latitudinal distribution of cloud cover, and the cloud encounter statistics are shown to be consistent with the classical mid-latitude cyclone model. Observations of clouds spaced more closely than 90 minutes are shown to be statistically dependent. The statistics for cloud and particle encounter are utilized to estimate the frequency of cloud encounter on long range airline routes, and to assess the probability and extent of laminar flow loss due to cloud or particle encounter by aircraft utilizing laminar flow control (LFC). It is shown that the probability of extended cloud encounter is too low, of itself, to make LFC impractical.
NASA Astrophysics Data System (ADS)
Simmel, Martin; Bühl, Johannes; Ansmann, Albert; Tegen, Ina
2014-05-01
Over Leipzig, altocumulus clouds are frequently observed using a suite of remote sensing instruments. These observations cover a wide range of heights, temperatures, and microphysical properties of the clouds ranging from purely liquid to heavily frozen. For the current study, two cases were chosen to test the sensitivity of these clouds with respect to several microphysical and dynamical parameters such as aerosol properties (CCN, IN), ice particle shape as well as turbulence. The mixed-phase spectral microphysical model SPECS was coupled to a dynamical model of the Asai-Kasahara type resulting in the model system AK-SPECS. The relatively simple dynamics allows for a fine vertical resolution needed for the rather shallow cloud layers observed. Additionally, the proper description of hydrometeor sedimentation is important especially for the fast growing ice crystals to realistically capture their interaction with the vapour and liquid phase (Bergeron-Findeisen process). Since the focus is on the cloud microphysics, the dynamics in terms of vertical velocity profile is prescribed for the model runs and the feedback of the microphysics on dynamics by release or consumption of latent heat due to phase transfer is not taken into account. The microphysics focuses on (1) ice particle shape allowing hexagonal plates and columns with size-dependant axis ratios and (2) the ice nuclei (IN) budget realized with a prognostic temperature resolved field of potential IN allowing immersion freezing only when active IN and supercooled drops above a certain size threshold are present within a grid cell. Sensitivity studies show for both cases that ice particle shape seems to have the major influence on ice mass formation under otherwise identical conditions. This is due to the effect (1) on terminal fall velocity of the individual ice particle allowing for longer presence times in conditions supersaturated with respect to ice and (2) on water vapour deposition which is enhanced due to increased capacitance because of deviation from the spherical shape.
NASA Technical Reports Server (NTRS)
Jensen, Eric J.; Tabazadeh, Azadeh; Drdla, Katja; Toon, Owen B.; Gore, Warren J. (Technical Monitor)
2000-01-01
Recent satellite and in situ measurements have indicated that limited denitrification can occur in the Arctic stratosphere. In situ measurements from the SOLVE campaign indicate polar stratospheric clouds (PSCs) composed of small numbers (about 3 x 10^ -4 cm^-3) of 10-20 micron particles (probably NAT or NAD). These observations raise the issue of whether low number density NAT PSCs can substantially denitrify the air with reasonable cloud lifetimes. In this study, we use a one dimensional cloud model to investigate the verticle redistribution of HNO3 by NAT/NAD PSCs. The cloud formation is driven by a temperature oscillation which drops the temperature below the NAT/NAD formation threshold (about 195 K) for a few days. We assume that a small fraction of the available aerosols act as NAT nuclei when the saturation ratio of HNO3 over NAT(NAD) exceeds 10(l.5). The result is a cloud between about 16 and 20 km in the model, with NAT/NAD particle effective radii as large as about 10 microns (in agreement with the SOLVE data). We find that for typical cloud lifetimes of 2-3 days or less, the net depletion of HNO3 is no more than 1-2 ppbv, regardless of the NAT or NAD particle number density. Repeated passes of the air column through the cold pool build up the denitrification to 3-4 ppbv, and the cloud altitude steadily decreases due to the downward transport of nitric acid. Increasing the cloud lifetime results in considerably more effective denitrification, even with very low cloud particle number densities. As expected, the degree of denitrification by NAT clouds is much larger than that by NAD Clouds. Significant denitrification by NAD Clouds is only possible if the cloud lifetime is several days or more. The clouds also cause a local maximum HNO3 mixing ratio at cloud base where the cloud particles sublimate.
Occurrence of lower cloud albedo in ship tracks
NASA Astrophysics Data System (ADS)
Chen, Y.-C.; Christensen, M. W.; Xue, L.; Sorooshian, A.; Stephens, G. L.; Rasmussen, R. M.; Seinfeld, J. H.
2012-09-01
The concept of geoengineering by marine cloud brightening is based on seeding marine stratocumulus clouds with sub-micrometer sea-salt particles to enhance the cloud droplet number concentration and cloud albedo, thereby producing a climate cooling effect. The efficacy of this as a strategy for global cooling rests on the extent to which aerosol-perturbed marine clouds will respond with increased albedo. Ship tracks, quasi-linear cloud features prevalent in oceanic regions impacted by ship exhaust, are a well-known manifestation of the effect of aerosol injection on marine clouds. We present here an analysis of the albedo responses in ship tracks, based on in situ aircraft measurements and three years of satellite observations of 589 individual ship tracks. It is found that the sign (increase or decrease) and magnitude of the albedo response in ship tracks depends on the mesoscale cloud structure, the free tropospheric humidity, and cloud top height. In a closed cell structure (cloud cells ringed by a perimeter of clear air), nearly 30% of ship tracks exhibited a decreased albedo. Detailed cloud responses must be accounted for in global studies of the potential efficacy of sea-spray geoengineering as a means to counteract global warming.
NASA Astrophysics Data System (ADS)
Boone, E.; Laskin, J.; Laskin, A.; Wirth, C.; Shepson, P. B.; Stirm, B. H.; Pratt, K.
2014-12-01
Organic compounds comprise a significant mass fraction of submicron atmospheric particles with considerable contribution from secondary organic aerosol (SOA), a large fraction of which is formed from the oxidation of biogenic volatile organic compounds. Aqueous-phase reactions in particles and cloud droplets are suggested to increase SOA mass and change the chemical composition the particles following cloud evaporation. Aqueous-phase processing may also explain discrepancies between measurements and models. To gain a better understanding of these processes, cloud water and below-cloud atmospheric particles were collected onboard a research aircraft during the Southeast Oxidants and Aerosol Study (SOAS) over Alabama in June 2013. Nanospray desorption electrospray ionization (nano-DESI) and direct electrospray ionization (ESI) coupled with high resolution mass spectrometry were utilized to compare the organic molecular composition of the particle and cloud water samples, respectively. Several hundred unique compounds have been identified in the particle and cloud water samples, allowing possible aqueous-phase reactions to be examined. Hydrolysis of organosulfate compounds, aqueous-phase formation of nitrogen-containing compounds, and possible fragmentation of oligomeric compounds will be discussed, with comparisons to previous laboratory studies. This study provides insights into aqueous-phase reactions in ambient cloud droplets.
AP-Cloud: Adaptive particle-in-cloud method for optimal solutions to Vlasov–Poisson equation
Wang, Xingyu; Samulyak, Roman; Jiao, Xiangmin; ...
2016-04-19
We propose a new adaptive Particle-in-Cloud (AP-Cloud) method for obtaining optimal numerical solutions to the Vlasov–Poisson equation. Unlike the traditional particle-in-cell (PIC) method, which is commonly used for solving this problem, the AP-Cloud adaptively selects computational nodes or particles to deliver higher accuracy and efficiency when the particle distribution is highly non-uniform. Unlike other adaptive techniques for PIC, our method balances the errors in PDE discretization and Monte Carlo integration, and discretizes the differential operators using a generalized finite difference (GFD) method based on a weighted least square formulation. As a result, AP-Cloud is independent of the geometric shapes ofmore » computational domains and is free of artificial parameters. Efficient and robust implementation is achieved through an octree data structure with 2:1 balance. We analyze the accuracy and convergence order of AP-Cloud theoretically, and verify the method using an electrostatic problem of a particle beam with halo. Here, simulation results show that the AP-Cloud method is substantially more accurate and faster than the traditional PIC, and it is free of artificial forces that are typical for some adaptive PIC techniques.« less
Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles.
Vergara-Temprado, Jesús; Miltenberger, Annette K; Furtado, Kalli; Grosvenor, Daniel P; Shipway, Ben J; Hill, Adrian A; Wilkinson, Jonathan M; Field, Paul R; Murray, Benjamin J; Carslaw, Ken S
2018-03-13
Large biases in climate model simulations of cloud radiative properties over the Southern Ocean cause large errors in modeled sea surface temperatures, atmospheric circulation, and climate sensitivity. Here, we combine cloud-resolving model simulations with estimates of the concentration of ice-nucleating particles in this region to show that our simulated Southern Ocean clouds reflect far more radiation than predicted by global models, in agreement with satellite observations. Specifically, we show that the clouds that are most sensitive to the concentration of ice-nucleating particles are low-level mixed-phase clouds in the cold sectors of extratropical cyclones, which have previously been identified as a main contributor to the Southern Ocean radiation bias. The very low ice-nucleating particle concentrations that prevail over the Southern Ocean strongly suppress cloud droplet freezing, reduce precipitation, and enhance cloud reflectivity. The results help explain why a strong radiation bias occurs mainly in this remote region away from major sources of ice-nucleating particles. The results present a substantial challenge to climate models to be able to simulate realistic ice-nucleating particle concentrations and their effects under specific meteorological conditions. Copyright © 2018 the Author(s). Published by PNAS.
AP-Cloud: Adaptive Particle-in-Cloud method for optimal solutions to Vlasov–Poisson equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xingyu; Samulyak, Roman, E-mail: roman.samulyak@stonybrook.edu; Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973
We propose a new adaptive Particle-in-Cloud (AP-Cloud) method for obtaining optimal numerical solutions to the Vlasov–Poisson equation. Unlike the traditional particle-in-cell (PIC) method, which is commonly used for solving this problem, the AP-Cloud adaptively selects computational nodes or particles to deliver higher accuracy and efficiency when the particle distribution is highly non-uniform. Unlike other adaptive techniques for PIC, our method balances the errors in PDE discretization and Monte Carlo integration, and discretizes the differential operators using a generalized finite difference (GFD) method based on a weighted least square formulation. As a result, AP-Cloud is independent of the geometric shapes ofmore » computational domains and is free of artificial parameters. Efficient and robust implementation is achieved through an octree data structure with 2:1 balance. We analyze the accuracy and convergence order of AP-Cloud theoretically, and verify the method using an electrostatic problem of a particle beam with halo. Simulation results show that the AP-Cloud method is substantially more accurate and faster than the traditional PIC, and it is free of artificial forces that are typical for some adaptive PIC techniques.« less
AP-Cloud: Adaptive particle-in-cloud method for optimal solutions to Vlasov–Poisson equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xingyu; Samulyak, Roman; Jiao, Xiangmin
We propose a new adaptive Particle-in-Cloud (AP-Cloud) method for obtaining optimal numerical solutions to the Vlasov–Poisson equation. Unlike the traditional particle-in-cell (PIC) method, which is commonly used for solving this problem, the AP-Cloud adaptively selects computational nodes or particles to deliver higher accuracy and efficiency when the particle distribution is highly non-uniform. Unlike other adaptive techniques for PIC, our method balances the errors in PDE discretization and Monte Carlo integration, and discretizes the differential operators using a generalized finite difference (GFD) method based on a weighted least square formulation. As a result, AP-Cloud is independent of the geometric shapes ofmore » computational domains and is free of artificial parameters. Efficient and robust implementation is achieved through an octree data structure with 2:1 balance. We analyze the accuracy and convergence order of AP-Cloud theoretically, and verify the method using an electrostatic problem of a particle beam with halo. Here, simulation results show that the AP-Cloud method is substantially more accurate and faster than the traditional PIC, and it is free of artificial forces that are typical for some adaptive PIC techniques.« less
NASA Astrophysics Data System (ADS)
Nachman, Paul; Pinnick, R. G.; Hill, Steven C.; Chen, Gang; Chang, Richard K.; Mayo, Michael W.; Fernandez, Gilbert L.
1996-03-01
We report the design and operation of a prototype conditional-sampling spectrograph detection system that can record the fluorescence spectra of individual, micrometer-sized aerosols as they traverse an intense 488-nm intracavity laser beam. The instrument's image-intensified CCD detector is gated by elastic scattering or by undispersed fluorescence from particles that enter the spectrograph's field of view. It records spectra only from particles with preselected scattering-fluorescence levels (a fiber-optic-photomultiplier subsystem provides the gating signal). This conditional-sampling procedure reduces data-handling rates and increases the signal-to-noise ratio by restricting the system's exposures to brief periods when aerosols traverse the beam. We demonstrate these advantages by reliably capturing spectra from individual fluorescent microspheres dispersed in an airstream. The conditional-sampling procedure also permits some discrimination among different types of particles, so that spectra may be recorded from the few interesting particles present in a cloud of background aerosol. We demonstrate such discrimination by measuring spectra from selected fluorescent microspheres in a mixture of two types of microspheres, and from bacterial spores in a mixture of spores and nonfluorescent kaolin particles.
Remote sensing of smoke, clouds, and fire using AVIRIS data
NASA Technical Reports Server (NTRS)
Gao, Bo-Cai; Kaufman, Yorman J.; Green, Robert O.
1993-01-01
Clouds remain the greatest element of uncertainty in predicting global climate change. During deforestation and biomass burning processes, a variety of atmospheric gases, including CO2 and SO2, and smoke particles are released into the atmosphere. The smoke particles can have important effects on the formation of clouds because of the increased concentration of cloud condensation nuclei. They can also affect cloud albedo through changes in cloud microphysical properties. Recently, great interest has arisen in understanding the interaction between smoke particles and clouds. We describe our studies of smoke, clouds, and fire using the high spatial and spectral resolution data acquired with the NASA/JPL Airborne Visible/Infrared Imaging Spectrometer (AVIRIS).
A cloud/particle model of the interstellar medium - Galactic spiral structure
NASA Technical Reports Server (NTRS)
Levinson, F. H.; Roberts, W. W., Jr.
1981-01-01
A cloud/particle model for gas flow in galaxies is developed that incorporates cloud-cloud collisions and supernovae as dominant local processes. Cloud-cloud collisions are the main means of dissipation. To counter this dissipation and maintain local dispersion, supernova explosions in the medium administer radial snowplow pushes to all nearby clouds. The causal link between these processes is that cloud-cloud collisions will form stars and that these stars will rapidly become supernovae. The cloud/particle model is tested and used to investigate the gas dynamics and spiral structures in galaxies where these assumptions may be reasonable. Particular attention is given to whether large-scale galactic shock waves, which are thought to underlie the regular well-delineated spiral structure in some galaxies, form and persist in a cloud-supernova dominated interstellar medium; this question is answered in the affirmative.
NASA Astrophysics Data System (ADS)
Wobrock, Wolfram; Flossmann, Andrea I.; Monier, Marie; Pichon, Jean-Marc; Cortez, Laurent; Fournol, Jean-François; Schwarzenböck, Alfons; Mertes, Stephan; Heintzenberg, Jost; Laj, Paolo; Orsi, Giordano; Ricci, Loretta; Fuzzi, Sandro; Brink, Harry Ten; Jongejan, Piet; Otjes, René
The second field campaign of the Cloud Ice Mountain Experiment (CIME) project took place in February 1998 on the mountain Puy de Dôme in the centre of France. The content of residual aerosol particles, of H 2O 2 and NH 3 in cloud droplets was evaluated by evaporating the drops larger than 5 μm in a Counterflow Virtual Impactor (CVI) and by measuring the residual particle concentration and the released gas content. The same trace species were studied behind a round jet impactor for the complementary interstitial aerosol particles smaller than 5 μm diameter. In a second step of experiments, the ambient supercooled cloud was converted to a mixed phase cloud by seeding the cloud with ice particles by the gas release from pressurised gas bottles. A comparison between the physical and chemical characteristics of liquid drops and ice particles allows a study of the fate of the trace constituents during the presence of ice crystals in the cloud. In the present paper, an overview is given of the CIME 98 experiment and the instrumentation deployed. The meteorological situation during the experiment was analysed with the help of a cloud scale model. The microphysics processes and the behaviour of the scavenged aerosol particles before and during seeding are analysed with the detailed microphysical model ExMix. The simulation results agreed well with the observations and confirmed the assumption that the Bergeron-Findeisen process was dominating during seeding and was influencing the partitioning of aerosol particles between drops and ice crystals. The results of the CIME 98 experiment give an insight on microphysical changes, redistribution of aerosol particles and cloud chemistry during the Bergeron-Findeisen process when acting also in natural clouds.
The Hygroscopicity Parameter of Marine Organics in Sea Spray Aerosols
NASA Astrophysics Data System (ADS)
Boyer, M.; Chang, R. Y. W.
2015-12-01
The effects of aerosols on climate are poorly understood, specifically with respect to their influence on cloud properties. Since oceans cover >70% of Earth's surface, sea spray aerosols (SSA), which act efficiently as cloud condensation nuclei (CCN), may have important implications on Earth's radiation budget. Surface active organic species readily accumulate in the sea surface microlayer (SML), located at the ocean-atmosphere interface, and transfer onto nascent SSA. While it is understood that SSA are commonly enriched with organics, the resulting effect of the organic content on CCN activation remains unresolved. The hygroscopicity parameter, kappa (k), allows for the cloud nucleating properties of individual components to be predicted in particles of mixed composition; however, most studies typically infer k from ambient measurements without assessing the contribution of the individual components to the overall k. In this study, a method for quantifying the cloud nucleating properties of the organic species in surface seawater using k-Kohler theory is proposed. Ambient SML and bulk water samples will be collected and atomized to generate particles such that the overall k can be inferred from CCN measurements. The inorganic and organic components will be quantified, and the organic component will be separated so that the hygroscopicity of only the organic constituents can be determined. By comparing the inferred k values for the samples before and after removal of the inorganic component, the hygroscopicity of the organic constituents alone can be calculated, providing insight on the effect of organic species on CCN activation in SSA.
A new airborne sampler for interstitial particles in ice and liquid clouds
NASA Astrophysics Data System (ADS)
Moharreri, A.; Craig, L.; Rogers, D. C.; Brown, M.; Dhaniyala, S.
2011-12-01
In-situ measurements of cloud droplets and aerosols using aircraft platforms are required for understanding aerosol-cloud processes and aiding development of improved aerosol-cloud models. A variety of clouds with different temperature ranges and cloud particle sizes/phases must be studied for comprehensive knowledge about the role of aerosols in the formation and evolution of cloud systems under different atmospheric conditions. While representative aerosol measurements are regularly made from aircrafts under clear air conditions, aerosol measurements in clouds are often contaminated by the generation of secondary particles from the high speed impaction of ice particles and liquid droplets on the surfaces of the aircraft probes/inlets. A new interstitial particle sampler, called the blunt-body aerosol sampler (BASE) has been designed and used for aerosol sampling during two recent airborne campaigns using NCAR/NSF C-130 aircraft: PLOWS (2009-2010) and ICE-T (2011). Central to the design of the new interstitial inlet is an upstream blunt body housing that acts to shield/deflect large cloud droplets and ice particles from an aft sampling region. The blunt-body design also ensures that small shatter particles created from the impaction of cloud-droplets on the blunt-body are not present in the aft region where the interstitial inlet is located. Computational fluid dynamics (CFD) simulations along with particle transport modeling and wind tunnel studies have been utilized in different stages of design and development of this inlet. The initial flights tests during the PLOWS campaign showed that the inlet had satisfactory performance only in warm clouds and when large precipitation droplets were absent. In the presence of large droplets and ice, the inlet samples were contaminated with significant shatter artifacts. These initial results were reanalyzed in conjunction with a computational droplet shatter model and the numerical results were used to arrive at an improved sampler design. Analysis of the data from the recent ICE-T campaign with the improved sampler design shows that the modified version of BASE can provide shatter-artifact free sampling of aerosol particles in the presence of ice particles and significantly reduced shatter artifacts in warm clouds. Detailed design and modeling aspects of the sampler will be discussed and the sampler performance in warm and cold clouds will be presented and compared with measurements made using other aerosol inlets flown on the NCAR/NSF C-130 aircraft.
Sanchez, Kevin J; Chen, Chia-Li; Russell, Lynn M; Betha, Raghu; Liu, Jun; Price, Derek J; Massoli, Paola; Ziemba, Luke D; Crosbie, Ewan C; Moore, Richard H; Müller, Markus; Schiller, Sven A; Wisthaler, Armin; Lee, Alex K Y; Quinn, Patricia K; Bates, Timothy S; Porter, Jack; Bell, Thomas G; Saltzman, Eric S; Vaillancourt, Robert D; Behrenfeld, Mike J
2018-02-19
Biogenic sources contribute to cloud condensation nuclei (CCN) in the clean marine atmosphere, but few measurements exist to constrain climate model simulations of their importance. The chemical composition of individual atmospheric aerosol particles showed two types of sulfate-containing particles in clean marine air masses in addition to mass-based Estimated Salt particles. Both types of sulfate particles lack combustion tracers and correlate, for some conditions, to atmospheric or seawater dimethyl sulfide (DMS) concentrations, which means their source was largely biogenic. The first type is identified as New Sulfate because their large sulfate mass fraction (63% sulfate) and association with entrainment conditions means they could have formed by nucleation in the free troposphere. The second type is Added Sulfate particles (38% sulfate), because they are preexisting particles onto which additional sulfate condensed. New Sulfate particles accounted for 31% (7 cm -3 ) and 33% (36 cm -3 ) CCN at 0.1% supersaturation in late-autumn and late-spring, respectively, whereas sea spray provided 55% (13 cm -3 ) in late-autumn but only 4% (4 cm -3 ) in late-spring. Our results show a clear seasonal difference in the marine CCN budget, which illustrates how important phytoplankton-produced DMS emissions are for CCN in the North Atlantic.
Effects of cirrus composition on atmospheric radiation budgets
NASA Technical Reports Server (NTRS)
Kinne, Stefan; Liou, Kuo-Nan
1988-01-01
A radiative transfer model that can be used to determine the change in solar and infrared fluxes caused by variations in the composition of cirrus clouds was used to investigate the importance of particle size and shape on the radiation budget of the Earth-atmosphere system. Even though the cloud optical thickness dominates the radiative properties of ice clouds, the particle size and nonsphericity of ice crystals are also important in calculations of the transfer of near-IR solar wavelengths. Results show that, for a given optical thickness, ice clouds composed of larger particles would produce larger greenhouse effects than those composed of smaller particles. Moreover, spherical particles with equivalent surface areas, frequently used for ice crystal clouds, would lead to an overestimation of the greenhouse effect.
NASA Astrophysics Data System (ADS)
Kirpes, Rachel M.; Bondy, Amy L.; Bonanno, Daniel; Moffet, Ryan C.; Wang, Bingbing; Laskin, Alexander; Ault, Andrew P.; Pratt, Kerri A.
2018-03-01
Few measurements of aerosol chemical composition have been made during the winter-spring transition (following polar sunrise) to constrain Arctic aerosol-cloud-climate feedbacks. Herein, we report the first measurements of individual particle chemical composition near Utqiaġvik (Barrow), Alaska, in winter (seven sample days in January and February 2014). Individual particles were analyzed by computer-controlled scanning electron microscopy with energy dispersive X-ray spectroscopy (CCSEM-EDX, 24 847 particles), Raman microspectroscopy (300 particles), and scanning transmission X-ray microscopy with near-edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS, 290 particles). Sea spray aerosol (SSA) was observed in all samples, with fresh and aged SSA comprising 99 %, by number, of 2.5-7.5 µm diameter particles, 65-95 % from 0.5-2.5 µm, and 50-60 % from 0.1-0.5 µm, indicating SSA is the dominant contributor to accumulation and coarse-mode aerosol during the winter. The aged SSA particles were characterized by reduced chlorine content with 94 %, by number, internally mixed with secondary sulfate (39 %, by number, internally mixed with both nitrate and sulfate), indicative of multiphase aging reactions during transport. There was a large number fraction (40 % of 1.0-4.0 µm diameter particles) of aged SSA during periods when particles were transported from near Prudhoe Bay, consistent with pollutant emissions from the oil fields participating in atmospheric processing of aerosol particles. Organic carbon and sulfate particles were observed in all samples and comprised 40-50 %, by number, of 0.1-0.4 µm diameter particles, indicative of Arctic haze influence. Soot was internally mixed with organic and sulfate components. All sulfate was mixed with organic carbon or SSA particles. Therefore, aerosol sources in the Alaskan Arctic and resulting aerosol chemical mixing states need to be considered when predicting aerosol climate effects, particularly cloud formation, in the winter Arctic.
NASA Astrophysics Data System (ADS)
Schulz, Christiane; Schneider, Johannes; Mertes, Stephan; Kästner, Udo; Weinzierl, Bernadett; Sauer, Daniel; Fütterer, Daniel; Walser, Adrian; Borrmann, Stephan
2015-04-01
Airborne measurements of submicron aerosol and cloud particles were conducted in the region of Manaus (Amazonas, Brazil) during the ACRIDICON-CHUVA campaign in September 2014. ACRIDICON-CHUVA aimed at the investigation of convective cloud systems in order to get a better understanding and quantification of aerosol-cloud-interactions and radiative effects of convective clouds. For that, data from airborne measurements within convective cloud systems are combined with satellite and ground-based data. We used a C-ToF-AMS (Compact-Time-of-Flight-Aerosol-Mass-Spectrometer) to obtain information on aerosol composition and vertical profiles of different aerosol species, like organics, sulphate, nitrate, ammonium and chloride. The instrument was operated behind two different inlets: The HASI (HALO Aerosol Submicrometer Inlet) samples aerosol particles, whereas the CVI (Counterflow Virtual Impactor) samples cloud droplets and ice particles during in-cloud measurements, such that cloud residual particles can be analyzed. Differences in aerosol composition inside and outside of clouds and cloud properties over forested or deforested region were investigated. Additionally, the in- and outflow of convective clouds was sampled on dedicated cloud missions in order to study the evolution of the clouds and the processing of aerosol particles. First results show high organic aerosol mass concentrations (typically 15 μg/m3 and during one flight up to 25 μg/m3). Although high amounts of organic aerosol in tropic air over rainforest regions were expected, such high mass concentrations were not anticipated. Next to that, high sulphate aerosol mass concentrations (about 4 μg/m3) were measured at low altitudes (up to 5 km). During some flights organic and nitrate aerosol was observed with higher mass concentrations at high altitudes (10-12 km) than at lower altitudes, indicating redistribution of boundary layer particles by convection. The cloud residuals measured during in-cloud sampling through the CVI contained mainly organic material and, to a lesser extent, nitrate.
NASA Technical Reports Server (NTRS)
1976-01-01
Color and spectral data from spectrometer observations and computerized analyses of asteroid spectra are discussed. Potential occultations of bright asteroids by the moon are summarized. Analysis of anisotropic scattering within Saturn's rings indicates that mineral contamination of the 120 particles cannot exceed 5 percent by weight, and that the rings formed from particle breakup rather than from particle condensation. Raman probe applications to Jupiter and Uranus atmospheres indicate the presence of aerosol particles. A review of Mariner 9 Mars cloud topography data establishes that most blue clouds are orographic uplift clouds composed of condensates, and that sporadic red clouds are associated with blue clouds or volcanoes and thus probably do not represent dust storm phenomena.
NASA Technical Reports Server (NTRS)
Jasperson, W. H.; Nastron, G. D.; Davis, R. E.; Holdeman, J. D.
1984-01-01
Summary studies are presented for the entire cloud observation archive from the NASA Global Atmospheric Sampling Program (GASP). Studies are also presented for GASP particle-concentration data gathered concurrently with the cloud observations. Cloud encounters are shown on about 15 percent of the data samples overall, but the probability of cloud encounter is shown to vary significantly with altitude, latitude, and distance from the tropopause. Several meteorological circulation features are apparent in the latitudinal distribution of cloud cover, and the cloud-encounter statistics are shown to be consistent with the classical mid-latitude cyclone model. Observations of clouds spaced more closely than 90 minutes are shown to be statistically dependent. The statistics for cloud and particle encounter are utilized to estimate the frequency of cloud encounter on long-range airline routes, and to assess the probability and extent of laminaar flow loss due to cloud or particle encounter by aircraft utilizing laminar flow control (LFC). It is shown that the probability of extended cloud encounter is too low, of itself, to make LFC impractical. This report is presented in two volumes. Volume I contains the narrative, analysis, and conclusions. Volume II contains five supporting appendixes.
NASA Astrophysics Data System (ADS)
Kristensen, L.; Cornwell, G.; Sedlacek, A. J., III; Prather, K. A.
2016-12-01
Mineral dust particles can serve as cloud condensation nuclei (CCN), with enhanced CCN activity observed when the dust is mixed with additional soluble species. Long range atmospheric transport can change the composition of dust particles through aging, cloud processing and mixing with other particles. The CalWater2 campaign measured single particles and cloud dynamics to investigate the influence aerosols have on the hydrological cycle in California. An Aircraft Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) was used to characterize and identify single particles within clouds potentially acting as ice and cloud nuclei. Two matching flights over California's mountains in March 2015 detected significantly different particle types that resulted in different precipitation totals. Calcium dust dominated the particle composition during the first flight which had an observed decrease in orographic precipitation. Particle composition and air mass back trajectories indicate an Asian desert origin. The calcium dust particles contained secondary acids, in particular oxalic acid, acquired during transport from Asia to California. This chemical processing likely increased the solubility of the dust, enabling the particles to act as more effective CCN. The chemical composition also showed oligomeric carbonaceous species were mixed with the calcium dust particles, potentially further increasing the solubility the particles. A single particle soot photometer (SP2) measured black carbon concurrently and returned intense incandescence when calcium dust was present, confirming the calcium dust particles were internally mixed with a carbonaceous species. Dust particles were greatly reduced during the second flight with local biomass burning particles the dominant type. Observed precipitation in California were within forecast levels during the second flight. These single particle measurements from CalWater2 show that dust particles from Asia can affect cloud process and thus precipitation in California.
Khair, Aditya S
2018-01-23
The deformation of the electric double layer around a charged colloidal particle during sedimentation or electrophoresis in a binary, symmetric electrolyte is studied. The surface potential of the particle is assumed to be small compared to the thermal voltage scale. Additionally, the Debye length is assumed to be large compared to the particle size. These assumptions enable a linearization of the electrokinetic equations. The particle appears as a point charge in this thick-double-layer limit; the distribution of charge in the diffuse cloud surrounding it is determined by a balance of advection due to the particle motion, Brownian diffusion of ions, and electrostatic screening of the particle by the cloud. The ability of advection to deform the charge cloud from its equilibrium state is parametrized by a Péclet number, Pe. For weak advection (Pe ≪ 1), the cloud is only slightly deformed. In contrast, the cloud can be completely stripped from the particle at Pe ≫ 1; consequently, electrokinetic effects on the particle motion vanish in this regime. Therefore, in sedimentation the drag limits to Stokes' law for an uncharged particle as Pe → ∞. Likewise, the particle velocity for electrophoresis approaches Huckel's result. The strongly deformed cloud at large Pe is predicted to generate a concomitant increase in the sedimentation field in a dilute settling suspension.
Marine cloud brightening – as effective without clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahlm, Lars; Jones, Andy; Stjern, Camilla W.
Marine cloud brightening through sea spray injection has been proposed as a climate engineering method for avoiding the most severe consequences of global warming. A limitation of most of the previous modelling studies on marine cloud brightening is that they have either considered individual models or only investigated the effects of a specific increase in the number of cloud droplets. Here we present results from coordinated simulations with three Earth system models (ESMs) participating in the Geoengineering Model Intercomparison Project (GeoMIP) G4sea-salt experiment. Injection rates of accumulation-mode sea spray aerosol particles over ocean between 30°N and 30°S are set in each model tomore » generate a global-mean effective radiative forcing (ERF) of –2.0 W m –2 at the top of the atmosphere. We find that the injection increases the cloud droplet number concentration in lower layers, reduces the cloud-top effective droplet radius, and increases the cloud optical depth over the injection area. We also find, however, that the global-mean clear-sky ERF by the injected particles is as large as the corresponding total ERF in all three ESMs, indicating a large potential of the aerosol direct effect in regions of low cloudiness. The largest enhancement in ERF due to the presence of clouds occur as expected in the subtropical stratocumulus regions off the west coasts of the American and African continents. However, outside these regions, the ERF is in general equally large in cloudy and clear-sky conditions. Lastly, these findings suggest a more important role of the aerosol direct effect in sea spray climate engineering than previously thought.« less
Marine cloud brightening – as effective without clouds
Ahlm, Lars; Jones, Andy; Stjern, Camilla W.; ...
2017-11-06
Marine cloud brightening through sea spray injection has been proposed as a climate engineering method for avoiding the most severe consequences of global warming. A limitation of most of the previous modelling studies on marine cloud brightening is that they have either considered individual models or only investigated the effects of a specific increase in the number of cloud droplets. Here we present results from coordinated simulations with three Earth system models (ESMs) participating in the Geoengineering Model Intercomparison Project (GeoMIP) G4sea-salt experiment. Injection rates of accumulation-mode sea spray aerosol particles over ocean between 30°N and 30°S are set in each model tomore » generate a global-mean effective radiative forcing (ERF) of –2.0 W m –2 at the top of the atmosphere. We find that the injection increases the cloud droplet number concentration in lower layers, reduces the cloud-top effective droplet radius, and increases the cloud optical depth over the injection area. We also find, however, that the global-mean clear-sky ERF by the injected particles is as large as the corresponding total ERF in all three ESMs, indicating a large potential of the aerosol direct effect in regions of low cloudiness. The largest enhancement in ERF due to the presence of clouds occur as expected in the subtropical stratocumulus regions off the west coasts of the American and African continents. However, outside these regions, the ERF is in general equally large in cloudy and clear-sky conditions. Lastly, these findings suggest a more important role of the aerosol direct effect in sea spray climate engineering than previously thought.« less
Aerosol partitioning between the interstitial and the condensed phase in mixed-phase clouds
NASA Astrophysics Data System (ADS)
Verheggen, Bart; Cozic, Julie; Weingartner, Ernest; Bower, Keith; Mertes, Stephan; Connolly, Paul; Gallagher, Martin; Flynn, Michael; Choularton, Tom; Baltensperger, Urs
2007-12-01
The partitioning of aerosol particles between the cloud and the interstitial phase (i.e., unactivated aerosol) has been investigated during several Cloud and Aerosol Characterization Experiments (CLACE-3, CLACE-3? and CLACE-4) conducted in winter and summer 2004 and winter 2005 at the high alpine research station Jungfraujoch (3580 m altitude, Switzerland). Ambient air was sampled using different inlets in order to determine the activated fraction of aerosol particles, FN, defined as the fraction of the total aerosol number concentration (with particle diameter dp > 100 nm) that has been incorporated into cloud particles. The liquid and ice water content of mixed-phase clouds were characterized by analyzing multiple cloud probes. The dependence of the activated fraction on several environmental factors is discussed on the basis of more than 900 h of in-cloud observations and parameterizations for key variables are given. FN is found to increase with increasing liquid water content and to decrease with increasing particle number concentration in liquid clouds. FN also decreases with increasing cloud ice mass fraction and with decreasing temperature from 0 to -25°C. The Wegener-Bergeron-Findeisen process probably contributed to this trend, since the presence of ice crystals causes liquid droplets to evaporate, thus releasing the formerly activated particles back into the interstitial phase. Ice nucleation could also have prevented additional cloud condensation nuclei from activating. The observed activation behavior has significant implications for our understanding of the indirect effect of aerosols on climate.
Probing the magnetic topologies of magnetic clouds by means of solar energetic particles
NASA Technical Reports Server (NTRS)
Kahler, S. W.; Reames, D. V.
1991-01-01
Solar energetic particles (SEPs) have been used as probes of magnetic cloud topologies. The rapid access of SEPs to the interiors of many clouds indicates that the cloud field lines extend back to the sun and hence are not plasmoids. The small modulation of galactic cosmic rays associated with clouds also suggests that the magnetic fields of clouds are not closed.
Seasonal Bias of Retrieved Ice Cloud Optical Properties Based on MISR and MODIS Measurements
NASA Astrophysics Data System (ADS)
Wang, Y.; Hioki, S.; Yang, P.; Di Girolamo, L.; Fu, D.
2017-12-01
The precise estimation of two important cloud optical and microphysical properties, cloud particle optical thickness and cloud particle effective radius, is fundamental in the study of radiative energy budget and hydrological cycle. In retrieving these two properties, an appropriate selection of ice particle surface roughness is important because it substantially affects the single-scattering properties. At present, using a predetermined ice particle shape without spatial and temporal variations is a common practice in satellite-based retrieval. This approach leads to substantial uncertainties in retrievals. The cloud radiances measured by each of the cameras of the Multi-angle Imaging SpectroRadiometer (MISR) instrument are used to estimate spherical albedo values at different scattering angles. By analyzing the directional distribution of estimated spherical albedo values, the degree of ice particle surface roughness is estimated. With an optimal degree of ice particle roughness, cloud optical thickness and effective radius are retrieved based on a bi-spectral shortwave technique in conjunction with two Moderate Resolution Imaging Spectroradiometer (MODIS) bands centered at 0.86 and 2.13 μm. The seasonal biases of retrieved cloud optical and microphysical properties, caused by the uncertainties in ice particle roughness, are investigated by using one year of MISR-MODIS fused data.
1989-02-28
Arctic Ozone Expedition Stavanger Norway These clouds in the polar regions north of Stravanger, Norway are representative of what are called 'Type 1' and Type 2' polar stratospheric clouds. Type 1 are seen in the lower portion and consist of cloud particles comprised of nitrogen trihydrates. Seen edge-on as in this view, they appear as a thin dark orange or brown layer. Multiple layering can be seen. The Type 2 clouds are above and consist mostly of water molecules frozen as ice. The size of the particles in Type 2 clouds, the water-ice clouds, are much larger than the particle size of the Type 1 clouds - which are on the order of the wavelength of light.
Improved methods for measuring and assessing microenvironmental exposure in individuals are needed. How human activities affect particulate matter in the personal cloud is poorly understood. A quality assurance tool to aid the study of particle transport mechanisms (e.g., re-en...
Impact of Aerosol Processing on Orographic Clouds
NASA Astrophysics Data System (ADS)
Pousse-Nottelmann, Sara; Zubler, Elias M.; Lohmann, Ulrike
2010-05-01
Aerosol particles undergo significant modifications during their residence time in the atmosphere. Physical processes like coagulation, coating and water uptake, and aqueous surface chemistry alter the aerosol size distribution and composition. At this, clouds play a primary role as physical and chemical processing inside cloud droplets contributes considerably to the changes in aerosol particles. A previous study estimates that on global average atmospheric particles are cycled three times through a cloud before being removed from the atmosphere [1]. An explicit and detailed treatment of cloud-borne particles has been implemented in the regional weather forecast and climate model COSMO-CLM. The employed model version includes a two-moment cloud microphysical scheme [2] that has been coupled to the aerosol microphysical scheme M7 [3] as described by Muhlbauer and Lohmann, 2008 [4]. So far, the formation, transfer and removal of cloud-borne aerosol number and mass were not considered in the model. Following the parameterization for cloud-borne particles developed by Hoose et al., 2008 [5], distinction between in-droplet and in-crystal particles is made to more physically account for processes in mixed-phase clouds, such as the Wegener-Bergeron-Findeisen process and contact and immersion freezing. In our model, this approach has been extended to allow for aerosol particles in five different hydrometeors: cloud droplets, rain drops, ice crystals, snow flakes and graupel. We account for nucleation scavenging, freezing and melting processes, autoconversion, accretion, aggregation, riming and selfcollection, collisions between interstitial aerosol particles and hydrometeors, ice multiplication, sedimentation, evaporation and sublimation. The new scheme allows an evaluation of the cloud cycling of aerosol particles by tracking the particles even when scavenged into hydrometeors. Global simulations of aerosol processing in clouds have recently been conducted by Hoose et al. [6]. Our investigation regarding the influence of aerosol processing will focus on the regional scale using a cloud-system resolving model with a much higher resolution. Emphasis will be placed on orographic mixed-phase precipitation. Different two-dimensional simulations of idealized orographic clouds will be conducted to estimate the effect of aerosol processing on orographic cloud formation and precipitation. Here, cloud lifetime, location and extent as well as the cloud type will be of particular interest. In a supplementary study, the new parameterization will be compared to observations of total and interstitial aerosol concentrations and size distribution at the remote high alpine research station Jungfraujoch in Switzerland. In addition, our simulations will be compared to recent simulations of aerosol processing in warm, mixed-phase and cold clouds, which have been carried out at the location of Jungfraujoch station [5]. References: [1] Pruppacher & Jaenicke (1995), The processing of water vapor and aerosols by atmospheric clouds, a global estimate, Atmos. Res., 38, 283295. [2] Seifert & Beheng (2006), A two-moment microphysics parameterization for mixed-phase clouds. Part 1: Model description, Meteorol. Atmos. Phys., 92, 4566. [3] Vignati et al. (2004), An efficient size-resolved aerosol microphysics module for large-scale transport models, J. Geophys. Res., 109, D22202 [4] Muhlbauer & Lohmann (2008), Sensitivity studies of the role of aerosols in warm-phase orographic precipitation in different flow regimes, J. Atmos. Sci., 65, 25222542. [5] Hoose et al. (2008), Aerosol processing in mixed-phase clouds in ECHAM5HAM: Model description and comparison to observations, J. Geophys. Res., 113, D071210. [6] Hoose et al. (2008), Global simulations of aerosol processing in clouds, Atmos. Chem. Phys., 8, 69396963.
NASA Astrophysics Data System (ADS)
Lawson, P.; Stamnes, K.; Stamnes, J.; Zmarzly, P.; O'Connor, D.; Koskulics, J.; Hamre, B.
2008-12-01
A tethered balloon system specifically designed to collect microphysical data in mixed-phase clouds was deployed in Arctic stratus clouds during May 2008 near Ny-Alesund, Svalbard, at 79 degrees North Latitude. This is the first time a tethered balloon system with a cloud particle imager (CPI) that records high-resolution digital images of cloud drops and ice particles has been operated in cloud. The custom tether supplies electrical power to the instrument package, which in addition to the CPI houses a 4-pi short-wavelength radiometer and a met package that measures temperature, humidity, pressure, GPS position, wind speed and direction. The instrument package was profiled vertically through cloud up to altitudes of 1.6 km. Since power was supplied to the instrument package from the ground, it was possible to keep the balloon package aloft for extended periods of time, up to 9 hours at Ny- Ålesund, which was limited only by crew fatigue. CPI images of cloud drops and the sizes, shapes and degree of riming of ice particles are shown throughout vertical profiles of Arctic stratus clouds. The images show large regions of mixed-phase cloud from -8 to -2 C. The predominant ice crystal habits in these regions are needles and aggregates of needles. The amount of ice in the mixed-phase clouds varied considerably and did not appear to be a function of temperature. On some occasions, ice was observed near cloud base at -2 C with supercooled cloud above to - 8 C that was devoid of ice. Measurements of shortwave radiation are also presented. Correlations between particle distributions and radiative measurements will be analyzed to determine the effect of these Arctic stratus clouds on radiative forcing.
Condensed-Phase Nitric Acid in a Tropical Subvisible Cirrus Cloud
NASA Technical Reports Server (NTRS)
Popp, P. J.; Marcy, T. P.; Watts, O. A.; Gao, R. S.; Fahey, D. W.; Weinstock, E. M.; Smith, J. B.; Herman, R. L.; Tropy, R. F.; Webster, C. r.;
2007-01-01
In situ observations in a tropical subvisible cirrus cloud during the Costa Rica Aura Validation Experiment on 2 February 2006 show the presence of condensed-phase nitric acid. The cloud was observed near the tropopause at altitudes of 16.3-17.7 km in an extremely cold (183-191 K) and dry 5 ppm H2O) air mass. Relative humidities with respect to ice ranged from 150-250% throughout most of the cloud. Optical particle measurements indicate the presence of ice crystals as large as 90 microns in diameter. Condensed RN031H20 molar ratios observed in the cloud particles were 1-2 orders of magnitude greater than ratios observed previously in cirrus clouds at similar RN03 partial pressures. Nitric acid trihydrate saturation ratios were 10 or greater during much of the cloud encounter, indicating that RN03 may be present in the cloud particles as a stable condensate and not simply physically adsorbed on or trapped in the particles.
Chemical consequences of the initial diffusional growth of cloud droplets - A clean marine case
NASA Technical Reports Server (NTRS)
Twohy, C. H.; Charlson, R. J.; Austin, P. H.
1989-01-01
A simple microphysical cloud parcel model and a simple representation of the background marine aerosol are used to predict the concentrations and compositions of droplets of various sizes near cloud base. The aerosol consists of an externally-mixed ammonium bisulfate accumulation mode and a sea-salt coarse particle mode. The difference in diffusional growth rates between the small and large droplets as well as the differences in composition between the two aerosol modes result in substantial differences in solute concentration and composition with size of droplets in the parcel. The chemistry of individual droplets is not, in general, representative of the bulk (volume-weighted mean) cloud water sample. These differences, calculated to occur early in the parcel's lifetime, should have important consequences for chemical reactions such as aqueous phase sulfate production.
Airborne observations of the microphysical structure of two contrasting cirrus clouds
NASA Astrophysics Data System (ADS)
O'Shea, S. J.; Choularton, T. W.; Lloyd, G.; Crosier, J.; Bower, K. N.; Gallagher, M.; Abel, S. J.; Cotton, R. J.; Brown, P. R. A.; Fugal, J. P.; Schlenczek, O.; Borrmann, S.; Pickering, J. C.
2016-11-01
We present detailed airborne in situ measurements of cloud microphysics in two midlatitude cirrus clouds, collected as part of the Cirrus Coupled Cloud-Radiation Experiment. A new habit recognition algorithm for sorting cloud particle images using a neural network is introduced. Both flights observed clouds that were related to frontal systems, but one was actively developing while the other dissipated as it was sampled. The two clouds showed distinct differences in particle number, habit, and size. However, a number of common features were observed in the 2-D stereo data set, including a distinct bimodal size distribution within the higher-temperature regions of the clouds. This may result from a combination of local heterogeneous nucleation and large particles sedimenting from aloft. Both clouds had small ice crystals (<100 µm) present at all levels However, this small ice mode is not present in observations from a holographic probe. This raises the possibility that the small ice observed by optical array probes may at least be in part an instrument artifact due to the counting of out-of-focus large particles as small ice. The concentrations of ice crystals were a factor 10 higher in the actively growing cloud with the stronger updrafts, with a mean concentration of 261 L-1 compared to 29 L-1 in the decaying case. Particles larger than 700 µm were largely absent from the decaying cirrus case. A comparison with ice-nucleating particle parameterizations suggests that for the developing case the ice concentrations at the lowest temperatures are best explained by homogenous nucleation.
Investigation of methods to produce a uniform cloud of fuel particles in a flame tube
NASA Technical Reports Server (NTRS)
Siegert, Clifford E.; Pla, Frederic G.; Rubinstein, Robert; Niezgoda, Thomas F.; Burns, Robert J.; Johnson, Jerome A.
1990-01-01
The combustion of a uniform, quiescent cloud of 30-micron fuel particles in a flame tube was proposed as a space-based, low-gravity experiment. The subject is the normal- and low-gravity testing of several methods to produce such a cloud, including telescoping propeller fans, air pumps, axial and quadrature acoustical speakers, and combinations of these devices. When operated in steady state, none of the methods produced an acceptably uniform cloud (+ or - 5 percent of the mean concentration), and voids in the cloud were clearly visible. In some cases, severe particle agglomeration was observed; however, these clusters could be broken apart by a short acoustic burst from an axially in-line speaker. Analyses and experiments reported elsewhere suggest that transient, acoustic mixing methods can enhance cloud uniformity while minimizing particle agglomeration.
Chemical Imaging and Stable Isotope Analysis of Atmospheric Particles by NanoSIMS (Invited)
NASA Astrophysics Data System (ADS)
Sinha, B.; Harris, E. J.; Pöhlker, C.; Wiedemann, K. T.; van Pinxteren, D.; Tilgner, A.; Fomba, K. W.; Schneider, J.; Roth, A.; Gnauk, T.; Fahlbusch, B.; Mertes, S.; Lee, T.; Collett, J. L.; Shiraiwa, M.; Gunthe, S. S.; Smith, M.; Artaxo, P. P.; Gilles, M.; Kilcoyne, A. L.; Moffet, R.; Weigand, M.; Martin, S. T.; Poeschl, U.; Andreae, M. O.; Hoppe, P.; Herrmann, H.; Borrmann, S.
2013-12-01
Chemical imaging analysis of the internal distribution of chemical compounds by a combination of SEM-EDX, and NanoSIMS allows investigating the physico-chemical properties and isotopic composition of individual aerosol particles. Stable sulphur isotope analysis provides insight into the sources, sinks and oxidation pathways of SO2 in the environment. Oxidation by OH radicals, O3 and H2O2 enriches the heavier isotope in the product sulphate, whereas oxidation by transition metal ions (TMI), hypohalites and hypohalous acids depletes the heavier isotope in the product sulphate. The isotope fractionation during SO2 oxidation by stabilized Criegee Intermediate radicals is unknown. We studied the relationship between aerosol chemical composition and predominant sulphate formation pathways in continental clouds in Central Europe and during the wet season in the Amazon rain forest. Sulphate formation in continental clouds in Central Europe was studied during HCCT-2010, a lagrangian-type field experiment, during which an orographic cloud was used as a natural flow-through reactor to study in-cloud aerosol processing (Harris et al. 2013). Sulphur isotopic compositions in SO2 and H2SO4 gas and particulate sulphate were measured and changes in the sulphur isotope composition of SO2 between the upwind and downwind measurement sites were used to determine the dominant SO2 chemical removal process occurring in the cloud. Changes in the isotopic composition of particulate sulphate revealed that transition metal catalysis pathway was the dominant SO2 oxidation pathway. This reaction occurred primarily on coarse mineral dust particles. Thus, sulphate produced due to in-cloud SO2 oxidation is removed relatively quickly from the atmosphere and has a minor climatic effect. The aerosol samples from the Amazonian rainforest, a pristine tropical environment, were collected during the rainy season. The samples were found to be dominated by SOA particles in the fine mode and primary biological aerosol particles in the coarse mode (Pöhlker et al. 2012). We applied STXM-NEXAFS analysis, SEM-EDX analysis and NanoSIMS analysis to investigate the morphology, chemical composition and isotopic composition of aerosol samples. Biogenic salt particles emitted from active biota in the rainforest were found to be enriched in the heavier sulphur isotope, whereas particles with a high organic mass fraction modified by condensation of VOC oxidation products and/or cloud processing were significantly depleted in the heavier sulphur isotope compared to the seed particles. This indicates either a depleted gas phase source of sulphur dioxide contributed to the sulphate formation via the H2O2, O3 or OH oxidation pathway or an unaccounted reaction pathway which depletes the heavier isotope in the product sulphate contributes to the secondary sulphate formation in the pristine Amazon rainforest. Harris, E., et al., Science 340, 727-730, 2013 Pöhlker, C., Science 337, 1075-1078, 2012
Effect of pectin methylesterase on carrot (Daucus carota) juice cloud stability.
Schultz, Alison K; Anthon, Gordon E; Dungan, Stephanie R; Barrett, Diane M
2014-02-05
To determine the effect of residual enzyme activity on carrot juice cloud, 0 to 1 U/g pectin methylesterase (PME) was added to pasteurized carrot juice. Cloud stability and particle diameters were measured to quantify juice cloud stability and clarification for 56 days of storage. All levels of PME addition resulted in clarification; higher amounts had a modest effect in causing more rapid clarification, due to a faster increase in particle size. The cloud initially exhibited a trimodal distribution of particle sizes. For enzyme-containing samples, particles in the smallest-sized mode initially aggregated to merge with the second peak over 5-10 days. This larger population then continued to aggregate more slowly over longer times. This observation of a more rapid destabilization process initially, followed by slower subsequent changes in the cloud, was also manifested in measurements of sedimentation extent and in turbidity tests. Optical microscopy showed that aggregation created elongated, fractal particle structures over time.
Modelling and interpreting the isotopic composition of water vapour in convective updrafts
NASA Astrophysics Data System (ADS)
Bolot, M.; Legras, B.; Moyer, E. J.
2013-08-01
The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener-Bergeron-Findeisen process). As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.
NASA Technical Reports Server (NTRS)
Minnis, P.; Sun-Mack, S.; Bedka, K. M.; Yost, C. R.; Trepte, Q. Z.; Smith, W. L., Jr.; Painemal, D.; Chen, Y.; Palikonda, R.; Dong, X.;
2016-01-01
Validation is a key component of remote sensing that can take many different forms. The NASA LaRC Satellite ClOud and Radiative Property retrieval System (SatCORPS) is applied to many different imager datasets including those from the geostationary satellites, Meteosat, Himiwari-8, INSAT-3D, GOES, and MTSAT, as well as from the low-Earth orbiting satellite imagers, MODIS, AVHRR, and VIIRS. While each of these imagers have similar sets of channels with wavelengths near 0.65, 3.7, 11, and 12 micrometers, many differences among them can lead to discrepancies in the retrievals. These differences include spatial resolution, spectral response functions, viewing conditions, and calibrations, among others. Even when analyzed with nearly identical algorithms, it is necessary, because of those discrepancies, to validate the results from each imager separately in order to assess the uncertainties in the individual parameters. This paper presents comparisons of various SatCORPS-retrieved cloud parameters with independent measurements and retrievals from a variety of instruments. These include surface and space-based lidar and radar data from CALIPSO and CloudSat, respectively, to assess the cloud fraction, height, base, optical depth, and ice water path; satellite and surface microwave radiometers to evaluate cloud liquid water path; surface-based radiometers to evaluate optical depth and effective particle size; and airborne in-situ data to evaluate ice water content, effective particle size, and other parameters. The results of comparisons are compared and contrasted and the factors influencing the differences are discussed.
Reconstruction of doses and deposition in the western trace from the Chernobyl accident.
Sikkeland, T; Skuterud, L; Goltsova, N I; Lindmo, T
1997-05-01
A model is presented for the explosive cloud of particulates that produced the western trace of high radioactive ground contamination in the Chernobyl accident on 26 April 1986. The model was developed to reproduce measured dose rates and nuclide contamination and to relate estimated doses to observed changes in: (1) infrared emission from the foliage and (2) morphological and histological structures of individual pines. Dominant factors involved in ground contamination were initial cloud shape, particle size distribution, and rate of particle fallout. At time of formation, the cloud was assumed to be parabolical and to contain a homogeneous distribution of spherically shaped fuel particulates having a log-normal size distribution. The particulates were dispersed by steady winds and diffusion that produced a straight line deposition path. The analysis indicates that two clouds, denoted by Cloud I and Cloud II, were involved. Fallout from the former dominated the far field region and fallout from latter the region near the reactor. At formation they had a full width at half maximum of 1800 m and 500 m, respectively. For wind velocities of 5-10 m s(-1) the particulates' radial distribution at formation had a standard deviation and mode of 1.8 microm and 0.5 microm, respectively. This distribution corresponds to a release of 390 GJ in the runaway explosion. The clouds' height and mass are not uniquely determined but are coupled together. For an initial height of 3,600 m, Cloud I contained about 400 kg fuel. For Cloud II the values were, respectively, 1,500 m and 850 kg. Loss of activities from the clouds is found to be small. Values are obtained for the rate of radionuclide migration from the deposit. Various types of biological damage to pines, as reported in the literature, are shown to be mainly due to ionizing radiation from the deposit by Cloud II. A formula is presented for the particulate size distribution in the trace area.
High-power laser radiation in atmospheric aerosols: Nonlinear optics of aerodispersed media
NASA Astrophysics Data System (ADS)
Zuev, V. E.; Zemlianov, A. A.; Kopytin, Iu. D.; Kuzikovskii, A. V.
The bulk of this book contains the results of investigations carried out at the Institute of Atmospheric Optics, Siberian Branch, USSR Academy of Science with the participation of the authors. The microphysical and optical characteristics of atmospheric aerosols are considered, taking into account light scattering by a single aerosol particle, light scattering by a system of particles, the scattering phase matrix, light scattering by clouds and fogs, light scattering by hazes, and scattering phase functions of polydispersed aerosols. Other topics studies are related to low-energy (subexplosive) effects of radiation on individual particles, the formation of clear zones in clouds and fogs due to the vaporization of droplets under regular regimes, self-action of a wave beam in a water aerosol under conditions of regular droplet vaporization, laser beam propagation through an explosively evaporating water-droplet aerosol, the propagation of high-power laser radiation through hazes, the ionization and optical breakdown in aerosol media, and laser monitoring of a turbid atmosphere using nonlinear effects.
Influence of Ice Cloud Microphysics on Imager-Based Estimates of Earth's Radiation Budget
NASA Astrophysics Data System (ADS)
Loeb, N. G.; Kato, S.; Minnis, P.; Yang, P.; Sun-Mack, S.; Rose, F. G.; Hong, G.; Ham, S. H.
2016-12-01
A central objective of the Clouds and the Earth's Radiant Energy System (CERES) is to produce a long-term global climate data record of Earth's radiation budget from the TOA down to the surface along with the associated atmospheric and surface properties that influence it. CERES relies on a number of data sources, including broadband radiometers measuring incoming and reflected solar radiation and OLR, high-resolution spectral imagers, meteorological, aerosol and ozone assimilation data, and snow/sea-ice maps based on microwave radiometer data. While the TOA radiation budget is largely determined directly from accurate broadband radiometer measurements, the surface radiation budget is derived indirectly through radiative transfer model calculations initialized using imager-based cloud and aerosol retrievals and meteorological assimilation data. Because ice cloud particles exhibit a wide range of shapes, sizes and habits that cannot be independently retrieved a priori from passive visible/infrared imager measurements, assumptions about the scattering properties of ice clouds are necessary in order to retrieve ice cloud optical properties (e.g., optical depth) from imager radiances and to compute broadband radiative fluxes. This presentation will examine how the choice of an ice cloud particle model impacts computed shortwave (SW) radiative fluxes at the top-of-atmosphere (TOA) and surface. The ice cloud particle models considered correspond to those from prior, current and future CERES data product versions. During the CERES Edition2 (and Edition3) processing, ice cloud particles were assumed to be smooth hexagonal columns. In the Edition4, roughened hexagonal columns are assumed. The CERES team is now working on implementing in a future version an ice cloud particle model comprised of a two-habit ice cloud model consisting of roughened hexagonal columns and aggregates of roughened columnar elements. In each case, we use the same ice particle model in both the imager-based cloud retrievals (inverse problem) and the computed radiative fluxes (forward calculation). In addition to comparing radiative fluxes using the different ice cloud particle models, we also compare instantaneous TOA flux calculations with those observed by the CERES instrument.
Contrasting cloud composition between coupled and decoupled marine boundary layer clouds
NASA Astrophysics Data System (ADS)
Wang, Zhen; Mora Ramirez, Marco; Dadashazar, Hossein; MacDonald, Alex B.; Crosbie, Ewan; Bates, Kelvin H.; Coggon, Matthew M.; Craven, Jill S.; Lynch, Peng; Campbell, James R.; Azadi Aghdam, Mojtaba; Woods, Roy K.; Jonsson, Haflidi; Flagan, Richard C.; Seinfeld, John H.; Sorooshian, Armin
2016-10-01
Marine stratocumulus clouds often become decoupled from the vertical layer immediately above the ocean surface. This study contrasts cloud chemical composition between coupled and decoupled marine stratocumulus clouds for dissolved nonwater substances. Cloud water and droplet residual particle composition were measured in clouds off the California coast during three airborne experiments in July-August of separate years (Eastern Pacific Emitted Aerosol Cloud Experiment 2011, Nucleation in California Experiment 2013, and Biological and Oceanic Atmospheric Study 2015). Decoupled clouds exhibited significantly lower air-equivalent mass concentrations in both cloud water and droplet residual particles, consistent with reduced cloud droplet number concentration and subcloud aerosol (Dp > 100 nm) number concentration, owing to detachment from surface sources. Nonrefractory submicrometer aerosol measurements show that coupled clouds exhibit higher sulfate mass fractions in droplet residual particles, owing to more abundant precursor emissions from the ocean and ships. Consequently, decoupled clouds exhibited higher mass fractions of organics, nitrate, and ammonium in droplet residual particles, owing to effects of long-range transport from more distant sources. Sodium and chloride dominated in terms of air-equivalent concentration in cloud water for coupled clouds, and their mass fractions and concentrations exceeded those in decoupled clouds. Conversely, with the exception of sea-salt constituents (e.g., Cl, Na, Mg, and K), cloud water mass fractions of all species examined were higher in decoupled clouds relative to coupled clouds. Satellite and Navy Aerosol Analysis and Prediction System-based reanalysis data are compared with each other, and the airborne data to conclude that limitations in resolving boundary layer processes in a global model prevent it from accurately quantifying observed differences between coupled and decoupled cloud composition.
NASA Technical Reports Server (NTRS)
Davis, Richard E.; Maddalon, Dal V.; Wagner, Richard D.; Fisher, David F.; Young, Ronald
1989-01-01
Summary evaluations of the performance of laminar-flow control (LFC) leading edge test articles on a NASA JetStar aircraft are presented. Statistics, presented for the test articles' performance in haze and cloud situations, as well as in clear air, show a significant effect of cloud particle concentrations on the extent of laminar flow. The cloud particle environment was monitored by two instruments, a cloud particle spectrometer (Knollenberg probe) and a charging patch. Both instruments are evaluated as diagnostic aids for avoiding laminar-flow detrimental particle concentrations in future LFC aircraft operations. The data base covers 19 flights in the simulated airline service phase of the NASA Leading-Edge Flight-Test (LEFT) Program.
NASA Astrophysics Data System (ADS)
Buiat, Martina; Porcù, Federico; Dietrich, Stefano
2017-01-01
Cloud electrification and related lightning activity in thunderstorms have their origin in the charge separation and resulting distribution of charged iced particles within the cloud. So far, the ice distribution within convective clouds has been investigated mainly by means of ground-based meteorological radars. In this paper we show how the products from Cloud Profiling Radar (CPR) on board CloudSat, a polar satellite of NASA's Earth System Science Pathfinder (ESSP), can be used to obtain information from space on the vertical distribution of ice particles and ice content and relate them to the lightning activity. The analysis has been carried out, focusing on 12 convective events over Italy that crossed CloudSat overpasses during significant lightning activity. The CPR products considered here are the vertical profiles of cloud ice water content (IWC) and the effective radius (ER) of ice particles, which are compared with the number of strokes as measured by a ground lightning network (LINET). Results show a strong correlation between the number of strokes and the vertical distribution of ice particles as depicted by the 94 GHz CPR products: in particular, cloud upper and middle levels, high IWC content and relatively high ER seem to be favourable contributory causes for CG (cloud to ground) stroke occurrence.
NASA Astrophysics Data System (ADS)
Mertes, Stephan; Kästner, Udo; Schulz, Christiane; Klimach, Thomas; Krüger, Mira; Schneider, Johannes
2015-04-01
Airborne sampling of cloud particles inside different cirrus cloud types and inside deep convective clouds was conducted during the HALO missions ML-CIRRUS over Europe in March/April 2014 and ACRIDICON over Amazonia in September 2014. ML-CIRRUS aims at the investigation of the for-mation, evolution, microphysical state and radiative effects of different natural and aviation-induced cirrus clouds in the mid-latitudes. The main objectives of ACRIDICON are the microphysical vertical profiling, vertical aerosol transport and the cloud processing of aerosol particles (compari-son in- and outflow) of tropical deep convective cloud systems in clean and polluted air masses and over forested and deforested regions. The hydrometeors (drops and ice particles) are sampled by a counterflow virtual impactor (CVI) which has to be installed in the front part of the upper fuselage of the HALO aircraft. Such an intake position implies a size dependent abundance of cloud particles with respect to ambient conditions that was studied by particle trajectory simulations (Katrin Witte, HALO Technical Note 2008-003-A). On the other hand, this sampling location avoids that large ice crystals which could potentially bias the cloud particle sampling by shattering and break-up at the inlet shroud and tip enter the inlet. Both aspects as well as the flight conditions of HALO were taken into account for an optimized CVI design for HALO (HALO-CVI). Interstitial particles are pre-segregated and the condensed phase is evaporated/sublimated by the CVI, such that the residuals from cloud droplets and ice particles (CDR and IPR) can be microphysically and chemically analyzed by respective aerosol sensors located in the cabin. Although an even more comprehensive characterization of CDR and IPR was carried out, we like to report on the following measurements of certain aerosol properties. Particle number concentra-tion and size distribution are measured by a condensation particle counter (CPC) and an ultra-high sensitivity aerosol spectrometer (UHSAS). The absorption coefficient and thus a measure for the black carbon mass concentration is derived from the particle soot absorption photometer (PSAP). In the lower warm parts of the probed convective clouds during the ACRIDICON mission the mean charge of droplets was inferred by means of electrometer measurements. For the determination of the chemical properties of CDR and IPR, the Aircraft-based Laser Ablation Aerosol Mass Spec-trometer (ALABAMA) and a Compact-Time-of-Flight-Aerosol-Mass-Spectrometer (C-ToF-AMS) was operated during ML-CIRRUS and ACRIDICON, respectively, to obtain the mixing state and chemical composition of the cloud particle residues. During ML-CIRRUS, differences in IPR concentration, size distribution, and chemical composition between natural and aviation influenced cirrus clouds could be observed as well as between dif-ferent natural cirrus types and between young and aged contrail cirrus. During ACRIDICON, CDR concentration, size distribution, and chemical composition are found to be different for convective cloud systems evolving from more clean air masses compared to systems evolving from more polluted air masses. Droplet charges change from negative to positive values with height in all vertical cloud profiles. The measured IPR concentration strongly vary in the anvil outflow regions.
Lightweight Electronic Camera for Research on Clouds
NASA Technical Reports Server (NTRS)
Lawson, Paul
2006-01-01
"Micro-CPI" (wherein "CPI" signifies "cloud-particle imager") is the name of a small, lightweight electronic camera that has been proposed for use in research on clouds. It would acquire and digitize high-resolution (3- m-pixel) images of ice particles and water drops at a rate up to 1,000 particles (and/or drops) per second.
TEM Study of SAFARI-2000 Aerosols
NASA Technical Reports Server (NTRS)
Buseck, Peter R.
2004-01-01
The aim of our research was to obtain data on the chemical and physical properties of individual aerosol particles from biomass smoke plume s in southern Africa and from air masses in the region that are affec ted by the smoke. We used analytical transmission electron microscopy (ATEM), including energy-dispersive X-ray spectrometry (EDS) and ele ctron energy-loss spectroscopy (EELS), and field-emission electron microscopy (FESEM) to study aerosol particles from several smoke and haz e samples and from a set of cloud samples.
NASA Technical Reports Server (NTRS)
Farrugia, C. J.; Richardson, I. G.; Burlaga, L. F.; Lepping, R. P.; Osherovich, V. A.
1993-01-01
Simultaneous ISEE 3 and IMP 8 spacecraft observations of magnetic fields and flow anisotropies of solar energetic protons and electrons during the passage of an interplanetary magnetic cloud show various particle signature differences at the two spacecraft. These differences are interpretable in terms of the magnetic line topology of the cloud, the connectivity of the cloud field lines to the solar surface, and the interconnection between the magnetic fields of the magnetic clouds and of the earth. These observations are consistent with a magnetic cloud model in which these mesoscale configurations are curved magnetic flux ropes attached at both ends to the sun's surface, extending out to 1 AU.
Measurement Comparisons Towards Improving the Understanding of Aerosol-Cloud Processing
NASA Astrophysics Data System (ADS)
Noble, Stephen R.
Cloud processing of aerosol is an aerosol-cloud interaction that is not heavily researched but could have implications on climate. The three types of cloud processing are chemical processing, collision and coalescence processing, and Brownian capture of interstitial particles. All types improve cloud condensation nuclei (CCN) in size or hygroscopicity (kappa). These improved CCN affect subsequent clouds. This dissertation focuses on measurement comparisons to improve our observations and understanding of aerosol-cloud processing. Particle size distributions measured at the continental Southern Great Plains (SGP) site were compared with ground based measurements of cloud fraction (CF) and cloud base altitude (CBA). Particle size distributions were described by a new objective shape parameter to define bimodality rather than an old subjective one. Cloudy conditions at SGP were found to be correlated with lagged shape parameter. Horizontal wind speed and regional CF explained 42%+ of this lag time. Many of these surface particle size distributions were influenced by aerosol-cloud processing. Thus, cloud processing may be more widespread with more implications than previously thought. Particle size distributions measured during two aircraft field campaigns (MArine Stratus/stratocumulus Experiment; MASE; and Ice in Cloud Experiment-Tropical; ICE-T) were compared to CCN distributions. Tuning particle size to critical supersaturation revealed hygroscopicity expressed as ? when the distributions were overlain. Distributions near cumulus clouds (ICE-T) had a higher frequency of the same ?s (48% in ICE-T to 42% in MASE) between the accumulation (processed) and Aitken (unprocessed) modes. This suggested physical processing domination in ICE-T. More MASE (stratus cloud) kappa differences between modes pointed to chemical cloud processing. Chemistry measurements made in MASE showed increases in sulfates and nitrates with distributions that were more processed. This supported chemical cloud processing in MASE. This new method to determine kappa provides the needed information without interrupting ambient measurements. MODIS derived cloud optical thickness (COT), cloud liquid water path (LWP), and cloud effective radius (re) were compared to the same in situ derived variables from cloud probe measurements of two stratus/stratocumulus cloud campaigns (MASE and Physics Of Stratocumulus Tops; POST). In situ data were from complete vertical cloud penetrations, while MODIS data were from pixels along the aircraft penetration path. Comparisons were well correlated except that MODIS LWP (14-36%) and re (20-30%) were biased high. The LWP bias was from re bias and was not improved by using the vertically stratified assumption. MODIS re bias was almost removed when compared to cloud top maximum in situ re, but, that does not describe re for the full depth of the cloud. COT is validated by in situ COT. High correlations suggest that MODIS variables are useful in self-comparisons such as gradient changes in stratus cloud re during aerosol-cloud processing.
The competition between mineral dust and soot ice nuclei in mixed-phase clouds (Invited)
NASA Astrophysics Data System (ADS)
Murray, B. J.; Atkinson, J.; Umo, N.; Browse, J.; Woodhouse, M. T.; Whale, T.; Baustian, K. J.; Carslaw, K. S.; Dobbie, S.; O'Sullivan, D.; Malkin, T. L.
2013-12-01
The amount of ice present in mixed-phase clouds, which contain both supercooled liquid water droplets and ice particles, affects cloud extent, lifetime, particle size and radiative properties. The freezing of cloud droplets can be catalysed by the presence of aerosol particles known as ice nuclei. In this talk our recent laboratory and global aerosol modelling work on mineral dust and soot ice nuclei will be presented. We have performed immersion mode experiments to quantify ice nucleation by the individual minerals which make up desert mineral dusts and have shown that the feldspar component, rather than the clay component, is most important for ice nucleation (Atkinson et al. 2013). Experiments with well-characterised soot generated with eugenol, an intermediate in biomass burning, and n-decane show soot has a significant ice nucleation activity in mixed-phase cloud conditions. Our results for soot are in good agreement with previous results for acetylene soot (DeMott, 1990), but extend the efficiency to much higher temperatures. We then use a global aerosol model (GLOMAP) to map the distribution of soot and feldspar particles on a global basis. We show that below about -15oC that dust and soot together can explain most observed ice nuclei in the Earth's atmosphere, while at warmer temperatures other ice nuclei types are needed. We show that in some regions soot is the most important ice nuclei (below -15oC), while in others feldspar dust dominates. Our results suggest that there is a strong anthropogenic contribution to the ice nuclei population, since a large proportion of soot aerosol in the atmosphere results from human activities. Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Carslaw, K. S., Whale, T. F., Baustian, K. J., Dobbie, S., O'Sullivan, D., and Malkin, T. L.: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds, Nature, 10.1038/nature12278, (2013). Demott, P. J. 1990. An Exploratory-Study of Ice Nucleation by Soot Aerosols. Journal of Applied Meteorology, 29, 1072-1079.
Retrieval of subvisual cirrus cloud optical thickness from limb-scatter measurements
NASA Astrophysics Data System (ADS)
Wiensz, J. T.; Degenstein, D. A.; Lloyd, N. D.; Bourassa, A. E.
2013-01-01
We present a technique for estimating the optical thickness of subvisual cirrus clouds detected by OSIRIS (Optical Spectrograph and Infrared Imaging System), a limb-viewing satellite instrument that measures scattered radiances from the UV to the near-IR. The measurement set is composed of a ratio of limb radiance profiles at two wavelengths that indicates the presence of cloud-scattering regions. Cross-sections and phase functions from an in situ database are used to simulate scattering by cloud-particles. With appropriate configurations discussed in this paper, the SASKTRAN successive-orders of scatter radiative transfer model is able to simulate accurately the in-cloud radiances from OSIRIS. Configured in this way, the model is used with a multiplicative algebraic reconstruction technique (MART) to retrieve the cloud extinction profile for an assumed effective cloud particle size. The sensitivity of these retrievals to key auxiliary model parameters is shown, and it is shown that the retrieved extinction profile, for an assumed effective cloud particle size, models well the measured in-cloud radiances from OSIRIS. The greatest sensitivity of the retrieved optical thickness is to the effective cloud particle size. Since OSIRIS has an 11-yr record of subvisual cirrus cloud detections, the work described in this manuscript provides a very useful method for providing a long-term global record of the properties of these clouds.
Effect of Amazon Smoke on Cloud Microphysics and Albedo-Analysis from Satellite Imagery.
NASA Astrophysics Data System (ADS)
Kaufman, Yoram J.; Nakajima, Teruyuki
1993-04-01
NOAA Advanced Very High Resolution Radiometer images taken over the Brazilian Amazon Basin during the biomass burning season of 1987 are used to study the effect of smoke aerosol particles on the properties of low cumulus and stratocumulus clouds. The reflectance at a wavelength of 0.64 µm and the drop size, derived from the cloud reflectance at 3.75 µm, are studied for tens of thousands of clouds. The opacity of the smoke layer adjacent to each cloud is also monitored simultaneously. Though from satellite data it is impossible to derive all the parameters that influence cloud properties and smoke cloud interaction (e.g., detailed aerosol particles size distribution and chemistry, liquid water content, etc.); satellite data can be used to generate large-scale statistics of the properties of clouds and surrounding aerosol (e.g., smoke optical thickness, cloud-drop size, and cloud reflection of solar radiation) from which the interaction of aerosol with clouds can be surmised. In order to minimize the effect of variations in the precipitable water vapor and in other smoke and cloud properties, biomass burning in the tropics is chosen as the study topic, and the results are averaged for numerous clouds with the same ambient smoke optical thickness.It is shown in this study that the presence of dense smoke (an increase in the optical thickness from 0.1 to 2.0) can reduce the remotely sensed drop size of continental cloud drops from 15 to 9 µm. Due to both the high initial reflectance of clouds in the visible part of the spectrum and the presence of graphitic carbon, the average cloud reflectance at 0.64 µm is reduced from 0.71 to 0.68 for an increase in smoke optical thickness from 0.1 to 2.0. The measurements are compared to results from other years, and it is found that, as predicted, high concentration of aerosol particles causes a decrease in the cloud-drop size and that smoke darkens the bright Amazonian clouds. Comparison with theoretical computations based on Twomey's model show that by using the measured reduction in the cloud-drop size due to the presence of smoke it is possible to explain the reduction in the cloud reflectance at 0.64 µm for smoke imagery index of 0.02 to 0.03.Smoke particles are hygroscopic and have a similar size distribution to maritime and anthropogenic sulfuric aerosol particles. Therefore, these results may also be representative of the interaction of sulfuric particles with clouds.
NASA Astrophysics Data System (ADS)
Yang, Jiefan; Lei, Hengchi
2016-02-01
Cloud microphysical properties of a mixed phase cloud generated by a typical extratropical cyclone in the Tongliao area, Inner Mongolia on 3 May 2014, are analyzed primarily using in situ flight observation data. This study is mainly focused on ice crystal concentration, supercooled cloud water content, and vertical distributions of fit parameters of snow particle size distributions (PSDs). The results showed several discrepancies of microphysical properties obtained during two penetrations. During penetration within precipitating cloud, the maximum ice particle concentration, liquid water content, and ice water content were increased by a factor of 2-3 compared with their counterpart obtained during penetration of a nonprecipitating cloud. The heavy rimed and irregular ice crystals obtained by 2D imagery probe as well as vertical distributions of fitting parameters within precipitating cloud show that the ice particles grow during falling via riming and aggregation process, whereas the lightly rimed and pristine ice particles as well as fitting parameters within non-precipitating cloud indicate the domination of sublimation process. During the two cloud penetrations, the PSDs were generally better represented by gamma distributions than the exponential form in terms of the determining coefficient ( R 2). The correlations between parameters of exponential /gamma form within two penetrations showed no obvious differences compared with previous studies.
NASA Astrophysics Data System (ADS)
Arabas, S.; Jaruga, A.; Pawlowska, H.; Grabowski, W. W.
2012-12-01
Clouds may influence aerosol characteristics of their environment. The relevant processes include wet deposition (rainout or washout) and cloud condensation nuclei (CCN) recycling through evaporation of cloud droplets and drizzle drops. Recycled CCN physicochemical properties may be altered if the evaporated droplets go through collisional growth or irreversible chemical reactions (e.g. SO2 oxidation). The key challenge of representing these processes in a numerical cloud model stems from the need to track properties of activated CCN throughout the cloud lifecycle. Lack of such "memory" characterises the so-called bulk, multi-moment as well as bin representations of cloud microphysics. In this study we apply the particle-based scheme of Shima et al. 2009. Each modelled particle (aka super-droplet) is a numerical proxy for a multiplicity of real-world CCN, cloud, drizzle or rain particles of the same size, nucleus type,and position. Tracking cloud nucleus properties is an inherent feature of the particle-based frameworks, making them suitable for studying aerosol-cloud-aerosol interactions. The super-droplet scheme is furthermore characterized by linear scalability in the number of computational particles, and no numerical diffusion in the condensational and in the Monte-Carlo type collisional growth schemes. The presentation will focus on processing of aerosol by a drizzling stratocumulus deck. The simulations are carried out using a 2D kinematic framework and a VOCALS experiment inspired set-up (see http://www.rap.ucar.edu/~gthompsn/workshop2012/case1/).
Cloud Condensation Nuclei in Cumulus Humilis - Selected Case Study During the CHAPS Campaign
NASA Astrophysics Data System (ADS)
Yu, X.; Berg, L. K.; Berkowitz, C. M.; Alexander, M. L.; Lee, Y.; Laskin, A.; Ogren, J. A.; Andrews, B.
2009-12-01
The Cumulus Humilis Aerosol Processing Study (CHAPS) provided a unique opportunity to study aerosol and cloud processing. Clouds play an active role in the processing and cycling of atmospheric constituents. Gases and particles can partition to cloud droplets by absorption and condensation as well as activation and pact scavenging. The Department of Energy (DOE) G-1 aircraft was used as one of the main platforms in CHAPS. Flight tracks were designed and implemented to characterize freshly emitted aerosols on cloud top and cloud base as well as with cloud, i.e., cumulus humilis (or fair-weather cumulus), in the vicinity of Oklahoma City. Measurements of interstitial aerosols and residuals of activated condensation cloud nuclei were conducted simultaneously. The interstitial aerosols were determined downstream of an isokinetic inlet; and the activated particles downstream of a counter-flow virtual impactor (CVI). The sampling line to the Aerodyne Aerosol Mass Spectrometer was switched between the isokinetic inlet and the CVI to allow characterization of interstitial particles out of clouds in contrast to particles activated in clouds. Trace gases including ozone, carbon monoxide, sulfur dioxide, and a series of volatile organic compounds (VOCs) were also measured as were key meteorological state parameters including liquid water content, cloud drop size, and dew point temperature were measured. This work will focus on studying CCN properties in cumulus humilis. Several approaches will be taken. The first is single particle analysis of particles collected by the Time-Resolved Aerosol Sampler (TRAC) by SEM/TEM coupled with EDX. We will specifically look into differences in particle properties such as chemical composition and morphology between activated and interstitial ones. The second analysis will link in situ measurements with the snap shots observations by TRAC. For instance, by looking into the characteristic m/z obtained by AMS vs. CO or isoprene, one can gain more insight into the role of primary and secondary organic aerosols in CCNs and background aerosols. Combined with observations of cloud properties, an improved picture of CCN activation in cumulus humilis can be made.
O the Size Dependence of the Chemical Properties of Cloud Droplets: Exploratory Studies by Aircraft
NASA Astrophysics Data System (ADS)
Twohy, Cynthia H.
1992-09-01
Clouds play an important role in the climate of the earth and in the transport and transformation of chemical species, but many questions about clouds remain unanswered. In particular, the chemical properties of droplets may vary with droplet size, with potentially important consequences. The counterflow virtual impactor (CVI) separates droplets from interstitial particles and gases in a cloud and also can collect droplets in discrete size ranges. As such, the CVI is a useful tool for investigating the chemical components present in droplets of different sizes and their potential interactions with cloud processes. The purpose of this work is twofold. First, the sampling characteristics of the airborne CVI are investigated, using data from a variety of experiments. A thorough understanding of CVI properties is necessary in order to utilize the acquired data judiciously and effectively. Although the impaction characteristics of the CVI seem to be predictable by theory, the airborne instrument is subject to influences that may result in a reduced transmission efficiency for droplets, particularly if the inlet is not properly aligned. Ways to alleviate this problem are being investigated, but currently the imperfect sampling efficiency must be taken into account during data interpretation. Relationships between the physical and chemical properties of residual particles from droplets collected by the CVI and droplet size are then explored in both stratiform and cumulus clouds. The effects of various cloud processes and measurement limitations upon these relationships are discussed. In one study, chemical analysis of different -sized droplets sampled in stratiform clouds showed a dependence of chemical composition on droplet size, with larger droplets containing higher proportions of sodium than non-sea-salt sulfate and ammonium. Larger droplets were also associated with larger residual particles, as expected from simple cloud nucleation theory. In a study of marine cumulus clouds, the CVI was combined with a cloud condensation nucleus spectrometer to study the supersaturation spectra of residual particles from droplets. The median critical supersaturation of the droplet residual particles was consistently less than or equal to the median critical supersaturation of ambient particles except at cloud top, where residual particles exhibited a variety of critical supersaturations.
Study of the chemical composition of atmospheric aerosol particles in Hungary: a review
NASA Astrophysics Data System (ADS)
Mészáros, E.
The methods used in Hungarian laboratories to study the chemical composition of atmospheric aerosol particles over the last 30 years are reviewed. Individual particles were identified by topochemical techniques and morphological identification with an electron microscope. Bulk analyses were also carried out by applying wet chemical methods, and more recently by the PIXE procedure. The results gained are summarized in connection with the general development of atmospheric aerosol science during the last decades. These studies demonstrated that cloud condensation nuclei are water soluble Aitken sized particles which are composed of sulfates. Neutralized and acidic sulfate particles constitute the main class of fine aerosol particles under continental and oceanic background conditions. Coarse particles contain mostly sodium, silicon and aluminium. The formation and origin of particles in different size ranges are also discussed.
Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds
Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H.; Rudich, Yinon
2013-01-01
The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908
Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.
Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H; Rudich, Yinon
2013-12-17
The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.
NASA Astrophysics Data System (ADS)
Zobnin, A. V.; Usachev, A. D.; Petrov, O. F.; Fortov, V. E.; Thoma, M. H.; Fink, M. A.
2018-03-01
The influence of a dust cloud on the structure of the positive column of a direct current gas discharge in a cylindrical glass tube under milligravity conditions has been studied both experimentally and numerically. The discharge was produced in neon at 60 Pa in a glass tube with a diameter of 30 mm at a discharge current 1 mA. Spherical monodisperse melamine formaldehyde dust particles with a diameter of 6.86 μm were injected into the positive column and formed there a uniform dust cloud with a maximum diameter of 14.4 mm. The shape of the cloud and the dust particle number density were measured. The cloud was stationary in the radial direction and slowly drifted in the axial direction. It was found that in the presence of the dust cloud, the intensity of the neon spectral line with a wavelength by 585.25 nm emitted by the discharge plasma increased by 2.3 times and 2 striations appeared on the anode side of the cloud. A numerical simulation of the discharge was performed using the 2D (quasi-3D) nonlocal self-consistent kinetic model of a longitudinally inhomogeneous axially symmetric positive column [Zobnin et al., Phys. Plasmas 21, 113503 (2014)], which was supplemented by a program module performing a self-consistent calculation of dust particle charges, the plasma recombination rate on dust particles, and ion scattering on dust particles. A new approach to the calculation of particle charges and the screening radius in dense dust clouds is proposed. The results of the simulation are presented, compared with experimental data and discussed. It is demonstrated that for the best agreement between simulated and experimental data, it is necessary to take into account the reflection of electrons from the dust particle surface in order to correctly describe the recombination rate in the cloud, its radial stability, and the dust particle charges.
NASA Astrophysics Data System (ADS)
Fan, Jiwen; Ghan, Steven; Ovchinnikov, Mikhail; Liu, Xiaohong; Rasch, Philip J.; Korolev, Alexei
2011-01-01
Two types of Arctic mixed-phase clouds observed during the ISDAC and M-PACE field campaigns are simulated using a 3-dimensional cloud-resolving model (CRM) with size-resolved cloud microphysics. The modeled cloud properties agree reasonably well with aircraft measurements and surface-based retrievals. Cloud properties such as the probability density function (PDF) of vertical velocity (w), cloud liquid and ice, regimes of cloud particle growth, including the Wegener-Bergeron-Findeisen (WBF) process, and the relationships among properties/processes in mixed-phase clouds are examined to gain insights for improving their representation in General Circulation Models (GCMs). The PDF of the simulated w is well represented by a Gaussian function, validating, at least for arctic clouds, the subgrid treatment used in GCMs. The PDFs of liquid and ice water contents can be approximated by Gamma functions, and a Gaussian function can describe the total water distribution, but a fixed variance assumption should be avoided in both cases. The CRM results support the assumption frequently used in GCMs that mixed phase clouds maintain water vapor near liquid saturation. Thus, ice continues to grow throughout the stratiform cloud but the WBF process occurs in about 50% of cloud volume where liquid and ice co-exist, predominantly in downdrafts. In updrafts, liquid and ice particles grow simultaneously. The relationship between the ice depositional growth rate and cloud ice strongly depends on the capacitance of ice particles. The simplified size-independent capacitance of ice particles used in GCMs could lead to large deviations in ice depositional growth.
Ionisation and discharge in cloud-forming atmospheres of brown dwarfs and extrasolar planets
NASA Astrophysics Data System (ADS)
Helling, Ch; Rimmer, P. B.; Rodriguez-Barrera, I. M.; Wood, Kenneth; Robertson, G. B.; Stark, C. R.
2016-07-01
Brown dwarfs and giant gas extrasolar planets have cold atmospheres with rich chemical compositions from which mineral cloud particles form. Their properties, like particle sizes and material composition, vary with height, and the mineral cloud particles are charged due to triboelectric processes in such dynamic atmospheres. The dynamics of the atmospheric gas is driven by the irradiating host star and/or by the rotation of the objects that changes during its lifetime. Thermal gas ionisation in these ultra-cool but dense atmospheres allows electrostatic interactions and magnetic coupling of a substantial atmosphere volume. Combined with a strong magnetic field \\gg {{B}\\text{Earth}} , a chromosphere and aurorae might form as suggested by radio and x-ray observations of brown dwarfs. Non-equilibrium processes like cosmic ray ionisation and discharge processes in clouds will increase the local pool of free electrons in the gas. Cosmic rays and lighting discharges also alter the composition of the local atmospheric gas such that tracer molecules might be identified. Cosmic rays affect the atmosphere through air showers in a certain volume which was modelled with a 3D Monte Carlo radiative transfer code to be able to visualise their spacial extent. Given a certain degree of thermal ionisation of the atmospheric gas, we suggest that electron attachment to charge mineral cloud particles is too inefficient to cause an electrostatic disruption of the cloud particles. Cloud particles will therefore not be destroyed by Coulomb explosion for the local temperature in the collisional dominated brown dwarf and giant gas planet atmospheres. However, the cloud particles are destroyed electrostatically in regions with strong gas ionisation. The potential size of such cloud holes would, however, be too small and might occur too far inside the cloud to mimic the effect of, e.g. magnetic field induced star spots.
NASA Astrophysics Data System (ADS)
Calbó, Josep; Long, Charles N.; González, Josep-Abel; Augustine, John; McComiskey, Allison
2017-11-01
Cloud and aerosol are two manifestations of what it is essentially the same physical phenomenon: a suspension of particles in the air. The differences between the two come from the different composition (e.g., much higher amount of condensed water in particles constituting a cloud) and/or particle size, and also from the different number of such particles (10-10,000 particles per cubic centimeter depending on conditions). However, there exist situations in which the distinction is far from obvious, and even when broken or scattered clouds are present in the sky, the borders between cloud/not cloud are not always well defined, a transition area that has been coined as the ;twilight zone;. The current paper presents a discussion on the definition of cloud and aerosol, the need for distinguishing or for considering the continuum between the two, and suggests a quantification of the importance and frequency of such ambiguous situations, founded on several ground-based observing techniques. Specifically, sensitivity analyses are applied on sky camera images and broadband and spectral radiometric measurements taken at Girona (Spain) and Boulder (Co, USA). Results indicate that, at these sites, in more than 5% of the daytime hours the sky may be considered cloudless (but containing aerosols) or cloudy (with some kind of optically thin clouds) depending on the observing system and the thresholds applied. Similarly, at least 10% of the time the extension of scattered or broken clouds into clear areas is problematic to establish, and depends on where the limit is put between cloud and aerosol. These findings are relevant to both technical approaches for cloud screening and sky cover categorization algorithms and radiative transfer studies, given the different effect of clouds and aerosols (and the different treatment in models) on the Earth's radiation balance.
Cirrus cloud model parameterizations: Incorporating realistic ice particle generation
NASA Technical Reports Server (NTRS)
Sassen, Kenneth; Dodd, G. C.; Starr, David OC.
1990-01-01
Recent cirrus cloud modeling studies have involved the application of a time-dependent, two dimensional Eulerian model, with generalized cloud microphysical parameterizations drawn from experimental findings. For computing the ice versus vapor phase changes, the ice mass content is linked to the maintenance of a relative humidity with respect to ice (RHI) of 105 percent; ice growth occurs both with regard to the introduction of new particles and the growth of existing particles. In a simplified cloud model designed to investigate the basic role of various physical processes in the growth and maintenance of cirrus clouds, these parametric relations are justifiable. In comparison, the one dimensional cloud microphysical model recently applied to evaluating the nucleation and growth of ice crystals in cirrus clouds explicitly treated populations of haze and cloud droplets, and ice crystals. Although these two modeling approaches are clearly incompatible, the goal of the present numerical study is to develop a parametric treatment of new ice particle generation, on the basis of detailed microphysical model findings, for incorporation into improved cirrus growth models. For example, the relation between temperature and the relative humidity required to generate ice crystals from ammonium sulfate haze droplets, whose probability of freezing through the homogeneous nucleation mode are a combined function of time and droplet molality, volume, and temperature. As an example of this approach, the results of cloud microphysical simulations are presented showing the rather narrow domain in the temperature/humidity field where new ice crystals can be generated. The microphysical simulations point out the need for detailed CCN studies at cirrus altitudes and haze droplet measurements within cirrus clouds, but also suggest that a relatively simple treatment of ice particle generation, which includes cloud chemistry, can be incorporated into cirrus cloud growth.
Modeling the effects of an offset of the center of symmetry in the zodiacal cloud
NASA Astrophysics Data System (ADS)
Holmes, E. K.; Dermott, S. F.; Xu, Y. L.; Wyatt, M.; Jayaraman, S.
1998-04-01
There is a possible connection between structure in circumstellar dust clouds and the presence of planets, our own zodiacal cloud being the prime example. Asymmetries in such clouds could be diagnostic of planets which would be otherwise undetectable. One such feature is an offset of the center of symmetry of the disk with respect to the central star. The offset is caused by the forced eccentricities (ef) of particles in the cloud. The orbit of a particle can be described by a set of five orbital elements: the semi-major axis (a), eccentricity (e), inclination (I), longitude of ascending node (Omega) and the argument of pericenter (omega). In low order secular perturbation theory, osculating elements of small bodies are decomposed into proper and forced elements. The proper elements are dependent on initial conditions while the forced elements are imposed on the particle's orbit by the gravitational perturbations of the planets. This decomposition is still applicable in the presence of drag forces. We compare COBE observations of the variation in average polar brightness of the background cloud, (N + S)/2, with ecliptic longitude of Earth with those of a model cloud made of asteroidal particles which populate the inner solar system according to a 1/rgamma where (gamma) = 1 (Poynting Robertson light drag) distribution. The variation with ecliptic longitude of Earth in mean polar brightness is shown in for the 25 micron waveband. Sine curves are fit to both the COBE observations and the model. The variation in (N+S)/2 with ecliptic longitude of Earth can be represented as a superposition of two sine curves: one for the variation in (N + S)/2 due to the Earth's eccentric orbit and the other for the variation in (N + S)/2 due to the forced eccentricities of particles in the cloud. If the cloud were symmetric about the Sun (i.e., if there were no offset), the maximum and minimum brightnesses of the cloud would occur at perihelion and aphelion, respectively. Looking at the model, one can see that the minimum does occur at Earth's aphelion (282.9 deg). However, the minimum of the COBE curve is clearly displaced from aphelion, showing that the center of symmetry of the cloud is displaced from the Sun. If we could turn off the effect of the Earth's eccentricity, we could isolate the sine curve due to ef. When we do this for the model cloud however, we do not see a variation in (N + S)/2 for two reasons: 1) Although the particle orbits are circularized due to Poynting Robertson drag (PR drag), the wedge shape of the cloud cancels out any number density variation as a function of radial distance; and 2) Even though we would expect the orbits of the particles to be more densely spaced at perihelion than at aphelion (provided all the particles had the same ef and omegaf, due to Kepler's Second Law the particles spend less time at perihelion than at aphelion thus canceling out any noticeable effect on the number density. However, when we build a new model cloud governed by a constant distribution of particles (1/rgamma where gamma = 0) instead of a 1/r distribution, we do see a sinusoidal variation in (N + S)/2 with ecliptic longitude of Earth. These results imply that the particles contributing to the observed offset do not have a PR drag distribution (i.e., they are not simply asteroidal particles). Future work will determine whether cometary particles (having a theoretical gamma = 1.5), collisionally evolved asteroidal particles, or a combination of both types of particles are responsible for the offset of the center of symmetry of the zodiacal cloud.
Microphysical processing of aerosol particles in orographic clouds
NASA Astrophysics Data System (ADS)
Pousse-Nottelmann, S.; Zubler, E. M.; Lohmann, U.
2015-01-01
An explicit and detailed treatment of cloud-borne particles allowing for the consideration of aerosol cycling in clouds has been implemented in the regional weather forecast and climate model COSMO. The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener-Bergeron-Findeisen process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snow flakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snow flakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. However, the processes not only impact the total aerosol number and mass, but also the shape of the aerosol size distributions by enhancing the internally mixed/soluble accumulation mode and generating coarse mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases the cloud droplet number concentration with possible implications for the ice crystal number concentration.
NASA Astrophysics Data System (ADS)
Dombrovsky, Leonid A.; Reviznikov, Dmitry L.; Kryukov, Alexei P.; Levashov, Vladimir Yu
2017-10-01
An effect of shielding of an intense solar radiation towards a solar probe with the use of micron-sized SiC particles generated during ablation of a composite thermal protection material is estimated on a basis of numerical solution to a combined radiative and heat transfer problem. The radiative properties of particles are calculated using the Mie theory, and the spectral two-flux model is employed in radiative transfer calculations for non-uniform particle clouds. A computational model for generation and evolution of the cloud is based on a conjugated heat transfer problem taking into account heating and thermal destruction of the matrix of thermal protection material and sublimation of SiC particles in the generated cloud. The effect of light pressure, which is especially important for small particles, is also taken into account. The computational data for mass loss due to the particle cloud sublimation showed the low value about 1 kg/m2 per hour at the distance between the vehicle and the Sun surface of about four radii of the Sun. This indicates that embedding of silicon carbide or other particles into a thermal protection layer and the resulting generation of a particle cloud can be considered as a promising way to improve the possibilities of space missions due to a significant decrease in the vehicle working distance from the solar photosphere.
Aerosol partitioning in mixed-phase clouds at the Jungfraujoch (3580 m asl)
NASA Astrophysics Data System (ADS)
Henning, S.; Bojinski, S.; Diehl, K.; Ghan, S.; Nyeki, S.; Weingartner, E.; Wurzler, S.; Baltensperger, U.
2003-04-01
Field measurements on the partitioning between the interstitial and the liquid/ice phase in natural clouds were performed at the high-alpine research station Jungfraujoch (3580 m asl, Switzerland) during a summer and a winter campaign. The size distributions of the total and the interstitial aerosol were determined by means of a scanning mobility particle sizer (SMPS). From these, size resolved scavenging ratios were calculated. Simultaneously, cloud water content (CWC) and cloud particle size distributions along with meteorological data were obtained. In cold mixed phase clouds (existing of liquid droplets and ice crystals), strong differences were found in comparison to the warm summer clouds. In the warm cloud types all particles above a certain diameter were activated and thereby the scavenging ratio (number of activated particles divided by the total number concentration) above a certain threshold diameter approached 1. In the winter clouds, the scavenging ratio never reached the value of 1 and could be as low as 0. These observations are explained by the Bergeron-Findeisen process: Here, particles are also activated to droplets in the first step, but after the formation of the ice phase droplets evaporate while the ice crystals grow, due to difference in the saturation vapor pressure over water and ice. This release of aerosol particles to the interstitial aerosol has significant implications for the climate forcing: It can be expected that the number of CCN is of less importance as soon as ice crystals are formed.
Feasibility of reduced gravity experiments involving quiescent, uniform particle cloud combustion
NASA Technical Reports Server (NTRS)
Ross, Howard D.; Facca, Lily T.; Berlad, Abraham L.; Tangirala, Venkat
1989-01-01
The study of combustible particle clouds is of fundamental scientific interest as well as a practical concern. The principal scientific interests are the characteristic combustion properties, especially flame structure, propagation rates, stability limits, and the effects of stoichiometry, particle type, transport phenomena, and nonadiabatic processes on these properties. The feasibility tests for the particle cloud combustion experiment (PCCE) were performed in reduced gravity in the following stages: (1) fuel particles were mixed into cloud form inside a flammability tube; (2) when the concentration of particles in the cloud was sufficiently uniform, the particle motion was allowed to decay toward quiescence; (3) an igniter was energized which both opened one end of the tube and ignited the suspended particle cloud; and (4) the flame proceeded down the tube length, with its position and characteristic features being photographed by high-speed cameras. Gravitational settling and buoyancy effects were minimized because of the reduced gravity enviroment in the NASA Lewis drop towers and aircraft. Feasibility was shown as quasi-steady flame propagation which was observed for fuel-rich mixtures. Of greatest scientific interest is the finding that for near-stoichiometric mixtures, a new mode of flame propagation was observed, now called a chattering flame. These flames did not propagate steadily through the tube. Chattering modes of flame propagation are not expected to display extinction limits that are the same as those for acoustically undisturbed, uniform, quiescent clouds. A low concentration of fuel particles, uniformly distributed in a volume, may not be flammable but may be made flammable, as was observed, through induced segregation processes. A theory was developed which showed that chattering flame propagation was controlled by radiation from combustion products which heated the successive discrete laminae sufficiently to cause autoignition.
NASA Astrophysics Data System (ADS)
Andreea, Boscornea; Sabina, Stefan; Sorin-Nicolae, Vajaiac; Mihai, Cimpuieru
2015-04-01
One cloud type for which the formation and evolution process is not well-understood is the mixed-phase type. In general mixed-phase clouds consist of liquid droplets and ice crystals. The temperature interval within both liquid droplets and ice crystals can potentially coexist is limited to 0 °C and - 40 °C. Mixed-phase clouds account for 20% to 30% of the global cloud coverage. The need to understand the microphysical characteristics of mixed-phase clouds to improve numerical forecast modeling and radiative transfer calculation is of major interest in the atmospheric community. In the past, studies of cloud phase composition have been significantly limited by a lack of aircraft instruments capable of discriminating between the ice and liquid phase for a wide range of particle sizes. Presently, in situ airborne measurements provide the most accurate information about cloud microphysical characteristics. This information can be used for verification of both numerical models and cloud remote-sensing techniques. The knowledge of the temperature and pressure variation during the airborne measurements is crucial in order to understand their influence on the cloud dynamics and also their role in the cloud formation processes like accretion and coalescence. Therefore, in this paper is presented a comprehensive study of cloud microphysical properties in mixed-phase clouds in focus of the influence of temperature and pressure variation on both, cloud dynamics and the cloud formation processes, using measurements performed with the ATMOSLAB - Airborne Laboratory for Environmental Atmospheric Research in property of the National Institute for Aerospace Research "Elie Carafoli" (INCAS). The airborne laboratory equipped for special research missions is based on a Hawker Beechcraft - King Air C90 GTx aircraft and is equipped with a sensors system CAPS - Cloud, Aerosol and Precipitation Spectrometer (30 bins, 0.51-50 µm) and a HAWKEYE cloud probe. The analyzed data in this work is acquired during 2 flight hours on the 23th of October 2014 in mixed clouds formations over Romania ( Craiova, Lat 44°19', Lon 23°48' ). The temperature variation during the cloud sounding was between -14 °C and -2 °C, with a maximum altitude in the cloud of 4863 m and a minimum altitude of 3353 m. In total 6 horizontal lines of 10 minutes each where performed recording ice crystal number concentrations (using the CIP - Cloud Imaging Probe) between 10 to 20 particles/cm3 outside the cloud layer and over 100 particles/cm3 inside the cloud layer and a number concentration of small droplets, aerosol and small ice crystals (using the CAS - Cloud Aerosol Spectrometer) between 150 particles/cm3 outside the cloud layer and 1600 particles/cm3 inside the cloud layer, this values confirms also the presence of IN (ice nuclei) in the atmosphere between the cloud layers. The results in respect with size distribution of cloud's particles and LWC show to be controlled by the temperature and pressure variations.
NASA Astrophysics Data System (ADS)
Lin, Ruei-Fong; O'C. Starr, David; Demott, Paul J.; Cotton, Richard; Sassen, Kenneth; Jensen, Eric; Kärcher, Bernd; Liu, Xiaohong
2002-08-01
The Cirrus Parcel Model Comparison Project, a project of the GCSS [Global Energy and Water Cycle Experiment (GEWEX) Cloud System Studies] Working Group on Cirrus Cloud Systems, involves the systematic comparison of current models of ice crystal nucleation and growth for specified, typical, cirrus cloud environments. In Phase 1 of the project reported here, simulated cirrus cloud microphysical properties from seven models are compared for `warm' (40°C) and `cold' (60°C) cirrus, each subject to updrafts of 0.04, 0.2, and 1 m s1. The models employ explicit microphysical schemes wherein the size distribution of each class of particles (aerosols and ice crystals) is resolved into bins or the evolution of each individual particle is traced. Simulations are made including both homogeneous and heterogeneous ice nucleation mechanisms (all-mode simulations). A single initial aerosol population of sulfuric acid particles is prescribed for all simulations. Heterogeneous nucleation is disabled for a second parallel set of simulations in order to isolate the treatment of the homogeneous freezing (of haze droplets) nucleation process. Analysis of these latter simulations is the primary focus of this paper.Qualitative agreement is found for the homogeneous-nucleation-only simulations; for example, the number density of nucleated ice crystals increases with the strength of the prescribed updraft. However, significant quantitative differences are found. Detailed analysis reveals that the homogeneous nucleation rate, haze particle solution concentration, and water vapor uptake rate by ice crystal growth (particularly as controlled by the deposition coefficient) are critical components that lead to differences in the predicted microphysics.Systematic differences exist between results based on a modified classical theory approach and models using an effective freezing temperature approach to the treatment of nucleation. Each method is constrained by critical freezing data from laboratory studies, but each includes assumptions that can only be justified by further laboratory research. Consequently, it is not yet clear if the two approaches can be made consistent. Large haze particles may deviate considerably from equilibrium size in moderate to strong updrafts (0.2-1 m s1) at 60°C. The equilibrium assumption is commonly invoked in cirrus parcel models. The resulting difference in particle-size-dependent solution concentration of haze particles may significantly affect the ice particle formation rate during the initial nucleation interval. The uptake rate for water vapor excess by ice crystals is another key component regulating the total number of nucleated ice crystals. This rate, the product of particle number concentration and ice crystal diffusional growth rate, which is particularly sensitive to the deposition coefficient when ice particles are small, modulates the peak particle formation rate achieved in an air parcel and the duration of the active nucleation time period. The consequent differences in cloud microphysical properties, and thus cloud optical properties, between state-of-the-art models of ice crystal initiation are significant.Intermodel differences in the case of all-mode simulations are correspondingly greater than in the case of homogeneous nucleation acting alone. Definitive laboratory and atmospheric benchmark data are needed to improve the treatment of heterogeneous nucleation processes.
NASA Astrophysics Data System (ADS)
Sassen, Kenneth; Arnott, W. Patrick; O'C. Starr, David; Mace, Gerald G.; Wang, Zhien; Poellot, Michael R.
2003-04-01
Hurricane Nora traveled up the Baja Peninsula coast in the unusually warm El Niño waters of September 1997 until rapidly decaying as it approached southern California on 24 September. The anvil cirrus blowoff from the final surge of tropical convection became embedded in subtropical flow that advected the cirrus across the western United States, where it was studied from the Facility for Atmospheric Remote Sensing (FARS) in Salt Lake City, Utah, on 25 September. A day later, the cirrus shield remnants were redirected southward by midlatitude circulations into the southern Great Plains, providing a case study opportunity for the research aircraft and ground-based remote sensors assembled at the Clouds and Radiation Testbed (CART) site in northern Oklahoma. Using these comprehensive resources and new remote sensing cloud retrieval algorithms, the microphysical and radiative cloud properties of this unusual cirrus event are uniquely characterized.Importantly, at both the FARS and CART sites the cirrus generated spectacular halos and arcs, which acted as a tracer for the hurricane cirrus, despite the limited lifetimes of individual ice crystals. Lidar depolarization data indicate widespread regions of uniform ice plate orientations, and in situ particle replicator data show a preponderance of pristine, solid hexagonal plates and columns. It is suggested that these unusual aspects are the result of the mode of cirrus particle nucleation, presumably involving the lofting of sea salt nuclei in strong thunderstorm updrafts into the upper troposphere. This created a reservoir of haze particles that continued to produce halide-salt-contaminated ice crystals during the extended period of cirrus cloud maintenance. The inference that marine microbiota are embedded in the replicas of some ice crystals collected over the CART site points to the longevity of marine effects. Various nucleation scenarios proposed for cirrus clouds based on this and other studies, and the implications for understanding cirrus radiative properties on a global scale, are discussed.
NASA Technical Reports Server (NTRS)
Sassen, Kenneth; Arnott, W. Patrick; OCStarr, David; Mace, Gerald G.; Wang, Zhien; Poellot, Michael R.
2002-01-01
Hurricane Nora traveled up the Bala Peninsula coast in the unusually warm El Nino waters of September 1997, until rapidly decaying as it approached Southern California on 24 September. The anvil cirrus blowoff from the final surge of tropical convection became embedded in subtropical flow that advected the cirrus across the western US, where it was studied from the Facility for Atmospheric Remote Sensing (FARS) in Salt Lake City, Utah. A day later, the cirrus shield remnants were redirected southward by midlatitude circulations into the Southern Great Plains, providing a case study opportunity for the research aircraft and ground-based remote sensors assembled at the Clouds and Radiation Testbed (CART) site in northern Oklahoma. Using these comprehensive resources and new remote sensing cloud retrieval algorithms, the microphysical and radiative cloud properties of this unusual cirrus event are uniquely characterized. Importantly, at both the FARS and CART sites the cirrus generated spectacular optical displays, which acted as a tracer for the hurricane cirrus, despite the limited lifetimes of individual ice crystals. Lidar polarization data indicate widespread regions of uniform ice plate orientations, and in situ particle masticator data show a preponderance of pristine, solid hexagonal plates and columns. It is suggested that these unusual aspects are the result of the mode of cirrus particle nucleation, presumably involving the lofting of sea-salt nuclei in thunderstorm updrafts into the upper troposphere. This created a reservoir of haze particles that continued to produce halide-saltcontaminated ice crystals during the extended period of cirrus cloud maintenance. The reference that marine microliters are embedded in the replicas of ice crystals collected over the CART site points to the longevity of marine effects. Various nucleation scenarios proposed for cirrus clouds based on this and other studies, and the implications for understanding cirrus radiative properties or a global scale, are discussed.
Evidence for Natural Variability in Marine Stratocumulus Cloud Properties Due to Cloud-Aerosol
NASA Technical Reports Server (NTRS)
Albrecht, Bruce; Sharon, Tarah; Jonsson, Haf; Minnis, Patrick; Minnis, Patrick; Ayers, J. Kirk; Khaiyer, Mandana M.
2004-01-01
In this study, aircraft observations from the Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter are used to characterize the variability in drizzle, cloud, and aerosol properties associated with cloud rifts and the surrounding solid clouds observed off the coast of California. A flight made on 16 July 1999 provided measurements directly across an interface between solid and rift cloud conditions. Aircraft instrumentation allowed for measurements of aerosol, cloud droplet, and drizzle spectra. CCN concentrations were measured in addition to standard thermodynamic variables and the winds. A Forward Scatter Spectrometer Probe (FSSP) measured size distribution of cloud-sized droplets. A Cloud Imaging Probe (CIP) was used to measure distributions of drizzle-sized droplets. Aerosol distributions were obtained from a Cloud Aerosol Scatterprobe (CAS). The CAS probe measured aerosols, cloud droplets and drizzle-sized drops; for this study. The CAS probe was used to measure aerosols in the size range of 0.5 micron - 1 micron. Smaller aerosols were characterized using an Ultrafine Condensation Particle Counter (CPC) sensor. The CPC was used to measure particles with diameters greater than 0.003 micron. By subtracting different count concentrations measured with the CPC, this probe was capable of identifying ultrafine particles those falling in the size range of 3 nanometers - 7 nanometers that are believed to be associated with new particle production.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Menzel, W. Paul; Ackerman, Steven A.; Remer, Lorraine A.
2006-01-01
Remote sensing of cloud and aerosol optical properties is routinely obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites. Instruments that are being used to enhance our ability to characterize the global distribution of cloud and aerosol properties include well-calibrated multispectral radiometers that measure in the visible, near-infrared, and thermal infrared. The availability of thermal channels to enhance detection of cloud when estimating aerosol properties is an important improvement. In this paper, we describe the radiative properties of clouds as currently determined from satellites (cloud fraction, optical thickness, cloud top pressure, and cloud particle effective radius) and highlight the global/regional cloud microphysical properties currently available for assessing climate variability and forcing. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective particle radius for selected geographical locations around the world. In addition, we will illustrate the radiative and microphysical properties of aerosol particles (in cloud free regions) that are currently available from space-based observations, and show the latitudinal distribution of aerosol optical properties over both land and ocean surfaces.
Electroscavenging and Inferred Effects on Precipitation Efficiency
NASA Astrophysics Data System (ADS)
Tinsley, B. A.
2002-12-01
The evaporation of charged droplets leaves charged aerosol particles that can act as cloud condensation nuclei and ice forming nuclei. New calculations of scavenging of such charged particles by droplets have been made, that now include the effects of inertia and variable particle density, and variable cloud altitudes ranging into the stratosphere. They show that the Greenfield Gap closes for particles of low density, or for high altitude clouds, or for a few hundred elementary charges on the particles. A few tens of elementary charges on the particles gives collision efficiencies typically an order of magnitude greater than that due to phoretic forces alone. The numerical integrations show that electroscavenging of ice forming nuclei leading to contact ice nucleation is competitive with deposition ice nucleation, for cloud top temperatures in the range 0§C to -15§C and droplet size distributions extending past 10-15 mm radius. This implies that for marine stratocumulus or nimbostratus clouds with tops just below freezing temperature, where precipitation is initiated by the Wegener-Bergeron-Findeisen process, the precipitation efficiency can be affected by the amount of charge on the ice-forming nuclei. This in turn depends on the extent of the (weak) electrification of the cloud. Similarly, electroscavenging of condensation nuclei can increase the average droplet size in successive cycles of cloud evaporation and formation, and can also affect precipitation efficiency.
NASA Astrophysics Data System (ADS)
Cantrell, W. H., II; Chang, K.; Ciochetto, D.; Niedermeier, D.; Bench, J.; Shaw, R. A.
2014-12-01
A detailed understanding of gas-aerosol-cloud interaction within the turbulent atmosphere is of prime importance for an accurate understanding of Earth's climate system. As one example: While every cloud droplet began as an aerosol particle, not every aerosol particle becomes a cloud droplet. The particle to droplet transformation requires that the particle be exposed to some critical concentration of water vapor, which differs for different combinations of particle size and chemical composition. Similarly, the formation of ice particles in mixed phase clouds is also catalyzed by aerosol particles. Even in the simplest scenarios it is challenging to gain a full understanding of the aerosol activation and ice nucleation processes. At least two other factors contribute significantly to the complexity observed in the atmosphere. First, aerosols and cloud particles are not static entities, but are continuously interacting with their chemical environment, and therefore changing in their properties. Second, clouds are ubiquitously turbulent, so thermodynamic and compositional variables, such as water vapor or other trace gas concentrations, fluctuate in space and time. Indeed, the coupling between turbulence and microphysical processes is one of the major research challenges in cloud physics. We have developed a multiphase, turbulent reaction chamber, (dubbed the Π Chamber, after the internal volume of 3.14 cubic meters) designed to address the problems outlined above. It is capable of pressures ranging from sea level to ~ 100 mbar, and can sustain temperatures of +40 to -55 ºC. We can independently control the temperatures on the surfaces of three heat transfer zones. This allows us to establish a temperature gradient between the floor and ceiling inducing Rayleigh-Benard convection and inducing a turbulent environment. Interior surfaces are electropolished stainless steel to facilitate cleaning before and after chemistry experiments. At present, supporting instrumentation includes a suite of aerosol generation and characterization techniques, a laser Doppler interferometer, and a holographic cloud particle imaging system.We will present detailed specifications, an overview of the supporting instrumentation, and initial characterization experiments from the Π chamber.
NASA Astrophysics Data System (ADS)
China, Swarup
Atmospheric particles are ubiquitous in Earth's atmosphere and impact the environment and the climate while affecting human health and Earth's radiation balance, and degrading visibility. Atmospheric particles directly affect our planet's radiation budget by scattering and absorbing solar radiation, and indirectly by interacting with clouds. Single particle morphology (shape, size and internal structure) and mixing state (coating by organic and inorganic material) can significantly influence the particle optical properties as well as various microphysical processes, involving cloud-particle interactions and including heterogeneous ice nucleation and water uptake. Conversely, aerosol cloud processing can affect the morphology and mixing of the particles. For example, fresh soot has typically an open fractal-like structure, but aging and cloud processing can restructure soot into more compacted shapes, with different optical and ice nucleation properties. During my graduate research, I used an array of electron microscopy and image analysis tools to study morphology and mixing state of a large number of individual particles collected during several field and laboratory studies. To this end, I investigated various types of particles such as tar balls (spherical carbonaceous particles emitted during biomass burning) and dust particles, but with a special emphasis on soot particles. In addition, I used the Stony Brook ice nucleation cell facility to investigate heterogeneous ice nucleation and water uptake by long-range transported particles collected at the Pico Mountain Observatory, in the Archipelago of the Azores. Finally, I used ice nucleation data from the SAAS (Soot Aerosol Aging Study) chamber study at the Pacific Northwest National Laboratory to understand the effects that ice nucleation and supercooled water processing has on the morphology of residual soot particles. Some highlights of our findings and implications are discussed next. We found that the morphology of fresh soot emitted by vehicles depends on the driving conditions (i.e.; the vehicle specific power). Soot emitted by biomass burning is often heavily coated by other materials while processing of soot in urban environment exhibits complex mixing. We also found that long-range transported soot over the ocean after atmospheric processing is very compacted. In addition, our results suggest that freezing process can facilitate restructuring of soot and results into collapsed soot. Furthermore, numerical simulations showed strong influence on optical properties when fresh open fractal-like soot evolved to collapsed soot. Further investigation of long-range transported aged particles exhibits that they are efficient in water uptake and can induce ice nucleation in colder temperature. Our results have implications for assessing the impact of the morphology and mixing state of soot particles on human health, environment and climate. Our findings can provide guidance to numerical models such as particle-resolved mixing state models to account for, and better understand, vehicular emissions and soot evolution since its emission to atmospheric processing in urban environment and finally in remote regions after long-range transport. Morphology and mixing state information can be used to model observational-constrained optical properties. The details of morphology and mixing state of soot particles are crucial to assess the accuracy of climate models in describing the contribution of soot radiative forcing and their direct and indirect climate effects. Finally, our observations of ice nucleation ability by aged particles show that nucleated particles are internally mixed and coated with several materials.
A Comparison of Cloud Microphysical and Optical Properties during TOGA-COARE
NASA Technical Reports Server (NTRS)
Strawa, A. W.; Pueschel, R. F.; Pilewskie, P.; Valero, F. P. J.; Gore, Warren J. (Technical Monitor)
1996-01-01
The impact of cirrus clouds on climate is an issue of research interest currently. Whether cirrus clouds heat or cool the Earth-atmosphere system depends on the cloud shortwave albedo and infrared reflectance and absorptance. These in turn are determined by the size distribution, phase, and composition of particles in the clouds. The TOGA-COARE campaign presented an excellent opportunity to study cirrus clouds and their influence on climate. In this campaign, a microphysics instrument package was flown aboard the DC-8 aircraft at medium altitudes in cirrus clouds. This package included a 2D Greyscale Cloud Particle Probe, a Forward Scattering Spectrometer Aerosol Probe, and an ice crystal replicator. At the same time the ER-2 equipped with a radiation measurement system flew coordinated flight tracks above the DC-8 at very high altitude. The radiation measurement made were short and long wave fluxes, as well as narrowband fluxes, both upwelling and downwelling. In addition LIDAR data is available. The existence of these data sets allows for a the comparison of radiation measurement with microphysical measurements. For example, the optical depth and effective radius retrieved from the ER-2 radiation measurements can be compared to the microphysical data. Conversely, the optical properties and fluxes produced by the clouds can be calculated from the microphysical measurements and compared to those measured aboard the ER-2. The assumptions required to make these comparisons are discussed. Typical microphysical results show a prevalence of micron-sized particles, in addition to the cloud particles that exceed 100 mm. The large number of small particles or "haze" cause the effective cloud radii to shift to smaller sizes, leading to changes in optical parameters.
NASA Technical Reports Server (NTRS)
Grund, C. J.; Eloranta, E. W.
1996-01-01
During the First ISCCP Region Experiment (FIRE) cirrus intensive field observation (IFO) the High Spectral Resolution Lidar was operated from a roof top site on the University of Wisconsin-Madison campus. Because the HSRL technique separately measures the molecular and cloud particle backscatter components of the lidar return, the optical thickness is determined independent of particle backscatter. This is accomplished by comparing the known molecular density distribution to the observed decrease in molecular backscatter signal with altitude. The particle to molecular backscatter ratio yields calibrated measurements of backscatter cross sections that can be plotted ro reveal cloud morphology without distortion due to attenuation. Changes in cloud particle size, shape, and phase affect the backscatter to extinction ratio (backscatter-phase function). The HSRL independently measures cloud particle backscatter phase function. This paper presents a quantitative analysis of the HSRL cirrus cloud data acquired over an approximate 33 hour period of continuous near zenith observations. Correlations between small scale wind structure and cirrus cloud morphology have been observed. These correlations can bias the range averaging inherent in wind profiling lidars of modest vertical resolution, leading to increased measurement errors at cirrus altitudes. Extended periods of low intensity backscatter were noted between more strongly organized cirrus cloud activity. Optical thicknesses ranging from 0.01-1.4, backscatter phase functions between 0.02-0.065 sr (exp -1) and backscatter cross sections spanning 4 orders of magnitude were observed. the altitude relationship between cloud top and bottom boundaries and the cloud optical center altitude was dependent on the type of formation observed Cirrus features were observed with characteristic wind drift estimated horizontal sizes of 5-400 km. The clouds frequently exhibited cellular structure with vertical to horizontal dimension ratios of 1:5-1:1.
A Lab Based Method for Exoplanet Cloud and Aerosol Characterization
NASA Astrophysics Data System (ADS)
Johnson, A. V.; Schneiderman, T. M.; Bauer, A. J. R.; Cziczo, D. J.
2017-12-01
The atmospheres of some smaller, cooler exoplanets, like GJ 1214b, lack strong spectral features. This may suggest the presence of a high, optically thick cloud layer and poses great challenges for atmospheric characterization, but there is hope. The study of extraterrestrial atmospheres with terrestrial based techniques has proven useful for understanding the cloud-laden atmospheres of our solar system. Here we build on this by leveraging laboratory-based, terrestrial cloud particle instrumentation to better understand the microphysical and radiative properties of proposed exoplanet cloud and aerosol particles. The work to be presented focuses on the scattering properties of single particles, that may be representative of those suspended in exoplanet atmospheres, levitated in an Electrodynamic Balance (EDB). I will discuss how we leverage terrestrial based cloud microphysics for exoplanet applications, the instruments for single and ensemble particle studies used in this work, our investigation of ammonium nitrate (NH4NO3) scattering across temperature dependent crystalline phase changes, and the steps we are taking toward the collection of scattering phase functions and polarization of scattered light for exoplanet cloud analogs. Through this and future studies we hope to better understand how upper level cloud and/or aerosol particles in exoplanet atmospheres interact with incoming radiation from their host stars and what atmospheric information may still be obtainable through remote observations when no spectral features are observed.
NASA Technical Reports Server (NTRS)
Li, Jia; Posfai, Mihaly; Hobbs, Peter V.; Buseck, Peter R.
2003-01-01
Individual aerosol particles collected over southern Africa during the SAFARI 2000 field study were studied using transmission electron microscopy and field-emission scanning electron microscopy. The sizes, shapes, compositions, mixing states, surface coatings, and relative abundances of aerosol particles from biomass burning, in boundary layer hazes, and in the free troposphere were compared, with emphasis on aging and reactions of inorganic smoke particles. Potassium salts and organic particles were the predominant species in the smoke, and most were internally mixed. More KCl particles occur in young smoke, whereas more K2SO4 and KNO3 particles were present in aged smoke. This change indicates that with the aging of the smoke, KCl particles from the fires were converted to K2SO4 and KNO3 through reactions with sulfur- and nitrogen- bearing species from biomass burning as well as other sources. More soot was present in smoke from flaming grass fires than bush and wood fires, probably due to the predominance of flaming combustion in grass fires. The high abundance of organic particles and soluble salts can affect the hygroscopic properties of biomass-burning aerosols and therefore influence their role as cloud condensation nuclei. Particles from biomass burning were important constituents of the regional hazes.
Modeling Lidar Multiple Scattering
NASA Astrophysics Data System (ADS)
Sato, Kaori; Okamoto, Hajime; Ishimoto, Hiroshi
2016-06-01
A practical model to simulate multiply scattered lidar returns from inhomogeneous cloud layers are developed based on Backward Monte Carlo (BMC) simulations. The estimated time delay of the backscattered intensities returning from different vertical grids by the developed model agreed well with that directly obtained from BMC calculations. The method was applied to the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite data to improve the synergetic retrieval of cloud microphysics with CloudSat radar data at optically thick cloud grids. Preliminary results for retrieving mass fraction of co-existing cloud particles and drizzle size particles within lowlevel clouds are demonstrated.
NASA Astrophysics Data System (ADS)
Schwarzenböck, A.; Mertes, S.; Heintzenberg, J.; Wobrock, W.; Laj, P.
The paper focuses on the redistribution of aerosol particles (APs) during the artificial nucleation and subsequent growth of ice crystals in a supercooled cloud. A significant number of the supercooled cloud droplets during icing periods (seeding agents: C 3H 8, CO 2) did not freeze as was presumed prior to the experiment but instead evaporated. The net mass flux of water vapour from the evaporating droplets to the nucleating ice crystals (Bergeron-Findeisen mechanism) led to the release of residual particles that simultaneously appeared in the interstitial phase. The strong decrease of the droplet residuals confirms the nucleation of ice particles on seeding germs without natural aerosol particles serving as ice nuclei. As the number of residual particles during the seedings did not drop to zero, other processes such as heterogeneous ice nucleation, spontaneous freezing, entrainment of supercooled droplets and diffusion to the created particle-free ice germs must have contributed to the experimental findings. During the icing periods, residual mass concentrations in the condensed phase dropped by a factor of 1.1-6.7, as compared to the unperturbed supercooled cloud. As the Bergeron-Findeisen process also occurs without artificial seeding in the atmosphere, this study demonstrated that the hydrometeors in mixed-phase clouds might be much cleaner than anticipated for the simple freezing process of supercooled droplets in tropospheric mid latitude clouds.
NASA Astrophysics Data System (ADS)
Spencer, Matthew Todd
Aerosols affect the lives of people every day. They can decrease visibility, alter cloud formation and cloud lifetimes, change the energy balance of the earth and are implicated in causing numerous health problems. Measuring the physical and chemical properties of aerosols is essential to understand and mitigate any negative impacts that aerosols might have on climate and human health. Aerosol time-of-flight mass spectrometry (ATOFMS) is a technique that measures the size and chemical composition of individual particles in real time. The goal of this dissertation is to develop new and useful approaches for measuring the physical and/or chemical properties of particles using ATOFMS. This has been accomplished using laboratory experiments, ambient field measurements and sometimes comparisons between them. A comparison of mass spectra generated from petrochemical particles was made to light duty vehicle (LDV) and heavy duty diesel vehicle (HDDV) particle mass spectra. This comparison has given us new insight into how to differentiate between particles from these two sources. A method for coating elemental carbon (EC) particles with organic carbon (OC) was used to generate a calibration curve for quantifying the fraction of organic carbon and elemental carbon on particles using ATOFMS. This work demonstrates that it is possible to obtain quantitative chemical information with regards to EC and OC using ATOFMS. The relationship between electrical mobility diameter and aerodynamic diameter is used to develop a tandem differential mobility analyzer-ATOFMS technique to measure the effective density, size and chemical composition of particles. The method is applied in the field and gives new insight into the physical/chemical properties of particles. The size resolved chemical composition of aerosols was measured in the Indian Ocean during the monsoonal transition period. This field work shows that a significant fraction of aerosol transported from India was from biomass burning and appeared to be internally mixed with sulfate which suggests it was cloud processed during transport. Lastly, noble metal nanoparticles are explored as potential matrices for visible wavelength single particle matrix assisted laser desorption/ionization mass spectrometry (VIS-MALDI). This work demonstrates that noble metal nanoparticle matrices can be used for VIS-MALDI analysis.
CLOTHES AS A SOURCE OF PARTICLES CONTRIBUTING TO THE "PERSONAL CLOUD"
Previous studies such as EPA's PTEAM Study have documented increased personal exposures to particles compared to either indoor or outdoor concentrations--a finding that bas been characterized as a "personal cloud." The sources of the personal cloud are unknown, but co...
NASA Technical Reports Server (NTRS)
Esposito, L. W.; Knollenberg, R. G.; Marov, M. IA.; Toon, O. B.; Turco, R. P.
1983-01-01
Pioneer Venus and Venera probe data for the clouds of Venus are considered. These clouds consist of a main cloud deck at 45-70 km altitude, with thinner hazes above and below, although the microphysical properties of the main cloud are further subdivided into upper, middle and lower cloud levels. Much of the cloud exhibits a multimodal particle size distribution, with the mode most visible from the earth being H2SO4 droplets having 2-3 micron diameters. Despite variations, the vertical structure of the clouds indicates persistent features at sites separated by years and by great distances. The clouds are more strongly affected by radiation than by latent heat release, and the small particle size and weak convective activity observed are incompatible with lightning of cloud origin.
Nanobubbles at Hydrophilic Particle-Water Interfaces.
Pan, Gang; He, Guangzhi; Zhang, Meiyi; Zhou, Qin; Tyliszczak, Tolek; Tai, Renzhong; Guo, Jinghua; Bi, Lei; Wang, Lei; Zhang, Honggang
2016-11-01
The puzzling persistence of nanobubbles breaks Laplace's law for bubbles, which is of great interest for promising applications in surface processing, H 2 and CO 2 storage, water treatment, and drug delivery. So far, nanobubbles have mostly been reported on hydrophobic planar substrates with atomic flatness. It remains a challenge to quantify nanobubbles on rough and irregular surfaces because of the lack of a characterization technique that can detect both the nanobubble morphology and chemical composition inside individual nanobubble-like objects. Here, by using synchrotron-based scanning transmission soft X-ray microscopy (STXM) with nanometer resolution, we discern nanoscopic gas bubbles of >25 nm with direct in situ proof of O 2 inside the nanobubbles at a hydrophilic particle-water interface under ambient conditions. We find a stable cloud of O 2 nanobubbles at the diatomite particle-water interface hours after oxygen aeration and temperature variation. The in situ technique may be useful for many surface nanobubble-related studies such as material preparation and property manipulation, phase equilibrium, nucleation kinetics, and relationships with chemical composition within the confined nanoscale space. The oxygen nanobubble clouds may be important in modifying particle-water interfaces and offering breakthrough technologies for oxygen delivery in sediment and/or deep water environments.
NASA Astrophysics Data System (ADS)
Twohy, C. H.; Anderson, B. E.; Ferrare, R. A.; Sauter, K. E.; L'Ecuyer, T. S.; van den Heever, S. C.; Heymsfield, A. J.; Ismail, S.; Diskin, G. S.
2017-08-01
Dry aerosol size distributions and scattering coefficients were measured on 10 flights in 32 clear-air regions adjacent to tropical storm anvils over the eastern Atlantic Ocean. Aerosol properties in these regions were compared with those from background air in the upper troposphere at least 40 km from clouds. Median values for aerosol scattering coefficient and particle number concentration >0.3 μm diameter were higher at the anvil edges than in background air, showing that convective clouds loft particles from the lower troposphere to the upper troposphere. These differences are statistically significant. The aerosol enhancement zones extended 10-15 km horizontally and 0.25 km vertically below anvil cloud edges but were not due to hygroscopic growth since particles were measured under dry conditions. Number concentrations of particles >0.3 μm diameter were enhanced more for the cases where Saharan dust layers were identified below the clouds with airborne lidar. Median number concentrations in this size range increased from 100 l-1 in background air to 400 l-1 adjacent to cloud edges with dust below, with larger enhancements for stronger storm systems. Integration with satellite cloud frequency data indicates that this transfer of large particles from low to high altitudes by convection has little impact on dust concentrations within the Saharan Air Layer itself. However, it can lead to substantial enhancement in large dust particles and, therefore, heterogeneous ice nuclei in the upper troposphere over the Atlantic. This may induce a cloud/aerosol feedback effect that could impact cloud properties in the region and downwind.
NASA Technical Reports Server (NTRS)
Han, Qingyuan; Rossow, William B.; Chou, Joyce; Welch, Ronald M.
1997-01-01
Cloud microphysical parameterizations have attracted a great deal of attention in recent years due to their effect on cloud radiative properties and cloud-related hydrological processes in large-scale models. The parameterization of cirrus particle size has been demonstrated as an indispensable component in the climate feedback analysis. Therefore, global-scale, long-term observations of cirrus particle sizes are required both as a basis of and as a validation of parameterizations for climate models. While there is a global scale, long-term survey of water cloud droplet sizes (Han et al.), there is no comparable study for cirrus ice crystals. This study is an effort to supply such a data set.
Towards a new parameterization of ice particles growth
NASA Astrophysics Data System (ADS)
Krakovska, Svitlana; Khotyayintsev, Volodymyr; Bardakov, Roman; Shpyg, Vitaliy
2017-04-01
Ice particles are the main component of polar clouds, unlike in warmer regions. That is why correct representation of ice particle formation and growth in NWP and other numerical atmospheric models is crucial for understanding of the whole chain of water transformation, including precipitation formation and its further deposition as snow in polar glaciers. Currently, parameterization of ice in atmospheric models is among the most difficult challenges. In the presented research, we present a renewed theoretical analysis of the evolution of mixed cloud or cold fog from the moment of ice nuclei activation until complete crystallization. The simplified model is proposed that includes both supercooled cloud droplets and initially uniform particles of ice, as well as water vapor. We obtain independent dimensionless input parameters of a cloud, and find main scenarios and stages of evolution of the microphysical state of the cloud. The characteristic times and particle sizes have been found, as well as the peculiarities of microphysical processes at each stage of evolution. In the future, the proposed original and physically grounded approximations may serve as a basis for a new scientifically substantiated and numerically efficient parameterizations of microphysical processes in mixed clouds for modern atmospheric models. The relevance of theoretical analysis is confirmed by numerical modeling for a wide range of combinations of possible conditions in the atmosphere, including cold polar regions. The main conclusion of the research is that until complete disappearance of cloud droplets, the growth of ice particles occurs at a practically constant humidity corresponding to the saturated humidity over water, regardless to all other parameters of a cloud. This process can be described by the one differential equation of the first order. Moreover, a dimensionless parameter has been proposed as a quantitative criterion of a transition from dominant depositional to intense collectional growth of ice particles; it could be used in models with bulk parameterization of cloud and precipitation formation processes.
Cirrus Cloud Seeding has Potential to Cool Climate
NASA Technical Reports Server (NTRS)
Storelvmo, T.; Kristjansson, J. E.; Muri, H.; Pfeffer, M.; Barahona, D.; Nenes, A.
2013-01-01
Cirrus clouds, thin ice clouds in the upper troposphere, have a net warming effect on Earth s climate. Consequently, a reduction in cirrus cloud amount or optical thickness would cool the climate. Recent research indicates that by seeding cirrus clouds with particles that promote ice nucleation, their lifetimes and coverage could be reduced. We have tested this hypothesis in a global climate model with a state-of-the-art representation of cirrus clouds and find that cirrus cloud seeding has the potential to cancel the entire warming caused by human activity from pre-industrial times to present day. However, the desired effect is only obtained for seeding particle concentrations that lie within an optimal range. With lower than optimal particle concentrations, a seeding exercise would have no effect. Moreover, a higher than optimal concentration results in an over-seeding that could have the deleterious effect of prolonging cirrus lifetime and contributing to global warming.
Beamlets from stochastic acceleration
NASA Astrophysics Data System (ADS)
Perri, Silvia; Carbone, Vincenzo
2008-09-01
We investigate the dynamics of a realization of the stochastic Fermi acceleration mechanism. The model consists of test particles moving between two oscillating magnetic clouds and differs from the usual Fermi-Ulam model in two ways. (i) Particles can penetrate inside clouds before being reflected. (ii) Particles can radiate a fraction of their energy during the process. Since the Fermi mechanism is at work, particles are stochastically accelerated, even in the presence of the radiated energy. Furthermore, due to a kind of resonance between particles and oscillating clouds, the probability density function of particles is strongly modified, thus generating beams of accelerated particles rather than a translation of the whole distribution function to higher energy. This simple mechanism could account for the presence of beamlets in some space plasma physics situations.
Biogenic Potassium Salt Particles as Seeds for Secondary Organic Aerosol in the Amazon
NASA Astrophysics Data System (ADS)
Pöhlker, Christopher; Wiedemann, Kenia T.; Sinha, Bärbel; Shiraiwa, Manabu; Gunthe, Sachin S.; Smith, Mackenzie; Su, Hang; Artaxo, Paulo; Chen, Qi; Cheng, Yafang; Elbert, Wolfgang; Gilles, Mary K.; Kilcoyne, Arthur L. D.; Moffet, Ryan C.; Weigand, Markus; Martin, Scot T.; Pöschl, Ulrich; Andreae, Meinrat O.
2012-08-01
The fine particles serving as cloud condensation nuclei in pristine Amazonian rainforest air consist mostly of secondary organic aerosol. Their origin is enigmatic, however, because new particle formation in the atmosphere is not observed. Here, we show that the growth of organic aerosol particles can be initiated by potassium-salt-rich particles emitted by biota in the rainforest. These particles act as seeds for the condensation of low- or semi-volatile organic compounds from the atmospheric gas phase or multiphase oxidation of isoprene and terpenes. Our findings suggest that the primary emission of biogenic salt particles directly influences the number concentration of cloud condensation nuclei and affects the microphysics of cloud formation and precipitation over the rainforest.
Evaluating the impact of aerosol particles above cloud on cloud optical depth retrievals from MODIS
NASA Astrophysics Data System (ADS)
Alfaro-Contreras, Ricardo; Zhang, Jianglong; Campbell, James R.; Holz, Robert E.; Reid, Jeffrey S.
2014-05-01
Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (0.86 versus 1.6 µm), we evaluate the impact of above-cloud smoke aerosol particles on near-IR (0.86 µm) COD retrievals. Aerosol Index (AI) from the collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African subcontinent. Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation data constrain cloud phase and provide contextual above-cloud aerosol optical depth. The frequency of occurrence of above-cloud aerosol events is depicted on a global scale for the spring and summer seasons from OMI and Cloud Aerosol Lidar with Orthogonal Polarization. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20-50% in boreal summer. We find a corresponding low COD bias of 10-20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS 0.86 and 1.6 µm channels are vulnerable to radiance attenuation due to dust particles. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of collocated OMI AI and supplementary MODIS 1.6 µm COD products.
Venus Clouds: A dirty hydrochloric acid model
NASA Technical Reports Server (NTRS)
Hapke, B.
1971-01-01
The spectral and polarization data for Venus are consistent with micron-sized, aerosol cloud particles of hydrochloric acid containing soluble and insoluble iron compounds, whose source could be volcanic or crustal dust. The ultraviolet features could arise from variations in the Fe-HCl concentration in the cloud particles.
Noctilucent cloud polarimetry: Twilight measurements in a wide range of scattering angles
NASA Astrophysics Data System (ADS)
Ugolnikov, Oleg S.; Maslov, Igor A.; Kozelov, Boris V.; Dlugach, Janna M.
2016-06-01
Wide-field polarization measurements of the twilight sky background during several nights with bright and extended noctilucent clouds in central and northern Russia in 2014 and 2015 are used to build the phase dependence of the degree of polarization of sunlight scattered by cloud particles in a wide range of scattering angles (from 40° to 130°). This range covers the linear polarization maximum near 90° and large-angle slope of the curve. The polarization in this angle range is most sensitive to the particle size. The method of separation of scattering on cloud particles from the twilight background is presented. Results are compared with T-matrix simulations for different sizes and shapes of ice particles; the best-fit model radius of particles (0.06 μm) and maximum radius (about 0.1 μm) are estimated.
Active and Passive 3D Vector Radiative Transfer with Preferentially-Aligned Ice Particles
NASA Technical Reports Server (NTRS)
Adams, Ian S.; Munchak, Stephen J.; Pelissier, Craig S.; Kuo, Kwo-Sen; Heymsfield, Gerald M.
2017-01-01
For the purposes of interpreting active (radar) and passive (radiometer) microwave and millimeter wave remote sensing data, we have constructed a consistent radiative transfer modeling framework to simulate the responses for arbitrary sensors with differing sensing geometries and hardware configurations. As part of this work, we have implemented a recent method for calculating the electromagnetic properties of individual ice crystals and snow flakes. These calculations will allow us to exploit polarized remote sensing observations to discriminate different particles types and elucidate dynamics of cloud and precipitating systems.
Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin
NASA Astrophysics Data System (ADS)
Andreae, Meinrat O.; Afchine, Armin; Albrecht, Rachel; Amorim Holanda, Bruna; Artaxo, Paulo; Barbosa, Henrique M. J.; Borrmann, Stephan; Cecchini, Micael A.; Costa, Anja; Dollner, Maximilian; Fütterer, Daniel; Järvinen, Emma; Jurkat, Tina; Klimach, Thomas; Konemann, Tobias; Knote, Christoph; Krämer, Martina; Krisna, Trismono; Machado, Luiz A. T.; Mertes, Stephan; Minikin, Andreas; Pöhlker, Christopher; Pöhlker, Mira L.; Pöschl, Ulrich; Rosenfeld, Daniel; Sauer, Daniel; Schlager, Hans; Schnaiter, Martin; Schneider, Johannes; Schulz, Christiane; Spanu, Antonio; Sperling, Vinicius B.; Voigt, Christiane; Walser, Adrian; Wang, Jian; Weinzierl, Bernadett; Wendisch, Manfred; Ziereis, Helmut
2018-01-01
Airborne observations over the Amazon Basin showed high aerosol particle concentrations in the upper troposphere (UT) between 8 and 15 km altitude, with number densities (normalized to standard temperature and pressure) often exceeding those in the planetary boundary layer (PBL) by 1 or 2 orders of magnitude. The measurements were made during the German-Brazilian cooperative aircraft campaign ACRIDICON-CHUVA, where ACRIDICON stands for Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems
and CHUVA is the acronym for Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (global precipitation measurement)
, on the German High Altitude and Long Range Research Aircraft (HALO). The campaign took place in September-October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with atmospheric trace gases, aerosol particles, and atmospheric radiation. Aerosol enhancements were observed consistently on all flights during which the UT was probed, using several aerosol metrics, including condensation nuclei (CN) and cloud condensation nuclei (CCN) number concentrations and chemical species mass concentrations. The UT particles differed sharply in their chemical composition and size distribution from those in the PBL, ruling out convective transport of combustion-derived particles from the boundary layer (BL) as a source. The air in the immediate outflow of deep convective clouds was depleted of aerosol particles, whereas strongly enhanced number concentrations of small particles (< 90 nm diameter) were found in UT regions that had experienced outflow from deep convection in the preceding 5-72 h. We also found elevated concentrations of larger (> 90 nm) particles in the UT, which consisted mostly of organic matter and nitrate and were very effective CCN. Our findings suggest a conceptual model, where production of new aerosol particles takes place in the continental UT from biogenic volatile organic material brought up by deep convection and converted to condensable species in the UT. Subsequently, downward mixing and transport of upper tropospheric aerosol can be a source of particles to the PBL, where they increase in size by the condensation of biogenic volatile organic compound (BVOC) oxidation products. This may be an important source of aerosol particles for the Amazonian PBL, where aerosol nucleation and new particle formation have not been observed. We propose that this may have been the dominant process supplying secondary aerosol particles in the pristine atmosphere, making clouds the dominant control of both removal and production of atmospheric particles.
Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin
Andreae, Meinrat O.; Afchine, Armin; Albrecht, Rachel; ...
2018-01-25
Airborne observations over the Amazon Basin showed high aerosol particle concentrations in the upper troposphere (UT) between 8 and 15 km altitude, with number densities (normalized to standard temperature and pressure) often exceeding those in the planetary boundary layer (PBL) by 1 or 2 orders of magnitude. The measurements were made during the German–Brazilian cooperative aircraft campaign ACRIDICON–CHUVA, where ACRIDICON stands for Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems and CHUVA is the acronym for Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (globalmore » precipitation measurement), on the German High Altitude and Long Range Research Aircraft (HALO). The campaign took place in September–October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with atmospheric trace gases, aerosol particles, and atmospheric radiation. Aerosol enhancements were observed consistently on all flights during which the UT was probed, using several aerosol metrics, including condensation nuclei (CN) and cloud condensation nuclei (CCN) number concentrations and chemical species mass concentrations. The UT particles differed sharply in their chemical composition and size distribution from those in the PBL, ruling out convective transport of combustion-derived particles from the boundary layer (BL) as a source. The air in the immediate outflow of deep convective clouds was depleted of aerosol particles, whereas strongly enhanced number concentrations of small particles (< 90 nm diameter) were found in UT regions that had experienced outflow from deep convection in the preceding 5–72 h. We also found elevated concentrations of larger (> 90 nm) particles in the UT, which consisted mostly of organic matter and nitrate and were very effective CCN. Our findings suggest a conceptual model, where production of new aerosol particles takes place in the continental UT from biogenic volatile organic material brought up by deep convection and converted to condensable species in the UT. Subsequently, downward mixing and transport of upper tropospheric aerosol can be a source of particles to the PBL, where they increase in size by the condensation of biogenic volatile organic compound (BVOC) oxidation products. This may be an important source of aerosol particles for the Amazonian PBL, where aerosol nucleation and new particle formation have not been observed. We propose that this may have been the dominant process supplying secondary aerosol particles in the pristine atmosphere, making clouds the dominant control of both removal and production of atmospheric particles.« less
Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreae, Meinrat O.; Afchine, Armin; Albrecht, Rachel
Airborne observations over the Amazon Basin showed high aerosol particle concentrations in the upper troposphere (UT) between 8 and 15 km altitude, with number densities (normalized to standard temperature and pressure) often exceeding those in the planetary boundary layer (PBL) by 1 or 2 orders of magnitude. The measurements were made during the German–Brazilian cooperative aircraft campaign ACRIDICON–CHUVA, where ACRIDICON stands for Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems and CHUVA is the acronym for Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (globalmore » precipitation measurement), on the German High Altitude and Long Range Research Aircraft (HALO). The campaign took place in September–October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with atmospheric trace gases, aerosol particles, and atmospheric radiation. Aerosol enhancements were observed consistently on all flights during which the UT was probed, using several aerosol metrics, including condensation nuclei (CN) and cloud condensation nuclei (CCN) number concentrations and chemical species mass concentrations. The UT particles differed sharply in their chemical composition and size distribution from those in the PBL, ruling out convective transport of combustion-derived particles from the boundary layer (BL) as a source. The air in the immediate outflow of deep convective clouds was depleted of aerosol particles, whereas strongly enhanced number concentrations of small particles (< 90 nm diameter) were found in UT regions that had experienced outflow from deep convection in the preceding 5–72 h. We also found elevated concentrations of larger (> 90 nm) particles in the UT, which consisted mostly of organic matter and nitrate and were very effective CCN. Our findings suggest a conceptual model, where production of new aerosol particles takes place in the continental UT from biogenic volatile organic material brought up by deep convection and converted to condensable species in the UT. Subsequently, downward mixing and transport of upper tropospheric aerosol can be a source of particles to the PBL, where they increase in size by the condensation of biogenic volatile organic compound (BVOC) oxidation products. This may be an important source of aerosol particles for the Amazonian PBL, where aerosol nucleation and new particle formation have not been observed. We propose that this may have been the dominant process supplying secondary aerosol particles in the pristine atmosphere, making clouds the dominant control of both removal and production of atmospheric particles.« less
NASA Astrophysics Data System (ADS)
Marchetti, Benjamin; Bergougnoux, Laurence; Guazzelli, Elisabeth
2017-11-01
We present a jointed experimental and numerical study examining the influence of vortical structures on the settling of a cloud of solid spherical particles under the action of gravity at low Stokes numbers. The two-dimensional model experiment uses electro-convection to generate a two-dimensional array of controlled vortices which mimics a simplified vortical flow. Particle image-velocimetry and tracking are used to examine the motion of the cloud within this vortical flow. The cloud motion is compared to the predictions of a two-way-coupling numerical simulation.
Component-specific, cigarette particle deposition modeling in the human respiratory tract
Price, Owen T.; Yurteri, Caner U.; Dickens, Colin; McAughey, John
2014-01-01
Inhalation of cigarette smoke particles (CSP) leads to adverse health effects in smokers. Determination of the localized dose to the lung of the inhaled smoke aids in determining vulnerable sites, and identifying components of the smoke that may be responsible for the adverse effects; thus providing a roadmap for harm reduction of cigarette smoking. A particle deposition model specific to CSP was developed for the oral cavity and the lung by accounting for cigarette particle size growth by hygroscopicity, phase change and coagulation. In addition, since the cigarette puff enters the respiratory tract as a dense cloud, the cloud effect on particle drag and deposition was accounted for in the deposition model. Models of particle losses in the oral cavities were developed during puff drawing and subsequent mouth-hold. Cigarette particles were found to grow by hygroscopicity and coagulation, but to shrink as a result of nicotine evaporation. The particle size reached a plateau beyond which any disturbances in the environmental conditions caused the various mechanisms to balance each other out and the particle size remain stable. Predicted particle deposition considering the cloud effects was greater than when treated as a collection of non-interacting particles (i.e. no cloud effects). Accounting for cloud movement provided the necessary physical mechanism to explain the greater than expected, experimentally observed and particle deposition. The deposition model for CSP can provide the necessary input to determine the fate of inhaled CSP in the lung. The knowledge of deposition will be helpful for health assessment and identification and reduction of harmful components of CSP. PMID:24354791
Effect of Particle Morphology on the Reactivity of Explosively Dispersed Titanium Particles
NASA Astrophysics Data System (ADS)
Frost, David L.; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan
2009-12-01
The effect of particle morphology on the reaction of titanium (Ti) particles explosively dispersed during the detonation of either cylindrical or spherical charges has been investigated experimentally. The explosive charges consisted of packed beds of Ti particles saturated with nitromethane. The reaction behaviour of irregularly-shaped Ti particles in three size ranges is compared with tests with spherical Ti particles. The particle reaction is strongly dependent on particle morphology, e.g., 95 μm spherical Ti particles failed to ignite (in cylinders up to 49 mm in dia), whereas similarly sized irregular Ti particles readily ignited. For irregular particles, the uniformity of ignition on the particle cloud surface was almost independent of particle size, but depended on charge diameter. As the charge diameter was reduced, ignition in the conically expanding particle cloud occurred only at isolated spots or bands. For spherical charges, whereas large irregular Ti particles ignited promptly and uniformly throughout the particle cloud, the smallest particles dispersed nonuniformly and ignition occurred at isolated locations after a delay. Hence the charge geometry, as well as particle morphology, influences the reaction behaviour of the particles.
Microphysical processing of aerosol particles in orographic clouds
NASA Astrophysics Data System (ADS)
Pousse-Nottelmann, S.; Zubler, E. M.; Lohmann, U.
2015-08-01
An explicit and detailed treatment of cloud-borne particles allowing for the consideration of aerosol cycling in clouds has been implemented into COSMO-Model, the regional weather forecast and climate model of the Consortium for Small-scale Modeling (COSMO). The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed us to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener-Bergeron-Findeisen (WBF) process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snowflakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snowflakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. Thereby, the processes impact the total aerosol number and mass and additionally alter the shape of the aerosol size distributions by enhancing the internally mixed/soluble Aitken and accumulation mode and generating coarse-mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases the cloud droplet number concentration with possible implications for the ice crystal number concentration.
Radiative Importance of Aerosol-Cloud Interaction
NASA Technical Reports Server (NTRS)
Tsay, Si-Chee
1999-01-01
Aerosol particles are input into the troposphere by biomass burning, among other sources. These aerosol palls cover large expanses of the earth's surface. Aerosols may directly scatter solar radiation back to space, thus increasing the earth's albedo and act to cool the earth's surface and atmosphere. Aerosols also contribute to the earth's energy balance indirectly. Hygroscopic aerosol act as cloud condensation nuclei (CCN) and thus affects cloud properties. In 1977, Twomey theorized that additional available CCN would create smaller but more numerous cloud droplets in a cloud with a given amount of liquid water. This in turn would increase the cloud albedo which would scatter additional radiation back to space and create a similar cooling pattern as the direct aerosol effect. Estimates of the magnitude of the aerosol indirect effect on a global scale range from 0.0 to -4.8 W/sq m. Thus the indirect effect can be of comparable magnitude and opposite in sign to the estimates of global greenhouse gas forcing Aerosol-cloud interaction is not a one-way process. Just as aerosols have an influence on clouds through the cloud microphysics, clouds have an influence on aerosols. Cloud droplets are solutions of liquid water and CCN, now dissolved. When the cloud droplet evaporates it leaves behind an aerosol particle. This new particle does not have to have the same properties as the original CCN. In fact, studies show that aerosol particles that result from cloud processing are larger in size than the original CCN. Optical properties of aerosol particles are dependent on the size of the particles. Larger particles have a smaller backscattering fraction, and thus less incoming solar radiation will be backscattered to space if the aerosol particles are larger. Therefore, we see that aerosols and clouds modify each other to influence the radiative balance of the earth. Understanding and quantifying the spatial and seasonal patterns of the aerosol indirect forcing may have even greater consequences. Presently we know that through the use of fossil fuel and land-use changes we have increased the concentration of greenhouse gases in the atmosphere. In parallel, we have seen a modest increase of global temperature in the last century. These two observations have been linked as cause and effect by climate models, but this connection is still experimentally not verified. The spatial and seasonal distribution of aerosol forcing is different from that of greenhouse gases, thus generating a different spatial fingerprint of climate change. This fingerprint was suggested as a method to identify the response of the climate system to anthropogenic forcing of greenhouse gases and aerosol. The aerosol fingerprint may be the only way to firmly establish the presence (or absence) of human impact on climate. Aerosol-cloud interaction through the indirect effect will be an important component of establishing this fingerprint.
Satellite remote sensing of dust aerosol indirect effects on ice cloud formation.
Ou, Steve Szu-Cheng; Liou, Kuo-Nan; Wang, Xingjuan; Hansell, Richard; Lefevre, Randy; Cocks, Stephen
2009-01-20
We undertook a new approach to investigate the aerosol indirect effect of the first kind on ice cloud formation by using available data products from the Moderate-Resolution Imaging Spectrometer (MODIS) and obtained physical understanding about the interaction between aerosols and ice clouds. Our analysis focused on the examination of the variability in the correlation between ice cloud parameters (optical depth, effective particle size, cloud water path, and cloud particle number concentration) and aerosol optical depth and number concentration that were inferred from available satellite cloud and aerosol data products. Correlation results for a number of selected scenes containing dust and ice clouds are presented, and dust aerosol indirect effects on ice clouds are directly demonstrated from satellite observations.
Test of the MarsSedEx Settling Tube Photometer during the 2nd Swiss Parabolic Flight Campaign
NASA Astrophysics Data System (ADS)
Kuhn, Nikolaus J.; Kuhn, Brigitte; Rüegg, Hans-Rudolf; Zimmermann, Lukas
2017-04-01
Gravity affects flow hydraulics and thus limits the application of simple models for sediment transport developed for Earth on Mars. The significance of the differences in sediment settling has been demonstrated for sand-sized particles by measuring settling velocities using video-imaging during parabolic flights. This approach does not work for finer particles because they cannot be distinguished individually on a video. Tracking of fine sediment clouds is also difficult using videos because changes in density are not captured. Photometers, on the other hand, are able to capture differences in turbidity and offer the potential to measure the settling behaviour of clouds of fine and differently-sized sediment particles. In this study, the feasibility of using a settling-tube photometer used for the rapid assessment of settling velocities developed by the University of Basel during a parabolic flight with reduced gravity is presented. In addition, the potential of the results generated in this Martian-analogue environment to support the identification sediments containing traces of life on Mars is discussed.
Formation of young massive clusters from turbulent molecular clouds
NASA Astrophysics Data System (ADS)
Fujii, Michiko; Portegies Zwart, Simon
2015-08-01
We simulate the formation and evolution of young star clusters using smoothed-particle hydrodynamics (SPH) and direct N-body methods. We start by performing SPH simulations of the giant molecular cloud with a turbulent velocity field, a mass of 10^4 to 10^6 M_sun, and a density between 17 and 1700 cm^-3. We continue the SPH simulations for a free-fall time scale, and analyze the resulting structure of the collapsed cloud. We subsequently replace a density-selected subset of SPH particles with stars. As a consequence, the local star formation efficiency exceeds 30 per cent, whereas globally only a few per cent of the gas is converted to stars. The stellar distribution is very clumpy with typically a dozen bound conglomerates that consist of 100 to 10000 stars. We continue to evolve the stars dynamically using the collisional N-body method, which accurately treats all pairwise interactions, stellar collisions and stellar evolution. We analyze the results of the N-body simulations at 2 Myr and 10 Myr. From dense massive molecular clouds, massive clusters grow via hierarchical merging of smaller clusters. The shape of the cluster mass function that originates from an individual molecular cloud is consistent with a Schechter function with a power-law slope of beta = -1.73 at 2 Myr and beta = -1.67 at 10 Myr, which fits to observed cluster mass function of the Carina region. The superposition of mass functions have a power-law slope of < -2, which fits the observed mass function of star clusters in the Milky Way, M31 and M83. We further find that the mass of the most massive cluster formed in a single molecular cloud with a mass of M_g scales with 6.1 M_g^0.51 which also agrees with recent observation in M51. The molecular clouds which can form massive clusters are much denser than those typical in the Milky Way. The velocity dispersion of such molecular clouds reaches 20 km/s and it is consistent with the relative velocity of the molecular clouds observed near NGC 3603 and Westerlund 2, for which a triggered star formation by cloud-cloud collisions is suggested.
Aerosol-Cloud Interactions During Puijo Cloud Experiments - The effects of weather and local sources
NASA Astrophysics Data System (ADS)
Komppula, Mika; Portin, Harri; Leskinen, Ari; Romakkaniemi, Sami; Brus, David; Neitola, Kimmo; Hyvärinen, Antti-Pekka; Kortelainen, Aki; Hao, Liqing; Miettinen, Pasi; Jaatinen, Antti; Ahmad, Irshad; Lihavainen, Heikki; Laaksonen, Ari; Lehtinen, Kari E. J.
2013-04-01
The Puijo measurement station has provided continuous data on aerosol-cloud interactions since 2006. The station is located on top of the Puijo observation tower (306 m a.s.l, 224 m above the surrounding lake level) in Kuopio, Finland. The top of the tower is covered by cloud about 15 % of the time, offering perfect conditions for studying aerosol-cloud interactions. With a twin-inlet setup (total and interstitial inlets) we are able to separate the activated particles from the interstitial (non-activated) particles. The continuous twin-inlet measurements include aerosol size distribution, scattering and absorption. In addition cloud droplet number and size distribution are measured continuously with weather parameters. During the campaigns the twin-inlet system was additionally equipped with aerosol mass spectrometer (AMS) and Single Particle Soot Photometer (SP-2). This way we were able to define the differences in chemical composition of the activated and non-activated particles. Potential cloud condensation nuclei (CCN) in different supersaturations were measured with two CCN counters (CCNC). The other CCNC was operated with a Differential Mobility Analyzer (DMA) to obtain size selected CCN spectra. Other additional measurements included Hygroscopic Tandem Differential Mobility Analyzer (HTDMA) for particle hygroscopicity. Additionally the valuable vertical wind profiles (updraft velocities) are available from Halo Doppler lidar during the 2011 campaign. Cloud properties (droplet number and effective radius) from MODIS instrument onboard Terra and Aqua satellites were retrieved and compared with the measured values. This work summarizes the two latest intensive campaigns, Puijo Cloud Experiments (PuCE) 2010 & 2011. We study especially the effect of the local sources on the cloud activation behaviour of the aerosol particles. The main local sources include a paper mill, a heating plant, traffic and residential areas. The sources can be categorized and identified by wind direction. Clear changes can be seen in the aerosol and cloud properties when being under the influence of a local pollutant source. Also differences in the chemical composition of aerosol activated to cloud droplet and those staying interstitial has been observed. For example, the light absorption by cloud interstitial particles is higher when the wind blows from the local pollutant sources compared to a cleaner sector. This may be due to the fact that the absorptive material, e.g. fresh soot, is generally hydrophobic and therefore inhibits activation. Another point of interest is the occasional freezing conditions during the campaign (temperature below zero), which also affects the activation behaviour. The full usage of this special data set will provide new information on the properties and differences of activating and non-activating aerosol particles, as well as on the variables affecting the activation.
NASA Technical Reports Server (NTRS)
Ragent, Boris
1998-01-01
The results of the nephelometer experiment conducted aboard the Probe of the Galileo mission to Jupiter are presented. The tenuous clouds and sparse particulate matter in the relatively particle-free 5-micron "hot spot" region of the Probe's descent were documented from about 0.46 bars to about 12 bars. Three regions of apparent coherent structure were noted, in addition to many indications of extremely small particle concentrations along the descent path. From the first valid measurement at about 0.46 bars down to about 0.55 bars a feeble decaying lower portion of a cloud, corresponding with the predicted ammonia particle cloud, was encountered. A denser, but still very modest, particle structure was present in the pressure regime extending from about 0.76 to a distinctive base at 1.34 bars, and is compatible with the expected ammonium hydrosulfide cloud. No massive water cloud was encountered, although below the second structure, a small, vertically thin layer at about 1.65 bars may be detached from the cloud above, but may also be water condensation, compatible with reported measurements of water abundance from other Galileo Mission experiments. A third small signal region, extending from about 1.9 to 4.5 bars, exhibited quite weak but still distinctive structure, and, although the identification of the light scatterers in this region is uncertain, may also be a water cloud perhaps associated with lateral atmospheric motion and/or reduced to a small mass density by atmospheric subsidence or other explanations. Rough descriptions of the particle size distributions and cloud properties in these regions have been derived, although they may be imprecise because of the small signals and experimental difficulties. These descriptions document the small number densities of particles, the moderate particle sizes, generally in the slightly submicron to few micron range, and the resulting small optical depths, mass densities due to particles, column particle number loading and column mass loading in the atmosphere encountered by the Galileo Probe during its descent.
NASA Technical Reports Server (NTRS)
Goodman,Jindra; Ragent, Boris
1998-01-01
The results of the nephelometer experiment conducted aboard the Probe of the Galileo mission to Jupiter are presented. The tenuous clouds and sparse particulate matter in the relatively particle-free 5-micron "hot spot" region of the Probe's descent were documented from about 0.46 bars to about 12 bars. Three regions of apparent coherent structure were noted, in addition to many indications of extremely small particle concentrations along the descent path. From the first valid measurement at about 0.46 bars down to about 0.55 bars a feeble decaying lower portion of a cloud, corresponding with the predicted ammonia particle cloud, was encountered. A denser, but still very modest, particle structure was present in the pressure regime extending from about 0.76 to a distinctive base at 1.34 bars, and is compatible with the expected ammonium hydrosulfide cloud. No massive water cloud was encountered, although below the second structure, a small, vertically thin layer at about 1.65 bars may be detached from the cloud above, but may also be water condensation, compatible with reported measurements of water abundance from other Galileo Mission experiments. A third small signal region, extending from about 1.9 to 4.5 bars, exhibited quite weak but still distinctive structure, and, although the identification of the light scatterers in this region is uncertain, may also be a water cloud perhaps associated with lateral atmospheric motion and/or reduced to a small mass density by atmospheric subsidence or other explanations. Rough descriptions of the particle size distributions and cloud properties in these regions have been derived, although they may be imprecise because of the small signals and experimental difficulties. These descriptions document the small number densities of particles, the moderate particle sizes, generally in the slightly submicron to few micron range, and the resulting small optical depths, mass densities due to particles, column particle number loading and column mass loading in the atmosphere encountered by the Galileo Probe during its descent.
Correlations among the Optical Properties of Cirrus-Cloud Particles: Microphysical Interpretation
NASA Technical Reports Server (NTRS)
Reichardt, J.; Reichardt, S.; Hess, M.; McGee, T. J.; Bhartia, P. K. (Technical Monitor)
2002-01-01
Cirrus measurements obtained with a ground-based polarization Raman lidar at 67.9 deg N in January 1997 reveal a strong positive correlation between the particle optical properties, specifically depolarization ratio delta(sub par) and extinction- to-backscatter (lidar) ratio S, for delta(sub par) less than approximately 40%, and an anti-correlation for delta(sub par) greater than approximately 40%. Over the length of the measurements the particle properties vary systematically. Initially, delta (sub par) approximately equals 60% and S approximately equals 10sr are observed. Then, with decreasing delta(sub par), S first increases to approximately 27sr (delta(sub par) approximately equals 40%) before decreasing to values around 10sr again (delta(sub par) approximately equals 20%). The analysis of lidar humidity and radiosonde temperature data shows that the measured optical properties stem from scattering by dry solid ice particles, while scattering by supercooled droplets, or by wetted or subliming ice particles can be excluded. For the microphysical interpretation of the lidar measurements, ray-tracing computations of particle scattering properties have been used. The comparison with the theoretical data suggests that the observed cirrus data can be interpreted in terms of size, shape, and, under the assumption that the lidar measurements of consecutive cloud segments can be mapped on the temporal development of a single cloud parcel moving along its trajectory, growth of the cirrus particles: Near the cloud top in the early stage of cirrus development, light scattering by nearly isometric particles that have the optical characteristics of hexagonal columns (short, column-like particles) is dominant. Over time the ice particles grow, and as the cloud base height extends to lower altitudes characterized by warmer temperatures they become morphologically diverse. For large S and depolarization values of approximately 40%, the scattering contributions of column- and plate-like particles are roughly the same. In the lower ranges of the cirrus clouds, light scattering is predominantly by plate-like ice particles. This interpretation assumes random orientation of the cirrus particles. Simulations with a simple model suggest, however, that the positive correlation between S and delta(sub par) which is observed for depolarization ratios less than 40% mainly at low cloud altitudes, can be alternatively explained by horizontal alignment of a fraction of the cirrus particle population.
Nitric Acid Uptake on Subtropical Cirrus Cloud Particles
NASA Technical Reports Server (NTRS)
2004-01-01
The redistribution of HNO3 via uptake and sedimentation by cirrus cloud particles is considered an important term in the upper tropospheric budget of reactive nitrogen. Numerous cirrus cloud encounters by the NASA WB-57F high-altitude research aircraft during CRYSTAL-FACE were accompanied by the observation of condensed-phase HNO3 with the NOAA chemical ionization mass spectrometer. The instrument measures HNO3 with two independent channels of detection connected to separate forward- and downward-facing inlets that allow a determination of the amount of HNO3 condensed on ice particles. Subtropical cirrus clouds, as indicated by the presence of ice particles, were observed coincident with condensed-phase HNO3 at temperatures of 197 K - 224 K and pressures of 122 hPa - 224 hPa. Maximum levels of condensed-phase HNO3 approached the gas-phase equivalent of 0.8 ppbv. Ice particle surface coverages as high as 1.4- 10(exp 14) molecules/sq cm were observed. A dissociative Langmuir adsorption model, when using an empirically derived HNO3 adsorption enthalpy of -11.0 kcal/mol, effectively describes the observed molecular coverages to within a factor of 5. The percentage of total HNO3 in the condensed phase ranged from near zero to 100% in the observed cirrus clouds. With volume-weighted mean particle diameters up to 700 pm and particle fall velocities up to 10 m/s, some observed clouds have significant potential to redistribute HNO3 in the upper troposphere.
NASA Astrophysics Data System (ADS)
Wonaschütz, Anna; Ludwig, Wolfgang; Zawadowicz, Maria; Hiranuma, Naruki; Hitzenberger, Regina; Cziczo, Daniel; DeMott, Paul; Möhler, Ottmar
2017-04-01
Single Particle mass spectrometers are used to gain information on the chemical composition of individual aerosol particles, aerosol mixing state, and other valuable aerosol characteristics. During the Mass Spectrometry Intercomparison at the Fifth Ice Nucleation (FIN-01) Workshop, the new LAAPTOF single particle aerosol mass spectrometer (AeroMegt GmbH) was conducting simultaneous measurements together with the PALMS (Particle Analysis by Laser Mass Spectrometry) instrument. The aerosol particles were sampled from the AIDA chamber during ice cloud expansion experiments. Samples of mineral dust and ice droplet residuals were measured simultaneously. In this work, three expansion experiments are chosen for a comparison between the two mass spectrometers. A fuzzy clustering routine is used to group the spectra. Cluster centers describing the ensemble of particles are compared. First results show that while differences in the peak heights are likely due to the use of an amplifier in PALMS, cluster centers are comparable.
NASA Astrophysics Data System (ADS)
Schmidt, S.; Schneider, J.; Klimach, T.; Mertes, S.; Schenk, L. P.; Curtius, J.; Kupiszewski, P.; Hammer, E.; Vochezer, P.; Lloyd, G.; Ebert, M.; Kandler, K.; Weinbruch, S.; Borrmann, S.
2015-02-01
This paper presents results from the "INUIT-JFJ/CLACE 2013" field campaign at the high alpine research station Jungfraujoch in January/February 2013. The chemical composition of ice particle residuals (IPR) in a size diameter range of 200-900 nm was measured in orographic, convective and non-convective clouds with a single particle mass spectrometer (ALABAMA) under ambient conditions characterized by temperatures between -28 and -4 °C and wind speed from 0.1 to 21 km h-1. Additionally, background aerosol particles in cloud free air were investigated. The IPR were sampled from mixed-phase clouds with two inlets which selectively extract small ice crystals in-cloud, namely the Counterflow Virtual Impactor (Ice-CVI) and the Ice Selective Inlet (ISI). The IPR as well as the aerosol particles were classified into seven different particle types: (1) black carbon, (2) organic carbon, (3) black carbon internally mixed with organic carbon, (4) minerals, (5) one particle group (termed "BioMinSal") that may contain biological particles, minerals, or salts, (6) industrial metals, and (7) lead containing particles. For any sampled particle population it was determined by means of single particle mass spectrometer how many of the analyzed particles belonged to each of these categories. Accordingly, between 20 and 30% of the IPR and roughly 42% of the background particles contained organic carbon. The measured fractions of minerals in the IPR composition varied from 6 to 33%, while the values for the "BioMinSal" group were between 15 and 29%. Four percent to 31% of the IPR contained organic carbon mixed with black carbon. Both inlets delivered similar results of the chemical composition and of the particle size distribution, although lead was found only in the IPR sampled by the Ice-CVI. The results show that the ice particle residual composition varies substantially between different cloud events, which indicates the influence of different meteorological conditions, such as origin of the air masses, temperature and wind speed.
Uncertainty in aerosol hygroscopicity resulting from semi-volatile organic compounds
NASA Astrophysics Data System (ADS)
Goulden, Olivia; Crooks, Matthew; Connolly, Paul
2018-01-01
We present a novel method of exploring the effect of uncertainties in aerosol properties on cloud droplet number using existing cloud droplet activation parameterisations. Aerosol properties of a single involatile particle mode are randomly sampled within an uncertainty range and resulting maximum supersaturations and critical diameters calculated using the cloud droplet activation scheme. Hygroscopicity parameters are subsequently derived and the values of the mean and uncertainty are found to be comparable to experimental observations. A recently proposed cloud droplet activation scheme that includes the effects of co-condensation of semi-volatile organic compounds (SVOCs) onto a single lognormal mode of involatile particles is also considered. In addition to the uncertainties associated with the involatile particles, concentrations, volatility distributions and chemical composition of the SVOCs are randomly sampled and hygroscopicity parameters are derived using the cloud droplet activation scheme. The inclusion of SVOCs is found to have a significant effect on the hygroscopicity and contributes a large uncertainty. For non-volatile particles that are effective cloud condensation nuclei, the co-condensation of SVOCs reduces their actual hygroscopicity by approximately 25 %. A new concept of an effective hygroscopicity parameter is introduced that can computationally efficiently simulate the effect of SVOCs on cloud droplet number concentration without direct modelling of the organic compounds. These effective hygroscopicities can be as much as a factor of 2 higher than those of the non-volatile particles onto which the volatile organic compounds condense.
Tai, Yanlong; Liang, Haoran; Zaki, Abdelali; El Hadri, Nabil; Abshaev, Ali M; Huchunaev, Buzgigit M; Griffiths, Steve; Jouiad, Mustapha; Zou, Linda
2017-12-26
Cloud-seeding materials as a promising water-augmentation technology have drawn more attention recently. We designed and synthesized a type of core/shell NaCl/TiO 2 (CSNT) particle with controlled particle size, which successfully adsorbed more water vapor (∼295 times at low relative humidity, 20% RH) than that of pure NaCl, deliquesced at a lower environmental RH of 62-66% than the hygroscopic point (h g.p ., 75% RH) of NaCl, and formed larger water droplets ∼6-10 times its original measured size area, whereas the pure NaCl still remained as a crystal at the same conditions. The enhanced performance was attributed to the synergistic effect of the hydrophilic TiO 2 shell and hygroscopic NaCl core microstructure, which attracted a large amount of water vapor and turned it into a liquid faster. Moreover, the critical particle size of the CSNT particles (0.4-10 μm) as cloud-seeding materials was predicted via the classical Kelvin equation based on their surface hydrophilicity. Finally, the benefits of CSNT particles for cloud-seeding applications were determined visually through in situ observation under an environmental scanning electron microscope on the microscale and cloud chamber experiments on the macroscale, respectively. These excellent and consistent performances positively confirmed that CSNT particles could be promising cloud-seeding materials.
Microphysical Properties and Water Budget for Summer Convective Clouds over the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Guo, X.; Tang, J.; Chang, Y.
2017-12-01
During the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-III), the clouds and precipitation processes over the Tibetan Plateau have been intensively investigated. On basis of field campaign, the cloud microphysical structure, water transformation and budget properties for typical convective precipitation processes in the summer season of 2014 over the plateau are studied using mesoscale numerical prediction model (WRF) combined with observational data collected during the experiment. The results indicate that WRF model could reproduce the general characteristics of diurnal variation of clouds and precipitation process over the plateau, however, the temporal and spatial distribution and intensity of cloud bands and precipitation simulated by WRF model still had large differences with those observed. Ice process played a critical role in the development of summer convective clouds and precipitation over the plateau. The surface precipitation was primarily formed by the melting process of graupel particles. Although the warm cloud microphysical process had small direct contribution on the surface precipitation, it had an important contribution in the formation of graupel embryos. High amount of supercooled cloud water content and graupel particles could be found in the clouds. The formation and growth of snow particles relied on the conversion of ice crystal and the aggregation with ice crystal over 12 km (-40°), but the formation of snow particles below 12 km (-40°)was dependent on the conversion of Bergeron process of ice crystals and its growth resulted from riming process with supercooled cloud water. The accretion process of supercooled raindrops by ice crystal and snow particles contributed to the production of graupel embryos and their growth mainly relied on the riming process with supercooled cloud water and aggregation process with snow particles. The mean daily conversion rate from vapor to precipitation was as high as 27.27%, which is close to Yangtze River downstream, and is higher than the regions of northern and northwestern China. The contribution of daily mean surface evaporation to precipitation was 10.92%, indicating that the 90% rainfall was from the conversion of water vapor outside the plateau.
Physical and chemical properties of ice residuals during the 2013 and 2014 CLACE campaigns
NASA Astrophysics Data System (ADS)
Kupiszewski, Piotr; Weingartner, Ernest; Vochezer, Paul; Hammer, Emanuel; Gysel, Martin; Färber, Raphael; Fuchs, Claudia; Schnaiter, Martin; Baltensperger, Urs; Schmidt, Susan; Schneider, Johannes; Bigi, Alessandro; Toprak, Emre; Linke, Claudia; Klimach, Thomas
2014-05-01
The shortcomings in our understanding and, thus, representation of aerosol-cloud interactions are one of the major sources of uncertainty in climate model projections. Among the poorly understood processes is mixed-phase cloud formation via heterogeneous nucleation, and the subsequent spatial and temporal evolution of such clouds. Cloud glaciation augments precipitation formation, resulting in decreased cloud cover and lifetime, and affects cloud radiative properties. Meanwhile, the physical and chemical properties of atmospherically relevant ice nuclei (IN), the sub-population of aerosol particles which enable heterogeneous nucleation, are not well known. Extraction of ice residuals (IR) in mixed-phase clouds is a difficult task, requiring separation of the few small, freshly formed ice crystals (the IR within such crystals can be deemed representative of the original IN) not only from interstitial particles, but also from the numerous supercooled droplets which have aerodynamic diameters similar to those of the ice crystals. In order to address the difficulties with ice crystal sampling and IR extraction in mixed-phase clouds, the new Ice Selective Inlet (ISI) has been designed and deployed at the Jungfraujoch field site. Small ice crystals are selectively sampled via the inlet with simultaneous counting, sizing and imaging of hydrometeors contained in the cloud by a set of optical particle spectrometers, namely Welas optical particle counters (OPC) and a Particle Phase Discriminator (PPD). The heart of the ISI is a droplet evaporation unit with ice-covered inner walls, resulting in removal of droplets using the Wegener-Bergeron-Findeisen process, while transmitting a relatively high fraction of small ice crystals. The ISI was deployed in the winters of 2013 and 2014 at the high alpine Jungfraujoch site (3580 m.a.s.l) during the intensive CLACE field campaigns. The measurements focused on analysis of the physical and chemical characteristics of IR and the microphysical properties of mixed-phase clouds. A host of aerosol instrumentation was deployed downstream of the ISI, including a Grimm OPC and a scanning mobility particle sizer (SMPS) for number size distribution measurements, as well as a single particle mass spectrometer (ALABAMA; 2013 only), single particle soot photometers (SP2) and a Wideband Integrated Bioaerosol Sensor (WIBS-4) for analysis of the chemical composition, with particular focus on the content of black carbon (BC) and biological particles in IR. Corresponding instrumentation sampled through a total aerosol inlet. By comparing observations from the ISI with those from the total inlet the characteristics of ice residuals relative to the total aerosol could be established. First results from these analyses will be presented.
Spectral signatures of polar stratospheric clouds and sulfate aerosol
NASA Technical Reports Server (NTRS)
Massie, S. T.; Bailey, P. L.; Gille, J. C.; Lee, E. C.; Mergenthaler, J. L.; Roche, A. E.; Kumer, J. B.; Fishbein, E. F.; Waters, J. W.; Lahoz, W. A.
1994-01-01
Multiwavelength observations of Antarctic and midlatitude aerosol by the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment on the Upper Atmosphere Research Satellite (UARS) are used to demonstrate a technique that identifies the location of polar stratospheric clouds. The technique discussed uses the normalized area of the triangle formed by the aerosol extinctions at 925, 1257, and 1605/cm (10.8, 8.0, and 6.2 micrometers) to derive a spectral aerosol measure M of the aerosol spectrum. Mie calculations for spherical particles and T-matrix calculations for spheriodal particles are used to generate theoretical spectral extinction curves for sulfate and polar stratospheric cloud particles. The values of the spectral aerosol measure M for the sulfate and polar stratospheric cloud particles are shown to be different. Aerosol extinction data, corresponding to temperatures between 180 and 220 K at a pressure of 46 hPa (near 21-km altitude) for 18 August 1992, are used to demonstrate the technique. Thermodynamic calculations, based upon frost-point calculations and laboratory phase-equilibrium studies of nitric acid trihydrate, are used to predict the location of nitric acid trihydrate cloud particles.
NASA Astrophysics Data System (ADS)
Siebenmorgen, R.; Voshchinnikov, N. V.; Bagnulo, S.; Cox, N. L. J.; Cami, J.; Peest, C.
2018-03-01
It is well known that the dust properties of the diffuse interstellar medium exhibit variations towards different sight-lines on a large scale. We have investigated the variability of the dust characteristics on a small scale, and from cloud-to-cloud. We use low-resolution spectro-polarimetric data obtained in the context of the Large Interstellar Polarisation Survey (LIPS) towards 59 sight-lines in the Southern Hemisphere, and we fit these data using a dust model composed of silicate and carbon particles with sizes from the molecular to the sub-micrometre domain. Large (≥6 nm) silicates of prolate shape account for the observed polarisation. For 32 sight-lines we complement our data set with UVES archive high-resolution spectra, which enable us to establish the presence of single-cloud or multiple-clouds towards individual sight-lines. We find that the majority of these 35 sight-lines intersect two or more clouds, while eight of them are dominated by a single absorbing cloud. We confirm several correlations between extinction and parameters of the Serkowski law with dust parameters, but we also find previously undetected correlations between these parameters that are valid only in single-cloud sight-lines. We find that interstellar polarisation from multiple-clouds is smaller than from single-cloud sight-lines, showing that the presence of a second or more clouds depolarises the incoming radiation. We find large variations of the dust characteristics from cloud-to-cloud. However, when we average a sufficiently large number of clouds in single-cloud or multiple-cloud sight-lines, we always retrieve similar mean dust parameters. The typical dust abundances of the single-cloud cases are [C]/[H] = 92 ppm and [Si]/[H] = 20 ppm.
Radiation Transfer in the Atmosphere: Scattering
NASA Technical Reports Server (NTRS)
Mishchenko, M.; Travis, L.; Lacis, Andrew A.
2014-01-01
Sunlight illuminating the Earth's atmosphere is scattered by gas molecules and suspended particles, giving rise to blue skies, white clouds, and optical displays such as rainbows and halos. By scattering and absorbing the shortwave solar radiation and the longwave radiation emitted by the underlying surface, cloud and aerosol particles strongly affect the radiation budget of the terrestrial climate system. As a consequence of the dependence of scattering characteristics on particle size, morphology, and composition, scattered light can be remarkably rich in information on particle properties and thus provides a sensitive tool for remote retrievals of macro- and microphysical parameters of clouds and aerosols.
Ice Cloud Formation and Dehydration in the Tropical Tropopause Layer
NASA Technical Reports Server (NTRS)
Jensen, Eric; Gore, Warren J. (Technical Monitor)
2002-01-01
Stratospheric water vapor is important not only for its greenhouse forcing, but also because it plays a significant role in stratospheric chemistry. Several recent studies have focused on the potential for dehydration due to ice cloud formation in air rising slowly through the tropical tropopause layer (TTL). Holton and Gettelman showed that temperature variations associated with horizontal transport of air in the TTL can drive ice cloud formation and dehydration, and Gettelman et al. recently examined the cloud formation and dehydration along kinematic trajectories using simple assumptions about the cloud properties. In this study, a Lagrangian, one-dimensional cloud model has been used to further investigate cloud formation and dehydration as air is transported horizontally and vertically through the TTL. Time-height curtains of temperature are extracted from meteorological analyses. The model tracks the growth, advection, and sedimentation of individual cloud particles. The regional distribution of clouds simulated in the model is comparable to the subvisible cirrus distribution indicated by SAGE II. The simulated cloud properties and cloud frequencies depend strongly on the assumed supersaturation threshold for ice nucleation. The clouds typically do not dehydrate the air along trajectories down to the temperature minimum saturation mixing ratio. Rather the water vapor mixing ratio crossing the tropopause along trajectories is 10-50% larger than the saturation mixing ratio. I will also discuss the impacts of Kelvin waves and gravity waves on cloud properties and dehydration efficiency. These simulations can be used to determine whether observed lower stratospheric water vapor mixing ratios can be explained by dehydration associated with in situ TTL cloud formation alone.
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Lee, D.; Oreopoulos, L.; Barahona, D.; Nenes, A.; Suarez, M. J.
2012-01-01
A revised version of the Microphysics of clouds with Relaxed Arakawa-Schubert and Aerosol-Cloud interaction (McRAS-AC), including, among others, the Barahona and Nenes ice nucleation parameterization, is implemented in the GEOS-5 AGCM. Various fields from a 10-year long integration of the AGCM with McRAS-AC were compared with their counterparts from an integration of the baseline GEOS-5 AGCM, and with satellite data as observations. Generally using McRAS-AC reduced biases in cloud fields and cloud radiative effects are much better over most of the regions of the Earth. Two weaknesses are identified in the McRAS-AC runs, namely, too few cloud particles around 40S-60S, and too high cloud water path during northern hemisphere summer over the Gulf Stream and North Pacific. Sensitivity analyses showed that these biases potentially originated from biases in the aerosol input. The first bias is largely eliminated in a sensitivity test using 50% smaller aerosol particles, while the second bias is much reduced when interactive aerosol chemistry was turned on. The main drawback of McRAS-AC is dearth of low-level marine stratus clouds, probably due to lack of dry-convection, not yet implemented into the cloud scheme. Despite these biases, McRAS-AC does simulate realistic clouds and their optical properties that can improve with better aerosol-input and thereby has the potential to be a valuable tool for climate modeling research because of its aerosol indirect effect simulation capabilities involving prediction of cloud particle number concentration and effective particle size for both convective and stratiform clouds is quite realistic.
Scavenging of black carbon in mixed phase clouds at the high alpine site Jungfraujoch
NASA Astrophysics Data System (ADS)
Cozic, J.; Verheggen, B.; Mertes, S.; Connolly, P.; Bower, K.; Petzold, A.; Baltensperger, U.; Weingartner, E.
2006-11-01
The scavenging of black carbon (BC) in liquid and mixed phase clouds was investigated during intensive experiments in winter 2004, summer 2004 and winter 2005 at the high alpine research station Jungfraujoch (3580 m a.s.l., Switzerland). Aerosol residuals were sampled behind two well characterized inlets; a total inlet which collected cloud particles (drops and ice particles) as well as interstitial aerosol particles; an interstitial inlet which collected only interstitial (unactivated) aerosol particles. BC concentrations were measured behind each of these inlets along with the submicrometer aerosol number size distribution, from which a volume concentration was derived. These measurements were complemented by in-situ measurements of cloud microphysical parameters. BC was found to be scavenged into the cloud phase to the same extent as the bulk aerosol, which suggests that BC was covered with soluble material through aging processes, rendering it more hygroscopic. The scavenged fraction of BC (FScav,BC), defined as the fraction of BC that is incorporated into cloud droplets and ice crystals, decreases with increasing cloud ice mass fraction (IMF) from FScav,BC=60% in liquid phase clouds to FScav,BC~10% in mixed-phase clouds with IMF>0.2. This is explained by the evaporation of liquid droplets in the presence of ice crystals (Wegener-Bergeron-Findeisen process), releasing BC containing cloud condensation nuclei back into the interstitial phase. In liquid clouds, the scavenged BC fraction is found to decrease with decreasing cloud liquid water content. The scavenged BC fraction is also found to decrease with increasing BC mass concentration since there is an increased competition for the available water vapour.
Cirrus microphysics and radiative transfer: Cloud field study on October 28, 1986
NASA Technical Reports Server (NTRS)
Kinne, Stefan; Ackerman, Thomas P.; Heymsfield, Andrew J.; Valero, Francisco P. J.; Sassen, Kenneth; Spinhirne, James D.
1990-01-01
The radiative properties of cirrus clouds present one of the unresolved problems in weather and climate research. Uncertainties in ice particle amount and size and, also, the general inability to model the single scattering properties of their usually complex particle shapes, prevent accurate model predictions. For an improved understanding of cirrus radiative effects, field experiments, as those of the Cirrus IFO of FIRE, are necessary. Simultaneous measurements of radiative fluxes and cirrus microphysics at multiple cirrus cloud altitudes allows the pitting of calculated versus measured vertical flux profiles; with the potential to judge current cirrus cloud modeling. Most of the problems in this study are linked to the inhomogeneity of the cloud field. Thus, only studies on more homogeneous cirrus cloud cases promises a possibility to improve current cirrus parameterizations. Still, the current inability to detect small ice particles will remain as a considerable handicap.
Effluent sampling of Scout D and Delta launch vehicle exhausts
NASA Technical Reports Server (NTRS)
Hulten, W. C.; Storey, R. W.; Gregory, G. L.; Woods, D. C.; Harris, F. S., Jr.
1974-01-01
Characterization of engine-exhaust effluents (hydrogen chloride, aluminum oxide, carbon dioxide, and carbon monoxide) has been attempted by conducting field experiments monitoring the exhaust cloud from a Scout-Algol III vehicle launch and a Delta-Thor vehicle launch. The exhaust cloud particulate size number distribution (total number of particles as a function of particle diameter), mass loading, morphology, and elemental composition have been determined within limitations. The gaseous species in the exhaust cloud have been identified. In addition to the ground-based measurements, instrumented aircraft flights through the low-altitude, stabilized-exhaust cloud provided measurements which identified CO and HCI gases and Al2O3 particles. Measurements of the initial exhaust cloud during formation and downwind at several distances have established sampling techniques which will be used for experimental verification of model predictions of effluent dispersion and fallout from exhaust clouds.
Warming ancient Mars with water clouds
NASA Astrophysics Data System (ADS)
Hartwick, V.; Toon, B.
2017-12-01
High clouds in the present day Mars atmosphere nucleate on interplanetary dust particles (IDPs) that burn up on entry into the Mars atmosphere. Clouds form when superstaturated water vapor condenses on suspended aerosols. Radiatively active water ice clouds may play a crucial role in warming the early Mars climate. Urata and Toon (2011) simulate a stable warm paleo-climate for Mars if clouds form high in the atmosphere and if particles are sufficiently large (r > 10 μm). The annual fluence of micrometeoroids at Mars was larger early on in the evolution of our solar system. Additionally, the water vapor budget throughout the middle and high atmosphere was likely heightened . Both factors should contribute to enhanced nucleation and growth of water ice cloud particles at high altitudes. Here, we use the MarsCAM-CARMA general circulation model (GCM) to examine the radiative impact of high altitude water ice clouds on the early Mars climate and as a possible solution to the faint young sun problem for Mars.
Minimalist model of ice microphysics in mixed-phase stratiform clouds
NASA Astrophysics Data System (ADS)
Yang, Fan; Ovchinnikov, Mikhail; Shaw, Raymond A.
2013-07-01
The question of whether persistent ice crystal precipitation from supercooled layer clouds can be explained by time-dependent, stochastic ice nucleation is explored using an approximate, analytical model and a large-eddy simulation (LES) cloud model. The updraft velocity in the cloud defines an accumulation zone, where small ice particles cannot fall out until they are large enough, which will increase the residence time of ice particles in the cloud. Ice particles reach a quasi-steady state between growth by vapor deposition and fall speed at cloud base. The analytical model predicts that ice water content (wi) has a 2.5 power-law relationship with ice number concentration (ni). wi and ni from a LES cloud model with stochastic ice nucleation confirm the 2.5 power-law relationship, and initial indications of the scaling law are observed in data from the Indirect and Semi-Direct Aerosol Campaign. The prefactor of the power law is proportional to the ice nucleation rate and therefore provides a quantitative link to observations of ice microphysical properties.
Minimalist Model of Ice Microphysics in Mixed-phase Stratiform Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, F.; Ovchinnikov, Mikhail; Shaw, Raymond A.
The question of whether persistent ice crystal precipitation from super cooled layer clouds can be explained by time-dependent, stochastic ice nucleation is explored using an approximate, analytical model, and a large-eddy simulation (LES) cloud model. The updraft velocity in the cloud defines an accumulation zone, where small ice particles cannot fall out until they are large enough, which will increase the residence time of ice particles in the cloud. Ice particles reach a quasi-steady state between growth by vapor deposition and fall speed at cloud base. The analytical model predicts that ice water content (wi) has a 2.5 power lawmore » relationship with ice number concentration ni. wi and ni from a LES cloud model with stochastic ice nucleation also confirm the 2.5 power law relationship. The prefactor of the power law is proportional to the ice nucleation rate, and therefore provides a quantitative link to observations of ice microphysical properties.« less
Opalescent and cloudy fruit juices: formation and particle stability.
Beveridge, Tom
2002-07-01
Cloudy fruit juices, particularly from tropical fruit, are becoming a fast-growing part of the fruit juice sector. The classification of cloud as coarse and fine clouds by centrifugation and composition of cloud from apple, pineapple, orange, guava, and lemon juice are described. Fine particulate is shown to be the true stable cloud and to contain considerable protein, carbohydrate, and lipid components. Often, tannin is present as well. The fine cloud probably arises from cell membranes and appears not to be simply cell debris. Factors relating to the stability of fruit juice cloud, including particle sizes, size distribution, and density, are described and discussed. Factors promoting stable cloud in juice are presented.
Effect of Particle Morphology on the Reactivity of Explosively Dispersed Titanium Particles
NASA Astrophysics Data System (ADS)
Frost, David; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan
2009-06-01
The effect of particle morphology on the reaction of titanium (Ti) particles explosively dispersed during the detonation of either cylindrical or spherical charges has been investigated experimentally. The explosive charges consisted of packed beds of Ti particles saturated with nitromethane. The reaction behavior of irregularly-shaped Ti particles in three size ranges is compared with tests with spherical Ti particles. The particle reaction is strongly dependent on particle morphology, e.g., 95 μm spherical Ti particles failed to ignite (in cylinders up to 49 mm in dia), whereas similarly sized irregular Ti particles readily ignited. For irregular particles, the uniformity of ignition on the particle cloud surface was almost independent of particle size, but depended on charge diameter. As the charge diameter was reduced, ignition in the conically expanding particle cloud occurred only at isolated spots or bands. For spherical charges, although large irregular Ti particles ignited promptly and uniformly throughout the particle cloud, the smallest particles dispersed nonuniformly and ignition occurred at isolated locations. In general, particle ignition is a competition between particle heating (which is influenced by particle morphology, size, number density and the local thermodynamic history) and expansion cooling of the products.
Analysis of TRMM Microphysical Measurements: Tropical Rainfall Measuring Mission (TRMM)
NASA Technical Reports Server (NTRS)
2004-01-01
SPEC Incorporated participated in three of the four TRMM field campaigns (TEFLUN-A, TEFLUN-B and KWAJEX), installing and operating a cloud particle imager (CPI) and a high volume precipitation spectrometer (HVPS) on the SPEC Learjet in TEFLUN-A, the University of North Dakota Citation in TEFLUN-B and KWAJEX, and a CPI on the NASA DC-8 in KWAJEX. This report presents and discusses new software tools and algorithms that were developed to analyze microphysical data collected during these field campaigns, as well as scientific interpretations of the data themselves. Software algorithms were developed to improve the analysis of microphysical measurements collected by the TRMM aircraft during the field campaigns. Particular attention was paid to developing and/or improving algorithms used to compute particle size distributions and ice water content. Software was also developed in support of production of the TRMM Common Microphysical Product (CMP) data files. CMP data files for TEFLUN-A field campaign were produced and submitted to the DAAC. Typical microphysical properties of convective and stratiform regions from TEFLUN-A and KWAJEX clouds were produced. In general, it was found that in the upper cloud region near -20 to -25 C, stratiform clouds contain very high (greater than 1 per cubic centimeter) concentrations of small ice particles, which are suspected to be a residual from homogeneous freezing and sedimentation of small drops in a convective updraft. In the upper cloud region near -20 to -25 C, convective clouds contain aggregates, which are not found lower in the cloud. Stratiform clouds contain aggregates at all levels, with the majority in the lowest levels. Convective cloud regions contain much higher LWC and drop concentrations than stratiform regions at all levels, and higher LWC in the middle and upper regions. Stratiform clouds contain higher IWC than convective clouds only at the lowest level. Irregular shaped ice particles are found in very high concentrations throughout both convective and stratiform cloud regions. A striking difference in particle shape in cirrus formed in situ, cirrus formed from maritime anvils and cirrus formed from continental anvils. Over 50% of the mass of in situ cirrus ice particles is composed of bullet rosettes, while bullet rosettes are virtually non-existent in maritime and tropical anvils. Tropical anvils are composed of mostly singular, plates, capped columns, and blocky irregular shapes, while continental anvils have a much higher percentage of aggregates, some of which are chains of small spheroidal particles that appear to result from homogeneous freezing of drops. A correlation between high electric fields in continental anvils and the formation of aggregates is hypothesized.
NASA Astrophysics Data System (ADS)
Ohno, Kazumasa; Okuzumi, Satoshi
2017-02-01
A number of transiting exoplanets have featureless transmission spectra that might suggest the presence of clouds at high altitudes. A realistic cloud model is necessary to understand the atmospheric conditions under which such high-altitude clouds can form. In this study, we present a new cloud model that takes into account the microphysics of both condensation and coalescence. Our model provides the vertical profiles of the size and density of cloud and rain particles in an updraft for a given set of physical parameters, including the updraft velocity and the number density of cloud condensation nuclei (CCNs). We test our model by comparing with observations of trade-wind cumuli on Earth and ammonia ice clouds in Jupiter. For trade-wind cumuli, the model including both condensation and coalescence gives predictions that are consistent with observations, while the model including only condensation overestimates the mass density of cloud droplets by up to an order of magnitude. For Jovian ammonia clouds, the condensation-coalescence model simultaneously reproduces the effective particle radius, cloud optical thickness, and cloud geometric thickness inferred from Voyager observations if the updraft velocity and CCN number density are taken to be consistent with the results of moist convection simulations and Galileo probe measurements, respectively. These results suggest that the coalescence of condensate particles is important not only in terrestrial water clouds but also in Jovian ice clouds. Our model will be useful to understand how the dynamics, compositions, and nucleation processes in exoplanetary atmospheres affect the vertical extent and optical thickness of exoplanetary clouds via cloud microphysics.
Comparison of modern icing cloud instruments
NASA Technical Reports Server (NTRS)
Takeuchi, D. M.; Jahnsen, L. J.; Callander, S. M.; Humbert, M. C.
1983-01-01
Intercomparison tests with Particle Measuring Systems (PMS) were conducted. Cloud liquid water content (LWC) measurements were also taken with a Johnson and Williams (JW) hot-wire device and an icing rate device (Leigh IDS). Tests include varying cloud LWC (0.5 to 5 au gm), cloud median volume diameter (MVD) (15 to 26 microns), temperature (-29 to 20 C), and air speeds (50 to 285 mph). Comparisons were based upon evaluating probe estimates of cloud LWC and median volume diameter for given tunnel settings. Variations of plus or minus 10% and plus or minus 5% in LWC and MVD, respectively, were determined of spray clouds between test made at given tunnel settings (fixed LWC, MVD, and air speed) indicating cloud conditions were highly reproducible. Although LWC measurements from JW and Leigh devices were consistent with tunnel values, individual probe measurements either consistently over or underestimated tunnel values by factors ranging from about 0.2 to 2. Range amounted to a factor of 6 differences between LWC estimates of probes for given cloud conditions. For given cloud conditions, estimates of cloud MVD between probes were within plus or minus 3 microns and 93% of the test cases. Measurements overestimated tunnel values in the range between 10 to 20 microns. The need for improving currently used calibration procedures was indicated. Establishment of test facility (or facilities) such as an icing tunnel where instruments can be calibrated against known cloud standards would be a logical choice.
Scarchilli, Claudio; Adriani, Alberto; Cairo, Francesco; Di Donfrancesco, Guido; Buontempo, Carlo; Snels, Marcel; Moriconi, Maria Luisa; Deshler, Terry; Larsen, Niels; Luo, Beiping; Mauersberger, Konrad; Ovarlez, Joelle; Rosen, Jim; Schreiner, Jochen
2005-06-01
A new algorithm to infer structural parameters such as refractive index and asphericity of cloud particles has been developed by use of in situ observations taken by a laser backscattersonde and an optical particle counter during balloon stratospheric flights. All three main particles, liquid, ice, and a no-ice solid (NAT, nitric acid trihydrate) of polar stratospheric clouds, were observed during two winter flights performed from Kiruna, Sweden. The technique is based on use of the T-matrix code developed for aspherical particles to calculate the backscattering coefficient and particle depolarizing properties on the basis of size distribution and concentration measurements. The results of the calculations are compared with observations to estimated refractive indices and particle asphericity. The method has also been used in cases when the liquid and solid phases coexist with comparable influence on the optical behavior of the cloud to estimate refractive indices. The main results prove that the index of refraction for NAT particles is in the range of 1.37-1.45 at 532 nm. Such particles would be slightly prolate spheroids. The calculated refractive indices for liquid and ice particles are 1.51-1.55 and 1.31-1.33, respectively. The results for solid particles confirm previous measurements taken in Antarctica during 1992 and obtained by a comparison of lidar and optical particle counter data.
Ice nucleation by cellulose and its potential impact on clouds and climate
NASA Astrophysics Data System (ADS)
Hiranuma, Naruki; Möhler, Ottmar; Yamashita, Katsuya; Tajiri, Takuya; Saito, Atsushi; Kiselev, Alexei; Hoose, Corinna; Murakami, Masataka
2014-05-01
Biological aerosol particles have recently been accentuated by their efficient ice nucleating activity as well as potential impact on clouds and global climate. Despite their potential importance, little is known about the abundance of biological particles in the atmosphere and their role compared to non-biological material and, consequently, their potential role in the cloud-hydrology and climate system is also poorly constrained. However, field observations show that the concentration of airborne cellulose, which is one of the most important derivatives of glucose and atmospherically relevant biopolymers, is consistently prevalent (>10 ng per cubic meter) throughout the whole year even at remote- and elevated locations. Here we use a novel cloud simulation chamber in Tsukuba, Japan to demonstrate that airborne cellulose of biological origin can act as efficient ice nucleating particles in super-cooled clouds of the lower and middle troposphere. In specific, we measured the surface-based ice nucleation activity of microcrystalline cellulose particles immersed in cloud droplets, which may add crucial importance to further quantify the role of biological particles as ice nuclei in the troposphere. Our results suggest that the concentration of ice nucleating cellulose to become significant (>0.1 per liter) below about -17 °C and nearly comparable to other known ice nucleating clay mineral particles (e.g., illite rich clay mineral - INUIT comparisons are also presented). An important and unique characteristic of microcrystalline cellulose compared to other particles of biological origin is its high molecular packing density, enhancing resistance to hydrolysis degradation. More in-depth microphysical understandings as well as quantitative observations of ice nucleating cellulose particles in the atmosphere are necessary to allow better estimates of their effects on clouds and the global climate. Acknowledgement: We acknowledge support by German Research Society (DfG) and Ice Nucleation research UnIT (FOR 1525 INUIT).
Microscopic evaluation of trace metals in cloud droplets in an acid precipitation region.
Li, Weijun; Wang, Yan; Collett, Jeffrey L; Chen, Jianmin; Zhang, Xiaoye; Wang, Zifa; Wang, Wenxing
2013-05-07
Mass concentrations of soluble trace metals and size, number, and mixing properties of nanometal particles in clouds determine their toxicity to ecosystems. Cloud water was found to be acidic, with a pH of 3.52, at Mt. Lu (elevation 1,165 m) in an acid precipitation region in South China. A combination of Inductively Coupled Plasma Mass Spectrometry (ICPMS) and Transmission Electron Microscopy (TEM) for the first time demonstrates that the soluble metal concentrations and solid metal particle number are surprisingly high in acid clouds at Mt. Lu, where daily concentrations of SO2, NO2, and PM10 are 18 μg m(-3), 7 μg m(-3), and 22 μg m(-3). The soluble metals in cloudwater with the highest concentrations were zinc (Zn, 200 μg L(-1)), iron (Fe, 88 μg L(-1)), and lead (Pb, 77 μg L(-1)). TEM reveals that 76% of cloud residues include metal particles that range from 50 nm to 1 μm diameter with a median diameter of 250 nm. Four major metal-associated particle types are Pb-rich (35%), fly ash (27%), Fe-rich (23%), and Zn-rich (15%). Elemental mapping shows that minor soluble metals are distributed within sulfates of cloud residues. Emissions of fine metal particles from large, nonferrous industries and coal-fired power plants with tall stacks were transported upward to this high elevation. Our results suggest that the abundant trace metals in clouds aggravate the impacts of acid clouds or associated precipitation on the ecosystem and human health.
Vertical profiling of aerosol particles and trace gases over the central Arctic Ocean during summer
NASA Astrophysics Data System (ADS)
Kupiszewski, P.; Leck, C.; Tjernström, M.; Sjogren, S.; Sedlar, J.; Graus, M.; Müller, M.; Brooks, B.; Swietlicki, E.; Norris, S.; Hansel, A.
2013-12-01
Unique measurements of vertical size-resolved aerosol particle concentrations, trace gas concentrations and meteorological data were obtained during the Arctic Summer Cloud Ocean Study (ASCOS, www.ascos.se), an International Polar Year project aimed at establishing the processes responsible for formation and evolution of low-level clouds over the high Arctic summer pack ice. The experiment was conducted from on board the Swedish icebreaker Oden, and provided both ship- and helicopter-based measurements. This study focuses on the vertical helicopter profiles and onboard measurements obtained during a three-week period when Oden was anchored to a drifting ice floe, and sheds light on the characteristics of Arctic aerosol particles and their distribution throughout the lower atmosphere. Distinct differences in aerosol particle characteristics within defined atmospheric layers are identified. Within the lowermost couple hundred metres, transport from the marginal ice zone (MIZ), condensational growth and cloud processing develop the aerosol population. During two of the four representative periods defined in this study, such influence is shown. At altitudes above about 1 km, long-range transport occurs frequently. However, only infrequently does large-scale subsidence descend such air masses to become entrained into the mixed layer in the high Arctic, and therefore long-range transport plumes are unlikely to directly influence low-level stratiform cloud formation. Nonetheless, such plumes can influence the radiative balance of the planetary boundary layer (PBL) by influencing formation and evolution of higher clouds, as well as through precipitation transport of particles downwards. New particle formation was occasionally observed, particularly in the near-surface layer. We hypothesize that the origin of these ultrafine particles could be in biological processes, both primary and secondary, within the open leads between the pack ice and/or along the MIZ. In general, local sources, in combination with upstream boundary-layer transport of precursor gases from the MIZ, are considered to constitute the origin of cloud condensation nuclei (CCN) particles and thus be of importance for the formation of interior Arctic low-level clouds during summer, and subsequently, through cloud influences, for the melting and freezing of sea ice.
I predict that human-generated particles have modified clouds and cooled climate, somewhat masking the effect of greenhouse gases and that these particles have also modified the amount of sunlight reaching the ground, changing the thermodynamic cycles in the atmosphere. Wi...
Limits to Cloud Susceptibility
NASA Technical Reports Server (NTRS)
Coakley, James A., Jr.
2002-01-01
1-kilometer AVHRR observations of ship tracks in low-level clouds off the west coast of the U S. were used to determine limits for the degree to which clouds might be altered by increases in anthropogenic aerosols. Hundreds of tracks were analyzed to determine whether the changes in droplet radii, visible optical depths, and cloud top altitudes that result from the influx of particles from underlying ships were consistent with expectations based on simple models for the indirect effect of aerosols. The models predict substantial increases in sunlight reflected by polluted clouds due to the increases in droplet numbers and cloud liquid water that result from the elevated particle concentrations. Contrary to the model predictions, the analysis of ship tracks revealed a 15-20% reduction in liquid water for the polluted clouds. Studies performed with a large-eddy cloud simulation model suggested that the shortfall in cloud liquid water found in the satellite observations might be attributed to the restriction that the 1-kilometer pixels be completely covered by either polluted or unpolluted cloud. The simulation model revealed that a substantial fraction of the indirect effect is caused by a horizontal redistribution of cloud water in the polluted clouds. Cloud-free gaps in polluted clouds fill in with cloud water while the cloud-free gaps in the surrounding unpolluted clouds remain cloud-free. By limiting the analysis to only overcast pixels, the current study failed to account for the gap-filling predicted by the simulation model. This finding and an analysis of the spatial variability of marine stratus suggest new ways to analyze ship tracks to determine the limit to which particle pollution will alter the amount of sunlight reflected by clouds.
Observed microphysical structure of nimbostratus in northeast cold vortex over China
NASA Astrophysics Data System (ADS)
Zhao, Zhen; Lei, Hengchi
2014-06-01
Airborne measurements were collected during a stepwise ascent within a nimbostratus cloud associated with a northeast cold vortex in Jilin Province over China on 20 June 2005 to study cloud structure and ice particle spectra. The microphysical structure of the nimbostratus was elucidated by King liquid water probe and Particle Measuring Systems (PMS) probes aboard the research aircraft. The PMS 2D images provide detailed information on crystal habits. A thick layer of supercooled cloud is observed and Hallett-Mossop ice multiplication process is used to explain very high ice particle concentrations in the temperature region between - 3 °C and - 6 °C. From near cloud top to melting layer, ice crystals shape in the form of columns, needles, aggregations and plates. In addition, significant horizontal variability was evident on the scale of few hundred meters. Ice particle spectra in this cloud were adequately described by exponential relationships. Relationship between the intercept (N0) and slope (λ) parameters of an exponential size distribution was well characterized by a power law.
Nitric Acid Uptake on Subtropical Cirrus Cloud Particles
NASA Technical Reports Server (NTRS)
Popp, P. J.; Gao, R. S.; Marcy, T. P.; Fahey, D. W.; Hudson, P. K.; Thompson, T. L.; Kaercher, B.; Ridley, B. A.; Weinheimer, A. J.; Knapp, D. J.;
2004-01-01
The redistribution of HNO3 via uptake and sedimentation by cirrus cloud particles is considered an important term in the upper tropospheric budget of reactive nitrogen. Numerous cirrus cloud encounters by the NASA WB-57F high-altitude research aircraft during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) were accompanied by the observation of condensed-phase HNO3 with the NOAA chemical ionization mass spectrometer. The instrument measures HNO3 with two independent channels of detection connected to separate forward and downward facing inlets that allow a determination of the amount of HNO3 condensed on ice particles. Subtropical cirrus clouds, as indicated by the presence of ice particles, were observed coincident with condensed-phase HNO3 at temperatures of 197-224 K and pressures of 122-224 hPa. Maximum levels of condensed-phase HNO3 approached the gas-phase equivalent of 0.8 ppbv. Ice particle surface coverages as high as 1.4 # 10(exp 14) molecules/ square cm were observed. A dissociative Langmuir adsorption model, when using an empirically derived HNO3 adsorption enthalpy of -11.0 kcal/mol, effectively describes the observed molecular coverages to within a factor of 5. The percentage of total HNO3 in the condensed phase ranged from near zero to 100% in the observed cirrus clouds. With volume-weighted mean particle diameters up to 700 ?m and particle fall velocities up to 10 m/s, some observed clouds have significant potential to redistribute HNO3 in the upper troposphere.
Near-Cloud Aerosol Properties from the 1 Km Resolution MODIS Ocean Product
NASA Technical Reports Server (NTRS)
Varnai, Tamas; Marshak, Alexander
2014-01-01
This study examines aerosol properties in the vicinity of clouds by analyzing high-resolution atmospheric correction parameters provided in the MODIS (Moderate Resolution Imaging Spectroradiometer) ocean color product. The study analyzes data from a 2 week long period of September in 10 years, covering a large area in the northeast Atlantic Ocean. The results indicate that on the one hand, the Quality Assessment (QA) flags of the ocean color product successfully eliminate cloud-related uncertainties in ocean parameters such as chlorophyll content, but on the other hand, using the flags introduces a sampling bias in atmospheric products such as aerosol optical thickness (AOT) and Angstrom exponent. Therefore, researchers need to select QA flags by balancing the risks of increased retrieval uncertainties and sampling biases. Using an optimal set of QA flags, the results reveal substantial increases in optical thickness near clouds-on average the increase is 50% for the roughly half of pixels within 5 km from clouds and is accompanied by a roughly matching increase in particle size. Theoretical simulations show that the 50% increase in 550nm AOT changes instantaneous direct aerosol radiative forcing by up to 8W/m2 and that the radiative impact is significantly larger if observed near-cloud changes are attributed to aerosol particles as opposed to undetected cloud particles. These results underline that accounting for near-cloud areas and understanding the causes of near-cloud particle changes are critical for accurate calculations of direct aerosol radiative forcing.
Evaluating the impact of above-cloud aerosols on cloud optical depth retrievals from MODIS
NASA Astrophysics Data System (ADS)
Alfaro, Ricardo
Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (visible and shortwave infrared), the impacts of above-cloud absorbing aerosols on the standard COD retrievals are evaluated. For fine-mode aerosol particles, aerosol optical depth (AOD) values diminish sharply from the visible to the shortwave infrared channels. Thus, a suppressed above-cloud particle radiance aliasing effect occurs for COD retrievals using shortwave infrared channels. Aerosol Index (AI) from the spatially and temporally collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African sub-continent. MODIS and OMI Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data are used to constrain cloud phase and provide contextual above-cloud AOD values. The frequency of occurrence of above-cloud aerosols is depicted on a global scale for the spring and summer seasons from OMI and CALIOP, thus indicating the significance of the problem. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20--50% in boreal summer. We find a corresponding low COD bias of 10--20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1.0. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS visible and shortwave in channels are vulnerable to dust particle aliasing, and thus a COD impact cannot be isolated with this method. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of collocated OMI AI and supplementary MODIS shortwave infrared COD products.
Aircraft Natural/Artificial Icing
2009-02-12
LWC are 0.1 to 0.8 g/m3 for stratiform clouds and 0.2 to 2.5 g/m3 for cumuliform clouds. The drop size distribution in the cloud is usually...cloud hydrometeor size distributions from 0.5 to 50 um, particle shape (discrimination between water and ice), particle optical properties (refractive...index), precipitation size distributions from 25 um to 1550 um, liquid water content from 0.01 to 3 gm-3 and aircraft velocity and atmospheric
NASA Technical Reports Server (NTRS)
Bartkus, Tadas P.; Struk, Peter M.; Tsao, Jen-Ching
2017-01-01
This paper builds on previous work that compares numerical simulations of mixed-phase icing clouds with experimental data. The model couples the thermal interaction between ice particles and water droplets of the icing cloud with the flowing air of an icing wind tunnel for simulation of NASA Glenn Research Centers (GRC) Propulsion Systems Laboratory (PSL). Measurements were taken during the Fundamentals of Ice Crystal Icing Physics Tests at the PSL tunnel in March 2016. The tests simulated ice-crystal and mixed-phase icing that relate to ice accretions within turbofan engines. Experimentally measured air temperature, humidity, total water content, liquid and ice water content, as well as cloud particle size, are compared with model predictions. The model showed good trend agreement with experimentally measured values, but often over-predicted aero-thermodynamic changes. This discrepancy is likely attributed to radial variations that this one-dimensional model does not address. One of the key findings of this work is that greater aero-thermodynamic changes occur when humidity conditions are low. In addition a range of mixed-phase clouds can be achieved by varying only the tunnel humidity conditions, but the range of humidities to generate a mixed-phase cloud becomes smaller when clouds are composed of smaller particles. In general, the model predicted melt fraction well, in particular with clouds composed of larger particle sizes.
NASA Astrophysics Data System (ADS)
Burkart, Julia; Willis, Megan D.; Bozem, Heiko; Thomas, Jennie L.; Law, Kathy; Hoor, Peter; Aliabadi, Amir A.; Köllner, Franziska; Schneider, Johannes; Herber, Andreas; Abbatt, Jonathan P. D.; Leaitch, W. Richard
2017-05-01
Motivated by increasing levels of open ocean in the Arctic summer and the lack of prior altitude-resolved studies, extensive aerosol measurements were made during 11 flights of the NETCARE July 2014 airborne campaign from Resolute Bay, Nunavut. Flights included vertical profiles (60 to 3000 m above ground level) over open ocean, fast ice, and boundary layer clouds and fogs. A general conclusion, from observations of particle numbers between 5 and 20 nm in diameter (N5 - 20), is that ultrafine particle formation occurs readily in the Canadian high Arctic marine boundary layer, especially just above ocean and clouds, reaching values of a few thousand particles cm-3. By contrast, ultrafine particle concentrations are much lower in the free troposphere. Elevated levels of larger particles (for example, from 20 to 40 nm in size, N20 - 40) are sometimes associated with high N5 - 20, especially over low clouds, suggestive of aerosol growth. The number densities of particles greater than 40 nm in diameter (N > 40) are relatively depleted at the lowest altitudes, indicative of depositional processes that will lower the condensation sink and promote new particle formation. The number of cloud condensation nuclei (CCN; measured at 0.6 % supersaturation) are positively correlated with the numbers of small particles (down to roughly 30 nm), indicating that some fraction of these newly formed particles are capable of being involved in cloud activation. Given that the summertime marine Arctic is a biologically active region, it is important to better establish the links between emissions from the ocean and the formation and growth of ultrafine particles within this rapidly changing environment.
High-energy radiation from collisions of high-velocity clouds and the Galactic disc
NASA Astrophysics Data System (ADS)
del Valle, Maria V.; Müller, A. L.; Romero, G. E.
2018-04-01
High-velocity clouds (HVCs) are interstellar clouds of atomic hydrogen that do not follow normal Galactic rotation and have velocities of a several hundred kilometres per second. A considerable number of these clouds are falling down towards the Galactic disc. HVCs form large and massive complexes, so if they collide with the disc a great amount of energy would be released into the interstellar medium. The cloud-disc interaction produces two shocks: one propagates through the cloud and the other through the disc. The properties of these shocks depend mainly on the cloud velocity and the disc-cloud density ratio. In this work, we study the conditions necessary for these shocks to accelerate particles by diffusive shock acceleration and we study the non-thermal radiation that is produced. We analyse particle acceleration in both the cloud and disc shocks. Solving a time-dependent two-dimensional transport equation for both relativistic electrons and protons, we obtain particle distributions and non-thermal spectral energy distributions. In a shocked cloud, significant synchrotron radio emission is produced along with soft gamma rays. In the case of acceleration in the shocked disc, the non-thermal radiation is stronger; the gamma rays, of leptonic origin, might be detectable with current instruments. A large number of protons are injected into the Galactic interstellar medium, and locally exceed the cosmic ray background. We conclude that under adequate conditions the contribution from HVC-disc collisions to the galactic population of relativistic particles and the associated extended non-thermal radiation might be important.
NASA Astrophysics Data System (ADS)
Durant, Adam J.
2007-12-01
Volcanic clouds and tephra fallout present a hazard to aviation, human and animal health (direct inhalation or ingestion, contamination of water supplies), and infrastructure (building collapse, burial of roads and railways, agriculture, abrasive and chemical effects on machinery). Understanding sedimentation processes is a fundamental component in the prediction of volcanic cloud lifetime and fallout at the ground, essential in the mitigation of these hazards. The majority of classical volcanic ash transport and dispersion models (VATDM) are based solely on fluid dynamics. The non-agreement between VATDM and observed regional-scale tephra deposit characteristics is especially obvious at large distances from the source volcano. In meteorology, the processes of hydrometeor nucleation, growth and collection have been long-established as playing a central role in sedimentation and precipitation. Taking this as motivation, the hypothesis that hydrometeor formation drives sedimentation from volcanic clouds was tested. The research objectives of this dissertation are: (1) To determine the effectiveness of tephra particles in the catalysis of the liquid water to ice phase transformation, with application to ice hydrometeor formation in volcanic clouds. (2) To determine the sedimentological characteristics of distal (100s km) tephra fallout from recent volcanic clouds. (3) To assess particle fallout rates from recent volcanic clouds in the context of observed deposit characteristics. (4) To assess the implications of hydrometeor formation on the enhancement of volcanic sedimentation and the potential for cloud destabilization from volcanic hydrometeor sublimation. Dissertation Overview. The following chapters present the analysis, results and conclusions of heterogeneous ice nucleation experiments and sedimentological characterization of several recent tephra deposits. The dissertation is organized in three chapters, each prepared in journal article format. In Chapter 1, single ash particle freezing experiments were carried out to investigate the effect of ash particle composition and surface area on water drop freezing temperature. In Chapter 2, the tephra deposit from the 18 May 1980 eruption of Mount St. Helens, USA, was reanalyzed using laser diffraction particle size analysis and hydrometeor-induced sedimentation mechanisms are considered. In Chapter 3, fallout from the 18 August 1992 and 16--17 September 1992 eruptions of Mount Spurr, USA, was analyzed and particle sedimentation and cloud microphysics were modeled to assess the potential for cloud destabilization from hydrometeor sublimation.
NASA Astrophysics Data System (ADS)
Shilling, J.; Pekour, M. S.; Fortner, E.; Hubbe, J. M.; Longo, K.; Martin, S. T.; Mei, F.; Springston, S. R.; Tomlinson, J. M.; Wang, J.
2014-12-01
The Green Ocean Amazon (GoAmazon) campaign conducted from January 2014 - December 2015 in the vicinity of Manaus, Brazil, was designed to study the aerosol lifecycle and aerosol-cloud interactions in both pristine and anthropogenically influenced conditions. As part of this campaign, the DOE G-1 research aircraft was deployed from February 17th - March 25th 2014 and September 6th - October 5th 2014 to investigate aerosol and cloud properties aloft. An Aerodyne High Resolution Aerosol Mass Spectrometer (AMS) and an Ionicon Proton Transfer Reaction Mass Spectrometer (PTRMS) were part of the G-1 research aircraft payload and were used to investigate aerosol gas- and particle-phase chemical composition. Here we present preliminary analysis of the aerosol and gas phase chemical composition. PTR-MS measurements show that isoprene and its oxidation products are the dominant VOCs during research flights. HR-AMS measurements reveal that the particle phase is dominated by organic material with smaller concentrations of sulfate and nitrate observed. Organic particle concentrations are enhanced when encountering the urban plume from Manaus. During the wet season, we observe increased concentrations of organic particle when passing through low-altitude clouds. PMF analysis of the organic mass spectra shows that the chemical composition of the particles observed in-cloud is distinctly different from particles observed outside clouds. We will also compare measurements made during the wet and dry seasons.
NASA Astrophysics Data System (ADS)
Gaston, C.; Pratt, K.; Suski, K. J.; May, N.; Gill, T. E.; Prather, K. A.
2016-12-01
Saline playas (dried lake beds) emit large quantities of dust that can facilitate the activation of cloud droplets. Despite the potential importance of playa dust for cloud formation, several models assume that dust is non-hygroscopic highlighting the need for measurements to clarify the role of dust from multiple sources in aerosol-cloud-climate interactions. Here we present water uptake measurements onto playa dust represented by the hygroscopicity parameter κ, which ranged from 0.002 ± 0.001 to 0.818 ± 0.094. Single-particle measurements made using an aircraft-aerosol time-of-flight mass spectrometer (A-ATOFMS) revealed the presence of halite, sodium sulfates, and sodium carbonates that were strongly correlated with κ underscoring the role that dust composition plays in water uptake. Predictions of κ made using bulk chemical techniques generally showed good agreement with measured values; however, several samples were poorly predicted using bulk particle composition. The lack of measurements/model agreement using this method and the strong correlations between κ and single-particle data are suggestive of chemical heterogeneities as a function of particle size and/or chemically distinct particle surfaces that dictate the water uptake properties of playa dust particles. Overall, our results highlight the ability of playa dust particles to act as cloud condensation nuclei that should be accounted for in models.
Aircraft-Measured Indirect Cloud Effects from Biomass Burning Smoke in the Arctic and Subarctic
NASA Technical Reports Server (NTRS)
Zamora, Lauren; Kahn, R. A.; Cubison, M. C.; Diskin, G. S.; Jimenez, J. L.; Kondo, Y.; McFarquhar, G. M.; Nenes, A.; Wisthaler, A.; Zelenyuk, A.;
2016-01-01
The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200-300 over the next 50-100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were 50 smaller than in background clouds. Based on the relationship between cloud droplet number (N(liq))/ and various biomass burning tracers (BBt/ across the multi-campaign dataset, we calculated the magnitude of subarctic and Arctic smoke aerosol-cloud interactions (ACI, where ACI = (1/3) x dln(N(liq))/dln(BBt)) to be 0.12 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (0.02 gm/ cu m) and very high aerosol concentrations (2000-3000 cu m) in the most polluted clouds, the estimated ACI value was only 0.06. In this case, competition for water vapor by the high concentration of CCN strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease shortwave radiative flux by 2 and 4 W/sq or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic. We lastly show evidence to suggest that numerous northern latitude background Aitken particles can interact with combustion particles, perhaps impacting their properties as cloud condensation and ice nuclei. However, the influence of background particles on smoke-driven indirect effects is currently unclear.
Scavenging of black carbon in mixed phase clouds at the high alpine site Jungfraujoch
NASA Astrophysics Data System (ADS)
Cozic, J.; Verheggen, B.; Mertes, S.; Connolly, P.; Bower, K.; Petzold, A.; Baltensperger, U.; Weingartner, E.
2007-04-01
The scavenging of black carbon (BC) in liquid and mixed phase clouds was investigated during intensive experiments in winter 2004, summer 2004 and winter 2005 at the high alpine research station Jungfraujoch (3580 m a.s.l., Switzerland). Aerosol residuals were sampled behind two well characterized inlets; a total inlet which collected cloud particles (droplets and ice particles) as well as interstitial (unactivated) aerosol particles; an interstitial inlet which collected only interstitial aerosol particles. BC concentrations were measured behind each of these inlets along with the submicrometer aerosol number size distribution, from which a volume concentration was derived. These measurements were complemented by in-situ measurements of cloud microphysical parameters. BC was found to be scavenged into the condensed phase to the same extent as the bulk aerosol, which suggests that BC was covered with soluble material through aging processes, rendering it more hygroscopic. The scavenged fraction of BC (FScav,BC), defined as the fraction of BC that is incorporated into cloud droplets and ice crystals, decreases with increasing cloud ice mass fraction (IMF) from FScav,BC=60% in liquid phase clouds to FScav,BC~5-10% in mixed-phase clouds with IMF>0.2. This can be explained by the evaporation of liquid droplets in the presence of ice crystals (Wegener-Bergeron-Findeisen process), releasing BC containing cloud condensation nuclei back into the interstitial phase. In liquid clouds, the scavenged BC fraction is found to decrease with decreasing cloud liquid water content. The scavenged BC fraction is also found to decrease with increasing BC mass concentration since there is an increased competition for the available water vapour.
NASA Technical Reports Server (NTRS)
Creamean, Jessie M.; White, Allen B.; Minnis, Patrick; Palikonda, Rabindra; Spangenberg, Douglas A.; Prather, Kimberly A.
2016-01-01
Ice formation in orographic mixed-phase clouds can enhance precipitation and depends on the type of aerosols that serve as ice nucleating particles (INP). The resulting precipitation from these clouds is a viable source of water, especially for regions such as the California Sierra Nevada. Thus, a better understanding of the sources of INP that impact orographic clouds is important for assessing water availability in California. This study presents a multi-site, multi-year analysis of single particle insoluble residues in precipitation samples that likely influenced cloud ice and precipitation formation above Yosemite National Park. Dust and biological particles represented the dominant fraction of the residues (64% on average). Cloud glaciation, determined using GOES satellite observations, not only depended on high cloud tops (greater than 6.2 km) and low temperatures (less than -26 C), but also on the composition of the dust and biological residues. The greatest prevalence of ice-phase clouds occurred in conjunction with biologically-rich residues and mineral dust rich in calcium, followed by iron and aluminosilicates. Dust and biological particles are known to be efficient INP, thus these residues are what likely influenced ice formation in clouds above the sites and subsequent precipitation quantities reaching the surface during events with similar meteorology. The goal of this study is to use precipitation chemistry information to gain a better understanding of the potential sources of INP in the south-central Sierra Nevada, where cloud-aerosol-precipitation interactions are under-studied and where mixed-phase orographic clouds represent a key element in the generation of precipitation and thus the water supply in California.
NASA Technical Reports Server (NTRS)
Skofronick-Jackson, Gail; Holthaus, Eric; Albers, Cerese; Kim, Min-Jeong
2007-01-01
In order to better understand the characteristics of frozen cloud particles in hurricane systems, computed brightness temperatures were compared with radiometric observations of Hurricane Erin (2001) from the NASA ER-2 aircraft. The focus was oil the frozen particle microphysics and the high frequencies (2 85 GHz) that are particularly sensitive to frozen particles. Frozen particles in hurricanes are an indicator of increasing hurricane intensity. In fact "hot towers" associated with increasing hurricane intensity are composed of frozen ice cloud particles. (They are called hot towers because their column of air is warmer than the surrounding air temperature, but above about 5-7 km to the tops of the towers at 15-19 km, the cloud particles are frozen.) This work showed that indeed, one can model information about cloud ice particle characteristics and indicated that nonspherical ice shapes, instead of spherical particles, provided the best match to the observations. Overall, this work shows that while non-spherical particles show promise, selecting and modeling a proper ice particle parameterization can be difficult and additional in situ measurements are needed to define and validate appropriate parameterizations. This work is important for developing Global Precipitation Measurement (GPM) mission satellite algorithms for the retrieval of ice characteristics both above the melting layer, as in Hurricane Erin, and for ice particles that reach the surface as falling snow.
Formation of Bidisperse Particle Clouds
NASA Astrophysics Data System (ADS)
Er, Jenn Wei; Zhao, Bing; Law, Adrian W. K.; Adams, E. Eric
2014-11-01
When a group of dense particles is released instantaneously into water, their motion has been conceptualized as a circulating particle thermal (Ruggerber 2000). However, Wen and Nacamuli (1996) observed the formation of particle clumps characterized by a narrow, fast moving core shedding particles into wakes. They observed the clump formation even for particles in the non-cohesive range as long as the source Rayleigh number was large (Ra > 1E3) or equivalently the source cloud number (Nc) was small (Nc < 3.2E2). This physical phenomenon has been investigated by Zhao et al. (2014) through physical experiments. They proposed the theoretical support for Nc dependence and categorized the formation processes into cloud formation, transitional regime and clump formation. Previous works focused mainly on the behavior of monodisperse particles. The present study further extends the experimental investigation to the formation process of bidisperse particles. Experiments are conducted in a glass tank with a water depth of 90 cm. Finite amounts of sediments with various weight proportions between coarser and finer particles are released from a cylindrical tube. The Nc being tested ranges from 6E-3 to 9.9E-2, which covers all the three formation regimes. The experimental results showed that the introduction of coarse particles promotes cloud formation and reduce the losses of finer particles into the wake. More quantitative descriptions of the effects of source conditions on the formation processes will be presented during the conference.
NASA Technical Reports Server (NTRS)
Reichardt, J.; Reichardt, S.; Yang, P.; McGee, T. J.; Bhartia, P. K. (Technical Monitor)
2001-01-01
A retrieval algorithm has been developed for the microphysical analysis of polar stratospheric cloud (PSC) optical data obtained using lidar instrumentation. The parameterization scheme of the PSC microphysical properties allows for coexistence of up to three different particle types with size-dependent shapes. The finite difference time domain (FDTD) method has been used to calculate optical properties of particles with maximum dimensions equal to or less than 2 mu m and with shapes that can be considered more representative of PSCs on the scale of individual crystals than the commonly assumed spheroids. Specifically. these are irregular and hexagonal crystals. Selection of the optical parameters that are input to the inversion algorithm is based on a potential data set such as that gathered by two of the lidars on board the NASA DC-8 during the Stratospheric Aerosol and Gas Experiment 0 p (SAGE) Ozone Loss Validation experiment (SOLVE) campaign in winter 1999/2000: the Airborne Raman Ozone and Temperature Lidar (AROTEL) and the NASA Langley Differential Absorption Lidar (DIAL). The 0 microphysical retrieval algorithm has been applied to study how particle shape assumptions affect the inversion of lidar data measured in leewave PSCs. The model simulations show that under the assumption of spheroidal particle shapes, PSC surface and volume density are systematically smaller than the FDTD-based values by, respectively, approximately 10-30% and approximately 5-23%.
Clear-sky remote sensing in the vicinity of clouds: what can be learned about aerosol changes?
NASA Astrophysics Data System (ADS)
Marshak, Alexander; Varnai, Tamas; Wen, Guoyong
2010-05-01
Studies on aerosol direct and indirect effects require a precise separation of cloud-free and cloudy air. However, separation between cloud-free and cloudy areas from remotely-sensed measurements is ambiguous. The transition zone in the regions around clouds often stretches out tens of km, which are neither precisely clear nor precisely cloudy. We study the transition zone between cloud-free and cloudy air using MODerate-resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements. Both instruments show enhanced clear-sky reflectance (MODIS) and clear-sky backscatterer (CALIPSO) near clouds. Analyzing a large dataset of MODIS observations we examine the effect of three-dimensional (3D) radiative interactions between clouds and cloud-free areas, also known as a cloud adjacency effect. Comparing with CALIPSO clear-sky backscatterer measurements, we show that the cloud adjacency effect may be responsible for a large portion of the enhanced clear sky reflectance observed by MODIS. While aerosol particles are responsible for a large part of the near-cloud enhancements in CALIPSO observations, misidentified or undetected cloud particles are also likely to contribute. As a result, both the nature of these particles (cloud vs. aerosol) and the processes creating them need to be clarified using a quantitative assessment of remote sensing limitations in particle detection and identification. The width and ubiquity of the transition zone near clouds imply that studies of aerosol-cloud interactions and aerosol direct radiative effects need to account for aerosol changes near clouds. Not accounted, these changes can cause systematic biases toward smaller aerosol radiative forcing. On the other hand, including aerosol products near clouds despite their uncertainties may overestimate aerosol radiative forcing. Therefore, there is an urgent need for developing methods that can assess and account for remote sensing challenges and thus allow for including the transition zone into the study. We describe a simple model that estimates the cloud-induced enhanced reflectances of cloud-free areas in the vicinity of clouds. The model assumes that the enhancement is due entirely to Rayleigh scattering and is therefore bigger at shorter wavelengths, thus creating a so-called apparent "bluing" of aerosols in remote sensing retrievals.
Clear-sky remote sensing in the vicinity of clouds: what we learned from MODIS and CALIPSO
NASA Astrophysics Data System (ADS)
Marshak, Alexander; Varnai, Tamas; Wen, Guoyong; Cahalan, Robert
Studies on aerosol direct and indirect effects require a precise separation of cloud-free and cloudy air. However, separation between cloud-free and cloudy areas from remotely-sensed measurements is ambiguous. The transition zone in the regions around clouds often stretches out tens of km, which are neither precisely clear nor precisely cloudy. We study the transition zone between cloud-free and cloudy air using MODerate-resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements. Both instruments show enhanced clear-sky reflectance (MODIS) and clear-sky backscatterer (CALIPSO) near clouds. Analyzing a large dataset of MODIS observations we examine the effect of three-dimensional (3D) radiative interactions between clouds and cloud-free areas, also known as a cloud adjacency effect. Comparing with CALIPSO clear-sky backscatterer measurements, we show that the cloud adjacency effect may be responsible for a large portion of the enhanced clear sky reflectance observed by MODIS. While aerosol particles are responsible for a large part of the near-cloud enhancements in CALIPSO observations, misidentified or undetected cloud particles are also likely to contribute. As a result, both the nature of these particles (cloud vs. aerosol) and the processes creating them need to be clarified using a quantitative assessment of remote sensing limitations in particle detection and identification. The width and ubiquity of the transition zone near clouds imply that studies of aerosol-cloud interactions and aerosol direct radiative effects need to account for aerosol changes near clouds. Not accounted, these changes can cause systematic biases toward smaller aerosol radiative forcing. On the other hand, including aerosol products near clouds despite their uncertainties may overestimate aerosol radiative forcing. Therefore, there is an urgent need for developing methods that can assess and account for remote sensing challenges and thus allow for including the transition zone into the study. We describe a simple model that estimates the cloud-induced enhanced reflectances of cloud-free areas in the vicinity of clouds. The model assumes that the enhancement is due entirely to Rayleigh scattering and is therefore bigger at shorter wavelengths, thus creating a so-called apparent "bluing" of aerosols in remote sensing retrievals.
NASA Astrophysics Data System (ADS)
Hoose, C.; Lohmann, U.; Stier, P.; Verheggen, B.; Weingartner, E.
2008-04-01
The global aerosol-climate model ECHAM5-HAM has been extended by an explicit treatment of cloud-borne particles. Two additional modes for in-droplet and in-crystal particles are introduced, which are coupled to the number of cloud droplet and ice crystal concentrations simulated by the ECHAM5 double-moment cloud microphysics scheme. Transfer, production, and removal of cloud-borne aerosol number and mass by cloud droplet activation, collision scavenging, aqueous-phase sulfate production, freezing, melting, evaporation, sublimation, and precipitation formation are taken into account. The model performance is demonstrated and validated with observations of the evolution of total and interstitial aerosol concentrations and size distributions during three different mixed-phase cloud events at the alpine high-altitude research station Jungfraujoch (Switzerland). Although the single-column simulations cannot be compared one-to-one with the observations, the governing processes in the evolution of the cloud and aerosol parameters are captured qualitatively well. High scavenged fractions are found during the presence of liquid water, while the release of particles during the Bergeron-Findeisen process results in low scavenged fractions after cloud glaciation. The observed coexistence of liquid and ice, which might be related to cloud heterogeneity at subgrid scales, can only be simulated in the model when assuming nonequilibrium conditions.
NASA Astrophysics Data System (ADS)
Schwabe, M.; Du, C.-R.; Huber, P.; Lipaev, A. M.; Molotkov, V. I.; Naumkin, V. N.; Zhdanov, S. K.; Zhukhovitskii, D. I.; Fortov, V. E.; Thomas, H. M.
2018-03-01
Complex plasmas are low temperature plasmas that contain microparticles in addition to ions, electrons, and neutral particles. The microparticles acquire high charges, interact with each other and can be considered as model particles for effects in classical condensed matter systems, such as crystallization and fluid dynamics. In contrast to atoms in ordinary systems, their movement can be traced on the most basic level, that of individual particles. In order to avoid disturbances caused by gravity, experiments on complex plasmas are often performed under microgravity conditions. The PK-3 Plus Laboratory was operated on board the International Space Station from 2006 - 2013. Its heart consisted of a capacitively coupled radio-frequency plasma chamber. Microparticles were inserted into the low-temperature plasma, forming large, homogeneous complex plasma clouds. Here, we review the results obtained with recent analyzes of PK-3 Plus data: We study the formation of crystallization fronts, as well as the microparticle motion in, and structure of crystalline complex plasmas. We investigate fluid effects such as wave transmission across an interface, and the development of the energy spectra during the onset of turbulent microparticle movement. We explore how abnormal particles move through, and how macroscopic spheres interact with the microparticle cloud. These examples demonstrate the versatility of the PK-3 Plus Laboratory.
NASA Astrophysics Data System (ADS)
Helling, Ch.; Tootill, D.; Woitke, P.; Lee, G.
2017-07-01
Context. Recent observations indicate potentially carbon-rich (C/O > 1) exoplanet atmospheres. Spectral fitting methods for brown dwarfs and exoplanets have invoked the C/O ratio as additional parameter but carbon-rich cloud formation modeling is a challenge for the models applied. The determination of the habitable zone for exoplanets requires the treatment of cloud formation in chemically different regimes. Aims: We aim to model cloud formation processes for carbon-rich exoplanetary atmospheres. Disk models show that carbon-rich or near-carbon-rich niches may emerge and cool carbon planets may trace these particular stages of planetary evolution. Methods: We extended our kinetic cloud formation model by including carbon seed formation and the formation of C[s], TiC[s], SiC[s], KCl[s], and MgS[s] by gas-surface reactions. We solved a system of dust moment equations and element conservation for a prescribed Drift-Phoenixatmosphere structure to study how a cloud structure would change with changing initial C/O0 = 0.43...10.0. Results: The seed formation efficiency is lower in carbon-rich atmospheres than in oxygen-rich gases because carbon is a very effective growth species. The consequence is that fewer particles make up a cloud if C/O0 > 1. The cloud particles are smaller in size than in an oxygen-rich atmosphere. An increasing initial C/O ratio does not revert this trend because a much greater abundance of condensible gas species exists in a carbon-rich environment. Cloud particles are generally made of a mix of materials: carbon dominates if C/O0 > 1 and silicates dominate if C/O0 < 1. A carbon content of 80-90% carbon is reached only in extreme cases where C/O0 = 3.0 or 10.0. Conclusions: Carbon-rich atmospheres form clouds that are made of particles of height-dependent mixed compositions, sizes and numbers. The remaining gas phase is far less depleted than in an oxygen-rich atmosphere. Typical tracer molecules are HCN and C2H2 in combination with a featureless, smooth continuum due to a carbonaceous cloud cover, unless the cloud particles become crystalline.
Space Weather Connections to Clouds and Climate
NASA Astrophysics Data System (ADS)
Tinsley, B. A.
2004-12-01
There is now a considerable amount of observational data and theoretical work pointing to a link between space weather and atmospheric electricity, and then between atmospheric electricity and cloud cover and precipitation, which ultimately affect climate and the biosphere. Studies so far have been largely confined to the Earth, but may be applicable to all planets with clouds in their atmospheres. The current density Jz, that is the return current flowing downward through clouds in the global circuit, is modulated by the galactic cosmic ray flux; by solar energetic particles; by the dawn-dusk polar cap potential difference; and by the precipitation of relativistic electrons from the radiation belts. The flow of Jz through clouds generates unipolar space charge, which is positive at cloud tops and negative at cloud base. This charge attaches to aerosol particles, and affects their interaction with other particles and droplets. Ultrafine aerosol particles are formed around ions and are preserved from scavenging on background aerosols, and preserved for growth by vapor deposition, by space charge at the bases and tops of layer clouds. There is electro-preservation of both ultrafines and of existing CCN that leads to increases in CCN concentration, and increases in cloud cover and reduction in both droplet size and precipitation by the `indirect aerosol effect'. For cold clouds and larger aerosol particles that act as ice forming nuclei, the rate of scavenging of the IFN by large supercooled droplets varies with space charge. Changes in space weather affect both ion production and Jz in planetary atmospheres. In addition, changes in cosmic ray flux affect conductivity within thunderclouds and may affect the output of the thundercloud generators in the global circuit. Thus all four processes, (a) ion-induced nucleation, (b) electro-preservation of leading to increases in CCN concentration and the indirect aerosol effect, (c) contact ice nucleation affecting the production of ices, (d) cosmic ray effects on the generators of the global circuit, are potential links between space weather and life on planets.
Coaxial digital holography measures particular matter in cloud and ambient atmosphere
NASA Astrophysics Data System (ADS)
Li, Baosheng; Yu, Haonan; Jia, Yizhen; Tao, Xiaojie; Zhang, Yang
2018-02-01
In the artificially affected weather, the detection of cloud droplets particles provides an important reference for the effective impact of artificial weather. Digital holography has the unique advantages of full-field, non-contact, no damage, real-time and quantification. In this paper, coaxial digital holography is used to record the polyethylene standard particles and aluminum scrap, and some important parameters, such as three-dimensional coordinate spatial distribution and particle size, will be obtained by the means of analyzing the digital hologram of the particle. The experimental results verify the feasibility of the coaxial digital holographic device applied to the measurement of the cloud parameters, and complete the construction of the coaxial digital holographic system and the measurement of the particles.
NASA Astrophysics Data System (ADS)
Andreae, M. O.; Afchine, A.; Albrecht, R. I.; Artaxo, P.; Borrmann, S.; Cecchini, M. A.; Costa, A.; Dollner, M.; Fütterer, D.; Järvinen, E.; Klimach, T.; Konemann, T.; Kraemer, M.; Krüger, M. L.; Machado, L.; Mertes, S.; Pöhlker, C.; Poeschl, U.; Sauer, D. N.; Schnaiter, M.; Schneider, J.; Schulz, C.; Spanu, A.; Walser, A.; Weinzierl, B.; Wendisch, M.
2015-12-01
The German-Brazilian cooperative aircraft campaign ACRIDICON-CHUVA (Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems) on the German research aircraft HALO took place over the Amazon Basin in September/October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with trace gases, aerosol particles, and atmospheric radiation. The aircraft was equipped with about 30 remote sensing and in-situ instruments for meteorological, trace gas, aerosol, cloud, precipitation, and solar radiation measurements. Fourteen research flights were conducted during this campaign. Observations during ACRIDICON-CHUVA showed high aerosol concentrations in the upper troposphere (UT) over the Amazon Basin, with concentrations after normalization to standard conditions often exceeding those in the boundary layer (BL). This behavior was consistent between several aerosol metrics, including condensation nuclei (CN), cloud condensation nuclei (CCN), and chemical species mass concentrations. These UT aerosols were different in their composition and size distribution from the aerosol in the BL, making convective transport of particles unlikely as a source. The regions in the immediate outflow of deep convective clouds were found to be depleted in aerosol particles, whereas enhanced aerosol number and mass concentrations were found in UT regions that had experienced outflow from deep convection in the preceding 24-48 hours. This suggests that aerosol production takes place in the UT based on volatile and condensable material brought up by deep convection. Subsequently, downward mixing and transport of upper tropospheric aerosol may be a source of particles to the BL, where they increase in size by the condensation of biogenic volatile organic carbon (BVOC) oxidation products. This may be an important source of aerosol particles in the Amazonian BL, where aerosol nucleation and new particle formation has not been observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohno, Kazumasa; Okuzumi, Satoshi
A number of transiting exoplanets have featureless transmission spectra that might suggest the presence of clouds at high altitudes. A realistic cloud model is necessary to understand the atmospheric conditions under which such high-altitude clouds can form. In this study, we present a new cloud model that takes into account the microphysics of both condensation and coalescence. Our model provides the vertical profiles of the size and density of cloud and rain particles in an updraft for a given set of physical parameters, including the updraft velocity and the number density of cloud condensation nuclei (CCNs). We test our modelmore » by comparing with observations of trade-wind cumuli on Earth and ammonia ice clouds in Jupiter. For trade-wind cumuli, the model including both condensation and coalescence gives predictions that are consistent with observations, while the model including only condensation overestimates the mass density of cloud droplets by up to an order of magnitude. For Jovian ammonia clouds, the condensation–coalescence model simultaneously reproduces the effective particle radius, cloud optical thickness, and cloud geometric thickness inferred from Voyager observations if the updraft velocity and CCN number density are taken to be consistent with the results of moist convection simulations and Galileo probe measurements, respectively. These results suggest that the coalescence of condensate particles is important not only in terrestrial water clouds but also in Jovian ice clouds. Our model will be useful to understand how the dynamics, compositions, and nucleation processes in exoplanetary atmospheres affect the vertical extent and optical thickness of exoplanetary clouds via cloud microphysics.« less
Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling.
Boone, Eric J; Laskin, Alexander; Laskin, Julia; Wirth, Christopher; Shepson, Paul B; Stirm, Brian H; Pratt, Kerri A
2015-07-21
Cloudwater and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry (HRMS) with nanospray desorption electrospray ionization (nano-DESI) and direct infusion electrospray ionization (ESI) were utilized to compare the organic composition of the particle and cloudwater samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloudwater, showing the significant influence of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloudwater samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloudwater when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol.
A global view of atmospheric ice particle complexity
NASA Astrophysics Data System (ADS)
Schmitt, Carl G.; Heymsfield, Andrew J.; Connolly, Paul; Järvinen, Emma; Schnaiter, Martin
2016-11-01
Atmospheric ice particles exist in a variety of shapes and sizes. Single hexagonal crystals like common hexagonal plates and columns are possible, but more frequently, atmospheric ice particles are much more complex. Ice particle shapes have a substantial impact on many atmospheric processes through fall speed, affecting cloud lifetime, to radiative properties, affecting energy balance to name a few. This publication builds on earlier work where a technique was demonstrated to separate single crystals and aggregates of crystals using particle imagery data from aircraft field campaigns. Here data from 10 field programs have been analyzed and ice particle complexity parameterized by cloud temperature for arctic, midlatitude (summer and frontal), and tropical cloud systems. Results show that the transition from simple to complex particles can be as small as 80 µm or as large as 400 µm depending on conditions. All regimes show trends of decreasing transition size with decreasing temperature.
A Numerical Study of Convection in a Condensing CO2 Atmosphere under Early Mars-Like Conditions
NASA Astrophysics Data System (ADS)
Nakajima, Kensuke; Yamashita, Tatsuya; Odaka, Masatsugu; Sugiyama, Ko-ichiro; Ishiwatari, Masaki; Nishizawa, Seiya; Takahashi, Yoshiyuki O.; Hayashi, Yoshi-Yuki
2017-10-01
Cloud convection of a CO2 atmosphere where the major constituent condenses is numerically investigated under a setup idealizing a possible warm atmosphere of early Mars, utilizing a two-dimensional cloud-resolving model forced by a fixed cooling profile as a substitute for a radiative process. The authors compare two cases with different critical saturation ratios as condensation criteria and also examine sensitivity to number mixing ratio of condensed particles given externally.When supersaturation is not necessary for condensation, the entire horizontal domain above the condensation level is continuously covered by clouds irrespective of number mixing ratio of condensed particles. Horizontal-mean cloud mass density decreases exponentially with height. The circulations below and above the condensation level are dominated by dry cellular convection and buoyancy waves, respectively.When 1.35 is adopted as the critical saturation ratio, clouds appear exclusively as intense, short-lived, quasi-periodic events. Clouds start just above the condensation level and develop upward, but intense updrafts exist only around the cloud top; they do not extend to the bottom of the condensation layer. The cloud layer is rapidly warmed by latent heat during the cloud events, and then the layer is slowly cooled by the specified thermal forcing, and supersaturation gradually develops leading to the next cloud event. The periodic appearance of cloud events does not occur when number mixing ratio of condensed particles is large.
Schmale, Julia; Henning, Silvia; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Bougiatioti, Aikaterini; Kalivitis, Nikos; Stavroulas, Iasonas; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Kristensson, Adam; Iwamoto, Yoko; Pringle, Kirsty; Reddington, Carly; Aalto, Pasi; Äijälä, Mikko; Baltensperger, Urs; Bialek, Jakub; Birmili, Wolfram; Bukowiecki, Nicolas; Ehn, Mikael; Fjæraa, Ann Mari; Fiebig, Markus; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Furuya, Masaki; Hammer, Emanuel; Heikkinen, Liine; Herrmann, Erik; Holzinger, Rupert; Hyono, Hiroyuki; Kanakidou, Maria; Kiendler-Scharr, Astrid; Kinouchi, Kento; Kos, Gerard; Kulmala, Markku; Mihalopoulos, Nikolaos; Motos, Ghislain; Nenes, Athanasios; O’Dowd, Colin; Paramonov, Mikhail; Petäjä, Tuukka; Picard, David; Poulain, Laurent; Prévôt, André Stephan Henry; Slowik, Jay; Sonntag, Andre; Swietlicki, Erik; Svenningsson, Birgitta; Tsurumaru, Hiroshi; Wiedensohler, Alfred; Wittbom, Cerina; Ogren, John A.; Matsuki, Atsushi; Yum, Seong Soo; Myhre, Cathrine Lund; Carslaw, Ken; Stratmann, Frank; Gysel, Martin
2017-01-01
Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite retrieval method evaluation, among others. Data have been acquired and processed following international recommendations for quality assurance and have undergone multiple stages of quality assessment. PMID:28291234
NASA Astrophysics Data System (ADS)
Schmale, Julia; Henning, Silvia; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Bougiatioti, Aikaterini; Kalivitis, Nikos; Stavroulas, Iasonas; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Kristensson, Adam; Iwamoto, Yoko; Pringle, Kirsty; Reddington, Carly; Aalto, Pasi; Äijälä, Mikko; Baltensperger, Urs; Bialek, Jakub; Birmili, Wolfram; Bukowiecki, Nicolas; Ehn, Mikael; Fjæraa, Ann Mari; Fiebig, Markus; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Furuya, Masaki; Hammer, Emanuel; Heikkinen, Liine; Herrmann, Erik; Holzinger, Rupert; Hyono, Hiroyuki; Kanakidou, Maria; Kiendler-Scharr, Astrid; Kinouchi, Kento; Kos, Gerard; Kulmala, Markku; Mihalopoulos, Nikolaos; Motos, Ghislain; Nenes, Athanasios; O'Dowd, Colin; Paramonov, Mikhail; Petäjä, Tuukka; Picard, David; Poulain, Laurent; Prévôt, André Stephan Henry; Slowik, Jay; Sonntag, Andre; Swietlicki, Erik; Svenningsson, Birgitta; Tsurumaru, Hiroshi; Wiedensohler, Alfred; Wittbom, Cerina; Ogren, John A.; Matsuki, Atsushi; Yum, Seong Soo; Myhre, Cathrine Lund; Carslaw, Ken; Stratmann, Frank; Gysel, Martin
2017-03-01
Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite retrieval method evaluation, among others. Data have been acquired and processed following international recommendations for quality assurance and have undergone multiple stages of quality assessment.
NASA Astrophysics Data System (ADS)
Croft, B.; Wentworth, G. R.; Martin, R. V.; Leaitch, W. R.; Murphy, J. G.; Murphy, B. N.; Kodros, J. K.; Abbatt, J. P. D.; Pierce, J. R.
2016-11-01
The Arctic region is vulnerable to climate change and able to affect global climate. The summertime Arctic atmosphere is pristine and strongly influenced by natural regional emissions, which have poorly understood climate impacts related to atmospheric particles and clouds. Here we show that ammonia from seabird-colony guano is a key factor contributing to bursts of newly formed particles, which are observed every summer in the near-surface atmosphere at Alert, Nunavut, Canada. Our chemical-transport model simulations indicate that the pan-Arctic seabird-influenced particles can grow by sulfuric acid and organic vapour condensation to diameters sufficiently large to promote pan-Arctic cloud-droplet formation in the clean Arctic summertime. We calculate that the resultant cooling tendencies could be large (about -0.5 W m-2 pan-Arctic-mean cooling), exceeding -1 W m-2 near the largest seabird colonies due to the effects of seabird-influenced particles on cloud albedo. These coupled ecological-chemical processes may be susceptible to Arctic warming and industrialization.
Croft, B; Wentworth, G R; Martin, R V; Leaitch, W R; Murphy, J G; Murphy, B N; Kodros, J K; Abbatt, J P D; Pierce, J R
2016-11-15
The Arctic region is vulnerable to climate change and able to affect global climate. The summertime Arctic atmosphere is pristine and strongly influenced by natural regional emissions, which have poorly understood climate impacts related to atmospheric particles and clouds. Here we show that ammonia from seabird-colony guano is a key factor contributing to bursts of newly formed particles, which are observed every summer in the near-surface atmosphere at Alert, Nunavut, Canada. Our chemical-transport model simulations indicate that the pan-Arctic seabird-influenced particles can grow by sulfuric acid and organic vapour condensation to diameters sufficiently large to promote pan-Arctic cloud-droplet formation in the clean Arctic summertime. We calculate that the resultant cooling tendencies could be large (about -0.5 W m -2 pan-Arctic-mean cooling), exceeding -1 W m -2 near the largest seabird colonies due to the effects of seabird-influenced particles on cloud albedo. These coupled ecological-chemical processes may be susceptible to Arctic warming and industrialization.
Atmospheric Science Data Center
2013-04-19
... into a moist layer of atmosphere. The particles become cloud condensation nuclei (CCN), which may either produce new cloud particles where ... visualization of the vertical structure of the condensation trails. It was created using a combination of red band data from ...
NASA Astrophysics Data System (ADS)
Hosseinzadeh-Nik, Zahra; Regele, Jonathan D.
2015-11-01
Dense compressible particle-laden flow, which has a complex nature, exists in various engineering applications. Shock waves impacting a particle cloud is a canonical problem to investigate this type of flow. It has been demonstrated that large flow unsteadiness is generated inside the particle cloud from the flow induced by the shock passage. It is desirable to develop models for the Reynolds stress to capture the energy contained in vortical structures so that volume-averaged models with point particles can be simulated accurately. However, the previous work used Euler equations, which makes the prediction of vorticity generation and propagation innacurate. In this work, a fully resolved two dimensional (2D) simulation using the compressible Navier-Stokes equations with a volume penalization method to model the particles has been performed with the parallel adaptive wavelet-collocation method. The results still show large unsteadiness inside and downstream of the particle cloud. A 1D model is created for the unclosed terms based upon these 2D results. The 1D model uses a two-phase simple low dissipation AUSM scheme (TSLAU) developed by coupled with the compressible two phase kinetic energy equation.
In Situ Balloon-Borne Ice Particle Imaging in High-Latitude Cirrus
NASA Astrophysics Data System (ADS)
Kuhn, Thomas; Heymsfield, Andrew J.
2016-09-01
Cirrus clouds reflect incoming solar radiation, creating a cooling effect. At the same time, these clouds absorb the infrared radiation from the Earth, creating a greenhouse effect. The net effect, crucial for radiative transfer, depends on the cirrus microphysical properties, such as particle size distributions and particle shapes. Knowledge of these cloud properties is also needed for calibrating and validating passive and active remote sensors. Ice particles of sizes below 100 µm are inherently difficult to measure with aircraft-mounted probes due to issues with resolution, sizing, and size-dependent sampling volume. Furthermore, artefacts are produced by shattering of particles on the leading surfaces of the aircraft probes when particles several hundred microns or larger are present. Here, we report on a series of balloon-borne in situ measurements that were carried out at a high-latitude location, Kiruna in northern Sweden (68N 21E). The method used here avoids these issues experienced with the aircraft probes. Furthermore, with a balloon-borne instrument, data are collected as vertical profiles, more useful for calibrating or evaluating remote sensing measurements than data collected along horizontal traverses. Particles are collected on an oil-coated film at a sampling speed given directly by the ascending rate of the balloon, 4 m s-1. The collecting film is advanced uniformly inside the instrument so that an always unused section of the film is exposed to ice particles, which are measured by imaging shortly after sampling. The high optical resolution of about 4 µm together with a pixel resolution of 1.65 µm allows particle detection at sizes of 10 µm and larger. For particles that are 20 µm (12 pixel) in size or larger, the shape can be recognized. The sampling volume, 130 cm3 s-1, is well defined and independent of particle size. With the encountered number concentrations of between 4 and 400 L-1, this required about 90- to 4-s sampling times to determine particle size distributions of cloud layers. Depending on how ice particles vary through the cloud, several layers per cloud with relatively uniform properties have been analysed. Preliminary results of the balloon campaign, targeting upper tropospheric, cold cirrus clouds, are presented here. Ice particles in these clouds were predominantly very small, with a median size of measured particles of around 50 µm and about 80 % of all particles below 100 µm in size. The properties of the particle size distributions at temperatures between -36 and -67 °C have been studied, as well as particle areas, extinction coefficients, and their shapes (area ratios). Gamma and log-normal distribution functions could be fitted to all measured particle size distributions achieving very good correlation with coefficients R of up to 0.95. Each distribution features one distinct mode. With decreasing temperature, the mode diameter decreases exponentially, whereas the total number concentration increases by two orders of magnitude with decreasing temperature in the same range. The high concentrations at cold temperatures also caused larger extinction coefficients, directly determined from cross-sectional areas of single ice particles, than at warmer temperatures. The mass of particles has been estimated from area and size. Ice water content (IWC) and effective diameters are then determined from the data. IWC did vary only between 1 × 10-3 and 5 × 10-3 g m-3 at temperatures below -40 °C and did not show a clear temperature trend. These measurements are part of an ongoing study.
NASA Astrophysics Data System (ADS)
Wang, H.; Kravitz, B.; Rasch, P. J.; Morrison, H.; Solomon, A.
2014-12-01
Previous process-oriented modeling studies have highlighted the dependence of effectiveness of cloud brightening by aerosols on cloud regimes in warm marine boundary layer. Cloud microphysical processes in clouds that contain ice, and hence the mechanisms that drive aerosol-cloud interactions, are more complicated than in warm clouds. Interactions between ice particles and liquid drops add additional levels of complexity to aerosol effects. A cloud-resolving model is used to study aerosol-cloud interactions in the Arctic triggered by strong aerosol emissions, through either geoengineering injection or concentrated sources such as shipping and fires. An updated cloud microphysical scheme with prognostic aerosol and cloud particle numbers is employed. Model simulations are performed in pure super-cooled liquid and mixed-phase clouds, separately, with or without an injection of aerosols into either a clean or a more polluted Arctic boundary layer. Vertical mixing and cloud scavenging of particles injected from the surface is still quite efficient in the less turbulent cold environment. Overall, the injection of aerosols into the Arctic boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. The pure liquid clouds are more susceptible to the increase in aerosol number concentration than the mixed-phase clouds. Rain production processes are more effectively suppressed by aerosol injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. Aerosol injection into a clean boundary layer results in a greater cloud albedo increase than injection into a polluted one, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, the impact of dynamical feedback due to precipitation changes is small. According to these results, which are dependent upon the representation of ice nucleation processes in the employed microphysical scheme, Arctic geoengineering/shipping could have substantial local radiative effects, but is unlikely to be effective as the sole means of counterbalancing warming due to climate change.
NASA Technical Reports Server (NTRS)
Moore, W. W., Jr.; Kurtz, R. L.; Lemons, J. F.
1976-01-01
The paper describes a holographic/photographic camera to be used with the zero-g or low-g Atmospheric Cloud Physics Laboratory. The flight prototype holocamera is intended to record particles from 0.01 to 5 microns for an optimum two-dimensional plane only in the microscopic photography mode, particles on a volume basis in the in-line holography mode from 5 microns up, and all particle sizes possible on a volume basis in the acute sideband holography mode.
Scattering by randomly oriented ellipsoids: Application to aerosol and cloud problems
NASA Technical Reports Server (NTRS)
Asano, S.; Sato, M.; Hansen, J. E.
1979-01-01
A program was developed for computing the scattering and absorption by arbitrarily oriented and randomly oriented prolate and oblate spheroids. This permits examination of the effect of particle shape for cases ranging from needles through spheres to platelets. Applications of this capability to aerosol and cloud problems are discussed. Initial results suggest that the effect of nonspherical particle shape on transfer of radiation through aerosol layers and cirrus clouds, as required for many climate studies, can be readily accounted for by defining an appropriate effective spherical particle radius.
Sensitivity of simulated snow cloud properties to mass-diameter parameterizations.
NASA Astrophysics Data System (ADS)
Duffy, G.; Nesbitt, S. W.; McFarquhar, G. M.
2015-12-01
Mass to diameter (m-D) relationships are used in model parameterization schemes to represent ice cloud microphysics and in retrievals of bulk cloud properties from remote sensing instruments. One of the most common relationships, used in the current Global Precipitation Measurement retrieval algorithm for example, assigns the density of snow as a constant tenth of the density of ice (0.1g/m^3). This assumption stands in contrast to the results of derived m-D relationships of snow particles, which imply decreasing particle densities at larger sizes and result in particle masses orders of magnitude below the constant density relationship. In this study, forward simulations of bulk cloud properties (e.g., total water content, radar reflectivity and precipitation rate) derived from measured size distributions using several historical m-D relationships are presented. This expands upon previous studies that mainly focused on smaller ice particles because of the examination of precipitation-sized particles here. In situ and remote sensing data from the GPM Cold season Experiment (GCPEx) and Canadian CloudSAT/Calypso Validation Program (C3VP), both synoptic snowstorm field experiments in southern Ontario, Canada, are used to evaluate the forward simulations against total water content measured by the Nevzorov and Cloud Spectrometer and Impactor (CSI) probe, radar reflectivity measured by a C band ground based radar and a nadir pointing Ku/Ka dual frequency airborne radar, and precipitation rate measured by a 2D video disdrometer. There are differences between the bulk cloud properties derived using varying m-D relations, with constant density assumptions producing results differing substantially from the bulk measured quantities. The variability in bulk cloud properties derived using different m-D relations is compared against the natural variability in those parameters seen in the GCPEx and C3VP field experiments.
NASA Technical Reports Server (NTRS)
Varnai, Tamas; Yang, Weidong; Marshak, Alexander
2016-01-01
CALIOP shows stronger near-cloud changes in aerosol properties at higher cloud fractions. Cloud fraction variations explain a third of near-cloud changes in overall aerosol statistics. Cloud fraction and aerosol particle size distribution have a complex relationship.
Effect of acidification on carrot (Daucus carota) juice cloud stability.
Schultz, Alison K; Barrett, Diane M; Dungan, Stephanie R
2014-11-26
Effects of acidity on cloud stability in pasteurized carrot juice were examined over the pH range of 3.5-6.2. Cloud sedimentation, particle diameter, and ζ potential were measured at each pH condition to quantify juice cloud stability and clarification during 3 days of storage. Acidification below pH 4.9 resulted in a less negative ζ potential, an increased particle size, and an unstable cloud, leading to juice clarification. As the acidity increased, clarification occurred more rapidly and to a greater extent. Only a weak effect of ionic strength was observed when sodium salts were added to the juice, but the addition of calcium salts significantly reduced the cloud stability.
Cloud Condensation Nuclei Particle Counter (CCN) Instrument Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uin, Janek
2016-04-01
The Cloud Condensation Nuclei Counter—CCN (Figure 1) is a U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility instrument for measuring the concentration of aerosol particles that can act as cloud condensation nuclei [1, 2]. The CCN draws the sample aerosol through a column with thermodynamically unstable supersaturated water vapor that can condense onto aerosol particles. Particles that are activated, i.e., grown larger in this process, are counted (and sized) by an Optical Particle Counter (OPC). Thus, activated ambient aerosol particle number concentration as a function of supersaturation is measured. Models CCN-100 and CCN-200 differ only inmore » the number of humidifier columns and related subsystems: CCN-100 has one column and CCN-200 has two columns along with dual flow systems and electronics.« less
NASA Astrophysics Data System (ADS)
Jourdan, Olivier; Mioche, Guillaume; Garrett, Timothy J.; SchwarzenböCk, Alfons; Vidot, JéRôMe; Xie, Yu; Shcherbakov, Valery; Yang, Ping; Gayet, Jean-FrançOis
2010-12-01
Airborne measurements in an Arctic mixed-phase nimbostratus cloud were conducted in Spitsbergen on 21 May 2004 during the international Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR) campaign. The in situ instrument suite aboard the Alfred Wegener Institute Polar 2 aircraft included a polar nephelometer (PN), a cloud particle imager (CPI), a Nevzorov probe, and a standard PMS 2DC probe to measure the cloud particle single-scattering properties (at a wavelength of 0.8 μm), and the particle morphology and size, as well as the in-cloud partitioning of ice/water content. The main objective of this work is to present a technique based on principal component analysis and light-scattering modeling to link the microphysical properties of cloud particles to their optical characteristics. The technique is applied to the data collected during the 21 May case study where a wide variety of ice crystal shapes and liquid water fractions were observed at temperatures ranging from -1°C to -12°C. CPI measurements highlight the presence of large supercooled water droplets with diameters close to 500 μm. Although the majority of ice particles were found to have irregular shapes, columns and needles were the prevailing regular habits between -3°C and -6°C while stellars and plates were observed at temperatures below -8°C. The implementation of the principal component analysis of the PN scattering phase function measurements revealed representative optical patterns that were consistent with the particle habit classification derived from the CPI. This indicates that the synergy between the CPI and the PN can be exploited to link the microphysical and shape properties of cloud particles to their single-scattering characteristics. Using light-scattering modeling, we have established equivalent microphysical models based on a limited set of free parameters (roughness, mixture of idealized particle habits, and aspect ratio of ice crystals) that reproduce the main optical features assessed for cloud regions with different particle geometries and liquid water fractions. However, the retrieved bulk microphysical parameters can substantially differ from the measurements (by several times for the effective size and up to 3 orders of magnitude for the number concentration). Several possible explanations for these discrepancies are discussed. The retrievals show that the optical contribution of small particles with sizes lower than 50 μm (droplets and ice crystals) is significant, always exceeding 50% of the total scattering signal, and thus needs to be more accurately quantified. The shattering of large ice crystals on the shrouded inlet of the PN could also strongly affect the retrieved microphysical parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Damao; Wang, Zhien; Kollias, Pavlos
In this study, collocated A-Train CloudSat radar and CALIPSO lidar measurements between 2006 and 2010 are analyzed to study primary ice particle production characteristics in mid-level stratiform mixed-phase clouds on a global scale. For similar clouds in terms of cloud top temperature and liquid water path, Northern Hemisphere latitude bands have layer-maximum radar reflectivity (ZL) that is ~1 to 8 dBZ larger than their counterparts in the Southern Hemisphere. The systematically larger ZL under similar cloud conditions suggests larger ice number concentrations in mid-level stratiform mixed-phase clouds over the Northern Hemisphere, which is possibly related to higher background aerosol loadings.more » Furthermore, we show that springtime northern mid- and high latitudes have ZL that is larger by up to 6 dBZ (a factor of 4 higher ice number concentration) than other seasons, which might be related to more dust events that provide effective ice nucleating particles. Our study suggests that aerosol-dependent ice number concentration parameterizations are required in climate models to improve mixed-phase cloud simulations, especially over the Northern Hemisphere.« less
Zhang, Damao; Wang, Zhien; Kollias, Pavlos; ...
2018-03-28
In this study, collocated A-Train CloudSat radar and CALIPSO lidar measurements between 2006 and 2010 are analyzed to study primary ice particle production characteristics in mid-level stratiform mixed-phase clouds on a global scale. For similar clouds in terms of cloud top temperature and liquid water path, Northern Hemisphere latitude bands have layer-maximum radar reflectivity (ZL) that is ~1 to 8 dBZ larger than their counterparts in the Southern Hemisphere. The systematically larger ZL under similar cloud conditions suggests larger ice number concentrations in mid-level stratiform mixed-phase clouds over the Northern Hemisphere, which is possibly related to higher background aerosol loadings.more » Furthermore, we show that springtime northern mid- and high latitudes have ZL that is larger by up to 6 dBZ (a factor of 4 higher ice number concentration) than other seasons, which might be related to more dust events that provide effective ice nucleating particles. Our study suggests that aerosol-dependent ice number concentration parameterizations are required in climate models to improve mixed-phase cloud simulations, especially over the Northern Hemisphere.« less
NASA Technical Reports Server (NTRS)
Prigent, Catherine; Pardo, Juan R.; Mishchenko, Michael I.; Rossow, Willaim B.; Hansen, James E. (Technical Monitor)
2001-01-01
Special Sensor Microwave /Imager (SSM/I) observations in cloud systems are studied over the tropics. Over optically thick cloud systems, presence of polarized signatures at 37 and 85 GHz is evidenced and analyzed with the help of cloud top temperature and optical thickness extracted from visible and IR satellite observations. Scattering signatures at 85 GHz (TbV(85) less than or = 250 K) are associated with polarization differences greater than or = 6 K, approx. 50%, of the time over ocean and approx. 40% over land. In addition. over thick clouds the polarization difference at 37 GHz is rarely negligible. The polarization differences at 37 and 85 GHz do not stem from the surface but are generated in regions of relatively homogeneous clouds having high liquid water content. To interpret the observations, a radiative transfer model that includes the scattering by non-spherical particles is developed. based on the T-matrix approach and using the doubling and adding method. In addition to handling randomly and perfectly oriented particles, this model can also simulate the effect of partial orientation of the hydrometeors. Microwave brightness temperatures are simulated at SSM/I frequencies and are compared with the observations. Polarization differences of approx. 2 K can be simulated at 37 GHz over a rain layer, even using spherical drops. The polarization difference is larger for oriented non-spherical particles. The 85 GHz simulations are very sensitive to the ice phase of the cloud. Simulations with spherical particles or with randomly oriented non-spherical ice particles cannot replicate the observed polarization differences. However, with partially oriented non-spherical particles, the observed polarized signatures at 85 GHz are explained, and the sensitivity of the scattering characteristics to the particle size, asphericity, and orientation is analyzed. Implications on rain and ice retrievals are discussed.
Toward the Characterization of Mixed-Phase Clouds Using Remote Sensing
NASA Astrophysics Data System (ADS)
Andronache, C.
2015-12-01
Mixed-phase clouds consist of a mixture of ice particles and liquid droplets at temperatures below 0 deg C. They are present in all seasons in many regions of the world, account for about 30% of the global cloud coverage, and are linked to cloud electrification and aircraft icing. The mix of ice particles, liquid droplets, and water vapor is unstable, and such clouds are thought to have a short lifetime. A characteristic parameter is the phase composition of mixed-phase clouds. It affects the cloud life cycle and the rate of precipitation. This parameter is important for cloud parameters retrievals by radar, lidar, and satellite and is relevant for climate modeling. The phase transformation includes the remarkable Wegener-Bergeron-Findeisen (WBF) process. The direction and the rate of the phase transformations depend on the local thermodynamic and microphysical properties. Cloud condensation nuclei (CCN) and ice nuclei (IN) particles determine to a large extent cloud microstructure and the dynamic response of clouds to aerosols. The complexity of dynamics and microphysics involved in mixed-phase clouds requires a set of observational and modeling tools that continue to be refined. Among these techniques, the remote sensing methods provide an increasing number of parameters, covering large regions of the world. Thus, a series of studies were dedicated to stratiform mixed-phase clouds revealing longer lifetime than previously thought. Satellite data and aircraft in situ measurements in deep convective clouds suggest that highly supercooled water often occurs in vigorous continental convective storms. In this study, we use cases of convective clouds to discuss the feasibility of mixed-phase clouds characterization and potential advantages of remote sensing.
NASA Astrophysics Data System (ADS)
Nar, Sevda Yeliz; Cakir, Altan
2018-02-01
Particles produced by nuclear decay, cosmic radiation and reactions can be identified through various methods. One of these methods that has been effective in the last century is the cloud chamber. The chamber makes visible cosmic particles that we are exposed to radiation per second. Diffusion cloud chamber is a kind of cloud chamber that is cooled by dry ice. This traditional model has some application difficulties. In this work, Peltier-based cloud chamber cooled by thermoelectric modules is studied. The new model provided uniformly cooled base of the chamber, moreover, it has longer lifetime than the traditional chamber in terms of observation time. This gain has reduced the costs which spent each time for cosmic particle observation. The chamber is an easy-to-use system according to traditional diffusion cloud chamber. The new model is portable, easier to make, and can be used in the nuclear physics experiments. In addition, it would be very useful to observe Muons which are the direct evidence for Lorentz contraction and time expansion predicted by Einsteins special relativity principle.
NASA Technical Reports Server (NTRS)
Farrugia, C. J.; Burlaga, L. F.; Osherovich, V. A.; Richardson, I. G.; Freeman, M. P.; Lepping, R. P.; Lazarus, A. J.
1993-01-01
High time resolution interplanetary magnetic field and plasma measurements of an interplanetary magnetic cloud and its interaction with the earth's magnetosphere on January 14/15, 1988 are interpreted and discussed. It is argued that the data are consistent with the theoretical model of magnetic clouds as flux ropes of local straight cylindrical geometry. The data also suggest that this cloud is aligned with its axis in the ecliptic plane and pointing in the east-west direction. Evidence consisting of the intensity and directional distribution of energetic particle in the magnetic cloud argues in favor of the connectedness of the magnetic field lines to the sun's surface. The intensities of about 0.5 MeV ions is rapidly enhanced and the particles stream in a collimated beam along the magnetic field preferentially from the west of the sun. The particles travel form a flare site along the cloud magnetic field lines, which are thus presumably still attached to the sun.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Fan; Ovchinnikov, Mikhail; Shaw, Raymond A.
Lagrangian ice particle tracking is applied in both a 3-D time dependent velocity field produced by a Large Eddy Simulation cloud model and in a 2-D idealized field. It is found that more than 10% of ice particles have lifetimes longer than 1.5 hours, much longer than the large eddy turnover time or the time for a crystal to fall through the depth of a non-turbulent cloud. An analysis of trajectories in a 2-D idealized field shows that there are two types of long lifetime ice particles: quasi-steady and recycled growth. For quasi-steady growth, ice particles are suspended in themore » updraft velocity region for a long time. For recycled growth, ice particles are trapped in the large-eddy structures, and whether ice particles grow or evaporate depends on the ice relative humidity profile within the boundary layer. Some ice particles can grow after each cycle in the trapping region, until they are too large to be trapped, and thus have long lifetimes. The relative contribution of the recycled ice particles to the cloud mean ice water content depends on both the dynamic and thermodynamic properties of the mixing layer. In particular, the total ice water content of a mixed phase cloud in a decoupled boundary layer can be much larger than that in a fully coupled boundary layer.« less
Modelling ice microphysics of mixed-phase clouds
NASA Astrophysics Data System (ADS)
Ahola, J.; Raatikainen, T.; Tonttila, J.; Romakkaniemi, S.; Kokkola, H.; Korhonen, H.
2017-12-01
The low-level Arctic mixed-phase clouds have a significant role for the Arctic climate due to their ability to absorb and reflect radiation. Since the climate change is amplified in polar areas, it is vital to apprehend the mixed-phase cloud processes. From a modelling point of view, this requires a high spatiotemporal resolution to capture turbulence and the relevant microphysical processes, which has shown to be difficult.In order to solve this problem about modelling mixed-phase clouds, a new ice microphysics description has been developed. The recently published large-eddy simulation cloud model UCLALES-SALSA offers a good base for a feasible solution (Tonttila et al., Geosci. Mod. Dev., 10:169-188, 2017). The model includes aerosol-cloud interactions described with a sectional SALSA module (Kokkola et al., Atmos. Chem. Phys., 8, 2469-2483, 2008), which represents a good compromise between detail and computational expense.Newly, the SALSA module has been upgraded to include also ice microphysics. The dynamical part of the model is based on well-known UCLA-LES model (Stevens et al., J. Atmos. Sci., 56, 3963-3984, 1999) which can be used to study cloud dynamics on a fine grid.The microphysical description of ice is sectional and the included processes consist of formation, growth and removal of ice and snow particles. Ice cloud particles are formed by parameterized homo- or heterogeneous nucleation. The growth mechanisms of ice particles and snow include coagulation and condensation of water vapor. Autoconversion from cloud ice particles to snow is parameterized. The removal of ice particles and snow happens by sedimentation and melting.The implementation of ice microphysics is tested by initializing the cloud simulation with atmospheric observations from the Indirect and Semi-Direct Aerosol Campaign (ISDAC). The results are compared to the model results shown in the paper of Ovchinnikov et al. (J. Adv. Model. Earth Syst., 6, 223-248, 2014) and they show a good match. One of the advantages of UCLALES-SALSA is that it can be used to quantify the effect of aerosol scavenging on cloud properties in a precise way.
Further evidence for particle nucleation in clear air adjacent to marine cumulus clouds
NASA Astrophysics Data System (ADS)
Perry, Kevin D.; Hobbs, Peter V.
1994-11-01
Observational evidence is presented for the nucleation of condensation nuclei (CN) in the clear air adjacent to an isolated, marine, cumulus cloud. Two separate regions of particle nucleation are identified: one located above the cloud top, and the second located downwind of the cloud near the level of the anvil outflow. The regions of high CN concentrations were located in extremely clean marine air, with unactivated aerosol surface area (excluding the nucleation mode) less than 2 sq micrometers/cu cm, air temperature -31 C, and higher relative humidities than the undisturbed environment. Vertical profile measurements downwind of the cloud showed that CN concentrations at the level of the anvil outflow (4.9 km) were 8 times greater than at any other level between the surface and 5.3 km. A conceptual model is formulated in which aerosol particles, sulfur dioxide (SO2), sulfuric acid vapor (H2SO4), dimethyl sulfide (DMS), and ozone (O3) from the boundary layer are entrained into the cumulus cloud. Total aerosol number concentrations and unactivated aerosol surface area decrease with height in the cloud due to Brownian diffusion and diffusiophoresis of cloud interstitial aerosol to hydrometeors, coalescence scavenging by cloud droplets, collisional scavenging by ice particles, and subsequent removal by precipitation. The air that is detrained from the cloud raises the relative humidity and vents the clean air, SO2, H2SO4, DMS, and O3 to the near-cloud environment. Hydroxyl radicals then oxidize the SO2 and DMS to H2SO4. Under the conditions of high relative humidity, low total aerosol surface area, low temperatures, and high SO2 concentrations near cloud top, significant concentrations of new particles can be produced by homogeneous-bimolecular nucleation of sulfuric acid solution droplets from H2SO4 and H2O vapor molecules. The concentration of CN as a function of time is calculated for the case described in this paper using a bimodal integral nucleation model. The model results show that significant numbers of CN could have been produced within a few hours by the homogeneous-bimolecular nucleation of sulfuric acid solution droplets under the observed conditions provided the concentration of SO2 near cloud top was enhanced by vertical transport.
New particle dependant parameterizations of heterogeneous freezing processes.
NASA Astrophysics Data System (ADS)
Diehl, Karoline; Mitra, Subir K.
2014-05-01
For detailed investigations of cloud microphysical processes an adiabatic air parcel model with entrainment is used. It represents a spectral bin model which explicitly solves the microphysical equations. The initiation of the ice phase is parameterized and describes the effects of different types of ice nuclei (mineral dust, soot, biological particles) in immersion, contact, and deposition modes. As part of the research group INUIT (Ice Nuclei research UnIT), existing parameterizations have been modified for the present studies and new parameterizations have been developed mainly on the basis of the outcome of INUIT experiments. Deposition freezing in the model is dependant on the presence of dry particles and on ice supersaturation. The description of contact freezing combines the collision kernel of dry particles with the fraction of frozen drops as function of temperature and particle size. A new parameterization of immersion freezing has been coupled to the mass of insoluble particles contained in the drops using measured numbers of ice active sites per unit mass. Sensitivity studies have been performed with a convective temperature and dew point profile and with two dry aerosol particle number size distributions. Single and coupled freezing processes are studied with different types of ice nuclei (e.g., bacteria, illite, kaolinite, feldspar). The strength of convection is varied so that the simulated cloud reaches different levels of temperature. As a parameter to evaluate the results the ice water fraction is selected which is defined as the relation of the ice water content to the total water content. Ice water fractions between 0.1 and 0.9 represent mixed-phase clouds, larger than 0.9 ice clouds. The results indicate the sensitive parameters for the formation of mixed-phase and ice clouds are: 1. broad particle number size distribution with high number of small particles, 2. temperatures below -25°C, 3. specific mineral dust particles as ice nuclei such as illite or montmorillonite. Coupled cases of deposition and contact freezing show that they are hardly in competition because of differences in the preferred particle sizes. In the contact mode, small particles are less efficient for collisions as well as less efficient as ice nuclei so that these are available for deposition freezing. On the other hand, immersion freezing is the dominant process when it is coupled with deposition freezing. As it is initiated earlier the formed ice particles consume water vapor for growing. The competition of combined contact and immersion freezing leads to lower ice water contents because more ice particles are formed via the immersion mode. In general, ice clouds and mixed-phase clouds with high ice water fractions are not directly the result of primary ice formation but of secondary ice formation and growth of ice particles at the expense of liquid drops.
Microphysical Processes Affecting the Pinatubo Volcanic Plume
NASA Technical Reports Server (NTRS)
Hamill, Patrick; Houben, Howard; Young, Richard; Turco, Richard; Zhao, Jingxia
1996-01-01
In this paper we consider microphysical processes which affect the formation of sulfate particles and their size distribution in a dispersing cloud. A model for the dispersion of the Mt. Pinatubo volcanic cloud is described. We then consider a single point in the dispersing cloud and study the effects of nucleation, condensation and coagulation on the time evolution of the particle size distribution at that point.
NASA Astrophysics Data System (ADS)
Simpson, Emma; Connolly, Paul; McFiggans, Gordon
2016-04-01
Processes such as precipitation and radiation depend on the concentration and size of different hydrometeors within clouds therefore it is important to accurately predict them in weather and climate models. A large fraction of clouds present in our atmosphere are mixed phase; contain both liquid and ice particles. The number of drops and ice crystals present in mixed phase clouds strongly depends on the size distribution of aerosols. Cloud condensation nuclei (CCN), a subset of atmospheric aerosol particles, are required for liquid drops to form in the atmosphere. These particles are ubiquitous in the atmosphere. To nucleate ice particles in mixed phase clouds ice nucleating particles (INP) are required. These particles are rarer than CCN. Here we investigate the case where CCN and INPs are in direct competition with each other for water vapour within a cloud. Focusing on the immersion and condensation modes of freezing (where an INP must be immersed within a liquid drop before it can freeze) we show that the presence of CCN can suppress the formation of ice. CCN are more hydrophilic than IN and as such are better able to compete for water vapour than, typically insoluble, INPs. Therefore water is more likely to condense onto a CCN than INP, leaving the INP without enough condensed water on it to be able to freeze in the immersion or condensation mode. The magnitude of this suppression effect strongly depends on a currently unconstrained quantity. Here we refer to this quantity as the critical mass of condensed water required for freezing, Mwc. Mwc is the threshold amount of water that must be condensed onto a INP before it can freeze in the immersion or condensation mode. Using the detailed cloud parcel model, Aerosol-Cloud-Precipiation-Interaction Model (ACPIM), developed at the University of Manchester we show that if only a small amount of water is required for freezing there is little suppression effect and if a large amount of water is required there is a large suppression effect. In this poster possible ways to constrain Mwc are discussed as well as conditions where the suppression effect is likely to be greatest. Key Words: Clouds, aerosol, CCN, IN, modelling
Tight coupling of particle size and composition in atmospheric cloud droplet activation
NASA Astrophysics Data System (ADS)
Topping, D.; McFiggans, G.
2011-09-01
The substantial uncertainty in the indirect effect on radiative forcing in large part arises from the influences of atmospheric aerosol particles on (i) the brightness of clouds, exerting significant shortwave cooling with no appreciable compensation in the longwave, and on (ii) their ability to precipitate, with implications for cloud cover and lifetime. Predicting the ambient conditions at which aerosol particles may become cloud droplets is largely reliant on an equilibrium relationship derived in 1936. However, the theoretical basis of the relationship restricts its application to particles solely comprising involatile compounds and water, whereas a substantial fraction of particles in the real atmosphere will contain potentially thousands of semi-volatile organic compounds in addition to containing semi-volatile inorganic components such as ammonium nitrate. We show that equilibration of atmospherically reasonable concentrations of organic compounds with a growing particle as the ambient humidity increases has larger implications on cloud droplet formation than any other equilibrium compositional dependence, owing to inextricable linkage between the aerosol composition and a particles size under ambient conditions. Whilst previous attempts to account for co-condensation of gases other than water vapour have been restricted to one inorganic condensate, our method demonstrates that accounting for the co-condensation of any number of organic compounds substantially decreases the saturation ratio of water vapour required for droplet activation. This effect is far greater than any other compositional dependence; moreso even than the unphysical effect of surface tension reduction in aqueous organic mixtures, ignoring differences in bulk and surface surfactant concentrations.
NASA Astrophysics Data System (ADS)
Yang, Fan
Ice particles in atmospheric clouds play an important role in determining cloud lifetime, precipitation and radiation. It is therefore important to understand the whole life cycle of ice particles in the atmosphere, e.g., where they come from (nucleation), how they evolve (growth), and where they go (precipitation). Ice nucleation is the crucial step for ice formation, and in this study, we will mainly focus on ice nucleation in the lab and its effect on mixed-phase stratiform clouds. In the first half of this study, we investigate the relevance of moving contact lines (i.e., the region where three or more phases meet) on the phenomenon of contact nucleation. High speed video is used to investigate heterogeneous ice nucleation in supercooled droplets resting on cold substrates under two different dynamic conditions: droplet electrowetting and droplet vibration. The results show that contact-line motion is not a sufficient condition to trigger ice nucleation, while locally curved contact lines that can result from contact-line motion are strongly related to ice nucleation. We propose that pressure perturbations due to locally curved contact lines can strongly enhance the ice nucleation rate, which gives another interpretation for the mechanism for contact nucleation. Corresponding theoretical results provide a quantitative connection between pressure perturbations and temperature, providing a useful tool for ice nucleation calculations in atmospheric models. In this second half of the study, we build a minimalist model for long lifetime mixed-phase stratiform clouds based on stochastic ice nucleation. Our result shows that there is a non-linear relationship between ice water contact and ice number concentration in the mixed-phase cloud, as long as the volume ice nucleation rate is constant. This statistical property may help identify the source of ice nuclei in mixed-phase clouds. In addition, results from Lagrangian ice particle tracking in time dependent fields show that long lifetime ice particles exist in mixed-phase stratiform clouds. We find that small ice particle can be trapped in eddy-like structures. Whether ice particles grow or sublimate depends on the thermodynamic field in the trapping region. This dynamic-thermodynamic coupling effect on the lifetime of ice particles might explain the fast phase-partition change observed in the mixed phase cloud.
Measurement and Modeling of Electromagnetic Scattering by Particles and Particle Groups. Chapter 3
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.
2015-01-01
Small particles forming clouds of interstellar and circumstellar dust, regolith surfaces of many solar system bodies, and cometary atmospheres have a strong and often controlling effect on many ambient physical and chemical processes. Similarly, aerosol and cloud particles exert a strong influence on the regional and global climates of the Earth, other planets of the solar system, and exoplanets. Therefore, detailed and accurate knowledge of physical and chemical characteristics of such particles has the utmost scientific importance.
NASA Astrophysics Data System (ADS)
Saito, Masanori; Iwabuchi, Hironobu; Yang, Ping; Tang, Guanglin; King, Michael D.; Sekiguchi, Miho
2017-04-01
Ice particle morphology and microphysical properties of cirrus clouds are essential for assessing radiative forcing associated with these clouds. We develop an optimal estimation-based algorithm to infer cirrus cloud optical thickness (COT), cloud effective radius (CER), plate fraction including quasi-horizontally oriented plates (HOPs), and the degree of surface roughness from the Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) and the Infrared Imaging Radiometer (IIR) on the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) platform. A simple but realistic ice particle model is used, and the relevant bulk optical properties are computed using state-of-the-art light-scattering computational capabilities. Rigorous estimation of uncertainties related to surface properties, atmospheric gases, and cloud heterogeneity is performed. The results based on the present method show that COTs are quite consistent with other satellite products and CERs essentially agree with the other counterparts. A 1 month global analysis for April 2007, in which CALIPSO off-nadir angle is 0.3°, shows that the HOP has significant temperature-dependence and is critical to the lidar ratio when cloud temperature is warmer than -40°C. The lidar ratio is calculated from the bulk optical properties based on the inferred parameters, showing robust temperature dependence. The median lidar ratio of cirrus clouds is 27-31 sr over the globe.
Impacts of Cosmic Dust on Planetary Atmospheres and Surfaces
NASA Astrophysics Data System (ADS)
Plane, John M. C.; Flynn, George J.; Määttänen, Anni; Moores, John E.; Poppe, Andrew R.; Carrillo-Sanchez, Juan Diego; Listowski, Constantino
2018-02-01
Recent advances in interplanetary dust modelling provide much improved estimates of the fluxes of cosmic dust particles into planetary (and lunar) atmospheres throughout the solar system. Combining the dust particle size and velocity distributions with new chemical ablation models enables the injection rates of individual elements to be predicted as a function of location and time. This information is essential for understanding a variety of atmospheric impacts, including: the formation of layers of metal atoms and ions; meteoric smoke particles and ice cloud nucleation; perturbations to atmospheric gas-phase chemistry; and the effects of the surface deposition of micrometeorites and cosmic spherules. There is discussion of impacts on all the planets, as well as on Pluto, Triton and Titan.
NASA Astrophysics Data System (ADS)
Mascio, J.; Mace, G. G.
2015-12-01
CloudSat and CALIPSO, two of the satellites in the A-Train constellation, use algorithms to calculate the scattering properties of small cloud particles, such as the T-matrix method. Ice clouds (i.e. cirrus) cause problems with these cloud property retrieval algorithms because of their variability in ice mass as a function of particle size. Assumptions regarding the microphysical properties, such as mass-dimensional (m-D) relationships, are often necessary in retrieval algorithms for simplification, but these assumptions create uncertainties of their own. Therefore, ice cloud property retrieval uncertainties can be substantial and are often not well known. To investigate these uncertainties, reflectivity factors measured by CloudSat are compared to those calculated from particle size distributions (PSDs) to which different m-D relationships are applied. These PSDs are from data collected in situ during three flights of the Small Particles in Cirrus (SPartICus) campaign. We find that no specific habit emerges as preferred and instead we conclude that the microphysical characteristics of ice crystal populations tend to be distributed over a continuum and, therefore, cannot be categorized easily. To quantify the uncertainties in the mass-dimensional relationships, an optimal estimation inversion was run to retrieve the m-D relationship per SPartICus flight, as well as to calculate uncertainties of the m-D power law.
NASA Technical Reports Server (NTRS)
Han, Qingyuan; Rossow, William B.; Chou, Joyce; Welch, Ronald M.
1997-01-01
Cloud microphysical parameterizations have attracted a great deal of attention in recent years due to their effect on cloud radiative properties and cloud-related hydrological processes in large-scale models. The parameterization of cirrus particle size has been demonstrated as an indispensable component in the climate feedback analysis. Therefore, global-scale, long-term observations of cirrus particle sizes are required both as a basis of and as a validation of parameterizations for climate models. While there is a global scale, long-term survey of water cloud droplet sizes (Han et al. 1994), there is no comparable study for cirrus ice crystals. In this paper a near-global survey of cirrus ice crystal sizes is conducted using ISCCP satellite data analysis. The retrieval scheme uses phase functions based upon hexagonal crystals calculated by a ray tracing technique. The results show that global mean values of D(e) are about 60 micro-m. This study also investigates the possible reasons for the significant difference between satellite retrieved effective radii (approx. 60 micro-m) and aircraft measured particle sizes (approx. 200 micro-m) during the FIRE I IFO experiment. They are (1) vertical inhomogeneity of cirrus particle sizes; (2) lower limit of the instrument used in aircraft measurements; (3) different definitions of effective particle sizes; and (4) possible inappropriate phase functions used in satellite retrieval.
Sedimentation Efficiency of Condensation Clouds in Substellar Atmospheres
NASA Astrophysics Data System (ADS)
Gao, Peter; Marley, Mark S.; Ackerman, Andrew S.
2018-03-01
Condensation clouds in substellar atmospheres have been widely inferred from spectra and photometric variability. Up until now, their horizontally averaged vertical distribution and mean particle size have been largely characterized using models, one of which is the eddy diffusion–sedimentation model from Ackerman and Marley that relies on a sedimentation efficiency parameter, f sed, to determine the vertical extent of clouds in the atmosphere. However, the physical processes controlling the vertical structure of clouds in substellar atmospheres are not well understood. In this work, we derive trends in f sed across a large range of eddy diffusivities (K zz ), gravities, material properties, and cloud formation pathways by fitting cloud distributions calculated by a more detailed cloud microphysics model. We find that f sed is dependent on K zz , but not gravity, when K zz is held constant. f sed is most sensitive to the nucleation rate of cloud particles, as determined by material properties like surface energy and molecular weight. High surface energy materials form fewer, larger cloud particles, leading to large f sed (>1), and vice versa for materials with low surface energy. For cloud formation via heterogeneous nucleation, f sed is sensitive to the condensation nuclei flux and radius, connecting cloud formation in substellar atmospheres to the objects’ formation environments and other atmospheric aerosols. These insights could lead to improved cloud models that help us better understand substellar atmospheres. For example, we demonstrate that f sed could increase with increasing cloud base depth in an atmosphere, shedding light on the nature of the brown dwarf L/T transition.
International Workshop on Comparing Ice Nucleation Measuring Systems 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cziczo, Daniel
The relationship of ambient aerosol particles to the formation of ice-containing clouds is one of the largest uncertainties in understanding the Earth’s climate. The uncertainty is due to several poorly understood processes and measurements including, but not limited to: (1) the microphysics of how particles nucleate ice, (2) the number of ice forming particles as a function of atmospheric properties such as temperature and relative humidity, (3) the atmospheric distribution of ice forming particles and (4) the role of anthropogenic activities in producing or changing the behavior of ice forming particles. The ways in which ice forming particles can impactmore » climate is also multi-faceted. More ice forming particles can lead to clouds with more ice crystals and different optical properties than clouds with less ice forming particles. More effective ice forming particles can lead to ice at higher temperature and/or lower saturation, resulting in clouds at lower altitude or latitude which also changes the Earth’s radiative balance. Ice nucleation also initiates most of the Earth’s precipitation, even in the mid- and low-latitudes, since cloud-top temperatures are often below freezing. The limited measurements and lack of understanding directly translates to restrictions in our ability to model atmospheric ice formation and project changes into the future. The importance of ice nucleation research is further exemplified by Figure 1 which shows the publications per decade and citations per year on the topic of ice nucleation [DeMott et al., 2011]. After a lull at the end of the last century, there has been a dramatic increase in both publications and citations related to ice nucleation; this directly corresponds to the importance of ice nucleation on the Earth’s climate and the uncertainty in this area noted by the Solomon [2007].« less
Ice formation and development in aged, wintertime cumulus over the UK : observations and modelling
NASA Astrophysics Data System (ADS)
Crawford, I.; Bower, K. N.; Choularton, T. W.; Dearden, C.; Crosier, J.; Westbrook, C.; Capes, G.; Coe, H.; Connolly, P.; Dorsey, J. R.; Gallagher, M. W.; Williams, P.; Trembath, J.; Cui, Z.; Blyth, A.
2011-11-01
In-situ high resolution aircraft measurements of cloud microphysical properties were made in coordination with ground based remote sensing observations of Radar and Lidar as part of the Aerosol Properties, PRocesses And InfluenceS on the Earth's climate (APPRAISE) project. A narrow but extensive line (~100 km long) of shallow convective clouds over the southern UK was studied. Cloud top temperatures were observed to be higher than ~-8 °C, but the clouds were seen to consist of supercooled droplets and varying concentrations of ice particles. No ice particles were observed to be falling into the cloud tops from above. Current parameterisations of ice nuclei (IN) numbers predict too few particles will be active as ice nuclei to account for ice particle concentrations at the observed near cloud top temperatures (~-7 °C). The role of biological particles, consistent with concentrations observed near the surface, acting as potential efficient high temperature IN is considered important in this case. It was found that very high concentrations of ice particles (up to 100 L-1) could be produced by powerful secondary ice particle production emphasising the importance of understanding primary ice formation in slightly supercooled clouds. Aircraft penetrations at -3.5 °C, showed peak ice crystal concentrations of up to 100 L-1 which together with the characteristic ice crystal habits observed (generally rimed ice particles and columns) suggested secondary ice production had occurred. To investigate whether the Hallett-Mossop (HM) secondary ice production process could account for these observations, ice splinter production rates were calculated. These calculated rates and observations could only be reconciled provided the constraint that only droplets >24 μm in diameter could lead to splinter production, was relaxed slightly by 2 μm. Model simulations of the case study were also performed with the WRF (Weather, Research and Forecasting) model and ACPIM (Aerosol Cloud and Precipitation Interactions Model) to investigate the likely origins of the ice phase in these slightly supercooled clouds and to assess the role played by the HM process in this and in controlling precipitation formation under these conditions. WRF results showed that while HM does act to increase the mass and number concentration of ice particles produced in the model simulations, in the absence of HM, the ice number concentration arising from primary ice nucleation alone (several L-1) was apparently sufficient to sustain precipitation although the distribution of the precipitation was changed. Thus in the WRF model the HM process was shown to be non-critical for the formation of precipitation in this particular case. However, this result is seen to be subject to an important caveat concerning the simulation of the cloud macrostructure. The model was unable to capture a sharp temperature inversion seen in the radiosonde profiles at 2 km, and consequently the cloud top temperature in the model was able to reach lower values than observed in-situ or obtained from satellite data. ACPIM simulations confirmed the HM process to be a very powerful mechanism for producing the observed high ice concentrations, provided that primary nucleation occured to initiate the ice formation, and large droplets were present which then fell collecting the primary ice particles to form instant rimer particles. However, the time to generate the observed peak ice concentrations was found to be dependant on the number of primary IN present (decreasing with increasing IN number). This became realistic (around 20 min) only when the temperature input to the existing IN parameterisation was 6 °C lower than observed at cloud top, highlighting the requirement to improve basic knowledge of the number and type of IN active at these high temperatures. In simulations where cloud droplet numbers were realistic the precipitation rate was found to be unaffected by HM, with warm rain processes dominating precipitation development in this instance.
NASA Astrophysics Data System (ADS)
Leisner, T.; Abdelmonem, A.; Benz, S.; Brinkmann, M.; Möhler, O.; Rzesanke, D.; Saathoff, H.; Schnaiter, M.; Wagner, R.
2009-04-01
The formation of ice in tropospheric clouds controls the evolution of precipitation and thereby influences climate and weather via a complex network of dynamical and microphysical processes. At higher altitudes, ice particles in cirrus clouds or contrails modify the radiative energy budget by direct interaction with the shortwave and longwave radiation. In order to improve the parameterisation of the complex microphysical and dynamical processes leading to and controlling the evolution of tropospheric ice, laboratory experiments are performed at the IMK Karlsruhe both on a single particle level and in the aerosol and cloud chamber AIDA. Single particle experiments in electrodynamic levitation lend themselves to the study of the interaction between cloud droplets and aerosol particles under extremely well characterized and static conditions in order to obtain microphysical parameters as freezing nucleation rates for homogeneous and heterogeneous ice formation. They also allow the observation of the freezing dynamics and of secondary ice formation and multiplication processes under controlled conditions and with very high spatial and temporal resolution. The inherent droplet charge in these experiments can be varied over a wide range in order to assess the influence of the electrical state of the cloud on its microphysics. In the AIDA chamber on the other hand, these processes are observable under the realistic dynamic conditions of an expanding and cooling cloud- parcel with interacting particles and are probed simultaneously by a comprehensive set of analytical instruments. By this means, microphysical processes can be studied in their complex interplay with dynamical processes as for example coagulation or particle evaporation and growth via the Bergeron - Findeisen process. Shortwave scattering and longwave absorption properties of the nucleating and growing ice crystals are probed by in situ polarised laser light scattering measurements and infrared extinction spectroscopy. In conjunction with ex situ single particle imaging and light scattering measurements the relation between the overall extinction and depolarization properties of the ice clouds and the morphological details of the constituent ice crystals are investigated. In our contribution we will concentrate on the parameterization of homogeneous and heterogeneous ice formation processes under various atmospheric conditions and on the optical properties of the ice crystals produced under these conditions. First attempts to parameterize the observations will be presented.
Vertical profiling of aerosol particles and trace gases over the central Arctic Ocean during summer
NASA Astrophysics Data System (ADS)
Kupiszewski, P.; Leck, C.; Tjernström, M.; Sjogren, S.; Sedlar, J.; Graus, M.; Müller, M.; Brooks, B.; Swietlicki, E.; Norris, S.; Hansel, A.
2013-04-01
Unique measurements of vertical size resolved aerosol particle concentrations, trace gas concentrations and meteorological data were obtained during the Arctic Summer Cloud Ocean Study (ASCOS, http://www.ascos.se), an International Polar Year project aimed at establishing the processes responsible for formation and evolution of low-level clouds over the high Arctic summer pack ice. The experiment was conducted from onboard the Swedish icebreaker Oden, and provided both ship- and helicopter-based measurements. This study focuses on the vertical helicopter profiles and onboard measurements obtained during a three-week period when Oden was anchored to a drifting ice floe, and sheds light on the characteristics of Arctic aerosol particles and their distribution throughout the lower atmosphere. Distinct differences in aerosol particle characteristics within defined atmospheric layers are identified. Near the surface (lowermost couple hundred meters), transport from the marginal ice zone (MIZ), if sufficiently short (less than ca. 2 days), condensational growth and cloud-processing develop the aerosol population. During two of the four representative periods defined in this study, such influence is shown. At altitudes above about 1 km, long-range transport occurs frequently. However, only infrequently does large-scale subsidence descend such air masses to become entrained into the mixed layer in the high Arctic, and therefore they are unlikely to directly influence low-level stratiform cloud formation. Nonetheless, long-range transport plumes can influence the radiative balance of the PBL by influencing formation and evolution of higher clouds, as well as through precipitation transport of particles downwards. New particle formation was occasionally observed, particularly in the near-surface layer. We hypothesize that the origin of these ultrafine particles can be from biological processes, both primary and secondary, within the open leads between the pack ice and/or along the MIZ. In general, local sources, in combination with upstream boundary layer transport of precursor gases from the MIZ, are suggested to constitute the origin of CCN particles and thus be of importance for the formation of interior Arctic low level clouds during summer, and subsequently, through cloud influences, on the melting and freezing of sea ice.
Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City
NASA Astrophysics Data System (ADS)
Adachi, K.; Buseck, P. R.
2008-05-01
Soot particles are major aerosol constituents that result from emissions of burning of fossil fuel and biomass. Because they both absorb sunlight and contribute to cloud formation, they are an influence on climate on local, regional, and global scales. It is therefore important to evaluate their optical and hygroscopic properties and those effects on the radiation budget. Those properties commonly change through reaction with other particles or gases, resulting in complex internal mixtures. Using transmission electron microscopy, we measured ~8000 particles (25 samples) with aerodynamic diameters from 0.05 to 0.3 μm that were collected in March 2006 from aircraft over Mexico City (MC) and adjacent areas. More than 50% of the particles consist of internally mixed soot, organic matter, and sulfate. Imaging combined with chemical analysis of individual particles show that many are coated, consist of aggregates, or both. Coatings on soot particles can amplify their light absorption, and coagulation with sulfates changes their hygroscopic properties, resulting in shorter lifetime. Our results suggest that a mixture of materials from multiple sources such as vehicles, power plants, and biomass burning occurs in individual particles, thereby increasing their complexity. Through changes in their optical and hygroscopic properties, internally mixed soot particles have a greater effect on the regional climate than uncoated soot particles. Moreover, soot occurs in more than 60% of all particles in the MC plumes, suggesting its important role in the formation of secondary aerosol particles.
Cloud condensation nucleus counter by impactor sampling technique
NASA Technical Reports Server (NTRS)
Ohtake, T.
1981-01-01
Unlike typical CCN counters, this device counts the numbers of water droplets condensed on aerosol particles sampled on a microcover glass at various different relative humidities. The relative humidities ranged from 75 percent to a calculated value of 110 percent. A schematic of the apparatus is shown. The individual CCN can be identified in an optical micrograph and scanning electron micrograph and may be inspected for their chemical composition later.
NASA Astrophysics Data System (ADS)
Sullivan, R. C.; Moore, M. J.; Petters, M. D.; Laskin, A.; Roberts, G. C.; Kreidenweis, S. M.; Prather, K. A.
2009-05-01
Our laboratory investigations of mineral dust particle hygroscopicity are motivated by field observations of the atmospheric processing of dust. During ACE-Asia we observed sulphate and nitrate to be strongly segregated from each other in individual aged Asian dust particles. CCN activation curves of pure calcium minerals as proxies for fresh (calcium carbonate) and aged (calcium sulphate, nitrate, chloride) dust indicate that this mixing state would cause a large fraction of aged dust particles to remain poor warm cloud nucleation potential, contrary to previous assumptions. The enrichment of oxalic acid in calcium-rich dust particles could have similar effects due to the formation of insoluble calcium oxalate. Soluble calcium nitrate and chloride reaction products are hygroscopic and will transform mineral dust into excellent CCN. Generating insoluble mineral particles wet by atomization produced particles with much higher hygroscopicity then when resuspended dry. The atomized particles are likely composed of dissolved residuals and do not properly reflect the chemistry of dry mineral powders. Aerosol flow tube experiments were employed to study the conversion of calcium carbonate into calcium nitrate via heterogeneous reaction with nitric acid, with simultaneous measurements of the reacted particles' chemistry and hygroscopicity. The timescale for this hygroscopic conversion was found to occur on the order of a few hours under tropospheric conditions. This implies that the conversion of non-hygroscopic calcite- containing dust into hygroscopic particles will be controlled by the availability of nitric acid, and not by the atmospheric residence time. Results from recent investigations of the effect of secondary coatings on the ice nucleation properties of dust particles will also be presented. The cloud formation potential of aged dust particles depends on both the quantity and form of the secondary species that have reacted or mixed with the dust. These results have important implications for the treatment of mineral dust particles in global chemistry and climate models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Jui-Yuan
2010-10-19
Our proposal focuses on cloud-radiation processes in a general 3D cloud situation, with particular emphasis on cloud optical depth and effective particle size. We also focus on zenith radiance measurements, both active and passive. The proposal has three main parts. Part One exploits the "solar-background" mode of ARM lidars to allow them to retrieve cloud optical depth not just for thin clouds but for all clouds. This also enables the study of aerosol cloud interactions with a single instrument. Part Two exploits the large number of new wavelengths offered by ARM's zenith-pointing ShortWave Spectrometer (SWS), especially during CLASIC, to developmore » better retrievals not only of cloud optical depth but also of cloud particle size. We also propose to take advantage of the SWS's 1 Hz sampling to study the "twilight zone" around clouds where strong aerosol-cloud interactions are taking place. Part Three involves continuing our cloud optical depth and cloud fraction retrieval research with ARM's 2NFOV instrument by, first, analyzing its data from the AMF-COPS/CLOWD deployment, and second, making our algorithms part of ARM's operational data processing.« less
The relevance of nanoscale biological fragments for ice nucleation in clouds
NASA Astrophysics Data System (ADS)
O‧Sullivan, D.; Murray, B. J.; Ross, J. F.; Whale, T. F.; Price, H. C.; Atkinson, J. D.; Umo, N. S.; Webb, M. E.
2015-01-01
Most studies of the role of biological entities as atmospheric ice-nucleating particles have focused on relatively rare supermicron particles such as bacterial cells, fungal spores and pollen grains. However, it is not clear that there are sufficient numbers of these particles in the atmosphere to strongly influence clouds. Here we show that the ice-nucleating activity of a fungus from the ubiquitous genus Fusarium is related to the presence of nanometre-scale particles which are far more numerous, and therefore potentially far more important for cloud glaciation than whole intact spores or hyphae. In addition, we quantify the ice-nucleating activity of nano-ice nucleating particles (nano-INPs) washed off pollen and also show that nano-INPs are present in a soil sample. Based on these results, we suggest that there is a reservoir of biological nano-INPs present in the environment which may, for example, become aerosolised in association with fertile soil dust particles.
The relevance of nanoscale biological fragments for ice nucleation in clouds.
O'Sullivan, D; Murray, B J; Ross, J F; Whale, T F; Price, H C; Atkinson, J D; Umo, N S; Webb, M E
2015-01-28
Most studies of the role of biological entities as atmospheric ice-nucleating particles have focused on relatively rare supermicron particles such as bacterial cells, fungal spores and pollen grains. However, it is not clear that there are sufficient numbers of these particles in the atmosphere to strongly influence clouds. Here we show that the ice-nucleating activity of a fungus from the ubiquitous genus Fusarium is related to the presence of nanometre-scale particles which are far more numerous, and therefore potentially far more important for cloud glaciation than whole intact spores or hyphae. In addition, we quantify the ice-nucleating activity of nano-ice nucleating particles (nano-INPs) washed off pollen and also show that nano-INPs are present in a soil sample. Based on these results, we suggest that there is a reservoir of biological nano-INPs present in the environment which may, for example, become aerosolised in association with fertile soil dust particles.
NASA Astrophysics Data System (ADS)
Kazil, J.; Stier, P.; Zhang, K.; Quaas, J.; Kinne, S.; O'Donnell, D.; Rast, S.; Esch, M.; Ferrachat, S.; Lohmann, U.; Feichter, J.
2010-05-01
Nucleation from the gas phase is an important source of aerosol particles in the Earth's atmosphere, contributing to the number of cloud condensation nuclei, which form cloud droplets. We have implemented in the aerosol-climate model ECHAM5-HAM a new scheme for neutral and charged nucleation of sulfuric acid and water based on laboratory data, and nucleation of an organic compound and sulfuric acid using a parametrization of cluster activation based on field measurements. We give details of the implementation, compare results with observations, and investigate the role of the individual aerosol nucleation mechanisms for clouds and the Earth's radiative budget. The results of our simulations are most consistent with observations when neutral and charged nucleation of sulfuric acid proceed throughout the troposphere and nucleation due to cluster activation is limited to the forested boundary layer. The globally averaged annual mean contributions of the individual nucleation processes to total absorbed solar short-wave radiation via the direct, semi-direct, indirect cloud-albedo and cloud-lifetime effects in our simulations are -1.15 W/m2 for charged H2SO4/H2O nucleation, -0.235 W/m2 for cluster activation, and -0.05 W/m2 for neutral H2SO4/H2O nucleation. The overall effect of nucleation is -2.55 W/m2, which exceeds the sum of the individual terms due to feedbacks and interactions in the model. Aerosol nucleation contributes over the oceans with -2.18 W/m2 to total absorbed solar short-wave radiation, compared to -0.37 W/m2 over land. We explain the higher effect of aerosol nucleation on Earth's radiative budget over the oceans with the larger area covered by ocean clouds, due to the larger contrast in albedo between clouds and the ocean surface compared to continents, and the larger susceptibility of pristine clouds owing to the saturation of effects. The large effect of charged nucleation in our simulations is not in contradiction with small effects seen in local measurements: over southern Finland, where cluster activation proceeds efficiently, we find that charged nucleation of sulfuric acid and water contributes on average less than 10% to ultrafine aerosol concentrations, in good agreement with observations.
NASA Astrophysics Data System (ADS)
Kazil, J.; Stier, P.; Zhang, K.; Quaas, J.; Kinne, S.; O'Donnell, D.; Rast, S.; Esch, M.; Ferrachat, S.; Lohmann, U.; Feichter, J.
2010-11-01
Nucleation from the gas phase is an important source of aerosol particles in the Earth's atmosphere, contributing to the number of cloud condensation nuclei, which form cloud droplets. We have implemented in the aerosol-climate model ECHAM5-HAM a new scheme for neutral and charged nucleation of sulfuric acid and water based on laboratory data, and nucleation of an organic compound and sulfuric acid using a parametrization of cluster activation based on field measurements. We give details of the implementation, compare results with observations, and investigate the role of the individual aerosol nucleation mechanisms for clouds and the Earth's radiative forcing. The results of our simulations are most consistent with observations when neutral and charged nucleation of sulfuric acid proceed throughout the troposphere and nucleation due to cluster activation is limited to the forested boundary layer. The globally averaged annual mean contributions of the individual nucleation processes to total absorbed solar short-wave radiation via the direct, semi-direct, indirect cloud-albedo and cloud-lifetime effects in our simulations are -1.15 W/m2 for charged H2SO4/H2O nucleation, -0.235 W/m2 for cluster activation, and -0.05 W/m2 for neutral H2SO4/H2O nucleation. The overall effect of nucleation is -2.55 W/m2, which exceeds the sum of the individual terms due to feedbacks and interactions in the model. Aerosol nucleation contributes over the oceans with -2.18 W/m2 to total absorbed solar short-wave radiation, compared to -0.37 W/m2 over land. We explain the higher effect of aerosol nucleation on Earth's radiative forcing over the oceans with the larger area covered by ocean clouds, due to the larger contrast in albedo between clouds and the ocean surface compared to continents, and the larger susceptibility of pristine clouds owing to the saturation of effects. The large effect of charged nucleation in our simulations is not in contradiction with small effects seen in local measurements: over southern Finland, where cluster activation proceeds efficiently, we find that charged nucleation of sulfuric acid and water contributes on average less than 10% to ultrafine aerosol concentrations, in good agreement with observations.
NASA Astrophysics Data System (ADS)
Kalesse, H.; Myagkov, A.; Seifert, P.; Buehl, J.
2015-12-01
Cloud radar Doppler spectra offer much information about cloud processes. By analyzing millimeter radar Doppler spectra from cloud-top to -base in mixed-phase clouds in which super-cooled liquid-layers are present we try to tell the microphysical evolution story of particles that are present by disentangling the contributions of the solid and liquid particles to the total radar returns. Instead of considering vertical profiles, dynamical effects are taken into account by following the particle population evolution along slanted paths which are caused by horizontal advection of the cloud. The goal is to identify regions in which different microphysical processes such as new particle formation (nucleation), water vapor deposition, aggregation, riming, or sublimation occurr. Cloud radar measurements are supplemented by Doppler lidar and Raman lidar observations as well as observations with MWR, wind profiler, and radio sondes. The presence of super-cooled liquid layers is identified by positive liquid water paths in MWR measurements, the vertical location of liquid layers (in non-raining systems and below lidar extinction) is derived from regions of high-backscatter and low depolarization in Raman lidar observations. In collocated cloud radar measurements, we try to identify cloud phase in the cloud radar Doppler spectrum via location of the Doppler peak(s), the existence of multi-modalities or the spectral skewness. Additionally, within the super-cooled liquid layers, the radar-identified liquid droplets are used as air motion tracer to correct the radar Doppler spectrum for vertical air motion w. These radar-derived estimates of w are validated by independent estimates of w from collocated Doppler lidar measurements. A 35 GHz vertically pointing cloud Doppler radar (METEK MIRA-35) in linear depolarization (LDR) mode is used. Data is from the deployment of the Leipzig Aerosol and Cloud Remote Observations System (LACROS) during the Analysis of the Composition of Clouds with Extended Polarization Techniques (ACCEPT) field experiment in Cabauw, Netherlands in Fall 2014. There, another MIRA-35 was operated in simultaneous transmission and simultaneous reception (STSR) mode for obtaining measurements of differential reflectivity (ZDR) and correlation coefficient ρhv.
NASA Astrophysics Data System (ADS)
Bott, Andreas; Kerkweg, Astrid; Wurzler, Sabine
A study has been made of the modification of aerosol spectra due to cloud pro- cesses and the impact of the modified aerosols on the microphysical structure of future clouds. For this purpose an entraining air parcel model with two-dimensional spectral cloud microphysics has been used. In order to treat collision/coalescence processes in the two-dimensional microphysical module, a new realistic and continuous formu- lation of the collection kernel has been developed. Based on experimental data, the kernel covers the entire investigated size range of aerosols, cloud and rain drops, that is the kernel combines all important coalescence processes such as the collision of cloud drops as well as the impaction scavenging of small aerosols by big raindrops. Since chemical reactions in the gas phase and in cloud drops have an important impact on the physico-chemical properties of aerosol particles, the parcel model has been extended by a chemical module describing gas phase and aqueous phase chemical reactions. However, it will be shown that in the numerical case studies presented in this paper the modification of aerosols by chemical reactions has a minor influence on the microphysical structure of future clouds. The major process yielding in a second cloud event an enhanced formation of rain is the production of large aerosol particles by collision/coalescence processes in the first cloud.
Partitioning of ice nucleating particles: Which modes matter?
NASA Astrophysics Data System (ADS)
Hande, Luke; Hoose, Corinna
2017-04-01
Ice particles in clouds have a large impact on cloud lifetime, precipitation amount, and cloud radiative properties through the indirect aerosol effect. Thus, correctly modelling ice formation processes is important for simulations preformed on all spatial and temporal scales. Ice forms on aerosol particles through several different mechanisms, namely deposition nucleation, immersion freezing, and contact freezing. However there is conflicting evidence as to which mode dominates, and the relative importance of the three heterogeneous ice nucleation mechanisms, as well as homogeneous nucleation, remains an open question. The environmental conditions, and hence the cloud type, have a large impact on determining which nucleation mode dominates. In order to understand this, simulations were performed with the COSMO-LES model, utilising state of the art parameterisations to describe the different nucleation mechanisms for several semi-idealised cloud types commonly occurring over central Europe. The cloud types investigated include a semi-idealised, and an idealised convective cloud, an orographic cloud, and a stratiform cloud. Results show that immersion and contact freezing dominate at warmer temperatures, and under most conditions, deposition nucleation plays only a minor role. In clouds where sufficiently high levels of water vapour are present at colder temperatures, deposition nucleation can play a role, however in general homogeneous nucleation dominates at colder temperatures. Since contact nucleation depends on the environmental relative humidity, enhancements in this nucleation mode can be seen in areas of dry air entrainment. The results indicate that ice microphysical processes are somewhat sensitve to the environmental conditions and therefore the cloud type.
HoloGondel: in situ cloud observations on a cable car in the Swiss Alps using a holographic imager
NASA Astrophysics Data System (ADS)
Beck, Alexander; Henneberger, Jan; Schöpfer, Sarah; Fugal, Jacob; Lohmann, Ulrike
2017-02-01
In situ observations of cloud properties in complex alpine terrain where research aircraft cannot sample are commonly conducted at mountain-top research stations and limited to single-point measurements. The HoloGondel platform overcomes this limitation by using a cable car to obtain vertical profiles of the microphysical and meteorological cloud parameters. The main component of the HoloGondel platform is the HOLographic Imager for Microscopic Objects (HOLIMO 3G), which uses digital in-line holography to image cloud particles. Based on two-dimensional images the microphysical cloud parameters for the size range from small cloud particles to large precipitation particles are obtained for the liquid and ice phase. The low traveling velocity of a cable car on the order of 10 m s-1 allows measurements with high spatial resolution; however, at the same time it leads to an unstable air speed towards the HoloGondel platform. Holographic cloud imagers, which have a sample volume that is independent of the air speed, are therefore well suited for measurements on a cable car. Example measurements of the vertical profiles observed in a liquid cloud and a mixed-phase cloud at the Eggishorn in the Swiss Alps in the winters 2015 and 2016 are presented. The HoloGondel platform reliably observes cloud droplets larger than 6.5 µm, partitions between cloud droplets and ice crystals for a size larger than 25 µm and obtains a statistically significantly size distribution for every 5 m in vertical ascent.
NASA Astrophysics Data System (ADS)
Gao, Peter; Marley, Mark S.; Morley, Caroline; Fortney, Jonathan J.
2017-10-01
Clouds have been readily inferred from observations of exoplanet atmospheres, and there exists great variability in cloudiness between planets, such that no clear trend in exoplanet cloudiness has so far been discerned. Equilibrium condensation calculations suggest a myriad of species - salts, sulfides, silicates, and metals - could condense in exoplanet atmospheres, but how they behave as clouds is uncertain. The behavior of clouds - their formation, evolution, and equilibrium size distribution - is controlled by cloud microphysics, which includes processes such as nucleation, condensation, and evaporation. In this work, we explore the cloudy exoplanet phase space by using a cloud microphysics model to simulate a suite of cloud species ranging from cooler condensates such as KCl/ZnS, to hotter condensates like perovskite and corundum. We investigate how the cloudiness and cloud particle sizes of exoplanets change due to variations in temperature, metallicity, gravity, and cloud formation mechanisms, and how these changes may be reflected in current and future observations. In particular, we will evaluate where in phase space could cloud spectral features be observable using JWST MIRI at long wavelengths, which will be dependent on the cloud particle size distribution and cloud species.
Aerosol-Cloud Interactions and Cloud Microphysical Properties in the Asir Region of Saudi Arabia
NASA Astrophysics Data System (ADS)
Kucera, P. A.; Axisa, D.; Burger, R. P.; Li, R.; Collins, D. R.; Freney, E. J.; Buseck, P. R.
2009-12-01
In recent advertent and inadvertent weather modification studies, a considerable effort has been made to understand the impact of varying aerosol properties and concentration on cloud properties. Significant uncertainties exist with aerosol-cloud interactions for which complex microphysical processes link the aerosol and cloud properties. Under almost all environmental conditions, increased aerosol concentrations within polluted air masses will enhance cloud droplet concentration relative to that in unperturbed regions. The interaction between dust particles and clouds are significant, yet the conditions in which dust particles become cloud condensation nuclei (CCN) are uncertain. In order to quantify this aerosol effect on clouds and precipitation, a field campaign was launched in the Asir region, located adjacent to the Red Sea in the southwest region of Saudi Arabia. Ground measurements of aerosol size distributions, hygroscopic growth factors, CCN concentrations as well as aircraft measurements of cloud hydrometeor size distributions were observed in the Asir region in August 2009. The presentation will include a summary of the analysis and results with a focus on aerosol-cloud interactions and cloud microphysical properties observed during the convective season in the Asir region.
Progress of research to identify rotating thunderstorms using satellite imagery
NASA Technical Reports Server (NTRS)
Anderson, Charles E.
1988-01-01
The possibility of detecting potentially tornadic thunderstorm cells from geosynchronous satelite imagery is determined. During the life of the contract, we examined eight tornado outbreak cases which had a total of 124 individual thunderstorm cells, 37 of which were tornadic.These 37 cells produced a total of 119 tornadoes. The outflow characteristics of all the cells were measured. Through the use of a 2-D flow field model, we were able to simulate the downstream developmemt of an anvil cloud plume which was emitted by the storm updraft at or near the tropopause. We used two parameters to characterize the anvil plume behavior: its speed of downstream propagation (U max) and the clockwise deviation of the centerline of the anvil plume from the storm relative ambient wind at the anvil plume outflow level (MDA). U max was the maximum U-component of the anvil wind parameter required to successfully maintain an envelope of translating particles at the tip of the expanding anvil cloud. MDA was the measured deviation angle acquired from McIDAS, between the storm relative ambient wind direction and the storm relative anvil plume outflow direction; tha latter being manipulated by controlling a tangential wind component to force the envelope of particles to maintain their position of surrounding the expanding outflow cloud.
The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.
2005-01-01
Cloud microphysics are inevitable affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds, Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effect of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, a detailed spectral-bin microphysical scheme was implemented into the the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bim microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.
NASA Astrophysics Data System (ADS)
Alpert, P. A.; Radway, J.; Kilthau, W.; Bothe, D.; Knopf, D. A.; Aller, J. Y.
2013-12-01
The oceans cover the majority of the earth's surface, host nearly half the total global primary productivity and are a major source of atmospheric aerosol particles. However, effects of biological activity on sea spray generation and composition, and subsequent cloud formation are not well understood. Our goal is to elucidate these effects which will be particularly important over nutrient rich seas, where microorganisms can reach concentrations of 10^9 per mL and along with transparent exopolymer particles (TEP) can become aerosolized. Here we report the results of mesocosm experiments in which bubbles were generated by two methods, either recirculating impinging water jets or glass frits, in natural or artificial seawater containing bacteria and unialgal cultures of three representative phytoplankton species, Thalassiosira pseudonana, Emiliania huxleyi, and Nannochloris atomus. Over time we followed the size distribution of aerosolized particles as well as their hygroscopicity, heterogeneous ice nucleation potential, and individual physical-chemical characteristics. Numbers of cells and the mass of dissolved and particulate organic carbon (DOC, POC), TEP (which includes polysaccharide-containing microgels and nanogels >0.4 μm in diameter) were determined in the bulk water, the surface microlayer, and aerosolized material. Aerosolized particles were also impacted onto substrates for ice nucleation and water uptake experiments, elemental analysis using computer controlled scanning electron microscopy and energy dispersive analysis of X-rays (CCSEM/EDX), and determination of carbon bonding with scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Regardless of bubble generation method, the overall concentration of aerosol particles, TEP, POC and DOC increased as concentrations of bacterial and phytoplankton cells increased, stabilized, and subsequently declined. Particles <100 nm generated by means of jets were enhanced with time compared with larger sizes. In contrast, all particle sizes were equally enhanced when frits were used. Aerosolized particles were hygroscopic, a finding with significance for warm cloud formation and potential liquid-to-ice phase transformations. Aqueous and dry aerosolized particles from biologically active mesocosm water were found to efficiently nucleate ice exposed to supersaturated water vapor. The majority of particles, including those nucleating ice, consisted of a sea salt core coated with organic material dominated by the carboxyl functional group, and corresponded to a particle type commonly found in marine air. Our results provide improved estimates of marine aerosol production, chemical composition, and hygroscopicity, as well as an accurate physical and chemical representation of ice nucleation by marine biogenic aerosol particles for use in cloud and climate models.
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Lee, Kyu-Tae; Yang, Ping; Lau, William K. M. (Technical Monitor)
2002-01-01
Based on the single-scattering optical properties that are pre-computed using an improve geometric optics method, the bulk mass absorption coefficient, single-scattering albedo, and asymmetry factor of ice particles have been parameterized as a function of the mean effective particle size of a mixture of ice habits. The parameterization has been applied to compute fluxes for sample clouds with various particle size distributions and assumed mixtures of particle habits. Compared to the parameterization for a single habit of hexagonal column, the solar heating of clouds computed with the parameterization for a mixture of habits is smaller due to a smaller cosingle-scattering albedo. Whereas the net downward fluxes at the TOA and surface are larger due to a larger asymmetry factor. The maximum difference in the cloud heating rate is approx. 0.2 C per day, which occurs in clouds with an optical thickness greater than 3 and the solar zenith angle less than 45 degrees. Flux difference is less than 10 W per square meters for the optical thickness ranging from 0.6 to 10 and the entire range of the solar zenith angle. The maximum flux difference is approximately 3%, which occurs around an optical thickness of 1 and at high solar zenith angles.
Dust particle radial confinement in a dc glow discharge.
Sukhinin, G I; Fedoseev, A V; Antipov, S N; Petrov, O F; Fortov, V E
2013-01-01
A self-consistent nonlocal model of the positive column of a dc glow discharge with dust particles is presented. Radial distributions of plasma parameters and the dust component in an axially homogeneous glow discharge are considered. The model is based on the solution of a nonlocal Boltzmann equation for the electron energy distribution function, drift-diffusion equations for ions, and the Poisson equation for a self-consistent electric field. The radial distribution of dust particle density in a dust cloud was fixed as a given steplike function or was chosen according to an equilibrium Boltzmann distribution. The balance of electron and ion production in argon ionization by an electron impact and their losses on the dust particle surface and on the discharge tube walls is taken into account. The interrelation of discharge plasma and the dust cloud is studied in a self-consistent way, and the radial distributions of the discharge plasma and dust particle parameters are obtained. It is shown that the influence of the dust cloud on the discharge plasma has a nonlocal behavior, e.g., density and charge distributions in the dust cloud substantially depend on the plasma parameters outside the dust cloud. As a result of a self-consistent evolution of plasma parameters to equilibrium steady-state conditions, ionization and recombination rates become equal to each other, electron and ion radial fluxes become equal to zero, and the radial component of electric field is expelled from the dust cloud.
Sea spray as a source of ice nucleating particles - results from the AIDA Ocean03 campaign
NASA Astrophysics Data System (ADS)
Salter, M. E.; Ickes, L.; Adams, M.; Bierbauer, S.; Bilde, M.; Christiansen, S.; Ekman, A.; Gorokhova, E.; Höhler, K.; Kiselev, A. A.; Leck, C.; Mohr, C.; Mohler, O.; Murray, B. J.; Porter, G.; Ullrich, R.; Wagner, R.
2017-12-01
Clouds and their radiative effects are one of the major influences on the radiative fluxes in the atmosphere, but at the same time they remain the largest uncertainty in climate models. This lack of understanding is especially pronounced in the high Arctic. Summertime clouds can persist over long periods in this region, which is difficult to replicate in models based on our current understanding. The clouds most often encountered in the summertime high Arctic consist of a mixture of ice crystals and super-cooled water droplets, so-called mixed-phase clouds. This cloud type is sensitive to the availability of aerosol particles, which can act as cloud condensation nuclei and ice nuclei. However, since the high Arctic is a pristine region, aerosol particles are not very abundant, and the hypothesis of open leads in the Arctic as a potentially important source of cloud and ice nucleating particles via bubble bursting has emerged. In this context, we have conducted a series of experiments at the AIDA chamber at KIT, designed to investigate the mechanisms linking marine biology, seawater chemistry and aerosol physics/potential cloud impacts. During this campaign, two marine diatom species (Melosira arctica and Skeletonema marinoi) as well as sea surface microlayer samples collected during several Arctic Ocean research cruises were investigated. To aerosolize the samples, a variety of methods were used including a sea spray simulation chamber to mimic the process of bubble-bursting. The ice nucleating efficiency (mixed-phase cloud regime) of the samples was determined either directly in the AIDA chamber during adiabatic expansions, or using the INKA continuous flow diffusion chamber, or a cold stage. Results from the campaign along with the potential implications are presented.
Marine aerosol formation from biogenic iodine emissions.
O'Dowd, Colin D; Jimenez, Jose L; Bahreini, Roya; Flagan, Richard C; Seinfeld, John H; Hämeri, Kaarle; Pirjola, Liisa; Kulmala, Markku; Jennings, S Gerard; Hoffmann, Thorsten
2002-06-06
The formation of marine aerosols and cloud condensation nuclei--from which marine clouds originate--depends ultimately on the availability of new, nanometre-scale particles in the marine boundary layer. Because marine aerosols and clouds scatter incoming radiation and contribute a cooling effect to the Earth's radiation budget, new particle production is important in climate regulation. It has been suggested that sulphuric acid derived from the oxidation of dimethyl sulphide is responsible for the production of marine aerosols and cloud condensation nuclei. It was accordingly proposed that algae producing dimethyl sulphide play a role in climate regulation, but this has been difficult to prove and, consequently, the processes controlling marine particle formation remains largely undetermined. Here, using smog chamber experiments under coastal atmospheric conditions, we demonstrate that new particles can form from condensable iodine-containing vapours, which are the photolysis products of biogenic iodocarbons emitted from marine algae. Moreover, we illustrate, using aerosol formation models, that concentrations of condensable iodine-containing vapours over the open ocean are sufficient to influence marine particle formation. We suggest therefore that marine iodocarbon emissions have a potentially significant effect on global radiative forcing.
Croft, B.; Wentworth, G. R.; Martin, R. V.; Leaitch, W. R.; Murphy, J. G.; Murphy, B. N.; Kodros, J. K.; Abbatt, J. P. D.; Pierce, J. R.
2016-01-01
The Arctic region is vulnerable to climate change and able to affect global climate. The summertime Arctic atmosphere is pristine and strongly influenced by natural regional emissions, which have poorly understood climate impacts related to atmospheric particles and clouds. Here we show that ammonia from seabird-colony guano is a key factor contributing to bursts of newly formed particles, which are observed every summer in the near-surface atmosphere at Alert, Nunavut, Canada. Our chemical-transport model simulations indicate that the pan-Arctic seabird-influenced particles can grow by sulfuric acid and organic vapour condensation to diameters sufficiently large to promote pan-Arctic cloud-droplet formation in the clean Arctic summertime. We calculate that the resultant cooling tendencies could be large (about −0.5 W m−2 pan-Arctic-mean cooling), exceeding −1 W m−2 near the largest seabird colonies due to the effects of seabird-influenced particles on cloud albedo. These coupled ecological–chemical processes may be susceptible to Arctic warming and industrialization. PMID:27845764
Ice Cloud Formation and Dehydration in the Tropical Tropopause Layer
NASA Technical Reports Server (NTRS)
Jensen, Eric; Pfister, Leonhard; Gore, Warren J. (Technical Monitor)
2002-01-01
Stratospheric water vapor is important not only for its greenhouse forcing, but also because it plays a significant role in stratospheric chemistry. several recent studies have focused on the potential for dehydration due to ice cloud formation in air rising slowly through the tropical tropopause layer. Holton and Gettelman showed that temperature variations associated with horizontal transport of air in the tropopause layer can drive ice cloud formation and dehydration, and Gettelman et al. recently examined the cloud formation and dehydration along kinematic trajectories using simple assumptions about the cloud properties. In this study, we use a Lagrangian, one-dimensional cloud model to further investigate cloud formation and dehydration as air is transported horizontally and vertically through the tropical tropopause layer. Time-height curtains of temperature are extracted from meteorological analyses. The model tracks the growth and sedimentation of individual cloud particles. The regional distribution of clouds simulated in the model is comparable to the subvisible cirrus distribution indicated by SAGE II. The simulated cloud properties depend strongly on the assumed ice supersaturation threshold for ice nucleation. with effective nuclei present (low supersaturation threshold), ice number densities are high (0.1--10 cm(circumflex)-3), and ice crystals do not grow large enough to fall very far, resulting in limited dehydration. With higher supersaturation thresholds, ice number densities are much lower (less than 0.01 cm(circumflex)-3), and ice crystals grow large enough to fall substantially; however, supersaturated air often crosses the tropopause without cloud formation. The clouds typically do not dehydrate the air along trajectories down to the temperature minimum saturation mixing ratio. Rather the water vapor mixing ratio crossing the tropopause along trajectories is typically 10-50% larger than the saturation mixing ratio.
Performance of laminar-flow leading-edge test articles in cloud encounters
NASA Technical Reports Server (NTRS)
Davis, Richard E.; Maddalon, Dal V.; Wagner, Richard D.
1987-01-01
An extensive data bank of concurrent measurements of laminar flow (LF), particle concentration, and aircraft charging state was gathered for the first time. From this data bank, 13 flights in the simulated airline service (SAS) portion were analyzed to date. A total of 6.86 hours of data at one-second resolution were analyzed. An extensive statistical analysis, for both leading-edge test articles, shows that there is a significant effect of cloud and haze particles on the extent of laminar flow obtained. Approximately 93 percent of data points simulating LFC flight were obtained in clear air conditions; approximately 7 percent were obtained in cloud and haze. These percentages are consistent with earlier USAF and NASA estimates and results. The Hall laminar flow loss criteria was verified qualitatively. Larger particles and higher particle concentrations have a more marked effect on LF than do small particles. A particle spectrometer of a charging patch are both acceptable as diagnostic indicators of the presence of particles detrimental to laminar flow.
NASA Astrophysics Data System (ADS)
Hiranuma, Naruki; Möhler, Ottmar; Kulkarni, Gourihar; Schnaiter, Martin; Vogt, Steffen; Vochezer, Paul; Järvinen, Emma; Wagner, Robert; Bell, David M.; Wilson, Jacqueline; Zelenyuk, Alla; Cziczo, Daniel J.
2016-08-01
Separation of particles that play a role in cloud activation and ice nucleation from interstitial aerosols has become necessary to further understand aerosol-cloud interactions. The pumped counterflow virtual impactor (PCVI), which uses a vacuum pump to accelerate the particles and increase their momentum, provides an accessible option for dynamic and inertial separation of cloud elements. However, the use of a traditional PCVI to extract large cloud hydrometeors is difficult mainly due to its small cut-size diameters (< 5 µm). Here, for the first time we describe a development of an ice-selecting PCVI (IS-PCVI) to separate ice in controlled mixed-phase cloud system based on the particle inertia with the cut-off diameter ≥ 10 µm. We also present its laboratory application demonstrating the use of the impactor under a wide range of temperature and humidity conditions. The computational fluid dynamics simulations were initially carried out to guide the design of the IS-PCVI. After fabrication, a series of validation laboratory experiments were performed coupled with the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) expansion cloud simulation chamber. In the AIDA chamber, test aerosol particles were exposed to the ice supersaturation conditions (i.e., RHice > 100 %), where a mixture of droplets and ice crystals was formed during the expansion experiment. In parallel, the flow conditions of the IS-PCVI were actively controlled, such that it separated ice crystals from a mixture of ice crystals and cloud droplets, which were of diameter ≥ 10 µm. These large ice crystals were passed through the heated evaporation section to remove the water content. Afterwards, the residuals were characterized with a suite of online and offline instruments downstream of the IS-PCVI. These results were used to assess the optimized operating parameters of the device in terms of (1) the critical cut-size diameter, (2) the transmission efficiency and (3) the counterflow-to-input flow ratio. Particle losses were characterized by comparing the residual number concentration to the rejected interstitial particle number concentration. Overall results suggest that the IS-PCVI enables inertial separation of particles with a volume-equivalent particle size in the range of ~ 10-30 µm in diameter with small inadvertent intrusion (~ 5 %) of unwanted particles.
Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon.
Pöschl, U; Martin, S T; Sinha, B; Chen, Q; Gunthe, S S; Huffman, J A; Borrmann, S; Farmer, D K; Garland, R M; Helas, G; Jimenez, J L; King, S M; Manzi, A; Mikhailov, E; Pauliquevis, T; Petters, M D; Prenni, A J; Roldin, P; Rose, D; Schneider, J; Su, H; Zorn, S R; Artaxo, P; Andreae, M O
2010-09-17
The Amazon is one of the few continental regions where atmospheric aerosol particles and their effects on climate are not dominated by anthropogenic sources. During the wet season, the ambient conditions approach those of the pristine pre-industrial era. We show that the fine submicrometer particles accounting for most cloud condensation nuclei are predominantly composed of secondary organic material formed by oxidation of gaseous biogenic precursors. Supermicrometer particles, which are relevant as ice nuclei, consist mostly of primary biological material directly released from rainforest biota. The Amazon Basin appears to be a biogeochemical reactor, in which the biosphere and atmospheric photochemistry produce nuclei for clouds and precipitation sustaining the hydrological cycle. The prevailing regime of aerosol-cloud interactions in this natural environment is distinctly different from polluted regions.
Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon
NASA Astrophysics Data System (ADS)
Pöschl, U.; Martin, S. T.; Sinha, B.; Chen, Q.; Gunthe, S. S.; Huffman, J. A.; Borrmann, S.; Farmer, D. K.; Garland, R. M.; Helas, G.; Jimenez, J. L.; King, S. M.; Manzi, A.; Mikhailov, E.; Pauliquevis, T.; Petters, M. D.; Prenni, A. J.; Roldin, P.; Rose, D.; Schneider, J.; Su, H.; Zorn, S. R.; Artaxo, P.; Andreae, M. O.
2010-09-01
The Amazon is one of the few continental regions where atmospheric aerosol particles and their effects on climate are not dominated by anthropogenic sources. During the wet season, the ambient conditions approach those of the pristine pre-industrial era. We show that the fine submicrometer particles accounting for most cloud condensation nuclei are predominantly composed of secondary organic material formed by oxidation of gaseous biogenic precursors. Supermicrometer particles, which are relevant as ice nuclei, consist mostly of primary biological material directly released from rainforest biota. The Amazon Basin appears to be a biogeochemical reactor, in which the biosphere and atmospheric photochemistry produce nuclei for clouds and precipitation sustaining the hydrological cycle. The prevailing regime of aerosol-cloud interactions in this natural environment is distinctly different from polluted regions.
NASA Astrophysics Data System (ADS)
Frey, Wiebke; Connolly, Paul; Dorsey, James; Hu, Dawei; Alfarra, Rami; McFiggans, Gordon
2016-04-01
The Manchester Ice Cloud Chamber (MICC), consisting of a 10m high stainless steel tube and 1m in diameter, can be used to study cloud processes. MICC is housed in three separate cold rooms stacked on top of each other and warm pseudo-adiabatic expansion from controlled initial temperature and pressure is possible through chamber evacuation. Further details about the facility can be found at http://www.cas.manchester.ac.uk/restools/cloudchamber/index.html. MICC can be connected to the Manchester Aerosol Chamber (MAC, http://www.cas.manchester.ac.uk/restools/aerosolchamber/), which allows to inject specified aerosol particles into the cloud chamber for nucleation studies. The combination of MAC and MICC will be used in the CCN-Vol project, which seeks to bring the experimental evidence for co-condensation of organic and water vapour in cloud formation which leads to an increase in cloud particle numbers (see Topping et al., 2013, Nature Geoscience Letters, for details). Here, we will show a characterisation of the cloud and aerosol chamber coupling in regard to background aerosol particles and nucleation. Furthermore, we will show preliminary results from the warm CCN-Vol experiment, investigating the impact of co-condensation of organic vapours and water vapour on warm cloud droplet formation.
Laser-induced plasma cloud interaction and ice multiplication under cirrus cloud conditions
Leisner, Thomas; Duft, Denis; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Henin, Stefano; Stelmaszczyk, Kamil; Petrarca, Massimo; Delagrange, Raphaëlle; Hao, Zuoqiang; Lüder, Johannes; Petit, Yannick; Rohwetter, Philipp; Kasparian, Jérôme; Wolf, Jean-Pierre; Wöste, Ludger
2013-01-01
Potential impacts of lightning-induced plasma on cloud ice formation and precipitation have been a subject of debate for decades. Here, we report on the interaction of laser-generated plasma channels with water and ice clouds observed in a large cloud simulation chamber. Under the conditions of a typical storm cloud, in which ice and supercooled water coexist, no direct influence of the plasma channels on ice formation or precipitation processes could be detected. Under conditions typical for thin cirrus ice clouds, however, the plasma channels induced a surprisingly strong effect of ice multiplication. Within a few minutes, the laser action led to a strong enhancement of the total ice particle number density in the chamber by up to a factor of 100, even though only a 10−9 fraction of the chamber volume was exposed to the plasma channels. The newly formed ice particles quickly reduced the water vapor pressure to ice saturation, thereby increasing the cloud optical thickness by up to three orders of magnitude. A model relying on the complete vaporization of ice particles in the laser filament and the condensation of the resulting water vapor on plasma ions reproduces our experimental findings. This surprising effect might open new perspectives for remote sensing of water vapor and ice in the upper troposphere. PMID:23733936
Insights on Chemistry of Mercury Species in Clouds over Northern China: Complexation and Adsorption.
Li, Tao; Wang, Yan; Mao, Huiting; Wang, Shuxiao; Talbot, Robert W; Zhou, Ying; Wang, Zhe; Nie, Xiaoling; Qie, Guanghao
2018-05-01
Cloud effects on heterogeneous reactions of atmospheric mercury (Hg) are poorly understood due to limited knowledge of cloudwater Hg chemistry. Here we quantified Hg species in cloudwater at the summit of Mt. Tai in northern China. Total mercury (THg) and methylmercury (MeHg) in cloudwater were on average 70.5 and 0.15 ng L -1 , respectively, and particulate Hg (PHg) contributed two-thirds of THg. Chemical equilibrium modeling simulations suggested that Hg complexes by dissolved organic matter (DOM) dominated dissolved Hg (DHg) speciation, which was highly pH dependent. Hg concentrations and speciation were altered by cloud processing, during which significant positive correlations of PHg and MeHg with cloud droplet number concentration ( N d ) were observed. Unlike direct contribution to PHg from cloud scavenging of aerosol particles, abiotic DHg methylation was the most likely source of MeHg. Hg adsorption coefficients K ad (5.9-362.7 L g -1 ) exhibited an inverse-power relationship with cloud residues content. Morphology analyses indicated that compared to mineral particles, fly ash particles could enhance Hg adsorption due to more abundant carbon binding sites on the surface. Severe particulate air pollution in northern China may bring substantial Hg into cloud droplets and impact atmospheric Hg geochemical cycling by aerosol-cloud interactions.
Laser-induced plasma cloud interaction and ice multiplication under cirrus cloud conditions.
Leisner, Thomas; Duft, Denis; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Henin, Stefano; Stelmaszczyk, Kamil; Petrarca, Massimo; Delagrange, Raphaëlle; Hao, Zuoqiang; Lüder, Johannes; Petit, Yannick; Rohwetter, Philipp; Kasparian, Jérôme; Wolf, Jean-Pierre; Wöste, Ludger
2013-06-18
Potential impacts of lightning-induced plasma on cloud ice formation and precipitation have been a subject of debate for decades. Here, we report on the interaction of laser-generated plasma channels with water and ice clouds observed in a large cloud simulation chamber. Under the conditions of a typical storm cloud, in which ice and supercooled water coexist, no direct influence of the plasma channels on ice formation or precipitation processes could be detected. Under conditions typical for thin cirrus ice clouds, however, the plasma channels induced a surprisingly strong effect of ice multiplication. Within a few minutes, the laser action led to a strong enhancement of the total ice particle number density in the chamber by up to a factor of 100, even though only a 10(-9) fraction of the chamber volume was exposed to the plasma channels. The newly formed ice particles quickly reduced the water vapor pressure to ice saturation, thereby increasing the cloud optical thickness by up to three orders of magnitude. A model relying on the complete vaporization of ice particles in the laser filament and the condensation of the resulting water vapor on plasma ions reproduces our experimental findings. This surprising effect might open new perspectives for remote sensing of water vapor and ice in the upper troposphere.
Clarifying the dominant sources and mechanisms of cirrus cloud formation.
Cziczo, Daniel J; Froyd, Karl D; Hoose, Corinna; Jensen, Eric J; Diao, Minghui; Zondlo, Mark A; Smith, Jessica B; Twohy, Cynthia H; Murphy, Daniel M
2013-06-14
Formation of cirrus clouds depends on the availability of ice nuclei to begin condensation of atmospheric water vapor. Although it is known that only a small fraction of atmospheric aerosols are efficient ice nuclei, the critical ingredients that make those aerosols so effective have not been established. We have determined in situ the composition of the residual particles within cirrus crystals after the ice was sublimated. Our results demonstrate that mineral dust and metallic particles are the dominant source of residual particles, whereas sulfate and organic particles are underrepresented, and elemental carbon and biological materials are essentially absent. Further, composition analysis combined with relative humidity measurements suggests that heterogeneous freezing was the dominant formation mechanism of these clouds.
Comparison of Lidar Backscatter with Particle Distribution and GOES-7 Data in Hurricane Juliette
NASA Technical Reports Server (NTRS)
Jarzembski, Maurice A.; Srivastava, Vandana; McCaul, Eugene W., Jr.; Jedlovec, Gary J.; Atkinson, Robert J.; Pueschel, Rudolf F.; Cutten, Dean R.
1997-01-01
Measurements of calibrated backscatter, using two continuous wave Doppler lidars operating at wavelengths 9.1 and 10.6 micrometers were obtained along with cloud particle size distributions in Hurricane Juliette on 21 September 1995 at altitude approximately 11.7 km. Agreement between backscatter from the two lidars and with the cloud particle size distribution is excellent. Features in backscatter and particle number density compare well with concurrent GOES-7 infrared images.
NASA Astrophysics Data System (ADS)
Holanda, Bruna; Pöhlker, Mira; Klimach, Thomas; Saturno, Jorge; Ditas, Florian; Ditas, Jeannine; Ma, Nan; Zhang, Yuxuan; Cheng, Yafang; Wendisch, Manfred; Machado, Luiz; Barbosa, Henrique; Pöhlker, Christopher; Artaxo, Paulo; Pöschl, Ulrich; Andreae, Meinrat
2017-04-01
Black carbon (BC) particles are emitted directly into the atmosphere by processes of incomplete combustion and therefore can be used as a tracer of atmospheric pollution. BC is considered one of the drivers of global warming due to its efficient absorption of solar and infra-red radiation (Bond et al., 2013). Depending on abundance and size, aerosols can also modify the characteristics of clouds and enhance or suppress precipitation (Pöschl et al., 2010). The BC particles can gain surface coatings by condensation of low and semi-volatile compounds, coagulation, and cloud processing. The inclusion of a non-absorbing coating influences the way that BC particles act as cloud nuclei and may increase their absorption through the lensing effect (Fuller et al., 1999). These aging processes change significantly the optical, chemical and physical properties of the particles, as well as their atmospheric lifetime, making BC a source of large uncertainties in current atmospheric models. Taking into account the complex dynamics of BC particles in the atmosphere, we are analyzing data from the ACRIDICON-CHUVA aircraft campaign, which took place in the Amazon basin, Brazil, during the dry season of 2014 (Wendisch et al., 2016). A detailed characterization of BC particles was done using the Single Particle Soot Photometer (SP2) instrument, which directly measures the mass of individual refractory BC particles (rBC). Additionally, the SP2 provides information about the size distribution of rBC cores and their associated coatings. These properties were measured covering a wide geographic area with different pollution conditions and at several levels of the atmosphere at high time resolution. The rBC concentrations change significantly with altitude and with the source of pollution, being a few nanograms per cubic meter for altitudes higher that 5 km. In the surroundings of Manaus city, the mean BC concentration was 0.7 μg/m3, with core sizes peaking at 180 nm. The highest BC mass values were observed over fresh biomass burning plumes (6 μg/m3) with smaller core sizes ( 150 nm). Moreover, in a specific flight (AC19) we identified an extended layer of pollution at 4 km altitude. Backward trajectories calculated using FLEXPART suggest that this pollution layer originated in Africa and has aged few days during its travel over the Atlantic. Similarities in the properties of rBC particles within the pollution and boundary layers suggest that the long range transport of pollution from Africa can be an important source of BC to the Amazonian atmosphere. Here we present first results from our analyses that characterize the various pollution aerosols and their properties in the Amazon basin. References Bond, T.C. et al., 2013. Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118(11), pp.5380-5552. Fuller, K. A. et al., 1999. Effects of mixing on extinction by carbonaceous particles. Journal of Geophysical Research: Atmospheres, 104(D13), 15941-15954. Pöschl, U. et al., 2010. Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Science 329, 1513. Wendisch, M. et al., 2016. The ACRIDICON-CHUVA campaign: Studying tropical deep convective clouds and precipitation over Amazonia using the new German research aircraft HALO. Bull. Amer. Meteor. Soc.
NASA Astrophysics Data System (ADS)
Be, A. G.; Upshur, M. A.; Chase, H. M.; Geiger, F.; Thomson, R. J.
2017-12-01
Secondary organic aerosol (SOA) particles formed from the oxidation of biogenic volatile organic compounds (BVOCs) remain a principal, yet elusive, class of airborne particulate matter that impacts the Earth's radiation budget. Given the characteristic molecular complexity comprising biogenic SOA particles, chemical information selective to the gas-aerosol interface may be valuable in the investigation of such systems, as surface considerations likely dictate the phenomena driving particle evolution mechanisms and climate effects. In particular, cloud activation processes may be parameterized using the surface tension depression that coincides with partitioning of surface-active organic species to the gas-droplet interface. However, the extent to which surface chemical processes, such as cloud droplet condensation, are influenced by the chemical structure and reactivity of individual surface-active molecules in SOA particles is largely unknown. We seek to study terpene-derived organic species relevant to the surfaces of biogenic SOA particles via synthesis of putative oxidation products followed by analysis using surface-selective physicochemical measurements. Using dynamic surface tension measurements, considerable differences are observed in the surface tension depression of aqueous pendant droplets that contain synthetically prepared ozonolysis products derived from abundant terpene precursors. Furthermore, sum frequency generation spectroscopy is utilized for comparison of the surface vibrational spectral responses of synthesized reference compounds with those observed for laboratory aerosol toward probing the surface composition of SOA material. Such ongoing findings highlight the underlying importance of molecular structure and reactivity when considering the surface chemistry of biogenic terpene-derived atmospheric aerosols.
Cloud Chemistry in the United States: Problems and Prospects
NASA Astrophysics Data System (ADS)
Carlton, A. G.; Barth, M. C.; Lance, S.; Fahey, K.; McNeill, V. F.; Weber, R. J.
2017-12-01
Clouds cover 60% of the Earth's surface at a given time and are the primary means by which atmospheric trace species are lofted from the polluted boundary layer to the free troposphere. Clouds also play an important role as atmospheric aqueous phase reactors, scavenging soluble gas phase precursors and providing a medium for oxidation reactions that yield lower volatility products that contribute to increased aerosol mass when cloud drops evaporate. On a global average, most sulfate particles are formed during cloud processing, and organic particles known to form through aqueous phase pathways are found above clouds. However, atmospheric chemistry observations are generally biased for clear sky conditions. For example, aircraft field deployments typically avoid clouds. Satellite retrievals impacted by clouds are often screened from the final data products. This hinders knowledge of cloud chemistry and the impacts on tropospheric composition. In this work, we explore temporal and geospatial trends in trace species related to cloud processing in the U.S. with a focus on organic chemistry. We apply 3-dimensional and 0-dimensional models to recent campaigns and mountaintop cloud sampling sites, and compare to measurements.
Quantifying the Amount of Ice in Cold Tropical Cirrus Clouds
NASA Technical Reports Server (NTRS)
Avery, Melody A.; Winker, David M.; Garnier, Anne; Lawson, R. Paul; Heymsfield, Andrew J.; Mo, Qixu; Schoeberl, Mark R.; Woods, Sarah; Lance, Sara; Young, Stuart A.;
2014-01-01
How much ice is there in the Tropical Tropopause layer, globally? How does one begin to answer that question? Clouds are currently the largest source of uncertainty in climate models, and the ice water content (IWC) of cold cirrus clouds is needed to understand the total water and radiation budgets of the upper troposphere and lower stratosphere (UT/LS). The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, originally a "pathfinder" mission only expected to last for three years, has now been operational for more than eight years. Lidar data from CALIPSO can provide information about how IWC is vertically distributed in the UT/LS, and about inter-annual variability and seasonal changes in cloud ice. However, cloud IWC is difficult to measure accurately with either remote or in situ instruments because IWC from cold cirrus clouds is derived from the particle cross-sectional area or visible extinction coefficient. Assumptions must be made about the relationship between the area, volume and density of ice particles with various crystal habits. Recently there have been numerous aircraft field campaigns providing detailed information about cirrus ice water content from cloud probes. This presentation evaluates the assumptions made when creating the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) global IWC data set, using recently reanalyzed aircraft particle probe measurements of very cold, thin TTL cirrus from the 2006 CR-AVE.
Konishi, Yuki; Hayashi, Hiroaki; Takegami, Kazuki; Fukuda, Ikuma; Ueno, Junji
2014-01-01
A cloud chamber is a detector that can visualize the tracks of charged particles. Hayashi, et al. suggested a visualization experiment in which X-rays generated by diagnostic X-ray equipment were directed into a cloud chamber; however, there was a problem in that the wall of the cloud chamber scattered the incoming X-rays. In this study, we developed a new cloud chamber with entrance windows. Because these windows are made of thin film, we were able to direct the X-rays through them without contamination by scattered X-rays from the cloud chamber wall. We have newly proposed an experiment in which beta-particles emitted from radioisotopes are directed into a cloud chamber. We place shielding material in the cloud chamber and visualize the various shielding effects seen with the material positioned in different ways. During the experiment, electrons scattered in the air were measured quantitatively using GM counters. We explained the physical phenomena in the cloud chamber using Monte Carlo simulation code EGS5. Because electrons follow a tortuous path in air, the shielding material must be placed appropriately to be able to effectively block their emissions. Visualization of the tracks of charged particles in this experiment proved effective for instructing not only trainee radiological technologists but also different types of healthcare professionals.
How Models Simulate the Radiative Effect in the Transition Zone of the Aerosol-Cloud Continuum
NASA Astrophysics Data System (ADS)
Calbo Angrill, J.; González, J. A.; Long, C. N.; McComiskey, A. C.
2017-12-01
Several studies have pointed towards dealing with clouds and aerosols as two manifestations of what is essentially the same physical phenomenon: a suspension of tiny particles in the air. Although the two extreme cases (i.e., pure aerosol and well-defined cloud) are easily distinguished, and obviously produce different radiative effects, there are many situations in the transition (or "twilight") zone. In a recent paper [Calbó et al., Atmos. Res. 2017, j.atmosres.2017.06.010], the authors of the current communication estimated that about 10% of time there might be a suspension of particles in the air that is difficult to distinguish as either cloud or aerosol. Radiative transfer models, however, simulate the effect of clouds and aerosols with different modules, routines, or parameterizations. In this study, we apply a sensitivity analysis approach to assess the ability of two radiative transfer models (SBDART and RRTM) in simulating the radiative effect of a suspension of particles with characteristics in the boundary between cloud and aerosol. We simulate this kind of suspension either in "cloud mode" or in "aerosol mode" and setting different values of optical depth, droplet size, water path, aerosol type, cloud height, etc. Irradiances both for solar and infrared bands are studied, both at ground level and at the top of the atmosphere, and all analyses are repeated for different solar zenith angles. We obtain that (a) water clouds and ice clouds have similar radiative effects if they have the same optical depth; (b) the spread of effects regarding different aerosol type/aerosol characteristics is remarkable; (c) radiative effects of an aerosol layer and of a cloud layer are different, even if they have similar optical depth; (d) for a given effect on the diffuse component, the effect on the direct component is usually greater (more extinction of direct beam) by aerosols than by clouds; (e) radiative transfer models are somewhat limited when simulating the effects of a suspension of particles in the transition zone, as the approach to this zone as an aerosol or as a cloud produces different results.
NASA Astrophysics Data System (ADS)
Saito, M.; Iwabuchi, H.; Yang, P.; Tang, G.; King, M. D.; Sekiguchi, M.
2016-12-01
Cirrus clouds cover about 25% of the globe. Knowledge about the optical and microphysical properties of these clouds [particularly, optical thickness (COT) and effective radius (CER)] is essential to radiative forcing assessment. Previous studies of those properties using satellite remote sensing techniques based on observations by passive and active sensors gave inconsistent retrievals. In particular, COTs from the Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) using the unconstrained method are affected by variable particle morphology, especially the fraction of horizontally oriented plate particles (HPLT), because the method assumes the lidar ratio to be constant, which should have different values for different ice particle shapes. More realistic ice particle morphology improves estimates of the optical and microphysical properties. In this study, we develop an optimal estimation-based algorithm to infer cirrus COT and CER in addition to morphological parameters (e.g., Fraction of HPLT) using the observations made by CALIOP and the Infrared Imaging Radiometer (IIR) on the CALIPSO platform. The assumed ice particle model is a mixture of a few habits with variable HPLT. Ice particle single-scattering properties are computed using state-of-the-art light-scattering computational capabilities. Rigorous estimation of uncertainties associated with surface properties, atmospheric gases and cloud heterogeneity is performed. The results based on the present method show that COTs are quite consistent with the MODIS and CALIOP counterparts, and CERs essentially agree with the IIR operational retrievals. The lidar ratio is calculated from the bulk optical properties based on the inferred parameters. The presentation will focus on latitudinal variations of particle morphology and the lidar ratio on a global scale.
Vertical variation of ice particle size in convective cloud tops.
van Diedenhoven, Bastiaan; Fridlind, Ann M; Cairns, Brian; Ackerman, Andrew S; Yorks, John E
2016-05-16
A novel technique is used to estimate derivatives of ice effective radius with respect to height near convective cloud tops ( dr e / dz ) from airborne shortwave reflectance measurements and lidar. Values of dr e / dz are about -6 μ m/km for cloud tops below the homogeneous freezing level, increasing to near 0 μ m/km above the estimated level of neutral buoyancy. Retrieved dr e / dz compares well with previously documented remote sensing and in situ estimates. Effective radii decrease with increasing cloud top height, while cloud top extinction increases. This is consistent with weaker size sorting in high, dense cloud tops above the level of neutral buoyancy where fewer large particles are present, and with stronger size sorting in lower cloud tops that are less dense. The results also confirm that cloud-top trends of effective radius can generally be used as surrogates for trends with height within convective cloud tops. These results provide valuable observational targets for model evaluation.
Vertical Variation of Ice Particle Size in Convective Cloud Tops
NASA Technical Reports Server (NTRS)
Van Diedenhoven, Bastiaan; Fridlind, Ann M.; Cairns, Brian; Ackerman, Andrew S.; Yorks, John E.
2016-01-01
A novel technique is used to estimate derivatives of ice effective radius with respect to height near convective cloud tops (dr(sub e)/dz) from airborne shortwave reflectance measurements and lidar. Values of dr(sub e)/dz are about -6 micrometer/km for cloud tops below the homogeneous freezing level, increasing to near 0 micrometer/km above the estimated level of neutral buoyancy. Retrieved dr(sub e)/dz compares well with previously documented remote sensing and in situ estimates. Effective radii decrease with increasing cloud top height, while cloud top extinction increases. This is consistent with weaker size sorting in high, dense cloud tops above the level of neutral buoyancy where fewer large particles are present and with stronger size sorting in lower cloud tops that are less dense. The results also confirm that cloud top trends of effective radius can generally be used as surrogates for trends with height within convective cloud tops. These results provide valuable observational targets for model evaluation.
Durant, A.J.; Rose, William I.; Sarna-Wojcicki, A. M.; Carey, Steven; Volentik, A.C.M.
2009-01-01
Uncertainty remains on the origin of distal mass deposition maxima observed in many recent tephra fall deposits. In this study the link between ash aggregation and the formation of distal mass deposition maxima is investigated through reanalysis of tephra fallout from the Mount St. Helens 18 May 1980 (MSH80) eruption. In addition, we collate all the data needed to model distal ash sedimentation from the MSH80 eruption cloud. Four particle size subpopulations were present in distal fallout with modes at 2.2 ??, 4.2 ??, 5.9 ??, and 8.3 ??. Settling rates of the coarsest subpopulation closely matched predicted single-particle terminal fall velocities. Sedimentation of particles <100 ??m was greatly enhanced, predominantly through aggregation of a particle subpopulation with modal diameter 5.9 ?? 0.2 ?? (19 ?? 3 ??m). Mammatus on the MSH80 cloud provided a mechanism to transport very fine ash particles, with predicted atmospheric lifetimes of days to weeks, from the upper troposphere to the surface in a matter of hours. In this mechanism, ash particles initiate ice hydrometeor formation high in the troposphere. Subsequently, the volcanic cloud rapidly subsides as mammatus develop from increased particle loading and cloud base sublimation. Rapid fallout occurs as the cloud passes through the melting level in a process analogous to snowflake aggregation. Aggregates sediment en masse and form the distal mass deposition maxima observed in many recent volcanic ash fall deposits. This work provides a data resource that will facilitate tephra sedimentation modeling and allow model intercomparisons. Copyright 2009 by the American Geophysical Union.
Desert dust suppressing precipitation: A possible desertification feedback loop
Rosenfeld, Daniel; Rudich, Yinon; Lahav, Ronen
2001-01-01
The effect of desert dust on cloud properties and precipitation has so far been studied solely by using theoretical models, which predict that rainfall would be enhanced. Here we present observations showing the contrary; the effect of dust on cloud properties is to inhibit precipitation. Using satellite and aircraft observations we show that clouds forming within desert dust contain small droplets and produce little precipitation by drop coalescence. Measurement of the size distribution and the chemical analysis of individual Saharan dust particles collected in such a dust storm suggest a possible mechanism for the diminished rainfall. The detrimental impact of dust on rainfall is smaller than that caused by smoke from biomass burning or anthropogenic air pollution, but the large abundance of desert dust in the atmosphere renders it important. The reduction of precipitation from clouds affected by desert dust can cause drier soil, which in turn raises more dust, thus providing a possible feedback loop to further decrease precipitation. Furthermore, anthropogenic changes of land use exposing the topsoil can initiate such a desertification feedback process. PMID:11353821
Improving microphysics in a convective parameterization: possibilities and limitations
NASA Astrophysics Data System (ADS)
Labbouz, Laurent; Heikenfeld, Max; Stier, Philip; Morrison, Hugh; Milbrandt, Jason; Protat, Alain; Kipling, Zak
2017-04-01
The convective cloud field model (CCFM) is a convective parameterization implemented in the climate model ECHAM6.1-HAM2.2. It represents a population of clouds within each ECHAM-HAM model column, simulating up to 10 different convective cloud types with individual radius, vertical velocities and microphysical properties. Comparisons between CCFM and radar data at Darwin, Australia, show that in order to reproduce both the convective cloud top height distribution and the vertical velocity profile, the effect of aerodynamic drag on the rising parcel has to be considered, along with a reduced entrainment parameter. A new double-moment microphysics (the Predicted Particle Properties scheme, P3) has been implemented in the latest version of CCFM and is compared to the standard single-moment microphysics and the radar retrievals at Darwin. The microphysical process rates (autoconversion, accretion, deposition, freezing, …) and their response to changes in CDNC are investigated and compared to high resolution CRM WRF simulations over the Amazon region. The results shed light on the possibilities and limitations of microphysics improvements in the framework of CCFM and in convective parameterizations in general.
NASA Astrophysics Data System (ADS)
Barodka, Siarhei; Kliutko, Yauhenia; Krasouski, Alexander; Papko, Iryna; Svetashev, Alexander; Turishev, Leonid
2013-04-01
Nowadays numerical simulation of thundercloud formation processes is of great interest as an actual problem from the practical point of view. Thunderclouds significantly affect airplane flights, and mesoscale weather forecast has much to contribute to facilitate the aviation forecast procedures. An accurate forecast can certainly help to avoid aviation accidents due to weather conditions. The present study focuses on modelling of the convective clouds development and thunder clouds detection on the basis of mesoscale atmospheric processes simulation, aiming at significantly improving the aeronautical forecast. In the analysis, the primary weather radar information has been used to be further adapted for mesoscale forecast systems. Two types of domains have been selected for modelling: an internal one (with radius of 8 km), and an external one (with radius of 300 km). The internal domain has been directly applied to study the local clouds development, and the external domain data has been treated as initial and final conditions for cloud cover formation. The domain height has been chosen according to the civil aviation forecast data (i.e. not exceeding 14 km). Simulations of weather conditions and local clouds development have been made within selected domains with the WRF modelling system. In several cases, thunderclouds are detected within the convective clouds. To specify the given category of clouds, we employ a simulation technique of solid phase formation processes in the atmosphere. Based on modelling results, we construct vertical profiles indicating the amount of solid phase in the atmosphere. Furthermore, we obtain profiles demonstrating the amount of ice particles and large particles (hailstones). While simulating the processes of solid phase formation, we investigate vertical and horizontal air flows. Consequently, we attempt to separate the total amount of solid phase into categories of small ice particles, large ice particles and hailstones. Also, we strive to reveal and differentiate the basic atmospheric parameters of sublimation and coagulation processes, aiming to predict ice particles precipitation. To analyze modelling results we apply the VAPOR three-dimensional visualization package. For the chosen domains, a diurnal synoptic situation has been simulated, including rain, sleet, ice pellets, and hail. As a result, we have obtained a large scope of data describing various atmospheric parameters: cloud cover, major wind components, basic levels of isobaric surfaces, and precipitation rate. Based on this data, we show both distinction in precipitation formation due to various heights and its differentiation of the ice particles. The relation between particle rise in the atmosphere and its size is analyzed: at 8-10 km altitude large ice particles, resulted from coagulation, dominate, while at 6-7 km altitude one can find snow and small ice particles formed by condensation growth. Also, mechanical trajectories of solid precipitation particles for various ice formation processes have been calculated.
NASA Technical Reports Server (NTRS)
Chepfer, H.; Minnis, P.; Dubuisson, P.; Chiriaco, M.; Sun-Mack, S.; Riviere, E. D.
2007-01-01
Signatures of nitric acid particles (NAP) in cold thick ice clouds have been derived from satellite observations. Most NAP are detected in the Tropics (9 to 20% of clouds with T less than 202.5 K). Higher occurrences were found in the rare mid-latitudes very cold clouds. NAP occurrence increases as cloud temperature decreases and NAP are more numerous in January than July. Comparisons of NAP and lightning distributions show that lightning is the main source of the NOx, which forms NAP in cold clouds. Qualitative comparisons of NAP with upper tropospheric humidity distributions suggest that NAP play a role in the dehydration of the upper troposphere when the tropopause is colder than 195K.
Substantial convection and precipitation enhancements by ultrafine aerosol particles
Fan, Jiwen; Rosenfeld, Daniel; Zhang, Yuwei; ...
2018-01-26
Aerosol-cloud interactions remain the largest uncertainty in climate projections. Ultrafine aerosol particles smaller than 50 nanometers (UAP <50) can be abundant in the troposphere, but are conventionally considered too small to affect cloud formation. However, observational evidence and numerical simulations of deep convective clouds (DCCs) over the Amazon show that DCCs forming in a low aerosol environment can develop very large vapor supersaturation because fast droplet coalescence reduces integrated droplet surface area and subsequent condensation. UAP <50 from pollution plumes that are ingested into such clouds can be activated to form additional cloud droplets on which excess supersaturation condenses andmore » forms additional cloud water and latent heating, thus intensifying convective strength. This mechanism suggests a strong anthropogenic invigoration of DCCs in previously pristine regions of the world.« less
NASA Astrophysics Data System (ADS)
Chepfer, H.; Minnis, P.; Dubuisson, P.; Chiriaco, M.; Sun-Mack, S.; RivièRe, E. D.
2007-03-01
Signatures of nitric acid particles (NAP) in cold thick ice clouds have been derived from satellite observations. Most NAP are detected in the tropics (9 to 20% of clouds with T < 202.5 K). Higher occurrences were found in the rare midlatitudes very cold clouds. NAP occurrence increases as cloud temperature decreases, and NAP are more numerous in January than July. Comparisons of NAP and lightning distributions show that lightning seems to be the main source of the NOx, which forms NAP in cold clouds over continents. Qualitative comparisons of NAP with upper tropospheric humidity distributions suggest that NAP may play a role in the dehydration of the upper troposphere when the tropopause is colder than 195 K.
NASA Technical Reports Server (NTRS)
Irwin, Patrick G. J.; Wong, Michael H.; Simon, Amy A.; Orton, G. S.; Toledo, Daniel
2017-01-01
In November 2014 Uranus was observed with the Wide Field Camera 3 (WFC3) instrument of the Hubble Space Telescope as part of the Hubble 2020: Outer Planet Atmospheres Legacy program, OPAL. OPAL annually maps Jupiter, Uranus and Neptune (and will also map Saturn from 2018) in several visible near- infrared wavelength filters. The Uranus 2014 OPAL observations were made on the 89th November at a time when a huge cloud complex, first observed by de Pater et al. (2015) and subsequently tracked by professional and amateur astronomers (Sayanagi et al., 2016), was present at 30-40deg N. We imaged the entire visible atmosphere, including the storm system, in seven filters spanning 467924 nm, capturing variations in the coloration of Uranus clouds and also vertical distribution due to wavelength dependent changes in Rayleigh scattering and methane absorption optical depth. Here we analyse these new HST observations with the NEMESIS radiative-transfer and retrieval code in multiple-scattering mode to determine the vertical cloud structure in and around the storm cloud system. The same storm system was also observed in the H-band (1.4-1.8 micrometers) with the SINFONI Integral Field Unit Spectrometer on the Very Large Telescope (VLT) on 31st October and 11th November, reported by Irwin et al. (2016, 10.1016j.icarus.2015.09.010). To constrain better the cloud particle sizes and scattering properties over a wide wavelength range we also conducted a limb-darkening analysis of the background cloud structure in the 30-40deg N latitude band by simultaneously fitting: a) these HSTOPAL observations at a range of zenith angles; b) the VLTSINFONI observations at a range of zenith angles; and c) IRTFSpeX observations of this latitude band made in 2009 at a single zenith angle of 23deg, spanning the wavelength range 0.8-1.8 micrometers (Irwin et al., 2015, 10.1016j.icarus.2014.12.020). We find that the HST observations, and the combined HSTVLTIRTF observations at all locations are well modelled with a three-component cloud comprised of: 1) a vertically thin, but optically thick deep tropospheric cloud at a pressure of approximately 2 bars; 2) a methane-ice cloud based at the methane-condensation level of approximately 1.23 bar, with variable vertical extent; and 3) a vertically extended tropospheric haze, also based at the methane-condensation level of 1.23 bar. We find that modelling both haze and tropospheric cloud with particles having an effective radius of approximately 0.1 micron provides a good fit the observations, although for the tropospheric cloud, particles with an effective radius as large as 1.0 micron provide a similarly good fit. We find that the particles in both the tropospheric cloud and haze are more scattering at short wave- lengths, giving them a blue color, but are more absorbing at longer wavelengths, especially for the tropospheric haze. We find that the spectra of the storm clouds are well modelled by localized thickening and vertical extension of the methane-ice cloud. For the particles in the storm clouds, which we assume to be composed of methane ice particles, we find that their mean radii must lie somewhere in the range 0. 1 1. 0 m. We find that the high clouds have low integrated opacity, and that streamers reminiscent of convective thunderstorm anvils are confined to levels deeper than 1 bar. These results argue against vigorous moist convective origins for the cloud features.
The global impact of mineral dust on cloud droplet number concentration
NASA Astrophysics Data System (ADS)
Karydis, V.; Tsimpidi, A.; Bacer, S.; Pozzer, A.; Nenes, A.; Lelieveld, J.
2016-12-01
This study assesses the importance of mineral dust for cloud droplet formation by taking into account i) the adsorption of water on the surface of insoluble dust particles, ii) the coating of soluble material on the surface of mineral particles which augments their cloud condensation nuclei activity, and iii) the effect of dust on the inorganic aerosol concentrations through thermodynamic interactions with mineral cations. Simulations are carried out with the EMAC chemistry climate model that calculates the global atmospheric aerosol composition using the ISORROPIA-II thermodynamic equilibrium model and considers the gas phase interactions with K+-Ca2+-Mg2+-NH4+-Na+-SO42-NO3-Cl-H2O particle components. Emissions of the inert mineral dust and the reactive dust aerosol components are calculated online by taking into account the soil particle size distribution and chemical composition of different deserts worldwide (Karydis et al., 2016). We have implemented the "unified dust activation parameterization" (Kumar et al., 2011; Karydis et al., 2011) to calculate the droplet number concentration by taking into account the inherent hydrophilicity from adsorption and the acquired hygroscopicity from soluble salts by dust particles. Our simulations suggest that mineral dust significantly increases the cloud droplet number concentration (CDNC) over the main deserts and the adjacent oceans. However, over polluted areas the CDNC decreases significantly in the presence of dust. Furthermore, we investigate the role of adsorption activation of insoluble aerosols and the mineral dust thermodynamic interactions with inorganic anions on the cloud droplet formation. The CDNC sensitivity to the emission load, chemical composition, and inherent hydrophilicity of mineral dust is also tested. ReferencesKarydis, et al. (2011). "On the effect of dust particles on global cloud condensation nuclei and cloud droplet number." J. Geophys. Res. Atmos. 116. Karydis, et al. (2016). "Effects of mineral dust on global atmospheric nitrate concentrations." Atmos. Chem. Phys. 16(3): 1491-1509. Kumar, et al. (2011). "Measurements of cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals." Atmos. Chem. Phys. Discuss. 11(4): 12561-12605.
Nozière, Barbara; Baduel, Christine; Jaffrezo, Jean-Luc
2014-02-25
The activation of aerosol particles into cloud droplets in the Earth's atmosphere is both a key process for the climate budget and a main source of uncertainty. Its investigation is facing major experimental challenges, as no technique can measure the main driving parameters, the Raoult's term and surface tension, σ, for sub-micron atmospheric particles. In addition, the surfactant fraction of atmospheric aerosols could not be isolated until recently. Here we present the first dynamic investigation of the total surfactant fraction of atmospheric aerosols, evidencing adsorption barriers that limit their gradient (partitioning) in particles and should enhance their cloud-forming efficiency compared with current models. The results also show that the equilibration time of surfactants in sub-micron atmospheric particles should be beyond the detection of most on-line instruments. Such instrumental and theoretical shortcomings would be consistent with atmospheric and laboratory observations and could have limited the understanding of cloud activation until now.
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A.; Suttles, J. T.; Heymsfield, Andrew J.; Welch, Ronald M.; Spinhirne, James D.; Wu, Man-Li C.; Starr, David; Parker, Lindsay; Arduini, Robert F.
1990-01-01
Theoretical calculations predict that cloud reflectance in near infrared windows such as those at 1.6 and 2.2 microns should give lower reflectances than at visible wavelengths. The reason for this difference is that ice and liquid water show significant absorption at those wavelengths, in contrast to the nearly conservative scattering at wavelengths shorter than 1 micron. In addition, because the amount of absorption scales with the path length of radiation through the particle, increasing cloud particle size should lead to decreasing reflectances at 1.6 and 2.2 microns. Measurements at these wavelengths to date, however, have often given unpredicted results. Twomey and Cocks found unexpectedly high absorption (factors of 3 to 5) in optically thick liquid water clouds. Curran and Wu found expectedly low absorption in optically thick high clouds, and postulated the existence of supercooled small water droplets in place of the expected large ice particles. The implications of the FIRE data for optically thin cirrus are examined.
Agglomeration of dust in convective clouds initialized by nuclear bursts
NASA Astrophysics Data System (ADS)
Bacon, D. P.; Sarma, R. A.
Convective clouds initialized by nuclear bursts are modeled using a two-dimensional axisymmetric cloud model. Dust transport through the atmosphere is studied using five different sizes ranging from 1 to 10,000 μm in diameter. Dust is transported in the model domain by advection and sedimentation. Water is allowed to condense onto dust particles in regions of supersaturation in the cloud. The agglomeration of dust particles resulting from the collision of different size dust particles is modeled. The evolution of the dust mass spectrum due to agglomeration is modeled using a numerical scheme which is mass conserving and has low implicit diffusion. Agglomeration moves mass from the small particles with very small fall velocity to the larger sizes which fall to the ground more readily. Results indicate that the dust fallout can be increased significantly due to this process. In preliminary runs using stable and unstable environmental soundings, at 30 min after detonation the total dust in the domain was 11 and 30%, respectively, less than a control case without agglomeration.
Airborne measurements of cloud forming nuclei and aerosol particles at Kennedy Space Center, Florida
NASA Technical Reports Server (NTRS)
Radke, L. F.; Langer, G.; Hindman, E. E., II
1978-01-01
Results of airborne measurements of the sizes and concentrations of aerosol particles, ice nuclei, and cloud condensation nuclei that were taken at Kennedy Space Center, Florida, are presented along with a detailed description of the instrumentation and measuring capabilities of the University of Washington airborne measuring facility (Douglas B-23). Airborne measurements made at Ft. Collins, Colorado, and Little Rock, Arkansas, during the ferry of the B-23 are presented. The particle concentrations differed significantly between the clean air over Ft. Collins and the hazy air over Little Rock and Kennedy Space Center. The concentrations of cloud condensation nuclei over Kennedy Space Center were typical of polluted eastern seaboard air. Three different instruments were used to measure ice nuclei: one used filters to collect the particles, and the others used optical and acoustical methods to detect ice crystals grown in portable cloud chambers. A comparison of the ice nucleus counts, which are in good agreement, is presented.
NASA Astrophysics Data System (ADS)
Shantz, N. C.; Pierce, J. R.; Chang, R. Y.-W.; Vlasenko, A.; Riipinen, I.; Sjostedt, S.; Slowik, J. G.; Wiebe, A.; Liggio, J.; Abbatt, J. P. D.; Leaitch, W. R.
2012-02-01
Evolution of the cloud condensation nucleus (CCN) activity of 36 ± 4 nm diameter anthropogenic aerosol particles at a water supersaturation of 1.0 ± 0.1% is examined for particle nucleation and growth. During the early stages of one event, relatively few of the anthropogenic particles at 36 nm were CCN active and their growth rates by water condensation were delayed relative to ammonium sulphate particles. As the event progressed, the particle size distribution evolved to larger sizes and the relative numbers of particles at 36 nm that were CCN active increased until all the 36 nm particles were activating at the end of the event. Based on the chemistry of larger particles and the results from an aerosol chemical microphysics box model, the increase in CCN activity of the particles was most likely the result of the condensation of sulphate in this case. Despite the increased CCN activity, a delay was observed in the initial growth of these particles into cloud droplets, which persisted even when the aerosol was most CCN active later in the afternoon. Simulations show that the delay in water uptake is explained by a reduction of the mass accommodation coefficient assuming that the composition of the 36 nm particles is the same as the measured composition of the 60-100 nm particles.
Carbon Dioxide Clouds at High Altitude in the Tropics and in an Early Dense Martian Atmosphere
NASA Technical Reports Server (NTRS)
Colaprete, Anthony; Toon, Owen B.
2001-01-01
We use a time dependent, microphysical cloud model to study the formation of carbon dioxide clouds in the Martian atmosphere. Laboratory studies by Glandor et al. show that high critical supersaturations are required for cloud particle nucleation and that surface kinetic growth is not limited. These conditions, which are similar to those for cirrus clouds on Earth, lead to the formation of carbon dioxide ice particles with radii greater than 500 micrometers and concentrations of less than 0.1 cm(exp -3) for typical atmospheric conditions. Within the current Martian atmosphere, CO2 cloud formation is possible at the poles during winter and at high altitudes in the tropics during periods of increased atmospheric dust loading. In both cases, temperature perturbations of several degrees below the CO2 saturation temperature are required to nucleate new cloud particles suggesting that dynamical processes are the most common initiators of carbon dioxide clouds rather than diabatic cooling. The microphysical cloud model, coupled to a two-stream radiative transfer model, is used to reexamine the impact of CO2 clouds on the surface temperature within a dense CO2 atmosphere. The formation of carbon dioxide clouds leads to a warmer surface than what would be expected for clear sky conditions. The amount of warming is sensitive to the presence of dust and water vapor in the atmosphere, both of which act to dampen cloud effects. The radiative warming associated with cloud formation, as well as latent heating, work to dissipate the clouds when present. Thus, clouds never last for periods much longer than several days, limiting their overall effectiveness for warming the surface. The time average cloud optical depth is approximately unity leading to a 5-10 K warming, depending on the surface pressure. However, the surface temperature does not rise about the freezing point of liquid water even for pressures as high as 5 bars, at a solar luminosity of 75% the current value.
The chemical composition of cirrus forming aerosol: Lessons from the MACPEX field study
NASA Astrophysics Data System (ADS)
Cziczo, D. J.; Froyd, K. D.; Murphy, D. M.
2012-12-01
Cirrus clouds are an important factor in the Earth's climate system. These clouds exert a large radiative forcing due to their extensive global coverage and high altitude despite minimal physical and optical thickness. During the Mid-latitude Aerosol and Cloud Properties EXperiment (MACPEX) we measured chemical and physical properties of the aerosols on which cirrus ice crystals formed in situ and in real time using a laser ablation single particle mass spectrometry technique deployed aboard the NASA WB-57 research aircraft. Ice residual particles were also collected for off-line laboratory investigation including electron microscopy. Flights spanned from the Gulf of Mexico to the mid-latitudes over the United States. In most cases heterogeneous freezing was the inferred mechanism of cloud formation and aerosol composition had a significant impact on the nucleation of the ice phase. Mineral dust and some metallic particles were highly enhanced in the ice phase when compared to their abundance outside of cloud. Particles such as soot and biological material, previously suggested as ice nuclei, were not found either due to an inability to nucleate ice or low abundance. Atmospheric implications of these measurements and more advanced future analyses will be discussed.
NASA Astrophysics Data System (ADS)
Wolff, M. J.; Clancy, R. T.; Pitman, K. M.; Christensen, P. R.; Whitney, B. A.
2001-11-01
A full Mars year (1999-2001) of emission phase function (EPF) observations from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) provide the most complete study of Mars dust and ice aerosol properties to date. TES visible (solar band average) and infrared spectral EPF sequences are analyzed self-consistently with detailed multiple scattering radiative transfer codes. As a consequence of the combined angular and wavelength coverage, we are able to define two distinct ice cloud types at 45\\arcdeg S-45\\arcdeg N latitudes on Mars. Type I ice clouds exhibit small particle sizes (1-2 \\micron\\ radii), as well as a broad, deep minimum in side-scattering that are potentially indicative of aligned ice grains. Type I ice aerosols are most prevalent in the southern hemisphere during Mars aphelion, but also appear more widely distributed in season and latitude as topographic and high altitude (>20 km) ice hazes. Type II ice clouds exhibit larger particle sizes (3-5 \\micron) and a much narrower side-scattering minimum, indicative of poorer grain alignment or a change in particle shape relative to the type I ice clouds. Type II ice clouds appear most prominently in the northern subtropical aphelion cloud belt, where relatively low altitudes water vapor saturation (10 km) coincide with strong advective transport. Retrieved dust particle radii of 1.5-1.8 \\micron\\ are consistent with Pathfinder and recent Viking/Mariner 9 reanalyses. Our analyses also find EPF-derived dust single scattering albedos (ssa) in agreement with those from Pathfinder. Spatial and seasonal changes in the dust ssa (0.92-0.95, solar band average) and phase functions suggest possible dust property variations, but may also be a consequence of variable high altitude ice hazes. The annual variations of both dust and ice clouds at 45S-45N latitudes are predominately orbital rather than seasonal in character and have shown remarkable repeatability during the portions of two Mars years observed by MGS.
Remote sensing of cloud radiation and microphysical parameters
NASA Technical Reports Server (NTRS)
Wu, M.-L. C.; Curran, R. J.
1983-01-01
Multispectral cloud radiometer (MCR) data, retrieved from a radiometer installed in a nadir viewing position on a high-altitude aircraft flying at 200 m/s and at an altitude of 60,000 ft above the mean sea level, are analyzed. The data discussed were obtained in the 0.754, 0.7609, 0.7634, 1.626, 2.125, and 11.38-micron channels, and are compared to lidar-derived profiles. Among the cloud parameters under consideration are the cloud scaled optical thickness, cloudtop altitude, scaled volume scattering coefficient, particle thermodynamic phase, mean particle size, and cloudtop temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohrmann, Johannes; Wood, Robert; McGibbon, Jeremy
Marine boundary layer (MBL) aerosol particles affect the climate through their interaction with MBL clouds. Although both MBL clouds and aerosol particles have pronounced seasonal cycles, the factors controlling seasonal variability of MBL aerosol particle concentration are not well-constrained. In this paper an aerosol budget is constructed representing the effects of wet deposition, free-tropospheric entrainment, primary surface sources, and advection on the MBL accumulation mode aerosol number concentration (N a). These terms are further parameterized, and by assuming that on seasonal timescales N a is in steady state, the budget equation is rearranged to form a diagnostic equation for Nmore » a based on observable variables. Using data primarily collected in the subtropical northeast Pacific during the MAGIC campaign (Marine ARM (Atmospheric Radiation Measurement) GPCI (GCSS Pacific Cross-section Intercomparison) Investigation of Clouds), estimates of both mean summer and winter N a concentrations are made using the simplified steady-state model and seasonal mean observed variables, and are found to match well with the observed N a. To attribute the modeled difference between summer and winter aerosol concentrations to individual observed variables (e.g. precipitation rate, free-tropospheric aerosol number concentration), a local sensitivity analysis is combined with the seasonal difference in observed variables. This analysis shows that despite wintertime precipitation frequency being lower than summer, the higher winter precipitation rate accounted for approximately 60% of the modeled seasonal difference in N a, which emphasizes the importance of marine stratocumulus precipitation in determining MBL aerosol concentrations on longer time scales.« less
Mohrmann, Johannes; Wood, Robert; McGibbon, Jeremy; ...
2018-01-21
Marine boundary layer (MBL) aerosol particles affect the climate through their interaction with MBL clouds. Although both MBL clouds and aerosol particles have pronounced seasonal cycles, the factors controlling seasonal variability of MBL aerosol particle concentration are not well-constrained. In this paper an aerosol budget is constructed representing the effects of wet deposition, free-tropospheric entrainment, primary surface sources, and advection on the MBL accumulation mode aerosol number concentration (N a). These terms are further parameterized, and by assuming that on seasonal timescales N a is in steady state, the budget equation is rearranged to form a diagnostic equation for Nmore » a based on observable variables. Using data primarily collected in the subtropical northeast Pacific during the MAGIC campaign (Marine ARM (Atmospheric Radiation Measurement) GPCI (GCSS Pacific Cross-section Intercomparison) Investigation of Clouds), estimates of both mean summer and winter N a concentrations are made using the simplified steady-state model and seasonal mean observed variables, and are found to match well with the observed N a. To attribute the modeled difference between summer and winter aerosol concentrations to individual observed variables (e.g. precipitation rate, free-tropospheric aerosol number concentration), a local sensitivity analysis is combined with the seasonal difference in observed variables. This analysis shows that despite wintertime precipitation frequency being lower than summer, the higher winter precipitation rate accounted for approximately 60% of the modeled seasonal difference in N a, which emphasizes the importance of marine stratocumulus precipitation in determining MBL aerosol concentrations on longer time scales.« less
NASA Astrophysics Data System (ADS)
Mohrmann, Johannes; Wood, Robert; McGibbon, Jeremy; Eastman, Ryan; Luke, Edward
2018-01-01
Marine boundary layer (MBL) aerosol particles affect the climate through their interaction with MBL clouds. Although both MBL clouds and aerosol particles have pronounced seasonal cycles, the factors controlling seasonal variability of MBL aerosol particle concentration are not well constrained. In this paper an aerosol budget is constructed representing the effects of wet deposition, free-tropospheric entrainment, primary surface sources, and advection on the MBL accumulation mode aerosol number concentration (Na). These terms are then parameterized, and by assuming that on seasonal time scales Na is in steady state, the budget equation is rearranged to form a diagnostic equation for Na based on observable variables. Using data primarily collected in the subtropical northeast Pacific during the MAGIC campaign (Marine ARM (Atmospheric Radiation Measurement) GPCI (GCSS Pacific Cross-Section Intercomparison) Investigation of Clouds), estimates of both mean summer and winter Na concentrations are made using the simplified steady state model and seasonal mean observed variables. These are found to match well with the observed Na. To attribute the modeled difference between summer and winter aerosol concentrations to individual observed variables (e.g., precipitation rate and free-tropospheric aerosol number concentration), a local sensitivity analysis is combined with the seasonal difference in observed variables. This analysis shows that despite wintertime precipitation frequency being lower than summer, the higher winter precipitation rate accounted for approximately 60% of the modeled seasonal difference in Na, which emphasizes the importance of marine stratocumulus precipitation in determining MBL aerosol concentrations on longer time scales.
FLASH_TISA_Terra+Aqua_Version3C
Atmospheric Science Data Center
2018-04-04
... Cloud Particle Phase Cloud Infrared Emissivity Cloud Base Pressure Surface (Radiative) Flux TOA Flux Surface Types Albedo LW Flux Order Data: Earthdata Search: Order Data Guide Documents: ...
On the size dependence of the scattering greenhouse effect of CO2 ice particles
NASA Astrophysics Data System (ADS)
Kitzmann, D.; Patzer, A. B. C.; Rauer, H.
2011-10-01
In this contribution we study the potential greenhouse effect due to scattering of CO2 ice clouds for atmospheric conditions of terrestrial extrasolar planets. Therefore, we calculate the scattering and absorption properties of CO2 ice particles using Mie theory for assumed particle size distributions with different effective radii and particle densities to determine the scattering and absorption characteristics of such clouds. Implications especially in view of a potential greenhouse warming of the planetary surface are discussed.
Substantial convection and precipitation enhancements by ultrafine aerosol particles
NASA Astrophysics Data System (ADS)
Fan, Jiwen; Rosenfeld, Daniel; Zhang, Yuwei; Giangrande, Scott E.; Li, Zhanqing; Machado, Luiz A. T.; Martin, Scot T.; Yang, Yan; Wang, Jian; Artaxo, Paulo; Barbosa, Henrique M. J.; Braga, Ramon C.; Comstock, Jennifer M.; Feng, Zhe; Gao, Wenhua; Gomes, Helber B.; Mei, Fan; Pöhlker, Christopher; Pöhlker, Mira L.; Pöschl, Ulrich; de Souza, Rodrigo A. F.
2018-01-01
Ultrafine aerosol particles (smaller than 50 nanometers in diameter) have been thought to be too small to affect cloud formation. Fan et al. show that this is not the case. They studied the effect of urban pollution transported into the otherwise nearly pristine atmosphere of the Amazon. Condensational growth of water droplets around the tiny particles releases latent heat, thereby intensifying atmospheric convection. Thus, anthropogenic ultrafine aerosol particles may exert a more important influence on cloud formation processes than previously believed.
Unusual chemical compositions of noctilucent-cloud particle nuclei
NASA Technical Reports Server (NTRS)
Hemenway, C. L.
1973-01-01
Two sounding rocket payloads were launched from the ESRO range in Sweden during a noctilucent cloud display. Large numbers of submicron particles were collected, most of which appear to be made up of a high density material coated with a low density material. Typical electron micrographs are shown. Particle chemical compositions have been measured by use of dispersive X-ray analysis equipment attached to an electron microscope and have revealed that most of the high density particle nuclei have atomic weights greater than iron.
NASA Technical Reports Server (NTRS)
Wu, M.-L.
1985-01-01
In order to develop the remote sensing techniques to infer cloud physical parameters, a multispectral cloud radiometer (MCR) was mounted on a NASA high-altitude aircraft in conjunction with the Cooperative Convective Precipitation Experiment in 1981. The MCR has seven spectral channels, of which three are centered near windows associated with water vapor bands in the near infrared, two are centered near the oxygen A band at 0.76 microns, one is centered at the 1.14-micron water vapor band, and one is centered in the thermal infrared. The reflectance and temperature measured on May 31, 1981, are presented together with theoretical calculations. The results indicate that the MCR produces quality measurements. Therefore several cloud parameters can be derived with good accuracy. The parameters are the cloud-scaled optical thickness, cloud top pressure, volume scattering coefficient, particle thermodynamic phase, effective mean particle size, and cloud-top temperature.
Aerosol nucleation and growth in the TTL, due to tropical convection, during the ACTIVE campaign
NASA Astrophysics Data System (ADS)
Waddicor, D.; Vaughan, G.; Choularton, T.
2009-04-01
The Aerosol and Chemical Transport In tropical convection (ACTIVE) campaign took place between October 2005 and February 2006. This investigation involved the sampling of deep convective storms that occur in the Tropics; the campaign was based in Darwin, Northern Territory, Australia - the latter half of the campaign coincided with the monsoon season. A range of scientific equipment was used to sample the inflow and outflow air from these storms; of particular importance were the NERC Dornier (low-level) and ARA Egrett (high-level outflow) aircraft. The Dornier held a range of aerosol, particle and chemical detectors for the purpose of analysing the planetary boundary layer (PBL), in the vicinity of tropical convection. The Egrett contained detection instrumentation for a range of sizes of aerosol and cloud particles (2 Condensation Particle Counters (CPC), CAPS, CIP, CPI) in the storm outflow. This allowed a quantifiable measurement to be made of the effect of deep tropical convection on the aerosol population in the Tropical Tropopause Layer (TTL). The ACTIVE campaign found that there were large numbers of aerosol particles in the 10 - 100 nm (up to 25,000 /cm3 STP) and 100 - 1000 nm (up to 600 /cm3) size ranges. These values, in many instances, surpassed those found in the PBL. The higher levels of aerosol found in the TTL compared to the PBL could indicate that aerosol nucleation was occurring in the TTL as a direct result of convective activity. Furthermore, the Egrett aircraft found distinct boundaries between the high levels of aerosol, which were found in cloud free regions, and very low numbers of aerosol, which were found in the cloudy regions (storm anvil). The air masses were determined, from back trajectories, to have been through convective uplift and were formerly part of the anvil cloud. The cloudy regions would have contained high levels of entrapped precursor gases. Reduced nucleation and cloud particle scavenging of aerosol and gases would give a much reduced aerosol number concentration in cloud. The high aerosol (cloud free) areas would appear after the cloud began to evaporate through the process of aerosol nucleation. The evaporating cloud particles and reduced cloud surface area would allow aerosol nucleation to occur - typically involving sulphuric acid and water, released from ice crystals. The time scales for the particle production have also been investigated using satellite and wind projections/ECMWF back trajectories.
Cloud Processed CCN Suppress Stratus Cloud Drizzle
NASA Astrophysics Data System (ADS)
Hudson, J. G.; Noble, S. R., Jr.
2017-12-01
Conversion of sulfur dioxide to sulfate within cloud droplets increases the sizes and decreases the critical supersaturation, Sc, of cloud residual particles that had nucleated the droplets. Since other particles remain at the same sizes and Sc a size and Sc gap is often observed. Hudson et al. (2015) showed higher cloud droplet concentrations (Nc) in stratus clouds associated with bimodal high-resolution CCN spectra from the DRI CCN spectrometer compared to clouds associated with unimodal CCN spectra (not cloud processed). Here we show that CCN spectral shape (bimodal or unimodal) affects all aspects of stratus cloud microphysics and drizzle. Panel A shows mean differential cloud droplet spectra that have been divided according to traditional slopes, k, of the 131 measured CCN spectra in the Marine Stratus/Stratocumulus Experiment (MASE) off the Central California coast. K is generally high within the supersaturation, S, range of stratus clouds (< 0.5%). Because cloud processing decreases Sc of some particles, it reduces k. Panel A shows higher concentrations of small cloud droplets apparently grown on lower k CCN than clouds grown on higher k CCN. At small droplet sizes the concentrations follow the k order of the legend, black, red, green, blue (lowest to highest k). Above 13 µm diameter the lines cross and the hierarchy reverses so that blue (highest k) has the highest concentrations followed by green, red and black (lowest k). This reversed hierarchy continues into the drizzle size range (panel B) where the most drizzle drops, Nd, are in clouds grown on the least cloud-processed CCN (blue), while clouds grown on the most processed CCN (black) have the lowest Nd. Suppression of stratus cloud drizzle by cloud processing is an additional 2nd indirect aerosol effect (IAE) that along with the enhancement of 1st IAE by higher Nc (panel A) are above and beyond original IAE. However, further similar analysis is needed in other cloud regimes to determine if MASE was typical. Hudson, J.G., S. Noble, and S. Tabor, 2015: J. Geophys. Res., Atmos., 120, 3436-3452, doi:10.1002/2014JD022669.
The mixing of particle clouds plunging into water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angelini, S.; Theofanous, T.G.; Yuen, W.W.
This work addresses certain fundamental aspects of the premixing phase of steam explosions, At issue are the multifield interaction aspects under highly transient, multidimensional conditions, and in presence of strong phase changes. They are addressed in an experiment (the MAGICO-2000) involving well-characterized particle clouds mixing with water, and detailed measurements on both external and internal characteristics of the mixing zone. Both cold and hot (up to 1500{degrees}C) particle clouds are considered in conjunction with saturated and subcooled water pools. The PMALPHA code is used as an aid in interpreting the experimental results, and the exercise reveals good predictive capabilities formore » it.« less
NASA Astrophysics Data System (ADS)
Cooper, Steven J.; Wood, Norman B.; L'Ecuyer, Tristan S.
2017-07-01
Estimates of snowfall rate as derived from radar reflectivities alone are non-unique. Different combinations of snowflake microphysical properties and particle fall speeds can conspire to produce nearly identical snowfall rates for given radar reflectivity signatures. Such ambiguities can result in retrieval uncertainties on the order of 100-200 % for individual events. Here, we use observations of particle size distribution (PSD), fall speed, and snowflake habit from the Multi-Angle Snowflake Camera (MASC) to constrain estimates of snowfall derived from Ka-band ARM zenith radar (KAZR) measurements at the Atmospheric Radiation Measurement (ARM) North Slope Alaska (NSA) Climate Research Facility site at Barrow. MASC measurements of microphysical properties with uncertainties are introduced into a modified form of the optimal-estimation CloudSat snowfall algorithm (2C-SNOW-PROFILE) via the a priori guess and variance terms. Use of the MASC fall speed, MASC PSD, and CloudSat snow particle model as base assumptions resulted in retrieved total accumulations with a -18 % difference relative to nearby National Weather Service (NWS) observations over five snow events. The average error was 36 % for the individual events. Use of different but reasonable combinations of retrieval assumptions resulted in estimated snowfall accumulations with differences ranging from -64 to +122 % for the same storm events. Retrieved snowfall rates were particularly sensitive to assumed fall speed and habit, suggesting that in situ measurements can help to constrain key snowfall retrieval uncertainties. More accurate knowledge of these properties dependent upon location and meteorological conditions should help refine and improve ground- and space-based radar estimates of snowfall.
Towards a bulk approach to local interactions of hydrometeors
NASA Astrophysics Data System (ADS)
Baumgartner, Manuel; Spichtinger, Peter
2018-02-01
The growth of small cloud droplets and ice crystals is dominated by the diffusion of water vapor. Usually, Maxwell's approach to growth for isolated particles is used in describing this process. However, recent investigations show that local interactions between particles can change diffusion properties of cloud particles. In this study we develop an approach for including these local interactions into a bulk model approach. For this purpose, a simplified framework of local interaction is proposed and governing equations are derived from this setup. The new model is tested against direct simulations and incorporated into a parcel model framework. Using the parcel model, possible implications of the new model approach for clouds are investigated. The results indicate that for specific scenarios the lifetime of cloud droplets in subsaturated air may be longer (e.g., for an initially water supersaturated air parcel within a downdraft). These effects might have an impact on mixed-phase clouds, for example in terms of riming efficiencies.
Saharan Dust Event Impacts on Cloud Formation and Radiation over Western Europe
NASA Technical Reports Server (NTRS)
Bangert, M.; Nenes, A.; Vogel, B.; Vogel, H.; Barahona, D.; Karydis, V. A.; Kumar, P.; Kottmeier, C.; Blahak, U.
2013-01-01
We investigated the impact of mineral dust particles on clouds, radiation and atmospheric state during a strong Saharan dust event over Europe in May 2008, applying a comprehensive online-coupled regional model framework that explicitly treats particle-microphysics and chemical composition. Sophisticated parameterizations for aerosol activation and ice nucleation, together with two-moment cloud microphysics are used to calculate the interaction of the different particles with clouds depending on their physical and chemical properties. The impact of dust on cloud droplet number concentration was found to be low, with just a slight increase in cloud droplet number concentration for both uncoated and coated dust. For temperatures lower than the level of homogeneous freezing, no significant impact of dust on the number and mass concentration of ice crystals was found, though the concentration of frozen dust particles reached up to 100 l-1 during the ice nucleation events. Mineral dust particles were found to have the largest impact on clouds in a temperature range between freezing level and the level of homogeneous freezing, where they determined the number concentration of ice crystals due to efficient heterogeneous freezing of the dust particles and modified the glaciation of mixed phase clouds. Our simulations show that during the dust events, ice crystals concentrations were increased twofold in this temperature range (compared to if dust interactions are neglected). This had a significant impact on the cloud optical properties, causing a reduction in the incoming short-wave radiation at the surface up to -75Wm-2. Including the direct interaction of dust with radiation caused an additional reduction in the incoming short-wave radiation by 40 to 80Wm-2, and the incoming long-wave radiation at the surface was increased significantly in the order of +10Wm-2. The strong radiative forcings associated with dust caused a reduction in surface temperature in the order of -0.2 to -0.5K for most parts of France, Germany, and Italy during the dust event. The maximum difference in surface temperature was found in the East of France, the Benelux, and Western Germany with up to -1 K. This magnitude of temperature change was sufficient to explain a systematic bias in numerical weather forecasts during the period of the dust event.
Optical detection and characterization of ice crystals in LACIS
NASA Astrophysics Data System (ADS)
Kiselev, Alexei; Clauß, Tina; Niedermeier, Dennis; Hartmann, Susan; Wex, Heike; Stratmann, Frank
2010-05-01
Tropospheric ice and mixed phase clouds are an integral part of the earth system and their microphysical and radiative properties are strongly coupled e.g. through the complexities of the ice nucleation process. Therefore the investigation of influences of different aerosol particles which act as ice nuclei (IN) on the freezing behaviour of cloud droplets is important and still poses unresolved questions. The Leipzig Aerosol and Cloud Interaction Simulator (LACIS) is used to investigate the IN activity of different natural and artificial aerosol particles (mineral dust, soot etc.) in heterogeneous freezing processes (immersion or deposition freezing). A critical part of LACIS is the particle detection system allowing for size-resolved counting of activated seed particles and discrimination between ice crystals and water droplets. Recently, two instruments have been developed to provide these measurements at the LACIS facility. The Thermally-stabilized Optical Particle Spectrometer (TOPS) is measuring the particle size based on the intensity of light scattered by individual particles into a near-forward (15° to 45°) direction. Two symmetrical forward scattering channels allow for optical determination of the sensing volume, thus reducing the coincidence counting error and the edge zone effect. The backscatter channel (162° to 176°) equipped with a rotatable cross polarizer allows for establishing the change in linear polarization state of the scattered light. The backscatter elevation angle is limited so that the linear depolarization of light scattered by spherical particles of arbitrary size is zero. Any detectable signal in the depolarization channel can be therefore attributed to non-spherical particles (ice crystals). With consideration of the signal in the backscatter channel the separate counting of water drops and ice particle is possible. The Leipzig Ice Scattering Apparatus (LISA) is a modified version of the Small Ice Detector (SID3), developed at the Science and Technology Research Institute at the University of Hertfordshire, UK. The SID instruments have been developed primarily as wing-mounted systems for airborne studies of cloud ice particles. SID3 records the forward scattered light pattern with high angular resolution using an intensified CCD (780 by 582 pixels) at a rate of 20 images per second. In addition to the SID3 capabilities, LISA is able to measure the circular depolarization ratio in the range of scattering angles from 166° to 172°. Whereas particle size, shape and orientation are characterized by the angular distribution of forward-scattered light, the measured value of the circular depolarization can be used to validate the existing theoretical models of light scattering by irregular particles (RTDF, GSVM, T-Matrix, DDA). The first measurements done at the LACIS facility have demonstrated a promising sensitivity of LISA's depolarization channel to the shape of ice crystals. Results showed an increase of the mean circular depolarization ratio from 1.5 (characteristic for the liquid water droplets above 3 µm) to 2.5 for the "just frozen" almost-spherical droplets in the same size range. The presentation will describe details of instruments set up and present some exemplary results from experiments carried out at LACIS and AIDA (KIT) facilities.
Digital all-sky polarization imaging of partly cloudy skies.
Pust, Nathan J; Shaw, Joseph A
2008-12-01
Clouds reduce the degree of linear polarization (DOLP) of skylight relative to that of a clear sky. Even thin subvisual clouds in the "twilight zone" between clouds and aerosols produce a drop in skylight DOLP long before clouds become visible in the sky. In contrast, the angle of polarization (AOP) of light scattered by a cloud in a partly cloudy sky remains the same as in the clear sky for most cases. In unique instances, though, select clouds display AOP signatures that are oriented 90 degrees from the clear-sky AOP. For these clouds, scattered light oriented parallel to the scattering plane dominates the perpendicularly polarized Rayleigh-scattered light between the instrument and the cloud. For liquid clouds, this effect may assist cloud particle size identification because it occurs only over a relatively limited range of particle radii that will scatter parallel polarized light. Images are shown from a digital all-sky-polarization imager to illustrate these effects. Images are also shown that provide validation of previously published theories for weak (approximately 2%) polarization parallel to the scattering plane for a 22 degrees halo.
NASA Astrophysics Data System (ADS)
Campos Braga, Ramon; Rosenfeld, Daniel; Weigel, Ralf; Jurkat, Tina; Andreae, Meinrat O.; Wendisch, Manfred; Pöschl, Ulrich; Voigt, Christiane; Mahnke, Christoph; Borrmann, Stephan; Albrecht, Rachel I.; Molleker, Sergej; Vila, Daniel A.; Machado, Luiz A. T.; Grulich, Lucas
2017-12-01
We have investigated how aerosols affect the height above cloud base of rain and ice hydrometeor initiation and the subsequent vertical evolution of cloud droplet size and number concentrations in growing convective cumulus. For this purpose we used in situ data of hydrometeor size distributions measured with instruments mounted on HALO aircraft during the ACRIDICON-CHUVA campaign over the Amazon during September 2014. The results show that the height of rain initiation by collision and coalescence processes (Dr, in units of meters above cloud base) is linearly correlated with the number concentration of droplets (Nd in cm-3) nucleated at cloud base (Dr ≈ 5 ṡ Nd). Additional cloud processes associated with Dr, such as GCCN, cloud, and mixing with ambient air and other processes, produce deviations of ˜ 21 % in the linear relationship, but it does not mask the clear relationship between Dr and Nd, which was also found at different regions around the globe (e.g., Israel and India). When Nd exceeded values of about 1000 cm-3, Dr became greater than 5000 m, and the first observed precipitation particles were ice hydrometeors. Therefore, no liquid water raindrops were observed within growing convective cumulus during polluted conditions. Furthermore, the formation of ice particles also took place at higher altitudes in the clouds in polluted conditions because the resulting smaller cloud droplets froze at colder temperatures compared to the larger drops in the unpolluted cases. The measured vertical profiles of droplet effective radius (re) were close to those estimated by assuming adiabatic conditions (rea), supporting the hypothesis that the entrainment and mixing of air into convective clouds is nearly inhomogeneous. Additional CCN activation on aerosol particles from biomass burning and air pollution reduced re below rea, which further inhibited the formation of raindrops and ice particles and resulted in even higher altitudes for rain and ice initiation.
NASA Astrophysics Data System (ADS)
Sekelsky, Stephen Michael
1995-11-01
The Microwave Remote Sensing Laboratory (MIRSL) st the University of Massachusetts has developed a unique single antenna, dual-frequency polarimetric Cloud Profiling Radar System (CPRS). This project was funded by the Department of Energy's Atmospheric Radiation Measurement (ARM) program, and was intended to help fill the void of ground-based remote sensors capable of characterizing cloud microphysical properties. CPRS is unique in that it can simultaneously measure the complex power backscattered from clouds at 33 GHz and 95 GHz through the same aperture. Both the 33 GHz and 95 GHz channels can transmit pulse-to-pulse selectable vertical or horizontal polarization, and simultaneously record both the copolarized and crosspolarized backscatter. CPRS Doppler, polarimetric and dual-wavelength reflectivity measurements combined with in situ cloud measurements should lead to the development of empirical models that can more accurately classify cloud-particle phase and habit, and make better quantitative estimates of particle size distribution parameters. This dissertation describes the CPRS hardware, and presents colocated 33 GHz and 95 GHz measurements that illustrate the use of dual-frequency measurements to estimate particle size when Mie scattering, is observed in backscatter from rain and ice-phase clouds. Polarimetric measurements are presented as a means of discriminating cloud phase (ice-water) and estimating crystal shape in cirrus clouds. Polarimetric and dual-wavelength observations of insects are also presented with a brief discussion of their impact on the interpretation of precipitation and liquid cloud measurements. In precipitation, Diermendjian's equations for Mie backscatter (1) and the Marshal-Palmer drop-size distribution are used to develop models relating differences in the reflectivity and mean velocity at 33 GHz and 95 GHz to the microphysical parameters of rain. These models are then used to estimate mean droplet size from CPRS measurements of drizzle, which were collected in July, 1993 during the system's first field test in Lincoln, NE. The dissertation also presents cirrus cloud and other measurements collected during the DOE-sponsored Remote Cloud Sensing Intensive Operations Period (RCS-IOP) experiment in April, 1994. Zenith-pointing cirrus measurements show small differences in 33 GHz and 95 GHz reflectivity, as models have predicted (2). Depolarization was also detected in a few cases when ice crystals precipitated from the base of a cloud. On May 29, 1994 CPRS observed a convective storm that produced a cirrus anvil cloud and hail. These storms are one 'engine' producing cirrus clouds and are currently a topic of intensive research by climatologists. Both zenith-pointing and range-height data formats are presented. Measurements of depolarization above the melting/layer are compared to in situ observations of particle size and shape. The RCS-IOP experiment also provided a first opportunity to verify our calibration with aircraft in situ measurements, and to compare our cloud measurements to those collected by other remote sensors. (Abstract shortened by UMI.).
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A.; Suttles, J. T.; Heymsfield, Andrew J.; Welch, Ronald M.; Spinhirne, James D.; Wu, Man-Li C.; Starr, David OC.; Parker, Lindsay; Arduini, Robert F.
1989-01-01
Observations of cirrus and altocumulus clouds during the First International Satellite Cloud Climatology Project Regional Experiment (FIRE) are compared to theoretical models of cloud radiative properties. Three tests are performed. First, LANDSAT radiances are used to compare the relationship between nadir reflectance ot 0.83 micron and beam emittance at 11.5 microns with that predicted for model calculations using spherical and nonspherical phase functions. Good agreement is found between observations and theory when water droplets dominate. Poor agreement is found when ice particles dominate, especially using scattering phase functions for spherical particles. Even when compared to a laboratory measured ice particle phase function, the observations show increased side scattered radiation relative to the theoretical calculations. Second, the anisotropy of conservatively scattered radiation is examined using simultaneous multiple angle views of the cirrus from LANDSAT and ER-2 aircraft radiometers. Observed anisotropy gives good agreement with theoretical calculations using the laboratory measured ice particle phase function and poor agreement with a spherical particle phase function. Third, Landsat radiances at 0.83, 1.65, and 2.21 microns are used to infer particle phase and particle size. For water droplets, good agreement is found with King Air FSSP particle probe measurements in the cloud. For ice particles, the LANDSAT radiance observations predict an effective radius of 60 microns versus aircraft observations of about 200 microns. It is suggested that this descrepancy may be explained by uncertainty in the imaginary index of ice and by inadequate measurements of small ice particles by microphysical probes.
NASA Astrophysics Data System (ADS)
Hoose, C.; Lohmann, U.; Stier, P.; Verheggen, B.; Weingartner, E.; Herich, H.
2007-12-01
The global aerosol-climate model ECHAM5-HAM (Stier et al., 2005) has been extended by an explicit treatment of cloud-borne particles. Two additional modes for in-droplet and in-crystal particles are introduced, which are coupled to the number of cloud droplet and ice crystal concentrations simulated by the ECHAM5 double-moment cloud microphysics scheme (Lohmann et al., 2007). Transfer, production and removal of cloud-borne aerosol number and mass by cloud droplet activation, collision scavenging, aqueous-phase sulfate production, freezing, melting, evaporation, sublimation and precipitation formation are taken into account. The model performance is demonstrated and validated with observations of the evolution of total and interstitial aerosol concentrations and size distributions during three different mixed-phase cloud events at the alpine high-altitude research station Jungfraujoch (Switzerland) (Verheggen et al, 2007). Although the single-column simulations can not be compared one-to-one with the observations, the governing processes in the evolution of the cloud and aerosol parameters are captured qualitatively well. High scavenged fractions are found during the presence of liquid water, while the release of particles during the Bergeron-Findeisen process results in low scavenged fractions after cloud glaciation. The observed coexistence of liquid and ice, which might be related to cloud heterogeneity at subgrid scales, can only be simulated in the model when forcing non-equilibrium conditions. References: U. Lohmann et al., Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM, Atmos. Chem. Phys. 7, 3425-3446 (2007) P. Stier et al., The aerosol-climate model ECHAM5-HAM, Atmos. Chem. Phys. 5, 1125-1156 (2005) B. Verheggen et al., Aerosol partitioning between the interstitial and the condensed phase in mixed-phase clouds, Accepted for publication in J. Geophys. Res. (2007)
Subvisual Cirrus cloud properties derived from a FIRE IFO case study
NASA Technical Reports Server (NTRS)
Sassen, Kenneth; Griffin, M. K.; Dodd, G. C.
1990-01-01
From the central Wisconsin IFO field at Wausau, the Mobile Polarization Lidar and a surface radiation station from the Lamont-Doherty Geological Observatory observed two very tenuous cirrus clouds on 21 October 1986. The clouds were present just below the height of the tropopause, between -60 to -70 C. The first cloud was not detected visually, and is classified as subvisual cirrus. The second, a relatively narrow cloud band that was probably the remnants of an aircraft contrail, can be termed zenith-subvisual since, although it was invisible in the zenith direction, it could be discerned when viewed at lower elevation angles and also due to strong solar forward-scattering and corona effects. The observations provide an opportunity to assess the threshold cloud optical thickness associated with cirrus cloud visibility. Ruby lidar backscattered signals were converted to isotropic volume backscatter coefficients by applying the pure-molecular scattering assumption just below the cloud base. The backscattering coefficient due to the cloud is then obtained and expressed in relation to the molecular backscattering coefficient in terms of the scattering ratio R. The linear depolarization ratio for the cloud is computed after removing the essentially parallel-polarized scattering contribution from air molecules. The values are also applied to determine the cloud optical thickness through the use of backscatter-to-extinction ratio, and the concentration of cloud particles using the backscattering gain, and the effective diameter of the particles obtained from the analysis of solar corona photographs. The sizes of the particles generating the corona are related to the angular separations between the centers of the red bands and the sun, yielding diameters of approximately 25 microns. The direct and diffuse components of shortwave radiation fluxes, measured by full hemispheric pyranometers, were used to compute the nadir optical thickness of the total atmosphere.
Effects of Initial Particle Distribution on an Energetic Dispersal of Particles
NASA Astrophysics Data System (ADS)
Rollin, Bertrand; Ouellet, Frederick; Koneru, Rahul; Garno, Joshua; Durant, Bradford
2017-11-01
Accurate predictions of the late time solid particle cloud distribution ensuing an explosive dispersal of particles is an extremely challenging problem for compressible multiphase flow simulations. The source of this difficulty is twofold: (i) The complex sequence of events taking place. Indeed, as the blast wave crosses the surrounding layer of particles, compaction occurs shortly before particles disperse radially at high speed. Then, during the dispersion phase, complex multiphase interactions occurs between particles and detonation products. (ii) Precise characterization of the explosive and particle distribution is virtually impossible. In this numerical experiment, we focus on the sensitivity of late time particle cloud distributions relative to carefully designed initial distributions, assuming the explosive is well described. Using point particle simulations, we study the case of a bed of glass particles surrounding an explosive. Constraining our simulations to relatively low initial volume fractions to prevent reaching of the close packing limit, we seek to describe qualitatively and quantitatively the late time dependency of a solid particle cloud on its distribution before the energy release of an explosive. This work was supported by the U.S. DoE, NNSA, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.
NASA Astrophysics Data System (ADS)
Weigel, Ralf; Spichtinger, Peter; Mahnke, Christoph; Klingebiel, Marcus; Afchine, Armin; Petzold, Andreas; Krämer, Martina; Costa, Anja; Molleker, Sergej; Reutter, Philipp; Szakáll, Miklós; Port, Max; Grulich, Lucas; Jurkat, Tina; Minikin, Andreas; Borrmann, Stephan
2016-10-01
Particle concentration measurements with underwing probes on aircraft are impacted by air compression upstream of the instrument body as a function of flight velocity. In particular, for fast-flying aircraft the necessity arises to account for compression of the air sample volume. Hence, a correction procedure is needed to invert measured particle number concentrations to ambient conditions that is commonly applicable to different instruments to gain comparable results. In the compression region where the detection of particles occurs (i.e. under factual measurement conditions), pressure and temperature of the air sample are increased compared to ambient (undisturbed) conditions in certain distance away from the aircraft. Conventional procedures for scaling the measured number densities to ambient conditions presume that the air volume probed per time interval is determined by the aircraft speed (true air speed, TAS). However, particle imaging instruments equipped with pitot tubes measuring the probe air speed (PAS) of each underwing probe reveal PAS values systematically below those of the TAS. We conclude that the deviation between PAS and TAS is mainly caused by the compression of the probed air sample. From measurements during two missions in 2014 with the German Gulfstream G-550 (HALO - High Altitude LOng range) research aircraft we develop a procedure to correct the measured particle concentration to ambient conditions using a thermodynamic approach. With the provided equation, the corresponding concentration correction factor ξ is applicable to the high-frequency measurements of the underwing probes, each of which is equipped with its own air speed sensor (e.g. a pitot tube). ξ values of 1 to 0.85 are calculated for air speeds (i.e. TAS) between 60 and 250 m s-1. For different instruments at individual wing position the calculated ξ values exhibit strong consistency, which allows for a parameterisation of ξ as a function of TAS for the current HALO underwing probe configuration. The ability of cloud particles to adopt changes of air speed between ambient and measurement conditions depends on the cloud particles' inertia as a function of particle size (diameter Dp). The suggested inertia correction factor μ (Dp) for liquid cloud drops ranges between 1 (for Dp < 70 µm) and 0.8 (for 100 µm < Dp < 225 µm) but it needs to be applied carefully with respect to the particles' phase and nature. The correction of measured concentration by both factors, ξ and μ (Dp), yields higher ambient particle concentration by about 10-25 % compared to conventional procedures - an improvement which can be considered as significant for many research applications. The calculated ξ values are specifically related to the considered HALO underwing probe arrangement and may differ for other aircraft. Moreover, suggested corrections may not cover all impacts originating from high flight velocities and from interferences between the instruments and e.g. the aircraft wings and/or fuselage. Consequently, it is important that PAS (as a function of TAS) is individually measured by each probe deployed underneath the wings of a fast-flying aircraft.
NASA Astrophysics Data System (ADS)
De Haan, D. O.; Riva, M.; Surratt, J. D.; Cazaunau, M.; Doussin, J. F.
2016-12-01
Minimal organic aerosol forms when aerosol particles are exposed to gas-phase methylglyoxal, but condensed phase laboratory studies of aerosol chemistry have suggested that methylglyoxal is a significant source of oligomerized aerosol material. In this study, various types of seed particles were exposed to gaseous methylglyoxal and then cloud-processed in the CESAM chamber. The gas phase was continuously probed by high-resolution PTR-MS during the experiments, and the particle phase WSOC was chemically characterized by high-resolution UPLC/ESI-DAD-QTOFMS. Uptake of methylglyoxal to dry particles caused optical rather than size changes, along with the release of imine products to the gas phase. High RH and cloud processing released some particle-bound methylglyoxal back to the gas phase but triggered an uptake of imine products. Analysis of the particle phase identified N-containing aldol condensation products derived from methylglyoxal, imine (produced from methylglyoxal and amine reactions), acetaldehyde (produced by methylglyoxal photolysis) and hydroxyacetone (produced by methylglyoxal disproportionation) monomers.
Slade, Jonathan H.; Shiraiwa, Manabu; Arangio, Andrea; ...
2017-02-04
Chemical aging of organic aerosol (OA) through multiphase oxidation reactions can alter their cloud condensation nuclei (CCN) activity and hygroscopicity. However, the oxidation kinetics and OA reactivity depend strongly on the particle phase state, potentially influencing the hydrophobic-to-hydrophilic conversion rate of carbonaceous aerosol. Here, amorphous Suwannee River fulvic acid (SRFA) aerosol particles, a surrogate humic-like substance (HULIS) that contributes substantially to global OA mass, are oxidized by OH radicals at different temperatures and phase states. When oxidized at low temperature in a glassy solid state, the hygroscopicity of SRFA particles increased by almost a factor of two, whereas oxidation ofmore » liquid-like SRFA particles at higher temperatures did not affect CCN activity. Low-temperature oxidation appears to promote the formation of highly-oxygenated particle-bound fragmentation products with lower molar mass and greater CCN activity, underscoring the importance of chemical aging in the free troposphere and its influence on the CCN activity of OA.« less
The relevance of nanoscale biological fragments for ice nucleation in clouds
O′Sullivan, D.; Murray, B. J.; Ross, J. F.; Whale, T. F.; Price, H. C.; Atkinson, J. D.; Umo, N. S.; Webb, M. E.
2015-01-01
Most studies of the role of biological entities as atmospheric ice-nucleating particles have focused on relatively rare supermicron particles such as bacterial cells, fungal spores and pollen grains. However, it is not clear that there are sufficient numbers of these particles in the atmosphere to strongly influence clouds. Here we show that the ice-nucleating activity of a fungus from the ubiquitous genus Fusarium is related to the presence of nanometre-scale particles which are far more numerous, and therefore potentially far more important for cloud glaciation than whole intact spores or hyphae. In addition, we quantify the ice-nucleating activity of nano-ice nucleating particles (nano-INPs) washed off pollen and also show that nano-INPs are present in a soil sample. Based on these results, we suggest that there is a reservoir of biological nano-INPs present in the environment which may, for example, become aerosolised in association with fertile soil dust particles. PMID:25626414
Integrated Sensor Systems for UAS
2008-04-01
2. Optical particle counter 0.27 5.4 3. Pyranometer 0.17 ɘ.2 4. Temp. & relative humidity 0.05 ɘ.1 5. Data acquisition system 0.15 ɘ.2 6...payload volume showing sensor instrument installation. The insert shows the Manta exterior with the cloud droplet probe and pyranometer mounted on...Instrumentation Above- 2.7 Aethalometer cloud 14 Optical particle counter Up and down pyranometers Condensation particle counter In- 3.7
Cloud Condensation Nuclei in FIRE III
NASA Technical Reports Server (NTRS)
Hudson, James G.; Delnore, Victor E. (Technical Monitor)
2002-01-01
Yum and Hudson showed that the springtime Arctic aerosol is probably a result of long-range transport at high altitudes. Scavenging of particles by clouds reduces the low level concentrations by a factor of 3. This produces a vertical gradient in particle concentrations when low-level clouds are present. Concentrations are uniform with height when clouds are not present. Low-level CCN (cloud condensation nuclei) spectra are similar to those in other maritime areas as found by previous projects including FIRE 1 and ASTEX, which were also supported on earlier NASA-FIRE grants. Wylie and Hudson carried this work much further by comparing the CCN spectra observed during ACE with back trajectories of air masses and satellite photographs. This showed that cloud scavenging reduces CCN concentrations at all altitudes over the springtime Arctic, with liquid clouds being more efficient scavengers than frozen clouds. The small size of the Arctic Ocean seems to make it more susceptible to continental and thus anthropogenic aerosol influences than any of the other larger oceans.
NASA Astrophysics Data System (ADS)
Liu, Yuqin; de Leeuw, Gerrit; Kerminen, Veli-Matti; Zhang, Jiahua; Zhou, Putian; Nie, Wei; Qi, Ximeng; Hong, Juan; Wang, Yonghong; Ding, Aijun; Guo, Huadong; Krüger, Olaf; Kulmala, Markku; Petäjä, Tuukka
2017-05-01
Aerosol effects on low warm clouds over the Yangtze River Delta (YRD, eastern China) are examined using co-located MODIS, CALIOP and CloudSat observations. By taking the vertical locations of aerosol and cloud layers into account, we use simultaneously observed aerosol and cloud data to investigate relationships between cloud properties and the amount of aerosol particles (using aerosol optical depth, AOD, as a proxy). Also, we investigate the impact of aerosol types on the variation of cloud properties with AOD. Finally, we explore how meteorological conditions affect these relationships using ERA-Interim reanalysis data. This study shows that the relation between cloud properties and AOD depends on the aerosol abundance, with a different behaviour for low and high AOD (i.e. AOD < 0.35 and AOD > 0.35). This applies to cloud droplet effective radius (CDR) and cloud fraction (CF), but not to cloud optical thickness (COT) and cloud top pressure (CTP). COT is found to decrease when AOD increases, which may be due to radiative effects and retrieval artefacts caused by absorbing aerosol. Conversely, CTP tends to increase with elevated AOD, indicating that the aerosol is not always prone to expand the vertical extension. It also shows that the COT-CDR and CWP (cloud liquid water path)-CDR relationships are not unique, but affected by atmospheric aerosol loading. Furthermore, separation of cases with either polluted dust or smoke aerosol shows that aerosol-cloud interaction (ACI) is stronger for clouds mixed with smoke aerosol than for clouds mixed with dust, which is ascribed to the higher absorption efficiency of smoke than dust. The variation of cloud properties with AOD is analysed for various relative humidity and boundary layer thermodynamic and dynamic conditions, showing that high relative humidity favours larger cloud droplet particles and increases cloud formation, irrespective of vertical or horizontal level. Stable atmospheric conditions enhance cloud cover horizontally. However, unstable atmospheric conditions favour thicker and higher clouds. Dynamically, upward motion of air parcels can also facilitate the formation of thicker and higher clouds. Overall, the present study provides an understanding of the impact of aerosols on cloud properties over the YRD. In addition to the amount of aerosol particles (or AOD), evidence is provided that aerosol types and ambient environmental conditions need to be considered to understand the observed relationships between cloud properties and AOD.
NASA Astrophysics Data System (ADS)
Rosenberg, Phil; Dean, Angela; Williams, Paul; Dorsey, James; Minikin, Andreas; Pickering, Martyn; Petzold, Andreas
2013-04-01
Optical Particle Counters (OPCs) are the de-facto standard for in-situ measurements of airborne aerosol size distributions and small cloud particles over a wide size range. This is particularly the case on airborne platforms where fast response is important. OPCs measure scattered light from individual particles and generally bin particles according to the measured peak amount of light scattered (the OPC's response). Most manufacturers provide a table along with their instrument which indicates the particle diameters which represent the edges of each bin. It is important to correct the particle size reported by OPCs for the refractive index of the particles being measured, which is often not the same as for those used during calibration. However, the OPC's response is not a monotonic function of particle diameter and obvious problems occur when refractive index corrections are attempted, but multiple diameters correspond to the same OPC response. Here we recommend that OPCs are calibrated in terms of particle scattering cross section as this is a monotonic (usually linear) function of an OPC's response. We present a method for converting a bin's boundaries in terms of scattering cross section into a bin centre and bin width in terms of diameter for any aerosol species for which the scattering properties are known. The relationship between diameter and scattering cross section can be arbitrarily complex and does not need to be monotonic; it can be based on Mie-Lorenz theory or any other scattering theory. Software has been provided on the Sourceforge open source repository for scientific users to implement such methods in their own measurement and calibration routines. As a case study data is presented showing data from Passive Cavity Aerosol Spectrometer Probe (PCASP) and a Cloud Droplet Probe (CDP) calibrated using polystyrene latex spheres and glass beads before being deployed as part of the Fennec project to measure airborne dust in the inaccessible regions of the Sahara.
Dealing with non-unique and non-monotonic response in particle sizing instruments
NASA Astrophysics Data System (ADS)
Rosenberg, Phil
2017-04-01
A number of instruments used as de-facto standards for measuring particle size distributions are actually incapable of uniquely determining the size of an individual particle. This is due to non-unique or non-monotonic response functions. Optical particle counters have non monotonic response due to oscillations in the Mie response curves, especially for large aerosol and small cloud droplets. Scanning mobility particle sizers respond identically to two particles where the ratio of particle size to particle charge is approximately the same. Images of two differently sized cloud or precipitation particles taken by an optical array probe can have similar dimensions or shadowed area depending upon where they are in the imaging plane. A number of methods exist to deal with these issues, including assuming that positive and negative errors cancel, smoothing response curves, integrating regions in measurement space before conversion to size space and matrix inversion. Matrix inversion (also called kernel inversion) has the advantage that it determines the size distribution which best matches the observations, given specific information about the instrument (a matrix which specifies the probability that a particle of a given size will be measured in a given instrument size bin). In this way it maximises use of the information in the measurements. However this technique can be confused by poor counting statistics which can cause erroneous results and negative concentrations. Also an effective method for propagating uncertainties is yet to be published or routinely implemented. Her we present a new alternative which overcomes these issues. We use Bayesian methods to determine the probability that a given size distribution is correct given a set of instrument data and then we use Markov Chain Monte Carlo methods to sample this many dimensional probability distribution function to determine the expectation and (co)variances - hence providing a best guess and an uncertainty for the size distribution which includes contributions from the non-unique response curve, counting statistics and can propagate calibration uncertainties.
Microphysical growth state of ice particles and large-scale electrical structure of clouds
NASA Technical Reports Server (NTRS)
Williams, Earle; Zhang, Renyi; Boccippio, Dennis
1994-01-01
Cloud temperature, liquid water content, and vertical air velocity are all considered in evaluating the microphysical growth state of ice phase precipitation particles in the atmosphere. The large-scale observations taken together with in situ measurements indicated that the most prevalent growth condition for large ice particles in active convection is sublimation during riming, whereas the most prevalent growth condition in stratiform precipitation is vapor deposition. The large-scale electrical observations lend further support to the idea that particles warmed by riming into sublimation charge negatively and particles in vapor deposition charge positively in collisions with small ice particles.
Simulations of Shock Wave Interaction with a Particle Cloud
NASA Astrophysics Data System (ADS)
Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Annamalai, Subramanian; Balachandar, S.'Bala'
2016-11-01
Simulations of a shock wave interacting with a cloud of particles are performed in an attempt to understand similar phenomena observed in dispersal of solid particles under such extreme environment as an explosion. We conduct numerical experiments in which a particle curtain fills only 87% of the shock tube from bottom to top. As such, the particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In this study, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. In these simulations we use a Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. Measurements of particle dispersion are made at different initial volume fractions of the particle cloud. A detailed analysis of the evolution of the particle curtain with respect to the initial conditions is presented. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.
NASA Astrophysics Data System (ADS)
Charnay, B.; Bézard, B.; Baudino, J.-L.; Bonnefoy, M.; Boccaletti, A.; Galicher, R.
2018-02-01
We developed a simple, physical, and self-consistent cloud model for brown dwarfs and young giant exoplanets. We compared different parametrizations for the cloud particle size, by fixing either particle radii or the mixing efficiency (parameter f sed), or by estimating particle radii from simple microphysics. The cloud scheme with simple microphysics appears to be the best parametrization by successfully reproducing the observed photometry and spectra of brown dwarfs and young giant exoplanets. In particular, it reproduces the L–T transition, due to the condensation of silicate and iron clouds below the visible/near-IR photosphere. It also reproduces the reddening observed for low-gravity objects, due to an increase of cloud optical depth for low gravity. In addition, we found that the cloud greenhouse effect shifts chemical equilibrium, increasing the abundances of species stable at high temperature. This effect should significantly contribute to the strong variation of methane abundance at the L–T transition and to the methane depletion observed on young exoplanets. Finally, we predict the existence of a continuum of brown dwarfs and exoplanets for absolute J magnitude = 15–18 and J-K color = 0–3, due to the evolution of the L–T transition with gravity. This self-consistent model therefore provides a general framework to understand the effects of clouds and appears well-suited for atmospheric retrievals.
[Do volcanic eruptions and wide-spread fires affect our climate?].
Primault, B
1992-03-31
During the first half of 1991, the press, radio and TV have often reported about large fires (Kuwait, forest fires in Portugal) or volcanic eruptions (Mount Unzen, Pinatubo). Starting with the facts, the author investigates first the kind of particles constituting such smoke clouds and in particular their size. He places the main cloud in the atmosphere and asks; the cloud remains near the soil, whether it reaches the upper layers of the troposphere or it breaks out into the stratosphere? The transport of the cloud depends on particle-size and of the winds blowing in the reached layer. All these clouds have an impact on the weather. The author analyses finally the credible influence of such clouds on weather elements: radiation and temperature as well as the extent of these effects. He corroborates his analysis by visual observations or measurements.
NASA Astrophysics Data System (ADS)
Rusch, D.; Thomas, G.; Merkel, A.; Olivero, J.; Chandran, A.; Lumpe, J.; Carstans, J.; Randall, C.; Bailey, S.; Russell, J.
2017-09-01
Observations by the Cloud Imaging and Particle Size (CIPS) instrument on the Aeronomy of Ice in the Mesosphere (AIM) satellite have demonstrated the existence of Polar Mesospheric Cloud (PMC) regions populated by particles whose mean sizes range between 60 and 100 nm (radii of equivalent volume spheres). It is known from numerous satellite experiments that typical mean PMC particle sizes are of the order of 40-50 nm. Determination of particle size by CIPS is accomplished by measuring the scattering of solar radiation at various scattering angles at a spatial resolution of 25 km2. In this size range we find a robust anti-correlation between mean particle size and albedo. These very-large particle-low-ice (VLP-LI) clouds occur over spatially coherent areas. The surprising result is that VLP-LI are frequently present either in the troughs of gravity wave-like features or at the edges of PMC voids. We postulate that an association with gravity waves exists in the low-temperature summertime mesopause region, and illustrate the mechanism by a gravity wave simulation through use of the 2D Community Aerosol and Radiation Model for Atmospheres (CARMA). The model results are consistent with a VLP-LI population in the cold troughs of monochromatic gravity waves. In addition, we find such events in Whole Earth Community Climate Model/CARMA simulations, suggesting the possible importance of sporadic downward winds in heating the upper cloud regions. This newly-discovered association enhances our understanding of the interaction of ice microphysics with dynamical processes in the upper mesosphere.
Deployment of ARM Aerial Facility Scanning Mobility Particle Sizer Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jian
2016-09-01
Atmospheric aerosols influence global climate by scattering and absorbing sunlight (direct effects) and by changing the microphysical structure, lifetime, and coverage of clouds (indirect effects). While it is widely accepted that aerosol indirect effects cool the Earth-atmosphere system by increasing cloud reflectivity and coverage, the magnitudes of the indirect effects are poorly quantified. One key aerosol property for understanding aerosol indirect effects is the ability of aerosol particles to form cloud droplets at atmospheric relevant supersaturations—i.e., cloud condensation Nuclei (CCN) activity. For particles consisting of typical atmospheric inorganic compounds, their CCN activity is well understood and can be effectively predictedmore » using Köhler theory based on physicochemical properties of the solute, such as its mass, molar volume, and activity coefficient. However, atmospheric aerosols often consist of hundreds of organic species, which can contribute ~20-90% to the total fine aerosol mass. Depending on their properties, organic species can significantly influence the ability of aerosol particles to act as CCN and form cloud droplets. This project focuses on the CCN activity of secondary organic aerosol (SOA) compounds formed from key biogenic volatile organic compounds (VOCs) under representative conditions, and the relationship between the hygroscopicity and composition of organic aerosols. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerial Facility (AAF) scanning mobility particles sizer (SMPS) was deployed during a ~ 2-week intensive measurement campaign, taking place February 10-February 23, 2016 at the Pacific Northwest National Laboratory (PNNL) Environmental Simulation Chamber. The SMPS was operated with a CCN counter (CCNc). Aerosol particles were first classified by the differential mobility analyzer inside the SMPS; the classified aerosol will then be simultaneously characterized by a condensation particle counter (CPC) (part of the SMPS) and the CCNc.« less
NASA Astrophysics Data System (ADS)
Diehl, K.; Simmel, M.; Wurzler, S.
There is some evidence that the initiation of warm rain is suppressed in clouds over regions with vegetation fires. Thus, the ice phase becomes important as another possibility to initiate precipitation. Numerical simulations were performed to investigate heterogeneous drop freezing for a biomass-burning situation. An air parcel model with a sectional two-dimensional description of the cloud microphysics was employed with parameterizations for immersion and contact freezing which consider the different ice nucleating efficiencies of various ice nuclei. Three scenarios were simulated resulting to mixed-phase or completely glaciated clouds. According to the high insoluble fraction of the biomass-burning particles drop freezing via immersion and contact modes was very efficient. The preferential freezing of large drops followed by riming (i.e. the deposition of liquid drops on ice particles) and the evaporation of the liquid drops (Bergeron-Findeisen process) caused a further decrease of the liquid drops' effective radius in higher altitudes. In turn ice particle sizes increased so that they could serve as germs for graupel or hailstone formation. The effects of ice initiation on the vertical cloud dynamics were fairly significant leading to a development of the cloud to much higher altitudes than in a warm cloud without ice formation.
Aryal, Arjun; Brooks, Benjamin A.; Reid, Mark E.; Bawden, Gerald W.; Pawlak, Geno
2012-01-01
Acquiring spatially continuous ground-surface displacement fields from Terrestrial Laser Scanners (TLS) will allow better understanding of the physical processes governing landslide motion at detailed spatial and temporal scales. Problems arise, however, when estimating continuous displacement fields from TLS point-clouds because reflecting points from sequential scans of moving ground are not defined uniquely, thus repeat TLS surveys typically do not track individual reflectors. Here, we implemented the cross-correlation-based Particle Image Velocimetry (PIV) method to derive a surface deformation field using TLS point-cloud data. We estimated associated errors using the shape of the cross-correlation function and tested the method's performance with synthetic displacements applied to a TLS point cloud. We applied the method to the toe of the episodically active Cleveland Corral Landslide in northern California using TLS data acquired in June 2005–January 2007 and January–May 2010. Estimated displacements ranged from decimeters to several meters and they agreed well with independent measurements at better than 9% root mean squared (RMS) error. For each of the time periods, the method provided a smooth, nearly continuous displacement field that coincides with independently mapped boundaries of the slide and permits further kinematic and mechanical inference. For the 2010 data set, for instance, the PIV-derived displacement field identified a diffuse zone of displacement that preceded by over a month the development of a new lateral shear zone. Additionally, the upslope and downslope displacement gradients delineated by the dense PIV field elucidated the non-rigid behavior of the slide.
Bidabadi, Mehdi; Haghiri, Ali; Rahbari, Alireza
2010-04-15
In this study, an attempt has been made to analytically investigate the concentration and velocity profiles of particles across flame propagation through a micro-iron dust cloud. In the first step, Lagrangian particle equation of motion during upward flame propagation in a vertical duct is employed and then forces acting upon the particle, such as thermophoretic force (resulted from the temperature gradient), gravitation and buoyancy are introduced; and consequently, the velocity profile as a function of the distance from the leading edge of the combustion zone is extracted. In the resumption, a control volume above the leading edge of the combustion zone is considered and the change in the particle number density in this control volume is obtained via the balance of particle mass fluxes passing through it. This study explains that the particle concentration at the leading edge of the combustion zone is more than the particle agglomeration in a distance far from the flame front. This increase in the particle aggregation above the combustion zone has a remarkable effect on the lower flammability limits of combustible particle cloud. It is worth noticing that the velocity and particle concentration profiles show a reasonable compatibility with the experimental data. 2009 Elsevier B.V. All rights reserved.
Aircraft-Measured Indirect Cloud Effects from Biomass Burning Smoke in the Arctic and Subarctic
NASA Technical Reports Server (NTRS)
Zamora, L. M.; Kahn, R. A.; Cubison, M. J.; Diskin, G. S.; Jimenez, J. L.; Kondo, Y.; McFarquhar, G. M.; Nenes, A.; Thornhill, K. L.; Wisthaler, A.;
2016-01-01
The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200-300% over the next 50-100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were approx. 40- 60% smaller than in background clouds. Based on the relationship between cloud droplet number (N(liq)/ and various biomass burning tracers (BBt/ across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol-cloud interactions (ACIs, where ACI = (1/3) x dln(N(liq))/dln(BBt)) to be approx. 0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (0.02 gm/cu m and very high aerosol concentrations (2000- 3000/ cu cm in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 W/sq m or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic.We lastly explore evidence suggesting that numerous northern-latitude background Aitken particles can interact with combustion particles, perhaps impacting their properties as cloud condensation and ice nuclei.
Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic
Zamora, Lauren M.; Kahn, R. A.; Cubison, M. J.; ...
2016-01-21
The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200–300% over the next 50–100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were ~40–60% smallermore » than in background clouds. Based on the relationship between cloud droplet number ( N liq) and various biomass burning tracers (BB t) across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol–cloud interactions (ACIs, where ACI = (1/3) × d ln( N liq)/d ln(BB t)) to be ~0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (~0.02gm –3) and very high aerosol concentrations (2000–3000 cm –3) in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 Wm –2 or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic. Furthermore, we lastly explore evidence suggesting that numerous northern-latitude background Aitken particles can interact with combustion particles, perhaps impacting their properties as cloud condensation and ice nuclei.« less
NASA Astrophysics Data System (ADS)
Andreae, M. O.; Afchine, A.; Albrecht, R. I.; Artaxo, P.; Borrmann, S.; Cecchini, M. A.; Costa, A.; Fütterer, D.; Järvinen, E.; Klimach, T.; Konemann, T.; Kraemer, M.; Machado, L.; Mertes, S.; Pöhlker, C.; Pöhlker, M. L.; Poeschl, U.; Sauer, D. N.; Schnaiter, M.; Schneider, J.; Schulz, C.; Spanu, A.; Walser, A.; Wang, J.; Weinzierl, B.; Wendisch, M.
2016-12-01
Observations during ACRIDICON-CHUVA showed high aerosol concentrations in the upper troposphere (UT) over the Amazon Basin, with aerosol number concentrations after normalization to STP often exceeding those in the boundary layer (BL) by one or two orders of magnitude. The measurements were made during the German-Brazilian cooperative aircraft campaign ACRIDICON-CHUVA (Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems) on the German research aircraft HALO. The campaign took place over the Amazon Basin in September/October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with trace gases, aerosol particles, and atmospheric radiation. Aerosol enhancements were consistently observed on all flights, using several aerosol metrics, including condensation nuclei (CN), cloud condensation nuclei (CCN), and chemical species mass concentrations. These UT aerosols were different in their composition and size distribution from the aerosol in the BL, making convective transport of particles unlikely as a source. The regions in the immediate outflow of deep convective clouds were depleted in aerosol particles, whereas dramatically enhanced small (<90 nm diameter) aerosol number concentrations were found in UT regions that had experienced outflow from deep convection in the preceding 24-48 hours. We also found elevated concentrations of larger (>90 nm) particles in the UT, which consisted mostly of organic matter and nitrate and were very effective CCN. Our findings suggest that aerosol production takes place in the UT from volatile material brought up by deep convection, which is converted to condensable species in the UT. Subsequently, downward mixing and transport of upper tropospheric aerosol may be a source of particles to the BL, where they increase in size by the condensation of biogenic volatile organic carbon (BVOC) oxidation products. This may be an important source of aerosol particles in the Amazonian BL, where aerosol nucleation and new particle formation has not been observed. We propose that this may have been the dominant process supplying secondary aerosols in the pristine atmosphere, making clouds the dominant control of both removal and production of atmospheric particles.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Remer, Lorraine A.; Kaufman, Yoram J.
2004-01-01
Remote sensing of cloud and aerosol optical properties is routinely obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites. Techniques that are being used to enhance our ability to characterize the global distribution of cloud and aerosol properties include well-calibrated multispectral radiometers that rely on visible, near-infrared, and thermal infrared channels. The availability of thermal channels to aid in cloud screening for aerosol properties is an important additional piece of information that has not always been incorporated into sensor designs. In this paper, we describe the radiative properties of clouds as currently determined from satellites (cloud fraction, optical thickness, cloud top pressure, and cloud effective radius), and highlight the global and regional cloud microphysical properties currently available for assessing climate variability and forcing. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world. In addition, we will illustrate the radiative and microphysical properties of aerosol particles that are currently available from space-based observations, and show selected cases in which aerosol particles are observed to modify the cloud optical properties.
Multi-Sensor Investigation of a Regional High-Arctic Cloudy Event
NASA Astrophysics Data System (ADS)
Ivanescu, L.; O'Neill, N. T.; Blanchet, J. P.; Baibakov, K.; Chaubey, J. P.; Perro, C. W.; Duck, T. J.
2014-12-01
A regional high-Arctic cloud event observed in March, 2011 at the PEARL Observatory, near the Eureka Weather Station (80°N, 86°W), was investigated with a view to better understanding cloud formation mechanisms during the Polar night. We analysed the temporal cloud evolution with a suite of nighttime, ground-based remote sensing (RS) instruments, supplemented by radiosonde profiles and surface weather measurements. The RS suite included Raman lidar, cloud radar, a star-photometer and microwave-radiometers. In order to estimate the spatial extent and vertical variability of the cloud mass, we employed satellite-based lidar (CALIPSO) and radar (CloudSat) profiles in the regional neighbourhood of Eureka (at a latitude of 80°N, Eureka benefits from a high frequency of CALIPSO and CloudSat overpasses). The ground-based and satellite-based observations provide quantitative measurements of extensive (bulk) properties (cloud and aerosol optical depths), and intensive (per particle properties) such as aerosol and cloud particle size as well as shape, density and aggregation phase of the cloud particulates. All observations were then compared with the upper atmosphere NCEP/NCAR reanalyses in order to understand better the synoptic context of the cloud mass dynamics as a function of key meteorological parameters such as upper air temperature and water vapor circulation. Preliminary results indicated the presence of a particular type of thin ice cloud (TIC-2) associated with a deep and stable atmospheric low. A classification into small and large ice crystal size (< 40 μm and > 40 μm, respectively), identifies the clouds as TIC-1 or TIC-2. This classification is hypothesized to be associated with the nature of the aerosols (non-anthropogenic versus anthropogenic) serving as ice nuclei in their formation. Such a distinction has important implications on the initiation of precipitation, removal rate of the cloud particles and, in consequence, the radiative forcing properties on a regional basis.
NASA Astrophysics Data System (ADS)
Lee, Hyunho; Baik, Jong-Jin; Han, Ji-Young
2014-12-01
The effects of turbulence-induced collision enhancement (TICE) on mixed-phase deep convective clouds are numerically investigated using a 2-D cloud model with bin microphysics for uniform and sheared basic-state wind profiles and different aerosol concentrations. Graupel particles account for the most of the cloud mass in all simulation cases. In the uniform basic-state wind cases, graupel particles with moderate sizes account for some of the total graupel mass in the cases with TICE, whereas graupel particles with large sizes account for almost all the total graupel mass in the cases without TICE. This is because the growth of ice crystals into small graupel particles is enhanced due to TICE. The changes in the size distributions of graupel particles due to TICE result in a decrease in the mass-averaged mean terminal velocity of graupel particles. Therefore, the downward flux of graupel mass, and thus the melting of graupel particles, is reduced due to TICE, leading to a decrease in the amount of surface precipitation. Moreover, under the low aerosol concentration, TICE increases the sublimation of ice particles, consequently playing a partial role in reducing the amount of surface precipitation. The effects of TICE are less pronounced in the sheared basic-state wind cases than in the uniform basic-state wind cases because the number of ice crystals is much smaller in the sheared basic-state wind cases than in the uniform basic-state wind cases. Thus, the size distributions of graupel particles in the cases with and without TICE show little difference.
1951-01-01
qualitatively account for this growth. The first was the Bergeron- Findeisen theory, which has as its basis the concept of a mixed cloud. A mixed cloud is...water particle resulting is of raindrop size. The second theory is an extension of the Bergeron- Findeisen theory to include the known fact that...However, by acceptance of the concept of rapid ice-particle growth by the Bergeron- Findeisen theory, a reasonable method for the formation of
NASA Astrophysics Data System (ADS)
Hoffmann, Nadine; Duft, Denis; Kiselev, Alexei; Leisner, Thomas
2013-04-01
The contact freezing of supercooled cloud droplets is one of the potentially important and the least investigated heterogeneous mechanism of ice formation in the tropospheric clouds [1]. On the time scales of cloud lifetime the freezing of supercooled water droplets via contact mechanism may occur at higher temperature compared to the same IN immersed in the droplet. However, the laboratory experiments of contact freezing are very challenging due to the number of factors affecting the probability of ice formation. In our experiment we study single water droplets freely levitated in the laminar flow of mineral dust particles acting as the contact freezing nuclei. By repeating the freezing experiment sufficient number of times we are able to reproduce statistical freezing behavior of large ensembles of supercooled droplets and measure the average rate of freezing events. We show that the rate of freezing at given temperature is governed only by the rate of droplet -particle collision and by the properties of the contact ice nuclei. In this contribution we investigate the relationship between the freezing probability and the size of mineral dust particle (represented by illite) and show that their IN efficiency scales with the particle size. Based on this observation, we discuss the similarity between the freezing of supercooled water droplets in immersion and contact modes and possible mechanisms of apparent enhancement of the contact freezing efficiency. [1] - K.C. Young, The role of contact nucleation in ice phase initiation in clouds, Journal of the Atmospheric Sciences 31, 1974
Could geoengineering research help answer one of the biggest questions in climate science?
NASA Astrophysics Data System (ADS)
Wood, Robert; Ackerman, Thomas; Rasch, Philip; Wanser, Kelly
2017-07-01
Anthropogenic aerosol impacts on clouds constitute the largest source of uncertainty in quantifying the radiative forcing of climate, and hinders our ability to determine Earth's climate sensitivity to greenhouse gas increases. Representation of aerosol-cloud interactions in global models is particularly challenging because these interactions occur on typically unresolved scales. Observational studies show influences of aerosol on clouds, but correlations between aerosol and clouds are insufficient to constrain aerosol forcing because of the difficulty in separating aerosol and meteorological impacts. In this commentary, we argue that this current impasse may be overcome with the development of approaches to conduct control experiments whereby aerosol particle perturbations can be introduced into patches of marine low clouds in a systematic manner. Such cloud perturbation experiments constitute a fresh approach to climate science and would provide unprecedented data to untangle the effects of aerosol particles on cloud microphysics and the resulting reflection of solar radiation by clouds. The control experiments would provide a critical test of high-resolution models that are used to develop an improved representation aerosol-cloud interactions needed to better constrain aerosol forcing in global climate models.
A Case Study of Ships Forming and Not Forming Tracks in Moderately Polluted Clouds.
NASA Astrophysics Data System (ADS)
Noone, Kevin J.; Öström, Elisabeth; Ferek, Ronald J.; Garrett, Tim; Hobbs, Peter V.; Johnson, Doug W.; Taylor, Jonathan P.; Russell, Lynn M.; Flagan, Richard C.; Seinfeld, John H.; O'Dowd, Colin D.; Smith, Michael H.; Durkee, Philip A.; Nielsen, Kurt; Hudson, James G.; Pockalny, Robert A.; de Bock, Lieve; van Grieken, René E.; Gasparovic, Richard F.; Brooks, Ian
2000-08-01
The effects of anthropogenic particulate emissions from ships on the radiative, microphysical, and chemical properties of moderately polluted marine stratiform clouds are examined. A case study of two ships in the same air mass is presented where one of the vessels caused a discernible ship track while the other did not. In situ measurements of cloud droplet size distributions, liquid water content, and cloud radiative properties, as well as aerosol size distributions (outside cloud, interstitial, and cloud droplet residual particles) and aerosol chemistry, are presented. These are related to measurements of cloud radiative properties. The differences between the aerosol in the two ship plumes are discussed;these indicate that combustion-derived particles in the size range of about 0.03-0.3-m radius were those that caused the microphysical changes in the clouds that were responsible for the ship track.The authors examine the processes behind ship track formation in a moderately polluted marine boundary layer as an example of the effects that anthropogenic particulate pollution can have in the albedo of marine stratiform clouds.
Azores 2017 Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehner, Birgit; Chevallier, Karine; Weinhold, Kay
Aerosol particles play an important role for the regional and global climate. Therefore, a network of measurement sites has been established worldwide, but only a small fraction of them is capturing the marine boundary layer (MBL) while approximately 70% of the Earth’s surface is covered with water. The main focus of this project is to improve the knowledge of sources and exchange processes of aerosol particles in general (German Research Foundation [DFG] project WE 2757/2-1) and of cloud condensation nuclei in particular (DFG project HE 6770/2-1) in the MBL in the northeastern Atlantic Ocean where the influence of local anthropogenicmore » sources is negligible. The main hypothesis of the project is that long-range transport of aerosols from North America as well as new particle formation in the free troposphere (FT) and at cloud edges followed by vertical transport contribute significantly to the aerosol budget in the MBL. The knowledge of sources and sinks of aerosol particles in combination with vertical exchange between FT and MBL is a prerequisite to predict aerosol particle number concentrations in the lowest regions of the MBL and its influence on the formation of clouds. These processes are not sufficiently quantified over the ocean up to now. To verify the hypothesis stated above, vertical exchange processes and particle sources over the Azores will be quantified using data of 17 measurement flights with high spatial resolution using a helicopter-borne platform developed at the Leibniz Institute for Tropospheric Research (TROPOS). Here, aerosol particle number concentration and vertical wind speed have been measured with a temporal resolution allowing the direct estimate of the vertical turbulent flux of aerosol particles in different heights for the first time. In addition, aerosol particle number size distributions, number concentrations of cloud condensation nuclei (CCN), cloud droplet number concentration (CDNC), and particle absorption at three different wavelengths have been determined. The data analysis is ongoing and final results are not available yet. The detailed analysis of these data will be used to conclude sources and origin of the investigated aerosol particles.« less
Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds
NASA Astrophysics Data System (ADS)
Schnaiter, Martin; Järvinen, Emma; Vochezer, Paul; Abdelmonem, Ahmed; Wagner, Robert; Jourdan, Olivier; Mioche, Guillaume; Shcherbakov, Valery N.; Schmitt, Carl G.; Tricoli, Ugo; Ulanowski, Zbigniew; Heymsfield, Andrew J.
2016-04-01
This study reports on the origin of small-scale ice crystal complexity and its influence on the angular light scattering properties of cirrus clouds. Cloud simulation experiments were conducted at the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) cloud chamber of the Karlsruhe Institute of Technology (KIT). A new experimental procedure was applied to grow and sublimate ice particles at defined super- and subsaturated ice conditions and for temperatures in the -40 to -60 °C range. The experiments were performed for ice clouds generated via homogeneous and heterogeneous initial nucleation. Small-scale ice crystal complexity was deduced from measurements of spatially resolved single particle light scattering patterns by the latest version of the Small Ice Detector (SID-3). It was found that a high crystal complexity dominates the microphysics of the simulated clouds and the degree of this complexity is dependent on the available water vapor during the crystal growth. Indications were found that the small-scale crystal complexity is influenced by unfrozen H2SO4 / H2O residuals in the case of homogeneous initial ice nucleation. Angular light scattering functions of the simulated ice clouds were measured by the two currently available airborne polar nephelometers: the polar nephelometer (PN) probe of Laboratoire de Métérologie et Physique (LaMP) and the Particle Habit Imaging and Polar Scattering (PHIPS-HALO) probe of KIT. The measured scattering functions are featureless and flat in the side and backward scattering directions. It was found that these functions have a rather low sensitivity to the small-scale crystal complexity for ice clouds that were grown under typical atmospheric conditions. These results have implications for the microphysical properties of cirrus clouds and for the radiative transfer through these clouds.
NASA Astrophysics Data System (ADS)
Pokharel, Binod
This dissertation examines reflectivity data from three different radar systems, as well as airborne and ground-based in situ particle imaging data, to study the impact of ground-based glaciogenic seeding on orographic clouds and precipitation formed over the mountains in southern Wyoming. The data for this study come from the AgI Seeding Cloud Impact Investigation (ASCII) field campaign conducted over the Sierra Madre mountains in 2012 (ASCII-12) and over the Medicine Bow mountains in 2013 (ASCII-13) in the context of the Wyoming Weather Modification Pilot Project (WWMPP). The campaigns were supported by a network of ground-based instruments, including a microwave radiometer, two profiling Ka-band Micro Rain Radars (MRRs), a Doppler on Wheels (DOW), rawinsondes, a Cloud Particle Imager, and a Parsivel disdrometer. The University of Wyoming King Air with profiling Wyoming Cloud Radar (WCR) conducted nine successful flights in ASCII-12, and eight flights in ASCII-13. WCR profiles from these flights are combined with those from seven other flights, which followed the same geographically-fixed pattern in 2008-09 (pre-ASCII) over the Medicine Bow range. All sampled storms were relatively shallow, with low-level air forced over the target mountain, and cold enough to support ice initiation by silver iodide (AgI) nuclei in cloud. Three detailed case studies are conducted, each with different atmospheric conditions and different cloud and snow growth properties: one case (21 Feb 2012) is stratiform, with strong winds and cloud droplets too small to enable snow growth by accretion (riming). A second case (13 Feb 2012) contains shallow convective cells. Clouds in the third case study (22 Feb 2012) are stratiform but contain numerous large droplets (mode ~35 microm in diameter), large enough for ice particle growth by riming. These cases and all others, each with a treated period following an untreated period, show that a clear seeding signature is not immediately apparent in individual WCR reflectivity transects downwind of the silver iodide (AgI) generators, and that the natural trends in the precipitation over short timescales can easily overwhelm any seeding-induced change. Therefore the ASCII experimental design included a control region, upwind of the AgI generators. The three case studies generally show an increase in surface snow particle concentration in the target region during the seeding period. Frequency-by-altitude displays of all WCR reflectivity data collected during the flights show slightly higher reflectivity values during seeding near the ground, at least when compared to the control region, in all three cases. This also applies to the two other radar systems (MRR and DOW), both with their own sampling strategy and target/control regions. An examination of all ASCII cases combined (the "composite" analysis) also shows a positive trend in low-level reflectivity relative to the control region, both in convective and in stratiform cases. Also, convective cells sampled at flight level downwind of the AgI generators contain a higher concentration of small ice crystals during seeding. A word of caution is warranted: both the magnitude and the sign of the change in the target region, compared to that in the control region, varies from case to case in the composite, and amongst the three radar systems (WCR, DOW and MRR). We speculate that this variation is only partly driven by different responses of orographic clouds to glaciogenic seeding, related to factors such as cloud base and cloud top temperature, cloud liquid water content, and snow growth mechanism. Instead, most of this variation probably relates to non-homogenous natural trends across the mountain range, and/or to sample unrepresentativeness, especially for the (relative small) control region, in other words to the sampling methods. The impact of natural variability and sampling aliasing can only be overcome by a storm sample size much larger than that collected in ASCII. As such, the ASCII sample size is not adequate either to quantify the magnitude of the seeding impact on snowfall, or to identify the conditions most suitable for ground-based seeding. This study is an exploration of cloud microphysical evidence linking AgI cloud seeding to snowfall. It is not a statistical study. The preponderance of evidence from different radars and ground-based and airborne particle probes deployed in ASCII, in three case studies and in the composite analysis, points to the ability of ground-based glaciogenic seeding to increase the snowfall rate in orographic clouds..
NASA Technical Reports Server (NTRS)
Wu, Dongliang L.
2017-01-01
Clouds, ice clouds in particular, are a major source of uncertainty in climate models. Submm-wave sensors fill the sensitivity gap between MW and IR.Cloud microphysical properties (particle size and shape) account for large (200 and 40) measurement uncertainty.
NASA Astrophysics Data System (ADS)
Neubauer, D.; Christensen, M.; Lohmann, U.; Poulsen, C. A.
2016-12-01
Studies using present day variability to assess statistical relationships between aerosol and cloud properties find different strengths of these relationships between satellite data and general circulation model (GCM) data. This discrepancy can be explained by structural uncertainties due to differences in the analysis/observational scale and the process scale or spurious relationships between aerosol and cloud properties. Such spurious relationships are the growth of aerosol particles in the humid environment surrounding clouds, misclassification of partly cloudy satellite pixels as cloud free pixels, brightening of aerosol particles by sunlight reflected at cloud edges, or effects of clouds on aerosol like processing of aerosol particles in clouds by nucleation or impact scavenging and subsequent growth by heterogeneous chemistry and release by cloud droplet evaporation or wet scavenging of aerosol particles. To minimize the effects of spatial aggregation and spurious relationships we apply a new nearest neighbour approach to high resolution (A)ATSR datasets from the Aerosol_cci and Cloud_cci projects of the Climate Change Initiative (CCI) programme of ESA. For the ECHAM6-HAM GCM we quantify the impact of using dry aerosol (without aerosol water) in the analysis to mimic the effect of the nearest neighbour approach. The aerosol-liquid water path relationship in ECHAM6-HAM is systematically stronger than in (A)ATSR data and cannot be explained by an overestimation of autoconversion when using diagnostic precipitation but rather by aerosol swelling in regions where humidity is high and clouds are present. When aerosol water is removed from the analysis in ECHAM6-HAM the strength of the aerosol-liquid water path relationship agrees much better with the ones of (A)ATSR or MODIS. We further find that while the observed relationships of different satellite sensors ((A)ATSR vs. MODIS) are not always consistent for tested environmental conditions the relationships in ECHAM6-HAM are missing a strong dependence on environmental conditions which is critical for bridging the gap between satellite and model estimates of aerosol indirect forcing.
Assessment of dust aerosol effect on cloud properties over Northwest China using CERES SSF data
NASA Astrophysics Data System (ADS)
Huang, J.; Wang, X.; Wang, T.; Su, J.; Minnis, P.; Lin, B.; Hu, Y.; Yi, Y.
Dust aerosols not only have direct effects on the climate through reflection and absorption of the short and long wave radiation but also modify cloud properties such as the number concentration and size of cloud droplets indirect effect and contribute to diabatic heating in the atmosphere that often enhances cloud evaporation and reduces the cloud water path In this study indirect and semi-direct effects of dust aerosols are analyzed over eastern Asia using two years June 2002 to June 2004 of CERES Clouds and the Earth s Radiant Energy Budget Scanner and MODIS MODerate Resolution Imaging Spectroradiometer Aqua Edition 1B SSF Single Scanner Footprint data sets The statistical analysis shows evidence for both indirect and semi-direct effect of Asia dust aerosols The dust appears to reduce the ice cloud effective particle diameter and increase high cloud amount On average ice cloud effective particle diameters of cirrus clouds under dust polluted conditions dusty cloud are 11 smaller than those derived from ice clouds in dust-free atmospheric environments The water paths of dusty clouds are also considerably smaller than those of dust-free clouds Dust aerosols could warm clouds thereby increasing the evaporation of cloud droplets resulting in reduced cloud water path semi-direct effect The semi-direct effect may be dominated the interaction between dust aerosols and clouds over arid and semi-arid areas and partly contribute to reduced precipitation
Global cloud top height retrieval using SCIAMACHY limb spectra: model studies and first results
NASA Astrophysics Data System (ADS)
Eichmann, Kai-Uwe; Lelli, Luca; von Savigny, Christian; Sembhi, Harjinder; Burrows, John P.
2016-03-01
Cloud top heights (CTHs) are retrieved for the period 1 January 2003 to 7 April 2012 using height-resolved limb spectra measured with the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) on board ENVISAT (ENVIronmental SATellite). In this study, we present the retrieval code SCODA (SCIAMACHY cloud detection algorithm) based on a colour index method and test the accuracy of the retrieved CTHs in comparison to other methods. Sensitivity studies using the radiative transfer model SCIATRAN show that the method is capable of detecting cloud tops down to about 5 km and very thin cirrus clouds up to the tropopause. Volcanic particles can be detected that occasionally reach the lower stratosphere. Upper tropospheric ice clouds are observable for a nadir cloud optical thickness (COT) ≥ 0.01, which is in the subvisual range. This detection sensitivity decreases towards the lowermost troposphere. The COT detection limit for a water cloud top height of 5 km is roughly 0.1. This value is much lower than thresholds reported for passive cloud detection methods in nadir-viewing direction. Low clouds at 2 to 3 km can only be retrieved under very clean atmospheric conditions, as light scattering of aerosol particles interferes with the cloud particle scattering. We compare co-located SCIAMACHY limb and nadir cloud parameters that are retrieved with the Semi-Analytical CloUd Retrieval Algorithm (SACURA). Only opaque clouds (τN,c > 5) are detected with the nadir passive retrieval technique in the UV-visible and infrared wavelength ranges. Thus, due to the frequent occurrence of thin clouds and subvisual cirrus clouds in the tropics, larger CTH deviations are detected between both viewing geometries. Zonal mean CTH differences can be as high as 4 km in the tropics. The agreement in global cloud fields is sufficiently good. However, the land-sea contrast, as seen in nadir cloud occurrence frequency distributions, is not observed in limb geometry. Co-located cloud top height measurements of the limb-viewing Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on ENVISAT are compared for the period from January 2008 to March 2012. The global CTH agreement of about 1 km is observed, which is smaller than the vertical field of view of both instruments. Lower stratospheric aerosols from volcanic eruptions occasionally interfere with the cloud retrieval and inhibit the detection of tropospheric clouds. The aerosol impact on cloud retrievals was studied for the volcanoes Kasatochi (August 2008), Sarychev Peak (June 2009), and Nabro (June 2011). Long-lasting aerosol scattering is detected after these events in the Northern Hemisphere for heights above 12.5 km in tropical and polar latitudes. Aerosol top heights up to about 22 km are found in 2009 and the enhanced lower stratospheric aerosol layer persisted for about 7 months. In August 2009 about 82 % of the lower stratosphere between 30 and 70° N was filled with scattering particles and nearly 50 % in October 2008.
NASA Astrophysics Data System (ADS)
Stengel, Martin; Stapelberg, Stefan; Sus, Oliver; Schlundt, Cornelia; Poulsen, Caroline; Thomas, Gareth; Christensen, Matthew; Carbajal Henken, Cintia; Preusker, Rene; Fischer, Jürgen; Devasthale, Abhay; Willén, Ulrika; Karlsson, Karl-Göran; McGarragh, Gregory R.; Proud, Simon; Povey, Adam C.; Grainger, Roy G.; Fokke Meirink, Jan; Feofilov, Artem; Bennartz, Ralf; Bojanowski, Jedrzej S.; Hollmann, Rainer
2017-11-01
New cloud property datasets based on measurements from the passive imaging satellite sensors AVHRR, MODIS, ATSR2, AATSR and MERIS are presented. Two retrieval systems were developed that include components for cloud detection and cloud typing followed by cloud property retrievals based on the optimal estimation (OE) technique. The OE-based retrievals are applied to simultaneously retrieve cloud-top pressure, cloud particle effective radius and cloud optical thickness using measurements at visible, near-infrared and thermal infrared wavelengths, which ensures spectral consistency. The retrieved cloud properties are further processed to derive cloud-top height, cloud-top temperature, cloud liquid water path, cloud ice water path and spectral cloud albedo. The Cloud_cci products are pixel-based retrievals, daily composites of those on a global equal-angle latitude-longitude grid, and monthly cloud properties such as averages, standard deviations and histograms, also on a global grid. All products include rigorous propagation of the retrieval and sampling uncertainties. Grouping the orbital properties of the sensor families, six datasets have been defined, which are named AVHRR-AM, AVHRR-PM, MODIS-Terra, MODIS-Aqua, ATSR2-AATSR and MERIS+AATSR, each comprising a specific subset of all available sensors. The individual characteristics of the datasets are presented together with a summary of the retrieval systems and measurement records on which the dataset generation were based. Example validation results are given, based on comparisons to well-established reference observations, which demonstrate the good quality of the data. In particular the ensured spectral consistency and the rigorous uncertainty propagation through all processing levels can be considered as new features of the Cloud_cci datasets compared to existing datasets. In addition, the consistency among the individual datasets allows for a potential combination of them as well as facilitates studies on the impact of temporal sampling and spatial resolution on cloud climatologies.
For each dataset a digital object identifier has been issued:
Cloud_cci AVHRR-AM: https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-AM/V002
Cloud_cci AVHRR-PM: https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V002
Cloud_cci MODIS-Terra: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MODIS-Terra/V002
Cloud_cci MODIS-Aqua: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MODIS-Aqua/V002
Cloud_cci ATSR2-AATSR: https://doi.org/10.5676/DWD/ESA_Cloud_cci/ATSR2-AATSR/V002
Cloud_cci MERIS+AATSR: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MERIS+AATSR/V002
Optical holography applications for the zero-g Atmospheric Cloud Physics Laboratory
NASA Technical Reports Server (NTRS)
Kurtz, R. L.
1974-01-01
A complete description of holography is provided, both for the time-dependent case of moving scene holography and for the time-independent case of stationary holography. Further, a specific holographic arrangement for application to the detection of particle size distribution in an atmospheric simulation cloud chamber. In this chamber particle growth rate is investigated; therefore, the proposed holographic system must capture continuous particle motion in real time. Such a system is described.
NASA Astrophysics Data System (ADS)
Khatri, P.; Iwabuchi, H.; Saito, M.
2017-12-01
High-level cirrus clouds, which normally occur over more than 20% of the globe, are known to have profound impacts on energy budget and climate change. The scientific knowledge regarding the vertical structure of such high-level cirrus clouds and their geometrical thickness are relatively poorer compared to low-level water clouds. Knowledge regarding cloud vertical structure is especially important in passive remote sensing of cloud properties using infrared channels or channels strongly influenced by gaseous absorption when clouds are geometrically thick and optically thin. Such information is also very useful for validating cloud resolving numerical models. This study analyzes global scale data of ice clouds identified by Cloud profiling Radar (CPR) onboard CloudSat and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard CALIPSO to parameterize (i) vertical profiles of ice water content (IWC), cloud-particle effective radius (CER), and ice-particle number concentration for varying ice water path (IWP) values and (ii) the relation of cloud geometrical thickness (CGT) with IWP and CER for varying cloud top temperature (CTT) values. It is found that the maxima in IWC and CER profile shifts towards cloud base with the increase of IWP. Similarly, if the cloud properties remain same, CGT shows an increasing trend with the decrease of CTT. The implementation of such cloud vertical inhomogeneity parameterization in the forward model used in the Integrated Cloud Analysis System ICAS (Iwabuchi et al., 2016) generally shows increase of brightness temperatures in infrared channels compared to vertically homogeneous cloud assumption. The cloud vertical inhomogeneity is found to bring noticeable changes in retrieved cloud properties. Retrieved CER and cloud top height become larger for optically thick cloud. We will show results of comparison of cloud properties retrieved from infrared measurements and active remote sensing.
Earth observations taken during STS-136
1995-07-04
STS071-745-006 (27 June-7 July 1995) --- This view shows a ship track, probably in the northern Pacific Ocean, where a ship has caused clouds to form more thickly directly above the path of this ship. This track is therefore visible even though the ship itself is not. Ship tracks are thought to be caused by particles thrown up into the air by the ship, from smokestack emissions and from water particles generated by the ship moving through the sea. Under favorable weather conditions, water condenses around these particles to form clouds, in this case thicker "popcorn" clouds than already exists in the area. Ongoing studies are attempting to understand this phenomenon better.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamora, Lauren M.; Kahn, R. A.; Cubison, M. J.
The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200–300% over the next 50–100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were ~40–60% smallermore » than in background clouds. Based on the relationship between cloud droplet number ( N liq) and various biomass burning tracers (BB t) across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol–cloud interactions (ACIs, where ACI = (1/3) × d ln( N liq)/d ln(BB t)) to be ~0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (~0.02gm –3) and very high aerosol concentrations (2000–3000 cm –3) in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 Wm –2 or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic. Furthermore, we lastly explore evidence suggesting that numerous northern-latitude background Aitken particles can interact with combustion particles, perhaps impacting their properties as cloud condensation and ice nuclei.« less
NASA Astrophysics Data System (ADS)
Kirpes, R.; Rodriguez, B.; Kim, S.; Park, K.; China, S.; Laskin, A.; Pratt, K.
2017-12-01
The Arctic region is rapidly changing due to sea ice loss and increasing oil/gas development and shipping activity. These changes influence aerosol sources and composition, resulting in complex aerosol-cloud-climate feedbacks. Atmospheric particles were collected aboard the R/V Araon in July-August 2016 in the Alaskan Arctic along the Bering Strait and Chukchi Sea. Offline analysis of individual particles by microscopic and spectroscopic techniques provided information on particle size, morphology, and chemical composition. Sea spray aerosol (SSA) and organic aerosol (OA) particles were the most commonly observed particle types, and sulfate was internally mixed with both SSA and OA. Evidence of multiphase sea spray aerosol reactions was observed, with varying degrees of chlorine depletion observed along the cruise. Notably, atmospherically processed SSA, completely depleted in chlorine, and internally mixed organic and sulfate particles, were observed in samples influenced by the central Arctic Ocean. Changes in particle composition due to fog processing were also investigated. Due to the changing aerosol sources and atmospheric processes in the Arctic region, it is crucial to understand aerosol composition in order to predict climate impacts.
Mixing fuel particles for space combustion research using acoustics
NASA Technical Reports Server (NTRS)
Burns, Robert J.; Johnson, Jerome A.; Klimek, Robert B.
1988-01-01
Part of the microgravity science to be conducted aboard the Shuttle (STS) involves combustion using solids, particles, and liquid droplets. The central experimental facts needed for characterization of premixed quiescent particle cloud flames cannot be adequately established by normal gravity studies alone. The experimental results to date of acoustically mixing a prototypical particulate, lycopodium, in a 5 cm diameter by 75 cm long flame tube aboard a Learjet aircraft flying a 20 sec low gravity trajectory are described. Photographic and light detector instrumentation combine to measure and characterize particle cloud uniformity.
Mixing fuel particles for space combustion research using acoustics
NASA Technical Reports Server (NTRS)
Burns, Robert J.; Johnson, Jerome A.; Klimek, Robert B.
1988-01-01
Part of the microgravity science to be conducted aboard the Shuttle (STS) involves combustion using solids, particles, and liquid droplets. The central experimental facts needed for characterization of premixed quiescent particle cloud flames cannot be adequately established by normal gravity studies alone. The experimental results to date of acoustically mixing a prototypical particulate, lycopodium, in a 5 cm diameter by 75 cm long flame tube aboard a Learjet aircraft flying a 20-sec low-gravity trajectory are described. Photographic and light detector instrumentation combine to measure and characterize particle cloud uniformity.
Cloud Condensation in Titan's Lower Stratosphere
NASA Technical Reports Server (NTRS)
Romani, Paul N.; Anderson, Carrie M.
2011-01-01
A 1-D condensation model is developed for the purpose of reproducing ice clouds in Titan's lower stratosphere observed by the Composite Infrared Spectrometer (CIRS) onboard Cassini. Hydrogen cyanide (HCN), cyanoacetylene (HC3N), and ethane (C2H6) vapors are treated as chemically inert gas species that flow from an upper boundary at 500 km to a condensation sink near Titan's tropopause (-45 km). Gas vertical profiles are determined from eddy mixing and a downward flux at the upper boundary. The condensation sink is based upon diffusive growth of the cloud particles and is proportional to the degree of supersaturation in the cloud formation regIOn. Observations of the vapor phase abundances above the condensation levels and the locations and properties of the ice clouds provide constraints on the free parameters in the model. Vapor phase abundances are determined from CIRS mid-IR observations, whereas cloud particle sizes, altitudes, and latitudinal distributions are derived from analyses of CIRS far-IR observations of Titan. Specific cloud constraints include: I) mean particle radii of2-3 J.lm inferred from the V6 506 cm- band of HC3N, 2) latitudinal abundance distributions of condensed nitriles, inferred from a composite emission feature that peaks at 160/cm , and 3) a possible hydrocarbon cloud layer at high latitudes, located near an altitude of 60 km, which peaks between 60 and 80 cm l . Nitrile abundances appear to diminish substantially at high northern latitudes over the time period 2005 to 2010 (northern mid winter to early spring). Use of multiple gas species provides a consistency check on the eddy mixing coefficient profile. The flux at the upper boundary is the net column chemical production from the upper atmosphere and provides a constraint on chemical pathways leading to the production of these compounds. Comparison of the differing lifetimes, vapor phase transport, vapor phase loss rate, and particle sedimentation, sheds light on temporal stability of the clouds.
Air pollution control and decreasing new particle formation lead to strong climate warming
NASA Astrophysics Data System (ADS)
Makkonen, R.; Asmi, A.; Kerminen, V.-M.; Boy, M.; Arneth, A.; Hari, P.; Kulmala, M.
2011-09-01
The number of cloud droplets determines several climatically relevant cloud properties. A major cause for the high uncertainty in the indirect aerosol forcing is the availability of cloud condensation nuclei (CCN), which in turn is highly sensitive to atmospheric new particle formation. Here we present the effect of new particle formation on anthropogenic aerosol forcing in present-day (year 2000) and future (year 2100) conditions. The total aerosol forcing (-1.61 W m-2 in year 2000) is simulated to be greatly reduced in the future, to -0.23 W m-2, mainly due to decrease in SO2 emissions and resulting decrease in new particle formation. With the total aerosol forcing decreasing in response to air pollution control measures taking effect, warming from increased greenhouse gas concentrations can potentially increase at a very rapid rate.
Radiative Feedback of Forming Star Clusters on Their GMC Environments: Theory and Simulation
NASA Astrophysics Data System (ADS)
Howard, C. S.; Pudritz, R. E.; Harris, W. E.
2013-07-01
Star clusters form from dense clumps within a molecular cloud. Radiation from these newly formed clusters feeds back on their natal molecular cloud through heating and ionization which ultimately stops gas accretion into the cluster. Recent studies suggest that radiative feedback effects from a single cluster may be sufficient to disrupt an entire cloud over a short timescale. Simulating cluster formation on a large scale, however, is computationally demanding due to the high number of stars involved. For this reason, we present a model for representing the radiative output of an entire cluster which involves randomly sampling an initial mass function (IMF) as the cluster accretes mass. We show that this model is able to reproduce the star formation histories of observed clusters. To examine the degree to which radiative feedback shapes the evolution of a molecular cloud, we use the FLASH adaptive-mesh refinement hydrodynamics code to simulate cluster formation in a turbulent cloud. Unlike previous studies, sink particles are used to represent a forming cluster rather than individual stars. Our cluster model is then coupled with a raytracing scheme to treat radiative transfer as the clusters grow in mass. This poster will outline the details of our model and present preliminary results from our 3D hydrodynamical simulations.
NASA Astrophysics Data System (ADS)
Few, A. A.
2010-12-01
It is widely recognized that lightning activity in thunderstorm clouds is associated with ice in the clouds. In volcanic plumes the lower electrical discharges near the vent are clearly not associated with ice; however, the electrical discharges from the upper volcanic clouds very likely are associated with ice. There is ample water in volcanic plumes and clouds. The explosive volcanic eruption is produced by volatile components in the rising magma. Researchers estimate that the water content of the volatiles is up to 99% by mole; other gases are mainly sulfur and chlorine species. These volatiles carry with them a wide range of hot magma melts and solids, importantly silicate particles and tephra. The more massive components fall out near the vent carrying with them much of the heat from the plume; these large components are not in thermodynamic equilibrium with the gases, ash, and lapilli; thus the heat removed does not lower the temperature of the materials carried aloft in the plume. Upward motion is initially provided by the thrust from the volcanic eruption, then by buoyancy of the hot plume. The rising plume is cooled by entrainment of environmental air, which contains water, and by adiabatic expansion; the plume transitions into a volcanic cloud. Further lifting and cooling produces supercooled water droplets (T ~ -5 C) in a limited zone (z ~ 9 km) before the fast updraft (~ 60 m/s) rapidly transforms them into ice. Computer models of volcanic clouds that include water and ice microphysics indicate that the latent heat of condensation is not significant in cloud dynamics because it occurs in a region where buoyancy is provided by the original hot plume material. The latent heat of ice formation occurs at higher and colder levels and seems to contribute to the final lifting of the cloud top by ~1.5km. Laboratory results indicate that the fine silicate ash particles, which are abundant, are good ice nuclei, IN. Because of the abundance of the silicate ash, modelers conclude that there are many small ice particles in a volcanic clouds compared to thunderstorm clouds where the scarcity of IN produce fewer but larger ice particles. Another microphysical difference is that in the water phase (drops or ice surface) adsorption of sulfur and chlorine gases is enhanced and the freezing temperature lowered. During diffusion growth of ice particles sulfur dioxide can be incorporated in the ice. The sulfur dioxide sequestered by the ice can be converted to sulfate and transported into the stratosphere and released when the ice sublimates. Do these microphysical differences significantly alter the electrical charging mechanisms that exist in thunderstorm clouds? Observations of the lightning discharges associated with the upper regions of volcanic clouds seem to indicate that the charging mechanisms are essentially the same.
Euler-Lagrange Simulations of Shock Wave-Particle Cloud Interaction
NASA Astrophysics Data System (ADS)
Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Park, Chanyoung; Balachandar, S.
2017-11-01
Numerical experiments of shock interacting with an evolving and fixed cloud of particles are performed. In these simulations we use Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. As validation, we use Sandia Multiphase Shock Tube experiments and particle-resolved simulations. The particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In the simulations evolving the particle cloud, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. Measurements of particle dispersion are made at different initial volume fractions. A detailed analysis of the influence of initial conditions on the evolution of the particle cloudis presented. The early time behavior of the models is studied in the fixed bed simulations at varying volume fractions and shock Mach numbers.The mean gas quantities are measured in the context of 1-way and 2-way coupled simulations. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.
Real-time Measurements of Biological Particles at Several Continental Sites using the WIBS-4A
NASA Astrophysics Data System (ADS)
McMeeking, G. R.; Kok, G. L.; Petters, M. D.; Wright, T.; Hader, J.; Mccubbin, I. B.; Hallar, A. G.; Twohy, C. H.; Toohey, D. W.; DeMott, P. J.; McCluskey, C.; Baumgardner, D.
2013-12-01
Biological particles (bacteria, fungi/fungal spores, viruses, algae and fragments of biological material) may play a significant role in modifying cloud properties by acting as ice nuclei and thus have an indirect effect on climate forcing. Little is known, however, regarding the abundance and distribution of biological particles and their importance to cloud microphysics in different environments. On-line, continuous measurement systems offer the potential to measure biological systems at high time resolution and sensitivity, providing greater insight into their distribution in the atmosphere, dispersal mechanisms and potential soures. The WIBS-4A (Wideband Integrated Bioaerosol Sensor) detects fluorescent biological material in real-time associated with individual particles. It measures five properties: a) optical size via light scattering, b) fluorescent emissions in the wavelength range 310-400 following excitation by 280 nm light, c) fluorescent emissions in the wavelength range 420-650 following excitation by 280 nm light, d) fluorescent emissions in the wavelength range 420-650 following excitation by 370 nm light, and e) particle asymmetry factor based on intensities of forward scattered light onto a 4-element detector. Together, these properties aid the classification of sampled particles that contain biofluorophores such as tryptophan or NAD(P)H, which can be found in biological particles. Here we present results from a series of laboratory, ground- and aircraft-based measurements of biological particles using the WIBS-4A. The studies include airborne measurements over the United States, ground-based measurements at a coastal site, an urban site in the southeast US and a high alpine site, and laboratory measurements of a variety of biological and non-biological particles. Our analysis focused on both the characterization of the instrument response as well as an evaluation of its suitability for performing ambient measurements and potential artifacts. We also present recommendations for field operation of the instrument, sample system design considerations, and data analysis approaches.
NASA Astrophysics Data System (ADS)
Christensen, Matthew W.; Neubauer, David; Poulsen, Caroline A.; Thomas, Gareth E.; McGarragh, Gregory R.; Povey, Adam C.; Proud, Simon R.; Grainger, Roy G.
2017-11-01
Increased concentrations of aerosol can enhance the albedo of warm low-level cloud. Accurately quantifying this relationship from space is challenging due in part to contamination of aerosol statistics near clouds. Aerosol retrievals near clouds can be influenced by stray cloud particles in areas assumed to be cloud-free, particle swelling by humidification, shadows and enhanced scattering into the aerosol field from (3-D radiative transfer) clouds. To screen for this contamination we have developed a new cloud-aerosol pairing algorithm (CAPA) to link cloud observations to the nearest aerosol retrieval within the satellite image. The distance between each aerosol retrieval and nearest cloud is also computed in CAPA. Results from two independent satellite imagers, the Advanced Along-Track Scanning Radiometer (AATSR) and Moderate Resolution Imaging Spectroradiometer (MODIS), show a marked reduction in the strength of the intrinsic aerosol indirect radiative forcing when selecting aerosol pairs that are located farther away from the clouds (-0.28±0.26 W m-2) compared to those including pairs that are within 15 km of the nearest cloud (-0.49±0.18 W m-2). The larger aerosol optical depths in closer proximity to cloud artificially enhance the relationship between aerosol-loading, cloud albedo, and cloud fraction. These results suggest that previous satellite-based radiative forcing estimates represented in key climate reports may be exaggerated due to the inclusion of retrieval artefacts in the aerosol located near clouds.
Ice nuclei emissions from biomass burning
Markus D. Petters; Matthew T. Parsons; Anthony J. Prenni; Paul J. DeMott; Sonia M. Kreidenweis; Christian M. Carrico; Amy P. Sullivan; Gavin R. McMeeking; Ezra Levin; Cyle E. Wold; Jeffrey L. Collett; Hans Moosmuller
2009-01-01
Biomass burning is a significant source of carbonaceous aerosol in many regions of the world. When present, biomass burning particles may affect the microphysical properties of clouds through their ability to function as cloud condensation nuclei or ice nuclei. We report on measurements of the ice nucleation ability of biomass burning particles performed on laboratory-...
NASA Technical Reports Server (NTRS)
Irie, H.; Pagan, K. L.; Tabazadeh, A.; Legg, M. J.; Sugita, T.
2004-01-01
Satellite observations of denitrification and ice clouds in the Arctic lower stratosphere in February 1997 are used with Lagrangian microphysical box model calculations to evaluate nucleation mechanisms of solid polar stratospheric cloud (PSC) particles. The occurrences of ice clouds are not correlated in time and space with the locations of back trajectories of denitrified air masses, indicating that ice particle surfaces are not always a prerequisite for the formation of solid PSCs that lead to denitrification. In contrast, the model calculations incorporating a pseudoheterogeneous freezing process occurring at the vapor-liquid interface can quantitatively explain most of the observed denitrification when the nucleation activation free energy for nitric acid dihydrate formation is raised by only approx.10% relative to the current published values. Once nucleated, the conversion of nitric acid dihydrate to the stable trihydrate phase brings the computed levels of denitrification closer to the measurements. INDEX TERMS: 0305 Atmospheric Composition and Structure: Aerosols and particles (0345, 4801); 0320 Atmospheric Composition and SblctureC: loud physics and chemistry; 0340 Atmospheric Composition and Structure: Middle atmosphere-composition and chemistry
The Backscatter Cloud Probe - a compact low-profile autonomous optical spectrometer
NASA Astrophysics Data System (ADS)
Beswick, K.; Baumgardner, D.; Gallagher, M.; Newton, R.
2013-08-01
A compact (500 cm3), lightweight (500 g), near-field, single particle backscattering optical spectrometer is described that mounts flush with the skin of an aircraft and measures the concentration and optical equivalent diameter of particles from 5 to 75 μm. The Backscatter Cloud Probe (BCP) was designed as a real-time qualitative cloud detector primarily for data quality control of trace gas instruments developed for the climate monitoring instrument packages that are being installed on commercial passenger aircraft as part of the European Union In-Service Aircraft for a Global Observing System (IAGOS) program (http://www.iagos.org/). Subsequent evaluations of the BCP measurements on a number of research aircraft, however, have revealed it capable of delivering quantitative particle data products including size distributions, liquid water content and other information on cloud properties. We demonstrate the instrument's capability for delivering useful long-term climatological information, across a wide range of environmental conditions. The BCP has been evaluated by comparing its measurements with those from other cloud particle spectrometers on research aircraft and several BCPs are currently flying on commercial A340/A330 Airbus passenger airliners. The design and calibration of the BCP is described in this presentation, along with an evaluation of measurements made on the research and commercial aircraft. Comparisons of the BCP with two other cloud spectrometers, the Cloud Droplet Probe (CDP) and the Cloud and Aerosol Spectrometer (CAS), show that the BCP size distributions agree well with those from the other two, given the intrinsic limitations and uncertainties related to the three instruments. Preliminary results from more than 7000 h of airborne measurements by the BCP on two Airbus A-340s operating on routine global traffic routes (one Lufthansa, the other China Airlines) show that more than 340 h of cloud data have been recorded at normal cruise altitudes (> 10 km) and more than 40% of the > 1200 flights were through clouds at some point between takeoff and landing. These data are a valuable contribution to data bases of cloud properties, including sub-visible cirrus, in the upper troposphere and useful for validating satellite retrievals of cloud water and effective radius as well as providing a broader, geographically and climatologically relevant view of cloud microphysical variability useful for improving parameterizations of clouds in climate models. They are also useful for monitoring the vertical climatology of clouds over airports, especially those over mega-cities where pollution emissions may be impacting local and regional climate.
Observations of Co-variation in Cloud Properties and their Relationships with Atmospheric State
NASA Astrophysics Data System (ADS)
Sinclair, K.; van Diedenhoven, B.; Fridlind, A. M.; Arnold, T. G.; Yorks, J. E.; Heymsfield, G. M.; McFarquhar, G. M.; Um, J.
2017-12-01
Radiative properties of upper tropospheric ice clouds are generally not well represented in global and cloud models. Cloud top height, cloud thermodynamic phase, cloud optical thickness, cloud water path, particle size and ice crystal shape all serve as observational targets for models to constrain cloud properties. Trends or biases in these cloud properties could have profound effects on the climate since they affect cloud radiative properties. Better understanding of co-variation between these cloud properties and linkages with atmospheric state variables can lead to better representation of clouds in models by reducing biases in their micro- and macro-physical properties as well as their radiative properties. This will also enhance our general understanding of cloud processes. In this analysis we look at remote sensing, in situ and reanalysis data from the MODIS Airborne Simulator (MAS), Cloud Physics Lidar (CPL), Cloud Radar System (CRS), GEOS-5 reanalysis data and GOES imagery obtained during the Tropical Composition, Cloud and Climate Coupling (TC4) airborne campaign. The MAS, CPL and CRS were mounted on the ER-2 high-altitude aircraft during this campaign. In situ observations of ice size and shape were made aboard the DC8 and WB57 aircrafts. We explore how thermodynamic phase, ice effective radius, particle shape and radar reflectivity vary with altitude and also investigate how these observed cloud properties vary with cloud type, cloud top temperature, relative humidity and wind profiles. Observed systematic relationships are supported by physical interpretations of cloud processes and any unexpected differences are examined.
Optical property retrievals of subvisual cirrus clouds from OSIRIS limb-scatter measurements
NASA Astrophysics Data System (ADS)
Wiensz, J. T.; Degenstein, D. A.; Lloyd, N. D.; Bourassa, A. E.
2012-08-01
We present a technique for retrieving the optical properties of subvisual cirrus clouds detected by OSIRIS, a limb-viewing satellite instrument that measures scattered radiances from the UV to the near-IR. The measurement set is composed of a ratio of limb radiance profiles at two wavelengths that indicates the presence of cloud-scattering regions. Optical properties from an in-situ database are used to simulate scattering by cloud-particles. With appropriate configurations discussed in this paper, the SASKTRAN successive-orders of scatter radiative transfer model is able to simulate accurately the in-cloud radiances from OSIRIS. Configured in this way, the model is used with a multiplicative algebraic reconstruction technique (MART) to retrieve the cloud extinction profile for an assumed effective cloud particle size. The sensitivity of these retrievals to key auxiliary model parameters is shown, and it is demonstrated that the retrieved extinction profile models accurately the measured in-cloud radiances from OSIRIS. Since OSIRIS has an 11-yr record of subvisual cirrus cloud detections, the work described in this manuscript provides a very useful method for providing a long-term global record of the properties of these clouds.
Global CALIPSO Observations of Aerosol Changes Near Clouds
NASA Technical Reports Server (NTRS)
Varnai, Tamas; Marshak, Alexander
2011-01-01
Several recent studies have found that clouds are surrounded by a transition zone of rapidly changing aerosol optical properties and particle size. Characterizing this transition zone is important for better understanding aerosol-cloud interactions and aerosol radiative effects, and also for improving satellite retrievals of aerosol properties. This letter presents a statistical analysis of a monthlong global data set of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar observations over oceans. The results show that the transition zone is ubiquitous over all oceans and extends up to 15 km away from clouds. They also show that near-cloud enhancements in backscatter and particle size are strongest at low altitudes, slightly below the top of the nearest clouds. Also, the enhancements are similar near illuminated and shadowy cloud sides, which confirms that the asymmetry of Moderate Resolution Imaging Spectroradiometer reflectances found in an earlier study comes from 3-D radiative processes and not from differences in aerosol properties. Finally, the effects of CALIPSO aerosol detection and cloud identification uncertainties are discussed. The findings underline the importance of accounting for the transition zone to avoid potential biases in studies of satellite aerosol products, aerosol-cloud interactions, and aerosol direct radiative effects.
Global Analysis of Aerosol Properties Above Clouds
NASA Technical Reports Server (NTRS)
Waquet, F.; Peers, F.; Ducos, F.; Goloub, P.; Platnick, S. E.; Riedi, J.; Tanre, D.; Thieuleux, F.
2013-01-01
The seasonal and spatial varability of Aerosol Above Cloud (AAC) properties are derived from passive satellite data for the year 2008. A significant amount of aerosols are transported above liquid water clouds on the global scale. For particles in the fine mode (i.e., radius smaller than 0.3 m), including both clear sky and AAC retrievals increases the global mean aerosol optical thickness by 25(+/- 6%). The two main regions with man-made AAC are the tropical Southeast Atlantic, for biomass burning aerosols, and the North Pacific, mainly for pollutants. Man-made AAC are also detected over the Arctic during the spring. Mineral dust particles are detected above clouds within the so-called dust belt region (5-40 N). AAC may cause a warming effect and bias the retrieval of the cloud properties. This study will then help to better quantify the impacts of aerosols on clouds and climate.
NASA Astrophysics Data System (ADS)
Valle-Diaz, C. J.; Torres-Delgado, E.; Lee, T.; Collett, J. L.; Cuadra-Rodriguez, L. A.; Prather, K. A.; Spiegel, J.; Eugster, W.
2012-12-01
We studied the impact of long-range transported African Dust (LRTAD) on cloud composition and properties at the Caribbean tropical montane cloud forest (TMCF) of Pico del Este (PE), as part of the Puerto Rico African Dust and Clouds Study (PRADACS). Here we present results from measurements performed in July 2011. Bulk chemical analysis of cloud water and rainwater showed pH and conductivity higher in the presence of dust. pH and conductivity were also higher for larger cloud droplets (size cut of 17 μm at 50% efficiency) suggesting a higher content of dust in this fraction. The concentration of the water-soluble ions in rainwater was found to be lower than for cloud water. This in turn translates to higher pH and lower conductivity. African dust influence at PE was confirmed by the presence of nss-Ca, Fe, Mg, Na, and Al in cloud/rain water, and inferred by HYSPLIT trajectories and the satellite images from the Saharan Air Layer (SAL). Interstitial single-particle size and chemistry measured using aerosol time-of-flight mass spectrometry revealed mostly sea-salt particles (Na, Cl, Ca) and dust particles (Fe, Ti, Mg, nss-Ca). Anthropogenic influence detected as the presence of EC, a tracer for combustion processes, was found to be fairly small according to ATOFMS measurements. An increase of total organic carbon, total nitrogen, and dissolved organic carbon was observed during LRTAD events. Cloud droplet distributions revealed that LRTAD can lead to more numerous, but smaller cloud droplets (around 8 μm in average) at PE. However, total liquid water content appeared to be unaffected by this shift of droplet sizes. Overall, differences in the studied physicochemical properties of aerosols and clouds during dust and non-dust events were observed. Our results show that during LRTAD events, aerosol-cloud-precipitation interactions are altered at PE. Detailed results will be presented at the meeting.
NASA Astrophysics Data System (ADS)
Xiao, Hui; Yin, Yan; Jin, Lianji; Chen, Qian; Chen, Jinghua
2015-08-01
The Weather Research Forecast (WRF) mesoscale model coupled with a detailed bin microphysics scheme is used to investigate the impact of aerosol particles serving as cloud condensation nuclei and ice nuclei on orographic clouds and precipitation. A mixed-phase orographic cloud developed under two scenarios of aerosol (a typical continental background and a relatively polluted urban condition) and ice nuclei over an idealized mountain is simulated. The results show that, when the initial aerosol condition is changed from the relatively clean case to the polluted scenario, more droplets are activated, leading to a delay in precipitation, but the precipitation amount over the terrain is increased by about 10%. A detailed analysis of the microphysical processes indicates that ice-phase particles play an important role in cloud development, and their contribution to precipitation becomes more important with increasing aerosol particle concentrations. The growth of ice-phase particles through riming and Wegener-Bergeron-Findeisen regime is more effective under more polluted conditions, mainly due to the increased number of droplets with a diameter of 10-30 µm. Sensitivity tests also show that a tenfold increase in the concentration of ice crystals formed from ice nucleation leads to about 7% increase in precipitation, and the sensitivity of the precipitation to changes in the concentration and size distribution of aerosol particles is becoming less pronounced when the concentration of ice crystals is also increased.
NASA Astrophysics Data System (ADS)
Suzuki, Kenji; Nakagawa, Katsuhiro; Kawano, Tetsuya; Mori, Shuichi; Katsumata, Masaki; Yoneyama, Kunio
2017-04-01
During November-December 2015, as a pilot study of the Years of the Maritime and Continent (YMC), a campaign observation over the southwestern coastal land and adjacent sea of Sumatera Island, Indonesia was carried out to examine land-ocean coupling processes in mechanisms of coastal heavy rain. Our videosonde observations were conducted as a part of this campaign for the better understandings of microphysical features in tropical precipitating clouds developed over the Sumatera Island. Videosonde is one of strong tools to measure hydrometeors in clouds directly. It is a balloon-borne radiosonde that acquires images of precipitation particles via a CCD camera. The system has a stroboscopic illumination that provides information on particle size and shape. One of the advantages for the videosonde is to capture images of precipitation particles as they are in the air because the videosonde can obtain particle images without contact. Recorded precipitation particles are classified as raindrops, frozen drops (hail), graupel, ice crystals, or snowflakes on the basis of transparency and shape. Videosondes were launched from BMKG Bengkulu weather station (3.86°S,102.3°E). After the launch of a videosonde, the Range Height Indicator (RHI) scans by a C-band dual-polarimetric radar installed on R/V Mirai, which was approximately 50 km off Sumatera Island, were continuously performed, targeting the videosonde in the precipitating cloud. Eighteen videosondes were launched into various types of tropical precipitating clouds during the Pre-YMC campaign.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiranuma, Naruki; Möhler, Ottmar; Kulkarni, Gourihar
Separation of particles that play a role in cloud activation and ice nucleation from interstitial aerosols has become necessary to further understand aerosol-cloud interactions. The pumped counterflow virtual impactor (PCVI), which uses a vacuum pump to accelerate the particles and increase their momentum, provides an accessible option for dynamic and inertial separation of cloud elements. However, the use of a traditional PCVI to extract large cloud hydrometeors is difficult mainly due to its small cut-size diameters (< 5 µm). Here, for the first time we describe a development of an ice-selecting PCVI (IS-PCVI) to separate ice in controlled mixed-phase cloudmore » system based on the particle inertia with the cut-off diameter ≥ 10 µm. We also present its laboratory application demonstrating the use of the impactor under a wide range of temperature and humidity conditions. The computational fluid dynamics simulations were initially carried out to guide the design of the IS-PCVI. After fabrication, a series of validation laboratory experiments were performed coupled with the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) expansion cloud simulation chamber. In the AIDA chamber, test aerosol particles were exposed to the ice supersaturation conditions (i.e., RH ice > 100 %), where a mixture of droplets and ice crystals was formed during the expansion experiment. In parallel, the flow conditions of the IS-PCVI were actively controlled, such that it separated ice crystals from a mixture of ice crystals and cloud droplets, which were of diameter ≥ 10 µm. These large ice crystals were passed through the heated evaporation section to remove the water content. Afterwards, the residuals were characterized with a suite of online and offline instruments downstream of the IS-PCVI. These results were used to assess the optimized operating parameters of the device in terms of (1) the critical cut-size diameter, (2) the transmission efficiency and (3) the counterflow-to-input flow ratio. Particle losses were characterized by comparing the residual number concentration to the rejected interstitial particle number concentration. Overall results suggest that the IS-PCVI enables inertial separation of particles with a volume-equivalent particle size in the range of ~ 10–30 µm in diameter with small inadvertent intrusion (~ 5 %) of unwanted particles.« less
Evaluating the effect of soil dust particles from semi-arid areas on clouds and climate
NASA Astrophysics Data System (ADS)
Kristjansson, J. E.; Hummel, M.; Lewinschal, A.; Grini, A.
2016-12-01
Primary ice production in mixed-phase clouds predominantly takes place by heterogeneous freezing of mineral dust particles. Therefore, mineral dust has a large impact on cloud properties. Organic matter attached to mineral dust particles can expand their already good freezing ability further to warmer subzero temperatures. These dust particles are called "soil dust". Dusts emitted from deserts contribute most to the total dust concentration in the atmosphere and they can be transported over long distances. Soil dust is emitted from semi-arid regions, e.g. agricultural areas. Besides wind erosion, human activities like tillage or harvest might be a large source for soil dust release into the atmosphere. In this study, we analyze the influence of soil dust particles on clouds with the Norwegian Earth System Model (NorESM; Bentsen et al., 2013: GMD). The parameterization of immersion freezing on soil dust is based on findings from the AIDA cloud chamber (Steinke et al., in prep.). Contact angle and activation energy for soil dust are estimated in order to be used in the dust immersion freezing scheme of the model, which is based on classical nucleation theory. Our first results highlight the importance of soil dust for ice nucleation on a global scale. Its influence is expected to be highest in the northern hemisphere due to its higher area for soil dust emission. The immersion freezing rates due to additional soil dust can on average increase by a factor of 1.2 compared to a mineral dust-only simulation. Using a budget tool for NorESM, influences of soil dust ice nuclei on single tendencies of the cloud microphysics can be identified. For example, accretion to snow is sensitive to adding soil dust ice nuclei. This can result in changes e.g. in the ice water path and cloud radiative properties.
NASA Astrophysics Data System (ADS)
Horanyi, Mihaly
2016-07-01
The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission (9/2013 - 4/2014) discovered a permanently present dust cloud engulfing the Moon. The size, velocity, and density distributions of the dust particles are consistent with ejecta clouds generated from the continual bombardment of the lunar surface by sporadic interplanetary dust particles. Intermittent density enhancements were observed during several of the annual meteoroid streams, especially during the Geminids. LDEX found no evidence of the expected density enhancements over the terminators where electrostatic processes were predicted to efficiently loft small grains. LDEX is an impact ionization dust detector, it captures coincident signals and full waveforms to reliably identify dust impacts. LDEX recorded average impact rates of approximately 1 and 0.1 hits/minute of particles with impact charges of q > 0.5 and q > 5 fC, corresponding to particles with radii of a > 0.3 and a> 0.7~μm, respectively. Several of the yearly meteor showers generated sustained elevated levels of impact rates, especially if their radiant direction intersected the lunar surface near the equatorial plane, greatly enhancing the probability of crossing their ejecta plumes. The characteristic velocities of dust particles in the cloud are on the order of ~100 m/s which we neglect compared to the typical spacecraft speeds of 1.6 km/s. Hence, with the knowledge of the spacecraft orbit and attitude, impact rates can be directly turned into particle densities as functions of time and position. LDEX observations are the first to identify the ejecta clouds around the Moon sustained by the continual bombardment of interplanetary dust particles. Most of the dust particles generated in impacts have insufficient energy to escape and follow ballistic orbits, returning to the surface, 'gardening' the regolith. Similar ejecta clouds are expected to engulf all airless planetary objects, including the Moon, Mercury, and the moons of Mars: Phobos and Deimos.
NASA Technical Reports Server (NTRS)
Lee, I. Y.; Haenel, G.; Pruppacher, H. R.
1980-01-01
The time variation in size of aerosol particles growing by condensation is studied numerically by means of an air parcel model which allows entrainment of air and aerosol particles. Particles of four types of aerosols typically occurring in atmospheric air masses were considered. The present model circumvents any assumption about the size distribution and chemical composition of the aerosol particles by basing the aerosol particle growth on actually observed size distributions and on observed amounts of water taken up under equilibrium by a deposit of the aerosol particles. Characteristic differences in the drop size distribution, liquid water content and supersaturation were found for the clouds which evolved from the four aerosol types considered.
Modeling Cloud Phase Fraction Based on In-situ Observations in Stratiform Clouds
NASA Astrophysics Data System (ADS)
Boudala, F. S.; Isaac, G. A.
2005-12-01
Mixed-phase clouds influence weather and climate in several ways. Due to the fact that they exhibit very different optical properties as compared to ice or liquid only clouds, they play an important role in the earth's radiation balance by modifying the optical properties of clouds. Precipitation development in clouds is also enhanced under mixed-phase conditions and these clouds may contain large supercooled drops that freeze quickly in contact with aircraft surfaces that may be a hazard to aviation. The existence of ice and liquid phase clouds together in the same environment is thermodynamically unstable, and thus they are expected to disappear quickly. However, several observations show that mixed-phase clouds are relatively stable in the natural environment and last for several hours. Although there have been some efforts being made in the past to study the microphysical properties of mixed-phase clouds, there are still a number of uncertainties in modeling these clouds particularly in large scale numerical models. In most models, very simple temperature dependent parameterizations of cloud phase fraction are being used to estimate the fraction of ice or liquid phase in a given mixed-phase cloud. In this talk, two different parameterizations of ice fraction using in-situ aircraft measurements of cloud microphysical properties collected in extratropical stratiform clouds during several field programs will be presented. One of the parameterizations has been tested using a single prognostic equation developed by Tremblay et al. (1996) for application in the Canadian regional weather prediction model. The addition of small ice particles significantly increased the vapor deposition rate when the natural atmosphere is assumed to be water saturated, and thus this enhanced the glaciation of simulated mixed-phase cloud via the Bergeron-Findeisen process without significantly affecting the other cloud microphysical processes such as riming and particle sedimentation rates. After the water vapor pressure in mixed-phase cloud was modified based on the Lord et al. (1984) scheme by weighting the saturation water vapor pressure with ice fraction, it was possible to simulate more stable mixed-phase cloud. It was also noted that the ice particle concentration (L>100 μm) in mixed-phase cloud is lower on average by a factor 3 and as a result the parameterization should be corrected for this effect. After accounting for this effect, the parameterized ice fraction agreed well with observed mean ice fraction.
NASA Astrophysics Data System (ADS)
Zhang, Damao; Wang, Zhien; Luo, Tao; Yin, Yan; Flynn, Connor
2017-03-01
Ice particle formation in slightly supercooled stratiform clouds is not well documented or understood. In this study, 4 years of combined lidar depolarization and radar reflectivity (Ze) measurements are analyzed to distinguish between cold drizzle and ice crystal formations in slightly supercooled Arctic stratiform clouds over the Atmospheric Radiation Measurement Program Climate Research Facility North Slope of Alaska Utqiaġvik ("Barrow") site. Ice particles are detected and statistically shown to be responsible for the strong precipitation in slightly supercooled Arctic stratiform clouds at cloud top temperatures as high as -4°C. For ice precipitating Arctic stratiform clouds, the lidar particulate linear depolarization ratio (δpar_lin) correlates well with radar Ze at each temperature range, but the δpar_lin-Ze relationship varies with temperature ranges. In addition, lidar depolarization and radar Ze observations of ice generation characteristics in Arctic stratiform clouds are consistent with laboratory-measured temperature-dependent ice growth habits.
Ice Cloud Backscatter Study and Comparison with CALIPSO and MODIS Satellite Data
NASA Technical Reports Server (NTRS)
Ding, Jiachen; Yang, Ping; Holz, Robert E.; Platnick, Steven; Meyer, Kerry G.; Vaughan, Mark A.; Hu, Yongxiang; King, Michael D.
2016-01-01
An invariant imbedding T-matrix (II-TM) method is used to calculate the single-scattering properties of 8-column aggregate ice crystals. The II-TM based backscatter values are compared with those calculated by the improved geometric-optics method (IGOM) to refine the backscattering properties of the ice cloud radiative model used in the MODIS Collection 6 cloud optical property product. The integrated attenuated backscatter-to-cloud optical depth (IAB-ICOD) relation is derived from simulations using a CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite) lidar simulator based on a Monte Carlo radiative transfer model. By comparing the simulation results and co-located CALIPSO and MODIS (Moderate Resolution Imaging Spectroradiometer) observations, the non-uniform zonal distribution of ice clouds over ocean is characterized in terms of a mixture of smooth and rough ice particles. The percentage of the smooth particles is approximately 6 percent and 9 percent for tropical and mid-latitude ice clouds, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Fan; Ovchinnikov, Mikhail; Shaw, Raymond A.
Mixed-phase stratiform clouds can persist even with steady ice precipitation fluxes, and the origin and microphysical properties of the ice crystals are of interest. Vapor deposition growth and sedimentation of ice particles along with a uniform volume source of ice nucleation, leads to a power law relation between ice water content wi and ice number concentration ni with exponent 2.5. The result is independent of assumptions about the vertical velocity structure of the cloud and is therefore more general than the related expression of Yang et al. [2013]. The sensitivity of the wi-ni relationship to the spatial distribution of icemore » nucleation is confirmed by Lagrangian tracking and ice growth with cloud-volume, cloud-top, and cloud-base sources of ice particles through a time-dependent cloud field. Based on observed wi and ni from ISDAC, a lower bound of 0.006 m^3/s is obtained for the ice crystal formation rate.« less
NASA Technical Reports Server (NTRS)
Shaffer, William A.; Samuelson, Robert E.; Conrath, Barney J.
1986-01-01
An average of 51 Voyager 1 IRIS spectra of Jupiter's North Tropical Zone was analyzed to infer the abundance, vertical extent, and size distribution of the particles making up the ammonia cloud in this region. It is assumed that the cloud base coincides with the level at which 100% saturation of ammonia vapor occurs. The vertical distribution of particulates above this level is determined by assuming a constant total ammonia mixing ratio and adjusting the two phases so that the vapor is saturated throughout the cloud. A constant scaling factor then adjusts the base number density. A radiative transfer program is used that includes the effects of absorption and emission of all relevant gases as well as anisotropic scattering by cloud particles. Mie scattering from a gaussian particle size distribution is assumed. The vertical thermal structure is inferred from a temperature retrieval program that utilizes the collision induced S(0) and S(1) molecular hydrogen lines between 300 and 700.cm, and the 1304.cm methane band.
Future of Department of Defense Cloud Computing Amid Cultural Confusion
2013-03-01
enterprise cloud - computing environment and transition to a public cloud service provider. Services have started the development of individual cloud - computing environments...endorsing cloud computing . It addresses related issues in matters of service culture changes and how strategic leaders will dictate the future of cloud ...through data center consolidation and individual Service provided cloud computing .
Particle Size Distributions in Atmospheric Clouds
NASA Technical Reports Server (NTRS)
Paoli, Roberto; Shariff, Karim
2003-01-01
In this note, we derive a transport equation for a spatially integrated distribution function of particles size that is suitable for sparse particle systems, such as in atmospheric clouds. This is done by integrating a Boltzmann equation for a (local) distribution function over an arbitrary but finite volume. A methodology for evolving the moments of the integrated distribution is presented. These moments can be either tracked for a finite number of discrete populations ('clusters') or treated as continuum variables.
NASA Astrophysics Data System (ADS)
Rusch, D. W.; Thomas, G. E.; McClintock, W.; Merkel, A. W.; Bailey, S. M.; Russell, J. M., III; Randall, C. E.; Jeppesen, C.; Callan, M.
2009-03-01
The Aeronomy of Ice in the Mesosphere (AIM) mission was launched from Vandenberg Air Force Base in California at 4:26:03 EDT on April 25, 2007, becoming the first satellite mission dedicated to the study of noctilucent clouds (NLCs), also known as polar mesospheric clouds (PMC) when viewed from space. We present the first results from one of the three instruments on board the satellite, the Cloud Imaging and Particle Size (CIPS) instrument. CIPS has produced detailed morphology of the Northern 2007 PMC and Southern 2007/2008 seasons with 5 km horizontal spatial resolution. CIPS, with its very large angular field of view, images cloud structures at multiple scattering angles within a narrow spectral bandpass centered at 265 nm. Spatial coverage is 100% above about 70° latitude, where camera views overlap from orbit to orbit, and terminates at about 82°. Spatial coverage decreases to about 50% at the lowest latitudes where data are collected (35°). Cloud structures have for the first time been mapped out over nearly the entire summertime polar region. These structures include [`]ice rings', spatially small but bright clouds, and large regions ([`]ice-free regions') in the heart of the cloud season essentially devoid of ice particles. The ice rings bear a close resemblance to tropospheric convective outflow events, suggesting a point source of mesospheric convection. These rings (often circular arcs) are most likely Type IV NLC ([`]whirls' in the standard World Meteorological Organization (WMO) nomenclature).
NASA Astrophysics Data System (ADS)
Paukert, M.; Hoose, C.; Simmel, M.
2017-03-01
In model studies of aerosol-dependent immersion freezing in clouds, a common assumption is that each ice nucleating aerosol particle corresponds to exactly one cloud droplet. In contrast, the immersion freezing of larger drops—"rain"—is usually represented by a liquid volume-dependent approach, making the parameterizations of rain freezing independent of specific aerosol types and concentrations. This may lead to inconsistencies when aerosol effects on clouds and precipitation shall be investigated, since raindrops consist of the cloud droplets—and corresponding aerosol particles—that have been involved in drop-drop-collisions. Here we introduce an extension to a two-moment microphysical scheme in order to account explicitly for particle accumulation in raindrops by tracking the rates of selfcollection, autoconversion, and accretion. This provides a direct link between ice nuclei and the primary formation of large precipitating ice particles. A new parameterization scheme of drop freezing is presented to consider multiple ice nuclei within one drop and effective drop cooling rates. In our test cases of deep convective clouds, we find that at altitudes which are most relevant for immersion freezing, the majority of potential ice nuclei have been converted from cloud droplets into raindrops. Compared to the standard treatment of freezing in our model, the less efficient mineral dust-based freezing results in higher rainwater contents in the convective core, affecting both rain and hail precipitation. The aerosol-dependent treatment of rain freezing can reverse the signs of simulated precipitation sensitivities to ice nuclei perturbations.
A Study of the Relationship Between Anthropogenic Sulfate and Cloud Drop Nucleation
NASA Technical Reports Server (NTRS)
Chuang, Catherine C.; Penner, Joyce E.
1994-01-01
The characteristics of the cloud drop size distribution near cloud base are initially determined by the aerosol particles that serve as CCN and by the local updraft velocity. Chemical reactions of the emitted gaseous sulfur compounds due to human activities will alter, through gas-to-particle conversion, the aerosol size distribution, total number, and its chemical composition. Recently, Boucher and Rodhe and Jones et.al have each developed parameterizations relating cloud drop concentration to sulfate mass or aerosol number concentration, respectively, and used them to develop estimates of the indirect forcing by anthropogenic sulfate aerosols. THese parameterizations made use of measure relationships in continental and maritime clouds. However, these relationships are inherently noisy, yielding more than a factor of 2 variation in cloud drop concentration for a given aerosol number (or for a given sulfate mass) concentration. The large spatial and temporal variabilities in the concentration, chemical characteristics, and size distribution of aerosols have made it difficult to develop such a parameterization from data. In this paper, our focus is to develop a means for relating the predicted anthropogenic sulfate mass to cloud drop number concentration over the range of expected conditions associated with continental and marine aerosol. We start with an assumed pre-existing particle size distribution and develop an approximation of the altered distribution after addition of anthropogenic sulfate. We thereby develop a conservative estimate of the possible change in cloud drop number concentration due to anthropogenic sulfate.
Homogeneous ice nucleation and supercooled liquid water in orographic wave clouds
NASA Technical Reports Server (NTRS)
Heymsfield, Andrew J.; Miloshevich, Larry M.
1993-01-01
This study investigates ice nucleation mechanisms in cold lenticular wave clouds, a cloud type characterized by quasi-steady-state air motions and microphysical properties. It is concluded that homogeneous ice nucleation is responsible for the ice production in these clouds at temperatures below about -33 C. The lack of ice nucleation observed above -33 C indicates a dearth of ice-forming nuclei, and hence heterogeneous ice nucleation, in these clouds. Aircraft measurements in the temperature range -31 to -41 C show the following complement of simultaneous and abrupt changes in cloud properties that indicate a transition from the liquid phase to ice: disappearance of liquid water; decrease in relative humidity from near water saturation to ice saturation; increase in mean particle size; change in particle concentration; and change in temperature due to the release of latent heat. A numerical model of cloud particle growth and homogeneous ice nucleation is used to aid in interpretation of our in situ measurements. The abrupt changes in observed cloud properties compare favorably, both qualitatively and quantitatively, with results from the homogeneous ice nucleation model. It is shown that the homogeneous ice nucleation rates from the measurements are consistent with the temperature-dependent rates employed by the model (within a factor of 100, corresponding to about 1 C in temperature) in the temperature range -35 deg to -38 C. Given the theoretical basis of the modeled rates, it may be reasonable to apply them throughout the -30 to -50 C temperature range considered by the theory.
Climate impact of anthropogenic aerosols on cirrus clouds
NASA Astrophysics Data System (ADS)
Penner, J.; Zhou, C.
2017-12-01
Cirrus clouds have a net warming effect on the atmosphere and cover about 30% of the Earth's area. Aerosol particles initiate ice formation in the upper troposphere through modes of action that include homogeneous freezing of solution droplets, heterogeneous nucleation on solid particles immersed in a solution, and deposition nucleation of vapor onto solid particles. However, the efficacy with which particles act to form cirrus particles in a model depends on the representation of updrafts. Here, we use a representation of updrafts based on observations of gravity waves, and follow ice formation/evaporation during both updrafts and downdrafts. We examine the possible change in ice number concentration from anthropogenic soot originating from surface sources of fossil fuel and biomass burning and from aircraft particles that have previously formed ice in contrails. Results show that fossil fuel and biomass burning soot aerosols with this version exert a radiative forcing of -0.15±0.02 Wm-2 while aircraft aerosols that have been pre-activated within contrails exert a forcing of -0.20±0.06 Wm-2, but it is possible to decrease these estimates of forcing if a larger fraction of dust particles act as heterogeneous ice nuclei. In addition aircraft aerosols may warm the climate if a large fraction of these particles act as ice nuclei. The magnitude of the forcing in cirrus clouds can be comparable to the forcing exerted by anthropogenic aerosols on warm clouds. This assessment could therefore support climate models with high sensitivity to greenhouse gas forcing, while still allowing the models to fit the overall historical temperature change.
Condensed-phase biogenic-anthropogenic interactions with implications for cold cloud formation.
Charnawskas, Joseph C; Alpert, Peter A; Lambe, Andrew T; Berkemeier, Thomas; O'Brien, Rachel E; Massoli, Paola; Onasch, Timothy B; Shiraiwa, Manabu; Moffet, Ryan C; Gilles, Mary K; Davidovits, Paul; Worsnop, Douglas R; Knopf, Daniel A
2017-08-24
Anthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil fuel combustion can acquire a coating of SOA. We investigate SOA-soot biogenic-anthropogenic interactions and their impact on ice nucleation in relation to the particles' organic phase state. SOA particles were generated from the OH oxidation of naphthalene, α-pinene, longifolene, or isoprene, with or without the presence of sulfate or soot particles. Corresponding particle glass transition (T g ) and full deliquescence relative humidity (FDRH) were estimated using a numerical diffusion model. Longifolene SOA particles are solid-like and all biogenic SOA sulfate mixtures exhibit a core-shell configuration (i.e. a sulfate-rich core coated with SOA). Biogenic SOA with or without sulfate formed ice at conditions expected for homogeneous ice nucleation, in agreement with respective T g and FDRH. α-pinene SOA coated soot particles nucleated ice above the homogeneous freezing temperature with soot acting as ice nuclei (IN). At lower temperatures the α-pinene SOA coating can be semisolid, inducing ice nucleation. Naphthalene SOA coated soot particles acted as ice nuclei above and below the homogeneous freezing limit, which can be explained by the presence of a highly viscous SOA phase. Our results suggest that biogenic SOA does not play a significant role in mixed-phase cloud formation and the presence of sulfate renders this even less likely. However, anthropogenic SOA may have an enhancing effect on cloud glaciation under mixed-phase and cirrus cloud conditions compared to biogenic SOA that dominate during pre-industrial times or in pristine areas.
NASA Astrophysics Data System (ADS)
Lee, Y.; Alexander, L.; Newburn, M.; Jayne, J.; Hubbe, J.; Springston, S.; Senum, G.; Andrews, B.; Ogren, J.; Kleinman, L.; Daum, P.; Berg, L.; Berkowitz, C.
2007-12-01
Chemical composition of submicron aerosol particles was determined using an Aerodyne Time-of-Flight Aerosol Mass Spectrometer (AMS) outfitted on the DOE G-1 aircraft during the Cumulus Humilis Aerosol Processing Study (CHAPS) conducted in Oklahoma City area in June 2007. The primary objective of CHAPS was to investigate the effects of urban emissions on cloud aerosol interactions as a function of processing of the emissions. Aerosol composition was typically determined at three different altitudes: below, in, and above cloud, in both upwind and downwind regions of the urban area. Aerosols were sampled from an isokinetic inlet with an upper size cut-off of ~1.5 micrometer. During cloud passages, the AMS also sampled particles that were dried from cloud droplets collected using a counter-flow virtual impactor (CVI) sampler. The aerosol mass concentrations were typically below 10 microgram per cubic meter, and were dominated by organics and sulfate. Ammonium was often less than required for complete neutralization of sulfate. Aerosol nitrate levels were very low. We noted that nitrate levels were significantly enhanced in cloud droplets compared to aerosols, most likely resulting from dissolution of gaseous nitric acid. Organic to sulfate ratios appeared to be lower in cloud droplets than in aerosols, suggesting cloud condensation nuclei properties of aerosol particles might be affected by loading and nature of the organic components in aerosols. In-cloud formation of sulfate was considered unimportant because of the very low SO2 concentration in the region. A detailed examination of the sources of the aerosol organic components (based on hydrocarbons determined using a proton transfer reaction mass spectrometer) and their effects on cloud formation as a function of atmospheric processing (based on the degree of oxidation of the organic components) will be presented.
NASA Astrophysics Data System (ADS)
Diehl, Karoline; Grützun, Verena
2018-03-01
In deep convective clouds, heavy rain is often formed involving the ice phase. Simulations were performed using the 3-D cloud resolving model COSMO-SPECS with detailed spectral microphysics including parameterizations of homogeneous and three heterogeneous freezing modes. The initial conditions were selected to result in a deep convective cloud reaching 14 km of altitude with strong updrafts up to 40 m s-1. At such altitudes with corresponding temperatures below -40 °C the major fraction of liquid drops freezes homogeneously. The goal of the present model simulations was to investigate how additional heterogeneous freezing will affect ice formation and precipitation although its contribution to total ice formation may be rather low. In such a situation small perturbations that do not show significant effects at first sight may trigger cloud microphysical responses. Effects of the following small perturbations were studied: (1) additional ice formation via immersion, contact, and deposition modes in comparison to solely homogeneous freezing, (2) contact and deposition freezing in comparison to immersion freezing, and (3) small fractions of biological ice nucleating particles (INPs) in comparison to higher fractions of mineral dust INP. The results indicate that the modification of precipitation proceeds via the formation of larger ice particles, which may be supported by direct freezing of larger drops, the growth of pristine ice particles by riming, and by nucleation of larger drops by collisions with pristine ice particles. In comparison to the reference case with homogeneous freezing only, such small perturbations due to additional heterogeneous freezing rather affect the total precipitation amount. It is more likely that the temporal development and the local distribution of precipitation are affected by such perturbations. This results in a gradual increase in precipitation at early cloud stages instead of a strong increase at later cloud stages coupled with approximately 50 % more precipitation in the cloud center. The modifications depend on the active freezing modes, the fractions of active INP, and the composition of the internal mixtures in the drops.
Light Scattering by Gaussian Particles: A Solution with Finite-Difference Time Domain Technique
NASA Technical Reports Server (NTRS)
Sun, W.; Nousiainen, T.; Fu, Q.; Loeb, N. G.; Videen, G.; Muinonen, K.
2003-01-01
The understanding of single-scattering properties of complex ice crystals has significance in atmospheric radiative transfer and remote-sensing applications. In this work, light scattering by irregularly shaped Gaussian ice crystals is studied with the finite-difference time-domain (FDTD) technique. For given sample particle shapes and size parameters in the resonance region, the scattering phase matrices and asymmetry factors are calculated. It is found that the deformation of the particle surface can significantly smooth the scattering phase functions and slightly reduce the asymmetry factors. The polarization properties of irregular ice crystals are also significantly different from those of spherical cloud particles. These FDTD results could provide a reference for approximate light-scattering models developed for irregular particle shapes and can have potential applications in developing a much simpler practical light scattering model for ice clouds angular-distribution models and for remote sensing of ice clouds and aerosols using polarized light. (copyright) 2003 Elsevier Science Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Mitchell, David L.; Chai, Steven K.; Dong, Yayi; Arnott, W. Patrick; Hallett, John
1993-01-01
The 1 November 1986 FIRE I case study was used to test an ice particle growth model which predicts bimodal size spectra in cirrus clouds. The model was developed from an analytically based model which predicts the height evolution of monomodal ice particle size spectra from the measured ice water content (IWC). Size spectra from the monomodal model are represented by a gamma distribution, N(D) = N(sub o)D(exp nu)exp(-lambda D), where D = ice particle maximum dimension. The slope parameter, lambda, and the parameter N(sub o) are predicted from the IWC through the growth processes of vapor diffusion and aggregation. The model formulation is analytical, computationally efficient, and well suited for incorporation into larger models. The monomodal model has been validated against two other cirrus cloud case studies. From the monomodal size spectra, the size distributions which determine concentrations of ice particles less than about 150 mu m are predicted.
The backscatter cloud probe - a compact low-profile autonomous optical spectrometer
NASA Astrophysics Data System (ADS)
Beswick, K.; Baumgardner, D.; Gallagher, M.; Volz-Thomas, A.; Nedelec, P.; Wang, K.-Y.; Lance, S.
2014-05-01
A compact (500 cm3), lightweight (500 g), near-field, single particle backscattering optical spectrometer is described that mounts flush with the skin of an aircraft and measures the concentration and optical equivalent diameter of particles from 5 to 75 μm. The backscatter cloud probe (BCP) was designed as a real-time qualitative cloud detector primarily for data quality control of trace gas instruments developed for the climate monitoring instrument packages that are being installed on commercial passenger aircraft as part of the European Union In-Service Aircraft for a Global Observing System (IAGOS) program (http://www.iagos.org/). Subsequent evaluations of the BCP measurements on a number of research aircraft, however, have revealed it capable of delivering quantitative particle data products including size distributions, liquid-water content and other information on cloud properties. We demonstrate the instrument's capability for delivering useful long-term climatological, as well as aviation performance information, across a wide range of environmental conditions. The BCP has been evaluated by comparing its measurements with those from other cloud particle spectrometers on research aircraft and several BCPs are currently flying on commercial A340/A330 Airbus passenger airliners. The design and calibration of the BCP is described in this article, along with an evaluation of measurements made on the research and commercial aircraft. Preliminary results from more than 7000 h of airborne measurements by the BCP on two Airbus A340s operating on routine global traffic routes (one Lufthansa, the other China Airlines) show that more than 340 h of cloud data have been recorded at normal cruise altitudes (> 10 km) and more than 40% of the > 1200 flights were through clouds at some point between takeoff and landing. These data are a valuable contribution to databases of cloud properties, including sub-visible cirrus, in the upper troposphere and useful for validating satellite retrievals of cloud water and effective radius; in addition, providing a broader, geographically and climatologically relevant view of cloud microphysical variability that is useful for improving parameterizations of clouds in climate models. Moreover, they are also useful for monitoring the vertical climatology of clouds over airports, especially those over megacities where pollution emissions may be impacting local and regional climate.
NASA Astrophysics Data System (ADS)
Yu, Tianxu; Rose, William I.; Prata, A. J.
2002-08-01
Volcanic ash in volcanic clouds can be mapped in two dimensions using two-band thermal infrared data available from meteorological satellites. Wen and Rose [1994] developed an algorithm that allows retrieval of the effective particle size, the optical depth of the volcanic cloud, and the mass of fine ash in the cloud. Both the mapping and the retrieval scheme are less accurate in the humid tropical atmosphere. In this study we devised and tested a scheme for atmospheric correction of volcanic ash mapping and retrievals. The scheme utilizes infrared (IR) brightness temperature (BT) information in two infrared channels (both between 10 and 12.5 μm) and the brightness temperature differences (BTD) to estimate the amount of BTD shift caused by lower tropospheric water vapor. It is supported by the moderate resolution transmission (MODTRAN) analysis. The discrimination of volcanic clouds in the new scheme also uses both BT and BTD data but corrects for the effects of the water vapor. The new scheme is demonstrated and compared with the old scheme using two well-documented examples: (1) the 18 August 1992 volcanic cloud of Crater Peak, Mount Spurr, Alaska, and (2) the 26 December 1997 volcanic cloud from Soufriere Hills, Montserrat. The Spurr example represents a relatively ``dry'' subarctic atmospheric condition. The new scheme sees a volcanic cloud that is about 50% larger than the old. The mean optical depth and effective radii of cloud particles are lower by 22% and 9%, and the fine ash mass in the cloud is 14% higher. The Montserrat cloud is much smaller than Spurr and is more sensitive to atmospheric moisture. It also was located in a moist tropical atmosphere. For the Montserrat example the new scheme shows larger differences, with the area of the volcanic cloud being about 5.5 times larger, the optical depth and effective radii of particles lower by 56% and 28%, and the total fine particle mass in the cloud increased by 53%. The new scheme can be automated and can contribute to more accurate remote volcanic ash detection. More tests are needed to find the best way to estimate the water vapor effects in real time.
Triboelectrification of KCl and ZnS particles with applications to GJ1214b
NASA Astrophysics Data System (ADS)
Mendez, Joshua; Dufek, Josef
2017-10-01
When mobilized, granular materials become charged as individual grains undergo collisions and frictional interactions. On Earth, this process, known as triboelectrification, has been recognized in volcanic plumes and sandstorms (Kok & Lacks 2009 )(Cimarelli et al. 2014 ) (Méndez Harper & Dufek 2016 ). Yet, frictional charging almost certainly exists on other worlds in our own Solar System (such as Mars, the Moon, and Venus) as well as extra solar planets. Indeed, recent observations and numerical modeling have suggested that many exoplanets may have processes that lift large quantities of particles into their atmospheres (volcanic activity, for instance) (Hodosán et al. 2016 ) or maintain extensive condensed granular reservoirs in the form of clouds or hazes (Helling et al. 2013 )(Kreidberg et al. 2014 ) (Gao & Benneke 2016 ). On these worlds, triboelectric charging almost certainly contributes to their global electric circuits, providing a mechanism to generate lightning, to drive chemical processes in the atmospheres, and, perhaps, influence habitability. Yet, despite the high likelihood of granular electrification processes occurring on worlds beyond our Solar System, no experiments, to our knowledge, have been conducted to characterize the triboelectrification of materials expected to exist in the exoplanet atmospheres under appropriate conditions. To help close this knowledge-gap, we explore the electrification of potassium chloride and zinc sulfide, two substances possibly composing the clouds on super-Earth GJ1214b (Kreidberg et al. 2014 ) (Charnay et al. 2015 ) (Gao & Benneke 2016 ). We find that both materials become readily electrified when mobilized, attaining charge densities similar to those found on volcanic ash particles. Thus, if GJ1214b does indeed host salt clouds in its atmosphere, they are likely electrified and may be capable of producing lightning or corona discharge.
Theoretical model of the Bergeron-Findeisen mechanism of ice crystal growth in clouds
NASA Astrophysics Data System (ADS)
Castellano, N. E.; Avila, E. E.; Saunders, C. P. R.
A numerical study of growth rate of ice particles in an array of water droplets (Bergeron-Findeisen mechanism) has used the method of electrostatic image charges to determine the vapour field in which a particle grows. Analysis of growth rate in various conditions of relevance to clouds has shown that it is proportional to liquid water content and to ice particle size, while it is inversely proportional to cloud droplet size. The results show that growth rate is enhanced by several percent relative to the usual treatment in which vapour is assumed to diffuse from infinity towards a growing ice particle. The study was performed for ice particles between 25 and 150 μm radii, water droplet sizes between 6 and 20 μm diameter and a wide range of liquid water contents. A study was also made to determine the effect of reducing the vapour source at infinity so that the droplets alone provided the vapour for particle growth. A parameterisation of ice particle growth rate is given as a function of liquid water content and ice particle and droplet sizes. These studies are of importance to considerations in thunderstorm electrification processes, where the mechanism of charge transfer between ice particles and graupel could take place.
Measurements of the light-absorbing material inside cloud droplets and its effect on cloud albedo
NASA Technical Reports Server (NTRS)
Twohy, C. H.; Clarke, A. D.; Warren, Stephen G.; Radke, L. F.; Charleson, R. J.
1990-01-01
Most of the measurements of light-absorbing aerosol particles made previously have been in non-cloudy air and therefore provide no insight into aerosol effects on cloud properties. Here, researchers describe an experiment designed to measure light absorption exclusively due to substances inside cloud droplets, compare the results to related light absorption measurements, and evaluate possible effects on the albedo of clouds. The results of this study validate those of Twomey and Cocks and show that the measured levels of light-absorbing material are negligible for the radiative properties of realistic clouds. For the measured clouds, which appear to have been moderately polluted, the amount of elemental carbon (EC) present was insufficient to affect albedo. Much higher contaminant levels or much larger droplets than those measured would be necessary to significantly alter the radiative properties. The effect of the concentrations of EC actually measured on the albedo of snow, however, would be much more pronounced since, in contrast to clouds, snowpacks are usually optically semi-infinite and have large particle sizes.
Modeling the partitioning of organic chemical species in cloud phases with CLEPS (1.1)
NASA Astrophysics Data System (ADS)
Rose, Clémence; Chaumerliac, Nadine; Deguillaume, Laurent; Perroux, Hélène; Mouchel-Vallon, Camille; Leriche, Maud; Patryl, Luc; Armand, Patrick
2018-02-01
The new detailed aqueous-phase mechanism Cloud Explicit Physico-chemical Scheme (CLEPS 1.0), which describes the oxidation of isoprene-derived water-soluble organic compounds, is coupled with a warm microphysical module simulating the activation of aerosol particles into cloud droplets. CLEPS 1.0 was then extended to CLEPS 1.1 to include the chemistry of the newly added dicarboxylic acids dissolved from the particulate phase. The resulting coupled model allows the prediction of the aqueous-phase concentrations of chemical compounds originating from particle scavenging, mass transfer from the gas-phase and in-cloud aqueous chemical reactivity. The aim of the present study was more particularly to investigate the effect of particle scavenging on cloud chemistry. Several simulations were performed to assess the influence of various parameters on model predictions and to interpret long-term measurements conducted at the top of Puy de Dôme (PUY, France) in marine air masses. Specific attention was paid to carboxylic acids, whose predicted concentrations are on average in the lower range of the observations, with the exception of formic acid, which is rather overestimated in the model. The different sensitivity runs highlight the fact that formic and acetic acids mainly originate from the gas phase and have highly variable aqueous-phase reactivity depending on the cloud acidity, whereas C3-C4 carboxylic acids mainly originate from the particulate phase and are supersaturated in the cloud.
NASA Astrophysics Data System (ADS)
Werner, F.; Ditas, F.; Siebert, H.; Simmel, M.; Wehner, B.; Pilewskie, P.; Schmeissner, T.; Shaw, R. A.; Hartmann, S.; Wex, H.; Roberts, G. C.; Wendisch, M.
2014-02-01
Clear experimental evidence of the Twomey effect for shallow trade wind cumuli near Barbados is presented. Effective droplet radius (reff) and cloud optical thickness (τ), retrieved from helicopter-borne spectral cloud-reflected radiance measurements, and spectral cloud reflectivity (γλ) are correlated with collocated in situ observations of the number concentration of aerosol particles from the subcloud layer (N). N denotes the concentration of particles larger than 80 nm in diameter and represents particles in the activation mode. In situ cloud microphysical and aerosol parameters were sampled by the Airborne Cloud Turbulence Observation System (ACTOS). Spectral cloud-reflected radiance data were collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART-HELIOS). With increasing N a shift in the probability density functions of τ and γλ toward larger values is observed, while the mean values and observed ranges of retrieved reff decrease. The relative susceptibilities (RS) of reff, τ, and γλ to N are derived for bins of constant liquid water path. The resulting values of RS are in the range of 0.35 for reff and τ, and 0.27 for γλ. These results are close to the maximum susceptibility possible from theory. Overall, the shallow cumuli sampled near Barbados show characteristics of homogeneous, plane-parallel clouds. Comparisons of RS derived from in situ measured reff and from a microphysical parcel model are in close agreement.
Observations of Aircraft Dissipation Trails from GOES
NASA Technical Reports Server (NTRS)
Duda, David P.; Minnis, Patrick
2002-01-01
Two cases of distrails (aircraft dissipation trails) with associated fall streak clouds were analyzed using multispectral geostationary satellite data. One distrail was observed on 23 July 2000 in a single cloud layer over southeastern Virginia and the Chesapeake Bay. Another set of trails developed on 6 January 2000 at the top of multilayer clouds off the coasts of Georgia and South Carolina. The distrails on both days formed in optically thin, midlevel stratified clouds with cloud-top heights between 7.6 and 9.1 km. The distrail features remained intact and easily visible from satellite images for 1-2 h in spite of winds near 50 km at cloud level. The width of the distrails spread as far as 20 km within 90 min or less. Differences between the optical properties of the clouds surrounding the trails and those of the fall streak particles inside the distrails allowed for easy identification of the fall streak clouds in either the 3.9-micrometer brightness temperature imagery, or the 10.7-micrometer - 12.0-micrometer brightness temperature difference. Although the three-channel infrared retrieval was better at retrieving cloud properties in the multilayer cloud case, two independent remote sensing retrievals of both distrail cases showed that the fall streaks had larger particle sizes than the clouds outside of the trails.
NASA Astrophysics Data System (ADS)
Zhang, G.; McFarquhar, G.; Poellot, M.; Verlinde, J.; Heymsfield, A.; Kok, G.
2005-12-01
Arctic stratus clouds play an important role in the energy balance of the Arctic region. Previous studies have suggested that Arctic stratus persist due to a balance among cloud top radiation cooling, latent heating, ice crystal fall out and large scale forcing. In this study, radiative heating profiles through Arctic stratus are computed using cloud, surface and thermodynamic observations obtained during the Mixed-Phase Arctic Cloud Experiment (M-PACE) as input to the radiative transfer model STREAMER. In particular, microphysical and macrophycial cloud properties such as phase, water content, effective particle size, particle shape, cloud height and cloud thickness were derived using data collected by in-situ sensors on the University of North Dakota (UND) Citation and ground-based remote sensors at Barrow and Oliktok Point. Temperature profiles were derived from radiosonde launches and a fresh snow surface was assumed. One series of sensitivity studies explored the dependence of the heating profile on the solar zenith angle. For smaller solar zenith angles, more incoming solar radiation is received at cloud top acting to counterbalance infrared cooling. As solar zenith angle in the Arctic is large compared to low latitudes, a large solar zenith angle may contribute to the longevity of these clouds.
The EarthCARE satellite payload
NASA Astrophysics Data System (ADS)
Wallace, Kotska; Perez-Albinana, Abelardo; Lemanczyk, Jerzy; Heliere, Arnaud; Wehr, Tobias; Eisinger, Michael; Lefebvre, Alain; Nakatsuka, Hirotaka; Tomita, Eiichi
2014-10-01
EarthCARE is ESA's third Earth Explorer Core Mission, with JAXA providing one instrument. The mission facilitates unique data product synergies, to improve understanding of atmospheric cloud-aerosol interactions and Earth radiative balance, towards enhancing climate and numerical weather prediction models. This paper will describe the payload, consisting of two active instruments: an ATmospheric LIDar (ATLID) and a Cloud Profiling Radar (CPR), and two passive instruments: a Multi Spectral Imager (MSI) and a Broad Band Radiometer (BBR). ATLID is a UV lidar providing atmospheric echoes, with a vertical resolution of 100 m, up to 40 km altitude. Using very high spectral resolution filtering the relative contributions of particle (aerosols) and Rayleigh (molecular) back scattering will be resolved, allowing cloud and aerosol optical depth to be deduced. Particle scatter co- and cross-polarisation measurements will provide information about the cloud and aerosol particles' physical characteristics. JAXA's 94.05 GHz Cloud Profiling Radar operates with a pulse width of 3.3 μm and repetition frequency 6100 to 7500 Hz. The 2.5 m aperture radar will retrieve data on clouds and precipitation. Doppler shift measurements in the backscatter signal will furthermore allow inference of the vertical motion of particles to an accuracy of about 1 m/s. MSI's 500 m pixel data will provide cloud and aerosol information and give context to the active instrument measurements for 3-D scene construction. Four solar channels and three thermal infrared channels cover 35 km on one side to 115 km on the other side of the other instrument's observations. BBR measures reflected solar and emitted thermal radiation from the scene. To reduce uncertainty in the radiance to flux conversion, three independent view angles are observed for each scene. The combined data allows more accurate flux calculations, which can be further improved using MSI data.