Science.gov

Sample records for individual hollow nanoparticles

  1. Correlated Optical Spectroscopy and Transmission Electron Microscopy of Individual Hollow Nanoparticles and their Dimers

    PubMed Central

    Yang, Linglu; Yan, Bo; Reinhard, Björn M.

    2009-01-01

    The optical spectra of individual Ag-Au alloy hollow particles were correlated with the particles’ structures obtained by transmission electron microscopy (TEM). The TEM provided direct experimental access to the dimension of the cavity, thickness of the metal shell, and the interparticle distance of hollow particle dimers with high spatial resolution. The analysis of correlated spectral and structural information enabled the quantification of the influence of the core-shell structure on the resonance energy, plasmon lifetime, and plasmon coupling efficiency. Electron beam exposure during TEM inspection was observed to affect plasmon wavelength and lifetime, making optical inspection prior to structural characterization mandatory. PMID:19768108

  2. Fabrication of Metallic Hollow Nanoparticles

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo (Inventor); Choi, Sr., Sang H. (Inventor); Lillehei, Peter T. (Inventor); Chu, Sang-Hyon (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2016-01-01

    Metal and semiconductor nanoshells, particularly transition metal nanoshells, are fabricated using dendrimer molecules. Metallic colloids, metallic ions or semiconductors are attached to amine groups on the dendrimer surface in stabilized solution for the surface seeding method and the surface seedless method, respectively. Subsequently, the process is repeated with additional metallic ions or semiconductor, a stabilizer, and NaBH.sub.4 to increase the wall thickness of the metallic or semiconductor lining on the dendrimer surface. Metallic or semiconductor ions are automatically reduced on the metallic or semiconductor nanoparticles causing the formation of hollow metallic or semiconductor nanoparticles. The void size of the formed hollow nanoparticles depends on the dendrimer generation. The thickness of the metallic or semiconductor thin film around the dendrimer depends on the repetition times and the size of initial metallic or semiconductor seeds.

  3. Purification of nanoparticles by hollow fiber diafiltration

    NASA Astrophysics Data System (ADS)

    Veeken, J.

    2012-09-01

    Hollow Fiber Diafiltration (Hollow Fiber Tangential Flow Filtration) is an efficient and rapid alternative to traditional methods of nanoparticle purification such as ultracentrifugation, stirred cell filtration, dialysis or chromatography. Hollow Fiber Diafiltration can be used to purify a wide range of nanoparticles including liposomes, colloids, magnetic particles and nanotubes. Hollow Fiber Diafiltration is a membrane based method where pore size determines the retention or transmission of solution components. It is a flow process where the sample is gently circulated through a tubular membrane. With controlled replacement of the permeate or (dialysate), pure nanoparticles can be attained. Hollow Fiber Diafiltration can be directly scaled up from R&D volumes to production. By adding more membrane fibers and maintaining the operating parameters, large volumes can be processed in the same time with the same pressure, and flow dynamics as bench-scale volumes. Keywords: hollow fiber, Diafiltration, filtration, purification, tangential flow filtration.

  4. Hollow nanoparticle cathode materials for sodium electrochemical cells and batteries

    DOEpatents

    Shevchenko, Elena; Rajh, Tijana; Johnson, Christopher S.; Koo, Bonil

    2016-07-12

    A cathode comprises, in its discharged state, a layer of hollow .gamma.-Fe.sub.2O.sub.3 nanoparticles disposed between two layers of carbon nanotubes, and preferably including a metallic current collector in contact with one of the layers of carbon nanotubes. Individual particles of the hollow .gamma.-Fe.sub.2O.sub.3 nanoparticles comprise a crystalline shell of .gamma.-Fe.sub.2O.sub.3 including cation vacancies within the crystal structure of the shell (i.e., iron vacancies of anywhere between 3% to 90%, and preferably 44 to 77% of available octahedral iron sites). Sodium ions are intercalated within at least some of the cation vacancies within the crystalline shell of the hollow .gamma.-Fe.sub.2O.sub.3 nanoparticles.

  5. Magnetic domains and surface effects in hollow maghemite nanoparticles

    SciTech Connect

    Cabot, Andreu; Alivisatos, A. Paul; Puntes, Victor; Balcells, Lluis; Iglesias, Oscar; Labarta, Amilcar

    2008-09-30

    In the present work, we investigate the magnetic properties of ferrimagnetic and non-interacting maghemite hollow nanoparticles obtained by the Kirkendall effect. From the experimental characterization of their magnetic behavior, we find that polycrystalline hollow maghemite nanoparticles exhibit low blocked-to-superparamagnetic transition temperatures, small magnetic moments, significant coercivities and irreversibility fields, and no magnetic saturation on external magnetic fields up to 5 T. These results are interpreted in terms of the microstructural parameters characterizing the maghemite shells by means of atomistic Monte Carlo simulations of an individual spherical shell. The model comprises strongly interacting crystallographic domains arranged in a spherical shell with random orientations and anisotropy axis. The Monte Carlo simulation allows discernment between the influence of the polycrystalline structure and its hollow geometry, while revealing the magnetic domain arranggement in the different temperataure regimes.

  6. Hollow gold nanoparticles encapsulating horseradish peroxidase.

    PubMed

    Kumar, Rajiv; Maitra, A N; Patanjali, P K; Sharma, Parvesh

    2005-11-01

    Hollow nanoshells of gold entrapping an enzyme, horseradish peroxidase (HRP), in the cavity of the nanoshell have been prepared in the reverse micelles by leaching out silver chloride (AgCl) from Au(shell)AgCl(core) nanoparticles with dilute ammonia solution. The particles have been characterised by dynamic laser light scattering (DLS), transmission electron microscopy (TEM), X-ray diffraction (XRD), and electron diffraction. The particle size is below 100 nm diameter, depending upon the size of the aqueous core of reverse micelles in which these particles have been prepared. This soft-chemical method for the preparation of such particles allows the entrapped enzyme to remain active inside the hollow gold nanoparticles. Small substrate molecules such as o-dianisidine can easily enter through the pores of the nanoshell and can undergo enzymatic oxidation by H2O2. The enzyme kinetics follows Michaelis-Menten mechanism. When the substrate is chemically conjugated with dextran molecule (10 kDa), the enzymatic reaction is practically completely prevented perhaps by the inability of dextran-o-dianisidine conjugate to penetrate the pores of the nanoshells. However, HRP did not show any activity when trapped inside solid gold nanoparticles.

  7. Cobalt Oxide Hollow Nanoparticles Derived by Bio-Templating

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo; Choi, Sang H.; Lillehei, Peter T.; Chu, Sang-Hyon; King, Glen C.; Watt, Gerald D.

    2005-01-01

    We present here the first fabrication of hollow cobalt oxide nanoparticles produced by a protein-regulated site-specific reconstitution process in aqueous solution and describe the metal growth mechanism in the ferritin interior.

  8. Cobalt Oxide Hollow Nanoparticles Derived by Bio-Templating

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo; Choi, Sang H.; Lillehei, Peter T.; Chu, Sang-Hyon; King, Glen C.; Watt, Gerald D.

    2005-01-01

    We present here the first fabrication of hollow cobalt oxide nanoparticles produced by a protein-regulated site-specific reconstitution process in aqueous solution and describe the metal growth mechanism in the ferritin interior.

  9. Pressure effects in hollow and solid iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Silva, N. J. O.; Saisho, S.; Mito, M.; Millán, A.; Palacio, F.; Cabot, A.; Iglesias, Ò.; Labarta, A.

    2013-06-01

    We report a study on the pressure response of the anisotropy energy of hollow and solid maghemite nanoparticles. The differences between the maghemite samples are understood in terms of size, magnetic anisotropy and shape of the particles. In particular, the differences between hollow and solid samples are due to the different shape of the nanoparticles and by comparing both pressure responses it is possible to conclude that the shell has a larger pressure response when compared to the core.

  10. Revealing bismuth oxide hollow nanoparticle formation by the Kirkendall effect.

    PubMed

    Niu, Kai-Yang; Park, Jungwon; Zheng, Haimei; Alivisatos, A Paul

    2013-01-01

    We study the formation of bismuth oxide hollow nanoparticles by the Kirkendall effect using liquid cell transmission electron microscopy (TEM). Rich dynamics of bismuth diffusion through the bismuth oxide shell have been captured in situ. The diffusion coefficient of bismuth through bismuth oxide shell is 3-4 orders of magnitude higher than that of bulk. Observation reveals that defects, temperature, sizes of the particles, and so forth can affect the diffusion of reactive species and modify the kinetics of the hollowing process.

  11. Friction mechanism of individual multilayered nanoparticles

    PubMed Central

    Tevet, Ofer; Von-Huth, Palle; Popovitz-Biro, Ronit; Rosentsveig, Rita; Wagner, H. Daniel; Tenne, Reshef

    2011-01-01

    Inorganic nanoparticles of layered [two-dimensional (2D)] compounds with hollow polyhedral structure, known as fullerene-like nanoparticles (IF), were found to have excellent lubricating properties. This behavior can be explained by superposition of three main mechanisms: rolling, sliding, and exfoliation-material transfer (third body). In order to elucidate the tribological mechanism of individual nanoparticles in different regimes, in situ axial nanocompression and shearing forces were applied to individual nanoparticles using a high resolution scanning electron microscope. Gold nanoparticles deposited onto the IF nanoparticles surface served as markers, delineating the motion of individual IF nanoparticle. It can be concluded from these experiments that rolling is an important lubrication mechanism for IF-WS2 in the relatively low range of normal stress (0.96±0.38 GPa). Sliding is shown to be relevant under slightly higher normal stress, where the spacing between the two mating surfaces does not permit free rolling of the nanoparticles. Exfoliation of the IF nanoparticles becomes the dominant mechanism at the high end of normal stress; above 1.2 GPa and (slow) shear; i.e., boundary lubrication conditions. It is argued that the modus operandi of the nanoparticles depends on their degree of crystallinity (defects); sizes; shape, and their mechanical characteristics. This study suggests that the rolling mechanism, which leads to low friction and wear, could be attained by improving the sphericity of the IF nanoparticle, the dispersion (deagglomeration) of the nanoparticles, and the smoothness of the mating surfaces. PMID:22084073

  12. Hollow Au-Ag Nanoparticles Labeled Immunochromatography Strip for Highly Sensitive Detection of Clenbuterol

    PubMed Central

    Wang, Jingyun; Zhang, Lei; Huang, Youju; Dandapat, Anirban; Dai, Liwei; Zhang, Ganggang; Lu, Xuefei; Zhang, Jiawei; Lai, Weihua; Chen, Tao

    2017-01-01

    The probe materials play a significant role in improving the detection efficiency and sensitivity of lateral-flow immunochromatographic test strip (ICTS). Unlike conventional ICTS assay usually uses single-component, solid gold nanoparticles as labeled probes, in our present study, a bimetallic, hollow Au-Ag nanoparticles (NPs) labeled ICTS was successfully developed for the detection of clenbuterol (CLE). The hollow Au-Ag NPs with different Au/Ag mole ratio and tunable size were synthesized by varying the volume ratio of [HAuCl4]:[Ag NPs] via the galvanic replacement reaction. The surface of hollow Ag-Au NPs was functionalized with 11-mercaptoundecanoic acid (MUA) for further covalently bonded with anti-CLE monoclonal antibody. Overall size of the Au-Ag NPs, size of the holes within individual NPs and also Au/Ag mole ratio have been systematically optimized to amplify both the visual inspection signals and the quantitative data. The sensitivity of optimized hollow Au-Ag NPs probes has been achieved even as low as 2 ppb in a short time (within 15 min), which is superior over the detection performance of conventional test strip using Au NPs. The optimized hollow Au-Ag NPs labeled test strip can be used as an ideal candidate for the rapid screening of CLE in food samples. PMID:28134263

  13. Hollow Au-Ag Nanoparticles Labeled Immunochromatography Strip for Highly Sensitive Detection of Clenbuterol.

    PubMed

    Wang, Jingyun; Zhang, Lei; Huang, Youju; Dandapat, Anirban; Dai, Liwei; Zhang, Ganggang; Lu, Xuefei; Zhang, Jiawei; Lai, Weihua; Chen, Tao

    2017-01-30

    The probe materials play a significant role in improving the detection efficiency and sensitivity of lateral-flow immunochromatographic test strip (ICTS). Unlike conventional ICTS assay usually uses single-component, solid gold nanoparticles as labeled probes, in our present study, a bimetallic, hollow Au-Ag nanoparticles (NPs) labeled ICTS was successfully developed for the detection of clenbuterol (CLE). The hollow Au-Ag NPs with different Au/Ag mole ratio and tunable size were synthesized by varying the volume ratio of [HAuCl4]:[Ag NPs] via the galvanic replacement reaction. The surface of hollow Ag-Au NPs was functionalized with 11-mercaptoundecanoic acid (MUA) for further covalently bonded with anti-CLE monoclonal antibody. Overall size of the Au-Ag NPs, size of the holes within individual NPs and also Au/Ag mole ratio have been systematically optimized to amplify both the visual inspection signals and the quantitative data. The sensitivity of optimized hollow Au-Ag NPs probes has been achieved even as low as 2 ppb in a short time (within 15 min), which is superior over the detection performance of conventional test strip using Au NPs. The optimized hollow Au-Ag NPs labeled test strip can be used as an ideal candidate for the rapid screening of CLE in food samples.

  14. Hollow Au-Ag Nanoparticles Labeled Immunochromatography Strip for Highly Sensitive Detection of Clenbuterol

    NASA Astrophysics Data System (ADS)

    Wang, Jingyun; Zhang, Lei; Huang, Youju; Dandapat, Anirban; Dai, Liwei; Zhang, Ganggang; Lu, Xuefei; Zhang, Jiawei; Lai, Weihua; Chen, Tao

    2017-01-01

    The probe materials play a significant role in improving the detection efficiency and sensitivity of lateral-flow immunochromatographic test strip (ICTS). Unlike conventional ICTS assay usually uses single-component, solid gold nanoparticles as labeled probes, in our present study, a bimetallic, hollow Au-Ag nanoparticles (NPs) labeled ICTS was successfully developed for the detection of clenbuterol (CLE). The hollow Au-Ag NPs with different Au/Ag mole ratio and tunable size were synthesized by varying the volume ratio of [HAuCl4]:[Ag NPs] via the galvanic replacement reaction. The surface of hollow Ag-Au NPs was functionalized with 11-mercaptoundecanoic acid (MUA) for further covalently bonded with anti-CLE monoclonal antibody. Overall size of the Au-Ag NPs, size of the holes within individual NPs and also Au/Ag mole ratio have been systematically optimized to amplify both the visual inspection signals and the quantitative data. The sensitivity of optimized hollow Au-Ag NPs probes has been achieved even as low as 2 ppb in a short time (within 15 min), which is superior over the detection performance of conventional test strip using Au NPs. The optimized hollow Au-Ag NPs labeled test strip can be used as an ideal candidate for the rapid screening of CLE in food samples.

  15. Ultrathin Hollow Graphene Oxide Membranes for Use as Nanoparticle Carriers.

    PubMed

    Smith, Kurt B; Tomassone, Maria S

    2017-04-04

    We synthesize hollow spherical particles/membrane sacks of graphene oxide loaded with nanoparticles to be used as nanoparticles carriers, through a new method based on emulsion precipitation and sublimation of the cores. We vary the synthesis parameters, such as shear rate, pH, and graphene oxide and oil concentration ratios. Our results show a concentration dependent membrane thickness that varies between 3 and 25 nm depending on the concentration, and their mean diameters vary between 500 nm and 70 μm. In addition, polymeric nanoparticles are loaded inside the graphene oxide shells forming core-shell particles demonstrating that they can be used as carriers for nanoparticles. Our particles are characterized via laser diffraction, zeta potential, FE-SEM, TEM, BET, and AFM. Potential applications of this work include applications that benefit from core-shell structures and nanoparticle carriers, including drug formulation, catalysis, and electrochemical applications.

  16. Impurity-induced plasmon damping in individual cobalt-doped hollow Au nanoshells.

    PubMed

    Thibodeaux, Christyn A; Kulkarni, Vikram; Chang, Wei-Shun; Neumann, Oara; Cao, Yang; Brinson, Bruce; Ayala-Orozco, Ciceron; Chen, Chih-Wei; Morosan, Emilia; Link, Stephan; Nordlander, Peter; Halas, Naomi J

    2014-12-11

    The optical properties of plasmonic nanoparticles in the size range corresponding to the electrostatic, or dipole, limit have the potential to reveal effects otherwise masked by phase retardation. Here we examine the optical properties of individual, sub-50 nm hollow Au nanoshells (Co-HGNS), where Co is the initial sacrificial core nanoparticle, using single particle total internal reflection scattering (TIRS) spectroscopy. The residual Co present in the metallic shell induces a substantial broadening of the homogeneous plasmon resonance line width of the Co-HGNS, where the full width at half-maximum (fwhm) broadens proportionately with increasing Co content. This doping-induced line broadening provides a strategy for controlling plasmon line width independent of nanoparticle size, and has the potential to substantially modify the relative decay channels for localized nanoparticle surface plasmons.

  17. Capillary electrophoretic study of green fluorescent hollow carbon nanoparticles.

    PubMed

    Liu, Lizhen; Feng, Feng; Hu, Qin; Paau, Man Chin; Liu, Yang; Chen, Zezhong; Bai, Yunfeng; Guo, Fangfang; Choi, Martin M F

    2015-09-01

    CE coupled with laser-induced fluorescence and UV absorption detections has been applied to study the complexity of as-synthesized green fluorescent hollow carbon nanoparticles (HC-NP) samples. The effects of pH, type, and concentration of the run buffer and SDS on the separation of HC-NP are studied in detail. It is observed that phosphate run buffer is more effective in separating the HC-NP and the optimal run buffer is found to be 30 mM phosphate and 10 mM SDS at pH 9.0. The CE separation of this HC-NP is based on the difference in size and electrophoretic mobility of HC-NP. Some selected HC-NP fractions are collected and further characterized by UV-visible absorption and photoluminescence (PL) spectroscopy, MS, and transmission electron microscopy. The fractionated HC-NP show profound differences in absorption, emission characteristics, and PL quantum yield that would have been otherwise misled by studying the complex mixture alone. It is anticipated that our CE methodology will open a new initiative on extensive studies of individual HC-NP species in the biomedical, catalysis, electronic, and optical device, energy storage, material, and sensing field.

  18. Room-temperature Formation of Hollow Cu2O Nanoparticles

    SciTech Connect

    Hung, Ling-I; Tsung, Chia-Kuang; Huang, Wenyu; Yang, Peidong

    2010-01-18

    Monodisperse Cu and Cu2O nanoparticles (NPs) are synthesized using tetradecylphosphonic acid as a capping agent. Dispersing the NPs in chloroform and hexane at room temperature results in the formation of hollow Cu2O NPs and Cu@Cu2O core/shell NPs, respectively. The monodisperse Cu2O NPs are used to fabricate hybrid solar cells with efficiency of 0.14percent under AM 1.5 and 1 Sun illumination.

  19. A comparative study of hollow copper sulfide nanoparticles and hollow gold nanospheres on degradability and toxicity.

    PubMed

    Guo, Liangran; Panderi, Irene; Yan, Daisy D; Szulak, Kevin; Li, Yajuan; Chen, Yi-Tzai; Ma, Hang; Niesen, Daniel B; Seeram, Navindra; Ahmed, Aftab; Yan, Bingfang; Pantazatos, Dionysios; Lu, Wei

    2013-10-22

    Gold and copper nanoparticles have been widely investigated for photothermal therapy of cancer. However, degradability and toxicity of these nanoparticles remain concerns. Here, we compare hollow CuS nanoparticles (HCuSNPs) with hollow gold nanospheres (HAuNS) in similar particle sizes and morphology following intravenous administration to mice. The injected pegylated HCuSNPs (PEG-HCuSNPs) are eliminated through both hepatobiliary (67 percentage of injected dose, %ID) and renal (23 %ID) excretion within one month postinjection. By contrast, 3.98 %ID of Au is excreted from liver and kidney within one month after iv injection of pegylated HAuNS (PEG-HAuNS). Comparatively, PEG-HAuNS are almost nonmetabolizable, while PEG-HCuSNPs are considered biodegradable nanoparticles. PEG-HCuSNPs do not show significant toxicity by histological or blood chemistry analysis. Principal component analysis and 2-D peak distribution plots of data from matrix-assisted laser desorption ionization-time-of-flight imaging mass spectrometry (MALDI-TOF IMS) of liver tissues demonstrated a reversible change in the proteomic profile in mice receiving PEG-HCuSNPs. This is attributed to slow dissociation of Cu ion from CuS nanoparticles along with effective Cu elimination for maintaining homeostasis. Nonetheless, an irreversible change in the proteomic profile is observed in the liver from mice receiving PEG-HAuNS by analysis of MALDI-TOF IMS data, probably due to the nonmetabolizability of Au. This finding correlates with the elevated serum lactate dehydrogenase at 3 months after PEG-HAuNS injection, indicating potential long-term toxicity. The comparative results between the two types of nanoparticles will advance the development of HCuSNPs as a new class of biodegradable inorganic nanomaterials for photothermal therapy.

  20. Crystallization of hollow mesoporous silica nanoparticles.

    PubMed

    Drisko, Glenna L; Carretero-Genevrier, Adrian; Perrot, Alexandre; Gich, Martí; Gàzquez, Jaume; Rodriguez-Carvajal, Juan; Favre, Luc; Grosso, David; Boissière, Cédric; Sanchez, Clément

    2015-03-11

    Complex 3D macrostructured nanoparticles are transformed from amorphous silica into pure polycrystalline α-quartz using catalytic quantities of alkaline earth metals as devitrifying agent. Walls as thin as 10 nm could be crystallized without losing the architecture of the particles. The roles of cation size and the mol% of the incorporated devitrifying agent in crystallization behavior are studied, with Mg(2+), Ca(2+), Sr(2+) and Ba(2+) all producing pure α-quartz under certain conditions.

  1. Enhanced catalytic activity of solid and hollow platinum-cobalt nanoparticles towards reduction of 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Krajczewski, Jan; Kołątaj, Karol; Kudelski, Andrzej

    2016-12-01

    Previous investigations of hollow platinum nanoparticles have shown that such nanostructures are more active catalysts than their solid counterparts towards the following electrochemical reactions: reduction of oxygen, evolution of hydrogen, and oxidation of borohydride, methanol and formic acid. In this work we show that synthesised using standard galvanic replacement reaction (with Co templates) hollow platinum nanoparticles exhibit enhanced catalytic activity also towards reduction of 4-nitrophenol by sodium borohydride in water. Unlike in the case of procedures involving hollow platinum catalysts employed so far to carry out this reaction it is not necessary to couple analysed platinum nanoparticles to the surface of an electrode. Simplification of the analyzed reaction may eliminate same experimental errors. We found that the enhanced catalytic activity of hollow Pt nanoparticles is not only connected with generally observed larger surface area of hollow nanostructures, but is also due to the contamination of formed hollow nanostructures with cobalt, from which sacrificial templates used in the synthesis of hollow Pt nanostrustures have been formed. Because using sacrificial templates is a typical method of synthesis of hollow metal nanostructures, formed hollow nanoparticles are probably often contaminated, which may significantly influence their catalytic activity.

  2. Phase behavior and material properties of hollow nanoparticles

    NASA Astrophysics Data System (ADS)

    Schwarz, U. S.; Safran, S. A.

    2000-11-01

    Effective pair potentials for hollow nanoparticles such as those made from carbon (fullerenes) or metal dichalcogenides (inorganic fullerenes) consist of a hard core repulsion and a deep, but short-ranged, van der Waals attraction. We investigate them for single-walled and multiwalled nanoparticles and show that in both cases, in the limit of large radii the interaction range scales inversely with the radius R, while the well depth scales linearly with R. We predict the values of the radius R and the wall thickness h at which the gas-liquid coexistence disappears from the phase diagram. We also discuss unusual material properties of the solid, which include a large heat of sublimation and a small surface energy.

  3. Synthesis and characterization of hollow magnetic nanospheres modified with Au nanoparticles for bio-encapsulation

    NASA Astrophysics Data System (ADS)

    Seisno, Satoshi; Suga, Kent; Nakagawa, Takashi; Yamamoto, Takao A.

    2017-04-01

    Hollow magnetic nanospheres modified with Au nanoparticles were successfully synthesized. Au/SiO2 nanospheres fabricated by a radiochemical process were used as templates for ferrite templating. After the ferrite plating process, Au/SiO2 templates were fully coated with magnetite nanoparticles. Dissolution of the SiO2 core lead to the formation of hollow magnetic nanospheres with Au nanoparticles inside. The hollow magnetic nanospheres consisted of Fe3O4 grains, with an average diameter of 60 nm, connected to form the sphere wall, inside which Au grains with an average diameter of 7.2 nm were encapsulated. The Au nanoparticles immobilized on the SiO2 templates contributed to the adsorption of the Fe ion precursor and/or Fe3O4 seeds. These hollow magnetic nanospheres are proposed as a new type of nanocarrier, as the Au grains could specifically immobilize biomolecules inside the hollow sphere.

  4. Nanoparticle detection by mode splitting in hollow bottle microresonators

    NASA Astrophysics Data System (ADS)

    Chenari, Zeinab; Latifi, Hamid; Peysokhan, Mostafa

    2016-01-01

    Mode splitting (MS) in whispering gallery microresonators provides excellent noise suppression in sensing signal compared to mode shifting. Here, we theoretically studied the ability of hollow bottle microresonators for detection of a single nanoparticle in air and water medium by MS phenomenon. To find out the optimum condition of sensor for nanoparticle (NP) detection, the effects of bottle geometry parameters, mode orders, and mode polarization state was investigated. The first radial transverse electric mode demonstrated the best sensitivity when the resonator radius and wall thickness were 10 and 0.3 μm, respectively. However, transverse magnetic modes manifested slightly better detection limit. In the air core hollow microbottle resonator (HMBR), the best detection limit of 3.1 nm radius for polystyrene NPs was achieved at an optimum condition of 30-μm resonator radius and 0.8-μm wall thickness. While MS could not be resolved in deionized water filled HMBRs for all of the investigated conditions at 1550 nm, changing the wavelength to 780 nm provided a detection limit of 15.1 nm in water. Furthermore, it is found that the sensitivity of HMBR is increased by at least two times in comparison with a microtoroid sensor. HMBRs are optofluidic platforms, so employing them could drastically enhance the applicability of microresonator-based systems for label-free NP detection.

  5. Hollow nanoparticles of metal oxides and sulfides: fast preparation via laser ablation in liquid.

    PubMed

    Niu, K Y; Yang, J; Kulinich, S A; Sun, J; Du, X W

    2010-11-16

    In this work, diverse hollow nanoparticles of metal oxides and sulfides were prepared by simply laser ablating metal targets in properly chosen liquids. The Kirkendall voiding and the selective heating with an infrared laser were shown to work as two independent mechanisms for the formation of such hollow nanoparticles in only one- or two-step synthesis approaches. One of the prepared materials, ZnS hollow nanoparticles, showed high performance in gas sensing. The simple, fast, inexpensive technique that is proposed demonstrates very promising perspectives.

  6. Metal oxide hollow nanoparticles formation by a single nanosecond pulsed laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Wang, Zhen; Hwang, David J.

    2017-10-01

    In this study, the trend of metal oxide hollow nanoparticles formation is experimentally inspected by a single nanosecond pulsed laser ablation of a bulk metal material in water and/or ethanol. Analysis results by transmission electron microscope indicate that the hollow formation can be completed or initiated by a single nanosecond laser pulse, dictated by the diffusive thermo-chemical and/or bubble-assisted assembly mechanisms, depending on the surrounding liquid medium and laser parameters. The results not only provide experimental clues to unveiling complex mechanisms involved with the hollow formation by the multiple laser shots but also will contribute to improving the hollow particle production efficiency.

  7. Fabrication of highly transparent superhydrophobic coatings from hollow silica nanoparticles.

    PubMed

    Xu, Ligang; He, Junhui

    2012-05-15

    We herein report a simple and effective method to fabricate excellent transparent superhydrophobic coatings. 3-Aminopropytriethoxysilane (APTS)-modified hollow silica nanoparticle sols were dip-coated on slide glasses, followed by thermal annealing and chemical vapor deposition with 1H,1H,2H,2H-perfluorooctyltrimethoxysilane (POTS). The largest water contact angle (WCA) of coating reached as high as 156° with a sliding angle (SA) of ≤2° and a maximum transmittance of 83.7%. The highest transmittance of coated slide glass reached as high as 92% with a WCA of 146° and an SA of ≤6°. A coating simultaneously showing both good transparency (90.2%) and superhydrophobicity (WCA: 150°, SA: 4°) was achieved through regulating the concentration of APTS and the withdrawing speed of dip-coating. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) were used to observe the morphology and structure of nanoparticles and coating surfaces. Optical properties were characterized by a UV-visible spectrophotometer. Surface wettability was studied by a contact angle/interface system. The effects of APTS concentration and the withdrawing speed of dip-coating were also discussed on the basis of experimental observations.

  8. Rapid degradation of azo dye methyl orange using hollow cobalt nanoparticles.

    PubMed

    Sha, Yingying; Mathew, Iswarya; Cui, Qingzhou; Clay, Molly; Gao, Fan; Zhang, Xiaoqi Jackie; Gu, Zhiyong

    2016-02-01

    A rapid and efficient method for methyl orange degradation using hollow cobalt (Co) nanoparticles is reported. Hollow Co nanoparticles were fabricated by a galvanic replacement reaction using aluminum (Al) nanoparticles as the template material. The methyl orange degradation characteristics were investigated by measuring the time dependent UV-Vis absorption of the dye solution, which showed a very fast degradation rate under acidic conditions. At an initial methyl orange concentration of 100 mg/L (pH = 2.5) and Co nanoparticle dosage of 0.5 g/L, the azo dye degradation efficiency reached up to 99% within 4 min, and the degradation constant rate was up to 2.444 min(-1), which is the highest value among other studies. A comparison of the decolorization rates at similar conditions with several other azo dyes, including Congo red, Amaranth, and Orange G, showed that the dye with a simpler structure and lower molecular mass decolorized considerably faster than the ones having a more complicated structure (higher molecular mass). The methyl orange degradation was also conducted using hollow nickel (Ni) nanoparticles and commercially available solid spherical Co and Ni nanoparticles. The results showed that Co-based nanoparticles outperformed Ni-based nanoparticles, with the hollow Co nanoparticles exhibiting the fastest degradation rate. Using the hollow Co nanoparticles is a very promising approach for the remediation of methyl orange dye containing wastewater due to the fast degradation rate and high degradation efficiency. In addition, these hollow Co nanoparticles are easily recycled because of their magnetic property. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Hollow Palladium Nanoparticles Facilitated Biodegradation of an Azo Dye by Electrically Active Biofilms

    PubMed Central

    Kalathil, Shafeer; Chaudhuri, Rajib Ghosh

    2016-01-01

    Dye wastewater severely threatens the environment due to its hazardous and toxic effects. Although many methods are available to degrade dyes, most of them are far from satisfactory. The proposed research provides a green and sustainable approach to degrade an azo dye, methyl orange, by electrically active biofilms (EABs) in the presence of solid and hollow palladium (Pd) nanoparticles. The EABs acted as the electron generator while nanoparticles functioned as the electron carrier agents to enhance degradation rate of the dye by breaking the kinetic barrier. The hollow Pd nanoparticles showed better performance than the solid Pd nanoparticles on the dye degradation, possibly due to high specific surface area and cage effect. The hollow cavities provided by the nanoparticles acted as the reaction centers for the dye degradation. PMID:28773775

  10. Colloidosome-based synthesis of a multifunctional nanostructure of silver and hollow iron oxide nanoparticles.

    PubMed

    Pan, Yue; Gao, Jinhao; Zhang, Bei; Zhang, Xixiang; Xu, Bing

    2010-03-16

    Nanoparticles that self-assemble on a liquid-liquid interface serve as the building block for making heterodimeric nanostructures. Specifically, hollow iron oxide nanoparticles within hexane form colloidosomes in the aqueous solution of silver nitrate, and iron oxide exposed to the aqueous phase catalyzes the reduction of silver ions to afford a heterodimer of silver and hollow iron oxide nanoparticles. Transmission electron microscopy, selected area electron diffraction, energy-dispersive X-ray spectrometry, X-ray diffraction, UV-vis spectroscopy, and SQUID were used to characterize the heterodimers. Interestingly, the formation of silver nanoparticles helps the removal of spinglass layer on the hollow iron oxide nanoparticles. This work demonstrates a powerful yet convenient strategy for producing sophisticated, multifunctional nanostructures.

  11. Fabrication, magnetic, and ferroelectric properties of multiferroic BiFeO3 hollow nanoparticles

    NASA Astrophysics Data System (ADS)

    Du, Yi; Cheng, Zhen Xiang; Xue Dou, Shi; Attard, Darren Jon; Lin Wang, Xiao

    2011-04-01

    Hollow BiFeO3 nanoparticles were synthesized by an electrospray route for the first time. The phase purity and structure have been investigated by x-ray diffraction and Raman spectroscopy. Transmission and scanning electron microscope investigations revealed that the as-obtained BiFeO3 hollow spheres were polycrystalline, with a shell thickness of 35 nm. The formation mechanism can be possibly explained by Ostwald ripening. Raman spectra have verified decreased vibrational frequencies in BiFeO3 nanoparticles. These hollow and core-shell multiferroic nanoparticles exhibit significantly enhanced ferromagnetism from 5 to 600 K due to a broken spiral spin structure. The ferroelectricity of hollow BiFeO3 particles exhibits a lower switching electric field, which is confirmed by Kelvin probe force microscopy.

  12. Size and thickness effect on magnetic structures of maghemite hollow magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Sayed, Fatima; Labaye, Yvan; Sayed Hassan, Rodaina; El Haj Hassan, Fouad; Yaacoub, Nader; Greneche, Jean-Marc

    2016-09-01

    The effect of surface anisotropy on the magnetic ground state of hollow maghemite nanoparticles is investigated using atomistic Monte Carlo simulation. The computer modeling is carried on hollow nanostructures as a function of size and shell thickness. It is found that the large contribution of the surface anisotropy imposes a "throttled" spin structure where the moments located at the outer surface tend to orient normal to the surface while those located at the inner surface appear to be more aligned. For increasing values of surface anisotropy in the frame of a radial model, the magnetic moments become radially oriented either inward or outward giving rise to a "hedgehog" configuration with nearly zero net magnetization. We also show the effect of the size of hollow nanoparticle on the spin behavior where the spin non-collinearity increases (for fixed value of surface anisotropy) as the diameter of the hollow nanoparticle increases due to the significant increase in surface-to-volume ratio, the thickness being constant. Moreover, the thickness of the hollow nanoparticle shell influences the spin configuration and thus the relation between surface anisotropy and the size or the thickness of the hollow nanoparticle is established.

  13. Sacrificial Silver Nanoparticles: Reducing GeI2 To Form Hollow Germanium Nanoparticles by Electroless Deposition.

    PubMed

    Nolan, Bradley M; Chan, Eric K; Zhang, Xinming; Muthuswamy, Elayaraja; van Benthem, Klaus; Kauzlarich, Susan M

    2016-05-24

    Herein we report the electroless deposition of Ge onto sacrificial Ag nanoparticle (NP) templates to form hollow Ge NPs. The formation of AgI is a necessary component for this reaction. Through a systematic study of surface passivating ligands, we determined that tri-n-octylphosphine is necessary to facilitate the formation of hollow Ge NPs by acting as a transport agent for GeI2 and the oxidized Ag(+) cation (i.e., AgI product). Annular dark-field (ADF) scanning transmission electron microscopy (STEM) imaging of incomplete reactions revealed Ag/Ge core/shell NPs; in contrast, completed reactions displayed hollow Ge NPs with pinholes which is consistent with the known method for dissolution of the nanotemplate. Characterization of the hollow Ge NPs was performed by transmission electron microscopy, ADF-STEM, energy-dispersive X-ray spectroscopy, UV-vis spectrophotometry, and Raman spectroscopy. The galvanic replacement reaction of Ag with GeI2 offers a versatile method for controlling the structure of Ge nanomaterials.

  14. Synthesis of hollow Ag-Au bimetallic nanoparticles in polyelectrolyte multilayers.

    PubMed

    Zhang, Xin; Zhang, Guangyu; Zhang, Bodong; Su, Zhaohui

    2013-06-04

    Ag nanoparticles of ~20 nm size and rather uniform size distribution were synthesized in polyelectrolyte multilayers (PEMs) via an ion-exchange/reduction process in two stages (seeding and growth), which were used as sacrificial templates to fabricate Ag-Au bimetallic hollow nanoparticles via galvanic replacement reaction. The reaction process was monitored by UV-vis spectroscopy. The morphology and structure of the nanoparticles were characterized by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy, which confirmed the formation of hollow Ag-Au bimetallic nanoparticles. UV-vis absorbance spectroscopy and TEM results indicated that both size and optical properties of the Ag nanoparticles in the PEM can be controlled by manipulating ion content in the PEM and the number of the ion-exchange/reduction cycle, whereas that of Ag-Au bimetallic nanoparticles were dependent on size of the Ag templates and the replacement reaction kinetics. The hollow Ag-Au bimetallic nanoparticles exhibited a significant red shift in the surface plasmon resonance to the near-infrared region. The strategy enables facile preparation of hollow bimetallic nanoparticles in situ in polymer matrixes.

  15. A hollow sphere secondary structure of LiFePO4 nanoparticles.

    PubMed

    Lee, Myeong-Hee; Kim, Jin-Young; Song, Hyun-Kon

    2010-09-28

    We report on the evolution of a hollow sphere secondary structure of spherical nanoparticles by a solubilization-reprecipitation mechanism based on the difference of solubility products (K(sp)) of two different precipitates. Carbon-coated nanoparticles of olivine structure LiFePO(4) served as the primary nano-blocks to build the secondary nano-architecture.

  16. Hetero-Epitaxial Anion Exchange Yields Single-Crystalline Hollow Nanoparticles

    SciTech Connect

    Park, Jungwon; Zheng, Haimei; Jun, Young-wook; Alivisatos, A. Paul

    2009-08-26

    Anion exchange with S was performed on ZnO colloidal nanoparticles. The resulting hollow ZnS nanoparticles are crystal whose shape is dictated by the initial ZnO. Crystallographic and elemental analyses provide insight into the mechanism of the anion exchange.

  17. Facile fabrication of AgCl@polypyrrole-chitosan core-shell nanoparticles and polymeric hollow nanospheres.

    PubMed

    Cheng, Daming; Xia, Haibing; Chan, Hardy Sze On

    2004-11-09

    A one-step sequential method for preparing AgCl@polypyrrole-chitosan core-shell nanoparticles and subsequently the formation of polypyrrole-chitosan hollow nanospheres is reported. The formation of the core and the shell is performed in one reaction medium almost simultaneously. Transmission electron microscopy (TEM) images show the presence of core-shell nanoparticles and hollow nanospheres. Ultraviolet-visible (UV-vis) studies reveal that AgCl was formed first followed by polypyrrole. X-ray diffration (XRD) and UV-vis studies show that AgCl was present in the core-shell nanoparticles and could be removed completely from the core.

  18. Tailor-made hollow silver nanoparticle cages assembled with silver nanoparticles: an efficient catalyst for epoxidation.

    PubMed

    Anandhakumar, S; Sasidharan, M; Tsao, Cheng-Wen; Raichur, Ashok M

    2014-03-12

    A novel approach toward the synthesis of hollow silver nanoparticle (NP) cages built with building blocks of silver NPs by layer-by-layer (LbL) assembly is demonstrated. The size of the NP cage depends on the size of template used for the LbL assembly. The microcages showed a uniform distribution of spherical silver nanoparticles with an average diameter of 20 ± 5 nm, which increased to 40 ± 5 nm when the AgNO3 concentration was increased from 25 to 50 mM. Heat treatment of the polyelectrolyte capsules at 80 °C near their pKa values yielded intact nano/micro cages. These cages produced a higher conversion for the epoxidation of olefins and maintained their catalytic activity even after four successive uses. The nanocages exhibited unique and attractive characteristics for metal catalytic systems, thus offering the scope for further development as heterogeneous catalysts.

  19. Ultrahigh stress and strain in hierarchically structured hollow nanoparticles

    NASA Astrophysics Data System (ADS)

    Shan, Z. W.; Adesso, G.; Cabot, A.; Sherburne, M. P.; Syed Asif, S. A.; Warren, O. L.; Chrzan, D. C.; Minor, A. M.; Alivisatos, A. P.

    2008-12-01

    Nanocrystalline materials offer very high strength but are typically limited in their strain to failure, and efforts to improve deformability in these materials are usually found to be at the expense of strength. Using a combination of quantitative in situ compression in a transmission electron microscope and finite-element analysis, we show that the mechanical properties of nanoparticles can be directly measured and interpreted on an individual basis. We find that nanocrystalline CdS synthesized into a spherical shell geometry is capable of withstanding extreme stresses (approaching the ideal shear strength of CdS). This unusual strength enables the spherical shells to exhibit considerable deformation to failure (up to 20% of the sphere's diameter). By taking into account the structural hierarchy intrinsic to novel nanocrystalline materials such as this, we show it is possible to achieve and characterize the ultrahigh stresses and strains that exist within a single nanoparticle during deformation.

  20. Diverse Melting Modes and Structural Collapse of Hollow Bimetallic Core-Shell Nanoparticles: A Perspective from Molecular Dynamics Simulations

    PubMed Central

    Huang, Rao; Shao, Gui-Fang; Zeng, Xiang-Ming; Wen, Yu-Hua

    2014-01-01

    Introducing hollow structures into metallic nanoparticles has become a promising route to improve their catalytic performances. A fundamental understanding of thermal stability of these novel nanostructures is of significance for their syntheses and applications. In this article, molecular dynamics simulations have been employed to offer insights into the thermodynamic evolution of hollow bimetallic core-shell nanoparticles. Our investigation reveals that for hollow Pt-core/Au-shell nanoparticle, premelting originates at the exterior surface, and a typical two-stage melting behavior is exhibited, similar to the solid ones. However, since the interior surface provides facilitation for the premelting initiating at the core, the two-stage melting is also observed in hollow Au-core/Pt-shell nanoparticle, remarkably different from the solid one. Furthermore, the collapse of hollow structure is accompanied with the overall melting of the hollow Pt-core/Au-shell nanoparticle while it occurs prior to that of the hollow Au-core/Pt-shell nanoparticle and leads to the formation of a liquid-core/solid-shell structure, although both of them finally transform into a mixing alloy with Au-dominated surface. Additionally, the existence of stacking faults in the hollow Pt-core/Au-shell nanoparticle distinctly lowers its melting point. This study could be of great importance to the design and development of novel nanocatalysts with both high activity and excellent stability. PMID:25394424

  1. Diverse melting modes and structural collapse of hollow bimetallic core-shell nanoparticles: a perspective from molecular dynamics simulations.

    PubMed

    Huang, Rao; Shao, Gui-Fang; Zeng, Xiang-Ming; Wen, Yu-Hua

    2014-11-14

    Introducing hollow structures into metallic nanoparticles has become a promising route to improve their catalytic performances. A fundamental understanding of thermal stability of these novel nanostructures is of significance for their syntheses and applications. In this article, molecular dynamics simulations have been employed to offer insights into the thermodynamic evolution of hollow bimetallic core-shell nanoparticles. Our investigation reveals that for hollow Pt-core/Au-shell nanoparticle, premelting originates at the exterior surface, and a typical two-stage melting behavior is exhibited, similar to the solid ones. However, since the interior surface provides facilitation for the premelting initiating at the core, the two-stage melting is also observed in hollow Au-core/Pt-shell nanoparticle, remarkably different from the solid one. Furthermore, the collapse of hollow structure is accompanied with the overall melting of the hollow Pt-core/Au-shell nanoparticle while it occurs prior to that of the hollow Au-core/Pt-shell nanoparticle and leads to the formation of a liquid-core/solid-shell structure, although both of them finally transform into a mixing alloy with Au-dominated surface. Additionally, the existence of stacking faults in the hollow Pt-core/Au-shell nanoparticle distinctly lowers its melting point. This study could be of great importance to the design and development of novel nanocatalysts with both high activity and excellent stability.

  2. Diverse Melting Modes and Structural Collapse of Hollow Bimetallic Core-Shell Nanoparticles: A Perspective from Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Huang, Rao; Shao, Gui-Fang; Zeng, Xiang-Ming; Wen, Yu-Hua

    2014-11-01

    Introducing hollow structures into metallic nanoparticles has become a promising route to improve their catalytic performances. A fundamental understanding of thermal stability of these novel nanostructures is of significance for their syntheses and applications. In this article, molecular dynamics simulations have been employed to offer insights into the thermodynamic evolution of hollow bimetallic core-shell nanoparticles. Our investigation reveals that for hollow Pt-core/Au-shell nanoparticle, premelting originates at the exterior surface, and a typical two-stage melting behavior is exhibited, similar to the solid ones. However, since the interior surface provides facilitation for the premelting initiating at the core, the two-stage melting is also observed in hollow Au-core/Pt-shell nanoparticle, remarkably different from the solid one. Furthermore, the collapse of hollow structure is accompanied with the overall melting of the hollow Pt-core/Au-shell nanoparticle while it occurs prior to that of the hollow Au-core/Pt-shell nanoparticle and leads to the formation of a liquid-core/solid-shell structure, although both of them finally transform into a mixing alloy with Au-dominated surface. Additionally, the existence of stacking faults in the hollow Pt-core/Au-shell nanoparticle distinctly lowers its melting point. This study could be of great importance to the design and development of novel nanocatalysts with both high activity and excellent stability.

  3. Hairy Uniform Permanently Ligated Hollow Nanoparticles with Precise Dimension Control and Tunable Optical Properties.

    PubMed

    Chen, Yihuang; Yang, Di; Yoon, Young Jun; Pang, Xinchang; Wang, Zewei; Jung, Jaehan; He, Yanjie; Harn, Yeu Wei; He, Ming; Zhang, Shuguang; Zhang, Guangzhao; Lin, Zhiqun

    2017-09-20

    The ability to tailor the size and shape of nanoparticles (NPs) enables the investigation into the correlation between these parameters and optical, optoelectronic, electrical, magnetic, and catalytic properties. Despite several effective approaches available to synthesize NPs with a hollow interior, it remains challenging to have a general strategy for creating a wide diversity of high-quality hollow NPs with different dimensions and compositions on demand. Herein, we report on a general and robust strategy to in situ crafting of monodisperse hairy hollow noble metal NPs by capitalizing on rationally designed amphiphilic star-like triblock copolymers as nanoreactors. The intermediate blocks of star-like triblock copolymers can associate with metal precursors via strong interaction (i.e., direct coordination or electrostatic interaction), followed by reduction to yield hollow noble metal NPs. Notably, the outer blocks of star-like triblock copolymers function as ligands that intimately and permanently passivate the surface of hollow noble metal NPs (i.e., forming hairy permanently ligated hollow NPs with superior solubility in nonpolar solvents). More importantly, the diameter of the hollow interior and the thickness of the shell of NPs can be readily controlled. As such, the dimension-dependent optical properties of hollow NPs are scrutinized by combining experimental studies and theoretical modeling. The dye encapsulation/release studies indicated that hollow NPs may be utilized as attractive guest molecule nanocarriers. As the diversity of precursors are amenable to this star-like triblock copolymer nanoreactor strategy, it can conceptually be extended to produce a rich variety of hairy hollow NPs with different dimensions and functionalities for applications in catalysis, water purification, optical devices, lightweight fillers, and energy conversion and storage.

  4. Sonochemical Synthesis and Magnetic Imaging of Hollow-Shell Iron-Platinum Nanoparticles

    NASA Astrophysics Data System (ADS)

    Baker, Remmi; Barnes, Paris; Martell, Eric

    2015-04-01

    As science has continued to evolve, scientists have been diving deeper and deeper, researching and analyzing the tiniest of objects. Interestingly, materials such as gold, silver, iron, and platinum behave differently on the nanoscale than the macroscale. Discrepancies between the behaviors of macro- and nanoparticles of the same substance are not well understood, which has led scientists to pursue the question as to why nanoparticles behave differently. Further research into the fabrication of hollow-shell iron-platinum nanoparticles and their unique properties may lead to real-world applications. Iron-platinum (FePt) nanoparticles are recognized for their unique magnetic properties; however, these properties have largely not been researched. FePt samples were prepared using sonochemical techniques. We report on the magnetic force microscopy imaging for self-assembled hollow-shell FePt nanoparticles, and relate our findings to the physical characteristics of the hollow-shell FePt nanoparticles. Additionally, we investigate the magnetic properties for FePt nanoparticles by analyzing the role of the electrons and their interactions occurring within the magnetic domain.

  5. Preparation of Hollow Biopolymer Nanospheres Employing Starch Nanoparticle Templates for Enhancement of Phenolic Acid Antioxidant Activities.

    PubMed

    Li, Xiaojing; Li, Man; Liu, Jing; Ji, Na; Liang, Caifeng; Sun, Qingjie; Xiong, Liu

    2017-05-17

    Phenolic acids have been extensively studied because of their bioactive properties and disease prevention and control capacities. However, undesired odors and taste, low aqueous solubility, and thermal and ultraviolet (UV) light instability severely restrict their application. The aim of this work was to evaluate the enhancement in antioxidative activities of phenolic acids in hollow nanospheres and their stability in terms of their antioxidative activities under harsh conditions. For the first time, we have successfully fabricated hollow short linear glucan (SLG)@gum arabic (GA) nanospheres and hollow in situ SLG/GA hybrid nanospheres by removing the sacrificial starch nanoparticle templates through α-amylase treatment and Ostwald ripening. These two hollow nanospheres had a huge cavity area for the encapsulation of phenolic acids, and their loading capacities were >20%. Furthermore, they can be used as nanoreactors to immobilize phenolic acids, enhance their antioxidative activities, and improve their stability when exposed to high salt concentrations, UV light, or heat treatments.

  6. Capillary-force-induced formation of luminescent polystyrene/(rare-earth-doped nanoparticle) hybrid hollow spheres.

    PubMed

    Chen, Min; Xie, Lin; Li, Fuyou; Zhou, Shuxue; Wu, Limin

    2010-10-01

    This paper presents a "one-pot" procedure to synthesize polystyrene/(rare-earth-doped nanoparticles) (PS/REDNPs) hybrid hollow spheres via the in situ diffusion of organic core into inorganic shell under strong capillary force. In this approach, when carboxyl-capped PS colloids were deposited by different REDNPs in aqueous medium, such as LaF3:Eu3+, LaF3:Ce3+-Tb3+, and YVO4:Dy3+, PS/REDNPs inorganic-organic hybrid hollow spheres could be directly obtained via the in situ diffusion of core PS chains into the voids between rare-earth-doped nanoparticles through the strong capillary force. Not only is the synthetic procedure versatile and very simple, but also the obtained hybrid hollow spheres are hydrophilic and luminescent and could be directly used in chemical and biological fields.

  7. Hollow Superparamagnetic Microballoons from Lifelike, Self-Directed Pickering Emulsions Based on Patchy Nanoparticles.

    PubMed

    Granath, Tim; Sanchez-Sanchez, Angela; Shmeliov, Aleksey; Nicolosi, Valeria; Fierro, Vanessa; Celzard, Alain; Mandel, Karl

    2016-11-22

    Herein, the formation of hollow microballoons derived from superparamagnetic iron oxide nanoparticles with silica patches is reported. Depending on the experimental conditions, single- or multishelled superparamagnetic microballoons as well as multivesicular structures were obtained. We show how such structural changes follow a lifelike process that is based on self-directing Pickering emulsions. We further demonstrate that the key toward the formation of such complex architectures is the patchy nature of the nanoparticles. Interestingly, no well-defined ordering of patches on the particles surface is required, unlike what theorists formerly predicted. The resultant hollow microballoons may be turned into hollow carbonaceous magnetic microspheres by simple pyrolysis. This opens the way to additional potential applications for such ultralightweight (density: 0.16 g·cm(-3)) materials.

  8. Carbohydrate-Conjugated Hollow Oblate Mesoporous Silica Nanoparticles as Nanoantibiotics to Target Mycobacteria.

    PubMed

    Hao, Nanjing; Chen, Xuan; Jeon, Seaho; Yan, Mingdi

    2015-12-30

    Engineering nanomaterials with enhanced antibacterial activities remains a critical and practical challenge. Hollow oblate mesoporous silica nanoparticles (HOMSNs) are synthesized by a simple protocol of ammonia hydrothermal treatment of oblate mesoporous silica nanoparticles prepared using dibenzyl ether as a cosolvent. When conjugated with trehalose as the targeting ligand, the antibiotic-encapsulated HOMSNs exhibit high binding affinity and antibacterial efficacy toward mycobacteria. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Carbohydrate-Conjugated Hollow Oblate Mesoporous Silica Nanoparticles as Nanoantibiotics to Target Mycobacteria

    PubMed Central

    Hao, Nanjing; Chen, Xuan; Jeon, Seaho

    2015-01-01

    Engineering nanomaterials with enhanced antibacterial activities remains a critical and practical challenge. Hollow oblate mesoporous silica nanoparticles (HOMSNs) are synthesized by a simple protocol of ammonia hydrothermal treatment of oblate mesoporous silica nanoparticles prepared using dibenzyl ether as a co-solvent. When conjugate with trehalose as the targeting ligand, the antibiotic-encapsulated HOMSNs exhibit high binding affinity and antibacterial efficacy towards mycobacteria. PMID:26450697

  10. Hollow spherical mesoporous phosphosilicate nanoparticles as a delivery vehicle for an antibiotic drug.

    PubMed

    Das, Swapan K; Bhunia, Manas K; Chakraborty, Debrup; Khuda-Bukhsh, Anisur Rahman; Bhaumik, Asim

    2012-03-18

    Mesoporous phosphosilicate nanoparticles of hollow sphere architecture have been prepared hydrothermally for the first time under acidic pH conditions and this material is found to be efficient in encapsulating an antibiotic drug and its controlled release at physiological pH for possible cargo delivery applications.

  11. Chitosan hollow nanospheres fabricated from biodegradable poly-D,L-lactide-poly(ethylene glycol) nanoparticle templates.

    PubMed

    Wang, Weijia; Luo, Chao; Shao, Shijun; Zhou, Shaobing

    2010-11-01

    Biodegradable chitosan hollow nanospheres were fabricated by employing uniform poly-D,L-lactide-poly(ethylene glycol) (PELA) nanoparticles as templates. Chitosan was adsorbed onto the surface of PELA nanoparticle templates through the electrostatic interaction between the sulphuric acid groups from sodium dodecyl sulfate (SDS) on the templates and the amino groups of the chitosan. Subsequently, the core-coated structure of chitosan-PELA nanospheres was obtained with the adsorbed chitosan layer being further crosslinked with glutaraldehyde. After the removal of the templates, PELA cores, chitosan hollow nanospheres were achieved. The mean size and size distribution of these nanospheres were measured with dynamic light scattering. The hollow structure was identified by transmission electron microscopy, atomic force microscopy and laser confocal scanning microscope. The antitumor drug model, adriamycin hydrochloride, was adsorbed on/into the chitosan hollow nanospheres. The drug release behaviors were investigated in phosphate buffered solution (PBS) at pH 7.4 and acetate buffered solution (ABS) at pH 4.5, respectively, at 37°C, and in vitro tumor cell growth inhibition assay was also evaluated. The biodegradable hollow nanospheres possess great potential applications in nanomedicine. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. PdNi hollow nanoparticles for improved electrocatalytic oxygen reduction in alkaline environments.

    PubMed

    Wang, Meng; Zhang, Weimin; Wang, Jiazhao; Wexler, David; Poynton, Simon D; Slade, Robert C T; Liu, Huakun; Winther-Jensen, Bjorn; Kerr, Robert; Shi, Dongqi; Chen, Jun

    2013-12-11

    Palladium-nickel (PdNi) hollow nanoparticles were synthesized via a modified galvanic replacement method using Ni nanoparticles as sacrificial templates in an aqueous medium. X-ray diffraction and transmission electron microscopy show that the as-synthesized nanoparticles are alloyed nanostructures and have hollow interiors with an average particle size of 30 nm and shell thickness of 5 nm. Compared with the commercially available Pt/C or Pd/C catalysts, the synthesized PdNi/C has superior electrocatalytic performance towards the oxygen reduction reaction, which makes it a promising electrocatalyst for alkaline anion exchange membrane fuel cells and alkali-based air-batteries. The electrocatalyst is finally examined in a H2/O2 alkaline anion exchange membrane fuel cell; the results show that such electrocatalysts could work in a real fuel cell application as a more efficient catalyst than state-of-the-art commercially available Pt/C.

  13. Intelligent core-shell nanoparticles and hollow spheres based on gelatin and PAA via template polymerization.

    PubMed

    Wang, Yansong; Zhang, Youwei; Du, Weiping; Wu, Chengxun; Zhao, Jiongxin

    2009-06-15

    PAA/gelatin nanoparticles, with interpolymer complexes of gelatin and polyacrylic acid (PAA) as the cores and gelatin as the shells, were prepared via facile polymerization of AA on gelatin template. The morphology change of the nanoparticles during the reaction was traced by a combined use of dynamic light scattering (DLS) and atomic force microscopy (AFM) techniques, which revealed a discrepancy among the structure of the nanoparticles formed at different stages of the reaction: as the reaction proceeds, nanoparticles with larger compact cores and thinner shells are produced. The resultant nanoparticles are multi-responsive. Especially, they exhibit a significant temperature-dependent size change: upon raising the temperature from 25 degrees C, the nanoparticle size decreases monotonically until reaching equilibrium at about 40 degrees C. This temperature-dependence of the nanoparticle size was found to be reversible provided the nanoparticle solution was cooled at a low temperature (4 degrees C). The thermo-sensitivity of the nanoparticles is attributed to the thermo-induced sol-gel transition of the gelatin shells. In addition, the nanoparticles were further converted to hollow spheres via successive locking the shell structure by the reaction of gelatin with cross-linker glutaraldehyde, and cavitation of the cross-linked nanoparticles by switching the medium from acidic to neutral. The cavitation process was monitored by DLS, which indicated a mass decrease and size shrinkage. AFM and transmission electron microscopy (TEM) were used to trace the morphology change of the nanoparticles during the cavitation. The hollow structure was confirmed by TEM observation.

  14. Non-equilibrium cation distribution and enhanced spin disorder in hollow CoFe2O4 nanoparticles.

    PubMed

    Jaffari, G Hassnain; Ceylan, A; Bui, Holt P; Beebe, Thomas P; Ozcan, S; Shah, S Ismat

    2012-08-22

    We present magnetic properties of hollow and solid CoFe(2)O(4) nanoparticles that were obtained by annealing of Co(33)Fe(67)/CoFe(2)O(4) (core/shell) nanoparticles. Hollow nanoparticles were polycrystalline whereas the solid nanoparticles were mostly single crystal. Electronic structure studies were performed by photoemission which revealed that particles with hollow morphology have a higher degree of inversion compared to solid nanoparticles and the bulk counterpart. Electronic structure and the magnetic measurements show that particles have uncompensated spins. Quantitative comparison of saturation magnetization (M(S )), assuming bulk Néel type spin structure with cationic distribution, calculated from quantitative XPS analysis, is presented. The thickness of uncompensated spins is calculated to be significantly large for particles with hollow morphology compared to solid nanoparticles. Both morphologies show a lack of saturation up to 7 T. Moreover magnetic irreversibility exists up to 7 T of cooling fields for the entire temperature range (10-300 K). These effects are due to the large bulk anisotropy constant of CoFe(2)O(4) which is the highest among the cubic spinel ferrites. The effect of the uncompensated spins for hollow nanoparticles was investigated by cooling the sample in large fields of up to 9 T. The magnitude of horizontal shift resulting from the unidirectional anisotropy was more than three times larger than that of solid nanoparticles. As an indication signature of uncompensated spin structure, 11% vertical shift for hollow nanoparticles is observed, whereas solid nanoparticles do not show a similar shift. Deconvolution of the hysteresis response recorded at 300 K reveals the presence of a significant paramagnetic component for particles with hollow morphology which further confirms enhanced spin disorder.

  15. Hollow magnetic nanoparticles: synthesis and applications in biomedicine.

    PubMed

    He, Quanguo; Wu, Zhaohui; Huang, Chunyan

    2012-04-01

    Magnetic hollow particles (MHP) are widely used in biomedicine field due to their biocompatibility, low-toxicity, low-density and the large fraction void space in the MHP, which have been successfully used to encapsulate and control drugs release, and magnetic resonance imaging (MRI). This review focuses on all kinds of MHP preparation method, compares the advantages and disadvantages in the process of synthesis, and introduces especially the special formation mechanisms such as the Kirkendall effect and Ostwald ripening. Both the compatible interior space and good magnetism of magnetic hollow structures enable them promising and unique candidates as biomedicine vehicles. Particularly, the progress of MHP widely used in the biomedical engineering applications containing drug delivery and magnetic resonance imaging are described. The main problems and the directions in the future researches are pointed out.

  16. Hollow Block Copolymer Nanoparticles through a Spontaneous One-Step Structural Reorganization

    PubMed Central

    Petzetakis, Nikos; Robin, Mathew P.; Patterson, Joseph P.; Kelley, Elizabeth G.; Cotanda, Pepa; Bomans, Paul H. H.; Sommerdijk, Nico A. J. M.; Dove, Andrew P.; Epps, Thomas H.; O'Reilly, Rachel K.

    2013-01-01

    The spontaneous one-step synthesis of hollow nanocages and nanotubes from spherical and cylindrical micelles based on poly(acrylic acid)-b-polylactide (P(AA)-b-P(LA)) block copolymers (BCPs) has been achieved. This structural reorganization, which occurs simply upon drying of the samples, was elucidated by transmission electron microscopy (TEM) and atomic force microscopy (AFM). We show that it was necessary to use stain-free imaging to examine these nanoscale assemblies, as the hollow nature of the particles was obscured by application of a heavy metal stain. Additionally, the internal topology of the P(AA)-b-P(LA) particles could be tuned by manipulating the drying conditions to give solid or compartmentalized structures. Upon re-suspension, these reorganized nanoparticles retain their hollow structure and can be display significantly enhanced loading of a hydrophobic dye compared to the original cylinders. PMID:23391297

  17. Facile strategy for synthesis of silica/polymer hybrid hollow nanoparticles with channels.

    PubMed

    Wu, Chenglin; Wang, Xin; Zhao, Lizhi; Gao, Yaohua; Ma, Rujiang; An, Yingli; Shi, Linqi

    2010-12-07

    The silica/polymer hybrid hollow nanoparticles with channels and gatekeepers were successfully fabricated with a facile strategy by using thermoresponsive complex micelles of poly(ethylene glycol)-b-poly(N-isopropylacrylamide) (PEG-b-PNIPAM) and poly(N-isopropylacrylamide)-b-poly(4-vinylpyridine) (PNIPAM-b-P4VP) as the template. In aqueous solution, the complex micelles (PEG-b-PNIPAM/PNIPAM-b-P4VP) formed with the PNIPAM block as the core and the PEG/P4VP blocks as the mixed shell at 45 °C and pH 4.0. After shell cross-linking by 1,2-bis(2-iodoethoxyl)ethane (BIEE), tetraethylorthosilicate (TEOS) selectively well-deposited on the P4VP block and processed the sol-gel reaction. When the temperature was decreased to 4 °C, the PNIPAM block became swollen and further soluble, and the PEG-b-PNIPAM block copolymer escaped from the hybrid nanoparticles as a result of swelled PNIPAM and weak interaction between PEG and silica at pH 4.0. Therefore, the hybrid hollow silica nanoparticles with inner thermoresponsive PNIPAM as gatekeepers and channels in the silica shell were successfully obtained, which could be used for switchable controlled drug release. In the system, the complex micelles, as a template, could avoid the formation of larger aggregates during the preparation of the hybrid hollow silica nanoparticles. The thermoresponsive core (PNIPAM) could conveniently control the hollow space through the stimuli-responsive phase transition instead of calcination or chemical etching. In the meantime, the channel in the hybrid silica shell could be achieved because of the escape of PEG chains from the hybrid nanoparticles.

  18. Synthetically programmable nanoparticle superlattices using a hollow three-dimensional spacer approach

    SciTech Connect

    Auyeung, Evelyn; Cutler, Joshua I.; Macfarlane, Robert J.; Jones, Matthew R.; Wu, Jinsong; Liu, George; Zhang, Ke; Osberg, Kyle D.; Mirkin, Chad A.

    2013-04-08

    Crystalline nanoparticle arrays and superlattices with well-defined geometries can be synthesized by using appropriate electrostatic, hydrogen-bonding or biological recognition interactions. Although superlattices with many distinct geometries can be produced using these approaches, the library of achievable lattices could be increased by developing a strategy that allows some of the nanoparticles within a binary lattice to be replaced with 'spacer' entities that are constructed to mimic the behaviour of the nanoparticles they replace, even though they do not contain an inorganic core. The inclusion of these spacer entities within a known binary superlattice would effectively delete one set of nanoparticles without affecting the positions of the other set. Here, we show how hollow DNA nanostructures can be used as 'three-dimensional spacers' within nanoparticle superlattices assembled through programmable DNA interactions. We show that this strategy can be used to form superlattices with five distinct symmetries, including one that has never before been observed in any crystalline material.

  19. Xanthoceraside hollow gold nanoparticles, green pharmaceutics preparation for poorly water-soluble natural anti-AD medicine.

    PubMed

    Meng, Da-Li; Shang, Lei; Feng, Xiao-He; Huang, Xing-Fei; Che, Xin

    2016-06-15

    In order to increase the solubility of poorly water-soluble natural product, xanthoceraside, an effective anti-AD compound from Xanthoceras sorbifolia Bunge, and maintain its natural property, the xanthoceraside hollow gold nanoparticles were successively prepared by green ultrasonic method with silica spheres as templates and HF solution as selective etching solvent. Hollow gold nanoparticles and drug-loaded hollow gold nanoparticles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The solubilities of xanthoceraside loaded on hollow gold nanoparticles were increased obviously from 3.0μg/ml and 2.5μg/ml to 12.7μg/ml and 10.7μg/ml at 25°C and 37°C, respectively. The results of XRD and DSC indicated that the reason for this increase was mainly due to the amorphous state of xanthoceraside loaded on the hollow gold nanoparticles. In summary, the method of loading xanthoceraside onto hollow gold nanoparticles was a green and useful strategy to improve the solubility and dissolution of poorly water-soluble natural products and worth to applying to other natural products.

  20. Hollow hybrid polymer-graphene oxide nanoparticles via Pickering miniemulsion polymerization

    NASA Astrophysics Data System (ADS)

    Thickett, Stuart C.; Wood, Noriko; Ng, Yun Hau; Zetterlund, Per B.

    2014-07-01

    The preparation of hybrid hollow capsules consisting of a cross-linked polymer shell and a coating of graphene oxide (GO) is demonstrated. The capsules are prepared by Pickering miniemulsion polymerization, exploiting the surface activity of GO for its use as a colloidal surfactant. This approach represents a simple and convenient route towards hollow carbon nanostructures for a variety of applications. The incorporation of surface-modified TiO2 nanoparticles into the interior of these capsules was also demonstrated.The preparation of hybrid hollow capsules consisting of a cross-linked polymer shell and a coating of graphene oxide (GO) is demonstrated. The capsules are prepared by Pickering miniemulsion polymerization, exploiting the surface activity of GO for its use as a colloidal surfactant. This approach represents a simple and convenient route towards hollow carbon nanostructures for a variety of applications. The incorporation of surface-modified TiO2 nanoparticles into the interior of these capsules was also demonstrated. Electronic supplementary information (ESI) available: Characterization of GO nanosheets, TEM images of porous polymer particles, polymer conversion vs. time data, particle size data, BET isotherm data. See DOI: 10.1039/c4nr01175a

  1. Self-assembly of silica nanoparticles into hollow spheres via a microwave-assisted aerosol process

    SciTech Connect

    Li, Shan; Wang, Fei; Dai, Hongqi; Jiang, Xingmao; Ye, Chunhong; Min, Jianzhong

    2016-02-15

    Highlights: • The silica hollow spheres were fabricated via a microwave-assisted aerosol process. • The formation of the hollow spheres was obtained through a one-step process. • The spheres indicated the remarkable sustained release of potassium persulfate. - Abstract: In this work, a simple and efficient strategy for fabrication of silica hollow spheres (SHSs) has been successfully introduced with a one-step microwave-assisted aerosol process using silica nanoparticles (SiO{sub 2}, 12–50 nm) and NH{sub 4}HCO{sub 3} as precursor materials. This approach combines the merits of microwave radiation and the aerosol technique. And the formation of SHSs is ascribed to solvent evaporation and the as-generated gas from NH{sub 4}HCO{sub 3} decomposition in the microwave reactor. The morphology of the SHSs can be easily tuned by varying the residence time, amount of NH{sub 4}HCO{sub 3} and silica sources. The formation mechanism of SHSs was also investigated by structure analysis. In addition, the hollow spheres exhibited remarkable sustained release of potassium persulfate, by loading it into the porous structures. The results provide new sights into the fabrication of inorganic hollow spheres via a one-step process.

  2. Fabrication and characterization of hollow starch nanoparticles by gelation process for drug delivery application.

    PubMed

    Yang, Jie; Li, Fang; Li, Man; Zhang, Shuangling; Liu, Jing; Liang, Caifeng; Sun, Qingjie; Xiong, Liu

    2017-10-01

    Hollow nanoparticles (HNPs) have been widely regarded as controlled drug carriers owing to their advantages, such as high drug-loading efficiency and superior control over drug delivery and release. In this study, a facile and efficient strategy has been exploited for preparation of hollow starch nanoparticles (HSNPs) via a sacrificial hard-template process using gelled starch as the shell. These nanocapsules have been characterized through various techniques, including transmission electron microscopy, differential scanning calorimetry, X-ray diffraction, and Fourier transform infrared spectroscopy. The HSNPs have diameters ranging from 30nm to 300nm, with shell thickness of 5-10nm. X-ray diffraction analysis has revealed that HSNPs exhibit B+V type diffraction peaks with a relative crystallinity of 34.2%. Doxorubicin hydrochloride (DOX·HCl) was readily encased in the nanocarriers with a high loading efficiency (97.56%) and a high loading content (37.12%). In addition, no cytotoxicity for normal liver cells was found in HSNPs. However, DOX·HCl-loaded HSNPs exhibited clear cytotoxicity for liver hepatocellular cells. Thus, the hollow starch nanoparticles form a highly promising platform for cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Hollow silicon carbide nanoparticles from a non-thermal plasma process

    NASA Astrophysics Data System (ADS)

    Coleman, Devin; Lopez, Thomas; Yasar-Inceoglu, Ozgul; Mangolini, Lorenzo

    2015-05-01

    We demonstrate the synthesis of hollow silicon carbide nanoparticles via a two-step process involving the non-thermal plasma synthesis of silicon nanoparticles, followed by their in-flight carbonization, also initiated by a non-thermal plasma. Simple geometric considerations associated with the expansion of the silicon lattice upon carbonization, in combination of the spherical geometry of the system, explain the formation of hollow nanostructures. This is in contrast with previous reports that justify the formation of hollow particles by means of out-diffusion of the core element, i.e., by the Kirkendall nanoscale effect. A theoretical analysis of the diffusion kinetics indicates that interaction with the ionized gas induces significant nanoparticle heating, allowing for the fast transport of carbon into the silicon particle and for the subsequent nucleation of the beta-silicon carbide phase. This work confirms the potential of non-thermal plasma processes for the synthesis of nanostructures composed of high-melting point materials, and suggests that such processes can be tuned to achieve morphological control.

  4. Indocyanine green-loaded hollow mesoporous silica nanoparticles as an activatable theranostic agent

    NASA Astrophysics Data System (ADS)

    Hong, Suk ho; Kim, Hyunjin; Choi, Yongdoo

    2017-05-01

    Here we report indocyanine green (ICG)-loaded hollow mesoporous silica nanoparticles (ICG@HMSNP) as an activatable theranostic platform. Near-infrared fluorescence and singlet oxygen generation of ICG@HMSNP was effectively quenched (i.e. turned off) in its native state because of the fluorescence resonance energy transfer between ICG molecules. Therefore, ICG@HMSNP was nonfluorescent and nonphototoxic in the extracellular region. After the nanoparticles entered the cancer cells via endocytosis, they became highly fluorescent and phototoxic. In addition, intracellular uptake of ICG@HMSNP was 2.75 times higher than that of free ICG, resulting in an enhanced phototherapy of cancer.

  5. Indocyanine green-loaded hollow mesoporous silica nanoparticles as an activatable theranostic agent.

    PubMed

    Hong, Suk Ho; Kim, Hyunjin; Choi, Yongdoo

    2017-05-05

    Here we report indocyanine green (ICG)-loaded hollow mesoporous silica nanoparticles (ICG@HMSNP) as an activatable theranostic platform. Near-infrared fluorescence and singlet oxygen generation of ICG@HMSNP was effectively quenched (i.e. turned off) in its native state because of the fluorescence resonance energy transfer between ICG molecules. Therefore, ICG@HMSNP was nonfluorescent and nonphototoxic in the extracellular region. After the nanoparticles entered the cancer cells via endocytosis, they became highly fluorescent and phototoxic. In addition, intracellular uptake of ICG@HMSNP was 2.75 times higher than that of free ICG, resulting in an enhanced phototherapy of cancer.

  6. Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles.

    PubMed

    Guo, Liangran; Yan, Daisy D; Yang, Dongfang; Li, Yajuan; Wang, Xiaodong; Zalewski, Olivia; Yan, Bingfang; Lu, Wei

    2014-06-24

    Near-infrared light-responsive inorganic nanoparticles have been shown to enhance the efficacy of cancer photothermal ablation therapy. However, current nanoparticle-mediated photothermal ablation is more effective in treating local cancer at the primary site than metastatic cancer. Here, we report the design of a near-infrared light-induced transformative nanoparticle platform that combines photothermal ablation with immunotherapy. The design is based on chitosan-coated hollow CuS nanoparticles that assemble the immunoadjuvants oligodeoxynucleotides containing the cytosine-guanine (CpG) motifs. Interestingly, these structures break down after laser excitation, reassemble, and transform into polymer complexes that improve tumor retention of the immunotherapy. In this "photothermal immunotherapy" approach, photothermal ablation-induced tumor cell death reduces tumor growth and releases tumor antigens into the surrounding milieu, while the immunoadjuvants potentiate host antitumor immunity. Our results indicated that combined photothermal immunotherapy is more effective than either immunotherapy or photothermal therapy alone against primary treated and distant untreated tumors in a mouse breast cancer model. These hollow CuS nanoparticles are biodegradable and can be eliminated from the body after laser excitation.

  7. Synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted with mixed hollow sphere template method.

    PubMed

    Gopi, D; Indira, J; Kavitha, L; Sekar, M; Mudali, U Kamachi

    2012-07-01

    Hydroxyapatite (HAP) is the main inorganic component of bone material and is widely used in various biomedical applications due to its excellent bioactivity and biocompatibility. In this paper, we have reported the synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted mixed template directed method. In this method glycine-acrylic acid (GLY-AA) hollow spheres were used as an organic template which could be prepared by mixing of glycine with acrylic acid. The as-synthesized HAP nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and tunnelling electron microscope (TEM) to investigate the nature of bonding, crystallinity, size and shape. The thermal stability of as-synthesized nanoparticles was also investigated by the thermo gravimetric analysis (TGA). The effect of ultrasonic irradiation time on the crystallinity and size of the HAP nanoparticles in presence of glycine-acrylic acid hollow spheres template were investigated. From the inspection of the above results it is confirmed that the crystallinity and size of the HAP nanoparticles decrease with increasing ultrasonic irradiation time. Hence the proposed synthesis strategy provides a facile pathway to obtain nano sized HAP with high quality, suitable size and morphology.

  8. Gold nanoparticles embedded in silica hollow nanospheres induced by compressed CO2 as an efficient catalyst for selective oxidation.

    PubMed

    Guo, Li; Zhang, Ran; Chen, Chen; Chen, Jizhong; Zhao, Xiuge; Chen, Angjun; Liu, Xuerui; Xiu, Yuhe; Hou, Zhenshan

    2015-03-07

    Metal nanoparticles embedded in hollow materials are important due to their wide applications in catalysis. In this work, we disclosed a nontraditional synthetic pathway to prepare silica hollow nanospheres by hydrothermal treatment in the presence of compressed CO2. Especially, the silica hollow nanospheres with an outer diameter of about 16 nm and an inner pore size of 7 nm were obtained using 1.0 MPa CO2. The formation mechanism of silica hollow nanospheres induced by CO2 was investigated by high-pressured UV/Vis spectroscopy. Moreover, gold nanoparticles (2.5 nm) embedded in the silica hollow nanospheres were prepared by a one-pot synthesis using HAuCl4 as a precursor. The current synthetic route of nano-catalysts was simple and facile, in which no etching agent was needed in the process of the hollow material preparation. Besides, this nano-catalyst showed an excellent catalytic performance in epoxidation of styrene with high conversion (82.2%) and selectivity (90.2%) toward styrene oxide, as well as in the selective oxidation of ethylbenzene with good conversion (26.6%) and selectivity (87.8%) toward acetophenone. Moreover, the Au nanoparticles (AuNPs) embedded in silica hollow nanospheres exhibited an excellent recyclability in both the oxidation reactions.

  9. Phase-change material filled hollow magnetic nanoparticles for cancer therapy and dual modal bioimaging

    NASA Astrophysics Data System (ADS)

    Li, Jinghua; Hu, Yan; Hou, Yanhua; Shen, Xinkun; Xu, Gaoqiang; Dai, Liangliang; Zhou, Jun; Liu, Yun; Cai, Kaiyong

    2015-05-01

    To develop carriers for anti-cancer drug delivery, this study reports a biocompatible and thermal responsive controlled drug delivery system based on hollow magnetic nanoparticles (HMNPs). The system is constructed simply by filling the hollow interiors of HMNPs with a phase-change material (PCM), namely, 1-tetradecanol, which has a melting point of 38 °C. The system achieves near ``zero release'' of both hydrophobic paclitaxel (PTX) and hydrophilic doxorubicin hydrochloride (DOX) and precise ``on'' or ``off'' drug delivery in vitro to efficiently induce cell apoptosis. Furthermore, the system displays both infrared thermal imaging and magnetic resonance imaging properties. More importantly, the system demonstrates great potential for thermo-chemo combination cancer therapy in vivo when an alternating magnetic field is applied.To develop carriers for anti-cancer drug delivery, this study reports a biocompatible and thermal responsive controlled drug delivery system based on hollow magnetic nanoparticles (HMNPs). The system is constructed simply by filling the hollow interiors of HMNPs with a phase-change material (PCM), namely, 1-tetradecanol, which has a melting point of 38 °C. The system achieves near ``zero release'' of both hydrophobic paclitaxel (PTX) and hydrophilic doxorubicin hydrochloride (DOX) and precise ``on'' or ``off'' drug delivery in vitro to efficiently induce cell apoptosis. Furthermore, the system displays both infrared thermal imaging and magnetic resonance imaging properties. More importantly, the system demonstrates great potential for thermo-chemo combination cancer therapy in vivo when an alternating magnetic field is applied. Electronic supplementary information (ESI) available: TEM images and particle size distribution, XRD patterns of different nanoparticles, trypan blue staining, cell uptake (TEM imges), TUNEL staining, elemental analysis, zeta-potential measurements. See DOI: 10.1039/c5nr01744k

  10. Redox-Triggered Gatekeeper-Enveloped Starlike Hollow Silica Nanoparticles for Intelligent Delivery Systems.

    PubMed

    Zhao, Nana; Lin, Xinyi; Zhang, Qing; Ji, Zhaoxia; Xu, Fu-Jian

    2015-12-22

    The design and development of multifunctional carriers for drug delivery based on hollow nanoparticles (HNPs) have attracted intense interests. Ordinary spherical HNPs are demonstrated to be promising candidates. However, the application of HNPs with special morphologies has rarely been reported. HNPs with sharp horns are expected to own higher endocytosis efficiencies than spherical counterparts. In this work, novel starlike hollow silica nanoparticles (SHNPs) with different sizes are proposed as platforms for the fabrication of redox-triggered multifunctional systems for synergy of gene therapy and chemotherapy. The CD-PGEA gene vectors (consisting of β-CD cores and ethanolamine-functionalized poly(glycidyl methacrylate) (denoted BUCT-PGEA) arms) are introduced ingeniously onto the surfaces of SHNPs with plentiful disulfide bond-linked adamantine guests. The resulting supramolecular assemblies (SHNP-PGEAs) possess redox-responsive gatekeepers for loaded drugs in the cavities of SHNPs. Meanwhile, they also demonstrate excellent performances to deliver genes. The gene transfection efficiencies, controlled drug release behaviors, and synergistic antitumor effect of hollow silica-based carriers with different morphologies are investigated in detail. Compared with ordinary spherical HNP-based counterparts, SHNP-PGEA carriers with six sharp horns are proven to be superior gene vectors and possess better efficacy for cellular uptake and antitumor effects. The present multifunctional carriers based on SHNPs will have promising applications in drug/gene codelivery and cancer treatment.

  11. Examining metal nanoparticle surface chemistry using hollow-core, photonic-crystal, fiber-assisted SERS.

    PubMed

    Eftekhari, Fatemeh; Lee, Anna; Kumacheva, Eugenia; Helmy, Amr S

    2012-02-15

    In this Letter, we demonstrate the efficacy of hollow core photonic crystal fibers (HCPCFs) as a surface-enhanced Raman spectroscopy (SERS) platform for investigating the ligand exchange process on the surface of gold nanoparticles. Raman measurements carried out using this platform show the capability to monitor minute amounts of surface ligands on gold nanoparticles used as an SERS substrate. The SERS signal from an HCPCF exhibits a tenfold enhancement compared to that in a direct sampling scheme using a cuvette. Using exchange of cytotoxic cetyltrimethylammonium bromide with α-methoxy-ω-mercaptopoly(ethylene glycol) on the surface of gold nanorods as an exemplary system, we show the feasibility of using HCPCF SERS to monitor the change in surface chemistry of nanoparticles.

  12. Individual hollow and mesoporous aero-graphitic microtube based devices for gas sensing applications

    NASA Astrophysics Data System (ADS)

    Lupan, Oleg; Postica, Vasile; Marx, Janik; Mecklenburg, Matthias; Mishra, Yogendra K.; Schulte, Karl; Fiedler, Bodo; Adelung, Rainer

    2017-06-01

    In this work, individual hollow and mesoporous graphitic microtubes were integrated into electronic devices using a FIB/SEM system and were investigated as gas and vapor sensors by applying different bias voltages (in the range of 10 mV-1 V). By increasing the bias voltage, a slight current enhancement is observed, which is mainly attributed to the self-heating effect. A different behavior of ammonia NH3 vapor sensing by increasing the applied bias voltage for hollow and mesoporous microtubes with diameters down to 300 nm is reported. In the case of the hollow microtube, an increase in the response was observed, while a reverse effect has been noticed for the mesoporous microtube. It might be explained on the basis of the higher specific surface area (SSA) of the mesoporous microtube compared to the hollow one. Thus, at room temperature when the surface chemical reaction rate (k) prevails on the gas diffusion rate (DK) the structures with a larger SSA possess a higher response. By increasing the bias voltage, i.e., the overall temperature of the structure, DK becomes a limiting step in the gas response. Therefore, at higher bias voltages the larger pores will facilitate an enhanced gas diffusion, i.e., a higher gas response. The present study demonstrates the importance of the material porosity towards gas sensing applications.

  13. Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review.

    PubMed

    Fan, Hong Jin; Gösele, Ulrich; Zacharias, Margit

    2007-10-01

    The Kirkendall effect is a consequence of the different diffusivities of atoms in a diffusion couple causing a supersaturation of lattice vacancies. This supersaturation may lead to a condensation of extra vacancies in the form of so-called "Kirkendall voids" close to the interface. On the macroscopic and micrometer scale these Kirkendall voids are generally considered as a nuisance because they deteriorate the properties of the interface. In contrast, in the nanoworld the Kirkendall effect has been positively used as a new fabrication route to designed hollow nano-objects. In this Review we summarize and discuss the demonstrated examples of hollow nanoparticles and nanotubes induced by the Kirkendall effect. Merits of this route are compared with other general methods for nanotube fabrication. Theories of the kinetics and thermodynamics are also reviewed and evaluated in terms of their relevance to experiments. Moreover, nanotube fabrication by solid-state reactions and non-Kirkendall type diffusion processes are covered.

  14. Hollow silica nanoparticles loaded with hydrophobic phthalocyanine for near-infrared photodynamic and photothermal combination therapy.

    PubMed

    Peng, Juanjuan; Zhao, Lingzhi; Zhu, Xingjun; Sun, Yun; Feng, Wei; Gao, Yanhong; Wang, Liya; Li, Fuyou

    2013-10-01

    Owing to the convenience and minimal invasiveness, phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is emerging as a powerful technique for cancer treatment. To date, however, few examples of combination PDT and PTT have been reported. Phthalocyanine (Pc) is a class of traditional photosensitizer for PDT, but its bioapplication is limited by high hydrophobicity. In this present study, hollow silica nanospheres (HSNs) were employed to endow the hydrophobic phthalocyanine with water-dispersity, and the as-prepared hollow silica nanoparticles loaded with hydrophobic phthalocyanine (Pc@HSNs) exhibits highly efficient dual PDT and PTT effects. In vitro and in vivo experimental results clearly indicated that the dual phototherapeutic effect of Pc@HSNs can kill cancer cells or eradicate tumor tissues. This multifunctional nanomedicine may be useful for PTT/PDT treatment of cancer.

  15. Carbon supported trimetallic nickel-palladium-gold hollow nanoparticles with superior catalytic activity for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Shang, Changshuai; Hong, Wei; Wang, Jin; Wang, Erkang

    2015-07-01

    In this paper, Ni nanoparticles (NPs) are prepared in an aqueous solution by using sodium borohydride as reducing agent. With Ni NPs as the sacrificial template, hollow NiPdAu NPs are successfully prepared via partly galvanic displacement reaction between suitable metal precursors and Ni NPs. The as-synthesized hollow NiPdAu NPs can well dispersed on the carbon substrate. Transmission electron microscopy, X-ray diffraction and inductively coupled plasma mass spectrometry are taken to analyze the morphology, structure and composition of the as-synthesized catalysts. The prepared catalysts show superior catalytic activity and stability for methanol electrooxidation in alkaline media compared with commercial Pd/C and Pt/C. Catalysts prepared in this work show great potential to be anode catalysts in direct methanol fuel cells.

  16. Hyaluronic Acid Modified Hollow Prussian Blue Nanoparticles Loading 10-hydroxycamptothecin for Targeting Thermochemotherapy of Cancer

    PubMed Central

    Jing, Lijia; shao, shangmin; Wang, Yang; Yang, Yongbo; Yue, Xiuli; Dai, Zhifei

    2016-01-01

    This paper reported the fabrication of a multifunctional nanoplatform by modifying hollow Prussian blue nanoparticles with hyaluronic acid grafting polyethylene glycol, followed by loading 10-hydroxycamptothecin for tumor-targeted thermochemotherapy. It was found that the surface modification of hollow Prussian blue nanoparticles with hyaluronic acid grafting polyethylene endowed a great colloidal stability, long blood circulation time and the capability for targeting Hela cells over-expressing the CD44 receptor. The obtained nanoagent exhibited efficient photothermal effect and a light triggered and stepwise release behavior of 10-hydroxycamptothecin due to the strong optical absorption in the near-infrared region. The investigations on the body weight change, histological injury and blood biochemical indexes showed that such nanoagent had excellent biocompatibility for medical application. Both in vitro and in vivo experiments proved that the combination of chemotherapy and photothermal therapy through the agent of hyaluronic acid modified Prussian blue nanoparticles loading 10-hydroxycamptothecin could significantly improve the therapeutic efficacy compared with either therapy alone because of a good synergetic effect. PMID:26722372

  17. Hyaluronic Acid Modified Hollow Prussian Blue Nanoparticles Loading 10-hydroxycamptothecin for Targeting Thermochemotherapy of Cancer.

    PubMed

    Jing, Lijia; Shao, Shangmin; Wang, Yang; Yang, Yongbo; Yue, Xiuli; Dai, Zhifei

    2016-01-01

    This paper reported the fabrication of a multifunctional nanoplatform by modifying hollow Prussian blue nanoparticles with hyaluronic acid grafting polyethylene glycol, followed by loading 10-hydroxycamptothecin for tumor-targeted thermochemotherapy. It was found that the surface modification of hollow Prussian blue nanoparticles with hyaluronic acid grafting polyethylene endowed a great colloidal stability, long blood circulation time and the capability for targeting Hela cells over-expressing the CD44 receptor. The obtained nanoagent exhibited efficient photothermal effect and a light triggered and stepwise release behavior of 10-hydroxycamptothecin due to the strong optical absorption in the near-infrared region. The investigations on the body weight change, histological injury and blood biochemical indexes showed that such nanoagent had excellent biocompatibility for medical application. Both in vitro and in vivo experiments proved that the combination of chemotherapy and photothermal therapy through the agent of hyaluronic acid modified Prussian blue nanoparticles loading 10-hydroxycamptothecin could significantly improve the therapeutic efficacy compared with either therapy alone because of a good synergetic effect.

  18. Silicon nanoparticles encapsulated in hollow graphitized carbon nanofibers for lithium ion battery anodes.

    PubMed

    Kong, Junhua; Yee, Wu Aik; Wei, Yuefan; Yang, Liping; Ang, Jia Ming; Phua, Si Lei; Wong, Siew Yee; Zhou, Rui; Dong, Yuliang; Li, Xu; Lu, Xuehong

    2013-04-07

    Silicon (Si) is a promising material for lithium ion battery (LIB) anodes due to its high specific capacity. To overcome its shortcomings such as insulation property and large volume change during the charge-discharge process, a novel hybrid system, Si nanoparticles encapsulated in hollow graphitized carbon nanofibers, is studied. First, electrospun polyacrylonitrile (PAN)-Si hybrid nanofibers were obtained using water as the collector. The loose nanofiber lumps suspended in water have large inter-fiber distance, allowing in situ coating of a thin layer of polydopamine (PDA), the source for graphitized carbon, uniformly throughout the system. The designed morphology and structure were then realized by etching and calcination, and the morphology and structure were subsequently verified by various analytical techniques. Electrochemical measurements show that the resulting hollow hybrid nanofibers (C-PDA-Si NFs) exhibit much better cycling stability and rate capacity than conventional C/Si nanofibers derived by electrospinning of PAN-Si followed by calcination. For instance, the capacity of C-PDA-Si NFs is as high as 72.6% of the theoretical capacity after 50 cycles, and a high capacity of 500 mA h g(-1) can be delivered at a current density of 5 A g(-1). The significantly improved electrochemical properties of C-PDA-Si NFs are due to the excellent electrical conductivity of the carbonized PDA (C-PDA) shell that compensates for the insulation property of Si, the high electrochemical activity of C-PDA, which has a layered structure and is N-doped, the hollow nature of the nanofibers and small size of Si nanoparticles that ensure smooth insertion-extraction of lithium ions and more complete alloying with them, as well as the buffering effect of the remaining PAN-derived carbon around the Si nanoparticles, which stabilizes the structure.

  19. Enhancing colloidal metallic nanocatalysis: sharp edges and corners for solid nanoparticles and cage effect for hollow ones.

    PubMed

    Mahmoud, Mahmoud A; Narayanan, Radha; El-Sayed, Mostafa A

    2013-08-20

    There are two main classes of metallic nanoparticles: solid and hollow. Each type can be synthesized in different shapes and structures. Practical use of these nanoparticles depends on the properties they acquire on the nanoscale. Plasmonic nanoparticles of silver and gold are the most studied, with applications in the fields of sensing, medicine, photonics, and catalysis. In this Account, we review our group's work to understand the catalytic properties of metallic nanoparticles of different shapes. Our group was the first to synthesize colloidal metallic nanoparticles of different shapes and compare their catalytic activity in solution. We found that the most active among these were metallic nanoparticles having sharp edges, sharp corners, or rough surfaces. Thus, tetrahedral platinum nanoparticles are more active than spheres. We proposed this happens because sharper, rougher particles have more valency-unsatisfied surface atoms (i.e., atoms that do not have the complete number of bonds that they can chemically accommodate) to act as active sites than smoother nanoparticles. We have not yet resolved whether these catalytically active atoms act as catalytic centers on the surface of the nanoparticle (i.e., heterogeneous catalysis) or are dissolved by the solvent and perform the catalysis in solution (i.e., homogenous catalysis). The answer is probably that it depends on the system studied. In the past few years, the galvanic replacement technique has allowed synthesis of hollow metallic nanoparticles, often called nanocages, including some with nested shells. Nanocage catalysts show strong catalytic activity. We describe several catalytic experiments that suggest the reactions occurred within the cage of the hollow nanocatalysts: (1) We synthesized two types of hollow nanocages with double shells, one with platinum around palladium and the other with palladium around platinum, and two single-shelled nanocages, one made of pure platinum and the other made of pure

  20. Solution-based carbohydrate synthesis of individual solid, hollow, and porous carbon nanospheres using spray pyrolysis.

    PubMed

    Wang, Chengwei; Wang, Yuan; Graser, Jake; Zhao, Ran; Gao, Fei; O'Connell, Michael J

    2013-12-23

    A facile and scalable solution-based, spray pyrolysis synthesis technique was used to synthesize individual carbon nanospheres with specific surface area (SSA) up to 1106 m(2)/g using a novel metal-salt catalyzed reaction. The carbon nanosphere diameters were tunable from 10 nm to several micrometers by varying the precursor concentrations. Solid, hollow, and porous carbon nanospheres were achieved by simply varying the ratio of catalyst and carbon source without using any templates. These hollow carbon nanospheres showed adsorption of to 300 mg of dye per gram of carbon, which is more than 15 times higher than that observed for conventional carbon black particles. When evaluated as supercapacitor electrode materials, specific capacitances of up to 112 F/g at a current density of 0.1 A/g were observed, with no capacitance loss after 20,000 cycles.

  1. Porous Hollow Fe3O4 Nanoparticles for Targeted Delivery and Controlled Release of Cisplatin

    PubMed Central

    Cheng, Kai; Peng, Sheng; Xu, Chenjie; Sun, Shouheng

    2009-01-01

    We report a new approach to cisplatin storage and release using porous hollow nanoparticles (PHNPs) of Fe3O4. We prepared the PHNPs by controlled oxidation of Fe NPs at 250°C followed by acid etching. The opening pores (~2–4 nm) facilitated the cisplatin diffusion into the cavity of the hollow structure. The porous shell was stable in neutral or basic physiological conditions and cisplatin escape from the cavity through the same pores was diffusion-controlled slow process with t1/2 = 16 hrs. But in low pH (< 6) conditions, the pores were subject to acidic etching, resulting in wider pore gaps and faster release of cisplatin with t1/2 < 4 hrs. Once coupled with Herceptin to the surface, the cisplatin-loaded hollow NPs could target to breast cancer SK-BR-3 cells with IC50 reaching 2.9 μM, much lower than 6.8 μM needed for free cisplatin. Our model experiments indicate that the low pH-responsive PHNPs of Fe3O4 can be exploited as a cisplatin delivery vehicle for target-specific therapeutic applications. PMID:19722635

  2. Hollow Fibers Networked with Perovskite Nanoparticles for H2 Production from Heavy Oil

    PubMed Central

    Jeon, Yukwon; Park, Dae-Hwan; Park, Joo-Il; Yoon, Seong-Ho; Mochida, Isao; Choy, Jin-Ho; Shul, Yong-Gun

    2013-01-01

    Design of catalytic materials has been highlighted to build ultraclean use of heavy oil including liquid-to-gas technology to directly convert heavy hydrocarbons into H2–rich gas fuels. If the H2 is produced from such heavy oil through high-active and durable catalysts in reforming process that is being constructed in hydrogen infrastructure, it will be addressed into renewable energy systems. Herein, the three different hollow fiber catalysts networked with perovskite nanoparticles, LaCr0.8Ru0.2O3, LaCr0.8Ru0.1Ni0.1O3, and LaCr0.8Ni0.2O3 were prepared by using activated carbon fiber as a sacrificial template for H2 production from heavy gas oil reforming. The most important findings were arrived at: (i) catalysts had hollow fibrous architectures with well-crystallized structures, (ii) hollow fibers had a high specific surface area with a particle size of ≈50 nm, and (iii) the Ru substituted ones showed high efficiency for H2 production with substantial durability under high concentrations of S, N, and aromatic compounds. PMID:24104596

  3. Diffusion and Molecular Exchange in Hollow Core-Shell Silica Nanoparticles.

    PubMed

    Pochert, A; Schneider, D; Haase, J; Linden, M; Valiullin, R

    2015-09-22

    The diffusion behavior of small molecules in hollow core-shell nanocapsules was studied using pulsed field gradient NMR. By purposefully selecting the liquid saturating the hollow core and the porous shell and the solvent between the nanocapsules, two different situations corresponding to the excluded and admitted molecular exchange between the intra- and intercapsule liquids at the external boundary of the nanoparticles were covered. In the former case, corresponding to the reflective boundary condition for the molecules approaching the nanocapsule boundary, restricted diffusion in the complex pore space formed by the hollow core and the mesoporous shell was observed. The time-dependent diffusivities measured in the experiment were inter-related with the geometry of the intraparticle pore space. The thus assessed structural information was found to be in a good agreement with that provided by electron microscopy. In the case of the molecular exchange occurring between the two pools of molecules in the nanocapsules and between them, the diffusive dynamics of only the molecules remaining in the nanocapsules during the entire observation times was studied.

  4. Asymmetric Flasklike Hollow Carbonaceous Nanoparticles Fabricated by the Synergistic Interaction between Soft Template and Biomass.

    PubMed

    Chen, Chunhong; Wang, Haiyan; Han, Chuanlong; Deng, Jiang; Wang, Jing; Li, Mingming; Tang, Minghui; Jin, Haiyan; Wang, Yong

    2017-02-22

    The soft template method is broadly applied to the fabrication of hollow-structured nanomaterials. However, due to the instability and the typical spherical shape of these soft templates, the resultant particles have a spherical morphology with a wide size distribution. Herein, we developed a sustainable route to fabricate asymmetric flasklike hollow carbonaceous structures with a highly uniform morphology and a narrow size distribution using the soft template method. A dynamic growth mechanism induced by the synergetic interactions between template and biomass is proposed. The precursors (ribose) provide an acidic environment for sodium oleate during the hydrothermal process in which oleic acid nanoemulsions are initially formed and serve as both template and benign solvent for the amphiphilic derivatives of the precursor. Simultaneously, the cosurfactant P123 facilitates the uniform dispersion of the nanoemulsion and is believed to cause the carbonaceous shells to rupture, providing openings through which the intermediates can enter. These subtle interactions facilitate the formation of the flasklike, asymmetric, hollow, carbonaceous nanoparticles. Furthermore, this unique structure contributes to the high surface area (2335 m(2) g(-1)) of the flasklike carbon particles, which enhances the performance of supercapacitors. These findings may open up an exciting field for exploring anisotropic carbonaceous nanomaterials and for understanding the related mechanisms to provide guidance for the design of increasingly complex carbonaceous materials.

  5. Hollow Fibers Networked with Perovskite Nanoparticles for H2 Production from Heavy Oil

    NASA Astrophysics Data System (ADS)

    Jeon, Yukwon; Park, Dae-Hwan; Park, Joo-Il; Yoon, Seong-Ho; Mochida, Isao; Choy, Jin-Ho; Shul, Yong-Gun

    2013-10-01

    Design of catalytic materials has been highlighted to build ultraclean use of heavy oil including liquid-to-gas technology to directly convert heavy hydrocarbons into H2-rich gas fuels. If the H2 is produced from such heavy oil through high-active and durable catalysts in reforming process that is being constructed in hydrogen infrastructure, it will be addressed into renewable energy systems. Herein, the three different hollow fiber catalysts networked with perovskite nanoparticles, LaCr0.8Ru0.2O3, LaCr0.8Ru0.1Ni0.1O3, and LaCr0.8Ni0.2O3 were prepared by using activated carbon fiber as a sacrificial template for H2 production from heavy gas oil reforming. The most important findings were arrived at: (i) catalysts had hollow fibrous architectures with well-crystallized structures, (ii) hollow fibers had a high specific surface area with a particle size of ~50 nm, and (iii) the Ru substituted ones showed high efficiency for H2 production with substantial durability under high concentrations of S, N, and aromatic compounds.

  6. Non-Layer-by-Layer Assembly and Encapsulation Uses of Nanoparticle-Shelled Hollow Spheres

    NASA Astrophysics Data System (ADS)

    Kini, Gautam C.; Biswal, Sibani L.; Wong, Michael S.

    Nanoparticles (NPs, diameter range of 1-100nm) can have size-dependent physical and electronic properties that are useful in a variety of applications. Arranging them into hollow shells introduces the additional functionalities of encapsulation, storage, and controlled release that the constituent NPs do not have.This chapter examines recent developments in the synthesis routes and properties of hollow spheres formed out of NPs. Synthesis approaches reviewed here are recent developments in the electrostatics-based tandem assembly and interfacial stabilization routes to the formation of NP-shelled structures. Distinct from the well-established layer-by-layer (LBL) synthesis approach, the former route leads to NP/polymer composite hollow spheres that are potentially useful in medical therapy, catalysis, and encapsulation applications. The latter route is based on interfacial activity and stabilization by NPs with amphiphilic properties, to generate materials like colloidosomes, Pickering emulsions, and foams. The varied types of NP shells can have unique materials properties that are not found in the NP building blocks, or in polymer-based, surfactant-based, or LBL-assembled capsules.

  7. Heterogeneous nanocomposites of silver selenide and hollow platinum nanoparticles toward methanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Cui, Penglei; He, Hongyan; Liu, Hui; Zhang, Suojiang; Yang, Jun

    2016-09-01

    Making use of the electronic coupling between different domains in composite nanomaterials is an effective way to enhance the activity of electrocatalysts. Herein, we demonstrate the preparation of nanocomposites consisting of silver selenide (Ag2Se) and platinum (Pt) nanoparticles with a hollow interior by combining the inside-out diffusion of Ag in core-shell Ag-Pt nanoparticles with the synthesis of highly active hydrophobic Se species. In specific, the Ag2Se-hPt nanocomposites are found to have superior activity and stability for methanol oxidation reaction in an acidic condition due to the strong electronic coupling effect between semiconductor and metal domains. This strategy may provide a greener and less expensive way to the large-scale synthesis of Pt-based nanocomposites, and might be used to generate other heterogeneous nanomaterials with technological importance.

  8. Spatiotemporally and Sequentially-Controlled Drug Release from Polymer Gatekeeper-Hollow Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Palanikumar, L.; Jeena, M. T.; Kim, Kibeom; Yong Oh, Jun; Kim, Chaekyu; Park, Myoung-Hwan; Ryu, Ja-Hyoung

    2017-04-01

    Combination chemotherapy has become the primary strategy against cancer multidrug resistance; however, accomplishing optimal pharmacokinetic delivery of multiple drugs is still challenging. Herein, we report a sequential combination drug delivery strategy exploiting a pH-triggerable and redox switch to release cargos from hollow silica nanoparticles in a spatiotemporal manner. This versatile system further enables a large loading efficiency for both hydrophobic and hydrophilic drugs inside the nanoparticles, followed by self-crosslinking with disulfide and diisopropylamine-functionalized polymers. In acidic tumour environments, the positive charge generated by the protonation of the diisopropylamine moiety facilitated the cellular uptake of the particles. Upon internalization, the acidic endosomal pH condition and intracellular glutathione regulated the sequential release of the drugs in a time-dependent manner, providing a promising therapeutic approach to overcoming drug resistance during cancer treatment.

  9. Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers

    SciTech Connect

    Grass, David Fesel, Julian; Hofer, Sebastian G.; Kiesel, Nikolai; Aspelmeyer, Markus

    2016-05-30

    We demonstrate an optical conveyor belt for levitated nanoparticles over several centimeters inside both air-filled and evacuated hollow-core photonic crystal fibers (HCPCF). Detection of the transmitted light field allows three-dimensional read-out of the particle center-of-mass motion. An additional laser enables axial radiation pressure based feedback cooling over the full fiber length. We show that the particle dynamics is a sensitive local probe for characterizing the optical intensity profile inside the fiber as well as the pressure distribution along the fiber axis. In contrast to some theoretical predictions, we find a linear pressure dependence inside the HCPCF, extending over three orders of magnitude from 0.2 mbar to 100 mbar. A targeted application is the controlled delivery of nanoparticles from ambient pressure into medium vacuum.

  10. Preparation and characterization of porous hollow silica nanoparticles for drug delivery application.

    PubMed

    Chen, Jian-Feng; Ding, Hao-Min; Wang, Jie-Xin; Shao, Lei

    2004-02-01

    Porous hollow silica nanoparticles (PHSNP) with a diameter of 60-70 nm and wall thickness of approximately 10nm were synthesized by using CaCO(3) nano-particles as the inorganic template. The characterization of PHSNP by TEM and BET indicated that PHSNP were uniform spherical particles with good dispersion, and had a specific surface area of 867 m(2)/g. The as-synthesized PHSNP were subsequently employed as drug carrier to investigate in vitro release behavior of cefradine in simulated body fluid. UV-spectrometry and TG analyses were performed to determine the amount of cefradine entrapped in the carrier. The BJH pore size distribution of PHSNP before and after entrapping cefradine was examined. Cefradine release profile from PHSNP followed a three-stage pattern and exhibited a delayed release effect.

  11. Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Grass, David; Fesel, Julian; Hofer, Sebastian G.; Kiesel, Nikolai; Aspelmeyer, Markus

    2016-05-01

    We demonstrate an optical conveyor belt for levitated nanoparticles over several centimeters inside both air-filled and evacuated hollow-core photonic crystal fibers (HCPCF). Detection of the transmitted light field allows three-dimensional read-out of the particle center-of-mass motion. An additional laser enables axial radiation pressure based feedback cooling over the full fiber length. We show that the particle dynamics is a sensitive local probe for characterizing the optical intensity profile inside the fiber as well as the pressure distribution along the fiber axis. In contrast to some theoretical predictions, we find a linear pressure dependence inside the HCPCF, extending over three orders of magnitude from 0.2 mbar to 100 mbar. A targeted application is the controlled delivery of nanoparticles from ambient pressure into medium vacuum.

  12. Spatiotemporally and Sequentially-Controlled Drug Release from Polymer Gatekeeper-Hollow Silica Nanoparticles.

    PubMed

    Palanikumar, L; Jeena, M T; Kim, Kibeom; Yong Oh, Jun; Kim, Chaekyu; Park, Myoung-Hwan; Ryu, Ja-Hyoung

    2017-04-24

    Combination chemotherapy has become the primary strategy against cancer multidrug resistance; however, accomplishing optimal pharmacokinetic delivery of multiple drugs is still challenging. Herein, we report a sequential combination drug delivery strategy exploiting a pH-triggerable and redox switch to release cargos from hollow silica nanoparticles in a spatiotemporal manner. This versatile system further enables a large loading efficiency for both hydrophobic and hydrophilic drugs inside the nanoparticles, followed by self-crosslinking with disulfide and diisopropylamine-functionalized polymers. In acidic tumour environments, the positive charge generated by the protonation of the diisopropylamine moiety facilitated the cellular uptake of the particles. Upon internalization, the acidic endosomal pH condition and intracellular glutathione regulated the sequential release of the drugs in a time-dependent manner, providing a promising therapeutic approach to overcoming drug resistance during cancer treatment.

  13. Spatiotemporally and Sequentially-Controlled Drug Release from Polymer Gatekeeper–Hollow Silica Nanoparticles

    PubMed Central

    Palanikumar, L.; Jeena, M. T.; Kim, Kibeom; Yong Oh, Jun; Kim, Chaekyu; Park, Myoung-Hwan; Ryu, Ja-Hyoung

    2017-01-01

    Combination chemotherapy has become the primary strategy against cancer multidrug resistance; however, accomplishing optimal pharmacokinetic delivery of multiple drugs is still challenging. Herein, we report a sequential combination drug delivery strategy exploiting a pH-triggerable and redox switch to release cargos from hollow silica nanoparticles in a spatiotemporal manner. This versatile system further enables a large loading efficiency for both hydrophobic and hydrophilic drugs inside the nanoparticles, followed by self-crosslinking with disulfide and diisopropylamine-functionalized polymers. In acidic tumour environments, the positive charge generated by the protonation of the diisopropylamine moiety facilitated the cellular uptake of the particles. Upon internalization, the acidic endosomal pH condition and intracellular glutathione regulated the sequential release of the drugs in a time-dependent manner, providing a promising therapeutic approach to overcoming drug resistance during cancer treatment. PMID:28436438

  14. Biodegradable Hollow Mesoporous Silica Nanoparticles for Regulating Tumor Microenvironment and Enhancing Antitumor Efficiency.

    PubMed

    Kong, Miao; Tang, Jiamin; Qiao, Qi; Wu, Tingting; Qi, Yan; Tan, Songwei; Gao, Xueqin; Zhang, Zhiping

    2017-01-01

    There is accumulating evidence that regulating tumor microenvironment plays a vital role in improving antitumor efficiency. Herein, to remodel tumor immune microenvironment and elicit synergistic antitumor effects, lipid-coated biodegradable hollow mesoporous silica nanoparticle (dHMLB) was constructed with co-encapsulation of all-trans retinoic acid (ATRA), doxorubicin (DOX) and interleukin-2 (IL-2) for chemo-immunotherapy. The nanoparticle-mediated combinational therapy provided a benign regulation on tumor microenvironment through activation of tumor infiltrating T lymphocytes and natural killer cells, promotion of cytokines secretion of IFN-γ and IL-12, and down-regulation of immunosuppressive myeloid-derived suppressor cells, cytokine IL-10 and TGF-β. ATRA/DOX/IL-2 co-loaded dHMLB demonstrated significant tumor growth and metastasis inhibition, and also exhibited favorable biodegradability and safety. This nanoplatform has great potential in developing a feasible strategy to remodel tumor immune microenvironment and achieve enhanced antitumor effect.

  15. From core/shell to hollow Fe/γ-Fe2O3 nanoparticles: evolution of the magnetic behavior

    NASA Astrophysics Data System (ADS)

    Nemati, Z.; Khurshid, H.; Alonso, J.; Phan, M. H.; Mukherjee, P.; Srikanth, H.

    2015-10-01

    High quality Fe/γ-Fe2O3 core/shell, core/void/shell, and hollow nanoparticles with two different sizes of 8 and 12 nm were synthesized, and the effect of morphology, surface and finite-size effects on their magnetic properties including the exchange bias (EB) effect were systematically investigated. We find a general trend for both systems that as the morphology changes from core/shell to core/void/shell, the magnetization of the system decays and inter-particle interactions become weaker, while the effective anisotropy and the EB effect increase. The changes are more drastic when the nanoparticles become completely hollow. Noticeably, the morphological change from core/shell to hollow increases the mean blocking temperature for the 12 nm particles but decreases for the 8 nm particles. The low-temperature magnetic behavior of the 12 nm particles changes from a collective super-spin-glass system mediated by dipolar interactions for the core/shell nanoparticles to a frustrated cluster glass-like state for the shell nanograins in the hollow morphology. On the other hand for the 8 nm nanoparticles core/shell and hollow particles the magnetic behavior is more similar, and a conventional spin glass-like transition is obtained at low temperatures. In the case of the hollow nanoparticles, the coupling between the inner and outer spin layers in the shell gives rise to an enhanced EB effect, which increases with increasing shell thickness. This indicates that the morphology of the shell plays a crucial role in this kind of exchange-biased systems.

  16. Surface-enhanced Raman spectroscopy of double-shell hollow nanoparticles: electromagnetic and chemical enhancements.

    PubMed

    Mahmoud, Mahmoud A

    2013-05-28

    Enhancements of the Raman signal by the newly prepared gold-palladium and gold-platinum double-shell hollow nanoparticles were examined and compared with those using gold nanocages (AuNCs). The surface-enhanced Raman spectra (SERS) of thiophenol adsorbed on the surface of AuNCs assembled into a Langmuir-Blodgett monolayer were 10-fold stronger than AuNCs with an inner Pt or Pd shell. The chemical and electromagnetic enhancement mechanisms for these hollow nanoparticles were further proved by comparing the Raman enhancement of nitrothiophenol and nitrotoulene. Nitrothiophenol binds to the surface of the nanoparticles by covalent interaction, and Raman enhancement by both the two mechanisms is possible, while nitrotoulene does not form any chemical bond with the surface of the nanoparticles and hence no chemical enhancement is expected. Based on discrete dipole approximation (DDA) calculations and the experimental SERS results, AuNCs introduced a high electromagnetic enhancement, while the nanocages with inner Pt or Pd shell have a strong chemical enhancement. The optical measurements of the localized surface plasmon resonance (LSPR) of the nanocages with an outer Au shell and an inner Pt or Pd shell were found, experimentally and theoretically, to be broad compared with AuNCs. The possible reason could be due to the decrease of the coherence time of Au oscillated free electrons and fast damping of the plasmon energy. This agreed well with the fact that a Pt or Pd inner nanoshell decreases the electromagnetic field of the outer Au nanoshell while increasing the SERS chemical enhancement.

  17. Tuning the synthesis of platinum-copper nanoparticles with a hollow core and porous shell for the selective hydrogenation of furfural to furfuryl alcohol

    NASA Astrophysics Data System (ADS)

    Huang, Shuangshuang; Yang, Nating; Wang, Shibin; Sun, Yuhan; Zhu, Yan

    2016-07-01

    Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol.Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03894h

  18. Poly(ionic liquids) hollow nanospheres with PDMAEMA as joint support of highly dispersed gold nanoparticles for thermally adjustable catalysis

    NASA Astrophysics Data System (ADS)

    He, Xiaoyan; Liu, Zhirong; Fan, Fuhong; Qiang, Shenglu; Cheng, Li; Yang, Wu

    2015-02-01

    A smart hollow hybrid system was prepared by introducing poly(2-(1-methylimidazolium 3-yl)-ethyl methacrylate chloride) (PMIMC) network, the temperature-responsive PDMAEMA brushes, and Au nanoparticles into silica nanoparticles through two-step surface-initiated atom transfer radical polymerization. TEM, FTIR, EDX, XRD, XPS, and TGA were used to characterize the morphology and structure of air@PMIMC-PDMAEMA-Au hairy hollow nanospheres. The result showed that Au nanoparticles with an average diameter of 1.5 ± 0.2 nm were homogeneously embedded inside the PMIMC-PDMAEMA shell. Catalytic activity of the as-synthesized air@PMIMC-PDMAEMA-Au hairy hollow nanospheres were investigated using the reduction of 4-nitrophenol with NaBH4 as a model reaction. It was found that the joint structures of PMIMC hollow nanospheres and PDMAEMA brushes lead to production of the highly active and stable catalyst for reduction of 4-nitrophenol. Furthermore, the obtained air@PMIMC-PDMAEMA-Au hairy hollow nanospheres were found to have a thermally adjustable catalytic activity for the reduction of 4-nitrophenol.

  19. Fabrication of high specificity hollow mesoporous silica nanoparticles assisted by Eudragit for targeted drug delivery.

    PubMed

    She, Xiaodong; Chen, Lijue; Velleman, Leonora; Li, Chengpeng; Zhu, Haijin; He, Canzhong; Wang, Tao; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2015-05-01

    Hollow mesoporous silica nanoparticles (HMSNs) are one of the most promising carriers for effective drug delivery due to their large surface area, high volume for drug loading and excellent biocompatibility. However, the non-ionic surfactant templated HMSNs often have a broad size distribution and a defective mesoporous structure because of the difficulties involved in controlling the formation and organization of micelles for the growth of silica framework. In this paper, a novel "Eudragit assisted" strategy has been developed to fabricate HMSNs by utilising the Eudragit nanoparticles as cores and to assist in the self-assembly of micelle organisation. Highly dispersed mesoporous silica spheres with intact hollow interiors and through pores on the shell were fabricated. The HMSNs have a high surface area (670 m(2)/g), small diameter (120 nm) and uniform pore size (2.5 nm) that facilitated the effective encapsulation of 5-fluorouracil within HMSNs, achieving a high loading capacity of 194.5 mg(5-FU)/g(HMSNs). The HMSNs were non-cytotoxic to colorectal cancer cells SW480 and can be bioconjugated with Epidermal Growth Factor (EGF) for efficient and specific cell internalization. The high specificity and excellent targeting performance of EGF grafted HMSNs have demonstrated that they can become potential intracellular drug delivery vehicles for colorectal cancers via EGF-EGFR interaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Trace determination of thiram using SERS-active hollow sea-urchin gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Guanghui; Zhang, Chuankun; Ma, Yanan; Wang, Zheng; Wang, Shun; Xu, Chan; Wang, Dashuang

    2017-04-01

    Surface-enhanced Raman scattering (SERS) is greatly structure-dependent on the absorbed nanoparticles. Nanostructures with different novel morphologies show different Raman enhancement factor orders of magnitude. Herein, a unique nanostructure with fruitful SERS-active sites, composed of hollow interiors and thorns which named as hollow sea-urchin gold nanoparticles (HSU-GNPs), was synthesized by using a one-pot galvanic replacement method. And the corresponding morphologies and optical properties were characterized by TEM images and absorption spectra. Importantly, the synthetic parameters of HSU-GNPs were optimized to obtain a superior SERS performance by analyzing the formation mechanism and the SERS spectra of R6G-labeled HSU-GNPs which obtained at different concentrations of AgNO3. Furthermore, the SERS-based application of HSU-GNPs was performed on the dose-response detection of thiram. The experimental result shows this detection strategy is available for thiram with decent sensitivity and reproducibility, which suggests that it is an excellent candidate for the detection of pesticides.

  1. Multifunctional hollow gold nanoparticles designed for triple combination therapy and CT imaging.

    PubMed

    Park, Jaesook; Park, Jin; Ju, Eun Jin; Park, Seok Soon; Choi, Jinhyang; Lee, Jae Hee; Lee, Kyoung Jin; Shin, Seol Hwa; Ko, Eun Jung; Park, Intae; Kim, Chulhee; Hwang, Jung Jin; Lee, Jung Shin; Song, Si Yeol; Jeong, Seong-Yun; Choi, Eun Kyung

    2015-06-10

    Hollow gold nanoparticles (HGNP) are a novel class of hybrid metal nanoparticles whose unique optical and morphological properties have spawned new applications including more effective cancer therapy. The shell thickness of HGNPs can tune the surface plasmon resonance to the near infrared light, resulting in photothermal ablation of tumors with optimal light penetration in tissue. The hollow cavity within a HGNP is able to accommodate a high payload of chemotherapeutic agents. They have also been used for enhancing radiosensitization in tumors during radiotherapy due to the high X-ray absorption capability of gold particles. However, no report has yet been published that utilize HGNPs for the triple combination therapy and CT imaging. In this study, we synthesized HGNPs which exhibit better response to radiation for therapy and imaging and demonstrated the effects of combined chemotherapy, thermal and radiotherapy. This combination strategy presented delayed tumor growth by 4.3-fold and reduced tumor's weight by 6.8-fold compared to control tumors. In addition, we demonstrated the feasibility of HGNP as a CT imaging agent. It is expected that translating these capabilities to human cancer patients could dramatically increase the antitumor effect and potentially overcome resistance to chemotherapeutic agents and radiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Enhancing the Electrocatalytic Property of Hollow Structured Platinum Nanoparticles for Methanol Oxidation Through A Hybrid Construction

    PubMed Central

    Feng, Yan; Liu, Hui; Wang, Pengfei; Ye, Feng; Tan, Qiangqiang; Yang, Jun

    2014-01-01

    The integration of different components into a hybrid nanosystem for the utilization of the synergistic effects is an effective way to design the electrocatalysts. Herein, we demonstrate a hybrid strategy to enhance the electrocatalytic property of hollow structured Pt nanoparticles for methanol oxidation reaction. This strategy begins with the preparation of bimetallic Ag-Pt nanoparticles with a core-shell construction. Element sulfur is then added to transform the core-shell Ag-Pt nanostructures into hybrid nanodimers consisting of Ag2S nanocrystals and remaining Pt domains with intact hollow interiors (Ag2S-hPt). Finally, Au is deposited at the surface of the Ag2S domain in each hetero-dimer, resulting in the formation of ternary Ag2S-Au-hPt nanocomposites with solid-state interfaces. The ternary nanocomposites exhibit enhanced electrocatalytic property toward methanol oxidation due to the strong electronic coupling between Pt and other domains in the hybrid particles. The concept might be used toward the design and synthesis of other hetero-nanostructures with technological importance. PMID:25160947

  3. Improved luminescence in water-soluble hollow LaF3:Eu3+ nanoparticles by introducing Li+ ions

    NASA Astrophysics Data System (ADS)

    Fan, Ting; Lü, Jiantao; Lin, Futian; Zhou, Zifan

    2016-04-01

    Improved red emission in polyvinylpyrrolidone (PVP)-coated hollow LaF3:Eu3+ nanoparticles by introducing Li+ ions was found for the first time via a one-step template-free hydrothermal method. The hollow formation can be attributed to self-recrystallization and a local Ostwald ripening thermodynamic process. Pores were clearly seen and widely distributed in all LaF3 nanoparticles. The introduction of Li+ ions did not introduce new crystalline phases and resulted in little change in size and morphology of the LaF3 nanoparticles. The main diffraction peaks were found to shift slightly with the Li+ doping concentrations, which indicates that Li+ changes the crystal field environment of Eu3+. The excitation and red emission intensity both doubled when codoped with 7 mol% Li+ ions. The widely distributed pores and improved luminescence properties of our nanoparticles facilitated the construction of new nanocomposites for novel biological applications.

  4. Hollow structured carbon-supported nickel cobaltite nanoparticles as an efficient bifunctional electrocatalyst for the oxygen reduction and evolution reaction

    SciTech Connect

    Wang, Jie; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wang, Deli; Wu, Zexing

    2016-01-05

    Here, the exploration of efficient electrocatalysts for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is essential for fuel cells and metal-air batteries. In this study, we developed 3D hollow-structured NiCo2O4/C nanoparticles with interconnected pores as bifunctional electrocatalysts, which are transformed from solid NiCo2 alloy nanoparticles through the Kirkendall effect. The unique hollow structure of NiCo2O4 nanoparticles increases the number of active sites and improves contact with the electrolyte to result in excellent ORR and OER performances. In addition, the hollow-structured NiCo2O4/C nanoparticles exhibit superior long-term stability for both the ORR and OER compared to commercial Pt/C. The template- and surfactant-free synthetic strategy could be used for the low-cost and large-scale synthesis of hollow-structured materials, which would facilitate the screening of high-efficiency catalysts for energy conversion.

  5. Synthesis of Hollow Gold-Silver Alloyed Nanoparticles: A "Galvanic Replacement" Experiment for Chemistry and Engineering Students

    ERIC Educational Resources Information Center

    Jenkins, Samir V.; Gohman, Taylor D.; Miller, Emily K.; Chen, Jingyi

    2015-01-01

    The rapid academic and industrial development of nanotechnology has led to its implementation in laboratory teaching for undergraduate-level chemistry and engineering students. This laboratory experiment introduces the galvanic replacement reaction for synthesis of hollow metal nanoparticles and investigates the optical properties of these…

  6. Hollow structured carbon-supported nickel cobaltite nanoparticles as an efficient bifunctional electrocatalyst for the oxygen reduction and evolution reaction

    DOE PAGES

    Wang, Jie; Han, Lili; Lin, Ruoqian; ...

    2016-01-05

    Here, the exploration of efficient electrocatalysts for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is essential for fuel cells and metal-air batteries. In this study, we developed 3D hollow-structured NiCo2O4/C nanoparticles with interconnected pores as bifunctional electrocatalysts, which are transformed from solid NiCo2 alloy nanoparticles through the Kirkendall effect. The unique hollow structure of NiCo2O4 nanoparticles increases the number of active sites and improves contact with the electrolyte to result in excellent ORR and OER performances. In addition, the hollow-structured NiCo2O4/C nanoparticles exhibit superior long-term stability for both the ORR and OER compared to commercial Pt/C.more » The template- and surfactant-free synthetic strategy could be used for the low-cost and large-scale synthesis of hollow-structured materials, which would facilitate the screening of high-efficiency catalysts for energy conversion.« less

  7. One-step synthesis of amine-functionalized hollow mesoporous silica nanoparticles as efficient antibacterial and anticancer materials.

    PubMed

    Hao, Nanjing; Jayawardana, Kalana W; Chen, Xuan; Yan, Mingdi

    2015-01-21

    In this study, amine-functionalized hollow mesoporous silica nanoparticles with an average diameter of ∼100 nm and shell thickness of ∼20 nm were prepared by an one-step process. This new nanoparticulate system exhibited excellent killing efficiency against mycobacterial (M. smegmatis strain mc(2) 651) and cancer cells (A549).

  8. Synthesis of Hollow Gold-Silver Alloyed Nanoparticles: A "Galvanic Replacement" Experiment for Chemistry and Engineering Students

    ERIC Educational Resources Information Center

    Jenkins, Samir V.; Gohman, Taylor D.; Miller, Emily K.; Chen, Jingyi

    2015-01-01

    The rapid academic and industrial development of nanotechnology has led to its implementation in laboratory teaching for undergraduate-level chemistry and engineering students. This laboratory experiment introduces the galvanic replacement reaction for synthesis of hollow metal nanoparticles and investigates the optical properties of these…

  9. Integrated hollow mesoporous silica nanoparticles for target drug/siRNA co-delivery.

    PubMed

    Ma, Xing; Zhao, Yun; Ng, Kee Woei; Zhao, Yanli

    2013-11-11

    A hollow mesoporous silica nanoparticle (HMSNP) based drug/siRNA co-delivery system was designed and fabricated, aiming at overcoming multidrug resistance (MDR) in cancer cells for targeted cancer therapy. The as-prepared HMSNPs have perpendicular nanochannels connecting to the internal hollow cores, thereby facilitating drug loading and release. The extra volume of the hollow core enhances the drug loading capacity by two folds as compared with conventional mesoporous silica nanoparticles (MSNPs). Folic acid conjugated polyethyleneimine (PEI-FA) was coated on the HMSNP surfaces under neutral conditions through electrostatic interactions between the partially charged amino groups of PEI-FA and the phosphate groups on the HMSNP surfaces, blocking the mesopores and preventing the loaded drugs from leakage. Folic acid acts as the targeting ligand that enables the co-delivery system to selectively bind with and enter into the target cancer cells. PEI-FA-coated HMSNPs show enhanced siRNA binding capability on account of electrostatic interactions between the amino groups of PEI-FA and siRNA, as compared with that of MSNPs. The electrostatic interactions provide the feasibility of pH-controlled release. In vitro pH-responsive drug/siRNA co-delivery experiments were conducted on HeLa cell lines with high folic acid receptor expression and MCF-7 cell lines with low folic acid receptor expression for comparison, showing effective target delivery to the HeLa cells through folic acid receptor meditated cellular endocytosis. The pH-responsive intracellular drug/siRNA release greatly minimizes the prerelease and possible side effects of the delivery system. By simultaneously delivering both doxorubicin (Dox) and siRNA against the Bcl-2 protein into the HeLa cells, the expression of the anti-apoptotic protein Bcl-2 was successfully suppressed, leading to an enhanced therapeutic efficacy. Thus, the present multifunctional nanoparticles show promising potentials for controlled and

  10. Silicon nanoparticles encapsulated in hollow graphitized carbon nanofibers for lithium ion battery anodes

    NASA Astrophysics Data System (ADS)

    Kong, Junhua; Yee, Wu Aik; Wei, Yuefan; Yang, Liping; Ang, Jia Ming; Phua, Si Lei; Wong, Siew Yee; Zhou, Rui; Dong, Yuliang; Li, Xu; Lu, Xuehong

    2013-03-01

    Silicon (Si) is a promising material for lithium ion battery (LIB) anodes due to its high specific capacity. To overcome its shortcomings such as insulation property and large volume change during the charge-discharge process, a novel hybrid system, Si nanoparticles encapsulated in hollow graphitized carbon nanofibers, is studied. First, electrospun polyacrylonitrile (PAN)-Si hybrid nanofibers were obtained using water as the collector. The loose nanofiber lumps suspended in water have large inter-fiber distance, allowing in situ coating of a thin layer of polydopamine (PDA), the source for graphitized carbon, uniformly throughout the system. The designed morphology and structure were then realized by etching and calcination, and the morphology and structure were subsequently verified by various analytical techniques. Electrochemical measurements show that the resulting hollow hybrid nanofibers (C-PDA-Si NFs) exhibit much better cycling stability and rate capacity than conventional C/Si nanofibers derived by electrospinning of PAN-Si followed by calcination. For instance, the capacity of C-PDA-Si NFs is as high as 72.6% of the theoretical capacity after 50 cycles, and a high capacity of 500 mA h g-1 can be delivered at a current density of 5 A g-1. The significantly improved electrochemical properties of C-PDA-Si NFs are due to the excellent electrical conductivity of the carbonized PDA (C-PDA) shell that compensates for the insulation property of Si, the high electrochemical activity of C-PDA, which has a layered structure and is N-doped, the hollow nature of the nanofibers and small size of Si nanoparticles that ensure smooth insertion-extraction of lithium ions and more complete alloying with them, as well as the buffering effect of the remaining PAN-derived carbon around the Si nanoparticles, which stabilizes the structure.Silicon (Si) is a promising material for lithium ion battery (LIB) anodes due to its high specific capacity. To overcome its shortcomings

  11. Differences between individual ZSM-5 crystals in forming hollow single crystals and mesopores during base leaching.

    PubMed

    Fodor, Daniel; Krumeich, Frank; Hauert, Roland; van Bokhoven, Jeroen A

    2015-04-13

    After base treatment of ZSM-5 crystals below 100 nm in size, TEM shows hollow single crystals with a 10 nm shell. SEM images confirm that the shell is well- preserved even after prolonged treatment. Determination of the Si/Al ratios with AAS and XPS in combination with argon sputtering reveals aluminum zoning of the parent zeolite, and the total pore volume increases in the first two hours of base treatment. In corresponding TEM images, the amount of hollow crystals are observed to increase during the first two hours of base treatment, and intact crystals are visible even after 10 h of leaching; these observations indicate different dissolution rates between individual crystals. TEM of large, commercially available ZSM-5 crystals shows inhomogeneous distribution of mesopores among different crystals, which points to the existence of structural differences between individual crystals. Only tetrahedrally coordinated aluminum is detected with (27) Al MAS NMR after the base leaching of nano-sized ZSM-5. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Magnetic and electronic properties of bimagnetic materials comprising cobalt particles within hollow silica decorated with magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Okada, T.; González-Alfaro, Y.; Espinosa, A.; Watanabe, N.; Haeiwa, T.; Sonehara, M.; Mishima, S.; Sato, T.; Muñoz-Noval, A.; Aranda, P.; Garcia-Hernández, M.; Ruiz-Hitzky, E.

    2013-09-01

    Bimagnetic materials were fabricated by decorating the external surface of rattle-type hollow silica microspheres (which themselves contain metallic cobalt nanoparticles) with magnetite nanoparticles; thus, each magnetic substance was spatially isolated by the silica shell. The amount of magnetite decoration on the co-occluded hollow silica was varied from 1 to 17 mass %. Magnetic and electronic properties of the resulting bimagnetic materials were characterized by superconducting quantum interference device measurements and X-ray absorption spectroscopy, respectively. The ferrous iron in the bimagnetic sample was slightly more oxidized than in the magnetite reference, probably from some charge-transfer because of the SiO2 surface contact, although the overall oxidation state of the samples is very similar to that of magnetite. The temperature dependence of the sample magnetization recorded with Zero Field Cooling and Field Cooling resulted in blocking temperatures for the bimagnetic materials that were close to that of magnetite nanoparticles (176 K) and were lower than that for the bare Co-occluded hollow silica (which was above room temperature). Values of coercive force and exchange bias at 300 K became quite small after decoration with only minimal amounts of magnetite nanoparticles (1-3 mass %) and were lower than those of magnetite. This is the first example of enhancing superparamagnetism by spatial separation of both Co and magnetite magnetic nanoparticles using a thin wall of diamagnetic silica.

  13. Iron oxide nanoparticle layer templated by polydopamine spheres: a novel scaffold toward hollow-mesoporous magnetic nanoreactors.

    PubMed

    Huang, Liang; Ao, Lijiao; Xie, Xiaobin; Gao, Guanhui; Foda, Mohamed F; Su, Wu

    2015-01-14

    Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m(2) g(-1)). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi-functionality.

  14. Mesoporous hollow nanospheres consisting of carbon coated silica nanoparticles for robust lithium-ion battery anodes

    NASA Astrophysics Data System (ADS)

    An, Weili; Fu, Jijiang; Su, Jianjun; Wang, Lei; Peng, Xiang; Wu, Kai; Chen, Qiuyun; Bi, Yajun; Gao, Biao; Zhang, Xuming

    2017-03-01

    SiO2 as lithium ion batteries (LIBs) anode has drawn considerable attentions because of its low cost, high theoretical specific capacity and low discharge potentials but been limited by its low conductivity and electrochemical kinetics, resulting in obvious capacity decay and poor rate performance. Herein, we developed a simple approach to synthesize mesoporous hollow nanosphere (MHSiO2@C) assembled by conformal carbon coating tiny silica nanoparticles through chemical polymerization of dopamine inside the shell of MHSiO2. The continuous carbon can conformally coat on the surface of all primary SiO2 nanoparticles in the shell, which not only enhances the conductivity but also improves the structural stability of the MHSiO2. Compared to raw MHSiO2 and non-conformal carbon coated MHSiO2, the MHSiO2@C demonstrate a high reversible capacity of 440.7 mA h g-1 at a current density of 0.5 A g-1 after 500 cycles and excellent rate performance due to synergetic effect of special structure of MHSiO2 and carbon conformal coating on each silica nanoparticle. Such a special structure will be a promising platform for LIBs. Significantly, this paper offers a direct evidence to prove the advantage of conformal carbon coating and provides consequentially guide in improving the energy storage performance of low-conductivity oxide based electrode materials.

  15. Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; Alonso, Javier; Phan, Manh-Huong; Sun, Cheng-Jun; Saboungi, Marie-Louise; Srikanth, Hariharan

    2015-10-01

    Disorder among surface spins is a dominant factor in the magnetic response of magnetic nanoparticle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8 ± 0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and become frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point to highly frustrated surface spins that rearrange much more slowly than interior spins. Monte Carlo simulations of a hollow particle corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures.

  16. Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles

    PubMed Central

    Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; Alonso, Javier; Phan, Manh-Huong; Sun, Cheng-Jun; Saboungi, Marie-Louise; Srikanth, Hariharan

    2015-01-01

    Disorder among surface spins is a dominant factor in the magnetic response of magnetic nanoparticle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8 ± 0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and become frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point to highly frustrated surface spins that rearrange much more slowly than interior spins. Monte Carlo simulations of a hollow particle corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures. PMID:26503506

  17. Ag Nanoparticle-Sensitized WO3 Hollow Nanosphere for Localized Surface Plasmon Enhanced Gas Sensors.

    PubMed

    Yao, Yao; Ji, Fangxu; Yin, Mingli; Ren, Xianpei; Ma, Qiang; Yan, Junqing; Liu, Shengzhong Frank

    2016-07-20

    Ag nanoparticle (NP)-sensitized WO3 hollow nanospheres (Ag-WO3-HNSs) are fabricated via a simple sonochemical synthesis route. It is found that the Ag-WO3-HNS shows remarkable performance in gas sensors. Field-emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM) images reveal that the Agx-WO3 adopts the HNS structure in which WO3 forms the outer shell framework and the Ag NPs are grown on the inner wall of the WO3 hollow sphere. The size of the Ag NPs can be controlled by adjusting the addition amount of WCl6 during the reaction. The sensor Agx-WO3 exhibits extremely high sensitivity and selectivity toward alcohol vapor. In particular, the Ag(15nm)-WO3 sensor shows significantly lower operating temperature (230 °C), superior detection limits as low as 0.09 ppb, and faster response (7 s). Light illumination was found to boost the sensor performance effectively, especially at 405 and 900 nm, where the light wavelength resonates with the absorption of Ag NPs and the surface oxygen vacancies of WO3, respectively. The improved sensor performance is attributed to the localized surface plasmon resonance (LSPR) effect.

  18. Synthesis of core-shell AlOOH hollow nanospheres by reacting Al nanoparticles with water

    NASA Astrophysics Data System (ADS)

    Lozhkomoev, A. S.; Glazkova, E. A.; Bakina, O. V.; Lerner, M. I.; Gotman, I.; Gutmanas, E. Y.; Kazantsev, S. O.; Psakhie, S. G.

    2016-05-01

    A novel route for the synthesis of boehmite nanospheres with a hollow core and the shell composed of highly crumpled AlOOH nanosheets by oxidizing Al nanopowder in pure water under mild processing conditions is described. The stepwise events of Al transformation into boehmite are followed by monitoring the pH in the reaction medium. A mechanism of formation of hollow AlOOH nanospheres with a well-defined shape and crystallinity is proposed which includes the hydration of the Al oxide passivation layer, local corrosion of metallic Al accompanied by hydrogen evolution, the rupture of the protective layer, the dissolution of Al from the particle interior and the deposition of AlOOH nanosheets on the outer surface. In contrast to previously reported methods of boehmite nanoparticle synthesis, the proposed method is simple, and environmentally friendly and allows the generation of hydrogen gas as a by-product. Due to their high surface area and high, slit-shaped nanoporosity, the synthesized AlOOH nanostructures hold promise for the development of more effective catalysts, adsorbents, vaccines and drug carriers.

  19. Iron oxide nanoparticle layer templated by polydopamine spheres: a novel scaffold toward hollow-mesoporous magnetic nanoreactors

    NASA Astrophysics Data System (ADS)

    Huang, Liang; Ao, Lijiao; Xie, Xiaobin; Gao, Guanhui; Foda, Mohamed F.; Su, Wu

    2014-12-01

    Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m2 g-1). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi-functionality.Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m2 g-1). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi

  20. Modification of a metal nanoparticle beam by a hollow electrode discharge

    SciTech Connect

    Ahadi, Amir Mohammad Hinz, Alexander; Polonskyi, Oleksandr; Strunskus, Thomas; Faupel, Franz; Trottenberg, Thomas; Kersten, Holger

    2016-03-15

    Treatment of nanoparticles (NPs) in complex environments, such as plasmas, is of interest for the fabrication of advanced nanomaterials with desired properties and also from a physical point of view. Here, the authors investigate the mutual interaction between silver NPs and a radio frequency (RF) plasma at different conditions by combining a cylindrical hollow electrode with a gas aggregation source. The investigation of the NP deposits and the morphology of the casted films shows that the applied RF discharge significantly changes the path of the NPs as well as the NP size distribution in the beam. Starting from a neutral NP beam, it is observed that most of the NPs leave the plasma region with negative charge(s), yet the fraction of positively charged NPs grows with power. Furthermore, the plasma characteristics are slightly influenced by the NP flux since the passing NPs collect the plasma charge carriers.

  1. Polyethersulfone hollow fiber modified with poly(styrenesulfonate) and Pd nanoparticles for catalytic reaction

    NASA Astrophysics Data System (ADS)

    Emin, C.; Gu, Y.; Remigy, J.-C.; Lahitte, J.-F.

    2015-07-01

    The aim of this work is the synthesis of polymer-stabilized Pd nanoparticles (PdNP) inside a functionalized polymeric porous membrane in order to develop hybrid catalytic membrane reactors and to test them in model metal-catalyzed organic reactions. For this goal, a polymeric membrane support (Polyethersulfone hollow fiber-shaped) was firstly functionalized with an ionogenic polymer (i.e. poly(styrenesulfonate) capable to retain PdNP precursors using an UV photo-grafting method. PdNP were then generated inside the polymeric matrix by chemical reduction of precursor salts (intermatrix synthesis). The catalytic performance of the PdNP catalytic membranes was evaluated using reduction of nitrophenol by sodium borohydride (NaBH4) in water.

  2. Hollow mesoporous organosilica nanoparticles: a generic intelligent framework-hybridization approach for biomedicine.

    PubMed

    Chen, Yu; Meng, Qingshuo; Wu, Meiying; Wang, Shige; Xu, Pengfei; Chen, Hangrong; Li, Yaping; Zhang, Lingxia; Wang, Lianzhou; Shi, Jianlin

    2014-11-19

    Chemical construction of molecularly organic-inorganic hybrid hollow mesoporous organosilica nanoparticles (HMONs) with silsesquioxane framework is expected to substantially improve their therapeutic performance and enhance the biological effects beneficial for biomedicine. In this work, we report on a simple, controllable, and versatile chemical homology principle to synthesize multiple-hybridized HMONs with varied functional organic groups homogeneously incorporated into the framework (up to quintuple hybridizations). As a paradigm, the hybridization of physiologically active thioether groups with triple distinctive disulfide bonds can endow HMONs with unique intrinsic reducing/acidic- and external high intensity focused ultrasound (HIFU)-responsive drug-releasing performances, improved biological effects (e.g., lowered hemolytic effect and improved histocompatibility), and enhanced ultrasonography behavior. The doxorubicin-loaded HMONs with concurrent thioether and phenylene hybridization exhibit drastically enhanced therapeutic efficiency against cancer growth and metastasis, as demonstrated both in vitro and in vivo.

  3. Functionalized Hollow Mesoporous Silica Nanoparticles for Tumor Vasculature Targeting and PET Image-Guided Drug Delivery

    PubMed Central

    Chakravarty, Rubel; Goel, Shreya; Hong, Hao; Chen, Feng; Valdovinos, Hector F.; Hernandez, Reinier; Barnhart, Todd E.; Cai, Weibo

    2014-01-01

    Aim Development of multifunctional and well-dispersed hollow mesoporous silica nanoparticles (HMSNs) for tumor vasculature targeted drug delivery and positron emission tomography (PET) imaging. Materials and Methods Amine functionalized HMSNs (150–250 nm) were conjugated with a macrocyclic chelator, NOTA, PEGylated and loaded with anti-angiogenesis drug, Sunitinib. Cyclo(Arg-Gly-Asp-D-Tyr-Lys) (cRGDyK) peptide was attached to the nanoconjugate and radiolabeled with 64Cu for PET imaging. Results 64Cu-NOTA-HMSN-PEG-cRGDyK exhibited integrin specific uptake both in vitro and in vivo. PET results indicated ~ 8 %ID/g uptake of targeted nanoconjugates in U87MG tumors, which correlated well with ex vivo and histological analyses. Enhanced tumor targeted delivery of sunitinib was also observed. Conclusions We successfully developed tumor vasculature targeted HMSNs for PET imaging and image guided drug delivery. PMID:25955122

  4. Surface hydrophobic co-modification of hollow silica nanoparticles toward large-area transparent superhydrophobic coatings.

    PubMed

    Gao, Liangjuan; He, Junhui

    2013-04-15

    The present paper reports a novel, simple, and efficient approach to fabricate transparent superhydrophobic coatings on glass substrates by spray-coating stearic acid (STA) and 1H,1H,2H,2H-perflurooctyltriethoxysilane (POTS) co-modified hollow silica nanoparticles (SPHSNs), the surfaces of which were hydrophobic. The surface wettability of coatings was dependent on the conditions of post-treatment: the water contact angle of coating increased and then leveled off with increase in either the drying temperature or the drying time. When the coating was treated at 150°C for 5h, the water contact angle was as high as 160° and the sliding angle was lower than 1°, reaching excellent superhydrophobicity. They remained 159° and ≤1°, respectively, even after 3months storage under indoor conditions (20°C, 20%RH), demonstrating the long time stability of coating superhydrophobicity. The coating was robust both to the impact of water droplets (297 cm/s) and to acidic (pH=1) and basic (pH=14) droplets. It showed good transparency in the visible-near infrared spectral range, and the maximum transmittance reached as high as 89%. Fourier transform infrared spectroscopy, transmission electron microscopy, differential scanning calorimetry, and thermogravimetric analysis were used to investigate the interactions among STA, POTS, and hollow silica nanoparticles (HSNs). Scanning electron microscopy and atomic force microscopy were used to observe and estimate the morphology and surface roughness of coatings. Optical properties were characterized by a UV-visible-near infrared spectrophotometer. Surface wettability was studied by a contact angle/interface system. The enhancement of hydrophobicity to superhydrophobicity by post-treatment was discussed based on the transition from the Wenzel state to the Cassie state. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Assembling metal oxide nanocrystals into dense, hollow, porous nanoparticles for lithium-ion and lithium-oxygen battery application

    NASA Astrophysics Data System (ADS)

    Ming, Jun; Wu, Yingqiang; Park, Jin-Bum; Lee, Joong Kee; Zhao, Fengyu; Sun, Yang-Kook

    2013-10-01

    New dense hollow porous (DHP) metal oxide nanoparticles that are smaller than 100 nm and composed of Co3O4, FeOx, NiO and MnOx were prepared by densely assembling metal oxide nanocrystals based on the hard-template method using a carbon colloid as a sacrificial core. These nanoparticles are quite different from the traditional particles as their hollow interior originates from the stacking of nanocrystals rather than a spherical shell. The DHP nanoparticles preserve the intriguing properties of nanocrystals and possess desirable surface area and pore volume that enhance the active surface, which ultimately benefits applications such as lithium-ion batteries. The DHP Co3O4 nanoparticles demonstrated an enhanced capacity of 1168 mA h g-1 at 100 mA g-1vs. 590 mA h g-1 of powders and stable cycling performance greater than 250 cycles when used as an anode material. Most importantly, the electrochemical performance of DHP Co3O4 nanoparticles in a lithium-O2 battery was also investigated for the first time. A low charge potential of ~4.0 V, a high discharge voltage near 2.74 V and a long cycle ability greater than 100 cycles at a delivered capacity of 2000 mA h g-1 (current density, 200 mA g-1) were observed. The performances were considerably improved compared to recent results of mesoporous Co3O4, Co3O4 nanoparticles and a composite of Co3O4/RGO and Co3O4/Pd. Therefore, it would be promising to investigate such properties of DHP nanoparticles or other hollow metal (oxide) particles for the popular lithium-air battery.New dense hollow porous (DHP) metal oxide nanoparticles that are smaller than 100 nm and composed of Co3O4, FeOx, NiO and MnOx were prepared by densely assembling metal oxide nanocrystals based on the hard-template method using a carbon colloid as a sacrificial core. These nanoparticles are quite different from the traditional particles as their hollow interior originates from the stacking of nanocrystals rather than a spherical shell. The DHP

  6. Spectroscopic studies of individual plasmon resonant nanoparticles

    NASA Astrophysics Data System (ADS)

    Mock, Jack J.; Smith, David R.; Barbic, Mladen; Oldenburg, Steven J.; Schultz, David A.; Schultz, Sheldon

    2003-11-01

    We present a detailed description of the apparatus and techniques that we have utilized in our experimental study of individual plas on resonant nanoparticles,along with a brief description of some major results. The apparatus consists of a spectroscopic system combined with a modified darkfield microscope, which enables the user to sequentially select individual resonant nanostructures in the microscopic field of view for spectroscopic study. Plasmon resonant nanostructures scatter light elastically,and typically have very large scattering cross-sections at their resonant optical wavelengths. In general, spectra can be obtained with acquisition times between .1 to 30 seconds,and color images can be captured using consumer digital color cameras. Spheres,tetrahedrons,and pentagonal platelets were fabricated using colloidal chemistry techniques. To produce highly anisotropic structures such as nanorods and "barbells", templates were used. Many of these nanostructures have been individually spectroscopically characterized,and their spectra correlated with their shape and size as determined by transmission electron icroscope (TEM). The unique shape,size, composition,and dielectric surroundings of the individual plasmon resonant nanostructures determine their plasmon resonant behavior. We will show how the composition of the substrate on which the particles are immobilized and the dielectric of the surrounding medium have a significant effect on the plasmon resonance of the individual particles.

  7. Assembling metal oxide nanocrystals into dense, hollow, porous nanoparticles for lithium-ion and lithium-oxygen battery application.

    PubMed

    Ming, Jun; Wu, Yingqiang; Park, Jin-Bum; Lee, Joong Kee; Zhao, Fengyu; Sun, Yang-Kook

    2013-11-07

    New dense hollow porous (DHP) metal oxide nanoparticles that are smaller than 100 nm and composed of Co3O4, FeOx, NiO and MnOx were prepared by densely assembling metal oxide nanocrystals based on the hard-template method using a carbon colloid as a sacrificial core. These nanoparticles are quite different from the traditional particles as their hollow interior originates from the stacking of nanocrystals rather than a spherical shell. The DHP nanoparticles preserve the intriguing properties of nanocrystals and possess desirable surface area and pore volume that enhance the active surface, which ultimately benefits applications such as lithium-ion batteries. The DHP Co3O4 nanoparticles demonstrated an enhanced capacity of 1168 mA h g(-1) at 100 mA g(-1)vs. 590 mA h g(-1) of powders and stable cycling performance greater than 250 cycles when used as an anode material. Most importantly, the electrochemical performance of DHP Co3O4 nanoparticles in a lithium-O2 battery was also investigated for the first time. A low charge potential of ∼4.0 V, a high discharge voltage near 2.74 V and a long cycle ability greater than 100 cycles at a delivered capacity of 2000 mA h g(-1) (current density, 200 mA g(-1)) were observed. The performances were considerably improved compared to recent results of mesoporous Co3O4, Co3O4 nanoparticles and a composite of Co3O4/RGO and Co3O4/Pd. Therefore, it would be promising to investigate such properties of DHP nanoparticles or other hollow metal (oxide) particles for the popular lithium-air battery.

  8. Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles

    DOE PAGES

    Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; ...

    2015-10-27

    Disorder among surface spins largely dominates the magnetic response of ultrafine magnetic particle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8±0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and becomes frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point tomore » highly frustrated surface spins that rearrange much more slowly than interior spins with bulk coordination. Monte Carlo simulations of a hollow particle reproducing the experimental morphology corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Lastly, our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures.« less

  9. Coupling Hollow Fe3O4-Fe Nanoparticles with Graphene Sheets for High-Performance Electromagnetic Wave Absorbing Material.

    PubMed

    Qu, Bin; Zhu, Chunling; Li, Chunyan; Zhang, Xitian; Chen, Yujin

    2016-02-17

    We developed a strategy for coupling hollow Fe3O4-Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material. The hollow Fe3O4-Fe nanoparticles with average diameter and shell thickness of 20 and 8 nm, respectively, were uniformly anchored on the graphene sheets without obvious aggregation. The minimal reflection loss RL values of the composite could reach -30 dB at the absorber thickness ranging from 2.0 to 5.0 mm, greatly superior to the solid Fe3O4-Fe/G composite and most magnetic EM wave absorbing materials recently reported. Moreover, the addition amount of the composite into paraffin matrix was only 18 wt %.

  10. Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens.

    PubMed

    Boxi, Siddhartha Sankar; Mukherjee, Khushi; Paria, Santanu

    2016-02-26

    Chemical-based pesticides are widely used in agriculture to protect crops from insect infestation and diseases. However, the excessive use of highly toxic pesticides causes several human health (neurological, tumor, cancer) and environmental problems. Therefore nanoparticle-based green pesticides have become of special importance in recent years. The antifungal activities of pure and Ag doped (solid and hollow) TiO2 nanoparticles are studied against two potent phytopathogens, Fusarium solani (which causes Fusarium wilt disease in potato, tomato, etc) and Venturia inaequalis (which causes apple scab disease) and it is found that hollow nanoparticles are more effective than the other two. The antifungal activities of the nanoparticles were further enhanced against these two phytopathogens under visible light exposure. The fungicidal effect of the nanoparticles depends on different parameters, such as particle concentration and the intensity of visible light. The minimum inhibitory dose of the nanoparticles for V. inaequalis and F. solani are 0.75 and 0.43 mg/plate. The presence of Ag as a dopant helps in the formation of stable Ag-S and disulfide bonds (R-S-S-R) in cellular protein, which leads to cell damage. During photocatalysis generated (•)OH radicals loosen the cell wall structure and this finally leads to cell death. The mechanisms of the fungicidal effect of nanoparticles against these two phytopathogens are supported by biuret and triphenyl tetrazolium chloride analyses and field emission electron microscopy. Apart from the fungicidal effect, at a very low dose (0.015 mg/plate) the nanoparticles are successful in arresting production of toxic napthoquinone pigment for F. solani which is related to the fungal pathogenecity. The nanoparticles are found to be effective in protecting potatoes affected by F. solani or other fungi from spoiling.

  11. Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens

    NASA Astrophysics Data System (ADS)

    Sankar Boxi, Siddhartha; Mukherjee, Khushi; Paria, Santanu

    2016-02-01

    Chemical-based pesticides are widely used in agriculture to protect crops from insect infestation and diseases. However, the excessive use of highly toxic pesticides causes several human health (neurological, tumor, cancer) and environmental problems. Therefore nanoparticle-based green pesticides have become of special importance in recent years. The antifungal activities of pure and Ag doped (solid and hollow) TiO2 nanoparticles are studied against two potent phytopathogens, Fusarium solani (which causes Fusarium wilt disease in potato, tomato, etc) and Venturia inaequalis (which causes apple scab disease) and it is found that hollow nanoparticles are more effective than the other two. The antifungal activities of the nanoparticles were further enhanced against these two phytopathogens under visible light exposure. The fungicidal effect of the nanoparticles depends on different parameters, such as particle concentration and the intensity of visible light. The minimum inhibitory dose of the nanoparticles for V. inaequalis and F. solani are 0.75 and 0.43 mg/plate. The presence of Ag as a dopant helps in the formation of stable Ag-S and disulfide bonds (R-S-S-R) in cellular protein, which leads to cell damage. During photocatalysis generated •OH radicals loosen the cell wall structure and this finally leads to cell death. The mechanisms of the fungicidal effect of nanoparticles against these two phytopathogens are supported by biuret and triphenyl tetrazolium chloride analyses and field emission electron microscopy. Apart from the fungicidal effect, at a very low dose (0.015 mg/plate) the nanoparticles are successful in arresting production of toxic napthoquinone pigment for F. solani which is related to the fungal pathogenecity. The nanoparticles are found to be effective in protecting potatoes affected by F. solani or other fungi from spoiling.

  12. Tuning the synthesis of platinum-copper nanoparticles with a hollow core and porous shell for the selective hydrogenation of furfural to furfuryl alcohol.

    PubMed

    Huang, Shuangshuang; Yang, Nating; Wang, Shibin; Sun, Yuhan; Zhu, Yan

    2016-08-07

    Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol.

  13. One-pot synthesis of hollow NiSe-CoSe nanoparticles with improved performance for hybrid supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, Haichao; Fan, Meiqiang; Li, Chao; Tian, Guanglei; Lv, Chunju; Chen, Da; Shu, Kangying; Jiang, Jianjun

    2016-10-01

    Hollow NiSe-CoSe samples have been synthesized for the first time via a one-pot solvothermal approach. The strategy is robust enough to synthesize NiSe-CoSe nanoparticles with different NiSe to CoSe ratios but with a similar hollow structure. Co ions in the NiSe-CoSe nanoparticles play decisive role for formation of the hollow structure; otherwise, the nanoparticles become solid for the NiSe sample. When used as the positive electroactive materials for energy storage, the NiSe-CoSe samples show excellent electrochemical activity in alkaline electrolyte. Using the synergistic effect between NiSe and CoSe, the electrochemical performance of NiSe-CoSe can be tuned by varying the NiSe to CoSe ratios. The NiSe-CoSe sample with a NiSe to CoSe ratio of 4:2 shows the best electrochemical performance in terms of superior specific capacity, improved rate capability and excellent cycling stability. In addition, the electrochemical performance of NiSe-CoSe sample with a NiSe to CoSe ratio of 4:2 is also evaluated via assembling hybrid supercapacitors with RGO, and the hybrid supercapacitor delivers both high power and energy densities (41.8 Wh kg-1 at 750 W kg-1 and 20.3 Wh kg-1 at 30 kW kg-1).

  14. Au/Pd core-shell nanoparticles with varied hollow Au cores for enhanced formic acid oxidation.

    PubMed

    Hsu, Chiajen; Huang, Chienwen; Hao, Yaowu; Liu, Fuqiang

    2013-03-01

    A facile method has been developed to synthesize Au/Pd core-shell nanoparticles via galvanic replacement of Cu by Pd on hollow Au nanospheres. The unique nanoparticles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet-visible spectroscopy, and electrochemical measurements. When the concentration of the Au solution was decreased, grain size of the polycrystalline hollow Au nanospheres was reduced, and the structures became highly porous. After the Pd shell formed on these Au nanospheres, the morphology and structure of the Au/Pd nanoparticles varied and hence significantly affected the catalytic properties. The Au/Pd nanoparticles synthesized with reduced Au concentrations showed higher formic acid oxidation activity (0.93 mA cm-2 at 0.3 V) than the commercial Pd black (0.85 mA cm-2 at 0.3 V), suggesting a promising candidate as fuel cell catalysts. In addition, the Au/Pd nanoparticles displayed lower CO-stripping potential, improved stability, and higher durability compared to the Pd black due to their unique core-shell structures tuned by Au core morphologies.

  15. Au/Pd core-shell nanoparticles with varied hollow Au cores for enhanced formic acid oxidation

    NASA Astrophysics Data System (ADS)

    Hsu, Chiajen; Huang, Chienwen; Hao, Yaowu; Liu, Fuqiang

    2013-03-01

    A facile method has been developed to synthesize Au/Pd core-shell nanoparticles via galvanic replacement of Cu by Pd on hollow Au nanospheres. The unique nanoparticles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet-visible spectroscopy, and electrochemical measurements. When the concentration of the Au solution was decreased, grain size of the polycrystalline hollow Au nanospheres was reduced, and the structures became highly porous. After the Pd shell formed on these Au nanospheres, the morphology and structure of the Au/Pd nanoparticles varied and hence significantly affected the catalytic properties. The Au/Pd nanoparticles synthesized with reduced Au concentrations showed higher formic acid oxidation activity (0.93 mA cm-2 at 0.3 V) than the commercial Pd black (0.85 mA cm-2 at 0.3 V), suggesting a promising candidate as fuel cell catalysts. In addition, the Au/Pd nanoparticles displayed lower CO-stripping potential, improved stability, and higher durability compared to the Pd black due to their unique core-shell structures tuned by Au core morphologies.

  16. Au/Pd core-shell nanoparticles with varied hollow Au cores for enhanced formic acid oxidation

    PubMed Central

    2013-01-01

    A facile method has been developed to synthesize Au/Pd core-shell nanoparticles via galvanic replacement of Cu by Pd on hollow Au nanospheres. The unique nanoparticles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet–visible spectroscopy, and electrochemical measurements. When the concentration of the Au solution was decreased, grain size of the polycrystalline hollow Au nanospheres was reduced, and the structures became highly porous. After the Pd shell formed on these Au nanospheres, the morphology and structure of the Au/Pd nanoparticles varied and hence significantly affected the catalytic properties. The Au/Pd nanoparticles synthesized with reduced Au concentrations showed higher formic acid oxidation activity (0.93 mA cm-2 at 0.3 V) than the commercial Pd black (0.85 mA cm-2 at 0.3 V), suggesting a promising candidate as fuel cell catalysts. In addition, the Au/Pd nanoparticles displayed lower CO-stripping potential, improved stability, and higher durability compared to the Pd black due to their unique core-shell structures tuned by Au core morphologies. PMID:23452438

  17. The influence of pressure and gas flow on size and morphology of titanium oxide nanoparticles synthesized by hollow cathode sputtering

    NASA Astrophysics Data System (ADS)

    Gunnarsson, Rickard; Pilch, Iris; Boyd, Robert D.; Brenning, Nils; Helmersson, Ulf

    2016-07-01

    Titanium oxide nanoparticles have been synthesized via sputtering of a hollow cathode in an argon atmosphere. The influence of pressure and gas flow has been studied. Changing the pressure affects the nanoparticle size, increasing approximately proportional to the pressure squared. The influence of gas flow is dependent on the pressure. In the low pressure regime (107 ≤ p ≤ 143 Pa), the nanoparticle size decreases with increasing gas flow; however, at high pressure (p = 215 Pa), the trend is reversed. For low pressures and high gas flows, it was necessary to add oxygen for the particles to nucleate. There is also a morphological transition of the nanoparticle shape that is dependent on the pressure. Shapes such as faceted, cubic, and cauliflower can be obtained.

  18. Formation of Nanoparticles by Control of Electron Temperature in Hollow-Typed Magnetron Radio Frequency CH4/H2 Plasma

    NASA Astrophysics Data System (ADS)

    Emi, Junichi; Kato, Kohgi; Abe, Toshimi; Iizuka, Satoru

    2006-10-01

    In this study, we investigate the effects of electron temperature Te on the production of nanoparticles by using the grid-biasing method in hollow-typed magnetron radio frequency (RF) CH4/H2 plasma. We find that nanoparticles are produced in low-Te plasma. On the other hand, thin film depositions, such as nanowalls, are mainly observed and almost no nanoparticles are created in high-Te plasma. This implies that a reduction in the CH2/CH3 radical ratio is important for producing nanoparticles, together with a reduction in sheath potential in front of the substrate. The change in electron temperature in plasma has a marked effect on film quality.

  19. Exchange bias in ferrite hollow nanoparticles originated by complex internal magnetic structure

    NASA Astrophysics Data System (ADS)

    De Biasi, Emilio; Lima, Enio, Jr.; Vargas, Jose M.; Zysler, Roberto D.; Arbiol, Jordi; Ibarra, Alfonso; Goya, Gerardo F.; Ibarra, M. Ricardo

    2015-10-01

    Iron-oxide hollow nanospheres (HNS) may present unusual magnetic behavior as a consequence of their unique morphology. Here, we report the unusual magnetic behavior of HNS that are 9 nm in diameter. The magnetic properties of HNS originate in their complex magnetic structure, as evidenced by Mössbauer spectroscopy and magnetization measurements. We observe a bias in the hysteresis when measured at very low temperature in the field cooling protocol (10 kOe). In addition, dc (static) and ac (dynamic) magnetization measurements against temperature and applied field reveal a frustrated order of the system below 10 K. High-resolution transmission electron microscopy (HRTEM) studies reveal that the HNS are composed of small crystalline clusters of about 2 nm in diameter, which behave as individual magnetic entities. Micromagnetic simulations (using conjugate gradient in order to minimize the total energy of the system) reproduce the experimentally observed magnetic behavior. The model considers the hollow particles as constituted by small ordered clusters embedded in an antiferromagnetic environment (spins localized outside the clusters). In addition, the surface spins (in both inner and outer surfaces of the HNS) are affected by a local surface anisotropy. The strong effective magnetic anisotropy field of the clusters induces the bias observed when the system is cooled in the presence of a magnetic external field. This effect propagates through the exchange interaction into the entire particle.

  20. Hollow Au-Cu2O Core-Shell Nanoparticles with Geometry-Dependent Optical Properties as Efficient Plasmonic Photocatalysts under Visible Light.

    PubMed

    Lu, Biao; Liu, Aiping; Wu, Huaping; Shen, Qiuping; Zhao, Tingyu; Wang, Jianshan

    2016-03-29

    Hollow Au-Cu2O core-shell nanoparticles were synthesized by using hollow gold nanoparticles (HGNs) as the plasmon-tailorable cores to direct epitaxial growth of Cu2O nanoshells. The effective geometry control of hollow Au-Cu2O core-shell nanoparticles was achieved through adjusting the HGN core sizes, Cu2O shell thicknesses, and morphologies related to structure-directing agents. The morphology-dependent plasmonic band red-shifts across the visible and near-infrared spectral regions were observed from experimental extinction spectra and theoretical simulation based on the finite-difference time-domain method. Moreover, the hollow Au-Cu2O core-shell nanoparticles with synergistic optical properties exhibited higher photocatalytic performance in the photodegradation of methyl orange when compared to pristine Cu2O and solid Au-Cu2O core-shell nanoparticles under visible-light irradiation due to the efficient photoinduced charge separation, which could mainly be attributed to the Schottky barrier and plasmon-induced resonant energy transfer. Such optical tunability achieved through the hollow cores and structure-directed shells is of benefit to the performance optimization of metal-semiconductor nanoparticles for photonic, electronic, and photocatalytic applications.

  1. Plant Polyphenol-Assisted Green Synthesis of Hollow CoPt Alloy Nanoparticles for Dual-Modality Imaging Guided Photothermal Therapy.

    PubMed

    Song, Xiao-Rong; Yu, Shu-Xian; Jin, Gui-Xiao; Wang, Xiaoyong; Chen, Jianzhong; Li, Juan; Liu, Gang; Yang, Huang-Hao

    2016-03-01

    Theranostic nanomedicines that integrate diagnostic and therapeutic moieties into a single nanoscale platform are playing an increasingly important role in fighting cancer. Here, a facile and green synthetic strategy for hollow CoPt alloy nanoparticles (HCPA-NPs) using plant polyphenols as assisted agents is reported for the first time. This novel strategy enables size-controlled synthesis of HCPA-NPs through the control of the molecular sizes of polyphenols. It is also a versatile strategy for synthesizing other hollow alloy nanoparticles with various metal compositions due to the diverse metal-chelating ability of the polyphenols. Further studies show that HCPA-NPs have good biocompatibility and can be successfully implemented for magnetic resonance and photoacoustic dual-modal imaging guided photothermal therapy. This work brings new insights for the green synthesis of hollow nanoparticles and extends these biocompatible nanoparticles for theranostic applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Supercapacitive Properties of 3D-Arrayed Polyaniline Hollow Nanospheres Encaging RuO2 Nanoparticles.

    PubMed

    Kwon, Hyemin; Hong, Dajung; Ryu, Ilhwan; Yim, Sanggyu

    2017-03-01

    A major limitation of polyaniline (PANi) electrodes for supercapacitors is the slow rate of ion transport during redox reactions and the resultant easy saturation of areal capacitance with film thickness. In this study, three-dimensionally (3D)-arrayed PANi nanospheres with highly roughened surface nanomorphology were fabricated to overcome this limitation. A hierarchical nanostructure was obtained by polymerizing aniline monomers on a template of 3D-arrayed polystyrene (PS) nanospheres and appropriate oxidative acid doping. The structure provided dramatically increased surface area and porosity that led to the efficient diffusion of ions. Thus, the specific capacitance (Csp) reached 1570 F g(-1), thereby approaching a theoretical capacitance of PANi. In addition, the retention at a high scan rate of 100 mV s(-1) was 77.6% of the Csp at a scan rate of 10 mV s(-1). Furthermore, 3D-arrayed hollow PANi (H-PANi) nanospheres could be obtained by dissolving the inner PS part of the PS/PANi core/shell nanospheres with tetrahydrofuran. The ruthenium oxide (RuO2) nanoparticles (NPs) were also encaged in the H-PANi nanospheres by embedding RuO2 NPs on the PS nanospheres prior to polymerization of PANi. The combination of the two active electrode materials indicated synergetic effects. The areal capacitance of the RuO2-encaged PANi electrode was significantly larger than that of the RuO2-free PANi electrode and could be controlled by varying the amount of encaged RuO2 nanoparticles. The encagement could also solve the problem of detachment of RuO2 electrodes from the current collector. The effects of the nanostructuring and RuO2 encagement were also quantitatively analyzed by deconvoluting the total capacitance into the surface capacitive and insertion elements.

  3. Red-green-blue fluorescent hollow carbon nanoparticles isolated from chromatographic fractions for cellular imaging.

    PubMed

    Gong, Xiaojuan; Hu, Qin; Paau, Man Chin; Zhang, Yan; Shuang, Shaomin; Dong, Chuan; Choi, Martin M F

    2014-07-21

    An as-synthesised hollow carbon nanoparticle (HC-NP) sample has been proved to be a relatively complex mixture, and its complexity can be reduced significantly by high-performance liquid chromatography. An unprecedented reduction in such complexity can reveal fractions of HC-NP with unique luminescence properties. While the UV-vis absorption profile for the HC-NP mixture is featureless, the HC-NP fractions do possess unique absorption bands and specific emission wavelengths. The HC-NP fractions are fully anatomised by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry, displaying their fragmentation mass ion features. The shell thickness and crystal lattices of the selected HC-NP fractions are determined as 6.13, 8.31, 2.22, and 8.66 nm, and 0.37, 0.35, 0.33, and 0.32 nm by transmission electron microscopy, respectively. The fractionated HC-NP show profound differences in emission quantum yield, allowing for brighter HC-NP to be isolated from an apparent low quantum yield mixture. Finally, red, green and blue emissive HC-NP are isolated from the as-synthesised HC-NP sample. They show good photostability and have been demonstrated to be excellent probes for cellular imaging.

  4. Plasmonic hollow gold nanoparticles induced high-performance Bi2S3 nanoribbon photodetector

    NASA Astrophysics Data System (ADS)

    Liang, Feng-Xia; Ge, Cai-Wang; Zhang, Teng-Fei; Xie, Wei-Jie; Zhang, Deng-Yue; Zou, Yi-Feng; Zheng, Kun; Luo, Lin-Bao

    2017-03-01

    A high performance hollow gold nanoparticles (HGNs) decorated one-dimensional (1-D) Bi2S3 nanoribbon (NR) photodetector was fabricated for green light detection (560 nm). The single crystal 1-D Bi2S3 NRs with growth orientation along [001] were synthesized by a simple solvothermal approach. Optoelectronic analysis reveals that the performance of the plasmonic photodetector was greatly enhanced after decoration with HGNs. For example, the responsivity increases from 1.4 × 102 to 1.09 × 103 AW-1, the conductivity gain from 2.68 × 102 to 2.31 × 103, and the detectivity from 2.45 × 1012 to 2.78 × 1013, respectively. Such performance enhancement was attributed to the localized surface plasmon resonance (LSPR) effect caused by the HGNs according to both experiment and theoretical simulation. This study is believed to open up new opportunities for managing light and enhancing the device performance of other 1-D semiconductor nanostructures based optoelectronic devices and systems.

  5. Polymer-Coated Hollow Mesoporous Silica Nanoparticles for Triple-Responsive Drug Delivery.

    PubMed

    Zhang, Yuanyuan; Ang, Chung Yen; Li, Menghuan; Tan, Si Yu; Qu, Qiuyu; Luo, Zhong; Zhao, Yanli

    2015-08-19

    In this study, pH, reduction and light triple-responsive nanocarriers based on hollow mesoporous silica nanoparticles (HMSNs) modified with poly(2-(diethylamino)ethyl methacrylate) (PDEAEMA) were developed via surface-initiated atom transfer radical polymerization. Both reduction-cleavable disulfide bond and light-cleavable o-nitrobenzyl ester were used as the linkages between HMSNs and pH-sensitive PDEAEMA polymer caps. A series of characterization techniques were applied to characterize and confirm the structures of the intermediates and final nanocarriers. Doxorubicin (DOX) was easily encapsulated into the nanocarriers with a high loading capacity, and quickly released in response to the stimuli of reducing agent, acid environment or UV light irradiation. In addition, flow cytometry analysis, confocal laser scanning microscopy observations and cytotoxicity studies indicated that the nanocarriers were efficiently internalized by HeLa cancer cells, exhibiting (i) enhanced release of DOX into the cytoplasm under external UV light irradiation, (ii) better cytotoxicity against HeLa cells, and (iii) superior control over drug delivery and release. Thus, the triple-responsive nanocarriers present highly promising potentials as a drug delivery platform for cancer therapy.

  6. Encapsulation of fish oil into hollow solid lipid micro- and nanoparticles using carbon dioxide.

    PubMed

    Yang, Junsi; Ciftci, Ozan Nazim

    2017-09-15

    Fish oil was encapsulated in hollow solid lipid micro- and nanoparticles formed from fully hydrogenated soybean oil (FHSO) using a novel green method based on atomization of supercritical carbon dioxide (SC-CO2)-expanded lipid. The highest fish oil loading efficiency (97.5%, w/w) was achieved at 50%, w/w, initial fish oil concentration. All particles were spherical and in the dry free-flowing form; however, less smooth surface with wrinkles was observed when the initial fish oil concentration was increased up to 50%. With increasing initial fish oil concentration, melting point of the fish oil-loaded particles shifted to lower onset melting temperatures, and major polymorphic form transformed from α to β and/or β'. Oxidative stability of the loaded fish oil was significantly increased compared to the free fish oil (p<0.05). This innovative method forms free-flowing powder products that are easy-to-use solid fish oil formulation, which makes the handling and storage feasible and convenient. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Engineering of Hollow Mesoporous Silica Nanoparticles for Remarkably Enhanced Tumor Active Targeting Efficacy

    PubMed Central

    Chen, Feng; Hong, Hao; Shi, Sixiang; Goel, Shreya; Valdovinos, Hector F.; Hernandez, Reinier; Theuer, Charles P.; Barnhart, Todd E.; Cai, Weibo

    2014-01-01

    Hollow mesoporous silica nanoparticle (HMSN) has recently gained increasing interests due to their tremendous potential as an attractive nano-platform for cancer imaging and therapy. However, possibly due to the lack of efficient in vivo targeting strategy and well-developed surface engineering techniques, engineering of HMSN for in vivo active tumor targeting, quantitative tumor uptake assessment, multimodality imaging, biodistribution and enhanced drug delivery have not been achieved to date. Here, we report the in vivo tumor targeted positron emission tomography (PET)/near-infrared fluorescence (NIRF) dual-modality imaging and enhanced drug delivery of HMSN using a generally applicable surface engineering technique. Systematic in vitro and in vivo studies have been performed to investigate the stability, tumor targeting efficacy and specificity, biodistribution and drug delivery capability of well-functionalized HMSN nano-conjugates. The highest uptake of TRC105 (which binds to CD105 on tumor neovasculature) conjugated HMSN in the 4T1 murine breast cancer model was ~10%ID/g, 3 times higher than that of the non-targeted group, making surface engineered HMSN a highly attractive drug delivery nano-platform for future cancer theranostics. PMID:24875656

  8. Characterizing size and porosity of hollow nanoparticles: SAXS, SANS, TEM, DLS, and adsorption isotherms compared.

    PubMed

    Chen, Zhi Hong; Kim, Chanhoi; Zeng, Xiang-bing; Hwang, Sun Hye; Jang, Jyongsik; Ungar, Goran

    2012-10-30

    A combination of experimental methods, including transmission and grazing incidence small-angle X-ray scattering (SAXS and GISAXS), small-angle neutron scattering (SANS), transmission electron microscopy (TEM), dynamic light scattering (DLS), and N(2) adsorption-desorption isotherms, was used to characterize SiO(2)/TiO(2) hollow nanoparticles (HNPs) of sizes between 25 and 100 nm. In the analysis of SAXS, SANS, and GISAXS data, the decoupling approximation and the Percus-Yevick structure factor approximation were used. Brunauer-Emmett-Teller, t-plot, and a spherical pore model based on Kelvin equation were applied in the treatment of N(2) isotherms. Extracted parameters from the scattering and TEM methods are the average outer and inner diameters and polydispersity. Good agreement was achieved between different methods for these extracted parameters. Merits, advantages, and disadvantages of the different methods are discussed. Furthermore, the combination of these methods provided us with information on the porosity of the shells of HNPs and the size of intrawall pores, which are critical to the applications of HNPs as drug delivery vehicles and catalyst supports.

  9. Poly(amidoamine) dendrimer-grafted porous hollow silica nanoparticles for enhanced intracellular photodynamic therapy.

    PubMed

    Tao, Xia; Yang, Yun-Jie; Liu, Song; Zheng, Yan-Zhen; Fu, Jing; Chen, Jian-Feng

    2013-05-01

    We report a novel photodynamic therapy (PDT) drug-carrier system, whereby third-generation (G3) polyamidoamine (PAMAM) was successfully grafted to the surface of porous hollow silica nanoparticles (PHSNPs), followed by the attachment of gluconic acid (GA) for surface charge tuning. The composite G3-PAMAM-grafted PHSNPs (denoted as G3-PHSNPs) with a diameter range of 100-200 nm and about 30 nm sized shell thickness retain bimodal pore structures (e.g. inner voids and porous structure of the shells) and PAMAM-functionalized outer layer with a large number of amino groups, allowing high loading efficacy of aluminum phthalocyanine tetrasulfonate (AlPcS4) and its effective release to target tissue. The GA-induced G3-PHSNPs were evidenced to be able to favorably cross tumor cell walls and enter into the cell interior. The generation of singlet oxygen ((1)O2) from AlPcS4-GA-G3-PHSNPs under visible light excitation was detected by the in situ electron spin resonance measurements and the oxidative reaction between the generated (1)O2 and a chemical probe. In vitro cellular experiments showed that the photosensitive GA-G3-PHSNPs exhibited a good biocompatibility in the dark and a higher killing efficacy against MCF-7 tumor cells upon irradiation as compared with free AlPcS4, which implies that the preformed photosensitive drug-carrier system might be potentially applicable in PDT.

  10. Coordination-Accelerated "Iron Extraction" Enables Fast Biodegradation of Mesoporous Silica-Based Hollow Nanoparticles.

    PubMed

    Wang, Liying; Huo, Minfeng; Chen, Yu; Shi, Jianlin

    2017-09-21

    Biodegradation behavior of inorganic silica-based nanoplatforms is of critical importance in their clinical translations, but still remains a great challenge in achieving this goal by composition regulation of biocompatible silica framework. In the present work, a chemical coordination-accelerated biodegradation strategy to endow hollow mesoporous silica nanoparticles (HMSNs) with unique coordination-responsive biodegradability, on-demand coordination-responsive drug releasing behavior, and significantly enhanced chemotherapeutic efficacy by directly doping iron (Fe) ions into the framework of mesoporous silica is reported. A simple but versatile dissolution-regrowth strategy has been developed to enable the framework Fe doping via chemical bonding. The deferiprone-mediated biodegradation of Fe-doped HMSNs (Fe-HMSNs) has been comprehensively evaluated both in simulated body fluid and intracellular level, which have exhibited a specific coordination-accelerated biodegradation behavior. In addition to high biocompatibility of Fe-HMSNs, the anticancer drug doxorubicin (DOX)-loaded Fe-HMSNs show enhanced tumor-suppressing effect on 4T1 mammary cancer xenograft. This work paves a new way for tuning the biodegradation performance of mesoporous silica-based nanoplatforms simply by biocompatible Fe-ion doping into silica framework based on the specific coordination property between introduced metal Fe ions with Fe-coordination proteins. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Fabrication of unique hollow silicate nanoparticles with hierarchically micro/mesoporous shell structure by a simple double template approach.

    PubMed

    Rivera-Virtudazo, R V; Fuji, M; Takai, C; Shirai, T

    2012-12-07

    An innovative type of hollow silicate nanoparticle with a micro/mesoporous shell wall (NSHPMS) was synthesized at room temperature via an eco-friendly double template approach, followed by simple acid reflux. TEM observations of NSHPMSs showed hollow interior nanoparticles (<100 nm) with a wormhole-like shell structure. The nitrogen gas (N(2)) adsorption/desorption isotherm exhibited a unique two-step pattern: the first step (0.2 < P/P(o) < 0.35) signifies the presence of the micro/mesoporous shell wall while the second step (0.85 < P/P(o) < 0.99) represents the void space in between the NSHPMSs. This resulted to an improved specific surface area up to ~2055.5 m(2) g(-1) and a total pore volume as high as ~6.59 cm(3) g(-1) which is better compared with the usual reported data for hollow particles with a mesoporous shell wall. The stable wormhole mesoporous shell wall provided sufficient spaces that contribute to high adsorption capacities and faster adsorption rates. One can envision that larger quantities of framework composition can be obtained using our NSHPMSs.

  12. Preparation and surface encapsulation of hollow TiO nanoparticles for electrophoretic displays

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Tan, Tingfeng; Qi, Peng; Wang, Shirong; Bian, Shuguang; Li, Xianggao; An, Yong; Liu, Zhaojun

    2011-02-01

    Hollow black TiO nanosparticles were obtained via deposition of inorganic coating on the surface of hollow core-shell polymer latex with Ti(OBu)4 as precursor and subsequent calcination in ammonia gas. Hollow TiO particles were characterized by scanning electron microscope, transmission electronic microscopy, X-ray diffraction, and thermogravimetric analysis. Encapsulation of TiO via dispersion polymerization was promoved by pretreating the pigments with 3-(trimethoxysilyl) propyl methacrylate, making it possible to prepare hollow TiO-polymer particles. When St and DVB were used as polymerization monomer, hollow TiO-polymer core-shell particles came into being via dispersion polymerization, and the lipophilic degree is 28.57%. Glutin-arabic gum microcapsules containing TiO-polymer particles electrophoretic liquid were prepared using via complex coacervation. It was founded that hollow TiO-polymer particles had enough electrophoretic mobility after coating with polymer.

  13. In vivo delivery of bovine viral diahorrea virus, E2 protein using hollow mesoporous silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Mahony, D.; Cavallaro, A. S.; Mody, K. T.; Xiong, L.; Mahony, T. J.; Qiao, S. Z.; Mitter, N.

    2014-05-01

    Our work focuses on the application of mesoporous silica nanoparticles as a combined delivery vehicle and adjuvant for vaccine applications. Here we present results using the viral protein, E2, from bovine viral diarrhoea virus (BVDV). BVDV infection occurs in the target species of cattle and sheep herds worldwide and is therefore of economic importance. E2 is a major immunogenic determinant of BVDV and is an ideal candidate for the development of a subunit based nanovaccine using mesoporous silica nanoparticles. Hollow type mesoporous silica nanoparticles with surface amino functionalisation (termed HMSA) were characterised and assessed for adsorption and desorption of E2. A codon-optimised version of the E2 protein (termed Opti-E2) was produced in Escherichia coli. HMSA (120 nm) had an adsorption capacity of 80 μg Opti-E2 per mg HMSA and once bound E2 did not dissociate from the HMSA. Immunisation studies in mice with a 20 μg dose of E2 adsorbed to 250 μg HMSA was compared to immunisation with Opti-E2 (50 μg) together with the traditional adjuvant Quillaja saponaria Molina tree saponins (QuilA, 10 μg). The humoral responses with the Opti-E2/HMSA nanovaccine although slightly lower than those obtained for the Opti-E2 + QuilA group demonstrated that HMSA particles are an effective adjuvant that stimulated E2-specific antibody responses. Importantly the cell-mediated immune responses were consistently high in all mice immunised with Opti-E2/HMSA nanovaccine formulation. Therefore we have shown the Opti-E2/HMSA nanoformulation acts as an excellent adjuvant that gives both T-helper 1 and T-helper 2 mediated responses in a small animal model. This study has provided proof-of-concept towards the development of an E2 subunit nanoparticle based vaccine.Our work focuses on the application of mesoporous silica nanoparticles as a combined delivery vehicle and adjuvant for vaccine applications. Here we present results using the viral protein, E2, from bovine viral

  14. Sonication-Aided Formation of Hollow Hybrid Nanoparticles as High-Efficiency Absorbents for Dissolved Toluene in Water.

    PubMed

    Huang, Ting; Xu, Liju; Wang, Chen; Yin, Zheng; Qiu, Dong

    2016-01-01

    A surfactant-free emulsion polymerization process was developed to produce hollow hybrid nanoparticles (HHNP thereafter). Ultrasonication was found not only to help the generation of nanosized monomer droplets but also to generate surface active species through mediating the hydrolysis of the monomer, 3-(methacryloyloxy) propyltrimethoxysilane (MPS), thus stabilizing the oil/water interface. The hollow structure was formed based on a soft template approach, where the partially hydrolyzed monomer served as emulsifier and polymerized at the interface to form a hybrid shell. These HHNPs were used to absorb dissolved toluene in water and it was found they could reduce the toluene level down to zero, a level hardly being achieved by other methods. Combined with their good colloidal stability in water, these HHNPs are very promising colloidal collectors for dissolved organic solvents, in order to generate high quality water from contaminated water. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Crystallization at Nanodroplet Interfaces in Emulsion Systems: A Soft-Template Strategy for Preparing Porous and Hollow Nanoparticles.

    PubMed

    Varol, H Samet; Álvarez-Bermúdez, Olaia; Dolcet, Paolo; Kuerbanjiang, Balati; Gross, Silvia; Landfester, Katharina; Muñoz-Espí, Rafael

    2016-12-13

    A heterophase method to prepare hollow and/or porous crystalline nanoparticles of metal oxides at room temperature is presented, taking cerium(IV) oxide and γ-iron(III) oxide (i.e., maghemite) as representative cases. The crystallization begins at the oil-water interface in aqueous nanodroplets of the precursor in inverse (water-in-oil) miniemulsion systems, and it may continue toward the inner part of the droplets. A poly(styrene-b-acrylic acid) block copolymer is used as a structuring agent because the ability of the carboxylic groups to bind metal ions improves the inorganic shell formation. A precipitating base is added from the continuous phase, generating hydroxide species at the interface that begin the crystallization. We analyze the effects of the synthetic parameters in terms of colloidal stability and morphology of the resulting materials. In the case of maghemite samples, the prepared dispersions of hollow particles present a distinct magnetofluidic behavior.

  16. Molecularly imprinted fluorescent hollow nanoparticles as sensors for rapid and efficient detection λ-cyhalothrin in environmental water.

    PubMed

    Wang, Jixiang; Qiu, Hao; Shen, Hongqiang; Pan, Jianming; Dai, Xiaohui; Yan, Yongsheng; Pan, Guoqing; Sellergren, Börje

    2016-11-15

    Molecularly imprinted fluorescent polymers have shown great promise in biological or chemical separations and detections, due to their high stability, selectivity and sensitivity. In this work, molecularly imprinted fluorescent hollow nanoparticles, which could rapidly and efficiently detect λ-cyhalothrin (a toxic insecticide) in water samples, was reported. The molecularly imprinted fluorescent sensor showed excellent sensitivity (the limit of detection low to 10.26nM), rapid detection rate (quantitative detection of λ-cyhalothrin within 8min), regeneration ability (maintaining good fluorescence properties after 8 cycling operation) and appreciable selectivity over several structural analogs. Moreover, the fluorescent sensor was further used to detect λ-cyhalothrin in real samples form the Beijing-Hangzhou Grand Canal Water. Despite the relatively complex components of the environmental water, the molecularly imprinted fluorescent hollow nanosensor still showed good recovery, clearly demonstrating the potential value of this smart sensor nanomaterial in environmental monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A novel self-enhanced electrochemiluminescence immunosensor based on hollow Ru-SiO2@PEI nanoparticles for NSE analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Limin; Huang, Jianshe; Yu, Bin; You, Tianyan

    2016-02-01

    Poly(ethylenimine) (PEI) and Ru(bpy)32+-doped silica (Ru-SiO2) nanoparticles were simply mixed together to prepare a novel self-enhanced electrochemiluminescence (ECL) composite of Ru-SiO2@PEI. The hollow Ru-SiO2@PEI nanoparticles were used to build an ECL immunosensor for the analysis of neuron specific enolase (NSE). PEI not only assembled on the surface of Ru-SiO2 nanoparticles through the electrostatic interaction to act as co-reactant for Ru(bpy)32+ ECL, but also provided alkaline condition to etch the Ru-SiO2 nanoparticles to form the hollow Ru-SiO2@PEI nanoparticles with porous shell. The unique structure of the Ru-SiO2@PEI nanoparticles loaded both a large amount of Ru(bpy)32+ and its co-reactant PEI at the same time, which shortened the electron-transfer distance, thereby greatly enhanced the luminous efficiency and amplified the ECL signal. The developed immunosensor showed a wide linear range from 1.0 × 10‑11 to 1.0 × 10‑5 mg mL‑1 with a low detection limit of 1.0 × 10‑11 mg mL‑1 for NSE. When the immunosensor was used for the determination of NSE in clinical human serum, the results were comparable with those obtained by using enzyme-linked immunosorbent assay (ELISA) method. The proposed method provides a promising alternative for NSE analysis in clinical samples.

  18. Ultrafine Sn nanoparticles embedded in shell of N-doped hollow carbon spheres as high rate anode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Dou, Peng; Cao, Zhenzhen; Wang, Chao; Zheng, Jiao; Xu, Xinhua

    2017-05-01

    A novel reversible interaction in polymeric nanoparticles is used to induce hollow Sn4+-MOPs. Then ultrafine Sn nanoparticles uniformly embedded in shell of N-doped hollow carbon spheres is successfully synthesized by pyrolysis of the Sn4+-MOPs precursor. In this architecture, the N-doped carbon shells can effectively avoid the direct exposure of embedded Sn nanoparticles to the electrolyte and efficiently accommodate the volume change of Sn nanoparticles. Furthermore, the hollow structure of carbon sphere can prevent Sn nanoparticles aggregation over repeated cycling and shorten the diffusion path of both electrons and ions. As a consequence, this N-doped hollow Sn/C anode delivers a reversible capacity of 606 mA h g-1 at a current density of 0.2 A g-1 after 250 cycles and a reversible capacity of 221 mA h g-1 even at a much higher current density of 10 A g-1, which are much better than those of pure Sn nanoparticles. The desirable cyclic stability and rate capability were attributed to the unique architecture that provided fast pathway for electron transport and simultaneously solved the major issues of Sn-based anodes, such as pulverization, aggregation and loss of electrical contact.

  19. Prussian Blue-Derived Synthesis of Hollow Porous Iron Pyrite Nanoparticles as Platinum-Free Counter Electrodes for Highly Efficient Dye-Sensitized Solar Cells.

    PubMed

    Chen, Jeffrey E; Fan, Miao-Syuan; Chen, Yen-Lin; Deng, Yu-Heng; Kim, Jung Ho; Alamri, Hatem R; Alothman, Zeid A; Yamauchi, Yusuke; Ho, Kuo-Chuan; Wu, Kevin C-W

    2017-09-27

    Iron pyrite has long been an attractive material for environmental and energy applications, but is hampered by a lack of control over morphology and purity. Hollow porous iron pyrite nanoparticles were synthesized by a direct sulfurization of iron oxide derived from Prussian blue. The high efficiencies of these hollow porous iron pyrite nanoparticles as effective dye-sensitized solar cell counter electrodes were demonstrated, with an efficiency of 7.31 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Diagnosis and therapy of macrophage cells using dextran-coated near-infrared responsive hollow-type gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Taik Lim, Yong; Cho, Mi Young; Sil Choi, Bang; Noh, Young-Woock; Chung, Bong Hyun

    2008-09-01

    We describe the development of hollow-type gold nanoparticles (NPs) for the photonic-based imaging and therapy of macrophage cells. The strong light-absorption and light-scattering properties of gold NPs render them to be useful as molecular imaging agents as well as therapeutic moieties. By controlling the geometry of the gold NPs, the optical resonance peak was shifted to around the near-infrared (NIR) region, where light transmission through biological tissue is known to be fairly high. Hollow-type gold NPs modified with dextran were phagocytosed by macrophage cells. Using dark-field microscopy, it was possible to image macrophage cells targeted with NPs. After NIR irradiation, macrophages labeled with NPs were selectively destroyed by the photothermal effect. FACS analysis revealed that the photothermal effect caused principally late apoptosis-related cell death or secondary necrosis. The experimental results showed that hollow-type gold NPs conjugated with dextran could be used not only as optical imaging contrast agents but also as a component of a novel anti-macrophage therapeutic strategy.

  1. Synthesis of hollow and nanoporous gold/platinum alloy nanoparticles and their electrocatalytic activity for formic acid oxidation.

    PubMed

    Lee, Doori; Jang, Ho Young; Hong, Soonchang; Park, Sungho

    2012-12-15

    In this work, hollow Au/Pt alloy nanoparticles (NPs) with porous surfaces were synthesized in a two-step procedure. In the first step, tri-component Ag/Au/Pt alloy NPs were synthesized through the galvanic replacement reaction between Ag NPs and aqueous solutions containing a mixture of HAuCl(4) and H(2)PtCl(4). In the second step, the Ag component was selectively dealloyed with nitric acid (HNO(3)), resulting in hollow di-component Au/Pt alloy NPs with a porous surface morphology. The atomic ratio of Au to Pt in the NPs was easily tunable by controlling the molar ratio of the precursor solution (HAuCl(4) and H(2)PtCl(6)). Hollow, porous Au/Pt alloy NPs showed enhanced catalytic activity toward formic acid electrooxidation compared to the analogous pure Pt NPs. This improved activity can be attributable to the suppression of CO poisoning via the "ensemble" effect. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Enhanced Gas Sensing Properties of SnO2 Hollow Spheres Decorated with CeO2 Nanoparticles Heterostructure Composite Materials.

    PubMed

    Liu, Jiangyang; Dai, Mingjun; Wang, Tianshuang; Sun, Peng; Liang, Xishuang; Lu, Geyu; Shimanoe, Kengo; Yamazoe, Noboru

    2016-03-01

    CeO2 decorated SnO2 hollow spheres were successfully synthesized via a two-step hydrothermal strategy. The morphology and structures of as-obtained CeO2/SnO2 composites were analyzed by various kinds of techniques. The SnO2 hollow spheres with uniform size around 300 nm were self-assembled with SnO2 nanoparticles and were hollow with a diameter of about 100 nm. The CeO2 nanoparticles on the surface of SnO2 hollow spheres could be clearly observed. X-ray photoelectron spectroscopy results confirmed the existence of Ce(3+) and the increased amount of both chemisorbed oxygen and oxygen vacancy after the CeO2 decorated. Compared with pure SnO2 hollow spheres, such composites revealed excellent enhanced sensing properties to ethanol. When the ethanol concentration was 100 ppm, the sensitivity of the CeO2/SnO2 composites was 37, which was 2.65-times higher than that of the primary SnO2 hollow spheres. The sensing mechanism of the enhanced gas sensing properties was also discussed.

  3. Synthesis of Organic Hollow Globules Based on Singular Phenomena of Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kimura, Y.; Saito, M.

    2010-03-01

    We duplicated organic hollow globules founding in carbonaceous chondrite in a laboratory. Our results suggest the globules can be produced in circumstellar environments and are possibly the final products in the evolution of carbonaceous matter.

  4. Asymmetric silica encapsulation toward colloidal Janus nanoparticles: a concave nanoreactor for template-synthesis of an electocatalytic hollow Pt nanodendrite

    NASA Astrophysics Data System (ADS)

    Koo, Jung Hun; Kim, Daun; Kim, Jin Goo; Jeong, Hwakyeung; Kim, Jongwon; Lee, In Su

    2016-07-01

    A novel reverse microemulsion strategy was developed to asymmetrically encapsulate metal-oxide nanoparticles in silica by exploiting the self-catalytic growth of aminosilane-containing silica at a single surface site. This strategy produced various colloidal Janus nanoparticles, including Au/Fe3O4@asy-SiO2, which were converted to an Au-containing silica nanosphere, Au@con-SiO2, by reductive Fe3O4 dissolution. The use of Au@con-SiO2 as a metal-growing nanoreactor allowed the templated synthesis of various noble-metal nanocrystals, including a hollow dendritic Pt nanoshell which exhibits significantly better electrocatalytic activities for the oxygen reduction reaction than commercial Pt/C catalysts.A novel reverse microemulsion strategy was developed to asymmetrically encapsulate metal-oxide nanoparticles in silica by exploiting the self-catalytic growth of aminosilane-containing silica at a single surface site. This strategy produced various colloidal Janus nanoparticles, including Au/Fe3O4@asy-SiO2, which were converted to an Au-containing silica nanosphere, Au@con-SiO2, by reductive Fe3O4 dissolution. The use of Au@con-SiO2 as a metal-growing nanoreactor allowed the templated synthesis of various noble-metal nanocrystals, including a hollow dendritic Pt nanoshell which exhibits significantly better electrocatalytic activities for the oxygen reduction reaction than commercial Pt/C catalysts. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03557d

  5. Dual soft-template system based on colloidal chemistry for the synthesis of hollow mesoporous silica nanoparticles.

    PubMed

    Li, Yunqi; Bastakoti, Bishnu Prasad; Imura, Masataka; Tang, Jing; Aldalbahi, Ali; Torad, Nagy L; Yamauchi, Yusuke

    2015-04-20

    A new dual soft-template system comprising the asymmetric triblock copolymer poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-b-P2VP-b-PEO) and the cationic surfactant cetyltrimethylammonium bromide (CTAB) is used to synthesize hollow mesoporous silica (HMS) nanoparticles with a center void of around 17 nm. The stable PS-b-P2VP-b-PEO polymeric micelle serves as a template to form the hollow interior, while the CTAB surfactant serves as a template to form mesopores in the shells. The P2VP blocks on the polymeric micelles can interact with positively charged CTA(+) ions via negatively charged hydrolyzed silica species. Thus, dual soft-templates clearly have different roles for the preparation of the HMS nanoparticles. Interestingly, the thicknesses of the mesoporous shell are tunable by varying the amounts of TEOS and CTAB. This study provides new insight on the preparation of mesoporous materials based on colloidal chemistry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Graphene-encapsulated hollow Fe₃O₄ nanoparticle aggregates as a high-performance anode material for lithium ion batteries.

    PubMed

    Chen, Dongyun; Ji, Ge; Ma, Yue; Lee, Jim Yang; Lu, Jianmei

    2011-08-01

    Graphene-encapsulated ordered aggregates of Fe(3)O(4) nanoparticles with nearly spherical geometry and hollow interior were synthesized by a simple self-assembly process. The open interior structure adapts well to the volume change in repetitive Li(+) insertion and extraction reactions; and the encapsulating graphene connects the Fe(3)O(4) nanoparticles electrically. The structure and morphology of the graphene-Fe(3)O(4) composite were confirmed by X-ray diffraction, scanning electron microscopy, and high-resolution transmission microscopy. The electrochemical performance of the composite for reversible Li(+) storage was evaluated by cyclic voltammetry and constant current charging and discharging. The results showed a high and nearly unvarying specific capacity for 50 cycles. Furthermore, even after 90 cycles of charge and discharge at different current densities, about 92% of the initial capacity at 100 mA g(-1) was still recoverable, indicating excellent cycle stability. The graphene-Fe(3)O(4) composite is therefore a capable Li(+) host with high capacity that can be cycled at high rates with good cycle life. The unique combination of graphene encapsulation and a hollow porous structure definitely contributed to this versatile electrochemical performance.

  7. Temperature control of light transmission using mixed system of silica hollow particles with nanoparticle shell and organic components.

    PubMed

    Fujiwara, Masahiro; Shiokawa, Kumi; Monobe, Hirosato; Shimizu, Yo

    2015-01-21

    We reported before that a silica hollow particle whose shell consists of silica nanoparticle (SHP-NP) has a high light reflection ability to prevent light transmission through the particle, which is caused from the intensive light diffusion by the hollow structure and the nanoparticle of the shell. Since the difference in the refractive indices between silica and air is responsible for the strong light reflection, the mixing of the particle with organic components having refractive indices close to that of silica such as tetradecane produced transparent mixtures by suppression of the light reflection. The transparency of the mixtures thus prepared could be controlled by temperature variation. For example, the mixture of the particle SHP-NP with tetradecane was transparent at 20 °C and opaque at 70 °C, while the mixture with n-hexyl cyclohexane was opaque at 20 °C and transparent at 70 °C. As the refractive indices of organic components changed with temperature more than 10 times wider than that of silica, the temperature alternation produced a significant change in the difference of the refractive indices between them to achieve complete control of the transparency of the mixtures. This simple control of the light transmission that can automatically regulate sunlight into the room with temperature alteration is expected to be suitable for smart glass technology for energy conservation.

  8. A Field of Hollows

    NASA Image and Video Library

    2015-04-01

    Mercury's hollows are among its most distinctive -- and unusual -- surface features. In this stunning view, we see a field of hollows in the western portion of the floor of Zeami impact basin. Hollows populate much of the rest of the basin's interior, with large concentrations several kilometers across occurring in the north and northeast parts of the floor. Individual hollows, however, can be as small as a couple of hundred meters in width. http://photojournal.jpl.nasa.gov/catalog/PIA19267

  9. Nanoparticle self-assembled hollow TiO2 spheres with well matching visible light scattering for high performance dye-sensitized solar cells.

    PubMed

    Pang, Hongchang; Yang, Hongbin; Guo, Chun Xian; Lu, Jinlin; Li, Chang Ming

    2012-09-11

    Submicrometer-sized hollow TiO(2) spheres are directly self-assembled from TiO(2) nanoparticles without using any template or surfactant as a scattering layer for dye-sensitized solar cells, showing good visible light scattering match to significantly improve the photoconversion efficiency.

  10. Template-free formation of carbon nanotube-supported cobalt sulfide@carbon hollow nanoparticles for stable and fast sodium ion storage

    NASA Astrophysics Data System (ADS)

    Han, Fei; Jun Tan, Clara Yi; Gao, Zhiqiang

    2017-01-01

    Carbon-coated cobalt sulfide (CoS) hollow nanoparticles on carbon nanotube (CNT) networks are synthesized by combining three simple approaches: direct growth of Co3O4 nanocrystals on the CNT backbones, chemical conversion of the Co3O4 nanocrystals to CoS hollow nanoparticles, and the spatial introduction of conformal surface modification by carbon. It is noteworthy that the CoS hollow nanoparticles with inner cavity of <50 nm and an average wall thickness of 6-8 nm are derived from a template-free method. Such a template-free-derived multifunctional nanostructure design achieves the amalgamation of the favorite traits of one-dimensional conducting networks, hollow nanoparticles, and surface modification, thus resulting in much enhanced charge transfer, ion transport, and upholding the integrity of the electrode and electrode/electrolyte interface. When applied the synthesized CoS-based material as anodes in sodium-ion batteries (SIBs), excellent performance is observed. For instance, a reversible specific capacity of 562 mAh g-1 at 100 mA g-1 and a capacity retention rate of 90% after 200 cycles at a higher current density of 500 mA g-1 are obtained. Moreover, a superior rate capability is observed with reversible specific capacities of 341 and 276 mAh g-1 at 2000 and at 5000 mA g-1, respectively.

  11. Significantly enhanced dye removal performance of hollow tin oxide nanoparticles via carbon coating in dark environment and study of its mechanism

    PubMed Central

    2014-01-01

    Understanding the correlation between physicochemical properties and morphology of nanostructures is a prerequisite for widespread applications of nanomaterials in environmental application areas. Herein, we illustrated that the uniform-sized SnO2@C hollow nanoparticles were large-scale synthesized by a facile hydrothermal method. The size of the core-shell hollow nanoparticles was about 56 nm, and the shell was composed of a solid carbon layer with a thickness of 2 ~ 3 nm. The resulting products were characterized in terms of morphology, composition, and surface property by various analytical techniques. Moreover, the SnO2@C hollow nanoparticles are shown to be effective adsorbents for removing four different dyes from aqueous solutions, which is superior to the pure hollow SnO2 nanoparticles and commercial SnO2. The enhanced mechanism has also been discussed, which can be attributed to the high specific surface areas after carbon coating. PMID:25221462

  12. In vivo and in vitro evaluation of the cytotoxic effects of Photosan-loaded hollow silica nanoparticles on liver cancer

    NASA Astrophysics Data System (ADS)

    Liu, Zhong-Tao; Xiong, Li; Liu, Zhi-Peng; Miao, Xiong-Ying; Lin, Liang-Wu; Wen, Yu

    2014-06-01

    This study aimed to compare the inhibitory effects of photosensitizers loaded in hollow silica nanoparticles and conventional photosensitizers on HepG2 human hepatoma cell proliferation and determine the underlying mechanisms. Photosensitizers (conventional Photosan-II or nanoscale Photosan-II) were administered to in vitro cultured HepG2 hepatoma cells and treated by photodynamic therapy (PDT) with various levels of light exposure. To assess photosensitizers' effects, cell viability was determined by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, apoptotic and necrotic cells were measured by flow cytometry and the expression of caspase-3 and caspase-9 evaluated by western blot. Finally, the in vivo effects of nanoscale and conventional photosensitizers on liver cancer were assessed in nude mice. Nanoscale Photosan-II significantly inhibited hepatoma cell viability in a concentration-dependent manner and this effect was more pronounced with high laser doses. Moreover, nanoscale photosensitizers performed better than the conventional ones under the same experimental conditions ( p < 0.05). Flow cytometry data demonstrated that laser-induced cell death was markedly increased after treatment with nanoscale Photosan-II in comparison with free Photosan-II ( p < 0.05). Activated caspase-3 and caspase-9 levels were significantly higher in cells treated with Photosan-II loaded in silica nanoparticles than free Photosan-II ( p < 0.05). Accordingly, treatment with nanoscale photosensitizers resulted in improved outcomes (tumor volume) in a mouse model of liver cancer, in comparison with conventional photosensitizers. Hollow silica nanoparticles containing photosensitizer more efficiently inhibited hepatoma cells than photosensitizer alone, through induction of apoptosis, both in vivo and in vitro.

  13. Facile synthesis of monodisperse of hollow mesoporous SiO2 nanoparticles and in-situ growth of Ag nanoparticles for antibacterial.

    PubMed

    Xu, Peng; Liang, Juan; Cao, Xiaoyong; Tang, Jingen; Gao, Juan; Wang, Liying; Shao, Wei; Gao, Qinwei; Teng, Zhaogang

    2016-07-15

    Monodispersed hollow mesoporous silica nanoparticles (HMSNs) are successfully synthesized via a facile dual template method, in which poly(styrene-co-methyl methacrylate-co-methacrylic acid) (PS-PMMA-PMAA) particles are used as hard template for producing the hollow structure and cetyltrimethylammonium bromide (CTAB) used for introducing the mesopores in the silica shells. The obtained HMSNs possess uniform diameter and morphology, and the shell of which could be adjusted by changing the addition of silicon precursor. The synthesized HMSNs have been characterized by transmission electron microscopy (TEM) and nitrogen physisorption. Furthermore, the HMSNs are used as support for in-situ deposition of silver nanoparticles (Ag NPs) using n-butylamine as reducing agent for AgNO3 in ethanol. Significantly, Ag NPs were successfully supported in the HMSNs without any aggregation. The Ag-deposited HMSNs showed excellent dispersibility in ethanol and water, and their antibacterial activity against Escherichia coli (E. coli) ATCC 25922 and Staphylococcus aureus (S. aureus) ATCC 6538 have been demonstrated. Therefore, the unique nanostructure based on the HMSNs provided a useful platform for the fabrication of antibacterial agent with superior activity and accessibility. And also, it is expected to be a significant template for the synthesis of other novel nanostructures. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Designed synthesis of MOx (M = Zn, Fe, Sn, Ni, Mn, Co, Ce, Mg, Ag), Pt, and Au nanoparticles supported on hierarchical CuO hollow structures.

    PubMed

    Zhang, Zailei; Jung, Ji Chul; Yan, Ning

    2016-12-01

    Despite intensive research into support substrates for the dispersal of nanoparticles and their applications, there has been a lack of general methods to produce metal oxide hollow substrates supporting a wide range of metal and metal oxides. Herein, a synthetic protocol for the preparation of CuO hollow structure-supported MOx (M = Zn, Fe, Ni, Sn, Mn, Co, Ce, Mg, and Ag) and noble metals (Pt and Au) with the desired properties and shell structure, such as CuO/Fe2O3, CuO/ZnO, CuO/SnO2, CuO/MgO, CuO/NiO, CuO/Mn2O3, CuO/CoO, CuO/CeO2, CuO/Ag2O, CuO/Pt, CuO/Au hollow cubes, CuO/ZnO double-shell hollow cubes, CuO/SnO2 double-shell hollow octahedra, CuO/SnO2/Fe2O3 and CuO/Mn2O3/NiO double-shell hollow cubes, was developed based on controlled calcination and etching. These hybrid hollow structures were employed not only as support substrates but also as active constituents for catalytic reactions. As an example, we demonstrated that CuO/ZnO hollow cubes are remarkably efficient in converting solid chitin biomass to liquid chemicals in methanol. In addition, CuO/ZnO double-shell hollow cubes were highly effective in the oxidation of benzyl alcohol in the presence of H2O2, whereas CuO/Pt and CuO/Au hollow cubes promoted the oxidation of benzyl alcohol in pure O2. The strategy developed in this work extends the controllable fabrication of high-quality CuO hollow structure-supported nanoparticles using various compositions and shell structures, paving the way to the exploration and systematic comparison of these materials in a wider range of applications.

  15. Cytotoxicity of folic acid conjugated hollow silica nanoparticles toward Caco2 and 3T3 cells, with and without encapsulated DOX.

    PubMed

    Patel, Kunal; Sundara Raj, Behin; Chen, Yan; Lou, Xia

    2016-04-01

    Hollow silica nanoparticles of two sizes with and without a folic acid targeting ligand were synthesized. Fickian diffusion of the antitumor drug doxorubicin hydrochloride (DOX) was demonstrated by the produced nanoparticles, achieving a cumulative release of 73% and 45% for 215 nm and 430 nm particles respectively over a period of 500 h. The hollow silica nanoparticles presented a time and dose dependent toxicity, selective to human epithelial colorectal adenocarcinoma (Caco2) cells, over mouse embryonic fibroblast (3T3) cells. At 24h Caco2 cell viability was reduced to 66% using pure hollow silica at a concentration of 50 μg mL(-1), while that of 3T3 cells remained at 94% under the same conditions. The selective cytotoxicity of hollow silica nanoparticles was further enhanced by conjugation of folic acid and incorporation of DOX: at 24h and an equivalent DOX concentration of 0.5 μg mL(-1), viable Caco2 cells were reduced to 45% while 3T3 cells were reduced to 83%. Interestingly the equivalent dose of free DOX was more toxic to 3T3 than to Caco2 cells, reducing the 3T3 viability to 72% and the Caco2 viability to 80%, which is likely due to the presence of the p-glycoprotein pumps in Caco2 cells. Folic acid conjugation served to enhance the viability of both cell lines in this work. Careful optimization of the folate content should further improve the cell specificity of the hollow silica nanoparticles, thus providing a viable targeting platform for cancer therapy.

  16. The Effect of Scattering Layer on the Performance of Dye-Sensitized Solar Cells Using TiO2 Hollow Spheres/TiO2 Nanoparticles Films as Photoanodes.

    PubMed

    Park, Su Kyung; Suh, Soong-Hyuck; Lee, Min Woo; Yun, Tae Kwan; Bae, Jae Young

    2015-10-01

    TiO2 hollow spheres were successfully synthesized using poly styrene as the template. Dye-sensitized solar cells are fabricated based on double-layered composite films of TiO2 nanoparticles and TiO2 hollow spheres. The photoelectric conversion performances of Dye-sensitized solar cells based on TiO2 nanoparticles/TiO2 nanoparticles, TiO2 nanoparticles/TiO2 hollow spheres and TiO2 hollow spheres/TiO2 hollow spheres double-layered films are investigated, and their photoelectric conversion efficiencies were determined to 4.52, 7.10 and 5.48%, respectively. Dye-sensitized solar cells based on double layered composite films of TiO2 nanoparticles and TiO2 hollow spheres exhibit the highest photo-electric conversion efficiency mainly due to the combined effect of two factors, the high light scattering of over-layer hollow spheres that enhance harvesting light of the Dye-sensitized solar cells and the under-layer TiO2 nanoparticle layer that ensures good electronic contact between TiO2 film and FTO conducting glass. The double layered composite TiO2 film electrodes are a promising development in enhancing the performance of dye-sensitized solar cells.

  17. The application of novel spindle-like polypyrrole hollow nanocapsules containing Pt nanoparticles in electrocatalysis oxidation of nicotinamide adenine dinucleotide (NADH).

    PubMed

    Mao, Hui; Li, Yongxin; Liu, Xincai; Zhang, Wanjin; Wang, Ce; Al-Deyab, Salem S; El-Newehy, Mohamed

    2011-04-15

    Novel spindle-like polypyrrole hollow nanocapsules containing Pt nanoparticles (Pt NPs/PPy composite hollow nanospindles) were successfully prepared by using beta-akaganeite (β-Fe(3+)O(OH,Cl)) nanospindles as templates and methanoic acid as a reducing agent. The β-Fe(3+)O(OH,Cl) templates can be easily obtained in ethanol/water mixing solution in the presence of thiophene and FeCl(3)·6H(2)O, and after coating by PPy shell, they can be gradually and completely etched during the reduction of H(2)PtCl(6) into Pt nanoparticles (Pt NPs) with the average size of 3.6 nm on spindle-like polypyrrole hollow nanocapsules, which could still keep their integrality of morphologies with the thickness of PPy shell of 18-20 nm. The investigation of Pt NPs/PPy composite hollow nanospindles modified glassy carbon electrode (GCE) for the application to detect nicotinamide adenine dinucleotide (NADH) with cyclic voltammetry (CV) and amperometry indicated good linearity and sensitivity of responses in the certain range of NADH concentration. The influence of Pt NPs content to the NADH oxidation current was also studied. This new kind of unique spindle-like noble metal/conducting polymer hollow nanostructured complex can be acted as a good steady electrode material for electrocatalytic oxidation of NADH. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Preparation of iron aluminate (FeAl2O4) nanoparticles from FeAl2O4 hollow particles fabricated by using a spray pyrolysis process

    NASA Astrophysics Data System (ADS)

    Yun, Jaecheol; Kim, Yangdo; Park, Dahee; Yun, Jung-Yeul

    2015-05-01

    Iron aluminate (FeAl2O4) hollow particles with a spinel structure were synthesized by using a spray pyrolysis process. FeAl2O4 hollow particles were formed at a reaction temperature of 900 °C at a flow rate of 40 L/min as a result of the rapid solvent evaporation and decomposition gases from the droplets in the spray solution prepared from metal salts and organic reagents. FeAl2O4 hollow particles were fabricated at a reaction temperature of 900 °C with a flow rate of 40 L/min. The FeAl2O4 hollow particles were heat treated for 3 hours at 600 °C in a 5% H2/Ar atmosphere to form the crystal particles. Subsequently, FeAl2O4 nanoparticles were fabricated from the FeAl2O4 hollow particles by using the wet milling process. After milling for 60 minutes, transmission electron microscopy revealed the FeAl2O4 particles to have a mean size of approximately 50 nm. The FeAl2O4 nanoparticles were fabricated successfully by using a two-step process, spray pyrolysis and wet milling.

  19. A one-pot synthetic approach to prepare palladium nanoparticles embedded hierarchically porous TiO{sub 2} hollow spheres for hydrogen peroxide sensing

    SciTech Connect

    Kong Lirong; Lu Xiaofeng; Bian Xiujie; Zhang Wanjin; Wang Ce

    2010-10-15

    A simple one-step method to fabricate hierarchically porous TiO{sub 2}/Pd composite hollow spheres without any template was developed by using solvothermal treatment. Pd nanoparticles (2-5 nm) were well dispersed in the mesopores of the TiO{sub 2} hollow spheres via in-situ reduction. In our experiment, polyvinylpyrrolidone played an important role in the synthetic process as the reducing agent and the connective material between TiO{sub 2} and Pd nanoparticles. HF species generated from solvothermal reaction leaded to the formation of TiO{sub 2} hollow spheres and Ostwald ripening was another main factor that affected the size and structure of the hollow spheres. The as-prepared TiO{sub 2}/Pd composite hollow spheres exhibited high electrocatalytic activity towards the reduction of H{sub 2}O{sub 2}. The sensitivity was about 226.72 {mu}A mM{sup -1} cm{sup -2} with a detection limit of 3.81 {mu}M at a signal-to-noise ratio of 3. These results made the hierarchically porous TiO{sub 2}/Pd composite a promising platform for fabricating new nonenzymic biosensors. - Graphical Abstract: A new one-step solvothermal method was developed to prepare Pd nanoparticles embedded hierarchically porous TiO{sub 2} hollow spheres. Due to its unique nanostructure, the prepared TiO{sub 2}/Pd modified GC electrode exhibit a high sensitivity (226.72 {mu}A mM{sup -1} cm{sup -2}), a relatively low reduction potential (-0.2 V), a fast response time (<3 s) and a relatively low detection limit of 3.81 {mu}M (S/N=3) towards H{sub 2}O{sub 2}.

  20. The shape dependence of core shell and hollow titania nanoparticles on coating thickness during layer-by-layer and sol gel synthesis

    NASA Astrophysics Data System (ADS)

    Nelson, Kimberly; Deng, Yulin

    2006-07-01

    Titania core-shell and hollow nanoparticles with different aspect ratios were synthesized using layer-by-layer assembly and sol-gel nanocoating methods with cellulose nanowhiskers as the template. During growth of the coating layer, the shape of the nanoparticles did not maintain the shape of the high aspect ratio template, as previously assumed. The shape of the coated particles is a function of the coating thickness. It is suggested that the overall particle shape and aspect ratio of the nanoparticles are tunable by choosing an appropriate template and coating thickness in layer-by-layer or sol-gel templating synthesis. The nanorods and hollow titania particles synthesized by these methods were characterized by transmission electron microscopy, scanning electron microscopy and x-ray diffraction.

  1. Synthesis of TiC Nanoparticles Anchored on Hollow Carbon Nanospheres for Enhanced Polysulfide Adsorption in Li-S Batteries.

    PubMed

    Cao, Bokai; Chen, Yong; Li, De; Yin, Lihong; Mo, Yan

    2016-12-08

    A novel spatial confinement strategy based on a carbon/TiO2 /carbon sandwich structure is proposed to synthesize TiC nanoparticles anchored on hollow carbon nanospheres (TiC@C) through a carbothermal reduction reaction. During the synthesis process, two carbon layers not only serve as reductant to convert TiO2 into TiC nanoparticles, but also create a spatial confinement to suppress the aggregation of TiO2 , resulting in the formation of well-dispersed TiC nanoparticles. This unique TiC@C structure shows an outstanding long-term cycling stability at high rates owing to the strong physical and chemical adsorption of lithium polysulfides (i.e., a high capacity of 732.6 mA h g(-1) at 1600 mA g(-1) ) and it retains a capacity of 443.2 mA h g(-1) after 1000 cycles, corresponding to a decay rate of only 0.0395 % per cycle. Therefore, this unique TiC@C composite could be considered as an important candidate for the cathode material in Li-S batteries. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Voltage-Gated Transport of Nanoparticles across Free-Standing All-Carbon-Nanotube-Based Hollow-Fiber Membranes.

    PubMed

    Wei, Gaoliang; Quan, Xie; Chen, Shuo; Fan, Xinfei; Yu, Hongtao; Zhao, Huimin

    2015-07-15

    Understanding the mechanism underlying controllable transmembrane transport observed in biological membranes benefits the development of next-generation separation membranes for a variety of important applications. In this work, on the basis of common structural features of cell membranes, a very simple biomimetic membrane system exhibiting gated transmembrane performance has been constructed using all-carbon-nanotube (CNT)-based hollow-fiber membranes. The conductive CNT membranes with hydrophobic pore channels can be positively or negatively charged and are consequently capable of regulating the transport of nanoparticles across their pore channels by their "opening" or "closing". The switch between penetration and rejection of nanoparticles through/by CNT membranes is of high efficiency and especially allows dynamic control. The underlying mechanism is that CNT pore channels with different polarities can prompt or prevent the formation of their noncovalent interactions with charged nanoparticles, resulting in their rejection or penetration by/through the CNT membranes. The theory about noncovalent interactions and charged pore channels may provide new insight into understanding the complicated ionically and bimolecularly gated transport across cell membranes and can contribute to many other important applications beyond the water purification and resource recovery demonstrated in this study.

  3. Highly sensitive and selective detection of dopamine based on hollow gold nanoparticles-graphene nanocomposite modified electrode.

    PubMed

    Zhu, Wencai; Chen, Ting; Ma, Xuemei; Ma, Houyi; Chen, Shenhao

    2013-11-01

    Highly dispersed hollow gold-graphene (HAu-G) nanocomposites were synthesized by a two-step method. The immobilization of hollow gold nanoparticles (HAu NPs) onto the surface of graphene sheets was achieved by mixing an aqueous solution of HAu NPs with a poly(N-vinylpyrrolidone)-functionalized graphene dispersion at room temperature. A glassy carbon electrode (GCE) was modified with the nanocomposites, and the as-prepared modified electrode displayed high electrocatalytic activity and extraordinary electronic transport properties. Amperometric detection of dopamine (DA) performed with the HAu-G modified electrode exhibits a good linearity between 0.08 and 600 μM with a low detection limit of 0.05 μM (S/N=3) and also possesses good reproducibility and operational stability. The interference of ascorbic acid (AA) and uric acid (UA) can be excluded when using differential pulse voltammetric technique. In addition, this type of modified electrode can also be applied to the determination of DA content in dopamine hydrochloride injection. It is obvious that the HAu-G modified electrode provides a new way to detect dopamine sensitively and selectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Polymeric Prodrug Grafted Hollow Mesoporous Silica Nanoparticles Encapsulating Near-Infrared Absorbing Dye for Potent Combined Photothermal-Chemotherapy.

    PubMed

    Zhang, Yuanyuan; Ang, Chung Yen; Li, Menghuan; Tan, Si Yu; Qu, Qiuyu; Zhao, Yanli

    2016-03-23

    In this study, polymeric prodrug coated hollow mesoporous silica nanoparticles (HMSNs) with encapsulated near-infrared (NIR) absorbing dye were prepared and explored for combined photothermal-chemotherapy. A copolymer integrated with tert-butoxycarbonyl protected hydrazide groups and oligoethylene glycols was initially grafted on the surface of HMSNs via reversible addition-fragmentation chain-transfer (RAFT) polymerization followed by the deprotection to reactivate the hydrazide groups for the conjugation of anticancer drug doxorubicin (DOX). DOX was covalently bound onto the polymer substrate by acid-labile hydrazone bond and released quickly in weak acidic environment for chemotherapy. The hollow cavity of HMSNs was loaded with an NIR absorbing dye IR825 to form the final multifunctional hybrid denoted as HMSNs-DOX/IR825. The hybrid exhibited good dispersity and stability as well as high light-to-heat conversion efficiency. As revealed by confocal microscopy and flow cytometry analysis, the hybrid was efficiently taken up by cancer cells, and the conjugated DOX could be released under the cellular environment. In vitro cytotoxicity study demonstrated that anticancer activity of HMSNs-DOX/IR825 could be significantly improved by the NIR irradiation, which led to a satisfactory therapeutic efficacy through the combination treatment. Thus, the developed hybrid could be a promising candidate for the combined photothermal-chemotherapy of cancer.

  5. Structural Evolution of Solid Pt Nanoparticles to a Hollow PtFe Alloy with a Pt-Skin Surface via Space-Confined Pyrolysis and the Nanoscale Kirkendall Effect.

    PubMed

    Wang, Qingmei; Chen, Siguo; Shi, Feng; Chen, Ke; Nie, Yao; Wang, Yao; Wu, Rui; Li, Jia; Zhang, Yun; Ding, Wei; Li, Yang; Li, Li; Wei, Zidong

    2016-12-01

    A space-confined interfacial conversion approach is developed to directly transform 3 nm solid Pt nanoparticles into a 5 nm hollow PtFe alloy featuring a Pt-skin surface. The approach presented for the structural evolution from solid Pt NPs to hollow PtFe alloy with controlled size, structure, and composition can be applied to other multimetallic electrocatalysts.

  6. Targeted delivery of 5-aminolevulinic acid by multifunctional hollow mesoporous silica nanoparticles for photodynamic skin cancer therapy.

    PubMed

    Ma, Xing; Qu, Qiuyu; Zhao, Yanli

    2015-05-27

    5-Aminolevulinic acid (5-ALA) is a precursor of a strong photosensitizer, protoporphyrin IX (PphIX), for photodynamic therapy (PDT). Developing appropriate delivery carriers that can assist 5-ALA in bypassing the lipophilic barrier to directly enter into cancer cells is a research focus. The improved delivery of 5-ALA is even important for skin cancer therapy through PDT process. In this work, targeting ligand folic acid (FA)-functionalized hollow mesoporous silica nanoparticles (HMSNPs) were fabricated to deliver 5-ALA for PDT against B16F10 skin cancer cells. The FA targeting ligand enabled selective endocytosis of 5-ALA loaded HMSNPs into cancer cells. PphIX formed from delivered 5-ALA exhibited high photocytotoxicity to the cancer cells in vitro.

  7. A facile route for rapid synthesis of hollow mesoporous silica nanoparticles as pH-responsive delivery carrier.

    PubMed

    Xu, Huijuan; Zhang, Haijiao; Wang, Donghai; Wu, Lu; Liu, Xingwen; Jiao, Zheng

    2015-08-01

    In this paper, a facile and effective route has been developed for rapid synthesis of hollow mesoporous silica nanoparticles (HMSNs) by using tetradecyltrimethylammonium bromide (TTAB) as the porogen with the assistance of triethanolamine (TEA). The products were characterized by various techniques including TEM, SEM, BET, and FT-IR, etc. The HMSNs obtained possess spherical morphology, mesoporous channels and very high specific surface areas (1355m(2)g(-1)). According to the experimental results, a possible formation mechanism was discussed. Moreover, the ability of HMSNs as drug carrier was evaluated by selecting doxorubicin hydrochloride (DOX) as the model drug. The results indicated that HMSNs showed high loading capacity and controlled pH-responsive release behavior. Considering their unique nanostructures and porous properties, we expect the HMSNs prepared have more potential applications in various fields such as nanoreactors, cellular imaging, and biosensor. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Encapsulating Pd nanoparticles in double-shelled graphene@carbon hollow spheres for excellent chemical catalytic property.

    PubMed

    Zhang, Zheye; Xiao, Fei; Xi, Jiangbo; Sun, Tai; Xiao, Shuang; Wang, Hairong; Wang, Shuai; Liu, Yunqi

    2014-02-11

    Double-shelled hollow carbon spheres with reduced graphene oxide (RGO) as inner shell and carbon (C) layer as outer shell have been successfully designed and prepared. This tailor-making structure acts as an excellent capsule for encapsulating with ultrafine Pd nanoparticles (Pd NPs), which could effectively prevent Pd NPs from aggregation and leaching. As a result, the as-obtained RGO@Pd@C nanohybid exhibits superior and stable catalytic performance. With the aid of RGO@Pd@C, the reduction reaction of 4-nitrophenol (4-NP) to 4-aminophenol with NaBH4 as reducing agent can be finished within only 30 s, even the content of Pd is as low as 0.28 wt%. As far as we know, RGO@Pd@C is one of the most effective catalyst for 4-NP reducing reaction up to now.

  9. Synthesis of hollow mesoporous silica nanoparticles with tunable shell thickness and pore size using amphiphilic block copolymers as core templates.

    PubMed

    Zhou, Xiaojun; Cheng, Xiao; Feng, Wei; Qiu, Kexin; Chen, Liang; Nie, Wei; Yin, Zhiqi; Mo, Xiumei; Wang, Hongsheng; He, Chuanglong

    2014-08-21

    This paper presents a facile method for the fabrication of uniform hollow mesoporous silica nanoparticles (HMSNs) with tunable shell thickness and pore size. In this method, a series of amphiphilic block copolymers of polystyrene-b-poly (acrylic acid) (PS-b-PAA) with different hydrophobic block (PS) lengths were first synthesized via atom transfer radical polymerization (ATRP). The as-synthesized PS-b-PAA and cetyltrimethylammonium bromide (CTAB) were subsequently used as co-templates to fabricate HMSNs. This approach allows the control of shell thickness and pore size distribution of the synthesized HMSNs simply by changing the amounts of PS-b-PAA and CTAB, respectively. In vitro cytotoxicity and hemolysis assays demonstrated that the synthesized HMSNs had a low and shell thickness-dependent cytotoxicity and hemolytic activity. Therefore, these HMSNs have great potential for biomedical applications due to their good biocompatibility and ease of synthesis.

  10. Si nanoparticles encapsulated in elastic hollow carbon fibres for Li-ion battery anodes with high structural stability

    NASA Astrophysics Data System (ADS)

    Fang, Shan; Shen, Laifa; Tong, Zhenkun; Zheng, Hao; Zhang, Fang; Zhang, Xiaogang

    2015-04-01

    Silicon has a large specific capacity which is an order of magnitude beyond that of conventional graphite, making it a promising anode material for lithium ion batteries. However, the large volume changes (~300%) during cycling caused material pulverization and instability of the solid-electrolyte interphase resulting in poor cyclability which prevented its commercial application. Here, we have prepared a novel one-dimensional core-shell nanostructure in which the Si nanoparticles have been confined within hollow carbon nanofibres. Such a unique nanostructure exhibits high conductivity and facile ion transport, and the uniform pores within the particles which are generated during magnesiothermic reduction can serve as a buffer zone to accommodate the large volume changes of Si during electrochemical lithiation. Owing to these advantages, the composite shows high rate performance and good cycling stability. The optimum design of the core-shell nanostructure shows promise for the synthesis of a variety of high-performance electrode materials.Silicon has a large specific capacity which is an order of magnitude beyond that of conventional graphite, making it a promising anode material for lithium ion batteries. However, the large volume changes (~300%) during cycling caused material pulverization and instability of the solid-electrolyte interphase resulting in poor cyclability which prevented its commercial application. Here, we have prepared a novel one-dimensional core-shell nanostructure in which the Si nanoparticles have been confined within hollow carbon nanofibres. Such a unique nanostructure exhibits high conductivity and facile ion transport, and the uniform pores within the particles which are generated during magnesiothermic reduction can serve as a buffer zone to accommodate the large volume changes of Si during electrochemical lithiation. Owing to these advantages, the composite shows high rate performance and good cycling stability. The optimum design of

  11. A Novel UV-Shielding and Transparent Polymer Film: When Bio-inspired Dopamine-Melanin Hollow Nanoparticles Join Polymer.

    PubMed

    Wang, Yang; Su, Jing; Li, Ting; Ma, Piming; Bai, Huiyu; Xie, Yi; Chen, Mingqing; Dong, Weifu

    2017-09-25

    Ultraviolet (UV) light is known to be harmful to human health and cause organic materials to undergo photodegradation. In this article, bio-inspired dopamine-melanin dense nanoparticles (Dpa-d NPs) and hollow nanoparticles (Dpa-h NPs) as UV-absorbers were introduced to enhance the UV-shielding performance of polymer. First, Dpa-d NPs were synthesized through autoxidation of dopamine in alkaline aqueous solution. Dpa-h NPs were prepared by the spontaneous oxidative polymerization of dopamine solution onto polystyrene (PS) nanospheres template, followed by removal of the template. Poly(vinyl alcohol) (PVA)/Dpa nanocomposite films were subsequently fabricated by a simple casting solvent. UV irradiation protocols were set up, allowing selective study of the extra-shielding effects of Dpa-d vs Dpa-h NPs. In contrast to PVA/Dpa-d films, PVA/Dpa-h films exhibit stronger UV-shielding capabilities and can almost block the whole UV region (200-400 nm). The high UV-shielding performance of the PVA/Dpa-h films mainly arises from multiple absorption due to hollow structure and large specific area of Dpa-h NPs. Moreover, the wall thickness of Dpa-h NPs can be simply controlled from 28 to 8 nm depending on the ratio between PS and dopamine. The resulting films with Dpa-h (wall thickness ~8 nm) still maintained relatively high transparency to visible light because of the thinner wall thickness. The results indicate that the prepared Dpa-h NPs can be used as a novel UV absorber for next-generation transparent UV-shielding materials.

  12. Preparation and characterization of hollow glass microspheres coated by CoFe{sub 2}O{sub 4} nanoparticles using urea as precipitator via coprecipitation method

    SciTech Connect

    Pang Xiaofen; Fu Wuyou; Yang Haibin Zhu Hongyang; Xu Jing; Li Xiang; Zou Guangtian

    2009-02-04

    The composite of hollow glass microspheres coated by CoFe{sub 2}O{sub 4} nanoparticles has been successfully prepared using urea as precipitator via coprecipitation method. The resultant composites were characterized by X-ray diffraction, field emission scanning electron microscope and vibrating sample magnetometer. The results showed that the slow decomposition of urea could be beneficial to form uniform and entire cobalt ferrite coating layer on the surface of hollow glass microspheres. The smoothest morphology was obtained for the sample prepared from 0.7 M urea, while the sample prepared from 1.0 M urea had the thickest shell. This indicated that there was a competition between the morphology and thickness of the coated microspheres. A possible formation mechanism of hollow glass microspheres coated with cobalt ferrite was proposed. The magnetic properties of the samples were also investigated.

  13. Near-IR mediated intracellular uncaging of NO from cell targeted hollow gold nanoparticles.

    PubMed

    Levy, Elizabeth S; Morales, Demosthenes P; Garcia, John V; Reich, Norbert O; Ford, Peter C

    2015-12-28

    We demonstrate modulation of nitric oxide release in solution and in human prostate cancer cells from a thiol functionalized cupferron (TCF) absorbed on hollow gold nanoshells (HGNs) using near-infrared (NIR) light. NO release from the TCF-HGN conjugates occurs through localized surface heating due to NIR excitation of the surface plasmon. Specific HGN targeting is achieved through cell surface directed peptides, and excitation with tissue penetrating NIR light provides unprecedented spatio-temporal control of NO delivery to biological targets.

  14. Preparation and characterization of hollow magnetic composite nanoparticles for cisplatin delivery

    NASA Astrophysics Data System (ADS)

    Lei, Ming; Chao, Ting; Lei, Zhongli

    2014-05-01

    Magnetic polymer microsphere is a kind of hybrid microsphere composed of polymer and inorganic magnetic particles. The materials have potential applications in biomedicine, catalysis, sewage treatment, etc. The objective of this paper was to develop a targeted anticancer drug delivery system based on carboxymethyl chitosan-coated Fe3O4/SiO2 hollow microspheres (HMS-CMCS) combining receptor-mediated targeting and magnetic targeting. The binding of chitosan to the surface of modified Fe3O4/SiO2 hollow microspheres could effectively prevent them from fusing with one another and undesirable payload release in regular storage or physiological environments. The synthesized HMS-CMCS microspheres could completely release the CDDP which was used as a model drug. The obtained HMS-CMCS had the hollow structure, and the walls of the HMS-CMCS had numerous micropores with a broad distribution of approximately 1 nm. The composite particles were characterized by TEM, FT-IR, and VSM. The results showed that the microspheres had an average size of 400 nm. The fabricated material is thus proposed as a biological material for drug delivery.

  15. A core-shell templated approach to the nanocomposites of silver sulfide and noble metal nanoparticles with hollow/cage-bell structures

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Ye, Feng; Cao, Hongbin; Ji, Ge; Lee, Jim Yang; Yang, Jun

    2013-07-01

    The integration of semiconductor and noble metal nanoparticles with controlled structures into a nanosystem can effectively couple various effects specific to the different domains of the nanocomposite for greater application versatility. Herein, we demonstrate the general synthesis of nanocomposites of Ag2S and noble metal nanoparticles with a hollow or cage-bell structure. The synthesis is based on the inside-out diffusion of Ag in core-shell nanoparticles. It begins with the preparation of core-shell Ag-M or core-shell-shell MA-Ag-MB nanoparticles in an organic solvent. The Ag is then removed from the core or from the internal shell and converted into Ag2S by elemental sulfur or sodium sulfide. The Ag2S forms the semiconductor domain in the nanocomposite and shares solid-state interfaces with the resultant hollow or cage-bell structured metal nanoparticle. The structural transformation from core-shell to heterogeneous nanocomposites may provide new opportunities to design and fabricate hybrid nanostructures with interesting physicochemical properties.The integration of semiconductor and noble metal nanoparticles with controlled structures into a nanosystem can effectively couple various effects specific to the different domains of the nanocomposite for greater application versatility. Herein, we demonstrate the general synthesis of nanocomposites of Ag2S and noble metal nanoparticles with a hollow or cage-bell structure. The synthesis is based on the inside-out diffusion of Ag in core-shell nanoparticles. It begins with the preparation of core-shell Ag-M or core-shell-shell MA-Ag-MB nanoparticles in an organic solvent. The Ag is then removed from the core or from the internal shell and converted into Ag2S by elemental sulfur or sodium sulfide. The Ag2S forms the semiconductor domain in the nanocomposite and shares solid-state interfaces with the resultant hollow or cage-bell structured metal nanoparticle. The structural transformation from core-shell to

  16. A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode

    NASA Astrophysics Data System (ADS)

    Luhana, Charles; Bo, Xiang-Jie; Ju, Jian; Guo, Li-Ping

    2012-10-01

    A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H2O2 at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H2O2. The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 μA mM-1), low detection limit (1.8 μM), fast response time <3 s, and wide linear range (0.04-8.62 mM). The apparent Michaelis-Menten constant ( K m) and the maximum current density ( i max) values for the biosensor were 10.94 mM and 887 μA cm-2 respectively. Furthermore, this biosensor showed an acceptable reproducibility and high stability. The interfering signals from ascorbic acid and uric acid at concentration levels normally found in human blood were not much compared with the response to glucose. Blood serum samples were also tested with this biosensor and a good recovery was achieved for the two spiked serum samples.

  17. Hollow mesoporous carbon as a near-infrared absorbing carrier compared with mesoporous carbon nanoparticles for chemo-photothermal therapy.

    PubMed

    Li, Xian; Yan, Yue; Lin, Yuanzhe; Jiao, Jian; Wang, Da; Di, Donghua; Zhang, Ying; Jiang, Tongying; Zhao, Qinfu; Wang, Siling

    2017-05-15

    In this study, hollow mesoporous carbon nanoparticles (HMCN) and mesoporous carbon nanoparticles (MCN) were used as near-infrared region (NIR) nanomaterials and drug nanocarriers were prepared using different methods. A comparison between HMCN and MCN was performed with regard to the NIR-induced photothermal effect and drug loading efficiency. The results of NIR-induced photothermal effect test demonstrated that HMCN-COOH had a better photothermal conversion efficacy than MCN-COOH. Given the prominent photothermal effect of HMCN-COOH in vitro, the chemotherapeutic drug DOX was chosen as a model drug to further evaluate the drug loading efficiencies and NIR-triggered drug release behaviors of the nanocarriers. The drug loading efficiency of DOX/HMCN-COOH was found to be up to 76.9%, which was higher than that of DOX/MCN-COOH. In addition, the use of an 808nm NIR laser markedly increased the release of DOX from both carbon carriers in pH 5.0 PBS and pH 7.4 PBS. Cellular photothermal tests involving A549 cells demonstrated that HMCN-COOH had a much higher photothermal efficacy than MCN-COOH. Cell viability experiments and flow cytometry were performed to evaluate the therapeutic effect of DOX/HMCN-COOH and the results obtained demonstrated that DOX/HMCN-COOH had a synergistic therapeutic effect in cancer treatment involving a combination of chemotherapy and photothermal therapy.

  18. One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance

    NASA Astrophysics Data System (ADS)

    Pedireddy, Srikanth; Lee, Hiang Kwee; Tjiu, Weng Weei; Phang, In Yee; Tan, Hui Ru; Chua, Shu Quan; Troadec, Cedric; Ling, Xing Yi

    2014-09-01

    Nanoporous gold with networks of interconnected ligaments and highly porous structure holds stimulating technological implications in fuel cell catalysis. Current syntheses of nanoporous gold mainly revolve around de-alloying approaches that are generally limited by stringent and harsh multistep protocols. Here we develop a one-step solution phase synthesis of zero-dimensional hollow nanoporous gold nanoparticles with tunable particle size (150-1,000 nm) and ligament thickness (21-54 nm). With faster mass diffusivity, excellent specific electroactive surface area and large density of highly active surface sites, our zero-dimensional nanoporous gold nanoparticles exhibit ~1.4 times enhanced catalytic activity and improved tolerance towards carbonaceous species, demonstrating their superiority over conventional nanoporous gold sheets. Detailed mechanistic study also reveals the crucial heteroepitaxial growth of gold on the surface of silver chloride templates, implying that our synthetic protocol is generic and may be extended to the synthesis of other nanoporous metals via different templates.

  19. Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles

    SciTech Connect

    Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; Alonso, Javier; Phan, Manh-Huong; Sun, Cheng-Jun; Saboungi, Marie-Louise; Srikanth, Hariharan

    2015-10-27

    Disorder among surface spins largely dominates the magnetic response of ultrafine magnetic particle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8±0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and becomes frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point to highly frustrated surface spins that rearrange much more slowly than interior spins with bulk coordination. Monte Carlo simulations of a hollow particle reproducing the experimental morphology corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Lastly, our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures.

  20. Encapsulation of Hydrophilic and Hydrophobic Peptides into Hollow Mesoporous Silica Nanoparticles for Enhancement of Antitumor Immune Response.

    PubMed

    Xie, Jun; Yang, Chaohua; Liu, Qianqian; Li, Jun; Liang, Ruijing; Shen, Chen; Zhang, Yi; Wang, Ke; Liu, Liping; Shezad, Khurram; Sullivan, Martin; Xu, Yong; Shen, Guanxin; Tao, Juan; Zhu, Jintao; Zhang, Zhiping

    2017-09-01

    Codelivery of combinational antigenic peptides and adjuvant to antigen presenting cells is expected to amplify tumor specific T lymphocytes immune responses while minimizing the possibility of tumor escaping and reducing immune tolerance to single antigenic peptide. However, the varied hydrophobicities of these multivariant derived short antigenic peptides limit their codelivery efficiency in conventional delivery systems. Here, a facile yet effective route is presented to generate monodisperse and stable hollow mesoporous silica nanoparticles (HMSNs) for codelivering of HGP10025-33 and TRP2180-188 , two melanoma-derived peptides with varied hydrophobicities. The HMSNs with large pore size can improve the encapsulation efficiency of both HGP100 and TRP2 after NH2 modification on the inner hollow core and COOH modification in the porous channels. HGP100 and TRP2 loaded HMSNs (HT@HMSNs) are further enveloped within monophosphoryl lipid A adjuvant entrapped lipid bilayer (HTM@HMLBs), for improved stability/biocompatibility and codelivery efficiency of multiple peptides, adjuvant, and enhanced antitumor immune responses. HTM@HMLBs increase uptake by dendritic cells (DCs) and stimulate DCs maturation efficiently, which further induce the activation of both tumor specific CD8(+) and CD4(+) T lymphocytes. Moreover, HTM@HMLBs can significantly inhibit tumor growth and lung metastasis in murine melanoma models with good safety profiles. HMSNs enveloped with lipid bilayers (HMLBs) are believed to be a promising platform for codelivery of multiple peptides, adjuvant, and enhancement of antitumor efficacy of conventional vaccinations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Photodynamic effect of photosensitizer-loaded hollow silica nanoparticles for hepatobiliary malignancies: an in vitro and in vivo study

    NASA Astrophysics Data System (ADS)

    Deng, Xiaofeng; Xiong, Li; Wen, Yu; Liu, Zhongtao; Pei, Dongni; Huang, Yaxun; Miao, Xiongying

    2014-03-01

    Background and aims: Nanoparticles have been explored recently as an efficient delivery system for photosensitizers in photodynamic therapy. In this study, polyhematoporphyrin (C34H38N4NaO5,) was loaded into hollow silica nanoparticles (HSNP) by one-step wet chemical-based synthetic route. We evaluate the efficacy and safety of polyhematoporphyrin-loaded HSNP with hepatobiliary malignant cells and in vivo models. Methods: Human liver cancer, cholangiocarcinoma and gallbladder cancer cells were cultured with the HSNP and cellular viability was determined by MTT assay. Apoptotic and necrotic cells were measured by flow cytometry. Finally, we investigate its effect in vivo. Results: In MTT assay, the cell viability of QBC939, Huh-7, GBC-SD and HepG2 cells of the HSNP was 6.4+/-1.3%, 6.5+/-1.2%, 3.7+/-1.2% and 4.7+/-2.0%, respectively, which were significant different from that of free polyhematoporphyrin 62.4+/-4.7%, 62.5+/-6.0%, 33.4+/-6.5% and 44.3+/-1.9%. Flow cytometry demonstrated the laser-induced cell death with polyhematoporphyrin-loaded HSNP was much more severe. Similarly, in vivo results of each kind of cell revealed 14 days post-photoradiated, tumor sizes of the HSNP group were significantly smaller. Administration of the HSNP without illumination cannot cause killing effect both in vitro and in vivo experiments. Conclusions: HSNP is a desirable delivery system in photodynamic therapy for hepatobiliary malignacies, with improved aqueous solubility, stability and transport efficiency of photosensitizers.

  2. Hollow-spherical Co/N-C nanoparticle as an efficient electrocatalyst used in air cathode microbial fuel cell.

    PubMed

    Yang, Tingting; Li, Kexun; Pu, Liangtao; Liu, Ziqi; Ge, Baochao; Pan, Yajun; Liu, Ying

    2016-12-15

    The hollow-spherical Co/N-C nanoparticle, which is synthesized via a simple hydrothermal reaction followed by heat treatment, is firstly used as electrocatalyst for oxygen reduction reaction (ORR) in air-cathode microbial fuel cell (MFC). The maximum power density of MFC with 10% Co/N-C air-cathode is as high as 2514±59mWm(-2), which is almost 174% higher than the control. The exchange current density (i0) of cathode equipped with 10% Co/N-C is 238% higher than that of untreated AC. While the total resistance of treated samples decreases from 13.017 to 10.255Ω. The intensity ratio of Raman D to G band (ID/IG) decreases from 0.93 (N-C) to 0.73 (Co/N-C), indicating the catalyst forms graphite structure. Both XRD and XPS testify that Co is bonded to N within graphitic sheets and serves as the active sites in ORR. The four-electron pathway of the Co/N-C also plays a crucial role in electrochemical catalytic activity. As a result, it can be expected that the as-synthesized Co/N-C, with extraordinary electro-catalytic performance towards ORR, will be a promising alternative to the state-of-the-art non-precious metal ORR electro-catalysts for electrochemical energy applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. MOF-Derived Hollow Co9 S8 Nanoparticles Embedded in Graphitic Carbon Nanocages with Superior Li-Ion Storage.

    PubMed

    Liu, Jun; Wu, Chao; Xiao, Dongdong; Kopold, Peter; Gu, Lin; van Aken, Peter A; Maier, Joachim; Yu, Yan

    2016-05-01

    Novel electrode materials consisting of hollow cobalt sulfide nanoparticles embedded in graphitic carbon nanocages (HCSP⊂GCC) are facilely synthesized by a top-down route applying room-temperature synthesized Co-based zeolitic imidazolate framework (ZIF-67) as the template. Owing to the good mechanical flexibility and pronounced structure stability of carbon nanocages-encapsulated Co9 S8 , the as-obtained HCSP⊂GCC exhibit superior Li-ion storage. Working in the voltage of 1.0-3.0 V, they display a very high energy density (707 Wh kg(-1) ), superior rate capability (reversible capabilities of 536, 489, 438, 393, 345, and 278 mA h g(-1) at 0.2, 0.5, 1, 2, 5, and 10C, respectively), and stable cycling performance (≈26% capacity loss after long 150 cycles at 1C with a capacity retention of 365 mA h g(-1) ). When the work voltage is extended into 0.01-3.0 V, a higher stable capacity of 1600 mA h g(-1) at a current density of 100 mA g(-1) is still achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Efficient and Stable Red Emissive Carbon Nanoparticles with a Hollow Sphere Structure for White Light-Emitting Diodes.

    PubMed

    Fan, Yi; Guo, Xiaoyang; Zhang, Yongqiang; Lv, Ying; Zhao, Jialong; Liu, Xingyuan

    2016-11-23

    Red-emissive solid-state carbon nanoparticles (CNPs) with a hollow sphere structure for white light-emitting diodes (WLEDs) were designed and synthesized by molecular self-assembly and microwave pyrolysis. Highly ordered graphite-like structures for CNPs were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, and ultraviolet-visible (UV-vis) spectroscopy. The emission mechanism of the red-emissive solid-state CNPs was investigated in detail by steady-state and time-resolved photoluminescence (PL) spectroscopy. The as-prepared CNPs showed a red emission band centered at 620 nm with excitation wavelength independence, indicating uniform size of sp(2) carbon domains in the CNPs. The CNPs also had a PL quantum yield (QY) of 17% under 380 nm excitation. Significantly, the PL QY of the organosilane-functionalized CNPs was 47%, which is the highest value recorded for red-emissive solid-state carbon-based materials under UV-light excitation. More importantly, the red-emissive CNPs exhibited a PL QY of 25% after storage in air for 12 months, indicating their excellent stability. The red-emissive CNP powders were used as environmentally friendly and low-cost phosphors on a commercial 460 nm blue GaN-based chip, and a pure white light with CIE coordinates of (0.35, 0.36) was achieved. The experimental results indicated that the red-emissive CNP phosphors have potential applications in WLEDs.

  5. Continuous, size and shape-control synthesis of hollow silica nanoparticles enabled by a microreactor-assisted rapid mixing process.

    PubMed

    He, Yujuan; Kim, Ki-Joong; Chang, Chih-Hung

    2017-06-09

    Hollow silica nanoparticles (HSNPs) were synthesized using a microreactor-assisted system with a hydrodynamic focusing micromixer. Due to the fast mixing of each precursor in the system, the poly(acrylic acid) (PAA) thermodynamic-locked (TML) conformations were protected from their random aggregations by the immediately initiated growth of silica shells. When altering the mixing time through varying flow rates and flow rate ratios, the different degrees of the aggregation of PAA TML conformations were observed. The globular and necklace-like TML conformations were successfully captured by modifying the PAA concentration at the optimized mixing condition. Uniform HSNPs with an average diameter ∼30 nm were produced from this system. COMSOL numerical models was established to investigate the flow and concentration profiles, and their effects on the formation of PAA templates. Finally, the quality and utility of these uniform HSNPs were demonstrated by the fabrication of antireflective thin films on monocrystalline photovoltaic cells which showed a 3.8% increase in power conversion efficiency.

  6. Continuous, size and shape-control synthesis of hollow silica nanoparticles enabled by a microreactor-assisted rapid mixing process

    NASA Astrophysics Data System (ADS)

    He, Yujuan; Kim, Ki-Joong; Chang, Chih-Hung

    2017-06-01

    Hollow silica nanoparticles (HSNPs) were synthesized using a microreactor-assisted system with a hydrodynamic focusing micromixer. Due to the fast mixing of each precursor in the system, the poly(acrylic acid) (PAA) thermodynamic-locked (TML) conformations were protected from their random aggregations by the immediately initiated growth of silica shells. When altering the mixing time through varying flow rates and flow rate ratios, the different degrees of the aggregation of PAA TML conformations were observed. The globular and necklace-like TML conformations were successfully captured by modifying the PAA concentration at the optimized mixing condition. Uniform HSNPs with an average diameter ∼30 nm were produced from this system. COMSOL numerical models was established to investigate the flow and concentration profiles, and their effects on the formation of PAA templates. Finally, the quality and utility of these uniform HSNPs were demonstrated by the fabrication of antireflective thin films on monocrystalline photovoltaic cells which showed a 3.8% increase in power conversion efficiency.

  7. Hollow mesoporous silica nanoparticles facilitated drug delivery via cascade pH stimuli in tumor microenvironment for tumor therapy.

    PubMed

    Liu, Junjie; Luo, Zhong; Zhang, Jixi; Luo, Tiantian; Zhou, Jun; Zhao, Xiaojing; Cai, Kaiyong

    2016-03-01

    To efficiently deliver anti-cancer drug to tumor site and reduce its toxic side effects on normal tissues, a polyethylene glycol (PEG) shielding and tumor microenvironment triggering cascade pH-responsive hollow mesoporous silica nanoparticles (HMSNs) drug delivery system was fabricated. 3-(3, 4-dihydroxyphenyl) propionic acid (DHPA) functionalized beta-cyclodextrin (β-CD) was grafted onto the surfaces of HMSNs via boronic acid-catechol ester bonds. Then, PEG conjugated adamantane (Ada) was anchored on HMSNs-β-CD nanocarrier via host-gust interaction. Various techniques proved the successful fabrication of the system. The in vitro tests confirmed that the system was biocompatible. After the system permeating into tumor via enhanced permeability and retention (EPR) effect, the benzoic-imine bonds between the PEG and Ada were cleaved under weak acid condition in tumor microenvironment (pH 6.8), while the dissociated PEG protective layer facilitating cellular uptake of HMSNs system. Subsequently, the boronic acid-catechol ester bonds linkers further hydrolyzed under even low endosomal pH (4.5-6.5) condition for intracellular drug delivery, leading to efficient cell apoptosis. The in vivo results demonstrated that drug loaded HMSNs significantly inhibited tumor growth while only with minimal toxic side effects. The strategy provides new insight into the development of new generation of drug delivery carriers triggering by tumor microenvironment.

  8. Water-dispersible Hollow Microporous Organic Network Spheres as Substrate for Electroless Deposition of Ultrafine Pd Nanoparticles with High Catalytic Activity and Recyclability.

    PubMed

    Wang, Zhifang; Chang, Jing; Hu, Yuchen; Yu, Yifu; Guo, Yamei; Zhang, Bin

    2016-11-22

    Microporous organic networks (MONs) have been considered as an ideal substrate to stabilize active metal nanoparticles. However, the development of highly water-dispersible hollow MONs nanostructures which can serve as both the reducing agent and stabilizer is highly desirable but still challenging. Here we report a template-assisted method to synthesize hollow microporous organic network (H-MON) spheres using silica spheres as hard template and 1,3,5-triethynylbenzene as the building blocks through a Glaser coupling reaction. The obtained water-dispersible H-MON spheres bearing sp- and sp(2) -hybridized carbon atoms possess a highly conjugated electronic structure and show low reduction potential; thus, they can serve as a reducing agent and stabilizer for electroless deposition of highly dispersed Pd clusters to form a Pd/H-MON spherical hollow nanocomposite. Benefitting from their high porosity, large surface area, and excellent solution dispersibility, the as-prepared Pd/H-MON hollow nanocomposite exhibits a high catalytic performance and recyclability toward the reduction of 4-nitrophenol. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Dual layer hollow fiber PVDF ultra-filtration membranes containing Ag nano-particle loaded zeolite with longer term anti-bacterial capacity in salt water.

    PubMed

    Shi, Huyan; Xue, Lixin; Gao, Ailin; Zhou, Qingbo

    2016-01-01

    Dual layer polyvinylidene fluoride (PVDF), antibacterial, hollow fiber, ultra-filtration composite membranes with antibacterial particles (silver (Ag) nano-particles loaded zeolite (Z-Ag)) in the outer layer were prepared with high water flux and desired pore sizes. The amounts of Ag(+) released from the composite membranes, freshly made and stored in water and salt solution, were measured. The result indicated that dual layer PVDF antibacterial hollow fiber containing Z-Ag (M-1-Ag) still possessed the ability of continuous release of Ag(+) even after exposure to water with high ionic content, showing a longer term resistance to bacterial adhesion and antibacterial activity than membrane doped with Z-Ag(+) (M-1). Results from an anti-adhesion and bacteria killing test with Escherichia coli supported that the antibacterial efficiency of dual hollow fiber PVDF membranes with Z-Ag was much higher than those with Z-Ag(+) after long time storage in water or exposure to phosphate buffered saline (PBS) solution. This novel hollow fiber membrane may find applications in constructing sea water pretreatment devices with long term antifouling capability for the desalination processes.

  10. IgA response and protection following nasal vaccination of chickens with Newcastle disease virus DNA vaccine nanoencapsulated with Ag@SiO2 hollow nanoparticles

    PubMed Central

    Zhao, Kai; Rong, Guangyu; Hao, Yan; Yu, Lu; Kang, Hong; Wang, Xin; Wang, Xiaohua; Jin, Zheng; Ren, Zhiyu; Li, Zejun

    2016-01-01

    Newcastle disease caused by ND virus (NDV) is a highly contagious disease of birds. Vaccine for effective protection of poultry animals from NDV infection is urgently needed. Mucosal immunity plays a very important role in the antiviral immune response. In this study, a NDV F gene-containing DNA vaccine encapsulated in Ag@SiO2 hollow nanoparticles (pFDNA-Ag@SiO2-NPs) with an average diameter of 500 nm were prepared to assess the mucosal immune response. These nanoparticles exhibited low cytotoxicity and did not destroy the bioactivity of plasmid DNA, which could be expressed in vitro. The plasmid DNA was sustainably released after an initial burst release. In vivo immunization showed that the intranasal immunization of chickens with pFDNA-Ag@SiO2-NPs induced high titers of serum antibody, significantly promoted lymphocyte proliferation and induced higher expression levels of IL-2 and IFN-γ in a dose-dependent manner. These results indicated that the Ag@SiO2 hollow nanoparticles could serve as an efficient and safe delivery carrier for NDV DNA vaccine to induce mucosal immunity. This study has provided promising results for the further development of mucosal vaccines encapsulated in inorganic nanoparticles. PMID:27170532

  11. Surfaces and their effect on the magnetic properties of polycrystalline hollow γ-Mn2O3 and MnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Bah, Mohamed A.; Jaffari, G. Hassnain; Khan, F. A.; Shah, S. Ismat

    2016-07-01

    Manganese oxide nanoparticles were prepared in an inert gas condensation system. X-ray Diffraction (XRD) studies revealed presence of multiple manganese oxide phases while high resolution transmission electron microscopy (HRTEM) showed polycrystalline hollow nanoparticle morphology. The additional inner surface of the hollow nanoparticle directly affect the magnetic properties of these particles. Combined physical structure, electronic structure and magnetic susceptibility analyses led to the conclusion that the prepared nanoparticles are polycrystalline and composed of γ-Mn2O3 and MnO crystallites. Magnetic study found a sharp peak around 38 K with no frequency dependence in the AC susceptibility measurement. Large coercivity (HC) and exchange bias (HEB) fields, up to 11 kOe and 7 kOe, respectively, were observed below the order temperatures. HC and HEB were found to increase and decrease, respectively, as a function of cooling field. Both HC and HEB were found to decrease monotonically as the temperature approached paramagnetic phase transition of the ferrimagnetic component.

  12. IgA response and protection following nasal vaccination of chickens with Newcastle disease virus DNA vaccine nanoencapsulated with Ag@SiO2 hollow nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Rong, Guangyu; Hao, Yan; Yu, Lu; Kang, Hong; Wang, Xin; Wang, Xiaohua; Jin, Zheng; Ren, Zhiyu; Li, Zejun

    2016-05-01

    Newcastle disease caused by ND virus (NDV) is a highly contagious disease of birds. Vaccine for effective protection of poultry animals from NDV infection is urgently needed. Mucosal immunity plays a very important role in the antiviral immune response. In this study, a NDV F gene-containing DNA vaccine encapsulated in Ag@SiO2 hollow nanoparticles (pFDNA-Ag@SiO2-NPs) with an average diameter of 500 nm were prepared to assess the mucosal immune response. These nanoparticles exhibited low cytotoxicity and did not destroy the bioactivity of plasmid DNA, which could be expressed in vitro. The plasmid DNA was sustainably released after an initial burst release. In vivo immunization showed that the intranasal immunization of chickens with pFDNA-Ag@SiO2-NPs induced high titers of serum antibody, significantly promoted lymphocyte proliferation and induced higher expression levels of IL-2 and IFN-γ in a dose-dependent manner. These results indicated that the Ag@SiO2 hollow nanoparticles could serve as an efficient and safe delivery carrier for NDV DNA vaccine to induce mucosal immunity. This study has provided promising results for the further development of mucosal vaccines encapsulated in inorganic nanoparticles.

  13. Seaweed-Derived Route to Fe2O3 Hollow Nanoparticles/N-Doped Graphene Aerogels with High Lithium Ion Storage Performance.

    PubMed

    Liu, Long; Yang, Xianfeng; Lv, Chunxiao; Zhu, Aimei; Zhu, Xiaoyi; Guo, Shaojun; Chen, Chengmeng; Yang, Dongjiang

    2016-03-23

    We developed a nanoscale Kirkendall effect assisted method for simple and scalable synthesis of three-dimensional (3D) Fe2O3 hollow nanoparticles (NPs)/graphene aerogel through the use of waste seaweed biomass as new precursors. The Fe2O3 hollow nanoparticles with an average shell thickness of ∼6 nm are distributed on 3D graphene aerogel, and also act as spacers to make the separation of the neighboring graphene nanosheets. The graphene-Fe2O3 aerogels exhibit high rate capability (550 mA h g(-1) at 5 A g(-1)) and excellent cyclic stability (729 mA h g(-1) at 0.1 A g(-1) for 300 cycles), outperforming all of the reported Fe2O3/graphene hybrid electrodes, due to the hollow structure of the active Fe2O3 NPs and the unique structure of the 3D graphene aerogel framework. The present work represents an important step toward high-level control of high-performance 3D graphene-Fe-based NPs aerogels for maximizing lithium storage with new horizons for important fundamental and technological applications.

  14. Well-dispersed platinum nanoparticles supported on hierarchical nitrogen-doped porous hollow carbon spheres with enhanced activity and stability for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Ma, Li; Gan, Mengyu; Yang, Fangfang; Fu, Shenna; Li, Xiao

    2015-08-01

    Hierarchical nitrogen-doped porous hollow carbon spheres (HNPHCS) with porous-thin mesoporous shell and hollow macroporous core structure have been prepared via in-situ oxidation polymerization method using polyaniline as the precursor. After carbonization at 900 °C, the average diameter of HNPHCS is ca. 140 nm with shell thickness of ∼1 nm. Pt nanoparticles with high dispersion and small size have been successfully deposited on the HNPHCS by a microwave-assisted polyol process to synthesize Pt/HNPHCS catalyst. The obtained samples are characterized by physical characterization and electrochemical measurements. Electrochemical studies reveal that the prepared Pt/HNPHCS catalyst possesses notably higher catalytic activity and CO-tolerance, and better stability toward methanol electrooxidation in comparison with Pt/nitrogen-doped porous carbon and the commercial Pt/C catalysts. It is likely that enhanced catalytic properties of the Pt/HNPHCS could be due to the high dispersion of small Pt nanoparticles, the presence of nitrogen species, developed porous-thin mesoporous shell and hollow macroporous core structure of support HNPHCS. As a result, the as-developed Pt/HNPHCS present attractive advantages for the application in fuel cell electrocatalyst.

  15. Direct observation of magnetic metastability in individual iron nanoparticles.

    PubMed

    Balan, Ana; Derlet, Peter M; Rodríguez, Arantxa Fraile; Bansmann, Joachim; Yanes, Rocio; Nowak, Ulrich; Kleibert, Armin; Nolting, Frithjof

    2014-03-14

    X-ray photoemission electron microscopy combined with x-ray magnetic circular dichroism is used to study the magnetic properties of individual iron nanoparticles with sizes ranging from 20 down to 8 nm. While the magnetocrystalline anisotropy of bulk iron suggests superparamagnetic behavior in this size range, ferromagnetically blocked particles are also found at all sizes. Spontaneous transitions from the blocked state to the superparamagnetic state are observed in single particles and suggest that the enhanced magnetic energy barriers in the ferromagnetic particles are due to metastable, structurally excited states with unexpected life times.

  16. Interaction Induced High Catalytic Activities of CoO Nanoparticles Grown on Nitrogen-Doped Hollow Graphene Microspheres for Oxygen Reduction and Evolution Reactions

    PubMed Central

    Jiang, Zhong-Jie; Jiang, Zhongqing

    2016-01-01

    Nitrogen doped graphene hollow microspheres (NGHSs) have been used as the supports for the growth of the CoO nanoparticles. The nitrogen doped structure favors the nucleation and growth of the CoO nanoparticles and the CoO nanoparticles are mostly anchored on the quaternary nitrogen doped sites of the NGHSs with good monodispersity since the higher electron density of the quaternary nitrogen favors the nucleation and growth of the CoO nanoparticles through its coordination and electrostatic interactions with the Co2+ ions. The resulting NGHSs supported CoO nanoparticles (CoO/NGHSs) are highly active for the oxygen reduction reaction (ORR) with activity and stability higher than the Pt/C and for the oxygen evolution reaction (OER) with activity and stability comparable to the most efficient catalysts reported to date. This indicates that the CoO/NGHSs could be used as efficient bi-functional catalysts for ORR and OER. Systematic analysis shows that the superior catalytic activities of the CoO/NGHSs for ORR and OER mainly originate from the nitrogen doped structure of the NGHSs, the small size of the CoO nanoparticles, the higher specific and electroactive surface area of the CoO/NGHSs, the good electric conductivity of the CoO/NGHSs, the strong interaction between the CoO nanoparticles and the NGHSs, etc. PMID:27255562

  17. Hollow and Concave Nanoparticles via Preferential Oxidation of the Core in Colloidal Core/Shell Nanocrystals

    PubMed Central

    2014-01-01

    Hollow and concave nanocrystals find applications in many fields, and their fabrication can follow different possible mechanisms. We report a new route to these nanostructures that exploits the oxidation of Cu2–xSe/Cu2–xS core/shell nanocrystals with various etchants. Even though the Cu2–xSe core is encased in a thick Cu2–xS shell, the initial effect of oxidation is the creation of a void in the core. This is rationalized in terms of diffusion of Cu+ ions and electrons from the core to the shell (and from there to the solution). Differently from the classical Kirkendall effect, which entails an imbalance between in-diffusion and out-diffusion of two different species across an interface, the present mechanism can be considered as a limiting case of such effect and is triggered by the stronger tendency of Cu2–xSe over Cu2–xS toward oxidation and by fast Cu+ diffusion in copper chalcogenides. As the oxidation progresses, expansion of the inner void erodes the entire Cu2–xSe core, accompanied by etching and partial collapse of the shell, yielding Cu2–xSySe1–y concave particles. PMID:24866716

  18. SiO(2) /TiO(2) hollow nanoparticles decorated with Ag nanoparticles: enhanced visible light absorption and improved light scattering in dye-sensitized solar cells.

    PubMed

    Hwang, Sun Hye; Shin, Dong Hoon; Yun, Juyoung; Kim, Chanhoi; Choi, Moonjung; Jang, Jyongsik

    2014-04-07

    Hollow SiO2 /TiO2 nanoparticles decorated with Ag nanoparticles (NPs) of controlled size (Ag@HNPs) were fabricated in order to enhance visible-light absorption and improve light scattering in dye-sensitized solar cells (DSSCs). They exhibited localized surface plasmon resonance (LSPR) and the LSPR effects were significantly influenced by the size of the Ag NPs. The absorption peak of the LSPR band dramatically increased with increasing Ag NP size. The LSPR of the large Ag NPs mainly increased the light absorption at short wavelengths, whereas the scattering from the SiO2 /TiO2 HNPs improved the light absorption at long wavelengths. This enabled the working electrode to use the full solar spectrum. Furthermore, the SiO2 layer thickness was adjusted to maximize the LSPR from the Ag NPs and avoid corrosion of the Ag NPs by the electrolyte. Importantly, the power conversion efficiency (PCE) increased from 7.1 % with purely TiO2 -based DSSCs to 8.1 % with HNP-based DSSCs, which is an approximately 12 % enhancement and can be attributed to greater light scattering. Furthermore, the PCEs of Ag@HNP-based DSSCs were 11 % higher (8.1 vs. 9.0 %) than the bare-HNP-based DSSCs, which can be attributed to LSPR. Together, the PCE of Ag@HNP-based DSSCs improved by a total of 27 %, from 7.1 to 9.0 %, due to these two effects. This comparative research will offer guidance in the design of multifunctional nanomaterials and the optimization of solar-cell performance.

  19. Facile manipulation of individual carbon nanotubes assisted by inorganic nanoparticles.

    PubMed

    Zhang, Rufan; Ning, Zhiyuan; Zhang, Yingying; Xie, Huanhuan; Zhang, Qiang; Qian, Weizhong; Chen, Qing; Wei, Fei

    2013-07-21

    Carbon nanotubes (CNTs) are promising building blocks for nanodevices owing to their superior electrical, thermal and mechanical properties. One of the key issues for their study and application is the efficient location, transfer and manipulation of individual CNTs. In this contribution, we show that the manipulation of individual suspended CNTs has been carried out on the macroscale under low magnification, using inorganic nanoparticles (NPs) as indicators. Individual ultralong CNTs can be stretched, cut, and transferred to other substrates for further characterization. Complicated CNT structures were fabricated under optical microscopes. The inorganic NPs also facilitate the manipulation and characterization of individual CNTs under a scanning electron microscope with low magnification. Additionally, the irregular NPs deposited on suspended CNTs can also make the outer shell of the suspended CNTs display torsion or rotation around the inner shells when placed in a flow of gas, making the fabrication of CNT-NP-hybrid-based nanodevices feasible. Our results demonstrate the extraordinary capability of this manipulation technique for individual CNTs, enabled by decoration with inorganic NPs.

  20. Fabrication of Au@Ag core/shell nanoparticles decorated TiO2 hollow structure for efficient light-harvesting in dye-sensitized solar cells.

    PubMed

    Yun, Juyoung; Hwang, Sun Hye; Jang, Jyongsik

    2015-01-28

    Improving the light-harvesting properties of photoanodes is promising way to enhance the power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs). We synthesized Au@Ag core/shell nanoparticles decorated TiO2 hollow nanoparticles (Au@Ag/TiO2 HNPs) via sol-gel reaction and chemical deposition. The Au@Ag/TiO2 HNPs exhibited multifunctions from Au@Ag core/shell NPs (Au@Ag CSNPs) and TiO2 hollow nanoparticles (TiO2 HNPs). These Au@Ag CSNPs exhibited strong and broadened localized surface plasmon resonance (LSPR), together with a large specific surface area of 129 m(2) g(-1), light scattering effect, and facile oxidation-reduction reaction of electrolyte from TiO2 HNPs, which resulted in enhancement of the light harvesting. The optimum PCE of η = 9.7% was achieved for the DSSCs using photoanode materials based on TiO2 HNPs containing Au@Ag/TiO2 HNPs (0.2 wt % Au@Ag CSNPs with respect to TiO2 HNPs), which outperformed by 24% enhancement that of conventional photoanodes formed using P25 (η = 7.8%).

  1. Aerosol-based self-assembly of nanoparticles into solid or hollow mesospheres.

    PubMed

    Wu, Chunwei; Lee, Donggeun; Zachariah, Michael R

    2010-03-16

    The ability to manipulate miniature object assemblies with well-defined structures in a controllable manner is of both fundamental and applied interests. This article presents general strategies, with nanospheres as building blocks, to engineer mesoscopic spherical architectures via a process of evaporation-driven self-assembly in aerosol droplets. Uniform magnetite iron oxide (Fe(3)O(4), approximately 2.5 nm), silica (SiO(2), approximately 15 nm), and cupric oxide (CuO, approximately 6 nm) nanoparticles were employed for the structural architecture. The method enables microstructural control of the self-assembled mesospheres by tuning the competition between solvent evaporation and solute diffusion within an aerosol droplet. Furthermore, we have demonstrated it is technically feasible to assemble surface-dissimilar binary components, i.e., charge-stabilized hydrophilic SiO(2) and hydrophobic ligand-capped Fe(3)O(4) nanoparticles, into hierarchical composite structures, which could be extended for preparation of more hierarchically textured materials with desired functionalities.

  2. Confined NaAlH4 nanoparticles inside CeO2 hollow nanotubes towards enhanced hydrogen storage.

    PubMed

    Gao, Qili; Xia, Guanglin; Yu, Xuebin

    2017-09-22

    NaAlH4 has been widely regarded as a potential hydrogen storage material due to its favorable thermodynamics and high energy density. The high activation energy barrier and high dehydrogenation temperature, however, significantly hinder its practical application. In this paper, CeO2 hollow nanotubes (HNTs) prepared by a simple electrospinning technique are adopted as functional scaffolds to support NaAlH4 nanoparticles (NPs) towards advanced hydrogen storage performance. The nanoconfined NaAlH4 inside CeO2 HNTs, synthesized via the infiltration of molten NaAlH4 into the CeO2 HNTs under high hydrogen pressure, exhibited significantly improved dehydrogenation properties compared with both bulk and ball-milled CeO2 HNTs-catalyzed NaAlH4. The onset dehydrogenation temperature of the NaAlH4@CeO2 composite was reduced to below 100 °C, with only one main dehydrogenation peak appearing at 130 °C, which is 120 °C and 50 °C lower than for its bulk counterpart and for the ball-milled CeO2 HNTs-catalyzed NaAlH4, respectively. Moreover, ∼5.09 wt% hydrogen could be released within 30 min at 180 °C, while only 1.6 wt% hydrogen was desorbed from the ball-milled NaAlH4 under the same conditions. This significant improvement is mainly attributed to the synergistic effects contributed by the CeO2 HNTs, which could act as not only a structural scaffold to fabricate and confine the NaAlH4 NPs, but also as an effective catalyst to enhance the hydrogen storage performance of NaAlH4.

  3. Elucidating the Mechanisms Driving the Aging of Porous Hollow PtNi/C Nanoparticles by Means of COads Stripping.

    PubMed

    Asset, Tristan; Chattot, Raphael; Drnec, Jakub; Bordet, Pierre; Job, Nathalie; Maillard, Frederic; Dubau, Laetitia

    2017-08-02

    The oxygen reduction reaction (ORR) activity of Pt-alloy electrocatalysts depends on (i) the strain/ligand effects induced by the non-noble metal (3d-transition metal or a rare-earth element) alloyed to Pt, (ii) the orientation of the catalytic surfaces, and (iii) the density of structural defects (SDs) (e.g., vacancies, voids, interconnections). These SDs influence the "generalized" coordination number of Pt atoms, the Pt-alloy lattice parameter, and thus the adsorption strength of the ORR intermediates (O*, OH*, OOH*). Here, we discuss a set of parameters derived from COads stripping measurements and the Rietveld refinement of X-ray diffraction (XRD) patterns, aiming to show how the leaching of the non-noble metal and the density of SDs influence the ORR activity of porous hollow PtNi/C nanoparticles (PH-PtNi/C NPs). PH-PtNi/C NPs were aged at T = 353 K in an Ar-saturated 0.1 M HClO4 electrolyte during 20 000 potential cycles between E = 0.6 and 1.0 V versus the reversible hydrogen electrode, with an intermediate characterization after 5000 cycles. The losses in the ORR specific activity were attributed to the dissolution of Ni atoms (modifying strain/ligand effects) and to the increase of the crystallite size (dXRD), resulting in a diminution of the density of grain boundaries. In agreement with the Gibbs-Thompson equation, the electrocatalysts that presented larger crystallites (dXRD > 3 nm) were far more stable than the ones with the smallest crystallites (dXRD < 2 nm). We also observed that performing intermediate characterizations (in an O2-saturated electrolyte) results in activity losses for the ORR.

  4. Magnetic and Mössbauer spectroscopy studies of hollow microcapsules made of silica-coated CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Lyubutin, I. S.; Gervits, N. E.; Starchikov, S. S.; Lin, Chun-Rong; Tseng, Yaw-Teng; Shih, Kun-Yauh; Wang, Cheng-Chien; Chen, I.-Han; Ogarkova, Yu L.; Korotkov, N. Yu

    2016-01-01

    The hollow microcapsules made of silica-coated CoFe2O4 nanoparticles were synthesized using chemical co-precipitation, followed by the sol-gel method. Poly(MMA-co-MAA) microspheres were used as a core template which can be completely removed after annealing at 450 °C. The microcapsules are monodisperse with the outer diameter of about 450 nm and the thickness of the shell is about 50 nm. The nanoparticles of Co-ferrite are single crystalline. The size of the nanoparticles and magnetic properties of CoFe2O4/SiO2 hollow spheres can be tuned with high accuracy at the annealing stage. The Mössbauer data indicate that CoFe2O4 ferrite is an inverse spinel, in which Fe3+ and Co2+ ions are distributed in both octahedral and tetrahedral sites with the inversion degree close to the bulk ferrite value. At low temperature the CoFe2O4/SiO2 nanoparticles are in antiferromagnetic (AFM) state due to the canted or triangular magnetic structure. Under heating in the applied field, AFM structure transforms to the ferrimagnetic (FM) structure, that increases the magnetization. The Mössbauer data revealed that the small size CoFe2O4/SiO2 particles do not show superparamagnetic behavior, but they transit to the paramagnetic state by the jump-like first order magnetic transition (JMT). This effect is a specific property of the magnetic nanoparticles isolated by inert material. The suggested method of synthesis can be modified with various bio-ligands on the silane surface, and such materials can find many applications in diagnostics and bio-separation.

  5. Hierarchical flower-like carbon nanosheet assembly with embedded hollow NiCo2O4 nanoparticles for high- performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Fang, Ling; Qiu, Huajun; Luo, Pan; Li, Wenxiang; Zhang, Huijuan; Wang, Yu

    2017-05-01

    The fabrication of closely bounded metal oxides/carbon hybrid nano-structures is significant for its use in energy-related areas especially lithium ion batteries (LIBs). In this research, a flower-like carbon sphere with hollow NiCo2O4 nanoparticles encapsulated inside the carbon thin nanopetal is fabricated by using a mixed basic carbonate nickel and cobalt sphere as the precursor and templates followed by the outer carbon membrane covering and two-step calcination process. When tested as anode material for LIBs, this flower-like carbon-based hybrid sphere demonstrates a significantly enhanced reversible capacity and cycling stability at various current densities.

  6. Ultrafast magnetization dynamics of cobalt nanoparticles and individual ferromagnetic dots

    NASA Astrophysics Data System (ADS)

    Bigot, Jean-Yves

    2009-03-01

    The ultrafast magnetization dynamics of magnetic materials can be investigated using femtosecond laser pulses to perform femtosecond magneto-optical Kerr and Faraday measurements [1]. In this talk, we will focus on the magnetization dynamics of cobalt nanoparticles which are either ferromagnetic or super-paramagnetic at room temperature and on the dynamics of individual ferromagnetic dots. In the first case (Co nanoparticles), we will demonstrate that the magnetization dynamics preceding the fluctuations over the anisotropy energy barrier is coherent but exhibits a strongly damped precession [2]. These results, which have been obtained with a three dimensional analysis of the magnetization vector [3] will be discussed in the context of the N'eel-Brown models involving the gyromagnetic character of the magnetization. We will also examine the dynamics of self-organized supra-crystals of cobalt nanoparticles [4]. In the second case, we will present the ultrafast magnetization dynamics of individual ferromagnetic dots (CoPt3, Permalloy, Nickel) made either by e-beam lithography or induced optically on thin films deposited on sapphire and glass substrates. The technique employed is the magneto-optical pump probe imaging (MOPPI) which allows performing time resolved magneto-optical Kerr images with with spatial and temporal resolutions of 300 nm and 150 fs [5]. The study of the demagnetization of the dots for different laser intensities shows that it is possible to write and read ultrafast monodomains on thin films. [3pt] [1] E. Beaurepaire, J.-C. Merle, A. Daunois, J.-Y. Bigot Phys. Rev. Lett., 76, 4250 (1996) [0pt] [2] L.H.F. Andrade, A. Laraoui, M. Vomir, D. Muller, J.-P. Stoquert, C. Estournès, E. Beaurepaire, J.-Y. Bigot Phys. Rev. Lett. 97, 127401 (2006). [0pt] [3] M. Vomir, L. H.F. Andrade, L. Guidoni, E. Beaurepaire, J.-Y. Bigot Phys. Rev. Lett. 94, 237601 (2005). [0pt] [4] I. Lisiecki, V. Halt'e, C. Petit, M.-P. Pileni, J.-Y. Bigot Adv. Mater., 20, 4176 (2008

  7. Palladium Nanoparticles Encapsulated in Hollow Titanosilicate Spheres as an Ideal Nanoreactor for One-pot Oxidation.

    PubMed

    Kuwahara, Yasutaka; Ando, Takahiro; Kango, Hiroto; Yamashita, Hiromi

    2017-01-05

    One-pot reaction involving Pd-catalyzed H2 O2 production from H2 and O2 and Ti-catalyzed successive oxidation with H2 O2 in a single reaction vessel is an alluring strategy for the synthesis of targeted chemicals in terms of sustainability and economic competitiveness. In this study, a yolk-shell nanostructured catalyst, consisting of Pd nanoparticles (NPs) with core diameter ca. 4.0 nm and a porous titanosilicate shell of ca. 15 nm thickness, was fabricated by using an oil-in-water (O/W) microemulsion-based interfacial self-assembly approach. Compared with prototype titanosilicate-supported Pd NP catalysts and core-shell structured analogues, the yolk-shell nanostructured catalyst exhibited superior catalytic efficiency in the one-pot oxidation reaction of sulfides with 83 % H2 O2 utilization efficiency, because of the productive effect of the titanosilicate shell in limiting the diffusion of H2 O2 generated in situ over the encapsulated Pd NPs and the efficient access of the H2 O2 to the neighboring active Ti sites. This study provides promising avenues for the development of multifunctional nanostructured catalysts that are useful for one-pot reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Controllable synthesis of recyclable core-shell γ-Fe2O3@SnO2 hollow nanoparticles with enhanced photocatalytic and gas sensing properties.

    PubMed

    Zhang, Shaofeng; Ren, Feng; Wu, Wei; Zhou, Juan; Xiao, Xiangheng; Sun, Lingling; Liu, Ying; Jiang, Changzhong

    2013-06-07

    Composite materials containing different components with well-defined structures may cooperatively enhance their performance and extend their applications. In this work, core-shell γ-Fe2O3@SnO2 hollow nanoparticles (NPs) were synthesized by a low-cost and environmentally friendly seed-mediated hydrothermal method. Firstly, the γ-Fe2O3 hollow NPs were synthesized by a template-free method. Then they were used as the cores for the growth of SnO2 shells. The thickness of the shell can be simply tailored by controlling the reaction time. Various techniques, including SEM, XRD, TEM and HRTEM, were employed to investigate the morphology, structure and formation process of the special core-shell hollow structures. The combination of magnetic semiconductor (γ-Fe2O3) and wide band-gap semiconductor (SnO2) endowed them with great potential to be used as recyclable photocatalysts. Experiments on photo-degradation of Rhodamin B (RhB) dye in the presence of the samples showed that the hybrid structures possessed higher photocatalytic activities than the monomer structures of SnO2 and γ-Fe2O3 materials indicating a strong coupling enhancement effect between the wide and narrow band-gap semiconductors. Moreover, the gas sensing tests of the γ-Fe2O3@SnO2 hollow NPs revealed that the samples exhibited fast response and recovery rates, which enable them to be promising materials for gas sensors.

  9. Maghemite nanoparticle-decorated hollow fiber electromembrane extraction combined with dispersive liquid-liquid microextraction for determination of thymol from Carum copticum.

    PubMed

    Khajeh, Mostafa; Pedersen-Bjergaard, Stig; Bohlooli, Mousa; Barkhordar, Afsaneh; Ghaffari-Moghaddam, Mansour

    2017-03-01

    A novel technique using maghemite nanoparticle-decorated hollow fibers to assist electromembrane extraction is proposed. Electromembrane extraction combined with dispersive liquid-liquid microextraction (EME-DLLME) was applied for the extraction of thymol from Carum copticum, followed by gas chromatography with flame ionization detection (GC-FID). The use of maghemite nanoparticle-decorated hollow fibers was found to improve the extraction efficiency of thymol significantly. Important operational parameters, including pH of acceptor phase, extraction time, voltage and temperature, were investigated and optimized. At the optimal conditions, linearity in the range 4-1800 µg L(-1) with a determination coefficient of 0.9996 was obtained. The limit of detection was 0.11 µg L(-1) (S/N = 3) and the pre-concentration factor was 200. The intra- and inter-day precision was 5.9 and 2.2% respectively. The intra- and inter-day accuracy was higher than 93.6%. The results indicated that EME-DLLME/GC-FID is a useful technique for the extraction and determination of thymol in C copticum. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. One-shot deep-UV pulsed-laser-induced photomodification of hollow metal nanoparticles for high-density data storage on flexible substrates.

    PubMed

    Wan, Dehui; Chen, Hsuen-Li; Tseng, Shao-Chin; Wang, Lon A; Chen, Yung-Pin

    2010-01-26

    In this paper, we report a new optical data storage method: photomodification of hollow gold nanoparticle (HGN) monolayers induced by one-shot deep-ultraviolet (DUV) KrF laser recording. As far as we are aware, this study is the first to apply HGNs in optical data storage and also the first to use a recording light source for the metal nanoparticles (NPs) that is not a surface plasmon resonance (SPR) wavelength. The short wavelength of the recording DUV laser improved the optical resolution dramatically. We prepared HGNs exhibiting two absorbance regions: an SPR peak in the near-infrared (NIR) region and an intrinsic material extinction in the DUV region. A single pulse from a KrF laser heated the HGNs and transformed them from hollow structures to smaller solid spheres. This change in morphology for the HGNs was accompanied by a significant blue shift of the SPR peak. Employing this approach, we demonstrated its patterning ability with a resolving power of a half-micrometer (using a phase mask) and developed a readout method (using a blue-ray laser microscope). Moreover, we prepared large-area, uniform patterns of monolayer HGNs on various substrates (glass slides, silicon wafers, flexible plates). If this spectral recording technique could be applied onto thin flexible tapes, the recorded data density would increase significantly relative to that of current rigid discs (e.g., compact discs).

  11. Dual-Confined Sulfur Nanoparticles Encapsulated in Hollow TiO2 Spheres Wrapped with Graphene for Lithium-Sulfur Batteries.

    PubMed

    Fan, Haining; Tang, Qunli; Chen, Xiaohua; Fan, Binbin; Chen, Shanliang; Hu, Aiping

    2016-10-20

    Lithium-sulfur (Li-S) batteries are attractive owing to their higher energy density and lower cost compared with the universally used lithium-ion batteries (LIBs), but there are some problems that stop their practical use, such as low utilization and rapid capacity-fading of the sulfur cathode, which is mainly caused by the shuttle effect, and the uncontrollable deposition of lithium sulfide species. Herein, we report the design and fabrication of dual-confined sulfur nanoparticles that were encapsulated inside hollow TiO2 spheres; the encapsulated nanoparticles were prepared by a facile hydrolysis process combined with acid etching, followed by "wrapping" with graphene (G-TiO2 @S). In this unique composite architecture, the hollow TiO2 spheres acted as effective sulfur carriers by confining the polysulfides and buffering volume changes during the charge-discharge processes by means of physical force from the hollow spheres and chemical binding between TiO2 and the polysulfides. Moreover, the graphene-wrapped skin provided an effective 3D conductive network to improve the electronic conductivity of the sulfur cathode and, at the same time, to further suppress the dissolution of the polysulfides. As results, the G-TiO2 @S hybrids exhibited a high and stable discharge capacity of up to 853.4 mA h g(-1) over 200 cycles at 0.5 C (1 C=1675 mA g(-1) ) and an excellent rate capability of 675 mA h g(-1) at a current rate of 2 C; thus, G-TiO2 @S holds great promise as a cathode material for Li-S batteries.

  12. Synthesis and characterization of bioactive conjugated near-infrared fluorescent proteinoid-poly(L-lactic acid) hollow nanoparticles for optical detection of colon cancer.

    PubMed

    Kolitz-Domb, Michal; Corem-Salkmon, Enav; Grinberg, Igor; Margel, Shlomo

    2014-01-01

    Colon cancer is one of the major causes of death in the Western world. Early detection significantly improves long-term survival for patients with colon cancer. Near-infrared (NIR) fluorescent nanoparticles are promising candidates for use as contrast agents for tumor detection. Using NIR offers several advantages for bioimaging compared with fluorescence in the visible spectrum: lower autofluorescence of biological tissues and lower absorbance and, consequently, deeper penetration into biomatrices. The present study describes the preparation of new NIR fluorescent proteinoid-poly(L-lactic acid) (PLLA) nanoparticles. For this purpose, a P(EF-PLLA) random copolymer was prepared by thermal copolymerization of L-glutamic acid (E) with L-phenylalanine (F) and PLLA. Under suitable conditions, this proteinoid-PLLA copolymer can self-assemble to nanosized hollow particles of relatively narrow size distribution. This self-assembly process was used for encapsulation of the NIR dye indocyanine green. The encapsulation process increases significantly the photostability of the dye. These NIR fluorescent nanoparticles were found to be stable and nontoxic. Leakage of the NIR dye from these nanoparticles into phosphate-buffered saline containing 4% human serum albumin was not detected. Tumor-targeting ligands such as peanut agglutinin and anticarcinoembryonic antigen antibodies were covalently conjugated to the surface of the NIR fluorescent P(EF-PLLA) nanoparticles, thereby increasing the fluorescent signal of tumors with upregulated corresponding receptors. Specific colon tumor detection by the NIR fluorescent P(EF-PLLA) nanoparticles was demonstrated in a chicken embryo model. In future work, we plan to extend this study to a mouse model, as well as to encapsulate a cancer drug such as doxorubicin within these nanoparticles for therapeutic applications.

  13. Synthesis and characterization of bioactive conjugated near-infrared fluorescent proteinoid-poly(L-lactic acid) hollow nanoparticles for optical detection of colon cancer

    PubMed Central

    Kolitz-Domb, Michal; Corem-Salkmon, Enav; Grinberg, Igor; Margel, Shlomo

    2014-01-01

    Colon cancer is one of the major causes of death in the Western world. Early detection significantly improves long-term survival for patients with colon cancer. Near-infrared (NIR) fluorescent nanoparticles are promising candidates for use as contrast agents for tumor detection. Using NIR offers several advantages for bioimaging compared with fluorescence in the visible spectrum: lower autofluorescence of biological tissues and lower absorbance and, consequently, deeper penetration into biomatrices. The present study describes the preparation of new NIR fluorescent proteinoid-poly(L-lactic acid) (PLLA) nanoparticles. For this purpose, a P(EF-PLLA) random copolymer was prepared by thermal copolymerization of L-glutamic acid (E) with L-phenylalanine (F) and PLLA. Under suitable conditions, this proteinoid-PLLA copolymer can self-assemble to nanosized hollow particles of relatively narrow size distribution. This self-assembly process was used for encapsulation of the NIR dye indocyanine green. The encapsulation process increases significantly the photostability of the dye. These NIR fluorescent nanoparticles were found to be stable and nontoxic. Leakage of the NIR dye from these nanoparticles into phosphate-buffered saline containing 4% human serum albumin was not detected. Tumor-targeting ligands such as peanut agglutinin and anticarcinoembryonic antigen antibodies were covalently conjugated to the surface of the NIR fluorescent P(EF-PLLA) nanoparticles, thereby increasing the fluorescent signal of tumors with upregulated corresponding receptors. Specific colon tumor detection by the NIR fluorescent P(EF-PLLA) nanoparticles was demonstrated in a chicken embryo model. In future work, we plan to extend this study to a mouse model, as well as to encapsulate a cancer drug such as doxorubicin within these nanoparticles for therapeutic applications. PMID:25382975

  14. Challenges in nanoelectrochemical and nanomechanical studies of individual anisotropic gold nanoparticles.

    PubMed

    Knittel, P; Bibikova, O; Kranz, C

    2016-11-01

    The characterization of nanoparticles and the correlation of physical properties such as size and shape to their (electro)chemical properties is an emerging field, which may facilitate future optimization and tuning of devices involving nanoparticles. This requires the investigation of individual particles rather than obtaining averaged information on large ensembles. Here, we present atomic force - scanning electrochemical microscopy (AFM-SECM) measurements of soft conductive PDMS substrates modified with gold nanostars (i.e., multibranched Au nanoparticles) in peak force tapping mode, which next to the electrochemical characterization provides information on the adhesion, deformation properties, and Young's modulus of the sample. AFM-SECM probes with integrated nanodisc electrodes (radii < 50 nm) have been used for these measurements. Most studies attempting to map individual nanoparticles have to date been performed at spherical nanoparticles, rather than highly active asymmetric gold nanoparticles. Consequently, this study discusses challenges during the nanocharacterization of individual anisotropic gold nanostars.

  15. Black hollow silicon oxide nanoparticles as highly efficient photothermal agents in the second near-infrared window for in vivo cancer therapy.

    PubMed

    Yu, Xujiang; Yang, Kai; Chen, Xiaoyuan; Li, Wanwan

    2017-10-01

    Semiconductor nanoparticles with localized surface plasmon resonance (LSPR) have gained increasing interest due to their potential for use in nanomedicine, particularly in the area of cancer photothermal therapy. In this study, we have synthesized non-stoichiometric hollow silicon oxide nanoparticles (H-SiOx NPs) using a magnesiothermic reduction process. The black NPs generated a desired LSPR in the second near-infrared (NIR-II) window, as was demonstrated by a photothermal conversion efficiency of up to 48.6% at 1064 nm. Such an efficiency is the highest reported among the noble metal and semiconductor-based NPs as NIR-II PTT photothermal agents. In addition, H-SiOx NPs exhibited excellent in vivo photoacoustic (PA) imaging properties, and thus can be used for highly efficient in vivo cancer treatment via irradiation with a 1064 nm laser, even at 0.6 W cm(-2). The findings described are the first to demonstrate the existence of LSPR in non-stoichiometric silicon-based nanoparticles with a low-toxicity degradation pathway for in vivo application, and provide new insights towards understanding the role of new semiconductor nanoparticles in nanomedicine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Graphene Oxide Wrapped SiO2 /TiO2 Hollow Nanoparticles Loaded with Photosensitizer for Photothermal and Photodynamic Combination Therapy.

    PubMed

    Jang, Yoonsun; Kim, Sojin; Lee, Seungae; Yoon, Chang-Min; Lee, Inkyu; Jang, Jyongsik

    2017-03-13

    Graphene oxide (GO) enwrapped SiO2 /TiO2 hollow nanoparticles (GO-HNP) are synthesized by the Stöber method and used as a nanocarrier for loading protoporphyrin IX (PpIX). The synthesized nanoparticle has high dispersibility and high uniformity in diameter (ca. 50 nm). Furthermore, this nanoparticle shows λ=808 nm laser induced PpIX release properties (photoinduced "on-off" drug-release system). GO-HNP-PpIX is employed for inducing both photothermal therapy (PTT) and photodynamic therapy (PDT). The synergic effect of PTT and PDT exhibits powerful anticancer properties. When cancer cells are treated with GO-HNP-PpIX and irradiated with both visible light and a NIR laser, the cell viability drops dramatically to 2.5 %, which is an anticancer effect approximately 13 times higher than that obtained in a previous study. Moreover, no significant cell damage has been observed under λ=808 nm laser irradiation. The GO-HNP-PpIX system suggests an external stimuli-responsive efficient anticancer treatment effect toward human breast cancer cells.

  17. Fabrication of novel nitrogen-doped graphene-hollow AuPd nanoparticle hybrid films for the highly efficient electrocatalytic reduction of H2O2.

    PubMed

    Shang, Lei; Zeng, Baizhao; Zhao, Faqiong

    2015-01-14

    Hollow AuPd (hAuPd) alloy nanoparticles (NPs) were prepared through simultaneous reduction of HAuCl4 and Na2PdCl4 using Co NPs as sacrificial template (i.e., reductant). Then, the hAuPd NPs were assembled on nitrogen-doped graphene (NG) to prepare an NG-hAuPd hybrid film. The obtained NG-hAuPd composite showed higher electrocatalytic activity toward the reduction of H2O2, compared with graphene-hAuPd hybrid, NG-solid AuPd hybrid, and hAuPd NPs. The enhanced performance was related to the hollow structure of hAuPd NPs and the synergistic effect between NG and hAuPd NPs. Under optimum conditions, the NG-hAuPd hybrid film showed a linear response to H2O2 in the range of 0.1-20 μM, with a sensitivity of 5095.5 μA mM(-1) cm(-2)and a comparable detection limit of 0.02 μM (S/N = 3). These results demonstrated that the NG-hAuPd composite was a promising electrocatalytic material for constructing sensors, etc.

  18. Separation of silver nanoparticles by hollow fiber flow field-flow fractionation: Addition of tannic acid into carrier liquid as a modifier.

    PubMed

    Saenmuangchin, Rattaporn; Mettakoonpitak, Jaruwan; Shiowatana, Juwadee; Siripinyanond, Atitaya

    2015-10-09

    A homemade hollow fiber flow-field fractionation (Hf-FlFFF) coupled with inductively coupled plasma mass spectrometry (ICP-MS) was set-up for silver nanoparticles (AgNPs) separation by using polysulfone hollow fiber membrane (30,000 MW cutoff) as a separation channel. Tannic acid and citrate stabilized AgNPs were synthesized and introduced into Hf-FlFFF. The effects of carrier liquid and stabilizing agent on retention behavior of AgNPs were investigated. Different elution behaviors were observed as follows: with 0.02% (w/v) FL-70, all of AgNPs were eluted from Hf-FlFFF but differences in retention behaviors were observed for AgNPs with tannic acid and citrate stabilizing agents; and with 30mM TRIS buffer, only tannic acid stabilized AgNPs were eluted from Hf-FlFFF, whereas citrate stabilized AgNPs were not eluted. In this work, tannic acid addition into carrier liquid was proposed to modify the surface of AgNPs and the surface of the membrane, and thereby adjusting the retention behaviors of AgNPs. Various concentrations of tannic acid were added into FL-70 and TRIS buffer. With the use of 0.1mM tannic acid in 30mM TRIS buffer as the carrier liquid, retention behaviors of both tannic acid stabilized- and citrate stabilized-AgNPs were similar and with similar fractionation recovery.

  19. Highly catalytic hollow palladium nanoparticles derived from silver@silver-palladium core-shell nanostructures for the oxidation of formic acid

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Cui, Penglei; He, Hongyan; Liu, Hui; Yang, Jun

    2014-12-01

    Hollow Palladium (hPd) nanoparticles (NPs) are prepared via a simple and mild successive method. Firstly, core-shell NPs with silver (Ag) cores and silver-palladium (Ag-Pd) alloy shells are synthesized in aqueous phase by galvanic replacement reaction (GRR) between Ag NPs and Pd2+ ion precursors. Saturated aqueous sodium chloride (NaCl) solution was then employed to remove the Ag component from the core and shell regions of core-shell Ag@Ag-Pd NPs, resulting in the formation of hPd NPs with shrunk sizes in comparison with their core-shell parents. Specifically, the hPd NPs exhibit superior catalytic activity and durability for catalyzing the oxidation of formic acid, compared with the Pd NPs reduced by NaBH4 in aqueous solution and commercial Pd/C catalyst from Johnson Matthey, mainly due to the large electrochemically active surface areas of the hollow particles. In addition, The Ag component in core-shell Ag@Ag-Pd NPs has an unfavorable influence on catalytic activity of NPs for formic acid oxidation. However, the durability could be improved due to the electron donating effect from Ag to Pd atoms in the core-shell NPs.

  20. Degradable Hollow Mesoporous Silicon/Carbon Nanoparticles for Photoacoustic Imaging-Guided Highly Effective Chemo-Thermal Tumor Therapy in Vitro and in Vivo

    PubMed Central

    Zhang, Jinfeng; Zhang, Jun; Li, Wenyue; Chen, Rui; Zhang, Zhenyu; Zhang, Wenjun; Tang, Yongbing; Chen, Xiaoyuan; Liu, Gang; Lee, Chun-Sing

    2017-01-01

    The development of nanoscaled theranostic agents for cancer combination therapies has received intensive attention in recent years. In this report, a degradable hollow mesoporous PEG-Si/C-DOX NP is designed and fabricated for pH-responsive, photoacoustic imaging-guided highly effective chemo-thermal combination therapy. The intrinsic hollow mesoporous structure endows the as-synthesized nanoparticles (NPs) with a high drug loading capacity (31.1%). Under NIR (808 nm) irradiation, the photothermal conversion efficiency of the Si/C NPs is as high as 40.7%. Preferential accumulation of the PEG-Si/C-DOX NPs around tumor tissue was demonstrated with photoacoustic images. Cellular internalization of the NPs and release of the DOX in nuclei are shown with fluorescent images. With efficient NIR photothermal conversion and high DOX loading capacity, the PEG-Si/C-DOX NPs are demonstrated to have remarkable cancer-cell-killing ability and to achieve complete in vivo tumor elimination via combinational chemo-thermal therapy. Last but not least, the NPs show good biodegradability and biosafety, making them a promising candidate for multifunctional drug delivery and cancer theranostic. PMID:28839460

  1. Au nanoparticles/hollow molybdenum disulfide microcubes based biosensor for microRNA-21 detection coupled with duplex-specific nuclease and enzyme signal amplification.

    PubMed

    Shuai, Hong-Lei; Huang, Ke-Jing; Chen, Ying-Xu; Fang, Lin-Xia; Jia, Meng-Pei

    2017-03-15

    An ultrasensitive electrochemical biosensor for detecting microRNAs is fabricated based on hollow molybdenum disulfide (MoS2) microcubes. Duplex-specific nuclease, enzyme and electrochemical-chemical-chemical redox cycling are used for signal amplification. Hollow MoS2 microcubes constructed by ultrathin nanosheets are synthesized by a facile template-assisted strategy and used as supporting substrate. For biosensor assembling, biotinylated ssDNA capture probes are first immobilized on Au nanoparticles (AuNPs)/MoS2 modified electrode in order to combine with streptavidin-conjugated alkaline phosphatase (SA-ALP). When capture probes hybridize with miRNAs, duplex-specific nuclease cleaves the formative duplexes. At the moment, the biotin group strips from the electrode surface and SA-ALP is incapacitated to attach onto electrode. Then, ascorbic acids induce the electrochemical-chemical-chemical redox cycling to produce electrochemical response in the presence of ferrocene methanol and tris (2-carboxyethyl) phosphine. Under optimum conditions, the proposed biosensor shows a good linear relationship between the current variation and logarithm of the microRNAs concentration ranging from 0.1fM to 0.1pM with a detection limit of 0.086fM (S/N=3). Furthermore, the biosensor is successfully applied to detect target miRNA-21 in human serum samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Fabrication of barium- and strontium-doped silica/titania hollow nanoparticles and their synergetic effects on promoting neuronal differentiation by activating ERK and p38 pathways.

    PubMed

    Kim, Sojin; Jang, Yoonsun; Oh, Wan-Kyu; Kim, Chanhoi; Jang, Jyongsik

    2014-07-01

    Pristine, barium-doped, and strontium-doped hollow nanoparticles (p-HNPs, Ba-HNP, and Sr-HNP; HNPs) are prepared by sonication-mediated etching and redeposition (SMER) method and alkali-earth-metal hydroxide solution treatment. The HNPs are investigated to facilitate synergetic neuronal differentiation through alkali-earth-metal doping and in conjunction with nerve growth factor (NGF). PC12 cells are used as model cells for neuronal differentiation. The differentiation efficiency is improved in the presence of the HNPs+NGF, and the neurite length is in the order of Sr-HNP+NGF > Ba-HNP+NGF > p-HNP+NGF > NGF. Silica/titania have increasing effect on both differentiation efficiency and neurite length, and doped barium/strontium influences additional elongation of the average neurite length. Take advantage of hollow structure, NGF is encapsulated into HNPs, and they are further applied for directly inducing differentiation. The maximum differentiation efficiency is 67% in presence of the NGF-encapsulated Sr-HNP, which was 1.3 times higher than previous research. Furthermore, the neurite length is also 2.7 times higher than MnO2 decorated poly(3,4-ethylenedioxythiophene) nanoellipsoids. Ba- and Sr-HNP may offer a possibility for novel application of metal-hybrid nanomaterials for cell differentiation, and can be expanded to other cellular applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Improved optical properties of silica/UV-cured polymer composite films made of hollow silica nanoparticles with a hierarchical structure for light diffuser film applications.

    PubMed

    Suthabanditpong, W; Takai, C; Fuji, M; Buntem, R; Shirai, T

    2016-06-28

    This study successfully improved the optical properties of silica/UV-cured polymer composite films made of hollow silica nanoparticles having a hierarchical structure. The particles were synthesized by an inorganic particle method, which involves two steps of sol-gel silica coating around the template and acid dissolution removal of the template. The pH of the acid was varied to achieve different hierarchical structures of the particles. The morphologies and surface properties of the obtained particles were characterized before dispersing in a UV-curable acrylate monomer solution to prepare dispersions for fabricating light diffuser films. The optical properties and the light diffusing ability of the fabricated films were studied. The results revealed that the increased pH of the acid provides the particles with a thinner shell, a larger hollow interior and a higher specific surface area. Moreover, the films with these particles exhibit a better light diffusing ability and a higher diffuse transmittance value when compared to those without particles. Therefore, the composite films can be used as light diffuser films, which is an essential part of optical diffusers in the back-light unit of LCDs. In addition, utilizing the hierarchical particles probably reduces the number of back-light units in the LCDs leading to energy-savings and subsequently lightweight LCDs.

  4. Palladium nanoparticles dispersed on the hollow aluminosilicate microsphere@hierarchical γ-AlOOH as an excellent catalyst for the hydrogenation of nitroarenes under ambient conditions

    NASA Astrophysics Data System (ADS)

    Tian, Meng; Cui, Xueliang; Dong, Chunxu; Dong, Zhengping

    2016-12-01

    In this study, a novel catalyst has been prepared through supporting Pd nanoparticles (NPs) on the surface of boehmite (γ-AlOOH) based hollow aluminosilicate microspheres (HAM@γ-AlOOH). The prepared Pd/HAM@γ-AlOOH catalyst has high catalytic activity for the hydrogenation of nitroarenes to their corresponding amino derivatives with high yields at ambient conditions. The high catalytic efficiency is attributed to the large pore size of the flower-like hierarchical flakes structure of HAM@γ-AlOOH, that gives Pd NPs on the support surface easy accessibility. Moreover, the Pd/HAM@γ-AlOOH catalyst can also be easily recycled at least five times without obvious decrease of catalytic activity. This work may provide a useful method for the fabrication of supported noble metal NP-based catalysts on the surface of mesoporous hierarchical structure materials with easy accessibility and superior activity.

  5. Fabrication of hollow carbon nanospheres introduced with Fe and N species immobilized palladium nanoparticles as catalysts for the semihydrogenation of phenylacetylene under mild reaction conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wang, Fushan; Li, Xinlin; Liu, Yansheng; Liu, Yang; Ma, Jiantai

    2017-05-01

    Palladium nanoparticles immobilized on hollow carbon nanospheres introduced with both Fe and N species, denoted as Pd/Fe-N/C, have been designed as an efficient, heterogeneous, environmentally friendly catalyst for the semihydrogenation of phenylacetylene in liquid-phase under mild conditions (298 K, H2 1 atm) without any additive. A high selectivity towards styrene (higher than 96.2%) was achieved with the total conversion of phenylacetylene within 80 min. The synergistic effect of doped N and Fe with Pd might be an important influence on improving the catalytic performance. Moreover, the Pd/Fe-N/C could be easily recycled by centrifugation and is reusable without obvious decrease of catalytic activity and selectivity. Therefore, the Pd/Fe-N/C nanocatalyst is highly attractive as selective hydrogenation heterogeneous catalyst for important industrial reactions.

  6. Delivery of miR-375 and doxorubicin hydrochloride by lipid-coated hollow mesoporous silica nanoparticles to overcome multiple drug resistance in hepatocellular carcinoma

    PubMed Central

    Xue, Huiying; Yu, Zhaoyang; Liu, Yong; Yuan, Weigang; Yang, Tan; You, Jia; He, Xingxing; Lee, Robert J; Li, Lei; Xu, Chuanrui

    2017-01-01

    Multidrug resistance (MDR) due to overexpression of P-glycoprotein (P-gp) is a major obstacle that hinders the treatment of hepatocellular carcinoma (HCC). It has been shown that miR-375 inhibits P-gp expression via inhibition of astrocyte elevated gene-1 (AEG-1) expression in HCC, and induces apoptosis in HCC cells by targeting AEG-1 and YAP1. In this study, we prepared lipid-coated hollow mesoporous silica nanoparticles (LH) containing doxorubicin hydrochloride (DOX) and miR-375 (LHD/miR-375) to deliver the two agents into MDR HCC cells in vitro and in vivo. We found that LHD/miR-375 overcame drug efflux and delivered miR-375 and DOX into MDR HepG2/ADR cells or HCC tissues. MiR-375 delivered by LHD/miR-375 was taken up through phagocytosis and clathrin- and caveolae-mediated endocytosis. Following release from late endosomes, it repressed the expression of P-gp in HepG2/ADR cells. The synergistic effects of miR-375 and hollow mesoporous silica nanoparticles (HMSN) resulted in a profound increase in the uptake of DOX by the HCC cells and prevented HCC cell growth. Enhanced antitumor effects of LHD/miR-375 were also validated in HCC xenografts and primary tumors; however, no significant toxicity was observed. Mechanistic studies also revealed that miR-375 and DOX exerted a synergistic antitumor effect by promoting apoptosis. Our study illustrates that delivery of miR-375 using HMSN is a feasible approach to circumvent MDR in the management of HCC. It, therefore, merits further development for potential clinical application. PMID:28769563

  7. Na-ion Storage Performances of FeSex and Fe2O3 Hollow Nanoparticles-Decorated Reduced Graphene Oxide Balls prepared by Nanoscale Kirkendall Diffusion Process

    PubMed Central

    Park, Gi Dae; Cho, Jung Sang; Lee, Jung-Kul; Kang, Yun Chan

    2016-01-01

    Uniquely structured FeSex-reduced graphene oxide (rGO) composite powders, in which hollow FeSex nanoparticles are uniformly distributed throughout the rGO matrix, were prepared by spray pyrolysis applying the nanoscale Kirkendall diffusion process. Iron oxide-rGO composite powders were transformed into FeSex-rGO composite powders by a two-step post-treatment process. Metallic Fe nanocrystals formed during the first-step post-treatment process were transformed into hollow FeSex nanoparticles during the selenization process. The FeSex-rGO composite powders had mixed crystal structures of FeSe and FeSe2 phases. A rGO content of 33% was estimated from the TG analysis of the FeSex-rGO composite powders. The FeSex-rGO composite powders had superior sodium-ion storage properties compared to those of the Fe2O3-rGO composite powders with similar morphological characteristics. The discharge capacities of the FeSex- and Fe2O3-rGO composite powders for the 200th cycle at a constant current density of 0.3 A g−1 were 434 and 174 mA h g−1, respectively. The FeSex-rGO composite powders had a high discharge capacity of 311 mA h g−1 for the 1000th cycle at a high current density of 1 A g−1. PMID:26928312

  8. Core-shell-corona polymeric micelles as a versatile template for synthesis of inorganic hollow nanospheres.

    PubMed

    Sasidharan, Manickam; Nakashima, Kenichi

    2014-01-21

    Hollow, inorganic nanoscale capsules have many applications, from the delivery of encapsulated products for cosmetic and medicinal purposes to use as lightweight composite materials. Early methods for producing inorganic hollow nanospheres using hard templates suffered from low product yield and shell weakness upon template removal. In the past decade, researchers have turned to amphiphilic copolymers to synthesize hollow nanostructures and ordered mesoporous materials. Amphiphilic molecules self-assemble into well-defined nanostructures including spherical micelles. Micelles formed from simple, two-component AB diblock and ABA triblock copolymers, however, have been difficult to work with to construct inorganic hollow nanoparticles, because the corona of the micelle, which serves as the template for the shell, becomes unstable as it absorbs inorganic shell precursors, causing aggregates to form. Newly developed, three-component ABC triblock copolymers may solve this problem. They provide nanoassemblies with more diverse morphological and functional features than AB diblock and ABA triblock copolymers. Micelles formed from ABC triblock copolymers in selective solvents that dissolve only one or two of the blocks provide templates for these improved nanoassemblies. By manipulating individual polymer blocks, one can "encode" additional features at the molecular level. For instance, modifying the functional groups or substitution patterns of the blocks allows better morphological and size control. Insights into polymer self-assembly gained over years of work in our group have set the stage to systematically engineer inorganic spherical hollow nanoparticles using ABC triblock copolymers. In this Account, we report our recent progress in producing diverse, inorganic hollow spherical nanospheres from asymmetric triblock copolymeric micelles with core-shell-corona architecture as templates. We discuss three classes of polymeric micelles-with neutral, cationic, and anionic

  9. Pt skin coated hollow Ag-Pt bimetallic nanoparticles with high catalytic activity for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Fu, Tao; Huang, Jianxing; Lai, Shaobo; Zhang, Size; Fang, Jun; Zhao, Jinbao

    2017-10-01

    The catalytic activity and stability of electrocatalyst is critical for the commercialization of fuel cells, and recent reports reveal the great potential of the hollow structures with Pt skin coat for developing high-powered electrocatalysts due to their highly efficient utilization of the Pt atoms. Here, we provide a novel strategy to prepare the Pt skin coated hollow Ag-Pt structure (Ag-Pt@Pt) of ∼8 nm size at room temperature. As loaded on the graphene, the Ag-Pt@Pt exhibits a remarkable mass activity of 0.864 A/mgPt (at 0.9 V, vs. reversible hydrogen electrode (RHE)) towards oxygen reduction reaction (ORR), which is 5.30 times of the commercial Pt/C catalyst, and the Ag-Pt@Pt also shows a better stability during the ORR catalytic process. The mechanism of this significant enhancement can be attributed to the higher Pt utilization and the unique Pt on Ag-Pt surface structure, which is confirmed by the density functional theory (DFT) calculations and other characterization methods. In conclusion, this original work offers a low-cost and environment-friendly method to prepare a high active electrocatalyst with cheaper price, and this work also discloses the correlation between surface structures and ORR catalytic activity for the hollow structures with Pt skin coat, which can be instructive for designing novel advanced electrocatalysts for fuel cells.

  10. Hollow core-shell structured silicon@carbon nanoparticles embed in carbon nanofibers as binder-free anodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Yanli; Hu, Yi; Shen, Zhen; Chen, Renzhong; He, Xia; Zhang, Xiangwu; Li, Yongqiang; Wu, Keshi

    2017-02-01

    Silicon is regarded as one of the most promising candidates for lithium-ion battery anodes owing to its large theoretical energy density (about 4200 mAh g-1) and low working potential (vs. Li/Li+). However, its practical application is limited by structure degradation and a comparatively poor capacity retention caused by large volume changes during cycling. In this study, we have prepared a novel nanofiber form of silicon/carbon with hollow core-shell structured silicon@carbon (Si@C) nanoparticles embedded in carbon nanofibers. Voids between the silicon nanoparticle (SiNP) core and carbon shell help to accommodate the volume expansion associated with the lithiation/delithiation process in a working electrode and allow formation of a stable solid electrolyte interphase (SEI) film. The obtained electrodes exhibited good cycle performance with a high reversible capacity of 1020.7 mAh g-1 after 100 cycles at a current density of 0.2 A g-1, and also delivered excellent cycling performance at a high current density of 3.2 A g-1. The design of this new structure provides a potential method for developing other functional composite anode materials with high reversible capacities and long-term cycle stabilities.

  11. Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-Newtonian nanofluid in a hollow porous vessel.

    PubMed

    Hatami, M; Hatami, J; Ganji, D D

    2014-02-01

    In this paper, heat transfer and flow analysis for a non-Newtonian third grade nanofluid flow in porous medium of a hollow vessel in presence of magnetic field are simulated analytically and numerically. Blood is considered as the base third grade non-Newtonian fluid and gold (Au) as nanoparticles are added to it. The viscosity of nanofluid is considered a function of temperature as Vogel's model. Least Square Method (LSM), Galerkin method (GM) and fourth-order Runge-Kutta numerical method (NUM) are used to solve the present problem. The influences of the some physical parameters such as Brownian motion and thermophoresis parameters on non-dimensional velocity and temperature profiles are considered. The results show that increasing the thermophoresis parameter (N(t)) caused an increase in temperature values in whole domain and an increase in nanoparticles concentration just near the inner wall of vessel. Furthermore by increasing the MHD parameter, velocity profiles decreased due to magnetic field effect. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Sequential co-delivery of miR-21 inhibitor followed by burst release doxorubicin using NIR-responsive hollow gold nanoparticle to enhance anticancer efficacy.

    PubMed

    Ren, Yu; Wang, Ruirui; Gao, Lizhang; Li, Ke; Zhou, Xuan; Guo, Hua; Liu, Chaoyong; Han, Donglin; Tian, Jianguo; Ye, Qing; Hu, Ye Tony; Sun, Duxin; Yuan, Xubo; Zhang, Ning

    2016-04-28

    Previous literature and our study showed the delivery sequence of microRNA inhibitor and chemotherapeutic compounds achieve distinct therapeutic anticancer efficacy. Yet, it is challenging to use nanoparticle to achieve sequential drug delivery. In the current study, we designed sequential co-delivery system using a near-infrared-radiation (NIR) responsive hollow gold nanoparticle (HGNPs) to achieve sequential release of microRNA inhibitor (miR-21i)/doxirubicin(Dox) in order to achieve synergistic efficacy. PAMAM modified HGNPs was used to encapsulate miR-21i and Dox. Upon entering tumor cells, miRNA-21i was released first to sensitize the cancer cells, the subsequent burst release of Dox was achieved by NIR triggered collapse of HGNPs. This sequential delivery of miRNA-21i and Dox produced a synergistic apoptotic response, thereby enhancing anticancer efficacy by 8-fold and increasing anti-cancer stem cell activity by 50-fold. The sequential delivery of miR-21i and Dox using HGNPs under NIR after intravenous administration showed high tumor accumulation and significantly improved efficacy, which was 4-fold compared to free Dox group. These data suggested that the sequential co-delivery of miR-21i followed by burst release Dox using NIR-responsive HGNPs sensitized cancer cells to chemotherapeutic compound, which provided a novel concept for co-delivery miRNA inhibitors and chemotherapeutic compounds to enhance their efficacy.

  13. Hollow Retroreflectors

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A hollow retroreflector is a mirror-like instrument that reflects light and other radiations back to the source. After developing a hollow retroreflector for NASA's Apollo-Soyuz mission, PLX, Inc. continued to expand the technology and develop a variety of retroreflector systems. The Lateral Transfer Hollow Retroreflector maintains precise separation, at any wavelength, of incoming and existing beams regardless of their orientation. It can be used as an instrument or as a component of an optical system. In the laboratory, it offers a new efficient means of beam positioning. In other applications, it connects laser resonators, aligns telescope mirrors and is useful in general boresighting and alignment.

  14. Quantification of ZnO nanoparticle uptake, distribution, and dissolution within individual human macrophages.

    PubMed

    James, Simon A; Feltis, Bryce N; de Jonge, Martin D; Sridhar, Manoj; Kimpton, Justin A; Altissimo, Matteo; Mayo, Sheridan; Zheng, Changxi; Hastings, Andrew; Howard, Daryl L; Paterson, David J; Wright, Paul Frank A; Moorhead, Gareth F; Turney, Terence W; Fu, Jing

    2013-12-23

    The usefulness of zinc oxide (ZnO) nanoparticles has led to their wide distribution in consumer products, despite only a limited understanding of how this nanomaterial behaves within biological systems. From a nanotoxicological viewpoint the interaction(s) of ZnO nanoparticles with cells of the immune system is of specific interest, as these nanostructures are readily phagocytosed. In this study, rapid scanning X-ray fluorescence microscopy was used to assay the number ZnO nanoparticles associated with ∼1000 individual THP-1 monocyte-derived human macrophages. These data showed that nanoparticle-treated cells endured a 400% elevation in total Zn levels, 13-fold greater than the increase observed when incubated in the presence of an equitoxic concentration of ZnCl2. Even after excluding the contribution of internalized nanoparticles, Zn levels in nanoparticle treated cells were raised ∼200% above basal levels. As dissolution of ZnO nanoparticles is critical to their cytotoxic response, we utilized a strategy combining ion beam milling, X-ray fluorescence and scanning electron microscopy to directly probe the distribution and composition of ZnO nanoparticles throughout the cellular interior. This study demonstrated that correlative photon and ion beam imaging techniques can provide both high-resolution and statistically powerful information on the biology of metal oxide nanoparticles at the single-cell level. Our approach promises ready application to broader studies of phenomena at the interface of nanotechnology and biology.

  15. Hybrid dielectric waveguide spectroscopy of individual plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Cuadra, J.; Verre, R.; Wersäll, M.; Krückel, C.; Torres-Company, V.; Antosiewicz, T. J.; Shegai, T.

    2017-07-01

    Plasmonics is a mature scientific discipline which is now entering the realm of practical applications. Recently, significant attention has been devoted to on-chip hybrid devices where plasmonic nanoantennas are integrated in standard Si3N4 photonic waveguides. Light in these systems is usually coupled at the waveguide apexes by using multiple objectives and/or tapered optical fibers, rendering the analysis of spectroscopic signals a complicated task. Here, we show how by using a grating coupler and a low NA objective, quantitative spectroscopic information similar to standard dark-field spectroscopy can be obtained at the single-nanoparticle level. This technology may be useful for enabling single-nanoparticle studies in non-linear excitation regimes and/or in complex experimental environments, thus enriching the toolbox of nanophotonic methods.

  16. SERS of Individual Nanoparticles on a Mirror: Size Does Matter, but so Does Shape

    PubMed Central

    2016-01-01

    Coupling noble metal nanoparticles by a 1 nm gap to an underlying gold mirror confines light to extremely small volumes, useful for sensing on the nanoscale. Individually measuring 10 000 of such gold nanoparticles of increasing size dramatically shows the different scaling of their optical scattering (far-field) and surface-enhanced Raman emission (SERS, near-field). Linear red-shifts of the coupled plasmon modes are seen with increasing size, matching theory. The total SERS from the few hundred molecules under each nanoparticle dramatically increases with increasing size. This scaling shows that maximum SERS emission is always produced from the largest nanoparticles, irrespective of tuning to any plasmonic resonances. Changes of particle facet with nanoparticle size result in vastly weaker scaling of the near-field SERS, without much modifying the far-field, and allows simple approaches for optimizing practical sensing. PMID:27223478

  17. DNA-mediated construction of hollow upconversion nanoparticles for protein harvesting and near-infrared light triggered release.

    PubMed

    Zhou, Li; Chen, Zhaowei; Dong, Kai; Yin, Meili; Ren, Jinsong; Qu, Xiaogang

    2014-04-16

    A simple DNA-mediated solvothermal method has been developed for the construction of well-defined hollow UNPs that can be used for a new paradigm to realize NIR light-controlled non-invasive protein release. In vitro studies show that the UNPs are capable of the transportation of enzyme into living cells. Intracellular NIR triggers the release of enzymes with high spatial and temporal precision and the released enzyme also retains its biological activity. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Single peptide ligand-functionalized uniform hollow mesoporous silica nanoparticles achieving dual-targeting drug delivery to tumor cells and angiogenic blood vessel cells

    PubMed Central

    Liu, Yang; Chen, Qing; Xu, Ming; Guan, Guannan; Hu, Wen; Liang, Ying; Zhao, Xiuli; Qiao, Mingxi; Chen, Dawei; Liu, Hao

    2015-01-01

    Background The purpose of this study was to construct hollow mesoporous silica nanoparticles (HMSN) decorated with tLyp-1 peptide (tHMSN) for dual-targeting drug delivery to tumor cells and angiogenic blood vessel cells. Methods HMSN were synthesized de novo using a novel cationic surfactant-assisted selective etching strategy and were then modified with tLyp-1. Multiple methods, including transmission electron microscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, bicinchoninic acid assay, and nitrogen adsorption and desorption isotherms, were used to characterize the tHMSN. Doxorubicin were chosen as the model cargo, and the uptake of doxorubicin-loaded tHMSN into MDA-MB-231 cells and human umbilical vein endothelial cells (HUVECs), as models of tumor cells and tumor neovascular endothelial cells, respectively, were observed and detected by confocal laser scanning microscopy and flow cytometry. An in vitro pharmacodynamic study and a study of the mechanism via which the nanoparticles were endocytosed were also performed. Results HMSN with a highly uniform size and well oriented mesopores were synthesized. After tHMSN were characterized, enhanced uptake of the cargo carried by tHMSN into MDA-MB-231 cells and HUVECs compared with that of their unmodified counterparts was validated by confocal laser scanning microscopy and flow cytometry at the qualitative and quantitative levels, respectively. Further, the pharmacodynamic study suggested that, compared with their unmodified counterparts, doxorubicin-loaded tHMSN had an enhanced inhibitory effect on MDA-MB-231 cells and HUVECs in vitro. Finally, a preliminary study on the mechanism by which the nanoparticles were endocytosed indicated that the clathrin-mediated endocytosis pathway has a primary role in the transport of tHMSN into the cytoplasm. Conclusion tHMSN might serve as an effective active targeting nanocarrier strategy for anti-mammary cancer drug delivery. PMID:25834425

  19. Single peptide ligand-functionalized uniform hollow mesoporous silica nanoparticles achieving dual-targeting drug delivery to tumor cells and angiogenic blood vessel cells.

    PubMed

    Liu, Yang; Chen, Qing; Xu, Ming; Guan, Guannan; Hu, Wen; Liang, Ying; Zhao, Xiuli; Qiao, Mingxi; Chen, Dawei; Liu, Hao

    2015-01-01

    The purpose of this study was to construct hollow mesoporous silica nanoparticles (HMSN) decorated with tLyp-1 peptide (tHMSN) for dual-targeting drug delivery to tumor cells and angiogenic blood vessel cells. HMSN were synthesized de novo using a novel cationic surfactant-assisted selective etching strategy and were then modified with tLyp-1. Multiple methods, including transmission electron microscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, bicinchoninic acid assay, and nitrogen adsorption and desorption isotherms, were used to characterize the tHMSN. Doxorubicin were chosen as the model cargo, and the uptake of doxorubicin-loaded tHMSN into MDA-MB-231 cells and human umbilical vein endothelial cells (HUVECs), as models of tumor cells and tumor neovascular endothelial cells, respectively, were observed and detected by confocal laser scanning microscopy and flow cytometry. An in vitro pharmacodynamic study and a study of the mechanism via which the nanoparticles were endocytosed were also performed. HMSN with a highly uniform size and well oriented mesopores were synthesized. After tHMSN were characterized, enhanced uptake of the cargo carried by tHMSN into MDA-MB-231 cells and HUVECs compared with that of their unmodified counterparts was validated by confocal laser scanning microscopy and flow cytometry at the qualitative and quantitative levels, respectively. Further, the pharmacodynamic study suggested that, compared with their unmodified counterparts, doxorubicin-loaded tHMSN had an enhanced inhibitory effect on MDA-MB-231 cells and HUVECs in vitro. Finally, a preliminary study on the mechanism by which the nanoparticles were endocytosed indicated that the clathrin-mediated endocytosis pathway has a primary role in the transport of tHMSN into the cytoplasm. tHMSN might serve as an effective active targeting nanocarrier strategy for anti-mammary cancer drug delivery.

  20. A novel platform for high sensitivity determination of PbP2a based on gold nanoparticles composited graphitized mesoporous carbon and doxorubicin loaded hollow gold nanospheres.

    PubMed

    Yang, Juan; Shen, Huawei; Zhang, Xing; Tao, Yiyi; Xiang, Hua; Xie, Guoming

    2016-03-15

    Gold nanoparticles composite graphitized mesoporous carbon nanoparticles (GMCs@AuNPs) biocomposite with the signal amplification capability was successfully synthesized for use in an immunoassay for penicillin binding protein 2 a (PbP2a). The polyamidoamine (PAMAM) dendrimers were first electrodeposited onto the Au electrode can greatly increase the amount of the captured antibodies. Protein A was used to properly orientate immobilized antibody against PbP2a, which strongly improved specificity of the antigen-antibody binding. Hollow gold nanospheres (HGNPs) as effective nanocarriers have been synthesized by sacrificial galvanic replacement of cobalt nanoparticles capable of encapsulating doxorubicin (Dox). The obtained HGNPs@Dox bionanocomposite was used for further loading of detection antibody (Ab2) to form the HGNPs@Dox@Ab2 bioconjugate. Then, the differential pulse voltammetric signals related to the concentration of PbP2a for Dox could be detected, and the immunosensor exhibited a detection limit as low as 0.65 pg mL(-1) (at an S/N ratio of 3). The proposed method with an excellent differentiation ability showed high sensitivity and specificity. The morphologies and electrochemistry properties of the composites were investigated by scanning electron microscopy, electrochemical characterization, UV-visible absorption spectroscopy, fluorescence spectrophotometer and Malvern laser particle size analyzer, respectively. In addition, the basic approach described here would be applicable towards developing biodetection assays against other important targets. Moreover, the bioconjugate of HGNPs@Dox is also a promising pattern to delivery Dox in vivo for anticancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Orientation-preserving transfer and directional light scattering from individual light-bending nanoparticles.

    PubMed

    Zhang, Yu; Barhoumi, Aoune; Lassiter, J Britt; Halas, Naomi J

    2011-04-13

    A nanocup, or semishell, is an asymmetric plasmonic "Janus" nanoparticle with electric and magnetic plasmon modes; the latter scatters light in a direction controlled by nanoparticle orientation, making it the nanoscale analog of a parabolic antenna. Here we report a method for transferring nanocups from their growth substrate to oxide-terminated substrates that precisely preserves their three-dimensional orientation, enabling their use as nanophotonic components. This enables us to selectively excite and probe the electric and magnetic plasmon modes of individual nanocups, showing how the scattered light depends on the direction of incoming light and the orientation of this nanoparticle antenna.

  2. Orientation-Preserving Transfer and Directional Light Scattering from Individual Light-Bending Nanoparticles

    SciTech Connect

    Zhang, Yu; Barhoumi, Aoune; Lassiter, J. Britt; Halas, Naomi J.

    2011-04-13

    A nanocup, or semishell, is an asymmetric plasmonic “Janus” nanoparticle with electric and magnetic plasmon modes; the latter scatters light in a direction controlled by nanoparticle orientation, making it the nanoscale analog of a parabolic antenna. Here we report a method for transferring nanocups from their growth substrate to oxide-terminated substrates that precisely preserves their three-dimensional orientation, enabling their use as nanophotonic components. This enables us to selectively excite and probe the electric and magnetic plasmon modes of individual nanocups, showing how the scattered light depends on the direction of incoming light and the orientation of this nanoparticle antenna.

  3. Wet air oxidation of formic acid using nanoparticle-modified polysulfone hollow fibers as gas-liquid contactors.

    PubMed

    Hogg, Seth R; Muthu, Satish; O'Callaghan, Michael; Lahitte, Jean-Francois; Bruening, Merlin L

    2012-03-01

    Catalytic wet air oxidation (CWAO) using membrane contactors is attractive for remediation of aqueous pollutants, but previous studies of even simple reactions such as formic acid oxidation required multiple passes through tubular ceramic membrane contactors to achieve high conversion. This work aims to increase single-pass CWAO conversions by using polysulfone (PS) hollow fibers as contactors to reduce diffusion distances in the fiber lumen. Alternating adsorption of polycations and citrate-stabilized platinum colloids in fiber walls provides catalytically active PS hollow fibers. Using a single PS fiber, 50% oxidation of a 50 mM formic acid feed solution results from a single pass through the fiber lumen (15 cm length) with a solution residence time of 40 s. Increasing the number of PS fibers to five while maintaining the same volumetric flow rate leads to over 90% oxidation, suggesting that further scale up in the number of fibers will facilitate high single pass conversions at increased flow rates. The high conversion compared to prior studies with ceramic fibers stems from shorter diffusion distances in the fiber lumen. However, the activity of the Pt catalyst is 20-fold lower than in previous ceramic fibers. Focusing the Pt deposition near the fiber lumen and limiting pore wetting to this region might increase the activity of the catalyst. © 2012 American Chemical Society

  4. Hollow Microporous Organic Capsules

    PubMed Central

    Li, Buyi; Yang, Xinjia; Xia, Lingling; Majeed, Muhammad Irfan; Tan, Bien

    2013-01-01

    Fabrication of hollow microporous organic capsules (HMOCs) could be very useful because of their hollow and porous morphology, which combines the advantages of both microporous organic polymers and non-porous nanocapsules. They can be used as storage materials or reaction chambers while supplying the necessary path for the design of controlled uptake/release systems. Herein, the synthesis of HMOCs with high surface area through facile emulsion polymerization and hypercrosslinking reactions, is described. Due to their tailored porous structure, these capsules possessed high drug loading efficiency, zero-order drug release kinetics and are also demonstrated to be used as nanoscale reactors for the prepareation of nanoparticles (NPs) without any external stabilizer. Moreover, owing to their intrinsic biocompatibility and fluorescence, these capsules exhibit promising prospect for biomedical applications. PMID:23820511

  5. Direct visualization of hydrogen absorption dynamics in individual palladium nanoparticles

    NASA Astrophysics Data System (ADS)

    Narayan, Tarun C.; Hayee, Fariah; Baldi, Andrea; Leen Koh, Ai; Sinclair, Robert; Dionne, Jennifer A.

    2017-01-01

    Many energy storage materials undergo large volume changes during charging and discharging. The resulting stresses often lead to defect formation in the bulk, but less so in nanosized systems. Here, we capture in real time the mechanism of one such transformation--the hydrogenation of single-crystalline palladium nanocubes from 15 to 80 nm--to better understand the reason for this durability. First, using environmental scanning transmission electron microscopy, we monitor the hydrogen absorption process in real time with 3 nm resolution. Then, using dark-field imaging, we structurally examine the reaction intermediates with 1 nm resolution. The reaction proceeds through nucleation and growth of the new phase in corners of the nanocubes. As the hydrogenated phase propagates across the particles, portions of the lattice misorient by 1.5%, diminishing crystal quality. Once transformed, all the particles explored return to a pristine state. The nanoparticles' ability to remove crystallographic imperfections renders them more durable than their bulk counterparts.

  6. Highly uniform distribution of Pt nanoparticles on N-doped hollow carbon spheres with enhanced durability for oxygen reduction reaction

    DOE PAGES

    Shi, Qiurong; Zhu, Chengzhou; Engelhard, Mark H.; ...

    2017-01-19

    Here, carbon-supported Pt nanostructures currently exhibited great potential in polymer electrolyte membrane fuel cells. Nitrogen-doped hollow carbon spheres (NHCSs) with extra low density and high specific surface area are promising carbon support for loading Pt NPs. The doped heteroatom of nitrogen could not only contribute to the active activity for the oxygen reduction reaction (ORR), but also shows a strong interaction with Pt NPs for entrapping them from dissolution/migration. This synergetic effect/interaction resulted in the uniform dispersion and strong combination of the Pt NPs on the carbon support and thus play a significant role in hindering the degradation of themore » catalytic activities of Pt NPs. As expected, the as-obtained Pt/NHCSs displayed improved catalytic activity and superior durability toward ORR.« less

  7. Hydrotreatment of petroleum vaccum residue with NiMo supported on carbon black of hollow nano-particles

    SciTech Connect

    Yamashita, N.; Sakanishi, K.; Mochida, I.

    1996-10-01

    Hydrogenation with NiMo catalyst on the carbon black of hollow sphere was very active to decrease asphaltene(hexane insoluble:HI) from 10% to 1% in the VR under the conditions of 340{degrees}C, 4h, and 10 MPa of H2. Non-protonated-aromatic carbons of remaining HI were converted to protonated carbons with increase of naphthenic carbons observed by {sup 13}C-NMR. Metallic compounds principally contained in HI were also converted to be hexane soluble(HS). It revealed that some of the metal containing compounds trapped in the asphaltene micelle are liberated from the micelle through the catalytic hydrogenation under mild conditions. The present catalyst was found much more active for the hydrogenative conversion of asphaltene and metallic compounds as well as the demetallation than the conventional demetallation catalysts, suggesting that NiMo/KB catalyst is highly dispersed to interact more intimately with asphaltene molecules.

  8. Highly uniform distribution of Pt nanoparticles on N-doped hollow carbon spheres with enhanced durability for oxygen reduction reaction

    SciTech Connect

    Shi, Qiurong; Zhu, Chengzhou; Engelhard, Mark H.; Du, Dan; Lin, Yuehe

    2017-01-01

    Carbon-supported Pt nanostructures currently exhibited great potential in polymer electrolyte membrane fuel cells. Nitrogen-doped hollow carbon spheres (NHCSs) with extra low density and high specific surface area are promising carbon support for loading Pt NPs. The doped heteroatom of nitrogen could not only contribute to the active activity for the oxygen reduction reaction (ORR), but also shows a strong interaction with Pt NPs for entrapping them from dissolution/migration. This synergetic effect/interaction resulted in the uniform dispersion and strong combination of the Pt NPs on the carbon support and thus play a significant role in hindering the degradation of the catalytic activities of Pt NPs. As expected, the as-obtained Pt/NHCSs displayed improved catalytic activity and superior durability toward ORR.

  9. Multi-Order Investigation of the Nonlinear Susceptibility Tensors of Individual Nanoparticles

    PubMed Central

    Schmidt, Cédric; Riporto, Jérémy; Uldry, Aline; Rogov, Andrii; Mugnier, Yannick; Dantec, Ronan Le; Wolf, Jean-Pierre; Bonacina, Luigi

    2016-01-01

    We use Hyper Rayleigh Scattering and polarization resolved multiphoton microscopy to investigate simultaneously the second and third-order nonlinear response of Potassium Niobate and Bismuth Ferrite harmonic nanoparticles. We first derive the second-to-third harmonic intensity ratio for colloidal ensembles and estimate the average third-order efficiency of these two materials. Successively, we explore the orientation dependent tensorial response of individual nanoparticles fixed on a substrate. The multi-order polarization resolved emission curves are globally fitted with an analytical model to retrieve individual elements of susceptibility tensors. PMID:27140074

  10. Multi-Order Investigation of the Nonlinear Susceptibility Tensors of Individual Nanoparticles

    NASA Astrophysics Data System (ADS)

    Schmidt, Cédric; Riporto, Jérémy; Uldry, Aline; Rogov, Andrii; Mugnier, Yannick; Dantec, Ronan Le; Wolf, Jean-Pierre; Bonacina, Luigi

    2016-05-01

    We use Hyper Rayleigh Scattering and polarization resolved multiphoton microscopy to investigate simultaneously the second and third-order nonlinear response of Potassium Niobate and Bismuth Ferrite harmonic nanoparticles. We first derive the second-to-third harmonic intensity ratio for colloidal ensembles and estimate the average third-order efficiency of these two materials. Successively, we explore the orientation dependent tensorial response of individual nanoparticles fixed on a substrate. The multi-order polarization resolved emission curves are globally fitted with an analytical model to retrieve individual elements of susceptibility tensors.

  11. In vitro release and in vitro–in vivo correlation for silybin meglumine incorporated into hollow-type mesoporous silica nanoparticles

    PubMed Central

    Cao, Xia; Deng, Wen-Wen; Fu, Min; Wang, Liang; Tong, Shan-Shan; Wei, Ya-Wei; Xu, Ying; Su, Wei-Yan; Xu, Xi-ming; Yu, Jiang-Nan

    2012-01-01

    Background The purpose of this study was to develop a sustained drug-release model for water-soluble drugs using silica nanoparticles. Methods Hollow-type mesoporous silica nanoparticles (HMSNs) were prepared using Na2CO3 solution as the dissolution medium for the first time. The water-soluble compound, silybin meglumine, was used as the model drug. The Wagner–Nelson method was used to calculate the in vivo absorption fraction. Results The results of transmission electron microscopy and nitrogen adsorption revealed that the empty HMSNs had uniformly distributed particles of size 50–100 nm, a spherical appearance, a large specific surface area (385.89 ± 1.12 m2/g), and ultralow mean pore size (2.74 nm). The highly porous structure allowed a large drug-loading rate (58.91% ± 0.39%). In 0.08 M Na2CO3 solution, silybin meglumine-loaded HMSNs could achieve highly efficacious and long-term sustained release for 72 hours in vitro. The results of in vitro–in vivo correlation revealed that HMSNs in 0.08 M Na2CO3 solution had a correlation coefficient R2 value of 0.9931, while those of artificial gastric juice and artificial intestinal juice were only 0.9287 and 0.7689, respectively. Conclusion The findings of in vitro–in vivo correlation indicate that HMSNs together with Na2CO3 solution could achieve an excellent linear relationship between in vitro dissolution and in vivo absorption for 72 hours, leading to a promising model for sustained release of water-soluble drugs. PMID:22393284

  12. In vitro release and in vitro-in vivo correlation for silybin meglumine incorporated into hollow-type mesoporous silica nanoparticles.

    PubMed

    Cao, Xia; Deng, Wen-Wen; Fu, Min; Wang, Liang; Tong, Shan-Shan; Wei, Ya-Wei; Xu, Ying; Su, Wei-Yan; Xu, Xi-Ming; Yu, Jiang-Nan

    2012-01-01

    The purpose of this study was to develop a sustained drug-release model for water-soluble drugs using silica nanoparticles. Hollow-type mesoporous silica nanoparticles (HMSNs) were prepared using Na(2)CO(3) solution as the dissolution medium for the first time. The water-soluble compound, silybin meglumine, was used as the model drug. The Wagner-Nelson method was used to calculate the in vivo absorption fraction. The results of transmission electron microscopy and nitrogen adsorption revealed that the empty HMSNs had uniformly distributed particles of size 50-100 nm, a spherical appearance, a large specific surface area (385.89 ± 1.12 m(2)/g), and ultralow mean pore size (2.74 nm). The highly porous structure allowed a large drug-loading rate (58.91% ± 0.39%). In 0.08 M Na(2)CO(3) solution, silybin meglumine-loaded HMSNs could achieve highly efficacious and long-term sustained release for 72 hours in vitro. The results of in vitro-in vivo correlation revealed that HMSNs in 0.08 M Na(2)CO(3) solution had a correlation coefficient R(2) value of 0.9931, while those of artificial gastric juice and artificial intestinal juice were only 0.9287 and 0.7689, respectively. The findings of in vitro-in vivo correlation indicate that HMSNs together with Na(2)CO(3) solution could achieve an excellent linear relationship between in vitro dissolution and in vivo absorption for 72 hours, leading to a promising model for sustained release of water-soluble drugs.

  13. Performance of an optimized Zr-based nanoparticle-embedded PSF blend hollow fiber membrane in treatment of fluoride contaminated water.

    PubMed

    He, Jinsong; Siah, Tiong-Shie; Paul Chen, J

    2014-06-01

    Consumption of water that has excessive fluoride can cause adverse health impacts on human beings. A Zr-based nanoparticle-embedded PSF blend hollow fiber membrane was successfully prepared and optimized for removal of fluoride from the aqueous solution. Both static and dynamic adsorption of fluoride on the membrane was investigated. It was showed that the membrane could effectively remove fluoride within a wide pH ranging from 3 to 10. At neutral pH, the adsorption equilibrium was reached within 24 h. The maximum adsorption capacity of the optimized membrane was 60.65 mg/g, much higher than many commercial adsorbents. The presence of NO3(-), SiO3(2-) or HA has insignificant effects on the fluoride removal. However, the removal was retarded as the concentration of HCO3(-) or PO4(3-) was increased. Furthermore, the membrane could remove fluoride efficiently through the continuous filtration, even in presence of natural organic matters. The spent membrane could be regenerated and then reused for the removal of fluoride with great efficiency. The adsorption history could be well described by an intraparticle diffusion model. The XPS analysis showed that the adsorption of fluoride was mainly associated with the ion-exchange between SO4(2-) and F(-) ions. Finally, the toxicity analysis revealed that the treated water was safe for human consumption.

  14. Sequential Enrichment with Titania-coated Magnetic Mesoporous Hollow Silica Microspheres and Zirconium Arsenate-modified Magnetic Nanoparticles for the Study of Phosphoproteome of HL60 Cells

    PubMed Central

    Yu, Qiong-Wei; Li, Xiao-Shui; Xiao, Yongsheng; Guo, Lei; Zhang, Fan; Cai, Qian; Feng, Yu-Qi; Yuan, Bi-Feng; Wang, Yinsheng

    2014-01-01

    As one of the most important types of post-translational modifications, reversible phosphorylation of proteins plays crucial roles in a large number of biological processes. However, owing to the relatively low abundance and dynamic nature of phosphorylation and the presence of the unphosphorylated peptides in large excess, phosphopeptide enrichment is indispensable in large-scale phosphoproteomic analysis. Metal oxides including titanium dioxide have become prominent affinity materials to enrich phosphopeptides prior to their analysis using liquid chromatography-mass spectrometry (LC-MS). In the current study, we established a novel strategy, which encompassed strong cation exchange chromatography, sequential enrichment of phosphopeptides using titania-coated magnetic mesoporous hollow silica microspheres (TiO2/MHMSS) and zirconium arsenate-modified magnetic nanoparticles (ZrAs-Fe3O4@SiO2), and LC-MS/MS analysis, for the proteome-wide identification of phosphosites of proteins in HL60 cells. In total, we were able to identify 11579 unique phosphorylation sites in 3432 unique proteins. Additionally, our results suggested that TiO2/MHMSS and ZrAs-Fe3O4@SiO2 are complementary in phosphopeptide enrichment, where the two types of materials displayed preferential binding of peptides carrying multiple and single phosphorylation sites, respectively. PMID:25262027

  15. Highly sensitive surface-enhanced Raman scattering detection of hexavalent chromium based on hollow sea urchin-like TiO2@Ag nanoparticle substrate.

    PubMed

    Zhou, Wen; Yin, Bin-Cheng; Ye, Bang-Ce

    2017-01-15

    As one of the most toxic heavy metals, hexavalent chromium (Cr(VI)) has long been a concern due to its threats to human health and the environment. In this work, we develop a sensitive surface-enhanced Raman scattering (SERS) sensor for highly specific detection of Cr(VI) using hollow sea urchin-like TiO2@Ag nanoparticles (NPs). The TiO2@Ag NPs are functionalized with glutathione (GSH) and used as substrates with 2-mercaptopyridine (2-MPy) as a Raman reporter for a recyclable SERS-active sensor, enabling ultrasensitive detection of Cr(VI). Excellent SERS signals of 2-MPy reporters are detected when GSH complexation with Cr(VI) causes aggregation of the TiO2@Ag NPs. The developed sensor exhibits good linearity in the range from 10nM to 2μM for Cr(VI) with a detection limit of ca. 1.45nM. It features excellent selectivity to Cr(VI) over other interfering metal ions, and good application for quantitative analysis of Cr(VI) in water samples. Moreover, the proposed SERS sensor can be fully regenerated when exposed to UV light as a result of the self-cleaning ability of the substrates. In contrast to the traditional SERS detection, the present work shed new light on the design and synthesis of hierarchically self-assembled 3D substrate for SERS, catalysis and biosensor development.

  16. Additive-free hollow-structured Co3O4 nanoparticle Li-ion battery: the origins of irreversible capacity loss.

    PubMed

    Kim, Youngjun; Lee, Jung-Hyun; Cho, Sungeun; Kwon, Yongwoo; In, Insik; Lee, Jihoon; You, Nam-Ho; Reichmanis, Elsa; Ko, Hyungduk; Lee, Kyu-Tae; Kwon, Hyun-Keun; Ko, Doo-Hyun; Yang, Heesun; Park, Byoungnam

    2014-07-22

    Origins of the irreversible capacity loss were addressed through probing changes in the electronic and structural properties of hollow-structured Co3O4 nanoparticles (NPs) during lithiation and delithiation using electrochemical Co3O4 transistor devices that function as a Co3O4 Li-ion battery. Additive-free Co3O4 NPs were assembled into a Li-ion battery, allowing us to isolate and explore the effects of the Co and Li2O formation/decomposition conversion reactions on the electrical and structural degradation within Co3O4 NP films. NP films ranging between a single monolayer and multilayered film hundreds of nanometers thick prepared with blade-coating and electrophoretic deposition methods, respectively, were embedded in the transistor devices for in situ conduction measurements as a function of battery cycles. During battery operation, the electronic and structural properties of Co3O4 NP films in the bulk, Co3O4/electrolyte, and Co3O4/current collector interfaces were spatially mapped to address the origin of the initial irreversible capacity loss from the first lithiation process. Further, change in carrier injection/extraction between the current collector and the Co3O4 NPs was explored using a modified electrochemical transistor device with multiple voltage probes along the electrical channel.

  17. Magnetic resonance imaging of amyloid plaques using hollow manganese oxide nanoparticles conjugated with antibody aβ1-40 in a transgenic mouse model.

    PubMed

    Kim, Jae-Hun; Ha, Tae Lin; Im, Geun Ho; Yang, Jehoon; Seo, Sang Won; Lee, In Su; Lee, Jung Hee

    2013-01-09

    In this study, we have shown the feasibility of hollow manganese oxide nanoparticles (HMON) conjugated with an antibody of Aβ1-40 peptide (abAβ40) (HMON-abAβ40) for MRI of amyloid plaques in APP/PS1 transgenic mice. MR brain images in APP/PS1 transgenic mice and their nontransgenic littermates were acquired using a 7.0 T MRI system before, and 24 and 72 h after an injection of HMON-abAβ40. After the injection of HMON-abAβ40, we found hyperenhanced spots in the frontal cortex area on T1-weighted MR images for transgenic mice, which corresponded qualitatively to amyloid plaques detected by thioflavin-S staining. For quantitative analysis, percent MR signal changes in six brain regions (olfactory cortex, frontal cortex, cerebral cortex, thalamus, hippocampus, and cerebellar cortex) were compared between transgenic and wild-type mice. We found significant increases in the percent MR signal changes in the olfactory cortex, frontal cortex, cerebral cortex, and hippocampus, but there were no significant differences in the thalamus and cerebellar cortex for transgenic mice compared with wild-type mice. This unique strategy allowed us to detect brain regions subjected to amyloid plaque deposition in Alzheimer's disease transgenic mouse models and has a potential to be developed for human applications, which has a current utility in preclinical research, particularly in monitoring therapeutic response for drug development in Alzheimer's disease.

  18. Natural cellulose fiber derived hollow-tubular-oriented polydopamine: In-situ formation of Ag nanoparticles for reduction of 4-nitrophenol.

    PubMed

    Cao, Enjuan; Duan, Wenzhen; Wang, Feng; Wang, Aiqin; Zheng, Yian

    2017-02-20

    A facile method was reported to achieve hollow-tubular-oriented polydopamine (HTO-PDA) layer using natural kapok fiber (KF) as the bio-template without any pretreatments by altering hydrophobic fiber into hydrophilic one. Subsequently, the HTO-PDA can be utilized for direct in-situ deposition of Ag nanoparticles (NPs). The structures of pristine fiber and HTO-PDA, as well as the resulting Ag NPs attached HTO-PDA (Ag@HTO-PDA) were well characterized by means of scanning electron microscopy (SEM) coupled energy dispersion spectrum (EDS), x-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy. Due to the presence of relatively uniform Ag NPs attached onto PDA layer, Ag@KF-HTO-PDA shows stable catalytic ability towards the reduction of 4-nitrophenol into its amino derivative. Further, this method was used for facile fabrication of Calotropis gigantea fiber derived, surface-functionalized material. The experimental data demonstrated also its excellent catalytic efficiency towards 4-nitrophenol reduction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Direct visualization of hydrogen absorption dynamics in individual palladium nanoparticles

    PubMed Central

    Narayan, Tarun C.; Hayee, Fariah; Baldi, Andrea; Leen Koh, Ai; Sinclair, Robert; Dionne, Jennifer A.

    2017-01-01

    Many energy storage materials undergo large volume changes during charging and discharging. The resulting stresses often lead to defect formation in the bulk, but less so in nanosized systems. Here, we capture in real time the mechanism of one such transformation—the hydrogenation of single-crystalline palladium nanocubes from 15 to 80 nm—to better understand the reason for this durability. First, using environmental scanning transmission electron microscopy, we monitor the hydrogen absorption process in real time with 3 nm resolution. Then, using dark-field imaging, we structurally examine the reaction intermediates with 1 nm resolution. The reaction proceeds through nucleation and growth of the new phase in corners of the nanocubes. As the hydrogenated phase propagates across the particles, portions of the lattice misorient by 1.5%, diminishing crystal quality. Once transformed, all the particles explored return to a pristine state. The nanoparticles' ability to remove crystallographic imperfections renders them more durable than their bulk counterparts. PMID:28091597

  20. The optical detection of individual DNA-conjugated gold nanoparticle labels after metal enhancement

    NASA Astrophysics Data System (ADS)

    Csáki, Andrea; Kaplanek, Pia; Möller, Robert; Fritzsche, Wolfgang

    2003-12-01

    The detection of DNA using nanoparticles as labels is an interesting alternative to the standard fluorescence technique. It requires simpler detection equipment, resulting in higher stability and lower costs. Besides easier detection, metal enhancement allows a higher sensitivity of detection. The signal-response curve for labelled DNA before and after silver enhancement was studied, applying both atomic force microscope (AFM) and optical (reflection/transmission) measurements. The dynamic range and the sensitivity were determined for nanoparticle labelling with and without metal enhancement. Nanoparticle concentrations down to the fM range could be detected. The ultimate limit of detection, the identification of individual labels, is demonstrated for the optical readout. Therefore, AFM images of the particles were correlated with the optical signal of individual or clustered particles. We demonstrate that the optical signal allows the identification of single particles.

  1. Hollow memories

    NASA Astrophysics Data System (ADS)

    2014-04-01

    A hollow-core optical fibre filled with warm caesium atoms can temporarily store the properties of photons. Michael Sprague from the University of Oxford, UK, explains to Nature Photonics how this optical memory could be a useful building block for fibre-based quantum optics.

  2. Aminosilane-Grafted Zirconia-Titiania-Silica Nanoparticles/Torlon Hollow Fiber Composites for CO2 Capture.

    PubMed

    Rownaghi, Ali A; Kant, Amit; Li, Xin; Thakkar, Harshul; Hajari, Amit; He, Yingxin; Brennan, Patrick J; Hosseini, Hooman; Koros, William J; Rezaei, Fateme

    2016-05-23

    In this work, the development of novel binary and ternary oxide/Torlon hollow fiber composites comprising zirconia, titania, and silica as amine supports was demonstrated. The resulting binary (Zr-Si/PAI-HF, Ti-Si/PAI-HF) and ternary (Zr-Ti-Si/PAI-HF) composites were then functionalized with monoamine-, diamine-, and triamine-substituted trialkoxysilanes and were evaluated in CO2 capture. Although the introduction of both Zr and Ti improved the CO2 adsorption capacity relative to that with Si/PAI-HF sorbents, zirconia was found to have a more favorable effect on the CO2 adsorption performance than titania, as previously demonstrated for amine sorbents in the powder form. The Zr-Ti-Si/PAI-HF sample with an oxide content of 20 wt % was found to exhibit a relatively high CO2 capacity, that is, 1.90 mmol g(-1) at atmospheric pressure under dry conditions, owing to more favorable synergy between the metal oxides and CO2 . The ternary fiber sorbent showed improved sorption kinetics and long-term stability in cyclic adsorption/desorption runs.

  3. Development of drug-loaded chitosan hollow nanoparticles for delivery of paclitaxel to human lung cancer A549 cells.

    PubMed

    Jiang, Jie; Liu, Ying; Wu, Chao; Qiu, Yang; Xu, Xiaoyan; Lv, Huiling; Bai, Andi; Liu, Xuan

    2017-08-01

    In this study, biodegradable chitosan hollow nanospheres (CHN) were fabricated using polystyrene nanospheres (PS) as templates. CHN were applied to increase the solubility of poorly water-soluble drugs. The lung cancer drug paclitaxel (PTX), which is used as a model drug, was loaded into CHN by the adsorption equilibrium method. The drug-loaded sample (PTX-CHN) offered sustained PTX release and good bioavailability. The state characterization of PTX by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) showed that the PTX absorbed into CHN existed in an amorphous state. An in vitro toxicity experiment indicated that CHN were nontoxic as carriers of poorly water-soluble drugs. The PTX-CHN produced a marked inhibition of lung cancer A549 cells proliferation and encouraged apoptosis. A cell uptake experiment indicated that PTX-CHN was successfully taken up by lung cancer A549 cells. Furthermore, a degradation experiment revealed that CHN were readily biodegradable. These findings state clearly that CHN can be regarded as promising biomaterials for lung cancer treatment.

  4. Visual test of subparts per billion-level mercuric ion with a gold nanoparticle probe after preconcentration by hollow fiber supported liquid membrane.

    PubMed

    Tan, Zhi-qiang; Liu, Jing-fu

    2010-05-15

    With the combination of the gold nanoparticle (AuNP)-based visual test with hollow fiber supported liquid membrane (HFSLM) extraction, a highly sensitive and selective method was developed for field detection of mercuric ion (Hg(2+)) in environmental waters. Hg(2+) in water samples was extracted through HFSLM and trapped in the aqueous acceptor and then visually detected based on the red-to-blue color change of 3-mercaptopropionic acid-functionalized AuNP (MPA-AuNP) probe. The highest extraction efficiency of Hg(2+) was obtained by using a 600 mL sample (pH 8.0, 2.0% (w/v) NaCl), approximately 35 microL of acceptor (10 mM of 2,6-pyridinedicarboxylic acid, pH 4.0) filled in the lumen of a polypropylene hollow fiber tubing (55 cm in length, 50 microm wall thickness, 280 microm inner diameter), a liquid membrane of 2.0% (w/v) trioctycphosphine oxide in undecane, and a shaking rate of 250 rpm. The chromegenic reaction was conducted by incubating the mixture of MPA-AuNP stock solution (12 microL, 15 nM), Tris-borate buffer solution (18 microL, 0.2 M, pH 9.5), and acceptor (30 microL) at 30 degrees C for 1 h. The detection limit can be adjusted to 0.8 microg/L Hg(2+) (corresponding to an enrichment factor of approximately 1000 in the HFSLM) and 2.0 microg/L Hg(2+) (the U.S. Environmental Protection Agency limit of [Hg(2+)] for drinkable water) by using extraction times of 3 and 1 h, respectively. The proposed method is extremely specific for Hg(2+) with tolerance to at least 1000-fold of other environmentally relevant heavy and transition metal ions and was successfully applied to detect Hg(2+) in a certified reference water sample, as well as real river, lake, and tap water samples.

  5. Extraction and preconcentration of tylosin from milk samples through functionalized TiO₂ nanoparticles reinforced with a hollow fiber membrane as a novel solid/liquid-phase microextraction technique.

    PubMed

    Sehati, Negar; Dalali, Nasser; Soltanpour, Shahla; Dorraji, Mir Saeed Seyed

    2014-08-01

    The aim of this study was to introduce a novel, simple, and highly sensitive preparation method for determination of tylosin in different milk samples. In the so-called functionalized TiO2 hollow fiber solid/liquid-phase microextraction method, the acceptor phase is functionalized TiO2 nanoparticles that are dispersed in the organic solvent and held in the pores and lumen of a porous polypropylene hollow fiber membrane. An effective functionalization of TiO2 nanoparticles has been done in the presence of aqueous H2 O2 and a mild acidic ambient under UV irradiation. This novel extraction method showed excellent extraction efficiency and a high enrichment factor (540.2) in comparison with conventional hollow fiber liquid-phase microextraction. All the experiments were monitored at λmax = 284 nm using a simple double beam UV-visible spectrophotometer. A Taguchi orthogonal array experimental design with an OA16 (4(5) ) matrix was employed to optimize the factors affecting the efficiency of hollow fiber solid/liquid-phase microextraction such as pH, stirring rate, salt addition, extraction time, and the volume of donor phase. This developed method was successfully applied for the separation and determination of tylosin in milk samples with a linear concentration range of 0.51-7000 μg/L (r(2) = 0.991) and 0.21 μg/L as the limit of detection. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Hollow nanotubular toroidal polymer microrings.

    PubMed

    Lee, Jiyeong; Baek, Kangkyun; Kim, Myungjin; Yun, Gyeongwon; Ko, Young Ho; Lee, Nam-Suk; Hwang, Ilha; Kim, Jeehong; Natarajan, Ramalingam; Park, Chan Gyung; Sung, Wokyung; Kim, Kimoon

    2014-02-01

    Despite the remarkable progress made in the self-assembly of nano- and microscale architectures with well-defined sizes and shapes, a self-organization-based synthesis of hollow toroids has, so far, proved to be elusive. Here, we report the synthesis of polymer microrings made from rectangular, flat and rigid-core monomers with anisotropically predisposed alkene groups, which are crosslinked with each other by dithiol linkers using thiol-ene photopolymerization. The resulting hollow toroidal structures are shape-persistent and mechanically robust in solution. In addition, their size can be tuned by controlling the initial monomer concentrations, an observation that is supported by a theoretical analysis. These hollow microrings can encapsulate guest molecules in the intratoroidal nanospace, and their peripheries can act as templates for circular arrays of metal nanoparticles.

  7. Trapping and manipulation of individual nanoparticles in a planar Paul trap

    NASA Astrophysics Data System (ADS)

    Alda, I.; Berthelot, J.; Rica, R. A.; Quidant, R.

    2016-10-01

    Visualisation and manipulation of nanoscale matter is one of the main and current challenges in nanosciences. To this aim, different techniques have been recently developed to non-invasively trap and manipulate nano-specimens, like nanoparticles or molecules. However, operating in air or vacuum still remains very challenging since most approaches are limited to a liquid environment. In this letter, we design and characterise a planar Paul trap optimised to trap and manipulate individual charged nanoparticles. This configuration offers competitive capabilities to manipulate nano-specimens in air or vacuum, including in-plane integration, high trap confinement along with dynamical trap reconfiguration, pointing towards applications in the field of levitated optomechanics.

  8. Goodbye, Hollows

    NASA Image and Video Library

    2015-04-21

    As NASA MESSENGER enters its final days, we are getting our last looks at some of our favorite features. Hollows, discovered in MDIS images during the orbital phase of the mission, are always photogenic. Three small hollows can be spotted in this scene located to the northwest of the Caloris basin near Timgad Vallis, including one that is surrounded by low-reflectance material. Date acquired: April 14, 2015 Image Mission Elapsed Time (MET): 71304311 Image ID: 8326733 Instrument: Narrow Angle Camera (NAC) of the Mercury Dual Imaging System (MDIS) Center Latitude: 59.1° Center Longitude: 116.2° E Resolution: 17.1 meters/pixel Scale: This scene is approximately 17 km (11 miles) across http://photojournal.jpl.nasa.gov/catalog/PIA19425

  9. Overcoming acquired drug resistance in colorectal cancer cells by targeted delivery of 5-FU with EGF grafted hollow mesoporous silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Lijue; She, Xiaodong; Wang, Tao; He, Li; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2015-08-01

    Acquired drug resistance (ADR) can be developed in colorectal cancer cells after 5-fluorouracil (5-FU) treatment and diminish the effectiveness of chemotherapy. In this work, acquired 5-FU resistance in the colorectal cancer cell line SW480 was obtained with the up-regulation of dihydropyrimidine dehydrogenase (DPYD) gene expression which can convert 5-FU to its inactive metabolite. To overcome ADR in colorectal cancer, hollow mesoporous silica nanoparticles (HMSNs) grafted with epidermal growth factor (EGF) were used as nanocarriers to deliver 5-FU to colorectal cancer cells with acquired drug resistance. The effect and mechanism of 5-FU loaded EGF grafted HMSNs (EGF-HMSNs-5-FU) in overcoming acquired drug resistance in SW480/ADR cells were studied. The EGF-HMSNs were demonstrated to be specifically internalized in EGFR overexpressed SW480/ADR cells via a receptor-mediated endocytosis and can escape from endo-lysosomes. The EGF-HMSNs-5-FU exhibited much higher cytotoxicity on SW480/ADR cells than HMSNs-5-FU and free 5-FU while the plain HMSNs did not show significant cytotoxicity. The mechanism of EGF-HMSNs-5-FU in overcoming drug resistance in SW480/ADR cells could be attributed to the specific internalization of EGF-HMSNs-5-FU in EGFR overexpressed cells which can lead to high intracellular drug accumulation and cause cell death through S phase arrest.Acquired drug resistance (ADR) can be developed in colorectal cancer cells after 5-fluorouracil (5-FU) treatment and diminish the effectiveness of chemotherapy. In this work, acquired 5-FU resistance in the colorectal cancer cell line SW480 was obtained with the up-regulation of dihydropyrimidine dehydrogenase (DPYD) gene expression which can convert 5-FU to its inactive metabolite. To overcome ADR in colorectal cancer, hollow mesoporous silica nanoparticles (HMSNs) grafted with epidermal growth factor (EGF) were used as nanocarriers to deliver 5-FU to colorectal cancer cells with acquired drug resistance. The

  10. Efficient removal of chromate and arsenate from individual and mixed system by malachite nanoparticles.

    PubMed

    Saikia, Jiban; Saha, Bedabrata; Das, Gopal

    2011-02-15

    Malachite nanoparticles of 100-150 nm have been efficiently and for the first time used as an adsorbent for the removal of toxic arsenate and chromate. We report a high adsorption capacity for chromate and arsenate on malachite nanoparticle from both individual and mixed solution in pH ∼4-5. However, the adsorption efficiency decreases with the increase of solution pH. Batch studies revealed that initial pH, temperature, malachite nanoparticles dose and initial concentration of chromate and arsenate were important parameters for the adsorption process. Thermodynamic analysis showed that adsorption of chromate and arsenate on malachite nanoparticles is endothermic and spontaneous. The adsorption of these anions has also been investigated quantitatively with the help of adsorption kinetics, isotherm, and selectivity coefficient (K) analysis. The adsorption data for both chromate and arsenate were fitted well in Langmuir isotherm and preferentially followed the second order kinetics. The binding affinity of chromate is found to be slightly higher than arsenate in a competitive adsorption process which leads to the comparatively higher adsorption of chromate on malachite nanoparticles surface.

  11. Designing Hollow Nano Gold Golf Balls

    PubMed Central

    2015-01-01

    Hollow/porous nanoparticles, including nanocarriers, nanoshells, and mesoporous materials have applications in catalysis, photonics, biosensing, and delivery of theranostic agents. Using a hierarchical template synthesis scheme, we have synthesized a nanocarrier mimicking a golf ball, consisting of (i) solid silica core with a pitted gold surface and (ii) a hollow/porous gold shell without silica. The template consisted of 100 nm polystyrene beads attached to a larger silica core. Selective gold plating of the core followed by removal of the polystyrene beads produced a golf ball-like nanostructure with 100 nm pits. Dissolution of the silica core produced a hollow/porous golf ball-like nanostructure. PMID:24937196

  12. Designing hollow nano gold golf balls.

    PubMed

    Landon, Preston B; Mo, Alexander H; Zhang, Chen; Emerson, Chris D; Printz, Adam D; Gomez, Alan F; DeLaTorre, Christopher J; Colburn, David A M; Anzenberg, Paula; Eliceiri, Matthew; O'Connell, Connor; Lal, Ratnesh

    2014-07-09

    Hollow/porous nanoparticles, including nanocarriers, nanoshells, and mesoporous materials have applications in catalysis, photonics, biosensing, and delivery of theranostic agents. Using a hierarchical template synthesis scheme, we have synthesized a nanocarrier mimicking a golf ball, consisting of (i) solid silica core with a pitted gold surface and (ii) a hollow/porous gold shell without silica. The template consisted of 100 nm polystyrene beads attached to a larger silica core. Selective gold plating of the core followed by removal of the polystyrene beads produced a golf ball-like nanostructure with 100 nm pits. Dissolution of the silica core produced a hollow/porous golf ball-like nanostructure.

  13. In-situ construction of Au nanoparticles confined in double-shelled TiO2/mSiO2 hollow architecture for excellent catalytic activity and enhanced thermal stability

    NASA Astrophysics Data System (ADS)

    Fang, Jiasheng; Zhang, Yiwei; Zhou, Yuming; Zhang, Chao; Zhao, Shuo; Zhang, Hongxing; Sheng, Xiaoli

    2017-01-01

    A facile strategy has been developed for the synthesis of H-TS-Au microspheres (MCs) with double-shelled hollow architecture and sub-5 nm Au nanoparticles (Au NPs). The synthetic procedure involves the successive sol-gel template-assisted method for the preparation of uniform hierarchical hollow-in-hollow H-TS MCs with TiO2/mSiO2 as yolks/shells, and the unique deposition-precipitation method mediated with Au(en)2Cl3 precursors for the in-situ construction of extremely stable Au NPs under a low-temperature hydrogen reduction. The synthesized H-TS-Au MCs were characterized by TEM, SEM, FTIR, XRD, BET and UV-vis absorption spectra. Catalytic activity of H-TS-Au was evaluated using the reduction of 4-nitrophenol (4-NP) into 4-aminophenol (4-AP) by NaBH4. Results established that H-TS-Au MCs possessed a large-size double-shelled architecture with high structural integrity and robustness,which can effectively confine numerous tiny Au NPs and restrict them from sintering aggregation even up to further calcination at 800 °C. Owing to the advantageous structural configuration and the synergistic effect of TiO2/mSiO2 double shells, the H-TS-Au MCs were demonstrated to exhibit a remarkable catalytic activity and stability, and preserve the intact morphology after 6 repeating reduction of 4-NP.

  14. Electrophoretic Migration and Axial Diffusion of Individual Nanoparticles in Cylindrical Nanopores

    SciTech Connect

    Han, Rui; Wang, Gufeng; Qi, Shengda; Ma, Changbei; Yeung, Edward S.

    2012-08-01

    Membranes with straight, vertical nanopores have found widespread applications in chemical and biological sciences, including separation, detection, catalysis, and drug delivery. They can also serve as a model system to understand molecular behavior and fundamental mechanisms of separation, bridging the gap between conventional model systems such as flat surfaces and real chromatographic stationary phases such as micrometer-sized porous particles. We recently found that the axial motion of individual biomolecules inside nanopores can be significantly slower than in bulk solution. This suggests that either chromatographic adsorption was present and/or the viscosity inside the nanopores was unusually high. In this study, we measured the electrophoretic motion as well as the axial diffusion of individual nanoparticles in cylindrical alumina nanopores. We found that the electrophoretic mobilities and the diffusion coefficients of polystyrene nanoparticles were both substantially smaller compared to bulk solution independent of particle size or pore diameter. The results imply that the apparent solution viscosity in nanodomains is anomalous.

  15. Template engaged synthesis of hollow ceria-based composites

    NASA Astrophysics Data System (ADS)

    Chen, Guozhu; Rosei, Federico; Ma, Dongling

    2015-03-01

    Hollow ceria-based composites, which consist of noble metal nanoparticles or metal oxides as a secondary component, are being studied extensively for potential applications in heterogeneous catalysis. This is due to their unique features, which exhibit the advantages of a hollow structure (e.g. high surface area and low weight), and also integrate the properties of ceria and noble metals/metal oxides. More importantly, the synergistic effect between constituents in hollow ceria-based composites has been demonstrated in various catalytic reactions. In this feature article, we summarize the state-of-the-art in the synthesis of hollow ceria-based composites, including traditional hard-templates and more recently, sacrificial-template engaged strategies, highlighting the key role of selected templates in the formation of hollow composites. In addition, the catalytic applications of hollow ceria-based composites are briefly surveyed. Finally, challenges and perspectives on future advances of hollow ceria-based composites are outlined.

  16. Template engaged synthesis of hollow ceria-based composites.

    PubMed

    Chen, Guozhu; Rosei, Federico; Ma, Dongling

    2015-03-19

    Hollow ceria-based composites, which consist of noble metal nanoparticles or metal oxides as a secondary component, are being studied extensively for potential applications in heterogeneous catalysis. This is due to their unique features, which exhibit the advantages of a hollow structure (e.g. high surface area and low weight), and also integrate the properties of ceria and noble metals/metal oxides. More importantly, the synergistic effect between constituents in hollow ceria-based composites has been demonstrated in various catalytic reactions. In this feature article, we summarize the state-of-the-art in the synthesis of hollow ceria-based composites, including traditional hard-templates and more recently, sacrificial-template engaged strategies, highlighting the key role of selected templates in the formation of hollow composites. In addition, the catalytic applications of hollow ceria-based composites are briefly surveyed. Finally, challenges and perspectives on future advances of hollow ceria-based composites are outlined.

  17. Synthesis of 1D Fe₃O₄/P(MBAAm-co-MAA) nanochains as stabilizers for Ag nanoparticles and templates for hollow mesoporous structure, and their applications in catalytic reaction and drug delivery.

    PubMed

    Zhang, Wei; Si, Xiaowei; Liu, Bin; Bian, Guomin; Qi, Yonglin; Yang, Xinlin; Li, Chenxi

    2015-10-15

    One-dimensional (1D) magnetic Fe3O4/P(MBAAm-co-MAA) nanochains were prepared by distillation-precipitation polymerization of MBAAm and MAA in the presence of Fe3O4 nanoparticles as building blocks under a magnetic heating stirrer, which played two critical roles: serving as magnetic field to induce the self-assembly of Fe3O4 nanoparticles into 1D nanochains and providing thermal energy to induce the polymerization of MAA and MBAAm on the surface of the Fe3O4 nanoparticles. The thickness of the P(MBAAm-co-MAA) layer can be easily tuned by adjusting the successive polymerization steps. The polymer layer that contained carboxyl groups was used as stabilizers for loading Ag nanoparticles and the reaction locus for deposition of outer silica layer via a sol-gel method in presence of C18TMS as the pore directing agent for tri-layer nanochains. The corresponding hollow mesoporous silica nanochains with movable maghemite cores (γ-Fe2O3@mSiO2) were produced after removal of the polymer mid-layer and the alkyl groups of the pore directing agent via calcination of the tri-layer nanochains at high temperature. The Fe3O4/P(MBAAm-co-MAA)/Ag nanochains exhibited a highly catalytic efficiency and well reusable property toward the reduction of nitrophenol. Furthermore, the γ-Fe2O3@mSiO2 nanochains possessed hollow mesoporous structure and high specific surface area (197.2 m(2) g(-1)) were used as a drug carrier, which displayed a controlled release property. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Synthesis of Dispersible Mesoporous Nitrogen-Doped Hollow Carbon Nanoplates with Uniform Hexagonal Morphologies for Supercapacitors.

    PubMed

    Cao, Jie; Jafta, Charl J; Gong, Jiang; Ran, Qidi; Lin, Xianzhong; Félix, Roberto; Wilks, Regan G; Bär, Marcus; Yuan, Jiayin; Ballauff, Matthias; Lu, Yan

    2016-11-02

    In this study, dispersible mesoporous nitrogen-doped hollow carbon nanoplates have been synthesized as a new anisotropic carbon nanostructure using gibbsite nanoplates as templates. The gibbsite-silica core-shell nanoplates were first prepared before the gibbsite core was etched away. Dopamine as carbon precursor was self-polymerized on the hollow silica nanoplates surface assisted by sonification, which not only favors a homogeneous polymer coating on the nanoplates but also prevents their aggregation during the polymerization. Individual silica-polydopamine core-shell nanoplates were immobilized in a silica gel in an insulated state via a silica nanocasting technique. After pyrolysis in a nanoconfine environment and elimination of silica, discrete and dispersible hollow carbon nanoplates are obtained. The resulted hollow carbon nanoplates bear uniform hexagonal morphology with specific surface area of 460 m(2)·g(-1) and fairly accessible small mesopores (∼3.8 nm). They show excellent colloidal stability in aqueous media and are applied as electrode materials for symmetric supercapacitors. When using polyvinylimidazolium-based nanoparticles as a binder in electrodes, the hollow carbon nanoplates present superior performance in parallel to polyvinylidene fluoride (PVDF) binder.

  19. Au-Ag hollow nanostructures with tunable SERS properties

    NASA Astrophysics Data System (ADS)

    Jiji, S. G.; Gopchandran, K. G.

    2017-01-01

    Fabrication of hollow Au-Ag nanoparticles is done by the sequential action of galvanic replacement and Kirkendall effect. Polyol synthesized silver nanoparticles were used as templates and the size of cavities is controlled by the systematic addition of the HAuCl4. Au-Ag nanoparticles carved in different depths were tested for application as substrates for surface enhanced Raman scattering. Two medically important Raman active analytes-Nile blue chloride and Crystal violet were used in the surface enhanced Raman scattering (SERS) performance analysis. A systematic study has been made on the Raman enhancement of hollow nanoparticles fabricated with different cavity dimensions and compared with that of the silver templates used. The enhancement observed for these hollow substrates with cavities is of interest since Au protected hollow nanostructures are vital and an active area of interest in drug delivery systems.

  20. Sizing Individual Au Nanoparticles in Solution with Sub-Nanometer Resolution.

    PubMed

    German, Sean R; Hurd, Timothy S; White, Henry S; Mega, Tony L

    2015-07-28

    Resistive-pulse sensing has generated considerable interest as a technique for characterizing nanoparticle suspensions. The size, charge, and shape of individual particles can be estimated from features of the resistive pulse, but the technique suffers from an inherent variability due to the stochastic nature of particles translocating through a small orifice or channel. Here, we report a method, and associated automated instrumentation, that allows repeated pressure-driven translocation of individual particles back and forth across the orifice of a conical nanopore, greatly reducing uncertainty in particle size that results from streamline path distributions, particle diffusion, particle asphericity, and electronic noise. We demonstrate ∼0.3 nm resolution in measuring the size of nominally 30 and 60 nm radius Au nanoparticles of spherical geometry; Au nanoparticles in solution that differ by ∼1 nm in radius are readily distinguished. The repetitive translocation method also allows differentiating particles based on surface charge density, and provides insights into factors that determine the distribution of measured particle sizes.

  1. Immunisation of Sheep with Bovine Viral Diarrhoea Virus, E2 Protein Using a Freeze-Dried Hollow Silica Mesoporous Nanoparticle Formulation

    PubMed Central

    Mahony, Donna; Mody, Karishma T.; Cavallaro, Antonino S.; Hu, Qiuhong; Mahony, Timothy J.; Qiao, Shizhang; Mitter, Neena

    2015-01-01

    Bovine viral diarrhoea virus 1 (BVDV-1) is arguably the most important viral disease of cattle. It is associated with reproductive, respiratory and chronic diseases in cattle across the world. In this study we have investigated the capacity of the major immunological determinant of BVDV-1, the E2 protein combined with hollow type mesoporous silica nanoparticles with surface amino functionalisation (HMSA), to stimulate immune responses in sheep. The current work also investigated the immunogenicity of the E2 nanoformulation before and after freeze-drying processes. The optimal excipient formulation for freeze-drying of the E2 nanoformulation was determined to be 5% trehalose and 1% glycine. This excipient formulation preserved both the E2 protein integrity and HMSA particle structure. Sheep were immunised three times at three week intervals by subcutaneous injection with 500 μg E2 adsorbed to 6.2 mg HMSA as either a non-freeze-dried or freeze-dried nanoformulation. The capacity of both nanovaccine formulations to generate humoral (antibody) and cell-mediated responses in sheep were compared to the responses in sheep immunisation with Opti-E2 (500 μg) together with the conventional adjuvant Quil-A (1 mg), a saponin from the Molina tree (Quillaja saponira). The level of the antibody responses detected to both the non-freeze-dried and freeze-dried Opti-E2/HMSA nanoformulations were similar to those obtained for Opti-E2 plus Quil-A, demonstrating the E2 nanoformulations were immunogenic in a large animal, and freeze-drying did not affect the immunogenicity of the E2 antigen. Importantly, it was demonstrated that the long term cell-mediated immune responses were detectable up to four months after immunisation. The cell-mediated immune responses were consistently high in all sheep immunised with the freeze-dried Opti-E2/HMSA nanovaccine formulation (>2,290 SFU/million cells) compared to the non-freeze-dried nanovaccine formulation (213–500 SFU/million cells). This

  2. Immunisation of Sheep with Bovine Viral Diarrhoea Virus, E2 Protein Using a Freeze-Dried Hollow Silica Mesoporous Nanoparticle Formulation.

    PubMed

    Mahony, Donna; Mody, Karishma T; Cavallaro, Antonino S; Hu, Qiuhong; Mahony, Timothy J; Qiao, Shizhang; Mitter, Neena

    2015-01-01

    Bovine viral diarrhoea virus 1 (BVDV-1) is arguably the most important viral disease of cattle. It is associated with reproductive, respiratory and chronic diseases in cattle across the world. In this study we have investigated the capacity of the major immunological determinant of BVDV-1, the E2 protein combined with hollow type mesoporous silica nanoparticles with surface amino functionalisation (HMSA), to stimulate immune responses in sheep. The current work also investigated the immunogenicity of the E2 nanoformulation before and after freeze-drying processes. The optimal excipient formulation for freeze-drying of the E2 nanoformulation was determined to be 5% trehalose and 1% glycine. This excipient formulation preserved both the E2 protein integrity and HMSA particle structure. Sheep were immunised three times at three week intervals by subcutaneous injection with 500 μg E2 adsorbed to 6.2 mg HMSA as either a non-freeze-dried or freeze-dried nanoformulation. The capacity of both nanovaccine formulations to generate humoral (antibody) and cell-mediated responses in sheep were compared to the responses in sheep immunisation with Opti-E2 (500 μg) together with the conventional adjuvant Quil-A (1 mg), a saponin from the Molina tree (Quillaja saponira). The level of the antibody responses detected to both the non-freeze-dried and freeze-dried Opti-E2/HMSA nanoformulations were similar to those obtained for Opti-E2 plus Quil-A, demonstrating the E2 nanoformulations were immunogenic in a large animal, and freeze-drying did not affect the immunogenicity of the E2 antigen. Importantly, it was demonstrated that the long term cell-mediated immune responses were detectable up to four months after immunisation. The cell-mediated immune responses were consistently high in all sheep immunised with the freeze-dried Opti-E2/HMSA nanovaccine formulation (>2,290 SFU/million cells) compared to the non-freeze-dried nanovaccine formulation (213-500 SFU/million cells). This study

  3. Hollow Nanostructured Metal Silicates with Tunable Properties for Lithium Ion Battery Anodes.

    PubMed

    Yu, Seung-Ho; Quan, Bo; Jin, Aihua; Lee, Kug-Seung; Kang, Soon Hyung; Kang, Kisuk; Piao, Yuanzhe; Sung, Yung-Eun

    2015-11-25

    Hollow nanostructured materials have attracted considerable interest as lithium ion battery electrodes because of their good electrochemical properties. In this study, we developed a general procedure for the synthesis of hollow nanostructured metal silicates via a hydrothermal process using silica nanoparticles as templates. The morphology and composition of hollow nanostructured metal silicates could be controlled by changing the metal precursor. The as-prepared hierarchical hollow nanostructures with diameters of ∼100-200 nm were composed of variously shaped primary particles such as hollow nanospheres, solid nanoparticles, and thin nanosheets. Furthermore, different primary nanoparticles could be combined to form hybrid hierarchical hollow nanostructures. When hollow nanostructured metal silicates were applied as anode materials for lithium ion batteries, all samples exhibited good cyclic stability during 300 cycles, as well as tunable electrochemical properties.

  4. Electrochemistry at single bimetallic nanoparticles - using nano impacts for sizing and compositional analysis of individual AgAu alloy nanoparticles.

    PubMed

    Saw, En Ning; Grasmik, Viktoria; Rurainsky, Christian; Epple, Matthias; Tschulik, Kristina

    2016-12-12

    The increasing interest in producing bimetallic nanoparticles and utilizing them in modern technologies sets the demand for fast and affordable characterization of these materials. To date Scanning Transmission Electron Microscopy (STEM) coupled to energy dispersive X-ray spectroscopy is usually used to determine the size and composition of alloy nanoparticles, which is time-consuming and expensive. Here electrochemical single nanoparticle analysis is presented as an alternative approach to infer the particle size and composition of alloy nanoparticles, directly in a dispersion of these particles. As a proof of concept, 14 nm sized Ag0.73Au0.27 alloy nanoparticles are analyzed using a combination of chronoamperometric single nanoparticle analysis and cyclic voltammetry ensemble studies. It is demonstrated that the size, the alloying and the composition can all be inferred using this approach. Thus, the electrochemical characterization of single bimetallic alloy nanoparticles is suggested here as a powerful and convenient complement or alternative to TEM characterization of alloy nanoparticles.

  5. Correlated Electrochemical and Optical Detection Reveals the Chemical Reactivity of Individual Silver Nanoparticles.

    PubMed

    Brasiliense, Vitor; Patel, Anisha N; Martinez-Marrades, Ariadna; Shi, Jian; Chen, Yong; Combellas, Catherine; Tessier, Gilles; Kanoufi, Frédéric

    2016-03-16

    Electrochemical (EC) impacts of single nanoparticles (NPs) on an ultramicroelectrode are coupled with optics to identify chemical processes at the level of individual NPs. While the EC signals characterize the charge transfer process, the optical monitoring gives a complementary picture of the transport and chemical transformation of the NPs. This is illustrated in the case of electrodissolution of Ag NPs. In the simplest case, the optically monitored dissolution of individual NPs is synchronized with individual EC spikes. Optics then validates in situ the concept of EC nanoimpacts for sizing and counting of NPs. Chemical complexity is introduced by using a precipitating agent, SCN(-), which tunes the overall electrodissolution kinetics. Particularly, the charge transfer and dissolution steps occur sequentially as the synchronicity between the EC and optical signals is lost. This demonstrates the level of complexity that can be revealed from such electrochemistry/optics coupling.

  6. Scanning electron microscopy of individual nanoparticle bio-markers in liquid.

    PubMed

    Liv, Nalan; Lazić, Ivan; Kruit, Pieter; Hoogenboom, Jacob P

    2014-08-01

    We investigated SEM imaging of nanoparticle biomarkers suspended below a thin membrane, with the ultimate goal of integrating functional fluorescence and structural SEM measurements of samples kept at ambient or hydrated conditions. In particular, we investigated how resolving power in liquid SEM is affected by the interaction of the electron beam with the membrane. Simulations with the Geant4-based Monte Carlo scheme developed by Kieft and Bosch (2008) [1] are compared to experimental results with suspended nanoparticles. For 20 nm and 50 nm thin membranes, we found a beam broadening of 1.5 nm and 3 nm, respectively, with an excellent agreement between simulations and experiments. 15 nm Au nanoparticles and bio-functionalized core-shell quantum dots can be individually resolved in denser clusters. We demonstrated the imaging of single EGF-conjugated quantum dots docked at filopodia during cellular uptake with both fluorescence microscopy and SEM simultaneously. These results open novel opportunities for correlating live fluorescence microscopy with structural electron microscopy.

  7. Quantitative measurement of the magnetic moment of individual magnetic nanoparticles by magnetic force microscopy.

    PubMed

    Sievers, Sibylle; Braun, Kai-Felix; Eberbeck, Dietmar; Gustafsson, Stefan; Olsson, Eva; Schumacher, Hans Werner; Siegner, Uwe

    2012-09-10

    The quantitative measurement of the magnetization of individual magnetic nanoparticles (MNPs) using magnetic force microscopy (MFM) is described. Quantitative measurement is realized by calibration of the MFM signal using an MNP reference sample with traceably determined magnetization. A resolution of the magnetic moment of the order of 10(-18) A m(2) under ambient conditions is demonstrated, which is presently limited by the tip's magnetic moment and the noise level of the instrument. The calibration scheme can be applied to practically any magnetic force microscope and tip, thus allowing a wide range of future applications, for example in nanomagnetism and biotechnology.

  8. Biomimetic Branched Hollow Fibers Templated by Self-assembled Fibrous Polyvinylpyrrolidone (PVP) Structures in Aqueous Solution

    PubMed Central

    Qiu, Penghe; Mao, Chuanbin

    2010-01-01

    Branched hollow fibers are common in nature, but to form artificial fibers with a similar branched hollow structure is still a challenge. We discovered that polyvinylpyrrolidone (PVP) could self-assemble into branched hollow fibers in an aqueous solution after aging the PVP solution for about two weeks. Based on this finding, we demonstrated two approaches by which the self-assembly of PVP into branched hollow fibers could be exploited to template the formation of branched hollow inorganic fibers. First, inorganic material such as silica with high affinity against the PVP could be deposited on the surface of the branched hollow PVP fibers to form branched hollow silica fibers. To extend the application of PVP self-assembly in templating the formation of hollow branched fibers, we then adopted a second approach where the PVP molecules bound to inorganic nanoparticles (using gold nanoparticles as a model) co-self-assemble with the free PVP molecules in an aqueous solution, resulting in the formation of the branched hollow fibers with the nanoparticles embedded in the PVP matrix constituting the walls of the fibers. Heating the resultant fibers above the glass transition temperature of PVP led to the formation of branched hollow gold fibers. Our work suggests that the self-assembly of the PVP molecules in the solution can serve as a general method for directing the formation of branched hollow inorganic fibers. The branched hollow fibers may find potential applications in microfluidics, artificial blood vessel generation, and tissue engineering. PMID:20158250

  9. Biomimetic branched hollow fibers templated by self-assembled fibrous polyvinylpyrrolidone structures in aqueous solution.

    PubMed

    Qiu, Penghe; Mao, Chuanbin

    2010-03-23

    Branched hollow fibers are common in nature, but to form artificial fibers with a similar branched hollow structure is still a challenge. We discovered that polyvinylpyrrolidone (PVP) could self-assemble into branched hollow fibers in an aqueous solution after aging the PVP solution for about two weeks. On the basis of this finding, we demonstrated two approaches by which the self-assembly of PVP into branched hollow fibers could be exploited to template the formation of branched hollow inorganic fibers. First, inorganic material such as silica with high affinity against the PVP could be deposited on the surface of the branched hollow PVP fibers to form branched hollow silica fibers. To extend the application of PVP self-assembly in templating the formation of hollow branched fibers, we then adopted a second approach where the PVP molecules bound to inorganic nanoparticles (using gold nanoparticles as a model) co-self-assemble with the free PVP molecules in an aqueous solution, resulting in the formation of the branched hollow fibers with the nanoparticles embedded in the PVP matrix constituting the walls of the fibers. Heating the resultant fibers above the glass transition temperature of PVP led to the formation of branched hollow gold fibers. Our work suggests that the self-assembly of the PVP molecules in the solution can serve as a general method for directing the formation of branched hollow inorganic fibers. The branched hollow fibers may find potential applications in microfluidics, artificial blood vessel generation, and tissue engineering.

  10. Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy.

    PubMed

    Stiegler, Johannes M; Abate, Yohannes; Cvitkovic, Antonija; Romanyuk, Yaroslav E; Huber, Andreas J; Leone, Stephen R; Hillenbrand, Rainer

    2011-08-23

    Infrared absorption spectroscopy is a powerful and widely used tool for analyzing the chemical composition and structure of materials. Because of the diffraction limit, however, it cannot be applied for studying individual nanostructures. Here we demonstrate that the phase contrast in substrate-enhanced scattering-type scanning near-field optical microscopy (s-SNOM) provides a map of the infrared absorption spectrum of individual nanoparticles with nanometer-scale spatial resolution. We succeeded in the chemical identification of silicon nitride nanoislands with heights well below 10 nm, by infrared near-field fingerprint spectroscopy of the Si-N stretching bond. Employing a novel theoretical model, we show that the near-field phase spectra of small particles correlate well with their far-field absorption spectra. On the other hand, the spectral near-field contrast does not scale with the volume of the particles. We find a nearly linear scaling law, which we can attribute to the near-field coupling between the near-field probe and the substrate. Our results provide fundamental insights into the spectral near-field contrast of nanoparticles and clearly demonstrate the capability of s-SNOM for nanoscale chemical mapping based on local infrared absorption.

  11. Crystallography Without Crystals: Determining the Structure of Individual Biological Molecules and Nanoparticles

    ScienceCinema

    Ourmazd, Abbas [University of Wisconsin, Milwaukee, Wisconsin, USA

    2016-07-12

    Ever shattered a valuable vase into 10 to the 6th power pieces and tried to reassemble it under a light providing a mean photon count of 10 minus 2 per detector pixel with shot noise? If you can do that, you can do single-molecule crystallography. This talk will outline how this can be done in principle. In more technical terms, the talk will describe how the combination of scattering physics and Bayesian algorithms can be used to reconstruct the 3-D diffracted intensity distribution from a collection of individual 2-D diffiraction patterns down to a mean photon count of 10 minus 2 per pixel, the signal level anticipated from the Linac Coherent Light Source, and hence determine the structure of individual macromolecules and nanoparticles.

  12. Crystallography Without Crystals: Determining the Structure of Individual Biological Molecules and Nanoparticles

    SciTech Connect

    Ourmazd, Abbas

    2008-03-05

    Ever shattered a valuable vase into 10 to the 6th power pieces and tried to reassemble it under a light providing a mean photon count of 10 minus 2 per detector pixel with shot noise? If you can do that, you can do single-molecule crystallography. This talk will outline how this can be done in principle. In more technical terms, the talk will describe how the combination of scattering physics and Bayesian algorithms can be used to reconstruct the 3-D diffracted intensity distribution from a collection of individual 2-D diffiraction patterns down to a mean photon count of 10 minus 2 per pixel, the signal level anticipated from the Linac Coherent Light Source, and hence determine the structure of individual macromolecules and nanoparticles.

  13. Preparation of hollow TiO2 nanoparticles through TiO2 deposition on polystyrene latex particles and characterizations of their structure and photocatalytic activity

    PubMed Central

    2012-01-01

    In a mixed solvent of water and ethanol, polystyrene/titanium dioxide (PSt/TiO2) composite particles of core-shell structure were prepared by hydrolysis of tetrabutyl titanate in the presence of cationic PSt particles or anionic PSt particles surface-treated using γ-aminopropyl triethoxysilane. Hollow TiO2 particles were obtained through calcination of the PSt/TiO2 core-shell particles to burn off the PSt core or through dissolution of the core by tetrahydrofuran (THF). An alternative process constituted of preheating the PSt/TiO2 particles at 200°C to allow partial crystallization followed by calcination or PSt dissolution by THF. The outcome TiO2 particles thus prepared were examined by TEM, and hollow TiO2 particles were observed. The crystalline phase structure and phase transformation were characterized, which revealed that preheating before the removal of the PSt core was useful to achieve the desired hollow TiO2 particles, and the calcination process was beneficial to the formation of anatase and rutile structures. The tests of TiO2 particles as catalyst in the photodegradation of Rhodamine B demonstrated that a much higher catalytic activity was observed with the TiO2 hollow particles prepared through calcination combined with preheating. PMID:23176612

  14. Preparation of hollow TiO2 nanoparticles through TiO2 deposition on polystyrene latex particles and characterizations of their structure and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Wang, Jingang; Yu, Jiemei; Zhu, Xiaoli; Kong, Xiang Zheng

    2012-11-01

    In a mixed solvent of water and ethanol, polystyrene/titanium dioxide (PSt/TiO2) composite particles of core-shell structure were prepared by hydrolysis of tetrabutyl titanate in the presence of cationic PSt particles or anionic PSt particles surface-treated using γ-aminopropyl triethoxysilane. Hollow TiO2 particles were obtained through calcination of the PSt/TiO2 core-shell particles to burn off the PSt core or through dissolution of the core by tetrahydrofuran (THF). An alternative process constituted of preheating the PSt/TiO2 particles at 200°C to allow partial crystallization followed by calcination or PSt dissolution by THF. The outcome TiO2 particles thus prepared were examined by TEM, and hollow TiO2 particles were observed. The crystalline phase structure and phase transformation were characterized, which revealed that preheating before the removal of the PSt core was useful to achieve the desired hollow TiO2 particles, and the calcination process was beneficial to the formation of anatase and rutile structures. The tests of TiO2 particles as catalyst in the photodegradation of Rhodamine B demonstrated that a much higher catalytic activity was observed with the TiO2 hollow particles prepared through calcination combined with preheating.

  15. In situ growth of hollow CuNi alloy nanoparticles on reduced graphene oxide nanosheets and their magnetic and catalytic properties

    NASA Astrophysics Data System (ADS)

    Yang, Jinglei; Shen, Xiaoping; Ji, Zhenyuan; Zhou, Hu; Zhu, Guoxing; Chen, Kangmin

    2014-10-01

    Hollow CuNi nanocrystals supported on reduced graphene oxide (RGO-CuNi) are synthesized by in situ co-reduction of Cu2+, Ni2+ and graphene oxide (GO) in a one-pot reaction. The as-synthesized RGO-CuNi nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectrometry, inductively coupled plasma optical emission spectrometry, Raman spectroscopy, and magnetic measurement. It is revealed that hollow CuNi nanocrystals with an average size of about 35.1 nm are uniformly deposited on the surface of RGO nanosheets. The formation mechanism of the hollow CuNi nanostructures is also proposed based on the galvanic displacement reaction. The as-synthesized RGO-CuNi nanocomposite exhibits excellent electrocatalytic performance toward the oxidation of glucose in alkaline media, and also shows superior catalytic activity and recycling stability toward the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). Moreover, the RGO-CuNi catalysts can be easily recollected from the reaction system by an external magnetic field due to their considerable saturation magnetization. It is anticipated that loading hollow nanostructures on RGO sheets would open up a new avenue for developing multifunctional catalysts with low cost and high catalytic performance.

  16. Direct observation of enhanced magnetism in individual size- and shape-selected 3 d transition metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Kleibert, Armin; Balan, Ana; Yanes, Rocio; Derlet, Peter M.; Vaz, C. A. F.; Timm, Martin; Fraile Rodríguez, Arantxa; Béché, Armand; Verbeeck, Jo; Dhaka, R. S.; Radovic, Milan; Nowak, Ulrich; Nolting, Frithjof

    2017-05-01

    Magnetic nanoparticles are critical building blocks for future technologies ranging from nanomedicine to spintronics. Many related applications require nanoparticles with tailored magnetic properties. However, despite significant efforts undertaken towards this goal, a broad and poorly understood dispersion of magnetic properties is reported, even within monodisperse samples of the canonical ferromagnetic 3 d transition metals. We address this issue by investigating the magnetism of a large number of size- and shape-selected, individual nanoparticles of Fe, Co, and Ni using a unique set of complementary characterization techniques. At room temperature, only superparamagnetic behavior is observed in our experiments for all Ni nanoparticles within the investigated sizes, which range from 8 to 20 nm. However, Fe and Co nanoparticles can exist in two distinct magnetic states at any size in this range: (i) a superparamagnetic state, as expected from the bulk and surface anisotropies known for the respective materials and as observed for Ni, and (ii) a state with unexpected stable magnetization at room temperature. This striking state is assigned to significant modifications of the magnetic properties arising from metastable lattice defects in the core of the nanoparticles, as concluded by calculations and atomic structural characterization. Also related with the structural defects, we find that the magnetic state of Fe and Co nanoparticles can be tuned by thermal treatment enabling one to tailor their magnetic properties for applications. This paper demonstrates the importance of complementary single particle investigations for a better understanding of nanoparticle magnetism and for full exploration of their potential for applications.

  17. Designed Functional Systems for High-Performance Lithium-Ion Batteries Anode: From Solid to Hollow, and to Core-Shell NiCo2O4 Nanoparticles Encapsulated in Ultrathin Carbon Nanosheets.

    PubMed

    Peng, Liang; Zhang, Huijuan; Fang, Ling; Bai, Yuanjuan; Wang, Yu

    2016-02-01

    Binary metal oxides have been considered as ideal and promising anode materials, which can ameliorate and enhance the electrochemical performances of the single metal oxides, such as electronic conductivity, reversible capacity, and structural stability. In this research, we report a rational method to synthesize some novel sandwich-like NiCo2O4@C nanosheets arrays for the first time. The nanostructures exhibit the unique features of solid, hollow, and even core-shell NiCo2O4 nanoparticles encapsulated inside and a graphitized carbon layers coating outside. Compared to the previous reports, these composites demonstrate more excellent electrochemical performances, including superior rate capability and excellent cycling capacity. Therefore, the final conclusion would be given that these multifarious sandwich-like NiCo2O4@C composites could be highly qualified candidates for lithium-ion battery anodes in some special field, in which good capability and high capacity are urgently required.

  18. Na-ion Storage Performances of FeSe(x) and Fe2O3 Hollow Nanoparticles-Decorated Reduced Graphene Oxide Balls prepared by Nanoscale Kirkendall Diffusion Process.

    PubMed

    Park, Gi Dae; Cho, Jung Sang; Lee, Jung-Kul; Kang, Yun Chan

    2016-02-29

    Uniquely structured FeSe(x)-reduced graphene oxide (rGO) composite powders, in which hollow FeSe(x) nanoparticles are uniformly distributed throughout the rGO matrix, were prepared by spray pyrolysis applying the nanoscale Kirkendall diffusion process. Iron oxide-rGO composite powders were transformed into FeSe(x)-rGO composite powders by a two-step post-treatment process. Metallic Fe nanocrystals formed during the first-step post-treatment process were transformed into hollow FeSe(x) nanoparticles during the selenization process. The FeSe(x)-rGO composite powders had mixed crystal structures of FeSe and FeSe2 phases. A rGO content of 33% was estimated from the TG analysis of the FeSe(x)-rGO composite powders. The FeSe(x)-rGO composite powders had superior sodium-ion storage properties compared to those of the Fe2O3-rGO composite powders with similar morphological characteristics. The discharge capacities of the FeSe(x)- and Fe2O3-rGO composite powders for the 200(th) cycle at a constant current density of 0.3 A g(-1) were 434 and 174 mA h g(-1), respectively. The FeSe(x)-rGO composite powders had a high discharge capacity of 311 mA h g(-1) for the 1000(th) cycle at a high current density of 1 A g(-1).

  19. Nanoparticle-based flow virometry for the analysis of individual virions

    PubMed Central

    Arakelyan, Anush; Fitzgerald, Wendy; Margolis, Leonid; Grivel, Jean-Charles

    2013-01-01

    While flow cytometry has been used to analyze the antigenic composition of individual cells, the antigenic makeup of viral particles is still characterized predominantly in bulk. Here, we describe a technology, “flow virometry,” that can be used for antigen detection on individual virions. The technology is based on binding magnetic nanoparticles to virions, staining the virions with monoclonal antibodies, separating the formed complexes with magnetic columns, and characterizing them with flow cytometers. We used this technology to study the distribution of two antigens (HLA-DR and LFA-1) that HIV-1 acquires from infected cells among individual HIV-1 virions. Flow virometry revealed that the antigenic makeup of virions from a single preparation is heterogeneous. This heterogeneity could not be detected with bulk analysis of viruses. Moreover, in two preparations of the same HIV-1 produced by different cells, the distribution of antigens among virions was different. In contrast, HIV-1 of two different HIV-1 genotypes replicating in the same cells became somewhat antigenically similar. This nanotechnology allows the study of virions in bodily fluids without virus propagation and in principle is not restricted to the analysis of HIV, but can be applied to the analysis of the individual surface antigenic makeup of any virus. PMID:23925291

  20. Fabrication of hollow silver spheres by MPTMS-functionalized hollow silica spheres as templates

    SciTech Connect

    Park, Jae-Hyung; Kim, Young-Gon; Oh, Chul; Shin, Seung-Il; Kim, Young-Chai; Oh, Seong-Geun . E-mail: seongoh@hanyang.ac.kr; Kong, Sung-Ho

    2005-02-15

    In this study, we provide a strategy to prepare the hollow silver spheres by accumulating the silver nanoparticles on the surface of 3-mercaptopropyltrimethoxysilane (MPTMS)-functionalized silica as templates, which was accomplished by the chemisorption between silver nanoparticles and thiol groups. Then, the resulting hollow silver spheres were obtained through the chemical wet etching process with 10 M HF solution. In conventional method, the fabrication of hollow silver spheres from core-shell spheres was not easy due to the difficulties in retaining the shell structures during core removal. The method in this paper could overcome this limitation. The major focus of study is on understanding the mechanism of formation of the hollow silver spheres through the self-assembly behavior by chemisorption between silver nanoparticles and thiol groups. The silver-coated silica and hollow silver spheres were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), and X-ray photoelectron spectroscopy (XPS)

  1. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering

    NASA Astrophysics Data System (ADS)

    Barke, Ingo; Hartmann, Hannes; Rupp, Daniela; Flückiger, Leonie; Sauppe, Mario; Adolph, Marcus; Schorb, Sebastian; Bostedt, Christoph; Treusch, Rolf; Peltz, Christian; Bartling, Stephan; Fennel, Thomas; Meiwes-Broer, Karl-Heinz; Möller, Thomas

    2015-02-01

    The diversity of nanoparticle shapes generated by condensation from gaseous matter reflects the fundamental competition between thermodynamic equilibration and the persistence of metastable configurations during growth. In the kinetically limited regime, intermediate geometries that are favoured only in early formation stages can be imprinted in the finally observed ensemble of differently structured specimens. Here we demonstrate that single-shot wide-angle scattering of femtosecond soft X-ray free-electron laser pulses allows three-dimensional characterization of the resulting metastable nanoparticle structures. For individual free silver particles, which can be considered frozen in space for the duration of photon exposure, both shape and orientation are uncovered from measured scattering images. We identify regular shapes, including species with fivefold symmetry and surprisingly large aspect ratio up to particle radii of the order of 100 nm. Our approach includes scattering effects beyond Born’s approximation and is remarkably efficient—opening up new routes in ultrafast nanophysics and free-electron laser science.

  2. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering

    PubMed Central

    Barke, Ingo; Hartmann, Hannes; Rupp, Daniela; Flückiger, Leonie; Sauppe, Mario; Adolph, Marcus; Schorb, Sebastian; Bostedt, Christoph; Treusch, Rolf; Peltz, Christian; Bartling, Stephan; Fennel, Thomas; Meiwes-Broer, Karl-Heinz; Möller, Thomas

    2015-01-01

    The diversity of nanoparticle shapes generated by condensation from gaseous matter reflects the fundamental competition between thermodynamic equilibration and the persistence of metastable configurations during growth. In the kinetically limited regime, intermediate geometries that are favoured only in early formation stages can be imprinted in the finally observed ensemble of differently structured specimens. Here we demonstrate that single-shot wide-angle scattering of femtosecond soft X-ray free-electron laser pulses allows three-dimensional characterization of the resulting metastable nanoparticle structures. For individual free silver particles, which can be considered frozen in space for the duration of photon exposure, both shape and orientation are uncovered from measured scattering images. We identify regular shapes, including species with fivefold symmetry and surprisingly large aspect ratio up to particle radii of the order of 100 nm. Our approach includes scattering effects beyond Born’s approximation and is remarkably efficient—opening up new routes in ultrafast nanophysics and free-electron laser science. PMID:25650004

  3. Real-time intravital microscopy of individual nanoparticle dynamics in liver and tumors of live mice

    PubMed Central

    van de Ven, Anne L; Kim, Pilhan; Ferrari, Mauro; Yun, Seok Hyun

    2013-01-01

    Intravital microscopy is emerging as an important experimental tool for the research and development of multi-functional therapeutic nanoconstructs. The direct visualization of nanoparticle dynamics within live animals provides invaluable insights into the mechanisms that regulate nanotherapeutics transport and cell-particle interactions. Here we present a protocol to image the dynamics of nanoparticles within the liver and tumors of live mice immediately following systemic injection using a high-speed (30-400 fps) confocal or multi-photon laser-scanning fluorescence microscope. Techniques for quantifying the real-time accumulation and cellular association of individual particles with a size ranging from several tens of nanometers to micrometers are described, as well as an experimental strategy for labeling Kupffer cells in the liver in vivo. Experimental design considerations and controls are provided, as well as minimum equipment requirements. The entire protocol takes approximately 4-8 hours and yields quantitative information. These techniques can serve to study a wide range of kinetic parameters that drive nanotherapeutics delivery, uptake, and treatment response. PMID:25383179

  4. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering

    DOE PAGES

    Barke, Ingo; Hartmann, Hannes; Rupp, Daniela; ...

    2015-02-04

    The diversity of nanoparticle shapes generated by condensation from gaseous matter reflects the fundamental competition between thermodynamic equilibration and the persistence of metastable configurations during growth. In the kinetically limited regime, intermediate geometries that are favoured only in early formation stages can be imprinted in the finally observed ensemble of differently structured specimens. Here we demonstrate that single-shot wide-angle scattering of femtosecond soft X-ray free-electron laser pulses allows three-dimensional characterization of the resulting metastable nanoparticle structures. For individual free silver particles, which can be considered frozen in space for the duration of photon exposure, both shape and orientation are uncoveredmore » from measured scattering images. We identify regular shapes, including species with fivefold symmetry and surprisingly large aspect ratio up to particle radii of the order of 100 nm. Our approach includes scattering effects beyond Born’s approximation and is remarkably efficient—opening up new routes in ultrafast nanophysics and free-electron laser science« less

  5. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering

    SciTech Connect

    Barke, Ingo; Hartmann, Hannes; Rupp, Daniela; Flückiger, Leonie; Sauppe, Mario; Adolph, Marcus; Schorb, Sebastian; Bostedt, Christoph; Treusch, Rolf; Peltz, Christian; Bartling, Stephan; Fennel, Thomas; Meiwes-Broer, Karl-Heinz; Möller, Thomas

    2015-02-04

    The diversity of nanoparticle shapes generated by condensation from gaseous matter reflects the fundamental competition between thermodynamic equilibration and the persistence of metastable configurations during growth. In the kinetically limited regime, intermediate geometries that are favoured only in early formation stages can be imprinted in the finally observed ensemble of differently structured specimens. Here we demonstrate that single-shot wide-angle scattering of femtosecond soft X-ray free-electron laser pulses allows three-dimensional characterization of the resulting metastable nanoparticle structures. For individual free silver particles, which can be considered frozen in space for the duration of photon exposure, both shape and orientation are uncovered from measured scattering images. We identify regular shapes, including species with fivefold symmetry and surprisingly large aspect ratio up to particle radii of the order of 100 nm. Our approach includes scattering effects beyond Born’s approximation and is remarkably efficient—opening up new routes in ultrafast nanophysics and free-electron laser science

  6. Surface interactions of gold nanorods and polysaccharides: From clusters to individual nanoparticles.

    PubMed

    de Barros, Heloise Ribeiro; Piovan, Leandro; Sassaki, Guilherme L; de Araujo Sabry, Diego; Mattoso, Ney; Nunes, Ábner Magalhães; Meneghetti, Mario R; Riegel-Vidotti, Izabel C

    2016-11-05

    Gold nanorods (AuNRs) are suitable for constructing self-assembled structures for the development of biosensing devices and are usually obtained in the presence of cetyltrimethylammonium bromide (CTAB). Here, a sulfated chitosan (ChiS) and gum arabic (GA) were employed to encapsulate CTAB/AuNRs with the purpose of studying the interactions of the polysaccharides with CTAB, which is cytotoxic and is responsible for the instability of nanoparticles in buffer solutions. The presence of a variety of functional groups such as the sulfate groups in ChiS and the carboxylic groups in GA, led to efficient interactions with CTAB/AuNRs as evidenced through UV-vis and FTIR spectroscopies. Electron microscopies (HR-SEM and TEM) revealed that nanoparticle clusters were formed in the GA-AuNRs sample, whereas individual AuNRs, surrounded by a dense layer of polysaccharides, were observed in the ChiS-AuNRs sample. Therefore, the presented work contributes to the understanding of the driving forces that control the surface interactions of the studied materials, providing useful information in the building-up of gold self-assembled nanostructures.

  7. Superior hydrogen desorption kinetics of Mg(NH{sub 2}){sub 2} hollow nanospheres mixed with MgH{sub 2} nanoparticles

    SciTech Connect

    Xie Lei; Li Yaoqi; Yang Rong; Liu Yang; Li Xingguo

    2008-06-09

    Mg{sub 3}N{sub 2} nanocubes were prepared by vaporized bulk magnesium in ammonia atmosphere associated with plasma metal reaction. Then the product transformed to Mg(NH{sub 2}){sub 2} hollow nanospheres after it was reacted with NH{sub 3} based on the Kirkendall effect. The electron microscopy results suggested that the obtained hollow nanospheres were around 100 nm and the shell thickness was about 10 nm. Because of its short distance for Mg{sup 2+} diffusion and large specific surface area for interaction between Mg(NH{sub 2}){sub 2} and MgH{sub 2}, the structure dramatically enhanced the hydrogen desorption kinetics of Mg(NH{sub 2}){sub 2}-2MgH{sub 2}.

  8. Hollow-fiber flow field-flow fractionation and multi-angle light scattering investigation of the size, shape and metal-release of silver nanoparticles in aqueous medium for nano-risk assessment.

    PubMed

    Marassi, Valentina; Casolari, Sonia; Roda, Barbara; Zattoni, Andrea; Reschiglian, Pierluigi; Panzavolta, Silvia; Tofail, Syed A M; Ortelli, Simona; Delpivo, Camilla; Blosi, Magda; Costa, Anna Luisa

    2015-03-15

    Due to the increased use of silver nanoparticles in industrial scale manufacturing, consumer products and nanomedicine reliable measurements of properties such as the size, shape and distribution of these nano particles in aqueous medium is critical. These properties indeed affect both functional properties and biological impacts especially in quantifying associated risks and identifying suitable risk-mediation strategies. The feasibility of on-line coupling of a fractionation technique such as hollow-fiber flow field flow fractionation (HF5) with a light scattering technique such as MALS (multi-angle light scattering) is investigated here for this purpose. Data obtained from such a fractionation technique and its combination thereof with MALS have been compared with those from more conventional but often complementary techniques e.g. transmission electron microscopy, dynamic light scattering, atomic absorption spectroscopy, and X-ray fluorescence. The combination of fractionation and multi angle light scattering techniques have been found to offer an ideal, hyphenated methodology for a simultaneous size-separation and characterization of silver nanoparticles. The hydrodynamic radii determined by fractionation techniques can be conveniently correlated to the mean average diameters determined by multi angle light scattering and reliable information on particle morphology in aqueous dispersion has been obtained. The ability to separate silver (Ag(+)) ions from silver nanoparticles (AgNPs) via membrane filtration during size analysis is an added advantage in obtaining quantitative insights to its risk potential. Most importantly, the methodology developed in this article can potentially be extended to similar characterization of metal-based nanoparticles when studying their functional effectiveness and hazard potential.

  9. Site-specific deposition of single gold nanoparticles by individual growth in electrohydrodynamically-printed attoliter droplet reactors

    NASA Astrophysics Data System (ADS)

    Schneider, Julian; Rohner, Patrik; Galliker, Patrick; Raja, Shyamprasad N.; Pan, Ying; Tiwari, Manish K.; Poulikakos, Dimos

    2015-05-01

    Gold nanoparticles with unique electronic, optical and catalytic properties can be efficiently synthesized in colloidal suspensions and are of broad scientific and technical interest and utility. However, their orderly integration on functional surfaces and devices remains a challenge. Here we show that single gold nanoparticles can be directly grown in individually printed, stabilized metal-salt ink attoliter droplets, using a nanoscale electrohydrodynamic printing method with a stable high-frequency dripping mode. This enables controllable sessile droplet nanoreactor formation and sustenance on non-wetting substrates, despite simultaneous rapid evaporation. The single gold nanoparticles can be formed inside such reactors in situ or by subsequent thermal annealing and plasma ashing. With this non-contact technique, single particles with diameters tunable in the range of 5-35 nm and with narrow size distribution, high yield and alignment accuracy are generated on demand and patterned into arbitrary arrays. The nanoparticles feature good catalytic activity as shown by the exemplary growth of silicon nanowires from the nanoparticles and the etching of nanoholes by the printed nanoparticles.Gold nanoparticles with unique electronic, optical and catalytic properties can be efficiently synthesized in colloidal suspensions and are of broad scientific and technical interest and utility. However, their orderly integration on functional surfaces and devices remains a challenge. Here we show that single gold nanoparticles can be directly grown in individually printed, stabilized metal-salt ink attoliter droplets, using a nanoscale electrohydrodynamic printing method with a stable high-frequency dripping mode. This enables controllable sessile droplet nanoreactor formation and sustenance on non-wetting substrates, despite simultaneous rapid evaporation. The single gold nanoparticles can be formed inside such reactors in situ or by subsequent thermal annealing and plasma

  10. Measuring the Size and Slip Lengths of Individual Nanoparticles using Suspended Microchannel Resonators

    NASA Astrophysics Data System (ADS)

    Collis, Jesse; Sader, John; Olcum, Selim; Manalis, Scott

    2015-11-01

    Characterizing nanometer-scale particles immersed in liquids using cantilever-based sensing methods can be challenging due to large hydrodynamic damping forces. Suspended Microchannel Resonators (SMRs) differ to conventional cantilever sensors by embedding a microfluidic channel within a vacuum-encased cantilever. These devices can be used as sensitive mass balances for individual nanoparticles flowing through the microfluidic channel; resolution at the attogram scale has been demonstrated recently. We explore a new modality for these devices, where the particle size and surface properties can be characterized. The theoretical framework for this modality is developed using both asymptotic and numerical methods, for which excellent agreement is observed. Comparison of experimental data with Monte-Carlo simulations shows we are able to accurately quantify the slip lengths of these particles.

  11. Far-field optical nanothermometry using individual sub-50 nm upconverting nanoparticles

    NASA Astrophysics Data System (ADS)

    Kilbane, Jacob D.; Chan, Emory M.; Monachon, Christian; Borys, Nicholas J.; Levy, Elizabeth S.; Pickel, Andrea D.; Urban, Jeffrey J.; Schuck, P. James; Dames, Chris

    2016-06-01

    We demonstrate far-field optical thermometry using individual NaYF4 nanoparticles doped with 2% Er3+ and 20% Yb3+. Isolated 20 × 20 × 40 nm3 particles were identified using only far-field optical imaging, confirmed by subsequent scanning electron microscopy. The luminescence thermometry response for five such single particles was characterized for temperatures from 300 K to 400 K. A standard Arrhenius model widely used for larger particles can still be accurately applied to these sub-50 nm particles, with good particle-to-particle uniformity (response coefficients exhibited standard deviations below 5%). With its spatial resolution on the order of 50 nm when imaging a single particle, far below the diffraction limit, this technique has potential applications for both fundamental thermal measurements and nanoscale metrology in industrial applications.We demonstrate far-field optical thermometry using individual NaYF4 nanoparticles doped with 2% Er3+ and 20% Yb3+. Isolated 20 × 20 × 40 nm3 particles were identified using only far-field optical imaging, confirmed by subsequent scanning electron microscopy. The luminescence thermometry response for five such single particles was characterized for temperatures from 300 K to 400 K. A standard Arrhenius model widely used for larger particles can still be accurately applied to these sub-50 nm particles, with good particle-to-particle uniformity (response coefficients exhibited standard deviations below 5%). With its spatial resolution on the order of 50 nm when imaging a single particle, far below the diffraction limit, this technique has potential applications for both fundamental thermal measurements and nanoscale metrology in industrial applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01479h

  12. Direct quantification of rare earth doped titania nanoparticles in individual human cells

    PubMed Central

    Jeynes, J C G; Jeynes, C; Palitsin, V; Townley, H E

    2016-01-01

    Abstract There are many possible biomedical applications for titania nanoparticles (NPs) doped with rare earth elements (REEs), from dose enhancement and diagnostic imaging in radiotherapy, to biosensing. However, there are concerns that the NPs could disintegrate in the body thus releasing toxic REE ions to undesired locations. As a first step, we investigate how accurately the Ti/REE ratio from the NPs can be measured inside human cells. A quantitative analysis of whole, unsectioned, individual human cells was performed using proton microprobe elemental microscopy. This method is unique in being able to quantitatively analyse all the elements in an unsectioned individual cell with micron resolution, while also scanning large fields of view. We compared the Ti/REE signal inside cells to NPs that were outside the cells, non-specifically absorbed onto the polypropylene substrate. We show that the REE signal in individual cells co-localises with the titanium signal, indicating that the NPs have remained intact. Within the uncertainty of the measurement, there is no difference between the Ti/REE ratio inside and outside the cells. Interestingly, we also show that there is considerable variation in the uptake of the NPs from cell-to-cell, by a factor of more than 10. We conclude that the NPs enter the cells and remain intact. The large heterogeneity in NP concentrations from cell-to-cell should be considered if they are to be used therapeutically. PMID:27255758

  13. Direct quantification of rare earth doped titania nanoparticles in individual human cells.

    PubMed

    Jeynes, J C G; Jeynes, C; Palitsin, V; Townley, H E

    2016-07-15

    There are many possible biomedical applications for titania nanoparticles (NPs) doped with rare earth elements (REEs), from dose enhancement and diagnostic imaging in radiotherapy, to biosensing. However, there are concerns that the NPs could disintegrate in the body thus releasing toxic REE ions to undesired locations. As a first step, we investigate how accurately the Ti/REE ratio from the NPs can be measured inside human cells. A quantitative analysis of whole, unsectioned, individual human cells was performed using proton microprobe elemental microscopy. This method is unique in being able to quantitatively analyse all the elements in an unsectioned individual cell with micron resolution, while also scanning large fields of view. We compared the Ti/REE signal inside cells to NPs that were outside the cells, non-specifically absorbed onto the polypropylene substrate. We show that the REE signal in individual cells co-localises with the titanium signal, indicating that the NPs have remained intact. Within the uncertainty of the measurement, there is no difference between the Ti/REE ratio inside and outside the cells. Interestingly, we also show that there is considerable variation in the uptake of the NPs from cell-to-cell, by a factor of more than 10. We conclude that the NPs enter the cells and remain intact. The large heterogeneity in NP concentrations from cell-to-cell should be considered if they are to be used therapeutically.

  14. Direct quantification of rare earth doped titania nanoparticles in individual human cells

    NASA Astrophysics Data System (ADS)

    Jeynes, J. C. G.; Jeynes, C.; Palitsin, V.; Townley, H. E.

    2016-07-01

    There are many possible biomedical applications for titania nanoparticles (NPs) doped with rare earth elements (REEs), from dose enhancement and diagnostic imaging in radiotherapy, to biosensing. However, there are concerns that the NPs could disintegrate in the body thus releasing toxic REE ions to undesired locations. As a first step, we investigate how accurately the Ti/REE ratio from the NPs can be measured inside human cells. A quantitative analysis of whole, unsectioned, individual human cells was performed using proton microprobe elemental microscopy. This method is unique in being able to quantitatively analyse all the elements in an unsectioned individual cell with micron resolution, while also scanning large fields of view. We compared the Ti/REE signal inside cells to NPs that were outside the cells, non-specifically absorbed onto the polypropylene substrate. We show that the REE signal in individual cells co-localises with the titanium signal, indicating that the NPs have remained intact. Within the uncertainty of the measurement, there is no difference between the Ti/REE ratio inside and outside the cells. Interestingly, we also show that there is considerable variation in the uptake of the NPs from cell-to-cell, by a factor of more than 10. We conclude that the NPs enter the cells and remain intact. The large heterogeneity in NP concentrations from cell-to-cell should be considered if they are to be used therapeutically.

  15. Dealloying in Individual Nanoparticles and Thin Film Grains: A Bragg Coherent Diffractive Imaging Study

    DOE PAGES

    Cha, Wonsuk; Liu, Yihua; You, Hoydoo; ...

    2017-05-09

    Dealloying is a process whereby selective dissolution results in a porous, strained structure often with new properties. The process is of both intrinsic and applied interest, and recently has been used to make highly active catalysts. The porosity has been studied using electron microscopy while the dealloying-induced strain has been studied at the ensemble level using X-ray diffraction. Despite the importance of local, for example, at the individual particle or grain level, strain in controlling the properties of the dealloyed material, it remains unresolved due to the difficulty of imaging 3D strain distributions with nanometer resolution in reactive environments. Thismore » information could play an integral role in understanding and controlling lattice strain for a variety of applications. Here, 3D strain distributions in individual nanoparticles and thin film grains in silver-gold alloys undergoing nitric acid-induced dealloying are imaged by Bragg coherent diffractive imaging. Particles exhibit dramatic changes in their local strains due to dealloying but grains do not. Furthermore, the average lattice in both grains and particles contracts during dealloying. In general, the results reveal significant dealloying-induced strain heterogeneity at the nanoscale in both isolated and extended samples, which may be utilized to develop advanced nanostructures for a variety of important applications.« less

  16. Resistive Switching of Individual, Chemically Synthesized TiO2 Nanoparticles.

    PubMed

    Schmidt, Dirk Oliver; Hoffmann-Eifert, Susanne; Zhang, Hehe; La Torre, Camilla; Besmehn, Astrid; Noyong, Michael; Waser, Rainer; Simon, Ulrich

    2015-12-22

    Resistively switching devices are considered promising for next-generation nonvolatile random-access memories. Today, such memories are fabricated by means of "top-down approaches" applying thin films sandwiched between nanoscaled electrodes. In contrast, this work presents a "bottom-up approach" disclosing for the first time the resistive switching (RS) of individual TiO2 nanoparticles (NPs). The NPs, which have sizes of 80 and 350 nm, respectively, are obtained by wet chemical synthesis and thermally treated under oxidizing or vacuum conditions for crystallization, respectively. These NPs are deposited on a Pt/Ir bottom electrode and individual NPs are electrically characterized by means of a nanomanipulator system in situ, in a scanning electron microscope. While amorphous NPs and calcined NPs reveal no switching hysteresis, a very interesting behavior is found for the vacuum-annealed, crystalline TiO(2-x) NPs. These NPs reveal forming-free RS behavior, dominantly complementary switching (CS) and, to a small degree, bipolar switching (BS) characteristics. In contrast, similarly vacuum-annealed TiO2 thin films grown by atomic layer deposition show standard BS behavior under the same conditions. The interesting CS behavior of the TiO(2-x) NPs is attributed to the formation of a core-shell-like structure by re-oxidation of the reduced NPs as a unique feature.

  17. Nano electrochemical reactors of Fe2O3 nanoparticles embedded in shells of nitrogen-doped hollow carbon spheres as high-performance anodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zheng, Fangcai; He, Mengni; Yang, Yang; Chen, Qianwang

    2015-02-01

    Iron oxides are extensively investigated as anode materials for lithium-ion batteries (LIBs) because of their large specific capacities. However, they undergo huge volume changes during cycling that result in anode pulverization and loss of electrical connectivity. As a result, the capacity retention of the iron oxide anodes is poor and should be improved for commercial applications. Herein, we report the preparation of ultrasmall Fe2O3 nanoparticles embedded in nitrogen-doped hollow carbon sphere shells (Fe2O3@N-C) by the direct pyrolysis of Fe-based zeolitic imidazolate frameworks (Fe-ZIF) at 620 °C in air. As an anode material for LIBs, the capacity retained was 1573 mA h g-1 after 50 cycles at a current density of 0.1 C (1 C = 1000 mA g-1). Even undergoing the high-rate capability test twice, it can still deliver a remarkably reversible and stable capacity of 1142 mA h g-1 after 100 cycles at a current density of 1 C. The excellent electrochemical performance is attributed to the unique structure of ultrasmall Fe2O3 nanoparticles uniformly distributed in the shell of nitrogen-doped carbon spheres, which simultaneously solve the major problems of pulverization, facilitate rapid electrochemical kinetics, and effectively avoid the aggregation of Fe2O3 nanoparticles during de/lithiation. The novel method developed in this work for the synthesis of functional hybrid materials can be extended to the preparation of various MOFs-derived functional nanocomposites owing to the versatility of links and metal centers in MOFs.Iron oxides are extensively investigated as anode materials for lithium-ion batteries (LIBs) because of their large specific capacities. However, they undergo huge volume changes during cycling that result in anode pulverization and loss of electrical connectivity. As a result, the capacity retention of the iron oxide anodes is poor and should be improved for commercial applications. Herein, we report the preparation of ultrasmall Fe2O3 nanoparticles

  18. Site-specific deposition of single gold nanoparticles by individual growth in electrohydrodynamically-printed attoliter droplet reactors.

    PubMed

    Schneider, Julian; Rohner, Patrik; Galliker, Patrick; Raja, Shyamprasad N; Pan, Ying; Tiwari, Manish K; Poulikakos, Dimos

    2015-06-07

    Gold nanoparticles with unique electronic, optical and catalytic properties can be efficiently synthesized in colloidal suspensions and are of broad scientific and technical interest and utility. However, their orderly integration on functional surfaces and devices remains a challenge. Here we show that single gold nanoparticles can be directly grown in individually printed, stabilized metal-salt ink attoliter droplets, using a nanoscale electrohydrodynamic printing method with a stable high-frequency dripping mode. This enables controllable sessile droplet nanoreactor formation and sustenance on non-wetting substrates, despite simultaneous rapid evaporation. The single gold nanoparticles can be formed inside such reactors in situ or by subsequent thermal annealing and plasma ashing. With this non-contact technique, single particles with diameters tunable in the range of 5-35 nm and with narrow size distribution, high yield and alignment accuracy are generated on demand and patterned into arbitrary arrays. The nanoparticles feature good catalytic activity as shown by the exemplary growth of silicon nanowires from the nanoparticles and the etching of nanoholes by the printed nanoparticles.

  19. Monodisperse Hollow Tricolor Pigment Particles for Electronic Paper

    PubMed Central

    2010-01-01

    A general approach has been designed to blue, green, and red pigments by metal ions doping hollow TiO 2. The reaction involves initial formation of PS at TiO2 core–shell nanoparticles via a mixed-solvent method, and then mixing with metal ions solution containing PEG, followed calcining in the atmosphere. The as-prepared hollow pigments exhibit uniform size, bright color, and tunable density, which are fit for electronic paper display. PMID:20651918

  20. High Performance Hollow Projectiles

    DTIC Science & Technology

    Development of hollow projectiles was first advocated to achieve ’silent’ (low pressure signal) projectiles having higher performance. Although the...present effort concentrates on small arms (specifically 7.62 mm), the confirmed fundamental theory applies to all sizes of hollow projectiles. The...report can thus serve as a basis for (1) evaluating specific hollow projectile developments and (2) formulating programs to develop a wide spectrum of

  1. NanoSQUID magnetometry of individual cobalt nanoparticles grown by focused electron beam induced deposition

    NASA Astrophysics Data System (ADS)

    Martínez-Pérez, M. J.; Müller, B.; Schwebius, D.; Korinski, D.; Kleiner, R.; Sesé, J.; Koelle, D.

    2017-02-01

    We demonstrate the operation of low-noise nano superconducting quantum interference devices (SQUIDs) based on the high critical field and high critical temperature superconductor YBa2Cu3O7 (YBCO) as ultra-sensitive magnetometers for single magnetic nanoparticles (MNPs). The nanoSQUIDs exploit the Josephson behavior of YBCO grain boundaries and have been patterned by focused ion beam milling. This allows us to precisely define the lateral dimensions of the SQUIDs so as to achieve large magnetic coupling between the nanoloop and individual MNPs. By means of focused electron beam induced deposition, cobalt MNPs with a typical size of several tens of nm have been grown directly on the surface of the sensors with nanometric spatial resolution. Remarkably, the nanoSQUIDs are operative over extremely broad ranges of applied magnetic field (-1 T \\lt {μ }0H\\lt 1 T) and temperature (0.3 K \\lt T\\lt 80 K). All these features together have allowed us to perform magnetization measurements under different ambient conditions and to detect the magnetization reversal of individual Co MNPs with magnetic moments (1-30) × {10}6 {μ }{{B}}. Depending on the dimensions and shape of the particles we have distinguished between two different magnetic states yielding different reversal mechanisms. The magnetization reversal is thermally activated over an energy barrier, which has been quantified for the (quasi) single-domain particles. Our measurements serve to show not only the high sensitivity achievable with YBCO nanoSQUIDs, but also demonstrate that these sensors are exceptional magnetometers for the investigation of the properties of individual nanomagnets.

  2. Hollow lensing duct

    DOEpatents

    Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Mitchell, Scott; Lang, John; Maderas, Dennis; Speth, Joel; Payne, Stephen A.

    2000-01-01

    A hollow lensing duct to condense (intensify) light using a combination of focusing using a spherical or cylindrical lens followed by reflective waveguiding. The hollow duct tapers down from a wide input side to a narrow output side, with the input side consisting of a lens that may be coated with an antireflective coating for more efficient transmission into the duct. The inside surfaces of the hollow lens duct are appropriately coated to be reflective, preventing light from escaping by reflection as it travels along the duct (reflective waveguiding). The hollow duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials.

  3. Laser-induced reduction and in-situ optical spectroscopy of individual plasmonic copper nanoparticles for catalytic reactions

    NASA Astrophysics Data System (ADS)

    Di Martino, G.; Turek, V. A.; Braeuninger-Weimer, P.; Hofmann, S.; Baumberg, J. J.

    2017-02-01

    Copper (Cu) can provide an alternative to gold (Au) for the development of efficient, low-cost and low-loss plasmonic nanoparticles (NPs), as well as selective nanocatalysts. Unlike Au, the surface oxidation of Cu NPs can be an issue restricting their applicability. Here, we selectively reduce the Cu NPs by low power laser illumination in vacuum and use dark-field scattering to reveal in real time the optical signatures of the reduction process and its influence on the Cu NP plasmonic resonance. We then study reactive processes at the single particle level, using individual Cu catalyst nanoparticles for the selective laser-induced chemical vapour deposition of germanium nanostructures.

  4. Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles

    DOE PAGES

    Ulvestad, A.; Welland, M. J.; Collins, S. S. E.; ...

    2015-12-11

    Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/ discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surfacemore » layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. In conclusion, our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments.« less

  5. Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles

    SciTech Connect

    Ulvestad, A.; Welland, M. J.; Collins, S. S. E.; Harder, R.; Maxey, E.; Wingert, J.; Singer, A.; Hy, S.; Mulvaney, P.; Zapol, P.; Shpyrko, O. G.

    2015-12-11

    Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/ discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surface layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. In conclusion, our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments.

  6. Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles

    PubMed Central

    Ulvestad, A.; Welland, M. J.; Collins, S. S. E.; Harder, R.; Maxey, E.; Wingert, J.; Singer, A.; Hy, S.; Mulvaney, P.; Zapol, P.; Shpyrko, O. G.

    2015-01-01

    Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surface layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. Our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments. PMID:26655832

  7. Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons.

    PubMed

    Wersäll, Martin; Cuadra, Jorge; Antosiewicz, Tomasz J; Balci, Sinan; Shegai, Timur

    2017-01-11

    Plasmon-exciton interactions are important for many prominent spectroscopic applications such as surface-enhanced Raman scattering, plasmon-mediated fluorescence, nanoscale lasing, and strong coupling. The case of strong coupling is analogous to quantum optical effects studied in solid state and atomic systems previously. In plasmonics, similar observations have been almost exclusively made in elastic scattering experiments; however, the interpretation of these experiments is often cumbersome. Here, we demonstrate mode splitting not only in scattering, but also in photoluminescence of individual hybrid nanosystems, which manifests a direct proof of strong coupling in plasmon-exciton nanoparticles. We achieved these results due to saturation of the mode volume with molecular J-aggregates, which resulted in splitting up to 400 meV, that is, ∼20% of the resonance energy. We analyzed the correlation between scattering and photoluminescence and found that splitting in photoluminescence is considerably less than that in scattering. Moreover, we found that splitting in both photoluminescence and scattering signals increased upon cooling to cryogenic temperatures. These findings improve our understanding of strong coupling phenomena in plasmonics.

  8. Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles

    NASA Astrophysics Data System (ADS)

    Ulvestad, A.; Welland, M. J.; Collins, S. S. E.; Harder, R.; Maxey, E.; Wingert, J.; Singer, A.; Hy, S.; Mulvaney, P.; Zapol, P.; Shpyrko, O. G.

    2015-12-01

    Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surface layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. Our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments.

  9. Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles.

    PubMed

    Ulvestad, A; Welland, M J; Collins, S S E; Harder, R; Maxey, E; Wingert, J; Singer, A; Hy, S; Mulvaney, P; Zapol, P; Shpyrko, O G

    2015-12-11

    Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surface layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. Our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments.

  10. Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles

    DOE PAGES

    Ulvestad, A.; Welland, M. J.; Collins, S. S. E.; ...

    2015-12-11

    Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/ discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surfacemore » layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. In conclusion, our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments.« less

  11. Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles

    SciTech Connect

    Ulvestad, A.; Welland, M. J.; Collins, S. S. E.; Harder, R.; Maxey, E.; Wingert, J.; Singer, A.; Hy, S.; Mulvaney, P.; Zapol, P.; Shpyrko, O. G.

    2015-12-11

    Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/ discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surface layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. In conclusion, our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments.

  12. Individual and binary toxicity of anatase and rutile nanoparticles towards Ceriodaphnia dubia.

    PubMed

    Iswarya, V; Bhuvaneshwari, M; Chandrasekaran, N; Mukherjee, Amitava

    2016-09-01

    Increasing usage of engineered nanoparticles, especially Titanium dioxide (TiO2) in various commercial products has necessitated their toxicity evaluation and risk assessment, especially in the aquatic ecosystem. In the present study, a comprehensive toxicity assessment of anatase and rutile NPs (individual as well as a binary mixture) has been carried out in a freshwater matrix on Ceriodaphnia dubia under different irradiation conditions viz., visible and UV-A. Anatase and rutile NPs produced an LC50 of about 37.04 and 48mg/L, respectively, under visible irradiation. However, lesser LC50 values of about 22.56 (anatase) and 23.76 (rutile) mg/L were noted under UV-A irradiation. A toxic unit (TU) approach was followed to determine the concentrations of binary mixtures of anatase and rutile. The binary mixture resulted in an antagonistic and additive effect under visible and UV-A irradiation, respectively. Among the two different modeling approaches used in the study, Marking-Dawson model was noted to be a more appropriate model than Abbott model for the toxicity evaluation of binary mixtures. The agglomeration of NPs played a significant role in the induction of antagonistic and additive effects by the mixture based on the irradiation applied. TEM and zeta potential analysis confirmed the surface interactions between anatase and rutile NPs in the mixture. Maximum uptake was noticed at 0.25 total TU of the binary mixture under visible irradiation and 1 TU of anatase NPs for UV-A irradiation. Individual NPs showed highest uptake under UV-A than visible irradiation. In contrast, binary mixture showed a difference in the uptake pattern based on the type of irradiation exposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Nanosized aluminum nitride hollow spheres formed through a self-templating solid-gas interface reaction

    SciTech Connect

    Zheng Jie Song Xubo; Zhang Yaohua; Li Yan; Li Xingguo; Pu Yikang

    2007-01-15

    Nanosized aluminum nitride hollow spheres were synthesized by simply heating aluminum nanoparticles in ammonia at 1000 deg. C. The as-synthesized sphere shells are polycrystalline with cavity diameters ranging from 15 to 100 nm and shell thickness from 5 to 15 nm. The formation mechanism can be explained by the nanoscale Kirkendall effect, which results from the difference in diffusion rates between aluminum and nitrogen. The Al nanoparticles served as both reactant and templates for the hollow sphere formation. The effects of precursor particle size and temperature were also investigated in terms of product morphology. Room temperature cathode luminescence spectrum of the nanosized hollow spheres showed a broad emission band centered at 415 nm, which is originated from oxygen related luminescence centers. The hollow structure survived a 4-h heat treatment at 1200 deg. C, exhibiting excellent thermal stability. - Graphical abstract: Nanosized aluminum nitride hollow spheres were synthesized by nitridation of aluminum nanoparticles at 1000 deg. C using ammonia.

  14. Peptide-loaded nanoparticles and radionuclide imaging for individualized treatment of myocardial ischemia.

    PubMed

    Hwang, Hyosook; Kwon, Jeongll; Oh, Phil-Sun; Lee, Tai-Kyoung; Na, Kyung-Suk; Lee, Chang-Moon; Jeong, Hwan-Seok; Lim, Seok Tae; Sohn, Myung-Hee; Jeong, Hwan-Jeong

    2014-10-01

    To determine whether chitosan hydrogel nanoparticles loaded with vascular endothelial growth factor (VEGF) peptides (81-91 fragments) capable of targeting the ischemic myocardium enhance angiogenesis and promote therapeutic effects and whether radionuclide image-guided dosage control is feasible. Experimental procedures and protocols were approved by the Institutional Animal Care and Use Committee. Rats (n = 32, eight per group) were subjected to myocardial ischemia (control group) and received chitosan hydrogel nanoparticles with VEGF165 proteins (chitosan VEGF) or VEGF81-91 peptides (chitosan peptides) via apical puncture. Ischemic hearts receiving chitosan without angiogenic factors served as the chitosan control. Myocardial perfusion was examined 7 days after surgery by using technetium 99m ((99m)Tc) tetrofosmin (37 MBq) autoradiography, and changes in vascular density with immunohistochemical staining were reviewed. Kruskal-Wallis test and Bonferroni corrected Mann-Whitney U test were used for multiple comparisons. Wilcoxon signed rank test was used to compare myocardial retention of (99m)Tc chitosan. Thirty minutes of myocardial ischemia resulted in perfusion defects (median, 54%; interquartile range [IQR], 41%-62%). Chitosan VEGF decreased perfusion defect extent (median, 68%; IQR, 63%-73%; P = .006 vs control) and increased vascular density (median, 81 vessels per high-power field; IQR, 72-100; P = .009 vs control). Administration of chitosan peptides reduced the degree of perfusion defects (median, 66%; IQR, 62%-73%; P = .006 vs control) and increased vascular density (median, 82 vessels; IQR, 78-92; P = .006 vs control). The effects of chitosan peptides on perfusion and vascular density were comparable to those seen with chitosan VEGF proteins (P = .713 and P = .833, respectively). Chitosan radiolabeled with (99m)Tc was administered twice at reperfusion with a 1-hour interval to determine whether image-guided dosage control is feasible. The hearts

  15. Production of hollow aerogel microspheres

    SciTech Connect

    Upadhye, R.S.; Henning, S.A.

    1990-12-31

    A method is described for making hollow aerogel microspheres of 800--1200{mu} diameter and 100--300{mu} wall thickness by forming hollow alcogel microspheres during the sol/gel process in a catalytic atmosphere and capturing them on a foam surface containing catalyst. Supercritical drying of the formed hollow alcogel microspheres yields hollow aerogel microspheres which are suitable for ICF targets.

  16. Production of hollow aerogel microspheres

    DOEpatents

    Upadhye, Ravindra S.; Henning, Sten A.

    1993-01-01

    A method is described for making hollow aerogel microspheres of 800-1200 .mu. diameter and 100-300 .mu. wall thickness by forming hollow alcogel microspheres during the sol/gel process in a catalytic atmosphere and capturing them on a foam surface containing catalyst. Supercritical drying of the formed hollow alcogel microspheres yields hollow aerogel microspheres which are suitable for ICF targets.

  17. Plasmonic Field Enhancement of Individual Nanoparticles by Correlated Scanning and Photoemission Electron Microscopy

    SciTech Connect

    Peppernick, Samuel J.; Joly, Alan G.; Beck, Kenneth M.; Hess, Wayne P.

    2011-01-21

    We present results of a combined two-photon photoemission and scanning electron microscopy investigation to determine the electromagnetic enhancement factors of silver-coated spherical nanoparticles deposited on an atomically flat mica substrate. Femtosecond laser excitation, of the nanoparticles, produces intense photoemission, attributed to near-resonant excitation of localized surface plasmons. Enhancement factors are determined by comparing the respective two-photon photoemission yield measured for equal areas between single nanoparticles to that of the surrounding flat surface. For s-polarized, 400 nm (~ 3.1 eV) femtosecond radiation a distribution of enhancement factors are found with a large percentage (77%) of the nanoparticles falling within a median range. A correlated scanning electron microscopy analysis demonstrated that the nanoparticles typifying the median of the distribution were characterized by ideal spherical shapes and defect-free morphologies. The single largest enhancement factors were in contrast produced by a very small percentage (8%) of the total, for which evidence of silver defect anomalies were found that contributed to the overall structure of the nanoparticle. Comparisons are made between the experimentally measured enhancement factors and previously reported theoretical predictions of the localized surface plasmon near-field intensities for isolated nanometer-sized silver spheres.

  18. Coulomb blockade behaviors in individual Au nanoparticles as observed through noncontact atomic force spectroscopy at room temperature.

    PubMed

    Hattori, Shigeki; Kano, Shinya; Azuma, Yasuo; Tanaka, Daisuke; Sakamoto, Masanori; Teranishi, Toshiharu; Majima, Yutaka

    2012-05-11

    Coulomb blockade behaviors in individual Au nanoparticles of 2 nm core diameter in double-barrier structures have been studied by means of noncontact atomic force spectroscopy (NC-AFS) at room temperature. The Au nanoparticles with a 1-decanethiol ligand were chemisorbed by 1,10-decanedithiol molecules of a mixed 1-octanethiol/1,10-decanedithiol self-assembled monolayer coated on a Au(111) surface; these particles were observed through NC-AFS. NC-AFS measurements of the cantilever frequency shift-sample voltage (Δf-V(S)) curves were sequentially conducted on three Au nanoparticles under the same experimental conditions; the Δf-V(S) curves were found to deviate from the parabolic (Δf(N)) curve in the cases where no extra charge existed on the Au core. The experimental Δf(CB)(=Δf-Δf(N)) and Δf(CB)/V curves agree well with the theoretical curves obtained using a golden-rule calculation and the same parabolic parameters. All the results, through NC-AFS, suggest Coulomb blockade behaviors in the Au nanoparticles at room temperature.

  19. Single-Step DNA Detection Assay Monitoring Dual-Color Light Scattering from Individual Metal Nanoparticle Aggregates

    PubMed Central

    2017-01-01

    Efficiently detecting DNA sequences within a limited time is vital for disease screening and public health monitoring. This calls for a new method that combines high sensitivity, fast read-out time, and easy manipulation of the sample, avoiding the extensive steps of DNA amplification, purification, or grafting to a surface. Here, we introduce photon cross-correlation spectroscopy as a new method for specific DNA sensing with high sensitivity in a single-step homogeneous solution phase. Our approach is based on confocal dual-color illumination and detection of the scattering intensities from individual silver nanoparticles and gold nanorods. In the absence of the target DNA, the nanoparticles move independently and their respective scattering signals are uncorrelated. In the presence of the target DNA, the probe-functionalized gold and silver nanoparticles assemble via DNA hybridization with the target, giving rise to temporal coincidence between the signals scattered by each nanoparticle. The degree of coincidence accurately quantifies the amount of target DNA. To demonstrate the efficiency of our technique, we detect a specific DNA sequence of sesame, an allergenic food ingredient, for a range of concentration from 5 pM to 1.5 nM with a limit of detection of 1 pM. Our method is sensitive and specific enough to detect single nucleotide deletion and mismatch. With the dual-color scattering signals being much brighter than fluorescence-based analogs, the analysis is fast, quantitative, and simple to operate, making it valuable for biosensing applications. PMID:28261666

  20. Hollow metal nanostructures for enhanced plasmonics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Genç, Aziz; Patarroyo, Javier; Sancho-Parramon, Jordi; Duchamp, Martial; Gonzalez, Edgar; Bastus, Neus G.; Houben, Lothar; Dunin-Borkowski, Rafal; Puntes, Victor F.; Arbiol, Jordi

    2016-03-01

    Complex metal nanoparticles offer a great playground for plasmonic nanoengineering, where it is possible to cover plasmon resonances from ultraviolet to near infrared by modifying the morphologies from solid nanocubes to nanoframes, multiwalled hollow nanoboxes or even nanotubes with hybrid (alternating solid and hollow) structures. We experimentally show that structural modifications, i.e. void size and final morphology, are the dominant determinants for the final plasmonic properties, while compositional variations allow us to get a fine tuning. EELS mappings of localized surface plasmon resonances (LSPRs) reveal an enhanced plasmon field inside the voids of hollow AuAg nanostructures along with a more homogeneous distributions of the plasmon fields around the nanostructures. With the present methodology and the appropriate samples we are able to compare the effects of hybridization at the nanoscale in hollow nanostructures. Boundary element method (BEM) simulations also reveal the effects of structural nanoengineering on plasmonic properties of hollow metal nanostructures. Possibility of tuning the LSPR properties of hollow metal nanostructures in a wide range of energy by modifying the void size/shell thickness is shown by BEM simulations, which reveals that void size is the dominant factor for tuning the LSPRs. As a proof of concept for enhanced plasmonic properties, we show effective label free sensing of bovine serum albumin (BSA) with some of our hollow nanostructures. In addition, the different plasmonic modes observed have also been studied and mapped in 3D.

  1. Hollow Au-Ag Alloy Nanorices and Their Optical Properties.

    PubMed

    Yu, Keke; Sun, Xiaonan; Pan, Liang; Liu, Ting; Liu, Anping; Chen, Guo; Huang, Yingzhou

    2017-09-04

    Hollow noble metal nanoparticles have excellent performance not only in surface catalysis but also in optics. In this work, the hollow Au-Ag alloy nanorices are fabricated by the galvanic replacement reaction. The dark-field spectrum points out that there is a big difference in the optical properties between the pure Ag nanorices and the hollow alloy nanorices that exhibit highly tunable localized surface plasmon resonances (LSPR) and that possess larger radiative damping, which is also indicated by the finite element method. Furthermore, the surface enhanced Raman scattering (SERS) and oxidation test indicate that hollow Au-Ag alloy nanorices show good anti-oxidation and have broad application prospects in surface-plasmon-related fields.

  2. Energy Dispersive X-ray Tomography for 3D Elemental Mapping of Individual Nanoparticles

    PubMed Central

    Slater, Thomas J. A.; Lewis, Edward A.; Haigh, Sarah J.

    2016-01-01

    Energy dispersive X-ray spectroscopy within the scanning transmission electron microscope (STEM) provides accurate elemental analysis with high spatial resolution, and is even capable of providing atomically resolved elemental maps. In this technique, a highly focused electron beam is incident upon a thin sample and the energy of emitted X-rays is measured in order to determine the atomic species of material within the beam path. This elementally sensitive spectroscopy technique can be extended to three dimensional tomographic imaging by acquiring multiple spectrum images with the sample tilted along an axis perpendicular to the electron beam direction. Elemental distributions within single nanoparticles are often important for determining their optical, catalytic and magnetic properties. Techniques such as X-ray tomography and slice and view energy dispersive X-ray mapping in the scanning electron microscope provide elementally sensitive three dimensional imaging but are typically limited to spatial resolutions of > 20 nm. Atom probe tomography provides near atomic resolution but preparing nanoparticle samples for atom probe analysis is often challenging. Thus, elementally sensitive techniques applied within the scanning transmission electron microscope are uniquely placed to study elemental distributions within nanoparticles of dimensions 10-100 nm. Here, energy dispersive X-ray (EDX) spectroscopy within the STEM is applied to investigate the distribution of elements in single AgAu nanoparticles. The surface segregation of both Ag and Au, at different nanoparticle compositions, has been observed. PMID:27403838

  3. Hollow-Fiber Clinostat

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Miller, Teresa Y.; Snyder, Robert S.

    1990-01-01

    Hollow-fiber clinostat, is bioreactor used to study growth and other behavior of cells in simulated microgravity. Cells under study contained in porous hollow fiber immersed in culture medium inside vessel. Bores in hollow fiber allow exchange of gases, nutrients, and metabolic waste products between living cells and external culture media. Hollow fiber lies on axis of vessel, rotated by motor equipped with torque and speed controls. Desired temperature maintained by operating clinostat in standard tissue-culture incubator. Axis of rotation made horizontal or vertical. Designed for use with conventional methods of sterilization and sanitation to prevent contamination of specimen. Also designed for asepsis in assembly, injection of specimen, and exchange of medium.

  4. Hollow-Fiber Clinostat

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Miller, Teresa Y.; Snyder, Robert S.

    1990-01-01

    Hollow-fiber clinostat, is bioreactor used to study growth and other behavior of cells in simulated microgravity. Cells under study contained in porous hollow fiber immersed in culture medium inside vessel. Bores in hollow fiber allow exchange of gases, nutrients, and metabolic waste products between living cells and external culture media. Hollow fiber lies on axis of vessel, rotated by motor equipped with torque and speed controls. Desired temperature maintained by operating clinostat in standard tissue-culture incubator. Axis of rotation made horizontal or vertical. Designed for use with conventional methods of sterilization and sanitation to prevent contamination of specimen. Also designed for asepsis in assembly, injection of specimen, and exchange of medium.

  5. Hollow cathode apparatus

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1984-01-01

    A hollow cathode apparatus is described, which can be rapidly and reliably started. An ignitor positioned upstream from the hollow cathode, generates a puff of plasma that flows with the primary gas to be ionized through the cathode. The plasma puff creates a high voltage breakdown between the downstream end of the cathode and a keeper electrode, to heat the cathode to an electron-emitting temperature.

  6. Hollow nuclear matter

    NASA Astrophysics Data System (ADS)

    Yong, Gao-Chan

    2016-01-01

    It is generally considered that an atomic nucleus is always compact. Based on the isospin-dependent Boltzmann nuclear transport model, here I show that large block nuclear matter or excited nuclear matter may both be hollow. The size of the inner bubble in these matter is affected by the charge number of nuclear matter. The existence of hollow nuclear matter may have many implications in nuclear or atomic physics or astrophysics as well as some practical applications.

  7. Fluorescence enhancement, blinking suppression, and gray states of individual semiconductor nanocrystals close to gold nanoparticles.

    PubMed

    Ma, Xuedan; Tan, Hua; Kipp, Tobias; Mews, Alf

    2010-10-13

    The optical properties of nanocrystals are drastically changed by the interaction with adjacent metal nanoparticles. By time-resolved photoluminescence spectroscopy, we investigate CdSe multishell nanocrystals coupled to self-assembled films of Au nanoparticles. The distance between emitter and metal is adjusted by coating the nanocrystals with silica shells. These NCs showed increased fluorescence intensity, a decreased fluorescence lifetime, strong blinking suppression, and fluorescence from gray states. These observations can be explained by the metal particle induced change of excitation and recombination rates.

  8. In Vitro Effects of Hollow Gold Nanoshells on Human Aortic Endothelial Cells.

    PubMed

    Gu, Chunrong; Wu, Hengfang; Ge, Gaoyuan; Li, Xiongzhi; Guo, Zhirui; Bian, Zhiping; Xu, Jindan; Lu, Hua; Chen, Xiangjian; Yang, Di

    2016-12-01

    Gold nanoparticles are emerging as promising biomedical tools due to their unique nanoscale characteristics. Our purpose was to synthesize a hollow-shaped gold nanoparticle and to investigate its effect on human aortic endothelial cells (HAECs) in vitro. Hollow gold nanoshells with average 35-nm diameters and 10-nm shell thickness were obtained by galvanic replacement using quasi-spherical nanosilver as sacrifice-template. Our results showed that hollow gold nanoshells in the culture medium could be internalized into the cytoplasm of HAECs. No cytotoxicity effect of hollow gold nanoshells on HAECs was observed within the test concentrations (0-0.8 μg/mL) and test exposure period (0-72 h) by tetrazolium dye assay. Meanwhile, the release of cell injury biomarker, lactate dehydrogenase, was not significantly higher than that from control cells (without hollow gold nanoshells). The concentrations of vasodilators, nitric oxide, and prostacyclin I-2 were not changed, but the vasoconstrictor endothelin-1 was decreased by hollow gold nanoshells treatment in HAECs. HAECs exposed to hollow gold nanoshells resulted in suppressing expressions of genes involved in apoptosis and activating expressions of genes of adhesion molecules. Moreover, we demonstrated by in vitro endothelial tube formation that hollow gold nanoshells (0.8 μg/mL) could not inhibit angiogenesis by the HAECs. Altogether, these results indicate that the structure and major function of HAECs would not be disrupted by hollow gold nanoshell treatment.

  9. In Vitro Effects of Hollow Gold Nanoshells on Human Aortic Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Gu, Chunrong; Wu, Hengfang; Ge, Gaoyuan; Li, Xiongzhi; Guo, Zhirui; Bian, Zhiping; Xu, Jindan; Lu, Hua; Chen, Xiangjian; Yang, Di

    2016-09-01

    Gold nanoparticles are emerging as promising biomedical tools due to their unique nanoscale characteristics. Our purpose was to synthesize a hollow-shaped gold nanoparticle and to investigate its effect on human aortic endothelial cells (HAECs) in vitro. Hollow gold nanoshells with average 35-nm diameters and 10-nm shell thickness were obtained by galvanic replacement using quasi-spherical nanosilver as sacrifice-template. Our results showed that hollow gold nanoshells in the culture medium could be internalized into the cytoplasm of HAECs. No cytotoxicity effect of hollow gold nanoshells on HAECs was observed within the test concentrations (0-0.8 μg/mL) and test exposure period (0-72 h) by tetrazolium dye assay. Meanwhile, the release of cell injury biomarker, lactate dehydrogenase, was not significantly higher than that from control cells (without hollow gold nanoshells). The concentrations of vasodilators, nitric oxide, and prostacyclin I-2 were not changed, but the vasoconstrictor endothelin-1 was decreased by hollow gold nanoshells treatment in HAECs. HAECs exposed to hollow gold nanoshells resulted in suppressing expressions of genes involved in apoptosis and activating expressions of genes of adhesion molecules. Moreover, we demonstrated by in vitro endothelial tube formation that hollow gold nanoshells (0.8 μg/mL) could not inhibit angiogenesis by the HAECs. Altogether, these results indicate that the structure and major function of HAECs would not be disrupted by hollow gold nanoshell treatment.

  10. Confined organization of Au nanocrystals in glycolipid nanotube hollow cylinders.

    PubMed

    Yang, Bo; Kamiya, Shoko; Yoshida, Kaname; Shimizu, Toshimi

    2004-03-07

    Mild fabrication of anisotropic metal-lipid nanotube (LNT) nanocomposites, in which Au nanoparticles of 3-10 nm wide are organized in a glycolipid nanotube hollow cylinder, has been achieved by filling the internal channel of the LNT with HAuCl(4) aqueous solution by capillary force and subsequent photochemical reduction of [AuCl(4)](-).

  11. Nanostructured gold hollow microspheres prepared on dissolvable ceramic hollow sphere templates.

    PubMed

    Chah, S; Fendler, J H; Yi, J

    2002-06-01

    Fifty and one-hundred micrometer diameter nanostructured gold hollow microspheres (GHSs), in >98% purity, have been prepared by using ceramic hollow spheres, CHSs, as templates. Tennanometer diameter gold nanoparticles were covalently linked to the thiol moiety of (3-mercaptopropyl)trimethoxysilane, which had been self-assembled onto the CHSs. Greater structural strength was obtained by the generation of additional gold nanoparticles, in situ on the gold nanoparticle coated CHSs (by immersing the gold nanoparticle coated CHSs into an aqueous mixture of hydroxylamine and gold chloride). GHSs were obtained by dissolving the CHSs templates. The sizes, shapes, surface areas (185.3 m2/g for CHSs and 182.9 m2/g for GHSs), pore diameters (7.7 nm for CHSs and 7.8 nm for GHSs), and pore volumes (0.41 cm3/g for CHSs and 0.36 cm3/g for GHSs) of GHSs were quite similar to their CHSs counterparts. Significantly, GHSs showed surface plasmon bands whose maximum (644 nm) shifted from that observed for the parent 10-nm gold nanoparticles (522 nm).

  12. Drought Contingency Plan Mansfield Hollow Lake, Mansfield Hollow, Connecticut.

    DTIC Science & Technology

    1983-03-01

    AD -A 127 543 DROUGHT CONTINGENCY PLAN MANSFIELD HOLLOW LAKE / MANSFIELD HOLLOW CONNECTICUT(U) CORPS OF ENGINEERS WALTHAM MA NEW ENGLAND DIV MAR 83...3. RECIPICHT’S CATALOG NumlIER 4. TITLE (and Subliffe) S. TYp5 OF REPORT & PERIOD COVERED Drought Contingency Plan Mansfield Hollow Lake, Mansfield...oaigrySud Hollow , Connecticut 06. PERFORMING ONG. REPORT NUMBER 7. AUTHOR(a) 8. CONTRACT OR GRANT NUMSCIR(e) U.S. Army Corps of Engineers _ New

  13. Generic Delivery of Payload of Nanoparticles Intracellularly via Hybrid Polymer Capsules for Bioimaging Applications

    PubMed Central

    Sami, Haider; Maparu, Auhin K.; Kumar, Ashok; Sivakumar, Sri

    2012-01-01

    Towards the goal of development of a generic nanomaterial delivery system and delivery of the ‘as prepared’ nanoparticles without ‘further surface modification’ in a generic way, we have fabricated a hybrid polymer capsule as a delivery vehicle in which nanoparticles are loaded within their cavity. To this end, a generic approach to prepare nanomaterials-loaded polyelectrolyte multilayered (PEM) capsules has been reported, where polystyrene sulfonate (PSS)/polyallylamine hydrochloride (PAH) polymer capsules were employed as nano/microreactors to synthesize variety of nanomaterials (metal nanoparticles; lanthanide doped inorganic nanoparticles; gadolinium based nanoparticles, cadmium based nanoparticles; different shapes of nanoparticles; co-loading of two types of nanoparticles) in their hollow cavity. These nanoparticles-loaded capsules were employed to demonstrate generic delivery of payload of nanoparticles intracellularly (HeLa cells), without the need of individual nanoparticle surface modification. Validation of intracellular internalization of nanoparticles-loaded capsules by HeLa cells was ascertained by confocal laser scanning microscopy. The green emission from Tb3+ was observed after internalization of LaF3:Tb3+(5%) nanoparticles-loaded capsules by HeLa cells, which suggests that nanoparticles in hybrid capsules retain their functionality within the cells. In vitro cytotoxicity studies of these nanoparticles-loaded capsules showed less/no cytotoxicity in comparison to blank capsules or untreated cells, thus offering a way of evading direct contact of nanoparticles with cells because of the presence of biocompatible polymeric shell of capsules. The proposed hybrid delivery system can be potentially developed to avoid a series of biological barriers and deliver multiple cargoes (both simultaneous and individual delivery) without the need of individual cargo design/modification. PMID:22649489

  14. Adiabatic nanofocusing scattering-type optical nanoscopy of individual gold nanoparticles.

    PubMed

    Sadiq, Diyar; Shirdel, Javid; Lee, Jae Sung; Selishcheva, Elena; Park, Namkyoo; Lienau, Christoph

    2011-04-13

    We explore imaging of local electromagnetic fields in the vicinity of metallic nanoparticles using a grating-coupled scattering-type near-field scanning optical microscope. In this microscope, propagating surface plasmon polariton wavepackets are launched onto smooth gold tapers where they are adiabatically focused toward the nanometer-sized taper apex. We report two-dimensional raster-scanned optical images showing pronounced near-field contrast and demonstrating sub-30 nm resolution imaging of localized surface plasmon polariton fields of spherical and elliptical nanoparticles. By comparison to three-dimensional finite-difference time domain simulations, we conclude that virtually background-free near-field imaging is achieved. The microscope combines deep subwavelength resolution, high local field intensities and a straightforward imaging contrast, making it interesting for a variety of applications in linear and nonlinear nanospectroscopy.

  15. In situ Formation of a Monodispersed Spherical Mesoporous Nanosilica-Torlon Hollow-Fiber Composite for Carbon Dioxide Capture.

    PubMed

    Rownaghi, Ali A; Rezaei, Fateme; Labreche, Ying; Brennan, Patrick J; Johnson, Justin R; Li, Fuyue Stephanie; Koros, William J

    2015-10-26

    We describe a new template-free method for the in situ formation of a monodispersed spherical mesoporous nanosilica-Torlon hollow-fiber composite. A thin layer of Torlon hollow fiber that comprises silica nanoparticles was created by the in situ extrusion of a tetraethyl orthosilicate/N-methyl-2-pyrrolidone solution in a sheath layer and a Torlon polymer dope in a core support layer. This new method can be integrated easily into current hollow-fiber composite fabrication processes. The hollow-fiber composites were then functionalized with 3-aminopropyltrimethoxy silane (APS) and evaluated for their CO2 -capture performance. The resulting APS-functionalized mesoporous silica nanoparticles/Torlon hollow fibers exhibited a high CO2 equilibrium capacity of 1.5 and 1.9 mmol g(-1) at 35 and 60 °C, respectively, which is significantly higher than values for fiber sorbents without nanoparticles reported previously.

  16. Oil Phase Evaporation Induced Self-Assembly of Hydrophobic Nanoparticles into Spherical Clusters with Controlled Surface Chemistry in an Oil-in-Water Dispersion and Comparison of Behaviors of Individual and Clustered Iron Oxide Nanoparticles

    PubMed Central

    Qiu, Penghe; Jensen, Christina; Charity, Njoku; Towner, Rheal; Mao, Chuanbin

    2010-01-01

    We report a general method for preparing nanoparticle clusters (NPCs) in an oil-in-water emulsion system mediated by cetyl trimethylammonium bromide (CTAB) where previously, only individual nanoparticles were obtained. NPCs of magnetic, metallic and semiconductor nanoparticles have been prepared to demonstrate the generality of the method. The NPCs were spherical and composed of densely packed individual nanoparticles. The number density of nanoparticles in the oil phase was found to be critical for the formation, morphology and yield of NPCs. The method developed here is scalable and can produce NPCs in nearly 100% yield at a concentration of 5 mg/ml in water which is approximately 5 times higher than the highest value reported in literature. The surface chemistry of NPCs can also be controlled by replacing CTAB with polymers containing different functional groups via a similar procedure. The reproducible production of NPCs with well defined shapes has allowed us to compare the properties of individual and clustered iron oxide nanoparticles including magnetization, magnetic moments and contrast enhancement in magnetic resonance imaging (MRI). We found that due to their collective properties, NPCs are more responsive to an external magnetic field and can potentially serve as better contrast enhancement agents than individually dispersed magnetic NPs in MRI. PMID:21117657

  17. Oil phase evaporation-induced self-assembly of hydrophobic nanoparticles into spherical clusters with controlled surface chemistry in an oil-in-water dispersion and comparison of behaviors of individual and clustered iron oxide nanoparticles.

    PubMed

    Qiu, Penghe; Jensen, Christina; Charity, Njoku; Towner, Rheal; Mao, Chuanbin

    2010-12-22

    We report a general method for preparing nanoparticle clusters (NPCs) in an oil-in-water emulsion system mediated by cetyl trimethylammonium bromide (CTAB), where previously only individual nanoparticles were obtained. NPCs of magnetic, metallic, and semiconductor nanoparticles have been prepared to demonstrate the generality of the method. The NPCs were spherical and composed of densely packed individual nanoparticles. The number density of nanoparticles in the oil phase was found to be critical for the formation, morphology, and yield of NPCs. The method developed here is scalable and can produce NPCs in nearly 100% yield at a concentration of 5 mg/mL in water, which is approximately 5 times higher than the highest value reported in the literature. The surface chemistry of NPCs can also be controlled by replacing CTAB with polymers containing different functional groups via a similar procedure. The reproducible production of NPCs with well-defined shapes has allowed us to compare the properties of individual and clustered iron oxide nanoparticles, including magnetization, magnetic moments, and contrast enhancement in magnetic resonance imaging (MRI). We found that, due to their collective properties, NPCs are more responsive to an external magnetic field and can potentially serve as better contrast enhancement agents than individually dispersed magnetic NPs in MRI.

  18. Hollow-Core Fiber Lamp

    NASA Technical Reports Server (NTRS)

    Yi, Lin (Inventor); Tjoelker, Robert L. (Inventor); Burt, Eric A. (Inventor); Huang, Shouhua (Inventor)

    2016-01-01

    Hollow-core capillary discharge lamps on the millimeter or sub-millimeter scale are provided. The hollow-core capillary discharge lamps achieve an increased light intensity ratio between 194 millimeters (useful) and 254 millimeters (useless) light than conventional lamps. The capillary discharge lamps may include a cone to increase light output. Hollow-core photonic crystal fiber (HCPCF) may also be used.

  19. Hot hollow cathode gun assembly

    DOEpatents

    Zeren, J.D.

    1983-11-22

    A hot hollow cathode deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, the hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  20. Individually Stabilized, Superparamagnetic Nanoparticles with Controlled Shell and Size Leading to Exceptional Stealth Properties and High Relaxivities

    PubMed Central

    2017-01-01

    Superparamagnetic iron oxide nanoparticles (SPION) have received immense interest for biomedical applications, with the first clinical application as negative contrast agent in magnetic resonance imaging (MRI). However, the first generation MRI contrast agents with dextran-enwrapped, polydisperse iron oxide nanoparticle clusters are limited to imaging of the liver and spleen; this is related to their poor colloidal stability in biological media and inability to evade clearance by the reticuloendothelial system. We investigate the qualitatively different performance of a new generation of individually PEG-grafted core–shell SPION in terms of relaxivity and cell uptake and compare them to benchmark iron oxide contrast agents. These PEG-grafted SPION uniquely enable relaxivity measurements in aqueous suspension without aggregation even at 9.4 T magnetic fields due to their extraordinary colloidal stability. This allows for determination of the size-dependent scaling of relaxivity, which is shown to follow a d2 dependence for identical core–shell structures. The here introduced core–shell SPION with ∼15 nm core diameter yield a higher R2 relaxivity than previous clinically used contrast agents as well as previous generations of individually stabilized SPION. The colloidal stability extends to control over evasion of macrophage clearance and stimulated uptake by SPION functionalized with protein ligands, which is a key requirement for targeted MRI. PMID:28071883

  1. The Influence of Supporting Ions on the Electrochemical Detection of Individual Silver Nanoparticles: Understanding the Shape and Frequency of Current Transients in Nano-impacts.

    PubMed

    Krause, Kay J; Brings, Fabian; Schnitker, Jan; Kätelhön, Enno; Rinklin, Philipp; Mayer, Dirk; Compton, Richard G; Lemay, Serge G; Offenhäusser, Andreas; Wolfrum, Bernhard

    2017-04-03

    We report the influence of electrolyte composition and concentration on the stochastic amperometric detection of individual silver nanoparticles at microelectrode arrays and show that the sensor response at certain electrode potentials is dependent on both the conductivity of the electrolyte and the concentration of chloride ions. We further demonstrate that the chloride concentration in solution heavily influences the characteristic current spike shape of recorded nanoparticle impacts: While typically too short to be resolved in the measured current, the spike widths are significantly broadened at low chloride concentrations below 10 mm and range into the millisecond regime. The analysis of more than 25 000 spikes reveals that this effect can be explained by the diffusive mass transport of chloride ions to the nanoparticle, which limits the oxidation rate of individual silver nanoparticles to silver chloride at the chosen electrode potential.

  2. Hollow Mesoporous Plasmonic Nanoshells for Enhanced Solar Vapor Generation.

    PubMed

    Zielinski, Marcin S; Choi, Jae-Woo; La Grange, Thomas; Modestino, Miguel; Hashemi, Seyyed Mohammad Hosseini; Pu, Ye; Birkhold, Susanne; Hubbell, Jeffrey A; Psaltis, Demetri

    2016-04-13

    In the past decade, nanomaterials have made their way into a variety of technologies in solar energy, enhancing the performance by taking advantage of the phenomena inherent to the nanoscale. Recent examples exploit plasmonic core/shell nanoparticles to achieve efficient direct steam generation, showing great promise of such nanoparticles as a useful material for solar applications. In this paper, we demonstrate a novel technique for fabricating bimetallic hollow mesoporous plasmonic nanoshells that yield a higher solar vapor generation rate compared with their solid-core counterparts. On the basis of a combination of nanomasking and incomplete galvanic replacement, the hollow plasmonic nanoshells can be fabricated with tunable absorption and minimized scattering. When exposed to sun light, each hollow nanoshell generates vapor bubbles simultaneously from the interior and exterior. The vapor nucleating from the interior expands and diffuses through the pores and combines with the bubbles formed on the outer wall. The lack of a solid core significantly accelerates the initial vapor nucleation and the overall steam generation dynamics. More importantly, because the density of the hollow porous nanoshells is essentially equal to the surrounding host medium these particles are much less prone to sedimentation, a problem that greatly limits the performance and implementation of standard nanoparticle dispersions.

  3. How do Colluvial Hollows Fill?

    NASA Astrophysics Data System (ADS)

    Hales, T. C.; Parker, R.; Mudd, S. M.; Grieve, S. W. D.

    2016-12-01

    In humid, soil-mantled mountains shallow landslides commonly initiate in colluvial hollows, areas where convergent topography can lead to high pore pressures during storms. Immediately post-landslide initiation, a thin veneer of colluvial material accumulates by small-scale slumping from landslide headscarps. Thereafter colluvium accumulates in hollows primarily through creep-dominated processes like tree throw and animal burrowing, recording the hillslope sediment flux since the last landslide event. We measured the post-landslide hillslope sediment flux in 30 colluvial hollows in the southern Appalachians using radiocarbon measurements collected from soil pits excavated at the centre of steep, landslide-prone hollows. We collected material from the soil-saprolite/bedrock boundary at each location for radiocarbon dating and dated different chemical fractions of the soil (humic acid, humin, charcoal) in an attempt to bracket the "true" age of the soil. We calculated infilling rates of each hollow by measuring soil depths in cross-hollow transects and dividing this by the age of the hollow. The interquartile range of hollow basal ages is 2278-8184 cal. yrs B.P., demonstrating the long return period of landslides in most colluvial hollows. Hillslope erosion rates calculated assuming a linear diffusion transport law show that the transport coefficient (diffusivity) of the hollows varied by 4 orders of magnitude 10-5 to 10-1 m2 yr-1, despite the hollows being formed in regionally consistent geology and vegetation. Uncertainty in the dating and hollow geometry measurements can, at most, account for an order of magnitude of that variability. Our results show that hollows have a phase of rapid infilling that slows through time, consistent with previous observations. Despite this, the oldest hollows show several orders of magnitude variation in the transport coefficient, suggesting local, hollow scale variations in process significantly affect hillslope erosion rates.

  4. Template synthesis of hollow silver hexapods using hexapod-shaped silver oxide mesoparticles.

    PubMed

    Jo, Jihee; Cho, Sung-Pyo; Lim, Jong Kuk

    2015-06-15

    One powerful method to make nanoparticles is template-based approach. Because such templates confine the size and shape of nanoparticles, diverse nanoparticles can be prepared through such method. For example, hollow gold (Au) nanoparticles are easily fabricated using silver (Ag) nanoparticles as templates. Ag nanoparticles in a solution containing Au(3+) are readily oxidized to Ag(+) and dissolved into the solution, while Au(3+) are reduced and deposited near Ag nanoparticles. Because the reactivity of Au(3+) is lower than that of Ag(+), this exchange reaction readily occurs, resulting in hollow Au nanoparticles. In this paper, we use morphology-controlled silver oxide (Ag2O) mesoparticles as a sacrificial template to make well-defined Ag mesoparticles. The hexapod-shaped Ag2O mesoparticles are synthesized by retarding its reaction rate using bis (p-sulfonatophenyl) phenylphosphine dehydrate dipotassium as a ligand, and reduced into Ag hexapods by sodium borohydride. Complete conversion of Ag2O into Ag is confirmed by a series of characterization procedure, and the shape and size of Ag2O hexapods are retained during the reduction process. Reduced Ag hexapods have hollow inner structure, and interestingly show single crystalline phase, which is contrary to the previous report. A new mechanism is introduced to explain formation of hollow structure and its single crystalline phase. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Size-Induced Chemical and Magnetic Ordering in Individual Fe-Au Nanoparticles

    SciTech Connect

    Mukherjee, Pinaki; Manchanda, Priyanka; Kumar, Pankaj; Zhou, Lin; Kramer, Matthew J; Kashyap, Arti; Skomski, Ralph; Sellmyer, David; Shield, Jeffrey E

    2014-08-26

    Formation of chemically ordered compounds of Fe and Au is inhibited in bulk materials due to their limited mutual solubility. However, here we report the formation of chemically ordered L12-type Fe3Au and FeAu3 compounds in Fe–Au sub-10 nm nanoparticles, suggesting that they are equilibrium structures in size-constrained systems. The stability of these L12-ordered Fe3Au and FeAu3 compounds along with a previously discovered L10-ordered FeAu has been explained by a size-dependent equilibrium thermodynamic model. Furthermore, the spin ordering of these three compounds has been computed using ab initio first-principle calculations. All ordered compounds exhibit a substantial magnetization at room temperature. The Fe3Au had a high saturation magnetization of about 143.6 emu/g with a ferromagnetic spin structure. The FeAu3 nanoparticles displayed a low saturation magnetization of about 11 emu/g. This suggests a antiferromagnetic spin structure, with the net magnetization arising from uncompensated surface spins. First-principle calculations using the Vienna ab initio simulation package (VASP) indicate that ferromagnetic ordering is energetically most stable in Fe3Au, while antiferromagnetic order is predicted in FeAu and FeAu3, consistent with the experimental results.

  6. Structual and magnetic properties of MFe2O4 (M=Ni, Mg) nano hollow spheres

    NASA Astrophysics Data System (ADS)

    Konishi, Kensuke; Sakurai, Taiga; Nagano, Yutaro; Manabe, Naoto; Morimoto, Yugo

    2013-08-01

    Sub-micrometer-sized hollow spheres assembled from MFe2O4 (M= Ni, Mg) nanoparticles have been prepared by using the template method with a wet chemical process. A superparamagnetic-type blocking process is observed in the zero-field-cooled (ZFC) and the field-cooled (FC) magnetizations and magnentic susceptibilities. Furthermore, a spin-glass-like behavior due to surface spin freezing is found in Ni-ferrite nanoparticles. The surface spin freezing temperatures T f are quite a bit lower than the blocking temperature, and the magnetic field dependence is different between the nanoparticles and the fabricated hollow spheres. The spin-glass nature of the Ni-ferrite nanoparticle is demonstrated by the magnetice field dependence of T f following the well known Almeida-Thouless (AT) line. In contrast, the T f( H) of the hollow Ni-ferrite sphere hints at failure of the Gabay-Toulouse theory as well as the AT theory.

  7. Preparation of hollow titania spheres and their photocatalytic activity under visible light.

    PubMed

    Liu, Chun; Yin, Hengbo; Shi, Liping; Wang, Aili; Feng, Yonghai; Shen, Linqin; Wu, Zhanao; Wu, Gang; Jiang, Tao

    2014-09-01

    Hollow titania spheres with different shell thicknesses were facilely prepared starting from TiCl4 and using ploystyrene methyl acrylic acid latexes as the sacrificial templates. The average diameters of the hollow titania spheres ranging from 294 to 340 nm were tuned by changing the weight ratios of TiO2 to ploystyrene methyl acrylic acid latex from 0.8:1 to 1.4:1. The hollow titania spheres were constructed by the small-sized anatase TiO2 nanoparticles with the average diameter of ca. 18 nm (SEM). In addition to UV light absorption caused by the primary anatase TiO2 nanoparticles, the hollow titania spheres also had visible light absorption performance. Photocatalytic results showed that all the hollow titania spheres had higher photocatalytic activity for the degradation of phenol under visible light irradiation than the commercial TiO2 nanoparticles (P25). The photocatalytic activity of the hollow titania spheres increased with the increase in sell thickness, being consistent with their visible light absorbance. The visible light photocatalytic activity was probably due to the presence of additional energy levels between valence and conduction bands, which were caused by the formation of oxygen bridging bonds between the primary TiO2 nanoparticles.

  8. Quantitatively probing the magnetic behavior of individual nanoparticles by an AC field-modulated magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Lu, Wei; Song, Yiming; Wang, Yuxin; Chen, Aiying; Yan, Biao; Yoshimura, Satoru; Saito, Hitoshi

    2016-03-01

    Despite decades of advances in magnetic imaging, obtaining direct, quantitative information with nanometer scale spatial resolution remains an outstanding challenge. Current approaches, for example, Hall micromagnetometer and nitrogen-vacancy magnetometer, are limited by highly complex experimental apparatus and a dedicated sample preparation process. Here we present a new AC field-modulated magnetic force microscopy (MFM) and report the local and quantitative measurements of the magnetic information of individual magnetic nanoparticles (MNPs), which is one of the most iconic objects of nanomagnetism. This technique provides simultaneously a direct visualization of the magnetization process of the individual MNPs, with spatial resolution and magnetic sensitivity of about 4.8 nm and 1.85 × 10‑20 A m2, respectively, enabling us to separately estimate the distributions of the dipolar fields and the local switching fields of individual MNPs. Moreover, we demonstrate that quantitative magnetization moment of individual MNPs can be routinely obtained using MFM signals. Therefore, it underscores the power of the AC field-modulated MFM for biological and biomedical applications of MNPs and opens up the possibility for directly and quantitatively probing the weak magnetic stray fields from nanoscale magnetic systems with superior spatial resolution.

  9. Quantitatively probing the magnetic behavior of individual nanoparticles by an AC field-modulated magnetic force microscopy

    PubMed Central

    Li, Xiang; Lu, Wei; Song, Yiming; Wang, Yuxin; Chen, Aiying; Yan, Biao; Yoshimura, Satoru; Saito, Hitoshi

    2016-01-01

    Despite decades of advances in magnetic imaging, obtaining direct, quantitative information with nanometer scale spatial resolution remains an outstanding challenge. Current approaches, for example, Hall micromagnetometer and nitrogen-vacancy magnetometer, are limited by highly complex experimental apparatus and a dedicated sample preparation process. Here we present a new AC field-modulated magnetic force microscopy (MFM) and report the local and quantitative measurements of the magnetic information of individual magnetic nanoparticles (MNPs), which is one of the most iconic objects of nanomagnetism. This technique provides simultaneously a direct visualization of the magnetization process of the individual MNPs, with spatial resolution and magnetic sensitivity of about 4.8 nm and 1.85 × 10−20 A m2, respectively, enabling us to separately estimate the distributions of the dipolar fields and the local switching fields of individual MNPs. Moreover, we demonstrate that quantitative magnetization moment of individual MNPs can be routinely obtained using MFM signals. Therefore, it underscores the power of the AC field-modulated MFM for biological and biomedical applications of MNPs and opens up the possibility for directly and quantitatively probing the weak magnetic stray fields from nanoscale magnetic systems with superior spatial resolution. PMID:26932357

  10. Quantitatively probing the magnetic behavior of individual nanoparticles by an AC field-modulated magnetic force microscopy.

    PubMed

    Li, Xiang; Lu, Wei; Song, Yiming; Wang, Yuxin; Chen, Aiying; Yan, Biao; Yoshimura, Satoru; Saito, Hitoshi

    2016-03-02

    Despite decades of advances in magnetic imaging, obtaining direct, quantitative information with nanometer scale spatial resolution remains an outstanding challenge. Current approaches, for example, Hall micromagnetometer and nitrogen-vacancy magnetometer, are limited by highly complex experimental apparatus and a dedicated sample preparation process. Here we present a new AC field-modulated magnetic force microscopy (MFM) and report the local and quantitative measurements of the magnetic information of individual magnetic nanoparticles (MNPs), which is one of the most iconic objects of nanomagnetism. This technique provides simultaneously a direct visualization of the magnetization process of the individual MNPs, with spatial resolution and magnetic sensitivity of about 4.8 nm and 1.85 × 10(-20) A m(2), respectively, enabling us to separately estimate the distributions of the dipolar fields and the local switching fields of individual MNPs. Moreover, we demonstrate that quantitative magnetization moment of individual MNPs can be routinely obtained using MFM signals. Therefore, it underscores the power of the AC field-modulated MFM for biological and biomedical applications of MNPs and opens up the possibility for directly and quantitatively probing the weak magnetic stray fields from nanoscale magnetic systems with superior spatial resolution.

  11. Detection of water and its derivatives on individual nanoparticles using vibrational electron energy-loss spectroscopy.

    PubMed

    Crozier, Peter A; Aoki, Toshihiro; Liu, Qianlang

    2016-10-01

    Understanding the role of water, hydrate and hydroxyl species on nanoparticle surfaces and interfaces is very important in both physical and life sciences. Detecting the presence of oxygen-hydrogen species with nanometer resolution is extremely challenging at present. Here we show that the recently developed vibrational electron energy-loss spectroscopy using subnanometer focused electron beams can be employed to spectroscopically identify the local presence and variation of OH species on nanoscale surfaces. The hydrogen-oxygen fingerprint can be correlated with highly localized structural and morphological information obtained from electron imaging. Moreover, the current approach exploits the aloof beam mode of spectral acquisition which does not require direct electron irradiation of the sample thus greatly reducing beam damage to the OH bond. These findings open the door for using electron microscopy to probe local hydroxyl and hydrate species on nanoscale organic and inorganic structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Synthesis and upconversion luminescence properties of YF3:Yb3+/Er3+ hollow nanofibers derived from Y2O3:Yb3+/Er3+ hollow nanofibers

    NASA Astrophysics Data System (ADS)

    Li, Dan; Dong, Xiangting; Yu, Wensheng; Wang, Jinxian; Liu, Guixia

    2013-06-01

    YF3:Yb3+/Er3+ hollow nanofibers were successfully fabricated via fluorination of the relevant Y2O3:Yb3+/Er3+ hollow nanofibers which were obtained by calcining the electrospun PVP/[Y(NO3)3 + Yb(NO3)3 + Er(NO3)3] composite nanofibers. The morphology and properties of the products were investigated in detail by X-ray diffraction, scanning electron microscope, transmission electron microscope, and fluorescence spectrometer. YF3:Yb3+/Er3+ hollow nanofibers were pure orthorhombic phase with space group Pnma and were hollow-centered structure with mean diameter of 174 ± 22 nm, and YF3:Yb3+/Er3+ hollow nanofibers are composed of nanoparticles with size in the range of 30-60 nm. Upconversion emission spectrum analysis manifested that YF3:Yb3+/Er3+ hollow nanofibers emitted strong green and weak red upconversion emissions centering at 523, 545, and 654 nm, respectively. The green and red emissions were, respectively, originated from 2H11/2/4S3/2 → 4I15/2 and 4F9/2 → 4Il5/2 energy levels transitions of the Er3+ ions. Moreover, the emitting colors of YF3:Yb3+/Er3+ hollow nanofibers were located in the green region in CIE chromaticity coordinates diagram. This preparation technique could be applied to prepare other rare earth fluoride upconversion luminescence hollow nanofibers.

  13. Oxygen and light sensitive field-effect transistors based on ZnO nanoparticles attached to individual double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chanaewa, Alina; Juárez, Beatriz H.; Weller, Horst; Klinke, Christian

    2011-12-01

    The attachment of semiconducting nanoparticles to carbon nanotubes is one of the most challenging subjects in nanotechnology. Successful high coverage attachment and control over the charge transfer mechanism and photo-current generation open a wide field of new applications such as highly effective solar cells and fibre-enhanced polymers. In this work we study the charge transfer in individual double-walled carbon nanotubes highly covered with uniform ZnO nanoparticles. The synthetic colloidal procedure was chosen to avoid long-chained ligands at the nanoparticle-nanotube interface. The resulting composite material was used as conductive channel in a field-effect transistor device and the electrical photo-response was analysed under various conditions. By means of the transfer characteristics we could elucidate the mechanism of charge transfer from non-covalently attached semiconducting nanoparticles to carbon nanotubes. The role of positive charges remaining on the nanoparticles is discussed in terms of a gating effect.The attachment of semiconducting nanoparticles to carbon nanotubes is one of the most challenging subjects in nanotechnology. Successful high coverage attachment and control over the charge transfer mechanism and photo-current generation open a wide field of new applications such as highly effective solar cells and fibre-enhanced polymers. In this work we study the charge transfer in individual double-walled carbon nanotubes highly covered with uniform ZnO nanoparticles. The synthetic colloidal procedure was chosen to avoid long-chained ligands at the nanoparticle-nanotube interface. The resulting composite material was used as conductive channel in a field-effect transistor device and the electrical photo-response was analysed under various conditions. By means of the transfer characteristics we could elucidate the mechanism of charge transfer from non-covalently attached semiconducting nanoparticles to carbon nanotubes. The role of positive

  14. Direct electrochemical detection of individual collisions between magnetic microbead/silver nanoparticle conjugates and a magnetized ultramicroelectrode.

    PubMed

    Yoo, Jason J; Kim, Joohoon; Crooks, Richard M

    2015-11-13

    Here, we report on the electrochemical detection of individual collisions between a conjugate consisting of silver nanoparticles (AgNPs) linked to conductive magnetic microbeads (cMμBs) via DNA hybridization and a magnetized electrode. The important result is that the presence of the magnetic field increases the flux of the conjugate to the electrode surface, and this in turn increases the collision frequency and improves the limit of detection (20 aM). In addition, the magnitude of the charge associated with the collisions is greatly enhanced in the presence of the magnetic field. The integration of DNA into the detection protocol potentially provides a means for using electrochemical collisions for applications in biological and chemical sensing.

  15. Synthesis of multi-shelled ZnO hollow microspheres and their improved photocatalytic activity

    PubMed Central

    2014-01-01

    Herein, we report an effective, facile, and low-cost route for preparing ZnO hollow microspheres with a controlled number of shells composed of small ZnO nanoparticles. The formation mechanism of multiple-shelled structures was investigated in detail. The number of shells is manipulated by using different diameters of carbonaceous microspheres. The products were characterized by X-ray powder diffraction, scanning electron microscopy, and transmission electron microscopy. The as-prepared ZnO hollow microspheres and ZnO nanoparticles were then used to study the degradation of methyl orange (MO) dye under ultraviolet (UV) light irradiation, and the triple-shelled ZnO hollow microspheres exhibit the best photocatalytic activity. This work is helpful to develop ZnO-based photocatalysts with high photocatalytic performance in addressing environmental protection issues, and it is also anticipated to other multiple-shelled metal oxide hollow microsphere structures. PMID:25328500

  16. Impact of Engineered Zinc Oxide Nanoparticles on the Individual Performance of Mytilus galloprovincialis

    PubMed Central

    Hanna, Shannon K.; Miller, Robert J.; Muller, Erik B.; Nisbet, Roger M.; Lenihan, Hunter S.

    2013-01-01

    The increased use of engineered nanoparticles (ENPs) in consumer products raises the concern of environmental release and subsequent impacts in natural communities. We tested for physiological and demographic impacts of ZnO, a prevalent metal oxide ENP, on the mussel Mytilus galloprovincialis. We exposed mussels of two size classes, <4.5 and ≥4.5 cm shell length, to 0.1–2 mg l−1 ZnO ENPs in seawater for 12 wk, and measured the effect on mussel respiration, accumulation of Zn, growth, and survival. After 12 wk of exposure to ZnO ENPs, respiration rates of mussels increased with ZnO concentration. Mussels had up to three fold more Zn in tissues than control groups after 12 wk of exposure, but patterns of Zn accumulation varied with mussel size and Zn concentrations. Small mussels accumulated Zn 10 times faster than large mussels at 0.5 mg l−1, while large mussels accumulated Zn four times faster than small mussels at 2 mg l−1. Mussels exposed to 2 mg l−1 ZnO grew 40% less than mussels in our control group for both size classes. Survival significantly decreased only in groups exposed to the highest ZnO concentration (2 mg l−1) and was lower for small mussels than large. Our results indicate that ZnO ENPs are toxic to mussels but at levels unlikely to be reached in natural marine waters. PMID:23613941

  17. Impact of engineered zinc oxide nanoparticles on the individual performance of Mytilus galloprovincialis.

    PubMed

    Hanna, Shannon K; Miller, Robert J; Muller, Erik B; Nisbet, Roger M; Lenihan, Hunter S

    2013-01-01

    The increased use of engineered nanoparticles (ENPs) in consumer products raises the concern of environmental release and subsequent impacts in natural communities. We tested for physiological and demographic impacts of ZnO, a prevalent metal oxide ENP, on the mussel Mytilus galloprovincialis. We exposed mussels of two size classes, <4.5 and ≥ 4.5 cm shell length, to 0.1-2 mg l(-1) ZnO ENPs in seawater for 12 wk, and measured the effect on mussel respiration, accumulation of Zn, growth, and survival. After 12 wk of exposure to ZnO ENPs, respiration rates of mussels increased with ZnO concentration. Mussels had up to three fold more Zn in tissues than control groups after 12 wk of exposure, but patterns of Zn accumulation varied with mussel size and Zn concentrations. Small mussels accumulated Zn 10 times faster than large mussels at 0.5 mg l(-1), while large mussels accumulated Zn four times faster than small mussels at 2 mg l(-1). Mussels exposed to 2 mg l(-1) ZnO grew 40% less than mussels in our control group for both size classes. Survival significantly decreased only in groups exposed to the highest ZnO concentration (2 mg l(-1)) and was lower for small mussels than large. Our results indicate that ZnO ENPs are toxic to mussels but at levels unlikely to be reached in natural marine waters.

  18. Individual-collective crossover driven by particle size in dense assemblies of superparamagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ridier, Karl; Gillon, Béatrice; Chaboussant, Grégory; Catala, Laure; Mazérat, Sandra; Rivière, Eric; Mallah, Talal

    2017-02-01

    Prussian blue analogues (PBA) ferromagnetic nanoparticles CsIxNiII[CrIII(CN)6 ]z·3(H2O) embedded in CTA+ (cetyltrimethylammonium) matrix have been investigated by magnetometry and magnetic small-angle neutron scattering (SANS). Choosing particle sizes (diameter D = 4.8 and 8.6 nm) well below the single-domain radius and comparable volume fraction of particle, we show that the expected superparamagnetic regime for weakly anisotropic isolated magnetic particles is drastically affected due to the interplay of surface/volume anisotropies and dipolar interactions. For the smallest particles (D = 4.8 nm), magnetocrystalline anisotropy is enhanced by surface spins and drives the system into a regime of ferromagnetically correlated clusters characterized by a temperature-dependent magnetic correlation length Lmag which is experimentally accessible using magnetic SANS. For D = 8.6 nm particles, a superparamagnetic regime is recovered in a wide temperature range. We propose a model of interacting single-domain particles with axial anisotropy that accounts quantitatively for the observed behaviors in both magnetic regimes. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-70534-9

  19. HOLLOW CARBON ARC DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-10-11

    A device is described for producing an energetic, direct current, hollow, carbon-arc discharge in an evacuated container and within a strong magnetic field. Such discharges are particularly useful not only in dissociation and ionization of high energy molecular ion beams, but also in acting as a shield or barrier against the instreaming of lowenergy neutral particles into a plasma formed within the hollow discharge when it is used as a dissociating mechanism for forming the plasma. There is maintained a predetermined ratio of gas particles to carbon particles released from the arc electrodes during operation of the discharge. The carbon particles absorb some of the gas particles and are pumped along and by the discharge out of the device, with the result that smaller diffusion pumps are required than would otherwise be necessary to dispose of the excess gas.

  20. Hollow spherical shell manufacture

    DOEpatents

    O'Holleran, Thomas P.

    1991-01-01

    A process for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry.

  1. Hollow spherical shell manufacture

    DOEpatents

    O'Holleran, T.P.

    1991-11-26

    A process is disclosed for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry. 3 figures.

  2. nanoparticles

    NASA Astrophysics Data System (ADS)

    Andreu-Cabedo, Patricia; Mondragon, Rosa; Hernandez, Leonor; Martinez-Cuenca, Raul; Cabedo, Luis; Julia, J. Enrique

    2014-10-01

    Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable.

  3. Synthesis of Hollow Silica Microspheres with High-Developed Surface Area

    NASA Astrophysics Data System (ADS)

    Bei, I.; Tolstov, A.; Ishchenko, A.

    Hollow silica microspheres (HSM), as efficient drug delivery carriers, were successfully prepared via a facile water-in-oil emulsion method using water glass precursor. The kinetics of drug release in aqueous medium was simulated using water-soluble erythrosine. Hollow silica microspheres show intensive release of active component at the beginning stages of introduction into aqueous (organism-imitating) conditions. Release rate of the model compound decreased and desorption time increased in the follow range: hollow silica microspheres > porous silica microparticles > silica nanoparticles.

  4. A convenient solvothermal synthesis route to metal phosphides with a shape of hollow nanospheres.

    PubMed

    Bao, Keyan; Liu, Shuzhen; Cao, Jie; Liang, Jiangbo; Zhu, Yongchun; Hu, Xiaobo; Zhu, Lingling; Liu, Xiaoyan; Qian, Yitai

    2009-08-01

    InP hollow nanospheres with an average size of 550 nm and shell thickness of about 110 nm were solvothermally synthesized in EA (ethanolamine)-H2O binary solution at 190 degrees C for 36 h. The shells of InP hollow nanospheres were composed of small nanoparticles. The similar route has been extended to prepare Cd3P2, Cu3P and Sn4P3 hollow nanospheres in 150-190 degrees C for 24-36 h.

  5. Capillary force induced formation of monodisperse polystyrene/silica organic-inorganic hybrid hollow spheres.

    PubMed

    Leng, Wenguang; Chen, Min; Zhou, Shuxue; Wu, Limin

    2010-09-07

    This paper presents a "one-spot" procedure to fabricate polystyrene/silica (PS/SiO(2)) hybrid hollow spheres. In this approach, when poly(vinylpyrrolidone)-stabilized PS colloids were deposited by sol-gel derived silica layer under acidic medium, it was interesting to find that the PS/SiO(2) core-shell colloids gradually changed to hollow structure spontaneously in the same medium as reaction went on. The formation of this hollow structure should be attributed to the diffusion of PS macromolecular chains from core particles into the voids between silica nanoparticles driven by the strong capillary force.

  6. A general route to hollow mesoporous rare-earth silicate nanospheres as a catalyst support.

    PubMed

    Jin, Renxi; Yang, Yang; Zou, Yongcun; Liu, Xianchun; Xing, Yan

    2014-02-17

    Hollow mesoporous structures have recently aroused intense research interest owing to their unique structural features. Herein, an effective and precisely controlled synthesis of hollow rare-earth silicate spheres with mesoporous shells is reported for the first time, produced by a simple hydrothermal method, using silica spheres as the silica precursors. The as-prepared hollow rare-earth silicate spheres have large specific surface area, high pore volume, and controllable structure parameters. The results demonstrate that the selection of the chelating reagent plays critical roles in forming the hollow mesoporous structures. In addition, a simple and low-energy-consuming approach to synthesize highly stable and dispersive gold nanoparticle-yttrium silicate (AuNPs/YSiO) hollow nanocomposites has also been developed. The reduction of 4-nitrophenol with AuNPs/YSiO hollow nanocomposites as the catalyst has clearly demonstrated that the hollow rare-earth silicate spheres are good carriers for Au nanoparticles. This strategy can be extended as a general approach to prepare multifunctional yolk-shell structures with diverse compositions and morphologies simply by replacing silica spheres with silica-coated nanocomposites. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Double-shelled plasmonic Ag-TiO{sub 2} hollow spheres toward visible light-active photocatalytic conversion of CO{sub 2} into solar fuel

    SciTech Connect

    Feng, Shichao; Wang, Meng; Li, Ping; Tu, Wenguang; Zhou, Yong; Zou, Zhigang

    2015-10-01

    Double-shelled hollow hybrid spheres consisting of plasmonic Ag and TiO{sub 2} nanoparticles were successfully synthesized through a simple reaction process. The analysis reveals that Ag nanoparticles were dispersed uniformly in the TiO{sub 2} nanoparticle shell. The plasmonic Ag-TiO{sub 2} hollow sphere proves to greatly enhance the photocatalytic activity toward reduction of CO{sub 2} into renewable hydrocarbon fuel (CH{sub 4}) in the presence of water vapor under visible-light irradiation. The possible formation mechanism of the hollow sphere and related plasmon-enhanced photocatalytic performance were also briefly discussed.

  8. Double-shelled plasmonic Ag-TiO2 hollow spheres toward visible light-active photocatalytic conversion of CO2 into solar fuel

    NASA Astrophysics Data System (ADS)

    Feng, Shichao; Wang, Meng; Zhou, Yong; Li, Ping; Tu, Wenguang; Zou, Zhigang

    2015-10-01

    Double-shelled hollow hybrid spheres consisting of plasmonic Ag and TiO2 nanoparticles were successfully synthesized through a simple reaction process. The analysis reveals that Ag nanoparticles were dispersed uniformly in the TiO2 nanoparticle shell. The plasmonic Ag-TiO2 hollow sphere proves to greatly enhance the photocatalytic activity toward reduction of CO2 into renewable hydrocarbon fuel (CH4) in the presence of water vapor under visible-light irradiation. The possible formation mechanism of the hollow sphere and related plasmon-enhanced photocatalytic performance were also briefly discussed.

  9. Sonochemically assisted synthesis and application of hollow spheres, hollow prism, and coralline-like ZnO nanophotocatalyst

    NASA Astrophysics Data System (ADS)

    Kowsari, E.

    2011-08-01

    Nanosheet-based microspheres of ZnO with hierarchical structures, hollow prism, and coralline-like ZnO nanostructures were successfully prepared by ultrasonic irradiation in acidic ionic liquids (AILs). The hollow spherical is made up of many thin petals, the thickness of which is only about 90 nm. In the presence of AIL2, the one prepared at a frequency of 40 kHz is a mixture of nanofibers with diameters ranging from less than 30 nm to about 100 nm. ZnO nanostructure (with AIL1) reveals lozenge-shape hollow prism structures. The products were hollow prism structure covered with some nanometric-size nanoparticles. The average size of the nanoparticles is in the range of 40-80 nm. It is found that the ultrasonic irradiation time, ultrasonic frequency, and the AILs influence the growth mechanism and optical properties of ZnO nanostructures. Producing Zno nanostructures by different traditional methods (e.g., hydrothermal method) requires basic media. These methods are not economical and environmentally friendly in many industrial processes. In so doing, a critical problem has been the point that, normally, a high concentration of base causes reactor metal corrosion. This is a simple and low-cost method, which can be expected to be applied in industry in the future. Also, importantly, the structures synthesized in this experiment can indicate a new way to construct nanodevices by self-organization in one step.

  10. Submicrometer-sized hierarchical hollow spheres of heavy lanthanide orthovanadates: sacrificial template synthesis, formation mechanism, and luminescent properties.

    PubMed

    Yang, Xiaoyan; Xu, Lin; Zhai, Zheng; Cheng, Fangfang; Yan, Zhenzhen; Feng, Xiaomiao; Zhu, Junjie; Hou, Wenhua

    2013-12-23

    Hollow spheres of heavy lanthanide orthovanadates (LnVO4, Ln = Tb, Dy, Er, Tm, Yb, Lu) and yolk-shell structures of Ho(OH)CO3@HoVO4 have been successfully prepared by employing Ln(OH)CO3 colloidal spheres as a sacrificial template and NH4VO3 as a vanadium source. In particular, the as-obtained LuVO4 hollow spheres are assembled from numerous hollow-structured elliptic nanoparticles, and their textural parameters such as the inner and outer diameters, shell thicknesses, and number of shells could be finely tuned through introducing different amounts of NH4VO3 and employing Lu(OH)CO3 templates with different sizes. The possible mechanisms for the formation of hollow spheres and yolk-shell structures, and also the hollow-structured elliptic nanoparticles of LuVO4, i.e., building blocks of LuVO4 hollow spheres, are proposed and discussed in detail. Under ultraviolet excitation, the obtained LuVO4:Eu(3+) hollow spheres show strong red emissions located in the saturated color region, and the modulation of emission intensity and color purity could be realized by tuning the textural parameters of the obtained hollow spheres. It was found that the nanostructure of the building blocks of LuVO4:Eu(3+) hollow spheres also had an effect on the luminescent properties of the as-obtained materials. Moreover, the quantum efficiency could be affected by the textural parameters of the as-obtained LuVO4:Eu(3+) hollow spheres, and the double-shelled LuVO4:Eu(3+) hollow sphere has the highest quantum efficiency. In addition, the excellent biocompatibility indicates the potential biological applications of LuVO4 hollow spheres.

  11. Oriented-assembly of hollow FePt nanochains with tunable catalytic and magnetic properties

    NASA Astrophysics Data System (ADS)

    Liu, Jialong; Xia, Tianyu; Wang, Shouguo; Yang, Guang; Dong, Bowen; Wang, Chao; Ma, Qidi; Sun, Young; Wang, Rongming

    2016-06-01

    Hollow nanoparticles with large surface areas exhibit a lot of advantages for applications such as catalysis and energy storage. Furthermore, their performance can be manipulated by their deliberate assemblies. Dispersive hollow FePt nanospheres have been assembled into one-dimensional hollow FePt nanochains under the magnetic fields at room temperature. Based on the activation of galvanic replacement at different reaction stages, the size of hollow FePt nanochains can be deliberately manipulated varying from 20 nm to 300 nm, together with the length changing from 200 nm to 10 μm. The competition between movement of paramagnetic Fe3+ ions and shape recovering due to thermal fluctuations plays a critical effect on the structure of contact area between hollow nanospheres, leading to perforative structures. Compared with commercial Pt/C, well aligned hollow FePt nanochains show greatly enhanced catalytic activities in the methanol oxidation reaction (MOR) due to more favorable mass flow. Magnetic measurements indicate that the magnetic properties including Curie temperature and saturation magnetization can be tuned by the control of the size and shape of hollow nanochains.Hollow nanoparticles with large surface areas exhibit a lot of advantages for applications such as catalysis and energy storage. Furthermore, their performance can be manipulated by their deliberate assemblies. Dispersive hollow FePt nanospheres have been assembled into one-dimensional hollow FePt nanochains under the magnetic fields at room temperature. Based on the activation of galvanic replacement at different reaction stages, the size of hollow FePt nanochains can be deliberately manipulated varying from 20 nm to 300 nm, together with the length changing from 200 nm to 10 μm. The competition between movement of paramagnetic Fe3+ ions and shape recovering due to thermal fluctuations plays a critical effect on the structure of contact area between hollow nanospheres, leading to perforative

  12. Synthesis of monodisperse hollow carbon nanocapsules by using protective silica shells.

    PubMed

    Quan, Bo; Nam, Gi-Eun; Choi, Hyuck Jae; Piao, Yuanzhe

    2013-04-01

    Monodisperse hollow carbon nanocapsules (<200 nm) with mesoporous shells were synthesized by coating their outer shells with silica to prevent aggregation during their high-temperature annealing. Monodispersed silica nanoparticles were used as starting materials and octadecyltrimethoxysilane (C18TMS) was used as a carbon source to create core-shell nanostructures. These core-shell nanoparticles were coated with silica on their outer shell to form a second shell layer. This outer silica shell prevented aggregation during calcination. The samples were characterized by TEM, SEM, dynamic light scattering (DLS), UV/Vis spectroscopy, and by using the Brunauer-Emmett-Teller (BET) method. The as-synthesized hollow carbon nanoparticles exhibited a high surface area (1123 m(2) g(-1)) and formed stable dispersions in water after the pegylation process. The drug-loading and drug-release properties of these hollow carbon nanocapsules were also investigated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Visible Mie Scattering in Nonabsorbing Hollow Sphere Powders

    SciTech Connect

    M Retsch; M Schmelzeisen; H Butt; E Thomas

    2011-12-31

    Hollow silica nanoparticles (HSNP) with diameters comparable to visible wavelengths and with thin shells (<15 nm) feature an unexpected color effect. Single particle and powder spectroscopy, as well as calculations based on Mie theory were used to investigate this phenomenon. The use of HSNPs increases the transport mean free path of light significantly, which reduces multiple scattering, and thus the Mie resonances become visible to the bare eye.

  14. Mussel-inspired gold hollow superparticles for photothermal therapy.

    PubMed

    Tian, Ye; Shen, Shun; Feng, Jiachun; Jiang, Xingguo; Yang, Wuli

    2015-05-01

    Gold hollow superparticles are prepared taking advantage of the dopamine chemistry. The plasmon coupling of the gold nanoparticles makes the superparticles an effective photothermal conversion agent in the photothermal therapy of cancer. Moreover, the mussel-inspired assembly approach could be extremely useful for the transfer of nanomaterial science to realistic technologies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Mesoporous Silica Nanoparticle-Supported Lipid Bilayers (Protocells) for Active Targeting and Delivery to Individual Leukemia Cells

    DOE PAGES

    Durfee, Paul N.; Lin, Yu-Shen; Dunphy, Darren R.; ...

    2016-07-15

    Many nanocarrier cancer therapeutics currently under development, as well as those used in the clinical setting, rely upon the enhanced permeability and retention (EPR) effect to passively accumulate in the tumor microenvironment and kill cancer cells. In leukemia, where leukemogenic stem cells and their progeny circulate within the peripheral blood or bone marrow, the EPR effect may not be operative. Thus, for leukemia therapeutics, it is essential to target and bind individual circulating cells. Here in this research, we investigate mesoporous silica nanoparticle (MSN)-supported lipid bilayers (protocells), an emerging class of nanocarriers, and establish the synthesis conditions and lipid bilayermore » composition needed to achieve highly monodisperse protocells that remain stable in complex media as assessed in vitro by dynamic light scattering and cryo-electron microscopy and ex ovo by direct imaging within a chick chorioallantoic membrane (CAM) model. We show that for vesicle fusion conditions where the lipid surface area exceeds the external surface area of the MSN and the ionic strength exceeds 20 mM, we form monosized protocells (polydispersity index <0.1) on MSN cores with varying size, shape, and pore size, whose conformal zwitterionic supported lipid bilayer confers excellent stability as judged by circulation in the CAM and minimal opsonization in vivo in a mouse model. Having established protocell formulations that are stable colloids, we further modified them with anti-EGFR antibodies as targeting agents and reverified their monodispersity and stability. Then, using intravital imaging in the CAM, we directly observed in real time the progression of selective targeting of individual leukemia cells (using the established REH leukemia cell line transduced with EGFR) and delivery of a model cargo. In conclusion, overall we have established the effectiveness of the protocell platform for individual cell targeting and delivery needed for leukemia and

  16. Mesoporous Silica Nanoparticle-Supported Lipid Bilayers (Protocells) for Active Targeting and Delivery to Individual Leukemia Cells

    SciTech Connect

    Durfee, Paul N.; Lin, Yu-Shen; Dunphy, Darren R.; Muñiz, Ayşe J.; Butler, Kimberly S.; Humphrey, Kevin R.; Lokke, Amanda J.; Agola, Jacob O.; Chou, Stanley S.; Chen, I-Ming; Wharton, Walker; Townson, Jason L.; Willman, Cheryl L.; Brinker, C. Jeffrey

    2016-07-15

    Many nanocarrier cancer therapeutics currently under development, as well as those used in the clinical setting, rely upon the enhanced permeability and retention (EPR) effect to passively accumulate in the tumor microenvironment and kill cancer cells. In leukemia, where leukemogenic stem cells and their progeny circulate within the peripheral blood or bone marrow, the EPR effect may not be operative. Thus, for leukemia therapeutics, it is essential to target and bind individual circulating cells. Here in this research, we investigate mesoporous silica nanoparticle (MSN)-supported lipid bilayers (protocells), an emerging class of nanocarriers, and establish the synthesis conditions and lipid bilayer composition needed to achieve highly monodisperse protocells that remain stable in complex media as assessed in vitro by dynamic light scattering and cryo-electron microscopy and ex ovo by direct imaging within a chick chorioallantoic membrane (CAM) model. We show that for vesicle fusion conditions where the lipid surface area exceeds the external surface area of the MSN and the ionic strength exceeds 20 mM, we form monosized protocells (polydispersity index <0.1) on MSN cores with varying size, shape, and pore size, whose conformal zwitterionic supported lipid bilayer confers excellent stability as judged by circulation in the CAM and minimal opsonization in vivo in a mouse model. Having established protocell formulations that are stable colloids, we further modified them with anti-EGFR antibodies as targeting agents and reverified their monodispersity and stability. Then, using intravital imaging in the CAM, we directly observed in real time the progression of selective targeting of individual leukemia cells (using the established REH leukemia cell line transduced with EGFR) and delivery of a model cargo. In conclusion, overall we have established the effectiveness of the protocell platform for individual cell targeting and delivery needed for leukemia and other

  17. Mesoporous Silica Nanoparticle-Supported Lipid Bilayers (Protocells) for Active Targeting and Delivery to Individual Leukemia Cells

    SciTech Connect

    Durfee, Paul N.; Lin, Yu-Shen; Dunphy, Darren R.; Muñiz, Ayşe J.; Butler, Kimberly S.; Humphrey, Kevin R.; Lokke, Amanda J.; Agola, Jacob O.; Chou, Stanley S.; Chen, I-Ming; Wharton, Walker; Townson, Jason L.; Willman, Cheryl L.; Brinker, C. Jeffrey

    2016-07-15

    Many nanocarrier cancer therapeutics currently under development, as well as those used in the clinical setting, rely upon the enhanced permeability and retention (EPR) effect to passively accumulate in the tumor microenvironment and kill cancer cells. In leukemia, where leukemogenic stem cells and their progeny circulate within the peripheral blood or bone marrow, the EPR effect may not be operative. Thus, for leukemia therapeutics, it is essential to target and bind individual circulating cells. Here in this research, we investigate mesoporous silica nanoparticle (MSN)-supported lipid bilayers (protocells), an emerging class of nanocarriers, and establish the synthesis conditions and lipid bilayer composition needed to achieve highly monodisperse protocells that remain stable in complex media as assessed in vitro by dynamic light scattering and cryo-electron microscopy and ex ovo by direct imaging within a chick chorioallantoic membrane (CAM) model. We show that for vesicle fusion conditions where the lipid surface area exceeds the external surface area of the MSN and the ionic strength exceeds 20 mM, we form monosized protocells (polydispersity index <0.1) on MSN cores with varying size, shape, and pore size, whose conformal zwitterionic supported lipid bilayer confers excellent stability as judged by circulation in the CAM and minimal opsonization in vivo in a mouse model. Having established protocell formulations that are stable colloids, we further modified them with anti-EGFR antibodies as targeting agents and reverified their monodispersity and stability. Then, using intravital imaging in the CAM, we directly observed in real time the progression of selective targeting of individual leukemia cells (using the established REH leukemia cell line transduced with EGFR) and delivery of a model cargo. In conclusion, overall we have established the effectiveness of the protocell platform for individual cell targeting and delivery needed for leukemia and other

  18. Quantification of silver nanoparticle uptake and distribution within individual human macrophages by FIB/SEM slice and view.

    PubMed

    Guehrs, Erik; Schneider, Michael; Günther, Christian M; Hessing, Piet; Heitz, Karen; Wittke, Doreen; López-Serrano Oliver, Ana; Jakubowski, Norbert; Plendl, Johanna; Eisebitt, Stefan; Haase, Andrea

    2017-03-21

    Quantification of nanoparticle (NP) uptake in cells or tissues is very important for safety assessment. Often, electron microscopy based approaches are used for this purpose, which allow imaging at very high resolution. However, precise quantification of NP numbers in cells and tissues remains challenging. The aim of this study was to present a novel approach, that combines precise quantification of NPs in individual cells together with high resolution imaging of their intracellular distribution based on focused ion beam/ scanning electron microscopy (FIB/SEM) slice and view approaches. We quantified cellular uptake of 75 nm diameter citrate stabilized silver NPs (Ag 75 Cit) into an individual human macrophage derived from monocytic THP-1 cells using a FIB/SEM slice and view approach. Cells were treated with 10 μg/ml for 24 h. We investigated a single cell and found in total 3138 ± 722 silver NPs inside this cell. Most of the silver NPs were located in large agglomerates, only a few were found in clusters of fewer than five NPs. Furthermore, we cross-checked our results by using inductively coupled plasma mass spectrometry and could confirm the FIB/SEM results. Our approach based on FIB/SEM slice and view is currently the only one that allows the quantification of the absolute dose of silver NPs in individual cells and at the same time to assess their intracellular distribution at high resolution. We therefore propose to use FIB/SEM slice and view to systematically analyse the cellular uptake of various NPs as a function of size, concentration and incubation time.

  19. Influence of individual ionic components on the agglomeration kinetics of silver nanoparticles.

    PubMed

    Gebauer, J S; Treuel, L

    2011-02-15

    The precise characteristic of the agglomeration behavior of colloidal suspensions is of paramount interest to many current studies in nanoscience. This work seeks to elucidate the influence that differently charged salts have on the agglomeration state of a Lee-Meisel-type silver colloid. Moreover, we investigate the influence of the chemical nature of individual ions on their potential to induce agglomeration. Raman spectroscopy and surface-enhanced Raman spectroscopy are used to give insights into mechanistic aspects of the agglomeration process and to assess the differences in the influence of different salts on the agglomeration behavior. Finally, we demonstrate the potential of the measurement procedure used in this work to determine the elementary charge on colloidal NPs. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Mercury - the hollow planet

    NASA Astrophysics Data System (ADS)

    Rothery, D. A.

    2012-04-01

    Mercury is turning out to be a planet characterized by various kinds of endogenous hole (discounting impact craters), which are compared here. These include volcanic vents and collapse features on horizontal scales of tens of km, and smaller scale depressions ('hollows') associated with bright crater-floor deposits (BCFD). The BCFD hollows are tens of metres deep and kilometres or less across and are characteristically flat-floored, with steep, scalloped walls. Their form suggests that they most likely result from removal of surface material by some kind of mass-wasting process, probably associated with volume-loss caused by removal (via sublimation?) of a volatile component. These do not appear to be primarily a result of undermining. Determining the composition of the high-albedo bluish surface coating in BCFDs will be a key goal for BepiColombo instruments such as MIXS (Mercury Imaging Xray Spectrometer). In contrast, collapse features are non-circular rimless pits, typically on crater floors (pit-floor craters), whose morphology suggests collapse into void spaces left by magma withdrawal. This could be by drainage of either erupted lava (or impact melt) or of shallowly-intruded magma. Unlike the much smaller-scale BCFD hollows, these 'collapse pit' features tend to lack extensive flat floors and instead tend to be close to triangular in cross-section with inward slopes near to the critical angle of repose. The different scale and morphology of BCFD hollows and collapse pits argues for quite different modes of origin. However, BCFD hollows adjacent to and within the collapse pit inside Scarlatti crater suggest that the volatile material whose loss was responsible for the growth of the hollows may have been emplaced in association with the magma whose drainage caused the main collapse. Another kind of volcanic collapse can be seen within a 25 km-wide volcanic vent outside the southern rim of the Caloris basin (22.5° N, 146.1° E), on a 28 m/pixel MDIS NAC image

  1. Hollow Polyimide Microspheres

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    1999-01-01

    A shaped article composed of an aromatic polyimide has a hollow, essentially spherical structure and a particle size of about 100 to about 1500 microns, a density of about I to about 6 pounds/ft3 and a volume change of 1 to about 20% by a pressure treatment of 30 psi for 10 minutes at room temperature. A syntactic foam, made of a multiplicity of the shaped articles which are bounded together by a matrix resin to form an integral composite structure, has a density of about 3 to about 30 pounds/cu ft and a compression strength of about 100 to about 1400 pounds/sq in.

  2. Hollow Polyimide Microspheres

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    2000-01-01

    A shaped article composed of an aromatic polyimide has a hollow, essentially spherical structure and a particle size of about 100 to about 1500 microns a density of about 1 to about 6 pounds/cubic ft and a volume change of 1 to about 20 percent by a pressure treatment of 30 psi for 10 minutes at room temperature. A syntactic foam, made of a multiplicity of the shaped articles which are bonded together by a matrix resin to form an integral composite structure, has a density of about 3 to about 30 pounds/cubic ft and a compression strength 2 of about 100 to about 1400 pounds/sq in.

  3. Hollow Polyimide Microspheres

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    2001-01-01

    A shaped article composed of an aromatic polyimide has a hollow, essentially spherical structure and a particle size of about 100 to about 1500 micrometers, a density of about 1 to about 6 pounds/cubic foot and a volume change of 1 to about 20% by a pressure treatment of 30 psi for 10 minutes at room temperature. A syntactic foam, made of a multiplicity of the shaped articles which are bonded together by a matrix resin to form an integral composite structure, has a density of about 3 to about 30 pounds/cubic feet and a compression strength of about 100 to about 1400 pounds/sq inch.

  4. Uniform hollow magnetite spheres: Facile synthesis, growth mechanism, and their magnetic properties

    SciTech Connect

    Zhou, Xing; Zhao, Guizhe; Liu, Yaqing

    2014-11-15

    Highlights: • Uniform Fe{sub 3}O{sub 4} hollow spheres with high saturation magnetization were synthesized through a simple solvothermal process. • Without using any hard templates or external magnetic field. • The as-prepared magnetite hollow spheres exhibit a ferromagnetic behavior with high Ms of ca. 85.9 emu/g at room temperature. • The morphology of Fe{sub 3}O{sub 4} with nanoparticles, hollow, and irregular structures could be adjusted by changing the reactive conditions. - Abstract: Hierarchical porous Fe{sub 3}O{sub 4} hollow spheres with high saturation magnetization were synthesized through a simple solvothermal process in ethylene glycol (EG) in the presence of Tetrabutylammonium chloride (TBAC) and urea. By investigating the effect of reaction temperature, time, the amount of urea, and concentration of iron ion on the formation of hollow spheres, it was proposed that the main formation mechanism of hollow spheres is Ostwald ripening process combined with assembly-then-inside-out evacuation process. Additionally, it is found that the morphology of Fe{sub 3}O{sub 4} with nanoparticles, hollow, and irregular structures could be adjusted by changing the above factors. The resulting products were characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), and vibrating sample magnetometer (VSM). The hierarchical porous Fe{sub 3}O{sub 4} hollow spheres exhibited enhanced saturation magnetization as compared with Fe{sub 3}O{sub 4} nanoparticles.

  5. Appropriate salt concentration of nanodiamond colloids for electrostatic self-assembly seeding of monosized individual diamond nanoparticles on silicon dioxide surfaces.

    PubMed

    Yoshikawa, Taro; Zuerbig, Verena; Gao, Fang; Hoffmann, René; Nebel, Christoph E; Ambacher, Oliver; Lebedev, Vadim

    2015-05-19

    Monosized (∼4 nm) diamond nanoparticles arranged on substrate surfaces are exciting candidates for single-photon sources and nucleation sites for ultrathin nanocrystalline diamond film growth. The most commonly used technique to obtain substrate-supported diamond nanoparticles is electrostatic self-assembly seeding using nanodiamond colloidal suspensions. Currently, monodisperse nanodiamond colloids, which have a narrow distribution of particle sizes centering on the core particle size (∼4 nm), are available for the seeding technique on different substrate materials such as Si, SiO2, Cu, and AlN. However, the self-assembled nanoparticles tend to form small (typically a few tens of nanometers or even larger) aggregates on all of those substrate materials. In this study, this major weakness of self-assembled diamond nanoparticles was solved by modifying the salt concentration of nanodiamond colloidal suspensions. Several salt concentrations of colloidal suspensions were prepared using potassium chloride as an inserted electrolyte and were examined with respect to seeding on SiO2 surfaces. The colloidal suspensions and the seeded surfaces were characterized by dynamic light scattering and atomic force microscopy, respectively. Also, the interaction energies between diamond nanoparticles in each of the examined colloidal suspensions were compared on the basis of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. From these investigations, it became clear that the appropriate salt concentration suppresses the formation of small aggregates during the seeding process owing to the modified electrostatic repulsive interaction between nanoparticles. Finally, monosized (<10 nm) individual diamond nanoparticles arranged on SiO2 surfaces have been successfully obtained.

  6. Microinfusion using hollow microneedles.

    PubMed

    Martanto, Wijaya; Moore, Jason S; Kashlan, Osama; Kamath, Rachna; Wang, Ping M; O'Neal, Jessica M; Prausnitz, Mark R

    2006-01-01

    The aim of the study is to determine the effect of experimental parameters on microinfusion through hollow microneedles into skin to optimize drug delivery protocols and identify rate-limiting barriers to flow. Glass microneedles were inserted to a depth of 720-1080 microm into human cadaver skin to microinfuse sulforhodamine solution at constant pressure. Flow rate was determined as a function of experimental parameters, such as microneedle insertion and retraction distance, infusion pressure, microneedle tip geometry, presence of hyaluronidase, and time. Single microneedles inserted into skin without retraction were able to infuse sulforhodamine solution into the skin at flow rates of 15-96 microl/h. Partial retraction of microneedles increased flow rate up to 11.6-fold. Infusion flow rate was also increased by greater insertion depth, larger infusion pressure, use of a beveled microneedle tip, and the presence of hyaluronidase such that flow rates ranging from 21 to 1130 microl/h were achieved. These effects can be explained by removing or overcoming the large flow resistance imposed by dense dermal tissue, compressed during microneedle insertion, which blocks flow from the needle tip. By partially retracting microneedles after insertion and other methods to overcome flow resistance of dense dermal tissue, protocols can be designed for hollow microneedles to microinfuse fluid at therapeutically relevant rates.

  7. High-optical-quality cryogenic hollow retroreflectors

    NASA Astrophysics Data System (ADS)

    Lyons, James J.; Hayes, Patricia A.

    1995-09-01

    The Cassini mission to Saturn will contain the CIRS instrument which is currently being developed and assembled at the Goddard Space Flight Center. The CIRS instrument contains two science interferometers that operate in the mid and far infrared regions of the spectrum and one reference interferometer which operates in the visible. The heart of each of the interferometers is a series of hollow glass retroreflectors (cube corners) and hollow dihedrals. The hollow retroreflectors are constructed of individual facets of zerodur glass which are bonded 90 degrees to each other to sub arc-second accuracies. They are then coated with a reflective overcoat to meet the wavelength requirements. The effort at Goddard resulted in the development of retroreflectors that not only performed well at ambient temperatures, but also retained a wavefront error of approximately 2 waves p-v with a maximum beam deviation of 15 arc seconds at a temperature of 170 degrees kelvin or below. Also developed at GSFC is a successful means of mounting the retroreflectors on a fixed zerodur mount to allow cooling them down to these temperatures without introducing any added stresses that are not already present in the unmounted retroreflectors.

  8. Ultrasonic/surfactant assisted of CdS nano hollow sphere synthesis and characterization

    SciTech Connect

    Rafati, Amir Abbas; Borujeni, Ahmad Reza Afraz; Najafi, Mojgan; Bagheri, Ahmad

    2011-01-15

    CdS hollow nanospheres with diameters ranging from 40 to 150 nm have been synthesized by a surfactant-assisted sonochemical route. The successful vesicle templating indicates that the outer leaflet of the bilayer is the receptive surface in the controlled growth of CdS nanoparticles which provide the unique reactor for the nucleation and mineralization growth of CdS nanoparticles. The CdS nanostructures obtained were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, ultraviolet-visible spectroscopy and photoluminescence spectroscopy. Structural characterization of hollow CdS nanospheres indicates that these products packed with square subunits having sizes between 5 and 7 nm in diameter. The formation of the hollow nanostructure was explained by a vesicle template mechanism, in which sonication and surfactant play important roles. The band-edge emission and surface luminescence of the CdS nanoparticles were observed. -Research Highlights: {yields} CdS hollow nanospheres with diameters of 40-150 nm were synthesized. {yields} Nanoparticles were characterized by UV/Vis and photoluminescence. {yields} Nanospheres are composed of smaller nanocrystals with the average size of 6.8 nm. {yields} The band gap energy of the CdS nanoparticles is higher than its bulk value.

  9. Mercury's Hollows: New Information on Distribution and Morphology from MESSENGER Observations at Low Altitude

    NASA Astrophysics Data System (ADS)

    Blewett, D. T.; Stadermann, A. C.; Chabot, N. L.; Denevi, B. W.; Ernst, C. M.; Peplowski, P. N.

    2014-12-01

    MESSENGER's orbital mission at Mercury led to the discovery of an unusual landform not known from other airless rocky bodies of the Solar System. Hollows are irregularly shaped, shallow, rimless depressions, often occurring in clusters and with high-reflectance interiors and halos. The fresh appearance of hollows suggests that they are relatively young features. For example, hollows are uncratered, and talus aprons downslope of hollows in certain cases appear to be covering small impact craters (100-200 in diameter). Hence, some hollows may be actively forming at present. The characteristics of hollows are suggestive of formation via destruction of a volatile-bearing phase (possibly one or more sulfides) through solar heating, micrometeoroid bombardment, and/or ion impact. Previous analysis showed that hollows are associated with low-reflectance material (LRM), a color unit identified from global color images. The material hosting hollows has often been excavated from depth by basin or crater impacts. Hollows are small features (tens of meters to several kilometers), so their detection and characterization with MESSENGER's global maps have been limited. MESSENGER's low-altitude orbits provide opportunities for collection of images at high spatial resolutions, which reveal new occurrences of hollows and offer views of hollows with unprecedented detail. As of this writing, we have examined more than 21,000 images with pixel sizes <20 m and incidence angles <85°. Hollows were found in 559 images. Locations of the hollows (e.g., crater floor, rim, central peak, plains) were recorded. Shadow-length measurements were made on 280 images, yielding the depths of 1343 individual hollows. The mean depth is 30 m, with a standard deviation of 17 m. We also explored correlations between the geographic locations of hollows and maps provided by the MESSENGER geochemical sensors (X-Ray, Gamma-Ray, and Neutron Spectrometers), including the abundances of Al/Si, Ca/Si, Fe/Si, K, Mg

  10. Synthesis, characterization, and application of monosized mesoporous silica nanoparticle-supported lipid bilayers for targeted therapeutic delivery to individual cells

    NASA Astrophysics Data System (ADS)

    Durfee, Paul Nicholas

    Mesoporous silica nanoparticle (MSNP) supported-lipid bilayers, termed 'protocells,' represent a potentially transformative class of therapeutic and theranostic delivery vehicles. The field of targeted drug delivery poses considerable challenges that cannot be addressed with a single 'magic bullet'. Consequently, the protocell has been designed as a modular platform composed of interchangeable biocompatible components. The mesoporous silica core can have variable size and shape to direct biodistribution and controlled pore size and surface chemistry to accommodate diverse cargos. The encapsulating supported lipid bilayer can be modified with targeting and trafficking ligands as well as polyethylene glycol (PEG) to effect selective binding, endosomal escape of cargo, drug efflux prevention, and potent therapeutic delivery, while maintaining in vivo colloidal stability. Many nanocarrier cancer therapeutics currently under development, as well as those used in the clinical setting, rely upon the enhanced permeability and retention (EPR) effect to passively accumulate in the tumor microenvironment and kill cancer cells. In leukemia, where leukemogenic stem cells and their progeny circulate within the peripheral blood or bone marrow, the EPR effect may not be operative. Thus, for leukemia therapeutics, it is essential to target and bind individual circulating cells. Here, we investigate protocells, an emerging class of nanocarriers, and establish the synthesis conditions and lipid bilayer composition needed to achieve highly monodisperse protocells that remain stable in complex media as assessed in vitro by dynamic light scattering and cryo-electron microscopy and ex ovo by direct imaging within a chick chorioallantoic membrane (CAM) model. We show that for vesicle fusion conditions where the lipid surface area exceeds the external surface area of the MSNP and the ionic strength exceeds 20 mM, we form monosized protocells (polydispersity index < 0.1) on MSNP cores with

  11. The rheological responds of the superparamagnetic fluid based on Fe3O4 hollow nanospheres

    NASA Astrophysics Data System (ADS)

    Ruan, Xiaohui; Pei, Lei; Xuan, Shouhu; Yan, Qifan; Gong, Xinglong

    2017-05-01

    In this work, a superparamagnetic fluid based on Fe3O4 hollow nanospheres was developed and the influence of the particle structure on the rheological properties was investigated. The Fe3O4 hollow nanospheres which were prepared by using the hydrothermal method presented the superparamagnetic characteristic, and the magnetic fluid thereof showed well magnetorheological (MR) effect. The stable magnetic fluid had a high yield stress even at low shear rate and its maximal yield stress was dramatically influenced by the measurement gap. In comparison to the Fe3O4 nanoparticles based magnetic fluid (MF), the Fe3O4 hollow nanospheres based MF exhibited better MR effect and higher stability since the unique hollow nanostructure. The shear stress of the hollow nanospheres is about 1.85 times larger than the nanoparticles based MF because it formed stronger chains structure under applying a magnetic field. To further investigate the enhancing mechanism, a molecule dynamic simulation was conducted to analyze the shear stress and the structure evolution of the Fe3O4 hollow nanospheres based MF and the simulation matched well with the experimental results.

  12. ZnO-based hollow microspheres with mesoporous shells: Polyoxometalate-assisted fabrication, growth mechanism and photocatalytic properties

    SciTech Connect

    Li Qiuyu; Chen Weilin; Ju Mingliang; Liu Lin; Wang Enbo

    2011-06-15

    With the assistance of Keggin-type polyoxometalate, ZnO hollow microspheres with mesoporous shells were synthesized via a simple solvothermal approach without any templates and surfactants. The observations of morphology and structure performed by field emission scanning electronic microscopy and transmission electron microscopy indicated that the shells of the ZnO hollow spheres were built from nanosheets which were composed of nanoparticles. The transformation of structure and composition of samples were investigated by X-ray diffraction, X-ray photoelectron spectrometry and fourier transform infrared absorption spectroscopy. The formation mechanism of the hollow spheres is proposed based on time-dependent experimental results. The ZnO hollow microspheres exhibited a high photocatalytic activity for decolorization of Rhodamine B under ultraviolet irradiation. - Graphical Abstract: ZnO hollow spheres with mesporous shells were synthesized by an one-pot polyoxometalate-assisted solvothermal route. The ZnO hollow microspheres exhibited a high photocatalytic activity for decolorization of Rhodamine B (RhB) under UV irradiation. Highlights: > ZnO hollow microspheres were synthesized via a solvothermal route with polyoxometalate. > The polyoxometalate was vital for the formation of the hollow microspheres. > The ZnO hollow microspheres exhibited excellent photocatalytic activity of Rhodamine B.

  13. 'Laguna Hollow'Undisturbed

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image shows the patch of soil at the bottom of the shallow depression dubbed 'Laguna Hollow' where the Mars Exploration Rover Spirit will soon begin trenching. Scientists are intrigued by the clustering of small pebbles and the crack-like fine lines, which indicate a coherent surface that expands and contracts. A number of processes can cause materials to expand and contract, including cycles of heating and cooling; freezing and thawing; and rising and falling of salty liquids within a substance. This false-color image was created using the blue, green and infrared filters of the rover's panoramic camera. Scientists chose this particular combination of filters to enhance the heterogeneity of the martian soil.

  14. Catalytic hollow spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1986-01-01

    The improved, heterogeneous catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitably formed of a shell (12) of metal such as aluminum having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be, itself, catalytic or the catalyst can be coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  15. Catalytic hollow spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1989-01-01

    The improved, heterogeneous catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitably formed of a shell (12) of metal such as aluminum having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be, itself, catalytic or the catalyst can be coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  16. Catalytic, hollow, refractory spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1987-01-01

    Improved, heterogeneous, refractory catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitable formed of a shell (12) of refractory such as alumina having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be itself catalytic or a catalytically active material coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  17. Hollow AgI:Ag nanoframes as solar photocatalysts for hydrogen generation from water reduction.

    PubMed

    An, Changhua; Wang, Jizhuang; Liu, Junxue; Wang, Shutao; Sun, Yugang

    2013-10-01

    A facile strategy based on the principle of the Kirkendall effect has been developed to synthesize hollow nanoframes and nanoshells of AgI:Ag composites through the controlled anion-exchange reaction between I(-) ions and solid AgBr:Ag (or AgCl:Ag) nanoparticles that serve as templates. Regardless of the morphologies of the template nanoparticles, they can be chemically transformed to hollow AgI:Ag structures with morphologies similar to those of the templates. The synthesized hollow AgI:Ag nanostructures can be used as efficient photocatalysts for H2 generation from water reduction and the decomposition of organic pollutants owing to the enhanced absorption of visible light by the Ag components in the hybrid nanostructures. The hollow nanostructures exhibit a higher photocatalytic performance than the corresponding solid nanoparticles possibly because of the large surface area and unique AgI/Ag interfaces associated with the hollow nanostructures. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Formation of hollow bone-like morphology of calcium carbonate on surfactant/polymer templates

    NASA Astrophysics Data System (ADS)

    Mantilaka, M. M. M. G. P. G.; Pitawala, H. M. T. G. A.; Rajapakse, R. M. G.; Karunaratne, D. G. G. P.; Upul Wijayantha, K. G.

    2014-04-01

    Novel hollow, bone-like structures of Precipitated Calcium Carbonate (PCC) are fabricated, for the first time, starting from naturally occurring dolomite. The hollow, bone-like structures are prepared by precipitating calcium carbonate on self-assembled poly(acrylic acid)/cetyltrimethylammonium chloride (PAA/CTAC) template. Fourier Transform Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Field Emission Scanning Electron Microscopic (FE-SEM) studies reveal that the bone-like structure is composed of Amorphous Calcium Carbonate (ACC) nanoparticles in the center and calcite nanoparticles at the edges. Bone-like PCC particles are in particle length of 2-3 μm and particle width of 1 μm. The internal hollow structures of bone-like particles are observed from TEM images. As identified by FE-SEM images, the bone-like structure has been formed through the crystal growth of initially formed ACC nanoparticles. The ACC particles are stabilized in the center while the calcite crystals have been grown from the ACC toward the edges of the structure to form a bone-like morphology. We also propose a possible mechanism for the formation of hollow bone-like PCC in this study. The fabricated hollow, bone-like PCC has potential applications in the preparation of release systems such as drugs, cosmetics and pigments.

  19. Electron tomography and nano-diffraction enabling the investigation of individual magnetic nanoparticles inside fibers of MR visible implants

    NASA Astrophysics Data System (ADS)

    Slabu, I.; Wirch, N.; Caumanns, T.; Theissmann, R.; Krüger, M.; Schmitz-Rode, T.; Weirich, T. E.

    2017-08-01

    Superparamagnetic iron oxide nanoparticles (SPIONPs) incorporated into the base material of implants are used as contrast agents in magnetic resonance imaging for the delineation of the implants from the surrounding tissue. However, the delineation quality is strongly related to the structural characteristics of the incorporated SPIONPs and their interparticle interaction as well as their interaction with the polymer matrix of the implant. Consequently, a profound knowledge of the formation of aggregates inside the polymer matrix, which are responsible for strong interparticle interactions, and of their structural characteristics, is required for controlling the magnetic resonance image quality of the implants. In this work, transmission electron microscopy methods such as electron tomography and nano-electron diffraction were used to depict SPIONP aggregates inside the melt-spin polyvinylidene fluoride fibers used for the assembly of implants and to determine the crystal structure of individual nanocrystals inside these aggregates, respectively. Using these techniques it was possible for the first time to characterize the aggregates inside the fibers of implants and to validate the magnetization measurements that have been previously used to assess the interaction phenomena inside the fibers of implants. With electron tomography, inhomogeneously sized distributed aggregates were delineated and 3D models of these aggregates were constructed. Furthermore, the distribution of the aggregates inside the fibers was verified by means of magnetic force microscopy. With nano-diffraction measurements, the SPIONP crystal structure inside the fibers of the implant could not be clearly assigned to that of magnetite (Fe3O4) or maghemite (γ-Fe2O3). Therefore, additional electron energy loss spectroscopy measurements were performed, which revealed the presence of both phases of Fe3O4 and γ-Fe2O3, probably caused by oxidation processes during the manufacture of the fibers by

  20. Uniform iron oxide hollow spheres for high-performance delivery of insoluble anticancer drugs.

    PubMed

    Zhu, Yichen; Lei, Jie; Tian, Ye

    2014-05-21

    As an intrinsic characteristic of many anticancer drugs, low solubility in physiological conditions limits the usage of these active ingredients in clinics. To overcome this bottleneck, we attempt to design and construct a high-performance magnetic-targeted delivery system based on uniform iron oxide hollow spheres. Via a facile one-pot solvothermal route, well-defined iron oxide hollow spheres were prepared with inexpensive inhesion. Compared with previously reported mesoporous Fe3O4 nanoparticles, our iron oxide hollow spheres have a larger void space giving the structures a higher storage capacity for guest molecules. In our present work, camptothecin (CPT) was selected as a model insoluble anticancer drug to confirm the efficiency of drug-loading and chemotherapy in vitro. Detailed anticancer efficacy was further investigated by using MTT assays and microscope imaging methods, indicating that these iron oxide hollow spheres are promising for insoluble drug delivery.

  1. Characterization of a radio frequency hollow electrode discharge at low gas pressures

    SciTech Connect

    Ahadi, Amir Mohammad; Rehders, Stefan; Strunskus, Thomas; Faupel, Franz; Trottenberg, Thomas; Kersten, Holger

    2015-08-15

    A radio frequency (RF) hollow discharge configuration is presented, which makes use of a combination of RF plasma generation and the hollow cathode effect. The system was especially designed for the treatment of nanoparticles, plasma polymerization, and nanocomposite fabrication. The process gas streams through the plasma in the inner of the cylindrical electrode system. In the here presented measurements, pure argon and argon with oxygen admixtures are exemplarily used. The discharge is characterized by probe measurements in the effluent, electrical measurements of the discharge parameters, and visual observations of the plasma glow. It is found that the RF fluctuations of the plasma potential are weak. The plasma potential resembles the one of a DC hollow cathode discharge, the RF hollow electrode acts as a cathode due to the self-bias, and a high voltage sheath forms in its inner cylinder.

  2. Bioinspired synthesis of calcium carbonate hollow spheres with a nacre-type laminated microstructure.

    PubMed

    Dong, Wenyong; Cheng, Haixing; Yao, Yuan; Zhou, Yongfeng; Tong, Gangsheng; Yan, Deyue; Lai, Yijian; Li, Wei

    2011-01-04

    In this Article, we combine the characters of hyperbranched polymers and the concept of double-hydrophilic block copolymer (DHBC) to design a 3D crystal growth modifier, HPG-COOH. The novel modifier can efficiently control the crystallization of CaCO(3) from amorphous nanoparticles to vaterite hollow spheres by a nonclassical crystallization process. The obtained vaterite hollow spheres have a special puffy dandelion-like appearance; that is, the shell of the hollow spheres is constructed by platelet-like vaterite mesocrystals, perpendicular to the globe surface. The cross-section of the wall of a vaterite hollow sphere is similar to that of nacres in microstructure, in which platelet-like calcium carbonate mesocrystals pile up with one another. These results reveal the topology effect of the crystal growth modifier on biomineralization and the essential role of the nonclassical crystallization for constructing hierarchical microstructures.

  3. Magnetic hollow mesoporous silica nanospheres: facile fabrication and ultrafast immobilization of enzymes.

    PubMed

    Chen, Yu; Chen, Hangrong; Guo, Limin; Shi, Jianlin

    2011-12-01

    Hollow mesoporous silica nanospheres with large pore size of around 11 nm have been synthesized by a structural difference based selective etching strategy, and the highly dispersed hydrophobic Fe3O4 nanoparticles with a particle size of 5 nm were then impregnated into hollow cores of nanospheres through these large pores by a vacuum impregnation technique. The structural characteristics of obtained magnetic composites were characterized by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Selected Area Electron Diffraction (SAED), Ultraviolet-visible (UV-Vis) and Vibrating Sample Magnetometer (VSM). The results show that the obtained Fe3O4-hollow mesoporous silica composites exhibit superparamagnetic property with saturation magnetization value of 4.17 emu/g. Furthermore, the obtained supports show ultrafast immobilization of hemoglobin and the immobilized enzymes are not denatured, indicating that the superparamagnetic hollow mesoporous silica spheres are excellent support for immobilization of enzymes with magnetic recycling property.

  4. Method for sizing hollow microspheres

    DOEpatents

    Farnum, E.H.; Fries, R.J.

    1975-10-29

    Hollow Microspheres may be effectively sized by placing them beneath a screen stack completely immersed in an ultrasonic bath containing a liquid having a density at which the microspheres float and ultrasonically agitating the bath.

  5. Real-time imaging and elemental mapping of AgAu nanoparticle transformations.

    PubMed

    Lewis, E A; Slater, T J A; Prestat, E; Macedo, A; O'Brien, P; Camargo, P H C; Haigh, S J

    2014-11-21

    We report the controlled alloying, oxidation, and subsequent reduction of individual AgAu nanoparticles in the scanning transmission electron microscope (STEM). Through sequential application of electron beam induced oxidation and in situ heating and quenching, we demonstrate the transformation of Ag-Au core-shell nanoparticles into: AgAu alloyed, Au-Ag core-shell, hollow Au-Ag2O core-shell, and Au-Ag2O yolk-shell nanoparticles. We are able to directly image these morphological transformations in real-time at atomic resolution and perform energy dispersive X-ray (EDX) spectrum imaging to map changing elemental distributions with sub-nanometre resolution. By combining aberration corrected STEM imaging and high efficiency EDX spectroscopy we are able to quantify not only the growth and coalescence of Kirkendall voids during oxidation but also the compositional changes occurring during this reaction. This is the first time that it has been possible to track the changing distribution of elements in an individual nanoparticle undergoing oxidation driven shell growth and hollowing.

  6. Mid-IR laser source using hollow waveguide beam combining

    NASA Astrophysics Data System (ADS)

    Elder, Ian F.; Thorne, Daniel H.; Lamb, Robert A.; Jenkins, R. M.

    2016-03-01

    Hollow waveguide technology is a route to efficient beam combining of multiple laser sources in a compact footprint. It is a technology appropriate for combining free-space or fibre-coupled beams generated by semiconductor, fibre or solidstate laser sources. This paper will present results of a breadboard mid-IR system comprising four laser sources combined using a hollow waveguide optical circuit. In this approach the individual dichroic beam combiner components are held in precision alignment slots in the hollow waveguide circuit and the different input wavelengths are guided between the components to a common output port. The hollow waveguide circuit is formed in the surface of a Macor (machinable glass-ceramic) substrate using precision CNC machining techniques. The hollow waveguides have fundamentally different propagation characteristics to solid core waveguides leading to transmission characteristics close to those of the atmosphere while still providing useful light guidance properties. The transmission efficiency and power handling of the hollow waveguide circuit can be designed to be very high across a broad waveband range. Three of the sources are quantum cascade lasers (QCLs), a semiconductor laser technology providing direct generation of midwave IR output. The combined beams provide 4.2 W of near diffraction-limited output co-boresighted to better than 20 µrad. High coupling efficiency into the waveguides is demonstrated, with negligible waveguide transmission losses. The overall transmission of the hollow waveguide beam combining optical circuit, weighted by the laser power at each wavelength, is 93%. This loss is dominated by the performance of the dichroic optics used to combine the beams.

  7. nanoparticles

    NASA Astrophysics Data System (ADS)

    Olive-Méndez, Sion F.; Santillán-Rodríguez, Carlos R.; González-Valenzuela, Ricardo A.; Espinosa-Magaña, Francisco; Matutes-Aquino, José A.

    2014-04-01

    In this work, we present the role of vanadium ions (V+5 and V+3), oxygen vacancies (VO), and interstitial zinc (Zni) to the contribution of specific magnetization for a mixture of ZnO-V2O5 nanoparticles (NPs). Samples were obtained by mechanical milling of dry powders and ethanol-assisted milling for 1 h with a fixed atomic ratio V/Zn?=?5% at. For comparison, pure ZnO samples were also prepared. All samples exhibit a room temperature magnetization ranging from 1.18?×?10-3 to 3.5?×?10-3 emu/gr. Pure ZnO powders (1.34?×?10-3 emu/gr) milled with ethanol exhibit slight increase in magnetization attributed to formation of Zni, while dry milled ZnO powders exhibit a decrease of magnetization due to a reduction of VO concentration. For the ZnO-V2O5 system, dry milled and thermally treated samples under reducing atmosphere exhibit a large paramagnetic component associated to the formation of V2O3 and secondary phases containing V+3 ions; at the same time, an increase of VO is observed with an abrupt fall of magnetization to σ?~?0.7?×?10-3 emu/gr due to segregation of V oxides and formation of secondary phases. As mechanical milling is an aggressive synthesis method, high disorder is induced at the surface of the ZnO NPs, including VO and Zni depending on the chemical environment. Thermal treatment restores partially structural order at the surface of the NPs, thus reducing the amount of Zni at the same time that V2O5 NPs segregate reducing the direct contact with the surface of ZnO NPs. Additional samples were milled for longer time up to 24 h to study the effect of milling on the magnetization; 1-h milled samples have the highest magnetizations. Structural characterization was carried out using X-ray diffraction and transmission electron microscopy. Identification of VO and Zni was carried out with Raman spectra, and energy-dispersive X-ray spectroscopy was used to verify that V did not diffuse into ZnO NPs as well to quantify O/Zn ratios.

  8. Preparation, characterization, photocatalytic properties of titania hollow sphere doped with cerium.

    PubMed

    Wang, Chao; Ao, Yanhui; Wang, Peifang; Hou, Jun; Qian, Jin; Zhang, Songhe

    2010-06-15

    Ce-doped titania hollow spheres were prepared using carbon spheres as template and Ce-doped titania nanoparticles as building blocks. The Ce-doped titania nanoparticles were synthesized at low temperature. The prepared hollow spheres were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectrum (DRS). The effect of Ce content on the physical structure and photocatalytic properties of doped titania hollow sphere samples was investigated. Results showed that there was an optimal Ce-doped content (4%) for the photocatalytic activity of X-3B degradation. The apparent rate constant of the best one was almost 31 times as that of P25 titania. The mechanism of photocatalytic degradation of dyes under visible light irradiation was also discussed. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Hollow Retroreflectors Offer Solid Benefits

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A technician who lead a successful team of scientists, engineers, and other technicians in the design, fabrication, and characterization of cryogenic retroreflectors for the NASA Cassini/Composite Infrared Spectrometer (CIRS) mission to Saturn, developed a hollow retroreflector technology while working at NASA Goddard Space Flight Center. With 16 years of NASA experience, the technician teamed up with another NASA colleague and formed PROSystems, Inc., of Sharpsburg, Maryland, to provide the optics community with an alternative source for precision hollow retroreflectors. The company's hollow retroreflectors are front surface glass substrates assembled to provide many advantages over existing hollow retroreflectors and solid glass retroreflectors. Previous to this new technology, some companies chose not to use hollow retroreflectors due to large seam widths and loss of signal. The "tongue and groove" facet design of PROSystems's retroreflector allows for an extremely small seam width of .001 inches. Feedback from users is very positive regarding this characteristic. Most of PROSystems's primary customers mount the hollow retroreflectors in chrome steel balls for laser tracker targets in applications such as automobile manufacturing and spacecraft assembly.

  10. Hollow mesoporous raspberry-like colloids with removable caps as photoresponsive nanocontainers

    NASA Astrophysics Data System (ADS)

    Hu, Chi; West, Kevin R.; Scherman, Oren A.

    2016-04-01

    The fabrication, characterisation and controlled cargo release of hollow mesoporous raspberry-like colloids (HMRCs), which are assembled by utilising host-guest complexation of cucurbit[8]uril (CB[8]) are described. CB[8] is employed as a supramolecular linker to `stick' the viologen functionalised paramagnetic iron oxide nanoparticles onto an azobenzene functionalised hollow mesoporous silica core. The formed HMRCs are photoresponsive and can be reversibly disassembled upon light irradiation, endowing them with an ability to release loaded cargo under photocontrol. While the assembled HMRCs retain cargo inside their cavity, disassembled particles with their iron oxide nanoparticle `caps' removed will release the loaded cargo through the mesoporous shell of the hollow silica colloids. A model system using a boronic acid derivative as the cargo in the HMRCs and Alizarin Red salt as a sensor for the released boronic acid is demonstrated.The fabrication, characterisation and controlled cargo release of hollow mesoporous raspberry-like colloids (HMRCs), which are assembled by utilising host-guest complexation of cucurbit[8]uril (CB[8]) are described. CB[8] is employed as a supramolecular linker to `stick' the viologen functionalised paramagnetic iron oxide nanoparticles onto an azobenzene functionalised hollow mesoporous silica core. The formed HMRCs are photoresponsive and can be reversibly disassembled upon light irradiation, endowing them with an ability to release loaded cargo under photocontrol. While the assembled HMRCs retain cargo inside their cavity, disassembled particles with their iron oxide nanoparticle `caps' removed will release the loaded cargo through the mesoporous shell of the hollow silica colloids. A model system using a boronic acid derivative as the cargo in the HMRCs and Alizarin Red salt as a sensor for the released boronic acid is demonstrated. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6NR01016D

  11. Micropore and nanopore fabrication in hollow antiresonant reflecting optical waveguides

    PubMed Central

    Holmes, Matthew R.; Shang, Tao; Hawkins, Aaron R.; Rudenko, Mikhail; Measor, Philip; Schmidt, Holger

    2011-01-01

    We demonstrate the fabrication of micropore and nanopore features in hollow antiresonant reflecting optical waveguides to create an electrical and optical analysis platform that can size select and detect a single nanoparticle. Micropores (4 μm diameter) are reactive-ion etched through the top SiO2 and SiN layers of the waveguides, leaving a thin SiN membrane above the hollow core. Nanopores are formed in the SiN membranes using a focused ion-beam etch process that provides control over the pore size. Openings as small as 20 nm in diameter are created. Optical loss measurements indicate that micropores did not significantly alter the loss along the waveguide. PMID:21922035

  12. Self-Templated Synthesis of Ultrathin Nanosheets Constructed TiO2 Hollow Spheres with High Electrochemical Properties.

    PubMed

    Xie, Huiqi; Hu, Linfeng; Wu, Feilong; Chen, Min; Wu, Limin

    2016-11-01

    TiO2 is well-known nanomaterials and mostly used as solid nanoparticles, and normal hollow spheres for photocatalysts or electrode materials. In this study, a novel self-templated method is presented to successfully fabricate high-surface-area ultrathin nanosheets constructed TiO2 hollow spheres through the solvothermal treatment of the titanate-silicone composite particles combined with calcination. The uniquely structured hollow spheres exhibit excellent rate capability and good cycle stability even at a high current density of ≈10 C for the anode material of Li-ion battery.

  13. Self‐Templated Synthesis of Ultrathin Nanosheets Constructed TiO2 Hollow Spheres with High Electrochemical Properties

    PubMed Central

    Xie, Huiqi; Hu, Linfeng; Wu, Feilong; Chen, Min

    2016-01-01

    TiO2 is well‐known nanomaterials and mostly used as solid nanoparticles, and normal hollow spheres for photocatalysts or electrode materials. In this study, a novel self‐templated method is presented to successfully fabricate high‐surface‐area ultrathin nanosheets constructed TiO2 hollow spheres through the solvothermal treatment of the titanate–silicone composite particles combined with calcination. The uniquely structured hollow spheres exhibit excellent rate capability and good cycle stability even at a high current density of ≈10 C for the anode material of Li‐ion battery. PMID:27980991

  14. Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors.

    PubMed

    Shen, Laifa; Yu, Le; Yu, Xin-Yao; Zhang, Xiaogang; Lou, Xiong Wen David

    2015-02-02

    Despite the significant advancement in preparing metal oxide hollow structures, most approaches rely on template-based multistep procedures for tailoring the interior structure. In this work, we develop a new generally applicable strategy toward the synthesis of mixed-metal-oxide complex hollow spheres. Starting with metal glycerate solid spheres, we show that subsequent thermal annealing in air leads to the formation of complex hollow spheres of the resulting metal oxide. We demonstrate the concept by synthesizing highly uniform NiCo2O4 hollow spheres with a complex interior structure. With the small primary building nanoparticles, high structural integrity, complex interior architectures, and enlarged surface area, these unique NiCo2O4 hollow spheres exhibit superior electrochemical performances as advanced electrode materials for both lithium-ion batteries and supercapacitors. This approach can be an efficient self-templated strategy for the preparation of mixed-metal-oxide hollow spheres with complex interior structures and functionalities.

  15. Well-defined hollow nanochanneled-silica nanospheres prepared with the aid of sacrificial copolymer nanospheres and surfactant nanocylinders

    NASA Astrophysics Data System (ADS)

    Kim, Young Yong; Hwang, Bora; Song, Sungjin; Ree, Brian J.; Kim, Yongjin; Cho, Seo Yeon; Heo, Kyuyoung; Kwon, Yong Ku; Ree, Moonhor

    2015-08-01

    A new approach for synthesizing well-defined hollow nanochanneled-silica nanosphere particles is demonstrated, and the structural details of these particles are described for the first time. Positively charged styrene copolymer nanospheres with a clean, smooth surface and a very narrow size distribution are synthesized by surfactant-free emulsion copolymerization and used as a thermal sacrificial core template for the production of core-shell nanoparticles. A surfactant/silica composite shell with a uniform thickness is successfully produced and deposited onto the polymeric core template by charge density matching between the polymer nanosphere template surface and the negatively charged silica precursors and then followed by selective thermal decomposition of the polymeric core and the surfactant cylinder domains in the shell, producing the hollow nanochanneled-silica nanospheres. Comprehensive, quantitative structural analyses collectively confirm that the obtained nanoparticles are structurally well defined with a hollow core and a shell composed of cylindrical nanochannels that provide facile accessibility to the hollow interior space. Overall, the hollow nanochanneled-silica nanoparticles have great potential for applications in various fields.A new approach for synthesizing well-defined hollow nanochanneled-silica nanosphere particles is demonstrated, and the structural details of these particles are described for the first time. Positively charged styrene copolymer nanospheres with a clean, smooth surface and a very narrow size distribution are synthesized by surfactant-free emulsion copolymerization and used as a thermal sacrificial core template for the production of core-shell nanoparticles. A surfactant/silica composite shell with a uniform thickness is successfully produced and deposited onto the polymeric core template by charge density matching between the polymer nanosphere template surface and the negatively charged silica precursors and then

  16. Hollow glass waveguides: New variations

    NASA Astrophysics Data System (ADS)

    Gibson, Daniel Joseph

    This study is an effort to develop new variations on the infrared silver-silver iodide hollow glass waveguide (HGW) with application specific properties. Four variations are presented: a HGW with a long, gradual taper, a HGW with a rectangular cross-section, curved HGW tips and a new all-dielectric hollow waveguide based on photonic bandgap guidance principles. A hollow glass waveguide tapered over its entire length offers ease of coupling at the proximal end and excellent flexibility at the distal end. Waveguides tapered from 1000 to 500 mum and 700 to 500 mum over 1.5 m were fabricated in this study. Compared to similarly sized non-tapered waveguides, laser losses for the tapered guides were high but decreased when bent. This behavior is contrary to that of non-tapered guides and an iterative ray tracing model was also developed to explain the observed loss characteristics of tapered hollow waveguides. Hollow glass waveguides with round profiles do not maintain the polarization state of the delivered radiation to any appreciable degree. HGWs with large- and small-aspect ratio rectangular cross sections were developed and shown to preserve polarization up to 96%, even when bent. The large aspect ratio guide was able to effectively rotate the transmitted polarization when twisted along its axis. Curved distal tips for medical and dental laser applications were developed by removing the low-OH silica fiber from commercially available stainless steel dental tips, and inserting HGWs of various sizes. The optical performances and heating profiles of the various configurations indicate the tips are suitable for certain medical applications, but the minimum bending radius is limited by the mechanical properties of the glass substrate. A small radii bending loss study confirms that propagating modes periodically couple as the radius of curvature is reduced. Through the application of the photonic bandgap (PBG) guidance, hollow waveguides can be made entirely from

  17. Shape-tunable hollow silica nanomaterials based on a soft-templating method and their application as a drug carrier.

    PubMed

    Chen, Jiao; Wu, Xu; Hou, Xiaodong; Su, Xingguang; Chu, Qianli; Fahruddin, Nenny; Zhao, Julia Xiaojun

    2014-12-24

    A one-step soft-templating method for synthesizing shape-tunable hollow silica nanomaterials was developed in a reliable and highly reproducible way. For the first time, both nonspherical and spherical shapes with hollow interiors, including nanowire, nanospheres, and nanotadpole, were successfully obtained by simply changing the solvent. Poly(vinylpyrrolidone) (PVP)-water droplets were used as soft templates for the formation of hollow structures, while three different solvents, including 1-propanol, 1-pentanol, and ethanol, led to the designed shapes. It was found that the solvent, the formation of PVP-water droplets, the amount of ammonia, and the reaction time had great effects on the morphology of synthesized hollow nanomaterials. The effect of various factors on the morphology was systematically studied to propose a growth mechanism. The obtained hollow silica nanomaterials showed excellent reproducibility and great potential for a large-scale synthesis. Finally, the application of the developed hollow silica nanomaterials was demonstrated using the hollow spherical silica nanoparticles. Its drug-carrying ability was studied. The results could be extended for doping various target molecules into the hollow structures for a broad range of applications.

  18. Hollow sphere ceramic particles for abradable coatings

    SciTech Connect

    Longo, F.N.; Bader, N.F. III; Dorfman, M.R.

    1984-05-22

    A hollow sphere ceramic flame spray powder is disclosed. The desired constituents are first formed into agglomerated particles in a spray drier. Then the agglomerated particles are introduced into a plasma flame which is adjusted so that the particles collected are substantially hollow. The hollow sphere ceramic particles are suitable for flame spraying a porous and abradable coating. The hollow particles may be selected from the group consisting of zirconium oxide and magnesium zirconate.

  19. Physical Processes in Hollow Cathode Discharge

    DTIC Science & Technology

    1989-12-01

    BUIT FiLE COPY NAVAL POSTGRADUATE SCHOOL Monterey, California 0DTIC x ,, , ’ AELECTEi<AU 17U THESIS L . PHYSICAL PROCESSES IN HOLLOW CATHODE...IPROJECT ITASK IWORK UNIT ELEMENT NO. NO. NO ACCESSION NO 11. TITLE (Include Security Classification) Physical Processes in Hollow Cathode Discharge 12...number) The hollow cathode is an effective source of dense, low energy plasma. Hollow cathodes find use in ion beam sources for laboratory and space

  20. Efficient Photocatalytic Activities of TiO2 Hollow Fibers with Mixed Phases and Mesoporous Walls

    PubMed Central

    Hou, Huilin; Shang, Minghui; Wang, Lin; Li, Wenge; Tang, Bin; Yang, Weiyou

    2015-01-01

    Currently, Degussa P25, with the typical mixed phases of anatase and rutile TiO2, is widely applied as the commercial photocatalysts. However, there are still some of obstacles for the P25 nanoparticles with totally high photocatalytic activities, especially for the catalytic stability due to their inevitable aggregation of the nanoparticles when used as the photocatalysts. In the present work, we reported the exploration of a novel TiO2 photocatalyst, which could offer an ideal platform for synergetic combination of the mixed-phase composition, hollow architecture and mesoporous walls for the desired excellent photocatalytic efficiency and robust stability. The mesoporous TiO2 hollow nanofibers were fabricated via a facile single capillary electrospinning technique, in which the foaming agents were used for creating mesopores throughout the walls of the hollow fibers. The obtained hollow fibers exhibit a high purity and possess the mixed phases of 94.6% anatase and 5.4% rutile TiO2. As compared to P25, the as-fabricated mesoporous TiO2 hollow fibers exhibited much higher efficient photocatalytic activities and stabilities toward the hydrogen evolution with a rate of ~499.1 μmol g−1·h−1 and ~99.5% degradation Rhodamine B (RhB) in 60 min, suggesting their promising application in efficient photocatalysts. PMID:26470013

  1. Effective pair potentials for spherical nanoparticles

    NASA Astrophysics Data System (ADS)

    van Zon, Ramses

    2009-02-01

    An effective description for rigid spherical nanoparticles in a fluid of point particles is presented. The points inside the nanoparticles and the point particles are assumed to interact via spherically symmetric additive pair potentials, while the distribution of points inside the nanoparticles is taken to be spherically symmetric and smooth. The resulting effective pair interactions between a nanoparticle and a point particle, as well as between two nanoparticles, are then given by spherically symmetric potentials. If overlap between particles is allowed, as can occur for some forms of the pair potentials, the effective potential generally has non-analytic points. It is shown that for each effective potential the expressions for different overlapping cases can be written in terms of one analytic auxiliary potential. Even when only non-overlapping situations are possible, the auxiliary potentials facilitate the formulation of the effective potentials. Effective potentials for hollow nanoparticles (appropriate e.g. for buckyballs) are also considered and shown to be related to those for solid nanoparticles. For hollow nanoparticles overlap is more physical, since this covers the case of a smaller particle embedded in a larger, hollow nanoparticle. Finally, explicit expressions are given for the effective potentials derived from basic pair potentials of power law and exponential form, as well as from the commonly used London-van der Waals, Morse, Buckingham, and Lennard-Jones potentials. The applicability of the latter is demonstrated by comparison with an atomic description of nanoparticles with an internal face centered cubic structure.

  2. New route for hollow materials

    NASA Astrophysics Data System (ADS)

    Rivaldo-Gómez, C. M.; Ferreira, F. F.; Landi, G. T.; Souza, J. A.

    2016-08-01

    Hollow micro/nano structures form an important family of functional materials. We have used the thermal oxidation process combined with the passage of electric current during a structural phase transition to disclose a colossal mass diffusion transfer of Ti ions. This combination points to a new route for fabrication of hollow materials. A structural phase transition at high temperature prepares the stage by giving mobility to Ti ions and releasing vacancies to the system. The electric current then drives an inward delocalization of vacancies, condensing into voids, and finally turning into a big hollow. This strong physical phenomenon leading to a colossal mass transfer through ionic diffusion is suggested to be driven by a combination of phase transition and electrical current followed by chemical reaction. We show this phenomenon for Ti leading to TiO2 microtube formation, but we believe that it can be used to other metals undergoing structural phase transition at high temperatures.

  3. New route for hollow materials

    PubMed Central

    Rivaldo-Gómez, C. M.; Ferreira, F. F.; Landi, G. T.; Souza, J. A.

    2016-01-01

    Hollow micro/nano structures form an important family of functional materials. We have used the thermal oxidation process combined with the passage of electric current during a structural phase transition to disclose a colossal mass diffusion transfer of Ti ions. This combination points to a new route for fabrication of hollow materials. A structural phase transition at high temperature prepares the stage by giving mobility to Ti ions and releasing vacancies to the system. The electric current then drives an inward delocalization of vacancies, condensing into voids, and finally turning into a big hollow. This strong physical phenomenon leading to a colossal mass transfer through ionic diffusion is suggested to be driven by a combination of phase transition and electrical current followed by chemical reaction. We show this phenomenon for Ti leading to TiO2 microtube formation, but we believe that it can be used to other metals undergoing structural phase transition at high temperatures. PMID:27554448

  4. Synthesis of MnFe2O4 hollow microspheres via a sacrificial templates approach

    NASA Astrophysics Data System (ADS)

    Li, Yang; Ni, Jun; Zhang, Canying; Meng, Zhaoguo

    2017-06-01

    Manganese ferrite (MnFe2O4) hollow microspheres were synthesized through a sacrificial template approach using manganese carbonate (MnCO3) microspheres as sacrificial templates. Different from the literatures, the synthesis of MnFe2O4 hollow spheres was achieved through a one-pot hydrothermal process without subsequent calcination process. The temperature and reaction time of the hydrothermal process were set to be 180 °C and 8 h. The formation mechanism of the MnFe2O4 hollow microspheres was also investigated. Results indicate that the average diameter of the as-synthesized MnFe2O4 hollow microspheres is 1.2 μm. The shells of the hollow microspheres are composed of nanoparticles. During hydrothermal process, Mn2+ ions diffused outward and resulted in shell materials of MnFe2O4, thus MnCO3 templates were consumed and MnFe2O4 hollow microspheres were obtained.

  5. Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy.

    PubMed

    Chen, Yu; Chen, Hangrong; Guo, Limin; He, Qianjun; Chen, Feng; Zhou, Jian; Feng, Jingwei; Shi, Jianlin

    2010-01-26

    A novel "structural difference-based selective etching" strategy has been developed to fabricate hollow/rattle-type mesoporous nanostructures, which was achieved by making use of the structural differences, rather than traditional compositional differences, between the core and the shell of a silica core/mesoporous silica shell structure to create hollow interiors. Highly dispersed hollow mesoporous silica spheres with controllable particle/pore sizes could be synthesized by this method, which show high loading capacity (1222 mg/g) for anticancer drug (doxorubicin). Hemolyticity and cytotoxicity assays of hollow mesoporous silica spheres were conducted, and the synthesized hollow mesoporous silica spheres with large pores show ultrafast immobilization of protein-based biomolecules (hemoglobin). On the basis of this strategy, different kinds of heterogeneous rattle-type nanostructures with inorganic nanocrystals, such as Au, Fe(2)O(3), and Fe(3)O(4) nanoparticles, as the core and mesoporous silica as the shell were also prepared. This strategy could be extended as a general approach to synthesize various hollow/rattle-type nanostructures by creating adequate structural differences between cores and shells in core/shell structures in nanoscale.

  6. Template-free polyoxometalate-assisted synthesis for ZnO hollow spheres

    SciTech Connect

    Li Qiuyu; Wang Enbo; Li Siheng; Wang Chunlei; Tian Chungui; Sun Guoying; Gu Jianmin; Xu Rui

    2009-05-15

    ZnO hollow spheres with diameters ranging from 400 to 600 nm and the thickness of shell approximate 80 nm were synthesized by a simple polyoxometalate-assisted solvothermal route without using any templates. The effect of polyoxometalate concentration, reaction time and temperature on the formation of the hollow spheres was investigated. The results indicated that the hollow spheres were composed of porous shells with nanoparticles and polyoxometalate play a key role in controlling morphology of ZnO. A possible growth mechanism based on polyoxometalate-assisted assembly and slow Ostwald ripening dissolution in ethanol solution is tentatively proposed. In addition, the room temperature photoluminescence spectrum showed that the ZnO hollow spheres exhibit exciting emission features with wide band covering nearly all the visible region. - Graphical abstract: ZnO hollow spheres with porous shell were synthesized by a one-step polyoxometalate-assisted solvothermal route at low temperature. Room temperature photoluminescence spectrum of the ZnO hollow spheres exhibits exciting emission features with a broad band covering nearly all the visible region.

  7. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1977-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  8. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Yen, S. P. S.; Klein, E. (Inventor)

    1976-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, crosslinked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  9. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1980-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  10. Quartz antenna with hollow conductor

    DOEpatents

    Leung, Ka-Ngo; Benabou, Elie

    2002-01-01

    A radio frequency (RF) antenna for plasma ion sources is formed of a hollow metal conductor tube disposed within a glass tube. The hollow metal tubular conductor has an internal flow channel so that there will be no coolant leakage if the outer glass tube of the antenna breaks. A portion of the RF antenna is formed into a coil; the antenna is used for inductively coupling RF power to a plasma in an ion source chamber. The antenna is made by first inserting the metal tube inside the glass tube, and then forming the glass/metal composite tube into the desired coil shape.

  11. Synthesis and catalytic performance of SiO2@Ni and hollow Ni microspheres

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Liu, Yanhua; Shi, Xueting; Yu, Zhengyang; Feng, Libang

    2016-11-01

    Nickel (Ni) catalyst has been widely used in catalytic reducing reactions such as catalytic hydrogenation of organic compounds and catalytic reduction of organic dyes. However, the catalytic efficiency of pure Ni is low. In order to improve the catalytic performance, Ni nanoparticle-loaded microspheres can be developed. In this study, we have prepared Ni nanoparticle-loaded microspheres (SiO2@Ni) and hollow Ni microspheres using two-step method. SiO2@Ni microspheres with raspberry-like morphology and core-shell structure are synthesized successfully using SiO2 microsphere as a template and Ni2+ ions are adsorbed onto SiO2 surfaces via electrostatic interaction and then reduced and deposited on surfaces of SiO2 microspheres. Next, the SiO2 cores are removed by NaOH etching and the hollow Ni microspheres are prepared. The NaOH etching time does no have much influence on the crystal structure, shape, and surface morphology of SiO2@Ni; however, it can change the phase composition evidently. The hollow Ni microspheres are obtained when the NaOH etching time reaches 10 h and above. The as-synthesized SiO2@Ni microspheres exhibit much higher catalytic performance than the hollow Ni microspheres and pure Ni nanoparticles in the catalytic reduction of methylene blue. Meanwhile, the SiO2@Ni catalyst has high stability and hence it can be recycled for reuse.

  12. Growth of solid and hollow gold particles through the thermal annealing of nanoscale patterned thin films

    SciTech Connect

    Lin, Junhao; He, Weidong; Vilayur Ganapathy, Subramanian; Peppernick, Samuel J.; Wang, Bin; Palepu, Sandeep; Remec, Miroslav; Hess, Wayne P.; Hmelo, Anthony B.; Pantelides, Sokrates T.; Dickerson, James

    2013-11-27

    Through thermally annealing well-arrayed, circular, nanoscale thin films of gold, deposited onto [111] silicon/silicon dioxide substrates, both solid and hollow gold particles of different morphologies with controllable sizes were obtained. The thin film could form individual particle or clusters of particles by tuning the diameter of it. Hollow gold particles were featured by their large size whose diameter was larger than 500 nm and confirmed by a cross-section view. Hollow gold particles show greater plasmonic field enhancement under photoemission electron microscopy. Potential growth mechanisms for these structures are explored

  13. Facile preparation of well-dispersed CeO2-ZnO composite hollow microspheres with enhanced catalytic activity for CO oxidation.

    PubMed

    Xie, Qingshui; Zhao, Yue; Guo, Huizhang; Lu, Aolin; Zhang, Xiangxin; Wang, Laisen; Chen, Ming-Shu; Peng, Dong-Liang

    2014-01-08

    In this article, well-dispersed CeO2-ZnO composite hollow microspheres have been fabricated through a simple chemical reaction followed by annealing treatment. Amorphous zinc-cerium citrate hollow microspheres were first synthesized by dispersing zinc citrate hollow microspheres into cerium nitrate solution and then aging at room temperature for 1 h. By calcining the as-produced zinc-cerium citrate hollow microspheres at 500 °C for 2 h, CeO2-ZnO composite hollow microspheres with homogeneous composition distribution could be harvested for the first time. The resulting CeO2-ZnO composite hollow microspheres exhibit enhanced activity for CO oxidation compared with CeO2 and ZnO, which is due to well-dispersed small CeO2 particles on the surface of ZnO hollow microspheres and strong interaction between CeO2 and ZnO. Moreover, when Au nanoparticles are deposited on the surface of the CeO2-ZnO composite hollow microspheres, the full CO conversion temperature of the as-produced 1.0 wt % Au-CeO2-ZnO composites reduces from 300 to 60 °C in comparison with CeO2-ZnO composites. The significantly improved catalytic activity may be ascribed to the strong synergistic interplay between Au nanoparticles and CeO2-ZnO composites.

  14. Metal hybrid nanoparticles for catalytic organic and photochemical transformations.

    PubMed

    Song, Hyunjoon

    2015-03-17

    functions, such as magnetism and light absorption, to the catalytic properties. In particular, metal-semiconductor hybrid nanostructures could behave as effective visible photocatalysts for hydrogen evolution and CO oxidation reactions. Resulting from the large surface area and high local concentration of the reactants, a double-shell hollow structure showed reaction activities higher than those of filled nanoparticles. The introduction of plasmonic Au probes into the Pt-CdS double-shell hollow particles facilitated the monitoring of photocatalytic hydrogen generation that occurred on an individual particle surface by single particle measurements. Further development of catalysis research using well-defined metal hybrid nanocatalysts with various in situ spectroscopic tools provides a means of maximizing catalytic performances until they are comparable to or better than those of homogeneous catalysts, and this would have possibly useful implications for industrial applications.

  15. Optical response in subnanometer hollow sodium nanowires

    NASA Astrophysics Data System (ADS)

    Sun, Bin; Yang, You-chang; Wu, Bo; Ren, Chongdan; Kang, Shuai; Li, Yangjun; Liu, Jian-Qiang

    2017-07-01

    We simulate and analyze the influence of nonlocal effects on the optical properties of thin metal hollow nanowires by finite element method. Nonlocal effects in hollow nanowires with both nm-sized overall volume and a tiny metal shell are considerable for extinction cross section but more for field enhancement, resulting in nonlocal plasmonic modes excited. Then, we show the dependence of extinction effects of a hollow super-nanowire on its parameters, including the metal shell thickness, the average radius and the optical constant of the hollow core. We find that nonlocal quadrupolar mode is very sensitive to the thickness of metal layer but with great stability as increasing the hollow nanowire dimension or changing the hollow core. Furthermore, the eccentricity of the hollow nanowire brings out new physical phenomena, such as nanofocusing and multimodes. The proposed structure promises a great of applications in nanoscale, such as designing nanoplasmonic antenna, sensing and nonlinear optics, etc.

  16. Hollow waveguide cavity ringdown spectroscopy

    NASA Technical Reports Server (NTRS)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  17. Hollow Plasma in a Solenoid

    SciTech Connect

    Anders, Andre; Kauffeldt, Marina; Oks, Efim M.; Roy, Prabir K.

    2010-11-30

    A ring cathode for a pulsed, high-current, multi-spot cathodic arc discharge was placed inside a pulsed magnetic solenoid. Photography is used to evaluate the plasma distribution. The plasma appears hollow for cathode positions close the center of the solenoid, and it is guided closer to the axis when the cathode is away from the center.

  18. Hollow electrode plasma excitation source

    DOEpatents

    Ballou, Nathan E.

    1992-01-01

    A plasma source incorporates a furnace as a hollow anode, while a coaxial cathode is disposed therewithin. The source is located in a housing provided with an ionizable gas such that a glow discharge is produced between anode and cathode. Radiation or ionic emission from the glow discharge characterizes a sample placed within the furnace and heated to elevated temperatures.

  19. Hollow cathodes for arcjet thrusters

    NASA Technical Reports Server (NTRS)

    Luebben, Craig R.; Wilbur, Paul J.

    1987-01-01

    In an attempt to prevent exterior spot emission, hollow cathode bodies and orifice plates were constructed from boron nitride which is an electrical insulator, but the orifice plates melted and/or eroded at high interelectrode pressures. The most suitable hollow cathodes tested included a refractory metal orifice plate in a boron nitride body, with the insert insulated electrically from the orifice plate. In addition, the hollow cathode interior was evacuated to assure a low pressure at the insert surface, thus promoting diffuse electron emission. At high interelectrode pressures, the electrons tended to flow through the orifice plate rather than through the orifice, which could result in overheating of the orifice plate. Using a carefully aligned centerline anode, electron flow through the orifice could be sustained at interelectrode pressures up to 500 torr - but the current flow path still occasionally jumped from the orifice to the orifice plate. Based on these tests, it appears that a hollow cathode would operate most effectively at pressures in the arcjet regime with a refractory, chemically stable, and electrically insulating cathode body and orifice plate.

  20. Fabrication and upconversion luminescence properties of YF3:Er3+ hollow nanofibers via monoaxial electrospinning combined with fluorination method.

    PubMed

    Li, Dan; Dong, Xiangting; Yu, Wensheng; Wang, Jinxian; Liu, Guixia

    2014-06-01

    YF3:Er3+ hollow nanofibers were successfully fabricated via fluorination of the relevant Y2O3:Er3+ hollow nanofibers which were obtained by calcining the electrospun PVP/[Y(NO3)3 + Er(NO3)3] composite nanofibers. The morphology and properties of the products were investigated in detail by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and fluorescence spectrometer. YF3:Er3+ hollow nanofibers were pure orthorhombic phase with space group Pnma and were hollow-centered structure with the mean diameter of 172 +/- 23 nm, and YF3:Er3+ hollow nanofibers were composed of nanoparticles with the diameter ranging from 30 nm to 50 nm. Upconversion emission spectrum analysis manifested that YF3:Er3+ hollow nanofibers emitted strong green and weak red upconversion emission centering at 524 nm, 543 nm and 653 nm, respectively. The green emissions and the red emission were respectively originated from 2H11/2/4S3/2 --> 4I15/2 and 4F9/2 --> 4I15/2 energy levels transitions of the Er3+ ions. Moreover, the emitting colors of YF3:Er3+ hollow nanofibers were located in the green region in CIE chromaticity coordinates diagram. The luminescent intensity of YF3:Er3+ hollow nanofibers was increased remarkably with the increasing doping concentration of Er3+ ions. The possible formation mechanism of YF3:Er3+ upconversion luminescence hollow nanofibers was also discussed. This preparation technique could be applied to prepare other rare earth fluoride upconversion luminescence hollow nanofibers.

  1. Magnetically separable and recyclable Fe3O4-polydopamine hybrid hollow microsphere for highly efficient peroxidase mimetic catalysts.

    PubMed

    Liu, Shujun; Fu, Jianwei; Wang, Minghuan; Yan, Ya; Xin, Qianqian; Cai, Lu; Xu, Qun

    2016-05-01

    Magnetic Fe3O4-polydopamine (PDA) hybrid hollow microspheres, in which Fe3O4 nanoparticles were firmly incorporated in the cross-linked PDA shell, have been prepared through the formation of core/shell PS/Fe3O4-PDA composites based on template-induced covalent assembly method, followed by core removal in a tetrahydrofuran solution. The morphology, composition, thermal property and magnetic property of the magnetic hybrid hollow microspheres were characterized by SEM, TEM, FT-IR, XRD, TGA, and vibrating sample magnetometer, respectively. Results revealed that the magnetic hybrid hollow microspheres had about 380 nm of inner diameter and about 30 nm of shell thickness, and 13.6 emu g(-1) of magnetization saturation. More importantly, the Fe3O4-PDA hybrid hollow microspheres exhibited intrinsic peroxidase-like activity, as they could quickly catalyze the oxidation of typical substrates 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide. Compared with PDA/Fe3O4 composites where Fe3O4 nanoparticles were loaded on the surface of PDA microspheres, the stability of Fe3O4-PDA hybrid hollow microspheres was greatly improved. As-prepared magnetic hollow microspheres might open up a new application field in biodetection, biocatalysis, and environmental monitoring. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Emission current control system for multiple hollow cathode devices

    NASA Technical Reports Server (NTRS)

    Beattie, John R. (Inventor); Hancock, Donald J. (Inventor)

    1988-01-01

    An emission current control system for balancing the individual emission currents from an array of hollow cathodes has current sensors for determining the current drawn by each cathode from a power supply. Each current sensor has an output signal which has a magnitude proportional to the current. The current sensor output signals are averaged, the average value so obtained being applied to a respective controller for controlling the flow of an ion source material through each cathode. Also applied to each controller are the respective sensor output signals for each cathode and a common reference signal. The flow of source material through each hollow cathode is thereby made proportional to the current drawn by that cathode, the average current drawn by all of the cathodes, and the reference signal. Thus, the emission current of each cathode is controlled such that each is made substantially equal to the emission current of each of the other cathodes. When utilized as a component of a multiple hollow cathode ion propulsion motor, the emission current control system of the invention provides for balancing the thrust of the motor about the thrust axis and also for preventing premature failure of a hollow cathode source due to operation above a maximum rated emission current.

  3. Well-defined hollow nanochanneled-silica nanospheres prepared with the aid of sacrificial copolymer nanospheres and surfactant nanocylinders.

    PubMed

    Kim, Young Yong; Hwang, Bora; Song, Sungjin; Ree, Brian J; Kim, Yongjin; Cho, Seo Yeon; Heo, Kyuyoung; Kwon, Yong Ku; Ree, Moonhor

    2015-09-21

    A new approach for synthesizing well-defined hollow nanochanneled-silica nanosphere particles is demonstrated, and the structural details of these particles are described for the first time. Positively charged styrene copolymer nanospheres with a clean, smooth surface and a very narrow size distribution are synthesized by surfactant-free emulsion copolymerization and used as a thermal sacrificial core template for the production of core-shell nanoparticles. A surfactant/silica composite shell with a uniform thickness is successfully produced and deposited onto the polymeric core template by charge density matching between the polymer nanosphere template surface and the negatively charged silica precursors and then followed by selective thermal decomposition of the polymeric core and the surfactant cylinder domains in the shell, producing the hollow nanochanneled-silica nanospheres. Comprehensive, quantitative structural analyses collectively confirm that the obtained nanoparticles are structurally well defined with a hollow core and a shell composed of cylindrical nanochannels that provide facile accessibility to the hollow interior space. Overall, the hollow nanochanneled-silica nanoparticles have great potential for applications in various fields.

  4. Observation of Metal Nanoparticles for Acoustic Manipulation.

    PubMed

    Chen, Mian; Cai, Feiyan; Wang, Chen; Wang, Zhiyong; Meng, Long; Li, Fei; Zhang, Pengfei; Liu, Xin; Zheng, Hairong

    2017-05-01

    Use of acoustic trapping for the manipulation of objects is invaluable to many applications from cellular subdivision to biological assays. Despite remarkable progress in a wide size range, the precise acoustic manipulation of 0D nanoparticles where all the structural dimensions are much smaller than the acoustic wavelength is still present challenges. This study reports on the observation of metal nanoparticles with different nanostructures for acoustic manipulation. Results for the first time exhibit that the hollow nanostructures play more important factor than size in the nanoscale acoustic manipulation. The acoustic levitation and swarm aggregations of the metal nanoparticles can be easily realized at low energy and clinically acceptable acoustic frequency by hollowing their nanostructures. In addition, the behaviors of swarm aggregations can be flexibly regulated by the applied voltage and frequency. This study anticipates that the strategy based on the unique properties of the metal hollow nanostructures and the manipulation method will be highly desirable for many applications.

  5. Observation of Metal Nanoparticles for Acoustic Manipulation

    PubMed Central

    Chen, Mian; Cai, Feiyan; Wang, Chen; Wang, Zhiyong; Meng, Long; Li, Fei; Zhang, Pengfei; Liu, Xin

    2017-01-01

    Use of acoustic trapping for the manipulation of objects is invaluable to many applications from cellular subdivision to biological assays. Despite remarkable progress in a wide size range, the precise acoustic manipulation of 0D nanoparticles where all the structural dimensions are much smaller than the acoustic wavelength is still present challenges. This study reports on the observation of metal nanoparticles with different nanostructures for acoustic manipulation. Results for the first time exhibit that the hollow nanostructures play more important factor than size in the nanoscale acoustic manipulation. The acoustic levitation and swarm aggregations of the metal nanoparticles can be easily realized at low energy and clinically acceptable acoustic frequency by hollowing their nanostructures. In addition, the behaviors of swarm aggregations can be flexibly regulated by the applied voltage and frequency. This study anticipates that the strategy based on the unique properties of the metal hollow nanostructures and the manipulation method will be highly desirable for many applications. PMID:28546912

  6. A Replacement Etching Route to CuSe with a Hierarchical Hollow Structure for Enhanced Performance in Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Zhou, Zaoyuan; Zhang, Weixin; Zhao, Wenran; Yang, Zeheng; Zeng, Chunyan

    2014-02-01

    CuSe with a hierarchical hollow structure formed from nanoplates has been successfully prepared by a replacement etching method with Cu(OH)2 nanowire bundles as precursors. The large difference between the solubility products of Cu(OH)2 and CuSe results in the formation of Cu(OH)2 CuSe core shell structures as intermediates. The CuSe with a hierarchical hollow structure is obtained when the Cu(OH)2 core is dissolved in ammonia solution. Use of the CuSe with a hierarchical hollow structure as electrode material for lithium ion batteries results in enhanced electrochemical properties, including initial coulombic efficiency and cycling performance, compared with use of CuSe nanoparticles. The relatively stable structure of CuSe with a hierarchical hollow structure is believed to be the main reason for the enhanced electrochemical performance.

  7. Spontaneous construction of photoactive hollow TiO2 microspheres and chains.

    PubMed

    Liu, Shengwei; Yu, Jiaguo; Mann, Stephen

    2009-08-12

    Discrete and chain-like aggregates of well-defined hollow TiO(2) microspheres are reproducibly synthesized in high yield by a modified fluoride-mediated self-transformation strategy using urea as a base catalyst. The shell walls are composed of agglomerated polyhedral anatase nanocrystals, and exhibit hierarchical porosity. The addition of urea tunes the nucleation dynamics and surface states of the elementary TiO(2) building blocks, which together promote the formation of metastable solid microparticles of uniform size that subsequently transform into morphologically invariant hollow microspheres and chain-like aggregates. The high surface area, bimodal mesoporosity of the shell walls, and increased band gap of the hollow TiO(2) microspheres give rise to increases in photocatalytic activity when compared with anatase nanoparticles and aggregates prepared in the absence of urea.

  8. Block copolymer hollow fiber membranes with catalytic activity and pH-response.

    PubMed

    Hilke, Roland; Pradeep, Neelakanda; Madhavan, Poornima; Vainio, Ulla; Behzad, Ali Reza; Sougrat, Rachid; Nunes, Suzana P; Peinemann, Klaus-Viktor

    2013-08-14

    We fabricated block copolymer hollow fiber membranes with self-assembled, shell-side, uniform pore structures. The fibers in these membranes combined pores able to respond to pH and acting as chemical gates that opened above pH 4, and catalytic activity, achieved by the incorporation of gold nanoparticles. We used a dry/wet spinning process to produce the asymmetric hollow fibers and determined the conditions under which the hollow fibers were optimized to create the desired pore morphology and the necessary mechanical stability. To induce ordered micelle assembly in the doped solution, we identified an ideal solvent mixture as confirmed by small-angle X-ray scattering. We then reduced p-nitrophenol with a gold-loaded fiber to confirm the catalytic performance of the membranes.

  9. Controllable synthesis of helical, straight, hollow and nitrogen-doped carbon nanofibers and their magnetic properties

    SciTech Connect

    Li, Xun; Xu, Zheng

    2012-12-15

    Graphical abstract: The helical, straight and hollow carbon nanofibers can be selectively synthesized by adjusting either the reaction temperature or feed gas composition. Display Omitted Highlights: ► CNFs were synthesized via pyrolysis of acetylene on copper NPs. ► The helical, straight, hollow and N-doped CNFs can be selectively synthesized. ► The growth mechanism of different types of CNFs was proposed. -- Abstract: Carbon nanofibers (CNFs) with various morphologies were synthesized by catalytic pyrolysis of acetylene on copper nanoparticles which were generated from the in situ decomposition of copper acetylacetonate. The morphology of the pristine and acid-washed CNFs was investigated by field emission scanning electron microscope and high-resolution transmission electron microscope. Helical, straight and hollow CNFs can be selectively synthesized by adjusting either the reaction temperature or feed gas composition. The growth mechanism for these three types of CNFs was proposed.

  10. A spontaneous combustion reaction for synthesizing Pt hollow capsules using colloidal carbon spheres as templates.

    PubMed

    Yang, Ruizhi; Li, Hong; Qiu, Xinping; Chen, Liquan

    2006-05-15

    Here we report a spontaneous combustion reaction in synthesizing Pt hollow capsules. In brief, Pt nanoparticles were loaded on the surface of colloidal carbon spheres by wet-chemical impregnation. When Pt-loaded carbon spheres were taken out of an argon-filled tube furnace at room temperature and exposed to air, they underwent spontaneous combustion. The internal carbon spheres templates were removed to leave nanostructured Pt hollow capsules. There are at least two critical conditions for the occurrence of the spontaneous combustion: the Pt particle size is below 5.8 nm, and the hydrogen content in the carbon spheres is above 2.570 wt %. Such a reaction is interesting for the preparation of metal hollow spheres and is also relevant with respect to removal of accumulated carbon on catalysts and for soot oxidation at room temperature.

  11. Designing hierarchical hollow nanostructures of Cu2MoS4 for improved hydrogen evolution reaction.

    PubMed

    Zhang, Ke; Zheng, Yongli; Lin, Yunxiang; Wang, Changda; Liu, Hengjie; Liu, Daobin; Wu, Chuanqiang; Chen, Shuangming; Chen, Yanxia; Song, Li

    2016-12-21

    Layered Cu2MoS4, consisting of earth-abundant elements, is regarded as a potential catalyst for the hydrogen evolution reaction (HER). Herein, we demonstrate a Cu2O-based template strategy to synthesise hierarchical hollow nanostructures of Cu2MoS4. The characterizations reveal that the electrochemically active surface of the hollow Cu2MoS4 is largely enhanced, in contrast to the nanosheet or nanoparticle structures. As the direct outcome, the designed hierarchical hollow structures display excellent HER activities with a low overvoltage and small Tafel slope. This study may provide new inspiration for the research of other ternary sulphide materials as well as subsequently accelerating their applications in the field of catalysis.

  12. Formation of hollow silica nanospheres by reverse microemulsion.

    PubMed

    Lin, Cheng-Han; Chang, Jen-Hsuan; Yeh, Yi-Qi; Wu, Si-Han; Liu, Yi-Hsin; Mou, Chung-Yuan

    2015-06-07

    Uniform hollow silica nanospheres (HSNs) synthesized with reverse microemulsion have great application potential as nanoreactors because enzymes or nanocatalysts can be easily encapsulated de novo in synthesis. Water-in-oil (w/o) reverse microemulsions comprising the polymeric surfactant polyoxyethylene (5) isooctylphenyl ether (Igepal CA-520), ammonia and water in a continuous oil phase (alkanes) coalesce into size-tunable silica nanoparticles via diffusion aggregation after the introduction of silica precursors. Here, we elucidate in detail the growth mechanism for silica nanoparticles via nucleation of ammonium-catalyzed silica oligomers from tetraethylorthosilicate (TEOS) and nanoporous aminopropyltrimethoxy silane (APTS) in the reverse microemulsion system. The formation pathway was studied in situ with small-angle X-ray scattering (SAXS). We find a four-stage process showing a sigmoidal growth behavior in time with a crossover from the induction period, early nucleation stage, coalescence growth and a final slowing down of growth. Various characterizations (TEM, N2 isotherm, dynamic light scattering, zeta potential, NMR, elemental analysis) reveal the diameters, scattering length density (SLD), mesoporosity, surface potentials and chemical compositions of the HSNs. Oil phases of alkanes with different alkyl chains are systematically employed to tune the sizes of HSNs by varying oil molar volumes, co-solvent amounts or surfactant mixture ratios. Silica condensation is incomplete in the core region, with the silica source of TEOS and APTS leading to the hollow silica nanosphere after etching with warm water.

  13. Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications.

    PubMed

    Li, Yongsheng; Shi, Jianlin

    2014-05-28

    Hollow-structured mesoporous materials (HMMs), as a kind of mesoporous material with unique morphology, have been of great interest in the past decade because of the subtle combination of the hollow architecture with the mesoporous nanostructure. Benefitting from the merits of low density, large void space, large specific surface area, and, especially, the good biocompatibility, HMMs present promising application prospects in various fields, such as adsorption and storage, confined catalysis when catalytically active species are incorporated in the core and/or shell, controlled drug release, targeted drug delivery, and simultaneous diagnosis and therapy of cancers when the surface and/or core of the HMMs are functionalized with functional ligands and/or nanoparticles, and so on. In this review, recent progress in the design, synthesis, functionalization, and applications of hollow mesoporous materials are discussed. Two main synthetic strategies, soft-templating and hard-templating routes, are broadly sorted and described in detail. Progress in the main application aspects of HMMs, such as adsorption and storage, catalysis, and biomedicine, are also discussed in detail in this article, in terms of the unique features of the combined large void space in the core and the mesoporous network in the shell. Functionalization of the core and pore/outer surfaces with functional organic groups and/or nanoparticles, and their performance, are summarized in this article. Finally, an outlook of their prospects and challenges in terms of their controlled synthesis and scaled application is presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Multiple Hollow Cathode Wear Testing

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1994-01-01

    A hollow cathode-based plasma contactor has been baselined for use on the Space Station to reduce station charging. The plasma contactor provides a low impedance connection to space plasma via a plasma produced by an arc discharge. The hollow cathode of the plasma contactor is a refractory metal tube, through which xenon gas flows, which has a disk-shaped plate with a centered orifice at the downstream end of the tube. Within the cathode, arc attachment occurs primarily on a Type S low work function insert that is next to the orifice plate. This low work function insert is used to reduce cathode operating temperatures and energy requirements and, therefore, achieve increased efficiency and longevity. The operating characteristics and lifetime capabilities of this hollow cathode, however, are greatly reduced by oxygen bearing contaminants in the xenon gas. Furthermore, an optimized activation process, where the cathode is heated prior to ignition by an external heater to drive contaminants such as oxygen and moisture from the insert absorbed during exposure to ambient air, is necessary both for cathode longevity and a simplified power processor. In order to achieve the two year (approximately 17,500 hours) continuous operating lifetime requirement for the plasma contactor, a test program was initiated at NASA Lewis Research Center to demonstrate the extended lifetime capabilities of the hollow cathode. To date, xenon hollow cathodes have demonstrated extended lifetimes with one test having operated in excess of 8000 hours in an ongoing test utilizing contamination control protocols developed by Sarver-Verhey. The objectives of this study were to verify the transportability of the contamination control protocols developed by Sarver-Verhey and to evaluate cathode contamination control procedures, activation processes, and cathode-to-cathode dispersions in operating characteristics with time. These were accomplished by conducting a 2000 hour wear test of four hollow

  15. Photochemical preparation of CdS hollow microspheres at room temperature and their use in visible-light photocatalysis

    SciTech Connect

    Huang Yuying; Sun Fengqiang; Wu Tianxing; Wu Qingsong; Huang Zhong; Su Heng; Zhang Zihe

    2011-03-15

    CdS hollow microspheres have been successfully prepared by a photochemical preparation technology at room temperature, using polystyrene latex particles as templates, CdSO{sub 4} as cadmium source and Na{sub 2}S{sub 2}O{sub 3} as both sulphur source and photo-initiator. The process involved the deposition of CdS nanoparticles on the surface of polystyrene latex particles under the irradiation of an 8 W UV lamp and the subsequent removal of the latex particles by dispersing in dichloromethane. Photochemical reactions at the sphere/solution interface should be responsible for the formation of hollow spheres. The as-prepared products were characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. Such hollow spheres could be used in photocatalysis and showed high photocatalytic activities in photodegradation of methyl blue (MB) in the presence of H{sub 2}O{sub 2}. The method is green, simple, universal and can be extended to prepare other sulphide and oxide hollow spheres. -- Graphical abstract: Taking polystyrene spheres dispersed in a precursor solution as templates, CdS hollow microspheres composed of nanoparticles were successfully prepared via a new photochemical route at room temperature. Display Omitted Research highlights: {yields} Photochemical method was first employed to prepare hollow microspheres. {yields} CdS hollow spheres were first prepared at room temperature using latex spheres. {yields} The polystyrene spheres used as templates were not modified with special groups. {yields}The CdS hollow microspheres showed high visible-light photocatalytic activities.

  16. Hollow core-shell structured Si/C nanocomposites as high-performance anode materials for lithium-ion batteries.

    PubMed

    Tao, Huachao; Fan, Li-Zhen; Song, Wei-Li; Wu, Mao; He, Xinbo; Qu, Xuanhui

    2014-03-21

    Hollow core-shell structured Si/C nanocomposites were prepared to adapt for the large volume change during a charge-discharge process. The Si nanoparticles were coated with a SiO2 layer and then a carbon layer, followed by etching the interface SiO2 layer with HF to obtain hollow core-shell structured Si/C nanocomposites. The Si nanoparticles are well encapsulated in a carbon matrix with an internal void space between the Si core and the carbon shell. The hollow core-shell structured Si/C nanocomposites demonstrate a high specific capacity and excellent cycling stability, with capacity decay as small as 0.02% per cycle. The enhanced electrochemical performance can be attributed to the fact that the internal void space can accommodate the volume expansion of Si during lithiation, thus preserving the structural integrity of electrode materials, and the carbon shell can increase the electronic conductivity of the electrode.

  17. Compact lanthanum hexaboride hollow cathode.

    PubMed

    Goebel, Dan M; Watkins, Ronald M

    2010-08-01

    A compact lanthanum hexaboride hollow cathode has been developed for space applications where size and mass are important and research and industrial applications where access for implementation might be limited. The cathode design features a refractory metal cathode tube that is easily manufactured, mechanically captured orifice and end plates to eliminate expensive e-beam welding, graphite sleeves to provide a diffusion boundary to protect the LaB6 insert from chemical reactions with the refractory metal tube, and several heater designs to provide long life. The compact LaB(6) hollow cathode assembly including emitter, support tube, heater, and keeper electrode is less than 2 cm in diameter and has been fabricated in lengths of 6-15 cm for different applications. The cathode has been operated continuously at discharge currents of 5-60 A in xenon. Slightly larger diameter versions of this design have operated at up to 100 A of discharge current.