Effects of control inputs on the estimation of stability and control parameters of a light airplane
NASA Technical Reports Server (NTRS)
Cannaday, R. L.; Suit, W. T.
1977-01-01
The maximum likelihood parameter estimation technique was used to determine the values of stability and control derivatives from flight test data for a low-wing, single-engine, light airplane. Several input forms were used during the tests to investigate the consistency of parameter estimates as it relates to inputs. These consistencies were compared by using the ensemble variance and estimated Cramer-Rao lower bound. In addition, the relationship between inputs and parameter correlations was investigated. Results from the stabilator inputs are inconclusive but the sequence of rudder input followed by aileron input or aileron followed by rudder gave more consistent estimates than did rudder or ailerons individually. Also, square-wave inputs appeared to provide slightly improved consistency in the parameter estimates when compared to sine-wave inputs.
Generative Representations for Evolving Families of Designs
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.
2003-01-01
Since typical evolutionary design systems encode only a single artifact with each individual, each time the objective changes a new set of individuals must be evolved. When this objective varies in a way that can be parameterized, a more general method is to use a representation in which a single individual encodes an entire class of artifacts. In addition to saving time by preventing the need for multiple evolutionary runs, the evolution of parameter-controlled designs can create families of artifacts with the same style and a reuse of parts between members of the family. In this paper an evolutionary design system is described which uses a generative representation to encode families of designs. Because a generative representation is an algorithmic encoding of a design, its input parameters are a way to control aspects of the design it generates. By evaluating individuals multiple times with different input parameters the evolutionary design system creates individuals in which the input parameter controls specific aspects of a design. This system is demonstrated on two design substrates: neural-networks which solve the 3/5/7-parity problem and three-dimensional tables of varying heights.
Fallon, Nevada FORGE Thermal-Hydrological-Mechanical Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blankenship, Doug; Sonnenthal, Eric
Archive contains thermal-mechanical simulation input/output files. Included are files which fall into the following categories: ( 1 ) Spreadsheets with various input parameter calculations ( 2 ) Final Simulation Inputs ( 3 ) Native-State Thermal-Hydrological Model Input File Folders ( 4 ) Native-State Thermal-Hydrological-Mechanical Model Input Files ( 5 ) THM Model Stimulation Cases See 'File Descriptions.xlsx' resource below for additional information on individual files.
Parametric analysis of parameters for electrical-load forecasting using artificial neural networks
NASA Astrophysics Data System (ADS)
Gerber, William J.; Gonzalez, Avelino J.; Georgiopoulos, Michael
1997-04-01
Accurate total system electrical load forecasting is a necessary part of resource management for power generation companies. The better the hourly load forecast, the more closely the power generation assets of the company can be configured to minimize the cost. Automating this process is a profitable goal and neural networks should provide an excellent means of doing the automation. However, prior to developing such a system, the optimal set of input parameters must be determined. The approach of this research was to determine what those inputs should be through a parametric study of potentially good inputs. Input parameters tested were ambient temperature, total electrical load, the day of the week, humidity, dew point temperature, daylight savings time, length of daylight, season, forecast light index and forecast wind velocity. For testing, a limited number of temperatures and total electrical loads were used as a basic reference input parameter set. Most parameters showed some forecasting improvement when added individually to the basic parameter set. Significantly, major improvements were exhibited with the day of the week, dew point temperatures, additional temperatures and loads, forecast light index and forecast wind velocity.
Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.
1998-01-01
A method for generating a validated measurement of a process parameter at a point in time by using a plurality of individual sensor inputs from a scan of said sensors at said point in time. The sensor inputs from said scan are stored and a first validation pass is initiated by computing an initial average of all stored sensor inputs. Each sensor input is deviation checked by comparing each input including a preset tolerance against the initial average input. If the first deviation check is unsatisfactory, the sensor which produced the unsatisfactory input is flagged as suspect. It is then determined whether at least two of the inputs have not been flagged as suspect and are therefore considered good inputs. If two or more inputs are good, a second validation pass is initiated by computing a second average of all the good sensor inputs, and deviation checking the good inputs by comparing each good input including a present tolerance against the second average. If the second deviation check is satisfactory, the second average is displayed as the validated measurement and the suspect sensor as flagged as bad. A validation fault occurs if at least two inputs are not considered good, or if the second deviation check is not satisfactory. In the latter situation the inputs from each of all the sensors are compared against the last validated measurement and the value from the sensor input that deviates the least from the last valid measurement is displayed.
NASA Astrophysics Data System (ADS)
Vijaya Ramnath, B.; Sharavanan, S.; Jeykrishnan, J.
2017-03-01
Nowadays quality plays a vital role in all the products. Hence, the development in manufacturing process focuses on the fabrication of composite with high dimensional accuracy and also incurring low manufacturing cost. In this work, an investigation on machining parameters has been performed on jute-flax hybrid composite. Here, the two important responses characteristics like surface roughness and material removal rate are optimized by employing 3 machining input parameters. The input variables considered are drill bit diameter, spindle speed and feed rate. Machining is done on CNC vertical drilling machine at different levels of drilling parameters. Taguchi’s L16 orthogonal array is used for optimizing individual tool parameters. Analysis Of Variance is used to find the significance of individual parameters. The simultaneous optimization of the process parameters is done by grey relational analysis. The results of this investigation shows that, spindle speed and drill bit diameter have most effect on material removal rate and surface roughness followed by feed rate.
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
1995-01-01
Flight test maneuvers are specified for the F-18 High Alpha Research Vehicle (HARV). The maneuvers were designed for open loop parameter identification purposes, specifically for optimal input design validation at 5 degrees angle of attack, identification of individual strake effectiveness at 40 and 50 degrees angle of attack, and study of lateral dynamics and lateral control effectiveness at 40 and 50 degrees angle of attack. Each maneuver is to be realized by applying square wave inputs to specific control effectors using the On-Board Excitation System (OBES). Maneuver descriptions and complete specifications of the time/amplitude points define each input are included, along with plots of the input time histories.
Covey, Curt; Lucas, Donald D.; Tannahill, John; ...
2013-07-01
Modern climate models contain numerous input parameters, each with a range of possible values. Since the volume of parameter space increases exponentially with the number of parameters N, it is generally impossible to directly evaluate a model throughout this space even if just 2-3 values are chosen for each parameter. Sensitivity screening algorithms, however, can identify input parameters having relatively little effect on a variety of output fields, either individually or in nonlinear combination.This can aid both model development and the uncertainty quantification (UQ) process. Here we report results from a parameter sensitivity screening algorithm hitherto untested in climate modeling,more » the Morris one-at-a-time (MOAT) method. This algorithm drastically reduces the computational cost of estimating sensitivities in a high dimensional parameter space because the sample size grows linearly rather than exponentially with N. It nevertheless samples over much of the N-dimensional volume and allows assessment of parameter interactions, unlike traditional elementary one-at-a-time (EOAT) parameter variation. We applied both EOAT and MOAT to the Community Atmosphere Model (CAM), assessing CAM’s behavior as a function of 27 uncertain input parameters related to the boundary layer, clouds, and other subgrid scale processes. For radiation balance at the top of the atmosphere, EOAT and MOAT rank most input parameters similarly, but MOAT identifies a sensitivity that EOAT underplays for two convection parameters that operate nonlinearly in the model. MOAT’s ranking of input parameters is robust to modest algorithmic variations, and it is qualitatively consistent with model development experience. Supporting information is also provided at the end of the full text of the article.« less
Flight Test of Orthogonal Square Wave Inputs for Hybrid-Wing-Body Parameter Estimation
NASA Technical Reports Server (NTRS)
Taylor, Brian R.; Ratnayake, Nalin A.
2011-01-01
As part of an effort to improve emissions, noise, and performance of next generation aircraft, it is expected that future aircraft will use distributed, multi-objective control effectors in a closed-loop flight control system. Correlation challenges associated with parameter estimation will arise with this expected aircraft configuration. The research presented in this paper focuses on addressing the correlation problem with an appropriate input design technique in order to determine individual control surface effectiveness. This technique was validated through flight-testing an 8.5-percent-scale hybrid-wing-body aircraft demonstrator at the NASA Dryden Flight Research Center (Edwards, California). An input design technique that uses mutually orthogonal square wave inputs for de-correlation of control surfaces is proposed. Flight-test results are compared with prior flight-test results for a different maneuver style.
The iCARE R Package allows researchers to quickly build models for absolute risk, and apply them to estimate an individual's risk of developing disease during a specifed time interval, based on a set of user defined input parameters.
Uncertainty analyses of CO2 plume expansion subsequent to wellbore CO2 leakage into aquifers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Zhangshuan; Bacon, Diana H.; Engel, David W.
2014-08-01
In this study, we apply an uncertainty quantification (UQ) framework to CO2 sequestration problems. In one scenario, we look at the risk of wellbore leakage of CO2 into a shallow unconfined aquifer in an urban area; in another scenario, we study the effects of reservoir heterogeneity on CO2 migration. We combine various sampling approaches (quasi-Monte Carlo, probabilistic collocation, and adaptive sampling) in order to reduce the number of forward calculations while trying to fully explore the input parameter space and quantify the input uncertainty. The CO2 migration is simulated using the PNNL-developed simulator STOMP-CO2e (the water-salt-CO2 module). For computationally demandingmore » simulations with 3D heterogeneity fields, we combined the framework with a scalable version module, eSTOMP, as the forward modeling simulator. We built response curves and response surfaces of model outputs with respect to input parameters, to look at the individual and combined effects, and identify and rank the significance of the input parameters.« less
Zhang, Z. Fred; White, Signe K.; Bonneville, Alain; ...
2014-12-31
Numerical simulations have been used for estimating CO2 injectivity, CO2 plume extent, pressure distribution, and Area of Review (AoR), and for the design of CO2 injection operations and monitoring network for the FutureGen project. The simulation results are affected by uncertainties associated with numerous input parameters, the conceptual model, initial and boundary conditions, and factors related to injection operations. Furthermore, the uncertainties in the simulation results also vary in space and time. The key need is to identify those uncertainties that critically impact the simulation results and quantify their impacts. We introduce an approach to determine the local sensitivity coefficientmore » (LSC), defined as the response of the output in percent, to rank the importance of model inputs on outputs. The uncertainty of an input with higher sensitivity has larger impacts on the output. The LSC is scalable by the error of an input parameter. The composite sensitivity of an output to a subset of inputs can be calculated by summing the individual LSC values. We propose a local sensitivity coefficient method and applied it to the FutureGen 2.0 Site in Morgan County, Illinois, USA, to investigate the sensitivity of input parameters and initial conditions. The conceptual model for the site consists of 31 layers, each of which has a unique set of input parameters. The sensitivity of 11 parameters for each layer and 7 inputs as initial conditions is then investigated. For CO2 injectivity and plume size, about half of the uncertainty is due to only 4 or 5 of the 348 inputs and 3/4 of the uncertainty is due to about 15 of the inputs. The initial conditions and the properties of the injection layer and its neighbour layers contribute to most of the sensitivity. Overall, the simulation outputs are very sensitive to only a small fraction of the inputs. However, the parameters that are important for controlling CO2 injectivity are not the same as those controlling the plume size. The three most sensitive inputs for injectivity were the horizontal permeability of Mt Simon 11 (the injection layer), the initial fracture-pressure gradient, and the residual aqueous saturation of Mt Simon 11, while those for the plume area were the initial salt concentration, the initial pressure, and the initial fracture-pressure gradient. The advantages of requiring only a single set of simulation results, scalability to the proper parameter errors, and easy calculation of the composite sensitivities make this approach very cost-effective for estimating AoR uncertainty and guiding cost-effective site characterization, injection well design, and monitoring network design for CO2 storage projects.« less
2017-02-28
is the response variable resulting from an input parameter value of θ+. EPA (2011) used a variation of this equation to calculate their...EPA (2011) used both individual and grouped data. While individual data are preferred as it maintains any intra-individual variation , it is often...grouped data, the user would, ideally, account for the loss of intra-individual variation in some manner; however, there is not a commonly accepted
Maxine: A spreadsheet for estimating dose from chronic atmospheric radioactive releases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jannik, Tim; Bell, Evaleigh; Dixon, Kenneth
MAXINE is an EXCEL© spreadsheet, which is used to estimate dose to individuals for routine and accidental atmospheric releases of radioactive materials. MAXINE does not contain an atmospheric dispersion model, but rather doses are estimated using air and ground concentrations as input. Minimal input is required to run the program and site specific parameters are used when possible. Complete code description, verification of models, and user’s manual have been included.
The aging process of optical couplers by gamma irradiation
NASA Astrophysics Data System (ADS)
Bednarek, Lukas; Marcinka, Ondrej; Perecar, Frantisek; Papes, Martin; Hajek, Lukas; Nedoma, Jan; Vasinek, Vladimir
2015-08-01
Scientists have recently discovered that the ageing process of optical elements is faster than it was originally anticipated. It is mostly due to the multiple increases of the optical power in optical components, the introduction of wavelength division multiplexers and, overall, the increased flow of traffic in optical communications. This article examines the ageing process of optical couplers and it focuses on their performance parameters. It describes the measurement procedure followed by the evaluation of the measurement results. To accelerate the ageing process, gamma irradiation from 60Co was used. The results of the measurements of the optical coupler with one input and eight outputs (1:8) were summarized. The results gained by measuring of the optical coupler with one input and four outputs (1:4) as well as of the optical couplers with one input and two outputs (1:2) with different split ratios were also processed. The optical powers were measured on the input and the outputs of each branch of each optical coupler at the wavelengths of 1310 nm and 1550 nm. The parameters of the optical couplers were subsequently calculated according to the appropriate formulas. These parameters were the insertion loss of the individual branches, split ratio, total losses, homogeneity of the losses and directionalities alias cross-talk between the individual output branches. The gathered data were summarized before and after the first irradiation when the configuration of the couplers was 1:8 and 1:4. The data were summarized after the third irradiation when the configuration of the couplers was 1:2.
Parameter Estimation for Thurstone Choice Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vojnovic, Milan; Yun, Seyoung
We consider the estimation accuracy of individual strength parameters of a Thurstone choice model when each input observation consists of a choice of one item from a set of two or more items (so called top-1 lists). This model accommodates the well-known choice models such as the Luce choice model for comparison sets of two or more items and the Bradley-Terry model for pair comparisons. We provide a tight characterization of the mean squared error of the maximum likelihood parameter estimator. We also provide similar characterizations for parameter estimators defined by a rank-breaking method, which amounts to deducing one ormore » more pair comparisons from a comparison of two or more items, assuming independence of these pair comparisons, and maximizing a likelihood function derived under these assumptions. We also consider a related binary classification problem where each individual parameter takes value from a set of two possible values and the goal is to correctly classify all items within a prescribed classification error. The results of this paper shed light on how the parameter estimation accuracy depends on given Thurstone choice model and the structure of comparison sets. In particular, we found that for unbiased input comparison sets of a given cardinality, when in expectation each comparison set of given cardinality occurs the same number of times, for a broad class of Thurstone choice models, the mean squared error decreases with the cardinality of comparison sets, but only marginally according to a diminishing returns relation. On the other hand, we found that there exist Thurstone choice models for which the mean squared error of the maximum likelihood parameter estimator can decrease much faster with the cardinality of comparison sets. We report empirical evaluation of some claims and key parameters revealed by theory using both synthetic and real-world input data from some popular sport competitions and online labor platforms.« less
DYAD: A Computer Program for the Analysis of Interpersonal Communication
ERIC Educational Resources Information Center
Fogel, Daniel S.
1978-01-01
A computer program which generates descriptions of conversational patterns of dyads based on sound-silence data is described. Input consists of talk/no-talk designations; output consists of descriptive matrices, histograms, and individual talk parameters. (Author/JKS)
Optimal input shaping for Fisher identifiability of control-oriented lithium-ion battery models
NASA Astrophysics Data System (ADS)
Rothenberger, Michael J.
This dissertation examines the fundamental challenge of optimally shaping input trajectories to maximize parameter identifiability of control-oriented lithium-ion battery models. Identifiability is a property from information theory that determines the solvability of parameter estimation for mathematical models using input-output measurements. This dissertation creates a framework that exploits the Fisher information metric to quantify the level of battery parameter identifiability, optimizes this metric through input shaping, and facilitates faster and more accurate estimation. The popularity of lithium-ion batteries is growing significantly in the energy storage domain, especially for stationary and transportation applications. While these cells have excellent power and energy densities, they are plagued with safety and lifespan concerns. These concerns are often resolved in the industry through conservative current and voltage operating limits, which reduce the overall performance and still lack robustness in detecting catastrophic failure modes. New advances in automotive battery management systems mitigate these challenges through the incorporation of model-based control to increase performance, safety, and lifespan. To achieve these goals, model-based control requires accurate parameterization of the battery model. While many groups in the literature study a variety of methods to perform battery parameter estimation, a fundamental issue of poor parameter identifiability remains apparent for lithium-ion battery models. This fundamental challenge of battery identifiability is studied extensively in the literature, and some groups are even approaching the problem of improving the ability to estimate the model parameters. The first approach is to add additional sensors to the battery to gain more information that is used for estimation. The other main approach is to shape the input trajectories to increase the amount of information that can be gained from input-output measurements, and is the approach used in this dissertation. Research in the literature studies optimal current input shaping for high-order electrochemical battery models and focuses on offline laboratory cycling. While this body of research highlights improvements in identifiability through optimal input shaping, each optimal input is a function of nominal parameters, which creates a tautology. The parameter values must be known a priori to determine the optimal input for maximizing estimation speed and accuracy. The system identification literature presents multiple studies containing methods that avoid the challenges of this tautology, but these methods are absent from the battery parameter estimation domain. The gaps in the above literature are addressed in this dissertation through the following five novel and unique contributions. First, this dissertation optimizes the parameter identifiability of a thermal battery model, which Sergio Mendoza experimentally validates through a close collaboration with this dissertation's author. Second, this dissertation extends input-shaping optimization to a linear and nonlinear equivalent-circuit battery model and illustrates the substantial improvements in Fisher identifiability for a periodic optimal signal when compared against automotive benchmark cycles. Third, this dissertation presents an experimental validation study of the simulation work in the previous contribution. The estimation study shows that the automotive benchmark cycles either converge slower than the optimized cycle, or not at all for certain parameters. Fourth, this dissertation examines how automotive battery packs with additional power electronic components that dynamically route current to individual cells/modules can be used for parameter identifiability optimization. While the user and vehicle supervisory controller dictate the current demand for these packs, the optimized internal allocation of current still improves identifiability. Finally, this dissertation presents a robust Bayesian sequential input shaping optimization study to maximize the conditional Fisher information of the battery model parameters without prior knowledge of the nominal parameter set. This iterative algorithm only requires knowledge of the prior parameter distributions to converge to the optimal input trajectory.
Johnson, Will L; Jindrich, Devin L; Zhong, Hui; Roy, Roland R; Edgerton, V Reggie
2011-12-01
A device to generate standing or locomotion through chronically placed electrodes has not been fully developed due in part to limitations of clinical experimentation and the high number of muscle activation inputs of the leg. We investigated the feasibility of functional electrical stimulation paradigms that minimize the input dimensions for controlling the limbs by stimulating at nerve fascicles, utilizing a model of the rat hindlimb, which combined previously collected morphological data with muscle physiological parameters presented herein. As validation of the model, we investigated the suitability of a lumped-parameter model for the prediction of muscle activation during dynamic tasks. Using the validated model, we found that the space of forces producible through activation of muscle groups sharing common nerve fascicles was nonlinearly dependent on the number of discrete muscle groups that could be individually activated (equivalently, the neuroanatomical level of activation). Seven commonly innervated muscle groups were sufficient to produce 78% of the force space producible through individual activation of the 42 modeled hindlimb muscles. This novel, neuroanatomically derived reduction in input dimension emphasizes the potential to simplify controllers for functional electrical stimulation to improve functional recovery after a neuromuscular injury.
Johnson, Will L.; Jindrich, Devin L.; Zhong, Hui; Roy, Roland R.
2011-01-01
A device to generate standing or locomotion through chronically placed electrodes has not been fully developed due in part to limitations of clinical experimentation and the high number of muscle activation inputs of the leg. We investigated the feasibility of functional electrical stimulation paradigms that minimize the input dimensions for controlling the limbs by stimulating at nerve fascicles, utilizing a model of the rat hindlimb which combined previously collected morphological data with muscle physiological parameters presented herein. As validation of the model we investigated the suitability of a lumped-parameter model for prediction of muscle activation during dynamic tasks. Using the validated model we found that the space of forces producible through activation of muscle groups sharing common nerve fascicles was nonlinearly dependent on the number of discrete muscle groups that could be individually activated (equivalently, the neuroanatomical level of activation). Seven commonly innervated muscle groups were sufficient to produce 78% of the force space producible through individual activation of the 42 modeled hindlimb muscles. This novel, neuroanatomically derived reduction in input dimension emphasizes the potential to simplify controllers for functional electrical stimulation to improve functional recovery after a neuromuscular injury. PMID:21244999
Uncertainties in Galactic Chemical Evolution Models
Cote, Benoit; Ritter, Christian; Oshea, Brian W.; ...
2016-06-15
Here we use a simple one-zone galactic chemical evolution model to quantify the uncertainties generated by the input parameters in numerical predictions for a galaxy with properties similar to those of the Milky Way. We compiled several studies from the literature to gather the current constraints for our simulations regarding the typical value and uncertainty of the following seven basic parameters: the lower and upper mass limits of the stellar initial mass function (IMF), the slope of the high-mass end of the stellar IMF, the slope of the delay-time distribution function of Type Ia supernovae (SNe Ia), the number ofmore » SNe Ia per M ⊙ formed, the total stellar mass formed, and the final mass of gas. We derived a probability distribution function to express the range of likely values for every parameter, which were then included in a Monte Carlo code to run several hundred simulations with randomly selected input parameters. This approach enables us to analyze the predicted chemical evolution of 16 elements in a statistical manner by identifying the most probable solutions along with their 68% and 95% confidence levels. Our results show that the overall uncertainties are shaped by several input parameters that individually contribute at different metallicities, and thus at different galactic ages. The level of uncertainty then depends on the metallicity and is different from one element to another. Among the seven input parameters considered in this work, the slope of the IMF and the number of SNe Ia are currently the two main sources of uncertainty. The thicknesses of the uncertainty bands bounded by the 68% and 95% confidence levels are generally within 0.3 and 0.6 dex, respectively. When looking at the evolution of individual elements as a function of galactic age instead of metallicity, those same thicknesses range from 0.1 to 0.6 dex for the 68% confidence levels and from 0.3 to 1.0 dex for the 95% confidence levels. The uncertainty in our chemical evolution model does not include uncertainties relating to stellar yields, star formation and merger histories, and modeling assumptions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cote, Benoit; Ritter, Christian; Oshea, Brian W.
Here we use a simple one-zone galactic chemical evolution model to quantify the uncertainties generated by the input parameters in numerical predictions for a galaxy with properties similar to those of the Milky Way. We compiled several studies from the literature to gather the current constraints for our simulations regarding the typical value and uncertainty of the following seven basic parameters: the lower and upper mass limits of the stellar initial mass function (IMF), the slope of the high-mass end of the stellar IMF, the slope of the delay-time distribution function of Type Ia supernovae (SNe Ia), the number ofmore » SNe Ia per M ⊙ formed, the total stellar mass formed, and the final mass of gas. We derived a probability distribution function to express the range of likely values for every parameter, which were then included in a Monte Carlo code to run several hundred simulations with randomly selected input parameters. This approach enables us to analyze the predicted chemical evolution of 16 elements in a statistical manner by identifying the most probable solutions along with their 68% and 95% confidence levels. Our results show that the overall uncertainties are shaped by several input parameters that individually contribute at different metallicities, and thus at different galactic ages. The level of uncertainty then depends on the metallicity and is different from one element to another. Among the seven input parameters considered in this work, the slope of the IMF and the number of SNe Ia are currently the two main sources of uncertainty. The thicknesses of the uncertainty bands bounded by the 68% and 95% confidence levels are generally within 0.3 and 0.6 dex, respectively. When looking at the evolution of individual elements as a function of galactic age instead of metallicity, those same thicknesses range from 0.1 to 0.6 dex for the 68% confidence levels and from 0.3 to 1.0 dex for the 95% confidence levels. The uncertainty in our chemical evolution model does not include uncertainties relating to stellar yields, star formation and merger histories, and modeling assumptions.« less
Nestly--a framework for running software with nested parameter choices and aggregating results.
McCoy, Connor O; Gallagher, Aaron; Hoffman, Noah G; Matsen, Frederick A
2013-02-01
The execution of a software application or pipeline using various combinations of parameters and inputs is a common task in bioinformatics. In the absence of a specialized tool to organize, streamline and formalize this process, scientists must write frequently complex scripts to perform these tasks. We present nestly, a Python package to facilitate running tools with nested combinations of parameters and inputs. nestly provides three components. First, a module to build nested directory structures corresponding to choices of parameters. Second, the nestrun script to run a given command using each set of parameter choices. Third, the nestagg script to aggregate results of the individual runs into a CSV file, as well as support for more complex aggregation. We also include a module for easily specifying nested dependencies for the SCons build tool, enabling incremental builds. Source, documentation and tutorial examples are available at http://github.com/fhcrc/nestly. nestly can be installed from the Python Package Index via pip; it is open source (MIT license).
The HITRAN 2008 Molecular Spectroscopic Database
NASA Technical Reports Server (NTRS)
Rothman, Laurence S.; Gordon, Iouli E.; Barbe, Alain; Benner, D. Chris; Bernath, Peter F.; Birk, Manfred; Boudon, V.; Brown, Linda R.; Campargue, Alain; Champion, J.-P.;
2009-01-01
This paper describes the status of the 2008 edition of the HITRAN molecular spectroscopic database. The new edition is the first official public release since the 2004 edition, although a number of crucial updates had been made available online since 2004. The HITRAN compilation consists of several components that serve as input for radiative-transfer calculation codes: individual line parameters for the microwave through visible spectra of molecules in the gas phase; absorption cross-sections for molecules having dense spectral features, i.e., spectra in which the individual lines are not resolved; individual line parameters and absorption cross sections for bands in the ultra-violet; refractive indices of aerosols, tables and files of general properties associated with the database; and database management software. The line-by-line portion of the database contains spectroscopic parameters for forty-two molecules including many of their isotopologues.
Gandler, W; Shapiro, H
1990-01-01
Logarithmic amplifiers (log amps), which produce an output signal proportional to the logarithm of the input signal, are widely used in cytometry for measurements of parameters that vary over a wide dynamic range, e.g., cell surface immunofluorescence. Existing log amp circuits all deviate to some extent from ideal performance with respect to dynamic range and fidelity to the logarithmic curve; accuracy in quantitative analysis using log amps therefore requires that log amps be individually calibrated. However, accuracy and precision may be limited by photon statistics and system noise when very low level input signals are encountered.
PVWatts Version 1 Technical Reference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobos, A. P.
2013-10-01
The NREL PVWatts(TM) calculator is a web application developed by the National Renewable Energy Laboratory (NREL) that estimates the electricity production of a grid-connected photovoltaic system based on a few simple inputs. PVWatts combines a number of sub-models to predict overall system performance, and makes several hidden assumptions about performance parameters. This technical reference details the individual sub-models, documents assumptions and hidden parameters, and explains the sequence of calculations that yield the final system performance estimation.
NASA Technical Reports Server (NTRS)
Taylor, Brian R.; Ratnayake, Nalin A.
2010-01-01
As part of an effort to improve emissions, noise, and performance of next generation aircraft, it is expected that future aircraft will make use of distributed, multi-objective control effectors in a closed-loop flight control system. Correlation challenges associated with parameter estimation will arise with this expected aircraft configuration. Research presented in this paper focuses on addressing the correlation problem with an appropriate input design technique and validating this technique through simulation and flight test of the X-48B aircraft. The X-48B aircraft is an 8.5 percent-scale hybrid wing body aircraft demonstrator designed by The Boeing Company (Chicago, Illinois, USA), built by Cranfield Aerospace Limited (Cranfield, Bedford, United Kingdom) and flight tested at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California, USA). Based on data from flight test maneuvers performed at Dryden Flight Research Center, aerodynamic parameter estimation was performed using linear regression and output error techniques. An input design technique that uses temporal separation for de-correlation of control surfaces is proposed, and simulation and flight test results are compared with the aerodynamic database. This paper will present a method to determine individual control surface aerodynamic derivatives.
Control and optimization system
Xinsheng, Lou
2013-02-12
A system for optimizing a power plant includes a chemical loop having an input for receiving an input parameter (270) and an output for outputting an output parameter (280), a control system operably connected to the chemical loop and having a multiple controller part (230) comprising a model-free controller. The control system receives the output parameter (280), optimizes the input parameter (270) based on the received output parameter (280), and outputs an optimized input parameter (270) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
System and method for motor parameter estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luhrs, Bin; Yan, Ting
2014-03-18
A system and method for determining unknown values of certain motor parameters includes a motor input device connectable to an electric motor having associated therewith values for known motor parameters and an unknown value of at least one motor parameter. The motor input device includes a processing unit that receives a first input from the electric motor comprising values for the known motor parameters for the electric motor and receive a second input comprising motor data on a plurality of reference motors, including values for motor parameters corresponding to the known motor parameters of the electric motor and values formore » motor parameters corresponding to the at least one unknown motor parameter value of the electric motor. The processor determines the unknown value of the at least one motor parameter from the first input and the second input and determines a motor management strategy for the electric motor based thereon.« less
Testing the robustness of management decisions to uncertainty: Everglades restoration scenarios.
Fuller, Michael M; Gross, Louis J; Duke-Sylvester, Scott M; Palmer, Mark
2008-04-01
To effectively manage large natural reserves, resource managers must prepare for future contingencies while balancing the often conflicting priorities of different stakeholders. To deal with these issues, managers routinely employ models to project the response of ecosystems to different scenarios that represent alternative management plans or environmental forecasts. Scenario analysis is often used to rank such alternatives to aid the decision making process. However, model projections are subject to uncertainty in assumptions about model structure, parameter values, environmental inputs, and subcomponent interactions. We introduce an approach for testing the robustness of model-based management decisions to the uncertainty inherent in complex ecological models and their inputs. We use relative assessment to quantify the relative impacts of uncertainty on scenario ranking. To illustrate our approach we consider uncertainty in parameter values and uncertainty in input data, with specific examples drawn from the Florida Everglades restoration project. Our examples focus on two alternative 30-year hydrologic management plans that were ranked according to their overall impacts on wildlife habitat potential. We tested the assumption that varying the parameter settings and inputs of habitat index models does not change the rank order of the hydrologic plans. We compared the average projected index of habitat potential for four endemic species and two wading-bird guilds to rank the plans, accounting for variations in parameter settings and water level inputs associated with hypothetical future climates. Indices of habitat potential were based on projections from spatially explicit models that are closely tied to hydrology. For the American alligator, the rank order of the hydrologic plans was unaffected by substantial variation in model parameters. By contrast, simulated major shifts in water levels led to reversals in the ranks of the hydrologic plans in 24.1-30.6% of the projections for the wading bird guilds and several individual species. By exposing the differential effects of uncertainty, relative assessment can help resource managers assess the robustness of scenario choice in model-based policy decisions.
Flight Test Validation of Optimal Input Design and Comparison to Conventional Inputs
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
1997-01-01
A technique for designing optimal inputs for aerodynamic parameter estimation was flight tested on the F-18 High Angle of Attack Research Vehicle (HARV). Model parameter accuracies calculated from flight test data were compared on an equal basis for optimal input designs and conventional inputs at the same flight condition. In spite of errors in the a priori input design models and distortions of the input form by the feedback control system, the optimal inputs increased estimated parameter accuracies compared to conventional 3-2-1-1 and doublet inputs. In addition, the tests using optimal input designs demonstrated enhanced design flexibility, allowing the optimal input design technique to use a larger input amplitude to achieve further increases in estimated parameter accuracy without departing from the desired flight test condition. This work validated the analysis used to develop the optimal input designs, and demonstrated the feasibility and practical utility of the optimal input design technique.
Contractor, Kaiyumars B; Kenny, Laura M; Coombes, Charles R; Turkheimer, Federico E; Aboagye, Eric O; Rosso, Lula
2012-03-24
Quantification of kinetic parameters of positron emission tomography (PET) imaging agents normally requires collecting arterial blood samples which is inconvenient for patients and difficult to implement in routine clinical practice. The aim of this study was to investigate whether a population-based input function (POP-IF) reliant on only a few individual discrete samples allows accurate estimates of tumour proliferation using [18F]fluorothymidine (FLT). Thirty-six historical FLT-PET data with concurrent arterial sampling were available for this study. A population average of baseline scans blood data was constructed using leave-one-out cross-validation for each scan and used in conjunction with individual blood samples. Three limited sampling protocols were investigated including, respectively, only seven (POP-IF7), five (POP-IF5) and three (POP-IF3) discrete samples of the historical dataset. Additionally, using the three-point protocol, we derived a POP-IF3M, the only input function which was not corrected for the fraction of radiolabelled metabolites present in blood. The kinetic parameter for net FLT retention at steady state, Ki, was derived using the modified Patlak plot and compared with the original full arterial set for validation. Small percentage differences in the area under the curve between all the POP-IFs and full arterial sampling IF was found over 60 min (4.2%-5.7%), while there were, as expected, larger differences in the peak position and peak height.A high correlation between Ki values calculated using the original arterial input function and all the population-derived IFs was observed (R2 = 0.85-0.98). The population-based input showed good intra-subject reproducibility of Ki values (R2 = 0.81-0.94) and good correlation (R2 = 0.60-0.85) with Ki-67. Input functions generated using these simplified protocols over scan duration of 60 min estimate net PET-FLT retention with reasonable accuracy.
NASA Astrophysics Data System (ADS)
Handley, Heather K.; Turner, Simon; Afonso, Juan C.; Dosseto, Anthony; Cohen, Tim
2013-02-01
Quantifying the rates of landscape evolution in response to climate change is inhibited by the difficulty of dating the formation of continental detrital sediments. We present uranium isotope data for Cooper Creek palaeochannel sediments from the Lake Eyre Basin in semi-arid South Australia in order to attempt to determine the formation ages and hence residence times of the sediments. To calculate the amount of recoil loss of 234U, a key input parameter used in the comminution approach, we use two suggested methods (weighted geometric and surface area measurement with an incorporated fractal correction) and typical assumed input parameter values found in the literature. The calculated recoil loss factors and comminution ages are highly dependent on the method of recoil loss factor determination used and the chosen assumptions. To appraise the ramifications of the assumptions inherent in the comminution age approach and determine individual and combined comminution age uncertainties associated to each variable, Monte Carlo simulations were conducted for a synthetic sediment sample. Using a reasonable associated uncertainty for each input factor and including variations in the source rock and measured (234U/238U) ratios, the total combined uncertainty on comminution age in our simulation (for both methods of recoil loss factor estimation) can amount to ±220-280 ka. The modelling shows that small changes in assumed input values translate into large effects on absolute comminution age. To improve the accuracy of the technique and provide meaningful absolute comminution ages, much tighter constraints are required on the assumptions for input factors such as the fraction of α-recoil lost 234Th and the initial (234U/238U) ratio of the source material. In order to be able to directly compare calculated comminution ages produced by different research groups, the standardisation of pre-treatment procedures, recoil loss factor estimation and assumed input parameter values is required. We suggest a set of input parameter values for such a purpose. Additional considerations for calculating comminution ages of sediments deposited within large, semi-arid drainage basins are discussed.
Hu, Xiao Hua; Sun, X.; Hector, Jr., L. G.; ...
2017-04-21
Here, microstructure-based constitutive models for multiphase steels require accurate constitutive properties of the individual phases for component forming and performance simulations. We address this requirement with a combined experimental/theoretical methodology which determines the critical resolved shear stresses and hardening parameters of the constituent phases in QP980, a TRIP assisted steel subject to a two-step quenching and partitioning heat treatment. High energy X-Ray diffraction (HEXRD) from a synchrotron source provided the average lattice strains of the ferrite, martensite, and austenite phases from the measured volume during in situ tensile deformation. The HEXRD data was then input to a computationally efficient, elastic-plasticmore » self-consistent (EPSC) crystal plasticity model which estimated the constitutive parameters of different slip systems for the three phases via a trial-and-error approach. The EPSC-estimated parameters are then input to a finite element crystal plasticity (CPFE) model representing the QP980 tensile sample. The predicted lattice strains and global stress versus strain curves are found to be 8% lower that the EPSC model predicted values and from the HEXRD measurements, respectively. This discrepancy, which is attributed to the stiff secant assumption in the EPSC formulation, is resolved with a second step in which CPFE is used to iteratively refine the EPSC-estimated parameters. Remarkably close agreement is obtained between the theoretically-predicted and experimentally derived flow curve for the QP980 material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, X. H.; Sun, X.; Hector, L. G.
2017-06-01
Microstructure-based constitutive models for multiphase steels require accurate constitutive properties of the individual phases for component forming and performance simulations. We address this requirement with a combined experimental/theoretical methodology which determines the critical resolved shear stresses and hardening parameters of the constituent phases in QP980, a TRIP assisted steel subject to a two-step quenching and partitioning heat treatment. High energy X-Ray diffraction (HEXRD) from a synchrotron source provided the average lattice strains of the ferrite, martensite, and austenite phases from the measured volume during in situ tensile deformation. The HEXRD data was then input to a computationally efficient, elastic-plastic self-consistentmore » (EPSC) crystal plasticity model which estimated the constitutive parameters of different slip systems for the three phases via a trial-and-error approach. The EPSC-estimated parameters are then input to a finite element crystal plasticity (CPFE) model representing the QP980 tensile sample. The predicted lattice strains and global stress versus strain curves are found to be 8% lower that the EPSC model predicted values and from the HEXRD measurements, respectively. This discrepancy, which is attributed to the stiff secant assumption in the EPSC formulation, is resolved with a second step in which CPFE is used to iteratively refine the EPSC-estimated parameters. Remarkably close agreement is obtained between the theoretically-predicted and experimentally derived flow curve for the QP980 material.« less
Cooperation-Controlled Learning for Explicit Class Structure in Self-Organizing Maps
Kamimura, Ryotaro
2014-01-01
We attempt to demonstrate the effectiveness of multiple points of view toward neural networks. By restricting ourselves to two points of view of a neuron, we propose a new type of information-theoretic method called “cooperation-controlled learning.” In this method, individual and collective neurons are distinguished from one another, and we suppose that the characteristics of individual and collective neurons are different. To implement individual and collective neurons, we prepare two networks, namely, cooperative and uncooperative networks. The roles of these networks and the roles of individual and collective neurons are controlled by the cooperation parameter. As the parameter is increased, the role of cooperative networks becomes more important in learning, and the characteristics of collective neurons become more dominant. On the other hand, when the parameter is small, individual neurons play a more important role. We applied the method to the automobile and housing data from the machine learning database and examined whether explicit class boundaries could be obtained. Experimental results showed that cooperation-controlled learning, in particular taking into account information on input units, could be used to produce clearer class structure than conventional self-organizing maps. PMID:25309950
NASA Technical Reports Server (NTRS)
Reddy C. J.
1998-01-01
Model Based Parameter Estimation (MBPE) is presented in conjunction with the hybrid Finite Element Method (FEM)/Method of Moments (MoM) technique for fast computation of the input characteristics of cavity-backed aperture antennas over a frequency range. The hybrid FENI/MoM technique is used to form an integro-partial- differential equation to compute the electric field distribution of a cavity-backed aperture antenna. In MBPE, the electric field is expanded in a rational function of two polynomials. The coefficients of the rational function are obtained using the frequency derivatives of the integro-partial-differential equation formed by the hybrid FEM/ MoM technique. Using the rational function approximation, the electric field is obtained over a frequency range. Using the electric field at different frequencies, the input characteristics of the antenna are obtained over a wide frequency range. Numerical results for an open coaxial line, probe-fed coaxial cavity and cavity-backed microstrip patch antennas are presented. Good agreement between MBPE and the solutions over individual frequencies is observed.
Sensor fusion for antipersonnel landmine detection: a case study
NASA Astrophysics Data System (ADS)
den Breejen, Eric; Schutte, Klamer; Cremer, Frank
1999-08-01
In this paper the multi sensor fusion results obtained within the European research project GEODE are presented. The layout of the test lane and the individual sensors used are described. The implementation of the SCOOP algorithm improves the ROC curves, as the false alarm surface and the number of false alarms both are taken into account. The confidence grids, as produced by the sensor manufacturers, of the sensors are used as input for the different sensor fusion methods implemented. The multisensor fusion methods implemented are Bayes, Dempster-Shafer, fuzzy probabilities and rules. The mapping of the confidence grids to the input parameters for fusion methods is an important step. Due to limited amount of the available data the entire test lane is used for training and evaluation. All four sensor fusion methods provide better detection results than the individual sensors.
Visual Predictive Check in Models with Time-Varying Input Function.
Largajolli, Anna; Bertoldo, Alessandra; Campioni, Marco; Cobelli, Claudio
2015-11-01
The nonlinear mixed effects models are commonly used modeling techniques in the pharmaceutical research as they enable the characterization of the individual profiles together with the population to which the individuals belong. To ensure a correct use of them is fundamental to provide powerful diagnostic tools that are able to evaluate the predictive performance of the models. The visual predictive check (VPC) is a commonly used tool that helps the user to check by visual inspection if the model is able to reproduce the variability and the main trend of the observed data. However, the simulation from the model is not always trivial, for example, when using models with time-varying input function (IF). In this class of models, there is a potential mismatch between each set of simulated parameters and the associated individual IF which can cause an incorrect profile simulation. We introduce a refinement of the VPC by taking in consideration a correlation term (the Mahalanobis or normalized Euclidean distance) that helps the association of the correct IF with the individual set of simulated parameters. We investigate and compare its performance with the standard VPC in models of the glucose and insulin system applied on real and simulated data and in a simulated pharmacokinetic/pharmacodynamic (PK/PD) example. The newly proposed VPC performance appears to be better with respect to the standard VPC especially for the models with big variability in the IF where the probability of simulating incorrect profiles is higher.
Optimization Under Uncertainty for Electronics Cooling Design
NASA Astrophysics Data System (ADS)
Bodla, Karthik K.; Murthy, Jayathi Y.; Garimella, Suresh V.
Optimization under uncertainty is a powerful methodology used in design and optimization to produce robust, reliable designs. Such an optimization methodology, employed when the input quantities of interest are uncertain, produces output uncertainties, helping the designer choose input parameters that would result in satisfactory thermal solutions. Apart from providing basic statistical information such as mean and standard deviation in the output quantities, auxiliary data from an uncertainty based optimization, such as local and global sensitivities, help the designer decide the input parameter(s) to which the output quantity of interest is most sensitive. This helps the design of experiments based on the most sensitive input parameter(s). A further crucial output of such a methodology is the solution to the inverse problem - finding the allowable uncertainty range in the input parameter(s), given an acceptable uncertainty range in the output quantity of interest...
NASA Technical Reports Server (NTRS)
Peck, Charles C.; Dhawan, Atam P.; Meyer, Claudia M.
1991-01-01
A genetic algorithm is used to select the inputs to a neural network function approximator. In the application considered, modeling critical parameters of the space shuttle main engine (SSME), the functional relationship between measured parameters is unknown and complex. Furthermore, the number of possible input parameters is quite large. Many approaches have been used for input selection, but they are either subjective or do not consider the complex multivariate relationships between parameters. Due to the optimization and space searching capabilities of genetic algorithms they were employed to systematize the input selection process. The results suggest that the genetic algorithm can generate parameter lists of high quality without the explicit use of problem domain knowledge. Suggestions for improving the performance of the input selection process are also provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gauntt, Randall O.; Mattie, Patrick D.; Bixler, Nathan E.
2014-02-01
This paper describes the knowledge advancements from the uncertainty analysis for the State-of- the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout accident scenario at the Peach Bottom Atomic Power Station. This work assessed key MELCOR and MELCOR Accident Consequence Code System, Version 2 (MACCS2) modeling uncertainties in an integrated fashion to quantify the relative importance of each uncertain input on potential accident progression, radiological releases, and off-site consequences. This quantitative uncertainty analysis provides measures of the effects on consequences, of each of the selected uncertain parameters both individually and in interaction with other parameters. The results measure the modelmore » response (e.g., variance in the output) to uncertainty in the selected input. Investigation into the important uncertain parameters in turn yields insights into important phenomena for accident progression and off-site consequences. This uncertainty analysis confirmed the known importance of some parameters, such as failure rate of the Safety Relief Valve in accident progression modeling and the dry deposition velocity in off-site consequence modeling. The analysis also revealed some new insights, such as dependent effect of cesium chemical form for different accident progressions. (auth)« less
Recommended Parameter Values for GENII Modeling of Radionuclides in Routine Air and Water Releases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, Sandra F.; Arimescu, Carmen; Napier, Bruce A.
The GENII v2 code is used to estimate dose to individuals or populations from the release of radioactive materials into air or water. Numerous parameter values are required for input into this code. User-defined parameters cover the spectrum from chemical data, meteorological data, agricultural data, and behavioral data. This document is a summary of parameter values that reflect conditions in the United States. Reasonable regional and age-dependent data is summarized. Data availability and quality varies. The set of parameters described address scenarios for chronic air emissions or chronic releases to public waterways. Considerations for the special tritium and carbon-14 modelsmore » are briefly addressed. GENIIv2.10.0 is the current software version that this document supports.« less
Practical input optimization for aircraft parameter estimation experiments. Ph.D. Thesis, 1990
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
1993-01-01
The object of this research was to develop an algorithm for the design of practical, optimal flight test inputs for aircraft parameter estimation experiments. A general, single pass technique was developed which allows global optimization of the flight test input design for parameter estimation using the principles of dynamic programming with the input forms limited to square waves only. Provision was made for practical constraints on the input, including amplitude constraints, control system dynamics, and selected input frequency range exclusions. In addition, the input design was accomplished while imposing output amplitude constraints required by model validity and considerations of safety during the flight test. The algorithm has multiple input design capability, with optional inclusion of a constraint that only one control move at a time, so that a human pilot can implement the inputs. It is shown that the technique can be used to design experiments for estimation of open loop model parameters from closed loop flight test data. The report includes a new formulation of the optimal input design problem, a description of a new approach to the solution, and a summary of the characteristics of the algorithm, followed by three example applications of the new technique which demonstrate the quality and expanded capabilities of the input designs produced by the new technique. In all cases, the new input design approach showed significant improvement over previous input design methods in terms of achievable parameter accuracies.
A comparative evaluation of genome assembly reconciliation tools.
Alhakami, Hind; Mirebrahim, Hamid; Lonardi, Stefano
2017-05-18
The majority of eukaryotic genomes are unfinished due to the algorithmic challenges of assembling them. A variety of assembly and scaffolding tools are available, but it is not always obvious which tool or parameters to use for a specific genome size and complexity. It is, therefore, common practice to produce multiple assemblies using different assemblers and parameters, then select the best one for public release. A more compelling approach would allow one to merge multiple assemblies with the intent of producing a higher quality consensus assembly, which is the objective of assembly reconciliation. Several assembly reconciliation tools have been proposed in the literature, but their strengths and weaknesses have never been compared on a common dataset. We fill this need with this work, in which we report on an extensive comparative evaluation of several tools. Specifically, we evaluate contiguity, correctness, coverage, and the duplication ratio of the merged assembly compared to the individual assemblies provided as input. None of the tools we tested consistently improved the quality of the input GAGE and synthetic assemblies. Our experiments show an increase in contiguity in the consensus assembly when the original assemblies already have high quality. In terms of correctness, the quality of the results depends on the specific tool, as well as on the quality and the ranking of the input assemblies. In general, the number of misassemblies ranges from being comparable to the best of the input assembly to being comparable to the worst of the input assembly.
NASA Technical Reports Server (NTRS)
Reichert, R, S.; Biringen, S.; Howard, J. E.
1999-01-01
LINER is a system of Fortran 77 codes which performs a 2D analysis of acoustic wave propagation and noise suppression in a rectangular channel with a continuous liner at the top wall. This new implementation is designed to streamline the usage of the several codes making up LINER, resulting in a useful design tool. Major input parameters are placed in two main data files, input.inc and nurn.prm. Output data appear in the form of ASCII files as well as a choice of GNUPLOT graphs. Section 2 briefly describes the physical model. Section 3 discusses the numerical methods; Section 4 gives a detailed account of program usage, including input formats and graphical options. A sample run is also provided. Finally, Section 5 briefly describes the individual program files.
Mobile, Virtual Enhancements for Rehabilitation (MOVER)
2015-08-28
bottom of the figure. The patient uses COTS input devices, such as the Microsoft Kinect and the Wii Balance Board , to perform therapeutic exercises...specific, commonly used balance exercises into the system and enabling the therapists to select and customize pre-identified parameters for these exercises... balance disorder patients. We made these games highly customizable to enable therapists to tune each game to the capabilities of individual
Hierarchical Bayesian modelling of mobility metrics for hazard model input calibration
NASA Astrophysics Data System (ADS)
Calder, Eliza; Ogburn, Sarah; Spiller, Elaine; Rutarindwa, Regis; Berger, Jim
2015-04-01
In this work we present a method to constrain flow mobility input parameters for pyroclastic flow models using hierarchical Bayes modeling of standard mobility metrics such as H/L and flow volume etc. The advantage of hierarchical modeling is that it can leverage the information in global dataset for a particular mobility metric in order to reduce the uncertainty in modeling of an individual volcano, especially important where individual volcanoes have only sparse datasets. We use compiled pyroclastic flow runout data from Colima, Merapi, Soufriere Hills, Unzen and Semeru volcanoes, presented in an open-source database FlowDat (https://vhub.org/groups/massflowdatabase). While the exact relationship between flow volume and friction varies somewhat between volcanoes, dome collapse flows originating from the same volcano exhibit similar mobility relationships. Instead of fitting separate regression models for each volcano dataset, we use a variation of the hierarchical linear model (Kass and Steffey, 1989). The model presents a hierarchical structure with two levels; all dome collapse flows and dome collapse flows at specific volcanoes. The hierarchical model allows us to assume that the flows at specific volcanoes share a common distribution of regression slopes, then solves for that distribution. We present comparisons of the 95% confidence intervals on the individual regression lines for the data set from each volcano as well as those obtained from the hierarchical model. The results clearly demonstrate the advantage of considering global datasets using this technique. The technique developed is demonstrated here for mobility metrics, but can be applied to many other global datasets of volcanic parameters. In particular, such methods can provide a means to better contain parameters for volcanoes for which we only have sparse data, a ubiquitous problem in volcanology.
NASA Astrophysics Data System (ADS)
Behera, Kishore Kumar; Pal, Snehanshu
2018-03-01
This paper describes a new approach towards optimum utilisation of ferrochrome added during stainless steel making in AOD converter. The objective of optimisation is to enhance end blow chromium content of steel and reduce the ferrochrome addition during refining. By developing a thermodynamic based mathematical model, a study has been conducted to compute the optimum trade-off between ferrochrome addition and end blow chromium content of stainless steel using a predator prey genetic algorithm through training of 100 dataset considering different input and output variables such as oxygen, argon, nitrogen blowing rate, duration of blowing, initial bath temperature, chromium and carbon content, weight of ferrochrome added during refining. Optimisation is performed within constrained imposed on the input parameters whose values fall within certain ranges. The analysis of pareto fronts is observed to generate a set of feasible optimal solution between the two conflicting objectives that provides an effective guideline for better ferrochrome utilisation. It is found out that after a certain critical range, further addition of ferrochrome does not affect the chromium percentage of steel. Single variable response analysis is performed to study the variation and interaction of all individual input parameters on output variables.
Brandsch, Rainer
2017-10-01
Migration modelling provides reliable migration estimates from food-contact materials (FCM) to food or food simulants based on mass-transfer parameters like diffusion and partition coefficients related to individual materials. In most cases, mass-transfer parameters are not readily available from the literature and for this reason are estimated with a given uncertainty. Historically, uncertainty was accounted for by introducing upper limit concepts first, turning out to be of limited applicability due to highly overestimated migration results. Probabilistic migration modelling gives the possibility to consider uncertainty of the mass-transfer parameters as well as other model inputs. With respect to a functional barrier, the most important parameters among others are the diffusion properties of the functional barrier and its thickness. A software tool that accepts distribution as inputs and is capable of applying Monte Carlo methods, i.e., random sampling from the input distributions of the relevant parameters (i.e., diffusion coefficient and layer thickness), predicts migration results with related uncertainty and confidence intervals. The capabilities of probabilistic migration modelling are presented in the view of three case studies (1) sensitivity analysis, (2) functional barrier efficiency and (3) validation by experimental testing. Based on the predicted migration by probabilistic migration modelling and related exposure estimates, safety evaluation of new materials in the context of existing or new packaging concepts is possible. Identifying associated migration risk and potential safety concerns in the early stage of packaging development is possible. Furthermore, dedicated material selection exhibiting required functional barrier efficiency under application conditions becomes feasible. Validation of the migration risk assessment by probabilistic migration modelling through a minimum of dedicated experimental testing is strongly recommended.
The reservoir model: a differential equation model of psychological regulation.
Deboeck, Pascal R; Bergeman, C S
2013-06-01
Differential equation models can be used to describe the relationships between the current state of a system of constructs (e.g., stress) and how those constructs are changing (e.g., based on variable-like experiences). The following article describes a differential equation model based on the concept of a reservoir. With a physical reservoir, such as one for water, the level of the liquid in the reservoir at any time depends on the contributions to the reservoir (inputs) and the amount of liquid removed from the reservoir (outputs). This reservoir model might be useful for constructs such as stress, where events might "add up" over time (e.g., life stressors, inputs), but individuals simultaneously take action to "blow off steam" (e.g., engage coping resources, outputs). The reservoir model can provide descriptive statistics of the inputs that contribute to the "height" (level) of a construct and a parameter that describes a person's ability to dissipate the construct. After discussing the model, we describe a method of fitting the model as a structural equation model using latent differential equation modeling and latent distribution modeling. A simulation study is presented to examine recovery of the input distribution and output parameter. The model is then applied to the daily self-reports of negative affect and stress from a sample of older adults from the Notre Dame Longitudinal Study on Aging. (PsycINFO Database Record (c) 2013 APA, all rights reserved).
The Reservoir Model: A Differential Equation Model of Psychological Regulation
Deboeck, Pascal R.; Bergeman, C. S.
2017-01-01
Differential equation models can be used to describe the relationships between the current state of a system of constructs (e.g., stress) and how those constructs are changing (e.g., based on variable-like experiences). The following article describes a differential equation model based on the concept of a reservoir. With a physical reservoir, such as one for water, the level of the liquid in the reservoir at any time depends on the contributions to the reservoir (inputs) and the amount of liquid removed from the reservoir (outputs). This reservoir model might be useful for constructs such as stress, where events might “add up” over time (e.g., life stressors, inputs), but individuals simultaneously take action to “blow off steam” (e.g., engage coping resources, outputs). The reservoir model can provide descriptive statistics of the inputs that contribute to the “height” (level) of a construct and a parameter that describes a person's ability to dissipate the construct. After discussing the model, we describe a method of fitting the model as a structural equation model using latent differential equation modeling and latent distribution modeling. A simulation study is presented to examine recovery of the input distribution and output parameter. The model is then applied to the daily self-reports of negative affect and stress from a sample of older adults from the Notre Dame Longitudinal Study on Aging. PMID:23527605
Ladtap XL Version 2017: A Spreadsheet For Estimating Dose Resulting From Aqueous Releases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minter, K.; Jannik, T.
LADTAP XL© is an EXCEL© spreadsheet used to estimate dose to offsite individuals and populations resulting from routine and accidental releases of radioactive materials to the Savannah River. LADTAP XL© contains two worksheets: LADTAP and IRRIDOSE. The LADTAP worksheet estimates dose for environmental pathways including external exposure resulting from recreational activities on the Savannah River and internal exposure resulting from ingestion of water, fish, and invertebrates originating from the Savannah River. IRRIDOSE estimates offsite dose to individuals and populations from irrigation of foodstuffs with contaminated water from the Savannah River. In 2004, a complete description of the LADTAP XL© codemore » and an associated user’s manual was documented in LADTAP XL©: A Spreadsheet for Estimating Dose Resulting from Aqueous Release (WSRC-TR-2004-00059) and revised input parameters, dose coefficients, and radionuclide decay constants were incorporated into LADTAP XL© Version 2013 (SRNL-STI-2011-00238). LADTAP XL© Version 2017 is a slight modification to Version 2013 with minor changes made for more user-friendly parameter inputs and organization, updates in the time conversion factors used within the dose calculations, and fixed an issue with the expected time build-up parameter referenced within the population shoreline dose calculations. This manual has been produced to update the code description, verification of the models, and provide an updated user’s manual. LADTAP XL© Version 2017 has been verified by Minter (2017) and is ready for use at the Savannah River Site (SRS).« less
2010-05-01
has been an increasing move towards armor systems which are both structural and protection components at the same time. Analysis of material response...the materials can move. As the FE analysis progresses the component will move while the mesh remains motionless (Figure 4). Individual nodes and cells...this parameter. This subroutine needs many inputs, such as the speed of sound in the material , the FE size mesh and the safety factor, which prevents
Influence of load by high power on the optical coupler
NASA Astrophysics Data System (ADS)
Bednarek, Lukas; Poboril, Radek; Vanderka, Ales; Hajek, Lukas; Nedoma, Jan; Vasinek, Vladimir
2016-12-01
Nowadays, aging of the optical components is a very current topic. Therefore, some investigations are focused on this area, so that the aging of the optical components is accelerated by thermal, high power and gamma load. This paper deals by findings of the influence of the load by laser with high optical power on the transmission parameters of the optical coupler. The investigated coupler has one input and eight outputs (1x8). Load by laser with high optical power is realized using a fiber laser with a cascade configuration EDFA amplifiers. The output power of the amplifier is approximately 250 mW. Duration of the load is moving from 104 hours to 139 hours. After each load, input power and output powers of all branches are measured. Following parameters of the optical coupler are calculated using formulas: the insertion losses of the individual branches, split ratio, total losses, homogeneity of the losses and cross-talk between different branches. All measurements are performed at wavelengths 1310 nm and 1550 nm. Individual optical powers are measured 20 times, due to the exclusion of statistical error of the measurement. After measuring, the coupler is connected to the amplifier for next cycle of the load. The paper contains an evaluation of the results of the coupler before and after four cycles of the burden.
Reconstruction of neuronal input through modeling single-neuron dynamics and computations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Qing; Wang, Jiang; Yu, Haitao
Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-spacemore » method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.« less
Reconstruction of neuronal input through modeling single-neuron dynamics and computations
NASA Astrophysics Data System (ADS)
Qin, Qing; Wang, Jiang; Yu, Haitao; Deng, Bin; Chan, Wai-lok
2016-06-01
Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-space method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.
An Ultrasensitive Bacterial Motor Revealed by Monitoring Signaling Proteins in Single Cells
NASA Astrophysics Data System (ADS)
Cluzel, Philippe; Surette, Michael; Leibler, Stanislas
2000-03-01
Understanding biology at the single-cell level requires simultaneous measurements of biochemical parameters and behavioral characteristics in individual cells. Here, the output of individual flagellar motors in Escherichia coli was measured as a function of the intracellular concentration of the chemotactic signaling protein. The concentration of this molecule, fused to green fluorescent protein, was monitored with fluorescence correlation spectroscopy. Motors from different bacteria exhibited an identical steep input-output relation, suggesting that they actively contribute to signal amplification in chemotaxis. This experimental approach can be extended to quantitative in vivo studies of other biochemical networks.
Analytically-derived sensitivities in one-dimensional models of solute transport in porous media
Knopman, D.S.
1987-01-01
Analytically-derived sensitivities are presented for parameters in one-dimensional models of solute transport in porous media. Sensitivities were derived by direct differentiation of closed form solutions for each of the odel, and by a time integral method for two of the models. Models are based on the advection-dispersion equation and include adsorption and first-order chemical decay. Boundary conditions considered are: a constant step input of solute, constant flux input of solute, and exponentially decaying input of solute at the upstream boundary. A zero flux is assumed at the downstream boundary. Initial conditions include a constant and spatially varying distribution of solute. One model simulates the mixing of solute in an observation well from individual layers in a multilayer aquifer system. Computer programs produce output files compatible with graphics software in which sensitivities are plotted as a function of either time or space. (USGS)
Integrated controls design optimization
Lou, Xinsheng; Neuschaefer, Carl H.
2015-09-01
A control system (207) for optimizing a chemical looping process of a power plant includes an optimizer (420), an income algorithm (230) and a cost algorithm (225) and a chemical looping process models. The process models are used to predict the process outputs from process input variables. Some of the process in puts and output variables are related to the income of the plant; and some others are related to the cost of the plant operations. The income algorithm (230) provides an income input to the optimizer (420) based on a plurality of input parameters (215) of the power plant. The cost algorithm (225) provides a cost input to the optimizer (420) based on a plurality of output parameters (220) of the power plant. The optimizer (420) determines an optimized operating parameter solution based on at least one of the income input and the cost input, and supplies the optimized operating parameter solution to the power plant.
A seasonal Bartlett-Lewis Rectangular Pulse model
NASA Astrophysics Data System (ADS)
Ritschel, Christoph; Agbéko Kpogo-Nuwoklo, Komlan; Rust, Henning; Ulbrich, Uwe; Névir, Peter
2016-04-01
Precipitation time series with a high temporal resolution are needed as input for several hydrological applications, e.g. river runoff or sewer system models. As adequate observational data sets are often not available, simulated precipitation series come to use. Poisson-cluster models are commonly applied to generate these series. It has been shown that this class of stochastic precipitation models is able to well reproduce important characteristics of observed rainfall. For the gauge based case study presented here, the Bartlett-Lewis rectangular pulse model (BLRPM) has been chosen. As it has been shown that certain model parameters vary with season in a midlatitude moderate climate due to different rainfall mechanisms dominating in winter and summer, model parameters are typically estimated separately for individual seasons or individual months. Here, we suggest a simultaneous parameter estimation for the whole year under the assumption that seasonal variation of parameters can be described with harmonic functions. We use an observational precipitation series from Berlin with a high temporal resolution to exemplify the approach. We estimate BLRPM parameters with and without this seasonal extention and compare the results in terms of model performance and robustness of the estimation.
Fuzzy logic controller optimization
Sepe, Jr., Raymond B; Miller, John Michael
2004-03-23
A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.
Bizios, Dimitrios; Heijl, Anders; Hougaard, Jesper Leth; Bengtsson, Boel
2010-02-01
To compare the performance of two machine learning classifiers (MLCs), artificial neural networks (ANNs) and support vector machines (SVMs), with input based on retinal nerve fibre layer thickness (RNFLT) measurements by optical coherence tomography (OCT), on the diagnosis of glaucoma, and to assess the effects of different input parameters. We analysed Stratus OCT data from 90 healthy persons and 62 glaucoma patients. Performance of MLCs was compared using conventional OCT RNFLT parameters plus novel parameters such as minimum RNFLT values, 10th and 90th percentiles of measured RNFLT, and transformations of A-scan measurements. For each input parameter and MLC, the area under the receiver operating characteristic curve (AROC) was calculated. There were no statistically significant differences between ANNs and SVMs. The best AROCs for both ANN (0.982, 95%CI: 0.966-0.999) and SVM (0.989, 95% CI: 0.979-1.0) were based on input of transformed A-scan measurements. Our SVM trained on this input performed better than ANNs or SVMs trained on any of the single RNFLT parameters (p < or = 0.038). The performance of ANNs and SVMs trained on minimum thickness values and the 10th and 90th percentiles were at least as good as ANNs and SVMs with input based on the conventional RNFLT parameters. No differences between ANN and SVM were observed in this study. Both MLCs performed very well, with similar diagnostic performance. Input parameters have a larger impact on diagnostic performance than the type of machine classifier. Our results suggest that parameters based on transformed A-scan thickness measurements of the RNFL processed by machine classifiers can improve OCT-based glaucoma diagnosis.
NASA Astrophysics Data System (ADS)
Touhidul Mustafa, Syed Md.; Nossent, Jiri; Ghysels, Gert; Huysmans, Marijke
2017-04-01
Transient numerical groundwater flow models have been used to understand and forecast groundwater flow systems under anthropogenic and climatic effects, but the reliability of the predictions is strongly influenced by different sources of uncertainty. Hence, researchers in hydrological sciences are developing and applying methods for uncertainty quantification. Nevertheless, spatially distributed flow models pose significant challenges for parameter and spatially distributed input estimation and uncertainty quantification. In this study, we present a general and flexible approach for input and parameter estimation and uncertainty analysis of groundwater models. The proposed approach combines a fully distributed groundwater flow model (MODFLOW) with the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm. To avoid over-parameterization, the uncertainty of the spatially distributed model input has been represented by multipliers. The posterior distributions of these multipliers and the regular model parameters were estimated using DREAM. The proposed methodology has been applied in an overexploited aquifer in Bangladesh where groundwater pumping and recharge data are highly uncertain. The results confirm that input uncertainty does have a considerable effect on the model predictions and parameter distributions. Additionally, our approach also provides a new way to optimize the spatially distributed recharge and pumping data along with the parameter values under uncertain input conditions. It can be concluded from our approach that considering model input uncertainty along with parameter uncertainty is important for obtaining realistic model predictions and a correct estimation of the uncertainty bounds.
NASA Astrophysics Data System (ADS)
Haas, Edwin; Santabarbara, Ignacio; Kiese, Ralf; Butterbach-Bahl, Klaus
2017-04-01
Numerical simulation models are increasingly used to estimate greenhouse gas emissions at site to regional / national scale and are outlined as the most advanced methodology (Tier 3) in the framework of UNFCCC reporting. Process-based models incorporate the major processes of the carbon and nitrogen cycle of terrestrial ecosystems and are thus thought to be widely applicable at various conditions and spatial scales. Process based modelling requires high spatial resolution input data on soil properties, climate drivers and management information. The acceptance of model based inventory calculations depends on the assessment of the inventory's uncertainty (model, input data and parameter induced uncertainties). In this study we fully quantify the uncertainty in modelling soil N2O and NO emissions from arable, grassland and forest soils using the biogeochemical model LandscapeDNDC. We address model induced uncertainty (MU) by contrasting two different soil biogeochemistry modules within LandscapeDNDC. The parameter induced uncertainty (PU) was assessed by using joint parameter distributions for key parameters describing microbial C and N turnover processes as obtained by different Bayesian calibration studies for each model configuration. Input data induced uncertainty (DU) was addressed by Bayesian calibration of soil properties, climate drivers and agricultural management practices data. For the MU, DU and PU we performed several hundred simulations each to contribute to the individual uncertainty assessment. For the overall uncertainty quantification we assessed the model prediction probability, followed by sampled sets of input datasets and parameter distributions. Statistical analysis of the simulation results have been used to quantify the overall full uncertainty of the modelling approach. With this study we can contrast the variation in model results to the different sources of uncertainties for each ecosystem. Further we have been able to perform a fully uncertainty analysis for modelling N2O and NO emissions from arable, grassland and forest soils necessary for the comprehensibility of modelling results. We have applied the methodology to a regional inventory to assess the overall modelling uncertainty for a regional N2O and NO emissions inventory for the state of Saxony, Germany.
Tominaga, Koji; Aherne, Julian; Watmough, Shaun A; Alveteg, Mattias; Cosby, Bernard J; Driscoll, Charles T; Posch, Maximilian; Pourmokhtarian, Afshin
2010-12-01
The performance and prediction uncertainty (owing to parameter and structural uncertainties) of four dynamic watershed acidification models (MAGIC, PnET-BGC, SAFE, and VSD) were assessed by systematically applying them to data from the Hubbard Brook Experimental Forest (HBEF), New Hampshire, where long-term records of precipitation and stream chemistry were available. In order to facilitate systematic evaluation, Monte Carlo simulation was used to randomly generate common model input data sets (n = 10,000) from parameter distributions; input data were subsequently translated among models to retain consistency. The model simulations were objectively calibrated against observed data (streamwater: 1963-2004, soil: 1983). The ensemble of calibrated models was used to assess future response of soil and stream chemistry to reduced sulfur deposition at the HBEF. Although both hindcast (1850-1962) and forecast (2005-2100) predictions were qualitatively similar across the four models, the temporal pattern of key indicators of acidification recovery (stream acid neutralizing capacity and soil base saturation) differed substantially. The range in predictions resulted from differences in model structure and their associated posterior parameter distributions. These differences can be accommodated by employing multiple models (ensemble analysis) but have implications for individual model applications.
Yang, Jian-Feng; Zhao, Zhen-Hua; Zhang, Yu; Zhao, Li; Yang, Li-Ming; Zhang, Min-Ming; Wang, Bo-Yin; Wang, Ting; Lu, Bao-Chun
2016-04-07
To investigate the feasibility of a dual-input two-compartment tracer kinetic model for evaluating tumorous microvascular properties in advanced hepatocellular carcinoma (HCC). From January 2014 to April 2015, we prospectively measured and analyzed pharmacokinetic parameters [transfer constant (Ktrans), plasma flow (Fp), permeability surface area product (PS), efflux rate constant (kep), extravascular extracellular space volume ratio (ve), blood plasma volume ratio (vp), and hepatic perfusion index (HPI)] using dual-input two-compartment tracer kinetic models [a dual-input extended Tofts model and a dual-input 2-compartment exchange model (2CXM)] in 28 consecutive HCC patients. A well-known consensus that HCC is a hypervascular tumor supplied by the hepatic artery and the portal vein was used as a reference standard. A paired Student's t-test and a nonparametric paired Wilcoxon rank sum test were used to compare the equivalent pharmacokinetic parameters derived from the two models, and Pearson correlation analysis was also applied to observe the correlations among all equivalent parameters. The tumor size and pharmacokinetic parameters were tested by Pearson correlation analysis, while correlations among stage, tumor size and all pharmacokinetic parameters were assessed by Spearman correlation analysis. The Fp value was greater than the PS value (FP = 1.07 mL/mL per minute, PS = 0.19 mL/mL per minute) in the dual-input 2CXM; HPI was 0.66 and 0.63 in the dual-input extended Tofts model and the dual-input 2CXM, respectively. There were no significant differences in the kep, vp, or HPI between the dual-input extended Tofts model and the dual-input 2CXM (P = 0.524, 0.569, and 0.622, respectively). All equivalent pharmacokinetic parameters, except for ve, were correlated in the two dual-input two-compartment pharmacokinetic models; both Fp and PS in the dual-input 2CXM were correlated with Ktrans derived from the dual-input extended Tofts model (P = 0.002, r = 0.566; P = 0.002, r = 0.570); kep, vp, and HPI between the two kinetic models were positively correlated (P = 0.001, r = 0.594; P = 0.0001, r = 0.686; P = 0.04, r = 0.391, respectively). In the dual input extended Tofts model, ve was significantly less than that in the dual input 2CXM (P = 0.004), and no significant correlation was seen between the two tracer kinetic models (P = 0.156, r = 0.276). Neither tumor size nor tumor stage was significantly correlated with any of the pharmacokinetic parameters obtained from the two models (P > 0.05). A dual-input two-compartment pharmacokinetic model (a dual-input extended Tofts model and a dual-input 2CXM) can be used in assessing the microvascular physiopathological properties before the treatment of advanced HCC. The dual-input extended Tofts model may be more stable in measuring the ve; however, the dual-input 2CXM may be more detailed and accurate in measuring microvascular permeability.
Experimental design and efficient parameter estimation in preclinical pharmacokinetic studies.
Ette, E I; Howie, C A; Kelman, A W; Whiting, B
1995-05-01
Monte Carlo simulation technique used to evaluate the effect of the arrangement of concentrations on the efficiency of estimation of population pharmacokinetic parameters in the preclinical setting is described. Although the simulations were restricted to the one compartment model with intravenous bolus input, they provide the basis of discussing some structural aspects involved in designing a destructive ("quantic") preclinical population pharmacokinetic study with a fixed sample size as is usually the case in such studies. The efficiency of parameter estimation obtained with sampling strategies based on the three and four time point designs were evaluated in terms of the percent prediction error, design number, individual and joint confidence intervals coverage for parameter estimates approaches, and correlation analysis. The data sets contained random terms for both inter- and residual intra-animal variability. The results showed that the typical population parameter estimates for clearance and volume were efficiently (accurately and precisely) estimated for both designs, while interanimal variability (the only random effect parameter that could be estimated) was inefficiently (inaccurately and imprecisely) estimated with most sampling schedules of the two designs. The exact location of the third and fourth time point for the three and four time point designs, respectively, was not critical to the efficiency of overall estimation of all population parameters of the model. However, some individual population pharmacokinetic parameters were sensitive to the location of these times.
A general method for the layout of ailerons and elevators of gliders and motorplanes
NASA Technical Reports Server (NTRS)
Hiller, M. H.
1979-01-01
A method is described which allows the layout of the spatial driving mechanism of the aileron for a glider or a motorplane to be performed in a systematic manner. In particular, a prescribed input-output behavior of the mechanism can be realized by variation of individual parameters of the spatial four-bar mechanisms which constitute the entire driving mechanism. By means of a sensitivity analysis, a systematic choice of parameters is possible. At the same time the forces acting in the mechanism can be limited by imposing maximum values of the forces as secondary conditions during the variation process.
The nature of the language input affects brain activation during learning from a natural language
Plante, Elena; Patterson, Dianne; Gómez, Rebecca; Almryde, Kyle R.; White, Milo G.; Asbjørnsen, Arve E.
2015-01-01
Artificial language studies have demonstrated that learners are able to segment individual word-like units from running speech using the transitional probability information. However, this skill has rarely been examined in the context of natural languages, where stimulus parameters can be quite different. In this study, two groups of English-speaking learners were exposed to Norwegian sentences over the course of three fMRI scans. One group was provided with input in which transitional probabilities predicted the presence of target words in the sentences. This group quickly learned to identify the target words and fMRI data revealed an extensive and highly dynamic learning network. These results were markedly different from activation seen for a second group of participants. This group was provided with highly similar input that was modified so that word learning based on syllable co-occurrences was not possible. These participants showed a much more restricted network. The results demonstrate that the nature of the input strongly influenced the nature of the network that learners employ to learn the properties of words in a natural language. PMID:26257471
Scheler, Gabriele
2013-01-01
We present a novel formulation for biochemical reaction networks in the context of protein signal transduction. The model consists of input-output transfer functions, which are derived from differential equations, using stable equilibria. We select a set of "source" species, which are interpreted as input signals. Signals are transmitted to all other species in the system (the "target" species) with a specific delay and with a specific transmission strength. The delay is computed as the maximal reaction time until a stable equilibrium for the target species is reached, in the context of all other reactions in the system. The transmission strength is the concentration change of the target species. The computed input-output transfer functions can be stored in a matrix, fitted with parameters, and even recalled to build dynamical models on the basis of state changes. By separating the temporal and the magnitudinal domain we can greatly simplify the computational model, circumventing typical problems of complex dynamical systems. The transfer function transformation of biochemical reaction systems can be applied to mass-action kinetic models of signal transduction. The paper shows that this approach yields significant novel insights while remaining a fully testable and executable dynamical model for signal transduction. In particular we can deconstruct the complex system into local transfer functions between individual species. As an example, we examine modularity and signal integration using a published model of striatal neural plasticity. The modularizations that emerge correspond to a known biological distinction between calcium-dependent and cAMP-dependent pathways. Remarkably, we found that overall interconnectedness depends on the magnitude of inputs, with higher connectivity at low input concentrations and significant modularization at moderate to high input concentrations. This general result, which directly follows from the properties of individual transfer functions, contradicts notions of ubiquitous complexity by showing input-dependent signal transmission inactivation.
Gupta, Himanshu; Schiros, Chun G; Sharifov, Oleg F; Jain, Apurva; Denney, Thomas S
2016-08-31
Recently released American College of Cardiology/American Heart Association (ACC/AHA) guideline recommends the Pooled Cohort equations for evaluating atherosclerotic cardiovascular risk of individuals. The impact of the clinical input variable uncertainties on the estimates of ten-year cardiovascular risk based on ACC/AHA guidelines is not known. Using a publicly available the National Health and Nutrition Examination Survey dataset (2005-2010), we computed maximum and minimum ten-year cardiovascular risks by assuming clinically relevant variations/uncertainties in input of age (0-1 year) and ±10 % variation in total-cholesterol, high density lipoprotein- cholesterol, and systolic blood pressure and by assuming uniform distribution of the variance of each variable. We analyzed the changes in risk category compared to the actual inputs at 5 % and 7.5 % risk limits as these limits define the thresholds for consideration of drug therapy in the new guidelines. The new-pooled cohort equations for risk estimation were implemented in a custom software package. Based on our input variances, changes in risk category were possible in up to 24 % of the population cohort at both 5 % and 7.5 % risk boundary limits. This trend was consistently noted across all subgroups except in African American males where most of the cohort had ≥7.5 % baseline risk regardless of the variation in the variables. The uncertainties in the input variables can alter the risk categorization. The impact of these variances on the ten-year risk needs to be incorporated into the patient/clinician discussion and clinical decision making. Incorporating good clinical practices for the measurement of critical clinical variables and robust standardization of laboratory parameters to more stringent reference standards is extremely important for successful implementation of the new guidelines. Furthermore, ability to customize the risk calculator inputs to better represent unique clinical circumstances specific to individual needs would be highly desirable in the future versions of the risk calculator.
NASA Technical Reports Server (NTRS)
Hughes, D. L.; Ray, R. J.; Walton, J. T.
1985-01-01
The calculated value of net thrust of an aircraft powered by a General Electric F404-GE-400 afterburning turbofan engine was evaluated for its sensitivity to various input parameters. The effects of a 1.0-percent change in each input parameter on the calculated value of net thrust with two calculation methods are compared. This paper presents the results of these comparisons and also gives the estimated accuracy of the overall net thrust calculation as determined from the influence coefficients and estimated parameter measurement accuracies.
The role of vocal individuality in conservation
Terry, Andrew MR; Peake, Tom M; McGregor, Peter K
2005-01-01
Identifying the individuals within a population can generate information on life history parameters, generate input data for conservation models, and highlight behavioural traits that may affect management decisions and error or bias within census methods. Individual animals can be discriminated by features of their vocalisations. This vocal individuality can be utilised as an alternative marking technique in situations where the marks are difficult to detect or animals are sensitive to disturbance. Vocal individuality can also be used in cases were the capture and handling of an animal is either logistically or ethically problematic. Many studies have suggested that vocal individuality can be used to count and monitor populations over time; however, few have explicitly tested the method in this role. In this review we discuss methods for extracting individuality information from vocalisations and techniques for using this to count and monitor populations over time. We present case studies in birds where vocal individuality has been applied to conservation and we discuss its role in mammals. PMID:15960848
Carvalho, Luis Alberto
2005-02-01
Our main goal in this work was to develop an artificial neural network (NN) that could classify specific types of corneal shapes using Zernike coefficients as input. Other authors have implemented successful NN systems in the past and have demonstrated their efficiency using different parameters. Our claim is that, given the increasing popularity of Zernike polynomials among the eye care community, this may be an interesting choice to add complementing value and precision to existing methods. By using a simple and well-documented corneal surface representation scheme, which relies on corneal elevation information, one can generate simple NN input parameters that are independent of curvature definition and that are also efficient. We have used the Matlab Neural Network Toolbox (MathWorks, Natick, MA) to implement a three-layer feed-forward NN with 15 inputs and 5 outputs. A database from an EyeSys System 2000 (EyeSys Vision, Houston, TX) videokeratograph installed at the Escola Paulista de Medicina-Sao Paulo was used. This database contained an unknown number of corneal types. From this database, two specialists selected 80 corneas that could be clearly classified into five distinct categories: (1) normal, (2) with-the-rule astigmatism, (3) against-the-rule astigmatism, (4) keratoconus, and (5) post-laser-assisted in situ keratomileusis. The corneal height (SAG) information of the 80 data files was fit with the first 15 Vision Science and it Applications (VSIA) standard Zernike coefficients, which were individually used to feed the 15 neurons of the input layer. The five output neurons were associated with the five typical corneal shapes. A group of 40 cases was randomly selected from the larger group of 80 corneas and used as the training set. The NN responses were statistically analyzed in terms of sensitivity [true positive/(true positive + false negative)], specificity [true negative/(true negative + false positive)], and precision [(true positive + true negative)/total number of cases]. The mean values for these parameters were, respectively, 78.75, 97.81, and 94%. Although we have used a relatively small training and testing set, results presented here should be considered promising. They are certainly an indication of the potential of Zernike polynomials as reliable parameters, at least in the cases presented here, as input data for artificial intelligence automation of the diagnosis process of videokeratography examinations. This technique should facilitate the implementation and add value to the classification methods already available. We also discuss briefly certain special properties of Zernike polynomials that are what we think make them suitable as NN inputs for this type of application.
Analysis of uncertainties in Monte Carlo simulated organ dose for chest CT
NASA Astrophysics Data System (ADS)
Muryn, John S.; Morgan, Ashraf G.; Segars, W. P.; Liptak, Chris L.; Dong, Frank F.; Primak, Andrew N.; Li, Xiang
2015-03-01
In Monte Carlo simulation of organ dose for a chest CT scan, many input parameters are required (e.g., half-value layer of the x-ray energy spectrum, effective beam width, and anatomical coverage of the scan). The input parameter values are provided by the manufacturer, measured experimentally, or determined based on typical clinical practices. The goal of this study was to assess the uncertainties in Monte Carlo simulated organ dose as a result of using input parameter values that deviate from the truth (clinical reality). Organ dose from a chest CT scan was simulated for a standard-size female phantom using a set of reference input parameter values (treated as the truth). To emulate the situation in which the input parameter values used by the researcher may deviate from the truth, additional simulations were performed in which errors were purposefully introduced into the input parameter values, the effects of which on organ dose per CTDIvol were analyzed. Our study showed that when errors in half value layer were within ± 0.5 mm Al, the errors in organ dose per CTDIvol were less than 6%. Errors in effective beam width of up to 3 mm had negligible effect (< 2.5%) on organ dose. In contrast, when the assumed anatomical center of the patient deviated from the true anatomical center by 5 cm, organ dose errors of up to 20% were introduced. Lastly, when the assumed extra scan length was longer by 4 cm than the true value, dose errors of up to 160% were found. The results answer the important question: to what level of accuracy each input parameter needs to be determined in order to obtain accurate organ dose results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprung, J.L.; Jow, H-N; Rollstin, J.A.
1990-12-01
Estimation of offsite accident consequences is the customary final step in a probabilistic assessment of the risks of severe nuclear reactor accidents. Recently, the Nuclear Regulatory Commission reassessed the risks of severe accidents at five US power reactors (NUREG-1150). Offsite accident consequences for NUREG-1150 source terms were estimated using the MELCOR Accident Consequence Code System (MACCS). Before these calculations were performed, most MACCS input parameters were reviewed, and for each parameter reviewed, a best-estimate value was recommended. This report presents the results of these reviews. Specifically, recommended values and the basis for their selection are presented for MACCS atmospheric andmore » biospheric transport, emergency response, food pathway, and economic input parameters. Dose conversion factors and health effect parameters are not reviewed in this report. 134 refs., 15 figs., 110 tabs.« less
Using model order tests to determine sensory inputs in a motion study
NASA Technical Reports Server (NTRS)
Repperger, D. W.; Junker, A. M.
1977-01-01
In the study of motion effects on tracking performance, a problem of interest is the determination of what sensory inputs a human uses in controlling his tracking task. In the approach presented here a simple canonical model (FID or a proportional, integral, derivative structure) is used to model the human's input-output time series. A study of significant changes in reduction of the output error loss functional is conducted as different permutations of parameters are considered. Since this canonical model includes parameters which are related to inputs to the human (such as the error signal, its derivatives and integration), the study of model order is equivalent to the study of which sensory inputs are being used by the tracker. The parameters are obtained which have the greatest effect on reducing the loss function significantly. In this manner the identification procedure converts the problem of testing for model order into the problem of determining sensory inputs.
Modal Parameter Identification of a Flexible Arm System
NASA Technical Reports Server (NTRS)
Barrington, Jason; Lew, Jiann-Shiun; Korbieh, Edward; Wade, Montanez; Tantaris, Richard
1998-01-01
In this paper an experiment is designed for the modal parameter identification of a flexible arm system. This experiment uses a function generator to provide input signal and an oscilloscope to save input and output response data. For each vibrational mode, many sets of sine-wave inputs with frequencies close to the natural frequency of the arm system are used to excite the vibration of this mode. Then a least-squares technique is used to analyze the experimental input/output data to obtain the identified parameters for this mode. The identified results are compared with the analytical model obtained by applying finite element analysis.
Certification Testing Methodology for Composite Structure. Volume 2. Methodology Development
1986-10-01
parameter, sample size and fa- tigue test duration. The required input are 1. Residual strength Weibull shape parameter ( ALPR ) 2. Fatigue life Weibull shape...INPUT STRENGTH ALPHA’) READ(*,*) ALPR ALPRI = 1.O/ ALPR WRITE(*, 2) 2 FORMAT( 2X, ’PLEASE INPUT LIFE ALPHA’) READ(*,*) ALPL ALPLI - 1.0/ALPL WRITE(*, 3...3 FORMAT(2X,’PLEASE INPUT SAMPLE SIZE’) READ(*,*) N AN - N WRITE(*,4) 4 FORMAT(2X,’PLEASE INPUT TEST DURATION’) READ(*,*) T RALP - ALPL/ ALPR ARGR - 1
NASA Technical Reports Server (NTRS)
Kanning, G.
1975-01-01
A digital computer program written in FORTRAN is presented that implements the system identification theory for deterministic systems using input-output measurements. The user supplies programs simulating the mathematical model of the physical plant whose parameters are to be identified. The user may choose any one of three options. The first option allows for a complete model simulation for fixed input forcing functions. The second option identifies up to 36 parameters of the model from wind tunnel or flight measurements. The third option performs a sensitivity analysis for up to 36 parameters. The use of each option is illustrated with an example using input-output measurements for a helicopter rotor tested in a wind tunnel.
National assessment of geologic carbon dioxide storage resources: data
,
2013-01-01
In 2012, the U.S. Geological Survey (USGS) completed the national assessment of geologic carbon dioxide storage resources. Its data and results are reported in three publications: the assessment data publication (this report), the assessment results publication (U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013a, USGS Circular 1386), and the assessment summary publication (U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013b, USGS Fact Sheet 2013–3020). This data publication supports the results publication and contains (1) individual storage assessment unit (SAU) input data forms with all input parameters and details on the allocation of the SAU surface land area by State and general land-ownership category; (2) figures representing the distribution of all storage classes for each SAU; (3) a table containing most input data and assessment result values for each SAU; and (4) a pairwise correlation matrix specifying geological and methodological dependencies between SAUs that are needed for aggregation of results.
NASA Astrophysics Data System (ADS)
Majumder, Himadri; Maity, Kalipada
2018-03-01
Shape memory alloy has a unique capability to return to its original shape after physical deformation by applying heat or thermo-mechanical or magnetic load. In this experimental investigation, desirability function analysis (DFA), a multi-attribute decision making was utilized to find out the optimum input parameter setting during wire electrical discharge machining (WEDM) of Ni-Ti shape memory alloy. Four critical machining parameters, namely pulse on time (TON), pulse off time (TOFF), wire feed (WF) and wire tension (WT) were taken as machining inputs for the experiments to optimize three interconnected responses like cutting speed, kerf width, and surface roughness. Input parameter combination TON = 120 μs., TOFF = 55 μs., WF = 3 m/min. and WT = 8 kg-F were found to produce the optimum results. The optimum process parameters for each desired response were also attained using Taguchi’s signal-to-noise ratio. Confirmation test has been done to validate the optimum machining parameter combination which affirmed DFA was a competent approach to select optimum input parameters for the ideal response quality for WEDM of Ni-Ti shape memory alloy.
Evolving Spiking Neural Networks for Recognition of Aged Voices.
Silva, Marco; Vellasco, Marley M B R; Cataldo, Edson
2017-01-01
The aging of the voice, known as presbyphonia, is a natural process that can cause great change in vocal quality of the individual. This is a relevant problem to those people who use their voices professionally, and its early identification can help determine a suitable treatment to avoid its progress or even to eliminate the problem. This work focuses on the development of a new model for the identification of aging voices (independently of their chronological age), using as input attributes parameters extracted from the voice and glottal signals. The proposed model, named Quantum binary-real evolving Spiking Neural Network (QbrSNN), is based on spiking neural networks (SNNs), with an unsupervised training algorithm, and a Quantum-Inspired Evolutionary Algorithm that automatically determines the most relevant attributes and the optimal parameters that configure the SNN. The QbrSNN model was evaluated in a database composed of 120 records, containing samples from three groups of speakers. The results obtained indicate that the proposed model provides better accuracy than other approaches, with fewer input attributes. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolery, T.J.
1992-09-14
EQ3NR is an aqueous solution speciation-solubility modeling code. It is part of the EQ3/6 software package for geochemical modeling. It computes the thermodynamic state of an aqueous solution by determining the distribution of chemical species, including simple ions, ion pairs, and complexes, using standard state thermodynamic data and various equations which describe the thermodynamic activity coefficients of these species. The input to the code describes the aqueous solution in terms of analytical data, including total (analytical) concentrations of dissolved components and such other parameters as the pH, pHCl, Eh, pe, and oxygen fugacity. The input may also include a desiredmore » electrical balancing adjustment and various constraints which impose equilibrium with special pure minerals, solid solution end-member components (of specified mole fractions), and gases (of specified fugacities). The code evaluates the degree of disequilibrium in terms of the saturation index (SI = 1og Q/K) and the thermodynamic affinity (A = {minus}2.303 RT log Q/K) for various reactions, such as mineral dissolution or oxidation-reduction in the aqueous solution itself. Individual values of Eh, pe, oxygen fugacity, and Ah (redox affinity) are computed for aqueous redox couples. Equilibrium fugacities are computed for gas species. The code is highly flexible in dealing with various parameters as either model inputs or outputs. The user can specify modification or substitution of equilibrium constants at run time by using options on the input file.« less
Meshkat, Nicolette; Anderson, Chris; Distefano, Joseph J
2011-09-01
When examining the structural identifiability properties of dynamic system models, some parameters can take on an infinite number of values and yet yield identical input-output data. These parameters and the model are then said to be unidentifiable. Finding identifiable combinations of parameters with which to reparameterize the model provides a means for quantitatively analyzing the model and computing solutions in terms of the combinations. In this paper, we revisit and explore the properties of an algorithm for finding identifiable parameter combinations using Gröbner Bases and prove useful theoretical properties of these parameter combinations. We prove a set of M algebraically independent identifiable parameter combinations can be found using this algorithm and that there exists a unique rational reparameterization of the input-output equations over these parameter combinations. We also demonstrate application of the procedure to a nonlinear biomodel. Copyright © 2011 Elsevier Inc. All rights reserved.
Pant, Sanjay
2018-05-01
A new class of functions, called the 'information sensitivity functions' (ISFs), which quantify the information gain about the parameters through the measurements/observables of a dynamical system are presented. These functions can be easily computed through classical sensitivity functions alone and are based on Bayesian and information-theoretic approaches. While marginal information gain is quantified by decrease in differential entropy, correlations between arbitrary sets of parameters are assessed through mutual information. For individual parameters, these information gains are also presented as marginal posterior variances, and, to assess the effect of correlations, as conditional variances when other parameters are given. The easy to interpret ISFs can be used to (a) identify time intervals or regions in dynamical system behaviour where information about the parameters is concentrated; (b) assess the effect of measurement noise on the information gain for the parameters; (c) assess whether sufficient information in an experimental protocol (input, measurements and their frequency) is available to identify the parameters; (d) assess correlation in the posterior distribution of the parameters to identify the sets of parameters that are likely to be indistinguishable; and (e) assess identifiability problems for particular sets of parameters. © 2018 The Authors.
Optimization of a Thermodynamic Model Using a Dakota Toolbox Interface
NASA Astrophysics Data System (ADS)
Cyrus, J.; Jafarov, E. E.; Schaefer, K. M.; Wang, K.; Clow, G. D.; Piper, M.; Overeem, I.
2016-12-01
Scientific modeling of the Earth physical processes is an important driver of modern science. The behavior of these scientific models is governed by a set of input parameters. It is crucial to choose accurate input parameters that will also preserve the corresponding physics being simulated in the model. In order to effectively simulate real world processes the models output data must be close to the observed measurements. To achieve this optimal simulation, input parameters are tuned until we have minimized the objective function, which is the error between the simulation model outputs and the observed measurements. We developed an auxiliary package, which serves as a python interface between the user and DAKOTA. The package makes it easy for the user to conduct parameter space explorations, parameter optimizations, as well as sensitivity analysis while tracking and storing results in a database. The ability to perform these analyses via a Python library also allows the users to combine analysis techniques, for example finding an approximate equilibrium with optimization then immediately explore the space around it. We used the interface to calibrate input parameters for the heat flow model, which is commonly used in permafrost science. We performed optimization on the first three layers of the permafrost model, each with two thermal conductivity coefficients input parameters. Results of parameter space explorations indicate that the objective function not always has a unique minimal value. We found that gradient-based optimization works the best for the objective functions with one minimum. Otherwise, we employ more advanced Dakota methods such as genetic optimization and mesh based convergence in order to find the optimal input parameters. We were able to recover 6 initially unknown thermal conductivity parameters within 2% accuracy of their known values. Our initial tests indicate that the developed interface for the Dakota toolbox could be used to perform analysis and optimization on a `black box' scientific model more efficiently than using just Dakota.
NASA Astrophysics Data System (ADS)
Astroza, Rodrigo; Ebrahimian, Hamed; Li, Yong; Conte, Joel P.
2017-09-01
A methodology is proposed to update mechanics-based nonlinear finite element (FE) models of civil structures subjected to unknown input excitation. The approach allows to jointly estimate unknown time-invariant model parameters of a nonlinear FE model of the structure and the unknown time histories of input excitations using spatially-sparse output response measurements recorded during an earthquake event. The unscented Kalman filter, which circumvents the computation of FE response sensitivities with respect to the unknown model parameters and unknown input excitations by using a deterministic sampling approach, is employed as the estimation tool. The use of measurement data obtained from arrays of heterogeneous sensors, including accelerometers, displacement sensors, and strain gauges is investigated. Based on the estimated FE model parameters and input excitations, the updated nonlinear FE model can be interrogated to detect, localize, classify, and assess damage in the structure. Numerically simulated response data of a three-dimensional 4-story 2-by-1 bay steel frame structure with six unknown model parameters subjected to unknown bi-directional horizontal seismic excitation, and a three-dimensional 5-story 2-by-1 bay reinforced concrete frame structure with nine unknown model parameters subjected to unknown bi-directional horizontal seismic excitation are used to illustrate and validate the proposed methodology. The results of the validation studies show the excellent performance and robustness of the proposed algorithm to jointly estimate unknown FE model parameters and unknown input excitations.
Radar signal categorization using a neural network
NASA Technical Reports Server (NTRS)
Anderson, James A.; Gately, Michael T.; Penz, P. Andrew; Collins, Dean R.
1991-01-01
Neural networks were used to analyze a complex simulated radar environment which contains noisy radar pulses generated by many different emitters. The neural network used is an energy minimizing network (the BSB model) which forms energy minima - attractors in the network dynamical system - based on learned input data. The system first determines how many emitters are present (the deinterleaving problem). Pulses from individual simulated emitters give rise to separate stable attractors in the network. Once individual emitters are characterized, it is possible to make tentative identifications of them based on their observed parameters. As a test of this idea, a neural network was used to form a small data base that potentially could make emitter identifications.
NASA Astrophysics Data System (ADS)
Li, Xin; Cai, Yu; Moloney, Brendan; Chen, Yiyi; Huang, Wei; Woods, Mark; Coakley, Fergus V.; Rooney, William D.; Garzotto, Mark G.; Springer, Charles S.
2016-08-01
Dynamic-Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) has been used widely for clinical applications. Pharmacokinetic modeling of DCE-MRI data that extracts quantitative contrast reagent/tissue-specific model parameters is the most investigated method. One of the primary challenges in pharmacokinetic analysis of DCE-MRI data is accurate and reliable measurement of the arterial input function (AIF), which is the driving force behind all pharmacokinetics. Because of effects such as inflow and partial volume averaging, AIF measured from individual arteries sometimes require amplitude scaling for better representation of the blood contrast reagent (CR) concentration time-courses. Empirical approaches like blinded AIF estimation or reference tissue AIF derivation can be useful and practical, especially when there is no clearly visible blood vessel within the imaging field-of-view (FOV). Similarly, these approaches generally also require magnitude scaling of the derived AIF time-courses. Since the AIF varies among individuals even with the same CR injection protocol and the perfect scaling factor for reconstructing the ground truth AIF often remains unknown, variations in estimated pharmacokinetic parameters due to varying AIF scaling factors are of special interest. In this work, using simulated and real prostate cancer DCE-MRI data, we examined parameter variations associated with AIF scaling. Our results show that, for both the fast-exchange-limit (FXL) Tofts model and the water exchange sensitized fast-exchange-regime (FXR) model, the commonly fitted CR transfer constant (Ktrans) and the extravascular, extracellular volume fraction (ve) scale nearly proportionally with the AIF, whereas the FXR-specific unidirectional cellular water efflux rate constant, kio, and the CR intravasation rate constant, kep, are both AIF scaling insensitive. This indicates that, for DCE-MRI of prostate cancer and possibly other cancers, kio and kep may be more suitable imaging biomarkers for cross-platform, multicenter applications. Data from our limited study cohort show that kio correlates with Gleason scores, suggesting that it may be a useful biomarker for prostate cancer disease progression monitoring.
NASA Technical Reports Server (NTRS)
Glasser, M. E.; Rundel, R. D.
1978-01-01
A method for formulating these changes into the model input parameters using a preprocessor program run on a programed data processor was implemented. The results indicate that any changes in the input parameters are small enough to be negligible in comparison to meteorological inputs and the limitations of the model and that such changes will not substantially increase the number of meteorological cases for which the model will predict surface hydrogen chloride concentrations exceeding public safety levels.
An open, object-based modeling approach for simulating subsurface heterogeneity
NASA Astrophysics Data System (ADS)
Bennett, J.; Ross, M.; Haslauer, C. P.; Cirpka, O. A.
2017-12-01
Characterization of subsurface heterogeneity with respect to hydraulic and geochemical properties is critical in hydrogeology as their spatial distribution controls groundwater flow and solute transport. Many approaches of characterizing subsurface heterogeneity do not account for well-established geological concepts about the deposition of the aquifer materials; those that do (i.e. process-based methods) often require forcing parameters that are difficult to derive from site observations. We have developed a new method for simulating subsurface heterogeneity that honors concepts of sequence stratigraphy, resolves fine-scale heterogeneity and anisotropy of distributed parameters, and resembles observed sedimentary deposits. The method implements a multi-scale hierarchical facies modeling framework based on architectural element analysis, with larger features composed of smaller sub-units. The Hydrogeological Virtual Reality simulator (HYVR) simulates distributed parameter models using an object-based approach. Input parameters are derived from observations of stratigraphic morphology in sequence type-sections. Simulation outputs can be used for generic simulations of groundwater flow and solute transport, and for the generation of three-dimensional training images needed in applications of multiple-point geostatistics. The HYVR algorithm is flexible and easy to customize. The algorithm was written in the open-source programming language Python, and is intended to form a code base for hydrogeological researchers, as well as a platform that can be further developed to suit investigators' individual needs. This presentation will encompass the conceptual background and computational methods of the HYVR algorithm, the derivation of input parameters from site characterization, and the results of groundwater flow and solute transport simulations in different depositional settings.
Extension of the PC version of VEPFIT with input and output routines running under Windows
NASA Astrophysics Data System (ADS)
Schut, H.; van Veen, A.
1995-01-01
The fitting program VEPFIT has been extended with applications running under the Microsoft-Windows environment facilitating the input and output of the VEPFIT fitting module. We have exploited the Microsoft-Windows graphical users interface by making use of dialog windows, scrollbars, command buttons, etc. The user communicates with the program simply by clicking and dragging with the mouse pointing device. Keyboard actions are limited to a minimum. Upon changing one or more input parameters the results of the modeling of the S-parameter and Ps fractions versus positron implantation energy are updated and displayed. This action can be considered as the first step in the fitting procedure upon which the user can decide to further adapt the input parameters or to forward these parameters as initial values to the fitting routine. The modeling step has proven to be helpful for designing positron beam experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamp, F.; Brueningk, S.C.; Wilkens, J.J.
Purpose: In particle therapy, treatment planning and evaluation are frequently based on biological models to estimate the relative biological effectiveness (RBE) or the equivalent dose in 2 Gy fractions (EQD2). In the context of the linear-quadratic model, these quantities depend on biological parameters (α, β) for ions as well as for the reference radiation and on the dose per fraction. The needed biological parameters as well as their dependency on ion species and ion energy typically are subject to large (relative) uncertainties of up to 20–40% or even more. Therefore it is necessary to estimate the resulting uncertainties in e.g.more » RBE or EQD2 caused by the uncertainties of the relevant input parameters. Methods: We use a variance-based sensitivity analysis (SA) approach, in which uncertainties in input parameters are modeled by random number distributions. The evaluated function is executed 10{sup 4} to 10{sup 6} times, each run with a different set of input parameters, randomly varied according to their assigned distribution. The sensitivity S is a variance-based ranking (from S = 0, no impact, to S = 1, only influential part) of the impact of input uncertainties. The SA approach is implemented for carbon ion treatment plans on 3D patient data, providing information about variations (and their origin) in RBE and EQD2. Results: The quantification enables 3D sensitivity maps, showing dependencies of RBE and EQD2 on different input uncertainties. The high number of runs allows displaying the interplay between different input uncertainties. The SA identifies input parameter combinations which result in extreme deviations of the result and the input parameter for which an uncertainty reduction is the most rewarding. Conclusion: The presented variance-based SA provides advantageous properties in terms of visualization and quantification of (biological) uncertainties and their impact. The method is very flexible, model independent, and enables a broad assessment of uncertainties. Supported by DFG grant WI 3745/1-1 and DFG cluster of excellence: Munich-Centre for Advanced Photonics.« less
Casadebaig, Pierre; Zheng, Bangyou; Chapman, Scott; Huth, Neil; Faivre, Robert; Chenu, Karine
2016-01-01
A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background). The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90) was evaluated in a wide target population of environments (4 sites × 125 years), management practices (3 sowing dates × 3 nitrogen fertilization levels) and CO2 (2 levels). The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total). The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model) improvement. PMID:26799483
Casadebaig, Pierre; Zheng, Bangyou; Chapman, Scott; Huth, Neil; Faivre, Robert; Chenu, Karine
2016-01-01
A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background). The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90) was evaluated in a wide target population of environments (4 sites × 125 years), management practices (3 sowing dates × 3 nitrogen fertilization levels) and CO2 (2 levels). The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total). The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model) improvement.
Aircraft Hydraulic Systems Dynamic Analysis Component Data Handbook
1980-04-01
82 13. QUINCKE TUBE ...................................... 85 14. 11EAT EXCHANGER ............. ................... 90...Input Parameters ....... ........... .7 61 )uincke Tube Input Parameters with Hole Locat ions 87 62 "rototype Quincke Tube Data ........... 89 6 3 Fo-,:ed...Elasticity (Line 3) PSI 1.6E7 FIGURE 58 HSFR INPUT DATA FOR PULSCO TYPE ACOUSTIC FILTER 84 13. QUINCKE TUBE A means to dampen acoustic noise at resonance
Analysis and selection of optimal function implementations in massively parallel computer
Archer, Charles Jens [Rochester, MN; Peters, Amanda [Rochester, MN; Ratterman, Joseph D [Rochester, MN
2011-05-31
An apparatus, program product and method optimize the operation of a parallel computer system by, in part, collecting performance data for a set of implementations of a function capable of being executed on the parallel computer system based upon the execution of the set of implementations under varying input parameters in a plurality of input dimensions. The collected performance data may be used to generate selection program code that is configured to call selected implementations of the function in response to a call to the function under varying input parameters. The collected performance data may be used to perform more detailed analysis to ascertain the comparative performance of the set of implementations of the function under the varying input parameters.
NASA Astrophysics Data System (ADS)
Vasquez Padilla, Ricardo; Soo Too, Yen Chean; Benito, Regano; McNaughton, Robbie; Stein, Wes
2018-01-01
In this paper, optimisation of the supercritical CO? Brayton cycles integrated with a solar receiver, which provides heat input to the cycle, was performed. Four S-CO? Brayton cycle configurations were analysed and optimum operating conditions were obtained by using a multi-objective thermodynamic optimisation. Four different sets, each including two objective parameters, were considered individually. The individual multi-objective optimisation was performed by using Non-dominated Sorting Genetic Algorithm. The effect of reheating, solar receiver pressure drop and cycle parameters on the overall exergy and cycle thermal efficiency was analysed. The results showed that, for all configurations, the overall exergy efficiency of the solarised systems achieved at maximum value between 700°C and 750°C and the optimum value is adversely affected by the solar receiver pressure drop. In addition, the optimum cycle high pressure was in the range of 24.2-25.9 MPa, depending on the configurations and reheat condition.
Next-Generation Lightweight Mirror Modeling Software
NASA Technical Reports Server (NTRS)
Arnold, William R., Sr.; Fitzgerald, Mathew; Rosa, Rubin Jaca; Stahl, Phil
2013-01-01
The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low temperature fusion, Corning's continued improvements in the Frit bonding process and the ability to cast large complex designs, combined with water-jet and conventional diamond machining of glasses and ceramics has created the need for more efficient means of generating finite element models of these structures. Traditional methods of assembling 400,000 + element models can take weeks of effort, severely limiting the range of possible optimization variables. This paper will introduce model generation software developed under NASA sponsorship for the design of both terrestrial and space based mirrors. The software deals with any current mirror manufacturing technique, single substrates, multiple arrays of substrates, as well as the ability to merge submodels into a single large model. The modeler generates both mirror and suspension system elements, suspensions can be created either for each individual petal or the whole mirror. A typical model generation of 250,000 nodes and 450,000 elements only takes 5-10 minutes, much of that time being variable input time. The program can create input decks for ANSYS, ABAQUS and NASTRAN. An archive/retrieval system permits creation of complete trade studies, varying cell size, depth, and petal size, suspension geometry with the ability to recall a particular set of parameters and make small or large changes with ease. The input decks created by the modeler are text files which can be modified by any editor, all the key shell thickness parameters are accessible and comments in deck identify which groups of elements are associated with these parameters. This again makes optimization easier. With ANSYS decks, the nodes representing support attachments are grouped into components; in ABAQUS these are SETS and in NASTRAN as GRIDPOINT SETS, this make integration of these models into large telescope or satellite models possible
Next Generation Lightweight Mirror Modeling Software
NASA Technical Reports Server (NTRS)
Arnold, William; Fitzgerald, Matthew; Stahl, Philip
2013-01-01
The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low temperature fusion, Corning's continued improvements in the Frit bonding process and the ability to cast large complex designs, combined with water-jet and conventional diamond machining of glasses and ceramics has created the need for more efficient means of generating finite element models of these structures. Traditional methods of assembling 400,000 + element models can take weeks of effort, severely limiting the range of possible optimization variables. This paper will introduce model generation software developed under NASA sponsorship for the design of both terrestrial and space based mirrors. The software deals with any current mirror manufacturing technique, single substrates, multiple arrays of substrates, as well as the ability to merge submodels into a single large model. The modeler generates both mirror and suspension system elements, suspensions can be created either for each individual petal or the whole mirror. A typical model generation of 250,000 nodes and 450,000 elements only takes 5-10 minutes, much of that time being variable input time. The program can create input decks for ANSYS, ABAQUS and NASTRAN. An archive/retrieval system permits creation of complete trade studies, varying cell size, depth, and petal size, suspension geometry with the ability to recall a particular set of parameters and make small or large changes with ease. The input decks created by the modeler are text files which can be modified by any editor, all the key shell thickness parameters are accessible and comments in deck identify which groups of elements are associated with these parameters. This again makes optimization easier. With ANSYS decks, the nodes representing support attachments are grouped into components; in ABAQUS these are SETS and in NASTRAN as GRIDPOINT SETS, this make integration of these models into large telescope or satellite models possible.
Next Generation Lightweight Mirror Modeling Software
NASA Technical Reports Server (NTRS)
Arnold, William R., Sr.; Fitzgerald, Mathew; Rosa, Rubin Jaca; Stahl, H. Philip
2013-01-01
The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low temperature fusion, Corning's continued improvements in the Frit bonding process and the ability to cast large complex designs, combined with water-jet and conventional diamond machining of glasses and ceramics has created the need for more efficient means of generating finite element models of these structures. Traditional methods of assembling 400,000 + element models can take weeks of effort, severely limiting the range of possible optimization variables. This paper will introduce model generation software developed under NASA sponsorship for the design of both terrestrial and space based mirrors. The software deals with any current mirror manufacturing technique, single substrates, multiple arrays of substrates, as well as the ability to merge submodels into a single large model. The modeler generates both mirror and suspension system elements, suspensions can be created either for each individual petal or the whole mirror. A typical model generation of 250,000 nodes and 450,000 elements only takes 5-10 minutes, much of that time being variable input time. The program can create input decks for ANSYS, ABAQUS and NASTRAN. An archive/retrieval system permits creation of complete trade studies, varying cell size, depth, and petal size, suspension geometry with the ability to recall a particular set of parameters and make small or large changes with ease. The input decks created by the modeler are text files which can be modified by any editor, all the key shell thickness parameters are accessible and comments in deck identify which groups of elements are associated with these parameters. This again makes optimization easier. With ANSYS decks, the nodes representing support attachments are grouped into components; in ABAQUS these are SETS and in NASTRAN as GRIDPOINT SETS, this make integration of these models into large telescope or satellite models easier.
Suggestions for CAP-TSD mesh and time-step input parameters
NASA Technical Reports Server (NTRS)
Bland, Samuel R.
1991-01-01
Suggestions for some of the input parameters used in the CAP-TSD (Computational Aeroelasticity Program-Transonic Small Disturbance) computer code are presented. These parameters include those associated with the mesh design and time step. The guidelines are based principally on experience with a one-dimensional model problem used to study wave propagation in the vertical direction.
Unsteady hovering wake parameters identified from dynamic model tests, part 1
NASA Technical Reports Server (NTRS)
Hohenemser, K. H.; Crews, S. T.
1977-01-01
The development of a 4-bladed model rotor is reported that can be excited with a simple eccentric mechanism in progressing and regressing modes with either harmonic or transient inputs. Parameter identification methods were applied to the problem of extracting parameters for linear perturbation models, including rotor dynamic inflow effects, from the measured blade flapping responses to transient pitch stirring excitations. These perturbation models were then used to predict blade flapping response to other pitch stirring transient inputs, and rotor wake and blade flapping responses to harmonic inputs. The viability and utility of using parameter identification methods for extracting the perturbation models from transients are demonstrated through these combined analytical and experimental studies.
NASA Astrophysics Data System (ADS)
Lorite, I. J.; Mateos, L.; Fereres, E.
2005-01-01
SummaryThe simulations of dynamic, spatially distributed non-linear models are impacted by the degree of spatial and temporal aggregation of their input parameters and variables. This paper deals with the impact of these aggregations on the assessment of irrigation scheme performance by simulating water use and crop yield. The analysis was carried out on a 7000 ha irrigation scheme located in Southern Spain. Four irrigation seasons differing in rainfall patterns were simulated (from 1996/1997 to 1999/2000) with the actual soil parameters and with hypothetical soil parameters representing wider ranges of soil variability. Three spatial aggregation levels were considered: (I) individual parcels (about 800), (II) command areas (83) and (III) the whole irrigation scheme. Equally, five temporal aggregation levels were defined: daily, weekly, monthly, quarterly and annually. The results showed little impact of spatial aggregation in the predictions of irrigation requirements and of crop yield for the scheme. The impact of aggregation was greater in rainy years, for deep-rooted crops (sunflower) and in scenarios with heterogeneous soils. The highest impact on irrigation requirement estimations was in the scenario of most heterogeneous soil and in 1999/2000, a year with frequent rainfall during the irrigation season: difference of 7% between aggregation levels I and III was found. Equally, it was found that temporal aggregation had only significant impact on irrigation requirements predictions for time steps longer than 4 months. In general, simulated annual irrigation requirements decreased as the time step increased. The impact was greater in rainy years (specially with abundant and concentrated rain events) and in crops which cycles coincide in part with the rainy season (garlic, winter cereals and olive). It is concluded that in this case, average, representative values for the main inputs of the model (crop, soil properties and sowing dates) can generate results within 1% of those obtained by providing spatially specific values for about 800 parcels.
Sensitivity analysis and nonlinearity assessment of steam cracking furnace process
NASA Astrophysics Data System (ADS)
Rosli, M. N.; Sudibyo, Aziz, N.
2017-11-01
In this paper, sensitivity analysis and nonlinearity assessment of cracking furnace process are presented. For the sensitivity analysis, the fractional factorial design method is employed as a method to analyze the effect of input parameters, which consist of four manipulated variables and two disturbance variables, to the output variables and to identify the interaction between each parameter. The result of the factorial design method is used as a screening method to reduce the number of parameters, and subsequently, reducing the complexity of the model. It shows that out of six input parameters, four parameters are significant. After the screening is completed, step test is performed on the significant input parameters to assess the degree of nonlinearity of the system. The result shows that the system is highly nonlinear with respect to changes in an air-to-fuel ratio (AFR) and feed composition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrichs, D.R.; Argo, R.S.
The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (ONWI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. The various input parameters required in the analysis are compiled in data systems. The data are organized and preparedmore » by various input subroutines for utilization by the hydraulic and transport codes. The hydrologic models simulate the groundwater flow systems and provide water flow directions, rates, and velocities as inputs to the transport models. Outputs from the transport models are basically graphs of radionuclide concentration in the groundwater plotted against time. After dilution in the receiving surface-water body (e.g., lake, river, bay), these data are the input source terms for the dose models, if dose assessments are required. The dose models calculate radiation dose to individuals and populations. CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) Data System, a storage and retrieval system for model input and output data, including graphical interpretation and display is described. This is the third of four volumes of the description of the CIRMIS Data System.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrichs, D.R.
1980-01-01
The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (ONWI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. The various input parameters required in the analysis are compiled in data systems. The data are organized and preparedmore » by various input subroutines for use by the hydrologic and transport codes. The hydrologic models simulate the groundwater flow systems and provide water flow directions, rates, and velocities as inputs to the transport models. Outputs from the transport models are basically graphs of radionuclide concentration in the groundwater plotted against time. After dilution in the receiving surface-water body (e.g., lake, river, bay), these data are the input source terms for the dose models, if dose assessments are required. The dose models calculate radiation dose to individuals and populations. CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) Data System, a storage and retrieval system for model input and output data, including graphical interpretation and display is described. This is the first of four volumes of the description of the CIRMIS Data System.« less
2017-05-01
ER D C/ EL T R- 17 -7 Environmental Security Technology Certification Program (ESTCP) Evaluation of Uncertainty in Constituent Input...Environmental Security Technology Certification Program (ESTCP) ERDC/EL TR-17-7 May 2017 Evaluation of Uncertainty in Constituent Input Parameters...Environmental Evaluation and Characterization Sys- tem (TREECS™) was applied to a groundwater site and a surface water site to evaluate the sensitivity
State, Parameter, and Unknown Input Estimation Problems in Active Automotive Safety Applications
NASA Astrophysics Data System (ADS)
Phanomchoeng, Gridsada
A variety of driver assistance systems such as traction control, electronic stability control (ESC), rollover prevention and lane departure avoidance systems are being developed by automotive manufacturers to reduce driver burden, partially automate normal driving operations, and reduce accidents. The effectiveness of these driver assistance systems can be significant enhanced if the real-time values of several vehicle parameters and state variables, namely tire-road friction coefficient, slip angle, roll angle, and rollover index, can be known. Since there are no inexpensive sensors available to measure these variables, it is necessary to estimate them. However, due to the significant nonlinear dynamics in a vehicle, due to unknown and changing plant parameters, and due to the presence of unknown input disturbances, the design of estimation algorithms for this application is challenging. This dissertation develops a new approach to observer design for nonlinear systems in which the nonlinearity has a globally (or locally) bounded Jacobian. The developed approach utilizes a modified version of the mean value theorem to express the nonlinearity in the estimation error dynamics as a convex combination of known matrices with time varying coefficients. The observer gains are then obtained by solving linear matrix inequalities (LMIs). A number of illustrative examples are presented to show that the developed approach is less conservative and more useful than the standard Lipschitz assumption based nonlinear observer. The developed nonlinear observer is utilized for estimation of slip angle, longitudinal vehicle velocity, and vehicle roll angle. In order to predict and prevent vehicle rollovers in tripped situations, it is necessary to estimate the vertical tire forces in the presence of unknown road disturbance inputs. An approach to estimate unknown disturbance inputs in nonlinear systems using dynamic model inversion and a modified version of the mean value theorem is presented. The developed theory is used to estimate vertical tire forces and predict tripped rollovers in situations involving road bumps, potholes, and lateral unknown force inputs. To estimate the tire-road friction coefficients at each individual tire of the vehicle, algorithms to estimate longitudinal forces and slip ratios at each tire are proposed. Subsequently, tire-road friction coefficients are obtained using recursive least squares parameter estimators that exploit the relationship between longitudinal force and slip ratio at each tire. The developed approaches are evaluated through simulations with industry standard software, CARSIM, with experimental tests on a Volvo XC90 sport utility vehicle and with experimental tests on a 1/8th scaled vehicle. The simulation and experimental results show that the developed approaches can reliably estimate the vehicle parameters and state variables needed for effective ESC and rollover prevention applications.
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
1996-01-01
Flight test maneuvers are specified for the F-18 High Alpha Research Vehicle (HARV). The maneuvers were designed for closed loop parameter identification purposes, specifically for longitudinal and lateral linear model parameter estimation at 5, 20, 30, 45, and 60 degrees angle of attack, using the NASA 1A control law. Each maneuver is to be realized by the pilot applying square wave inputs to specific pilot station controls. Maneuver descriptions and complete specifications of the time/amplitude points defining each input are included, along with plots of the input time histories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenthal, William Steven; Tartakovsky, Alex; Huang, Zhenyu
State and parameter estimation of power transmission networks is important for monitoring power grid operating conditions and analyzing transient stability. Wind power generation depends on fluctuating input power levels, which are correlated in time and contribute to uncertainty in turbine dynamical models. The ensemble Kalman filter (EnKF), a standard state estimation technique, uses a deterministic forecast and does not explicitly model time-correlated noise in parameters such as mechanical input power. However, this uncertainty affects the probability of fault-induced transient instability and increased prediction bias. Here a novel approach is to model input power noise with time-correlated stochastic fluctuations, and integratemore » them with the network dynamics during the forecast. While the EnKF has been used to calibrate constant parameters in turbine dynamical models, the calibration of a statistical model for a time-correlated parameter has not been investigated. In this study, twin experiments on a standard transmission network test case are used to validate our time-correlated noise model framework for state estimation of unsteady operating conditions and transient stability analysis, and a methodology is proposed for the inference of the mechanical input power time-correlation length parameter using time-series data from PMUs monitoring power dynamics at generator buses.« less
Rosenthal, William Steven; Tartakovsky, Alex; Huang, Zhenyu
2017-10-31
State and parameter estimation of power transmission networks is important for monitoring power grid operating conditions and analyzing transient stability. Wind power generation depends on fluctuating input power levels, which are correlated in time and contribute to uncertainty in turbine dynamical models. The ensemble Kalman filter (EnKF), a standard state estimation technique, uses a deterministic forecast and does not explicitly model time-correlated noise in parameters such as mechanical input power. However, this uncertainty affects the probability of fault-induced transient instability and increased prediction bias. Here a novel approach is to model input power noise with time-correlated stochastic fluctuations, and integratemore » them with the network dynamics during the forecast. While the EnKF has been used to calibrate constant parameters in turbine dynamical models, the calibration of a statistical model for a time-correlated parameter has not been investigated. In this study, twin experiments on a standard transmission network test case are used to validate our time-correlated noise model framework for state estimation of unsteady operating conditions and transient stability analysis, and a methodology is proposed for the inference of the mechanical input power time-correlation length parameter using time-series data from PMUs monitoring power dynamics at generator buses.« less
NASA Astrophysics Data System (ADS)
Flores, A. N.; Entekhabi, D.; Bras, R. L.
2007-12-01
Soil hydraulic and thermal properties (SHTPs) affect both the rate of moisture redistribution in the soil column and the volumetric soil water capacity. Adequately constraining these properties through field and lab analysis to parameterize spatially-distributed hydrology models is often prohibitively expensive. Because SHTPs vary significantly at small spatial scales individual soil samples are also only reliably indicative of local conditions, and these properties remain a significant source of uncertainty in soil moisture and temperature estimation. In ensemble-based soil moisture data assimilation, uncertainty in the model-produced prior estimate due to associated uncertainty in SHTPs must be taken into account to avoid under-dispersive ensembles. To treat SHTP uncertainty for purposes of supplying inputs to a distributed watershed model we use the restricted pairing (RP) algorithm, an extension of Latin Hypercube (LH) sampling. The RP algorithm generates an arbitrary number of SHTP combinations by sampling the appropriate marginal distributions of the individual soil properties using the LH approach, while imposing a target rank correlation among the properties. A previously-published meta- database of 1309 soils representing 12 textural classes is used to fit appropriate marginal distributions to the properties and compute the target rank correlation structure, conditioned on soil texture. Given categorical soil textures, our implementation of the RP algorithm generates an arbitrarily-sized ensemble of realizations of the SHTPs required as input to the TIN-based Realtime Integrated Basin Simulator with vegetation dynamics (tRIBS+VEGGIE) distributed parameter ecohydrology model. Soil moisture ensembles simulated with RP- generated SHTPs exhibit less variance than ensembles simulated with SHTPs generated by a scheme that neglects correlation among properties. Neglecting correlation among SHTPs can lead to physically unrealistic combinations of parameters that exhibit implausible hydrologic behavior when input to the tRIBS+VEGGIE model.
INDES User's guide multistep input design with nonlinear rotorcraft modeling
NASA Technical Reports Server (NTRS)
1979-01-01
The INDES computer program, a multistep input design program used as part of a data processing technique for rotorcraft systems identification, is described. Flight test inputs base on INDES improve the accuracy of parameter estimates. The input design algorithm, program input, and program output are presented.
Plummer, Niel; Parkhurst, D.L.; Fleming, G.W.; Dunkle, S.A.
1988-01-01
The program named PHRQPITZ is a computer code capable of making geochemical calculations in brines and other electrolyte solutions to high concentrations using the Pitzer virial-coefficient approach for activity-coefficient corrections. Reaction-modeling capabilities include calculation of (1) aqueous speciation and mineral-saturation index, (2) mineral solubility, (3) mixing and titration of aqueous solutions, (4) irreversible reactions and mineral water mass transfer, and (5) reaction path. The computed results for each aqueous solution include the osmotic coefficient, water activity , mineral saturation indices, mean activity coefficients, total activity coefficients, and scale-dependent values of pH, individual-ion activities and individual-ion activity coeffients , and scale-dependent values of pH, individual-ion activities and individual-ion activity coefficients. A data base of Pitzer interaction parameters is provided at 25 C for the system: Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O, and extended to include largely untested literature data for Fe(II), Mn(II), Sr, Ba, Li, and Br with provision for calculations at temperatures other than 25C. An extensive literature review of published Pitzer interaction parameters for many inorganic salts is given. Also described is an interactive input code for PHRQPITZ called PITZINPT. (USGS)
Incorporating uncertainty in RADTRAN 6.0 input files.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, Matthew L.; Weiner, Ruth F.; Heames, Terence John
Uncertainty may be introduced into RADTRAN analyses by distributing input parameters. The MELCOR Uncertainty Engine (Gauntt and Erickson, 2004) has been adapted for use in RADTRAN to determine the parameter shape and minimum and maximum of the distribution, to sample on the distribution, and to create an appropriate RADTRAN batch file. Coupling input parameters is not possible in this initial application. It is recommended that the analyst be very familiar with RADTRAN and able to edit or create a RADTRAN input file using a text editor before implementing the RADTRAN Uncertainty Analysis Module. Installation of the MELCOR Uncertainty Engine ismore » required for incorporation of uncertainty into RADTRAN. Gauntt and Erickson (2004) provides installation instructions as well as a description and user guide for the uncertainty engine.« less
Luminosity measurements for the R scan experiment at BESIII
Ablikim, M.; Achasov, M. N.; Ahmed, S.; ...
2017-02-08
By analyzing the large-angle Bhabha scattering events e +e - → (γ)e +e - and diphoton events e +e - → (γ)γγ for the data sets collected at center-of-mass (c.m.) energies between 2.2324 and 4.5900 GeV (131 energy points in total) with the upgraded Beijing Spectrometer (BESIII) at the Beijing Electron-Positron Collider (BEPCII), the integrated luminosities have been measured at the different c.m. energies, individually. Finally, the results are important inputs for the R value and J/ψ resonance parameter measurements.
Design of off-statistics axial-flow fans by means of vortex law optimization
NASA Astrophysics Data System (ADS)
Lazari, Andrea; Cattanei, Andrea
2014-12-01
Off-statistics input data sets are common in axial-flow fans design and may easily result in some violation of the requirements of a good aerodynamic blade design. In order to circumvent this problem, in the present paper, a solution to the radial equilibrium equation is found which minimizes the outlet kinetic energy and fulfills the aerodynamic constraints, thus ensuring that the resulting blade has acceptable aerodynamic performance. The presented method is based on the optimization of a three-parameters vortex law and of the meridional channel size. The aerodynamic quantities to be employed as constraints are individuated and their suitable ranges of variation are proposed. The method is validated by means of a design with critical input data values and CFD analysis. Then, by means of systematic computations with different input data sets, some correlations and charts are obtained which are analogous to classic correlations based on statistical investigations on existing machines. Such new correlations help size a fan of given characteristics as well as study the feasibility of a given design.
Display device for indicating the value of a parameter in a process plant
Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.
1993-01-01
An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.
Wilson, Emma; Rustighi, Emiliano; Newland, Philip L; Mace, Brian R
2012-03-01
Muscle models are an important tool in the development of new rehabilitation and diagnostic techniques. Many models have been proposed in the past, but little work has been done on comparing the performance of models. In this paper, seven models that describe the isometric force response to pulse train inputs are investigated. Five of the models are from the literature while two new models are also presented. Models are compared in terms of their ability to fit to isometric force data, using Akaike's and Bayesian information criteria and by examining the ability of each model to describe the underlying behaviour in response to individual pulses. Experimental data were collected by stimulating the locust extensor tibia muscle and measuring the force generated at the tibia. Parameters in each model were estimated by minimising the error between the modelled and actual force response for a set of training data. A separate set of test data, which included physiological kick-type data, was used to assess the models. It was found that a linear model performed the worst whereas a new model was found to perform the best. The parameter sensitivity of this new model was investigated using a one-at-a-time approach, and it found that the force response is not particularly sensitive to changes in any parameter.
NASA Astrophysics Data System (ADS)
Hameed, M.; Demirel, M. C.; Moradkhani, H.
2015-12-01
Global Sensitivity Analysis (GSA) approach helps identify the effectiveness of model parameters or inputs and thus provides essential information about the model performance. In this study, the effects of the Sacramento Soil Moisture Accounting (SAC-SMA) model parameters, forcing data, and initial conditions are analysed by using two GSA methods: Sobol' and Fourier Amplitude Sensitivity Test (FAST). The simulations are carried out over five sub-basins within the Columbia River Basin (CRB) for three different periods: one-year, four-year, and seven-year. Four factors are considered and evaluated by using the two sensitivity analysis methods: the simulation length, parameter range, model initial conditions, and the reliability of the global sensitivity analysis methods. The reliability of the sensitivity analysis results is compared based on 1) the agreement between the two sensitivity analysis methods (Sobol' and FAST) in terms of highlighting the same parameters or input as the most influential parameters or input and 2) how the methods are cohered in ranking these sensitive parameters under the same conditions (sub-basins and simulation length). The results show the coherence between the Sobol' and FAST sensitivity analysis methods. Additionally, it is found that FAST method is sufficient to evaluate the main effects of the model parameters and inputs. Another conclusion of this study is that the smaller parameter or initial condition ranges, the more consistency and coherence between the sensitivity analysis methods results.
Sparse Polynomial Chaos Surrogate for ACME Land Model via Iterative Bayesian Compressive Sensing
NASA Astrophysics Data System (ADS)
Sargsyan, K.; Ricciuto, D. M.; Safta, C.; Debusschere, B.; Najm, H. N.; Thornton, P. E.
2015-12-01
For computationally expensive climate models, Monte-Carlo approaches of exploring the input parameter space are often prohibitive due to slow convergence with respect to ensemble size. To alleviate this, we build inexpensive surrogates using uncertainty quantification (UQ) methods employing Polynomial Chaos (PC) expansions that approximate the input-output relationships using as few model evaluations as possible. However, when many uncertain input parameters are present, such UQ studies suffer from the curse of dimensionality. In particular, for 50-100 input parameters non-adaptive PC representations have infeasible numbers of basis terms. To this end, we develop and employ Weighted Iterative Bayesian Compressive Sensing to learn the most important input parameter relationships for efficient, sparse PC surrogate construction with posterior uncertainty quantified due to insufficient data. Besides drastic dimensionality reduction, the uncertain surrogate can efficiently replace the model in computationally intensive studies such as forward uncertainty propagation and variance-based sensitivity analysis, as well as design optimization and parameter estimation using observational data. We applied the surrogate construction and variance-based uncertainty decomposition to Accelerated Climate Model for Energy (ACME) Land Model for several output QoIs at nearly 100 FLUXNET sites covering multiple plant functional types and climates, varying 65 input parameters over broad ranges of possible values. This work is supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research, Accelerated Climate Modeling for Energy (ACME) project. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
A Minimum Assumption Tornado-Hazard Probability Model.
NASA Astrophysics Data System (ADS)
Schaefer, Joseph T.; Kelly, Donald L.; Abbey, Robert F.
1986-12-01
One of the principle applications of climatological tornado data is in tornado-hazard assessment. To perform such a hazard-potential determination, historical tornado characteristics in either a regional or tom area are complied. A model is then used to determine a site-specific point probability of a tornado greater than a specified intensity occurring. Various models require different climatological input. However, a knowledge of the mean values of tornado track width, tornado track width, tornado affected area and tornado occurrence rate as both a function of tornado intensity and geographic area, along with a violence frequency distribution, enable Mod of the models to be applied.The NSSFC-NRC tornado data base is used to supply input for the determination of these parameters over the United States. This climatic data base has undergone extensive updating and quality control since it was last reported. For track parameters, internally redundant data were used to cheek consistency. Further, reports which derivated significantly from the mean wore individually checked. Intensity data have been compared with the University of Chicago DAPPLE tornado base. All tornadoes whose recorded intensifies differed by more than one category were reclassified by an independent scientist so that the two data sets are consistent.
Karmakar, Chandan; Udhayakumar, Radhagayathri K; Li, Peng; Venkatesh, Svetha; Palaniswami, Marimuthu
2017-01-01
Distribution entropy ( DistEn ) is a recently developed measure of complexity that is used to analyse heart rate variability (HRV) data. Its calculation requires two input parameters-the embedding dimension m , and the number of bins M which replaces the tolerance parameter r that is used by the existing approximation entropy ( ApEn ) and sample entropy ( SampEn ) measures. The performance of DistEn can also be affected by the data length N . In our previous studies, we have analyzed stability and performance of DistEn with respect to one parameter ( m or M ) or combination of two parameters ( N and M ). However, impact of varying all the three input parameters on DistEn is not yet studied. Since DistEn is predominantly aimed at analysing short length heart rate variability (HRV) signal, it is important to comprehensively study the stability, consistency and performance of the measure using multiple case studies. In this study, we examined the impact of changing input parameters on DistEn for synthetic and physiological signals. We also compared the variations of DistEn and performance in distinguishing physiological (Elderly from Young) and pathological (Healthy from Arrhythmia) conditions with ApEn and SampEn . The results showed that DistEn values are minimally affected by the variations of input parameters compared to ApEn and SampEn. DistEn also showed the most consistent and the best performance in differentiating physiological and pathological conditions with various of input parameters among reported complexity measures. In conclusion, DistEn is found to be the best measure for analysing short length HRV time series.
Modeling the Afferent Dynamics of the Baroreflex Control System
Mahdi, Adam; Sturdy, Jacob; Ottesen, Johnny T.; Olufsen, Mette S.
2013-01-01
In this study we develop a modeling framework for predicting baroreceptor firing rate as a function of blood pressure. We test models within this framework both quantitatively and qualitatively using data from rats. The models describe three components: arterial wall deformation, stimulation of mechanoreceptors located in the BR nerve-endings, and modulation of the action potential frequency. The three sub-systems are modeled individually following well-established biological principles. The first submodel, predicting arterial wall deformation, uses blood pressure as an input and outputs circumferential strain. The mechanoreceptor stimulation model, uses circumferential strain as an input, predicting receptor deformation as an output. Finally, the neural model takes receptor deformation as an input predicting the BR firing rate as an output. Our results show that nonlinear dependence of firing rate on pressure can be accounted for by taking into account the nonlinear elastic properties of the artery wall. This was observed when testing the models using multiple experiments with a single set of parameters. We find that to model the response to a square pressure stimulus, giving rise to post-excitatory depression, it is necessary to include an integrate-and-fire model, which allows the firing rate to cease when the stimulus falls below a given threshold. We show that our modeling framework in combination with sensitivity analysis and parameter estimation can be used to test and compare models. Finally, we demonstrate that our preferred model can exhibit all known dynamics and that it is advantageous to combine qualitative and quantitative analysis methods. PMID:24348231
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldstein, Peter
2014-01-24
This report describes the sensitivity of predicted nuclear fallout to a variety of model input parameters, including yield, height of burst, particle and activity size distribution parameters, wind speed, wind direction, topography, and precipitation. We investigate sensitivity over a wide but plausible range of model input parameters. In addition, we investigate a specific example with a relatively narrow range to illustrate the potential for evaluating uncertainties in predictions when there are more precise constraints on model parameters.
Pressley, Joanna; Troyer, Todd W
2011-05-01
The leaky integrate-and-fire (LIF) is the simplest neuron model that captures the essential properties of neuronal signaling. Yet common intuitions are inadequate to explain basic properties of LIF responses to sinusoidal modulations of the input. Here we examine responses to low and moderate frequency modulations of both the mean and variance of the input current and quantify how these responses depend on baseline parameters. Across parameters, responses to modulations in the mean current are low pass, approaching zero in the limit of high frequencies. For very low baseline firing rates, the response cutoff frequency matches that expected from membrane integration. However, the cutoff shows a rapid, supralinear increase with firing rate, with a steeper increase in the case of lower noise. For modulations of the input variance, the gain at high frequency remains finite. Here, we show that the low-frequency responses depend strongly on baseline parameters and derive an analytic condition specifying the parameters at which responses switch from being dominated by low versus high frequencies. Additionally, we show that the resonant responses for variance modulations have properties not expected for common oscillatory resonances: they peak at frequencies higher than the baseline firing rate and persist when oscillatory spiking is disrupted by high noise. Finally, the responses to mean and variance modulations are shown to have a complementary dependence on baseline parameters at higher frequencies, resulting in responses to modulations of Poisson input rates that are independent of baseline input statistics.
Generalized compliant motion primitive
NASA Technical Reports Server (NTRS)
Backes, Paul G. (Inventor)
1994-01-01
This invention relates to a general primitive for controlling a telerobot with a set of input parameters. The primitive includes a trajectory generator; a teleoperation sensor; a joint limit generator; a force setpoint generator; a dither function generator, which produces telerobot motion inputs in a common coordinate frame for simultaneous combination in sensor summers. Virtual return spring motion input is provided by a restoration spring subsystem. The novel features of this invention include use of a single general motion primitive at a remote site to permit the shared and supervisory control of the robot manipulator to perform tasks via a remotely transferred input parameter set.
Adaptive control of a quadrotor aerial vehicle with input constraints and uncertain parameters
NASA Astrophysics Data System (ADS)
Tran, Trong-Toan; Ge, Shuzhi Sam; He, Wei
2018-05-01
In this paper, we address the problem of adaptive bounded control for the trajectory tracking of a Quadrotor Aerial Vehicle (QAV) while the input saturations and uncertain parameters with the known bounds are simultaneously taken into account. First, to deal with the underactuated property of the QAV model, we decouple and construct the QAV model as a cascaded structure which consists of two fully actuated subsystems. Second, to handle the input constraints and uncertain parameters, we use a combination of the smooth saturation function and smooth projection operator in the control design. Third, to ensure the stability of the overall system of the QAV, we develop the technique for the cascaded system in the presence of both the input constraints and uncertain parameters. Finally, the region of stability of the closed-loop system is constructed explicitly, and our design ensures the asymptotic convergence of the tracking errors to the origin. The simulation results are provided to illustrate the effectiveness of the proposed method.
Translating landfill methane generation parameters among first-order decay models.
Krause, Max J; Chickering, Giles W; Townsend, Timothy G
2016-11-01
Landfill gas (LFG) generation is predicted by a first-order decay (FOD) equation that incorporates two parameters: a methane generation potential (L 0 ) and a methane generation rate (k). Because non-hazardous waste landfills may accept many types of waste streams, multiphase models have been developed in an attempt to more accurately predict methane generation from heterogeneous waste streams. The ability of a single-phase FOD model to predict methane generation using weighted-average methane generation parameters and tonnages translated from multiphase models was assessed in two exercises. In the first exercise, waste composition from four Danish landfills represented by low-biodegradable waste streams was modeled in the Afvalzorg Multiphase Model and methane generation was compared to the single-phase Intergovernmental Panel on Climate Change (IPCC) Waste Model and LandGEM. In the second exercise, waste composition represented by IPCC waste components was modeled in the multiphase IPCC and compared to single-phase LandGEM and Australia's Solid Waste Calculator (SWC). In both cases, weight-averaging of methane generation parameters from waste composition data in single-phase models was effective in predicting cumulative methane generation from -7% to +6% of the multiphase models. The results underscore the understanding that multiphase models will not necessarily improve LFG generation prediction because the uncertainty of the method rests largely within the input parameters. A unique method of calculating the methane generation rate constant by mass of anaerobically degradable carbon was presented (k c ) and compared to existing methods, providing a better fit in 3 of 8 scenarios. Generally, single phase models with weighted-average inputs can accurately predict methane generation from multiple waste streams with varied characteristics; weighted averages should therefore be used instead of regional default values when comparing models. Translating multiphase first-order decay model input parameters by weighted average shows that single-phase models can predict cumulative methane generation within the level of uncertainty of many of the input parameters as defined by the Intergovernmental Panel on Climate Change (IPCC), which indicates that decreasing the uncertainty of the input parameters will make the model more accurate rather than adding multiple phases or input parameters.
Real-Time Ensemble Forecasting of Coronal Mass Ejections Using the Wsa-Enlil+Cone Model
NASA Astrophysics Data System (ADS)
Mays, M. L.; Taktakishvili, A.; Pulkkinen, A. A.; Odstrcil, D.; MacNeice, P. J.; Rastaetter, L.; LaSota, J. A.
2014-12-01
Ensemble forecasting of coronal mass ejections (CMEs) provides significant information in that it provides an estimation of the spread or uncertainty in CME arrival time predictions. Real-time ensemble modeling of CME propagation is performed by forecasters at the Space Weather Research Center (SWRC) using the WSA-ENLIL+cone model available at the Community Coordinated Modeling Center (CCMC). To estimate the effect of uncertainties in determining CME input parameters on arrival time predictions, a distribution of n (routinely n=48) CME input parameter sets are generated using the CCMC Stereo CME Analysis Tool (StereoCAT) which employs geometrical triangulation techniques. These input parameters are used to perform n different simulations yielding an ensemble of solar wind parameters at various locations of interest, including a probability distribution of CME arrival times (for hits), and geomagnetic storm strength (for Earth-directed hits). We present the results of ensemble simulations for a total of 38 CME events in 2013-2014. For 28 of the ensemble runs containing hits, the observed CME arrival was within the range of ensemble arrival time predictions for 14 runs (half). The average arrival time prediction was computed for each of the 28 ensembles predicting hits and using the actual arrival time, an average absolute error of 10.0 hours (RMSE=11.4 hours) was found for all 28 ensembles, which is comparable to current forecasting errors. Some considerations for the accuracy of ensemble CME arrival time predictions include the importance of the initial distribution of CME input parameters, particularly the mean and spread. When the observed arrivals are not within the predicted range, this still allows the ruling out of prediction errors caused by tested CME input parameters. Prediction errors can also arise from ambient model parameters such as the accuracy of the solar wind background, and other limitations. Additionally the ensemble modeling sysem was used to complete a parametric event case study of the sensitivity of the CME arrival time prediction to free parameters for ambient solar wind model and CME. The parameter sensitivity study suggests future directions for the system, such as running ensembles using various magnetogram inputs to the WSA model.
Measurand transient signal suppressor
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1994-01-01
A transient signal suppressor for use in a controls system which is adapted to respond to a change in a physical parameter whenever it crosses a predetermined threshold value in a selected direction of increasing or decreasing values with respect to the threshold value and is sustained for a selected discrete time interval is presented. The suppressor includes a sensor transducer for sensing the physical parameter and generating an electrical input signal whenever the sensed physical parameter crosses the threshold level in the selected direction. A manually operated switch is provided for adapting the suppressor to produce an output drive signal whenever the physical parameter crosses the threshold value in the selected direction of increasing or decreasing values. A time delay circuit is selectively adjustable for suppressing the transducer input signal for a preselected one of a plurality of available discrete suppression time and producing an output signal only if the input signal is sustained for a time greater than the selected suppression time. An electronic gate is coupled to receive the transducer input signal and the timer output signal and produce an output drive signal for energizing a control relay whenever the transducer input is a non-transient signal which is sustained beyond the selected time interval.
Hormuth, David A; Skinner, Jack T; Does, Mark D; Yankeelov, Thomas E
2014-05-01
Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) can quantitatively and qualitatively assess physiological characteristics of tissue. Quantitative DCE-MRI requires an estimate of the time rate of change of the concentration of the contrast agent in the blood plasma, the vascular input function (VIF). Measuring the VIF in small animals is notoriously difficult as it requires high temporal resolution images limiting the achievable number of slices, field-of-view, spatial resolution, and signal-to-noise. Alternatively, a population-averaged VIF could be used to mitigate the acquisition demands in studies aimed to investigate, for example, tumor vascular characteristics. Thus, the overall goal of this manuscript is to determine how the kinetic parameters estimated by a population based VIF differ from those estimated by an individual VIF. Eight rats bearing gliomas were imaged before, during, and after an injection of Gd-DTPA. K(trans), ve, and vp were extracted from signal-time curves of tumor tissue using both individual and population-averaged VIFs. Extended model voxel estimates of K(trans) and ve in all animals had concordance correlation coefficients (CCC) ranging from 0.69 to 0.98 and Pearson correlation coefficients (PCC) ranging from 0.70 to 0.99. Additionally, standard model estimates resulted in CCCs ranging from 0.81 to 0.99 and PCCs ranging from 0.98 to 1.00, supporting the use of a population based VIF if an individual VIF is not available. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Capote, R.; Herman, M.; Obložinský, P.; Young, P. G.; Goriely, S.; Belgya, T.; Ignatyuk, A. V.; Koning, A. J.; Hilaire, S.; Plujko, V. A.; Avrigeanu, M.; Bersillon, O.; Chadwick, M. B.; Fukahori, T.; Ge, Zhigang; Han, Yinlu; Kailas, S.; Kopecky, J.; Maslov, V. M.; Reffo, G.; Sin, M.; Soukhovitskii, E. Sh.; Talou, P.
2009-12-01
We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released in January 2009, and is available on the Web through http://www-nds.iaea.org/RIPL-3/. This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and γ-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains phenomenological parameterizations based on the modified Fermi gas and superfluid models and microscopic calculations which are based on a realistic microscopic single-particle level scheme. Partial level densities formulae are also recommended. All tabulated total level densities are consistent with both the recommended average neutron resonance parameters and discrete levels. GAMMA contains parameters that quantify giant resonances, experimental gamma-ray strength functions and methods for calculating gamma emission in statistical model codes. The experimental GDR parameters are represented by Lorentzian fits to the photo-absorption cross sections for 102 nuclides ranging from 51V to 239Pu. FISSION includes global prescriptions for fission barriers and nuclear level densities at fission saddle points based on microscopic HFB calculations constrained by experimental fission cross sections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capote, R.; Herman, M.; Oblozinsky, P.
We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released inmore » January 2009, and is available on the Web through (http://www-nds.iaea.org/RIPL-3/). This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and {gamma}-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains phenomenological parameterizations based on the modified Fermi gas and superfluid models and microscopic calculations which are based on a realistic microscopic single-particle level scheme. Partial level densities formulae are also recommended. All tabulated total level densities are consistent with both the recommended average neutron resonance parameters and discrete levels. GAMMA contains parameters that quantify giant resonances, experimental gamma-ray strength functions and methods for calculating gamma emission in statistical model codes. The experimental GDR parameters are represented by Lorentzian fits to the photo-absorption cross sections for 102 nuclides ranging from {sup 51}V to {sup 239}Pu. FISSION includes global prescriptions for fission barriers and nuclear level densities at fission saddle points based on microscopic HFB calculations constrained by experimental fission cross sections.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capote, R.; Herman, M.; Capote,R.
We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released inmore » January 2009, and is available on the Web through http://www-nds.iaea.org/RIPL-3/. This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and {gamma}-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains phenomenological parameterizations based on the modified Fermi gas and superfluid models and microscopic calculations which are based on a realistic microscopic single-particle level scheme. Partial level densities formulae are also recommended. All tabulated total level densities are consistent with both the recommended average neutron resonance parameters and discrete levels. GAMMA contains parameters that quantify giant resonances, experimental gamma-ray strength functions and methods for calculating gamma emission in statistical model codes. The experimental GDR parameters are represented by Lorentzian fits to the photo-absorption cross sections for 102 nuclides ranging from {sup 51}V to {sup 239}Pu. FISSION includes global prescriptions for fission barriers and nuclear level densities at fission saddle points based on microscopic HFB calculations constrained by experimental fission cross sections.« less
Kriener, Birgit; Helias, Moritz; Rotter, Stefan; Diesmann, Markus; Einevoll, Gaute T
2013-01-01
Pattern formation, i.e., the generation of an inhomogeneous spatial activity distribution in a dynamical system with translation invariant structure, is a well-studied phenomenon in neuronal network dynamics, specifically in neural field models. These are population models to describe the spatio-temporal dynamics of large groups of neurons in terms of macroscopic variables such as population firing rates. Though neural field models are often deduced from and equipped with biophysically meaningful properties, a direct mapping to simulations of individual spiking neuron populations is rarely considered. Neurons have a distinct identity defined by their action on their postsynaptic targets. In its simplest form they act either excitatorily or inhibitorily. When the distribution of neuron identities is assumed to be periodic, pattern formation can be observed, given the coupling strength is supracritical, i.e., larger than a critical weight. We find that this critical weight is strongly dependent on the characteristics of the neuronal input, i.e., depends on whether neurons are mean- or fluctuation driven, and different limits in linearizing the full non-linear system apply in order to assess stability. In particular, if neurons are mean-driven, the linearization has a very simple form and becomes independent of both the fixed point firing rate and the variance of the input current, while in the very strongly fluctuation-driven regime the fixed point rate, as well as the input mean and variance are important parameters in the determination of the critical weight. We demonstrate that interestingly even in "intermediate" regimes, when the system is technically fluctuation-driven, the simple linearization neglecting the variance of the input can yield the better prediction of the critical coupling strength. We moreover analyze the effects of structural randomness by rewiring individual synapses or redistributing weights, as well as coarse-graining on the formation of inhomogeneous activity patterns.
Kriener, Birgit; Helias, Moritz; Rotter, Stefan; Diesmann, Markus; Einevoll, Gaute T.
2014-01-01
Pattern formation, i.e., the generation of an inhomogeneous spatial activity distribution in a dynamical system with translation invariant structure, is a well-studied phenomenon in neuronal network dynamics, specifically in neural field models. These are population models to describe the spatio-temporal dynamics of large groups of neurons in terms of macroscopic variables such as population firing rates. Though neural field models are often deduced from and equipped with biophysically meaningful properties, a direct mapping to simulations of individual spiking neuron populations is rarely considered. Neurons have a distinct identity defined by their action on their postsynaptic targets. In its simplest form they act either excitatorily or inhibitorily. When the distribution of neuron identities is assumed to be periodic, pattern formation can be observed, given the coupling strength is supracritical, i.e., larger than a critical weight. We find that this critical weight is strongly dependent on the characteristics of the neuronal input, i.e., depends on whether neurons are mean- or fluctuation driven, and different limits in linearizing the full non-linear system apply in order to assess stability. In particular, if neurons are mean-driven, the linearization has a very simple form and becomes independent of both the fixed point firing rate and the variance of the input current, while in the very strongly fluctuation-driven regime the fixed point rate, as well as the input mean and variance are important parameters in the determination of the critical weight. We demonstrate that interestingly even in “intermediate” regimes, when the system is technically fluctuation-driven, the simple linearization neglecting the variance of the input can yield the better prediction of the critical coupling strength. We moreover analyze the effects of structural randomness by rewiring individual synapses or redistributing weights, as well as coarse-graining on the formation of inhomogeneous activity patterns. PMID:24501591
CalSimHydro Tool - A Web-based interactive tool for the CalSim 3.0 Hydrology Prepropessor
NASA Astrophysics Data System (ADS)
Li, P.; Stough, T.; Vu, Q.; Granger, S. L.; Jones, D. J.; Ferreira, I.; Chen, Z.
2011-12-01
CalSimHydro, the CalSim 3.0 Hydrology Preprocessor, is an application designed to automate the various steps in the computation of hydrologic inputs for CalSim 3.0, a water resources planning model developed jointly by California State Department of Water Resources and United States Bureau of Reclamation, Mid-Pacific Region. CalSimHydro consists of a five-step FORTRAN based program that runs the individual models in succession passing information from one model to the next and aggregating data as required by each model. The final product of CalSimHydro is an updated CalSim 3.0 state variable (SV) DSS input file. CalSimHydro consists of (1) a Rainfall-Runoff Model to compute monthly infiltration, (2) a Soil moisture and demand calculator (IDC) that estimates surface runoff, deep percolation, and water demands for natural vegetation cover and various crops other than rice, (3) a Rice Water Use Model to compute the water demands, deep percolation, irrigation return flow, and runoff from precipitation for the rice fields, (4) a Refuge Water Use Model that simulates the ponding operations for managed wetlands, and (5) a Data Aggregation and Transfer Module to aggregate the outputs from the above modules and transfer them to the CalSim SV input file. In this presentation, we describe a web-based user interface for CalSimHydro using Google Earth Plug-In. The CalSimHydro tool allows users to - interact with geo-referenced layers of the Water Budget Areas (WBA) and Demand Units (DU) displayed over the Sacramento Valley, - view the input parameters of the hydrology preprocessor for a selected WBA or DU in a time series plot or a tabular form, - edit the values of the input parameters in the table or by downloading a spreadsheet of the selected parameter in a selected time range, - run the CalSimHydro modules in the backend server and notify the user when the job is done, - visualize the model output and compare it with a base run result, - download the output SV file to be used to run CalSim 3.0. The CalSimHydro tool streamlines the complicated steps to configure and run the hydrology preprocessor by providing a user-friendly visual interface and back-end services to validate user inputs and manage the model execution. It is a powerful addition to the new CalSim 3.0 system.
Franken, Tom P.; Bremen, Peter; Joris, Philip X.
2014-01-01
Coincidence detection by binaural neurons in the medial superior olive underlies sensitivity to interaural time difference (ITD) and interaural correlation (ρ). It is unclear whether this process is akin to a counting of individual coinciding spikes, or rather to a correlation of membrane potential waveforms resulting from converging inputs from each side. We analyzed spike trains of axons of the cat trapezoid body (TB) and auditory nerve (AN) in a binaural coincidence scheme. ITD was studied by delaying “ipsi-” vs. “contralateral” inputs; ρ was studied by using responses to different noises. We varied the number of inputs; the monaural and binaural threshold and the coincidence window duration. We examined physiological plausibility of output “spike trains” by comparing their rate and tuning to ITD and ρ to those of binaural cells. We found that multiple inputs are required to obtain a plausible output spike rate. In contrast to previous suggestions, monaural threshold almost invariably needed to exceed binaural threshold. Elevation of the binaural threshold to values larger than 2 spikes caused a drastic decrease in rate for a short coincidence window. Longer coincidence windows allowed a lower number of inputs and higher binaural thresholds, but decreased the depth of modulation. Compared to AN fibers, TB fibers allowed higher output spike rates for a low number of inputs, but also generated more monaural coincidences. We conclude that, within the parameter space explored, the temporal patterns of monaural fibers require convergence of multiple inputs to achieve physiological binaural spike rates; that monaural coincidences have to be suppressed relative to binaural ones; and that the neuron has to be sensitive to single binaural coincidences of spikes, for a number of excitatory inputs per side of 10 or less. These findings suggest that the fundamental operation in the mammalian binaural circuit is coincidence counting of single binaural input spikes. PMID:24822037
Calibrating binary lumped parameter models
NASA Astrophysics Data System (ADS)
Morgenstern, Uwe; Stewart, Mike
2017-04-01
Groundwater at its discharge point is a mixture of water from short and long flowlines, and therefore has a distribution of ages rather than a single age. Various transfer functions describe the distribution of ages within the water sample. Lumped parameter models (LPMs), which are mathematical models of water transport based on simplified aquifer geometry and flow configuration can account for such mixing of groundwater of different age, usually representing the age distribution with two parameters, the mean residence time, and the mixing parameter. Simple lumped parameter models can often match well the measured time varying age tracer concentrations, and therefore are a good representation of the groundwater mixing at these sites. Usually a few tracer data (time series and/or multi-tracer) can constrain both parameters. With the building of larger data sets of age tracer data throughout New Zealand, including tritium, SF6, CFCs, and recently Halon-1301, and time series of these tracers, we realised that for a number of wells the groundwater ages using a simple lumped parameter model were inconsistent between the different tracer methods. Contamination or degradation of individual tracers is unlikely because the different tracers show consistent trends over years and decades. This points toward a more complex mixing of groundwaters with different ages for such wells than represented by the simple lumped parameter models. Binary (or compound) mixing models are able to represent a more complex mixing, with mixing of water of two different age distributions. The problem related to these models is that they usually have 5 parameters which makes them data-hungry and therefore difficult to constrain all parameters. Two or more age tracers with different input functions, with multiple measurements over time, can provide the required information to constrain the parameters of the binary mixing model. We obtained excellent results using tritium time series encompassing the passage of the bomb-tritium through the aquifer, and SF6 with its steep gradient currently in the input. We will show age tracer data from drinking water wells that enabled identification of young water ingression into wells, which poses the risk of bacteriological contamination from the surface into the drinking water.
A programmable power processor for high power space applications
NASA Technical Reports Server (NTRS)
Lanier, J. R., Jr.; Graves, J. R.; Kapustka, R. E.; Bush, J. R., Jr.
1982-01-01
A Programmable Power Processor (P3) has been developed for application in future large space power systems. The P3 is capable of operation over a wide range of input voltage (26 to 375 Vdc) and output voltage (24 to 180 Vdc). The peak output power capability is 18 kW (180 V at 100 A). The output characteristics of the P3 can be programmed to any voltage and/or current level within the limits of the processor and may be controlled as a function of internal or external parameters. Seven breadboard P3s and one 'flight-type' engineering model P3 have been built and tested both individually and in electrical power systems. The programmable feature allows the P3 to be used in a variety of applications by changing the output characteristics. Test results, including efficiency at various input/output combinations, transient response, and output impedance, are presented.
NASA Astrophysics Data System (ADS)
Polak, Josef; Jerabek, Jan; Langhammer, Lukas; Sotner, Roman; Dvorak, Jan; Panek, David
2016-07-01
This paper presents the simulations results in comparison with the measured results of the practical realization of the multifunctional second order frequency filter with a Digitally Adjustable Current Amplifier (DACA) and two Dual-Output Controllable Current Conveyors (CCCII +/-). This filter is designed for use in current mode. The filter was designed of the single input multiple outputs (SIMO) type, therefore it has only one input and three outputs with individual filtering functions. DACA element used in a newly proposed circuit is present in form of an integrated chip and the current conveyors are implemented using the Universal Current Conveyor (UCC) chip with designation UCC-N1B. Proposed frequency filter enables independent control of the pole frequency using parameters of two current conveyors and also independent control of the quality factor by change of a current gain of DACA.
Joosten, S; Pammler, K; Silny, J
2009-02-07
The problem of electromagnetic interference of electronic implants such as cardiac pacemakers has been well known for many years. An increasing number of field sources in everyday life and occupational environment leads unavoidably to an increased risk for patients with electronic implants. However, no obligatory national or international safety regulations exist for the protection of this patient group. The aim of this study is to find out the anatomical and physiological worst-case conditions for patients with an implanted pacemaker adjusted to unipolar sensing in external time-varying electric fields. The results of this study with 15 volunteers show that, in electric fields, variation of the interference voltage at the input of a cardiac pacemaker adds up to 200% only because of individual factors. These factors should be considered in human studies and in the setting of safety regulations.
Evaluation of Uncertainty in Constituent Input Parameters for Modeling the Fate of RDX
2015-07-01
exercise was to evaluate the importance of chemical -specific model input parameters, the impacts of their uncertainty, and the potential benefits of... chemical -specific inputs for RDX that were determined to be sensitive with relatively high uncertainty: these included the soil-water linear...Koc for organic chemicals . The EFS values provided for log Koc of RDX were 1.72 and 1.95. OBJECTIVE: TREECS™ (http://el.erdc.usace.army.mil/treecs
NASA Technical Reports Server (NTRS)
Wallace, Terryl A.; Bey, Kim S.; Taminger, Karen M. B.; Hafley, Robert A.
2004-01-01
A study was conducted to evaluate the relative significance of input parameters on Ti- 6Al-4V deposits produced by an electron beam free form fabrication process under development at the NASA Langley Research Center. Five input parameters where chosen (beam voltage, beam current, translation speed, wire feed rate, and beam focus), and a design of experiments (DOE) approach was used to develop a set of 16 experiments to evaluate the relative importance of these parameters on the resulting deposits. Both single-bead and multi-bead stacks were fabricated using 16 combinations, and the resulting heights and widths of the stack deposits were measured. The resulting microstructures were also characterized to determine the impact of these parameters on the size of the melt pool and heat affected zone. The relative importance of each input parameter on the height and width of the multi-bead stacks will be discussed. .
Statistical regularities in the rank-citation profile of scientists
Petersen, Alexander M.; Stanley, H. Eugene; Succi, Sauro
2011-01-01
Recent science of science research shows that scientific impact measures for journals and individual articles have quantifiable regularities across both time and discipline. However, little is known about the scientific impact distribution at the scale of an individual scientist. We analyze the aggregate production and impact using the rank-citation profile ci(r) of 200 distinguished professors and 100 assistant professors. For the entire range of paper rank r, we fit each ci(r) to a common distribution function. Since two scientists with equivalent Hirsch h-index can have significantly different ci(r) profiles, our results demonstrate the utility of the βi scaling parameter in conjunction with hi for quantifying individual publication impact. We show that the total number of citations Ci tallied from a scientist's Ni papers scales as . Such statistical regularities in the input-output patterns of scientists can be used as benchmarks for theoretical models of career progress. PMID:22355696
Automated reconstruction of standing posture panoramas from multi-sector long limb x-ray images
NASA Astrophysics Data System (ADS)
Miller, Linzey; Trier, Caroline; Ben-Zikri, Yehuda K.; Linte, Cristian A.
2016-03-01
Due to the digital X-ray imaging system's limited field of view, several individual sector images are required to capture the posture of an individual in standing position. These images are then "stitched together" to reconstruct the standing posture. We have created an image processing application that automates the stitching, therefore minimizing user input, optimizing workflow, and reducing human error. The application begins with pre-processing the input images by removing artifacts, filtering out isolated noisy regions, and amplifying a seamless bone edge. The resulting binary images are then registered together using a rigid-body intensity based registration algorithm. The identified registration transformations are then used to map the original sector images into the panorama image. Our method focuses primarily on the use of the anatomical content of the images to generate the panoramas as opposed to using external markers employed to aid with the alignment process. Currently, results show robust edge detection prior to registration and we have tested our approach by comparing the resulting automatically-stitched panoramas to the manually stitched panoramas in terms of registration parameters, target registration error of homologous markers, and the homogeneity of the digitally subtracted automatically- and manually-stitched images using 26 patient datasets.
Tutorial: Asteroseismic Stellar Modelling with AIMS
NASA Astrophysics Data System (ADS)
Lund, Mikkel N.; Reese, Daniel R.
The goal of aims (Asteroseismic Inference on a Massive Scale) is to estimate stellar parameters and credible intervals/error bars in a Bayesian manner from a set of asteroseismic frequency data and so-called classical constraints. To achieve reliable parameter estimates and computational efficiency, it searches through a grid of pre-computed models using an MCMC algorithm—interpolation within the grid of models is performed by first tessellating the grid using a Delaunay triangulation and then doing a linear barycentric interpolation on matching simplexes. Inputs for the modelling consist of individual frequencies from peak-bagging, which can be complemented with classical spectroscopic constraints. aims is mostly written in Python with a modular structure to facilitate contributions from the community. Only a few computationally intensive parts have been rewritten in Fortran in order to speed up calculations.
Lemay, Jean-François; Gagnon, Dany; Duclos, Cyril; Grangeon, Murielle; Gauthier, Cindy; Nadeau, Sylvie
2013-06-01
Postural steadiness while standing is impaired in individuals with spinal cord injury (SCI) and could be potentially associated with increased reliance on visual inputs. The purpose of this study was to compare individuals with SCI and able-bodied participants on their use of visual inputs to maintain standing postural steadiness. Another aim was to quantify the association between visual contribution to achieve postural steadiness and a clinical balance scale. Individuals with SCI (n = 15) and able-bodied controls (n = 14) performed quasi-static stance, with eyes open or closed, on force plates for two 45 s trials. Measurements of the centre of pressure (COP) included the mean value of the root mean square (RMS), mean COP velocity (MV) and COP sway area (SA). Individuals with SCI were also evaluated with the Mini-Balance Evaluation Systems Test (Mini BESTest), a clinical outcome measure of postural steadiness. Individuals with SCI were significantly less stable than able-bodied controls in both conditions. The Romberg ratios (eyes open/eyes closed) for COP MV and SA were significantly higher for individuals with SCI, indicating a higher contribution of visual inputs for postural steadiness in that population. Romberg ratios for RMS and SA were significantly associated with the Mini-BESTest. This study highlights the contribution of visual inputs in individuals with SCI when maintaining quasi-static standing posture. Copyright © 2012 Elsevier B.V. All rights reserved.
Predicting human chronically paralyzed muscle force: a comparison of three mathematical models.
Frey Law, Laura A; Shields, Richard K
2006-03-01
Chronic spinal cord injury (SCI) induces detrimental musculoskeletal adaptations that adversely affect health status, ranging from muscle paralysis and skin ulcerations to osteoporosis. SCI rehabilitative efforts may increasingly focus on preserving the integrity of paralyzed extremities to maximize health quality using electrical stimulation for isometric training and/or functional activities. Subject-specific mathematical muscle models could prove valuable for predicting the forces necessary to achieve therapeutic loading conditions in individuals with paralyzed limbs. Although numerous muscle models are available, three modeling approaches were chosen that can accommodate a variety of stimulation input patterns. To our knowledge, no direct comparisons between models using paralyzed muscle have been reported. The three models include 1) a simple second-order linear model with three parameters and 2) two six-parameter nonlinear models (a second-order nonlinear model and a Hill-derived nonlinear model). Soleus muscle forces from four individuals with complete, chronic SCI were used to optimize each model's parameters (using an increasing and decreasing frequency ramp) and to assess the models' predictive accuracies for constant and variable (doublet) stimulation trains at 5, 10, and 20 Hz in each individual. Despite the large differences in modeling approaches, the mean predicted force errors differed only moderately (8-15% error; P=0.0042), suggesting physiological force can be adequately represented by multiple mathematical constructs. The two nonlinear models predicted specific force characteristics better than the linear model in nearly all stimulation conditions, with minimal differences between the two nonlinear models. Either nonlinear mathematical model can provide reasonable force estimates; individual application needs may dictate the preferred modeling strategy.
Quantifying uncertainty and sensitivity in sea ice models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urrego Blanco, Jorge Rolando; Hunke, Elizabeth Clare; Urban, Nathan Mark
The Los Alamos Sea Ice model has a number of input parameters for which accurate values are not always well established. We conduct a variance-based sensitivity analysis of hemispheric sea ice properties to 39 input parameters. The method accounts for non-linear and non-additive effects in the model.
NASA Technical Reports Server (NTRS)
Hiltner, Dale W.
2000-01-01
The TAILSIM program uses a 4th order Runge-Kutta method to integrate the standard aircraft equations-of-motion (EOM). The EOM determine three translational and three rotational accelerations about the aircraft's body axis reference system. The forces and moments that drive the EOM are determined from aerodynamic coefficients, dynamic derivatives, and control inputs. Values for these terms are determined from linear interpolation of tables that are a function of parameters such as angle-of-attack and surface deflections. Buildup equations combine these terms and dimensionalize them to generate the driving total forces and moments. Features that make TAILSIM applicable to studies of tailplane stall include modeling of the reversible control System, modeling of the pilot performing a load factor and/or airspeed command task, and modeling of vertical gusts. The reversible control system dynamics can be described as two hinged masses connected by a spring. resulting in a fifth order system. The pilot model is a standard form of lead-lag with a time delay applied to an integrated pitch rate and/or airspeed error feedback. The time delay is implemented by a Pade approximation, while the commanded pitch rate is determined by a commanded load factor. Vertical gust inputs include a single 1-cosine gust and a continuous NASA Dryden gust model. These dynamic models. coupled with the use of a nonlinear database, allow the tailplane stall characteristics, elevator response, and resulting aircraft response, to be modeled. A useful output capability of the TAILSIM program is the ability to display multiple post-run plot pages to allow a quick assessment of the time history response. There are 16 plot pages currently available to the user. Each plot page displays 9 parameters. Each parameter can also be displayed individually. on a one plot-per-page format. For a more refined display of the results the program can also create files of tabulated data. which can then be used by other plotting programs. The TAILSIM program was written straightforwardly assuming the user would want to change the database tables, the buildup equations, the output parameters. and the pilot model parameters. A separate database file and input file are automatically read in by the program. The use of an include file to set up all common blocks facilitates easy changing of parameter names and array sizes.
Karmakar, Chandan; Udhayakumar, Radhagayathri K.; Li, Peng; Venkatesh, Svetha; Palaniswami, Marimuthu
2017-01-01
Distribution entropy (DistEn) is a recently developed measure of complexity that is used to analyse heart rate variability (HRV) data. Its calculation requires two input parameters—the embedding dimension m, and the number of bins M which replaces the tolerance parameter r that is used by the existing approximation entropy (ApEn) and sample entropy (SampEn) measures. The performance of DistEn can also be affected by the data length N. In our previous studies, we have analyzed stability and performance of DistEn with respect to one parameter (m or M) or combination of two parameters (N and M). However, impact of varying all the three input parameters on DistEn is not yet studied. Since DistEn is predominantly aimed at analysing short length heart rate variability (HRV) signal, it is important to comprehensively study the stability, consistency and performance of the measure using multiple case studies. In this study, we examined the impact of changing input parameters on DistEn for synthetic and physiological signals. We also compared the variations of DistEn and performance in distinguishing physiological (Elderly from Young) and pathological (Healthy from Arrhythmia) conditions with ApEn and SampEn. The results showed that DistEn values are minimally affected by the variations of input parameters compared to ApEn and SampEn. DistEn also showed the most consistent and the best performance in differentiating physiological and pathological conditions with various of input parameters among reported complexity measures. In conclusion, DistEn is found to be the best measure for analysing short length HRV time series. PMID:28979215
Application of artificial neural networks to assess pesticide contamination in shallow groundwater
Sahoo, G.B.; Ray, C.; Mehnert, E.; Keefer, D.A.
2006-01-01
In this study, a feed-forward back-propagation neural network (BPNN) was developed and applied to predict pesticide concentrations in groundwater monitoring wells. Pesticide concentration data are challenging to analyze because they tend to be highly censored. Input data to the neural network included the categorical indices of depth to aquifer material, pesticide leaching class, aquifer sensitivity to pesticide contamination, time (month) of sample collection, well depth, depth to water from land surface, and additional travel distance in the saturated zone (i.e., distance from land surface to midpoint of well screen). The output of the neural network was the total pesticide concentration detected in the well. The model prediction results produced good agreements with observed data in terms of correlation coefficient (R = 0.87) and pesticide detection efficiency (E = 89%), as well as good match between the observed and predicted "class" groups. The relative importance of input parameters to pesticide occurrence in groundwater was examined in terms of R, E, mean error (ME), root mean square error (RMSE), and pesticide occurrence "class" groups by eliminating some key input parameters to the model. Well depth and time of sample collection were the most sensitive input parameters for predicting the pesticide contamination potential of a well. This infers that wells tapping shallow aquifers are more vulnerable to pesticide contamination than those wells tapping deeper aquifers. Pesticide occurrences during post-application months (June through October) were found to be 2.5 to 3 times higher than pesticide occurrences during other months (November through April). The BPNN was used to rank the input parameters with highest potential to contaminate groundwater, including two original and five ancillary parameters. The two original parameters are depth to aquifer material and pesticide leaching class. When these two parameters were the only input parameters for the BPNN, they were not able to predict contamination potential. However, when they were used with other parameters, the predictive performance efficiency of the BPNN in terms of R, E, ME, RMSE, and pesticide occurrence "class" groups increased. Ancillary data include data collected during the study such as well depth and time of sample collection. The BPNN indicated that the ancillary data had more predictive power than the original data. The BPNN results will help researchers identify parameters to improve maps of aquifer sensitivity to pesticide contamination. ?? 2006 Elsevier B.V. All rights reserved.
Fuzzy/Neural Software Estimates Costs of Rocket-Engine Tests
NASA Technical Reports Server (NTRS)
Douglas, Freddie; Bourgeois, Edit Kaminsky
2005-01-01
The Highly Accurate Cost Estimating Model (HACEM) is a software system for estimating the costs of testing rocket engines and components at Stennis Space Center. HACEM is built on a foundation of adaptive-network-based fuzzy inference systems (ANFIS) a hybrid software concept that combines the adaptive capabilities of neural networks with the ease of development and additional benefits of fuzzy-logic-based systems. In ANFIS, fuzzy inference systems are trained by use of neural networks. HACEM includes selectable subsystems that utilize various numbers and types of inputs, various numbers of fuzzy membership functions, and various input-preprocessing techniques. The inputs to HACEM are parameters of specific tests or series of tests. These parameters include test type (component or engine test), number and duration of tests, and thrust level(s) (in the case of engine tests). The ANFIS in HACEM are trained by use of sets of these parameters, along with costs of past tests. Thereafter, the user feeds HACEM a simple input text file that contains the parameters of a planned test or series of tests, the user selects the desired HACEM subsystem, and the subsystem processes the parameters into an estimate of cost(s).
Comparisons of Solar Wind Coupling Parameters with Auroral Energy Deposition Rates
NASA Technical Reports Server (NTRS)
Elsen, R.; Brittnacher, M. J.; Fillingim, M. O.; Parks, G. K.; Germany G. A.; Spann, J. F., Jr.
1997-01-01
Measurement of the global rate of energy deposition in the ionosphere via auroral particle precipitation is one of the primary goals of the Polar UVI program and is an important component of the ISTP program. The instantaneous rate of energy deposition for the entire month of January 1997 has been calculated by applying models to the UVI images and is presented by Fillingim et al. In this session. A number of parameters that predict the rate of coupling of solar wind energy into the magnetosphere have been proposed in the last few decades. Some of these parameters, such as the epsilon parameter of Perrault and Akasofu, depend on the instantaneous values in the solar wind. Other parameters depend on the integrated values of solar wind parameters, especially IMF Bz, e.g. applied flux which predicts the net transfer of magnetic flux to the tail. While these parameters have often been used successfully with substorm studies, their validity in terms of global energy input has not yet been ascertained, largely because data such as that supplied by the ISTP program was lacking. We have calculated these and other energy coupling parameters for January 1997 using solar wind data provided by WIND and other solar wind monitors. The rates of energy input predicted by these parameters are compared to those measured through UVI data and correlations are sought. Whether these parameters are better at providing an instantaneous rate of energy input or an average input over some time period is addressed. We also study if either type of parameter may provide better correlations if a time delay is introduced; if so, this time delay may provide a characteristic time for energy transport in the coupled solar wind-magnetosphere-ionosphere system.
A Bayesian approach to model structural error and input variability in groundwater modeling
NASA Astrophysics Data System (ADS)
Xu, T.; Valocchi, A. J.; Lin, Y. F. F.; Liang, F.
2015-12-01
Effective water resource management typically relies on numerical models to analyze groundwater flow and solute transport processes. Model structural error (due to simplification and/or misrepresentation of the "true" environmental system) and input forcing variability (which commonly arises since some inputs are uncontrolled or estimated with high uncertainty) are ubiquitous in groundwater models. Calibration that overlooks errors in model structure and input data can lead to biased parameter estimates and compromised predictions. We present a fully Bayesian approach for a complete assessment of uncertainty for spatially distributed groundwater models. The approach explicitly recognizes stochastic input and uses data-driven error models based on nonparametric kernel methods to account for model structural error. We employ exploratory data analysis to assist in specifying informative prior for error models to improve identifiability. The inference is facilitated by an efficient sampling algorithm based on DREAM-ZS and a parameter subspace multiple-try strategy to reduce the required number of forward simulations of the groundwater model. We demonstrate the Bayesian approach through a synthetic case study of surface-ground water interaction under changing pumping conditions. It is found that explicit treatment of errors in model structure and input data (groundwater pumping rate) has substantial impact on the posterior distribution of groundwater model parameters. Using error models reduces predictive bias caused by parameter compensation. In addition, input variability increases parametric and predictive uncertainty. The Bayesian approach allows for a comparison among the contributions from various error sources, which could inform future model improvement and data collection efforts on how to best direct resources towards reducing predictive uncertainty.
A network model of behavioural performance in a rule learning task.
Hasselmo, Michael E; Stern, Chantal E
2018-04-19
Humans demonstrate differences in performance on cognitive rule learning tasks which could involve differences in properties of neural circuits. An example model is presented to show how gating of the spread of neural activity could underlie rule learning and the generalization of rules to previously unseen stimuli. This model uses the activity of gating units to regulate the pattern of connectivity between neurons responding to sensory input and subsequent gating units or output units. This model allows analysis of network parameters that could contribute to differences in cognitive rule learning. These network parameters include differences in the parameters of synaptic modification and presynaptic inhibition of synaptic transmission that could be regulated by neuromodulatory influences on neural circuits. Neuromodulatory receptors play an important role in cognitive function, as demonstrated by the fact that drugs that block cholinergic muscarinic receptors can cause cognitive impairments. In discussions of the links between neuromodulatory systems and biologically based traits, the issue of mechanisms through which these linkages are realized is often missing. This model demonstrates potential roles of neural circuit parameters regulated by acetylcholine in learning context-dependent rules, and demonstrates the potential contribution of variation in neural circuit properties and neuromodulatory function to individual differences in cognitive function.This article is part of the theme issue 'Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences'. © 2018 The Author(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweetser, John David
2013-10-01
This report details Sculpt's implementation from a user's perspective. Sculpt is an automatic hexahedral mesh generation tool developed at Sandia National Labs by Steve Owen. 54 predetermined test cases are studied while varying the input parameters (Laplace iterations, optimization iterations, optimization threshold, number of processors) and measuring the quality of the resultant mesh. This information is used to determine the optimal input parameters to use for an unknown input geometry. The overall characteristics are covered in Chapter 1. The speci c details of every case are then given in Appendix A. Finally, example Sculpt inputs are given in B.1 andmore » B.2.« less
Knowledge system and method for simulating chemical controlled release device performance
Cowan, Christina E.; Van Voris, Peter; Streile, Gary P.; Cataldo, Dominic A.; Burton, Frederick G.
1991-01-01
A knowledge system for simulating the performance of a controlled release device is provided. The system includes an input device through which the user selectively inputs one or more data parameters. The data parameters comprise first parameters including device parameters, media parameters, active chemical parameters and device release rate; and second parameters including the minimum effective inhibition zone of the device and the effective lifetime of the device. The system also includes a judgemental knowledge base which includes logic for 1) determining at least one of the second parameters from the release rate and the first parameters and 2) determining at least one of the first parameters from the other of the first parameters and the second parameters. The system further includes a device for displaying the results of the determinations to the user.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jannik, T.; Karapatakis, D.; Lee, P.
2010-08-06
Operations at the Savannah River Site (SRS) result in releases of small amounts of radioactive materials to the atmosphere and to the Savannah River. For regulatory compliance purposes, potential offsite radiological doses are estimated annually using computer models that follow U.S. Nuclear Regulatory Commission (NRC) Regulatory Guides. Within the regulatory guides, default values are provided for many of the dose model parameters but the use of site-specific values by the applicant is encouraged. A detailed survey of land and water use parameters was conducted in 1991 and is being updated here. These parameters include local characteristics of meat, milk andmore » vegetable production; river recreational activities; and meat, milk and vegetable consumption rates as well as other human usage parameters required in the SRS dosimetry models. In addition, the preferred elemental bioaccumulation factors and transfer factors to be used in human health exposure calculations at SRS are documented. Based on comparisons to the 2009 SRS environmental compliance doses, the following effects are expected in future SRS compliance dose calculations: (1) Aquatic all-pathway maximally exposed individual doses may go up about 10 percent due to changes in the aquatic bioaccumulation factors; (2) Aquatic all-pathway collective doses may go up about 5 percent due to changes in the aquatic bioaccumulation factors that offset the reduction in average individual water consumption rates; (3) Irrigation pathway doses to the maximally exposed individual may go up about 40 percent due to increases in the element-specific transfer factors; (4) Irrigation pathway collective doses may go down about 50 percent due to changes in food productivity and production within the 50-mile radius of SRS; (5) Air pathway doses to the maximally exposed individual may go down about 10 percent due to the changes in food productivity in the SRS area and to the changes in element-specific transfer factors; and (6) Air pathway collective doses may go down about 30 percent mainly due to the decrease in the inhalation rate assumed for the average individual.« less
Statistics of optimal information flow in ensembles of regulatory motifs
NASA Astrophysics Data System (ADS)
Crisanti, Andrea; De Martino, Andrea; Fiorentino, Jonathan
2018-02-01
Genetic regulatory circuits universally cope with different sources of noise that limit their ability to coordinate input and output signals. In many cases, optimal regulatory performance can be thought to correspond to configurations of variables and parameters that maximize the mutual information between inputs and outputs. Since the mid-2000s, such optima have been well characterized in several biologically relevant cases. Here we use methods of statistical field theory to calculate the statistics of the maximal mutual information (the "capacity") achievable by tuning the input variable only in an ensemble of regulatory motifs, such that a single controller regulates N targets. Assuming (i) sufficiently large N , (ii) quenched random kinetic parameters, and (iii) small noise affecting the input-output channels, we can accurately reproduce numerical simulations both for the mean capacity and for the whole distribution. Our results provide insight into the inherent variability in effectiveness occurring in regulatory systems with heterogeneous kinetic parameters.
NASA Technical Reports Server (NTRS)
Batterson, James G. (Technical Monitor); Morelli, E. A.
1996-01-01
Flight test maneuvers are specified for the F-18 High Alpha Research Vehicle (HARV). The maneuvers were designed for closed loop parameter identification purposes, specifically for longitudinal and lateral linear model parameter estimation at 5,20,30,45, and 60 degrees angle of attack, using the Actuated Nose Strakes for Enhanced Rolling (ANSER) control law in Thrust Vectoring (TV) mode. Each maneuver is to be realized by applying square wave inputs to specific pilot station controls using the On-Board Excitation System (OBES). Maneuver descriptions and complete specifications of the time / amplitude points defining each input are included, along with plots of the input time histories.
Troutman, Brent M.
1982-01-01
Errors in runoff prediction caused by input data errors are analyzed by treating precipitation-runoff models as regression (conditional expectation) models. Independent variables of the regression consist of precipitation and other input measurements; the dependent variable is runoff. In models using erroneous input data, prediction errors are inflated and estimates of expected storm runoff for given observed input variables are biased. This bias in expected runoff estimation results in biased parameter estimates if these parameter estimates are obtained by a least squares fit of predicted to observed runoff values. The problems of error inflation and bias are examined in detail for a simple linear regression of runoff on rainfall and for a nonlinear U.S. Geological Survey precipitation-runoff model. Some implications for flood frequency analysis are considered. A case study using a set of data from Turtle Creek near Dallas, Texas illustrates the problems of model input errors.
Li, Xin; Cai, Yu; Moloney, Brendan; Chen, Yiyi; Huang, Wei; Woods, Mark; Coakley, Fergus V; Rooney, William D; Garzotto, Mark G; Springer, Charles S
2016-08-01
Dynamic-Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) has been used widely for clinical applications. Pharmacokinetic modeling of DCE-MRI data that extracts quantitative contrast reagent/tissue-specific model parameters is the most investigated method. One of the primary challenges in pharmacokinetic analysis of DCE-MRI data is accurate and reliable measurement of the arterial input function (AIF), which is the driving force behind all pharmacokinetics. Because of effects such as inflow and partial volume averaging, AIF measured from individual arteries sometimes require amplitude scaling for better representation of the blood contrast reagent (CR) concentration time-courses. Empirical approaches like blinded AIF estimation or reference tissue AIF derivation can be useful and practical, especially when there is no clearly visible blood vessel within the imaging field-of-view (FOV). Similarly, these approaches generally also require magnitude scaling of the derived AIF time-courses. Since the AIF varies among individuals even with the same CR injection protocol and the perfect scaling factor for reconstructing the ground truth AIF often remains unknown, variations in estimated pharmacokinetic parameters due to varying AIF scaling factors are of special interest. In this work, using simulated and real prostate cancer DCE-MRI data, we examined parameter variations associated with AIF scaling. Our results show that, for both the fast-exchange-limit (FXL) Tofts model and the water exchange sensitized fast-exchange-regime (FXR) model, the commonly fitted CR transfer constant (K(trans)) and the extravascular, extracellular volume fraction (ve) scale nearly proportionally with the AIF, whereas the FXR-specific unidirectional cellular water efflux rate constant, kio, and the CR intravasation rate constant, kep, are both AIF scaling insensitive. This indicates that, for DCE-MRI of prostate cancer and possibly other cancers, kio and kep may be more suitable imaging biomarkers for cross-platform, multicenter applications. Data from our limited study cohort show that kio correlates with Gleason scores, suggesting that it may be a useful biomarker for prostate cancer disease progression monitoring. Copyright © 2016 Elsevier Inc. All rights reserved.
Reliability of system for precise cold forging
NASA Astrophysics Data System (ADS)
Krušič, Vid; Rodič, Tomaž
2017-07-01
The influence of scatter of principal input parameters of the forging system on the dimensional accuracy of product and on the tool life for closed-die forging process is presented in this paper. Scatter of the essential input parameters for the closed-die upsetting process was adjusted to the maximal values that enabled the reliable production of a dimensionally accurate product at optimal tool life. An operating window was created in which exists the maximal scatter of principal input parameters for the closed-die upsetting process that still ensures the desired dimensional accuracy of the product and the optimal tool life. Application of the adjustment of the process input parameters is shown on the example of making an inner race of homokinetic joint from mass production. High productivity in manufacture of elements by cold massive extrusion is often achieved by multiple forming operations that are performed simultaneously on the same press. By redesigning the time sequences of forming operations at multistage forming process of starter barrel during the working stroke the course of the resultant force is optimized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Siyuan; Hwang, Youngdeok; Khabibrakhmanov, Ildar
With increasing penetration of solar and wind energy to the total energy supply mix, the pressing need for accurate energy forecasting has become well-recognized. Here we report the development of a machine-learning based model blending approach for statistically combining multiple meteorological models for improving the accuracy of solar/wind power forecast. Importantly, we demonstrate that in addition to parameters to be predicted (such as solar irradiance and power), including additional atmospheric state parameters which collectively define weather situations as machine learning input provides further enhanced accuracy for the blended result. Functional analysis of variance shows that the error of individual modelmore » has substantial dependence on the weather situation. The machine-learning approach effectively reduces such situation dependent error thus produces more accurate results compared to conventional multi-model ensemble approaches based on simplistic equally or unequally weighted model averaging. Validation over an extended period of time results show over 30% improvement in solar irradiance/power forecast accuracy compared to forecasts based on the best individual model.« less
Influence of speckle image reconstruction on photometric precision for large solar telescopes
NASA Astrophysics Data System (ADS)
Peck, C. L.; Wöger, F.; Marino, J.
2017-11-01
Context. High-resolution observations from large solar telescopes require adaptive optics (AO) systems to overcome image degradation caused by Earth's turbulent atmosphere. AO corrections are, however, only partial. Achieving near-diffraction limited resolution over a large field of view typically requires post-facto image reconstruction techniques to reconstruct the source image. Aims: This study aims to examine the expected photometric precision of amplitude reconstructed solar images calibrated using models for the on-axis speckle transfer functions and input parameters derived from AO control data. We perform a sensitivity analysis of the photometric precision under variations in the model input parameters for high-resolution solar images consistent with four-meter class solar telescopes. Methods: Using simulations of both atmospheric turbulence and partial compensation by an AO system, we computed the speckle transfer function under variations in the input parameters. We then convolved high-resolution numerical simulations of the solar photosphere with the simulated atmospheric transfer function, and subsequently deconvolved them with the model speckle transfer function to obtain a reconstructed image. To compute the resulting photometric precision, we compared the intensity of the original image with the reconstructed image. Results: The analysis demonstrates that high photometric precision can be obtained for speckle amplitude reconstruction using speckle transfer function models combined with AO-derived input parameters. Additionally, it shows that the reconstruction is most sensitive to the input parameter that characterizes the atmospheric distortion, and sub-2% photometric precision is readily obtained when it is well estimated.
Rosen, I G; Luczak, Susan E; Weiss, Jordan
2014-03-15
We develop a blind deconvolution scheme for input-output systems described by distributed parameter systems with boundary input and output. An abstract functional analytic theory based on results for the linear quadratic control of infinite dimensional systems with unbounded input and output operators is presented. The blind deconvolution problem is then reformulated as a series of constrained linear and nonlinear optimization problems involving infinite dimensional dynamical systems. A finite dimensional approximation and convergence theory is developed. The theory is applied to the problem of estimating blood or breath alcohol concentration (respectively, BAC or BrAC) from biosensor-measured transdermal alcohol concentration (TAC) in the field. A distributed parameter model with boundary input and output is proposed for the transdermal transport of ethanol from the blood through the skin to the sensor. The problem of estimating BAC or BrAC from the TAC data is formulated as a blind deconvolution problem. A scheme to identify distinct drinking episodes in TAC data based on a Hodrick Prescott filter is discussed. Numerical results involving actual patient data are presented.
Killeen, G F; McKenzie, F E; Foy, B D; Schieffelin, C; Billingsley, P F; Beier, J C
2000-05-01
Malaria transmission intensity is modeled from the starting perspective of individual vector mosquitoes and is expressed directly as the entomologic inoculation rate (EIR). The potential of individual mosquitoes to transmit malaria during their lifetime is presented graphically as a function of their feeding cycle length and survival, human biting preferences, and the parasite sporogonic incubation period. The EIR is then calculated as the product of 1) the potential of individual vectors to transmit malaria during their lifetime, 2) vector emergence rate relative to human population size, and 3) the infectiousness of the human population to vectors. Thus, impacts on more than one of these parameters will amplify each other's effects. The EIRs transmitted by the dominant vector species at four malaria-endemic sites from Papua New Guinea, Tanzania, and Nigeria were predicted using field measurements of these characteristics together with human biting rate and human reservoir infectiousness. This model predicted EIRs (+/- SD) that are 1.13 +/- 0.37 (range = 0.84-1.59) times those measured in the field. For these four sites, mosquito emergence rate and lifetime transmission potential were more important determinants of the EIR than human reservoir infectiousness. This model and the input parameters from the four sites allow the potential impacts of various control measures on malaria transmission intensity to be tested under a range of endemic conditions. The model has potential applications for the development and implementation of transmission control measures and for public health education.
Uncertainty Analysis and Parameter Estimation For Nearshore Hydrodynamic Models
NASA Astrophysics Data System (ADS)
Ardani, S.; Kaihatu, J. M.
2012-12-01
Numerical models represent deterministic approaches used for the relevant physical processes in the nearshore. Complexity of the physics of the model and uncertainty involved in the model inputs compel us to apply a stochastic approach to analyze the robustness of the model. The Bayesian inverse problem is one powerful way to estimate the important input model parameters (determined by apriori sensitivity analysis) and can be used for uncertainty analysis of the outputs. Bayesian techniques can be used to find the range of most probable parameters based on the probability of the observed data and the residual errors. In this study, the effect of input data involving lateral (Neumann) boundary conditions, bathymetry and off-shore wave conditions on nearshore numerical models are considered. Monte Carlo simulation is applied to a deterministic numerical model (the Delft3D modeling suite for coupled waves and flow) for the resulting uncertainty analysis of the outputs (wave height, flow velocity, mean sea level and etc.). Uncertainty analysis of outputs is performed by random sampling from the input probability distribution functions and running the model as required until convergence to the consistent results is achieved. The case study used in this analysis is the Duck94 experiment, which was conducted at the U.S. Army Field Research Facility at Duck, North Carolina, USA in the fall of 1994. The joint probability of model parameters relevant for the Duck94 experiments will be found using the Bayesian approach. We will further show that, by using Bayesian techniques to estimate the optimized model parameters as inputs and applying them for uncertainty analysis, we can obtain more consistent results than using the prior information for input data which means that the variation of the uncertain parameter will be decreased and the probability of the observed data will improve as well. Keywords: Monte Carlo Simulation, Delft3D, uncertainty analysis, Bayesian techniques, MCMC
Study of component technologies for fuel cell on-site integrated energy system. Volume 2: Appendices
NASA Technical Reports Server (NTRS)
Lee, W. D.; Mathias, S.
1980-01-01
This data base catalogue was compiled in order to facilitate the analysis of various on site integrated energy system with fuel cell power plants. The catalogue is divided into two sections. The first characterizes individual components in terms of their performance profiles as a function of design parameters. The second characterizes total heating and cooling systems in terms of energy output as a function of input and control variables. The integrated fuel cell systems diagrams and the computer analysis of systems are included as well as the cash flows series for baseline systems.
NASA Astrophysics Data System (ADS)
Nossent, Jiri; Pereira, Fernando; Bauwens, Willy
2015-04-01
Precipitation is one of the key inputs for hydrological models. As long as the values of the hydrological model parameters are fixed, a variation of the rainfall input is expected to induce a change in the model output. Given the increased awareness of uncertainty on rainfall records, it becomes more important to understand the impact of this input - output dynamic. Yet, modellers often still have the intention to mimic the observed flow, whatever the deviation of the employed records from the actual rainfall might be, by recklessly adapting the model parameter values. But is it actually possible to vary the model parameter values in such a way that a certain (observed) model output can be generated based on inaccurate rainfall inputs? Thus, how important is the rainfall uncertainty for the model output with respect to the model parameter importance? To address this question, we apply the Sobol' sensitivity analysis method to assess and compare the importance of the rainfall uncertainty and the model parameters on the output of the hydrological model. In order to be able to treat the regular model parameters and input uncertainty in the same way, and to allow a comparison of their influence, a possible approach is to represent the rainfall uncertainty by a parameter. To tackle the latter issue, we apply so called rainfall multipliers on hydrological independent storm events, as a probabilistic parameter representation of the possible rainfall variation. As available rainfall records are very often point measurements at a discrete time step (hourly, daily, monthly,…), they contain uncertainty due to a latent lack of spatial and temporal variability. The influence of the latter variability can also be different for hydrological models with different spatial and temporal scale. Therefore, we perform the sensitivity analyses on a semi-distributed model (SWAT) and a lumped model (NAM). The assessment and comparison of the importance of the rainfall uncertainty and the model parameters is achieved by considering different scenarios for the included parameters and the state of the models.
Optimisation of Fabric Reinforced Polymer Composites Using a Variant of Genetic Algorithm
NASA Astrophysics Data System (ADS)
Axinte, Andrei; Taranu, Nicolae; Bejan, Liliana; Hudisteanu, Iuliana
2017-12-01
Fabric reinforced polymeric composites are high performance materials with a rather complex fabric geometry. Therefore, modelling this type of material is a cumbersome task, especially when an efficient use is targeted. One of the most important issue of its design process is the optimisation of the individual laminae and of the laminated structure as a whole. In order to do that, a parametric model of the material has been defined, emphasising the many geometric variables needed to be correlated in the complex process of optimisation. The input parameters involved in this work, include: widths or heights of the tows and the laminate stacking sequence, which are discrete variables, while the gaps between adjacent tows and the height of the neat matrix are continuous variables. This work is one of the first attempts of using a Genetic Algorithm ( GA) to optimise the geometrical parameters of satin reinforced multi-layer composites. Given the mixed type of the input parameters involved, an original software called SOMGA (Satin Optimisation with a Modified Genetic Algorithm) has been conceived and utilised in this work. The main goal is to find the best possible solution to the problem of designing a composite material which is able to withstand to a given set of external, in-plane, loads. The optimisation process has been performed using a fitness function which can analyse and compare mechanical behaviour of different fabric reinforced composites, the results being correlated with the ultimate strains, which demonstrate the efficiency of the composite structure.
Parameter and state estimation in a Neisseria meningitidis model: A study case of Niger
NASA Astrophysics Data System (ADS)
Bowong, S.; Mountaga, L.; Bah, A.; Tewa, J. J.; Kurths, J.
2016-12-01
Neisseria meningitidis (Nm) is a major cause of bacterial meningitidis outbreaks in Africa and the Middle East. The availability of yearly reported meningitis cases in the African meningitis belt offers the opportunity to analyze the transmission dynamics and the impact of control strategies. In this paper, we propose a method for the estimation of state variables that are not accessible to measurements and an unknown parameter in a Nm model. We suppose that the yearly number of Nm induced mortality and the total population are known inputs, which can be obtained from data, and the yearly number of new Nm cases is the model output. We also suppose that the Nm transmission rate is an unknown parameter. We first show how the recruitment rate into the population can be estimated using real data of the total population and Nm induced mortality. Then, we use an auxiliary system called observer whose solutions converge exponentially to those of the original model. This observer does not use the unknown infection transmission rate but only uses the known inputs and the model output. This allows us to estimate unmeasured state variables such as the number of carriers that play an important role in the transmission of the infection and the total number of infected individuals within a human community. Finally, we also provide a simple method to estimate the unknown Nm transmission rate. In order to validate the estimation results, numerical simulations are conducted using real data of Niger.
Update on ɛK with lattice QCD inputs
NASA Astrophysics Data System (ADS)
Jang, Yong-Chull; Lee, Weonjong; Lee, Sunkyu; Leem, Jaehoon
2018-03-01
We report updated results for ɛK, the indirect CP violation parameter in neutral kaons, which is evaluated directly from the standard model with lattice QCD inputs. We use lattice QCD inputs to fix B\\hatk,|Vcb|,ξ0,ξ2,|Vus|, and mc(mc). Since Lattice 2016, the UTfit group has updated the Wolfenstein parameters in the angle-only-fit method, and the HFLAV group has also updated |Vcb|. Our results show that the evaluation of ɛK with exclusive |Vcb| (lattice QCD inputs) has 4.0σ tension with the experimental value, while that with inclusive |Vcb| (heavy quark expansion based on OPE and QCD sum rules) shows no tension.
NASA Technical Reports Server (NTRS)
Duong, N.; Winn, C. B.; Johnson, G. R.
1975-01-01
Two approaches to an identification problem in hydrology are presented, based upon concepts from modern control and estimation theory. The first approach treats the identification of unknown parameters in a hydrologic system subject to noisy inputs as an adaptive linear stochastic control problem; the second approach alters the model equation to account for the random part in the inputs, and then uses a nonlinear estimation scheme to estimate the unknown parameters. Both approaches use state-space concepts. The identification schemes are sequential and adaptive and can handle either time-invariant or time-dependent parameters. They are used to identify parameters in the Prasad model of rainfall-runoff. The results obtained are encouraging and confirm the results from two previous studies; the first using numerical integration of the model equation along with a trial-and-error procedure, and the second using a quasi-linearization technique. The proposed approaches offer a systematic way of analyzing the rainfall-runoff process when the input data are imbedded in noise.
CLASSIFYING MEDICAL IMAGES USING MORPHOLOGICAL APPEARANCE MANIFOLDS.
Varol, Erdem; Gaonkar, Bilwaj; Davatzikos, Christos
2013-12-31
Input features for medical image classification algorithms are extracted from raw images using a series of pre processing steps. One common preprocessing step in computational neuroanatomy and functional brain mapping is the nonlinear registration of raw images to a common template space. Typically, the registration methods used are parametric and their output varies greatly with changes in parameters. Most results reported previously perform registration using a fixed parameter setting and use the results as input to the subsequent classification step. The variation in registration results due to choice of parameters thus translates to variation of performance of the classifiers that depend on the registration step for input. Analogous issues have been investigated in the computer vision literature, where image appearance varies with pose and illumination, thereby making classification vulnerable to these confounding parameters. The proposed methodology addresses this issue by sampling image appearances as registration parameters vary, and shows that better classification accuracies can be obtained this way, compared to the conventional approach.
Uncertainty analysis in geospatial merit matrix–based hydropower resource assessment
Pasha, M. Fayzul K.; Yeasmin, Dilruba; Saetern, Sen; ...
2016-03-30
Hydraulic head and mean annual streamflow, two main input parameters in hydropower resource assessment, are not measured at every point along the stream. Translation and interpolation are used to derive these parameters, resulting in uncertainties. This study estimates the uncertainties and their effects on model output parameters: the total potential power and the number of potential locations (stream-reach). These parameters are quantified through Monte Carlo Simulation (MCS) linking with a geospatial merit matrix based hydropower resource assessment (GMM-HRA) Model. The methodology is applied to flat, mild, and steep terrains. Results show that the uncertainty associated with the hydraulic head ismore » within 20% for mild and steep terrains, and the uncertainty associated with streamflow is around 16% for all three terrains. Output uncertainty increases as input uncertainty increases. However, output uncertainty is around 10% to 20% of the input uncertainty, demonstrating the robustness of the GMM-HRA model. Hydraulic head is more sensitive to output parameters in steep terrain than in flat and mild terrains. Furthermore, mean annual streamflow is more sensitive to output parameters in flat terrain.« less
Hori, Yuki; Ihara, Naoki; Teramoto, Noboru; Kunimi, Masako; Honda, Manabu; Kato, Koichi; Hanakawa, Takashi
2015-01-01
Measurement of arterial input function (AIF) for quantitative positron emission tomography (PET) studies is technically challenging. The present study aimed to develop a method based on a standard arterial input function (SIF) to estimate input function without blood sampling. We performed 18F-fluolodeoxyglucose studies accompanied by continuous blood sampling for measurement of AIF in 11 rats. Standard arterial input function was calculated by averaging AIFs from eight anesthetized rats, after normalization with body mass (BM) and injected dose (ID). Then, the individual input function was estimated using two types of SIF: (1) SIF calibrated by the individual's BM and ID (estimated individual input function, EIFNS) and (2) SIF calibrated by a single blood sampling as proposed previously (EIF1S). No significant differences in area under the curve (AUC) or cerebral metabolic rate for glucose (CMRGlc) were found across the AIF-, EIFNS-, and EIF1S-based methods using repeated measures analysis of variance. In the correlation analysis, AUC or CMRGlc derived from EIFNS was highly correlated with those derived from AIF and EIF1S. Preliminary comparison between AIF and EIFNS in three awake rats supported an idea that the method might be applicable to behaving animals. The present study suggests that EIFNS method might serve as a noninvasive substitute for individual AIF measurement. PMID:25966947
Hori, Yuki; Ihara, Naoki; Teramoto, Noboru; Kunimi, Masako; Honda, Manabu; Kato, Koichi; Hanakawa, Takashi
2015-10-01
Measurement of arterial input function (AIF) for quantitative positron emission tomography (PET) studies is technically challenging. The present study aimed to develop a method based on a standard arterial input function (SIF) to estimate input function without blood sampling. We performed (18)F-fluolodeoxyglucose studies accompanied by continuous blood sampling for measurement of AIF in 11 rats. Standard arterial input function was calculated by averaging AIFs from eight anesthetized rats, after normalization with body mass (BM) and injected dose (ID). Then, the individual input function was estimated using two types of SIF: (1) SIF calibrated by the individual's BM and ID (estimated individual input function, EIF(NS)) and (2) SIF calibrated by a single blood sampling as proposed previously (EIF(1S)). No significant differences in area under the curve (AUC) or cerebral metabolic rate for glucose (CMRGlc) were found across the AIF-, EIF(NS)-, and EIF(1S)-based methods using repeated measures analysis of variance. In the correlation analysis, AUC or CMRGlc derived from EIF(NS) was highly correlated with those derived from AIF and EIF(1S). Preliminary comparison between AIF and EIF(NS) in three awake rats supported an idea that the method might be applicable to behaving animals. The present study suggests that EIF(NS) method might serve as a noninvasive substitute for individual AIF measurement.
Dynamic modal estimation using instrumental variables
NASA Technical Reports Server (NTRS)
Salzwedel, H.
1980-01-01
A method to determine the modes of dynamical systems is described. The inputs and outputs of a system are Fourier transformed and averaged to reduce the error level. An instrumental variable method that estimates modal parameters from multiple correlations between responses of single input, multiple output systems is applied to estimate aircraft, spacecraft, and off-shore platform modal parameters.
Econometric analysis of fire suppression production functions for large wildland fires
Thomas P. Holmes; David E. Calkin
2013-01-01
In this paper, we use operational data collected for large wildland fires to estimate the parameters of economic production functions that relate the rate of fireline construction with the level of fire suppression inputs (handcrews, dozers, engines and helicopters). These parameter estimates are then used to evaluate whether the productivity of fire suppression inputs...
A mathematical model for predicting fire spread in wildland fuels
Richard C. Rothermel
1972-01-01
A mathematical fire model for predicting rate of spread and intensity that is applicable to a wide range of wildland fuels and environment is presented. Methods of incorporating mixtures of fuel sizes are introduced by weighting input parameters by surface area. The input parameters do not require a prior knowledge of the burning characteristics of the fuel.
The application of remote sensing to the development and formulation of hydrologic planning models
NASA Technical Reports Server (NTRS)
Castruccio, P. A.; Loats, H. L., Jr.; Fowler, T. R.
1976-01-01
A hydrologic planning model is developed based on remotely sensed inputs. Data from LANDSAT 1 are used to supply the model's quantitative parameters and coefficients. The use of LANDSAT data as information input to all categories of hydrologic models requiring quantitative surface parameters for their effects functioning is also investigated.
Harbaugh, Arien W.
2011-01-01
The MFI2005 data-input (entry) program was developed for use with the U.S. Geological Survey modular three-dimensional finite-difference groundwater model, MODFLOW-2005. MFI2005 runs on personal computers and is designed to be easy to use; data are entered interactively through a series of display screens. MFI2005 supports parameter estimation using the UCODE_2005 program for parameter estimation. Data for MODPATH, a particle-tracking program for use with MODFLOW-2005, also can be entered using MFI2005. MFI2005 can be used in conjunction with other data-input programs so that the different parts of a model dataset can be entered by using the most suitable program.
NASA Astrophysics Data System (ADS)
Zahmatkesh, Zahra; Karamouz, Mohammad; Nazif, Sara
2015-09-01
Simulation of rainfall-runoff process in urban areas is of great importance considering the consequences and damages of extreme runoff events and floods. The first issue in flood hazard analysis is rainfall simulation. Large scale climate signals have been proved to be effective in rainfall simulation and prediction. In this study, an integrated scheme is developed for rainfall-runoff modeling considering different sources of uncertainty. This scheme includes three main steps of rainfall forecasting, rainfall-runoff simulation and future runoff prediction. In the first step, data driven models are developed and used to forecast rainfall using large scale climate signals as rainfall predictors. Due to high effect of different sources of uncertainty on the output of hydrologic models, in the second step uncertainty associated with input data, model parameters and model structure is incorporated in rainfall-runoff modeling and simulation. Three rainfall-runoff simulation models are developed for consideration of model conceptual (structural) uncertainty in real time runoff forecasting. To analyze the uncertainty of the model structure, streamflows generated by alternative rainfall-runoff models are combined, through developing a weighting method based on K-means clustering. Model parameters and input uncertainty are investigated using an adaptive Markov Chain Monte Carlo method. Finally, calibrated rainfall-runoff models are driven using the forecasted rainfall to predict future runoff for the watershed. The proposed scheme is employed in the case study of the Bronx River watershed, New York City. Results of uncertainty analysis of rainfall-runoff modeling reveal that simultaneous estimation of model parameters and input uncertainty significantly changes the probability distribution of the model parameters. It is also observed that by combining the outputs of the hydrological models using the proposed clustering scheme, the accuracy of runoff simulation in the watershed is remarkably improved up to 50% in comparison to the simulations by the individual models. Results indicate that the developed methodology not only provides reliable tools for rainfall and runoff modeling, but also adequate time for incorporating required mitigation measures in dealing with potentially extreme runoff events and flood hazard. Results of this study can be used in identification of the main factors affecting flood hazard analysis.
Su, Fei; Wang, Jiang; Deng, Bin; Wei, Xi-Le; Chen, Ying-Yuan; Liu, Chen; Li, Hui-Yan
2015-02-01
The objective here is to explore the use of adaptive input-output feedback linearization method to achieve an improved deep brain stimulation (DBS) algorithm for closed-loop control of Parkinson's state. The control law is based on a highly nonlinear computational model of Parkinson's disease (PD) with unknown parameters. The restoration of thalamic relay reliability is formulated as the desired outcome of the adaptive control methodology, and the DBS waveform is the control input. The control input is adjusted in real time according to estimates of unknown parameters as well as the feedback signal. Simulation results show that the proposed adaptive control algorithm succeeds in restoring the relay reliability of the thalamus, and at the same time achieves accurate estimation of unknown parameters. Our findings point to the potential value of adaptive control approach that could be used to regulate DBS waveform in more effective treatment of PD.
Theoretic aspects of the identification of the parameters in the optimal control model
NASA Technical Reports Server (NTRS)
Vanwijk, R. A.; Kok, J. J.
1977-01-01
The identification of the parameters of the optimal control model from input-output data of the human operator is considered. Accepting the basic structure of the model as a cascade of a full-order observer and a feedback law, and suppressing the inherent optimality of the human controller, the parameters to be identified are the feedback matrix, the observer gain matrix, and the intensity matrices of the observation noise and the motor noise. The identification of the parameters is a statistical problem, because the system and output are corrupted by noise, and therefore the solution must be based on the statistics (probability density function) of the input and output data of the human operator. However, based on the statistics of the input-output data of the human operator, no distinction can be made between the observation and the motor noise, which shows that the model suffers from overparameterization.
Kaklamanos, James; Baise, Laurie G.; Boore, David M.
2011-01-01
The ground-motion prediction equations (GMPEs) developed as part of the Next Generation Attenuation of Ground Motions (NGA-West) project in 2008 are becoming widely used in seismic hazard analyses. However, these new models are considerably more complicated than previous GMPEs, and they require several more input parameters. When employing the NGA models, users routinely face situations in which some of the required input parameters are unknown. In this paper, we present a framework for estimating the unknown source, path, and site parameters when implementing the NGA models in engineering practice, and we derive geometrically-based equations relating the three distance measures found in the NGA models. Our intent is for the content of this paper not only to make the NGA models more accessible, but also to help with the implementation of other present or future GMPEs.
Parallel stochastic simulation of macroscopic calcium currents.
González-Vélez, Virginia; González-Vélez, Horacio
2007-06-01
This work introduces MACACO, a macroscopic calcium currents simulator. It provides a parameter-sweep framework which computes macroscopic Ca(2+) currents from the individual aggregation of unitary currents, using a stochastic model for L-type Ca(2+) channels. MACACO uses a simplified 3-state Markov model to simulate the response of each Ca(2+) channel to different voltage inputs to the cell. In order to provide an accurate systematic view for the stochastic nature of the calcium channels, MACACO is composed of an experiment generator, a central simulation engine and a post-processing script component. Due to the computational complexity of the problem and the dimensions of the parameter space, the MACACO simulation engine employs a grid-enabled task farm. Having been designed as a computational biology tool, MACACO heavily borrows from the way cell physiologists conduct and report their experimental work.
Assessment of NDE Reliability Data
NASA Technical Reports Server (NTRS)
Yee, B. G. W.; Chang, F. H.; Couchman, J. C.; Lemon, G. H.; Packman, P. F.
1976-01-01
Twenty sets of relevant Nondestructive Evaluation (NDE) reliability data have been identified, collected, compiled, and categorized. A criterion for the selection of data for statistical analysis considerations has been formulated. A model to grade the quality and validity of the data sets has been developed. Data input formats, which record the pertinent parameters of the defect/specimen and inspection procedures, have been formulated for each NDE method. A comprehensive computer program has been written to calculate the probability of flaw detection at several confidence levels by the binomial distribution. This program also selects the desired data sets for pooling and tests the statistical pooling criteria before calculating the composite detection reliability. Probability of detection curves at 95 and 50 percent confidence levels have been plotted for individual sets of relevant data as well as for several sets of merged data with common sets of NDE parameters.
Perturbed-input-data ensemble modeling of magnetospheric dynamics
NASA Astrophysics Data System (ADS)
Morley, S.; Steinberg, J. T.; Haiducek, J. D.; Welling, D. T.; Hassan, E.; Weaver, B. P.
2017-12-01
Many models of Earth's magnetospheric dynamics - including global magnetohydrodynamic models, reduced complexity models of substorms and empirical models - are driven by solar wind parameters. To provide consistent coverage of the upstream solar wind these measurements are generally taken near the first Lagrangian point (L1) and algorithmically propagated to the nose of Earth's bow shock. However, the plasma and magnetic field measured near L1 is a point measurement of an inhomogeneous medium, so the individual measurement may not be sufficiently representative of the broader region near L1. The measured plasma may not actually interact with the Earth, and the solar wind structure may evolve between L1 and the bow shock. To quantify uncertainties in simulations, as well as to provide probabilistic forecasts, it is desirable to use perturbed input ensembles of magnetospheric and space weather forecasting models. By using concurrent measurements of the solar wind near L1 and near the Earth, we construct a statistical model of the distributions of solar wind parameters conditioned on their upstream value. So that we can draw random variates from our model we specify the conditional probability distributions using Kernel Density Estimation. We demonstrate the utility of this approach using ensemble runs of selected models that can be used for space weather prediction.
Postural stability changes during large vertical diplopia induced by prism wear in normal subjects.
Matsuo, Toshihiko; Yamasaki, Hanako; Yasuhara, Hirotaka; Hasebe, Kayoko
2013-01-01
To test the effect of double vision on postural stability, we measured postural stability by electric stabilometry before prism-wearing and immediately, 15, 30, and 60min after continuous prism-wearing with 6 prism diopters in total (a 3-prism-diopter prism placed with the base up in front of one eye and with the base down in front of the other eye) in 20 normal adult individuals with their eyes open or closed. Changes in stabilometric parameters in the time course of 60min were analyzed statistically by repeated-measure analysis of variance. When subjectsセ eyes were closed, the total linear length (cm) and the unit-time length (cm/sec) of the sway path were significantly shortened during the 60-minute prism-wearing (p<0.05). No significant change was noted in any stabilometric parameters obtained with the eyes open during the time course. In conclusion, postural stability did not change with the eyes open in the condition of large vertical diplopia, induced by prism-wearing for 60min, while the stability became better when measured with the eyes closed. A postural control mechanism other than that derived from visual input might be reinforced under abnormal visual input such as non-fusionable diplopia.
Hepatic transporter drug-drug interactions: an evaluation of approaches and methodologies.
Williamson, Beth; Riley, Robert J
2017-12-01
Drug-drug interactions (DDIs) continue to account for 5% of hospital admissions and therefore remain a major regulatory concern. Effective, quantitative prediction of DDIs will reduce unexpected clinical findings and encourage projects to frontload DDI investigations rather than concentrating on risk management ('manage the baggage') later in drug development. A key challenge in DDI prediction is the discrepancies between reported models. Areas covered: The current synopsis focuses on four recent influential publications on hepatic drug transporter DDIs using static models that tackle interactions with individual transporters and in combination with other drug transporters and metabolising enzymes. These models vary in their assumptions (including input parameters), transparency, reproducibility and complexity. In this review, these facets are compared and contrasted with recommendations made as to their application. Expert opinion: Over the past decade, static models have evolved from simple [I]/k i models to incorporate victim and perpetrator disposition mechanisms including the absorption rate constant, the fraction of the drug metabolised/eliminated and/or clearance concepts. Nonetheless, models that comprise additional parameters and complexity do not necessarily out-perform simpler models with fewer inputs. Further, consideration of the property space to exploit some drug target classes has also highlighted the fine balance required between frontloading and back-loading studies to design out or 'manage the baggage'.
Longitudinal modelling of respiratory symptoms in children
NASA Astrophysics Data System (ADS)
Schlink, Uwe; Fritz, Gisela; Herbarth, Olf; Richter, Matthias
2002-08-01
A panel of 277 children, aged 3-7 years, was used to study the association between air pollution (O3, SO2, NO2, and total suspended particles), meteorological factors (global radiation, maximum daytime temperature, daily averages of vapour pressure and air humidity) and respiratory symptoms. For 759 days the symptoms were recorded in a diary and modelling was based on a modification of the method proposed by Korn and Whittemore (Biometrics 35: 795-798, 1979). This approach (1) comprises an extension using environmental parameters at different time scales, (2) addresses the suitability of using the daily fraction of symptomatic individuals to account for inter-individual interactions and (3) enables the most significant weather effects to be identified. The resulting model consisted of (1) an individual specific intercept that takes account of the population's heterogeneity, (2) the individual's health status the day before, (3) a long-term meteorological effect, which may be either the squared temperature or global radiation in interaction with temperature, (4) the short-term effect of sulfur dioxide, and (5) the short-term effect of an 8-h ozone concentration above 60 µg/m3. Using the estimated parameters as input to a simulation study, we checked the quality of the model and demonstrate that the annual cycle of the prevalence of respiratory symptoms is associated to atmospheric covariates. Individuals suffering from allergy have been identified as a group of a particular susceptibility to ozone. The duration of respiratory symptoms appears to be free of scale and follows an exponential distribution function, which confirms that the symptom record of each individual follows a Poisson point-process. This supports the assumption that not only respiratory diseases, but also respiratory symptoms can be considered an independent measure for the health status of a population sample. Since a point process is described by only one parameter (namely the intensity of the point process), it is appropriate for records of respiratory symptoms to identify only one model which covers both the occurrence and duration of symptoms.
Dual side control for inductive power transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron
An apparatus for dual side control includes a measurement module that measures a voltage and a current of an IPT system. The voltage includes an output voltage and/or an input voltage and the current includes an output current and/or an input current. The output voltage and the output current are measured at an output of the IPT system and the input voltage and the input current measured at an input of the IPT system. The apparatus includes a max efficiency module that determines a maximum efficiency for the IPT system. The max efficiency module uses parameters of the IPT systemmore » to iterate to a maximum efficiency. The apparatus includes an adjustment module that adjusts one or more parameters in the IPT system consistent with the maximum efficiency calculated by the max efficiency module.« less
NASA Technical Reports Server (NTRS)
Ramirez, Daniel Perez; Whiteman, David N.; Veselovskii, Igor; Kolgotin, Alexei; Korenskiy, Michael; Alados-Arboledas, Lucas
2013-01-01
In this work we study the effects of systematic and random errors on the inversion of multiwavelength (MW) lidar data using the well-known regularization technique to obtain vertically resolved aerosol microphysical properties. The software implementation used here was developed at the Physics Instrumentation Center (PIC) in Troitsk (Russia) in conjunction with the NASA/Goddard Space Flight Center. Its applicability to Raman lidar systems based on backscattering measurements at three wavelengths (355, 532 and 1064 nm) and extinction measurements at two wavelengths (355 and 532 nm) has been demonstrated widely. The systematic error sensitivity is quantified by first determining the retrieved parameters for a given set of optical input data consistent with three different sets of aerosol physical parameters. Then each optical input is perturbed by varying amounts and the inversion is repeated. Using bimodal aerosol size distributions, we find a generally linear dependence of the retrieved errors in the microphysical properties on the induced systematic errors in the optical data. For the retrievals of effective radius, number/surface/volume concentrations and fine-mode radius and volume, we find that these results are not significantly affected by the range of the constraints used in inversions. But significant sensitivity was found to the allowed range of the imaginary part of the particle refractive index. Our results also indicate that there exists an additive property for the deviations induced by the biases present in the individual optical data. This property permits the results here to be used to predict deviations in retrieved parameters when multiple input optical data are biased simultaneously as well as to study the influence of random errors on the retrievals. The above results are applied to questions regarding lidar design, in particular for the spaceborne multiwavelength lidar under consideration for the upcoming ACE mission.
Next generation lightweight mirror modeling software
NASA Astrophysics Data System (ADS)
Arnold, William R.; Fitzgerald, Matthew; Rosa, Rubin Jaca; Stahl, H. Philip
2013-09-01
The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low temperature fusion, Corning's continued improvements in the Frit bonding process and the ability to cast large complex designs, combined with water-jet and conventional diamond machining of glasses and ceramics has created the need for more efficient means of generating finite element models of these structures. Traditional methods of assembling 400,000 + element models can take weeks of effort, severely limiting the range of possible optimization variables. This paper will introduce model generation software developed under NASA sponsorship for the design of both terrestrial and space based mirrors. The software deals with any current mirror manufacturing technique, single substrates, multiple arrays of substrates, as well as the ability to merge submodels into a single large model. The modeler generates both mirror and suspension system elements, suspensions can be created either for each individual petal or the whole mirror. A typical model generation of 250,000 nodes and 450,000 elements only takes 3-5 minutes, much of that time being variable input time. The program can create input decks for ANSYS, ABAQUS and NASTRAN. An archive/retrieval system permits creation of complete trade studies, varying cell size, depth, and petal size, suspension geometry with the ability to recall a particular set of parameters and make small or large changes with ease. The input decks created by the modeler are text files which can be modified by any text editor, all the shell thickness parameters and suspension spring rates are accessible and comments in deck identify which groups of elements are associated with these parameters. This again makes optimization easier. With ANSYS decks, the nodes representing support attachments are grouped into components; in ABAQUS these are SETS and in NASTRAN as GRIDPOINT SETS, this make integration of these models into large telescope or satellite models easier.
Harkema, Susan; Gerasimenko, Yury; Hodes, Jonathan; Burdick, Joel; Angeli, Claudia; Chen, Yangsheng; Ferreira, Christie; Willhite, Andrea; Rejc, Enrico; Grossman, Robert G.; Edgerton, V. Reggie
2011-01-01
Summary Background Repeated periods of stimulation of the spinal cord and training seems to have amplified the ability to consciously control movement. Methods An individual three years post C7-T1 subluxation presented with a complete loss of clinically detectable voluntary motor function and partial preservation of sensation below the T1 cord segment. Following 170 locomotor training sessions, a 16-electrode array was surgically placed on the dura (L1-S1 cord segments) to allow for chronic electrical stimulation. After implantation and throughout stand retraining with epidural stimulation, 29 experiments were performed. Extensive stimulation combinations and parameters were tested to achieve standing and stepping. Findings Epidural stimulation enabled the human lumbosacral spinal circuitry to dynamically elicit full weight-bearing standing with assistance provided only for balance for 4·25 minutes in a subject with a clinically motor complete SCI. This occurred when using stimulation at parameters optimized for standing while providing bilateral load-bearing proprioceptive input. Locomotor-like patterns were also observed when stimulation parameters were optimized for stepping. In addition, seven months after implantation, the subject recovered supraspinal control of certain leg movements, but only during epidural stimulation. Interpretation Even after a severe low cervical spinal injury, the neural networks remaining within the lumbosacral segments can be reactivated into functional states so that it can recognize specific details of ensembles of sensory input to the extent that it can serve as the source of neural control. In addition, newly formed supraspinal input to this same lumbosacral segments can re-emerge as another source of control. Task specific training with epidural stimulation may have reactivated previously silent spared neural circuits or promoted plasticity. This suggests that these interventions could be a viable clinical approach for functional recovery after severe paralysis. Funding National Institutes of Health and Christopher and Dana Reeve Foundation. PMID:21601270
Input design for identification of aircraft stability and control derivatives
NASA Technical Reports Server (NTRS)
Gupta, N. K.; Hall, W. E., Jr.
1975-01-01
An approach for designing inputs to identify stability and control derivatives from flight test data is presented. This approach is based on finding inputs which provide the maximum possible accuracy of derivative estimates. Two techniques of input specification are implemented for this objective - a time domain technique and a frequency domain technique. The time domain technique gives the control input time history and can be used for any allowable duration of test maneuver, including those where data lengths can only be of short duration. The frequency domain technique specifies the input frequency spectrum, and is best applied for tests where extended data lengths, much longer than the time constants of the modes of interest, are possible. These technqiues are used to design inputs to identify parameters in longitudinal and lateral linear models of conventional aircraft. The constraints of aircraft response limits, such as on structural loads, are realized indirectly through a total energy constraint on the input. Tests with simulated data and theoretical predictions show that the new approaches give input signals which can provide more accurate parameter estimates than can conventional inputs of the same total energy. Results obtained indicate that the approach has been brought to the point where it should be used on flight tests for further evaluation.
Papanastasiou, Giorgos; Williams, Michelle C; Kershaw, Lucy E; Dweck, Marc R; Alam, Shirjel; Mirsadraee, Saeed; Connell, Martin; Gray, Calum; MacGillivray, Tom; Newby, David E; Semple, Scott Ik
2015-02-17
Mathematical modeling of cardiovascular magnetic resonance perfusion data allows absolute quantification of myocardial blood flow. Saturation of left ventricle signal during standard contrast administration can compromise the input function used when applying these models. This saturation effect is evident during application of standard Fermi models in single bolus perfusion data. Dual bolus injection protocols have been suggested to eliminate saturation but are much less practical in the clinical setting. The distributed parameter model can also be used for absolute quantification but has not been applied in patients with coronary artery disease. We assessed whether distributed parameter modeling might be less dependent on arterial input function saturation than Fermi modeling in healthy volunteers. We validated the accuracy of each model in detecting reduced myocardial blood flow in stenotic vessels versus gold-standard invasive methods. Eight healthy subjects were scanned using a dual bolus cardiac perfusion protocol at 3T. We performed both single and dual bolus analysis of these data using the distributed parameter and Fermi models. For the dual bolus analysis, a scaled pre-bolus arterial input function was used. In single bolus analysis, the arterial input function was extracted from the main bolus. We also performed analysis using both models of single bolus data obtained from five patients with coronary artery disease and findings were compared against independent invasive coronary angiography and fractional flow reserve. Statistical significance was defined as two-sided P value < 0.05. Fermi models overestimated myocardial blood flow in healthy volunteers due to arterial input function saturation in single bolus analysis compared to dual bolus analysis (P < 0.05). No difference was observed in these volunteers when applying distributed parameter-myocardial blood flow between single and dual bolus analysis. In patients, distributed parameter modeling was able to detect reduced myocardial blood flow at stress (<2.5 mL/min/mL of tissue) in all 12 stenotic vessels compared to only 9 for Fermi modeling. Comparison of single bolus versus dual bolus values suggests that distributed parameter modeling is less dependent on arterial input function saturation than Fermi modeling. Distributed parameter modeling showed excellent accuracy in detecting reduced myocardial blood flow in all stenotic vessels.
CIRMIS Data system. Volume 2. Program listings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrichs, D.R.
1980-01-01
The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologicmore » systems, model the transport of released radionuclides through the hydrologic systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. The various input parameters required in the analysis are compiled in data systems. The data are organized and prepared by various input subroutines for utilization by the hydraulic and transport codes. The hydrologic models simulate the groundwater flow systems and provide water flow directions, rates, and velocities as inputs to the transport models. Outputs from the transport models are basically graphs of radionuclide concentration in the groundwater plotted against time. After dilution in the receiving surface-water body (e.g., lake, river, bay), these data are the input source terms for the dose models, if dose assessments are required.The dose models calculate radiation dose to individuals and populations. CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) Data System is a storage and retrieval system for model input and output data, including graphical interpretation and display. This is the second of four volumes of the description of the CIRMIS Data System.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrichs, D.R.
1980-01-01
The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (ONWI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologicmore » systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. The various input parameters required in the analysis are compiled in data systems. The data are organized and prepared by various input subroutines for use by the hydrologic and transport codes. The hydrologic models simulate the groundwater flow systems and provide water flow directions, rates, and velocities as inputs to the transport models. Outputs from the transport models are basically graphs of radionuclide concentration in the groundwater plotted against time. After dilution in the receiving surface-water body (e.g., lake, river, bay), these data are the input source terms for the dose models, if dose assessments are required. The dose models calculate radiation dose to individuals and populations. CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) Data System is a storage and retrieval system for model input and output data, including graphical interpretation and display. This is the fourth of four volumes of the description of the CIRMIS Data System.« less
Hess, Lisa M; Rajan, Narayan; Winfree, Katherine; Davey, Peter; Ball, Mark; Knox, Hediyyih; Graham, Christopher
2015-12-01
Health technology assessment is not required for regulatory submission or approval in either the United States (US) or Japan. This study was designed as a cross-country evaluation of cost analyses conducted in the US and Japan based on the PRONOUNCE phase III lung cancer trial, which compared pemetrexed plus carboplatin followed by pemetrexed (PemC) versus paclitaxel plus carboplatin plus bevacizumab followed by bevacizumab (PCB). Two cost analyses were conducted in accordance with International Society For Pharmacoeconomics and Outcomes Research good research practice standards. Costs were obtained based on local pricing structures; outcomes were considered equivalent based on the PRONOUNCE trial results. Other inputs were included from the trial data (e.g., toxicity rates) or from local practice sources (e.g., toxicity management). The models were compared across key input and transferability factors. Despite differences in local input data, both models demonstrated a similar direction, with the cost of PemC being consistently lower than the cost of PCB. The variation in individual input parameters did affect some of the specific categories, such as toxicity, and impacted sensitivity analyses, with the cost differential between comparators being greater in Japan than in the US. When economic models are based on clinical trial data, many inputs and outcomes are held consistent. The alterable inputs were not in and of themselves large enough to significantly impact the results between countries, which were directionally consistent with greater variation seen in sensitivity analyses. The factors that vary across jurisdictions, even when minor, can have an impact on trial-based economic analyses. Eli Lilly and Company.
Parallel computing for automated model calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, John S.; Danielson, Gary R.; Schulz, Douglas A.
2002-07-29
Natural resources model calibration is a significant burden on computing and staff resources in modeling efforts. Most assessments must consider multiple calibration objectives (for example magnitude and timing of stream flow peak). An automated calibration process that allows real time updating of data/models, allowing scientists to focus effort on improving models is needed. We are in the process of building a fully featured multi objective calibration tool capable of processing multiple models cheaply and efficiently using null cycle computing. Our parallel processing and calibration software routines have been generically, but our focus has been on natural resources model calibration. Somore » far, the natural resources models have been friendly to parallel calibration efforts in that they require no inter-process communication, only need a small amount of input data and only output a small amount of statistical information for each calibration run. A typical auto calibration run might involve running a model 10,000 times with a variety of input parameters and summary statistical output. In the past model calibration has been done against individual models for each data set. The individual model runs are relatively fast, ranging from seconds to minutes. The process was run on a single computer using a simple iterative process. We have completed two Auto Calibration prototypes and are currently designing a more feature rich tool. Our prototypes have focused on running the calibration in a distributed computing cross platform environment. They allow incorporation of?smart? calibration parameter generation (using artificial intelligence processing techniques). Null cycle computing similar to SETI@Home has also been a focus of our efforts. This paper details the design of the latest prototype and discusses our plans for the next revision of the software.« less
Lv, Yueyong; Hu, Qinglei; Ma, Guangfu; Zhou, Jiakang
2011-10-01
This paper treats the problem of synchronized control of spacecraft formation flying (SFF) in the presence of input constraint and parameter uncertainties. More specifically, backstepping based robust control is first developed for the total 6 DOF dynamic model of SFF with parameter uncertainties, in which the model consists of relative translation and attitude rotation. Then this controller is redesigned to deal with the input constraint problem by incorporating a command filter such that the generated control could be implementable even under physical or operating constraints on the control input. The convergence of the proposed control algorithms is proved by the Lyapunov stability theorem. Compared with conventional methods, illustrative simulations of spacecraft formation flying are conducted to verify the effectiveness of the proposed approach to achieve the spacecraft track the desired attitude and position trajectories in a synchronized fashion even in the presence of uncertainties, external disturbances and control saturation constraint. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Ming, Y; Peiwen, Q
2001-03-01
The understanding of ultrasonic motor performances as a function of input parameters, such as the voltage amplitude, driving frequency, the preload on the rotor, is a key to many applications and control of ultrasonic motor. This paper presents performances estimation of the piezoelectric rotary traveling wave ultrasonic motor as a function of input voltage amplitude and driving frequency and preload. The Love equation is used to derive the traveling wave amplitude on the stator surface. With the contact model of the distributed spring-rigid body between the stator and rotor, a two-dimension analytical model of the rotary traveling wave ultrasonic motor is constructed. Then the performances of stead rotation speed and stall torque are deduced. With MATLAB computational language and iteration algorithm, we estimate the performances of rotation speed and stall torque versus input parameters respectively. The same experiments are completed with the optoelectronic tachometer and stand weight. Both estimation and experiment results reveal the pattern of performance variation as a function of its input parameters.
NASA Astrophysics Data System (ADS)
Ender, Anna; Goeppert, Nadine; Goldscheider, Nico
2018-04-01
Karst aquifers are characterized by a high degree of hydrologic variability and spatial heterogeneity of transport parameters. Tracer tests allow the quantification of these parameters, but conventional point-to-point experiments fail to capture spatiotemporal variations of flow and transport. The goal of this study was to elucidate the spatial distribution of transport parameters in a karst conduit system at different flow conditions. Therefore, six tracer tests were conducted in an active and accessible cave system in Vietnam during dry and wet seasons. Injections and monitoring were done at five sites along the flow system: a swallow hole, two sites inside the cave, and two springs draining the system. Breakthrough curves (BTCs) were modeled with CXTFIT software using the one-dimensional advection-dispersion model and the two-region nonequilibrium model. In order to obtain transport parameters in the individual sections of the system, a multi-pulse injection approach was used, which was realized by using the BTCs from one section as input functions for the next section. Major findings include: (1) In the entire system, mean flow velocities increase from 183 to 1,043 m/h with increasing discharge, while (2) the proportion of immobile fluid regions decrease; (3) the lowest dispersivity was found at intermediate discharge; (4) in the individual cave sections, flow velocities decrease along the flow direction, related to decreasing gradients, while (5) dispersivity is highest in the middle section of the cave. The obtained results provide a valuable basis for the development of an adapted water management strategy for a projected water-supply system.
Desktop Application Program to Simulate Cargo-Air-Drop Tests
NASA Technical Reports Server (NTRS)
Cuthbert, Peter
2009-01-01
The DSS Application is a computer program comprising a Windows version of the UNIX-based Decelerator System Simulation (DSS) coupled with an Excel front end. The DSS is an executable code that simulates the dynamics of airdropped cargo from first motion in an aircraft through landing. The bare DSS is difficult to use; the front end makes it easy to use. All inputs to the DSS, control of execution of the DSS, and postprocessing and plotting of outputs are handled in the front end. The front end is graphics-intensive. The Excel software provides the graphical elements without need for additional programming. Categories of input parameters are divided into separate tabbed windows. Pop-up comments describe each parameter. An error-checking software component evaluates combinations of parameters and alerts the user if an error results. Case files can be created from inputs, making it possible to build cases from previous ones. Simulation output is plotted in 16 charts displayed on a separate worksheet, enabling plotting of multiple DSS cases with flight-test data. Variables assigned to each plot can be changed. Selected input parameters can be edited from the plot sheet for quick sensitivity studies.
Automated method for the systematic interpretation of resonance peaks in spectrum data
Damiano, B.; Wood, R.T.
1997-04-22
A method is described for spectral signature interpretation. The method includes the creation of a mathematical model of a system or process. A neural network training set is then developed based upon the mathematical model. The neural network training set is developed by using the mathematical model to generate measurable phenomena of the system or process based upon model input parameter that correspond to the physical condition of the system or process. The neural network training set is then used to adjust internal parameters of a neural network. The physical condition of an actual system or process represented by the mathematical model is then monitored by extracting spectral features from measured spectra of the actual process or system. The spectral features are then input into said neural network to determine the physical condition of the system or process represented by the mathematical model. More specifically, the neural network correlates the spectral features (i.e. measurable phenomena) of the actual process or system with the corresponding model input parameters. The model input parameters relate to specific components of the system or process, and, consequently, correspond to the physical condition of the process or system. 1 fig.
Automated method for the systematic interpretation of resonance peaks in spectrum data
Damiano, Brian; Wood, Richard T.
1997-01-01
A method for spectral signature interpretation. The method includes the creation of a mathematical model of a system or process. A neural network training set is then developed based upon the mathematical model. The neural network training set is developed by using the mathematical model to generate measurable phenomena of the system or process based upon model input parameter that correspond to the physical condition of the system or process. The neural network training set is then used to adjust internal parameters of a neural network. The physical condition of an actual system or process represented by the mathematical model is then monitored by extracting spectral features from measured spectra of the actual process or system. The spectral features are then input into said neural network to determine the physical condition of the system or process represented by the mathematical. More specifically, the neural network correlates the spectral features (i.e. measurable phenomena) of the actual process or system with the corresponding model input parameters. The model input parameters relate to specific components of the system or process, and, consequently, correspond to the physical condition of the process or system.
Meter circuit for tuning RF amplifiers
NASA Technical Reports Server (NTRS)
Longthorne, J. E.
1973-01-01
Circuit computes and indicates efficiency of RF amplifier as inputs and other parameters are varied. Voltage drop across internal resistance of ammeter is amplified by operational amplifier and applied to one multiplier input. Other input is obtained through two resistors from positive terminal of power supply.
Ring rolling process simulation for microstructure optimization
NASA Astrophysics Data System (ADS)
Franchi, Rodolfo; Del Prete, Antonio; Donatiello, Iolanda; Calabrese, Maurizio
2017-10-01
Metal undergoes complicated microstructural evolution during Hot Ring Rolling (HRR), which determines the quality, mechanical properties and life of the ring formed. One of the principal microstructure properties which mostly influences the structural performances of forged components, is the value of the average grain size. In the present paper a ring rolling process has been studied and optimized in order to obtain anular components to be used in aerospace applications. In particular, the influence of process input parameters (feed rate of the mandrel and angular velocity of driver roll) on microstructural and on geometrical features of the final ring has been evaluated. For this purpose, a three-dimensional finite element model for HRR has been developed in SFTC DEFORM V11, taking into account also microstructural development of the material used (the nickel superalloy Waspalloy). The Finite Element (FE) model has been used to formulate a proper optimization problem. The optimization procedure has been developed in order to find the combination of process parameters which allows to minimize the average grain size. The Response Surface Methodology (RSM) has been used to find the relationship between input and output parameters, by using the exact values of output parameters in the control points of a design space explored through FEM simulation. Once this relationship is known, the values of the output parameters can be calculated for each combination of the input parameters. Then, an optimization procedure based on Genetic Algorithms has been applied. At the end, the minimum value of average grain size with respect to the input parameters has been found.
NASA Technical Reports Server (NTRS)
Ratnayake, Nalin A.; Koshimoto, Ed T.; Taylor, Brian R.
2011-01-01
The problem of parameter estimation on hybrid-wing-body type aircraft is complicated by the fact that many design candidates for such aircraft involve a large number of aero- dynamic control effectors that act in coplanar motion. This fact adds to the complexity already present in the parameter estimation problem for any aircraft with a closed-loop control system. Decorrelation of system inputs must be performed in order to ascertain individual surface derivatives with any sort of mathematical confidence. Non-standard control surface configurations, such as clamshell surfaces and drag-rudder modes, further complicate the modeling task. In this paper, asymmetric, single-surface maneuvers are used to excite multiple axes of aircraft motion simultaneously. Time history reconstructions of the moment coefficients computed by the solved regression models are then compared to each other in order to assess relative model accuracy. The reduced flight-test time required for inner surface parameter estimation using multi-axis methods was found to come at the cost of slightly reduced accuracy and statistical confidence for linear regression methods. Since the multi-axis maneuvers captured parameter estimates similar to both longitudinal and lateral-directional maneuvers combined, the number of test points required for the inner, aileron-like surfaces could in theory have been reduced by 50%. While trends were similar, however, individual parameters as estimated by a multi-axis model were typically different by an average absolute difference of roughly 15-20%, with decreased statistical significance, than those estimated by a single-axis model. The multi-axis model exhibited an increase in overall fit error of roughly 1-5% for the linear regression estimates with respect to the single-axis model, when applied to flight data designed for each, respectively.
7 CFR 3418.4 - Reporting requirement.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE STAKEHOLDER INPUT REQUIREMENTS FOR RECIPIENTS OF... information related to stakeholder input and recommendations: (a) Actions taken to seek stakeholder input that... identify individuals and groups who are stakeholders and to collect input from them; and (c) A statement of...
VizieR Online Data Catalog: Planetary atmosphere radiative transport code (Garcia Munoz+ 2015)
NASA Astrophysics Data System (ADS)
Garcia Munoz, A.; Mills, F. P.
2014-08-01
Files are: * readme.txt * Input files: INPUThazeL.txt, INPUTL13.txt, INPUT_L60.txt; they contain explanations to the input parameters. Copy INPUT_XXXX.txt into INPUT.dat to execute some of the examples described in the reference. * Files with scattering matrix properties: phFhazeL.txt, phFL13.txt, phF_L60.txt * Script for compilation in GFortran (myscript) (10 data files).
Robust Blind Learning Algorithm for Nonlinear Equalization Using Input Decision Information.
Xu, Lu; Huang, Defeng David; Guo, Yingjie Jay
2015-12-01
In this paper, we propose a new blind learning algorithm, namely, the Benveniste-Goursat input-output decision (BG-IOD), to enhance the convergence performance of neural network-based equalizers for nonlinear channel equalization. In contrast to conventional blind learning algorithms, where only the output of the equalizer is employed for updating system parameters, the BG-IOD exploits a new type of extra information, the input decision information obtained from the input of the equalizer, to mitigate the influence of the nonlinear equalizer structure on parameters learning, thereby leading to improved convergence performance. We prove that, with the input decision information, a desirable convergence capability that the output symbol error rate (SER) is always less than the input SER if the input SER is below a threshold, can be achieved. Then, the BG soft-switching technique is employed to combine the merits of both input and output decision information, where the former is used to guarantee SER convergence and the latter is to improve SER performance. Simulation results show that the proposed algorithm outperforms conventional blind learning algorithms, such as stochastic quadratic distance and dual mode constant modulus algorithm, in terms of both convergence performance and SER performance, for nonlinear equalization.
2014-01-01
Background This paper describes the “EMG Driven Force Estimator (EMGD-FE)”, a Matlab® graphical user interface (GUI) application that estimates skeletal muscle forces from electromyography (EMG) signals. Muscle forces are obtained by numerically integrating a system of ordinary differential equations (ODEs) that simulates Hill-type muscle dynamics and that utilises EMG signals as input. In the current version, the GUI can estimate the forces of lower limb muscles executing isometric contractions. Muscles from other parts of the body can be tested as well, although no default values for model parameters are provided. To achieve accurate evaluations, EMG collection is performed simultaneously with torque measurement from a dynamometer. The computer application guides the user, step-by-step, to pre-process the raw EMG signals, create inputs for the muscle model, numerically integrate the ODEs and analyse the results. Results An example of the application’s functions is presented using the quadriceps femoris muscle. Individual muscle force estimations for the four components as well the knee isometric torque are shown. Conclusions The proposed GUI can estimate individual muscle forces from EMG signals of skeletal muscles. The estimation accuracy depends on several factors, including signal collection and modelling hypothesis issues. PMID:24708668
Menegaldo, Luciano Luporini; de Oliveira, Liliam Fernandes; Minato, Kin K
2014-04-04
This paper describes the "EMG Driven Force Estimator (EMGD-FE)", a Matlab® graphical user interface (GUI) application that estimates skeletal muscle forces from electromyography (EMG) signals. Muscle forces are obtained by numerically integrating a system of ordinary differential equations (ODEs) that simulates Hill-type muscle dynamics and that utilises EMG signals as input. In the current version, the GUI can estimate the forces of lower limb muscles executing isometric contractions. Muscles from other parts of the body can be tested as well, although no default values for model parameters are provided. To achieve accurate evaluations, EMG collection is performed simultaneously with torque measurement from a dynamometer. The computer application guides the user, step-by-step, to pre-process the raw EMG signals, create inputs for the muscle model, numerically integrate the ODEs and analyse the results. An example of the application's functions is presented using the quadriceps femoris muscle. Individual muscle force estimations for the four components as well the knee isometric torque are shown. The proposed GUI can estimate individual muscle forces from EMG signals of skeletal muscles. The estimation accuracy depends on several factors, including signal collection and modelling hypothesis issues.
NASA Astrophysics Data System (ADS)
Li, Xia; Welch, E. Brian; Arlinghaus, Lori R.; Bapsi Chakravarthy, A.; Xu, Lei; Farley, Jaime; Loveless, Mary E.; Mayer, Ingrid A.; Kelley, Mark C.; Meszoely, Ingrid M.; Means-Powell, Julie A.; Abramson, Vandana G.; Grau, Ana M.; Gore, John C.; Yankeelov, Thomas E.
2011-09-01
Quantitative analysis of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) data requires the accurate determination of the arterial input function (AIF). A novel method for obtaining the AIF is presented here and pharmacokinetic parameters derived from individual and population-based AIFs are then compared. A Philips 3.0 T Achieva MR scanner was used to obtain 20 DCE-MRI data sets from ten breast cancer patients prior to and after one cycle of chemotherapy. Using a semi-automated method to estimate the AIF from the axillary artery, we obtain the AIF for each patient, AIFind, and compute a population-averaged AIF, AIFpop. The extended standard model is used to estimate the physiological parameters using the two types of AIFs. The mean concordance correlation coefficient (CCC) for the AIFs segmented manually and by the proposed AIF tracking approach is 0.96, indicating accurate and automatic tracking of an AIF in DCE-MRI data of the breast is possible. Regarding the kinetic parameters, the CCC values for Ktrans, vp and ve as estimated by AIFind and AIFpop are 0.65, 0.74 and 0.31, respectively, based on the region of interest analysis. The average CCC values for the voxel-by-voxel analysis are 0.76, 0.84 and 0.68 for Ktrans, vp and ve, respectively. This work indicates that Ktrans and vp show good agreement between AIFpop and AIFind while there is a weak agreement on ve.
COSP for Windows: Strategies for Rapid Analyses of Cyclic Oxidation Behavior
NASA Technical Reports Server (NTRS)
Smialek, James L.; Auping, Judith V.
2002-01-01
COSP is a publicly available computer program that models the cyclic oxidation weight gain and spallation process. Inputs to the model include the selection of an oxidation growth law and a spalling geometry, plus oxide phase, growth rate, spall constant, and cycle duration parameters. Output includes weight change, the amounts of retained and spalled oxide, the total oxygen and metal consumed, and the terminal rates of weight loss and metal consumption. The present version is Windows based and can accordingly be operated conveniently while other applications remain open for importing experimental weight change data, storing model output data, or plotting model curves. Point-and-click operating features include multiple drop-down menus for input parameters, data importing, and quick, on-screen plots showing one selection of the six output parameters for up to 10 models. A run summary text lists various characteristic parameters that are helpful in describing cyclic behavior, such as the maximum weight change, the number of cycles to reach the maximum weight gain or zero weight change, the ratio of these, and the final rate of weight loss. The program includes save and print options as well as a help file. Families of model curves readily show the sensitivity to various input parameters. The cyclic behaviors of nickel aluminide (NiAl) and a complex superalloy are shown to be properly fitted by model curves. However, caution is always advised regarding the uniqueness claimed for any specific set of input parameters,
Development of advanced techniques for rotorcraft state estimation and parameter identification
NASA Technical Reports Server (NTRS)
Hall, W. E., Jr.; Bohn, J. G.; Vincent, J. H.
1980-01-01
An integrated methodology for rotorcraft system identification consists of rotorcraft mathematical modeling, three distinct data processing steps, and a technique for designing inputs to improve the identifiability of the data. These elements are as follows: (1) a Kalman filter smoother algorithm which estimates states and sensor errors from error corrupted data. Gust time histories and statistics may also be estimated; (2) a model structure estimation algorithm for isolating a model which adequately explains the data; (3) a maximum likelihood algorithm for estimating the parameters and estimates for the variance of these estimates; and (4) an input design algorithm, based on a maximum likelihood approach, which provides inputs to improve the accuracy of parameter estimates. Each step is discussed with examples to both flight and simulated data cases.
Emissions-critical charge cooling using an organic rankine cycle
Ernst, Timothy C.; Nelson, Christopher R.
2014-07-15
The disclosure provides a system including a Rankine power cycle cooling subsystem providing emissions-critical charge cooling of an input charge flow. The system includes a boiler fluidly coupled to the input charge flow, an energy conversion device fluidly coupled to the boiler, a condenser fluidly coupled to the energy conversion device, a pump fluidly coupled to the condenser and the boiler, an adjuster that adjusts at least one parameter of the Rankine power cycle subsystem to change a temperature of the input charge exiting the boiler, and a sensor adapted to sense a temperature characteristic of the vaporized input charge. The system includes a controller that can determine a target temperature of the input charge sufficient to meet or exceed predetermined target emissions and cause the adjuster to adjust at least one parameter of the Rankine power cycle to achieve the predetermined target emissions.
Master control data handling program uses automatic data input
NASA Technical Reports Server (NTRS)
Alliston, W.; Daniel, J.
1967-01-01
General purpose digital computer program is applicable for use with analysis programs that require basic data and calculated parameters as input. It is designed to automate input data preparation for flight control computer programs, but it is general enough to permit application in other areas.
NASA Technical Reports Server (NTRS)
Myers, Jerry G.; Young, M.; Goodenow, Debra A.; Keenan, A.; Walton, M.; Boley, L.
2015-01-01
Model and simulation (MS) credibility is defined as, the quality to elicit belief or trust in MS results. NASA-STD-7009 [1] delineates eight components (Verification, Validation, Input Pedigree, Results Uncertainty, Results Robustness, Use History, MS Management, People Qualifications) that address quantifying model credibility, and provides guidance to the model developers, analysts, and end users for assessing the MS credibility. Of the eight characteristics, input pedigree, or the quality of the data used to develop model input parameters, governing functions, or initial conditions, can vary significantly. These data quality differences have varying consequences across the range of MS application. NASA-STD-7009 requires that the lowest input data quality be used to represent the entire set of input data when scoring the input pedigree credibility of the model. This requirement provides a conservative assessment of model inputs, and maximizes the communication of the potential level of risk of using model outputs. Unfortunately, in practice, this may result in overly pessimistic communication of the MS output, undermining the credibility of simulation predictions to decision makers. This presentation proposes an alternative assessment mechanism, utilizing results parameter robustness, also known as model input sensitivity, to improve the credibility scoring process for specific simulations.
Munschy, C; Bodin, N; Potier, M; Héas-Moisan, K; Pollono, C; Degroote, M; West, W; Hollanda, S J; Puech, A; Bourjea, J; Nikolic, N
2016-07-01
The contamination of albacore tuna (Thunnus alalunga) by Persistent Organic Pollutants (POPs), namely polychlorinated biphenyls (PCBs) and dichlorodiphenyl-trichloroethane (DDT), was investigated in individuals collected from Reunion Island (RI) and South Africa's (SA) southern coastlines in 2013, in relation to biological parameters and feeding ecology. The results showed lower PCB and DDT concentrations than those previously reported in various tuna species worldwide. A predominance of DDTs over PCBs was revealed, reflecting continuing inputs of DDT. Tuna collected from SA exhibited higher contamination levels than those from RI, related to higher dietary inputs and higher total lipid content. Greater variability in contamination levels and profiles was identified in tuna from RI, explained by a higher diversity of prey and more individualistic foraging behaviour. PCB and DDT contamination levels and profiles varied significantly in tuna from the two investigated areas, probably reflecting exposure to different sources of contamination. Copyright © 2016 Elsevier Inc. All rights reserved.
Stable dissipative optical vortex clusters by inhomogeneous effective diffusion.
Li, Huishan; Lai, Shiquan; Qui, Yunli; Zhu, Xing; Xie, Jianing; Mihalache, Dumitru; He, Yingji
2017-10-30
We numerically show the generation of robust vortex clusters embedded in a two-dimensional beam propagating in a dissipative medium described by the generic cubic-quintic complex Ginzburg-Landau equation with an inhomogeneous effective diffusion term, which is asymmetrical in the two transverse directions and periodically modulated in the longitudinal direction. We show the generation of stable optical vortex clusters for different values of the winding number (topological charge) of the input optical beam. We have found that the number of individual vortex solitons that form the robust vortex cluster is equal to the winding number of the input beam. We have obtained the relationships between the amplitudes and oscillation periods of the inhomogeneous effective diffusion and the cubic gain and diffusion (viscosity) parameters, which depict the regions of existence and stability of vortex clusters. The obtained results offer a method to form robust vortex clusters embedded in two-dimensional optical beams, and we envisage potential applications in the area of structured light.
Generalized Optoelectronic Model of Series-Connected Multijunction Solar Cells
Geisz, John F.; Steiner, Myles A.; Garcia, Ivan; ...
2015-10-02
The emission of light from each junction in a series-connected multijunction solar cell, we found, both complicates and elucidates the understanding of its performance under arbitrary conditions. Bringing together many recent advances in this understanding, we present a general 1-D model to describe luminescent coupling that arises from both voltage-driven electroluminescence and voltage-independent photoluminescence in nonideal junctions that include effects such as Sah-Noyce-Shockley (SNS) recombination with n ≠ 2, Auger recombination, shunt resistance, reverse-bias breakdown, series resistance, and significant dark area losses. The individual junction voltages and currents are experimentally determined from measured optical and electrical inputs and outputs ofmore » the device within the context of the model to fit parameters that describe the devices performance under arbitrary input conditions. Furthermore, our techniques to experimentally fit the model are demonstrated for a four-junction inverted metamorphic solar cell, and the predictions of the model are compared with concentrator flash measurements.« less
NASA Astrophysics Data System (ADS)
Chowdhury, S.; Sharma, A.
2005-12-01
Hydrological model inputs are often derived from measurements at point locations taken at discrete time steps. The nature of uncertainty associated with such inputs is thus a function of the quality and number of measurements available in time. A change in these characteristics (such as a change in the number of rain-gauge inputs used to derive spatially averaged rainfall) results in inhomogeneity in the associated distributional profile. Ignoring such uncertainty can lead to models that aim to simulate based on the observed input variable instead of the true measurement, resulting in a biased representation of the underlying system dynamics as well as an increase in both bias and the predictive uncertainty in simulations. This is especially true of cases where the nature of uncertainty likely in the future is significantly different to that in the past. Possible examples include situations where the accuracy of the catchment averaged rainfall has increased substantially due to an increase in the rain-gauge density, or accuracy of climatic observations (such as sea surface temperatures) increased due to the use of more accurate remote sensing technologies. We introduce here a method to ascertain the true value of parameters in the presence of additive uncertainty in model inputs. This method, known as SIMulation EXtrapolation (SIMEX, [Cook, 1994]) operates on the basis of an empirical relationship between parameters and the level of additive input noise (or uncertainty). The method starts with generating a series of alternate realisations of model inputs by artificially adding white noise in increasing multiples of the known error variance. The alternate realisations lead to alternate sets of parameters that are increasingly biased with respect to the truth due to the increased variability in the inputs. Once several such realisations have been drawn, one is able to formulate an empirical relationship between the parameter values and the level of additive noise present. SIMEX is based on theory that the trend in alternate parameters can be extrapolated back to the notional error free zone. We illustrate the utility of SIMEX in a synthetic rainfall-runoff modelling scenario and an application to study the dependence of uncertain distributed sea surface temperature anomalies with an indicator of the El Nino Southern Oscillation, the Southern Oscillation Index (SOI). The errors in rainfall data and its affect is explored using Sacramento rainfall runoff model. The rainfall uncertainty is assumed to be multiplicative and temporally invariant. The model used to relate the sea surface temperature anomalies (SSTA) to the SOI is assumed to be of a linear form. The nature of uncertainty in the SSTA is additive and varies with time. The SIMEX framework allows assessment of the relationship between the error free inputs and response. Cook, J.R., Stefanski, L. A., Simulation-Extrapolation Estimation in Parametric Measurement Error Models, Journal of the American Statistical Association, 89 (428), 1314-1328, 1994.
Wen, Jessica; Koo, Soh Myoung; Lape, Nancy
2018-02-01
While predictive models of transdermal transport have the potential to reduce human and animal testing, microscopic stratum corneum (SC) model output is highly dependent on idealized SC geometry, transport pathway (transcellular vs. intercellular), and penetrant transport parameters (e.g., compound diffusivity in lipids). Most microscopic models are limited to a simple rectangular brick-and-mortar SC geometry and do not account for variability across delivery sites, hydration levels, and populations. In addition, these models rely on transport parameters obtained from pure theory, parameter fitting to match in vivo experiments, and time-intensive diffusion experiments for each compound. In this work, we develop a microscopic finite element model that allows us to probe model sensitivity to variations in geometry, transport pathway, and hydration level. Given the dearth of experimentally-validated transport data and the wide range in theoretically-predicted transport parameters, we examine the model's response to a variety of transport parameters reported in the literature. Results show that model predictions are strongly dependent on all aforementioned variations, resulting in order-of-magnitude differences in lag times and permeabilities for distinct structure, hydration, and parameter combinations. This work demonstrates that universally predictive models cannot fully succeed without employing experimentally verified transport parameters and individualized SC structures. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Program for User-Friendly Management of Input and Output Data Sets
NASA Technical Reports Server (NTRS)
Klimeck, Gerhard
2003-01-01
A computer program manages large, hierarchical sets of input and output (I/O) parameters (typically, sequences of alphanumeric data) involved in computational simulations in a variety of technological disciplines. This program represents sets of parameters as structures coded in object-oriented but otherwise standard American National Standards Institute C language. Each structure contains a group of I/O parameters that make sense as a unit in the simulation program with which this program is used. The addition of options and/or elements to sets of parameters amounts to the addition of new elements to data structures. By association of child data generated in response to a particular user input, a hierarchical ordering of input parameters can be achieved. Associated with child data structures are the creation and description mechanisms within the parent data structures. Child data structures can spawn further child data structures. In this program, the creation and representation of a sequence of data structures is effected by one line of code that looks for children of a sequence of structures until there are no more children to be found. A linked list of structures is created dynamically and is completely represented in the data structures themselves. Such hierarchical data presentation can guide users through otherwise complex setup procedures and it can be integrated within a variety of graphical representations.
Computing the structural influence matrix for biological systems.
Giordano, Giulia; Cuba Samaniego, Christian; Franco, Elisa; Blanchini, Franco
2016-06-01
We consider the problem of identifying structural influences of external inputs on steady-state outputs in a biological network model. We speak of a structural influence if, upon a perturbation due to a constant input, the ensuing variation of the steady-state output value has the same sign as the input (positive influence), the opposite sign (negative influence), or is zero (perfect adaptation), for any feasible choice of the model parameters. All these signs and zeros can constitute a structural influence matrix, whose (i, j) entry indicates the sign of steady-state influence of the jth system variable on the ith variable (the output caused by an external persistent input applied to the jth variable). Each entry is structurally determinate if the sign does not depend on the choice of the parameters, but is indeterminate otherwise. In principle, determining the influence matrix requires exhaustive testing of the system steady-state behaviour in the widest range of parameter values. Here we show that, in a broad class of biological networks, the influence matrix can be evaluated with an algorithm that tests the system steady-state behaviour only at a finite number of points. This algorithm also allows us to assess the structural effect of any perturbation, such as variations of relevant parameters. Our method is applied to nontrivial models of biochemical reaction networks and population dynamics drawn from the literature, providing a parameter-free insight into the system dynamics.
Statistical regularities in the rank-citation profile of scientists.
Petersen, Alexander M; Stanley, H Eugene; Succi, Sauro
2011-01-01
Recent science of science research shows that scientific impact measures for journals and individual articles have quantifiable regularities across both time and discipline. However, little is known about the scientific impact distribution at the scale of an individual scientist. We analyze the aggregate production and impact using the rank-citation profile c(i)(r) of 200 distinguished professors and 100 assistant professors. For the entire range of paper rank r, we fit each c(i)(r) to a common distribution function. Since two scientists with equivalent Hirsch h-index can have significantly different c(i)(r) profiles, our results demonstrate the utility of the β(i) scaling parameter in conjunction with h(i) for quantifying individual publication impact. We show that the total number of citations C(i) tallied from a scientist's N(i) papers scales as [Formula: see text]. Such statistical regularities in the input-output patterns of scientists can be used as benchmarks for theoretical models of career progress.
NASA Astrophysics Data System (ADS)
Srinivas, Kadivendi; Vundavilli, Pandu R.; Manzoor Hussain, M.; Saiteja, M.
2016-09-01
Welding input parameters such as current, gas flow rate and torch angle play a significant role in determination of qualitative mechanical properties of weld joint. Traditionally, it is necessary to determine the weld input parameters for every new welded product to obtain a quality weld joint which is time consuming. In the present work, the effect of plasma arc welding parameters on mild steel was studied using a neural network approach. To obtain a response equation that governs the input-output relationships, conventional regression analysis was also performed. The experimental data was constructed based on Taguchi design and the training data required for neural networks were randomly generated, by varying the input variables within their respective ranges. The responses were calculated for each combination of input variables by using the response equations obtained through the conventional regression analysis. The performances in Levenberg-Marquardt back propagation neural network and radial basis neural network (RBNN) were compared on various randomly generated test cases, which are different from the training cases. From the results, it is interesting to note that for the above said test cases RBNN analysis gave improved training results compared to that of feed forward back propagation neural network analysis. Also, RBNN analysis proved a pattern of increasing performance as the data points moved away from the initial input values.
NASA Astrophysics Data System (ADS)
vellaichamy, Lakshmanan; Paulraj, Sathiya
2018-02-01
The dissimilar welding of Incoloy 800HT and P91 steel using Gas Tungsten arc welding process (GTAW) This material is being used in the Nuclear Power Plant and Aerospace Industry based application because Incoloy 800HT possess good corrosion and oxidation resistance and P91 possess high temperature strength and creep resistance. This work discusses on multi-objective optimization using gray relational analysis (GRA) using 9CrMoV-N filler materials. The experiment conducted L9 orthogonal array. The input parameter are current, voltage, speed. The output response are Tensile strength, Hardness and Toughness. To optimize the input parameter and multiple output variable by using GRA. The optimal parameter is combination was determined as A2B1C1 so given input parameter welding current at 120 A, voltage at 16 V and welding speed at 0.94 mm/s. The output of the mechanical properties for best and least grey relational grade was validated by the metallurgical characteristics.
Calibration of discrete element model parameters: soybeans
NASA Astrophysics Data System (ADS)
Ghodki, Bhupendra M.; Patel, Manish; Namdeo, Rohit; Carpenter, Gopal
2018-05-01
Discrete element method (DEM) simulations are broadly used to get an insight of flow characteristics of granular materials in complex particulate systems. DEM input parameters for a model are the critical prerequisite for an efficient simulation. Thus, the present investigation aims to determine DEM input parameters for Hertz-Mindlin model using soybeans as a granular material. To achieve this aim, widely acceptable calibration approach was used having standard box-type apparatus. Further, qualitative and quantitative findings such as particle profile, height of kernels retaining the acrylic wall, and angle of repose of experiments and numerical simulations were compared to get the parameters. The calibrated set of DEM input parameters includes the following (a) material properties: particle geometric mean diameter (6.24 mm); spherical shape; particle density (1220 kg m^{-3} ), and (b) interaction parameters such as particle-particle: coefficient of restitution (0.17); coefficient of static friction (0.26); coefficient of rolling friction (0.08), and particle-wall: coefficient of restitution (0.35); coefficient of static friction (0.30); coefficient of rolling friction (0.08). The results may adequately be used to simulate particle scale mechanics (grain commingling, flow/motion, forces, etc) of soybeans in post-harvest machinery and devices.
AIRCRAFT REACTOR CONTROL SYSTEM APPLICABLE TO TURBOJET AND TURBOPROP POWER PLANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorker, G.E.
1955-07-19
Control systems proposed for direct cycle nuclear powered aircraft commonly involve control of engine speed, nuclear energy input, and chcmical energy input. A system in which these parameters are controlled by controlling the total energy input, the ratio of nuclear and chemical energy input, and the engine speed is proposed. The system is equally applicable to turbojet or turboprop applications. (auth)
NASA Technical Reports Server (NTRS)
Briggs, Maxwell; Schifer, Nicholas
2011-01-01
Test hardware used to validate net heat prediction models. Problem: Net Heat Input cannot be measured directly during operation. Net heat input is a key parameter needed in prediction of efficiency for convertor performance. Efficiency = Electrical Power Output (Measured) divided by Net Heat Input (Calculated). Efficiency is used to compare convertor designs and trade technology advantages for mission planning.
KILLEEN, GERRY F.; McKENZIE, F. ELLIS; FOY, BRIAN D.; SCHIEFFELIN, CATHERINE; BILLINGSLEY, PETER F.; BEIER, JOHN C.
2008-01-01
Malaria transmission intensity is modeled from the starting perspective of individual vector mosquitoes and is expressed directly as the entomologic inoculation rate (EIR). The potential of individual mosquitoes to transmit malaria during their lifetime is presented graphically as a function of their feeding cycle length and survival, human biting preferences, and the parasite sporogonic incubation period. The EIR is then calculated as the product of 1) the potential of individual vectors to transmit malaria during their lifetime, 2) vector emergence rate relative to human population size, and 3) the infectiousness of the human population to vectors. Thus, impacts on more than one of these parameters will amplify each other’s effects. The EIRs transmitted by the dominant vector species at four malaria-endemic sites from Papua New Guinea, Tanzania, and Nigeria were predicted using field measurements of these characteristics together with human biting rate and human reservoir infectiousness. This model predicted EIRs (± SD) that are 1.13 ± 0.37 (range = 0.84–1.59) times those measured in the field. For these four sites, mosquito emergence rate and lifetime transmission potential were more important determinants of the EIR than human reservoir infectiousness. This model and the input parameters from the four sites allow the potential impacts of various control measures on malaria transmission intensity to be tested under a range of endemic conditions. The model has potential applications for the development and implementation of transmission control measures and for public health education. PMID:11289661
Mountain, James E.; Santer, Peter; O’Neill, David P.; Smith, Nicholas M. J.; Ciaffoni, Luca; Couper, John H.; Ritchie, Grant A. D.; Hancock, Gus; Whiteley, Jonathan P.
2018-01-01
Inhomogeneity in the lung impairs gas exchange and can be an early marker of lung disease. We hypothesized that highly precise measurements of gas exchange contain sufficient information to quantify many aspects of the inhomogeneity noninvasively. Our aim was to explore whether one parameterization of lung inhomogeneity could both fit such data and provide reliable parameter estimates. A mathematical model of gas exchange in an inhomogeneous lung was developed, containing inhomogeneity parameters for compliance, vascular conductance, and dead space, all relative to lung volume. Inputs were respiratory flow, cardiac output, and the inspiratory and pulmonary arterial gas compositions. Outputs were expiratory and pulmonary venous gas compositions. All values were specified every 10 ms. Some parameters were set to physiologically plausible values. To estimate the remaining unknown parameters and inputs, the model was embedded within a nonlinear estimation routine to minimize the deviations between model and data for CO2, O2, and N2 flows during expiration. Three groups, each of six individuals, were studied: young (20–30 yr); old (70–80 yr); and patients with mild to moderate chronic obstructive pulmonary disease (COPD). Each participant undertook a 15-min measurement protocol six times. For all parameters reflecting inhomogeneity, highly significant differences were found between the three participant groups (P < 0.001, ANOVA). Intraclass correlation coefficients were 0.96, 0.99, and 0.94 for the parameters reflecting inhomogeneity in deadspace, compliance, and vascular conductance, respectively. We conclude that, for the particular participants selected, highly repeatable estimates for parameters reflecting inhomogeneity could be obtained from noninvasive measurements of respiratory gas exchange. NEW & NOTEWORTHY This study describes a new method, based on highly precise measures of gas exchange, that quantifies three distributions that are intrinsic to the lung. These distributions represent three fundamentally different types of inhomogeneity that together give rise to ventilation-perfusion mismatch and result in impaired gas exchange. The measurement technique has potentially broad clinical applicability because it is simple for both patient and operator, it does not involve ionizing radiation, and it is completely noninvasive. PMID:29074714
Effect of Heat Input on Geometry of Austenitic Stainless Steel Weld Bead on Low Carbon Steel
NASA Astrophysics Data System (ADS)
Saha, Manas Kumar; Hazra, Ritesh; Mondal, Ajit; Das, Santanu
2018-05-01
Among different weld cladding processes, gas metal arc welding (GMAW) cladding becomes a cost effective, user friendly, versatile method for protecting the surface of relatively lower grade structural steels from corrosion and/or erosion wear by depositing high grade stainless steels onto them. The quality of cladding largely depends upon the bead geometry of the weldment deposited. Weld bead geometry parameters, like bead width, reinforcement height, depth of penetration, and ratios like reinforcement form factor (RFF) and penetration shape factor (PSF) determine the quality of the weld bead geometry. Various process parameters of gas metal arc welding like heat input, current, voltage, arc travel speed, mode of metal transfer, etc. influence formation of bead geometry. In the current experimental investigation, austenite stainless steel (316) weld beads are formed on low alloy structural steel (E350) by GMAW using 100% CO2 as the shielding gas. Different combinations of current, voltage and arc travel speed are chosen so that heat input increases from 0.35 to 0.75 kJ/mm. Nine number of weld beads are deposited and replicated twice. The observations show that weld bead width increases linearly with increase in heat input, whereas reinforcement height and depth of penetration do not increase with increase in heat input. Regression analysis is done to establish the relationship between heat input and different geometrical parameters of weld bead. The regression models developed agrees well with the experimental data. Within the domain of the present experiment, it is observed that at higher heat input, the weld bead gets wider having little change in penetration and reinforcement; therefore, higher heat input may be recommended for austenitic stainless steel cladding on low alloy steel.
Moore, Brian C J; Füllgrabe, Christian; Stone, Michael A
2011-01-01
To determine preferred parameters of multichannel compression using individually fitted simulated hearing aids and a method of paired comparisons. Fourteen participants with mild to moderate hearing loss listened via a simulated five-channel compression hearing aid fitted using the CAMEQ2-HF method to pairs of speech sounds (a male talker and a female talker) and musical sounds (a percussion instrument, orchestral classical music, and a jazz trio) presented sequentially and indicated which sound of the pair was preferred and by how much. The sounds in each pair were derived from the same token and differed along a single dimension in the type of processing applied. For the speech sounds, participants judged either pleasantness or clarity; in the latter case, the speech was presented in noise at a 2-dB signal-to-noise ratio. For musical sounds, they judged pleasantness. The parameters explored were time delay of the audio signal relative to the gain control signal (the alignment delay), compression speed (attack and release times), bandwidth (5, 7.5, or 10 kHz), and gain at high frequencies relative to that prescribed by CAMEQ2-HF. Pleasantness increased with increasing alignment delay only for the percussive musical sound. Clarity was not affected by alignment delay. There was a trend for pleasantness to decrease slightly with increasing bandwidth, but this was significant only for female speech with fast compression. Judged clarity was significantly higher for the 7.5- and 10-kHz bandwidths than for the 5-kHz bandwidth for both slow and fast compression and for both talker genders. Compression speed had little effect on pleasantness for 50- or 65-dB SPL input levels, but slow compression was generally judged as slightly more pleasant than fast compression for an 80-dB SPL input level. Clarity was higher for slow than for fast compression for input levels of 80 and 65 dB SPL but not for a level of 50 dB SPL. Preferences for pleasantness were approximately equal with CAMEQ2-HF gains and with gains slightly reduced at high frequencies and were lower when gains were slightly increased at high frequencies. Speech clarity was not affected by changing the gain at high frequencies. Effects of alignment delay were small except for the percussive sound. A wider bandwidth was slightly preferred for speech clarity. Speech clarity was slightly greater with slow compression, especially at high levels. Preferred high-frequency gains were close to or a little below those prescribed by CAMEQ2-HF.
NASA Astrophysics Data System (ADS)
Engeland, Kolbjørn; Steinsland, Ingelin; Johansen, Stian Solvang; Petersen-Øverleir, Asgeir; Kolberg, Sjur
2016-05-01
In this study, we explore the effect of uncertainty and poor observation quality on hydrological model calibration and predictions. The Osali catchment in Western Norway was selected as case study and an elevation distributed HBV-model was used. We systematically evaluated the effect of accounting for uncertainty in parameters, precipitation input, temperature input and streamflow observations. For precipitation and temperature we accounted for the interpolation uncertainty, and for streamflow we accounted for rating curve uncertainty. Further, the effects of poorer quality of precipitation input and streamflow observations were explored. Less information about precipitation was obtained by excluding the nearest precipitation station from the analysis, while reduced information about the streamflow was obtained by omitting the highest and lowest streamflow observations when estimating the rating curve. The results showed that including uncertainty in the precipitation and temperature inputs has a negligible effect on the posterior distribution of parameters and for the Nash-Sutcliffe (NS) efficiency for the predicted flows, while the reliability and the continuous rank probability score (CRPS) improves. Less information in precipitation input resulted in a shift in the water balance parameter Pcorr, a model producing smoother streamflow predictions, giving poorer NS and CRPS, but higher reliability. The effect of calibrating the hydrological model using streamflow observations based on different rating curves is mainly seen as variability in the water balance parameter Pcorr. When evaluating predictions, the best evaluation scores were not achieved for the rating curve used for calibration, but for rating curves giving smoother streamflow observations. Less information in streamflow influenced the water balance parameter Pcorr, and increased the spread in evaluation scores by giving both better and worse scores.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groen, E.A., E-mail: Evelyne.Groen@gmail.com; Heijungs, R.; Leiden University, Einsteinweg 2, Leiden 2333 CC
Life cycle assessment (LCA) is an established tool to quantify the environmental impact of a product. A good assessment of uncertainty is important for making well-informed decisions in comparative LCA, as well as for correctly prioritising data collection efforts. Under- or overestimation of output uncertainty (e.g. output variance) will lead to incorrect decisions in such matters. The presence of correlations between input parameters during uncertainty propagation, can increase or decrease the the output variance. However, most LCA studies that include uncertainty analysis, ignore correlations between input parameters during uncertainty propagation, which may lead to incorrect conclusions. Two approaches to include correlationsmore » between input parameters during uncertainty propagation and global sensitivity analysis were studied: an analytical approach and a sampling approach. The use of both approaches is illustrated for an artificial case study of electricity production. Results demonstrate that both approaches yield approximately the same output variance and sensitivity indices for this specific case study. Furthermore, we demonstrate that the analytical approach can be used to quantify the risk of ignoring correlations between input parameters during uncertainty propagation in LCA. We demonstrate that: (1) we can predict if including correlations among input parameters in uncertainty propagation will increase or decrease output variance; (2) we can quantify the risk of ignoring correlations on the output variance and the global sensitivity indices. Moreover, this procedure requires only little data. - Highlights: • Ignoring correlation leads to under- or overestimation of the output variance. • We demonstrated that the risk of ignoring correlation can be quantified. • The procedure proposed is generally applicable in life cycle assessment. • In some cases, ignoring correlation has a minimal effect on decision-making tools.« less
NASA Astrophysics Data System (ADS)
Prescott, Aaron M.; Abel, Steven M.
2016-12-01
The rational design of network behavior is a central goal of synthetic biology. Here, we combine in silico evolution with nonlinear dimensionality reduction to redesign the responses of fixed-topology signaling networks and to characterize sets of kinetic parameters that underlie various input-output relations. We first consider the earliest part of the T cell receptor (TCR) signaling network and demonstrate that it can produce a variety of input-output relations (quantified as the level of TCR phosphorylation as a function of the characteristic TCR binding time). We utilize an evolutionary algorithm (EA) to identify sets of kinetic parameters that give rise to: (i) sigmoidal responses with the activation threshold varied over 6 orders of magnitude, (ii) a graded response, and (iii) an inverted response in which short TCR binding times lead to activation. We also consider a network with both positive and negative feedback and use the EA to evolve oscillatory responses with different periods in response to a change in input. For each targeted input-output relation, we conduct many independent runs of the EA and use nonlinear dimensionality reduction to embed the resulting data for each network in two dimensions. We then partition the results into groups and characterize constraints placed on the parameters by the different targeted response curves. Our approach provides a way (i) to guide the design of kinetic parameters of fixed-topology networks to generate novel input-output relations and (ii) to constrain ranges of biological parameters using experimental data. In the cases considered, the network topologies exhibit significant flexibility in generating alternative responses, with distinct patterns of kinetic rates emerging for different targeted responses.
Calculation of Stress Intensity Factors for Interfacial Cracks in Fiber Metal Laminates
NASA Technical Reports Server (NTRS)
Wang, John T.
2009-01-01
Stress intensity factors for interfacial cracks in Fiber Metal Laminates (FML) are computed by using the displacement ratio method recently developed by Sun and Qian (1997, Int. J. Solids. Struct. 34, 2595-2609). Various FML configurations with single and multiple delaminations subjected to different loading conditions are investigated. The displacement ratio method requires the total energy release rate, bimaterial parameters, and relative crack surface displacements as input. Details of generating the energy release rates, defining bimaterial parameters with anisotropic elasticity, and selecting proper crack surface locations for obtaining relative crack surface displacements are discussed in the paper. Even though the individual energy release rates are nonconvergent, mesh-size-independent stress intensity factors can be obtained. This study also finds that the selection of reference length can affect the magnitudes and the mode mixity angles of the stress intensity factors; thus, it is important to report the reference length used with the calculated stress intensity factors.
NASA Astrophysics Data System (ADS)
Jiang, Jin-Wu
2015-08-01
We propose parametrizing the Stillinger-Weber potential for covalent materials starting from the valence force-field model. All geometrical parameters in the Stillinger-Weber potential are determined analytically according to the equilibrium condition for each individual potential term, while the energy parameters are derived from the valence force-field model. This parametrization approach transfers the accuracy of the valence force field model to the Stillinger-Weber potential. Furthermore, the resulting Stilliinger-Weber potential supports stable molecular dynamics simulations, as each potential term is at an energy-minimum state separately at the equilibrium configuration. We employ this procedure to parametrize Stillinger-Weber potentials for single-layer MoS2 and black phosphorous. The obtained Stillinger-Weber potentials predict an accurate phonon spectrum and mechanical behaviors. We also provide input scripts of these Stillinger-Weber potentials used by publicly available simulation packages including GULP and LAMMPS.
Jiang, Jin-Wu
2015-08-07
We propose parametrizing the Stillinger-Weber potential for covalent materials starting from the valence force-field model. All geometrical parameters in the Stillinger-Weber potential are determined analytically according to the equilibrium condition for each individual potential term, while the energy parameters are derived from the valence force-field model. This parametrization approach transfers the accuracy of the valence force field model to the Stillinger-Weber potential. Furthermore, the resulting Stilliinger-Weber potential supports stable molecular dynamics simulations, as each potential term is at an energy-minimum state separately at the equilibrium configuration. We employ this procedure to parametrize Stillinger-Weber potentials for single-layer MoS2 and black phosphorous. The obtained Stillinger-Weber potentials predict an accurate phonon spectrum and mechanical behaviors. We also provide input scripts of these Stillinger-Weber potentials used by publicly available simulation packages including GULP and LAMMPS.
Identification of modal parameters including unmeasured forces and transient effects
NASA Astrophysics Data System (ADS)
Cauberghe, B.; Guillaume, P.; Verboven, P.; Parloo, E.
2003-08-01
In this paper, a frequency-domain method to estimate modal parameters from short data records with known input (measured) forces and unknown input forces is presented. The method can be used for an experimental modal analysis, an operational modal analysis (output-only data) and the combination of both. A traditional experimental and operational modal analysis in the frequency domain starts respectively, from frequency response functions and spectral density functions. To estimate these functions accurately sufficient data have to be available. The technique developed in this paper estimates the modal parameters directly from the Fourier spectra of the outputs and the known input. Instead of using Hanning windows on these short data records the transient effects are estimated simultaneously with the modal parameters. The method is illustrated, tested and validated by Monte Carlo simulations and experiments. The presented method to process short data sequences leads to unbiased estimates with a small variance in comparison to the more traditional approaches.
Modern control concepts in hydrology
NASA Technical Reports Server (NTRS)
Duong, N.; Johnson, G. R.; Winn, C. B.
1974-01-01
Two approaches to an identification problem in hydrology are presented based upon concepts from modern control and estimation theory. The first approach treats the identification of unknown parameters in a hydrologic system subject to noisy inputs as an adaptive linear stochastic control problem; the second approach alters the model equation to account for the random part in the inputs, and then uses a nonlinear estimation scheme to estimate the unknown parameters. Both approaches use state-space concepts. The identification schemes are sequential and adaptive and can handle either time invariant or time dependent parameters. They are used to identify parameters in the Prasad model of rainfall-runoff. The results obtained are encouraging and conform with results from two previous studies; the first using numerical integration of the model equation along with a trial-and-error procedure, and the second, by using a quasi-linearization technique. The proposed approaches offer a systematic way of analyzing the rainfall-runoff process when the input data are imbedded in noise.
The IVS data input to ITRF2014
NASA Astrophysics Data System (ADS)
Nothnagel, Axel; Alef, Walter; Amagai, Jun; Andersen, Per Helge; Andreeva, Tatiana; Artz, Thomas; Bachmann, Sabine; Barache, Christophe; Baudry, Alain; Bauernfeind, Erhard; Baver, Karen; Beaudoin, Christopher; Behrend, Dirk; Bellanger, Antoine; Berdnikov, Anton; Bergman, Per; Bernhart, Simone; Bertarini, Alessandra; Bianco, Giuseppe; Bielmaier, Ewald; Boboltz, David; Böhm, Johannes; Böhm, Sigrid; Boer, Armin; Bolotin, Sergei; Bougeard, Mireille; Bourda, Geraldine; Buttaccio, Salvo; Cannizzaro, Letizia; Cappallo, Roger; Carlson, Brent; Carter, Merri Sue; Charlot, Patrick; Chen, Chenyu; Chen, Maozheng; Cho, Jungho; Clark, Thomas; Collioud, Arnaud; Colomer, Francisco; Colucci, Giuseppe; Combrinck, Ludwig; Conway, John; Corey, Brian; Curtis, Ronald; Dassing, Reiner; Davis, Maria; de-Vicente, Pablo; De Witt, Aletha; Diakov, Alexey; Dickey, John; Diegel, Irv; Doi, Koichiro; Drewes, Hermann; Dube, Maurice; Elgered, Gunnar; Engelhardt, Gerald; Evangelista, Mark; Fan, Qingyuan; Fedotov, Leonid; Fey, Alan; Figueroa, Ricardo; Fukuzaki, Yoshihiro; Gambis, Daniel; Garcia-Espada, Susana; Gaume, Ralph; Gaylard, Michael; Geiger, Nicole; Gipson, John; Gomez, Frank; Gomez-Gonzalez, Jesus; Gordon, David; Govind, Ramesh; Gubanov, Vadim; Gulyaev, Sergei; Haas, Ruediger; Hall, David; Halsig, Sebastian; Hammargren, Roger; Hase, Hayo; Heinkelmann, Robert; Helldner, Leif; Herrera, Cristian; Himwich, Ed; Hobiger, Thomas; Holst, Christoph; Hong, Xiaoyu; Honma, Mareki; Huang, Xinyong; Hugentobler, Urs; Ichikawa, Ryuichi; Iddink, Andreas; Ihde, Johannes; Ilijin, Gennadiy; Ipatov, Alexander; Ipatova, Irina; Ishihara, Misao; Ivanov, D. V.; Jacobs, Chris; Jike, Takaaki; Johansson, Karl-Ake; Johnson, Heidi; Johnston, Kenneth; Ju, Hyunhee; Karasawa, Masao; Kaufmann, Pierre; Kawabata, Ryoji; Kawaguchi, Noriyuki; Kawai, Eiji; Kaydanovsky, Michael; Kharinov, Mikhail; Kobayashi, Hideyuki; Kokado, Kensuke; Kondo, Tetsuro; Korkin, Edward; Koyama, Yasuhiro; Krasna, Hana; Kronschnabl, Gerhard; Kurdubov, Sergey; Kurihara, Shinobu; Kuroda, Jiro; Kwak, Younghee; La Porta, Laura; Labelle, Ruth; Lamb, Doug; Lambert, Sébastien; Langkaas, Line; Lanotte, Roberto; Lavrov, Alexey; Le Bail, Karine; Leek, Judith; Li, Bing; Li, Huihua; Li, Jinling; Liang, Shiguang; Lindqvist, Michael; Liu, Xiang; Loesler, Michael; Long, Jim; Lonsdale, Colin; Lovell, Jim; Lowe, Stephen; Lucena, Antonio; Luzum, Brian; Ma, Chopo; Ma, Jun; Maccaferri, Giuseppe; Machida, Morito; MacMillan, Dan; Madzak, Matthias; Malkin, Zinovy; Manabe, Seiji; Mantovani, Franco; Mardyshkin, Vyacheslav; Marshalov, Dmitry; Mathiassen, Geir; Matsuzaka, Shigeru; McCarthy, Dennis; Melnikov, Alexey; Michailov, Andrey; Miller, Natalia; Mitchell, Donald; Mora-Diaz, Julian Andres; Mueskens, Arno; Mukai, Yasuko; Nanni, Mauro; Natusch, Tim; Negusini, Monia; Neidhardt, Alexander; Nickola, Marisa; Nicolson, George; Niell, Arthur; Nikitin, Pavel; Nilsson, Tobias; Ning, Tong; Nishikawa, Takashi; Noll, Carey; Nozawa, Kentarou; Ogaja, Clement; Oh, Hongjong; Olofsson, Hans; Opseth, Per Erik; Orfei, Sandro; Pacione, Rosa; Pazamickas, Katherine; Petrachenko, William; Pettersson, Lars; Pino, Pedro; Plank, Lucia; Ploetz, Christian; Poirier, Michael; Poutanen, Markku; Qian, Zhihan; Quick, Jonathan; Rahimov, Ismail; Redmond, Jay; Reid, Brett; Reynolds, John; Richter, Bernd; Rioja, Maria; Romero-Wolf, Andres; Ruszczyk, Chester; Salnikov, Alexander; Sarti, Pierguido; Schatz, Raimund; Scherneck, Hans-Georg; Schiavone, Francesco; Schreiber, Ulrich; Schuh, Harald; Schwarz, Walter; Sciarretta, Cecilia; Searle, Anthony; Sekido, Mamoru; Seitz, Manuela; Shao, Minghui; Shibuya, Kazuo; Shu, Fengchun; Sieber, Moritz; Skjaeveland, Asmund; Skurikhina, Elena; Smolentsev, Sergey; Smythe, Dan; Sousa, Don; Sovers, Ojars; Stanford, Laura; Stanghellini, Carlo; Steppe, Alan; Strand, Rich; Sun, Jing; Surkis, Igor; Takashima, Kazuhiro; Takefuji, Kazuhiro; Takiguchi, Hiroshi; Tamura, Yoshiaki; Tanabe, Tadashi; Tanir, Emine; Tao, An; Tateyama, Claudio; Teke, Kamil; Thomas, Cynthia; Thorandt, Volkmar; Thornton, Bruce; Tierno Ros, Claudia; Titov, Oleg; Titus, Mike; Tomasi, Paolo; Tornatore, Vincenza; Trigilio, Corrado; Trofimov, Dmitriy; Tsutsumi, Masanori; Tuccari, Gino; Tzioumis, Tasso; Ujihara, Hideki; Ullrich, Dieter; Uunila, Minttu; Venturi, Tiziana; Vespe, Francesco; Vityazev, Veniamin; Volvach, Alexandr; Vytnov, Alexander; Wang, Guangli; Wang, Jinqing; Wang, Lingling; Wang, Na; Wang, Shiqiang; Wei, Wenren; Weston, Stuart; Whitney, Alan; Wojdziak, Reiner; Yatskiv, Yaroslav; Yang, Wenjun; Ye, Shuhua; Yi, Sangoh; Yusup, Aili; Zapata, Octavio; Zeitlhoefler, Reinhard; Zhang, Hua; Zhang, Ming; Zhang, Xiuzhong; Zhao, Rongbing; Zheng, Weimin; Zhou, Ruixian; Zubko, Nataliya
2015-01-01
Very Long Baseline Interferometry (VLBI) is a primary space-geodetic technique for determining precise coordinates on the Earth, for monitoring the variable Earth rotation and orientation with highest precision, and for deriving many other parameters of the Earth system. The International VLBI Service for Geodesy and Astrometry (IVS, http://ivscc.gsfc.nasa.gov/) is a service of the International Association of Geodesy (IAG) and the International Astronomical Union (IAU). The datasets published here are the results of individual Very Long Baseline Interferometry (VLBI) sessions in the form of normal equations in SINEX 2.0 format (http://www.iers.org/IERS/EN/Organization/AnalysisCoordinator/SinexFormat/sinex.html, the SINEX 2.0 description is attached as pdf) provided by IVS as the input for the next release of the International Terrestrial Reference System (ITRF): ITRF2014. This is a new version of the ITRF2008 release (Bockmann et al., 2009). For each session/ file, the normal equation systems contain elements for the coordinate components of all stations having participated in the respective session as well as for the Earth orientation parameters (x-pole, y-pole, UT1 and its time derivatives plus offset to the IAU2006 precession-nutation components dX, dY (https://www.iau.org/static/resolutions/IAU2006_Resol1.pdf). The terrestrial part is free of datum. The data sets are the result of a weighted combination of the input of several IVS Analysis Centers. The IVS contribution for ITRF2014 is described in Bachmann et al (2015), Schuh and Behrend (2012) provide a general overview on the VLBI method, details on the internal data handling can be found at Behrend (2013).
NASA Astrophysics Data System (ADS)
Wentworth, Mami Tonoe
Uncertainty quantification plays an important role when making predictive estimates of model responses. In this context, uncertainty quantification is defined as quantifying and reducing uncertainties, and the objective is to quantify uncertainties in parameter, model and measurements, and propagate the uncertainties through the model, so that one can make a predictive estimate with quantified uncertainties. Two of the aspects of uncertainty quantification that must be performed prior to propagating uncertainties are model calibration and parameter selection. There are several efficient techniques for these processes; however, the accuracy of these methods are often not verified. This is the motivation for our work, and in this dissertation, we present and illustrate verification frameworks for model calibration and parameter selection in the context of biological and physical models. First, HIV models, developed and improved by [2, 3, 8], describe the viral infection dynamics of an HIV disease. These are also used to make predictive estimates of viral loads and T-cell counts and to construct an optimal control for drug therapy. Estimating input parameters is an essential step prior to uncertainty quantification. However, not all the parameters are identifiable, implying that they cannot be uniquely determined by the observations. These unidentifiable parameters can be partially removed by performing parameter selection, a process in which parameters that have minimal impacts on the model response are determined. We provide verification techniques for Bayesian model calibration and parameter selection for an HIV model. As an example of a physical model, we employ a heat model with experimental measurements presented in [10]. A steady-state heat model represents a prototypical behavior for heat conduction and diffusion process involved in a thermal-hydraulic model, which is a part of nuclear reactor models. We employ this simple heat model to illustrate verification techniques for model calibration. For Bayesian model calibration, we employ adaptive Metropolis algorithms to construct densities for input parameters in the heat model and the HIV model. To quantify the uncertainty in the parameters, we employ two MCMC algorithms: Delayed Rejection Adaptive Metropolis (DRAM) [33] and Differential Evolution Adaptive Metropolis (DREAM) [66, 68]. The densities obtained using these methods are compared to those obtained through the direct numerical evaluation of the Bayes' formula. We also combine uncertainties in input parameters and measurement errors to construct predictive estimates for a model response. A significant emphasis is on the development and illustration of techniques to verify the accuracy of sampling-based Metropolis algorithms. We verify the accuracy of DRAM and DREAM by comparing chains, densities and correlations obtained using DRAM, DREAM and the direct evaluation of Bayes formula. We also perform similar analysis for credible and prediction intervals for responses. Once the parameters are estimated, we employ energy statistics test [63, 64] to compare the densities obtained by different methods for the HIV model. The energy statistics are used to test the equality of distributions. We also consider parameter selection and verification techniques for models having one or more parameters that are noninfluential in the sense that they minimally impact model outputs. We illustrate these techniques for a dynamic HIV model but note that the parameter selection and verification framework is applicable to a wide range of biological and physical models. To accommodate the nonlinear input to output relations, which are typical for such models, we focus on global sensitivity analysis techniques, including those based on partial correlations, Sobol indices based on second-order model representations, and Morris indices, as well as a parameter selection technique based on standard errors. A significant objective is to provide verification strategies to assess the accuracy of those techniques, which we illustrate in the context of the HIV model. Finally, we examine active subspace methods as an alternative to parameter subset selection techniques. The objective of active subspace methods is to determine the subspace of inputs that most strongly affect the model response, and to reduce the dimension of the input space. The major difference between active subspace methods and parameter selection techniques is that parameter selection identifies influential parameters whereas subspace selection identifies a linear combination of parameters that impacts the model responses significantly. We employ active subspace methods discussed in [22] for the HIV model and present a verification that the active subspace successfully reduces the input dimensions.
Incorporating rainfall uncertainty in a SWAT model: the river Zenne basin (Belgium) case study
NASA Astrophysics Data System (ADS)
Tolessa Leta, Olkeba; Nossent, Jiri; van Griensven, Ann; Bauwens, Willy
2013-04-01
The European Union Water Framework Directive (EU-WFD) called its member countries to achieve a good ecological status for all inland and coastal water bodies by 2015. According to recent studies, the river Zenne (Belgium) is far from this objective. Therefore, an interuniversity and multidisciplinary project "Towards a Good Ecological Status in the river Zenne (GESZ)" was launched to evaluate the effects of wastewater management plans on the river. In this project, different models have been developed and integrated using the Open Modelling Interface (OpenMI). The hydrologic, semi-distributed Soil and Water Assessment Tool (SWAT) is hereby used as one of the model components in the integrated modelling chain in order to model the upland catchment processes. The assessment of the uncertainty of SWAT is an essential aspect of the decision making process, in order to design robust management strategies that take the predicted uncertainties into account. Model uncertainty stems from the uncertainties on the model parameters, the input data (e.g, rainfall), the calibration data (e.g., stream flows) and on the model structure itself. The objective of this paper is to assess the first three sources of uncertainty in a SWAT model of the river Zenne basin. For the assessment of rainfall measurement uncertainty, first, we identified independent rainfall periods, based on the daily precipitation and stream flow observations and using the Water Engineering Time Series PROcessing tool (WETSPRO). Secondly, we assigned a rainfall multiplier parameter for each of the independent rainfall periods, which serves as a multiplicative input error corruption. Finally, we treated these multipliers as latent parameters in the model optimization and uncertainty analysis (UA). For parameter uncertainty assessment, due to the high number of parameters of the SWAT model, first, we screened out its most sensitive parameters using the Latin Hypercube One-factor-At-a-Time (LH-OAT) technique. Subsequently, we only considered the most sensitive parameters for parameter optimization and UA. To explicitly account for the stream flow uncertainty, we assumed that the stream flow measurement error increases linearly with the stream flow value. To assess the uncertainty and infer posterior distributions of the parameters, we used a Markov Chain Monte Carlo (MCMC) sampler - differential evolution adaptive metropolis (DREAM) that uses sampling from an archive of past states to generate candidate points in each individual chain. It is shown that the marginal posterior distributions of the rainfall multipliers vary widely between individual events, as a consequence of rainfall measurement errors and the spatial variability of the rain. Only few of the rainfall events are well defined. The marginal posterior distributions of the SWAT model parameter values are well defined and identified by DREAM, within their prior ranges. The posterior distributions of output uncertainty parameter values also show that the stream flow data is highly uncertain. The approach of using rainfall multipliers to treat rainfall uncertainty for a complex model has an impact on the model parameter marginal posterior distributions and on the model results Corresponding author: Tel.: +32 (0)2629 3027; fax: +32(0)2629 3022. E-mail: otolessa@vub.ac.be
NASA Astrophysics Data System (ADS)
Yadav, Vinod; Singh, Arbind Kumar; Dixit, Uday Shanker
2017-08-01
Flat rolling is one of the most widely used metal forming processes. For proper control and optimization of the process, modelling of the process is essential. Modelling of the process requires input data about material properties and friction. In batch production mode of rolling with newer materials, it may be difficult to determine the input parameters offline. In view of it, in the present work, a methodology to determine these parameters online by the measurement of exit temperature and slip is verified experimentally. It is observed that the inverse prediction of input parameters could be done with a reasonable accuracy. It was also assessed experimentally that there is a correlation between micro-hardness and flow stress of the material; however the correlation between surface roughness and reduction is not that obvious.
Using global sensitivity analysis of demographic models for ecological impact assessment.
Aiello-Lammens, Matthew E; Akçakaya, H Resit
2017-02-01
Population viability analysis (PVA) is widely used to assess population-level impacts of environmental changes on species. When combined with sensitivity analysis, PVA yields insights into the effects of parameter and model structure uncertainty. This helps researchers prioritize efforts for further data collection so that model improvements are efficient and helps managers prioritize conservation and management actions. Usually, sensitivity is analyzed by varying one input parameter at a time and observing the influence that variation has over model outcomes. This approach does not account for interactions among parameters. Global sensitivity analysis (GSA) overcomes this limitation by varying several model inputs simultaneously. Then, regression techniques allow measuring the importance of input-parameter uncertainties. In many conservation applications, the goal of demographic modeling is to assess how different scenarios of impact or management cause changes in a population. This is challenging because the uncertainty of input-parameter values can be confounded with the effect of impacts and management actions. We developed a GSA method that separates model outcome uncertainty resulting from parameter uncertainty from that resulting from projected ecological impacts or simulated management actions, effectively separating the 2 main questions that sensitivity analysis asks. We applied this method to assess the effects of predicted sea-level rise on Snowy Plover (Charadrius nivosus). A relatively small number of replicate models (approximately 100) resulted in consistent measures of variable importance when not trying to separate the effects of ecological impacts from parameter uncertainty. However, many more replicate models (approximately 500) were required to separate these effects. These differences are important to consider when using demographic models to estimate ecological impacts of management actions. © 2016 Society for Conservation Biology.
Optimization of porthole die geometrical variables by Taguchi method
NASA Astrophysics Data System (ADS)
Gagliardi, F.; Ciancio, C.; Ambrogio, G.; Filice, L.
2017-10-01
Porthole die extrusion is commonly used to manufacture hollow profiles made of lightweight alloys for numerous industrial applications. The reliability of extruded parts is affected strongly by the quality of the longitudinal and transversal seam welds. According to that, the die geometry must be designed correctly and the process parameters must be selected properly to achieve the desired product quality. In this study, numerical 3D simulations have been created and run to investigate the role of various geometrical variables on punch load and maximum pressure inside the welding chamber. These are important outputs to take into account affecting, respectively, the necessary capacity of the extrusion press and the quality of the welding lines. The Taguchi technique has been used to reduce the number of the required numerical simulations necessary for considering the influence of twelve different geometric variables. Moreover, the Analysis of variance (ANOVA) has been implemented to individually analyze the effect of each input parameter on the two responses. Then, the methodology has been utilized to determine the optimal process configuration individually optimizing the two investigated process outputs. Finally, the responses of the optimized parameters have been verified through finite element simulations approximating the predicted value closely. This study shows the feasibility of the Taguchi technique for predicting performance, optimization and therefore for improving the design of a porthole extrusion process.
An action potential-driven model of soleus muscle activation dynamics for locomotor-like movements
NASA Astrophysics Data System (ADS)
Kim, Hojeong; Sandercock, Thomas G.; Heckman, C. J.
2015-08-01
Objective. The goal of this study was to develop a physiologically plausible, computationally robust model for muscle activation dynamics (A(t)) under physiologically relevant excitation and movement. Approach. The interaction of excitation and movement on A(t) was investigated comparing the force production between a cat soleus muscle and its Hill-type model. For capturing A(t) under excitation and movement variation, a modular modeling framework was proposed comprising of three compartments: (1) spikes-to-[Ca2+]; (2) [Ca2+]-to-A; and (3) A-to-force transformation. The individual signal transformations were modeled based on physiological factors so that the parameter values could be separately determined for individual modules directly based on experimental data. Main results. The strong dependency of A(t) on excitation frequency and muscle length was found during both isometric and dynamically-moving contractions. The identified dependencies of A(t) under the static and dynamic conditions could be incorporated in the modular modeling framework by modulating the model parameters as a function of movement input. The new modeling approach was also applicable to cat soleus muscles producing waveforms independent of those used to set the model parameters. Significance. This study provides a modeling framework for spike-driven muscle responses during movement, that is suitable not only for insights into molecular mechanisms underlying muscle behaviors but also for large scale simulations.
NASA Astrophysics Data System (ADS)
Daneji, A.; Ali, M.; Pervaiz, S.
2018-04-01
Friction stir welding (FSW) is a form of solid state welding process for joining metals, alloys, and selective composites. Over the years, FSW development has provided an improved way of producing welding joints, and consequently got accepted in numerous industries such as aerospace, automotive, rail and marine etc. In FSW, the base metal properties control the material’s plastic flow under the influence of a rotating tool whereas, the process and tool parameters play a vital role in the quality of weld. In the current investigation, an array of square butt joints of 6061 Aluminum alloy was to be welded under varying FSW process and tool geometry related parameters, after which the resulting weld was evaluated for the corresponding mechanical properties and welding defects. The study incorporates FSW process and tool parameters such as welding speed, pin height and pin thread pitch as input parameters. However, the weld quality related defects and mechanical properties were treated as output parameters. The experimentation paves way to investigate the correlation between the inputs and the outputs. The correlation between inputs and outputs were used as tool to predict the optimized FSW process and tool parameters for a desired weld output of the base metals under investigation. The study also provides reflection on the effect of said parameters on a welding defect such as wormhole.
The effect of welding parameters on high-strength SMAW all-weld-metal. Part 1: AWS E11018-M
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vercesi, J.; Surian, E.
Three AWS A5.5-81 all-weld-metal test assemblies were welded with an E110180-M electrode from a standard production batch, varying the welding parameters in such a way as to obtain three energy inputs: high heat input and high interpass temperature (hot), medium heat input and medium interpass temperature (medium) and low heat input and low interpass temperature (cold). Mechanical properties and metallographic studies were performed in the as-welded condition, and it was found that only the tensile properties obtained with the test specimen made with the intermediate energy input satisfied the AWS E11018-M requirements. With the cold specimen, the maximal yield strengthmore » was exceeded, and with the hot one, neither the yield nor the tensile minimum strengths were achieved. The elongation and the impact properties were high enough to fulfill the minimal requirements, but the best Charpy-V notch values were obtained with the intermediate energy input. Metallographic studies showed that as the energy input increased the percentage of the columnar zones decreased, the grain size became larger, and in the as-welded zone, there was a little increment of both acicular ferrite and ferrite with second phase, with a consequent decrease of primary ferrite. These results showed that this type of alloy is very sensitive to the welding parameters and that very precise instructions must be given to secure the desired tensile properties in the all-weld-metal test specimens and under actual working conditions.« less
Are temporal characteristics of fast repetitive oscillating movement invariant?
Gutnik, B J; Nicholson, J; Go, W; Gale, D; Nash, D
2003-06-01
Validation of the proportional duration model was attempted using very fast single-joint repetitive horizontal abductive-adductive movements of the stretched upper extremity with minimal cognitive input. Participants drew oscillating horizontal lines during 20 sec. over relatively short distances as quickly as possible without visual feedback. Spatial, temporal, and kinetic parameters were analysed. The amplitude and the time spent accelerating, decelerating, and reversing in both directions of each experimental line were recorded and related to the centre of gravity of the upper extremity. The accelerations of the centre of mass of the upper extremity were calculated and used to calculate the forces involved. The ratios of durations were compared and intercorrelated for the two fastest, two average, and two slowest cycles from each participant. Results exhibited significant standard deviations and variability of temporal and kinetic parameters within individual trials. The number of significant coefficients of correlation within individual trials was small despite the controlling influence of the same generalised motor program. The proportional duration model did not hold for our data. Peripheral factors (probably the length-tension relationship rule for skeletal muscles and viscosity of muscle) may be important in this type of action.
NASA Technical Reports Server (NTRS)
Cross, P. L.
1994-01-01
Birefringent filters are often used as line-narrowing components in solid state lasers. The Birefringent Filter Model program generates a stand-alone model of a birefringent filter for use in designing and analyzing a birefringent filter. It was originally developed to aid in the design of solid state lasers to be used on aircraft or spacecraft to perform remote sensing of the atmosphere. The model is general enough to allow the user to address problems such as temperature stability requirements, manufacturing tolerances, and alignment tolerances. The input parameters for the program are divided into 7 groups: 1) general parameters which refer to all elements of the filter; 2) wavelength related parameters; 3) filter, coating and orientation parameters; 4) input ray parameters; 5) output device specifications; 6) component related parameters; and 7) transmission profile parameters. The program can analyze a birefringent filter with up to 12 different components, and can calculate the transmission and summary parameters for multiple passes as well as a single pass through the filter. The Jones matrix, which is calculated from the input parameters of Groups 1 through 4, is used to calculate the transmission. Output files containing the calculated transmission or the calculated Jones' matrix as a function of wavelength can be created. These output files can then be used as inputs for user written programs. For example, to plot the transmission or to calculate the eigen-transmittances and the corresponding eigen-polarizations for the Jones' matrix, write the appropriate data to a file. The Birefringent Filter Model is written in Microsoft FORTRAN 2.0. The program format is interactive. It was developed on an IBM PC XT equipped with an 8087 math coprocessor, and has a central memory requirement of approximately 154K. Since Microsoft FORTRAN 2.0 does not support complex arithmetic, matrix routines for addition, subtraction, and multiplication of complex, double precision variables are included. The Birefringent Filter Model was written in 1987.
NASA Astrophysics Data System (ADS)
Berger, Lukas; Kleinheinz, Konstantin; Attili, Antonio; Bisetti, Fabrizio; Pitsch, Heinz; Mueller, Michael E.
2018-05-01
Modelling unclosed terms in partial differential equations typically involves two steps: First, a set of known quantities needs to be specified as input parameters for a model, and second, a specific functional form needs to be defined to model the unclosed terms by the input parameters. Both steps involve a certain modelling error, with the former known as the irreducible error and the latter referred to as the functional error. Typically, only the total modelling error, which is the sum of functional and irreducible error, is assessed, but the concept of the optimal estimator enables the separate analysis of the total and the irreducible errors, yielding a systematic modelling error decomposition. In this work, attention is paid to the techniques themselves required for the practical computation of irreducible errors. Typically, histograms are used for optimal estimator analyses, but this technique is found to add a non-negligible spurious contribution to the irreducible error if models with multiple input parameters are assessed. Thus, the error decomposition of an optimal estimator analysis becomes inaccurate, and misleading conclusions concerning modelling errors may be drawn. In this work, numerically accurate techniques for optimal estimator analyses are identified and a suitable evaluation of irreducible errors is presented. Four different computational techniques are considered: a histogram technique, artificial neural networks, multivariate adaptive regression splines, and an additive model based on a kernel method. For multiple input parameter models, only artificial neural networks and multivariate adaptive regression splines are found to yield satisfactorily accurate results. Beyond a certain number of input parameters, the assessment of models in an optimal estimator analysis even becomes practically infeasible if histograms are used. The optimal estimator analysis in this paper is applied to modelling the filtered soot intermittency in large eddy simulations using a dataset of a direct numerical simulation of a non-premixed sooting turbulent flame.
Analysis of Artificial Neural Network in Erosion Modeling: A Case Study of Serang Watershed
NASA Astrophysics Data System (ADS)
Arif, N.; Danoedoro, P.; Hartono
2017-12-01
Erosion modeling is an important measuring tool for both land users and decision makers to evaluate land cultivation and thus it is necessary to have a model to represent the actual reality. Erosion models are a complex model because of uncertainty data with different sources and processing procedures. Artificial neural networks can be relied on for complex and non-linear data processing such as erosion data. The main difficulty in artificial neural network training is the determination of the value of each network input parameters, i.e. hidden layer, momentum, learning rate, momentum, and RMS. This study tested the capability of artificial neural network application in the prediction of erosion risk with some input parameters through multiple simulations to get good classification results. The model was implemented in Serang Watershed, Kulonprogo, Yogyakarta which is one of the critical potential watersheds in Indonesia. The simulation results showed the number of iterations that gave a significant effect on the accuracy compared to other parameters. A small number of iterations can produce good accuracy if the combination of other parameters was right. In this case, one hidden layer was sufficient to produce good accuracy. The highest training accuracy achieved in this study was 99.32%, occurred in ANN 14 simulation with combination of network input parameters of 1 HL; LR 0.01; M 0.5; RMS 0.0001, and the number of iterations of 15000. The ANN training accuracy was not influenced by the number of channels, namely input dataset (erosion factors) as well as data dimensions, rather it was determined by changes in network parameters.
Chasin, Marshall; Russo, Frank A
2004-01-01
Historically, the primary concern for hearing aid design and fitting is optimization for speech inputs. However, increasingly other types of inputs are being investigated and this is certainly the case for music. Whether the hearing aid wearer is a musician or merely someone who likes to listen to music, the electronic and electro-acoustic parameters described can be optimized for music as well as for speech. That is, a hearing aid optimally set for music can be optimally set for speech, even though the converse is not necessarily true. Similarities and differences between speech and music as inputs to a hearing aid are described. Many of these lead to the specification of a set of optimal electro-acoustic characteristics. Parameters such as the peak input-limiting level, compression issues-both compression ratio and knee-points-and number of channels all can deleteriously affect music perception through hearing aids. In other cases, it is not clear how to set other parameters such as noise reduction and feedback control mechanisms. Regardless of the existence of a "music program,'' unless the various electro-acoustic parameters are available in a hearing aid, music fidelity will almost always be less than optimal. There are many unanswered questions and hypotheses in this area. Future research by engineers, researchers, clinicians, and musicians will aid in the clarification of these questions and their ultimate solutions.
Vriens, Dennis; de Geus-Oei, Lioe-Fee; Oyen, Wim J G; Visser, Eric P
2009-12-01
For the quantification of dynamic (18)F-FDG PET studies, the arterial plasma time-activity concentration curve (APTAC) needs to be available. This can be obtained using serial sampling of arterial blood or an image-derived input function (IDIF). Arterial sampling is invasive and often not feasible in practice; IDIFs are biased because of partial-volume effects and cannot be used when no large arterial blood pool is in the field of view. We propose a mathematic function, consisting of an initial linear rising activity concentration followed by a triexponential decay, to describe the APTAC. This function was fitted to 80 oncologic patients and verified for 40 different oncologic patients by area-under-the-curve (AUC) comparison, Patlak glucose metabolic rate (MR(glc)) estimation, and therapy response monitoring (Delta MR(glc)). The proposed function was compared with the gold standard (serial arterial sampling) and the IDIF. To determine the free parameters of the function, plasma time-activity curves based on arterial samples in 80 patients were fitted after normalization for administered activity (AA) and initial distribution volume (iDV) of (18)F-FDG. The medians of these free parameters were used for the model. In 40 other patients (20 baseline and 20 follow-up dynamic (18)F-FDG PET scans), this model was validated. The population-based curve, individually calibrated by AA and iDV (APTAC(AA/iDV)), by 1 late arterial sample (APTAC(1 sample)), and by the individual IDIF (APTAC(IDIF)), was compared with the gold standard of serial arterial sampling (APTAC(sampled)) using the AUC. Additionally, these 3 methods of APTAC determination were evaluated with Patlak MR(glc) estimation and with Delta MR(glc) for therapy effects using serial sampling as the gold standard. Excellent individual fits to the function were derived with significantly different decay constants (P < 0.001). Correlations between AUC from APTAC(AA/iDV), APTAC(1 sample), and APTAC(IDIF) with the gold standard (APTAC(sampled)) were 0.880, 0.994, and 0.856, respectively. For MR(glc), these correlations were 0.963, 0.994, and 0.966, respectively. In response monitoring, these correlations were 0.947, 0.982, and 0.949, respectively. Additional scaling by 1 late arterial sample showed a significant improvement (P < 0.001). The fitted input function calibrated for AA and iDV performed similarly to IDIF. Performance improved significantly using 1 late arterial sample. The proposed model can be used when an IDIF is not available or when serial arterial sampling is not feasible.
Zeng, Xiaozheng; McGough, Robert J.
2009-01-01
The angular spectrum approach is evaluated for the simulation of focused ultrasound fields produced by large thermal therapy arrays. For an input pressure or normal particle velocity distribution in a plane, the angular spectrum approach rapidly computes the output pressure field in a three dimensional volume. To determine the optimal combination of simulation parameters for angular spectrum calculations, the effect of the size, location, and the numerical accuracy of the input plane on the computed output pressure is evaluated. Simulation results demonstrate that angular spectrum calculations performed with an input pressure plane are more accurate than calculations with an input velocity plane. Results also indicate that when the input pressure plane is slightly larger than the array aperture and is located approximately one wavelength from the array, angular spectrum simulations have very small numerical errors for two dimensional planar arrays. Furthermore, the root mean squared error from angular spectrum simulations asymptotically approaches a nonzero lower limit as the error in the input plane decreases. Overall, the angular spectrum approach is an accurate and robust method for thermal therapy simulations of large ultrasound phased arrays when the input pressure plane is computed with the fast nearfield method and an optimal combination of input parameters. PMID:19425640
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Peng; Barajas-Solano, David A.; Constantinescu, Emil
Wind and solar power generators are commonly described by a system of stochastic ordinary differential equations (SODEs) where random input parameters represent uncertainty in wind and solar energy. The existing methods for SODEs are mostly limited to delta-correlated random parameters (white noise). Here we use the Probability Density Function (PDF) method for deriving a closed-form deterministic partial differential equation (PDE) for the joint probability density function of the SODEs describing a power generator with time-correlated power input. The resulting PDE is solved numerically. A good agreement with Monte Carlo Simulations shows accuracy of the PDF method.
Explicit least squares system parameter identification for exact differential input/output models
NASA Technical Reports Server (NTRS)
Pearson, A. E.
1993-01-01
The equation error for a class of systems modeled by input/output differential operator equations has the potential to be integrated exactly, given the input/output data on a finite time interval, thereby opening up the possibility of using an explicit least squares estimation technique for system parameter identification. The paper delineates the class of models for which this is possible and shows how the explicit least squares cost function can be obtained in a way that obviates dealing with unknown initial and boundary conditions. The approach is illustrated by two examples: a second order chemical kinetics model and a third order system of Lorenz equations.
Femtosecond soliton source with fast and broad spectral tunability.
Masip, Martin E; Rieznik, A A; König, Pablo G; Grosz, Diego F; Bragas, Andrea V; Martinez, Oscar E
2009-03-15
We present a complete set of measurements and numerical simulations of a femtosecond soliton source with fast and broad spectral tunability and nearly constant pulse width and average power. Solitons generated in a photonic crystal fiber, at the low-power coupling regime, can be tuned in a broad range of wavelengths, from 850 to 1200 nm using the input power as the control parameter. These solitons keep almost constant time duration (approximately 40 fs) and spectral widths (approximately 20 nm) over the entire measured spectra regardless of input power. Our numerical simulations agree well with measurements and predict a wide working wavelength range and robustness to input parameters.
Jafari, Ramin; Chhabra, Shalini; Prince, Martin R; Wang, Yi; Spincemaille, Pascal
2018-04-01
To propose an efficient algorithm to perform dual input compartment modeling for generating perfusion maps in the liver. We implemented whole field-of-view linear least squares (LLS) to fit a delay-compensated dual-input single-compartment model to very high temporal resolution (four frames per second) contrast-enhanced 3D liver data, to calculate kinetic parameter maps. Using simulated data and experimental data in healthy subjects and patients, whole-field LLS was compared with the conventional voxel-wise nonlinear least-squares (NLLS) approach in terms of accuracy, performance, and computation time. Simulations showed good agreement between LLS and NLLS for a range of kinetic parameters. The whole-field LLS method allowed generating liver perfusion maps approximately 160-fold faster than voxel-wise NLLS, while obtaining similar perfusion parameters. Delay-compensated dual-input liver perfusion analysis using whole-field LLS allows generating perfusion maps with a considerable speedup compared with conventional voxel-wise NLLS fitting. Magn Reson Med 79:2415-2421, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
FAST: Fitting and Assessment of Synthetic Templates
NASA Astrophysics Data System (ADS)
Kriek, Mariska; van Dokkum, Pieter G.; Labbé, Ivo; Franx, Marijn; Illingworth, Garth D.; Marchesini, Danilo; Quadri, Ryan F.; Aird, James; Coil, Alison L.; Georgakakis, Antonis
2018-03-01
FAST (Fitting and Assessment of Synthetic Templates) fits stellar population synthesis templates to broadband photometry and/or spectra. FAST is compatible with the photometric redshift code EAzY (ascl:1010.052) when fitting broadband photometry; it uses the photometric redshifts derived by EAzY, and the input files (for examply, photometric catalog and master filter file) are the same. FAST fits spectra in combination with broadband photometric data points or simultaneously fits two components, allowing for an AGN contribution in addition to the host galaxy light. Depending on the input parameters, FAST outputs the best-fit redshift, age, dust content, star formation timescale, metallicity, stellar mass, star formation rate (SFR), and their confidence intervals. Though some of FAST's functions overlap with those of HYPERZ (ascl:1108.010), it differs by fitting fluxes instead of magnitudes, allows the user to completely define the grid of input stellar population parameters and easily input photometric redshifts and their confidence intervals, and calculates calibrated confidence intervals for all parameters. Note that FAST is not a photometric redshift code, though it can be used as one.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Yoojin; Doughty, Christine
Input and output files used for fault characterization through numerical simulation using iTOUGH2. The synthetic data for the push period are generated by running a forward simulation (input parameters are provided in iTOUGH2 Brady GF6 Input Parameters.txt [InvExt6i.txt]). In general, the permeability of the fault gouge, damage zone, and matrix are assumed to be unknown. The input and output files are for the inversion scenario where only pressure transients are available at the monitoring well located 200 m above the injection well and only the fault gouge permeability is estimated. The input files are named InvExt6i, INPUT.tpl, FOFT.ins, CO2TAB, andmore » the output files are InvExt6i.out, pest.fof, and pest.sav (names below are display names). The table graphic in the data files below summarizes the inversion results, and indicates the fault gouge permeability can be estimated even if imperfect guesses are used for matrix and damage zone permeabilities, and permeability anisotropy is not taken into account.« less
Fuzzy Stochastic Petri Nets for Modeling Biological Systems with Uncertain Kinetic Parameters
Liu, Fei; Heiner, Monika; Yang, Ming
2016-01-01
Stochastic Petri nets (SPNs) have been widely used to model randomness which is an inherent feature of biological systems. However, for many biological systems, some kinetic parameters may be uncertain due to incomplete, vague or missing kinetic data (often called fuzzy uncertainty), or naturally vary, e.g., between different individuals, experimental conditions, etc. (often called variability), which has prevented a wider application of SPNs that require accurate parameters. Considering the strength of fuzzy sets to deal with uncertain information, we apply a specific type of stochastic Petri nets, fuzzy stochastic Petri nets (FSPNs), to model and analyze biological systems with uncertain kinetic parameters. FSPNs combine SPNs and fuzzy sets, thereby taking into account both randomness and fuzziness of biological systems. For a biological system, SPNs model the randomness, while fuzzy sets model kinetic parameters with fuzzy uncertainty or variability by associating each parameter with a fuzzy number instead of a crisp real value. We introduce a simulation-based analysis method for FSPNs to explore the uncertainties of outputs resulting from the uncertainties associated with input parameters, which works equally well for bounded and unbounded models. We illustrate our approach using a yeast polarization model having an infinite state space, which shows the appropriateness of FSPNs in combination with simulation-based analysis for modeling and analyzing biological systems with uncertain information. PMID:26910830
Evaluation of trade influence on economic growth rate by computational intelligence approach
NASA Astrophysics Data System (ADS)
Sokolov-Mladenović, Svetlana; Milovančević, Milos; Mladenović, Igor
2017-01-01
In this study was analyzed the influence of trade parameters on the economic growth forecasting accuracy. Computational intelligence method was used for the analyzing since the method can handle highly nonlinear data. It is known that the economic growth could be modeled based on the different trade parameters. In this study five input parameters were considered. These input parameters were: trade in services, exports of goods and services, imports of goods and services, trade and merchandise trade. All these parameters were calculated as added percentages in gross domestic product (GDP). The main goal was to select which parameters are the most impactful on the economic growth percentage. GDP was used as economic growth indicator. Results show that the imports of goods and services has the highest influence on the economic growth forecasting accuracy.
NASA Astrophysics Data System (ADS)
Krenn, Julia; Zangerl, Christian; Mergili, Martin
2017-04-01
r.randomwalk is a GIS-based, multi-functional, conceptual open source model application for forward and backward analyses of the propagation of mass flows. It relies on a set of empirically derived, uncertain input parameters. In contrast to many other tools, r.randomwalk accepts input parameter ranges (or, in case of two or more parameters, spaces) in order to directly account for these uncertainties. Parameter spaces represent a possibility to withdraw from discrete input values which in most cases are likely to be off target. r.randomwalk automatically performs multiple calculations with various parameter combinations in a given parameter space, resulting in the impact indicator index (III) which denotes the fraction of parameter value combinations predicting an impact on a given pixel. Still, there is a need to constrain the parameter space used for a certain process type or magnitude prior to performing forward calculations. This can be done by optimizing the parameter space in terms of bringing the model results in line with well-documented past events. As most existing parameter optimization algorithms are designed for discrete values rather than for ranges or spaces, the necessity for a new and innovative technique arises. The present study aims at developing such a technique and at applying it to derive guiding parameter spaces for the forward calculation of rock avalanches through back-calculation of multiple events. In order to automatize the work flow we have designed r.ranger, an optimization and sensitivity analysis tool for parameter spaces which can be directly coupled to r.randomwalk. With r.ranger we apply a nested approach where the total value range of each parameter is divided into various levels of subranges. All possible combinations of subranges of all parameters are tested for the performance of the associated pattern of III. Performance indicators are the area under the ROC curve (AUROC) and the factor of conservativeness (FoC). This strategy is best demonstrated for two input parameters, but can be extended arbitrarily. We use a set of small rock avalanches from western Austria, and some larger ones from Canada and New Zealand, to optimize the basal friction coefficient and the mass-to-drag ratio of the two-parameter friction model implemented with r.randomwalk. Thereby we repeat the optimization procedure with conservative and non-conservative assumptions of a set of complementary parameters and with different raster cell sizes. Our preliminary results indicate that the model performance in terms of AUROC achieved with broad parameter spaces is hardly surpassed by the performance achieved with narrow parameter spaces. However, broad spaces may result in very conservative or very non-conservative predictions. Therefore, guiding parameter spaces have to be (i) broad enough to avoid the risk of being off target; and (ii) narrow enough to ensure a reasonable level of conservativeness of the results. The next steps will consist in (i) extending the study to other types of mass flow processes in order to support forward calculations using r.randomwalk; and (ii) in applying the same strategy to the more complex, dynamic model r.avaflow.
Modeling Aircraft Wing Loads from Flight Data Using Neural Networks
NASA Technical Reports Server (NTRS)
Allen, Michael J.; Dibley, Ryan P.
2003-01-01
Neural networks were used to model wing bending-moment loads, torsion loads, and control surface hinge-moments of the Active Aeroelastic Wing (AAW) aircraft. Accurate loads models are required for the development of control laws designed to increase roll performance through wing twist while not exceeding load limits. Inputs to the model include aircraft rates, accelerations, and control surface positions. Neural networks were chosen to model aircraft loads because they can account for uncharacterized nonlinear effects while retaining the capability to generalize. The accuracy of the neural network models was improved by first developing linear loads models to use as starting points for network training. Neural networks were then trained with flight data for rolls, loaded reversals, wind-up-turns, and individual control surface doublets for load excitation. Generalization was improved by using gain weighting and early stopping. Results are presented for neural network loads models of four wing loads and four control surface hinge moments at Mach 0.90 and an altitude of 15,000 ft. An average model prediction error reduction of 18.6 percent was calculated for the neural network models when compared to the linear models. This paper documents the input data conditioning, input parameter selection, structure, training, and validation of the neural network models.
Cortical Specializations Underlying Fast Computations
Volgushev, Maxim
2016-01-01
The time course of behaviorally relevant environmental events sets temporal constraints on neuronal processing. How does the mammalian brain make use of the increasingly complex networks of the neocortex, while making decisions and executing behavioral reactions within a reasonable time? The key parameter determining the speed of computations in neuronal networks is a time interval that neuronal ensembles need to process changes at their input and communicate results of this processing to downstream neurons. Theoretical analysis identified basic requirements for fast processing: use of neuronal populations for encoding, background activity, and fast onset dynamics of action potentials in neurons. Experimental evidence shows that populations of neocortical neurons fulfil these requirements. Indeed, they can change firing rate in response to input perturbations very quickly, within 1 to 3 ms, and encode high-frequency components of the input by phase-locking their spiking to frequencies up to 300 to 1000 Hz. This implies that time unit of computations by cortical ensembles is only few, 1 to 3 ms, which is considerably faster than the membrane time constant of individual neurons. The ability of cortical neuronal ensembles to communicate on a millisecond time scale allows for complex, multiple-step processing and precise coordination of neuronal activity in parallel processing streams, while keeping the speed of behavioral reactions within environmentally set temporal constraints. PMID:25689988
[Estimating survival of thrushes: modeling capture-recapture probabilities].
Burskiî, O V
2011-01-01
The stochastic modeling technique serves as a way to correctly separate "return rate" of marked animals into survival rate (phi) and capture probability (p). The method can readily be used with the program MARK freely distributed through Internet (Cooch, White, 2009). Input data for the program consist of "capture histories" of marked animals--strings of units and zeros indicating presence or absence of the individual among captures (or sightings) along the set of consequent recapture occasions (e.g., years). Probability of any history is a product of binomial probabilities phi, p or their complements (1 - phi) and (1 - p) for each year of observation over the individual. Assigning certain values to parameters phi and p, one can predict the composition of all individual histories in the sample and assess the likelihood of the prediction. The survival parameters for different occasions and cohorts of individuals can be set either equal or different, as well as recapture parameters can be set in different ways. There is a possibility to constraint the parameters, according to the hypothesis being tested, in the form of a specific model. Within the specified constraints, the program searches for parameter values that describe the observed composition of histories with the maximum likelihood. It computes the parameter estimates along with confidence limits and the overall model likelihood. There is a set of tools for testing the model goodness-of-fit under assumption of equality of survival rates among individuals and independence of their fates. Other tools offer a proper selection among a possible variety of models, providing the best parity between details and precision in describing reality. The method was applied to 20-yr recapture and resighting data series on 4 thrush species (genera Turdus, Zoothera) breeding in the Yenisei River floodplain within the middle taiga subzone. The capture probabilities were quite independent of observational efforts fluctuations while differing significantly between the species and sexes. The estimates of adult survival rate, obtained for the Siberian migratory populations, were lower than those for sedentary populations from both the tropics and intermediate latitudes with marine climate (data by Ricklefs, 1997). Two factors, the average temperature influencing birds during their annual movements, and climatic seasonality (temperature difference between summer and winter) in the breeding area, fit the latitudinal pattern of survival most closely (R2 = 0.90). Final survival of migrants reflects an adaptive life history compromise for use of superabundant resources in breeding area at the cost of avoidance of severe winter conditions.
Indicator system for advanced nuclear plant control complex
Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.
1993-01-01
An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.
Indicator system for a process plant control complex
Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.
1993-01-01
An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.
Console for a nuclear control complex
Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.
1993-01-01
An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.
Alarm system for a nuclear control complex
Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.
1994-01-01
An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.
Method of installing a control room console in a nuclear power plant
Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.
1994-01-01
An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.
Advanced nuclear plant control complex
Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.
1993-01-01
An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.
Advanced nuclear plant control room complex
Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.
1993-01-01
An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.
Li, Tingting; Cheng, Zhengguo; Zhang, Le
2017-01-01
Since they can provide a natural and flexible description of nonlinear dynamic behavior of complex system, Agent-based models (ABM) have been commonly used for immune system simulation. However, it is crucial for ABM to obtain an appropriate estimation for the key parameters of the model by incorporating experimental data. In this paper, a systematic procedure for immune system simulation by integrating the ABM and regression method under the framework of history matching is developed. A novel parameter estimation method by incorporating the experiment data for the simulator ABM during the procedure is proposed. First, we employ ABM as simulator to simulate the immune system. Then, the dimension-reduced type generalized additive model (GAM) is employed to train a statistical regression model by using the input and output data of ABM and play a role as an emulator during history matching. Next, we reduce the input space of parameters by introducing an implausible measure to discard the implausible input values. At last, the estimation of model parameters is obtained using the particle swarm optimization algorithm (PSO) by fitting the experiment data among the non-implausible input values. The real Influeza A Virus (IAV) data set is employed to demonstrate the performance of our proposed method, and the results show that the proposed method not only has good fitting and predicting accuracy, but it also owns favorable computational efficiency. PMID:29194393
Li, Tingting; Cheng, Zhengguo; Zhang, Le
2017-12-01
Since they can provide a natural and flexible description of nonlinear dynamic behavior of complex system, Agent-based models (ABM) have been commonly used for immune system simulation. However, it is crucial for ABM to obtain an appropriate estimation for the key parameters of the model by incorporating experimental data. In this paper, a systematic procedure for immune system simulation by integrating the ABM and regression method under the framework of history matching is developed. A novel parameter estimation method by incorporating the experiment data for the simulator ABM during the procedure is proposed. First, we employ ABM as simulator to simulate the immune system. Then, the dimension-reduced type generalized additive model (GAM) is employed to train a statistical regression model by using the input and output data of ABM and play a role as an emulator during history matching. Next, we reduce the input space of parameters by introducing an implausible measure to discard the implausible input values. At last, the estimation of model parameters is obtained using the particle swarm optimization algorithm (PSO) by fitting the experiment data among the non-implausible input values. The real Influeza A Virus (IAV) data set is employed to demonstrate the performance of our proposed method, and the results show that the proposed method not only has good fitting and predicting accuracy, but it also owns favorable computational efficiency.
Calculating the sensitivity of wind turbine loads to wind inputs using response surfaces
NASA Astrophysics Data System (ADS)
Rinker, Jennifer M.
2016-09-01
This paper presents a methodology to calculate wind turbine load sensitivities to turbulence parameters through the use of response surfaces. A response surface is a highdimensional polynomial surface that can be calibrated to any set of input/output data and then used to generate synthetic data at a low computational cost. Sobol sensitivity indices (SIs) can then be calculated with relative ease using the calibrated response surface. The proposed methodology is demonstrated by calculating the total sensitivity of the maximum blade root bending moment of the WindPACT 5 MW reference model to four turbulence input parameters: a reference mean wind speed, a reference turbulence intensity, the Kaimal length scale, and a novel parameter reflecting the nonstationarity present in the inflow turbulence. The input/output data used to calibrate the response surface were generated for a previous project. The fit of the calibrated response surface is evaluated in terms of error between the model and the training data and in terms of the convergence. The Sobol SIs are calculated using the calibrated response surface, and the convergence is examined. The Sobol SIs reveal that, of the four turbulence parameters examined in this paper, the variance caused by the Kaimal length scale and nonstationarity parameter are negligible. Thus, the findings in this paper represent the first systematic evidence that stochastic wind turbine load response statistics can be modeled purely by mean wind wind speed and turbulence intensity.
Surgical stent planning: simulation parameter study for models based on DICOM standards.
Scherer, S; Treichel, T; Ritter, N; Triebel, G; Drossel, W G; Burgert, O
2011-05-01
Endovascular Aneurysm Repair (EVAR) can be facilitated by a realistic simulation model of stent-vessel-interaction. Therefore, numerical feasibility and integrability in the clinical environment was evaluated. The finite element method was used to determine necessary simulation parameters for stent-vessel-interaction in EVAR. Input variables and result data of the simulation model were examined for their standardization using DICOM supplements. The study identified four essential parameters for the stent-vessel simulation: blood pressure, intima constitution, plaque occurrence and the material properties of vessel and plaque. Output quantities such as radial force of the stent and contact pressure between stent/vessel can help the surgeon to evaluate implant fixation and sealing. The model geometry can be saved with DICOM "Surface Segmentation" objects and the upcoming "Implant Templates" supplement. Simulation results can be stored using the "Structured Report". A standards-based general simulation model for optimizing stent-graft selection may be feasible. At present, there are limitations due to specification of individual vessel material parameters and for simulating the proximal fixation of stent-grafts with hooks. Simulation data with clinical relevance for documentation and presentation can be stored using existing or new DICOM extensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Wei; Chen, Gaoqiang; Chen, Jian
Reduced-activation ferritic/martensitic (RAFM) steels are an important class of structural materials for fusion reactor internals developed in recent years because of their improved irradiation resistance. However, they can suffer from welding induced property degradations. In this paper, a solid phase joining technology friction stir welding (FSW) was adopted to join a RAFM steel Eurofer 97 and different FSW parameters/heat input were chosen to produce welds. FSW response parameters, joint microstructures and microhardness were investigated to reveal relationships among welding heat input, weld structure characterization and mechanical properties. In general, FSW heat input results in high hardness inside the stir zonemore » mostly due to a martensitic transformation. It is possible to produce friction stir welds similar to but not with exactly the same base metal hardness when using low power input because of other hardening mechanisms. Further, post weld heat treatment (PWHT) is a very effective way to reduce FSW stir zone hardness values.« less
NASA Astrophysics Data System (ADS)
Haller, Julian; Wilkens, Volker
2012-11-01
For power levels up to 200 W and sonication times up to 60 s, the electrical power, the voltage and the electrical impedance (more exactly: the ratio of RMS voltage and RMS current) have been measured for a piezocomposite high intensity therapeutic ultrasound (HITU) transducer with integrated matching network, two piezoceramic HITU transducers with external matching networks and for a passive dummy 50 Ω load. The electrical power and the voltage were measured during high power application with an inline power meter and an RMS voltage meter, respectively, and the complex electrical impedance was indirectly measured with a current probe, a 100:1 voltage probe and a digital scope. The results clearly show that the input RMS voltage and the input RMS power change unequally during the application. Hence, the indication of only the electrical input power or only the voltage as the input parameter may not be sufficient for reliable characterizations of ultrasound transducers for high power applications in some cases.
Non-blocking crossbar permutation engine with constant routing latency
NASA Technical Reports Server (NTRS)
Monacos, Steve P. (Inventor)
1994-01-01
The invention is embodied in an N x N crossbar for routing packets from a set of N input ports to a set of N output ports, each packet having a header identifying one of the output ports as its destination, including a plurality of individual links which carry individual packets. Each link has a link input end and a link output end, a plurality of switches. Each of the switches has at least top and bottom switch inputs connected to a corresponding pair of the link output ends and top and bottom switch outputs connected to a corresponding pair of link input ends, whereby each switch is connected to four different links. Each of the switches has an exchange state which routes packets from the top and bottom switch inputs to the bottom and top switch outputs, respectively, and a bypass state which routes packets from the top and bottom switch inputs to the top and bottom switch outputs, respectively. A plurality of individual controller devices governing respective switches for sensing from a header of a packet at each switch input for the identity of the destination output port of the packet and selecting one of the exchange and bypass states in accordance with the identity of the destination output port and with the location of the corresponding switch relative to the destination output port.
Rodolfo, Inês; Pereira, Ana Marta; de Sá, Armando Brito
2017-01-01
Background Personal health records (PHRs) are increasingly being deployed worldwide, but their rates of adoption by patients vary widely across countries and health systems. Five main categories of adopters are usually considered when evaluating the diffusion of innovations: innovators, early adopters, early majority, late majority, and laggards. Objective We aimed to evaluate adoption of the Portuguese PHR 3 months after its release, as well as characterize the individuals who registered and used the system during that period (the innovators). Methods We conducted a cross-sectional study. Users and nonusers were defined based on their input, or not, of health-related information into the PHR. Users of the PHR were compared with nonusers regarding demographic and clinical variables. Users were further characterized according to their intensity of information input: single input (one single piece of health-related information recorded) and multiple inputs. Multivariate logistic regression was used to model the probability of being in the multiple inputs group. ArcGis (ESRI, Redlands, CA, USA) was used to create maps of the proportion of PHR registrations by region and district. Results The number of registered individuals was 109,619 (66,408/109,619, 60.58% women; mean age: 44.7 years, standard deviation [SD] 18.1 years). The highest proportion of registrations was observed for those aged between 30 and 39 years (25,810/109,619, 23.55%). Furthermore, 16.88% (18,504/109,619) of registered individuals were considered users and 83.12% (91,115/109,619) nonusers. Among PHR users, 32.18% (5955/18,504) engaged in single input and 67.82% (12,549/18,504) in multiple inputs. Younger individuals and male users had higher odds of engaging in multiple inputs (odds ratio for male individuals 1.32, CI 1.19-1.48). Geographic analysis revealed higher proportions of PHR adoption in urban centers when compared with rural noncoastal districts. Conclusions Approximately 1% of the country’s population registered during the first 3 months of the Portuguese PHR. Registered individuals were more frequently female aged between 30 and 39 years. There is evidence of a geographic gap in the adoption of the Portuguese PHR, with higher proportions of adopters in urban centers than in rural noncoastal districts. PMID:29021125
Macroscopic singlet oxygen model incorporating photobleaching as an input parameter
NASA Astrophysics Data System (ADS)
Kim, Michele M.; Finlay, Jarod C.; Zhu, Timothy C.
2015-03-01
A macroscopic singlet oxygen model for photodynamic therapy (PDT) has been used extensively to calculate the reacted singlet oxygen concentration for various photosensitizers. The four photophysical parameters (ξ, σ, β, δ) and threshold singlet oxygen dose ([1O2]r,sh) can be found for various drugs and drug-light intervals using a fitting algorithm. The input parameters for this model include the fluence, photosensitizer concentration, optical properties, and necrosis radius. An additional input variable of photobleaching was implemented in this study to optimize the results. Photobleaching was measured by using the pre-PDT and post-PDT sensitizer concentrations. Using the RIF model of murine fibrosarcoma, mice were treated with a linear source with fluence rates from 12 - 150 mW/cm and total fluences from 24 - 135 J/cm. The two main drugs investigated were benzoporphyrin derivative monoacid ring A (BPD) and 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH). Previously published photophysical parameters were fine-tuned and verified using photobleaching as the additional fitting parameter. Furthermore, photobleaching can be used as an indicator of the robustness of the model for the particular mouse experiment by comparing the experimental and model-calculated photobleaching ratio.
Gaussian beam profile shaping apparatus, method therefor and evaluation thereof
Dickey, Fred M.; Holswade, Scott C.; Romero, Louis A.
1999-01-01
A method and apparatus maps a Gaussian beam into a beam with a uniform irradiance profile by exploiting the Fourier transform properties of lenses. A phase element imparts a design phase onto an input beam and the output optical field from a lens is then the Fourier transform of the input beam and the phase function from the phase element. The phase element is selected in accordance with a dimensionless parameter which is dependent upon the radius of the incoming beam, the desired spot shape, the focal length of the lens and the wavelength of the input beam. This dimensionless parameter can also be used to evaluate the quality of a system. In order to control the radius of the incoming beam, optics such as a telescope can be employed. The size of the target spot and the focal length can be altered by exchanging the transform lens, but the dimensionless parameter will remain the same. The quality of the system, and hence the value of the dimensionless parameter, can be altered by exchanging the phase element. The dimensionless parameter provides design guidance, system evaluation, and indication as to how to improve a given system.
Gaussian beam profile shaping apparatus, method therefore and evaluation thereof
Dickey, F.M.; Holswade, S.C.; Romero, L.A.
1999-01-26
A method and apparatus maps a Gaussian beam into a beam with a uniform irradiance profile by exploiting the Fourier transform properties of lenses. A phase element imparts a design phase onto an input beam and the output optical field from a lens is then the Fourier transform of the input beam and the phase function from the phase element. The phase element is selected in accordance with a dimensionless parameter which is dependent upon the radius of the incoming beam, the desired spot shape, the focal length of the lens and the wavelength of the input beam. This dimensionless parameter can also be used to evaluate the quality of a system. In order to control the radius of the incoming beam, optics such as a telescope can be employed. The size of the target spot and the focal length can be altered by exchanging the transform lens, but the dimensionless parameter will remain the same. The quality of the system, and hence the value of the dimensionless parameter, can be altered by exchanging the phase element. The dimensionless parameter provides design guidance, system evaluation, and indication as to how to improve a given system. 27 figs.
NASA Astrophysics Data System (ADS)
Naik, Deepak kumar; Maity, K. P.
2018-03-01
Plasma arc cutting (PAC) is a high temperature thermal cutting process employed for the cutting of extensively high strength material which are difficult to cut through any other manufacturing process. This process involves high energized plasma arc to cut any conducting material with better dimensional accuracy in lesser time. This research work presents the effect of process parameter on to the dimensional accuracy of PAC process. The input process parameters were selected as arc voltage, standoff distance and cutting speed. A rectangular plate of 304L stainless steel of 10 mm thickness was taken for the experiment as a workpiece. Stainless steel is very extensively used material in manufacturing industries. Linear dimension were measured following Taguchi’s L16 orthogonal array design approach. Three levels were selected to conduct the experiment for each of the process parameter. In all experiments, clockwise cut direction was followed. The result obtained thorough measurement is further analyzed. Analysis of variance (ANOVA) and Analysis of means (ANOM) were performed to evaluate the effect of each process parameter. ANOVA analysis reveals the effect of input process parameter upon leaner dimension in X axis. The results of the work shows that the optimal setting of process parameter values for the leaner dimension on the X axis. The result of the investigations clearly show that the specific range of input process parameter achieved the improved machinability.
Ramdani, Sofiane; Bonnet, Vincent; Tallon, Guillaume; Lagarde, Julien; Bernard, Pierre Louis; Blain, Hubert
2016-08-01
Entropy measures are often used to quantify the regularity of postural sway time series. Recent methodological developments provided both multivariate and multiscale approaches allowing the extraction of complexity features from physiological signals; see "Dynamical complexity of human responses: A multivariate data-adaptive framework," in Bulletin of Polish Academy of Science and Technology, vol. 60, p. 433, 2012. The resulting entropy measures are good candidates for the analysis of bivariate postural sway signals exhibiting nonstationarity and multiscale properties. These methods are dependant on several input parameters such as embedding parameters. Using two data sets collected from institutionalized frail older adults, we numerically investigate the behavior of a recent multivariate and multiscale entropy estimator; see "Multivariate multiscale entropy: A tool for complexity analysis of multichannel data," Physics Review E, vol. 84, p. 061918, 2011. We propose criteria for the selection of the input parameters. Using these optimal parameters, we statistically compare the multivariate and multiscale entropy values of postural sway data of non-faller subjects to those of fallers. These two groups are discriminated by the resulting measures over multiple time scales. We also demonstrate that the typical parameter settings proposed in the literature lead to entropy measures that do not distinguish the two groups. This last result confirms the importance of the selection of appropriate input parameters.
Adaptive template generation for amyloid PET using a deep learning approach.
Kang, Seung Kwan; Seo, Seongho; Shin, Seong A; Byun, Min Soo; Lee, Dong Young; Kim, Yu Kyeong; Lee, Dong Soo; Lee, Jae Sung
2018-05-11
Accurate spatial normalization (SN) of amyloid positron emission tomography (PET) images for Alzheimer's disease assessment without coregistered anatomical magnetic resonance imaging (MRI) of the same individual is technically challenging. In this study, we applied deep neural networks to generate individually adaptive PET templates for robust and accurate SN of amyloid PET without using matched 3D MR images. Using 681 pairs of simultaneously acquired 11 C-PIB PET and T1-weighted 3D MRI scans of AD, MCI, and cognitively normal subjects, we trained and tested two deep neural networks [convolutional auto-encoder (CAE) and generative adversarial network (GAN)] that produce adaptive best PET templates. More specifically, the networks were trained using 685,100 pieces of augmented data generated by rotating 527 randomly selected datasets and validated using 154 datasets. The input to the supervised neural networks was the 3D PET volume in native space and the label was the spatially normalized 3D PET image using the transformation parameters obtained from MRI-based SN. The proposed deep learning approach significantly enhanced the quantitative accuracy of MRI-less amyloid PET assessment by reducing the SN error observed when an average amyloid PET template is used. Given an input image, the trained deep neural networks rapidly provide individually adaptive 3D PET templates without any discontinuity between the slices (in 0.02 s). As the proposed method does not require 3D MRI for the SN of PET images, it has great potential for use in routine analysis of amyloid PET images in clinical practice and research. © 2018 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pal, Pinaki; Probst, Daniel; Pei, Yuanjiang
Fuels in the gasoline auto-ignition range (Research Octane Number (RON) > 60) have been demonstrated to be effective alternatives to diesel fuel in compression ignition engines. Such fuels allow more time for mixing with oxygen before combustion starts, owing to longer ignition delay. Moreover, by controlling fuel injection timing, it can be ensured that the in-cylinder mixture is “premixed enough” before combustion occurs to prevent soot formation while remaining “sufficiently inhomogeneous” in order to avoid excessive heat release rates. Gasoline compression ignition (GCI) has the potential to offer diesel-like efficiency at a lower cost and can be achieved with fuelsmore » such as low-octane straight run gasoline which require significantly less processing in the refinery compared to today’s fuels. To aid the design and optimization of a compression ignition (CI) combustion system using such fuels, a global sensitivity analysis (GSA) was conducted to understand the relative influence of various design parameters on efficiency, emissions and heat release rate. The design parameters included injection strategies, exhaust gas recirculation (EGR) fraction, temperature and pressure at intake valve closure and injector configuration. These were varied simultaneously to achieve various targets of ignition timing, combustion phasing, overall burn duration, emissions, fuel consumption, peak cylinder pressure and maximum pressure rise rate. The baseline case was a three-dimensional closed-cycle computational fluid dynamics (CFD) simulation with a sector mesh at medium load conditions. Eleven design parameters were considered and ranges of variation were prescribed to each of these. These input variables were perturbed in their respective ranges using the Monte Carlo (MC) method to generate a set of 256 CFD simulations and the targets were calculated from the simulation results. GSA was then applied as a screening tool to identify the input parameters having the most significant impact on each target. The results were further assessed by investigating the impact of individual parameter variations on the targets. Overall, it was demonstrated that GSA can be an effective tool in understanding parameters sensitive to a low temperature combustion concept with novel fuels.« less
Modeling Input Errors to Improve Uncertainty Estimates for Sediment Transport Model Predictions
NASA Astrophysics Data System (ADS)
Jung, J. Y.; Niemann, J. D.; Greimann, B. P.
2016-12-01
Bayesian methods using Markov chain Monte Carlo algorithms have recently been applied to sediment transport models to assess the uncertainty in the model predictions due to the parameter values. Unfortunately, the existing approaches can only attribute overall uncertainty to the parameters. This limitation is critical because no model can produce accurate forecasts if forced with inaccurate input data, even if the model is well founded in physical theory. In this research, an existing Bayesian method is modified to consider the potential errors in input data during the uncertainty evaluation process. The input error is modeled using Gaussian distributions, and the means and standard deviations are treated as uncertain parameters. The proposed approach is tested by coupling it to the Sedimentation and River Hydraulics - One Dimension (SRH-1D) model and simulating a 23-km reach of the Tachia River in Taiwan. The Wu equation in SRH-1D is used for computing the transport capacity for a bed material load of non-cohesive material. Three types of input data are considered uncertain: (1) the input flowrate at the upstream boundary, (2) the water surface elevation at the downstream boundary, and (3) the water surface elevation at a hydraulic structure in the middle of the reach. The benefits of modeling the input errors in the uncertainty analysis are evaluated by comparing the accuracy of the most likely forecast and the coverage of the observed data by the credible intervals to those of the existing method. The results indicate that the internal boundary condition has the largest uncertainty among those considered. Overall, the uncertainty estimates from the new method are notably different from those of the existing method for both the calibration and forecast periods.
Pouplin, Samuel; Roche, Nicolas; Antoine, Jean-Yves; Vaugier, Isabelle; Pottier, Sandra; Figere, Marjorie; Bensmail, Djamel
2017-06-01
To determine whether activation of the frequency of use and automatic learning parameters of word prediction software has an impact on text input speed. Forty-five participants with cervical spinal cord injury between C4 and C8 Asia A or B accepted to participate to this study. Participants were separated in two groups: a high lesion group for participants with lesion level is at or above C5 Asia AIS A or B and a low lesion group for participants with lesion is between C6 and C8 Asia AIS A or B. A single evaluation session was carried out for each participant. Text input speed was evaluated during three copying tasks: • without word prediction software (WITHOUT condition) • with automatic learning of words and frequency of use deactivated (NOT_ACTIV condition) • with automatic learning of words and frequency of use activated (ACTIV condition) Results: Text input speed was significantly higher in the WITHOUT than the NOT_ACTIV (p< 0.001) or ACTIV conditions (p = 0.02) for participants with low lesions. Text input speed was significantly higher in the ACTIV than in the NOT_ACTIV (p = 0.002) or WITHOUT (p < 0.001) conditions for participants with high lesions. Use of word prediction software with the activation of frequency of use and automatic learning increased text input speed in participants with high-level tetraplegia. For participants with low-level tetraplegia, the use of word prediction software with frequency of use and automatic learning activated only decreased the number of errors. Implications in rehabilitation Access to technology can be difficult for persons with disabilities such as cervical spinal cord injury (SCI). Several methods have been developed to increase text input speed such as word prediction software.This study show that parameter of word prediction software (frequency of use) affected text input speed in persons with cervical SCI and differed according to the level of the lesion. • For persons with high-level lesion, our results suggest that this parameter must be activated so that text input speed is increased. • For persons with low lesion group, this parameter must be activated so that the numbers of errors are decreased. • In all cases, the activation of the parameter of frequency of use is essential in order to improve the efficiency of the word prediction software. • Health-related professionals should use these results in their clinical practice for better results and therefore better patients 'satisfaction.
Real-time Ensemble Forecasting of Coronal Mass Ejections using the WSA-ENLIL+Cone Model
NASA Astrophysics Data System (ADS)
Mays, M. L.; Taktakishvili, A.; Pulkkinen, A. A.; MacNeice, P. J.; Rastaetter, L.; Kuznetsova, M. M.; Odstrcil, D.
2013-12-01
Ensemble forecasting of coronal mass ejections (CMEs) provides significant information in that it provides an estimation of the spread or uncertainty in CME arrival time predictions due to uncertainties in determining CME input parameters. Ensemble modeling of CME propagation in the heliosphere is performed by forecasters at the Space Weather Research Center (SWRC) using the WSA-ENLIL cone model available at the Community Coordinated Modeling Center (CCMC). SWRC is an in-house research-based operations team at the CCMC which provides interplanetary space weather forecasting for NASA's robotic missions and performs real-time model validation. A distribution of n (routinely n=48) CME input parameters are generated using the CCMC Stereo CME Analysis Tool (StereoCAT) which employs geometrical triangulation techniques. These input parameters are used to perform n different simulations yielding an ensemble of solar wind parameters at various locations of interest (satellites or planets), including a probability distribution of CME shock arrival times (for hits), and geomagnetic storm strength (for Earth-directed hits). Ensemble simulations have been performed experimentally in real-time at the CCMC since January 2013. We present the results of ensemble simulations for a total of 15 CME events, 10 of which were performed in real-time. The observed CME arrival was within the range of ensemble arrival time predictions for 5 out of the 12 ensemble runs containing hits. The average arrival time prediction was computed for each of the twelve ensembles predicting hits and using the actual arrival time an average absolute error of 8.20 hours was found for all twelve ensembles, which is comparable to current forecasting errors. Some considerations for the accuracy of ensemble CME arrival time predictions include the importance of the initial distribution of CME input parameters, particularly the mean and spread. When the observed arrivals are not within the predicted range, this still allows the ruling out of prediction errors caused by tested CME input parameters. Prediction errors can also arise from ambient model parameters such as the accuracy of the solar wind background, and other limitations. Additionally the ensemble modeling setup was used to complete a parametric event case study of the sensitivity of the CME arrival time prediction to free parameters for ambient solar wind model and CME.
Toward Scientific Numerical Modeling
NASA Technical Reports Server (NTRS)
Kleb, Bil
2007-01-01
Ultimately, scientific numerical models need quantified output uncertainties so that modeling can evolve to better match reality. Documenting model input uncertainties and verifying that numerical models are translated into code correctly, however, are necessary first steps toward that goal. Without known input parameter uncertainties, model sensitivities are all one can determine, and without code verification, output uncertainties are simply not reliable. To address these two shortcomings, two proposals are offered: (1) an unobtrusive mechanism to document input parameter uncertainties in situ and (2) an adaptation of the Scientific Method to numerical model development and deployment. Because these two steps require changes in the computational simulation community to bear fruit, they are presented in terms of the Beckhard-Harris-Gleicher change model.
Reservoir computing with a single time-delay autonomous Boolean node
NASA Astrophysics Data System (ADS)
Haynes, Nicholas D.; Soriano, Miguel C.; Rosin, David P.; Fischer, Ingo; Gauthier, Daniel J.
2015-02-01
We demonstrate reservoir computing with a physical system using a single autonomous Boolean logic element with time-delay feedback. The system generates a chaotic transient with a window of consistency lasting between 30 and 300 ns, which we show is sufficient for reservoir computing. We then characterize the dependence of computational performance on system parameters to find the best operating point of the reservoir. When the best parameters are chosen, the reservoir is able to classify short input patterns with performance that decreases over time. In particular, we show that four distinct input patterns can be classified for 70 ns, even though the inputs are only provided to the reservoir for 7.5 ns.
Evaluation of Clear Sky Models for Satellite-Based Irradiance Estimates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Manajit; Gotseff, Peter
2013-12-01
This report describes an intercomparison of three popular broadband clear sky solar irradiance model results with measured data, as well as satellite-based model clear sky results compared to measured clear sky data. The authors conclude that one of the popular clear sky models (the Bird clear sky model developed by Richard Bird and Roland Hulstrom) could serve as a more accurate replacement for current satellite-model clear sky estimations. Additionally, the analysis of the model results with respect to model input parameters indicates that rather than climatological, annual, or monthly mean input data, higher-time-resolution input parameters improve the general clear skymore » model performance.« less
Computer program for single input-output, single-loop feedback systems
NASA Technical Reports Server (NTRS)
1976-01-01
Additional work is reported on a completely automatic computer program for the design of single input/output, single loop feedback systems with parameter uncertainly, to satisfy time domain bounds on the system response to step commands and disturbances. The inputs to the program are basically the specified time-domain response bounds, the form of the constrained plant transfer function and the ranges of the uncertain parameters of the plant. The program output consists of the transfer functions of the two free compensation networks, in the form of the coefficients of the numerator and denominator polynomials, and the data on the prescribed bounds and the extremes actually obtained for the system response to commands and disturbances.
A Predictor Analysis Framework for Surface Radiation Budget Reprocessing Using Design of Experiments
NASA Astrophysics Data System (ADS)
Quigley, Patricia Allison
Earth's Radiation Budget (ERB) is an accounting of all incoming energy from the sun and outgoing energy reflected and radiated to space by earth's surface and atmosphere. The National Aeronautics and Space Administration (NASA)/Global Energy and Water Cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project produces and archives long-term datasets representative of this energy exchange system on a global scale. The data are comprised of the longwave and shortwave radiative components of the system and is algorithmically derived from satellite and atmospheric assimilation products, and acquired atmospheric data. It is stored as 3-hourly, daily, monthly/3-hourly, and monthly averages of 1° x 1° grid cells. Input parameters used by the algorithms are a key source of variability in the resulting output data sets. Sensitivity studies have been conducted to estimate the effects this variability has on the output data sets using linear techniques. This entails varying one input parameter at a time while keeping all others constant or by increasing all input parameters by equal random percentages, in effect changing input values for every cell for every three hour period and for every day in each month. This equates to almost 11 million independent changes without ever taking into consideration the interactions or dependencies among the input parameters. A more comprehensive method is proposed here for the evaluating the shortwave algorithm to identify both the input parameters and parameter interactions that most significantly affect the output data. This research utilized designed experiments that systematically and simultaneously varied all of the input parameters of the shortwave algorithm. A D-Optimal design of experiments (DOE) was chosen to accommodate the 14 types of atmospheric properties computed by the algorithm and to reduce the number of trials required by a full factorial study from millions to 128. A modified version of the algorithm was made available for testing such that global calculations of the algorithm were tuned to accept information for a single temporal and spatial point and for one month of averaged data. The points were from each of four atmospherically distinct regions to include the Amazon Rainforest, Sahara Desert, Indian Ocean and Mt. Everest. The same design was used for all of the regions. Least squares multiple regression analysis of the results of the modified algorithm identified those parameters and parameter interactions that most significantly affected the output products. It was found that Cosine solar zenith angle was the strongest influence on the output data in all four regions. The interaction of Cosine Solar Zenith Angle and Cloud Fraction had the strongest influence on the output data in the Amazon, Sahara Desert and Mt. Everest Regions, while the interaction of Cloud Fraction and Cloudy Shortwave Radiance most significantly affected output data in the Indian Ocean region. Second order response models were built using the resulting regression coefficients. A Monte Carlo simulation of each model extended the probability distribution beyond the initial design trials to quantify variability in the modeled output data.
Support vector machines-based modelling of seismic liquefaction potential
NASA Astrophysics Data System (ADS)
Pal, Mahesh
2006-08-01
This paper investigates the potential of support vector machines (SVM)-based classification approach to assess the liquefaction potential from actual standard penetration test (SPT) and cone penetration test (CPT) field data. SVMs are based on statistical learning theory and found to work well in comparison to neural networks in several other applications. Both CPT and SPT field data sets is used with SVMs for predicting the occurrence and non-occurrence of liquefaction based on different input parameter combination. With SPT and CPT test data sets, highest accuracy of 96 and 97%, respectively, was achieved with SVMs. This suggests that SVMs can effectively be used to model the complex relationship between different soil parameter and the liquefaction potential. Several other combinations of input variable were used to assess the influence of different input parameters on liquefaction potential. Proposed approach suggest that neither normalized cone resistance value with CPT data nor the calculation of standardized SPT value is required with SPT data. Further, SVMs required few user-defined parameters and provide better performance in comparison to neural network approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xuesong; Liang, Faming; Yu, Beibei
2011-11-09
Estimating uncertainty of hydrologic forecasting is valuable to water resources and other relevant decision making processes. Recently, Bayesian Neural Networks (BNNs) have been proved powerful tools for quantifying uncertainty of streamflow forecasting. In this study, we propose a Markov Chain Monte Carlo (MCMC) framework to incorporate the uncertainties associated with input, model structure, and parameter into BNNs. This framework allows the structure of the neural networks to change by removing or adding connections between neurons and enables scaling of input data by using rainfall multipliers. The results show that the new BNNs outperform the BNNs that only consider uncertainties associatedmore » with parameter and model structure. Critical evaluation of posterior distribution of neural network weights, number of effective connections, rainfall multipliers, and hyper-parameters show that the assumptions held in our BNNs are not well supported. Further understanding of characteristics of different uncertainty sources and including output error into the MCMC framework are expected to enhance the application of neural networks for uncertainty analysis of hydrologic forecasting.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, Zongrui; Stocks, George Malcolm
The sensitivity in predicting glide behaviour of dislocations has been a long-standing problem in the framework of the Peierls-Nabarro model. The predictions of both the model itself and the analytic formulas based on it are too sensitive to the input parameters. In order to reveal the origin of this important problem in materials science, a new empirical-parameter-free formulation is proposed in the same framework. Unlike previous formulations, it includes only a limited small set of parameters all of which can be determined by convergence tests. Under special conditions the new formulation is reduced to its classic counterpart. In the lightmore » of this formulation, new relationships between Peierls stresses and the input parameters are identified, where the sensitivity is greatly reduced or even removed.« less
System and Method for Providing Model-Based Alerting of Spatial Disorientation to a Pilot
NASA Technical Reports Server (NTRS)
Johnson, Steve (Inventor); Conner, Kevin J (Inventor); Mathan, Santosh (Inventor)
2015-01-01
A system and method monitor aircraft state parameters, for example, aircraft movement and flight parameters, applies those inputs to a spatial disorientation model, and makes a prediction of when pilot may become spatially disoriented. Once the system predicts a potentially disoriented pilot, the sensitivity for alerting the pilot to conditions exceeding a threshold can be increased and allow for an earlier alert to mitigate the possibility of an incorrect control input.
Particle parameter analyzing system. [x-y plotter circuits and display
NASA Technical Reports Server (NTRS)
Hansen, D. O.; Roy, N. L. (Inventor)
1969-01-01
An X-Y plotter circuit apparatus is described which displays an input pulse representing particle parameter information, that would ordinarily appear on the screen of an oscilloscope as a rectangular pulse, as a single dot positioned on the screen where the upper right hand corner of the input pulse would have appeared. If another event occurs, and it is desired to display this event, the apparatus is provided to replace the dot with a short horizontal line.
Chasin, Marshall; Russo, Frank A.
2004-01-01
Historically, the primary concern for hearing aid design and fitting is optimization for speech inputs. However, increasingly other types of inputs are being investigated and this is certainly the case for music. Whether the hearing aid wearer is a musician or merely someone who likes to listen to music, the electronic and electro-acoustic parameters described can be optimized for music as well as for speech. That is, a hearing aid optimally set for music can be optimally set for speech, even though the converse is not necessarily true. Similarities and differences between speech and music as inputs to a hearing aid are described. Many of these lead to the specification of a set of optimal electro-acoustic characteristics. Parameters such as the peak input-limiting level, compression issues—both compression ratio and knee-points—and number of channels all can deleteriously affect music perception through hearing aids. In other cases, it is not clear how to set other parameters such as noise reduction and feedback control mechanisms. Regardless of the existence of a “music program,” unless the various electro-acoustic parameters are available in a hearing aid, music fidelity will almost always be less than optimal. There are many unanswered questions and hypotheses in this area. Future research by engineers, researchers, clinicians, and musicians will aid in the clarification of these questions and their ultimate solutions. PMID:15497032
NASA Astrophysics Data System (ADS)
Yoon, Sangpil; Wang, Yingxiao; Shung, K. K.
2016-03-01
Acoustic-transfection technique has been developed for the first time. We have developed acoustic-transfection by integrating a high frequency ultrasonic transducer and a fluorescence microscope. High frequency ultrasound with the center frequency over 150 MHz can focus acoustic sound field into a confined area with the diameter of 10 μm or less. This focusing capability was used to perturb lipid bilayer of cell membrane to induce intracellular delivery of macromolecules. Single cell level imaging was performed to investigate the behavior of a targeted single-cell after acoustic-transfection. FRET-based Ca2+ biosensor was used to monitor intracellular concentration of Ca2+ after acoustic-transfection and the fluorescence intensity of propidium iodide (PI) was used to observe influx of PI molecules. We changed peak-to-peak voltages and pulse duration to optimize the input parameters of an acoustic pulse. Input parameters that can induce strong perturbations on cell membrane were found and size dependent intracellular delivery of macromolecules was explored. To increase the amount of delivered molecules by acoustic-transfection, we applied several acoustic pulses and the intensity of PI fluorescence increased step wise. Finally, optimized input parameters of acoustic-transfection system were used to deliver pMax-E2F1 plasmid and GFP expression 24 hours after the intracellular delivery was confirmed using HeLa cells.
Atmospheric Science Data Center
2017-01-13
... grid. Model inputs of cloud amounts and other atmospheric state parameters are also available in some of the data sets. Primary inputs to ... Analysis (SMOBA), an assimilation product from NOAA's Climate Prediction Center. SRB products are reformatted for the use of ...
Non-intrusive parameter identification procedure user's guide
NASA Technical Reports Server (NTRS)
Hanson, G. D.; Jewell, W. F.
1983-01-01
Written in standard FORTRAN, NAS is capable of identifying linear as well as nonlinear relations between input and output parameters; the only restriction is that the input/output relation be linear with respect to the unknown coefficients of the estimation equations. The output of the identification algorithm can be specified to be in either the time domain (i.e., the estimation equation coefficients) or in the frequency domain (i.e., a frequency response of the estimation equation). The frame length ("window") over which the identification procedure is to take place can be specified to be any portion of the input time history, thereby allowing the freedom to start and stop the identification procedure within a time history. There also is an option which allows a sliding window, which gives a moving average over the time history. The NAS software also includes the ability to identify several assumed solutions simultaneously for the same or different input data.
Lutchen, K R
1990-08-01
A sensitivity analysis based on weighted least-squares regression is presented to evaluate alternative methods for fitting lumped-parameter models to respiratory impedance data. The goal is to maintain parameter accuracy simultaneously with practical experiment design. The analysis focuses on predicting parameter uncertainties using a linearized approximation for joint confidence regions. Applications are with four-element parallel and viscoelastic models for 0.125- to 4-Hz data and a six-element model with separate tissue and airway properties for input and transfer impedance data from 2-64 Hz. The criterion function form was evaluated by comparing parameter uncertainties when data are fit as magnitude and phase, dynamic resistance and compliance, or real and imaginary parts of input impedance. The proper choice of weighting can make all three criterion variables comparable. For the six-element model, parameter uncertainties were predicted when both input impedance and transfer impedance are acquired and fit simultaneously. A fit to both data sets from 4 to 64 Hz could reduce parameter estimate uncertainties considerably from those achievable by fitting either alone. For the four-element models, use of an independent, but noisy, measure of static compliance was assessed as a constraint on model parameters. This may allow acceptable parameter uncertainties for a minimum frequency of 0.275-0.375 Hz rather than 0.125 Hz. This reduces data acquisition requirements from a 16- to a 5.33- to 8-s breath holding period. These results are approximations, and the impact of using the linearized approximation for the confidence regions is discussed.
Noise-immune multisensor transduction of speech
NASA Astrophysics Data System (ADS)
Viswanathan, Vishu R.; Henry, Claudia M.; Derr, Alan G.; Roucos, Salim; Schwartz, Richard M.
1986-08-01
Two types of configurations of multiple sensors were developed, tested and evaluated in speech recognition application for robust performance in high levels of acoustic background noise: One type combines the individual sensor signals to provide a single speech signal input, and the other provides several parallel inputs. For single-input systems, several configurations of multiple sensors were developed and tested. Results from formal speech intelligibility and quality tests in simulated fighter aircraft cockpit noise show that each of the two-sensor configurations tested outperforms the constituent individual sensors in high noise. Also presented are results comparing the performance of two-sensor configurations and individual sensors in speaker-dependent, isolated-word speech recognition tests performed using a commercial recognizer (Verbex 4000) in simulated fighter aircraft cockpit noise.
Artificial neural network model for ozone concentration estimation and Monte Carlo analysis
NASA Astrophysics Data System (ADS)
Gao, Meng; Yin, Liting; Ning, Jicai
2018-07-01
Air pollution in urban atmosphere directly affects public-health; therefore, it is very essential to predict air pollutant concentrations. Air quality is a complex function of emissions, meteorology and topography, and artificial neural networks (ANNs) provide a sound framework for relating these variables. In this study, we investigated the feasibility of using ANN model with meteorological parameters as input variables to predict ozone concentration in the urban area of Jinan, a metropolis in Northern China. We firstly found that the architecture of network of neurons had little effect on the predicting capability of ANN model. A parsimonious ANN model with 6 routinely monitored meteorological parameters and one temporal covariate (the category of day, i.e. working day, legal holiday and regular weekend) as input variables was identified, where the 7 input variables were selected following the forward selection procedure. Compared with the benchmarking ANN model with 9 meteorological and photochemical parameters as input variables, the predicting capability of the parsimonious ANN model was acceptable. Its predicting capability was also verified in term of warming success ratio during the pollution episodes. Finally, uncertainty and sensitivity analysis were also performed based on Monte Carlo simulations (MCS). It was concluded that the ANN could properly predict the ambient ozone level. Maximum temperature, atmospheric pressure, sunshine duration and maximum wind speed were identified as the predominate input variables significantly influencing the prediction of ambient ozone concentrations.
NASA Astrophysics Data System (ADS)
Ligmann-Zielinska, A.; Kramer, D. B.; Spence Cheruvelil, K.; Soranno, P.
2012-12-01
Socio-ecological systems are dynamic and nonlinear. To account for this complexity, we employ agent-based models (ABMs) to study macro-scale phenomena resulting from micro-scale interactions among system components. Because ABMs typically have many parameters, it is challenging to identify which parameters contribute to the emerging macro-scale patterns. In this paper, we address the following question: What is the extent of participation in agricultural land conservation programs given heterogeneous landscape, economic, social, and individual decision making criteria in complex lakesheds? To answer this question, we: [1] built an ABM for our model system; [2] simulated land use change resulting from agent decision making, [3] estimated the uncertainty of the model output, decomposed it and apportioned it to each of the parameters in the model. Our model system is a freshwater socio-ecological system - that of farmland and lake water quality within a region containing a large number of lakes and high proportions of agricultural lands. Our study focuses on examining how agricultural land conversion from active to fallow reduces freshwater nutrient loading and improves water quality. Consequently, our ABM is composed of farmer agents who make decisions related to participation in a government-sponsored Conservation Reserve Program (CRP) managed by the Farm Service Agency (FSA). We also include an FSA agent, who selects enrollment offers made by farmers and announces the signup results leading to land use change. The model is executed in a Monte Carlo simulation framework to generate a distribution of maps of fallow lands that are used for calculating nutrient loading to lakes. What follows is a variance-based sensitivity analysis of the results. We compute sensitivity indices for individual parameters and their combinations, allowing for identification of the most influential as well as the insignificant inputs. In the case study, we observe that farmland conservation is first and foremost driven by the FSA signup choices. Environmental criteria used in FSA offer selection play a secondary role in farmland-to-fallow-land conversion. Farmer decision making is mainly influenced by the willingness to reduce the potential annual rental payments. As the case study demonstrates, our approach leads to ABM simplification without the loss of outcome variability. It also shows how to represent the magnitude of ABM complexity and isolate the effects of the interconnected explanatory variables on the simulated emergent phenomena. More importantly, the results of our research indicate that some of the parameters exert influence on model outcomes only if analyzed in combination with other parameters. Without evaluating the interaction effects among inputs, we risk losing important functional relationships among ABM components and, consequently, we potentially reduce its explanatory power.
NASA Astrophysics Data System (ADS)
Han, Feng; Zheng, Yi
2018-06-01
Significant Input uncertainty is a major source of error in watershed water quality (WWQ) modeling. It remains challenging to address the input uncertainty in a rigorous Bayesian framework. This study develops the Bayesian Analysis of Input and Parametric Uncertainties (BAIPU), an approach for the joint analysis of input and parametric uncertainties through a tight coupling of Markov Chain Monte Carlo (MCMC) analysis and Bayesian Model Averaging (BMA). The formal likelihood function for this approach is derived considering a lag-1 autocorrelated, heteroscedastic, and Skew Exponential Power (SEP) distributed error model. A series of numerical experiments were performed based on a synthetic nitrate pollution case and on a real study case in the Newport Bay Watershed, California. The Soil and Water Assessment Tool (SWAT) and Differential Evolution Adaptive Metropolis (DREAM(ZS)) were used as the representative WWQ model and MCMC algorithm, respectively. The major findings include the following: (1) the BAIPU can be implemented and used to appropriately identify the uncertain parameters and characterize the predictive uncertainty; (2) the compensation effect between the input and parametric uncertainties can seriously mislead the modeling based management decisions, if the input uncertainty is not explicitly accounted for; (3) the BAIPU accounts for the interaction between the input and parametric uncertainties and therefore provides more accurate calibration and uncertainty results than a sequential analysis of the uncertainties; and (4) the BAIPU quantifies the credibility of different input assumptions on a statistical basis and can be implemented as an effective inverse modeling approach to the joint inference of parameters and inputs.
Significance of Input Correlations in Striatal Function
Yim, Man Yi; Aertsen, Ad; Kumar, Arvind
2011-01-01
The striatum is the main input station of the basal ganglia and is strongly associated with motor and cognitive functions. Anatomical evidence suggests that individual striatal neurons are unlikely to share their inputs from the cortex. Using a biologically realistic large-scale network model of striatum and cortico-striatal projections, we provide a functional interpretation of the special anatomical structure of these projections. Specifically, we show that weak pairwise correlation within the pool of inputs to individual striatal neurons enhances the saliency of signal representation in the striatum. By contrast, correlations among the input pools of different striatal neurons render the signal representation less distinct from background activity. We suggest that for the network architecture of the striatum, there is a preferred cortico-striatal input configuration for optimal signal representation. It is further enhanced by the low-rate asynchronous background activity in striatum, supported by the balance between feedforward and feedback inhibitions in the striatal network. Thus, an appropriate combination of rates and correlations in the striatal input sets the stage for action selection presumably implemented in the basal ganglia. PMID:22125480
Evaluation of FEM engineering parameters from insitu tests
DOT National Transportation Integrated Search
2001-12-01
The study looked critically at insitu test methods (SPT, CPT, DMT, and PMT) as a means for developing finite element constitutive model input parameters. The first phase of the study examined insitu test derived parameters with laboratory triaxial te...
Slimano, Florian; Djerada, Zoubir; Bouchene, Salim; Van Gulick, Laurence; Brassart-Pasco, Sylvie; Dukic, Sylvain
2017-07-15
The YSNSG peptide is a synthetic peptide targeting α v β 3 integrin. This peptide exhibits promising activity in vitro and in vivo against melanoma. To determine pharmacokinetic parameters and predictive active doses in the central nervous system (CNS) and subcutaneous tissue (SC), we conducted microdialysis coupled with pharmacokinetic modeling and Monte Carlo simulation. After a recovery period of surgical procedures, a microdialysis probe was inserted in the caudate and in subcutaneous tissue. Plasma samples and dialysates collected 5h after YSNSG intravenous administration (10mg/kg) were analyzed by UPLC-MS/MS. A nonlinear mixed-effect modeling approach implemented in Monolix® 2016R1 was performed. Model selection and evaluation were based on the usual diagnostic plot, precision and information criteria. The primary plasma and tissue pharmacokinetic parameters were comparable with those of other integrin antagonists, such as cilengitide or ATN-161. Tissue/plasma and brain/plasma area under the curve (AUC) ratio were 66.2±21.6% and 3.6±4.7%, respectively. Two models of 2-compartments with an additional microdialysis compartment, parameterized as rate constants (k for elimination, k12/k21 and k13/k31 for distribution) and volumes (central V1 and peripheral microdialysis compartment V3) with zero-order input were selected to describe the dialysate concentrations in CNS and SC. The inter-individual variability (IIV) was described by exponential terms, and residual variability was described by a combined additive and proportional error model. Individual AUC (plasma and tissues) values were derived for each animal using the Empirical-Bayes-Estimates of the individual parameters. The regimens needed to achieve an in vitro predetermined target concentration in tissues were studied by Monte Carlo simulations using Monolix® 2016R1. YSNSG pharmacokinetic parameters show promising results in terms of subcutaneous disposition. Further investigations into such processes as encapsulation and intratumoral disposition are currently being conducted. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hao, Wenrui; Lu, Zhenzhou; Li, Luyi
2013-05-01
In order to explore the contributions by correlated input variables to the variance of the output, a novel interpretation framework of importance measure indices is proposed for a model with correlated inputs, which includes the indices of the total correlated contribution and the total uncorrelated contribution. The proposed indices accurately describe the connotations of the contributions by the correlated input to the variance of output, and they can be viewed as the complement and correction of the interpretation about the contributions by the correlated inputs presented in "Estimation of global sensitivity indices for models with dependent variables, Computer Physics Communications, 183 (2012) 937-946". Both of them contain the independent contribution by an individual input. Taking the general form of quadratic polynomial as an illustration, the total correlated contribution and the independent contribution by an individual input are derived analytically, from which the components and their origins of both contributions of correlated input can be clarified without any ambiguity. In the special case that no square term is included in the quadratic polynomial model, the total correlated contribution by the input can be further decomposed into the variance contribution related to the correlation of the input with other inputs and the independent contribution by the input itself, and the total uncorrelated contribution can be further decomposed into the independent part by interaction between the input and others and the independent part by the input itself. Numerical examples are employed and their results demonstrate that the derived analytical expressions of the variance-based importance measure are correct, and the clarification of the correlated input contribution to model output by the analytical derivation is very important for expanding the theory and solutions of uncorrelated input to those of the correlated one.
A robust momentum management and attitude control system for the space station
NASA Technical Reports Server (NTRS)
Speyer, J. L.; Rhee, Ihnseok
1991-01-01
A game theoretic controller is synthesized for momentum management and attitude control of the Space Station in the presence of uncertainties in the moments of inertia. Full state information is assumed since attitude rates are assumed to be very assurately measured. By an input-output decomposition of the uncertainty in the system matrices, the parameter uncertainties in the dynamic system are represented as an unknown gain associated with an internal feedback loop (IFL). The input and output matrices associated with the IFL form directions through which the uncertain parameters affect system response. If the quadratic form of the IFL output augments the cost criterion, then enhanced parameter robustness is anticipated. By considering the input and the input disturbance from the IFL as two noncooperative players, a linear-quadratic differential game is constructed. The solution in the form of a linear controller is used for synthesis. Inclusion of the external disturbance torques results in a dynamic feedback controller which consists of conventional PID (proportional integral derivative) control and cyclic disturbance rejection filters. It is shown that the game theoretic design allows large variations in the inertias in directions of importance.
Enhancement of CFD validation exercise along the roof profile of a low-rise building
NASA Astrophysics Data System (ADS)
Deraman, S. N. C.; Majid, T. A.; Zaini, S. S.; Yahya, W. N. W.; Abdullah, J.; Ismail, M. A.
2018-04-01
The aim of this study is to enhance the validation of CFD exercise along the roof profile of a low-rise building. An isolated gabled-roof house having 26.6° roof pitch was simulated to obtain the pressure coefficient around the house. Validation of CFD analysis with experimental data requires many input parameters. This study performed CFD simulation based on the data from a previous study. Where the input parameters were not clearly stated, new input parameters were established from the open literatures. The numerical simulations were performed in FLUENT 14.0 by applying the Computational Fluid Dynamics (CFD) approach based on steady RANS equation together with RNG k-ɛ model. Hence, the result from CFD was analysed by using quantitative test (statistical analysis) and compared with CFD results from the previous study. The statistical analysis results from ANOVA test and error measure showed that the CFD results from the current study produced good agreement and exhibited the closest error compared to the previous study. All the input data used in this study can be extended to other types of CFD simulation involving wind flow over an isolated single storey house.
NASA Astrophysics Data System (ADS)
Korelin, Ivan A.; Porshnev, Sergey V.
2018-05-01
A model of the non-stationary queuing system (NQS) is described. The input of this model receives a flow of requests with input rate λ = λdet (t) + λrnd (t), where λdet (t) is a deterministic function depending on time; λrnd (t) is a random function. The parameters of functions λdet (t), λrnd (t) were identified on the basis of statistical information on visitor flows collected from various Russian football stadiums. The statistical modeling of NQS is carried out and the average statistical dependences are obtained: the length of the queue of requests waiting for service, the average wait time for the service, the number of visitors entered to the stadium on the time. It is shown that these dependencies can be characterized by the following parameters: the number of visitors who entered at the time of the match; time required to service all incoming visitors; the maximum value; the argument value when the studied dependence reaches its maximum value. The dependences of these parameters on the energy ratio of the deterministic and random component of the input rate are investigated.
On the fusion of tuning parameters of fuzzy rules and neural network
NASA Astrophysics Data System (ADS)
Mamuda, Mamman; Sathasivam, Saratha
2017-08-01
Learning fuzzy rule-based system with neural network can lead to a precise valuable empathy of several problems. Fuzzy logic offers a simple way to reach at a definite conclusion based upon its vague, ambiguous, imprecise, noisy or missing input information. Conventional learning algorithm for tuning parameters of fuzzy rules using training input-output data usually end in a weak firing state, this certainly powers the fuzzy rule and makes it insecure for a multiple-input fuzzy system. In this paper, we introduce a new learning algorithm for tuning the parameters of the fuzzy rules alongside with radial basis function neural network (RBFNN) in training input-output data based on the gradient descent method. By the new learning algorithm, the problem of weak firing using the conventional method was addressed. We illustrated the efficiency of our new learning algorithm by means of numerical examples. MATLAB R2014(a) software was used in simulating our result The result shows that the new learning method has the best advantage of training the fuzzy rules without tempering with the fuzzy rule table which allowed a membership function of the rule to be used more than one time in the fuzzy rule base.
NASA Technical Reports Server (NTRS)
Napolitano, Marcello R.
1996-01-01
This progress report presents the results of an investigation focused on parameter identification for the NASA F/A-18 HARV. This aircraft was used in the high alpha research program at the NASA Dryden Flight Research Center. In this study the longitudinal and lateral-directional stability derivatives are estimated from flight data using the Maximum Likelihood method coupled with a Newton-Raphson minimization technique. The objective is to estimate an aerodynamic model describing the aircraft dynamics over a range of angle of attack from 5 deg to 60 deg. The mathematical model is built using the traditional static and dynamic derivative buildup. Flight data used in this analysis were from a variety of maneuvers. The longitudinal maneuvers included large amplitude multiple doublets, optimal inputs, frequency sweeps, and pilot pitch stick inputs. The lateral-directional maneuvers consisted of large amplitude multiple doublets, optimal inputs and pilot stick and rudder inputs. The parameter estimation code pEst, developed at NASA Dryden, was used in this investigation. Results of the estimation process from alpha = 5 deg to alpha = 60 deg are presented and discussed.
NASA Astrophysics Data System (ADS)
Hussain, Kamal; Pratap Singh, Satya; Kumar Datta, Prasanta
2013-11-01
A numerical investigation is presented to show the dependence of patterning effect (PE) of an amplified signal in a bulk semiconductor optical amplifier (SOA) and an optical bandpass filter based amplifier on various input signal and filter parameters considering both the cases of including and excluding intraband effects in the SOA model. The simulation shows that the variation of PE with input energy has a characteristic nature which is similar for both the cases. However the variation of PE with pulse width is quite different for the two cases, PE being independent of the pulse width when intraband effects are neglected in the model. We find a simple relationship between the PE and the signal pulse width. Using a simple treatment we study the effect of the amplified spontaneous emission (ASE) on PE and find that the ASE has almost no effect on the PE in the range of energy considered here. The optimum filter parameters are determined to obtain an acceptable extinction ratio greater than 10 dB and a PE less than 1 dB for the amplified signal over a wide range of input signal energy and bit-rate.
Robust momentum management and attitude control system for the Space Station
NASA Technical Reports Server (NTRS)
Rhee, Ihnseok; Speyer, Jason L.
1992-01-01
A game theoretic controller is synthesized for momentum management and attitude control of the Space Station in the presence of uncertainties in the moments of inertia. Full state information is assumed since attitude rates are assumed to be very accurately measured. By an input-output decomposition of the uncertainty in the system matrices, the parameter uncertainties in the dynamic system are represented as an unknown gain associated with an internal feedback loop (IFL). The input and output matrices associated with the IFL form directions through which the uncertain parameters affect system response. If the quadratic form of the IFL output augments the cost criterion, then enhanced parameter robustness is anticipated. By considering the input and the input disturbance from the IFL as two noncooperative players, a linear-quadratic differential game is constructed. The solution in the form of a linear controller is used for synthesis. Inclusion of the external disturbance torques results in a dynamic feedback controller which consists of conventional PID (proportional integral derivative) control and cyclic disturbance rejection filters. It is shown that the game theoretic design allows large variations in the inertias in directions of importance.
Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex
Wilson, Daniel E.; Whitney, David E.; Scholl, Benjamin; Fitzpatrick, David
2016-01-01
The majority of neurons in primary visual cortex are tuned for stimulus orientation, but the factors that account for the range of orientation selectivities exhibited by cortical neurons remain unclear. To address this issue, we used in vivo 2-photon calcium imaging to characterize the orientation tuning and spatial arrangement of synaptic inputs to the dendritic spines of individual pyramidal neurons in layer 2/3 of ferret visual cortex. The summed synaptic input to individual neurons reliably predicted the neuron’s orientation preference, but did not account for differences in orientation selectivity among neurons. These differences reflected a robust input-output nonlinearity that could not be explained by spike threshold alone, and was strongly correlated with the spatial clustering of co-tuned synaptic inputs within the dendritic field. Dendritic branches with more co-tuned synaptic clusters exhibited greater rates of local dendritic calcium events supporting a prominent role for functional clustering of synaptic inputs in dendritic nonlinearities that shape orientation selectivity. PMID:27294510
Numerical investigation of the staged gasification of wet wood
NASA Astrophysics Data System (ADS)
Donskoi, I. G.; Kozlov, A. N.; Svishchev, D. A.; Shamanskii, V. A.
2017-04-01
Gasification of wooden biomass makes it possible to utilize forestry wastes and agricultural residues for generation of heat and power in isolated small-scale power systems. In spite of the availability of a huge amount of cheap biomass, the implementation of the gasification process is impeded by formation of tar products and poor thermal stability of the process. These factors reduce the competitiveness of gasification as compared with alternative technologies. The use of staged technologies enables certain disadvantages of conventional processes to be avoided. One of the previously proposed staged processes is investigated in this paper. For this purpose, mathematical models were developed for individual stages of the process, such as pyrolysis, pyrolysis gas combustion, and semicoke gasification. The effect of controlling parameters on the efficiency of fuel conversion into combustible gases is studied numerically using these models. For the controlling parameter are selected heat inputted into a pyrolysis reactor, the excess of oxidizer during gas combustion, and the wood moisture content. The process efficiency criterion is the gasification chemical efficiency accounting for the input of external heat (used for fuel drying and pyrolysis). The generated regime diagrams represent the gasification efficiency as a function of controlling parameters. Modeling results demonstrate that an increase in the fraction of heat supplied from an external source can result in an adequate efficiency of the wood gasification through the use of steam generated during drying. There are regions where it is feasible to perform incomplete combustion of the pyrolysis gas prior to the gasification. The calculated chemical efficiency of the staged gasification is as high as 80-85%, which is 10-20% higher that in conventional single-stage processes.
Between-User Reliability of Tier 1 Exposure Assessment Tools Used Under REACH.
Lamb, Judith; Galea, Karen S; Miller, Brian G; Hesse, Susanne; Van Tongeren, Martie
2017-10-01
When applying simple screening (Tier 1) tools to estimate exposure to chemicals in a given exposure situation under the Registration, Evaluation, Authorisation and restriction of CHemicals Regulation 2006 (REACH), users must select from several possible input parameters. Previous studies have suggested that results from exposure assessments using expert judgement and from the use of modelling tools can vary considerably between assessors. This study aimed to investigate the between-user reliability of Tier 1 tools. A remote-completion exercise and in person workshop were used to identify and evaluate tool parameters and factors such as user demographics that may be potentially associated with between-user variability. Participants (N = 146) generated dermal and inhalation exposure estimates (N = 4066) from specified workplace descriptions ('exposure situations') and Tier 1 tool combinations (N = 20). Interactions between users, tools, and situations were investigated and described. Systematic variation associated with individual users was minor compared with random between-user variation. Although variation was observed between choices made for the majority of input parameters, differing choices of Process Category ('PROC') code/activity descriptor and dustiness level impacted most on the resultant exposure estimates. Exposure estimates ranging over several orders of magnitude were generated for the same exposure situation by different tool users. Such unpredictable between-user variation will reduce consistency within REACH processes and could result in under-estimation or overestimation of exposure, risking worker ill-health or the implementation of unnecessary risk controls, respectively. Implementation of additional support and quality control systems for all tool users is needed to reduce between-assessor variation and so ensure both the protection of worker health and avoidance of unnecessary business risk management expenditure. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
NASA Astrophysics Data System (ADS)
Gok, R.; Kalafat, D.; Hutchings, L.
2003-12-01
We analyze over 3,500 aftershocks recorded by several seismic networks during the 1999 Marmara, Turkey earthquakes. The analysis provides source parameters of the aftershocks, a three-dimensional velocity structure from tomographic inversion, an input three-dimensional velocity model for a finite difference wave propagation code (E3D, Larsen 1998), and records available for use as empirical Green's functions. Ultimately our goal is to model the 1999 earthquakes from DC to 25 Hz and study fault rupture mechanics and kinematic rupture models. We performed the simultaneous inversion for hypocenter locations and three-dimensional P- and S- wave velocity structure of Marmara Region using SIMULPS14 along with 2,500 events with more than eight P- readings and an azimuthal gap of less than 180\\deg. The resolution of calculated velocity structure is better in the eastern Marmara than the western Marmara region due to the dense ray coverage. We used the obtained velocity structure as input into the finite difference algorithm and validated the model by using M < 4 earthquakes as point sources and matching long period waveforms (f < 0.5 Hz). We also obtained Mo, fc and individual station kappa values for over 500 events by performing a simultaneous inversion to fit these parameters with a Brune source model. We used the results of the source inversion to deconvolve out a Brune model from small to moderate size earthquakes (M < 4.0) to obtain empirical Green's function (EGF) for the higher frequency range of ground motion synthesis (0.5 < f > 25 Hz). We additionally obtained the source scaling relation (energy-moment) of these aftershocks. We have generated several scenarios constrained by a priori knowledge of the Izmit and Duzce rupture parameters to validate our prediction capability.
A computer program for simulating geohydrologic systems in three dimensions
Posson, D.R.; Hearne, G.A.; Tracy, J.V.; Frenzel, P.F.
1980-01-01
This document is directed toward individuals who wish to use a computer program to simulate ground-water flow in three dimensions. The strongly implicit procedure (SIP) numerical method is used to solve the set of simultaneous equations. New data processing techniques and program input and output options are emphasized. The quifer system to be modeled may be heterogeneous and anisotropic, and may include both artesian and water-table conditions. Systems which consist of well defined alternating layers of highly permeable and poorly permeable material may be represented by a sequence of equations for two dimensional flow in each of the highly permeable units. Boundaries where head or flux is user-specified may be irregularly shaped. The program also allows the user to represent streams as limited-source boundaries when the streamflow is small in relation to the hydraulic stress on the system. The data-processing techniques relating to ' cube ' input and output, to swapping of layers, to restarting of simulation, to free-format NAMELIST input, to the details of each sub-routine 's logic, and to the overlay program structure are discussed. The program is capable of processing large models that might overflow computer memories with conventional programs. Detailed instructions for selecting program options, for initializing the data arrays, for defining ' cube ' output lists and maps, and for plotting hydrographs of calculated and observed heads and/or drawdowns are provided. Output may be restricted to those nodes of particular interest, thereby reducing the volumes of printout for modelers, which may be critical when working at remote terminals. ' Cube ' input commands allow the modeler to set aquifer parameters and initialize the model with very few input records. Appendixes provide instructions to compile the program, definitions and cross-references for program variables, summary of the FLECS structured FORTRAN programming language, listings of the FLECS and FORTRAN source code, and samples of input and output for example simulations. (USGS)
Guidance to select and prepare input values for OPP's aquatic exposure models. Intended to improve the consistency in modeling the fate of pesticides in the environment and quality of OPP's aquatic risk assessments.
Engine control techniques to account for fuel effects
Kumar, Shankar; Frazier, Timothy R.; Stanton, Donald W.; Xu, Yi; Bunting, Bruce G.; Wolf, Leslie R.
2014-08-26
A technique for engine control to account for fuel effects including providing an internal combustion engine and a controller to regulate operation thereof, the engine being operable to combust a fuel to produce an exhaust gas; establishing a plurality of fuel property inputs; establishing a plurality of engine performance inputs; generating engine control information as a function of the fuel property inputs and the engine performance inputs; and accessing the engine control information with the controller to regulate at least one engine operating parameter.
Reichmann, Thomas L.; Richter, Klaus W.; Delsante, Simona; Borzone, Gabriella; Ipser, Herbert
2014-01-01
In the present study standard enthalpies of formation were measured by reaction and solution calorimetry at stoichiometric compositions of Cd2Pr, Cd3Pr, Cd58Pr13 and Cd6Pr. The corresponding values were determined to be −46.0, −38.8, −35.2 and −24.7 kJ/mol(at), respectively. These data together with thermodynamic data and phase diagram information from literature served as input data for a CALPHAD-type optimization of the Cd–Pr phase diagram. The complete composition range could be described precisely with the present models, both with respect to phase equilibria as well as to thermodynamic input data. The thermodynamic parameters of all intermetallic compounds were modelled following Neumann–Kopp rule. Temperature dependent contributions to the individual Gibbs energies were used for all compounds. Extended solid solubilities are well described for the low- and high-temperature modifications of Pr and also for the intermetallic compound CdPr. A quite good agreement with all viable data available from literature was found and is presented. PMID:25540475
Dynamic calibration of a wheelchair dynamometer.
DiGiovine, C P; Cooper, R A; Boninger, M L
2001-01-01
The inertia and resistance of a wheelchair dynamometer must be determined in order to compare the results of one study to another, independent of the type of device used. The purpose of this study was to describe and implement a dynamic calibration test for characterizing the electro-mechanical properties of a dynamometer. The inertia, the viscous friction, the kinetic friction, the motor back-electromotive force constant, and the motor constant were calculated using three different methods. The methodology based on a dynamic calibration test along with a nonlinear regression analysis produced the best results. The coefficient of determination comparing the dynamometer model output to the measured angular velocity and torque was 0.999 for a ramp input and 0.989 for a sinusoidal input. The inertia and resistance were determined for the rollers and the wheelchair wheels. The calculation of the electro-mechanical parameters allows for the complete description of the propulsive torque produced by an individual, given only the angular velocity and acceleration. The measurement of the electro-mechanical properties of the dynamometer as well as the wheelchair/human system provides the information necessary to simulate real-world conditions.
Lefmann, Kim; Klenø, Kaspar H; Birk, Jonas Okkels; Hansen, Britt R; Holm, Sonja L; Knudsen, Erik; Lieutenant, Klaus; von Moos, Lars; Sales, Morten; Willendrup, Peter K; Andersen, Ken H
2013-05-01
We here describe the result of simulations of 15 generic neutron instruments for the long-pulsed European Spallation Source. All instruments have been simulated for 20 different settings of the source time structure, corresponding to pulse lengths between 1 ms and 2 ms; and repetition frequencies between 10 Hz and 25 Hz. The relative change in performance with time structure is given for each instrument, and an unweighted average is calculated. The performance of the instrument suite is proportional to (a) the peak flux and (b) the duty cycle to a power of approximately 0.3. This information is an important input to determining the best accelerator parameters. In addition, we find that in our simple guide systems, most neutrons reaching the sample originate from the central 3-5 cm of the moderator. This result can be used as an input in later optimization of the moderator design. We discuss the relevance and validity of defining a single figure-of-merit for a full facility and compare with evaluations of the individual instrument classes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagola, Silvina; Polymeros, Alekos; Kourkoumelis, Nikolaos
2017-02-01
The direct-space methods softwarePowder Structure Solution Program(PSSP) [Pagola & Stephens (2010).J. Appl. Cryst.43, 370–376] has been migrated to the Windows OS and the code has been optimized for fast runs.WinPSSPis a user-friendly graphical user interface that allows the input of preliminary crystal structure information, integrated intensities of the reflections and FWHM, the definition of structural parameters and a simulated annealing schedule, and the visualization of the calculated and experimental diffraction data overlaid for each individual solution. The solutions are reported as filename.cif files, which can be used to analyze packing motifs and chemical bonding, and to input the atomic coordinatesmore » into the Rietveld analysis softwareGSAS. WinPSSPperformance in straightforward crystal structure determinations has been evaluated using 18 molecular solids with 6–20 degrees of freedom. The free-distribution program as well as multimedia tutorials can be accessed at http://users.uoi.gr/nkourkou/winpssp/.« less
Space Radiation and Manned Mission: Interface Between Physics and Biology
NASA Astrophysics Data System (ADS)
Hei, Tom
2012-07-01
The natural radiation environment in space consists of a mixed field of high energy protons, heavy ions, electrons and alpha particles. Interplanetary travel to the International Space Station and any planned establishment of satellite colonies on other solar system implies radiation exposure to the crew and is a major concern to space agencies. With shielding, the radiation exposure level in manned space missions is likely to be chronic, low dose irradiation. Traditionally, our knowledge of biological effects of cosmic radiation in deep space is almost exclusively derived from ground-based accelerator experiments with heavy ions in animal or in vitro models. Radiobiological effects of low doses of ionizing radiation are subjected to modulations by various parameters including bystander effects, adaptive response, genomic instability and genetic susceptibility of the exposed individuals. Radiation dosimetry and modeling will provide conformational input in areas where data are difficult to acquire experimentally. However, modeling is only as good as the quality of input data. This lecture will discuss the interdependent nature of physics and biology in assessing the radiobiological response to space radiation.
Automated Structural Optimization System (ASTROS). Volume 1. Theoretical Manual
1988-12-01
corresponding frequency list are given by Equation C-9. The second set of parameters is the frequency list used in solving Equation C-3 to obtain the response...vector (u(w)). This frequency list is: w - 2*fo, 2wfi, 2wf2, 2wfn (C-20) The frequency lists (^ and w are not necessarily equal. While setting...alternative methods are used to input the frequency list u. For the first method, the frequency list u is input via two parameters: Aff (C-21
Analysis of the NAEG model of transuranic radionuclide transport and dose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kercher, J.R.; Anspaugh, L.R.
We analyze the model for estimating the dose from /sup 239/Pu developed for the Nevada Applied Ecology Group (NAEG) by using sensitivity analysis and uncertainty analysis. Sensitivity analysis results suggest that the air pathway is the critical pathway for the organs receiving the highest dose. Soil concentration and the factors controlling air concentration are the most important parameters. The only organ whose dose is sensitive to parameters in the ingestion pathway is the GI tract. The air pathway accounts for 100% of the dose to lung, upper respiratory tract, and thoracic lymph nodes; and 95% of its dose via ingestion.more » Leafy vegetable ingestion accounts for 70% of the dose from the ingestion pathway regardless of organ, peeled vegetables 20%; accidental soil ingestion 5%; ingestion of beef liver 4%; beef muscle 1%. Only a handful of model parameters control the dose for any one organ. The number of important parameters is usually less than 10. Uncertainty analysis indicates that choosing a uniform distribution for the input parameters produces a lognormal distribution of the dose. The ratio of the square root of the variance to the mean is three times greater for the doses than it is for the individual parameters. As found by the sensitivity analysis, the uncertainty analysis suggests that only a few parameters control the dose for each organ. All organs have similar distributions and variance to mean ratios except for the lymph modes. 16 references, 9 figures, 13 tables.« less
ERIC Educational Resources Information Center
Trebits, Anna
2016-01-01
The aim of this study was to investigate the effects of cognitive task complexity and individual differences in input, processing, and output anxiety (IPOA) on L2 narrative production. The participants were enrolled in a bilingual secondary educational program. They performed two narrative tasks in speech and writing. The participants' level of…
NASA Technical Reports Server (NTRS)
Morelli, E. A.
1996-01-01
Flight test maneuvers are specified for the F-18 High Alpha Research Vehicle (HARV). The maneuvers were designed for closed loop parameter identification purposes, specifically for lateral linear model parameter estimation at 30, 45, and 60 degrees angle of attack, using the Actuated Nose Strakes for Enhanced Rolling (ANSER) control law in Strake (S) model and Strake/Thrust Vectoring (STV) mode. Each maneuver is to be realized by applying square wave inputs to specific pilot station controls using the On-Board Excitation System (OBES). Maneuver descriptions and complete specification of the time/amplitude points defining each input are included, along with plots of the input time histories.
DOT National Transportation Integrated Search
2009-02-01
The resilient modulus (MR) input parameters in the Mechanistic-Empirical Pavement Design Guide (MEPDG) program have a significant effect on the projected pavement performance. The MEPDG program uses three different levels of inputs depending on the d...
Origin of the sensitivity in modeling the glide behaviour of dislocations
Pei, Zongrui; Stocks, George Malcolm
2018-03-26
The sensitivity in predicting glide behaviour of dislocations has been a long-standing problem in the framework of the Peierls-Nabarro model. The predictions of both the model itself and the analytic formulas based on it are too sensitive to the input parameters. In order to reveal the origin of this important problem in materials science, a new empirical-parameter-free formulation is proposed in the same framework. Unlike previous formulations, it includes only a limited small set of parameters all of which can be determined by convergence tests. Under special conditions the new formulation is reduced to its classic counterpart. In the lightmore » of this formulation, new relationships between Peierls stresses and the input parameters are identified, where the sensitivity is greatly reduced or even removed.« less
Effect of Burnishing Parameters on Surface Finish
NASA Astrophysics Data System (ADS)
Shirsat, Uddhav; Ahuja, Basant; Dhuttargaon, Mukund
2017-08-01
Burnishing is cold working process in which hard balls are pressed against the surface, resulting in improved surface finish. The surface gets compressed and then plasticized. This is a highly finishing process which is becoming more popular. Surface quality of the product improves its aesthetic appearance. The product made up of aluminum material is subjected to burnishing process during which kerosene is used as a lubricant. In this study factors affecting burnishing process such as burnishing force, speed, feed, work piece diameter and ball diameter are considered as input parameters while surface finish is considered as an output parameter In this study, experiments are designed using 25 factorial design in order to analyze the relationship between input and output parameters. The ANOVA technique and F-test are used for further analysis.
Başkent, Deniz; Eiler, Cheryl L; Edwards, Brent
2007-06-01
To present a comprehensive analysis of the feasibility of genetic algorithms (GA) for finding the best fit of hearing aids or cochlear implants for individual users in clinical or research settings, where the algorithm is solely driven by subjective human input. Due to varying pathology, the best settings of an auditory device differ for each user. It is also likely that listening preferences vary at the same time. The settings of a device customized for a particular user can only be evaluated by the user. When optimization algorithms are used for fitting purposes, this situation poses a difficulty for a systematic and quantitative evaluation of the suitability of the fitting parameters produced by the algorithm. In the present study, an artificial listening environment was generated by distorting speech using a noiseband vocoder. The settings produced by the GA for this listening problem could objectively be evaluated by measuring speech recognition and comparing the performance to the best vocoder condition where speech was least distorted. Nine normal-hearing subjects participated in the study. The parameters to be optimized were the number of vocoder channels, the shift between the input frequency range and the synthesis frequency range, and the compression-expansion of the input frequency range over the synthesis frequency range. The subjects listened to pairs of sentences processed with the vocoder, and entered a preference for the sentence with better intelligibility. The GA modified the solutions iteratively according to the subject preferences. The program converged when the user ranked the same set of parameters as the best in three consecutive steps. The results produced by the GA were analyzed for quality by measuring speech intelligibility, for test-retest reliability by running the GA three times with each subject, and for convergence properties. Speech recognition scores averaged across subjects were similar for the best vocoder solution and for the solutions produced by the GA. The average number of iterations was 8 and the average convergence time was 25.5 minutes. The settings produced by different GA runs for the same subject were slightly different; however, speech recognition scores measured with these settings were similar. Individual data from subjects showed that in each run, a small number of GA solutions produced poorer speech intelligibility than for the best setting. This was probably a result of the combination of the inherent randomness of the GA, the convergence criterion used in the present study, and possible errors that the users might have made during the paired comparisons. On the other hand, the effect of these errors was probably small compared to the other two factors, as a comparison between subjective preferences and objective measures showed that for many subjects the two were in good agreement. The results showed that the GA was able to produce good solutions by using listener preferences in a relatively short time. For practical applications, the program can be made more robust by running the GA twice or by not using an automatic stopping criterion, and it can be made faster by optimizing the number of the paired comparisons completed in each iteration.
Coan, Heather B.; Youker, Robert T.
2017-01-01
Understanding how proteins mutate is critical to solving a host of biological problems. Mutations occur when an amino acid is substituted for another in a protein sequence. The set of likelihoods for amino acid substitutions is stored in a matrix and input to alignment algorithms. The quality of the resulting alignment is used to assess the similarity of two or more sequences and can vary according to assumptions modeled by the substitution matrix. Substitution strategies with minor parameter variations are often grouped together in families. For example, the BLOSUM and PAM matrix families are commonly used because they provide a standard, predefined way of modeling substitutions. However, researchers often do not know if a given matrix family or any individual matrix within a family is the most suitable. Furthermore, predefined matrix families may inaccurately reflect a particular hypothesis that a researcher wishes to model or otherwise result in unsatisfactory alignments. In these cases, the ability to compare the effects of one or more custom matrices may be needed. This laborious process is often performed manually because the ability to simultaneously load multiple matrices and then compare their effects on alignments is not readily available in current software tools. This paper presents SubVis, an interactive R package for loading and applying multiple substitution matrices to pairwise alignments. Users can simultaneously explore alignments resulting from multiple predefined and custom substitution matrices. SubVis utilizes several of the alignment functions found in R, a common language among protein scientists. Functions are tied together with the Shiny platform which allows the modification of input parameters. Information regarding alignment quality and individual amino acid substitutions is displayed with the JavaScript language which provides interactive visualizations for revealing both high-level and low-level alignment information. PMID:28674656
NASA Astrophysics Data System (ADS)
Marquardt, W.; Ihle, P.
At two sites in the north of the G.D.R. 80-100 km distant from industry rain from individual precipitation events was collected by automatic samplers and relevant ionic species were analyzed. The sampler is described. The cloud routes at the 850 hPa level were traced back 1 day and then seven sectors were formed for each collection site taking into consideration geographical aspects and features of the emission pattern for the rea concerned. Investigating the precipitation components as a function of the emission pattern knowledge of meteorological input parameters are required. The influence of these parameters is reported. Contrary to the combustion of other fossil fuels, in the case of brown coal combustion a considerable emission of neutralizing components (especially CaO) occurs, counteracting the formation of "acid rain". This effect is clearly proven by means of individual examples and average considerations, i.e. the formation of acid rain does not only depend on the SO 2 and NO x emissions. The wet deposition of all types of ions at the measuring site for every emission sector was calculated by means of precipitation statistics. Using these investigations reference points with regard to border crossing transport are given.
A System for Multi-Domain Contextualization of Personal Health Data.
Pustišek, Matevž
2017-01-01
Current telehealth systems are used to improve the treatment of chronic diseases by collecting medical data at the patient and transferring them to a remote medical institution. Research shows that such medical practice can be substantially improved if the measured parameters are greater in number and of more diverse nature. Emerging consumer solutions for monitoring personal health and wellness, as well as various resources from domains like internet, telecommunications and smart living, can be used as possible sources for exploration of an individual's wider health context. It was our aim to design an internet of things solutions, which would combine these sources of information into context information, complementary to health data. An internet of things platform was designed and implemented and integration with an established e-health system was provided to enrich telehealth data with context information by aggregating and processing cross-domain inputs from various sources. The approach was validated on a use case scenario. The concept was tried in a scenario related to prevention and management of heart disease. The system's advanced graphic correlation features are expected to help physicians and patients identify true roots of health problems. Medical researchers are also expected to benefit from a deeper insight into complex cross-domain parameter dependencies that determine an individual's health.
Calibration under uncertainty for finite element models of masonry monuments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atamturktur, Sezer,; Hemez, Francois,; Unal, Cetin
2010-02-01
Historical unreinforced masonry buildings often include features such as load bearing unreinforced masonry vaults and their supporting framework of piers, fill, buttresses, and walls. The masonry vaults of such buildings are among the most vulnerable structural components and certainly among the most challenging to analyze. The versatility of finite element (FE) analyses in incorporating various constitutive laws, as well as practically all geometric configurations, has resulted in the widespread use of the FE method for the analysis of complex unreinforced masonry structures over the last three decades. However, an FE model is only as accurate as its input parameters, andmore » there are two fundamental challenges while defining FE model input parameters: (1) material properties and (2) support conditions. The difficulties in defining these two aspects of the FE model arise from the lack of knowledge in the common engineering understanding of masonry behavior. As a result, engineers are unable to define these FE model input parameters with certainty, and, inevitably, uncertainties are introduced to the FE model.« less
NASA Astrophysics Data System (ADS)
Yan, Zilin; Kim, Yongtae; Hara, Shotaro; Shikazono, Naoki
2017-04-01
The Potts Kinetic Monte Carlo (KMC) model, proven to be a robust tool to study all stages of sintering process, is an ideal tool to analyze the microstructure evolution of electrodes in solid oxide fuel cells (SOFCs). Due to the nature of this model, the input parameters of KMC simulations such as simulation temperatures and attempt frequencies are difficult to identify. We propose a rigorous and efficient approach to facilitate the input parameter calibration process using artificial neural networks (ANNs). The trained ANN reduces drastically the number of trial-and-error of KMC simulations. The KMC simulation using the calibrated input parameters predicts the microstructures of a La0.6Sr0.4Co0.2Fe0.8O3 cathode material during sintering, showing both qualitative and quantitative congruence with real 3D microstructures obtained by focused ion beam scanning electron microscopy (FIB-SEM) reconstruction.
Real-Time Stability and Control Derivative Extraction From F-15 Flight Data
NASA Technical Reports Server (NTRS)
Smith, Mark S.; Moes, Timothy R.; Morelli, Eugene A.
2003-01-01
A real-time, frequency-domain, equation-error parameter identification (PID) technique was used to estimate stability and control derivatives from flight data. This technique is being studied to support adaptive control system concepts currently being developed by NASA (National Aeronautics and Space Administration), academia, and industry. This report describes the basic real-time algorithm used for this study and implementation issues for onboard usage as part of an indirect-adaptive control system. A confidence measures system for automated evaluation of PID results is discussed. Results calculated using flight data from a modified F-15 aircraft are presented. Test maneuvers included pilot input doublets and automated inputs at several flight conditions. Estimated derivatives are compared to aerodynamic model predictions. Data indicate that the real-time PID used for this study performs well enough to be used for onboard parameter estimation. For suitable test inputs, the parameter estimates converged rapidly to sufficient levels of accuracy. The devised confidence measures used were moderately successful.
Astrobiological complexity with probabilistic cellular automata.
Vukotić, Branislav; Ćirković, Milan M
2012-08-01
The search for extraterrestrial life and intelligence constitutes one of the major endeavors in science, but has yet been quantitatively modeled only rarely and in a cursory and superficial fashion. We argue that probabilistic cellular automata (PCA) represent the best quantitative framework for modeling the astrobiological history of the Milky Way and its Galactic Habitable Zone. The relevant astrobiological parameters are to be modeled as the elements of the input probability matrix for the PCA kernel. With the underlying simplicity of the cellular automata constructs, this approach enables a quick analysis of large and ambiguous space of the input parameters. We perform a simple clustering analysis of typical astrobiological histories with "Copernican" choice of input parameters and discuss the relevant boundary conditions of practical importance for planning and guiding empirical astrobiological and SETI projects. In addition to showing how the present framework is adaptable to more complex situations and updated observational databases from current and near-future space missions, we demonstrate how numerical results could offer a cautious rationale for continuation of practical SETI searches.
Douglas, P; Tyrrel, S F; Kinnersley, R P; Whelan, M; Longhurst, P J; Walsh, K; Pollard, S J T; Drew, G H
2016-12-15
Bioaerosols are released in elevated quantities from composting facilities and are associated with negative health effects, although dose-response relationships are not well understood, and require improved exposure classification. Dispersion modelling has great potential to improve exposure classification, but has not yet been extensively used or validated in this context. We present a sensitivity analysis of the ADMS dispersion model specific to input parameter ranges relevant to bioaerosol emissions from open windrow composting. This analysis provides an aid for model calibration by prioritising parameter adjustment and targeting independent parameter estimation. Results showed that predicted exposure was most sensitive to the wet and dry deposition modules and the majority of parameters relating to emission source characteristics, including pollutant emission velocity, source geometry and source height. This research improves understanding of the accuracy of model input data required to provide more reliable exposure predictions. Copyright © 2016. Published by Elsevier Ltd.
Multi-modality image fusion based on enhanced fuzzy radial basis function neural networks.
Chao, Zhen; Kim, Dohyeon; Kim, Hee-Joung
2018-04-01
In clinical applications, single modality images do not provide sufficient diagnostic information. Therefore, it is necessary to combine the advantages or complementarities of different modalities of images. Recently, neural network technique was applied to medical image fusion by many researchers, but there are still many deficiencies. In this study, we propose a novel fusion method to combine multi-modality medical images based on the enhanced fuzzy radial basis function neural network (Fuzzy-RBFNN), which includes five layers: input, fuzzy partition, front combination, inference, and output. Moreover, we propose a hybrid of the gravitational search algorithm (GSA) and error back propagation algorithm (EBPA) to train the network to update the parameters of the network. Two different patterns of images are used as inputs of the neural network, and the output is the fused image. A comparison with the conventional fusion methods and another neural network method through subjective observation and objective evaluation indexes reveals that the proposed method effectively synthesized the information of input images and achieved better results. Meanwhile, we also trained the network by using the EBPA and GSA, individually. The results reveal that the EBPGSA not only outperformed both EBPA and GSA, but also trained the neural network more accurately by analyzing the same evaluation indexes. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Multiscale contact mechanics model for RF-MEMS switches with quantified uncertainties
NASA Astrophysics Data System (ADS)
Kim, Hojin; Huda Shaik, Nurul; Xu, Xin; Raman, Arvind; Strachan, Alejandro
2013-12-01
We introduce a multiscale model for contact mechanics between rough surfaces and apply it to characterize the force-displacement relationship for a metal-dielectric contact relevant for radio frequency micro-electromechanicl system (MEMS) switches. We propose a mesoscale model to describe the history-dependent force-displacement relationships in terms of the surface roughness, the long-range attractive interaction between the two surfaces, and the repulsive interaction between contacting asperities (including elastic and plastic deformation). The inputs to this model are the experimentally determined surface topography and the Hamaker constant as well as the mechanical response of individual asperities obtained from density functional theory calculations and large-scale molecular dynamics simulations. The model captures non-trivial processes including the hysteresis during loading and unloading due to plastic deformation, yet it is computationally efficient enough to enable extensive uncertainty quantification and sensitivity analysis. We quantify how uncertainties and variability in the input parameters, both experimental and theoretical, affect the force-displacement curves during approach and retraction. In addition, a sensitivity analysis quantifies the relative importance of the various input quantities for the prediction of force-displacement during contact closing and opening. The resulting force-displacement curves with quantified uncertainties can be directly used in device-level simulations of micro-switches and enable the incorporation of atomic and mesoscale phenomena in predictive device-scale simulations.
Azorin-Lopez, Jorge; Fuster-Guillo, Andres; Saval-Calvo, Marcelo; Mora-Mora, Higinio; Garcia-Chamizo, Juan Manuel
2017-01-01
The use of visual information is a very well known input from different kinds of sensors. However, most of the perception problems are individually modeled and tackled. It is necessary to provide a general imaging model that allows us to parametrize different input systems as well as their problems and possible solutions. In this paper, we present an active vision model considering the imaging system as a whole (including camera, lighting system, object to be perceived) in order to propose solutions to automated visual systems that present problems that we perceive. As a concrete case study, we instantiate the model in a real application and still challenging problem: automated visual inspection. It is one of the most used quality control systems to detect defects on manufactured objects. However, it presents problems for specular products. We model these perception problems taking into account environmental conditions and camera parameters that allow a system to properly perceive the specific object characteristics to determine defects on surfaces. The validation of the model has been carried out using simulations providing an efficient way to perform a large set of tests (different environment conditions and camera parameters) as a previous step of experimentation in real manufacturing environments, which more complex in terms of instrumentation and more expensive. Results prove the success of the model application adjusting scale, viewpoint and lighting conditions to detect structural and color defects on specular surfaces. PMID:28640211
NASA Astrophysics Data System (ADS)
Shrivastava, Prashant Kumar; Pandey, Arun Kumar
2018-03-01
The Inconel-718 is one of the most demanding advanced engineering materials because of its superior quality. The conventional machining techniques are facing many problems to cut intricate profiles on these materials due to its minimum thermal conductivity, minimum elastic property and maximum chemical affinity at magnified temperature. The laser beam cutting is one of the advanced cutting method that may be used to achieve the geometrical accuracy with more precision by the suitable management of input process parameters. In this research work, the experimental investigation during the pulsed Nd:YAG laser cutting of Inconel-718 has been carried out. The experiments have been conducted by using the well planned orthogonal array L27. The experimentally measured values of different quality characteristics have been used for developing the second order regression models of bottom kerf deviation (KD), bottom kerf width (KW) and kerf taper (KT). The developed models of different quality characteristics have been utilized as a quality function for single-objective optimization by using particle swarm optimization (PSO) method. The optimum results obtained by the proposed hybrid methodology have been compared with experimental results. The comparison of optimized results with the experimental results shows that an individual improvement of 75%, 12.67% and 33.70% in bottom kerf deviation, bottom kerf width, and kerf taper has been observed. The parametric effects of different most significant input process parameters on quality characteristics have also been discussed.
Assessing mental stress from the photoplethysmogram: a numerical study
Charlton, Peter H; Celka, Patrick; Farukh, Bushra; Chowienczyk, Phil; Alastruey, Jordi
2018-01-01
Abstract Objective: Mental stress is detrimental to cardiovascular health, being a risk factor for coronary heart disease and a trigger for cardiac events. However, it is not currently routinely assessed. The aim of this study was to identify features of the photoplethysmogram (PPG) pulse wave which are indicative of mental stress. Approach: A numerical model of pulse wave propagation was used to simulate blood pressure signals, from which simulated PPG pulse waves were estimated using a transfer function. Pulse waves were simulated at six levels of stress by changing the model input parameters both simultaneously and individually, in accordance with haemodynamic changes associated with stress. Thirty-two feature measurements were extracted from pulse waves at three measurement sites: the brachial, radial and temporal arteries. Features which changed significantly with stress were identified using the Mann–Kendall monotonic trend test. Main results: Seventeen features exhibited significant trends with stress in measurements from at least one site. Three features showed significant trends at all three sites: the time from pulse onset to peak, the time from the dicrotic notch to pulse end, and the pulse rate. More features showed significant trends at the radial artery (15) than the brachial (8) or temporal (7) arteries. Most features were influenced by multiple input parameters. Significance: The features identified in this study could be used to monitor stress in healthcare and consumer devices. Measurements at the radial artery may provide superior performance than the brachial or temporal arteries. In vivo studies are required to confirm these observations. PMID:29658894
Revisiting the Robustness of PET-Based Textural Features in the Context of Multi-Centric Trials.
Bailly, Clément; Bodet-Milin, Caroline; Couespel, Solène; Necib, Hatem; Kraeber-Bodéré, Françoise; Ansquer, Catherine; Carlier, Thomas
2016-01-01
This study aimed to investigate the variability of textural features (TF) as a function of acquisition and reconstruction parameters within the context of multi-centric trials. The robustness of 15 selected TFs were studied as a function of the number of iterations, the post-filtering level, input data noise, the reconstruction algorithm and the matrix size. A combination of several reconstruction and acquisition settings was devised to mimic multi-centric conditions. We retrospectively studied data from 26 patients enrolled in a diagnostic study that aimed to evaluate the performance of PET/CT 68Ga-DOTANOC in gastro-entero-pancreatic neuroendocrine tumors. Forty-one tumors were extracted and served as the database. The coefficient of variation (COV) or the absolute deviation (for the noise study) was derived and compared statistically with SUVmax and SUVmean results. The majority of investigated TFs can be used in a multi-centric context when each parameter is considered individually. The impact of voxel size and noise in the input data were predominant as only 4 TFs presented a high/intermediate robustness against SUV-based metrics (Entropy, Homogeneity, RP and ZP). When combining several reconstruction settings to mimic multi-centric conditions, most of the investigated TFs were robust enough against SUVmax except Correlation, Contrast, LGRE, LGZE and LZLGE. Considering previously published results on either reproducibility or sensitivity against delineation approach and our findings, it is feasible to consider Homogeneity, Entropy, Dissimilarity, HGRE, HGZE and ZP as relevant for being used in multi-centric trials.
Uncertainty in predictions of oil spill trajectories in a coastal zone
NASA Astrophysics Data System (ADS)
Sebastião, P.; Guedes Soares, C.
2006-12-01
A method is introduced to determine the uncertainties in the predictions of oil spill trajectories using a classic oil spill model. The method considers the output of the oil spill model as a function of random variables, which are the input parameters, and calculates the standard deviation of the output results which provides a measure of the uncertainty of the model as a result of the uncertainties of the input parameters. In addition to a single trajectory that is calculated by the oil spill model using the mean values of the parameters, a band of trajectories can be defined when various simulations are done taking into account the uncertainties of the input parameters. This band of trajectories defines envelopes of the trajectories that are likely to be followed by the spill given the uncertainties of the input. The method was applied to an oil spill that occurred in 1989 near Sines in the southwestern coast of Portugal. This model represented well the distinction between a wind driven part that remained offshore, and a tide driven part that went ashore. For both parts, the method defined two trajectory envelopes, one calculated exclusively with the wind fields, and the other using wind and tidal currents. In both cases reasonable approximation to the observed results was obtained. The envelope of likely trajectories that is obtained with the uncertainty modelling proved to give a better interpretation of the trajectories that were simulated by the oil spill model.
NASA Technical Reports Server (NTRS)
Krueger, Ronald
2012-01-01
The development of benchmark examples for quasi-static delamination propagation and cyclic delamination onset and growth prediction is presented and demonstrated for Abaqus/Standard. The example is based on a finite element model of a Double-Cantilever Beam specimen. The example is independent of the analysis software used and allows the assessment of the automated delamination propagation, onset and growth prediction capabilities in commercial finite element codes based on the virtual crack closure technique (VCCT). First, a quasi-static benchmark example was created for the specimen. Second, based on the static results, benchmark examples for cyclic delamination growth were created. Third, the load-displacement relationship from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. Fourth, starting from an initially straight front, the delamination was allowed to grow under cyclic loading. The number of cycles to delamination onset and the number of cycles during delamination growth for each growth increment were obtained from the automated analysis and compared to the benchmark examples. Again, good agreement between the results obtained from the growth analysis and the benchmark results could be achieved by selecting the appropriate input parameters. The benchmarking procedure proved valuable by highlighting the issues associated with choosing the input parameters of the particular implementation. Selecting the appropriate input parameters, however, was not straightforward and often required an iterative procedure. Overall the results are encouraging, but further assessment for mixed-mode delamination is required.
Development of Benchmark Examples for Static Delamination Propagation and Fatigue Growth Predictions
NASA Technical Reports Server (NTRS)
Kruger, Ronald
2011-01-01
The development of benchmark examples for static delamination propagation and cyclic delamination onset and growth prediction is presented and demonstrated for a commercial code. The example is based on a finite element model of an End-Notched Flexure (ENF) specimen. The example is independent of the analysis software used and allows the assessment of the automated delamination propagation, onset and growth prediction capabilities in commercial finite element codes based on the virtual crack closure technique (VCCT). First, static benchmark examples were created for the specimen. Second, based on the static results, benchmark examples for cyclic delamination growth were created. Third, the load-displacement relationship from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. Fourth, starting from an initially straight front, the delamination was allowed to grow under cyclic loading. The number of cycles to delamination onset and the number of cycles during stable delamination growth for each growth increment were obtained from the automated analysis and compared to the benchmark examples. Again, good agreement between the results obtained from the growth analysis and the benchmark results could be achieved by selecting the appropriate input parameters. The benchmarking procedure proved valuable by highlighting the issues associated with the input parameters of the particular implementation. Selecting the appropriate input parameters, however, was not straightforward and often required an iterative procedure. Overall, the results are encouraging but further assessment for mixed-mode delamination is required.
Modeling and Analysis of CNC Milling Process Parameters on Al3030 based Composite
NASA Astrophysics Data System (ADS)
Gupta, Anand; Soni, P. K.; Krishna, C. M.
2018-04-01
The machining of Al3030 based composites on Computer Numerical Control (CNC) high speed milling machine have assumed importance because of their wide application in aerospace industries, marine industries and automotive industries etc. Industries mainly focus on surface irregularities; material removal rate (MRR) and tool wear rate (TWR) which usually depends on input process parameters namely cutting speed, feed in mm/min, depth of cut and step over ratio. Many researchers have carried out researches in this area but very few have taken step over ratio or radial depth of cut also as one of the input variables. In this research work, the study of characteristics of Al3030 is carried out at high speed CNC milling machine over the speed range of 3000 to 5000 r.p.m. Step over ratio, depth of cut and feed rate are other input variables taken into consideration in this research work. A total nine experiments are conducted according to Taguchi L9 orthogonal array. The machining is carried out on high speed CNC milling machine using flat end mill of diameter 10mm. Flatness, MRR and TWR are taken as output parameters. Flatness has been measured using portable Coordinate Measuring Machine (CMM). Linear regression models have been developed using Minitab 18 software and result are validated by conducting selected additional set of experiments. Selection of input process parameters in order to get best machining outputs is the key contributions of this research work.
NASA Technical Reports Server (NTRS)
Krueger, Ronald
2011-01-01
The development of benchmark examples for static delamination propagation and cyclic delamination onset and growth prediction is presented and demonstrated for a commercial code. The example is based on a finite element model of an End-Notched Flexure (ENF) specimen. The example is independent of the analysis software used and allows the assessment of the automated delamination propagation, onset and growth prediction capabilities in commercial finite element codes based on the virtual crack closure technique (VCCT). First, static benchmark examples were created for the specimen. Second, based on the static results, benchmark examples for cyclic delamination growth were created. Third, the load-displacement relationship from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. Fourth, starting from an initially straight front, the delamination was allowed to grow under cyclic loading. The number of cycles to delamination onset and the number of cycles during delamination growth for each growth increment were obtained from the automated analysis and compared to the benchmark examples. Again, good agreement between the results obtained from the growth analysis and the benchmark results could be achieved by selecting the appropriate input parameters. The benchmarking procedure proved valuable by highlighting the issues associated with choosing the input parameters of the particular implementation. Selecting the appropriate input parameters, however, was not straightforward and often required an iterative procedure. Overall the results are encouraging, but further assessment for mixed-mode delamination is required.
Computational implications of activity-dependent neuronal processes
NASA Astrophysics Data System (ADS)
Goldman, Mark Steven
Synapses, the connections between neurons, often fail to transmit a large percentage of the action potentials that they receive. I describe several models of synaptic transmission at a single stochastic synapse with an activity-dependent probability of transmission and demonstrate how synaptic transmission failures may increase the efficiency with which a synapse transmits information. Spike trains in the visual cortex of freely viewing monkeys have positive auto correlations that are indicative of a redundant representation of the information they contain. I show how a synapse with activity-dependent transmission failures modeled after those occurring in visual cortical synapses can remove this redundancy by transmitting a decorrelated subset of the spike trains it receives. I suggest that redundancy reduction at individual synapses saves synaptic resources while increasing the sensitivity of the postsynaptic neuron to information arriving along many inputs. For a neuron receiving input from many decorrelating synapses, my analysis leads to a prediction of the number of visual inputs to a neuron and the cross-correlations between these inputs and suggests that the time scale of synaptic dynamics observed in sensory areas corresponds to a fundamental time scale for processing sensory information. Systems with activity-dependent changes in their parameters, or plasticity, often display a wide variability in their individual components that belies the stability of their function, Motivated by experiments demonstrating that identified neurons with stereotyped function can have a large variability in the densities of their ion channels, or ionic conductances, I build a conductance-based model of a single neuron. The neuron's firing activity is relatively insensitive to changes in certain combinations of conductances, but markedly sensitive to changes in other combinations. Using a combined modeling and experimental approach, I show that neuromodulators and regulatory processes target sensitive combinations of conductances. I suggest that the variability observed in conductance measurements occurs along insensitive combinations of conductances and could result from homeostatic processes that allow the neuron's conductances to drift without triggering activity- dependent feedback mechanisms. These results together suggest that plastic systems may have a high degree of flexibility and variability in their components without a loss of robustness in their response properties.
NASA Astrophysics Data System (ADS)
Biswas, R.; Kuar, A. S.; Mitra, S.
2014-09-01
Nd:YAG laser microdrilled holes on gamma-titanium aluminide, a newly developed alloy having wide applications in turbine blades, engine valves, cases, metal cutting tools, missile components, nuclear fuel and biomedical engineering, are important from the dimensional accuracy and quality of hole point of view. Keeping this in mind, a central composite design (CCD) based on response surface methodology (RSM) is employed for multi-objective optimization of pulsed Nd:YAG laser microdrilling operation on gamma-titanium aluminide alloy sheet to achieve optimum hole characteristics within existing resources. The three characteristics such as hole diameter at entry, hole diameter at exit and hole taper have been considered for simultaneous optimization. The individual optimization of all three responses has also been carried out. The input parameters considered are lamp current, pulse frequency, assist air pressure and thickness of the job. The responses at predicted optimum parameter level are in good agreement with the results of confirmation experiments conducted for verification tests.
NASA Astrophysics Data System (ADS)
Wright, Robyn; Thornberg, Steven M.
SEDIDAT is a series of compiled IBM-BASIC (version 2.0) programs that direct the collection, statistical calculation, and graphic presentation of particle settling velocity and equivalent spherical diameter for samples analyzed using the settling tube technique. The programs follow a menu-driven format that is understood easily by students and scientists with little previous computer experience. Settling velocity is measured directly (cm,sec) and also converted into Chi units. Equivalent spherical diameter (reported in Phi units) is calculated using a modified Gibbs equation for different particle densities. Input parameters, such as water temperature, settling distance, particle density, run time, and Phi;Chi interval are changed easily at operator discretion. Optional output to a dot-matrix printer includes a summary of moment and graphic statistical parameters, a tabulation of individual and cumulative weight percents, a listing of major distribution modes, and cumulative and histogram plots of a raw time, settling velocity. Chi and Phi data.
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Yang, Ping
2018-01-01
In this paper we make practical use of the recently developed first-principles approach to electromagnetic scattering by particles immersed in an unbounded absorbing host medium. Specifically, we introduce an actual computational tool for the calculation of pertinent far-field optical observables in the context of the classical Lorenzâ€"Mie theory. The paper summarizes the relevant theoretical formalism, explains various aspects of the corresponding numerical algorithm, specifies the input and output parameters of a FORTRAN program available at https://www.giss.nasa.gov/staff/mmishchenko/Lorenz-Mie.html, and tabulates benchmark results useful for testing purposes. This public-domain FORTRAN program enables one to solve the following two important problems: (i) simulate theoretically the reading of a remote well-collimated radiometer measuring electromagnetic scattering by an individual spherical particle or a small random group of spherical particles; and (ii) compute the single-scattering parameters that enter the vector radiative transfer equation derived directly from the Maxwell equations.
NASA Astrophysics Data System (ADS)
Mishchenko, Michael I.; Yang, Ping
2018-01-01
In this paper we make practical use of the recently developed first-principles approach to electromagnetic scattering by particles immersed in an unbounded absorbing host medium. Specifically, we introduce an actual computational tool for the calculation of pertinent far-field optical observables in the context of the classical Lorenz-Mie theory. The paper summarizes the relevant theoretical formalism, explains various aspects of the corresponding numerical algorithm, specifies the input and output parameters of a FORTRAN program available at https://www.giss.nasa.gov/staff/mmishchenko/Lorenz-Mie.html, and tabulates benchmark results useful for testing purposes. This public-domain FORTRAN program enables one to solve the following two important problems: (i) simulate theoretically the reading of a remote well-collimated radiometer measuring electromagnetic scattering by an individual spherical particle or a small random group of spherical particles; and (ii) compute the single-scattering parameters that enter the vector radiative transfer equation derived directly from the Maxwell equations.
Programmer's manual for MMLE3, a general FORTRAN program for maximum likelihood parameter estimation
NASA Technical Reports Server (NTRS)
Maine, R. E.
1981-01-01
The MMLE3 is a maximum likelihood parameter estimation program capable of handling general bilinear dynamic equations of arbitrary order with measurement noise and/or state noise (process noise). The basic MMLE3 program is quite general and, therefore, applicable to a wide variety of problems. The basic program can interact with a set of user written problem specific routines to simplify the use of the program on specific systems. A set of user routines for the aircraft stability and control derivative estimation problem is provided with the program. The implementation of the program on specific computer systems is discussed. The structure of the program is diagrammed, and the function and operation of individual routines is described. Complete listings and reference maps of the routines are included on microfiche as a supplement. Four test cases are discussed; listings of the input cards and program output for the test cases are included on microfiche as a supplement.
Removing Visual Bias in Filament Identification: A New Goodness-of-fit Measure
NASA Astrophysics Data System (ADS)
Green, C.-E.; Cunningham, M. R.; Dawson, J. R.; Jones, P. A.; Novak, G.; Fissel, L. M.
2017-05-01
Different combinations of input parameters to filament identification algorithms, such as disperse and filfinder, produce numerous different output skeletons. The skeletons are a one-pixel-wide representation of the filamentary structure in the original input image. However, these output skeletons may not necessarily be a good representation of that structure. Furthermore, a given skeleton may not be as good of a representation as another. Previously, there has been no mathematical “goodness-of-fit” measure to compare output skeletons to the input image. Thus far this has been assessed visually, introducing visual bias. We propose the application of the mean structural similarity index (MSSIM) as a mathematical goodness-of-fit measure. We describe the use of the MSSIM to find the output skeletons that are the most mathematically similar to the original input image (the optimum, or “best,” skeletons) for a given algorithm, and independently of the algorithm. This measure makes possible systematic parameter studies, aimed at finding the subset of input parameter values returning optimum skeletons. It can also be applied to the output of non-skeleton-based filament identification algorithms, such as the Hessian matrix method. The MSSIM removes the need to visually examine thousands of output skeletons, and eliminates the visual bias, subjectivity, and limited reproducibility inherent in that process, representing a major improvement upon existing techniques. Importantly, it also allows further automation in the post-processing of output skeletons, which is crucial in this era of “big data.”
NASA Technical Reports Server (NTRS)
Long, S. A. T.
1975-01-01
The effects of various experimental parameters on the displacement errors in the triangulation solution of an elongated object in space due to pointing uncertainties in the lines of sight have been determined. These parameters were the number and location of observation stations, the object's location in latitude and longitude, and the spacing of the input data points on the azimuth-elevation image traces. The displacement errors due to uncertainties in the coordinates of a moving station have been determined as functions of the number and location of the stations. The effects of incorporating the input data from additional cameras at one of the stations were also investigated.
Sobol' sensitivity analysis for stressor impacts on honeybee ...
We employ Monte Carlo simulation and nonlinear sensitivity analysis techniques to describe the dynamics of a bee exposure model, VarroaPop. Daily simulations are performed of hive population trajectories, taking into account queen strength, foraging success, mite impacts, weather, colony resources, population structure, and other important variables. This allows us to test the effects of defined pesticide exposure scenarios versus controlled simulations that lack pesticide exposure. The daily resolution of the model also allows us to conditionally identify sensitivity metrics. We use the variancebased global decomposition sensitivity analysis method, Sobol’, to assess firstand secondorder parameter sensitivities within VarroaPop, allowing us to determine how variance in the output is attributed to each of the input variables across different exposure scenarios. Simulations with VarroaPop indicate queen strength, forager life span and pesticide toxicity parameters are consistent, critical inputs for colony dynamics. Further analysis also reveals that the relative importance of these parameters fluctuates throughout the simulation period according to the status of other inputs. Our preliminary results show that model variability is conditional and can be attributed to different parameters depending on different timescales. By using sensitivity analysis to assess model output and variability, calibrations of simulation models can be better informed to yield more
Robust input design for nonlinear dynamic modeling of AUV.
Nouri, Nowrouz Mohammad; Valadi, Mehrdad
2017-09-01
Input design has a dominant role in developing the dynamic model of autonomous underwater vehicles (AUVs) through system identification. Optimal input design is the process of generating informative inputs that can be used to generate the good quality dynamic model of AUVs. In a problem with optimal input design, the desired input signal depends on the unknown system which is intended to be identified. In this paper, the input design approach which is robust to uncertainties in model parameters is used. The Bayesian robust design strategy is applied to design input signals for dynamic modeling of AUVs. The employed approach can design multiple inputs and apply constraints on an AUV system's inputs and outputs. Particle swarm optimization (PSO) is employed to solve the constraint robust optimization problem. The presented algorithm is used for designing the input signals for an AUV, and the estimate obtained by robust input design is compared with that of the optimal input design. According to the results, proposed input design can satisfy both robustness of constraints and optimality. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Extrapolation of sonic boom pressure signatures by the waveform parameter method
NASA Technical Reports Server (NTRS)
Thomas, C. L.
1972-01-01
The waveform parameter method of sonic boom extrapolation is derived and shown to be equivalent to the F-function method. A computer program based on the waveform parameter method is presented and discussed, with a sample case demonstrating program input and output.
Prediction and assimilation of surf-zone processes using a Bayesian network: Part II: Inverse models
Plant, Nathaniel G.; Holland, K. Todd
2011-01-01
A Bayesian network model has been developed to simulate a relatively simple problem of wave propagation in the surf zone (detailed in Part I). Here, we demonstrate that this Bayesian model can provide both inverse modeling and data-assimilation solutions for predicting offshore wave heights and depth estimates given limited wave-height and depth information from an onshore location. The inverse method is extended to allow data assimilation using observational inputs that are not compatible with deterministic solutions of the problem. These inputs include sand bar positions (instead of bathymetry) and estimates of the intensity of wave breaking (instead of wave-height observations). Our results indicate that wave breaking information is essential to reduce prediction errors. In many practical situations, this information could be provided from a shore-based observer or from remote-sensing systems. We show that various combinations of the assimilated inputs significantly reduce the uncertainty in the estimates of water depths and wave heights in the model domain. Application of the Bayesian network model to new field data demonstrated significant predictive skill (R2 = 0.7) for the inverse estimate of a month-long time series of offshore wave heights. The Bayesian inverse results include uncertainty estimates that were shown to be most accurate when given uncertainty in the inputs (e.g., depth and tuning parameters). Furthermore, the inverse modeling was extended to directly estimate tuning parameters associated with the underlying wave-process model. The inverse estimates of the model parameters not only showed an offshore wave height dependence consistent with results of previous studies but the uncertainty estimates of the tuning parameters also explain previously reported variations in the model parameters.
Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs
McFarland, James M.; Cui, Yuwei; Butts, Daniel A.
2013-01-01
The computation represented by a sensory neuron's response to stimuli is constructed from an array of physiological processes both belonging to that neuron and inherited from its inputs. Although many of these physiological processes are known to be nonlinear, linear approximations are commonly used to describe the stimulus selectivity of sensory neurons (i.e., linear receptive fields). Here we present an approach for modeling sensory processing, termed the Nonlinear Input Model (NIM), which is based on the hypothesis that the dominant nonlinearities imposed by physiological mechanisms arise from rectification of a neuron's inputs. Incorporating such ‘upstream nonlinearities’ within the standard linear-nonlinear (LN) cascade modeling structure implicitly allows for the identification of multiple stimulus features driving a neuron's response, which become directly interpretable as either excitatory or inhibitory. Because its form is analogous to an integrate-and-fire neuron receiving excitatory and inhibitory inputs, model fitting can be guided by prior knowledge about the inputs to a given neuron, and elements of the resulting model can often result in specific physiological predictions. Furthermore, by providing an explicit probabilistic model with a relatively simple nonlinear structure, its parameters can be efficiently optimized and appropriately regularized. Parameter estimation is robust and efficient even with large numbers of model components and in the context of high-dimensional stimuli with complex statistical structure (e.g. natural stimuli). We describe detailed methods for estimating the model parameters, and illustrate the advantages of the NIM using a range of example sensory neurons in the visual and auditory systems. We thus present a modeling framework that can capture a broad range of nonlinear response functions while providing physiologically interpretable descriptions of neural computation. PMID:23874185
Improving Upon an Empirical Procedure for Characterizing Magnetospheric States
NASA Astrophysics Data System (ADS)
Fung, S. F.; Neufeld, J.; Shao, X.
2012-12-01
Work is being performed to improve upon an empirical procedure for describing and predicting the states of the magnetosphere [Fung and Shao, 2008]. We showed in our previous paper that the state of the magnetosphere can be described by a quantity called the magnetospheric state vector (MS vector) consisting of a concatenation of a set of driver-state and a set of response-state parameters. The response state parameters are time-shifted individually to account for their nominal response times so that time does not appear as an explicit parameter in the MS prescription. The MS vector is thus conceptually analogous to the set of vital signs for describing the state of health of a human body. In that previous study, we further demonstrated that since response states are results of driver states, then there should be a correspondence between driver and response states. Such correspondence can be used to predict the subsequent response state from any known driver state with a few hours' lead time. In this paper, we investigate a few possible ways to improve the magnetospheric state descriptions and prediction efficiency by including additional driver state parameters, such as solar activity, IMF-Bx and -By, and optimizing parameter bin sizes. Fung, S. F. and X. Shao, Specification of multiple geomagnetic responses to variable solar wind and IMF input, Ann. Geophys., 26, 639-652, 2008.
DOT National Transportation Integrated Search
2012-01-01
OVERVIEW OF PRESENTATION : Evaluation Parameters : EPAs Sensitivity Analysis : Comparison to Baseline Case : MOVES Sensitivity Run Specification : MOVES Sensitivity Input Parameters : Results : Uses of Study
Multiple Input Design for Real-Time Parameter Estimation in the Frequency Domain
NASA Technical Reports Server (NTRS)
Morelli, Eugene
2003-01-01
A method for designing multiple inputs for real-time dynamic system identification in the frequency domain was developed and demonstrated. The designed inputs are mutually orthogonal in both the time and frequency domains, with reduced peak factors to provide good information content for relatively small amplitude excursions. The inputs are designed for selected frequency ranges, and therefore do not require a priori models. The experiment design approach was applied to identify linear dynamic models for the F-15 ACTIVE aircraft, which has multiple control effectors.
New generation of hydraulic pedotransfer functions for Europe
Tóth, B; Weynants, M; Nemes, A; Makó, A; Bilas, G; Tóth, G
2015-01-01
A range of continental-scale soil datasets exists in Europe with different spatial representation and based on different principles. We developed comprehensive pedotransfer functions (PTFs) for applications principally on spatial datasets with continental coverage. The PTF development included the prediction of soil water retention at various matric potentials and prediction of parameters to characterize soil moisture retention and the hydraulic conductivity curve (MRC and HCC) of European soils. We developed PTFs with a hierarchical approach, determined by the input requirements. The PTFs were derived by using three statistical methods: (i) linear regression where there were quantitative input variables, (ii) a regression tree for qualitative, quantitative and mixed types of information and (iii) mean statistics of developer-defined soil groups (class PTF) when only qualitative input parameters were available. Data of the recently established European Hydropedological Data Inventory (EU-HYDI), which holds the most comprehensive geographical and thematic coverage of hydro-pedological data in Europe, were used to train and test the PTFs. The applied modelling techniques and the EU-HYDI allowed the development of hydraulic PTFs that are more reliable and applicable for a greater variety of input parameters than those previously available for Europe. Therefore the new set of PTFs offers tailored advanced tools for a wide range of applications in the continent. PMID:25866465
Combining control input with flight path data to evaluate pilot performance in transport aircraft.
Ebbatson, Matt; Harris, Don; Huddlestone, John; Sears, Rodney
2008-11-01
When deriving an objective assessment of piloting performance from flight data records, it is common to employ metrics which purely evaluate errors in flight path parameters. The adequacy of pilot performance is evaluated from the flight path of the aircraft. However, in large jet transport aircraft these measures may be insensitive and require supplementing with frequency-based measures of control input parameters. Flight path and control input data were collected from pilots undertaking a jet transport aircraft conversion course during a series of symmetric and asymmetric approaches in a flight simulator. The flight path data were analyzed for deviations around the optimum flight path while flying an instrument landing approach. Manipulation of the flight controls was subject to analysis using a series of power spectral density measures. The flight path metrics showed no significant differences in performance between the symmetric and asymmetric approaches. However, control input frequency domain measures revealed that the pilots employed highly different control strategies in the pitch and yaw axes. The results demonstrate that to evaluate pilot performance fully in large aircraft, it is necessary to employ performance metrics targeted at both the outer control loop (flight path) and the inner control loop (flight control) parameters in parallel, evaluating both the product and process of a pilot's performance.
Variability of perceptual multistability: from brain state to individual trait
Kleinschmidt, Andreas; Sterzer, Philipp; Rees, Geraint
2012-01-01
Few phenomena are as suitable as perceptual multistability to demonstrate that the brain constructively interprets sensory input. Several studies have outlined the neural circuitry involved in generating perceptual inference but only more recently has the individual variability of this inferential process been appreciated. Studies of the interaction of evoked and ongoing neural activity show that inference itself is not merely a stimulus-triggered process but is related to the context of the current brain state into which the processing of external stimulation is embedded. As brain states fluctuate, so does perception of a given sensory input. In multistability, perceptual fluctuation rates are consistent for a given individual but vary considerably between individuals. There has been some evidence for a genetic basis for these individual differences and recent morphometric studies of parietal lobe regions have identified neuroanatomical substrates for individual variability in spontaneous switching behaviour. Moreover, disrupting the function of these latter regions by transcranial magnetic stimulation yields systematic interference effects on switching behaviour, further arguing for a causal role of these regions in perceptual inference. Together, these studies have advanced our understanding of the biological mechanisms by which the brain constructs the contents of consciousness from sensory input. PMID:22371620
Assessment of input uncertainty by seasonally categorized latent variables using SWAT
USDA-ARS?s Scientific Manuscript database
Watershed processes have been explored with sophisticated simulation models for the past few decades. It has been stated that uncertainty attributed to alternative sources such as model parameters, forcing inputs, and measured data should be incorporated during the simulation process. Among varyin...
Terrestrial Investigation Model, TIM, has several appendices to its user guide. This is the appendix that includes an example input file in its preserved format. Both parameters and comments defining them are included.
Organic and low input farming: Pros and cons for soil health
USDA-ARS?s Scientific Manuscript database
Organic and low input farming practices have both advantages and disadvantages in building soil health and maintaining productivity. Examining the effects of farming practices on soil health parameters can aid in developing whole system strategies that promote sustainability. Application of specific...
A reduced adaptive observer for multivariable systems. [using reduced dynamic ordering
NASA Technical Reports Server (NTRS)
Carroll, R. L.; Lindorff, D. P.
1973-01-01
An adaptive observer for multivariable systems is presented for which the dynamic order of the observer is reduced, subject to mild restrictions. The observer structure depends directly upon the multivariable structure of the system rather than a transformation to a single-output system. The number of adaptive gains is at most the sum of the order of the system and the number of input parameters being adapted. Moreover, for the relatively frequent specific cases for which the number of required adaptive gains is less than the sum of system order and input parameters, the number of these gains is easily determined by inspection of the system structure. This adaptive observer possesses all the properties ascribed to the single-input single-output adpative observer. Like the other adaptive observers some restriction is required of the allowable system command input to guarantee convergence of the adaptive algorithm, but the restriction is more lenient than that required by the full-order multivariable observer. This reduced observer is not restricted to cycle systems.
Characterization of uncertainty and sensitivity of model parameters is an essential and often overlooked facet of hydrological modeling. This paper introduces an algorithm called MOESHA that combines input parameter sensitivity analyses with a genetic algorithm calibration routin...
META II Complex Systems Design and Analysis (CODA)
2011-08-01
37 3.8.7 Variables, Parameters and Constraints ............................................................. 37 3.8.8 Objective...18 Figure 7: Inputs, States, Outputs and Parameters of System Requirements Specifications ......... 19...Design Rule Based on Device Parameter ....................................................... 57 Figure 35: AEE Device Design Rules (excerpt
Program document for Energy Systems Optimization Program 2 (ESOP2). Volume 1: Engineering manual
NASA Technical Reports Server (NTRS)
Hamil, R. G.; Ferden, S. L.
1977-01-01
The Energy Systems Optimization Program, which is used to provide analyses of Modular Integrated Utility Systems (MIUS), is discussed. Modifications to the input format to allow modular inputs in specified blocks of data are described. An optimization feature which enables the program to search automatically for the minimum value of one parameter while varying the value of other parameters is reported. New program option flags for prime mover analyses and solar energy for space heating and domestic hot water are also covered.
Level density inputs in nuclear reaction codes and the role of the spin cutoff parameter
Voinov, A. V.; Grimes, S. M.; Brune, C. R.; ...
2014-09-03
Here, the proton spectrum from the 57Fe(α,p) reaction has been measured and analyzed with the Hauser-Feshbach model of nuclear reactions. Different input level density models have been tested. It was found that the best description is achieved with either Fermi-gas or constant temperature model functions obtained by fitting them to neutron resonance spacing and to discrete levels and using the spin cutoff parameter with much weaker excitation energy dependence than it is predicted by the Fermi-gas model.
Nonlinear ARMA models for the D(st) index and their physical interpretation
NASA Technical Reports Server (NTRS)
Vassiliadis, D.; Klimas, A. J.; Baker, D. N.
1996-01-01
Time series models successfully reproduce or predict geomagnetic activity indices from solar wind parameters. A method is presented that converts a type of nonlinear filter, the nonlinear Autoregressive Moving Average (ARMA) model to the nonlinear damped oscillator physical model. The oscillator parameters, the growth and decay, the oscillation frequencies and the coupling strength to the input are derived from the filter coefficients. Mathematical methods are derived to obtain unique and consistent filter coefficients while keeping the prediction error low. These methods are applied to an oscillator model for the Dst geomagnetic index driven by the solar wind input. A data set is examined in two ways: the model parameters are calculated as averages over short time intervals, and a nonlinear ARMA model is calculated and the model parameters are derived as a function of the phase space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Mark A.; Bigelow, Matthew; Gilkey, Jeff C.
The Super Strypi SWIL is a six degree-of-freedom (6DOF) simulation for the Super Strypi Launch Vehicle that includes a subset of the Super Strypi NGC software (guidance, ACS and sequencer). Aerodynamic and propulsive forces, mass properties, ACS (attitude control system) parameters, guidance parameters and Monte-Carlo parameters are defined in input files. Output parameters are saved to a Matlab mat file.
NASA Technical Reports Server (NTRS)
Cageao, R. P.; Ha, Y. L.; Jiang, Y.; Morgan, M. F.; Yung, Y. L.; Sander, S. P.
1997-01-01
A calculation of the A2 sigma --> X2 pi (0, 0) band emission rate factors and line center absorption cross sections of OH applicable to its measurement using solar resonant fluorescence in the terrestrial atmosphere is presented in this paper. The most accurate available line parameters have been used. Special consideration has been given to the solar input flux because of its highly structured Fraunhofer spectrum. The calculation for the OH atmospheric emission rate factor in the solar resonant fluorescent case is described in detail with examples and intermediate results. Results of this calculation of OH emission rate factors for individual rotational lines are on average 30% lower than the values obtained in an earlier work.
Stress wave attenuation in thin structures by ultrasonic through-transmission
NASA Technical Reports Server (NTRS)
Lee, S. S.; Williams, J. H., Jr.
1980-01-01
The steady state amplitude of the output of an ultrasonic through transmission measurement is analyzed and the result is given in closed form. Provided that the product of the input and output transduction ratios; the specimen-transducer reflection coefficient; the specimen-transducer phase shift parameter; and the material phase velocity are known, this analysis gives a means for determining the through-thickness attenuation of an individual thin sample. Multiple stress wave reflections are taken into account and so signal echoes do not represent a difficulty. An example is presented for a graphite fiber epoxy composite (Hercules AS/3501-6). A direct method for continuous or intermittent monitoring of through thickness attenuation of plate structures which may be subject to service structural degradation is provided.
Nonlinear temperature dependent failure analysis of finite width composite laminates
NASA Technical Reports Server (NTRS)
Nagarkar, A. P.; Herakovich, C. T.
1979-01-01
A quasi-three dimensional, nonlinear elastic finite element stress analysis of finite width composite laminates including curing stresses is presented. Cross-ply, angle-ply, and two quasi-isotropic graphite/epoxy laminates are studied. Curing stresses are calculated using temperature dependent elastic properties that are input as percent retention curves, and stresses due to mechanical loading in the form of an axial strain are calculated using tangent modulii obtained by Ramberg-Osgood parameters. It is shown that curing stresses and stresses due to tensile loading are significant as edge effects in all types of laminate studies. The tensor polynomial failure criterion is used to predict the initiation of failure. The mode of failure is predicted by examining individual stress contributions to the tensor polynomial.
The STScI STIS Pipeline V: Cosmic Ray Rejection
NASA Astrophysics Data System (ADS)
Baum, Stefi; Hsu, J. C.; Hodge, Phil; Ferguson, Harry
1996-07-01
In this ISR we describe calstis-2, the calstis calibration module which combines CRSPLIT exposures to produce a single cosmic ray rejected image. Cosmic ray rejection in the STIS pipeline will follow the same basic philosophy as does the STSDAS task crrej - a series of separate CRSPLIT exposures are combined to produce a single summed image, where discrepant (different by some number of sigma from the guess value) are discarded in forming the output image. The calstis pipeline is able to perform this cosmic ray rejection because the individually commanded exposures are associated together into a single dataset by TRANS and generic conversion. The crrej will also exist as a task in STSDAS to allow users to reperform the cosmic ray rejection, altering the input parameters.
Spectral analysis of shielded gamma ray sources using precalculated library data
NASA Astrophysics Data System (ADS)
Holmes, Thomas Wesley; Gardner, Robin P.
2015-11-01
In this work, an approach has been developed for determining the intensity of a shielded source by first determining the thicknesses of three different shielding materials from a passively collected gamma-ray spectrum by making comparisons with predetermined shielded spectra. These evaluations are dependent on the accuracy and validity of the predetermined library spectra which were created by changing the thicknesses of the three chosen materials lead, aluminum and wood that are used to simulate any actual shielding. Each of the spectra produced was generated using MCNP5 with a sufficiently large number of histories to ensure a low relative error at each channel. The materials were held in the same respective order from source to detector, where each material consisted of three individual thicknesses and a null condition. This then produced two separate data sets of 27 total shielding material situations and subsequent predetermined libraries that were created for each radionuclide source used. The technique used to calculate the thicknesses of the materials implements a Levenberg-Marquardt nonlinear search that employs a tri-linear interpolation with the respective predetermined libraries within each channel for the supplied input unknown spectrum. Given that the nonlinear parameters require an initial guess for the calculations, the approach demonstrates first that when the correct values are input, the correct thicknesses are found. It then demonstrates that when multiple trials of random values are input for each of the nonlinear parameters, the average of the calculated solutions that successfully converges also produced the correct thicknesses. Under situations with sufficient information known about the detection situation at hand, the method was shown to behave in a manner that produces reasonable results and can serve as a good preliminary solution. This technique has the capability to be used in a variety of full spectrum inverse analysis problems including homeland security issues.
Transformation of Galilean satellite parameters to J2000
NASA Astrophysics Data System (ADS)
Lieske, J. H.
1998-09-01
The so-called galsat software has the capability of computing Earth-equatorial coordinates of Jupiter's Galilean satellies in an arbitrary reference frame, not just that of B1950. The 50 parameters which define the theory of motion of the Galilean satellites (Lieske 1977, Astron. Astrophys. 56, 333--352) could also be transformed in a manner such that the same galsat computer program can be employed to compute rectangular coordinates with their values being in the J2000 system. One of the input parameters (varepsilon_ {27}) is related to the obliquity of the ecliptic and its value is normally zero in the B1950 frame. If that parameter is changed from 0 to -0.0002771, and if other input parameters are changed in a prescribed manner, then the same galsat software can be employed to produce ephemerides on the J2000 system for any of the ephemerides which employ the galsat parameters, such as those of Arlot (1982), Vasundhara (1994) and Lieske. In this paper we present the parameters whose values must be altered in order for the software to produce coordinates directly in the J2000 system.
Sensitivity Analysis of Cf-252 (sf) Neutron and Gamma Observables in CGMF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, Austin Lewis; Talou, Patrick; Stetcu, Ionel
CGMF is a Monte Carlo code that simulates the decay of primary fission fragments by emission of neutrons and gamma rays, according to the Hauser-Feshbach equations. As the CGMF code was recently integrated into the MCNP6.2 transport code, great emphasis has been placed on providing optimal parameters to CGMF such that many different observables are accurately represented. Of these observables, the prompt neutron spectrum, prompt neutron multiplicity, prompt gamma spectrum, and prompt gamma multiplicity are crucial for accurate transport simulations of criticality and nonproliferation applications. This contribution to the ongoing efforts to improve CGMF presents a study of the sensitivitymore » of various neutron and gamma observables to several input parameters for Californium-252 spontaneous fission. Among the most influential parameters are those that affect the input yield distributions in fragment mass and total kinetic energy (TKE). A new scheme for representing Y(A,TKE) was implemented in CGMF using three fission modes, S1, S2 and SL. The sensitivity profiles were calculated for 17 total parameters, which show that the neutron multiplicity distribution is strongly affected by the TKE distribution of the fragments. The total excitation energy (TXE) of the fragments is shared according to a parameter RT, which is defined as the ratio of the light to heavy initial temperatures. The sensitivity profile of the neutron multiplicity shows a second order effect of RT on the mean neutron multiplicity. A final sensitivity profile was produced for the parameter alpha, which affects the spin of the fragments. Higher values of alpha lead to higher fragment spins, which inhibit the emission of neutrons. Understanding the sensitivity of the prompt neutron and gamma observables to the many CGMF input parameters provides a platform for the optimization of these parameters.« less
Modelling of Cosmic Molecular Masers: Introduction to a Computation Cookbook
NASA Astrophysics Data System (ADS)
Sobolev, Andrej M.; Gray, Malcolm D.
2012-07-01
Numerical modeling of molecular masers is necessary in order to understand their nature and diagnostic capabilities. Model construction requires elaboration of a basic description which allows computation, that is a definition of the parameter space and basic physical relations. Usually, this requires additional thorough studies that can consist of the following stages/parts: relevant molecular spectroscopy and collisional rate coefficients; conditions in and around the masing region (that part of space where population inversion is realized); geometry and size of the masing region (including the question of whether maser spots are discrete clumps or line-of-sight correlations in a much bigger region) and propagation of maser radiation. Output of the maser computer modeling can have the following forms: exploration of parameter space (where do inversions appear in particular maser transitions and their combinations, which parameter values describe a `typical' source, and so on); modeling of individual sources (line flux ratios, spectra, images and their variability); analysis of the pumping mechanism; predictions (new maser transitions, correlations in variability of different maser transitions, and the like). Described schemes (constituents and hierarchy) of the model input and output are based mainly on the experience of the authors and make no claim to be dogmatic.
NASA Astrophysics Data System (ADS)
Eric, L.; Vrugt, J. A.
2010-12-01
Spatially distributed hydrologic models potentially contain hundreds of parameters that need to be derived by calibration against a historical record of input-output data. The quality of this calibration strongly determines the predictive capability of the model and thus its usefulness for science-based decision making and forecasting. Unfortunately, high-dimensional optimization problems are typically difficult to solve. Here we present our recent developments to the Differential Evolution Adaptive Metropolis (DREAM) algorithm (Vrugt et al., 2009) to warrant efficient solution of high-dimensional parameter estimation problems. The algorithm samples from an archive of past states (Ter Braak and Vrugt, 2008), and uses multiple-try Metropolis sampling (Liu et al., 2000) to decrease the required burn-in time for each individual chain and increase efficiency of posterior sampling. This approach is hereafter referred to as MT-DREAM. We present results for 2 synthetic mathematical case studies, and 2 real-world examples involving from 10 to 240 parameters. Results for those cases show that our multiple-try sampler, MT-DREAM, can consistently find better solutions than other Bayesian MCMC methods. Moreover, MT-DREAM is admirably suited to be implemented and ran on a parallel machine and is therefore a powerful method for posterior inference.
Thermomechanical conditions and stresses on the friction stir welding tool
NASA Astrophysics Data System (ADS)
Atthipalli, Gowtam
Friction stir welding has been commercially used as a joining process for aluminum and other soft materials. However, the use of this process in joining of hard alloys is still developing primarily because of the lack of cost effective, long lasting tools. Here I have developed numerical models to understand the thermo mechanical conditions experienced by the FSW tool and to improve its reusability. A heat transfer and visco-plastic flow model is used to calculate the torque, and traverse force on the tool during FSW. The computed values of torque and traverse force are validated using the experimental results for FSW of AA7075, AA2524, AA6061 and Ti-6Al-4V alloys. The computed torque components are used to determine the optimum tool shoulder diameter based on the maximum use of torque and maximum grip of the tool on the plasticized workpiece material. The estimation of the optimum tool shoulder diameter for FSW of AA6061 and AA7075 was verified with experimental results. The computed values of traverse force and torque are used to calculate the maximum shear stress on the tool pin to determine the load bearing ability of the tool pin. The load bearing ability calculations are used to explain the failure of H13 steel tool during welding of AA7075 and commercially pure tungsten during welding of L80 steel. Artificial neural network (ANN) models are developed to predict the important FSW output parameters as function of selected input parameters. These ANN consider tool shoulder radius, pin radius, pin length, welding velocity, tool rotational speed and axial pressure as input parameters. The total torque, sliding torque, sticking torque, peak temperature, traverse force, maximum shear stress and bending stress are considered as the output for ANN models. These output parameters are selected since they define the thermomechanical conditions around the tool during FSW. The developed ANN models are used to understand the effect of various input parameters on the total torque and traverse force during FSW of AA7075 and 1018 mild steel. The ANN models are also used to determine tool safety factor for wide range of input parameters. A numerical model is developed to calculate the strain and strain rates along the streamlines during FSW. The strain and strain rate values are calculated for FSW of AA2524. Three simplified models are also developed for quick estimation of output parameters such as material velocity field, torque and peak temperature. The material velocity fields are computed by adopting an analytical method of calculating velocities for flow of non-compressible fluid between two discs where one is rotating and other is stationary. The peak temperature is estimated based on a non-dimensional correlation with dimensionless heat input. The dimensionless heat input is computed using known welding parameters and material properties. The torque is computed using an analytical function based on shear strength of the workpiece material. These simplified models are shown to be able to predict these output parameters successfully.
Simulated lumped-parameter system reduced-order adaptive control studies
NASA Technical Reports Server (NTRS)
Johnson, C. R., Jr.; Lawrence, D. A.; Taylor, T.; Malakooti, M. V.
1981-01-01
Two methods of interpreting the misbehavior of reduced order adaptive controllers are discussed. The first method is based on system input-output description and the second is based on state variable description. The implementation of the single input, single output, autoregressive, moving average system is considered.
Processing Oscillatory Signals by Incoherent Feedforward Loops
Zhang, Carolyn; You, Lingchong
2016-01-01
From the timing of amoeba development to the maintenance of stem cell pluripotency, many biological signaling pathways exhibit the ability to differentiate between pulsatile and sustained signals in the regulation of downstream gene expression. While the networks underlying this signal decoding are diverse, many are built around a common motif, the incoherent feedforward loop (IFFL), where an input simultaneously activates an output and an inhibitor of the output. With appropriate parameters, this motif can exhibit temporal adaptation, where the system is desensitized to a sustained input. This property serves as the foundation for distinguishing input signals with varying temporal profiles. Here, we use quantitative modeling to examine another property of IFFLs—the ability to process oscillatory signals. Our results indicate that the system’s ability to translate pulsatile dynamics is limited by two constraints. The kinetics of the IFFL components dictate the input range for which the network is able to decode pulsatile dynamics. In addition, a match between the network parameters and input signal characteristics is required for optimal “counting”. We elucidate one potential mechanism by which information processing occurs in natural networks, and our work has implications in the design of synthetic gene circuits for this purpose. PMID:27623175
Replacing Fortran Namelists with JSON
NASA Astrophysics Data System (ADS)
Robinson, T. E., Jr.
2017-12-01
Maintaining a log of input parameters for a climate model is very important to understanding potential causes for answer changes during the development stages. Additionally, since modern Fortran is now interoperable with C, a more modern approach to software infrastructure to include code written in C is necessary. Merging these two separate facets of climate modeling requires a quality control for monitoring changes to input parameters and model defaults that can work with both Fortran and C. JSON will soon replace namelists as the preferred key/value pair input in the GFDL model. By adding a JSON parser written in C into the model, the input can be used by all functions and subroutines in the model, errors can be handled by the model instead of by the internal namelist parser, and the values can be output into a single file that is easily parsable by readily available tools. Input JSON files can handle all of the functionality of a namelist while being portable between C and Fortran. Fortran wrappers using unlimited polymorphism are crucial to allow for simple and compact code which avoids the need for many subroutines contained in an interface. Errors can be handled with more detail by providing information about location of syntax errors or typos. The output JSON provides a ground truth for values that the model actually uses by providing not only the values loaded through the input JSON, but also any default values that were not included. This kind of quality control on model input is crucial for maintaining reproducibility and understanding any answer changes resulting from changes in the input.
Ecophysiological parameters for Pacific Northwest trees.
Amy E. Hessl; Cristina Milesi; Michael A. White; David L. Peterson; Robert E. Keane
2004-01-01
We developed a species- and location-specific database of published ecophysiological variables typically used as input parameters for biogeochemical models of coniferous and deciduous forested ecosystems in the Western United States. Parameters are based on the requirements of Biome-BGC, a widely used biogeochemical model that was originally parameterized for the...
The input variables for a numerical model of reactive solute transport in groundwater include both transport parameters, such as hydraulic conductivity and infiltration, and reaction parameters that describe the important chemical and biological processes in the system. These pa...
Nguyen, T B; Cron, G O; Perdrizet, K; Bezzina, K; Torres, C H; Chakraborty, S; Woulfe, J; Jansen, G H; Sinclair, J; Thornhill, R E; Foottit, C; Zanette, B; Cameron, I G
2015-11-01
Dynamic contrast-enhanced MR imaging parameters can be biased by poor measurement of the vascular input function. We have compared the diagnostic accuracy of dynamic contrast-enhanced MR imaging by using a phase-derived vascular input function and "bookend" T1 measurements with DSC MR imaging for preoperative grading of astrocytomas. This prospective study included 48 patients with a new pathologic diagnosis of an astrocytoma. Preoperative MR imaging was performed at 3T, which included 2 injections of 5-mL gadobutrol for dynamic contrast-enhanced and DSC MR imaging. During dynamic contrast-enhanced MR imaging, both magnitude and phase images were acquired to estimate plasma volume obtained from phase-derived vascular input function (Vp_Φ) and volume transfer constant obtained from phase-derived vascular input function (K(trans)_Φ) as well as plasma volume obtained from magnitude-derived vascular input function (Vp_SI) and volume transfer constant obtained from magnitude-derived vascular input function (K(trans)_SI). From DSC MR imaging, corrected relative CBV was computed. Four ROIs were placed over the solid part of the tumor, and the highest value among the ROIs was recorded. A Mann-Whitney U test was used to test for difference between grades. Diagnostic accuracy was assessed by using receiver operating characteristic analysis. Vp_ Φ and K(trans)_Φ values were lower for grade II compared with grade III astrocytomas (P < .05). Vp_SI and K(trans)_SI were not significantly different between grade II and grade III astrocytomas (P = .08-0.15). Relative CBV and dynamic contrast-enhanced MR imaging parameters except for K(trans)_SI were lower for grade III compared with grade IV (P ≤ .05). In differentiating low- and high-grade astrocytomas, we found no statistically significant difference in diagnostic accuracy between relative CBV and dynamic contrast-enhanced MR imaging parameters. In the preoperative grading of astrocytomas, the diagnostic accuracy of dynamic contrast-enhanced MR imaging parameters is similar to that of relative CBV. © 2015 by American Journal of Neuroradiology.
Hydrogeologic controls on summer stream temperatures in the McKenzie River basin, Oregon
Christina Tague; Michael Farrell; Gordon Grant; Sarah Lewis; Serge Rey
2007-01-01
Stream temperature is a complex function of energy inputs including solar radiation and latent and sensible heat transfer. In streams where groundwater inputs are significant, energy input through advection can also be an important control on stream temperature. For an individual stream reach, models of stream temperature can take advantage of direct measurement or...
TAIR- TRANSONIC AIRFOIL ANALYSIS COMPUTER CODE
NASA Technical Reports Server (NTRS)
Dougherty, F. C.
1994-01-01
The Transonic Airfoil analysis computer code, TAIR, was developed to employ a fast, fully implicit algorithm to solve the conservative full-potential equation for the steady transonic flow field about an arbitrary airfoil immersed in a subsonic free stream. The full-potential formulation is considered exact under the assumptions of irrotational, isentropic, and inviscid flow. These assumptions are valid for a wide range of practical transonic flows typical of modern aircraft cruise conditions. The primary features of TAIR include: a new fully implicit iteration scheme which is typically many times faster than classical successive line overrelaxation algorithms; a new, reliable artifical density spatial differencing scheme treating the conservative form of the full-potential equation; and a numerical mapping procedure capable of generating curvilinear, body-fitted finite-difference grids about arbitrary airfoil geometries. Three aspects emphasized during the development of the TAIR code were reliability, simplicity, and speed. The reliability of TAIR comes from two sources: the new algorithm employed and the implementation of effective convergence monitoring logic. TAIR achieves ease of use by employing a "default mode" that greatly simplifies code operation, especially by inexperienced users, and many useful options including: several airfoil-geometry input options, flexible user controls over program output, and a multiple solution capability. The speed of the TAIR code is attributed to the new algorithm and the manner in which it has been implemented. Input to the TAIR program consists of airfoil coordinates, aerodynamic and flow-field convergence parameters, and geometric and grid convergence parameters. The airfoil coordinates for many airfoil shapes can be generated in TAIR from just a few input parameters. Most of the other input parameters have default values which allow the user to run an analysis in the default mode by specifing only a few input parameters. Output from TAIR may include aerodynamic coefficients, the airfoil surface solution, convergence histories, and printer plots of Mach number and density contour maps. The TAIR program is written in FORTRAN IV for batch execution and has been implemented on a CDC 7600 computer with a central memory requirement of approximately 155K (octal) of 60 bit words. The TAIR program was developed in 1981.
NASA Astrophysics Data System (ADS)
Bulthuis, Kevin; Arnst, Maarten; Pattyn, Frank; Favier, Lionel
2017-04-01
Uncertainties in sea-level rise projections are mostly due to uncertainties in Antarctic ice-sheet predictions (IPCC AR5 report, 2013), because key parameters related to the current state of the Antarctic ice sheet (e.g. sub-ice-shelf melting) and future climate forcing are poorly constrained. Here, we propose to improve the predictions of Antarctic ice-sheet behaviour using new uncertainty quantification methods. As opposed to ensemble modelling (Bindschadler et al., 2013) which provides a rather limited view on input and output dispersion, new stochastic methods (Le Maître and Knio, 2010) can provide deeper insight into the impact of uncertainties on complex system behaviour. Such stochastic methods usually begin with deducing a probabilistic description of input parameter uncertainties from the available data. Then, the impact of these input parameter uncertainties on output quantities is assessed by estimating the probability distribution of the outputs by means of uncertainty propagation methods such as Monte Carlo methods or stochastic expansion methods. The use of such uncertainty propagation methods in glaciology may be computationally costly because of the high computational complexity of ice-sheet models. This challenge emphasises the importance of developing reliable and computationally efficient ice-sheet models such as the f.ETISh ice-sheet model (Pattyn, 2015), a new fast thermomechanical coupled ice sheet/ice shelf model capable of handling complex and critical processes such as the marine ice-sheet instability mechanism. Here, we apply these methods to investigate the role of uncertainties in sub-ice-shelf melting, calving rates and climate projections in assessing Antarctic contribution to sea-level rise for the next centuries using the f.ETISh model. We detail the methods and show results that provide nominal values and uncertainty bounds for future sea-level rise as a reflection of the impact of the input parameter uncertainties under consideration, as well as a ranking of the input parameter uncertainties in the order of the significance of their contribution to uncertainty in future sea-level rise. In addition, we discuss how limitations posed by the available information (poorly constrained data) pose challenges that motivate our current research.
NASA Astrophysics Data System (ADS)
Přibil, Jiří; Přibilová, Anna; Ďuračkoá, Daniela
2014-01-01
The paper describes our experiment with using the Gaussian mixture models (GMM) for classification of speech uttered by a person wearing orthodontic appliances. For the GMM classification, the input feature vectors comprise the basic and the complementary spectral properties as well as the supra-segmental parameters. Dependence of classification correctness on the number of the parameters in the input feature vector and on the computation complexity is also evaluated. In addition, an influence of the initial setting of the parameters for GMM training process was analyzed. Obtained recognition results are compared visually in the form of graphs as well as numerically in the form of tables and confusion matrices for tested sentences uttered using three configurations of orthodontic appliances.
DC servomechanism parameter identification: a Closed Loop Input Error approach.
Garrido, Ruben; Miranda, Roger
2012-01-01
This paper presents a Closed Loop Input Error (CLIE) approach for on-line parametric estimation of a continuous-time model of a DC servomechanism functioning in closed loop. A standard Proportional Derivative (PD) position controller stabilizes the loop without requiring knowledge on the servomechanism parameters. The analysis of the identification algorithm takes into account the control law employed for closing the loop. The model contains four parameters that depend on the servo inertia, viscous, and Coulomb friction as well as on a constant disturbance. Lyapunov stability theory permits assessing boundedness of the signals associated to the identification algorithm. Experiments on a laboratory prototype allows evaluating the performance of the approach. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Thomas Steven Savage, James; Pianosi, Francesca; Bates, Paul; Freer, Jim; Wagener, Thorsten
2016-11-01
Where high-resolution topographic data are available, modelers are faced with the decision of whether it is better to spend computational resource on resolving topography at finer resolutions or on running more simulations to account for various uncertain input factors (e.g., model parameters). In this paper we apply global sensitivity analysis to explore how influential the choice of spatial resolution is when compared to uncertainties in the Manning's friction coefficient parameters, the inflow hydrograph, and those stemming from the coarsening of topographic data used to produce Digital Elevation Models (DEMs). We apply the hydraulic model LISFLOOD-FP to produce several temporally and spatially variable model outputs that represent different aspects of flood inundation processes, including flood extent, water depth, and time of inundation. We find that the most influential input factor for flood extent predictions changes during the flood event, starting with the inflow hydrograph during the rising limb before switching to the channel friction parameter during peak flood inundation, and finally to the floodplain friction parameter during the drying phase of the flood event. Spatial resolution and uncertainty introduced by resampling topographic data to coarser resolutions are much more important for water depth predictions, which are also sensitive to different input factors spatially and temporally. Our findings indicate that the sensitivity of LISFLOOD-FP predictions is more complex than previously thought. Consequently, the input factors that modelers should prioritize will differ depending on the model output assessed, and the location and time of when and where this output is most relevant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Z; Vijayan, S; Rana, V
2015-06-15
Purpose: A system was developed that automatically calculates the organ and effective dose for individual fluoroscopically-guided procedures using a log of the clinical exposure parameters. Methods: We have previously developed a dose tracking system (DTS) to provide a real-time color-coded 3D- mapping of skin dose. This software produces a log file of all geometry and exposure parameters for every x-ray pulse during a procedure. The data in the log files is input into PCXMC, a Monte Carlo program that calculates organ and effective dose for projections and exposure parameters set by the user. We developed a MATLAB program to readmore » data from the log files produced by the DTS and to automatically generate the definition files in the format used by PCXMC. The processing is done at the end of a procedure after all exposures are completed. Since there are thousands of exposure pulses with various parameters for fluoroscopy, DA and DSA and at various projections, the data for exposures with similar parameters is grouped prior to entry into PCXMC to reduce the number of Monte Carlo calculations that need to be performed. Results: The software developed automatically transfers data from the DTS log file to PCXMC and runs the program for each grouping of exposure pulses. When the dose from all exposure events are calculated, the doses for each organ and all effective doses are summed to obtain procedure totals. For a complicated interventional procedure, the calculations can be completed on a PC without manual intervention in less than 30 minutes depending on the level of data grouping. Conclusion: This system allows organ dose to be calculated for individual procedures for every patient without tedious calculations or data entry so that estimates of stochastic risk can be obtained in addition to the deterministic risk estimate provided by the DTS. Partial support from NIH grant R01EB002873 and Toshiba Medical Systems Corp.« less
USDA-ARS?s Scientific Manuscript database
Hydrologic and water quality models are very sensitive to input parameter values, especially precipitation input data. With several different sources of precipitation data now available, it is quite difficult to determine which source is most appropriate under various circumstances. We used several ...
Influence of Choice of Null Network on Small-World Parameters of Structural Correlation Networks
Hosseini, S. M. Hadi; Kesler, Shelli R.
2013-01-01
In recent years, coordinated variations in brain morphology (e.g., volume, thickness) have been employed as a measure of structural association between brain regions to infer large-scale structural correlation networks. Recent evidence suggests that brain networks constructed in this manner are inherently more clustered than random networks of the same size and degree. Thus, null networks constructed by randomizing topology are not a good choice for benchmarking small-world parameters of these networks. In the present report, we investigated the influence of choice of null networks on small-world parameters of gray matter correlation networks in healthy individuals and survivors of acute lymphoblastic leukemia. Three types of null networks were studied: 1) networks constructed by topology randomization (TOP), 2) networks matched to the distributional properties of the observed covariance matrix (HQS), and 3) networks generated from correlation of randomized input data (COR). The results revealed that the choice of null network not only influences the estimated small-world parameters, it also influences the results of between-group differences in small-world parameters. In addition, at higher network densities, the choice of null network influences the direction of group differences in network measures. Our data suggest that the choice of null network is quite crucial for interpretation of group differences in small-world parameters of structural correlation networks. We argue that none of the available null models is perfect for estimation of small-world parameters for correlation networks and the relative strengths and weaknesses of the selected model should be carefully considered with respect to obtained network measures. PMID:23840672
NASA Astrophysics Data System (ADS)
Schindler, Yael; Michel, Christian; Holm, Patricia; Alewell, Christine
2010-05-01
The hyporheic zone can be characterized by multiple abiotic parameters (e.g. bulk density, texture, temperature, oxygen, ammonium, nitrate) which are all influenced directly or indirectly by the exchange processes between surface water and groundwater. These processes can vary both in time and space and are mainly driven by river discharge, ground water level and flow patterns. The input of fine sediment particles can change water-riverbed interactions through river bed clogging potentially affecting the embryonal development and survival of gravel spawning fish, such as brown trout (Salmo trutta L.). With our investigations we aim to understand these complex interactions spatially and temporally on a relevant small scale, i.e. within individual artificial brown trout redds. We designed an experimental field setup to directly investigate i) the influence of the abiotic river and redd environment on brown trout embryo development and ii) the hydrological dynamics affecting the abiotic environment in artificial brown trout. Additionally, our setup allows investigating the temporal dynamics of i) fine-sediment infiltration into the artificial redds and ii) embryo survival to two distinct developmental stages (i.e. eyed stage and hatch) The experiment was conducted in three sites of a typical Swiss river (Enziwigger, Canton of Luzern) with a strongly modified morphology. Individual sites represented a high, medium and low fine-sediment load. In each site, six artificial redds (18 in total) were built and data were collected during the entire incubation phase. Redds were located in places where natural spawning of brown trout is present. We adapted multiple established methods to the smaller scale of our river to study the dynamics of the most relevant abiotic parameters potentially affecting embryo development: Oxygen content and temperature was monitored continuously in different depths, fine sediment (bedload, suspended sediment load and its input in the river bed) was measured weekly and water samples for DOC and nitrogen components analysis were collected regularly. In addition, all redds were equipped with mini piezometers to measure the hydraulic gradient through the redds. Finally, water stage and turbidity were monitored continuously. Results of the first spawning season will be presented. Dynamic of abiotic parameters and their influence on spawning of brown trout will be discussed.
Logarithmic and power law input-output relations in sensory systems with fold-change detection.
Adler, Miri; Mayo, Avi; Alon, Uri
2014-08-01
Two central biophysical laws describe sensory responses to input signals. One is a logarithmic relationship between input and output, and the other is a power law relationship. These laws are sometimes called the Weber-Fechner law and the Stevens power law, respectively. The two laws are found in a wide variety of human sensory systems including hearing, vision, taste, and weight perception; they also occur in the responses of cells to stimuli. However the mechanistic origin of these laws is not fully understood. To address this, we consider a class of biological circuits exhibiting a property called fold-change detection (FCD). In these circuits the response dynamics depend only on the relative change in input signal and not its absolute level, a property which applies to many physiological and cellular sensory systems. We show analytically that by changing a single parameter in the FCD circuits, both logarithmic and power-law relationships emerge; these laws are modified versions of the Weber-Fechner and Stevens laws. The parameter that determines which law is found is the steepness (effective Hill coefficient) of the effect of the internal variable on the output. This finding applies to major circuit architectures found in biological systems, including the incoherent feed-forward loop and nonlinear integral feedback loops. Therefore, if one measures the response to different fold changes in input signal and observes a logarithmic or power law, the present theory can be used to rule out certain FCD mechanisms, and to predict their cooperativity parameter. We demonstrate this approach using data from eukaryotic chemotaxis signaling.
NASA Astrophysics Data System (ADS)
Zhu, Yuchuan; Yang, Xulei; Wereley, Norman M.
2016-08-01
In this paper, focusing on the application-oriented giant magnetostrictive material (GMM)-based electro-hydrostatic actuator, which features an applied magnetic field at high frequency and high amplitude, and concentrating on the static and dynamic characteristics of a giant magnetostrictive actuator (GMA) considering the prestress effect on the GMM rod and the electrical input dynamics involving the power amplifier and the inductive coil, a methodology for studying the static and dynamic characteristics of a GMA using the hysteresis loop as a tool is developed. A GMA that can display the preforce on the GMM rod in real-time is designed, and a magnetostrictive model dependent on the prestress on a GMM rod instead of the existing quadratic domain rotation model is proposed. Additionally, an electrical input dynamics model to excite GMA is developed according to the simplified circuit diagram, and the corresponding parameters are identified by the experimental data. A dynamic magnetization model with the eddy current effect is deduced according to the Jiles-Atherton model and the Maxwell equations. Next, all of the parameters, including the electrical input characteristics, the dynamic magnetization and the mechanical structure of GMA, are identified by the experimental data from the current response, magnetization response and displacement response, respectively. Finally, a comprehensive comparison between the model results and experimental data is performed, and the results show that the test data agree well with the presented model results. An analysis on the relation between the GMA displacement response and the parameters from the electrical input dynamics, magnetization dynamics and mechanical structural dynamics is performed.
Schryver, Jack; Nutaro, James; Shankar, Mallikarjun
2015-10-30
An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. The models are translations of basic elements of an established system dynamics model of diabetes. In this model hierarchy, which mimics diabetes progression over an aggregated U.S. population, was dis-aggregated and reconstructed bottom-up at the individual (agent) level. Four levels of model complexity were defined in order to systematically evaluate which parameters are needed to mimic outputs of the system dynamics model. Moreover, the four estimated models attempted to replicate stock counts representing disease statesmore » in the system dynamics model, while estimating impacts of an elderliness factor, obesity factor and health-related behavioral parameters. Health-related behavior was modeled as a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and diffusion of social norms that spread over each agent s social network. Although the most complex agent-based simulation model contained 31 adjustable parameters, all models were considerably less complex than the system dynamics model which required numerous time series inputs to make its predictions. In all three elaborations of the baseline model provided significantly improved fits to the output of the system dynamics model. The performances of the baseline agent-based model and its extensions illustrate a promising approach to translate complex system dynamics models into agent-based model alternatives that are both conceptually simpler and capable of capturing main effects of complex local agent-agent interactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schryver, Jack; Nutaro, James; Shankar, Mallikarjun
An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. The models are translations of basic elements of an established system dynamics model of diabetes. In this model hierarchy, which mimics diabetes progression over an aggregated U.S. population, was dis-aggregated and reconstructed bottom-up at the individual (agent) level. Four levels of model complexity were defined in order to systematically evaluate which parameters are needed to mimic outputs of the system dynamics model. Moreover, the four estimated models attempted to replicate stock counts representing disease statesmore » in the system dynamics model, while estimating impacts of an elderliness factor, obesity factor and health-related behavioral parameters. Health-related behavior was modeled as a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and diffusion of social norms that spread over each agent s social network. Although the most complex agent-based simulation model contained 31 adjustable parameters, all models were considerably less complex than the system dynamics model which required numerous time series inputs to make its predictions. In all three elaborations of the baseline model provided significantly improved fits to the output of the system dynamics model. The performances of the baseline agent-based model and its extensions illustrate a promising approach to translate complex system dynamics models into agent-based model alternatives that are both conceptually simpler and capable of capturing main effects of complex local agent-agent interactions.« less
van der Velde-Koerts, Trijntje; Breysse, Nicolas; Pattingre, Lauriane; Hamey, Paul Y; Lutze, Jason; Mahieu, Karin; Margerison, Sam; Ossendorp, Bernadette C; Reich, Hermine; Rietveld, Anton; Sarda, Xavier; Vial, Gaelle; Sieke, Christian
2018-06-03
In 2015 a scientific workshop was held in Geneva, where updating the International Estimate of Short-Term Intake (IESTI) equations was suggested. This paper studies the effects of the proposed changes in residue inputs, large portions, variability factors and unit weights on the overall short-term dietary exposure estimate. Depending on the IESTI case equation, a median increase in estimated overall exposure by a factor of 1.0-6.8 was observed when the current IESTI equations are replaced by the proposed IESTI equations. The highest increase in the estimated exposure arises from the replacement of the median residue (STMR) by the maximum residue limit (MRL) for bulked and blended commodities (case 3 equations). The change in large portion parameter does not have a significant impact on the estimated exposure. The use of large portions derived from the general population covering all age groups and bodyweights should be avoided when large portions are not expressed on an individual bodyweight basis. Replacement of the highest residue (HR) by the MRL and removal of the unit weight each increase the estimated exposure for small-, medium- and large-sized commodities (case 1, case 2a or case 2b equations). However, within the EU framework lowering of the variability factor from 7 or 5 to 3 counterbalances the effect of changes in other parameters, resulting in an estimated overall exposure change for the EU situation of a factor of 0.87-1.7 and 0.6-1.4 for IESTI case 2a and case 2b equations, respectively.
Dallas, Lorna J; Devos, Alexandre; Fievet, Bruno; Turner, Andrew; Lyons, Brett P; Jha, Awadhesh N
2016-05-01
Accurate dosimetry is critically important for ecotoxicological and radioecological studies on the potential effects of environmentally relevant radionuclides, such as tritium ((3)H). Previous studies have used basic dosimetric equations to estimate dose from (3)H exposure in ecologically important organisms, such as marine mussels. This study compares four different methods of estimating dose to adult mussels exposed to 1 or 15 MBq L(-1) tritiated water (HTO) under laboratory conditions. These methods were (1) an equation converting seawater activity concentrations to dose rate with fixed parameters; (2) input into the ERICA tool of seawater activity concentrations only; (3) input into the ERICA tool of estimated whole organism concentrations (woTACs), comprising dry activity plus estimated tissue free water tritium (TFWT) activity (TFWT volume × seawater activity concentration); and (4) input into the ERICA tool of measured whole organism activity concentrations, comprising dry activity plus measured TFWT activity (TFWT volume × TFWT activity concentration). Methods 3 and 4 are recommended for future ecotoxicological experiments as they produce values for individual animals and are not reliant on transfer predictions (estimation of concentration ratio). Method 1 may be suitable if measured whole organism concentrations are not available, as it produced results between 3 and 4. As there are technical complications to accurately measuring TFWT, we recommend that future radiotoxicological studies on mussels or other aquatic invertebrates measure whole organism activity in non-dried tissues (i.e. incorporating TFWT and dry activity as one, rather than as separate fractions) and input this data into the ERICA tool. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Rhee, Ihnseok; Speyer, Jason L.
1990-01-01
A game theoretic controller is developed for a linear time-invariant system with parameter uncertainties in system and input matrices. The input-output decomposition modeling for the plant uncertainty is adopted. The uncertain dynamic system is represented as an internal feedback loop in which the system is assumed forced by fictitious disturbance caused by the parameter uncertainty. By considering the input and the fictitious disturbance as two noncooperative players, a differential game problem is constructed. It is shown that the resulting time invariant controller stabilizes the uncertain system for a prescribed uncertainty bound. This game theoretic controller is applied to the momentum management and attitude control of the Space Station in the presence of uncertainties in the moments of inertia. Inclusion of the external disturbance torque to the design procedure results in a dynamical feedback controller which consists of conventional PID control and cyclic disturbance rejection filter. It is shown that the game theoretic design, comparing to the LQR design or pole placement design, improves the stability robustness with respect to inertia variations.
A system performance throughput model applicable to advanced manned telescience systems
NASA Technical Reports Server (NTRS)
Haines, Richard F.
1990-01-01
As automated space systems become more complex, autonomous, and opaque to the flight crew, it becomes increasingly difficult to determine whether the total system is performing as it should. Some of the complex and interrelated human performance measurement issues are addressed that are related to total system validation. An evaluative throughput model is presented which can be used to generate a human operator-related benchmark or figure of merit for a given system which involves humans at the input and output ends as well as other automated intelligent agents. The concept of sustained and accurate command/control data information transfer is introduced. The first two input parameters of the model involve nominal and off-nominal predicted events. The first of these calls for a detailed task analysis while the second is for a contingency event assessment. The last two required input parameters involving actual (measured) events, namely human performance and continuous semi-automated system performance. An expression combining these four parameters was found using digital simulations and identical, representative, random data to yield the smallest variance.
Prediction of Film Cooling Effectiveness on a Gas Turbine Blade Leading Edge Using ANN and CFD
NASA Astrophysics Data System (ADS)
Dávalos, J. O.; García, J. C.; Urquiza, G.; Huicochea, A.; De Santiago, O.
2018-05-01
In this work, the area-averaged film cooling effectiveness (AAFCE) on a gas turbine blade leading edge was predicted by employing an artificial neural network (ANN) using as input variables: hole diameter, injection angle, blowing ratio, hole and columns pitch. The database used to train the network was built using computational fluid dynamics (CFD) based on a two level full factorial design of experiments. The CFD numerical model was validated with an experimental rig, where a first stage blade of a gas turbine was represented by a cylindrical specimen. The ANN architecture was composed of three layers with four neurons in hidden layer and Levenberg-Marquardt was selected as ANN optimization algorithm. The AAFCE was successfully predicted by the ANN with a regression coefficient R2<0.99 and a root mean square error RMSE=0.0038. The ANN weight coefficients were used to estimate the relative importance of the input parameters. Blowing ratio was the most influential parameter with relative importance of 40.36 % followed by hole diameter. Additionally, by using the ANN model, the relationship between input parameters was analyzed.
NASA Astrophysics Data System (ADS)
Nasr, M.; Anwar, S.; El-Tamimi, A.; Pervaiz, S.
2018-04-01
Titanium and its alloys e.g. Ti6Al4V have widespread applications in aerospace, automotive and medical industry. At the same time titanium and its alloys are regarded as difficult to machine materials due to their high strength and low thermal conductivity. Significant efforts have been dispensed to improve the accuracy of the machining processes for Ti6Al4V. The current study present the use of the rotary ultrasonic drilling (RUD) process for machining high quality holes in Ti6Al4V. The study takes into account the effects of the main RUD input parameters including spindle speed, ultrasonic power, feed rate and tool diameter on the key output responses related to the accuracy of the drilled holes including cylindricity and overcut errors. Analysis of variance (ANOVA) was employed to study the influence of the input parameters on cylindricity and overcut error. Later, regression models were developed to find the optimal set of input parameters to minimize the cylindricity and overcut errors.
Béchet, Quentin; Muñoz, Raul; Shilton, Andy; Guieysse, Benoit
2013-01-01
Temperature-tolerant Chlorella sorokiniana was cultivated in a 51-L column photobioreactor with a 1.1 m(2) illuminated area. The reactor was operated outdoors under tropical meteorological conditions (Singapore) without controlling temperature and the culture was mixed at a power input of 7.5 W/m(3) by sparging CO(2) -enriched air at 1.2 L/min (gas hold-up of 0.02). Biomass productivity averaged 10 ± 2.2 g/m(2) -day over six batch studies, yielding an average photosynthetic efficiency (PE) of 4.8 ± 0.5% of the total solar radiation (P = 0.05, N = 6). This demonstrates that temperature-tolerant microalgae can be cultivated at high PE under a mixing input sevenfold to ninefold lower than current operational guidelines (50-70 W/m(3)) and without the need for temperature control (the culture broth temperature reached 41 °C during operation). In this study, the PE value was determined based on the amount of solar radiation actually reaching the algae and this amount was estimated using a mathematical model fed with onsite solar irradiance data. This determination was found to be particularly sensitive to the value of the atmospheric diffusion coefficient, which generated a significant uncertainty in the PE calculation. The use of the mathematical model, however, confirmed that the vertical reactor geometry supported efficient photosynthesis by reducing the duration and intensity of photoinhibition events. The model also revealed that all three components of direct, diffuse, and reflected solar radiation were quantitatively important for the vertical column photobioreactor, accounting for 14%, 65%, and 21% of the total solar radiation reaching the culture, respectively. The accurate prediction of the discrete components of solar radiation reaching the algae as a function of climatic, geographic, and design parameters is therefore crucial to optimize the individual reactor geometry and the layout/spacing between the individual reactors in a reactor farm. Copyright © 2012 Wiley Periodicals, Inc.
Reduced basis ANOVA methods for partial differential equations with high-dimensional random inputs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Qifeng, E-mail: liaoqf@shanghaitech.edu.cn; Lin, Guang, E-mail: guanglin@purdue.edu
2016-07-15
In this paper we present a reduced basis ANOVA approach for partial deferential equations (PDEs) with random inputs. The ANOVA method combined with stochastic collocation methods provides model reduction in high-dimensional parameter space through decomposing high-dimensional inputs into unions of low-dimensional inputs. In this work, to further reduce the computational cost, we investigate spatial low-rank structures in the ANOVA-collocation method, and develop efficient spatial model reduction techniques using hierarchically generated reduced bases. We present a general mathematical framework of the methodology, validate its accuracy and demonstrate its efficiency with numerical experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N.D. Francis
The objective of this calculation is to develop a time dependent in-drift effective thermal conductivity parameter that will approximate heat conduction, thermal radiation, and natural convection heat transfer using a single mode of heat transfer (heat conduction). In order to reduce the physical and numerical complexity of the heat transfer processes that occur (and must be modeled) as a result of the emplacement of heat generating wastes, a single parameter will be developed that approximates all forms of heat transfer from the waste package surface to the drift wall (or from one surface exchanging heat with another). Subsequently, with thismore » single parameter, one heat transfer mechanism (e.g., conduction heat transfer) can be used in the models. The resulting parameter is to be used as input in the drift-scale process-level models applied in total system performance assessments for the site recommendation (TSPA-SR). The format of this parameter will be a time-dependent table for direct input into the thermal-hydrologic (TH) and the thermal-hydrologic-chemical (THC) models.« less
NASA Technical Reports Server (NTRS)
Chapman, C. P.; Slusser, R. A.
1980-01-01
PARAMET, interactive simulation program for parametric studies of electric vehicles, guides user through simulation by menu and series of prompts for input parameters. Program considers aerodynamic drag, rolling resistance, linear and rotational acceleration, and road gradient as forces acting on vehicle.
NASA Technical Reports Server (NTRS)
Winters, J. M.; Stark, L.
1984-01-01
Original results for a newly developed eight-order nonlinear limb antagonistic muscle model of elbow flexion and extension are presented. A wider variety of sensitivity analysis techniques are used and a systematic protocol is established that shows how the different methods can be used efficiently to complement one another for maximum insight into model sensitivity. It is explicitly shown how the sensitivity of output behaviors to model parameters is a function of the controller input sequence, i.e., of the movement task. When the task is changed (for instance, from an input sequence that results in the usual fast movement task to a slower movement that may also involve external loading, etc.) the set of parameters with high sensitivity will in general also change. Such task-specific use of sensitivity analysis techniques identifies the set of parameters most important for a given task, and even suggests task-specific model reduction possibilities.
NASA Astrophysics Data System (ADS)
Shrivastava, Akash; Mohanty, A. R.
2018-03-01
This paper proposes a model-based method to estimate single plane unbalance parameters (amplitude and phase angle) in a rotor using Kalman filter and recursive least square based input force estimation technique. Kalman filter based input force estimation technique requires state-space model and response measurements. A modified system equivalent reduction expansion process (SEREP) technique is employed to obtain a reduced-order model of the rotor system so that limited response measurements can be used. The method is demonstrated using numerical simulations on a rotor-disk-bearing system. Results are presented for different measurement sets including displacement, velocity, and rotational response. Effects of measurement noise level, filter parameters (process noise covariance and forgetting factor), and modeling error are also presented and it is observed that the unbalance parameter estimation is robust with respect to measurement noise.
NASA Astrophysics Data System (ADS)
Bag, S.; de, A.
2010-09-01
The transport phenomena based heat transfer and fluid flow calculations in weld pool require a number of input parameters. Arc efficiency, effective thermal conductivity, and viscosity in weld pool are some of these parameters, values of which are rarely known and difficult to assign a priori based on the scientific principles alone. The present work reports a bi-directional three-dimensional (3-D) heat transfer and fluid flow model, which is integrated with a real number based genetic algorithm. The bi-directional feature of the integrated model allows the identification of the values of a required set of uncertain model input parameters and, next, the design of process parameters to achieve a target weld pool dimension. The computed values are validated with measured results in linear gas-tungsten-arc (GTA) weld samples. Furthermore, a novel methodology to estimate the overall reliability of the computed solutions is also presented.
Removing flicker based on sparse color correspondences in old film restoration
NASA Astrophysics Data System (ADS)
Huang, Xi; Ding, Youdong; Yu, Bing; Xia, Tianran
2018-04-01
In the long history of human civilization, archived film is an indispensable part of it, and using digital method to repair damaged film is also a mainstream trend nowadays. In this paper, we propose a sparse color correspondences based technique to remove fading flicker for old films. Our model, combined with multi frame images to establish a simple correction model, includes three key steps. Firstly, we recover sparse color correspondences in the input frames to build a matrix with many missing entries. Secondly, we present a low-rank matrix factorization approach to estimate the unknown parameters of this model. Finally, we adopt a two-step strategy that divide the estimated parameters into reference frame parameters for color recovery correction and other frame parameters for color consistency correction to remove flicker. Our method combined multi-frames takes continuity of the input sequence into account, and the experimental results show the method can remove fading flicker efficiently.
Andrianakis, Ioannis; Vernon, Ian R.; McCreesh, Nicky; McKinley, Trevelyan J.; Oakley, Jeremy E.; Nsubuga, Rebecca N.; Goldstein, Michael; White, Richard G.
2015-01-01
Advances in scientific computing have allowed the development of complex models that are being routinely applied to problems in disease epidemiology, public health and decision making. The utility of these models depends in part on how well they can reproduce empirical data. However, fitting such models to real world data is greatly hindered both by large numbers of input and output parameters, and by long run times, such that many modelling studies lack a formal calibration methodology. We present a novel method that has the potential to improve the calibration of complex infectious disease models (hereafter called simulators). We present this in the form of a tutorial and a case study where we history match a dynamic, event-driven, individual-based stochastic HIV simulator, using extensive demographic, behavioural and epidemiological data available from Uganda. The tutorial describes history matching and emulation. History matching is an iterative procedure that reduces the simulator's input space by identifying and discarding areas that are unlikely to provide a good match to the empirical data. History matching relies on the computational efficiency of a Bayesian representation of the simulator, known as an emulator. Emulators mimic the simulator's behaviour, but are often several orders of magnitude faster to evaluate. In the case study, we use a 22 input simulator, fitting its 18 outputs simultaneously. After 9 iterations of history matching, a non-implausible region of the simulator input space was identified that was times smaller than the original input space. Simulator evaluations made within this region were found to have a 65% probability of fitting all 18 outputs. History matching and emulation are useful additions to the toolbox of infectious disease modellers. Further research is required to explicitly address the stochastic nature of the simulator as well as to account for correlations between outputs. PMID:25569850
NASA Astrophysics Data System (ADS)
Cara, Javier
2016-05-01
Modal parameters comprise natural frequencies, damping ratios, modal vectors and modal masses. In a theoretic framework, these parameters are the basis for the solution of vibration problems using the theory of modal superposition. In practice, they can be computed from input-output vibration data: the usual procedure is to estimate a mathematical model from the data and then to compute the modal parameters from the estimated model. The most popular models for input-output data are based on the frequency response function, but in recent years the state space model in the time domain has become popular among researchers and practitioners of modal analysis with experimental data. In this work, the equations to compute the modal parameters from the state space model when input and output data are available (like in combined experimental-operational modal analysis) are derived in detail using invariants of the state space model: the equations needed to compute natural frequencies, damping ratios and modal vectors are well known in the operational modal analysis framework, but the equation needed to compute the modal masses has not generated much interest in technical literature. These equations are applied to both a numerical simulation and an experimental study in the last part of the work.
Development and psychometric characteristics of the SCI-QOL Pressure Ulcers scale and short form.
Kisala, Pamela A; Tulsky, David S; Choi, Seung W; Kirshblum, Steven C
2015-05-01
To develop a self-reported measure of the subjective impact of pressure ulcers on health-related quality of life (HRQOL) in individuals with spinal cord injury (SCI) as part of the SCI quality of life (SCI-QOL) measurement system. Grounded-theory based qualitative item development methods, large-scale item calibration testing, confirmatory factor analysis (CFA), and item response theory-based psychometric analysis. Five SCI Model System centers and one Department of Veterans Affairs medical center in the United States. Adults with traumatic SCI. SCI-QOL Pressure Ulcers scale. 189 individuals with traumatic SCI who experienced a pressure ulcer within the past 7 days completed 30 items related to pressure ulcers. CFA confirmed a unidimensional pool of items. IRT analyses were conducted. A constrained Graded Response Model with a constant slope parameter was used to estimate item thresholds for the 12 retained items. The 12-item SCI-QOL Pressure Ulcers scale is unique in that it is specifically targeted to individuals with spinal cord injury and at every stage of development has included input from individuals with SCI. Furthermore, use of CFA and IRT methods provide flexibility and precision of measurement. The scale may be administered in its entirety or as a 7-item "short form" and is available for both research and clinical practice.
Simon, Steven L; Hoffman, F Owen; Hofer, Eduard
2015-01-01
Retrospective dose estimation, particularly dose reconstruction that supports epidemiological investigations of health risk, relies on various strategies that include models of physical processes and exposure conditions with detail ranging from simple to complex. Quantification of dose uncertainty is an essential component of assessments for health risk studies since, as is well understood, it is impossible to retrospectively determine the true dose for each person. To address uncertainty in dose estimation, numerical simulation tools have become commonplace and there is now an increased understanding about the needs and what is required for models used to estimate cohort doses (in the absence of direct measurement) to evaluate dose response. It now appears that for dose-response algorithms to derive the best, unbiased estimate of health risk, we need to understand the type, magnitude and interrelationships of the uncertainties of model assumptions, parameters and input data used in the associated dose estimation models. Heretofore, uncertainty analysis of dose estimates did not always properly distinguish between categories of errors, e.g., uncertainty that is specific to each subject (i.e., unshared error), and uncertainty of doses from a lack of understanding and knowledge about parameter values that are shared to varying degrees by numbers of subsets of the cohort. While mathematical propagation of errors by Monte Carlo simulation methods has been used for years to estimate the uncertainty of an individual subject's dose, it was almost always conducted without consideration of dependencies between subjects. In retrospect, these types of simple analyses are not suitable for studies with complex dose models, particularly when important input data are missing or otherwise not available. The dose estimation strategy presented here is a simulation method that corrects the previous deficiencies of analytical or simple Monte Carlo error propagation methods and is termed, due to its capability to maintain separation between shared and unshared errors, the two-dimensional Monte Carlo (2DMC) procedure. Simply put, the 2DMC method simulates alternative, possibly true, sets (or vectors) of doses for an entire cohort rather than a single set that emerges when each individual's dose is estimated independently from other subjects. Moreover, estimated doses within each simulated vector maintain proper inter-relationships such that the estimated doses for members of a cohort subgroup that share common lifestyle attributes and sources of uncertainty are properly correlated. The 2DMC procedure simulates inter-individual variability of possibly true doses within each dose vector and captures the influence of uncertainty in the values of dosimetric parameters across multiple realizations of possibly true vectors of cohort doses. The primary characteristic of the 2DMC approach, as well as its strength, are defined by the proper separation between uncertainties shared by members of the entire cohort or members of defined cohort subsets, and uncertainties that are individual-specific and therefore unshared.
Emulation for probabilistic weather forecasting
NASA Astrophysics Data System (ADS)
Cornford, Dan; Barillec, Remi
2010-05-01
Numerical weather prediction models are typically very expensive to run due to their complexity and resolution. Characterising the sensitivity of the model to its initial condition and/or to its parameters requires numerous runs of the model, which is impractical for all but the simplest models. To produce probabilistic forecasts requires knowledge of the distribution of the model outputs, given the distribution over the inputs, where the inputs include the initial conditions, boundary conditions and model parameters. Such uncertainty analysis for complex weather prediction models seems a long way off, given current computing power, with ensembles providing only a partial answer. One possible way forward that we develop in this work is the use of statistical emulators. Emulators provide an efficient statistical approximation to the model (or simulator) while quantifying the uncertainty introduced. In the emulator framework, a Gaussian process is fitted to the simulator response as a function of the simulator inputs using some training data. The emulator is essentially an interpolator of the simulator output and the response in unobserved areas is dictated by the choice of covariance structure and parameters in the Gaussian process. Suitable parameters are inferred from the data in a maximum likelihood, or Bayesian framework. Once trained, the emulator allows operations such as sensitivity analysis or uncertainty analysis to be performed at a much lower computational cost. The efficiency of emulators can be further improved by exploiting the redundancy in the simulator output through appropriate dimension reduction techniques. We demonstrate this using both Principal Component Analysis on the model output and a new reduced-rank emulator in which an optimal linear projection operator is estimated jointly with other parameters, in the context of simple low order models, such as the Lorenz 40D system. We present the application of emulators to probabilistic weather forecasting, where the construction of the emulator training set replaces the traditional ensemble model runs. Thus the actual forecast distributions are computed using the emulator conditioned on the ‘ensemble runs' which are chosen to explore the plausible input space using relatively crude experimental design methods. One benefit here is that the ensemble does not need to be a sample from the true distribution of the input space, rather it should cover that input space in some sense. The probabilistic forecasts are computed using Monte Carlo methods sampling from the input distribution and using the emulator to produce the output distribution. Finally we discuss the limitations of this approach and briefly mention how we might use similar methods to learn the model error within a framework that incorporates a data assimilation like aspect, using emulators and learning complex model error representations. We suggest future directions for research in the area that will be necessary to apply the method to more realistic numerical weather prediction models.
NASA Astrophysics Data System (ADS)
Haas, Edwin; Klatt, Steffen; Kraus, David; Werner, Christian; Ruiz, Ignacio Santa Barbara; Kiese, Ralf; Butterbach-Bahl, Klaus
2014-05-01
Numerical simulation models are increasingly used to estimate greenhouse gas emissions at site to regional and national scales and are outlined as the most advanced methodology (Tier 3) for national emission inventory in the framework of UNFCCC reporting. Process-based models incorporate the major processes of the carbon and nitrogen cycle of terrestrial ecosystems like arable land and grasslands and are thus thought to be widely applicable at various spatial and temporal scales. The high complexity of ecosystem processes mirrored by such models requires a large number of model parameters. Many of those parameters are lumped parameters describing simultaneously the effect of environmental drivers on e.g. microbial community activity and individual processes. Thus, the precise quantification of true parameter states is often difficult or even impossible. As a result model uncertainty is not solely originating from input uncertainty but also subject to parameter-induced uncertainty. In this study we quantify regional parameter-induced model uncertainty on nitrous oxide (N2O) emissions and nitrate (NO3) leaching from arable soils of Saxony (Germany) using the biogeochemical model LandscapeDNDC. For this we calculate a regional inventory using a joint parameter distribution for key parameters describing microbial C and N turnover processes as obtained by a Bayesian calibration study. We representatively sampled 400 different parameter vectors from the discrete joint parameter distribution comprising approximately 400,000 parameter combinations and used these to calculate 400 individual realizations of the regional inventory. The spatial domain (represented by 4042 polygons) is set up with spatially explicit soil and climate information and a region-typical 3-year crop rotation consisting of winter wheat, rape- seed, and winter barley. Average N2O emission from arable soils in the state of Saxony across all 400 realizations was 1.43 ± 1.25 [kg N / ha] with a median value of 1.05 [kg N / ha]. Using the default IPCC emission factor approach (Tier 1) for direct emissions reveal a higher average N2O emission of 1.51 [kg N / ha] due to fertilizer use. In the regional uncertainty quantification the 20% likelihood range for N2O emissions is 0.79 - 1.37 [kg N / ha] (50% likelihood: 0.46 - 2.05 [kg N / ha]; 90% likelihood: 0.11 - 4.03 [kg N / ha]). Respective quantities were calculated for nitrate leaching. The method has proven its applicability to quantify parameter-induced uncertainty of simulated regional greenhouse gas emission and nitrate leaching inventories using process based biogeochemical models.
Life and reliability models for helicopter transmissions
NASA Technical Reports Server (NTRS)
Savage, M.; Knorr, R. J.; Coy, J. J.
1982-01-01
Computer models of life and reliability are presented for planetary gear trains with a fixed ring gear, input applied to the sun gear, and output taken from the planet arm. For this transmission the input and output shafts are co-axial and the input and output torques are assumed to be coaxial with these shafts. Thrust and side loading are neglected. The reliability model is based on the Weibull distributions of the individual reliabilities of the in transmission components. The system model is also a Weibull distribution. The load versus life model for the system is a power relationship as the models for the individual components. The load-life exponent and basic dynamic capacity are developed as functions of the components capacities. The models are used to compare three and four planet, 150 kW (200 hp), 5:1 reduction transmissions with 1500 rpm input speed to illustrate their use.
USDA-ARS?s Scientific Manuscript database
The use of distributed parameter models to address water resource management problems has increased in recent years. Calibration is necessary to reduce the uncertainties associated with model input parameters. Manual calibration of a distributed parameter model is a very time consuming effort. There...
Ring rolling process simulation for geometry optimization
NASA Astrophysics Data System (ADS)
Franchi, Rodolfo; Del Prete, Antonio; Donatiello, Iolanda; Calabrese, Maurizio
2017-10-01
Ring Rolling is a complex hot forming process where different rolls are involved in the production of seamless rings. Since each roll must be independently controlled, different speed laws must be set; usually, in the industrial environment, a milling curve is introduced to monitor the shape of the workpiece during the deformation in order to ensure the correct ring production. In the present paper a ring rolling process has been studied and optimized in order to obtain anular components to be used in aerospace applications. In particular, the influence of process input parameters (feed rate of the mandrel and angular speed of main roll) on geometrical features of the final ring has been evaluated. For this purpose, a three-dimensional finite element model for HRR (Hot Ring Rolling) has been implemented in SFTC DEFORM V11. The FEM model has been used to formulate a proper optimization problem. The optimization procedure has been implemented in the commercial software DS ISight in order to find the combination of process parameters which allows to minimize the percentage error of each obtained dimension with respect to its nominal value. The software allows to find the relationship between input and output parameters applying Response Surface Methodology (RSM), by using the exact values of output parameters in the control points of the design space explored through FEM simulation. Once this relationship is known, the values of the output parameters can be calculated for each combination of the input parameters. After the calculation of the response surfaces for the selected output parameters, an optimization procedure based on Genetic Algorithms has been applied. At the end, the error between each obtained dimension and its nominal value has been minimized. The constraints imposed were the maximum values of standard deviations of the dimensions obtained for the final ring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehrez, Loujaine; Ghanem, Roger; McAuliffe, Colin
multiscale framework to construct stochastic macroscopic constitutive material models is proposed. A spectral projection approach, specifically polynomial chaos expansion, has been used to construct explicit functional relationships between the homogenized properties and input parameters from finer scales. A homogenization engine embedded in Multiscale Designer, software for composite materials, has been used for the upscaling process. The framework is demonstrated using non-crimp fabric composite materials by constructing probabilistic models of the homogenized properties of a non-crimp fabric laminate in terms of the input parameters together with the homogenized properties from finer scales.
VizieR Online Data Catalog: Fundamental parameters of Kepler stars (Silva Aguirre+, 2015)
NASA Astrophysics Data System (ADS)
Silva Aguirre, V.; Davies, G. R.; Basu, S.; Christensen-Dalsgaard, J.; Creevey, O.; Metcalfe, T. S.; Bedding, T. R.; Casagrande, L.; Handberg, R.; Lund, M. N.; Nissen, P. E.; Chaplin, W. J.; Huber, D.; Serenelli, A. M.; Stello, D.; van Eylen, V.; Campante, T. L.; Elsworth, Y.; Gilliland, R. L.; Hekker, S.; Karoff, C.; Kawaler, S. D.; Kjeldsen, H.; Lundkvist, M. S.
2016-02-01
Our sample has been extracted from the 77 exoplanet host stars presented in Huber et al. (2013, Cat. J/ApJ/767/127). We have made use of the full time-base of observations from the Kepler satellite to uniformly determine precise fundamental stellar parameters, including ages, for a sample of exoplanet host stars where high-quality asteroseismic data were available. We devised a Bayesian procedure flexible in its input and applied it to different grids of models to study systematics from input physics and extract statistically robust properties for all stars. (4 data files).
Hu, Hongmei; Krasoulis, Agamemnon; Lutman, Mark; Bleeck, Stefan
2013-01-01
Cochlear implants (CIS) require efficient speech processing to maximize information transmission to the brain, especially in noise. A novel CI processing strategy was proposed in our previous studies, in which sparsity-constrained non-negative matrix factorization (NMF) was applied to the envelope matrix in order to improve the CI performance in noisy environments. It showed that the algorithm needs to be adaptive, rather than fixed, in order to adjust to acoustical conditions and individual characteristics. Here, we explore the benefit of a system that allows the user to adjust the signal processing in real time according to their individual listening needs and their individual hearing capabilities. In this system, which is based on MATLAB®, SIMULINK® and the xPC Target™ environment, the input/outupt (I/O) boards are interfaced between the SIMULINK blocks and the CI stimulation system, such that the output can be controlled successfully in the manner of a hardware-in-the-loop (HIL) simulation, hence offering a convenient way to implement a real time signal processing module that does not require any low level language. The sparsity constrained parameter of the algorithm was adapted online subjectively during an experiment with normal-hearing subjects and noise vocoded speech simulation. Results show that subjects chose different parameter values according to their own intelligibility preferences, indicating that adaptive real time algorithms are beneficial to fully explore subjective preferences. We conclude that the adaptive real time systems are beneficial for the experimental design, and such systems allow one to conduct psychophysical experiments with high ecological validity. PMID:24129021
Hu, Hongmei; Krasoulis, Agamemnon; Lutman, Mark; Bleeck, Stefan
2013-10-14
Cochlear implants (CIs) require efficient speech processing to maximize information transmission to the brain, especially in noise. A novel CI processing strategy was proposed in our previous studies, in which sparsity-constrained non-negative matrix factorization (NMF) was applied to the envelope matrix in order to improve the CI performance in noisy environments. It showed that the algorithm needs to be adaptive, rather than fixed, in order to adjust to acoustical conditions and individual characteristics. Here, we explore the benefit of a system that allows the user to adjust the signal processing in real time according to their individual listening needs and their individual hearing capabilities. In this system, which is based on MATLAB®, SIMULINK® and the xPC Target™ environment, the input/outupt (I/O) boards are interfaced between the SIMULINK blocks and the CI stimulation system, such that the output can be controlled successfully in the manner of a hardware-in-the-loop (HIL) simulation, hence offering a convenient way to implement a real time signal processing module that does not require any low level language. The sparsity constrained parameter of the algorithm was adapted online subjectively during an experiment with normal-hearing subjects and noise vocoded speech simulation. Results show that subjects chose different parameter values according to their own intelligibility preferences, indicating that adaptive real time algorithms are beneficial to fully explore subjective preferences. We conclude that the adaptive real time systems are beneficial for the experimental design, and such systems allow one to conduct psychophysical experiments with high ecological validity.
User's Guide for the Agricultural Non-Point Source (AGNPS) Pollution Model Data Generator
Finn, Michael P.; Scheidt, Douglas J.; Jaromack, Gregory M.
2003-01-01
BACKGROUND Throughout this user guide, we refer to datasets that we used in conjunction with developing of this software for supporting cartographic research and producing the datasets to conduct research. However, this software can be used with these datasets or with more 'generic' versions of data of the appropriate type. For example, throughout the guide, we refer to national land cover data (NLCD) and digital elevation model (DEM) data from the U.S. Geological Survey (USGS) at a 30-m resolution, but any digital terrain model or land cover data at any appropriate resolution will produce results. Another key point to keep in mind is to use a consistent data resolution for all the datasets per model run. The U.S. Department of Agriculture (USDA) developed the Agricultural Nonpoint Source (AGNPS) pollution model of watershed hydrology in response to the complex problem of managing nonpoint sources of pollution. AGNPS simulates the behavior of runoff, sediment, and nutrient transport from watersheds that have agriculture as their prime use. The model operates on a cell basis and is a distributed parameter, event-based model. The model requires 22 input parameters. Output parameters are grouped primarily by hydrology, sediment, and chemical output (Young and others, 1995.) Elevation, land cover, and soil are the base data from which to extract the 22 input parameters required by the AGNPS. For automatic parameter extraction, follow the general process described in this guide of extraction from the geospatial data through the AGNPS Data Generator to generate input parameters required by the pollution model (Finn and others, 2002.)
A statistical survey of heat input parameters into the cusp thermosphere
NASA Astrophysics Data System (ADS)
Moen, J. I.; Skjaeveland, A.; Carlson, H. C.
2017-12-01
Based on three winters of observational data, we present those ionosphere parameters deemed most critical to realistic space weather ionosphere and thermosphere representation and prediction, in regions impacted by variability in the cusp. The CHAMP spacecraft revealed large variability in cusp thermosphere densities, measuring frequent satellite drag enhancements, up to doublings. The community recognizes a clear need for more realistic representation of plasma flows and electron densities near the cusp. Existing average-value models produce order of magnitude errors in these parameters, resulting in large under estimations of predicted drag. We fill this knowledge gap with statistics-based specification of these key parameters over their range of observed values. The EISCAT Svalbard Radar (ESR) tracks plasma flow Vi , electron density Ne, and electron, ion temperatures Te, Ti , with consecutive 2-3 minute windshield-wipe scans of 1000x500 km areas. This allows mapping the maximum Ti of a large area within or near the cusp with high temporal resolution. In magnetic field-aligned mode the radar can measure high-resolution profiles of these plasma parameters. By deriving statistics for Ne and Ti , we enable derivation of thermosphere heating deposition under background and frictional-drag-dominated magnetic reconnection conditions. We separate our Ne and Ti profiles into quiescent and enhanced states, which are not closely correlated due to the spatial structure of the reconnection foot point. Use of our data-based parameter inputs can make order of magnitude corrections to input data driving thermosphere models, enabling removal of previous two fold drag errors.
Moving-window dynamic optimization: design of stimulation profiles for walking.
Dosen, Strahinja; Popović, Dejan B
2009-05-01
The overall goal of the research is to improve control for electrical stimulation-based assistance of walking in hemiplegic individuals. We present the simulation for generating offline input (sensors)-output (intensity of muscle stimulation) representation of walking that serves in synthesizing a rule-base for control of electrical stimulation for restoration of walking. The simulation uses new algorithm termed moving-window dynamic optimization (MWDO). The optimization criterion was to minimize the sum of the squares of tracking errors from desired trajectories with the penalty function on the total muscle efforts. The MWDO was developed in the MATLAB environment and tested using target trajectories characteristic for slow-to-normal walking recorded in healthy individual and a model with the parameters characterizing the potential hemiplegic user. The outputs of the simulation are piecewise constant intensities of electrical stimulation and trajectories generated when the calculated stimulation is applied to the model. We demonstrated the importance of this simulation by showing the outputs for healthy and hemiplegic individuals, using the same target trajectories. Results of the simulation show that the MWDO is an efficient tool for analyzing achievable trajectories and for determining the stimulation profiles that need to be delivered for good tracking.
Evolution of optimal Hill coefficients in nonlinear public goods games.
Archetti, Marco; Scheuring, István
2016-10-07
In evolutionary game theory, the effect of public goods like diffusible molecules has been modelled using linear, concave, sigmoid and step functions. The observation that biological systems are often sigmoid input-output functions, as described by the Hill equation, suggests that a sigmoid function is more realistic. The Michaelis-Menten model of enzyme kinetics, however, predicts a concave function, and while mechanistic explanations of sigmoid kinetics exist, we lack an adaptive explanation: what is the evolutionary advantage of a sigmoid benefit function? We analyse public goods games in which the shape of the benefit function can evolve, in order to determine the optimal and evolutionarily stable Hill coefficients. We find that, while the dynamics depends on whether output is controlled at the level of the individual or the population, intermediate or high Hill coefficients often evolve, leading to sigmoid input-output functions that for some parameters are so steep to resemble a step function (an on-off switch). Our results suggest that, even when the shape of the benefit function is unknown, biological public goods should be modelled using a sigmoid or step function rather than a linear or concave function. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nevers, M.B.; Whitman, R.L.; Frick, W.E.; Ge, Z.
2007-01-01
The impact of river outfalls on beach water quality depends on numerous interacting factors. The delivery of contaminants by multiple creeks greatly complicates understanding of the source contributions, especially when pollution might originate up- or down-coast of beaches. We studied two beaches along Lake Michigan that are located between two creek outfalls to determine the hydrometeorologic factors influencing near-shore microbiologic water quality and the relative impact of the creeks. The creeks continuously delivered water with high concentrations of Escherichia coli to Lake Michigan, and the direction of transport of these bacteria was affected by current direction. Current direction reversals were associated with elevated E. coli concentrations at Central Avenue beach. Rainfall, barometric pressure, wave height, wave period, and creek specific conductance were significantly related to E. coli concentration at the beaches and were the parameters used in predictive models that best described E. coli variation at the two beaches. Multiple inputs to numerous beaches complicates the analysis and understanding of the relative relationship of sources but affords opportunities for showing how these complex creek inputs might interact to yield collective or individual effects on beach water quality.
The effect of vision on postural strategies in Prader-Willi patients.
Cimolin, Veronica; Galli, Manuela; Vismara, Luca; Grugni, Graziano; Priano, Lorenzo; Capodaglio, Paolo
2011-01-01
The aim of this study was to quantify the role of visual contribution in patients with Prader-Willi syndrome (PWS) on balance maintenance using a force platform. We enrolled 14 individuals with PWS free from conditions associated with impaired balance, 44 obese (OG) and 20 healthy controls (CG). Postural sway was measured for 60s while standing on a force platform (Kistler, CH; acquisition frequency: 500 Hz) integrated with a video system. Patients maintained an upright standing position with Open Eyes (OE) and then with Closed Eyes (CE). The ratio between the value of the parameter under OE and CE conditions was measured. Under OE condition PWS and OG were characterized by higher postural instability than CG, with the PWS group showing poorer balance capacity than OG. The Romberg ratio showed that while OG and CG had lower balance without vision, PWS maintained the same performance changing from OE to CE. The integration of different sensory inputs appears similar in OG and CG with higher postural stability under OE than CE. Balance in PWS is not influenced by the elimination of visual input. Copyright © 2011 Elsevier Ltd. All rights reserved.
Uncertainty quantification and risk analyses of CO2 leakage in heterogeneous geological formations
NASA Astrophysics Data System (ADS)
Hou, Z.; Murray, C. J.; Rockhold, M. L.
2012-12-01
A stochastic sensitivity analysis framework is adopted to evaluate the impact of spatial heterogeneity in permeability on CO2 leakage risk. The leakage is defined as the total mass of CO2 moving into the overburden through the caprock-overburden interface, in both gaseous and liquid (dissolved) phases. The entropy-based framework has the ability to quantify the uncertainty associated with the input parameters in the form of prior pdfs (probability density functions). Effective sampling of the prior pdfs enables us to fully explore the parameter space and systematically evaluate the individual and combined effects of the parameters of interest on CO2 leakage risk. The parameters that are considered in the study include: mean, variance, and horizontal to vertical spatial anisotropy ratio for caprock permeability, and those same parameters for reservoir permeability. Given the sampled spatial variogram parameters, multiple realizations of permeability fields were generated using GSLIB subroutines. For each permeability field, a numerical simulator, STOMP, (in the water-salt-CO2-energy operational mode) is used to simulate the CO2 migration within the reservoir and caprock up to 50 years after injection. Due to intensive computational demand, we run both a scalable version simulator eSTOMP and serial STOMP on various supercomputers. We then perform statistical analyses and summarize the relationships between the parameters of interest (mean/variance/anisotropy ratio of caprock and reservoir permeability) and CO2 leakage ratio. We also present the effects of those parameters on CO2 plume radius and reservoir injectivity. The statistical analysis provides a reduced order model that can be used to estimate the impact of heterogeneity on caprock leakage.
Differential Geometry Applied To Least-Square Error Surface Approximations
NASA Astrophysics Data System (ADS)
Bolle, Ruud M.; Sabbah, Daniel
1987-08-01
This paper focuses on extraction of the parameters of individual surfaces from noisy depth maps. The basis for this are least-square error polynomial approximations to the range data and the curvature properties that can be computed from these approximations. The curvature properties are derived using the invariants of the Weingarten Map evaluated at the origin of local coordinate systems centered at the range points. The Weingarten Map is a well-known concept in differential geometry; a brief treatment of the differential geometry pertinent to surface curvature is given. We use the curvature properties for extracting certain surface parameters from the curvature properties of the approximations. Then we show that curvature properties alone are not enough to obtain all the parameters of the surfaces; higher order properties (information about change of curvature) are needed to obtain full parametric descriptions. This surface parameter estimation problem arises in the design of a vision system to recognize 3D objects whose surfaces are composed of planar patches and patches of quadrics of revolution. (Quadrics of revolution are quadrics that are surfaces of revolution.) A significant portion of man-made objects can be modeled using these surfaces. The actual process of recognition and parameter extraction is framed as a set of stacked parameter space transforms. The transforms are "stacked" in the sense that any one transform computes only a partial geometric description that forms the input to the next transform. Those who are interested in the organization and control of the recognition and parameter recognition process are referred to [Sabbah86], this paper briefly touches upon the organization, but concentrates mainly on geometrical aspects of the parameter extraction.
Wrapping Python around MODFLOW/MT3DMS based groundwater models
NASA Astrophysics Data System (ADS)
Post, V.
2008-12-01
Numerical models that simulate groundwater flow and solute transport require a great amount of input data that is often organized into different files. A large proportion of the input data consists of spatially-distributed model parameters. The model output consists of a variety data such as heads, fluxes and concentrations. Typically all files have different formats. Consequently, preparing input and managing output is a complex and error-prone task. Proprietary software tools are available that facilitate the preparation of input files and analysis of model outcomes. The use of such software may be limited if it does not support all the features of the groundwater model or when the costs of such tools are prohibitive. Therefore a Python library was developed that contains routines to generate input files and process output files of MODFLOW/MT3DMS based models. The library is freely available and has an open structure so that the routines can be customized and linked into other scripts and libraries. The current set of functions supports the generation of input files for MODFLOW and MT3DMS, including the capability to read spatially-distributed input parameters (e.g. hydraulic conductivity) from PNG files. Both ASCII and binary output files can be read efficiently allowing for visualization of, for example, solute concentration patterns in contour plots with superimposed flow vectors using matplotlib. Series of contour plots are then easily saved as an animation. The subroutines can also be used within scripts to calculate derived quantities such as the mass of a solute within a particular region of the model domain. Using Python as a wrapper around groundwater models provides an efficient and flexible way of processing input and output data, which is not constrained by limitations of third-party products.
NASA Astrophysics Data System (ADS)
Zhuo, L.; Mekonnen, M. M.; Hoekstra, A. Y.
2014-06-01
Water Footprint Assessment is a fast-growing field of research, but as yet little attention has been paid to the uncertainties involved. This study investigates the sensitivity of and uncertainty in crop water footprint (in m3 t-1) estimates related to uncertainties in important input variables. The study focuses on the green (from rainfall) and blue (from irrigation) water footprint of producing maize, soybean, rice, and wheat at the scale of the Yellow River basin in the period 1996-2005. A grid-based daily water balance model at a 5 by 5 arcmin resolution was applied to compute green and blue water footprints of the four crops in the Yellow River basin in the period considered. The one-at-a-time method was carried out to analyse the sensitivity of the crop water footprint to fractional changes of seven individual input variables and parameters: precipitation (PR), reference evapotranspiration (ET0), crop coefficient (Kc), crop calendar (planting date with constant growing degree days), soil water content at field capacity (Smax), yield response factor (Ky) and maximum yield (Ym). Uncertainties in crop water footprint estimates related to uncertainties in four key input variables: PR, ET0, Kc, and crop calendar were quantified through Monte Carlo simulations. The results show that the sensitivities and uncertainties differ across crop types. In general, the water footprint of crops is most sensitive to ET0 and Kc, followed by the crop calendar. Blue water footprints were more sensitive to input variability than green water footprints. The smaller the annual blue water footprint is, the higher its sensitivity to changes in PR, ET0, and Kc. The uncertainties in the total water footprint of a crop due to combined uncertainties in climatic inputs (PR and ET0) were about ±20% (at 95% confidence interval). The effect of uncertainties in ET0was dominant compared to that of PR. The uncertainties in the total water footprint of a crop as a result of combined key input uncertainties were on average ±30% (at 95% confidence level).
Advanced Integrated Display System V/STOL Program Performance Specification. Volume I.
1980-06-01
sensor inputs required before the sensor can be designated acceptable. The reactivation count of each sensor parameter which satisfies its veri...129 3.5.2 AIDS Configuration Parameters .............. 133 3.5.3 AIDS Throughput Requirements ............... 133 4 QUALITY ASSURANCE...lists the adaptation parameters of the AIDS software; these parameters include the throughput and memory requirements of the software. 3.2 SYSTEM
Alternatives for jet engine control
NASA Technical Reports Server (NTRS)
Sain, M. K.
1983-01-01
The technical progress of researches on alternatives for jet engine control, is reported. The principal new activities involved the initial testing of an input design method for choosing the inputs to a non-linear system to aid the approximation of its tensor parameters, and the beginning of order reduction studies designed to remove unnecessary monomials from tensor models.
USDA-ARS?s Scientific Manuscript database
The temptation to include model parameters and high resolution input data together with the availability of powerful optimization and uncertainty analysis algorithms has significantly enhanced the complexity of hydrologic and water quality modeling. However, the ability to take advantage of sophist...
More than words: Adults learn probabilities over categories and relationships between them.
Hudson Kam, Carla L
2009-04-01
This study examines whether human learners can acquire statistics over abstract categories and their relationships to each other. Adult learners were exposed to miniature artificial languages containing variation in the ordering of the Subject, Object, and Verb constituents. Different orders (e.g. SOV, VSO) occurred in the input with different frequencies, but the occurrence of one order versus another was not predictable. Importantly, the language was constructed such that participants could only match the overall input probabilities if they were tracking statistics over abstract categories, not over individual words. At test, participants reproduced the probabilities present in the input with a high degree of accuracy. Closer examination revealed that learner's were matching the probabilities associated with individual verbs rather than the category as a whole. However, individual nouns had no impact on word orders produced. Thus, participants learned the probabilities of a particular ordering of the abstract grammatical categories Subject and Object associated with each verb. Results suggest that statistical learning mechanisms are capable of tracking relationships between abstract linguistic categories in addition to individual items.
Revisiting the Robustness of PET-Based Textural Features in the Context of Multi-Centric Trials
Bailly, Clément; Bodet-Milin, Caroline; Couespel, Solène; Necib, Hatem; Kraeber-Bodéré, Françoise; Ansquer, Catherine; Carlier, Thomas
2016-01-01
Purpose This study aimed to investigate the variability of textural features (TF) as a function of acquisition and reconstruction parameters within the context of multi-centric trials. Methods The robustness of 15 selected TFs were studied as a function of the number of iterations, the post-filtering level, input data noise, the reconstruction algorithm and the matrix size. A combination of several reconstruction and acquisition settings was devised to mimic multi-centric conditions. We retrospectively studied data from 26 patients enrolled in a diagnostic study that aimed to evaluate the performance of PET/CT 68Ga-DOTANOC in gastro-entero-pancreatic neuroendocrine tumors. Forty-one tumors were extracted and served as the database. The coefficient of variation (COV) or the absolute deviation (for the noise study) was derived and compared statistically with SUVmax and SUVmean results. Results The majority of investigated TFs can be used in a multi-centric context when each parameter is considered individually. The impact of voxel size and noise in the input data were predominant as only 4 TFs presented a high/intermediate robustness against SUV-based metrics (Entropy, Homogeneity, RP and ZP). When combining several reconstruction settings to mimic multi-centric conditions, most of the investigated TFs were robust enough against SUVmax except Correlation, Contrast, LGRE, LGZE and LZLGE. Conclusion Considering previously published results on either reproducibility or sensitivity against delineation approach and our findings, it is feasible to consider Homogeneity, Entropy, Dissimilarity, HGRE, HGZE and ZP as relevant for being used in multi-centric trials. PMID:27467882
A dimension-wise analysis method for the structural-acoustic system with interval parameters
NASA Astrophysics Data System (ADS)
Xu, Menghui; Du, Jianke; Wang, Chong; Li, Yunlong
2017-04-01
The interval structural-acoustic analysis is mainly accomplished by interval and subinterval perturbation methods. Potential limitations for these intrusive methods include overestimation or interval translation effect for the former and prohibitive computational cost for the latter. In this paper, a dimension-wise analysis method is thus proposed to overcome these potential limitations. In this method, a sectional curve of the system response surface along each input dimensionality is firstly extracted, the minimal and maximal points of which are identified based on its Legendre polynomial approximation. And two input vectors, i.e. the minimal and maximal input vectors, are dimension-wisely assembled by the minimal and maximal points of all sectional curves. Finally, the lower and upper bounds of system response are computed by deterministic finite element analysis at the two input vectors. Two numerical examples are studied to demonstrate the effectiveness of the proposed method and show that, compared to the interval and subinterval perturbation method, a better accuracy is achieved without much compromise on efficiency by the proposed method, especially for nonlinear problems with large interval parameters.
Design and Implementation of RF Energy Harvesting System for Low-Power Electronic Devices
NASA Astrophysics Data System (ADS)
Uzun, Yunus
2016-08-01
Radio frequency (RF) energy harvester systems are a good alternative for energizing of low-power electronics devices. In this work, an RF energy harvester is presented to obtain energy from Global System for Mobile Communications (GSM) 900 MHz signals. The energy harvester, consisting of a two-stage Dickson voltage multiplier circuit and L-type impedance matching circuits, was designed, simulated, fabricated and tested experimentally in terms of its performance. Simulation and experimental works were carried out for various input power levels, load resistances and input frequencies. Both simulation and experimental works have been carried out for this frequency band. An efficiency of 45% is obtained from the system at 0 dBm input power level using the impedance matching circuit. This corresponds to the power of 450 μW and this value is sufficient for many low-power devices. The most important parameters affecting the efficiency of the RF energy harvester are the input power level, frequency band, impedance matching and voltage multiplier circuits, load resistance and the selection of diodes. RF energy harvester designs should be optimized in terms of these parameters.
NASA Astrophysics Data System (ADS)
Belleri, Basayya K.; Kerur, Shravankumar B.
2018-04-01
A computer-oriented procedure for solving the dynamic force analysis problem for general planar mechanisms is presented. This paper provides position analysis, velocity analysis, acceleration analysis and force analysis of six bar mechanism with variable topology approach. Six bar mechanism is constructed by joining two simple four bar mechanisms. Initially the position, velocity and acceleration analysis of first four bar mechanism are determined by using the input parameters. The outputs (angular displacement, velocity and acceleration of rocker)of first four bar mechanism are used as input parameter for the second four bar mechanism and the position, velocity, acceleration and forces are analyzed. With out-put parameters of second four-bar mechanism the force analysis of first four-bar mechanism is carried out.
Monte Carlo Solution to Find Input Parameters in Systems Design Problems
NASA Astrophysics Data System (ADS)
Arsham, Hossein
2013-06-01
Most engineering system designs, such as product, process, and service design, involve a framework for arriving at a target value for a set of experiments. This paper considers a stochastic approximation algorithm for estimating the controllable input parameter within a desired accuracy, given a target value for the performance function. Two different problems, what-if and goal-seeking problems, are explained and defined in an auxiliary simulation model, which represents a local response surface model in terms of a polynomial. A method of constructing this polynomial by a single run simulation is explained. An algorithm is given to select the design parameter for the local response surface model. Finally, the mean time to failure (MTTF) of a reliability subsystem is computed and compared with its known analytical MTTF value for validation purposes.
2010-09-01
differentiated between source codes and input/output files. The text makes references to a REMChlor-GoldSim model. The text also refers to the REMChlor...To the extent possible, the instructions should be accurate and precise. The documentation should differentiate between describing what is actually...Windows XP operating system Model Input Paran1eters. · n1e input parameters were identical to those utilized and reported by CDM (See Table .I .from
A variational approach to parameter estimation in ordinary differential equations.
Kaschek, Daniel; Timmer, Jens
2012-08-14
Ordinary differential equations are widely-used in the field of systems biology and chemical engineering to model chemical reaction networks. Numerous techniques have been developed to estimate parameters like rate constants, initial conditions or steady state concentrations from time-resolved data. In contrast to this countable set of parameters, the estimation of entire courses of network components corresponds to an innumerable set of parameters. The approach presented in this work is able to deal with course estimation for extrinsic system inputs or intrinsic reactants, both not being constrained by the reaction network itself. Our method is based on variational calculus which is carried out analytically to derive an augmented system of differential equations including the unconstrained components as ordinary state variables. Finally, conventional parameter estimation is applied to the augmented system resulting in a combined estimation of courses and parameters. The combined estimation approach takes the uncertainty in input courses correctly into account. This leads to precise parameter estimates and correct confidence intervals. In particular this implies that small motifs of large reaction networks can be analysed independently of the rest. By the use of variational methods, elements from control theory and statistics are combined allowing for future transfer of methods between the two fields.
Machine Learning Techniques for Global Sensitivity Analysis in Climate Models
NASA Astrophysics Data System (ADS)
Safta, C.; Sargsyan, K.; Ricciuto, D. M.
2017-12-01
Climate models studies are not only challenged by the compute intensive nature of these models but also by the high-dimensionality of the input parameter space. In our previous work with the land model components (Sargsyan et al., 2014) we identified subsets of 10 to 20 parameters relevant for each QoI via Bayesian compressive sensing and variance-based decomposition. Nevertheless the algorithms were challenged by the nonlinear input-output dependencies for some of the relevant QoIs. In this work we will explore a combination of techniques to extract relevant parameters for each QoI and subsequently construct surrogate models with quantified uncertainty necessary to future developments, e.g. model calibration and prediction studies. In the first step, we will compare the skill of machine-learning models (e.g. neural networks, support vector machine) to identify the optimal number of classes in selected QoIs and construct robust multi-class classifiers that will partition the parameter space in regions with smooth input-output dependencies. These classifiers will be coupled with techniques aimed at building sparse and/or low-rank surrogate models tailored to each class. Specifically we will explore and compare sparse learning techniques with low-rank tensor decompositions. These models will be used to identify parameters that are important for each QoI. Surrogate accuracy requirements are higher for subsequent model calibration studies and we will ascertain the performance of this workflow for multi-site ALM simulation ensembles.
Ozkan, Ozhan; Yildiz, Murat; Arslan, Evren; Yildiz, Sedat; Bilgin, Suleyman; Akkus, Selami; Koyuncuoglu, Hasan R; Koklukaya, Etem
2016-03-01
Fibromyalgia syndrome (FMS), usually observed commonly in females over age 30, is a rheumatic disease accompanied by extensive chronic pain. In the diagnosis of the disease non-objective psychological tests and physiological tests and laboratory test results are evaluated and clinical experiences stand out. However, these tests are insufficient in differentiating FMS with similar diseases that demonstrate symptoms of extensive pain. Thus, objective tests that would help the diagnosis are needed. This study analyzes the effect of sympathetic skin response (SSR) parameters on the auxiliary tests used in FMS diagnosis, the laboratory tests and physiological tests. The study was conducted in Suleyman Demirel University, Faculty of Medicine, Physical Medicine and Rehabilitation Clinic in Turkey with 60 patients diagnosed with FMS for the first time and a control group of 30 healthy individuals. In the study all participants underwent laboratory tests (blood tests), certain physiological tests (pulsation, skin temperature, respiration) and SSR measurements. The test data and SSR parameters obtained were classified using artificial neural network (ANN). Finally, in the ANN framework, where only laboratory and physiological test results were used as input, a simulation result of 96.51 % was obtained, which demonstrated diagnostic accuracy. This data, with the addition of SSR parameter values obtained increased to 97.67 %. This result including SSR parameters - meaning a higher diagnostic accuracy - demonstrated that SSR could be a new auxillary diagnostic method that could be used in the diagnosis of FMS.
Quantification of 18F-fluorocholine kinetics in patients with prostate cancer.
Verwer, Eline E; Oprea-Lager, Daniela E; van den Eertwegh, Alfons J M; van Moorselaar, Reindert J A; Windhorst, Albert D; Schwarte, Lothar A; Hendrikse, N Harry; Schuit, Robert C; Hoekstra, Otto S; Lammertsma, Adriaan A; Boellaard, Ronald
2015-03-01
Choline kinase is upregulated in prostate cancer, resulting in increased (18)F-fluoromethylcholine uptake. This study used pharmacokinetic modeling to validate the use of simplified methods for quantification of (18)F-fluoromethylcholine uptake in a routine clinical setting. Forty-minute dynamic PET/CT scans were acquired after injection of 204 ± 9 MBq of (18)F-fluoromethylcholine, from 8 patients with histologically proven metastasized prostate cancer. Plasma input functions were obtained using continuous arterial blood-sampling as well as using image-derived methods. Manual arterial blood samples were used for calibration and correction for plasma-to-blood ratio and metabolites. Time-activity curves were derived from volumes of interest in all visually detectable lymph node metastases. (18)F-fluoromethylcholine kinetics were studied by nonlinear regression fitting of several single- and 2-tissue plasma input models to the time-activity curves. Model selection was based on the Akaike information criterion and measures of robustness. In addition, the performance of several simplified methods, such as standardized uptake value (SUV), was assessed. Best fits were obtained using an irreversible compartment model with blood volume parameter. Parent fractions were 0.12 ± 0.4 after 20 min, necessitating individual metabolite corrections. Correspondence between venous and arterial parent fractions was low as determined by the intraclass correlation coefficient (0.61). Results for image-derived input functions that were obtained from volumes of interest in blood-pool structures distant from tissues of high (18)F-fluoromethylcholine uptake yielded good correlation to those for the blood-sampling input functions (R(2) = 0.83). SUV showed poor correlation to parameters derived from full quantitative kinetic analysis (R(2) < 0.34). In contrast, lesion activity concentration normalized to the integral of the blood activity concentration over time (SUVAUC) showed good correlation (R(2) = 0.92 for metabolite-corrected plasma; 0.65 for whole-blood activity concentrations). SUV cannot be used to quantify (18)F-fluoromethylcholine uptake. A clinical compromise could be SUVAUC derived from 2 consecutive static PET scans, one centered on a large blood-pool structure during 0-30 min after injection to obtain the blood activity concentrations and the other a whole-body scan at 30 min after injection to obtain lymph node activity concentrations. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Parker, David
2017-01-01
Finding a treatment for spinal cord injury (SCI) focuses on reconnecting the spinal cord by promoting regeneration across the lesion site. However, while regeneration is necessary for recovery, on its own it may not be sufficient. This presumably reflects the requirement for regenerated inputs to interact appropriately with the spinal cord, making sub-lesion network properties an additional influence on recovery. This review summarizes work we have done in the lamprey, a model system for SCI research. We have compared locomotor behavior (swimming) and the properties of descending inputs, locomotor networks, and sensory inputs in unlesioned animals and animals that have received complete spinal cord lesions. In the majority (∼90%) of animals swimming parameters after lesioning recovered to match those in unlesioned animals. Synaptic inputs from individual regenerated axons also matched the properties in unlesioned animals, although this was associated with changes in release parameters. This suggests against any compensation at these synapses for the reduced descending drive that will occur given that regeneration is always incomplete. Compensation instead seems to occur through diverse changes in cellular and synaptic properties in locomotor networks and proprioceptive systems below, but also above, the lesion site. Recovery of locomotor performance is thus not simply the reconnection of the two sides of the spinal cord, but reflects a distributed and varied range of spinal cord changes. While locomotor network changes are insufficient on their own for recovery, they may facilitate locomotor outputs by compensating for the reduction in descending drive. Potentiated sensory feedback may in turn be a necessary adaptation that monitors and adjusts the output from the “new” locomotor network. Rather than a single aspect, changes in different components of the motor system and their interactions may be needed after SCI. If these are general features, and where comparisons with mammalian systems can be made effects seem to be conserved, improving functional recovery in higher vertebrates will require interventions that generate the optimal spinal cord conditions conducive to recovery. The analyses needed to identify these conditions are difficult in the mammalian spinal cord, but lower vertebrate systems should help to identify the principles of the optimal spinal cord response to injury. PMID:29163065
ERIC Educational Resources Information Center
Helt, Molly S.; Fein, Deborah A.
2016-01-01
Both social input and facial feedback appear to be processed differently by individuals with autism spectrum disorder (ASD). We tested the effects of both of these types of input on laughter in children with ASD. Sensitivity to facial feedback was tested in 43 children with ASD, aged 8-14 years, and 43 typically developing children matched for…
Software Test Handbook: Software Test Guidebook. Volume 2.
1984-03-01
system test phase for usually one or more of the following three reasons. a. To simulate stress and volume tests (e.g., simulating the actions of 100...peer reviews that differ in formality, participant roles and responsibilities, output produced, and input required. a. Information Input. The input to...form (containing review summary and group decision). - Inspection- Inspection schedule and memo (defining individual roles and respon- sibilities
Comparative Modelling of the Spectra of Cool Giants
NASA Technical Reports Server (NTRS)
Lebzelter, T.; Heiter, U.; Abia, C.; Eriksson, K.; Ireland, M.; Neilson, H.; Nowotny, W; Maldonado, J; Merle, T.; Peterson, R.;
2012-01-01
Our ability to extract information from the spectra of stars depends on reliable models of stellar atmospheres and appropriate techniques for spectral synthesis. Various model codes and strategies for the analysis of stellar spectra are available today. Aims. We aim to compare the results of deriving stellar parameters using different atmosphere models and different analysis strategies. The focus is set on high-resolution spectroscopy of cool giant stars. Methods. Spectra representing four cool giant stars were made available to various groups and individuals working in the area of spectral synthesis, asking them to derive stellar parameters from the data provided. The results were discussed at a workshop in Vienna in 2010. Most of the major codes currently used in the astronomical community for analyses of stellar spectra were included in this experiment. Results. We present the results from the different groups, as well as an additional experiment comparing the synthetic spectra produced by various codes for a given set of stellar parameters. Similarities and differences of the results are discussed. Conclusions. Several valid approaches to analyze a given spectrum of a star result in quite a wide range of solutions. The main causes for the differences in parameters derived by different groups seem to lie in the physical input data and in the details of the analysis method. This clearly shows how far from a definitive abundance analysis we still are.
Assimilation of Biophysical Neuronal Dynamics in Neuromorphic VLSI.
Wang, Jun; Breen, Daniel; Akinin, Abraham; Broccard, Frederic; Abarbanel, Henry D I; Cauwenberghs, Gert
2017-12-01
Representing the biophysics of neuronal dynamics and behavior offers a principled analysis-by-synthesis approach toward understanding mechanisms of nervous system functions. We report on a set of procedures assimilating and emulating neurobiological data on a neuromorphic very large scale integrated (VLSI) circuit. The analog VLSI chip, NeuroDyn, features 384 digitally programmable parameters specifying for 4 generalized Hodgkin-Huxley neurons coupled through 12 conductance-based chemical synapses. The parameters also describe reversal potentials, maximal conductances, and spline regressed kinetic functions for ion channel gating variables. In one set of experiments, we assimilated membrane potential recorded from one of the neurons on the chip to the model structure upon which NeuroDyn was designed using the known current input sequence. We arrived at the programmed parameters except for model errors due to analog imperfections in the chip fabrication. In a related set of experiments, we replicated songbird individual neuron dynamics on NeuroDyn by estimating and configuring parameters extracted using data assimilation from intracellular neural recordings. Faithful emulation of detailed biophysical neural dynamics will enable the use of NeuroDyn as a tool to probe electrical and molecular properties of functional neural circuits. Neuroscience applications include studying the relationship between molecular properties of neurons and the emergence of different spike patterns or different brain behaviors. Clinical applications include studying and predicting effects of neuromodulators or neurodegenerative diseases on ion channel kinetics.
Šiljić Tomić, Aleksandra; Antanasijević, Davor; Ristić, Mirjana; Perić-Grujić, Aleksandra; Pocajt, Viktor
2018-04-01
This paper presents an application of experimental design for the optimization of artificial neural network (ANN) for the prediction of dissolved oxygen (DO) content in the Danube River. The aim of this research was to obtain a more reliable ANN model that uses fewer monitoring records, by simultaneous optimization of the following model parameters: number of monitoring sites, number of historical monitoring data (expressed in years), and number of input water quality parameters used. Box-Behnken three-factor at three levels experimental design was applied for simultaneous spatial, temporal, and input variables optimization of the ANN model. The prediction of DO was performed using a feed-forward back-propagation neural network (BPNN), while the selection of most important inputs was done off-model using multi-filter approach that combines a chi-square ranking in the first step with a correlation-based elimination in the second step. The contour plots of absolute and relative error response surfaces were utilized to determine the optimal values of design factors. From the contour plots, two BPNN models that cover entire Danube flow through Serbia are proposed: an upstream model (BPNN-UP) that covers 8 monitoring sites prior to Belgrade and uses 12 inputs measured in the 7-year period and a downstream model (BPNN-DOWN) which covers 9 monitoring sites and uses 11 input parameters measured in the 6-year period. The main difference between the two models is that BPNN-UP utilizes inputs such as BOD, P, and PO 4 3- , which is in accordance with the fact that this model covers northern part of Serbia (Vojvodina Autonomous Province) which is well-known for agricultural production and extensive use of fertilizers. Both models have shown very good agreement between measured and predicted DO (with R 2 ≥ 0.86) and demonstrated that they can effectively forecast DO content in the Danube River.
Development of EnergyPlus Utility to Batch Simulate Building Energy Performance on a National Scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valencia, Jayson F.; Dirks, James A.
2008-08-29
EnergyPlus is a simulation program that requires a large number of details to fully define and model a building. Hundreds or even thousands of lines in a text file are needed to run the EnergyPlus simulation depending on the size of the building. To manually create these files is a time consuming process that would not be practical when trying to create input files for thousands of buildings needed to simulate national building energy performance. To streamline the process needed to create the input files for EnergyPlus, two methods were created to work in conjunction with the National Renewable Energymore » Laboratory (NREL) Preprocessor; this reduced the hundreds of inputs needed to define a building in EnergyPlus to a small set of high-level parameters. The first method uses Java routines to perform all of the preprocessing on a Windows machine while the second method carries out all of the preprocessing on the Linux cluster by using an in-house built utility called Generalized Parametrics (GPARM). A comma delimited (CSV) input file is created to define the high-level parameters for any number of buildings. Each method then takes this CSV file and uses the data entered for each parameter to populate an extensible markup language (XML) file used by the NREL Preprocessor to automatically prepare EnergyPlus input data files (idf) using automatic building routines and macro templates. Using a Linux utility called “make”, the idf files can then be automatically run through the Linux cluster and the desired data from each building can be aggregated into one table to be analyzed. Creating a large number of EnergyPlus input files results in the ability to batch simulate building energy performance and scale the result to national energy consumption estimates.« less
NASA Astrophysics Data System (ADS)
Bauerle, William L.; Daniels, Alex B.; Barnard, David M.
2014-05-01
Sensitivity of carbon uptake and water use estimates to changes in physiology was determined with a coupled photosynthesis and stomatal conductance ( g s) model, linked to canopy microclimate with a spatially explicit scheme (MAESTRA). The sensitivity analyses were conducted over the range of intraspecific physiology parameter variation observed for Acer rubrum L. and temperate hardwood C3 (C3) vegetation across the following climate conditions: carbon dioxide concentration 200-700 ppm, photosynthetically active radiation 50-2,000 μmol m-2 s-1, air temperature 5-40 °C, relative humidity 5-95 %, and wind speed at the top of the canopy 1-10 m s-1. Five key physiological inputs [quantum yield of electron transport ( α), minimum stomatal conductance ( g 0), stomatal sensitivity to the marginal water cost of carbon gain ( g 1), maximum rate of electron transport ( J max), and maximum carboxylation rate of Rubisco ( V cmax)] changed carbon and water flux estimates ≥15 % in response to climate gradients; variation in α, J max, and V cmax input resulted in up to ~50 and 82 % intraspecific and C3 photosynthesis estimate output differences respectively. Transpiration estimates were affected up to ~46 and 147 % by differences in intraspecific and C3 g 1 and g 0 values—two parameters previously overlooked in modeling land-atmosphere carbon and water exchange. We show that a variable environment, within a canopy or along a climate gradient, changes the spatial parameter effects of g 0, g 1, α, J max, and V cmax in photosynthesis- g s models. Since variation in physiology parameter input effects are dependent on climate, this approach can be used to assess the geographical importance of key physiology model inputs when estimating large scale carbon and water exchange.
Best Practices for Reduction of Uncertainty in CFD Results
NASA Technical Reports Server (NTRS)
Mendenhall, Michael R.; Childs, Robert E.; Morrison, Joseph H.
2003-01-01
This paper describes a proposed best-practices system that will present expert knowledge in the use of CFD. The best-practices system will include specific guidelines to assist the user in problem definition, input preparation, grid generation, code selection, parameter specification, and results interpretation. The goal of the system is to assist all CFD users in obtaining high quality CFD solutions with reduced uncertainty and at lower cost for a wide range of flow problems. The best-practices system will be implemented as a software product which includes an expert system made up of knowledge databases of expert information with specific guidelines for individual codes and algorithms. The process of acquiring expert knowledge is discussed, and help from the CFD community is solicited. Benefits and challenges associated with this project are examined.
GEMPAK5 user's guide, version 5.0
NASA Technical Reports Server (NTRS)
Desjardins, Mary L.; Brill, Keith F.; Schotz, Steven S.
1991-01-01
GEMPAK is a general meteorological software package used to analyze and display conventional meteorological data as well as satellite derived parameters. The User's Guide describes the GEMPAK5 programs and input parameters and details the algorithms used for the meteorological computations.
Optimization of light quality from color mixing light-emitting diode systems for general lighting
NASA Astrophysics Data System (ADS)
Thorseth, Anders
2012-03-01
Given the problem of metamerisms inherent in color mixing in light-emitting diode (LED) systems with more than three distinct colors, a method for optimizing the spectral output of multicolor LED system with regards to standardized light quality parameters has been developed. The composite spectral power distribution from the LEDs are simulated using spectral radiometric measurements of single commercially available LEDs for varying input power, to account for the efficiency droop and other non-linear effects in electrical power vs. light output. The method uses electrical input powers as input parameters in a randomized steepest decent optimization. The resulting spectral power distributions are evaluated with regard to the light quality using the standard characteristics: CIE color rendering index, correlated color temperature and chromaticity distance. The results indicate Pareto optimal boundaries for each system, mapping the capabilities of the simulated lighting systems with regard to the light quality characteristics.
NASA Astrophysics Data System (ADS)
Mathivanan, N. Rajesh; Mouli, Chandra
2012-12-01
In this work, a new methodology based on artificial neural networks (ANN) has been developed to study the low-velocity impact characteristics of woven glass epoxy laminates of EP3 grade. To train and test the networks, multiple impact cases have been generated using statistical analysis of variance (ANOVA). Experimental tests were performed using an instrumented falling-weight impact-testing machine. Different impact velocities and impact energies on different thicknesses of laminates were considered as the input parameters of the ANN model. This model is a feed-forward back-propagation neural network. Using the input/output data of the experiments, the model was trained and tested. Further, the effects of the low-velocity impact response of the laminates at different energy levels were investigated by studying the cause-effect relationship among the influential factors using response surface methodology. The most significant parameter is determined from the other input variables through ANOVA.
Universal Approximation by Using the Correntropy Objective Function.
Nayyeri, Mojtaba; Sadoghi Yazdi, Hadi; Maskooki, Alaleh; Rouhani, Modjtaba
2017-10-16
Several objective functions have been proposed in the literature to adjust the input parameters of a node in constructive networks. Furthermore, many researchers have focused on the universal approximation capability of the network based on the existing objective functions. In this brief, we use a correntropy measure based on the sigmoid kernel in the objective function to adjust the input parameters of a newly added node in a cascade network. The proposed network is shown to be capable of approximating any continuous nonlinear mapping with probability one in a compact input sample space. Thus, the convergence is guaranteed. The performance of our method was compared with that of eight different objective functions, as well as with an existing one hidden layer feedforward network on several real regression data sets with and without impulsive noise. The experimental results indicate the benefits of using a correntropy measure in reducing the root mean square error and increasing the robustness to noise.
Random vs. Combinatorial Methods for Discrete Event Simulation of a Grid Computer Network
NASA Technical Reports Server (NTRS)
Kuhn, D. Richard; Kacker, Raghu; Lei, Yu
2010-01-01
This study compared random and t-way combinatorial inputs of a network simulator, to determine if these two approaches produce significantly different deadlock detection for varying network configurations. Modeling deadlock detection is important for analyzing configuration changes that could inadvertently degrade network operations, or to determine modifications that could be made by attackers to deliberately induce deadlock. Discrete event simulation of a network may be conducted using random generation, of inputs. In this study, we compare random with combinatorial generation of inputs. Combinatorial (or t-way) testing requires every combination of any t parameter values to be covered by at least one test. Combinatorial methods can be highly effective because empirical data suggest that nearly all failures involve the interaction of a small number of parameters (1 to 6). Thus, for example, if all deadlocks involve at most 5-way interactions between n parameters, then exhaustive testing of all n-way interactions adds no additional information that would not be obtained by testing all 5-way interactions. While the maximum degree of interaction between parameters involved in the deadlocks clearly cannot be known in advance, covering all t-way interactions may be more efficient than using random generation of inputs. In this study we tested this hypothesis for t = 2, 3, and 4 for deadlock detection in a network simulation. Achieving the same degree of coverage provided by 4-way tests would have required approximately 3.2 times as many random tests; thus combinatorial methods were more efficient for detecting deadlocks involving a higher degree of interactions. The paper reviews explanations for these results and implications for modeling and simulation.