Sample records for individual memory cells

  1. Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells.

    PubMed

    Pu, Y-F; Jiang, N; Chang, W; Yang, H-X; Li, C; Duan, L-M

    2017-05-08

    To realize long-distance quantum communication and quantum network, it is required to have multiplexed quantum memory with many memory cells. Each memory cell needs to be individually addressable and independently accessible. Here we report an experiment that realizes a multiplexed DLCZ-type quantum memory with 225 individually accessible memory cells in a macroscopic atomic ensemble. As a key element for quantum repeaters, we demonstrate that entanglement with flying optical qubits can be stored into any neighboring memory cells and read out after a programmable time with high fidelity. Experimental realization of a multiplexed quantum memory with many individually accessible memory cells and programmable control of its addressing and readout makes an important step for its application in quantum information technology.

  2. Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells

    PubMed Central

    Pu, Y-F; Jiang, N.; Chang, W.; Yang, H-X; Li, C.; Duan, L-M

    2017-01-01

    To realize long-distance quantum communication and quantum network, it is required to have multiplexed quantum memory with many memory cells. Each memory cell needs to be individually addressable and independently accessible. Here we report an experiment that realizes a multiplexed DLCZ-type quantum memory with 225 individually accessible memory cells in a macroscopic atomic ensemble. As a key element for quantum repeaters, we demonstrate that entanglement with flying optical qubits can be stored into any neighboring memory cells and read out after a programmable time with high fidelity. Experimental realization of a multiplexed quantum memory with many individually accessible memory cells and programmable control of its addressing and readout makes an important step for its application in quantum information technology. PMID:28480891

  3. A Memory B Cell Crossmatch Assay for Quantification of Donor-Specific Memory B Cells in the Peripheral Blood of HLA-Immunized Individuals.

    PubMed

    Karahan, G E; de Vaal, Y J H; Krop, J; Wehmeier, C; Roelen, D L; Claas, F H J; Heidt, S

    2017-10-01

    Humoral responses against mismatched donor HLA are routinely measured as serum HLA antibodies, which are mainly produced by bone marrow-residing plasma cells. Individuals with a history of alloimmunization but lacking serum antibodies may harbor circulating dormant memory B cells, which may rapidly become plasma cells on antigen reencounter. Currently available methods to detect HLA-specific memory B cells are scarce and insufficient in quantifying the complete donor-specific memory B cell response due to their dependence on synthetic HLA molecules. We present a highly sensitive and specific tool for quantifying donor-specific memory B cells in peripheral blood of individuals using cell lysates covering the complete HLA class I and class II repertoire of an individual. Using this enzyme-linked immunospot (ELISpot) assay, we found a median frequency of 31 HLA class I and 89 HLA class II-specific memory B cells per million IgG-producing cells directed at paternal HLA in peripheral blood samples from women (n = 22) with a history of pregnancy, using cell lysates from spouses. The donor-specific memory B cell ELISpot can be used in HLA diagnostic laboratories as a cross-match assay to quantify donor-specific memory B cells in patients with a history of sensitizing events. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  4. Abnormal B cell memory subsets dominate HIV-specific responses in infected individuals

    PubMed Central

    Kardava, Lela; Moir, Susan; Shah, Naisha; Wang, Wei; Wilson, Richard; Buckner, Clarisa M.; Santich, Brian H.; Kim, Leo J.Y.; Spurlin, Emily E.; Nelson, Amy K.; Wheatley, Adam K.; Harvey, Christopher J.; McDermott, Adrian B.; Wucherpfennig, Kai W.; Chun, Tae-Wook; Tsang, John S.; Li, Yuxing; Fauci, Anthony S.

    2014-01-01

    Recently, several neutralizing anti-HIV antibodies have been isolated from memory B cells of HIV-infected individuals. Despite extensive evidence of B cell dysfunction in HIV disease, little is known about the cells from which these rare HIV-specific antibodies originate. Accordingly, we used HIV envelope gp140 and CD4 or coreceptor (CoR) binding site (bs) mutant probes to evaluate HIV-specific responses in peripheral blood B cells of HIV-infected individuals at various stages of infection. In contrast to non-HIV responses, HIV-specific responses against gp140 were enriched within abnormal B cells, namely activated and exhausted memory subsets, which are largely absent in the blood of uninfected individuals. Responses against the CoRbs, which is a poorly neutralizing epitope, arose early, whereas those against the well-characterized neutralizing epitope CD4bs were delayed and infrequent. Enrichment of the HIV-specific response within resting memory B cells, the predominant subset in uninfected individuals, did occur in certain infected individuals who maintained low levels of plasma viremia and immune activation with or without antiretroviral therapy. The distribution of HIV-specific responses among memory B cell subsets was corroborated by transcriptional analyses. Taken together, our findings provide valuable insight into virus-specific B cell responses in HIV infection and demonstrate that memory B cell abnormalities may contribute to the ineffectiveness of the antibody response in infected individuals. PMID:24892810

  5. Single-Cell Memory Regulates a Neural Circuit for Sensory Behavior.

    PubMed

    Kobayashi, Kyogo; Nakano, Shunji; Amano, Mutsuki; Tsuboi, Daisuke; Nishioka, Tomoki; Ikeda, Shingo; Yokoyama, Genta; Kaibuchi, Kozo; Mori, Ikue

    2016-01-05

    Unveiling the molecular and cellular mechanisms underlying memory has been a challenge for the past few decades. Although synaptic plasticity is proven to be essential for memory formation, the significance of "single-cell memory" still remains elusive. Here, we exploited a primary culture system for the analysis of C. elegans neurons and show that a single thermosensory neuron has an ability to form, retain, and reset a temperature memory. Genetic and proteomic analyses found that the expression of the single-cell memory exhibits inter-individual variability, which is controlled by the evolutionarily conserved CaMKI/IV and Raf pathway. The variable responses of a sensory neuron influenced the neural activity of downstream interneurons, suggesting that modulation of the sensory neurons ultimately determines the behavioral output in C. elegans. Our results provide proof of single-cell memory and suggest that the individual differences in neural responses at the single-cell level can confer individuality. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Age and CD161 Expression Contribute to Inter-Individual Variation in Interleukin-23 Response in CD8+ Memory Human T Cells

    PubMed Central

    Abraham, Clara; Cho, Judy H.

    2013-01-01

    The interleukin-23 (IL-23) pathway plays a critical role in the pathogenesis of multiple chronic inflammatory disorders, however, inter-individual variability in IL-23-induced signal transduction in circulating human lymphocytes has not been well-defined. In this study, we observed marked, reproducible inter-individual differences in IL-23 responsiveness (measured by STAT3 phosphorylation) in peripheral blood CD8+CD45RO+ memory T and CD3+CD56+ NKT cells. Age, but not gender, was a significant (Pearson’s correlation coefficient, r = −0.37, p = 0.001) source of variability observed in CD8+CD45RO+ memory T cells, with IL-23 responsiveness gradually decreasing with increasing age. Relative to cells from individuals demonstrating low responsiveness to IL-23 stimulation, CD8+CD45RO+ memory T cells from individuals demonstrating high responsiveness to IL-23 stimulation showed increased gene expression for IL-23 receptor (IL-23R), RORC (RORγt) and CD161 (KLRB1), whereas RORA (RORα) and STAT3 expression were equivalent. Similar to CD4+ memory T cells, IL-23 responsiveness is confined to the CD161+ subset in CD8+CD45RO+ memory T cells, suggesting a similar CD161+ precursor as has been reported for CD4+ Th17 cells. We observed a very strong positive correlation between IL-23 responsiveness and the fraction of CD161+, CD8+CD45RO+ memory T cells (r = 0.80, p<0.001). Moreover, the fraction of CD161+, CD8+CD45RO+ memory T cells gradually decreases with aging (r = −0.34, p = 0.05). Our data define the inter-individual differences in IL-23 responsiveness in peripheral blood lymphocytes from the general population. Variable expression of CD161, IL-23R and RORC affects IL-23 responsiveness and contributes to the inter-individual susceptibility to IL-23-mediated defenses and inflammatory processes. PMID:23469228

  7. Fluorescently labeled dengue viruses as probes to identify antigen-specific memory B cells by multiparametric flow cytometry

    PubMed Central

    Woda, Marcia; Mathew, Anuja

    2015-01-01

    Low frequencies of memory B cells in the peripheral blood make it challenging to measure the functional and phenotypic characteristics of this antigen experienced subset of B cells without in vitro culture. To date, reagents are lacking to measure ex vivo frequencies of dengue virus (DENV)-specific memory B cells. We wanted to explore the possibility of using fluorescently labeled DENV as probes to detect antigen-specific memory B cells in the peripheral blood of DENV immune individuals. Alexa Fluor dye-labeled DENV yielded viable virus that could be stored at −80°C for long periods of time. Using a careful gating strategy and methods to decrease non-specific binding, we were able to identify a small frequency of B cells from dengue immune individuals that bound labeled DENV. Sorted DENV+ B cells from immune, but not naïve donors secreted antibodies that bound intact virions after in vitro stimulation. Overall, Alexa Fluor dye labeled -DENV are useful reagents to enable the detection and characterization of memory B cells in DENV immune individuals. PMID:25497702

  8. Reversible Reprogramming of Circulating Memory T Follicular Helper Cell Function during Chronic HIV Infection

    PubMed Central

    Cubas, Rafael; van Grevenynghe, Julien; Wills, Saintedym; Kardava, Lela; Santich, Brian H.; Buckner, Clarisa M.; Muir, Roshell; Tardif, Virginie; Nichols, Carmen; Procopio, Francesco; He, Zhong; Metcalf, Talibah; Ghneim, Khader; Locci, Michela; Ancuta, Petronella; Routy, Jean-Pierre; Trautmann, Lydie; Li, Yuxing; McDermott, Adrian B.; Koup, Rick A.; Petrovas, Constantinos; Migueles, Steven A.; Connors, Mark; Tomaras, Georgia D.; Moir, Susan; Crotty, Shane

    2015-01-01

    Despite the overwhelming benefits of antiretroviral therapy (ART) in curtailing viral load in HIV-infected individuals, ART does not fully restore cellular and humoral immunity. HIV-infected individuals under ART show reduced responses to vaccination and infections and are unable to mount an effective antiviral immune response upon ART cessation. Many factors contribute to these defects, including persistent inflammation, especially in lymphoid tissues, where T follicular helper (Tfh) cells instruct and help B cells launch an effective humoral immune response. In this study we investigated the phenotype and function of circulating memory Tfh cells as a surrogate of Tfh cells in lymph nodes and found significant impairment of this cell population in chronically HIV-infected individuals, leading to reduced B cell responses. We further show that these aberrant memory Tfh cells exhibit an IL-2–responsive gene signature and are more polarized toward a Th1 phenotype. Treatment of functional memory Tfh cells with IL-2 was able to recapitulate the detrimental reprogramming. Importantly, this defect was reversible, as interfering with the IL-2 signaling pathway helped reverse the abnormal differentiation and improved Ab responses. Thus, reversible reprogramming of memory Tfh cells in HIV-infected individuals could be used to enhance Ab responses. Altered microenvironmental conditions in lymphoid tissues leading to altered Tfh cell differentiation could provide one explanation for the poor responsiveness of HIV-infected individuals to new Ags. This explanation has important implications for the development of therapeutic interventions to enhance HIV- and vaccine-mediated Ab responses in patients under ART. PMID:26546609

  9. Fluorescently labeled dengue viruses as probes to identify antigen-specific memory B cells by multiparametric flow cytometry.

    PubMed

    Woda, Marcia; Mathew, Anuja

    2015-01-01

    Low frequencies of memory B cells in the peripheral blood make it challenging to measure the functional and phenotypic characteristics of this antigen experienced subset of B cells without in vitro culture. To date, reagents are lacking to measure ex vivo frequencies of dengue virus (DENV)-specific memory B cells. We wanted to explore the possibility of using fluorescently labeled DENV as probes to detect antigen-specific memory B cells in the peripheral blood of DENV immune individuals. Alexa Fluor dye-labeled DENV yielded viable virus that could be stored at -80°C for long periods of time. Using a careful gating strategy and methods to decrease non-specific binding, we were able to identify a small frequency of B cells from dengue immune individuals that bound labeled DENV. Sorted DENV(+) B cells from immune, but not naïve donors secreted antibodies that bound DENV after in vitro stimulation. Overall, Alexa Fluor dye-labeled DENVs are useful reagents to enable the detection and characterization of memory B cells in DENV immune individuals. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Altered Memory Circulating T Follicular Helper-B Cell Interaction in Early Acute HIV Infection

    PubMed Central

    Muir, Roshell; Metcalf, Talibah; Tardif, Virginie; Takata, Hiroshi; Phanuphak, Nittaya; Kroon, Eugene; Colby, Donn J.; Trichavaroj, Rapee; Valcour, Victor; Robb, Merlin L.; Michael, Nelson L.; Ananworanich, Jintanat; Trautmann, Lydie; Haddad, Elias K.

    2016-01-01

    The RV254 cohort of HIV-infected very early acute (4thG stage 1 and 2) (stage 1/2) and late acute (4thG stage 3) (stage 3) individuals was used to study T helper- B cell responses in acute HIV infection and the impact of early antiretroviral treatment (ART) on T and B cell function. To investigate this, the function of circulating T follicular helper cells (cTfh) from this cohort was examined, and cTfh and memory B cell populations were phenotyped. Impaired cTfh cell function was observed in individuals treated in stage 3 when compared to stage 1/2. The cTfh/B cell cocultures showed lower B cell survival and IgG secretion at stage 3 compared to stage 1/2. This coincided with lower IL-10 and increased RANTES and TNF-α suggesting a role for inflammation in altering cTfh and B cell responses. Elevated plasma viral load in stage 3 was found to correlate with decreased cTfh-mediated B cell IgG production indicating a role for increased viremia in cTfh impairment and dysfunctional humoral response. Phenotypic perturbations were also evident in the mature B cell compartment, most notably a decrease in resting memory B cells in stage 3 compared to stage 1/2, coinciding with higher viremia. Our coculture assay also suggested that intrinsic memory B cell defects could contribute to the impaired response despite at a lower level. Overall, cTfh-mediated B cell responses are significantly altered in stage 3 compared to stage 1/2, coinciding with increased inflammation and a reduction in memory B cells. These data suggest that early ART for acutely HIV infected individuals could prevent immune dysregulation while preserving cTfh function and B cell memory. PMID:27463374

  11. Cell-Type-Specific Transcriptome Analysis in the Drosophila Mushroom Body Reveals Memory-Related Changes in Gene Expression.

    PubMed

    Crocker, Amanda; Guan, Xiao-Juan; Murphy, Coleen T; Murthy, Mala

    2016-05-17

    Learning and memory formation in Drosophila rely on a network of neurons in the mushroom bodies (MBs). Whereas numerous studies have delineated roles for individual cell types within this network in aspects of learning or memory, whether or not these cells can also be distinguished by the genes they express remains unresolved. In addition, the changes in gene expression that accompany long-term memory formation within the MBs have not yet been studied by neuron type. Here, we address both issues by performing RNA sequencing on single cell types (harvested via patch pipets) within the MB. We discover that the expression of genes that encode cell surface receptors is sufficient to identify cell types and that a subset of these genes, required for sensory transduction in peripheral sensory neurons, is not only expressed within individual neurons of the MB in the central brain, but is also critical for memory formation. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Simultaneous coexpression of memory-related and effector-related genes by individual human CD8 T cells depends on antigen specificity and differentiation.

    PubMed

    Gupta, Bhawna; Iancu, Emanuela M; Gannon, Philippe O; Wieckowski, Sébastien; Baitsch, Lukas; Speiser, Daniel E; Rufer, Nathalie

    2012-07-01

    Phenotypic and functional cell properties are usually analyzed at the level of defined cell populations but not single cells. Yet, large differences between individual cells may have important functional consequences. It is likely that T-cell-mediated immunity depends on the polyfunctionality of individual T cells, rather than the sum of functions of responding T-cell subpopulations. We performed highly sensitive single-cell gene expression profiling, allowing the direct ex vivo characterization of individual virus-specific and tumor-specific T cells from healthy donors and melanoma patients. We have previously shown that vaccination with the natural tumor peptide Melan-A-induced T cells with superior effector functions as compared with vaccination with the analog peptide optimized for enhanced HLA-A*0201 binding. Here we found that natural peptide vaccination induced tumor-reactive CD8 T cells with frequent coexpression of both memory/homing-associated genes (CD27, IL7R, EOMES, CXCR3, and CCR5) and effector-related genes (IFNG, KLRD1, PRF1, and GZMB), comparable with protective Epstein-Barr virus-specific and cytomegalovirus-specific T cells. In contrast, memory/homing-associated and effector-associated genes were less frequently coexpressed after vaccination with the analog peptide. Remarkably, these findings reveal a previously unknown level of gene expression diversity among vaccine-specific and virus-specific T cells with the simultaneous coexpression of multiple memory/homing-related and effector-related genes by the same cell. Such broad functional gene expression signatures within antigen-specific T cells may be critical for mounting efficient responses to pathogens or tumors. In summary, direct ex vivo high-resolution molecular characterization of individual T cells provides key insights into the processes shaping the functional properties of tumor-specific and virus-specific T cells.

  13. Impact of Aging, Cytomegalovirus Infection, and Long-Term Treatment for Human Immunodeficiency Virus on CD8+ T-Cell Subsets

    PubMed Central

    Veel, Ellen; Westera, Liset; van Gent, Rogier; Bont, Louis; Otto, Sigrid; Ruijsink, Bram; Rabouw, Huib H.; Mudrikova, Tania; Wensing, Annemarie; Hoepelman, Andy I. M.; Borghans, José A. M.; Tesselaar, Kiki

    2018-01-01

    Both healthy aging and human immunodeficiency virus (HIV) infection lead to a progressive decline in naive CD8+ T-cell numbers and expansion of the CD8+ T-cell memory and effector compartments. HIV infection is therefore often considered a condition of premature aging. Total CD8+ T-cell numbers of HIV-infected individuals typically stay increased even after long-term (LT) combination antiretroviral treatment (cART), which is associated with an increased risk of non-AIDS morbidity and mortality. The causes of these persistent changes in the CD8+ T-cell pool remain debated. Here, we studied the impact of age, CMV infection, and LT successful cART on absolute cell numbers in different CD8+ T-cell subsets. While naïve CD8+ T-cell numbers in cART-treated individuals (N = 38) increased to healthy levels, central memory (CM), effector memory (EM), and effector CD8+ T-cell numbers remained higher than in (unselected) age-matched healthy controls (N = 107). Longitudinal analysis in a subset of patients showed that cART did result in a loss of memory CD8+ T-cells, mainly during the first year of cART, after which memory cell numbers remained relatively stable. As CMV infection is known to increase CD8+ T-cell numbers in healthy individuals, we studied whether any of the persistent changes in the CD8+ T-cell pools of cART-treated patients could be a direct reflection of the high CMV prevalence among HIV-infected individuals. We found that EM and effector CD8+ T-cell numbers in CMV+ healthy individuals (N = 87) were significantly higher than in CMV− (N = 170) healthy individuals. As a result, EM and effector CD8+ T-cell numbers in successfully cART-treated HIV-infected individuals did not deviate significantly from those of age-matched CMV+ healthy controls (N = 39). By contrast, CM T-cell numbers were quite similar in CMV+ and CMV− healthy individuals across all ages. The LT expansion of the CM CD8+ T-cell pool in cART-treated individuals could thus not be attributed directly to CMV and was also not related to residual HIV RNA or to the presence of HIV-specific CM T-cells. It remains to be investigated why the CM CD8+ T-cell subset shows seemingly irreversible changes despite years of effective treatment. PMID:29619031

  14. Strong homeostatic TCR signals induce formation of self-tolerant virtual memory CD8 T cells.

    PubMed

    Drobek, Ales; Moudra, Alena; Mueller, Daniel; Huranova, Martina; Horkova, Veronika; Pribikova, Michaela; Ivanek, Robert; Oberle, Susanne; Zehn, Dietmar; McCoy, Kathy D; Draber, Peter; Stepanek, Ondrej

    2018-05-11

    Virtual memory T cells are foreign antigen-inexperienced T cells that have acquired memory-like phenotype and constitute 10-20% of all peripheral CD8 + T cells in mice. Their origin, biological roles, and relationship to naïve and foreign antigen-experienced memory T cells are incompletely understood. By analyzing T-cell receptor repertoires and using retrogenic monoclonal T-cell populations, we demonstrate that the virtual memory T-cell formation is a so far unappreciated cell fate decision checkpoint. We describe two molecular mechanisms driving the formation of virtual memory T cells. First, virtual memory T cells originate exclusively from strongly self-reactive T cells. Second, the stoichiometry of the CD8 interaction with Lck regulates the size of the virtual memory T-cell compartment via modulating the self-reactivity of individual T cells. Although virtual memory T cells descend from the highly self-reactive clones and acquire a partial memory program, they are not more potent in inducing experimental autoimmune diabetes than naïve T cells. These data underline the importance of the variable level of self-reactivity in polyclonal T cells for the generation of functional T-cell diversity. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  15. Evaluation of profile and functionality of memory T cells in pulmonary tuberculosis.

    PubMed

    Tonaco, Marcela M; Moreira, Jôsimar D; Nunes, Fernanda F C; Loures, Cristina M G; Souza, Larissa R; Martins, Janaina M; Silva, Henrique R; Porto, Arthur Henrique R; Toledo, Vicente Paulo C P; Miranda, Silvana S; Guimarães, Tânia Mara P D

    2017-12-01

    The cells T CD4+ T and CD8+ can be subdivided into phenotypes naïve, T of central memory, T of effector memory and effector, according to the expression of surface molecules CD45RO and CD27. The T lymphocytes are cells of long life with capacity of rapid expansion and function, after a new antigenic exposure. In tuberculosis, it was found that specific memory T cells are present, however, gaps remain about the role of such cells in the disease immunology. In this study, the phenotypic profile was analyzed and characterized the functionality of CD4+ T lymphocytes and CD8+ T cells of memory and effector, in response to specific stimuli in vitro, in patients with active pulmonary TB, compared to individuals with latent infection with Mycobacterium tuberculosis the ones treated with pulmonary TB. It was observed that the group of patients with active pulmonary tuberculosis was the one which presented the highest proportion of cells T CD4+ of central memory IFN-ɣ+ e TNF-α+, suggesting that in TB, these T of central memory cells would have a profile of protective response, being an important target of study for the development of more effective vaccines; this group also developed lower proportion of CD8+ T effector lymphocytes than the others, a probable cause of specific and less effective response against the bacillus in these individuals; the ones treated for pulmonary tuberculosis were those who developed higher proportion of T CD4+ of memory central IL-17+ cells, indicating that the stimulation of long duration, with high antigenic load, followed by elimination of the pathogen, contribute to more significant generation of such cells; individuals with latent infection by M. tuberculosis and treated for pulmonary tuberculosis, showed greater response of CD8+ T effector lymphocytes IFN-ɣ+ than the controls, suggesting that these cells, as well as CD4+ T lymphocytes, have crucial role of protection against M. tuberculosis. These findings have contributed to a better understanding of the immunologic changes in M. tuberculosis infection and the development of new strategies for diagnosis and prevention of tuberculosis. Copyright © 2017. Published by Elsevier B.V.

  16. Hippocampal awake replay in fear memory retrieval

    PubMed Central

    Wu, Chun-Ting; Haggerty, Daniel; Kemere, Caleb; Ji, Daoyun

    2017-01-01

    Hippocampal place cells are key to episodic memories. How these cells participate in memory retrieval remains unclear. Here, after rats acquired a fear memory by receiving mild foot-shocks at a shock zone of a track, we analyzed place cells when the animals were placed back to the track and displayed an apparent memory retrieval behavior: avoidance of the shock zone. We found that place cells representing the shock zone were reactivated, despite the fact that the animals did not enter the shock zone. This reactivation occurred in ripple-associated awake replay of place cell sequences encoding the paths from the animal’s current positions to the shock zone, but not in place cell sequences within individual cycles of theta oscillation. The result reveals a specific place cell pattern underlying the inhibitory avoidance behavior and provides strong evidence for the involvement of awake replay in fear memory retrieval. PMID:28218916

  17. Mutation in the Fas Pathway Impairs CD8+ T Cell Memory1

    PubMed Central

    Dudani, Renu; Russell, Marsha; van Faassen, Henk; Krishnan, Lakshmi; Sad, Subash

    2014-01-01

    Fas death pathway is important for lymphocyte homeostasis, but the role of Fas pathway in T cell memory development is not clear. We show that whereas the expansion and contraction of CD8+ T cell response against Listeria monocytogenes were similar for wild-type (WT) and Fas ligand (FasL) mutant mice, the majority of memory CD8+ T cells in FasL mutant mice displayed an effector memory phenotype in the long-term in comparison with the mainly central memory phenotype displayed by memory CD8+ T cells in WT mice. Memory CD8+ T cells in FasL mutant mice expressed reduced levels of IFN-γ and displayed poor homeostatic and Ag-induced proliferation. Impairment in CD8+ T cell memory in FasL mutant hosts was not due to defective programming or the expression of mutant FasL on CD8+ T cells, but was caused by perturbed cytokine environment in FasL mutant mice. Although adoptively transferred WT memory CD8+ T cells mediated protection against L. monocytogenes in either the WT or FasL mutant hosts, FasL mutant memory CD8+ T cells failed to mediate protection even in WT hosts. Thus, in individuals with mutation in Fas pathway, impairment in the function of the memory CD8+ T cells may increase their susceptibility to recurrent/latent infections. PMID:18292515

  18. Abacavir-Reactive Memory T Cells Are Present in Drug Naïve Individuals

    PubMed Central

    Lucas, Andrew; Lucas, Michaela; Strhyn, Anette; Keane, Niamh M.; McKinnon, Elizabeth; Pavlos, Rebecca; Moran, Ellen M.; Meyer-Pannwitt, Viola; Gaudieri, Silvana; D’Orsogna, Lloyd; Kalams, Spyros; Ostrov, David A.; Buus, Søren; Peters, Bjoern; Mallal, Simon; Phillips, Elizabeth

    2015-01-01

    Background Fifty-five percent of individuals with HLA-B*57:01 exposed to the antiretroviral drug abacavir develop a hypersensitivity reaction (HSR) that has been attributed to naïve T-cell responses to neo-antigen generated by the drug. Immunologically confirmed abacavir HSR can manifest clinically in less than 48 hours following first exposure suggesting that, at least in some cases, abacavir HSR is due to re-stimulation of a pre-existing memory T-cell population rather than priming of a high frequency naïve T-cell population. Methods To determine whether a pre-existing abacavir reactive memory T-cell population contributes to early abacavir HSR symptoms, we studied the abacavir specific naïve or memory T-cell response using HLA-B*57:01 positive HSR patients or healthy controls using ELISpot assay, intra-cellular cytokine staining and tetramer labelling. Results Abacavir reactive CD8+ T-cell responses were detected in vitro in one hundred percent of abacavir unexposed HLA-B*57:01 positive healthy donors. Abacavir-specific CD8+ T cells from such donors can be expanded from sorted memory, and sorted naïve, CD8+ T cells without need for autologous CD4+ T cells. Conclusions We propose that these pre-existing abacavir-reactive memory CD8+ T-cell responses must have been primed by earlier exposure to another foreign antigen and that these T cells cross-react with an abacavir-HLA-B*57:01-endogenous peptide ligand complex, in keeping with the model of heterologous immunity proposed in transplant rejection. PMID:25674793

  19. Abacavir-reactive memory T cells are present in drug naïve individuals.

    PubMed

    Lucas, Andrew; Lucas, Michaela; Strhyn, Anette; Keane, Niamh M; McKinnon, Elizabeth; Pavlos, Rebecca; Moran, Ellen M; Meyer-Pannwitt, Viola; Gaudieri, Silvana; D'Orsogna, Lloyd; Kalams, Spyros; Ostrov, David A; Buus, Søren; Peters, Bjoern; Mallal, Simon; Phillips, Elizabeth

    2015-01-01

    Fifty-five percent of individuals with HLA-B*57:01 exposed to the antiretroviral drug abacavir develop a hypersensitivity reaction (HSR) that has been attributed to naïve T-cell responses to neo-antigen generated by the drug. Immunologically confirmed abacavir HSR can manifest clinically in less than 48 hours following first exposure suggesting that, at least in some cases, abacavir HSR is due to re-stimulation of a pre-existing memory T-cell population rather than priming of a high frequency naïve T-cell population. To determine whether a pre-existing abacavir reactive memory T-cell population contributes to early abacavir HSR symptoms, we studied the abacavir specific naïve or memory T-cell response using HLA-B*57:01 positive HSR patients or healthy controls using ELISpot assay, intra-cellular cytokine staining and tetramer labelling. Abacavir reactive CD8+ T-cell responses were detected in vitro in one hundred percent of abacavir unexposed HLA-B*57:01 positive healthy donors. Abacavir-specific CD8+ T cells from such donors can be expanded from sorted memory, and sorted naïve, CD8+ T cells without need for autologous CD4+ T cells. We propose that these pre-existing abacavir-reactive memory CD8+ T-cell responses must have been primed by earlier exposure to another foreign antigen and that these T cells cross-react with an abacavir-HLA-B*57:01-endogenous peptide ligand complex, in keeping with the model of heterologous immunity proposed in transplant rejection.

  20. Cell-assembly coding in several memory processes.

    PubMed

    Sakurai, Y

    1998-01-01

    The present paper discusses why the cell assembly, i.e., an ensemble population of neurons with flexible functional connections, is a tenable view of the basic code for information processes in the brain. The main properties indicating the reality of cell-assembly coding are neurons overlaps among different assemblies and connection dynamics within and among the assemblies. The former can be detected as multiple functions of individual neurons in processing different kinds of information. Individual neurons appear to be involved in multiple information processes. The latter can be detected as changes of functional synaptic connections in processing different kinds of information. Correlations of activity among some of the recorded neurons appear to change in multiple information processes. Recent experiments have compared several different memory processes (tasks) and detected these two main properties, indicating cell-assembly coding of memory in the working brain. The first experiment compared different types of processing of identical stimuli, i.e., working memory and reference memory of auditory stimuli. The second experiment compared identical processes of different types of stimuli, i.e., discriminations of simple auditory, simple visual, and configural auditory-visual stimuli. The third experiment compared identical processes of different types of stimuli with or without temporal processing of stimuli, i.e., discriminations of elemental auditory, configural auditory-visual, and sequential auditory-visual stimuli. Some possible features of the cell-assembly coding, especially "dual coding" by individual neurons and cell assemblies, are discussed for future experimental approaches. Copyright 1998 Academic Press.

  1. Scarcity of autoreactive human blood IgA+ memory B cells

    PubMed Central

    Prigent, Julie; Lorin, Valérie; Kök, Ayrin; Hieu, Thierry; Bourgeau, Salomé

    2016-01-01

    Class‐switched memory B cells are key components of the “reactive” humoral immunity, which ensures a fast and massive secretion of high‐affinity antigen‐specific antibodies upon antigenic challenge. In humans, IgA class‐switched (IgA+) memory B cells and IgA antibodies are abundant in the blood. Although circulating IgA+ memory B cells and their corresponding secreted immunoglobulins likely possess major protective and/or regulatory immune roles, little is known about their specificity and function. Here, we show that IgA+ and IgG+ memory B‐cell antibodies cloned from the same healthy humans share common immunoglobulin gene features. IgA and IgG memory antibodies have comparable lack of reactivity to vaccines, common mucosa‐tropic viruses and commensal bacteria. However, the IgA+ memory B‐cell compartment contains fewer polyreactive clones and importantly, only rare self‐reactive clones compared to IgG+ memory B cells. Self‐reactivity of IgAs is acquired following B‐cell affinity maturation but not antibody class switching. Together, our data suggest the existence of different regulatory mechanisms for removing autoreactive clones from the IgG+ and IgA+ memory B‐cell repertoires, and/or different maturation pathways potentially reflecting the distinct nature and localization of the cognate antigens recognized by individual B‐cell populations. PMID:27469325

  2. B-cell subset alterations and correlated factors in HIV-1 infection.

    PubMed

    Pensieroso, Simone; Galli, Laura; Nozza, Silvia; Ruffin, Nicolas; Castagna, Antonella; Tambussi, Giuseppe; Hejdeman, Bo; Misciagna, Donatella; Riva, Agostino; Malnati, Mauro; Chiodi, Francesca; Scarlatti, Gabriella

    2013-05-15

    During HIV-1 infection, the development, phenotype, and functionality of B cells are impaired. Transitional B cells and aberrant B-cell populations arise in blood, whereas a declined percentage of resting memory B cells is detected. Our study aimed at pinpointing the demographic, immunological, and viral factors driving these pathological findings, and the role of antiretroviral therapy in reverting these alterations. B-cell phenotype and correlating factors were evaluated. Variations in B-cell subsets were evaluated by flow cytometry in HIV-1-infected individuals naive to therapy, elite controllers, and patients treated with antiretroviral drugs (virological control or failure). Multivariable analysis was performed to identify variables independently associated with the B-cell alterations. Significant differences were observed among patients' groups in relation to all B-cell subsets. Resting memory B cells were preserved in patients naive to therapy and elite controllers, but reduced in treated patients. Individuals naive to therapy and experiencing multidrug failure, as well as elite controllers, had significantly higher levels of activated memory B cells compared to healthy controls. In the multivariate analysis, plasma viral load and nadir CD4 T cells independently correlated with major B-cell alterations. Coinfection with hepatitis C but not hepatitis B virus also showed an impact on specific B-cell subsets. Successful protracted antiretroviral treatment led to normalization of all B-cell subsets with exception of resting memory B cells. Our results indicate that viremia and nadir CD4 T cells are important prognostic markers of B-cell perturbations and provide evidence that resting memory B-cell depletion during chronic infection is not reverted upon successful antiretroviral therapy.

  3. Blood CXCR3+ CD4 T Cells Are Enriched in Inducible Replication Competent HIV in Aviremic Antiretroviral Therapy-Treated Individuals

    PubMed Central

    Banga, Riddhima; Procopio, Francesco A.; Ruggiero, Alessandra; Noto, Alessandra; Ohmiti, Khalid; Cavassini, Matthias; Corpataux, Jean-Marc; Paxton, William A.; Pollakis, Georgios; Perreau, Matthieu

    2018-01-01

    We recently demonstrated that lymph nodes (LNs) PD-1+/T follicular helper (Tfh) cells from antiretroviral therapy (ART)-treated HIV-infected individuals were enriched in cells containing replication competent virus. However, the distribution of cells containing inducible replication competent virus has been only partially elucidated in blood memory CD4 T-cell populations including the Tfh cell counterpart circulating in blood (cTfh). In this context, we have investigated the distribution of (1) total HIV-infected cells and (2) cells containing replication competent and infectious virus within various blood and LN memory CD4 T-cell populations of conventional antiretroviral therapy (cART)-treated HIV-infected individuals. In the present study, we show that blood CXCR3-expressing memory CD4 T cells are enriched in cells containing inducible replication competent virus and contributed the most to the total pool of cells containing replication competent and infectious virus in blood. Interestingly, subsequent proviral sequence analysis did not indicate virus compartmentalization between blood and LN CD4 T-cell populations, suggesting dynamic interchanges between the two compartments. We then investigated whether the composition of blood HIV reservoir may reflect the polarization of LN CD4 T cells at the time of reservoir seeding and showed that LN PD-1+ CD4 T cells of viremic untreated HIV-infected individuals expressed significantly higher levels of CXCR3 as compared to CCR4 and/or CCR6, suggesting that blood CXCR3-expressing CD4 T cells may originate from LN PD-1+ CD4 T cells. Taken together, these results indicate that blood CXCR3-expressing CD4 T cells represent the major blood compartment containing inducible replication competent virus in treated aviremic HIV-infected individuals. PMID:29459864

  4. Blood CXCR3+ CD4 T Cells Are Enriched in Inducible Replication Competent HIV in Aviremic Antiretroviral Therapy-Treated Individuals.

    PubMed

    Banga, Riddhima; Procopio, Francesco A; Ruggiero, Alessandra; Noto, Alessandra; Ohmiti, Khalid; Cavassini, Matthias; Corpataux, Jean-Marc; Paxton, William A; Pollakis, Georgios; Perreau, Matthieu

    2018-01-01

    We recently demonstrated that lymph nodes (LNs) PD-1 + /T follicular helper (Tfh) cells from antiretroviral therapy (ART)-treated HIV-infected individuals were enriched in cells containing replication competent virus. However, the distribution of cells containing inducible replication competent virus has been only partially elucidated in blood memory CD4 T-cell populations including the Tfh cell counterpart circulating in blood (cTfh). In this context, we have investigated the distribution of (1) total HIV-infected cells and (2) cells containing replication competent and infectious virus within various blood and LN memory CD4 T-cell populations of conventional antiretroviral therapy (cART)-treated HIV-infected individuals. In the present study, we show that blood CXCR3-expressing memory CD4 T cells are enriched in cells containing inducible replication competent virus and contributed the most to the total pool of cells containing replication competent and infectious virus in blood. Interestingly, subsequent proviral sequence analysis did not indicate virus compartmentalization between blood and LN CD4 T-cell populations, suggesting dynamic interchanges between the two compartments. We then investigated whether the composition of blood HIV reservoir may reflect the polarization of LN CD4 T cells at the time of reservoir seeding and showed that LN PD-1 + CD4 T cells of viremic untreated HIV-infected individuals expressed significantly higher levels of CXCR3 as compared to CCR4 and/or CCR6, suggesting that blood CXCR3-expressing CD4 T cells may originate from LN PD-1 + CD4 T cells. Taken together, these results indicate that blood CXCR3-expressing CD4 T cells represent the major blood compartment containing inducible replication competent virus in treated aviremic HIV-infected individuals.

  5. Dysregulated B Cell Expression of RANKL and OPG Correlates with Loss of Bone Mineral Density in HIV Infection

    PubMed Central

    Titanji, Kehmia; Vunnava, Aswani; Sheth, Anandi N.; Delille, Cecile; Lennox, Jeffrey L.; Sanford, Sara E.; Foster, Antonina; Knezevic, Andrea; Easley, Kirk A.

    2014-01-01

    HIV infection is associated with high rates of osteopenia and osteoporosis, but the mechanisms involved are unclear. We recently reported that bone loss in the HIV transgenic rat model was associated with upregulation of B cell expression of the key osteoclastogenic cytokine receptor-activator of NF-κB ligand (RANKL), compounded by a simultaneous decline in expression of its physiological moderator, osteoprotegerin (OPG). To clinically translate these findings we performed cross-sectional immuno-skeletal profiling of HIV-uninfected and antiretroviral therapy-naïve HIV-infected individuals. Bone resorption and osteopenia were significantly higher in HIV-infected individuals. B cell expression of RANKL was significantly increased, while B cell expression of OPG was significantly diminished, conditions favoring osteoclastic bone resorption. The B cell RANKL/OPG ratio correlated significantly with total hip and femoral neck bone mineral density (BMD), T- and/or Z-scores in HIV infected subjects, but revealed no association at the lumbar spine. B cell subset analyses revealed significant HIV-related increases in RANKL-expressing naïve, resting memory and exhausted tissue-like memory B cells. By contrast, the net B cell OPG decrease in HIV-infected individuals resulted from a significant decline in resting memory B cells, a population containing a high frequency of OPG-expressing cells, concurrent with a significant increase in exhausted tissue-like memory B cells, a population with a lower frequency of OPG-expressing cells. These data validate our pre-clinical findings of an immuno-centric mechanism for accelerated HIV-induced bone loss, aligned with B cell dysfunction. PMID:25393853

  6. Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation

    PubMed Central

    Kinjyo, Ichiko; Qin, Jim; Tan, Sioh-Yang; Wellard, Cameron J.; Mrass, Paulus; Ritchie, William; Doi, Atsushi; Cavanagh, Lois L.; Tomura, Michio; Sakaue-Sawano, Asako; Kanagawa, Osami; Miyawaki, Atsushi; Hodgkin, Philip D.; Weninger, Wolfgang

    2015-01-01

    The precise pathways of memory T-cell differentiation are incompletely understood. Here we exploit transgenic mice expressing fluorescent cell cycle indicators to longitudinally track the division dynamics of individual CD8+ T cells. During influenza virus infection in vivo, naive T cells enter a CD62Lintermediate state of fast proliferation, which continues for at least nine generations. At the peak of the anti-viral immune response, a subpopulation of these cells markedly reduces their cycling speed and acquires a CD62Lhi central memory cell phenotype. Construction of T-cell family division trees in vitro reveals two patterns of proliferation dynamics. While cells initially divide rapidly with moderate stochastic variations of cycling times after each generation, a slow-cycling subpopulation displaying a CD62Lhi memory phenotype appears after eight divisions. Phenotype and cell cycle duration are inherited by the progeny of slow cyclers. We propose that memory precursors cell-intrinsically modulate their proliferative activity to diversify differentiation pathways. PMID:25709008

  7. Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation.

    PubMed

    Kinjyo, Ichiko; Qin, Jim; Tan, Sioh-Yang; Wellard, Cameron J; Mrass, Paulus; Ritchie, William; Doi, Atsushi; Cavanagh, Lois L; Tomura, Michio; Sakaue-Sawano, Asako; Kanagawa, Osami; Miyawaki, Atsushi; Hodgkin, Philip D; Weninger, Wolfgang

    2015-02-24

    The precise pathways of memory T-cell differentiation are incompletely understood. Here we exploit transgenic mice expressing fluorescent cell cycle indicators to longitudinally track the division dynamics of individual CD8(+) T cells. During influenza virus infection in vivo, naive T cells enter a CD62L(intermediate) state of fast proliferation, which continues for at least nine generations. At the peak of the anti-viral immune response, a subpopulation of these cells markedly reduces their cycling speed and acquires a CD62L(hi) central memory cell phenotype. Construction of T-cell family division trees in vitro reveals two patterns of proliferation dynamics. While cells initially divide rapidly with moderate stochastic variations of cycling times after each generation, a slow-cycling subpopulation displaying a CD62L(hi) memory phenotype appears after eight divisions. Phenotype and cell cycle duration are inherited by the progeny of slow cyclers. We propose that memory precursors cell-intrinsically modulate their proliferative activity to diversify differentiation pathways.

  8. Functionality of Dengue Virus Specific Memory T Cell Responses in Individuals Who Were Hospitalized or Who Had Mild or Subclinical Dengue Infection

    PubMed Central

    Jeewandara, Chandima; Adikari, Thiruni N.; Gomes, Laksiri; Fernando, Samitha; Fernando, R. H.; Perera, M. K. T.; Ariyaratne, Dinuka; Kamaladasa, Achala; Salimi, Maryam; Prathapan, Shamini

    2015-01-01

    Background Although antibody responses to dengue virus (DENV) in naturally infected individuals have been extensively studied, the functionality of DENV specific memory T cell responses in relation to clinical disease severity is incompletely understood. Methodology/Principal findings Using ex vivo IFNγ ELISpot assays, and by determining cytokines produced in ELISpot supernatants, we investigated the functionality of DENV-specific memory T cell responses in a large cohort of individuals from Sri Lanka (n=338), who were naturally infected and were either hospitalized due to dengue or had mild or sub clinical dengue infection. We found that T cells of individuals with both past mild or sub clinical dengue infection and who were hospitalized produced multiple cytokines when stimulated with DENV-NS3 peptides. However, while DENV-NS3 specific T cells of those with mild/sub clinical dengue infection were more likely to produce only granzyme B (p=0.02), those who were hospitalized were more likely to produce both TNFα and IFNγ (p=0.03) or TNFα alone. We have also investigated the usefulness of a novel T cell based assay, which can be used to determine the past infecting DENV serotype. 92.4% of DENV seropositive individuals responded to at least one DENV serotype of this assay and none of the seronegatives responded. Individuals who were seronegative, but had received the Japanese encephalitis vaccine too made no responses, suggesting that the peptides used in this assay did not cross react with the Japanese encephalitis virus. Conclusions/significance The types of cytokines produced by DENV-specific memory T cells appear to influence the outcome of clinical disease severity. The novel T cell based assay, is likely to be useful in determining the past infecting DENV serotype in immune-epidemiological studies and also in dengue vaccine trials. PMID:25875020

  9. Phenotypic and Functional Characterization of Herpes Simplex Virus Glycoprotein B Epitope-Specific Effector and Memory CD8+ T Cells from Symptomatic and Asymptomatic Individuals with Ocular Herpes

    PubMed Central

    Khan, Arif A.; Srivastava, Ruchi; Spencer, Doran; Garg, Sumit; Fremgen, Daniel; Vahed, Hawa; Lopes, Patricia P.; Pham, Thanh T.; Hewett, Charlie; Kuang, Jasmine; Ong, Nicolas; Huang, Lei; Scarfone, Vanessa M.; Nesburn, Anthony B.

    2015-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) glycoprotein B (gB)-specific CD8+ T cells protect mice from herpes infection and disease. However, whether and which HSV-1 gB-specific CD8+ T cells play a key role in the “natural” protection seen in HSV-1-seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease) remain to be determined. In this study, we have dissected the phenotypes and the functions of HSV-1 gB-specific CD8+ T cells from HLA-A*02:01 positive, HSV-1 seropositive ASYMP and symptomatic (SYMP) individuals (with a history of numerous episodes of recurrent ocular herpes disease). We found the following. (i) Healthy ASYMP individuals maintained a significantly higher proportion of differentiated HSV-1 gB-specific effector memory CD8+ T cells (TEM cells) (CD45RAlow CCR7low CD44high CD62Llow). In contrast, SYMP patients had frequent less-differentiated central memory CD8+ T cells (TCM cells) (CD45RAlow CCR7high CD44low CD62Lhigh). (ii) ASYMP individuals had significantly higher proportions of multifunctional effector CD8+ T cells which responded mainly to gB342–350 and gB561–569 “ASYMP” epitopes, and simultaneously produced IFN-γ, CD107a/b, granzyme B, and perforin. In contrast, effector CD8+ T cells from SYMP individuals were mostly monofunctional and were directed mainly against nonoverlapping gB17–25 and gB183–191 “SYMP” epitopes. (iii) Immunization of an HLA-A*02:01 transgenic mouse model of ocular herpes with “ASYMP” CD8+ TEM cell epitopes, but not with “SYMP” CD8+ TCM cell epitopes, induced a strong CD8+ T cell-dependent protective immunity against ocular herpes infection and disease. Our findings provide insights into the role of HSV-specific CD8+ TEM cells in protection against herpes and should be considered in the development of an effective vaccine. IMPORTANCE A significantly higher proportion of differentiated and multifunctional HSV-1 gB-specific effector memory CD8+ T cells (TEM cells) (CD45RAlow CCR7low CD44high CD62Llow) were found in healthy ASYMP individuals who are seropositive for HSV-1 but never had any recurrent herpetic disease, while there were frequent less-differentiated and monofunctional central memory CD8+ T cells (TCM cells) (CD45RAlow CCR7high CD44low CD62Lhigh) in SYMP patients. Immunization with “ASYMP” CD8+ TEM cell epitopes, but not with “SYMP” CD8+ TCM cell epitopes, induced a strong protective HSV-specific CD8+ T cell response in HLA-A*02:01 transgenic mice. These findings are important for the development of a safe and effective T cell-based herpes vaccine. PMID:25609800

  10. Preformed Frequencies of Cytomegalovirus (CMV)–Specific Memory T and B Cells Identify Protected CMV-Sensitized Individuals Among Seronegative Kidney Transplant Recipients

    PubMed Central

    Lúcia, Marc; Crespo, Elena; Melilli, Edoardo; Cruzado, Josep M.; Luque, Sergi; Llaudó, Inés; Niubó, Jordi; Torras, Joan; Fernandez, Núria; Grinyó, Josep M.; Bestard, Oriol

    2014-01-01

    Background. Cytomegalovirus (CMV) infection remains a major complication after kidney transplantation. Baseline CMV risk is typically determined by the serological presence of preformed CMV-specific immunoglobulin (Ig) G antibodies, even though T-cell responses to major viral antigens are crucial when controlling viral replication. Some IgG-seronegative patients who receive an IgG-seropositive allograft do not develop CMV infection despite not receiving prophylaxis. We hypothesized that a more precise evaluation of pretransplant CMV-specific immune-sensitization using the B and T-cell enzyme-linked immunospot assays may identify CMV-sensitized individuals more accurately, regardless of serological evidence of CMV-specific IgG titers. Methods. We compared the presence of preformed CMV-specific memory B and T cells in kidney transplant recipients between 43 CMV IgG–seronegative (sR−) and 86 CMV IgG–seropositive (sR+) patients. Clinical outcome was evaluated in both groups. Results. All sR+ patients showed a wide range of CMV-specific memory T- and B-cell responses. High memory T- and B-cell frequencies were also clearly detected in 30% of sR− patients, and those with high CMV-specific T-cell frequencies had a significantly lower incidence of late CMV infection after prophylactic therapy. Receiver operating characteristic curve analysis for predicting CMV viremia and disease showed a high area under the receiver operating characteristic curve (>0.8), which translated into a high sensitivity and negative predictive value of the test. Conclusions. Assessment of CMV-specific memory T- and B-cell responses before kidney transplantation among sR− recipients may help identify immunized individuals more precisely, being ultimately at lower risk for CMV infection. PMID:25048845

  11. Multi-floor cascading ferroelectric nanostructures: multiple data writing-based multi-level non-volatile memory devices

    NASA Astrophysics Data System (ADS)

    Hyun, Seung; Kwon, Owoong; Lee, Bom-Yi; Seol, Daehee; Park, Beomjin; Lee, Jae Yong; Lee, Ju Hyun; Kim, Yunseok; Kim, Jin Kon

    2016-01-01

    Multiple data writing-based multi-level non-volatile memory has gained strong attention for next-generation memory devices to quickly accommodate an extremely large number of data bits because it is capable of storing multiple data bits in a single memory cell at once. However, all previously reported devices have failed to store a large number of data bits due to the macroscale cell size and have not allowed fast access to the stored data due to slow single data writing. Here, we introduce a novel three-dimensional multi-floor cascading polymeric ferroelectric nanostructure, successfully operating as an individual cell. In one cell, each floor has its own piezoresponse and the piezoresponse of one floor can be modulated by the bias voltage applied to the other floor, which means simultaneously written data bits in both floors can be identified. This could achieve multi-level memory through a multiple data writing process.Multiple data writing-based multi-level non-volatile memory has gained strong attention for next-generation memory devices to quickly accommodate an extremely large number of data bits because it is capable of storing multiple data bits in a single memory cell at once. However, all previously reported devices have failed to store a large number of data bits due to the macroscale cell size and have not allowed fast access to the stored data due to slow single data writing. Here, we introduce a novel three-dimensional multi-floor cascading polymeric ferroelectric nanostructure, successfully operating as an individual cell. In one cell, each floor has its own piezoresponse and the piezoresponse of one floor can be modulated by the bias voltage applied to the other floor, which means simultaneously written data bits in both floors can be identified. This could achieve multi-level memory through a multiple data writing process. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07377d

  12. [Identification of Env-specific monoclonal antibodies from Chinese HIV-1 infected person by magnetic beads separating B cells and single cell RT-PCR cloning].

    PubMed

    Huang, Xiang-Ying; Yu, Shuang-Qing; Cheng, Zhan; Ye, Jing-Rong; Xu, Ke; Feng, Xia; Zeng, Yi

    2013-04-01

    To establish a simple and practical method for screening of Env-specific monoclonal antibodies from HIV-1 infected individuals. Human B cells were purified by negative sorting from PBMCs and memory B cells were further enriched using anti-CD27 microbeads. Gp120 antigen labbled with biotin was incubated with memory B cells to specifically bind IgG on cells membrane. The memory B cells expressing the Env-specific antibody were harvested by magnetic beads separating, counted and diluted to the level of single cell in each PCR well that loading with catch buffer containing RNase inhibitor to get RNAs. The antibody genes were amplified by single cell RT-PCR and nested PCR, cloned into eukaryotic expression vectors and transfected into 293T cells. The binding activity of recombinant antibodies to Env were tested by ELISA. Three monocolonal Env-specific antibodies were isolated from one HIV-1 infected individual. We can obtain Env-specific antibody by biotin labbled antigen, magnetic beads separating technique coupled with single cell RT-PCR and expression cloning.

  13. Altered levels of memory T cell subsets and common γc cytokines in Strongyloides stercoralis infection and partial reversal following anthelmintic treatment.

    PubMed

    Rajamanickam, Anuradha; Munisankar, Saravanan; Bhootra, Yukti; Dolla, Chandra Kumar; Thiruvengadam, Kannan; Nutman, Thomas B; Babu, Subash

    2018-05-01

    CD4+ and CD8+ T cells are central players in immunity to helminth infections. However, the role of T cell subsets in human helminth infections is not well understood. In addition, the common γc cytokines, IL-2, IL-4, IL-7, IL-9 and IL-15 play an important role in the maintenance of these CD4+ and CD8+ T cell subsets. To examine the major T cell subsets and their association with the common γc cytokines, the absolute numbers of CD4+ and CD8+ naïve, central memory, effector memory and effector cells and the plasma levels of IL-2, IL-4, IL-7, IL-9 and IL-15 were measured in Strongyloides stercoralis (Ss) infected (INF, n = 60), helminth-uninfected (UN, n = 58) and in post treatment INF individuals. Ss infection is characterized by significantly increased absolute numbers of naïve and decreased absolute numbers of central and effector memory CD4+ T cells in comparison to UN individuals. No significant difference in the numbers of CD8+ T cell subsets was observed between the groups. The numbers of naïve cells and central memory CD4+ T cells were significantly reversed after anthelmintic treatment. Circulating levels of IL-2, IL-7 and IL-15 were significantly diminished, whereas the levels of IL-4 and IL-9 were significantly increased in INF compared to UN individuals. Following anthelminthic treatment, IL-2, IL-7 and IL-15 levels were significantly increased, while IL-4 and IL-9 levels were significantly decreased. Our data also showed a significant positive correlation between the levels of IL-7 and the numbers of central and effector memory CD4+ T cells. Ss infection is characterized by alterations in the absolute numbers of CD4+ T cell subsets and altered levels of common γc cytokines IL-2, IL-4, IL-7, IL-9 and IL-15; alterations which are partially reversed after anthelmintic treatment.

  14. Secondary immunization generates clonally related antigen-specific plasma cells and memory B cells.

    PubMed

    Frölich, Daniela; Giesecke, Claudia; Mei, Henrik E; Reiter, Karin; Daridon, Capucine; Lipsky, Peter E; Dörner, Thomas

    2010-09-01

    Rechallenge with T cell-dependent Ags induces memory B cells to re-enter germinal centers (GCs) and undergo further expansion and differentiation into plasma cells (PCs) and secondary memory B cells. It is currently not known whether the expanded population of memory B cells and PCs generated in secondary GCs are clonally related, nor has the extent of proliferation and somatic hypermutation of their precursors been delineated. In this study, after secondary tetanus toxoid (TT) immunization, TT-specific PCs increased 17- to 80-fold on days 6-7, whereas TT-specific memory B cells peaked (delayed) on day 14 with a 2- to 22-fold increase. Molecular analyses of V(H)DJ(H) rearrangements of individual cells revealed no major differences of gene usage and CDR3 length between TT-specific PCs and memory B cells, and both contained extensive evidence of somatic hypermutation with a pattern consistent with GC reactions. This analysis identified clonally related TT-specific memory B cells and PCs. Within clusters of clonally related cells, sequences shared a number of mutations but also could contain additional base pair changes. The data indicate that although following secondary immunization PCs can derive from memory B cells without further somatic hypermutation, in some circumstances, likely within GC reactions, asymmetric mutation can occur. These results suggest that after the fate decision to differentiate into secondary memory B cells or PCs, some committed precursors continue to proliferate and mutate their V(H) genes.

  15. Human Epidermal Langerhans Cells Maintain Immune Homeostasis in Skin by Activating Skin Resident Regulatory T Cells

    PubMed Central

    Seneschal, Julien; Clark, Rachael A.; Gehad, Ahmed; Baecher-Allan, Clare M.; Kupper, Thomas S.

    2013-01-01

    Recent discoveries indicate that the skin of a normal individual contains 10-20 billion resident memory T cells ( which include various T helper, T cytotoxic, and T regulatory subsets, that are poised to respond to environmental antigens. Using only autologous human tissues, we report that both in vitro and in vivo, resting epidermal Langerhan cells (LC) selectively and specifically induced the activation and proliferation of skin resident regulatory T cells (Treg), a minor subset of skin resident memory T cells. In the presence of foreign pathogen, however, the same LC activated and induced proliferation of effector memory T (Tem) cells and limited Treg cells activation. These underappreciated properties of LC: namely maintenance of tolerance in normal skin, and activation of protective skin resident memory T cells upon infectious challenge, help clarify the role of LC in skin. PMID:22560445

  16. A shift to glycolysis accompanies the inflammatory changes in PBMCs from individuals with an IQ-discrepant memory.

    PubMed

    Wolfe, Hannah; Hannigan, Caoimhe; O'Sullivan, Michael; Carroll, Liam Barry; Brennan, Sabina; Lawlor, Brian; Robertson, Ian H; Lynch, Marina

    2018-04-15

    Identification of a blood-based biomarker that can detect early cognitive decline presents a significant healthcare challenge. We prepared peripheral blood mononuclear cells (PBMCs) from individuals who had a poorer than predicted performance in their delayed recall performance on the Logical Memory II Subtest of the Wechsler Memory Scale (WMS) relative to their IQ estimated by the National Adult Reading Test (NART); we described these individuals as IQ-discrepant, compared with IQ-consistent, individuals. Stimulation with Aβ + LPS increased production of TNFα to a greater extent in cells from IQ-discrepant, compared with IQ-consistent, individuals. This was associated with a shift towards glycolysis and the evidence indicates that 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB)3 plays a role in driving glycolysis. A similar shift towards glycolysis was observed in MDMs prepared from IQ-discrepant, compared with IQ-consistent, individuals. The important finding here is that we have established an increased sensitivity to Aβ + LPS stimulation in PBMCs from individuals that under-perform on a memory task, relative to their estimated premorbid IQ, which may be an indicator of early cognitive decline. This may be a useful tool in determining the presence of early cognitive dysfunction. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Direct Detection of T- and B-Memory Lymphocytes by ImmunoSpot® Assays Reveals HCMV Exposure that Serum Antibodies Fail to Identify.

    PubMed

    Terlutter, Fredrik; Caspell, Richard; Nowacki, Tobias M; Lehmann, Alexander; Li, Ruliang; Zhang, Ting; Przybyla, Anna; Kuerten, Stefanie; Lehmann, Paul V

    2018-05-19

    It is essential to identify donors who have not been infected with human cytomegalovirus (HCMV) in order to avoid transmission of HCMV to recipients of blood transfusions or organ transplants. In the present study, we tested the reliability of seronegativity as an indicator for the lack of HCMV exposure in healthy human blood donors. Eighty-two HCMV seronegative individuals were identified, and their peripheral blood mononuclear cells (PBMC) were tested in ImmunoSpot® assays for the presence of HCMV-specific T- and B-memory lymphocytes. Eighty-two percent (67 of 82) of these HCMV seronegative individuals featured at least one memory cell that was lineage specific for HCMV, with the majority of these subjects possessing CD4+ and CD8+ T cells, as well as B cells, providing three independent lines of evidence for having developed immunity to HCMV. Only 15 of these 82 donors (18%) showed neither T- nor B-cell memory to HCMV, consistent with immunological naïveté to the virus. The data suggest that measurements of serum antibodies frequently fail to reveal HCMV exposure in humans, which may be better identified by direct detection of HCMV-specific memory lymphocytes.

  18. Assessment of metabolic and mitochondrial dynamics in CD4+ and CD8+ T cells in virologically suppressed HIV-positive individuals on combination antiretroviral therapy.

    PubMed

    Masson, Jesse J R; Murphy, Andrew J; Lee, Man K S; Ostrowski, Matias; Crowe, Suzanne M; Palmer, Clovis S

    2017-01-01

    Metabolism plays a fundamental role in supporting the growth, proliferation and effector functions of T cells. We investigated the impact of HIV infection on key processes that regulate glucose uptake and mitochondrial biogenesis in subpopulations of CD4+ and CD8+ T cells from 18 virologically-suppressed HIV-positive individuals on combination antiretroviral therapy (cART; median CD4+ cell count: 728 cells/μl) and 13 HIV seronegative controls. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) production were also analysed in total CD4+ and CD8+ T cells. Among HIV+/cART individuals, expression of glucose transporter (Glut1) and mitochondrial density were highest within central memory and naïve CD4+ T cells, and lowest among effector memory and transitional memory T cells, with similar trends in HIV-negative controls. Compared to HIV-negative controls, there was a trend towards higher percentage of circulating CD4+Glut1+ T cells in HIV+/cART participants. There were no significant differences in mitochondrial dynamics between subject groups. Glut1 expression was positively correlated with mitochondrial density and MMP in total CD4+ T cells, while MMP was also positively correlated with ROS production in both CD4+ and CD8+ T cells. Our study characterizes specific metabolic features of CD4+ and CD8+ T cells in HIV-negative and HIV+/cART individuals and will invite future studies to explore the immunometabolic consequences of HIV infection.

  19. HIV dynamics linked to memory CD4+ T cell homeostasis.

    PubMed

    Murray, John M; Zaunders, John; Emery, Sean; Cooper, David A; Hey-Nguyen, William J; Koelsch, Kersten K; Kelleher, Anthony D

    2017-01-01

    The dynamics of latent HIV is linked to infection and clearance of resting memory CD4+ T cells. Infection also resides within activated, non-dividing memory cells and can be impacted by antigen-driven and homeostatic proliferation despite suppressive antiretroviral therapy (ART). We investigated whether plasma viral level (pVL) and HIV DNA dynamics could be explained by HIV's impact on memory CD4+ T cell homeostasis. Median total, 2-LTR and integrated HIV DNA levels per μL of peripheral blood, for 8 primary (PHI) and 8 chronic HIV infected (CHI) individuals enrolled on a raltegravir (RAL) based regimen, exhibited greatest changes over the 1st year of ART. Dynamics slowed over the following 2 years so that total HIV DNA levels were equivalent to reported values for individuals after 10 years of ART. The mathematical model reproduced the multiphasic dynamics of pVL, and levels of total, 2-LTR and integrated HIV DNA in both PHI and CHI over 3 years of ART. Under these simulations, residual viremia originated from reactivated latently infected cells where most of these cells arose from clonal expansion within the resting phenotype. Since virion production from clonally expanded cells will not be affected by antiretroviral drugs, simulations of ART intensification had little impact on pVL. HIV DNA decay over the first year of ART followed the loss of activated memory cells (120 day half-life) while the 5.9 year half-life of total HIV DNA after this point mirrored the slower decay of resting memory cells. Simulations had difficulty reproducing the fast early HIV DNA dynamics, including 2-LTR levels peaking at week 12, and the later slow loss of total and 2-LTR HIV DNA, suggesting some ongoing infection. In summary, our modelling indicates that much of the dynamical behavior of HIV can be explained by its impact on memory CD4+ T cell homeostasis.

  20. Phenotypic and functional characterization of herpes simplex virus glycoprotein B epitope-specific effector and memory CD8+ T cells from symptomatic and asymptomatic individuals with ocular herpes.

    PubMed

    Khan, Arif A; Srivastava, Ruchi; Spencer, Doran; Garg, Sumit; Fremgen, Daniel; Vahed, Hawa; Lopes, Patricia P; Pham, Thanh T; Hewett, Charlie; Kuang, Jasmine; Ong, Nicolas; Huang, Lei; Scarfone, Vanessa M; Nesburn, Anthony B; Wechsler, Steven L; BenMohamed, Lbachir

    2015-04-01

    Herpes simplex virus 1 (HSV-1) glycoprotein B (gB)-specific CD8(+) T cells protect mice from herpes infection and disease. However, whether and which HSV-1 gB-specific CD8(+) T cells play a key role in the "natural" protection seen in HSV-1-seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease) remain to be determined. In this study, we have dissected the phenotypes and the functions of HSV-1 gB-specific CD8(+) T cells from HLA-A*02:01 positive, HSV-1 seropositive ASYMP and symptomatic (SYMP) individuals (with a history of numerous episodes of recurrent ocular herpes disease). We found the following. (i) Healthy ASYMP individuals maintained a significantly higher proportion of differentiated HSV-1 gB-specific effector memory CD8(+) T cells (TEM cells) (CD45RA(low) CCR7(low) CD44(high) CD62L(low)). In contrast, SYMP patients had frequent less-differentiated central memory CD8(+) T cells (TCM cells) (CD45RA(low) CCR7(high) CD44(low) CD62L(high)). (ii) ASYMP individuals had significantly higher proportions of multifunctional effector CD8(+) T cells which responded mainly to gB342-350 and gB561-569 "ASYMP" epitopes, and simultaneously produced IFN-γ, CD107(a/b), granzyme B, and perforin. In contrast, effector CD8(+) T cells from SYMP individuals were mostly monofunctional and were directed mainly against nonoverlapping gB17-25 and gB183-191 "SYMP" epitopes. (iii) Immunization of an HLA-A*02:01 transgenic mouse model of ocular herpes with "ASYMP" CD8(+) TEM cell epitopes, but not with "SYMP" CD8(+) TCM cell epitopes, induced a strong CD8(+) T cell-dependent protective immunity against ocular herpes infection and disease. Our findings provide insights into the role of HSV-specific CD8(+) TEM cells in protection against herpes and should be considered in the development of an effective vaccine. A significantly higher proportion of differentiated and multifunctional HSV-1 gB-specific effector memory CD8(+) T cells (TEM cells) (CD45RA(low) CCR7(low) CD44(high) CD62L(low)) were found in healthy ASYMP individuals who are seropositive for HSV-1 but never had any recurrent herpetic disease, while there were frequent less-differentiated and monofunctional central memory CD8(+) T cells (TCM cells) (CD45RA(low) CCR7(high) CD44(low) CD62L(high)) in SYMP patients. Immunization with "ASYMP" CD8(+) TEM cell epitopes, but not with "SYMP" CD8(+) TCM cell epitopes, induced a strong protective HSV-specific CD8(+) T cell response in HLA-A*02:01 transgenic mice. These findings are important for the development of a safe and effective T cell-based herpes vaccine. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Atypical memory B cells are greatly expanded in individuals living in a malaria-endemic area1

    PubMed Central

    Weiss, Greta E; Crompton, Peter D.; Li, Shanping; Walsh, Laura A.; Moir, Susan; Traore, Boubacar; Kayentao, Kassoum; Ongoiba, Aissata; Doumbo, Ogobara K.; Pierce, Susan K.

    2009-01-01

    Epidemiological observations in malaria endemic areas have long suggested a deficiency in the generation and maintenance of B cell memory to Plasmodium falciparum (Pf) in individuals chronically reinfected with the parasite. Recently, a functionally and phenotypically distinct population of FCRL4+ hypo-responsive memory B cells (MBCs) was reported to be expanded in HIV-infected individuals with high viral loads. Here we provide evidence that a phenotypically similar atypical MBC population is significantly expanded in Pf-exposed Malian adults and children as young as two years of age as compared to healthy U.S. adult controls. The number of these atypical MBCs was higher in children with chronic asymptomatic Pf infections compared to uninfected children suggesting that the chronic presence of the parasite may drive expansion of these distinct MBCs. This is the first description of an atypical MBC phenotype associated with malaria. Understanding the origin and function of these MBCs could be important in informing the design of malaria vaccines. PMID:19592645

  2. Diet-induced obesity does not impact the generation and maintenance of primary memory CD8 T cells.

    PubMed

    Khan, Shaniya H; Hemann, Emily A; Legge, Kevin L; Norian, Lyse A; Badovinac, Vladimir P

    2014-12-15

    The extent to which obesity compromises the differentiation and maintenance of protective memory CD8 T cell responses and renders obese individuals susceptible to infection remains unknown. In this study, we show that diet-induced obesity did not impact the maintenance of pre-existing memory CD8 T cells, including acquisition of a long-term memory phenotype (i.e., CD27(hi), CD62L(hi), KLRG1(lo)) and function (i.e., cytokine production, secondary expansion, and memory CD8 T cell-mediated protection). Additionally, obesity did not influence the differentiation and maintenance of newly evoked memory CD8 T cell responses in inbred and outbred hosts generated in response to different types of systemic (LCMV, L. monocytogenes) and/or localized (influenza virus) infections. Interestingly, the rate of naive-to-memory CD8 T cell differentiation after a peptide-coated dendritic cell immunization was similar in lean and obese hosts, suggesting that obesity-associated inflammation, unlike pathogen- or adjuvant-induced inflammation, did not influence the development of endogenous memory CD8 T cell responses. Therefore, our studies reveal that the obese environment does not influence the development or maintenance of memory CD8 T cell responses that are either primed before or after obesity is established, a surprising notion with important implications for future studies aiming to elucidate the role obesity plays in host susceptibility to infections. Copyright © 2014 by The American Association of Immunologists, Inc.

  3. Packaging of a large capacity magnetic bubble domain spacecraft recorder

    NASA Technical Reports Server (NTRS)

    Becker, F. J.; Stermer, R. L.

    1977-01-01

    A Solid State Spacecraft Data Recorder (SSDR), based on bubble domain technology, having a storage capacity of 10 to the 8th power bits, was designed and is being tested. The recorder consists of two memory modules each having 32 cells, each cell containing sixteen 100 kilobit serial bubble memory chips. The memory modules are interconnected to a Drive and Control Unit (DCU) module containing four microprocessors, 500 integrated circuits, a RAM core memory and two PROM's. The two memory modules and DCU are housed in individual machined aluminum frames, are stacked in brick fashion and through bolted to a base plate assembly which also houses the power supply.

  4. Cytokine-Induced Memory-Like Differentiation Enhances Unlicensed Natural Killer Cell Antileukemia and FcγRIIIa-Triggered Responses.

    PubMed

    Wagner, Julia A; Berrien-Elliott, Melissa M; Rosario, Maximillian; Leong, Jeffrey W; Jewell, Brea A; Schappe, Timothy; Abdel-Latif, Sara; Fehniger, Todd A

    2017-03-01

    Cytokine-induced memory-like natural killer (NK) cells differentiate after short-term preactivation with IL-12, IL-15, and IL-18 and display enhanced effector function in response to cytokines or tumor targets for weeks after the initial preactivation. Conventional NK cell function depends on a licensing signal, classically delivered by an inhibitory receptor engaging its cognate MHC class I ligand. How licensing status integrates with cytokine-induced memory-like NK cell responses is unknown. We investigated this interaction using killer cell immunoglobulin-like receptor- and HLA-genotyped primary human NK cells. Memory-like differentiation resulted in enhanced IFN-γ production triggered by leukemia targets or FcγRIIIa ligation within licensed NK cells, which exhibited the highest functionality of the NK cell subsets interrogated. IFN-γ production by unlicensed memory-like NK cells was also enhanced to a level comparable with that of licensed control NK cells. Mechanistically, differences in responses to FcγRIIIa-based triggering were not explained by alterations in key signaling intermediates, indicating that the underlying biology of memory-like NK cells is distinct from that of adaptive NK cells in human cytomegalovirus-positive individuals. Additionally, memory-like NK cells responded robustly to cytokine receptor restimulation with no impact of licensing status. These results demonstrate that both licensed and unlicensed memory-like NK cell populations have enhanced functionality, which may be translated to improve leukemia immunotherapy. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  5. Dopaminergic neurons write and update memories with cell-type-specific rules

    PubMed Central

    Aso, Yoshinori; Rubin, Gerald M

    2016-01-01

    Associative learning is thought to involve parallel and distributed mechanisms of memory formation and storage. In Drosophila, the mushroom body (MB) is the major site of associative odor memory formation. Previously we described the anatomy of the adult MB and defined 20 types of dopaminergic neurons (DANs) that each innervate distinct MB compartments (Aso et al., 2014a, 2014b). Here we compare the properties of memories formed by optogenetic activation of individual DAN cell types. We found extensive differences in training requirements for memory formation, decay dynamics, storage capacity and flexibility to learn new associations. Even a single DAN cell type can either write or reduce an aversive memory, or write an appetitive memory, depending on when it is activated relative to odor delivery. Our results show that different learning rules are executed in seemingly parallel memory systems, providing multiple distinct circuit-based strategies to predict future events from past experiences. DOI: http://dx.doi.org/10.7554/eLife.16135.001 PMID:27441388

  6. Multi-floor cascading ferroelectric nanostructures: multiple data writing-based multi-level non-volatile memory devices.

    PubMed

    Hyun, Seung; Kwon, Owoong; Lee, Bom-Yi; Seol, Daehee; Park, Beomjin; Lee, Jae Yong; Lee, Ju Hyun; Kim, Yunseok; Kim, Jin Kon

    2016-01-21

    Multiple data writing-based multi-level non-volatile memory has gained strong attention for next-generation memory devices to quickly accommodate an extremely large number of data bits because it is capable of storing multiple data bits in a single memory cell at once. However, all previously reported devices have failed to store a large number of data bits due to the macroscale cell size and have not allowed fast access to the stored data due to slow single data writing. Here, we introduce a novel three-dimensional multi-floor cascading polymeric ferroelectric nanostructure, successfully operating as an individual cell. In one cell, each floor has its own piezoresponse and the piezoresponse of one floor can be modulated by the bias voltage applied to the other floor, which means simultaneously written data bits in both floors can be identified. This could achieve multi-level memory through a multiple data writing process.

  7. A Positive Correlation between Atypical Memory B Cells and Plasmodium falciparum Transmission Intensity in Cross-Sectional Studies in Peru and Mali

    PubMed Central

    Weiss, Greta E.; Clark, Eva H.; Li, Shanping; Traore, Boubacar; Kayentao, Kassoum; Ongoiba, Aissata; Hernandez, Jean N.; Doumbo, Ogobara K.; Pierce, Susan K.; Branch, OraLee H.; Crompton, Peter D.

    2011-01-01

    Background Antibodies that protect against Plasmodium falciparum (Pf) malaria are only acquired after years of repeated infections. The B cell biology that underlies this observation is poorly understood. We previously reported that “atypical” memory B cells are increased in children and adults exposed to intense Pf transmission in Mali, similar to what has been observed in individuals infected with HIV. In this study we examined B cell subsets of Pf -infected adults in Peru and Mali to determine if Pf transmission intensity correlates with atypical memory B cell expansion. Methodology/Principal Findings In this cross-sectional study venous blood was collected from adults in areas of zero (U.S., n = 10), low (Peru, n = 18) and high (Mali, n = 12) Pf transmission. Adults in Peru and Mali were infected with Pf at the time of blood collection. Thawed lymphocytes were analyzed by flow cytometry to quantify B cell subsets, including atypical memory B cells, defined by the cell surface markers CD19+ CD20+ CD21− CD27− CD10−. In Peru, the mean level of atypical memory B cells, as a percent of total B cells, was higher than U.S. adults (Peru mean: 5.4% [95% CI: 3.61–7.28]; U.S. mean: 1.4% [95% CI: 0.92–1.81]; p<0.0001) but lower than Malian adults (Mali mean 13.1% [95% CI: 10.68–15.57]; p = 0.0001). In Peru, individuals self-reporting ≥1 prior malaria episodes had a higher percentage of atypical memory B cells compared to those reporting no prior episodes (≥1 prior episodes mean: 6.6% [95% CI: 4.09–9.11]; no prior episodes mean: 3.1% [95% CI: 1.52–4.73]; p = 0.028). Conclusions/Significance Compared to Pf-naive controls, atypical memory B cells were increased in Peruvian adults exposed to low Pf transmission, and further increased in Malian adults exposed to intense Pf transmission. Understanding the origin, function and antigen specificity of atypical memory B cells in the context of Pf infection could contribute to our understanding of naturally-acquired malaria immunity. PMID:21264245

  8. Comprehensive Mass Cytometry Analysis of Cell Cycle, Activation, and Coinhibitory Receptors Expression in CD4 T Cells from Healthy and HIV-Infected Individuals.

    PubMed

    Corneau, Aurélien; Cosma, Antonio; Even, Sophie; Katlama, Christine; Le Grand, Roger; Frachet, Véronique; Blanc, Catherine; Autran, Brigitte

    2017-01-01

    Mass cytometry allows large multiplex analysis of cell cycle stages together with differentiation, activation, and exhaustion markers, allowing further assessment of the quiescence status of resting CD4 T cells. Peripheral blood CD4 T lymphocytes from 8 individuals, 4 healthy donors, and 4 HIV-infected on antiretroviral treatment (T) were stained with the same 26 monoclonal antibodies and dyes targeting surface and intracellular markers of differentiation, activation, exhaustion, and cell cycle stages. Samples were run on a CYTOF-2. Patterns of naïve [TN] CD4 T cells strongly differed from all other memory subsets central-memory (CM), transitional-memory (TM), effector-memory (EM), and terminally differentiated RA-expressing (TEMRA) subsets, while stem-cell memory (SCM) and T follicular-helper cells (TfH) were close to CM and TM cells with the highest percentages in cell cycle. EM and TEMRA were the most altered by HIV infection, with an increased frequency of activated and cycling cells. Activation markers and coinhibitory receptor expression differed among cell cycle stages, with HLA-DR fitting better than CD25 or CD38 with cycle, and opposite PD-1 gradients along differentiation and cell cycle. "Resting" DR-CD25- CD4+ T cells contained similar amounts of cells in G1 than the activated DR ± CD25± ones but three fold lower cells in S-G2-M. This broad multiplex mass cytometry analysis demonstrates some subsets of the so-called "resting" CD25-DR- CD4+ T cells contain noticeable amounts of cells into cycle or expressing coinhibitory receptors, opening new avenues for a redefinition of resting peripheral blood CD4 T cells harboring the HIV reservoirs. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.

  9. Beneficial Effects of cART Initiated during Primary and Chronic HIV-1 Infection on Immunoglobulin-Expression of Memory B-Cell Subsets

    PubMed Central

    Pensieroso, Simone; Tolazzi, Monica; Chiappetta, Stefania; Nozza, Silvia; Lazzarin, Adriano; Tambussi, Giuseppe; Scarlatti, Gabriella

    2015-01-01

    Introduction During HIV-1 infection the B-cell compartment undergoes profound changes towards terminal differentiation, which are only partially restored by antiretroviral therapy (cART). Materials and Methods To investigate the impact of infection as early as during primary HIV-1 infection (PHI) we assessed distribution of B-cell subsets in 19 PHI and 25 chronic HIV-1-infected (CHI) individuals before and during 48 weeks of cART as compared to healthy controls (n = 23). We also analysed Immunoglobulin-expression of memory B-cell subsets to identify alterations in Immunoglobulin-maturation. Results Determination of B-cell subsets at baseline showed that total and Naive B-cells were decreased whereas Activated Memory (AM), Tissue-like Memory (TLM) B-cells and Plasma cells were increased in both PHI and CHI patients. After 4 weeks of cART total B-cells increased, while AM, TLM B-cells and Plasma cells decreased, although without reaching normal levels in either group of individuals. This trend was maintained until week 48, though only total B-cells normalized in both PHI and CHI. Resting Memory (RM) B-cells were preserved since baseline. This subset remained stable in CHI, while was expanded by an early initiation of cART during PHI. Untreated CHI patients showed IgM-overexpression at the expenses of switched (IgM-IgD-) phenotypes of the memory subsets. Interestingly, in PHI patients a significant alteration of Immunoglobulin-expression was evident at BL in TLM cells, and after 4 weeks, despite treatment, in AM and RM subsets. After 48 weeks of therapy, Immunoglobulin-expression of AM and RM almost normalized, but remained perturbed in TLM cells in both groups. Conclusions In conclusion, aberrant activated and exhausted B-cell phenotypes rose already during PHI, while most of the alterations in Ig-expression seen in CHI appeared later, despite 4 weeks of effective cART. After 48 weeks of cART B-cell subsets distribution improved although without full normalization, while Immunoglobulin-expression normalized among AM and RM, remaining perturbed in TLM B-cells of PHI and CHI. PMID:26474181

  10. Beneficial Effects of cART Initiated during Primary and Chronic HIV-1 Infection on Immunoglobulin-Expression of Memory B-Cell Subsets.

    PubMed

    Pogliaghi, Manuela; Ripa, Marco; Pensieroso, Simone; Tolazzi, Monica; Chiappetta, Stefania; Nozza, Silvia; Lazzarin, Adriano; Tambussi, Giuseppe; Scarlatti, Gabriella

    2015-01-01

    During HIV-1 infection the B-cell compartment undergoes profound changes towards terminal differentiation, which are only partially restored by antiretroviral therapy (cART). To investigate the impact of infection as early as during primary HIV-1 infection (PHI) we assessed distribution of B-cell subsets in 19 PHI and 25 chronic HIV-1-infected (CHI) individuals before and during 48 weeks of cART as compared to healthy controls (n = 23). We also analysed Immunoglobulin-expression of memory B-cell subsets to identify alterations in Immunoglobulin-maturation. Determination of B-cell subsets at baseline showed that total and Naive B-cells were decreased whereas Activated Memory (AM), Tissue-like Memory (TLM) B-cells and Plasma cells were increased in both PHI and CHI patients. After 4 weeks of cART total B-cells increased, while AM, TLM B-cells and Plasma cells decreased, although without reaching normal levels in either group of individuals. This trend was maintained until week 48, though only total B-cells normalized in both PHI and CHI. Resting Memory (RM) B-cells were preserved since baseline. This subset remained stable in CHI, while was expanded by an early initiation of cART during PHI. Untreated CHI patients showed IgM-overexpression at the expenses of switched (IgM-IgD-) phenotypes of the memory subsets. Interestingly, in PHI patients a significant alteration of Immunoglobulin-expression was evident at BL in TLM cells, and after 4 weeks, despite treatment, in AM and RM subsets. After 48 weeks of therapy, Immunoglobulin-expression of AM and RM almost normalized, but remained perturbed in TLM cells in both groups. In conclusion, aberrant activated and exhausted B-cell phenotypes rose already during PHI, while most of the alterations in Ig-expression seen in CHI appeared later, despite 4 weeks of effective cART. After 48 weeks of cART B-cell subsets distribution improved although without full normalization, while Immunoglobulin-expression normalized among AM and RM, remaining perturbed in TLM B-cells of PHI and CHI.

  11. Monozygotic twins discordant for common variable immunodeficiency reveal impaired DNA demethylation during naïve-to-memory B-cell transition

    PubMed Central

    Rodríguez-Cortez, Virginia C.; del Pino-Molina, Lucia; Rodríguez-Ubreva, Javier; Ciudad, Laura; Gómez-Cabrero, David; Company, Carlos; Urquiza, José M.; Tegnér, Jesper; Rodríguez-Gallego, Carlos; López-Granados, Eduardo; Ballestar, Esteban

    2015-01-01

    Common variable immunodeficiency (CVID), the most frequent primary immunodeficiency characterized by loss of B-cell function, depends partly on genetic defects, and epigenetic changes are thought to contribute to its aetiology. Here we perform a high-throughput DNA methylation analysis of this disorder using a pair of CVID-discordant MZ twins and show predominant gain of DNA methylation in CVID B cells with respect to those from the healthy sibling in critical B lymphocyte genes, such as PIK3CD, BCL2L1, RPS6KB2, TCF3 and KCNN4. Individual analysis confirms hypermethylation of these genes. Analysis in naive, unswitched and switched memory B cells in a CVID patient cohort shows impaired ability to demethylate and upregulate these genes in transitioning from naive to memory cells in CVID. Our results not only indicate a role for epigenetic alterations in CVID but also identify relevant DNA methylation changes in B cells that could explain the clinical manifestations of CVID individuals. PMID:26081581

  12. Generation of switched memory B cells in response to vaccination in Down syndrome children and their siblings.

    PubMed

    Valentini, Diletta; Marcellini, Valentina; Bianchi, Simona; Villani, Alberto; Facchini, Marzia; Donatelli, Isabella; Castrucci, Maria Rita; Marasco, Emiliano; Farroni, Chiara; Carsetti, Rita

    2015-11-27

    Immunodeficiency is an integral aspect of Down syndrome, as demonstrated by the increased susceptibility to infection of affected. Mortality is still higher than in general population, with respiratory infections among the major causes of death. As more people with Down syndrome are living today than ever before, it is indispensable to develop strategies to prevent and cure the associated disorders. Vaccination is the most successful instrument of preventive medicine. Special seasonal influenza and pneumococcal vaccination strategies have been designed for individuals with risk conditions of all ages. Down syndrome individuals are not included in the high-risk categories. We enrolled in our study 15 children with Down syndrome and their siblings, vaccinated for the first time with seasonal influenza vaccine and receiving a booster dose of a glyco-conjugated pneumococcal vaccine. We compared the immunological features and response to vaccination measuring serum antibody titers and frequency of specific memory B cells. We confirm that a severe reduction of switched memory B cells is always associated to Down syndrome. After primary vaccination Down syndrome children generate significantly less specific switched memory B cells than their siblings. The response to a booster dose of vaccine is instead comparable in both groups. The production of specific antibodies was equally effective in Down syndrome and controls both after primary and secondary immunization. Down syndrome individuals should be considered a high risk group, because of their increased susceptibility to infection and reduced number of switched memory B cells. Tailored vaccination protocols are needed in order to reduce their burden of infections throughout life. Copyright © 2015. Published by Elsevier Ltd.

  13. Altered distribution of peripheral blood memory B cells in humans chronically infected with Trypanosoma cruzi.

    PubMed

    Fernández, Esteban R; Olivera, Gabriela C; Quebrada Palacio, Luz P; González, Mariela N; Hernandez-Vasquez, Yolanda; Sirena, Natalia María; Morán, María L; Ledesma Patiño, Oscar S; Postan, Miriam

    2014-01-01

    Numerous abnormalities of the peripheral blood T cell compartment have been reported in human chronic Trypanosoma cruzi infection and related to prolonged antigenic stimulation by persisting parasites. Herein, we measured circulating lymphocytes of various phenotypes based on the differential expression of CD19, CD4, CD27, CD10, IgD, IgM, IgG and CD138 in a total of 48 T. cruzi-infected individuals and 24 healthy controls. Infected individuals had decreased frequencies of CD19+CD27+ cells, which positively correlated with the frequencies of CD4+CD27+ cells. The contraction of CD19+CD27+ cells was comprised of IgG+IgD-, IgM+IgD- and isotype switched IgM-IgD- memory B cells, CD19+CD10+CD27+ B cell precursors and terminally differentiated CD19+CD27+CD138+ plasma cells. Conversely, infected individuals had increased proportions of CD19+IgG+CD27-IgD- memory and CD19+IgM+CD27-IgD+ transitional/naïve B cells. These observations prompted us to assess soluble CD27, a molecule generated by the cleavage of membrane-bound CD27 and used to monitor systemic immune activation. Elevated levels of serum soluble CD27 were observed in infected individuals with Chagas cardiomyopathy, indicating its potentiality as an immunological marker for disease progression in endemic areas. In conclusion, our results demonstrate that chronic T. cruzi infection alters the distribution of various peripheral blood B cell subsets, probably related to the CD4+ T cell deregulation process provoked by the parasite in humans.

  14. Altered Distribution of Peripheral Blood Memory B Cells in Humans Chronically Infected with Trypanosoma cruzi

    PubMed Central

    Fernández, Esteban R.; Olivera, Gabriela C.; Quebrada Palacio, Luz P.; González, Mariela N.; Hernandez-Vasquez, Yolanda; Sirena, Natalia María; Morán, María L.; Ledesma Patiño, Oscar S.; Postan, Miriam

    2014-01-01

    Numerous abnormalities of the peripheral blood T cell compartment have been reported in human chronic Trypanosoma cruzi infection and related to prolonged antigenic stimulation by persisting parasites. Herein, we measured circulating lymphocytes of various phenotypes based on the differential expression of CD19, CD4, CD27, CD10, IgD, IgM, IgG and CD138 in a total of 48 T. cruzi-infected individuals and 24 healthy controls. Infected individuals had decreased frequencies of CD19+CD27+ cells, which positively correlated with the frequencies of CD4+CD27+ cells. The contraction of CD19+CD27+ cells was comprised of IgG+IgD-, IgM+IgD- and isotype switched IgM-IgD- memory B cells, CD19+CD10+CD27+ B cell precursors and terminally differentiated CD19+CD27+CD138+ plasma cells. Conversely, infected individuals had increased proportions of CD19+IgG+CD27-IgD- memory and CD19+IgM+CD27-IgD+ transitional/naïve B cells. These observations prompted us to assess soluble CD27, a molecule generated by the cleavage of membrane-bound CD27 and used to monitor systemic immune activation. Elevated levels of serum soluble CD27 were observed in infected individuals with Chagas cardiomyopathy, indicating its potentiality as an immunological marker for disease progression in endemic areas. In conclusion, our results demonstrate that chronic T. cruzi infection alters the distribution of various peripheral blood B cell subsets, probably related to the CD4+ T cell deregulation process provoked by the parasite in humans. PMID:25111833

  15. Dentate granule cell recruitment of feedforward inhibition governs engram maintenance and remote memory generalization.

    PubMed

    Guo, Nannan; Soden, Marta E; Herber, Charlotte; Kim, Michael TaeWoo; Besnard, Antoine; Lin, Paoyan; Ma, Xiang; Cepko, Constance L; Zweifel, Larry S; Sahay, Amar

    2018-05-01

    Memories become less precise and generalized over time as memory traces reorganize in hippocampal-cortical networks. Increased time-dependent loss of memory precision is characterized by an overgeneralization of fear in individuals with post-traumatic stress disorder (PTSD) or age-related cognitive impairments. In the hippocampal dentate gyrus (DG), memories are thought to be encoded by so-called 'engram-bearing' dentate granule cells (eDGCs). Here we show, using rodents, that contextual fear conditioning increases connectivity between eDGCs and inhibitory interneurons (INs) in the downstream hippocampal CA3 region. We identify actin-binding LIM protein 3 (ABLIM3) as a mossy-fiber-terminal-localized cytoskeletal factor whose levels decrease after learning. Downregulation of ABLIM3 expression in DGCs was sufficient to increase connectivity with CA3 stratum lucidum INs (SLINs), promote parvalbumin (PV)-expressing SLIN activation, enhance feedforward inhibition onto CA3 and maintain a fear memory engram in the DG over time. Furthermore, downregulation of ABLIM3 expression in DGCs conferred conditioned context-specific reactivation of memory traces in hippocampal-cortical and amygdalar networks and decreased fear memory generalization at remote (i.e., distal) time points. Consistent with the observation of age-related hyperactivity of CA3, learning failed to increase DGC-SLIN connectivity in 17-month-old mice, whereas downregulation of ABLIM3 expression was sufficient to restore DGC-SLIN connectivity, increase PV+ SLIN activation and improve the precision of remote memories. These studies exemplify a connectivity-based strategy that targets a molecular brake of feedforward inhibition in DG-CA3 and may be harnessed to decrease time-dependent memory generalization in individuals with PTSD and improve memory precision in aging individuals.

  16. Aging and cytomegalovirus (CMV) infection differentially and jointly affect distinct circulating T cell subsets in humans1

    PubMed Central

    Wertheimer, Anne M.; Bennett, Michael S.; Park, Byung; Uhrlaub, Jennifer L.; Martinez, Carmine; Pulko, Vesna; Currier, Noreen L.; Nikolich-Zugich, Dragana; Kaye, Jeffrey; Nikolich-Zugich, Janko

    2014-01-01

    The impact of intrinsic aging upon human peripheral blood T-cell subsets remains incompletely quantified and understood. This impact must be distinguished from the influence of latent persistent microorganisms, particularly cytomegalovirus (CMV), which has been associated with age-related changes in the T cell pool. In a cross-sectional cohort of 152 CMV-negative individuals, aged 21–101 years, we found that aging correlated strictly to an absolute loss of naïve CD8, but not CD4, T cells, but, contrary to many reports, did not lead to an increase in memory T cell numbers. The loss of naïve CD8 T cells was not altered by CMV in 239 subjects (range 21–96 years) but the decline in CD4+ naïve cells showed significance in CMV+ individuals. These individuals also exhibited an absolute increase in the effector/effector memory CD4+ and CD8+ cells with age. That increase was seen mainly, if not exclusively, in older subjects with elevated anti-CMV Ab titers, suggesting that efficacy of viral control over time may determine the magnitude of CMV impact upon T cell memory, and perhaps upon immune defense. These findings provide important new insights into the age-related changes in the peripheral blood pool of older adults, demonstrating that aging and CMV exert both distinct and joint influence upon blood T cell homeostasis in humans. PMID:24501199

  17. Asymmetric cellular memory in bacteria exposed to antibiotics.

    PubMed

    Mathis, Roland; Ackermann, Martin

    2017-03-09

    The ability to form a cellular memory and use it for cellular decision-making could help bacteria to cope with recurrent stress conditions. We analyzed whether bacteria would form a cellular memory specifically if past events are predictive of future conditions. We worked with the asymmetrically dividing bacterium Caulobacter crescentus where past events are expected to only be informative for one of the two cells emerging from division, the sessile cell that remains in the same microenvironment and does not migrate. Time-resolved analysis of individual cells revealed that past exposure to low levels of antibiotics increases tolerance to future exposure for the sessile but not for the motile cell. Using computer simulations, we found that such an asymmetry in cellular memory could be an evolutionary response to situations where the two cells emerging from division will experience different future conditions. Our results raise the question whether bacteria can evolve the ability to form and use cellular memory conditionally in situations where it is beneficial.

  18. Interlesional diversity of T cell receptors in melanoma with immune checkpoints enriched in tissue-resident memory T cells

    PubMed Central

    Boddupalli, Chandra Sekhar; Bar, Noffar; Kadaveru, Krishna; Krauthammer, Michael; Pornputtapong, Natopol; Ariyan, Stephan; Narayan, Deepak; Kluger, Harriet; Deng, Yanhong; Verma, Rakesh; Das, Rituparna; Bacchiocchi, Antonella; Halaban, Ruth; Sznol, Mario; Dhodapkar, Madhav V.; Dhodapkar, Kavita M.

    2016-01-01

    Heterogeneity of tumor cells and their microenvironment can affect outcome in cancer. Blockade of immune checkpoints (ICPs) expressed only on a subset of immune cells leads to durable responses in advanced melanoma. Tissue-resident memory T (TRM) cells have recently emerged as a distinct subset of memory T cells in nonlymphoid tissues. Here, we show that functional properties and expression of ICPs within tumor-infiltrating lymphocytes (TILs) differ from those of blood T cells. TILs secrete less IL-2, IFN-γ, and TNF-α compared with circulating counterparts, and expression of VEGF correlated with reduced TIL infiltration. Within tumors, ICPs are particularly enriched within T cells with phenotype and genomic features of TRM cells and the CD16+ subset of myeloid cells. Concurrent T cell receptor (TCR) and tumor exome sequencing of individual metastases in the same patient revealed that interlesional diversity of TCRs exceeded differences in mutation/neoantigen load in tumor cells. These findings suggest that the TRM subset of TILs may be the major target of ICP blockade and illustrate interlesional diversity of tissue-resident TCRs within individual metastases, which did not equilibrate between metastases and may differentially affect the outcome of immune therapy at each site. PMID:28018970

  19. Hippocampal place cell and inhibitory neuron activity in disrupted-in-schizophrenia-1 mutant mice: implications for working memory deficits

    PubMed Central

    Mesbah-Oskui, Lia; Georgiou, John; Roder, John C

    2015-01-01

    Background: Despite the prevalence of working memory deficits in schizophrenia, the neuronal mechanisms mediating these deficits are not fully understood. Importantly, deficits in spatial working memory are identified in numerous mouse models that exhibit schizophrenia-like endophenotypes. The hippocampus is one of the major brain regions that actively encodes spatial location, possessing pyramidal neurons, commonly referred to as ‘place cells’, that fire in a location-specific manner. This study tests the hypothesis that mice with a schizophrenia-like endophenotype exhibit impaired encoding of spatial location in the hippocampus. Aims: To characterize hippocampal place cell activity in mice that exhibit a schizophrenia-like endophenotype. Methods: We recorded CA1 place cell activity in six control mice and six mice that carry a point mutation in the disrupted-in-schizophrenia-1 gene (Disc1-L100P) and have previously been shown to exhibit deficits in spatial working memory. Results: The spatial specificity and stability of Disc1-L100P place cells were similar to wild-type place cells. Importantly, however, Disc1-L100P place cells exhibited a higher propensity to increase their firing rate in a single, large location of the environment, rather than multiple smaller locations, indicating a generalization in their spatial selectivity. Alterations in the signaling and numbers of CA1 putative inhibitory interneurons and decreased hippocampal theta (5–12 Hz) power were also identified in the Disc1-L100P mice. Conclusions: The generalized spatial selectivity of Disc1-L100P place cells suggests a simplification of the ensemble place codes that encode individual locations and subserve spatial working memory. Moreover, these results suggest that deficient working memory in schizophrenia results from an impaired ability to uniquely code the individual components of a memory sequence. PMID:27280123

  20. Memory B cell dysregulation in HIV-1-infected individuals.

    PubMed

    Carrillo, Jorge; Negredo, Eugènia; Puig, Jordi; Molinos-Albert, Luis Manuel; Rodríguez de la Concepción, Maria Luisa; Curriu, Marta; Massanella, Marta; Navarro, Jordi; Crespo, Manel; Viñets, Ester; Millá, Fuensanta; Clotet, Bonaventura; Blanco, Julià

    2018-01-14

    To characterize the effect of the HIV-1 infection and antiretroviral treatment (ART) in the human memory B (MEB)-cell compartment. A cross-sectional study was designed to analyze MEB cells of HIV-1 ART treated and ART-naive study participants, and uninfected individuals. Frequency and absolute counts of MEB cell subsets in blood were determined by multicolor flow cytometry. Spontaneous cell death and B-cell proliferative capacity was evaluated in vitro by cell culture and flow cytometry. Splenic function was determined by pitted erythrocytes quantification in HIV-1 ART-treated study participants. HIV-1 ART-treated individuals did not show functional hyposplenism despite the lack of recovery IgMIgDCD27 marginal zone-like B cells. Moreover, two germinal center-dependent MEB cells subsets were also dysregulated in HIV-1 individuals: IgMIgDCD27 (IgM only) cells were increased, whereas the switched subset (IgMIgD) was reduced in viremic individuals. Althought ART restored the numbers of these populations; the switched MEB cells were enriched in CD27 cells, which showed the highest susceptibility to spontaneous cell death ex vivo. In addition, B cells from viremic individuals showed a poor response to B-cell receptor and toll-like receptor 9 stimulation that was circumvented when both stimuli were used simultaneously. B cells from HIV-1 study participants show a poor stimulation capacity, that may be bypassed by the proper combination of stimuli, and a dysregulated MEB cell pool that suggest an affectation of the germinal center reaction, only partially normalized by ART. Interestingly, hyposplenism does not explain the lack of recovery of the marginal zone-like B cells in ART-treated HIV-1 individuals.

  1. Long-term antibody memory induced by synthetic peptide vaccination is protective against Streptococcus pyogenes infection and is independent of memory T-cell help

    PubMed Central

    Pandey, Manisha; Wykes, Michelle N; Hartas, Jon; Good, Michael F; Batzloff, Michael R

    2013-01-01

    Streptococcus pyogenes (group A streptococcus; GAS) is a leading human pathogen associated with a diverse array of mucosal and systemic infections. Vaccination with J8, a conserved region synthetic peptide derived from the M-protein of GAS and containing only 12 amino acids from GAS, when conjugated to DT, has been shown to protect mice against a lethal GAS challenge. Protection has been previously shown to be antibody-mediated. J8 does not contain a dominant GAS-specific T-cell epitope. The current study examined long-term antibody memory and dissected the role of B and T-cells. Our results demonstrated that vaccination generates specific memory B-cells and long-lasting antibody responses. The memory B-cell response can be activated following boost with antigen or limiting numbers of whole bacteria. We further show that these memory responses protect against systemic infection with GAS. T-cell help is required for activation of memory B-cells but can be provided by naïve T-cells responding directly to GAS at the time of infection. Thus, individuals whose T-cells do not recognize the short synthetic peptide in the vaccine will be able to generate a protective and rapid memory antibody response at the time of infection. These studies significantly strengthen previous findings, which showed that protection by the J8-DT vaccine is antibody-mediated and suggest that in vaccine design for other organisms the source of T-cell help for antibody responses need not be limited to sequences from the organism itself. PMID:23401589

  2. Comprehensive Approach for Identifying the T Cell Subset Origin of CD3 and CD28 Antibody-Activated Chimeric Antigen Receptor-Modified T Cells.

    PubMed

    Schmueck-Henneresse, Michael; Omer, Bilal; Shum, Thomas; Tashiro, Haruko; Mamonkin, Maksim; Lapteva, Natalia; Sharma, Sandhya; Rollins, Lisa; Dotti, Gianpietro; Reinke, Petra; Volk, Hans-Dieter; Rooney, Cliona M

    2017-07-01

    The outcome of therapy with chimeric Ag receptor (CAR)-modified T cells is strongly influenced by the subset origin of the infused T cells. However, because polyclonally activated T cells acquire a largely CD45RO + CCR7 - effector memory phenotype after expansion, regardless of subset origin, it is impossible to know which subsets contribute to the final T cell product. To determine the contribution of naive T cell, memory stem T cell, central memory T cell, effector memory T cell, and terminally differentiated effector T cell populations to the CD3 and CD28-activated CAR-modified T cells that we use for therapy, we followed the fate and function of individually sorted CAR-modified T cell subsets after activation with CD3 and CD28 Abs (CD3/28), transduction and culture alone, or after reconstitution into the relevant subset-depleted population. We show that all subsets are sensitive to CAR transduction, and each developed a distinct T cell functional profile during culture. Naive-derived T cells showed the greatest rate of proliferation but had more limited effector functions and reduced killing compared with memory-derived populations. When cultured in the presence of memory T cells, naive-derived T cells show increased differentiation, reduced effector cytokine production, and a reduced reproliferative response to CAR stimulation. CD3/28-activated T cells expanded in IL-7 and IL-15 produced greater expansion of memory stem T cells and central memory T cell-derived T cells compared with IL-2. Our strategy provides a powerful tool to elucidate the characteristics of CAR-modified T cells, regardless of the protocol used for expansion, reveals the functional properties of each expanded T cell subset, and paves the way for a more detailed evaluation of the effects of manufacturing changes on the subset contribution to in vitro-expanded T cells. Copyright © 2017 by The American Association of Immunologists, Inc.

  3. Ultralow-power non-volatile memory cells based on P(VDF-TrFE) ferroelectric-gate CMOS silicon nanowire channel field-effect transistors.

    PubMed

    Van, Ngoc Huynh; Lee, Jae-Hyun; Whang, Dongmok; Kang, Dae Joon

    2015-07-21

    Nanowire-based ferroelectric-complementary metal-oxide-semiconductor (NW FeCMOS) nonvolatile memory devices were successfully fabricated by utilizing single n- and p-type Si nanowire ferroelectric-gate field effect transistors (NW FeFETs) as individual memory cells. In addition to having the advantages of single channel n- and p-type Si NW FeFET memory, Si NW FeCMOS memory devices exhibit a direct readout voltage and ultralow power consumption. The reading state power consumption of this device is less than 0.1 pW, which is more than 10(5) times lower than the ON-state power consumption of single-channel ferroelectric memory. This result implies that Si NW FeCMOS memory devices are well suited for use in non-volatile memory chips in modern portable electronic devices, especially where low power consumption is critical for energy conservation and long-term use.

  4. B Cells and B Cell Blasts Withstand Cryopreservation While Retaining Their Functionality for Producing Antibody.

    PubMed

    Fecher, Philipp; Caspell, Richard; Naeem, Villian; Karulin, Alexey Y; Kuerten, Stefanie; Lehmann, Paul V

    2018-05-31

    In individuals who have once developed humoral immunity to an infectious/foreign antigen, the antibodies present in their body can mediate instant protection when the antigen re-enters. Such antigen-specific antibodies can be readily detected in the serum. Long term humoral immunity is, however, also critically dependent on the ability of memory B cells to engage in a secondary antibody response upon re-exposure to the antigen. Antibody molecules in the body are short lived, having a half-life of weeks, while memory B cells have a life span of decades. Therefore, the presence of serum antibodies is not always a reliable indicator of B cell memory and comprehensive monitoring of humoral immunity requires that both serum antibodies and memory B cells be assessed. The prevailing view is that resting memory B cells and B cell blasts in peripheral blood mononuclear cells (PBMC) cannot be cryopreserved without losing their antibody secreting function, and regulated high throughput immune monitoring of B cell immunity is therefore confined to-and largely limited by-the need to test freshly isolated PBMC. Using optimized protocols for freezing and thawing of PBMC, and four color ImmunoSpot ® analysis for the simultaneous detection of all immunoglobulin classes/subclasses we show here that both resting memory B cells and B cell blasts retain their ability to secrete antibody after thawing, and thus demonstrate the feasibility of B cell immune monitoring using cryopreserved PBMC.

  5. 17D yellow fever vaccine elicits comparable long-term immune responses in healthy individuals and immune-compromised patients.

    PubMed

    Wieten, R W; Goorhuis, A; Jonker, E F F; de Bree, G J; de Visser, A W; van Genderen, P J J; Remmerswaal, E B M; Ten Berge, I J M; Visser, L G; Grobusch, M P; van Leeuwen, E M M

    2016-06-01

    The 17D live attenuated yellow fever (YF) vaccine is contra-indicated in immune-compromised individuals and may elicit a suboptimal immunologic response. The aim of this study is to assess whether long-term immune responses against the YF vaccine are impaired in immune-compromised patients. Fifteen patients using different immunosuppressive drugs and 30 healthy individuals vaccinated 0-22 years ago were included. The serological response was measured using the plaque reduction neutralization test (PRNT). CD8(+) and CD4(+) T-cell responses were measured following proliferation and re-stimulation with YFV peptide pools. Phenotypic characteristics and cytokine responses of CD8(+) T-cells were determined using class I tetramers. The geometric mean titre of neutralizing antibodies was not different between the groups (p = 0.77). The presence of YFV-specific CD4(+) and CD8(+) T-cell did not differ between patients and healthy individuals (15/15, 100.0% vs. 29/30, 96.7%, p = 0.475). Time since vaccination correlated negatively with the number of YFV-specific CD8(+) T-cells (r = -0.66, p = 0.0045). Percentages of early-differentiated memory cells increased (r = 0.67, p = 0.017) over time. These results imply that YF vaccination is effective despite certain immunosuppressive drug regimens. An early-differentiated memory-like phenotype persisted, which is associated with effective expansion upon re-encounter with antigen, suggesting a potent memory T-cell pool remains. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  6. High Inter-Individual Diversity of Point Mutations, Insertions, and Deletions in Human Influenza Virus Nucleoprotein-Specific Memory B Cells

    PubMed Central

    Bussmann, Bianca M.; Horn, Susanne; Sieg, Michael; Jassoy, Christian

    2015-01-01

    The diversity of virus-specific antibodies and of B cells among different individuals is unknown. Using single-cell cloning of antibody genes, we generated recombinant human monoclonal antibodies from influenza nucleoprotein-specific memory B cells in four adult humans with and without preceding influenza vaccination. We examined the diversity of the antibody repertoires and found that NP-specific B cells used numerous immunoglobulin genes. The heavy chains (HCs) originated from 26 and the kappa light chains (LCs) from 19 different germ line genes. Matching HC and LC chains gave rise to 43 genetically distinct antibodies that bound influenza NP. The median lengths of the CDR3 of the HC, kappa and lambda LC were 14, 9 and 11 amino acids, respectively. We identified changes at 13.6% of the amino acid positions in the V gene of the antibody heavy chain, at 8.4 % in the kappa and at 10.6 % in the lambda V gene. We identified somatic insertions or deletions in 8.1% of the variable genes. We also found several small groups of clonal relatives that were highly diversified. Our findings demonstrate broadly diverse memory B cell repertoires for the influenza nucleoprotein. We found extensive variation within individuals with a high number of point mutations, insertions, and deletions, and extensive clonal diversification. Thus, structurally conserved proteins can elicit broadly diverse and highly mutated B-cell responses. PMID:26086076

  7. Characteristics of memory B cells elicited by a highly efficacious HPV vaccine in subjects with no pre-existing immunity.

    PubMed

    Scherer, Erin M; Smith, Robin A; Simonich, Cassandra A; Niyonzima, Nixon; Carter, Joseph J; Galloway, Denise A

    2014-10-01

    Licensed human papillomavirus (HPV) vaccines provide near complete protection against the types of HPV that most commonly cause anogenital and oropharyngeal cancers (HPV 16 and 18) when administered to individuals naive to these types. These vaccines, like most other prophylactic vaccines, appear to protect by generating antibodies. However, almost nothing is known about the immunological memory that forms following HPV vaccination, which is required for long-term immunity. Here, we have identified and isolated HPV 16-specific memory B cells from female adolescents and young women who received the quadrivalent HPV vaccine in the absence of pre-existing immunity, using fluorescently conjugated HPV 16 pseudoviruses to label antigen receptors on the surface of memory B cells. Antibodies cloned and expressed from these singly sorted HPV 16-pseudovirus labeled memory B cells were predominantly IgG (>IgA>IgM), utilized diverse variable genes, and potently neutralized HPV 16 pseudoviruses in vitro despite possessing only average levels of somatic mutation. These findings suggest that the quadrivalent HPV vaccine provides an excellent model for studying the development of B cell memory; and, in the context of what is known about memory B cells elicited by influenza vaccination/infection, HIV-1 infection, or tetanus toxoid vaccination, indicates that extensive somatic hypermutation is not required to achieve potent vaccine-specific neutralizing antibody responses.

  8. CHARACTERIZATION OF NORMAL HUMAN LUNG LYMPHOCYTES AND INTERLEUKIN-2-INDUCED LUNG T CELL LINES

    EPA Science Inventory

    Lymphocytes from the lower respiratory tract were obtained by bronchoalveolar lavage of healthy, non-smoking individuals. arious monoclonal antibodies characterizing activated T cells, helper-inducer and suppressor-inducer T cell subsets, and naive versus memory cells were used t...

  9. Large-Scale Fluorescence Calcium-Imaging Methods for Studies of Long-Term Memory in Behaving Mammals

    PubMed Central

    Jercog, Pablo; Rogerson, Thomas; Schnitzer, Mark J.

    2016-01-01

    During long-term memory formation, cellular and molecular processes reshape how individual neurons respond to specific patterns of synaptic input. It remains poorly understood how such changes impact information processing across networks of mammalian neurons. To observe how networks encode, store, and retrieve information, neuroscientists must track the dynamics of large ensembles of individual cells in behaving animals, over timescales commensurate with long-term memory. Fluorescence Ca2+-imaging techniques can monitor hundreds of neurons in behaving mice, opening exciting avenues for studies of learning and memory at the network level. Genetically encoded Ca2+ indicators allow neurons to be targeted by genetic type or connectivity. Chronic animal preparations permit repeated imaging of neural Ca2+ dynamics over multiple weeks. Together, these capabilities should enable unprecedented analyses of how ensemble neural codes evolve throughout memory processing and provide new insights into how memories are organized in the brain. PMID:27048190

  10. Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility

    PubMed Central

    Seumois, Grégory; Chavez, Lukas; Gerasimova, Anna; Lienhard, Matthias; Omran, Nada; Kalinke, Lukas; Vedanayagam, Maria; Ganesan, Asha Purnima V; Chawla, Ashu; Djukanović, Ratko; Ansel, K Mark; Peters, Bjoern; Rao, Anjana; Vijayanand, Pandurangan

    2014-01-01

    A characteristic feature of asthma is the aberrant accumulation, differentiation or function of memory CD4+ T cells that produce type 2 cytokines (TH2 cells). By mapping genome-wide histone modification profiles for subsets of T cells isolated from peripheral blood of healthy and asthmatic individuals, we identified enhancers with known and potential roles in the normal differentiation of human TH1 cells and TH2 cells. We discovered disease-specific enhancers in T cells that differ between healthy and asthmatic individuals. Enhancers that gained the histone H3 Lys4 dimethyl (H3K4me2) mark during TH2 cell development showed the highest enrichment for asthma-associated single nucleotide polymorphisms (SNPs), which supported a pathogenic role for TH2 cells in asthma. In silico analysis of cell-specific enhancers revealed transcription factors, microRNAs and genes potentially linked to human TH2 cell differentiation. Our results establish the feasibility and utility of enhancer profiling in well-defined populations of specialized cell types involved in disease pathogenesis. PMID:24997565

  11. Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility.

    PubMed

    Seumois, Grégory; Chavez, Lukas; Gerasimova, Anna; Lienhard, Matthias; Omran, Nada; Kalinke, Lukas; Vedanayagam, Maria; Ganesan, Asha Purnima V; Chawla, Ashu; Djukanović, Ratko; Ansel, K Mark; Peters, Bjoern; Rao, Anjana; Vijayanand, Pandurangan

    2014-08-01

    A characteristic feature of asthma is the aberrant accumulation, differentiation or function of memory CD4(+) T cells that produce type 2 cytokines (TH2 cells). By mapping genome-wide histone modification profiles for subsets of T cells isolated from peripheral blood of healthy and asthmatic individuals, we identified enhancers with known and potential roles in the normal differentiation of human TH1 cells and TH2 cells. We discovered disease-specific enhancers in T cells that differ between healthy and asthmatic individuals. Enhancers that gained the histone H3 Lys4 dimethyl (H3K4me2) mark during TH2 cell development showed the highest enrichment for asthma-associated single nucleotide polymorphisms (SNPs), which supported a pathogenic role for TH2 cells in asthma. In silico analysis of cell-specific enhancers revealed transcription factors, microRNAs and genes potentially linked to human TH2 cell differentiation. Our results establish the feasibility and utility of enhancer profiling in well-defined populations of specialized cell types involved in disease pathogenesis.

  12. Preserved antibody levels and loss of memory B cells against pneumococcus and tetanus after splenectomy: tailoring better vaccination strategies.

    PubMed

    Rosado, M Manuela; Gesualdo, Francesco; Marcellini, Valentina; Di Sabatino, Antonio; Corazza, Gino Roberto; Smacchia, Maria Paola; Nobili, Bruno; Baronci, Carlo; Russo, Lidia; Rossi, Francesca; Vito, Rita De; Nicolosi, Luciana; Inserra, Alessandro; Locatelli, Franco; Tozzi, Alberto E; Carsetti, Rita

    2013-10-01

    Splenectomized patients are exposed to an increased risk of septicemia caused by encapsulated bacteria. Defense against infection is ensured by preformed serum antibodies produced by long-lived plasma cells and by memory B cells that secrete immunoglobulin in response to specific antigenic stimuli. Studying a group of asplenic individuals (57 adults and 21 children) without additional immunologic defects, we found that spleen removal does not alter serum anti-pneumococcal polysaccharide (PnPS) IgG concentration, but reduces the number of PnPS-specific memory B cells, of both IgM and IgG isotypes. The number of specific memory B cells was low in splenectomized adults and children that had received the PnPS vaccine either before or after splenectomy. Seven children were given the 13-valent pneumococcal conjugated vaccine after splenectomy. In this group, the number of PnPS-specific IgG memory B cells was similar to that of eusplenic children, suggesting that pneumococcal conjugated vaccine administered after splenectomy is able to restore the pool of anti-PnPS IgG memory B cells. Our data further elucidate the crucial role of the spleen in the immunological response to infections caused by encapsulated bacteria and suggest that glycoconjugated vaccines may be the most suitable choice to generate IgG-mediated protection in these patients. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Immunologic response and memory T cells in subjects cured of tegumentary leishmaniasis.

    PubMed

    Carvalho, Augusto M; Magalhães, Andréa; Carvalho, Lucas P; Bacellar, Olívia; Scott, Phillip; Carvalho, Edgar M

    2013-11-09

    The main clinical forms of tegumentary leishmaniasis are cutaneous leishmaniasis (CL) and mucosal leishmaniasis (ML). L.braziliensis infection is characterized by an exaggerated production of IFN-gamma and TNF-alpha, cytokines involved in parasite destruction, but also in the pathology. Maintenance of an antigen-specific immune response may be important for resistance to re-infection and will contribute for vaccine development. In the present work we investigated the immune response in CL and ML cured individuals. Participants in the present study included 20 CL and 20 ML patients, who were evaluated prior to, as well as 2 to 15 years after therapy. IFN-gamma, IL-2 and TNF-alpha production were determined by ELISA in supernatants of mononuclear cells stimulated with soluble L.braziliensis antigen (SLA). The frequency of memory CD4+ T cell populations was determined by FACS. Here we show that the majority of CL and ML patients did not produce in vitro IFN-gamma in response to SLA after cure. In the cured individuals who responded to SLA, effector memory (CD45RA-CCR7-) CD4+ T cells were the ones producing IFN-gamma. Because a large percent of CL and ML cured patients lost SLA-induced IFN-gamma production in peripheral blood, we performed Leishmania skin test (LST). A positive LST was found in 87.5% and 100% of CL and ML cured individuals, respectively, who did not produce IFN-gamma or IL-2 in vitro. This study shows that in spite of losing in vitro antigen-specific response to Leishmania, cured CL and ML subjects retain the ability to respond to SLA in vivo. These findings indicate that LST, rather than IFN-gamma production, may be a better assessment of lasting immunity to leishmaniasis in human studies, and thus a better tool for assessing immunization after vaccine. Furthermore, in cured individuals which maintains Leishmania-specific IFN-gamma production, effector memory CD4+ T cells were the main source of this cytokine.

  14. The IL23R A/Gln381 allele promotes IL-23 unresponsiveness in human memory T-helper 17 cells and impairs Th17 responses in psoriasis patients.

    PubMed

    Di Meglio, Paola; Villanova, Federica; Napolitano, Luca; Tosi, Isabella; Terranova Barberio, Manuela; Mak, Rose K; Nutland, Sarah; Smith, Catherine H; Barker, Jonathan N W N; Todd, John A; Nestle, Frank O

    2013-10-01

    We and others have shown that the minor, nonconserved allele Gln381 of the Arg381Gln single-nucleotide polymorphism (rs11209026G>A) of the IL-23 receptor gene (IL23R) protects against psoriasis. Moreover, we have recently shown impaired IL-23-induced IL-17A production and STAT-3 phosphorylation in Th17 cells generated in vitro from healthy individuals heterozygous for the protective A allele (GA). However, the biological effect of this variant has not been determined in homozygous carriers of the protective A allele (AA), nor in psoriatic patients. Here we expand our functional investigation of the IL23R Arg381Gln gene variant to include AA homozygous individuals. By using isolated memory CD4+ T cells, we found attenuated IL-23-induced Th17 response in heterozygous individuals. Moreover, we found that AA homozygous individuals were strikingly unresponsive to IL-23, with minimal or no IL-17A and IL-17F production and failure of human memory Th17 cell survival/expansion. Finally, IL-23-induced Th17 response was also attenuated in age- and sex-matched GA versus GG psoriatic patients undergoing systemic treatment. Taken together, our data provide evidence for an allele-dosage effect for IL-23R Gln381 and indicate that common gene alleles associated with complex diseases might have biological effects of considerable magnitude in homozygous carriers.

  15. High Density Memory Based on Quantum Device Technology

    NASA Technical Reports Server (NTRS)

    vanderWagt, Paul; Frazier, Gary; Tang, Hao

    1995-01-01

    We explore the feasibility of ultra-high density memory based on quantum devices. Starting from overall constraints on chip area, power consumption, access speed, and noise margin, we deduce boundaries on single cell parameters such as required operating voltage and standby current. Next, the possible role of quantum devices is examined. Since the most mature quantum device, the resonant tunneling diode (RTD) can easily be integrated vertically, it naturally leads to the issue of 3D integrated memory. We propose a novel method of addressing vertically integrated bistable two-terminal devices, such as resonant tunneling diodes (RTD) and Esaki diodes, that avoids individual physical contacts. The new concept has been demonstrated experimentally in memory cells of field effect transistors (FET's) and stacked RTD's.

  16. In Vitro Priming of Naı̈ve T-cells with p-Phenylenediamine and Bandrowski's Base.

    PubMed

    Gibson, Andrew; Kim, Seung-Hyun; Faulkner, Lee; Evely, Jane; Pirmohamed, Munir; Park, Kevin B; Naisbitt, Dean J

    2015-10-19

    p-Phenylenediamine (PPD) is a component of hair dye formulations that is associated with T-cell mediated allergic contact dermatitis. Antigen-specific T-cells from allergic contact dermatitis patients are activated with either PPD or the oxidation product, Bandrowski's base. In nonallergic individuals, T-cells that are activated by Bandrowski's base, but not by PPD, are readily detectable. The aim of the current study was to use an in vitro T-cell priming assay to assess the activation of memory and naı̈ve T-cells from healthy donors with PPD and Bandrowski's base, and to compare these responses to those observed from allergic patients. Both PPD and Bandrowski's base-responsive clones were generated from allergic patients. The majority of Bandrowski's base-responsive clones were CD4+ and displayed a lack of PPD reactivity. In contrast, CD4+ and CD8+ clones displaying PPD reactivity were detected. Approximately 25% of these displayed low levels of reactivity to Bandrowski's base. Clones from the allergic patients secreted a range of cytokines including IFN-γ, Il-13, and Il-22. In healthy donors, Bandrowski's base-specific T-cell proliferative responses and cytokine secretion were detected with both naı̈ve and memory T-cells. T-cell clones generated from the Bandrowski's base-responsive cultures responded to Bandrowski's base but not PPD. PPD-specific naı̈ve and memory T-cell responses were not detected from healthy donors. These data show that Bandrowski's base stimulates pre-existing memory T-cells isolated from healthy donors and primes naı̈ve T-cells when the chemical is bound to autologous dendritic cells. Priming naı̈ve T-cells against PPD failed, suggesting an important individual susceptibility factor is missing from the in vitro T-cell priming assay.

  17. Rescue of CD8+ T cell vaccine memory following sublethal γ irradiation.

    PubMed

    McFarland, Hugh I; Berkson, Julia D; Lee, Jay P; Elkahloun, Abdel G; Mason, Karen P; Rosenberg, Amy S

    2015-07-31

    Sublethal γ irradiation eliminates CD8+ T cell mediated memory responses. In this work, we explored how these memory responses could be rescued in the aftermath of such exposure. We utilized two models of CD8+ T cell mediated immunity: a mouse model of Listeria monocytogenes (LM) infection in which CD8+ T cells specific for LM expressed antigens (Listeriolysin O, LLO) can be tracked, and a murine skin graft model in which CD8+ T cells mediate rejection across a MHC class I (D(d)) disparity. In the LM immunized mice, LL0 specific CD8+ T memory cells were lost on irradiation, preserved with rapid revaccination with an attenuated strain 1-3 days post-irradiation (PI), and these mice survived a subsequent wild type LM challenge. A genetic "signature of rescue" identified a group of immune-associated mRNA maintained or upregulated following irradiation and rescue. A number of these factors, including IL-36γ, dectin-2 (Clec4n), and mir101c are upregulated rapidly after exposure of mice to sublethal γ radiation alone and are sustained by early, but not later rescue. Such factors will be evaluated as potential therapeutics to replace individual vaccines for global rescue of CD8+ T memory cell responses following sublethal γ irradiation. The skin allograft model mirrored that of the LM model in that the accelerated D(d) skin allograft rejection response was lost in mice exposed to sublethal γ radiation, but infusion of allogeneic D(d) expressing bone marrow cells 1-4 days PI preserved the CD8+ T memory mediated accelerated rejection response, further suggesting that innate immune responses may not always be essential to rescue of CD8+ memory T cells following γ irradiation. Published by Elsevier Ltd.

  18. FCRL5 Delineates Functionally Impaired Memory B Cells Associated with Plasmodium falciparum Exposure

    PubMed Central

    Fontana, Mary F.; Feeney, Margaret E.; Jagannathan, Prasanna; Boyle, Michelle J.; Drakeley, Chris J.; Ssewanyana, Isaac; Nankya, Felistas; Mayanja-Kizza, Harriet; Dorsey, Grant; Greenhouse, Bryan

    2015-01-01

    Exposure to Plasmodium falciparum is associated with circulating “atypical” memory B cells (atMBCs), which appear similar to dysfunctional B cells found in HIV-infected individuals. Functional analysis of atMBCs has been limited, with one report suggesting these cells are not dysfunctional but produce protective antibodies. To better understand the function of malaria-associated atMBCs, we performed global transcriptome analysis of these cells, obtained from individuals living in an area of high malaria endemicity in Uganda. Comparison of gene expression data suggested down-modulation of B cell receptor signaling and apoptosis in atMBCs compared to classical MBCs. Additionally, in contrast to previous reports, we found upregulation of Fc receptor-like 5 (FCRL5), but not FCRL4, on atMBCs. Atypical MBCs were poor spontaneous producers of antibody ex vivo, and higher surface expression of FCRL5 defined a distinct subset of atMBCs compromised in its ability to produce antibody upon stimulation. Moreover, higher levels of P. falciparum exposure were associated with increased frequencies of FCRL5+ atMBCs. Together, our findings suggest that FCLR5+ identifies a functionally distinct, and perhaps dysfunctional, subset of MBCs in individuals exposed to P. falciparum. PMID:25993340

  19. Narrowing of human influenza A virus-specific T cell receptor α and β repertoires with increasing age.

    PubMed

    Gil, Anna; Yassai, Maryam B; Naumov, Yuri N; Selin, Liisa K

    2015-04-01

    Alterations in memory CD8 T cell responses may contribute to the high morbidity and mortality caused by seasonal influenza A virus (IAV) infections in older individuals. We questioned whether memory CD8 responses to this nonpersistent virus, to which recurrent exposure with new strains is common, changed over time with increasing age. Here, we show a direct correlation between increasing age and narrowing of the HLA-A2-restricted IAV Vα and Vβ T cell repertoires specific to M1 residues 58 to 66 (M158-66), which simultaneously lead to oligoclonal expansions, including the usage of a single identical VA12-JA29 clonotype in all eight older donors. The Vα repertoire of older individuals also had longer CDR3 regions with increased usage of G/A runs, whose molecular flexibility may enhance T cell receptor (TCR) promiscuity. Collectively, these results suggest that CD8 memory T cell responses to nonpersistent viruses like IAV in humans are dynamic, and with aging there is a reduced diversity but a preferential retention of T cell repertoires with features of enhanced cross-reactivity. With increasing age, the immune system undergoes drastic changes, and older individuals have declined resistance to infections. Vaccinations become less effective, and infection with influenza A virus in older individuals is associated with higher morbidity and mortality. Here, we questioned whether T cell responses directed against the highly conserved HLA-A2-restricted M158-66 peptide of IAV evolves with increasing age. Specifically, we postulated that CD8 T cell repertoires narrow with recurrent exposure and may thus be less efficient in response to new infections with new strains of IAV. Detailed analyses of the VA and VB TCR repertoires simultaneously showed a direct correlation between increasing age and narrowing of the TCR repertoire. Features of the TCRs indicated potentially enhanced cross-reactivity in all older donors. In summary, T cell repertoire analysis in older individuals may be useful as one of the predictors of protection after vaccination. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Phenotypic analysis of perennial airborne allergen-specific CD4+ T cells in atopic and non-atopic individuals.

    PubMed

    Crack, L R; Chan, H W; McPherson, T; Ogg, G S

    2011-11-01

    Accumulating evidence suggests that T cells play an important role in the pathogenesis of atopic dermatitis (AD); yet, little is known of the differentiation status of CD4+ T cells specific for common environmental allergens, such as the major cat allergen, Fel d 1. To determine the frequency, differentiation phenotype and function of circulating Fel d 1-specific CD4+ T cells in adult individuals with severe persistent AD in comparison with healthy controls. Using HLA class II tetrameric complexes based on a HLA-DPB1*0401-restricted Fel d 1 epitope, ex vivo and cultured T cell frequency and phenotype were analysed in individuals with AD and healthy controls. Cytokine secretion was measured by ex vivo and cultured IL-4 and IFN-γ ELISpots. Ex vivo Fel d 1-specific DPB1*0401-restricted CD4+ T cells in both atopics and non-atopics express high levels of CCR7, CD62L, CD27 and CD28, placing the cells largely within the central memory subgroup. However, the functional phenotype was distinct, with greater IL-4 production from the cells derived from atopics, which correlated with disease severity. Circulating Fel d 1-specific DPB1*0401-restricted CD4+ T cells in both atopic and non-atopic donors maintain a central memory phenotype; however in atopics, the cells had greater Th2 effector function, compatible with a disease model of altered antigen delivery in atopic individuals. © 2011 Blackwell Publishing Ltd.

  1. Memory engram storage and retrieval.

    PubMed

    Tonegawa, Susumu; Pignatelli, Michele; Roy, Dheeraj S; Ryan, Tomás J

    2015-12-01

    A great deal of experimental investment is directed towards questions regarding the mechanisms of memory storage. Such studies have traditionally been restricted to investigation of the anatomical structures, physiological processes, and molecular pathways necessary for the capacity of memory storage, and have avoided the question of how individual memories are stored in the brain. Memory engram technology allows the labeling and subsequent manipulation of components of specific memory engrams in particular brain regions, and it has been established that cell ensembles labeled by this method are both sufficient and necessary for memory recall. Recent research has employed this technology to probe fundamental questions of memory consolidation, differentiating between mechanisms of memory retrieval from the true neurobiology of memory storage. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Decrease in Numbers of Naive and Resting B Cells in HIV-Infected Kenyan Adults Leads to a Proportional Increase in Total and Plasmodium falciparum-Specific Atypical Memory B Cells.

    PubMed

    Frosch, Anne E; Odumade, Oludare A; Taylor, Justin J; Ireland, Kathleen; Ayodo, George; Ondigo, Bartholomew; Narum, David L; Vulule, John; John, Chandy C

    2017-06-15

    Human immunodeficiency virus type 1 (HIV-1) infection is associated with B cell activation and exhaustion, and hypergammaglobulinemia. How these changes influence B cell responses to coinfections such as malaria is poorly understood. To address this, we compared B cell phenotypes and Abs specific for the Plasmodium falciparum vaccine candidate apical membrane Ag-1 (AMA1) in HIV-infected and uninfected adults living in Kenya. Surprisingly, HIV-1 infection was not associated with a difference in serum AMA1-specific Ab levels. HIV-infected individuals had a higher proportion of total atypical and total activated memory B cells (MBCs). Using an AMA1 tetramer to detect AMA1-specific B cells, HIV-infected individuals were also shown to have a higher proportion of AMA1-specific atypical MBCs. However, this proportional increase resulted in large part from a loss in the number of naive and resting MBCs rather than an increase in the number of atypical and activated cells. The loss of resting MBCs and naive B cells was mirrored in a population of cells specific for an Ag to which these individuals were unlikely to have been chronically exposed. Together, the data show that changes in P. falciparum Ag-specific B cell subsets in HIV-infected individuals mirror those in the overall B cell population, and suggest that the increased proportion of atypical MBC phenotypes found in HIV-1-infected individuals results from the loss of naive and resting MBCs. Copyright © 2017 by The American Association of Immunologists, Inc.

  3. Representation of memories in the cortical-hippocampal system: Results from the application of population similarity analyses

    PubMed Central

    McKenzie, Sam; Keene, Chris; Farovik, Anja; Blandon, John; Place, Ryan; Komorowski, Robert; Eichenbaum, Howard

    2016-01-01

    Here we consider the value of neural population analysis as an approach to understanding how information is represented in the hippocampus and cortical areas and how these areas might interact as a brain system to support memory. We argue that models based on sparse coding of different individual features by single neurons in these areas (e.g., place cells, grid cells) are inadequate to capture the complexity of experience represented within this system. By contrast, population analyses of neurons with denser coding and mixed selectivity reveal new and important insights into the organization of memories. Furthermore, comparisons of the organization of information in interconnected areas suggest a model of hippocampal-cortical interactions that mediates the fundamental features of memory. PMID:26748022

  4. Atypical memory B cells in human chronic infectious diseases: An interim report.

    PubMed

    Portugal, Silvia; Obeng-Adjei, Nyamekye; Moir, Susan; Crompton, Peter D; Pierce, Susan K

    2017-11-01

    Immunological memory is a remarkable phenomenon in which survival of an initial infection by a pathogen leads to life-long protection from disease upon subsequent exposure to that same pathogen. For many infectious diseases, long-lived protective humoral immunity is induced after only a single infection in a process that depends on the generation of memory B cells (MBCs) and long-lived plasma cells. However, over the past decade it has become increasingly evident that many chronic human infectious diseases to which immunity is not readily established, including HIV-AIDS, malaria and TB, are associated with fundamental alterations in the composition and functionality of MBC compartments. A common feature of these diseases appears to be a large expansion of what have been termed exhausted B cells, tissue-like memory B cells or atypical memory B cells (aMBCs) that, for simplicity's sake, we refer to here as aMBCs. It has been suggested that chronic immune activation and inflammation drive the expansion of aMBCs and that in some way aMBCs contribute to deficiencies in the acquisition of immunity in chronic infectious diseases. Although aMBCs are heterogeneous both within individuals and between diseases, they have several features in common including low expression of the cell surface markers that define classical MBCs in humans including CD21 and CD27 and high expression of genes not usually expressed by classical MBCs including T-bet, CD11c and a variety of inhibitory receptors, notably members of the FcRL family. Another distinguishing feature is their greatly diminished ability to be stimulated through their B cell receptors to proliferate, secrete cytokines or produce antibodies. In this review, we describe our current understanding of the phenotypic markers of aMBCs, their specificity in relation to the disease-causing pathogen, their functionality, the drivers of their expansion in chronic infections and their life span. We briefly summarize the features of aMBCs in healthy individuals and in autoimmune disease. We also comment on the possible relationship of human aMBCs and T-bet + , CD11c + age/autoimmune-associated B cells, also a topic of this review volume. Published by Elsevier Inc.

  5. Induction of long term mucosal immunological memory in humans by an oral inactivated multivalent enterotoxigenic Escherichia coli vaccine.

    PubMed

    Lundgren, Anna; Jertborn, Marianne; Svennerholm, Ann-Mari

    2016-06-08

    We have evaluated the capacity of an oral multivalent enterotoxigenic Escherichia coli (ETEC) vaccine (MEV) to induce mucosal immunological memory. MEV consists of four inactivated E. coli strains over-expressing the major colonization factors (CFs) CFA/I, CS3, CS5 and CS6 and the LTB-related toxoid LCTBA. Memory responses were analyzed by comparing the magnitudes and kinetics of intestine-derived antibody-secreting cell responses to a single dose of MEV in three groups of adult Swedish volunteers (n=16-19 subjects per group) in a Phase I trial: non-immunized controls (I) and subjects who in a previous Phase I trial 13-23 months earlier had received two biweekly doses of MEV (II) or MEV+double mutant LT (dmLT) adjuvant (III). Responses against CFs and LTB were analyzed in antibodies in lymphocyte secretions (ALS) of blood mononuclear cells collected before (day 0) and 4/5 and 7 days after immunization. Specific circulating memory B cells present at the time of the single dose vaccination were also studied to determine if such cells may reflect mucosal memory. Considerably higher and significantly more frequent IgA ALS responses against all CFs and LTB were induced by the single vaccine dose in the previously immunized than in non-immunized volunteers. Furthermore, peak IgA ALS responses against all antigens were observed on days 4/5 in most of the previously immunized subjects whereas only a few previously non-vaccinated individuals responded before day 7. Priming with adjuvant did not influence memory responses. Circulating vaccine specific IgA memory B cells were not detected, whereas anti-toxin IgG memory B cells were identified 13-23 months after priming vaccination. We conclude that MEV induces functional mucosal immunological memory which remains at least 1-2 years. Furthermore, our results support that analysis of antibody-secreting cell responses after booster vaccination may be a useful approach to evaluate longstanding mucosal immunological memory in humans. ISRCTN27096290. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Initiation of Antiretroviral Therapy Restores CD4+ T Memory Stem Cell Homeostasis in Simian Immunodeficiency Virus-Infected Macaques.

    PubMed

    Cartwright, Emily K; Palesch, David; Mavigner, Maud; Paiardini, Mirko; Chahroudi, Ann; Silvestri, Guido

    2016-08-01

    Treatment of human immunodeficiency virus (HIV) infection with antiretroviral therapy (ART) has significantly improved prognosis. Unfortunately, interruption of ART almost invariably results in viral rebound, attributed to a pool of long-lived, latently infected cells. Based on their longevity and proliferative potential, CD4(+) T memory stem cells (TSCM) have been proposed as an important site of HIV persistence. In a previous study, we found that in simian immunodeficiency virus (SIV)-infected rhesus macaques (RM), CD4(+) TSCM are preserved in number but show (i) a decrease in the frequency of CCR5(+) cells, (ii) an expansion of the fraction of proliferating Ki-67(+) cells, and (iii) high levels of SIV DNA. To understand the impact of ART on both CD4(+) TSCM homeostasis and virus persistence, we conducted a longitudinal analysis of these cells in the blood and lymph nodes of 25 SIV-infected RM. We found that ART induced a significant restoration of CD4(+) CCR5(+) TSCM both in blood and in lymph nodes and a reduction in the fraction of proliferating CD4(+) Ki-67(+) TSCM in blood (but not lymph nodes). Importantly, we found that the level of SIV DNA in CD4(+) transitional memory (TTM) and effector memory (TEM) T cells declined ∼100-fold after ART in both blood and lymph nodes, while the level of SIV DNA in CD4(+) TSCM and central memory T cells (TCM-) did not significantly change. These data suggest that ART is effective at partially restoring CD4(+) TSCM homeostasis, and the observed stable level of virus in TSCM supports the hypothesis that these cells are a critical contributor to SIV persistence. Understanding the roles of various CD4(+) T cell memory subsets in immune homeostasis and HIV/SIV persistence during antiretroviral therapy (ART) is critical to effectively treat and cure HIV infection. T memory stem cells (TSCM) are a unique memory T cell subset with enhanced self-renewal capacity and the ability to differentiate into other memory T cell subsets, such as central and transitional memory T cells (TCM and TTM, respectively). CD4(+) TSCM are disrupted but not depleted during pathogenic SIV infection. We find that ART is partially effective at restoring CD4(+) TSCM homeostasis and that SIV DNA harbored within this subset contracts more slowly than virus harbored in shorter-lived subsets, such as TTM and effector memory (TEM). Because of their ability to persist long-term in an individual, understanding the dynamics of virally infected CD4(+) TSCM during suppressive ART is important for future therapeutic interventions aimed at modulating immune activation and purging the HIV reservoir. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Initiation of Antiretroviral Therapy Restores CD4+ T Memory Stem Cell Homeostasis in Simian Immunodeficiency Virus-Infected Macaques

    PubMed Central

    Cartwright, Emily K.; Palesch, David; Mavigner, Maud; Paiardini, Mirko; Chahroudi, Ann

    2016-01-01

    ABSTRACT Treatment of human immunodeficiency virus (HIV) infection with antiretroviral therapy (ART) has significantly improved prognosis. Unfortunately, interruption of ART almost invariably results in viral rebound, attributed to a pool of long-lived, latently infected cells. Based on their longevity and proliferative potential, CD4+ T memory stem cells (TSCM) have been proposed as an important site of HIV persistence. In a previous study, we found that in simian immunodeficiency virus (SIV)-infected rhesus macaques (RM), CD4+ TSCM are preserved in number but show (i) a decrease in the frequency of CCR5+ cells, (ii) an expansion of the fraction of proliferating Ki-67+ cells, and (iii) high levels of SIV DNA. To understand the impact of ART on both CD4+ TSCM homeostasis and virus persistence, we conducted a longitudinal analysis of these cells in the blood and lymph nodes of 25 SIV-infected RM. We found that ART induced a significant restoration of CD4+ CCR5+ TSCM both in blood and in lymph nodes and a reduction in the fraction of proliferating CD4+ Ki-67+ TSCM in blood (but not lymph nodes). Importantly, we found that the level of SIV DNA in CD4+ transitional memory (TTM) and effector memory (TEM) T cells declined ∼100-fold after ART in both blood and lymph nodes, while the level of SIV DNA in CD4+ TSCM and central memory T cells (TCM-) did not significantly change. These data suggest that ART is effective at partially restoring CD4+ TSCM homeostasis, and the observed stable level of virus in TSCM supports the hypothesis that these cells are a critical contributor to SIV persistence. IMPORTANCE Understanding the roles of various CD4+ T cell memory subsets in immune homeostasis and HIV/SIV persistence during antiretroviral therapy (ART) is critical to effectively treat and cure HIV infection. T memory stem cells (TSCM) are a unique memory T cell subset with enhanced self-renewal capacity and the ability to differentiate into other memory T cell subsets, such as central and transitional memory T cells (TCM and TTM, respectively). CD4+ TSCM are disrupted but not depleted during pathogenic SIV infection. We find that ART is partially effective at restoring CD4+ TSCM homeostasis and that SIV DNA harbored within this subset contracts more slowly than virus harbored in shorter-lived subsets, such as TTM and effector memory (TEM). Because of their ability to persist long-term in an individual, understanding the dynamics of virally infected CD4+ TSCM during suppressive ART is important for future therapeutic interventions aimed at modulating immune activation and purging the HIV reservoir. PMID:27170752

  8. Mnemons: encoding memory by protein super-assembly.

    PubMed

    Caudron, Fabrice; Barral, Yves

    2014-02-25

    Memory is mainly understood as the recollection of past events. The human brain and its simplest unit, the synapse, belong to the places in which such memories are physically stored. From an experimental point of view, memory can be tested in humans by recall. However, in other organisms, memory is reflected in its use by individuals to learn about and adapt their behavior to their environment. Under this criterion, even unicellular organisms are able to learn from their environments and show the ability to adapt their responses to repeating stimuli. This indicates that they are able to keep track of their histories and use these traces to elaborate adapted responses, making these traces akin to memory encodings. Understanding these phenomena may even help us to dissect part of the rather complex molecular orchestration happening in our synapses. When exposed unsuccessfully to mating pheromone, i.e. when mating does not happen, budding yeast cells become refractory to the mating signal. This refractory state is restricted to the mother cell and not inherited by the daughter cells, even though it is stable for most if not the entire life span of the mother cell. Interestingly, both stability and asymmetric segregation of the acquired state are explained by the molecular mechanism underlying its establishment, which shows important analogies and distinctions to prions. Here we discuss these similarities and differences.

  9. IMMUNOLOGIC MEMORY CELLS OF BONE MARROW ORIGIN

    PubMed Central

    Miller, Harold C.; Cudkowicz, Gustavo

    1972-01-01

    Individual immunocompetent precursor cells of (C57BL/10 x C3H)F1 mouse marrow generate, on transplantation, three to five times more antibody-forming cells localized in recipient spleens during secondary than during primary immune responses. The increased burst size is immunologically specific since antigens of horse and chicken erythrocytes and of Salmonella typhimurium do not cause this effect in marrow cells responsive to sheep red blood cells. Both sensitized and nonsensitized precursors require the helper function of thymus-derived cells and antigen for the final steps of differentiation and maturation. The burst size of primed precursor cells is the same after cooperative interactions with virgin or educated helper cells of thymic origin. The greater potential of these marrow precursors may be attributable to self-replication and migration before differentiation into antibody-forming descendants. In fact, the progeny cells of primed precursor units are distributed among a multiplicity of foci, whereas those of nonimmune precursors are clustered into one focus. The described properties of specifically primed marrow precursors are those underlying immunologic memory. It remains to be established whether memory cells are induced or selected by antigens and whether the thymus plays a role in this process. PMID:4553850

  10. Human Asymptomatic Epitopes Identified from the Herpes Simplex Virus Tegument Protein VP13/14 (UL47) Preferentially Recall Polyfunctional Effector Memory CD44high CD62Llow CD8+ TEM Cells and Protect Humanized HLA-A*02:01 Transgenic Mice against Ocular Herpesvirus Infection.

    PubMed

    Srivastava, Ruchi; Khan, Arif A; Garg, Sumit; Syed, Sabrina A; Furness, Julie N; Vahed, Hawa; Pham, Tiffany; Yu, Howard T; Nesburn, Anthony B; BenMohamed, Lbachir

    2017-01-15

    Herpes simplex virus 1 (HSV-1) infection is widespread among humans. The HSV-1 virion protein 13/14 (VP13/14), also known as UL47, is a tegument antigen targeted by CD8 + T cells from HSV-seropositive individuals. However, whether VP13/14-specific CD8 + T cells play a role in the natural protection seen in asymptomatic (ASYMP) individuals (individuals who have never had a clinical herpetic disease) has not been elucidated. Using predictive computer-assisted algorithms, we identified 10 potential HLA-A*02:01-restricted CD8 + T-cell epitopes from the 693-amino-acid sequence of the VP13/14 protein. Three out of 10 epitopes exhibited a high to moderate affinity of binding to soluble HLA-A*02:01 molecules. The phenotype and function of CD8 + T cells specific for each epitope were compared in HLA-A*02:01-positive ASYMP individuals and symptomatic (SYMP) individuals (individuals who have frequent clinical herpetic diseases) using determination of a combination of tetramer frequency and the levels of granzyme B, granzyme K, perforin, gamma interferon, tumor necrosis factor alpha, and interleukin-2 production and CD107 a/b cytotoxic degranulation. High frequencies of multifunctional CD8 + T cells directed against three epitopes, VP13/14 from amino acids 286 to 294 (VP13/14 286-294 ), VP13/14 from amino acids 504 to 512 (VP13/14 504-512 ), and VP13/14 from amino acids 544 to 552 (VP13/14 544-552 ), were detected in ASYMP individuals, while only low frequencies were detected in SYMP individuals. The three epitopes also predominantly recalled more CD45RA low CD44 high CCR7 low CD62L low CD8 + effector memory T cells (T EM cells) in ASYMP individuals than SYMP individuals. Moreover, immunization of HLA-A*02:01 transgenic mice with the three CD8 + T EM -cell epitopes from ASYMP individuals induced robust and polyfunctional HSV-specific CD8 + T EM cells associated with strong protective immunity against ocular herpesvirus infection and disease. Our findings outline the phenotypic and functional features of protective HSV-specific CD8 + T cells that should guide the development of a safe and effective T-cell-based herpes simplex vaccine. Although most herpes simplex virus 1 (HSV-1)-infected individuals shed the virus in their body fluids following reactivation from latently infected sensory ganglia, the majority never develop a recurrent herpetic disease and remain asymptomatic (ASYMP). In contrast, small proportions of individuals are symptomatic (SYMP) and develop frequent bouts of recurrent disease. The present study demonstrates that naturally protected ASYMP individuals have a higher frequency of effector memory CD8 + T cells (CD8 + T EM cells) specific to three epitopes derived from the HSV-1 tegument protein VP13/14 (VP13/14 286-294 ,VP13/14 504-512 , and VP13/14 544-552 ) than SYMP patients. Moreover, immunization of humanized HLA-A*02:01 transgenic mice with the three CD8 + T EM -cell epitopes from ASYMP individuals induced robust and polyfunctional HSV-specific CD8 + T cells associated with strong protective immunity against ocular herpesvirus infection and disease. The findings support the emerging concept of the development of a safe and effective asymptomatic herpes simplex vaccine that is selectively based on CD8 + T-cell epitopes from ASYMP individuals. Copyright © 2017 American Society for Microbiology.

  11. Neurobiological and Endocrine Correlates of Individual Differences in Spatial Learning Ability

    ERIC Educational Resources Information Center

    Sandi, Carmen; Cordero, M. Isabel; Merino, Jose J.; Kruyt, Nyika D.; Regan, Ciaran M.; Murphy, Keith J.

    2004-01-01

    The polysialylated neural cell adhesion molecule (PSA-NCAM) has been implicated in activity-dependent synaptic remodeling and memory formation. Here, we questioned whether training-induced modulation of PSA-NCAM expression might be related to individual differences in spatial learning abilities. At 12 h posttraining, immunohistochemical analyses…

  12. Immune perturbations in HIV–1-infected individuals who make broadly reactive neutralizing antibodies

    PubMed Central

    Moody, M. Anthony; Pedroza-Pacheco, Isabela; Vandergrift, Nathan A.; Chui, Cecilia; Lloyd, Krissey E.; Parks, Robert; Soderberg, Kelly A.; Ogbe, Ane T.; Cohen, Myron S.; Liao, Hua-Xin; Gao, Feng; McMichael, Andrew J.; Montefiori, David C.; Verkoczy, Laurent; Kelsoe, Garnett; Huang, Jinghe; Shea, Patrick R.; Connors, Mark; Borrow, Persephone; Haynes, Barton F.

    2017-01-01

    Induction of broadly neutralizing antibodies (bnAbs) is a goal of HIV-1 vaccine development. BnAbs occur in some HIV-1-infected individuals and frequently have characteristics of autoantibodies. Here we have studied cohorts of HIV-1-infected individuals that made bnAbs and compared them to those who did not do so, and determined immune traits associated with the ability to produce bnAbs. HIV-1-infected individuals with bnAbs had a higher frequency of blood autoantibodies, a lower frequency of regulatory CD4+ T cells, a higher frequency of circulating memory T follicular helper CD4+ cells and a higher T regulatory cell level of programmed cell death-1 expression compared to HIV-1-infected individuals without bnAbs. Thus, induction of HIV-1 bnAbs may require vaccination regimens that transiently mimic immunologic perturbations in HIV-1-infected individuals. PMID:28783677

  13. Human Memory CD4+ T Cell Immune Responses against Giardia lamblia

    PubMed Central

    Sørnes, Steinar; Peirasmaki, Dimitra; Svärd, Staffan; Langeland, Nina

    2015-01-01

    The intestinal protozoan parasite Giardia lamblia may cause severe prolonged diarrheal disease or pass unnoticed as an asymptomatic infection. T cells seem to play an important role in the immune response to Giardia infection, and memory responses may last years. Recently, TH17 responses have been found in three animal studies of Giardia infection. The aim of this study was to characterize the human CD4+ T cell responses to Giardia. Peripheral blood mononuclear cells (PBMCs) were obtained from 21 returning travelers with recent or ongoing giardiasis and 12 low-risk healthy controls and stimulated in vitro with Giardia lamblia proteins. Production of tumor necrosis factor alpha (TNF-α), gamma interferon, interleukin-17A (IL-17A), IL-10, and IL-4 was measured in CD4+ effector memory (EM) T cells after 24 h by flow cytometry. After 6 days of culture, activation and proliferation were measured by flow cytometry, while an array of inflammatory cytokine levels in supernatants were measured with multiplex assays. We found the number of IL-17A-producing CD4+ EM T cells, as well as that of cells simultaneously producing both IL-17A and TNF-α, to be significantly elevated in the Giardia-exposed individuals after 24 h of antigen stimulation. In supernatants of PBMCs stimulated with Giardia antigens for 6 days, we found inflammation-associated cytokines, including 1L-17A, as well as CD4+ T cell activation and proliferation, to be significantly elevated in the Giardia-exposed individuals. We conclude that symptomatic Giardia infection in humans induces a CD4+ EM T cell response of which IL-17A production seems to be an important component. PMID:26376930

  14. Immune responses induced by T-cell vaccination in patients with rheumatoid arthritis

    PubMed Central

    Ivanova, Irina; Seledtsova, Galina; Mamaev, Sergey; Shishkov, Alexey; Seledtsov, Viktor

    2014-01-01

    Patients with rheumatoid arthritis (RA) were treated with a cellular vaccine, which consisted of autologous collagen-reactive T-cells. This study showed that antigen-specific proliferative activity of the peripheral blood mononuclear cells was significantly downregulated after T-cell vaccination in RA patients. T-cell vaccination resulted in a statistically significant decrease in plasma IFNγ levels and a concomitant increase in IL-4 levels in treated patients. Accordingly, following T-cell vaccination the number of IFNγ-producing CD4+ and CD8+ T-cells was decreased by 1.6–1.8-fold, which was paralleled by 1.7-fold increases in IL-4-producing CD4+ T-cells. In addition, the present study showed 5–7-fold increase in the CD8+CD45RO+CD62L– effector memory T-cells and central memory T-cells (both CD4+ CD45RO+CD62L+ T-cells and CD8+CD45RO+CD62L+ T-cells) in RA patients, as compared with healthy individuals. We observed significant reduction in CD4+ and CD8+ central memory T-cells, as well as reduction in CD8+ effector memory T-cells in vaccinated patients in the course of the treatment. We also demonstrated that CD4+CD25+FoxP3+ regulatory T-cell levels were significantly up-regulated in the peripheral blood of RA patients following T-cell vaccination. However, CD4+CD25-FoxP3+ Т-cell levels did not significantly change during the entire T-cell vaccination course. In conclusion, the T-cell immunotherapy regimen used resulted in the clinical improvement, which was achieved in 87% patients. PMID:24633313

  15. Long-term memory cellular immune response to dengue virus after a natural primary infection.

    PubMed

    Sierra, Beatríz; García, Gissel; Pérez, Ana B; Morier, Luis; Rodríguez, Rayner; Alvarez, Mayling; Guzmán, María G

    2002-06-01

    This study was conducted to examine the memory T-cell response to dengue virus 20 years after a primary infection. We took advantage of the exceptional epidemiologic situation in Cuba, where the population initially suffered two large successive epidemics due to dengue virus 1 and 2 respectively over a 4-year period. Thereafter, no dengue virus circulation was subsequently observed, except for the Santiago de Cuba municipality. T-cell response was evaluated in peripheral blood mononuclear cells (PBMCs) from 20 individuals with history of a primary infection by dengue virus 1 or 2. Methods previously shown to induce lymphoproliferation of CD4+ memory T-cell subpopulations were used. We evaluated the proliferative responses generated in those PBMCs after stimulation with dengue virus 1, 2, 3 and 4 antigens in a serotype-specific and serotype-crossreactive way. Serotype-specific and serotype-crossreactive lymphoproliferative responses in all PBMCs donated by dengue immune donors were observed. The serotype-crossreactive response for dengue 2 was stronger than for the rest of the serotypes. This is the first report of cellular memory lymphocyte response specific for dengue virus detected 20 years after a primary infection by dengue.

  16. Influenza and Memory T Cells: How to Awake the Force

    PubMed Central

    Spitaels, Jan; Roose, Kenny; Saelens, Xavier

    2016-01-01

    Annual influenza vaccination is an effective way to prevent human influenza. Current vaccines are mainly focused on eliciting a strain-matched humoral immune response, requiring yearly updates, and do not provide protection for all vaccinated individuals. The past few years, the importance of cellular immunity, and especially memory T cells, in long-lived protection against influenza virus has become clear. To overcome the shortcomings of current influenza vaccines, eliciting both humoral and cellular immunity is imperative. Today, several new vaccines such as infection-permissive and recombinant T cell inducing vaccines, are being developed and show promising results. These vaccines will allow us to stay several steps ahead of the constantly evolving influenza virus. PMID:27754364

  17. Enzyme-Linked Immunospot Assay Detection of Mumps-Specific Antibody-Secreting B Cells as an Alternative Method of Laboratory Diagnosis ▿

    PubMed Central

    Latner, Donald R.; McGrew, Marcia; Williams, Nobia; Lowe, Luis; Werman, Roniel; Warnock, Eli; Gallagher, Kathleen; Doyle, Peter; Smole, Sandra; Lett, Susan; Cocoros, Noelle; DeMaria, Alfred; Konomi, Raimond; Brown, Cedric J.; Rota, Paul A.; Bellini, William J.; Hickman, Carole J.

    2011-01-01

    Although high measles, mumps, and rubella (MMR) vaccination coverage has been successful in dramatically reducing mumps disease in the United States, mumps (re)infections occasionally occur in individuals who have been either previously vaccinated or naturally infected. Standard diagnostics that detect virus or virus-specific antibody are dependable for confirming primary mumps infection in immunologically naïve persons, but these methods perform inconsistently for individuals with prior immune exposure. We hypothesized that detection of activated mumps-specific antibody-secreting B cells (ASCs) by enzyme-linked immunospot (ELISPOT) assay could be used as a more reliable diagnostic. To test this, a time course of virus-specific ASC responses was measured by ELISPOT assay following MMR vaccination of 16 previously vaccinated or naturally exposed adult volunteers. Mumps-specific ASCs were detectable in 68% of these individuals at some point during the first 3 weeks following revaccination. In addition, mumps-specific ASCs were detected in 7/7 previously vaccinated individuals who recently had been infected as part of a confirmed mumps outbreak. These data suggest that ELISPOT detection of mumps-specific ASCs has the potential for use as an alternative method of diagnosis when suspect cases cannot be confirmed by detection of IgM or virus. In addition, it was determined that mumps-specific memory B cells are detected at a much lower frequency than measles- or rubella-specific cells, suggesting that mumps infection may not generate robust B-cell memory. PMID:21047998

  18. A novel approach to tracking antigen-experienced CD4 T cells into functional compartments via tandem deep and shallow TCR clonotyping.

    PubMed

    Estorninho, Megan; Gibson, Vivienne B; Kronenberg-Versteeg, Deborah; Liu, Yuk-Fun; Ni, Chester; Cerosaletti, Karen; Peakman, Mark

    2013-12-01

    Extensive diversity in the human repertoire of TCRs for Ag is both a cornerstone of effective adaptive immunity that enables host protection against a multiplicity of pathogens and a weakness that gives rise to potential pathological self-reactivity. The complexity arising from diversity makes detection and tracking of single Ag-specific CD4 T cells (ASTs) involved in these immune responses challenging. We report a tandem, multistep process to quantify rare TCRβ-chain variable sequences of ASTs in large polyclonal populations. The approach combines deep high-throughput sequencing (HTS) within functional CD4 T cell compartments, such as naive/memory cells, with shallow, multiple identifier-based HTS of ASTs identified by activation marker upregulation after short-term Ag stimulation in vitro. We find that clonotypes recognizing HLA class II-restricted epitopes of both pathogen-derived Ags and self-Ags are oligoclonal and typically private. Clonotype tracking within an individual reveals private AST clonotypes resident in the memory population, as would be expected, representing clonal expansions (identical nucleotide sequence; "ultraprivate"). Other AST clonotypes share CDR3β amino acid sequences through convergent recombination and are found in memory populations of multiple individuals. Tandem HTS-based clonotyping will facilitate studying AST dynamics, epitope spreading, and repertoire changes that arise postvaccination and following Ag-specific immunotherapies for cancer and autoimmune disease.

  19. The Memory Cytotoxic T-Lymphocyte (CTL) Response to Human Cytomegalovirus Infection Contains Individual Peptide-Specific CTL Clones That Have Undergone Extensive Expansion In Vivo

    PubMed Central

    Weekes, Michael P.; Wills, Mark R.; Mynard, Kim; Carmichael, Andrew J.; Sissons, J. G. Patrick

    1999-01-01

    Human cytomegalovirus (HCMV)-specific CD8+ cytotoxic T lymphocytes (CTL) appear to play an important role in the control of virus replication and in protection against HCMV-related disease. We have previously reported high frequencies of memory CTL precursors (CTLp) specific to the HCMV tegument protein pp65 in the peripheral blood of healthy virus carriers. In some individuals, the CTL response to this protein is focused on only a single epitope, whereas in other virus carriers CTL recognized multiple epitopes which we identified by using synthetic peptides. We have analyzed the clonal composition of the memory CTL response to four of these pp65 epitopes by sequencing the T-cell receptors (TCR) of multiple independently derived epitope-specific CTL clones, which were derived by formal single-cell cloning or from clonal CTL microcultures. In all cases, we have observed a high degree of clonal focusing: the majority of CTL clones specific to a defined pp65 peptide from any one virus carrier use only one or two different TCRs at the level of the nucleotide sequence. Among virus carriers who have the same major histocompatibility complex (MHC) class I allele, we observed that CTL from different donors that recognize the same peptide-MHC complex often used the same Vβ segment, although other TCR gene segments and CDR3 length were not in general conserved. We have also examined the clonal composition of CTL specific to pp65 peptides in asymptomatic human immunodeficiency virus-infected individuals. We have observed a similarly focused peptide-specific CTL response. Thus, the large population of circulating HCMV peptide-specific memory CTLp in virus carriers in fact contains individual CTL clones that have undergone extensive clonal expansion in vivo. PMID:9971792

  20. Single-Cell RNA Sequencing Reveals Expanded Clones of Islet Antigen-Reactive CD4+ T Cells in Peripheral Blood of Subjects with Type 1 Diabetes.

    PubMed

    Cerosaletti, Karen; Barahmand-Pour-Whitman, Fariba; Yang, Junbao; DeBerg, Hannah A; Dufort, Matthew J; Murray, Sara A; Israelsson, Elisabeth; Speake, Cate; Gersuk, Vivian H; Eddy, James A; Reijonen, Helena; Greenbaum, Carla J; Kwok, William W; Wambre, Erik; Prlic, Martin; Gottardo, Raphael; Nepom, Gerald T; Linsley, Peter S

    2017-07-01

    The significance of islet Ag-reactive T cells found in peripheral blood of type 1 diabetes (T1D) subjects is unclear, partly because similar cells are also found in healthy control (HC) subjects. We hypothesized that key disease-associated cells would show evidence of prior Ag exposure, inferred from expanded TCR clonotypes, and essential phenotypic properties in their transcriptomes. To test this, we developed single-cell RNA sequencing procedures for identifying TCR clonotypes and transcript phenotypes in individual T cells. We applied these procedures to analysis of islet Ag-reactive CD4 + memory T cells from the blood of T1D and HC individuals after activation with pooled immunodominant islet peptides. We found extensive TCR clonotype sharing in Ag-activated cells, especially from individual T1D subjects, consistent with in vivo T cell expansion during disease progression. The expanded clonotype from one T1D subject was detected at repeat visits spanning >15 mo, demonstrating clonotype stability. Notably, we found no clonotype sharing between subjects, indicating a predominance of "private" TCR specificities. Expanded clones from two T1D subjects recognized distinct IGRP peptides, implicating this molecule as a trigger for CD4 + T cell expansion. Although overall transcript profiles of cells from HC and T1D subjects were similar, profiles from the most expanded clones were distinctive. Our findings demonstrate that islet Ag-reactive CD4 + memory T cells with unique Ag specificities and phenotypes are expanded during disease progression and can be detected by single-cell analysis of peripheral blood. Copyright © 2017 by The American Association of Immunologists, Inc.

  1. Preserved immune functionality and high CMV-specific T-cell responses in HIV-infected individuals with poor CD4+ T-cell immune recovery.

    PubMed

    Gómez-Mora, Elisabet; García, Elisabet; Urrea, Victor; Massanella, Marta; Puig, Jordi; Negredo, Eugenia; Clotet, Bonaventura; Blanco, Julià; Cabrera, Cecilia

    2017-09-15

    Poor CD4 + T-cell recovery after cART has been associated with skewed T-cell maturation, inflammation and immunosenescence; however, T-cell functionality in those individuals has not been fully characterized. In the present study, we assessed T-cell function by assessing cytokine production after polyclonal, CMV and HIV stimulations of T-cells from ART-suppressed HIV-infected individuals with CD4 + T-cell counts >350 cells/μL (immunoconcordants) or <350 cells/μL (immunodiscordants). A group of HIV-uninfected individuals were also included as controls. Since CMV co-infection significantly affected T-cell maturation and polyfunctionality, only CMV + individuals were analyzed. Despite their reduced and skewed CD4 + T-cell compartment, immunodiscordant individuals showed preserved polyclonal and HIV-specific responses. However, CMV response in immunodiscordant participants was significantly different from immunoconcordant or HIV-seronegative individuals. In immunodiscordant subjects, the magnitude of IFN-γ + CD8 + and IL-2 + CD4 + T-cells in response to CMV was higher and differently associated with the CD4 + T-cell maturation profile., showing an increased frequency of naïve, central memory and EMRA CMV-specific CD4 + T-cells. In conclusion, CD4 + and CD8 + T-cell polyfunctionality was not reduced in immunodiscordant individuals, although heightened CMV-specific immune responses, likely related to subclinical CMV reactivations, may be contributing to the skewed T-cell maturation and the higher risk of clinical progression observed in those individuals.

  2. The effect of inhibitory signals on the priming of drug-hapten-specific T-cells that express distinct Vβ receptors

    PubMed Central

    Gibson, Andrew; Faulkner, Lee; Lichtenfels, Maike; Ogese, Monday; Al-Attar, Zaid; Alfirevic, Ana; Esser, Philipp R.; Martin, Stefan F.; Pirmohamed, Munir; Park, B. Kevin; Naisbitt, Dean J.

    2017-01-01

    Drug hypersensitivity involves the activation of T-cells in an HLA allele-restricted manner. Since the majority of individuals who carry HLA risk alleles do not develop hypersensitivity, other parameters must control development of the drug-specific T-cell response. Thus, we have utilized a T-cell priming assay and nitroso sulfamethoxazole (SMX-NO) as a model antigen to investigate (1) the activation of specific T-cell receptor (TCR)Vβ subtypes, (2) the impact of PD-1, CTLA4 and TIM-3 co-inhibitory signalling on activation of naïve and memory T-cells and (3) the ability of Tregs to prevent responses. An expansion of the TCR repertoire was observed for nine different Vβ subtypes, while spectratyping revealed that SMX-NO-specific T-cell responses are controlled by public TCRs present in all individuals alongside private TCR repertoires specific to each individual. We proceeded to evaluate the extent to which the activation of these TCR Vβ-restricted antigen-specific T-cell responses is governed by regulatory signals. Blockade of PDL-1/CTLA4 signalling dampened activation of SMX-NO-specific naïve and memory T-cells, while blockade of TIM-3 produced no effect. PD-1, CTLA4, and TIM-3 displayed discrete expression profiles during drug-induced T-cell activation and expression of each receptor was enhanced on dividing T-cells. As these receptors are also expressed on Tregs, Treg-mediated suppression of SMX-NO-induced T-cell activation was investigated. Tregs significantly dampened the priming of T-cells. In conclusion, our findings demonstrate that distinct TCR Vβ subtypes, dysregulation of co-inhibitory signalling pathways and dysfunctional Tregs may influence predisposition to hypersensitivity. PMID:28687658

  3. Filarial infection modulates the immune response to Mycobacterium tuberculosis through expansion of CD4+ IL-4 memory T cells

    PubMed Central

    Chatterjee, Soumya; Clark, Carolyn E.; Lugli, Enrico; Roederer, Mario; Nutman, Thomas B.

    2015-01-01

    Exaggerated CD4+T helper 2-specific cytokine producing memory T cell responses developing concomitantly with a T helper1 response might have a detrimental role in immunity to infection caused by Mycobacterium tuberculosis (Mtb). To assess the dynamics of antigen (Ag)-specific memory T cell compartments in the context of filarial infection we used multiparameter flow cytometry on PBMCs from 25 microfilaremic filarial -infected (Inf) and 14 filarial-uninfected (Uninf) subjects following stimulation with filarial (BmA) or with the Mycobacterium tuberculosis (Mtb)-specific Ag CFP10. Our data demonstrated that the Inf group not only had a marked increase in BmA-specific CD4+IL-4+ cells (Median net frequency compared to baseline (Fo)=0.09% vs. 0.01%, p=0.038) but also to CFP10 (Fo =0.16% vs. 0.007%, p=0.04) and Staphylococcal Enterotoxin B (SEB) (Fo =0.49% vs. 0.26%, p=0.04). The Inf subjects showed a BmA-specific expansion of CD4+CD45RO+IL-4+ producing central memory (TCM, CD45RO+CCR7+CD27+) (Fo =1.1% vs. 0.5%, p=0.04) as well as effector memory (TEM CD45RO+CCR7-CD27-) (Fo =1.5% vs. 0.2%, p=0.03) with a similar but non-significant response to CFP10. In addition, there was expansion of CD4+ IL-4+ CD45RA+ CCR7+CD27+ (naïve-like) in Inf individuals compared to Uninf subjects. Among Inf subjects with definitive latent tuberculosis , there were no differences in frequencies of IL-4 producing cells within any of the memory compartments compared to the Uninf group. Our data suggest that filarial infection induces antigen-specific, exaggerated IL-4 responses in distinct T cell memory compartments to Mtb-specific antigens, which are attenuated in subjects who are able to mount a delayed type hypersensitivity reaction to Mtb. PMID:25667413

  4. The Nature of Individual Differences in Working Memory Capacity: Active Maintenance in Primary Memory and Controlled Search from Secondary Memory

    ERIC Educational Resources Information Center

    Unsworth, Nash; Engle, Randall W.

    2007-01-01

    Studies examining individual differences in working memory capacity have suggested that individuals with low working memory capacities demonstrate impaired performance on a variety of attention and memory tasks compared with individuals with high working memory capacities. This working memory limitation can be conceived of as arising from 2…

  5. HLA-A02:01-restricted epitopes identified from the herpes simplex virus tegument protein VP11/12 preferentially recall polyfunctional effector memory CD8+ T cells from seropositive asymptomatic individuals and protect humanized HLA-A*02:01 transgenic mice against ocular herpes.

    PubMed

    Srivastava, Ruchi; Khan, Arif A; Spencer, Doran; Vahed, Hawa; Lopes, Patricia P; Thai, Nhi Thi Uyen; Wang, Christine; Pham, Thanh T; Huang, Jiawei; Scarfone, Vanessa M; Nesburn, Anthony B; Wechsler, Steven L; BenMohamed, Lbachir

    2015-03-01

    The HSV type 1 tegument virion phosphoprotein (VP) 11/12 (VP11/12) is a major Ag targeted by CD8(+) T cells from HSV-seropositive individuals. However, whether and which VP11/12 epitope-specific CD8(+) T cells play a role in the "natural" protection seen in seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease) remain to be determined. In this study, we used multiple prediction computer-assisted algorithms to identify 10 potential HLA-A*02:01-restricted CD8(+) T cell epitopes from the 718-aa sequence of VP11/12. Three of 10 epitopes exhibited high-to-moderate binding affinity to HLA-A*02:01 molecules. In 10 sequentially studied HLA-A*02:01-positive and HSV-1-seropositive ASYMP individuals, the most frequent, robust, and polyfunctional effector CD8(+) T cell responses, as assessed by a combination of tetramer frequency, granzyme B, granzyme K, perforin, CD107(a/b) cytotoxic degranulation, IFN-γ, and multiplex cytokines assays, were predominantly directed against three epitopes: VP11/1266-74, VP11/12220-228, and VP11/12702-710. Interestingly, ASYMP individuals had a significantly higher proportion of CD45RA(low)CCR7(low)CD44(high)CD62L(low)CD27(low)CD28(low)CD8(+) effector memory CD8(+) T cells (TEMs) specific to the three epitopes, compared with symptomatic individuals (with a history of numerous episodes of recurrent ocular herpetic disease). Moreover, immunization of HLA-A*02:01 transgenic mice with the three ASYMP CD8(+) TEM cell epitopes induced robust and polyfunctional epitope-specific CD8(+) TEM cells that were associated with a strong protective immunity against ocular herpes infection and disease. Our findings outline phenotypic and functional features of protective HSV-specific CD8(+) T cells that should guide the development of an effective T cell-based herpes vaccine. Copyright © 2015 by The American Association of Immunologists, Inc.

  6. HLA-A02:01-Restricted Epitopes Identified from the Herpes Simplex Virus Tegument Protein VP11/12 Preferentially Recall Polyfunctional Effector Memory CD8+ T Cells from Seropositive Asymptomatic Individuals and Protect “Humanized” HLA-A*02:01 Transgenic Mice Against Ocular Herpes

    PubMed Central

    Srivastava, Ruchi; Khan, Arif A.; Spencer, Doran; Vahed, Hawa; Lopes, Patricia P.; Thai, Nhi Thi Uyen; Wang, Christine; Pham, Thanh T.; Huang, Jiawei; Scarfone, Vanessa M.; Nesburn, Anthony B.; Wechsler, Steven L.; BenMohamed, Lbachir

    2014-01-01

    The Herpes Simplex Virus type 1 virion tegument phosphoprotein 11/12 (HSV-1 VP11/12) is a major antigen targeted by CD8+ T cells from HSV-seropositive individuals. However, whether and which VP11/12-epitope-specific CD8+ T cells play a role in the “natural” protection seen in seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease) remain to be determined. In this study, we used multiple prediction computer-assisted algorithms to identify 10 potential HLA-A*02:01-restricted CD8+ T cell epitopes from the 716 amino acids sequence of VP11/12. Three out of ten epitopes exhibited high to moderate binding affinity to HLA-A*02:01 molecules. In ten sequentially studied HLA-A*02:01 positive and HSV-1-seropositive ASYMP individuals, the most frequent, robust and polyfunctional effector CD8+ T-cell responses, as assessed by a combination of tetramer frequency, granzyme B, granzyme K, perforin, CD107a/b cytotoxic degranulation, IFN-γ and multiplex cytokines assays, were predominantly directed against three epitopes: VP11/1266–74, VP11/12220–228 and VP11/12702–710. Interestingly, ASYMP individuals had significantly higher proportion of CD45RAlowCCR7lowCD44highCD62LlowCD27lowCD28lowCD8+ effector memory T cells (TEM) specific to the three epitopes, compared to symptomatic (SYMP) individuals (with a history of numerous episodes of recurrent ocular herpetic disease). Moreover, immunization of HLA-A*02:01 transgenic mice with the three ASYMP CD8+ TEM cell epitopes induced robust and polyfunctional epitope-specific CD8+ TEM cells that were associated with a strong protective immunity against ocular herpes infection and disease. Our findings outline phenotypic and functional features of protective HSV-specific CD8+ T cells that should guide the development of an effective T-cell-based herpes vaccine. PMID:25617474

  7. A Single 17D Yellow Fever Vaccination Provides Lifelong Immunity; Characterization of Yellow-Fever-Specific Neutralizing Antibody and T-Cell Responses after Vaccination.

    PubMed

    Wieten, Rosanne W; Jonker, Emile F F; van Leeuwen, Ester M M; Remmerswaal, Ester B M; Ten Berge, Ineke J M; de Visser, Adriëtte W; van Genderen, Perry J J; Goorhuis, Abraham; Visser, Leo G; Grobusch, Martin P; de Bree, Godelieve J

    2016-01-01

    Prompted by recent amendments of Yellow Fever (YF) vaccination guidelines from boost to single vaccination strategy and the paucity of clinical data to support this adjustment, we used the profile of the YF-specific CD8+ T-cell subset profiles after primary vaccination and neutralizing antibodies as a proxy for potentially longer lasting immunity. PBMCs and serum were collected in six individuals on days 0, 3, 5, 12, 28 and 180, and in 99 individuals >10 years after YF-vaccination. Phenotypic characteristics of YF- tetramer+ CD8+ T-cells were determined using class I tetramers. Antibody responses were measured using a standardized plaque reduction neutralization test (PRNT). Also, characteristics of YF-tetramer positive CD8+ T-cells were compared between individuals who had received a primary- and a booster vaccination. YF-tetramer+ CD8+ T-cells were detectable on day 12 (median tetramer+ cells as percentage of CD8+ T-cells 0.2%, range 0.07-3.1%). On day 180, these cells were still present (median 0.06%, range 0.02-0.78%). The phenotype of YF-tetramer positive CD8+ T-cells shifted from acute phase effector cells on day 12, to late differentiated or effector memory phenotype (CD45RA-/+CD27-) on day 28. Two subsets of YF-tetramer positive T-cells (CD45RA+CD27- and CD45RA+CD27+) persisted until day 180. Within all phenotypic subsets, the T-bet: Eomes ratio tended to be high on day 28 after vaccination and shifted towards predominant Eomes expression on day 180 (median 6.0 (day 28) vs. 2.2 (day 180) p = 0.0625), suggestive of imprinting compatible with long-lived memory properties. YF-tetramer positive CD8+ T-cells were detectable up to 18 years post vaccination, YF-specific antibodies were detectable up to 40 years after single vaccination. Booster vaccination did not increase titers of YF-specific antibodies (mean 12.5 vs. 13.1, p = 0.583), nor induce frequencies or alter phenotypes of YF-tetramer+ CD8+ T-cells. The presence of a functionally competent YF-specific memory T-cell pool 18 years and sufficient titers of neutralizing antibodies 35-40 years after first vaccination suggest that single vaccination may be sufficient to provide long-term immunity.

  8. Regulation of Asymmetric Division by Atypical Protein Kinase C Influences Early Specification of CD8+ T Lymphocyte Fates

    PubMed Central

    Metz, Patrick J.; Lopez, Justine; Kim, Stephanie H.; Akimoto, Kazunori; Ohno, Shigeo; Chang, John T.

    2016-01-01

    Naïve CD8+ T lymphocytes responding to microbial pathogens give rise to effector T cells that provide acute defense and memory T cells that provide long-lived immunity. Upon activation, CD8+ T lymphocytes can undergo asymmetric division, unequally distributing factors to the nascent daughter cells that influence their eventual fate towards the effector or memory lineages. Individual loss of either atypical protein kinase C (aPKC) isoform, PKCζ or PKCλ/ι, partially impairs asymmetric divisions and increases CD8+ T lymphocyte differentiation toward a long-lived effector fate at the expense of memory T cell formation. Here, we show that deletion of both aPKC isoforms resulted in a deficit in asymmetric divisions, increasing the proportion of daughter cells that inherit high amounts of effector fate-associated molecules, IL-2Rα, T-bet, IFNγR, and interferon regulatory factor 4 (IRF4). However, unlike CD8+ T cells deficient in only one aPKC isoform, complete loss of aPKC unexpectedly increased CD8+ T cell differentiation toward a short-lived, terminal effector fate, as evidenced by increased rates of apoptosis and decreased expression of Eomes and Bcl2 early during the immune response. Together, these results provide evidence for an important role for asymmetric division in CD8+ T lymphocyte fate specification by regulating the balance between effector and memory precursors at the initiation of the adaptive immune response. PMID:26765121

  9. Central memory CD4 T cells are associated with incomplete restoration of the CD4 T cell pool after treatment-induced long-term undetectable HIV viraemia.

    PubMed

    Rallón, Norma; Sempere-Ortells, José M; Soriano, Vincent; Benito, José M

    2013-11-01

    It is unclear to what extent T cell reconstitution may be possible in HIV-1-infected individuals on continuous successful highly active antiretroviral therapy (HAART). Herein, we analysed distinct phenotypic markers of immune recovery in patients with undetectable viraemia for 8 years, taking as reference untreated patients and healthy controls. Seventy-two subjects were examined: 28 HIV-1+ patients on successful long-term HAART, 24 HIV-1+ untreated viraemic patients and 20 age-matched healthy controls. Analysis of naive and memory CD4 and CD8 T cells was combined with measurements of activation status (expression of CD38) and with thymic function (expression of CD31). Statistical significance was determined by non-parametric tests. After long-term HAART, the majority of parameters were normalized compared with age-matched control values, including T cell activation and thymic function. However, absolute counts of naive and central memory CD4 T cells remained below normal levels. The only parameters significantly associated with CD4 counts at the end of follow-up were the pre-HAART CD4 count ( β ± SD = 0.54 ± 0.16, P = 0.003) and the level of CD4 central memory cells at the end of follow-up (β ± SD = 1.18 ± 0.23, P < 0.0001). Only patients starting HAART with CD4 counts >350 cells/mm(3) reached a complete normalization of CD4 counts. Even after long-term successful HAART, complete CD4 restoration may be attainable only in patients starting therapy with moderately high CD4 counts, prompting early initiation of antiretroviral therapy. Incomplete CD4 restoration may be associated with a defective restoration of central memory CD4 T cells, a cell subset with a pivotal role in T cell homeostasis.

  10. Attenuation of HIV-associated human B cell exhaustion by siRNA downregulation of inhibitory receptors

    PubMed Central

    Kardava, Lela; Moir, Susan; Wang, Wei; Ho, Jason; Buckner, Clarisa M.; Posada, Jacqueline G.; O’Shea, Marie A.; Roby, Gregg; Chen, Jenny; Sohn, Hae Won; Chun, Tae-Wook; Pierce, Susan K.; Fauci, Anthony S.

    2011-01-01

    Chronic immune activation in HIV-infected individuals leads to accumulation of exhausted tissue-like memory B cells. Exhausted lymphocytes display increased expression of multiple inhibitory receptors, which may contribute to the inefficiency of HIV-specific antibody responses. Here, we show that downregulation of B cell inhibitory receptors in primary human B cells led to increased tissue-like memory B cell proliferation and responsiveness against HIV. In human B cells, siRNA knockdown of 9 known and putative B cell inhibitory receptors led to enhanced B cell receptor–mediated (BCR-mediated) proliferation of tissue-like memory but not other B cell subpopulations. The strongest effects were observed with the putative inhibitory receptors Fc receptor–like–4 (FCRL4) and sialic acid–binding Ig-like lectin 6 (Siglec-6). Inhibitory receptor downregulation also led to increased levels of HIV-specific antibody-secreting cells and B cell–associated chemokines and cytokines. The absence of known ligands for FCRL4 and Siglec-6 suggests these receptors may regulate BCR signaling through their own constitutive or tonic signaling. Furthermore, the extent of FCLR4 knockdown effects on BCR-mediated proliferation varied depending on the costimulatory ligand, suggesting that inhibitory receptors may engage specific pathways in inhibiting B cell proliferation. These findings on HIV-associated B cell exhaustion define potential targets for reversing the deleterious effect of inhibitory receptors on immune responses against persistent viral infections. PMID:21633172

  11. The evolving roles of memory immune cells in transplantation

    PubMed Central

    Chen, Wenhao; Ghobrial, Rafik M.; Li, Xian C.

    2015-01-01

    Memory cells are the products of immune responses but also exert significant impact on subsequent immunity and immune tolerance, thus placing them in a unique position in transplant research. Memory cells are heterogeneous, including not only memory T cells but also memory B cells and innate memory cells. Memory cells are a critical component of protective immunity against invading pathogens, especially in immunosuppressed patients, but they also mediate graft loss and tolerance resistance. Recent studies suggest that some memory cells unexpectedly act as regulatory cells, promoting rather than hindering transplant survival. This functional diversity makes therapeutic targeting of memory cells a challenging task in transplantation. In this article we highlight recent advances in our understanding of memory cells, focusing on diversity of memory cells and mechanisms involved in their induction and functions. We also provide a broad overview on the challenges and opportunities in targeting memory cells in the induction of transplant tolerance. PMID:26102615

  12. Effect of Cytomegalovirus (CMV) and Ageing on T-Bet and Eomes Expression on T-Cell Subsets.

    PubMed

    Hassouneh, Fakhri; Lopez-Sejas, Nelson; Campos, Carmen; Sanchez-Correa, Beatriz; Tarazona, Raquel; Pera, Alejandra; Solana, Rafael

    2017-06-29

    The differential impact of ageing and cytomegalovirus (CMV) latent infection on human T-cell subsets remains to some extent controversial. The purpose of this study was to analyse the expression of the transcription factors T-bet and Eomes and CD57 on CD4+, CD4 hi CD8 lo and CD8+ T-cell subsets in healthy individuals, stratified by age and CMV serostatus. The percentage of CD4+ T-cells expressing T-bet or Eomes was very low, in particular in CD4+ T-cells from young CMV-seronegative individuals, and were higher in CMV-seropositive older individuals, in both CD57- and CD57+ CD4+ T-cells. The study of the minor peripheral blood double-positive CD4 hi CD8 lo T-cells showed that the percentage of these T-cells expressing both Eomes and T-bet was higher compared to CD4+ T-cells. The percentage of CD4 hi CD8 lo T-cells expressing T-bet was also associated with CMV seropositivity and the coexpression of Eomes, T-bet and CD57 on CD4 hi CD8 lo T-cells was only observed in CMV-seropositive donors, supporting the hypothesis that these cells are mature effector memory cells. The percentage of T-cells expressing Eomes and T-bet was higher in CD8+ T-cells than in CD4+ T-cells. The percentages of CD8+ T-cells expressing Eomes and T-bet increased with age in CMV-seronegative and -seropositive individuals and the percentages of CD57- CD8+ and CD57+ CD8+ T-cells coexpressing both transcription factors were similar in the different groups studied. These results support that CMV chronic infection and/or ageing are associated to the expansion of highly differentiated CD4+, CD4 hi CD8 lo and CD8+ T-cells that differentially express T-bet and Eomes suggesting that the expression of these transcription factors is essential for the generation and development of an effector-memory and effector T lymphocytes involved in conferring protection against chronic CMV infection.

  13. Linus Pauling's "molecular diseases": between history and memory.

    PubMed

    Strasser, Bruno J

    2002-08-30

    In 1949, Linus Pauling and his collaborators published a study in the journal Science entitled "Sickle Cell Anemia, a Molecular Disease." In this now classic study, they showed that hemoglobin from patients suffering from sickle cell anemia has a different electrical charge than hemoglobin from healthy individuals. This result demonstrated for the first time that an abnormal protein could be causally linked to a disease, and that genes determined the structure of proteins. This report made headline news and had a powerful impact on both the biomedical community and the general public. Fifty years later, this study is discussed in almost every medical and biological textbook and has became a favorite example in editorials to illustrate the progress of biomedical research. This article explores the history of Pauling's sickle cell anemia and its subsequent integration in different collective memories, up to the present day. It also discusses the function of the collective memories of Pauling's discovery for contemporary biomedical research. Copyright 2002 Wiley-Liss, Inc.

  14. Differential cross-reactivity of monoclonal antibody OPD4 (anti-CD45RO) in macaques.

    PubMed

    Wang, Xiaolei; Pahar, Bapi; Rasmussen, Terri; Alvarez, Xavier; Dufour, Jason; Rasmussen, Kelsi; Lackner, Andrew A; Veazey, Ronald S

    2008-01-01

    Immunologic research in nonhuman primates is occasionally limited by the availability of reagents that cross-react in nonhuman primates. One major limitation has been the lack of a monoclonal antibody to CD45RO. Although the monoclonal antibody UCHL-1 is used to detect CD45RO isoforms in humans, it does not react with nonhuman primates, mandating the use of alternative strategies to define "memory" T cell responses in nonhuman primates. The current study examined the reactivity and specificity of another antibody against CD45RO, clone OPD4, in macaques. Here we demonstrate that OPD4 specifically labels memory CD4+ T cells in approximately 44% of rhesus macaques (Macaca mulatta) of Indian but not Chinese origin. In contrast, tissues from pigtail macaques (Macaca nemestrina) react with this clone, indicating that OPD4 may be useful for examining memory CD4+ T cells in certain macaques, but its utility may be limited in other species or even among individual macaques.

  15. CD4 memory T cells develop and acquire functional competence by sequential cognate interactions and stepwise gene regulation

    PubMed Central

    Kaji, Tomohiro; Hijikata, Atsushi; Ishige, Akiko; Kitami, Toshimori; Watanabe, Takashi; Ohara, Osamu; Yanaka, Noriyuki; Okada, Mariko; Shimoda, Michiko; Taniguchi, Masaru

    2016-01-01

    Memory CD4+ T cells promote protective humoral immunity; however, how memory T cells acquire this activity remains unclear. This study demonstrates that CD4+ T cells develop into antigen-specific memory T cells that can promote the terminal differentiation of memory B cells far more effectively than their naive T-cell counterparts. Memory T cell development requires the transcription factor B-cell lymphoma 6 (Bcl6), which is known to direct T-follicular helper (Tfh) cell differentiation. However, unlike Tfh cells, memory T cell development did not require germinal center B cells. Curiously, memory T cells that develop in the absence of cognate B cells cannot promote memory B-cell recall responses and this defect was accompanied by down-regulation of genes associated with homeostasis and activation and up-regulation of genes inhibitory for T-cell responses. Although memory T cells display phenotypic and genetic signatures distinct from Tfh cells, both had in common the expression of a group of genes associated with metabolic pathways. This gene expression profile was not shared to any great extent with naive T cells and was not influenced by the absence of cognate B cells during memory T cell development. These results suggest that memory T cell development is programmed by stepwise expression of gatekeeper genes through serial interactions with different types of antigen-presenting cells, first licensing the memory lineage pathway and subsequently facilitating the functional development of memory T cells. Finally, we identified Gdpd3 as a candidate genetic marker for memory T cells. PMID:26714588

  16. Modulation of Autoimmune T-Cell Memory by Stem Cell Educator Therapy: Phase 1/2 Clinical Trial.

    PubMed

    Delgado, Elias; Perez-Basterrechea, Marcos; Suarez-Alvarez, Beatriz; Zhou, Huimin; Revuelta, Eva Martinez; Garcia-Gala, Jose Maria; Perez, Silvia; Alvarez-Viejo, Maria; Menendez, Edelmiro; Lopez-Larrea, Carlos; Tang, Ruifeng; Zhu, Zhenlong; Hu, Wei; Moss, Thomas; Guindi, Edward; Otero, Jesus; Zhao, Yong

    2015-12-01

    Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease that causes a deficit of pancreatic islet β cells. The complexities of overcoming autoimmunity in T1D have contributed to the challenges the research community faces when devising successful treatments with conventional immune therapies. Overcoming autoimmune T cell memory represents one of the key hurdles. In this open-label, phase 1/phase 2 study, Caucasian T1D patients (N = 15) received two treatments with the Stem Cell Educator (SCE) therapy, an approach that uses human multipotent cord blood-derived multipotent stem cells (CB-SCs). SCE therapy involves a closed-loop system that briefly treats the patient's lymphocytes with CB-SCs in vitro and returns the "educated" lymphocytes (but not the CB-SCs) into the patient's blood circulation. This study is registered with ClinicalTrials.gov, NCT01350219. Clinical data demonstrated that SCE therapy was well tolerated in all subjects. The percentage of naïve CD4(+) T cells was significantly increased at 26 weeks and maintained through the final follow-up at 56 weeks. The percentage of CD4(+) central memory T cells (TCM) was markedly and constantly increased at 18 weeks. Both CD4(+) effector memory T cells (TEM) and CD8(+) TEM cells were considerably decreased at 18 weeks and 26 weeks respectively. Additional clinical data demonstrated the modulation of C-C chemokine receptor 7 (CCR7) expressions on naïve T, TCM, and TEM cells. Following two treatments with SCE therapy, islet β-cell function was improved and maintained in individuals with residual β-cell function, but not in those without residual β-cell function. Current clinical data demonstrated the safety and efficacy of SCE therapy in immune modulation. SCE therapy provides lasting reversal of autoimmune memory that could improve islet β-cell function in Caucasian subjects. Obra Social "La Caixa", Instituto de Salud Carlos III, Red de Investigación Renal, European Union FEDER Funds, Principado de Asturias, FICYT, and Hackensack University Medical Center Foundation.

  17. Modulation of Autoimmune T-Cell Memory by Stem Cell Educator Therapy: Phase 1/2 Clinical Trial

    PubMed Central

    Delgado, Elias; Perez-Basterrechea, Marcos; Suarez-Alvarez, Beatriz; Zhou, Huimin; Revuelta, Eva Martinez; Garcia-Gala, Jose Maria; Perez, Silvia; Alvarez-Viejo, Maria; Menendez, Edelmiro; Lopez-Larrea, Carlos; Tang, Ruifeng; Zhu, Zhenlong; Hu, Wei; Moss, Thomas; Guindi, Edward; Otero, Jesus; Zhao, Yong

    2015-01-01

    Background Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease that causes a deficit of pancreatic islet β cells. The complexities of overcoming autoimmunity in T1D have contributed to the challenges the research community faces when devising successful treatments with conventional immune therapies. Overcoming autoimmune T cell memory represents one of the key hurdles. Methods In this open-label, phase 1/phase 2 study, Caucasian T1D patients (N = 15) received two treatments with the Stem Cell Educator (SCE) therapy, an approach that uses human multipotent cord blood-derived multipotent stem cells (CB-SCs). SCE therapy involves a closed-loop system that briefly treats the patient's lymphocytes with CB-SCs in vitro and returns the “educated” lymphocytes (but not the CB-SCs) into the patient's blood circulation. This study is registered with ClinicalTrials.gov, NCT01350219. Findings Clinical data demonstrated that SCE therapy was well tolerated in all subjects. The percentage of naïve CD4+ T cells was significantly increased at 26 weeks and maintained through the final follow-up at 56 weeks. The percentage of CD4+ central memory T cells (TCM) was markedly and constantly increased at 18 weeks. Both CD4+ effector memory T cells (TEM) and CD8+ TEM cells were considerably decreased at 18 weeks and 26 weeks respectively. Additional clinical data demonstrated the modulation of C–C chemokine receptor 7 (CCR7) expressions on naïve T, TCM, and TEM cells. Following two treatments with SCE therapy, islet β-cell function was improved and maintained in individuals with residual β-cell function, but not in those without residual β-cell function. Interpretation Current clinical data demonstrated the safety and efficacy of SCE therapy in immune modulation. SCE therapy provides lasting reversal of autoimmune memory that could improve islet β-cell function in Caucasian subjects. Funding Obra Social “La Caixa”, Instituto de Salud Carlos III, Red de Investigación Renal, European Union FEDER Funds, Principado de Asturias, FICYT, and Hackensack University Medical Center Foundation. PMID:26844283

  18. Alteration of Lymphocyte Phenotype and Function in Sickle Cell Anemia: Implications for Vaccine Responses

    PubMed Central

    Balandya, Emmanuel; Reynolds, Teri; Obaro, Stephen; Makani, Julie

    2016-01-01

    Individuals with sickle cell anemia (SCA) have increased susceptibility to infections, secondary to impairment of immune function. Besides the described dysfunction in innate immunity, including impaired opsonization and phagocytosis of bacteria, evidence of dysfunction of T and B lymphocytes in SCA has also been reported. This includes reduction in the proportion of circulating CD4+ and CD8+ T cells, reduction of CD4+ helper : CD8+ suppressor T cell ratio, aberrant activation and dysfunction of regulatory T cells (Treg), skewing of CD4+ T cells towards Th2 response and loss of IgM-secreting CD27+IgMhighIgDlow memory B cells. These changes occur on the background of immune activation characterized by predominance of memory CD4+ T cell phenotypes, increased Th17 signaling and elevated levels of C-reactive protein and pro-inflammatory cytokines IL-6 and TNF-α, which may affect the immunogenicity and protective efficacy of vaccines available to prevent infections in SCA. Thus, in order to optimize the use of vaccines in SCA, a thorough understanding of T and B lymphocyte functions and vaccine reactivity among individuals with SCA is needed. Studies should be encouraged of different SCA populations, including sub-Saharan Africa where the burden of SCA is highest. This article summarizes our current understanding of lymphocyte biology in SCA, and highlights areas that warrant future research. PMID:27237467

  19. Anti-IFNγ and peptide-tolerization therapies inhibit acute lung injury induced by crossreactive influenza-A (IAV)-specific memory T-cells

    PubMed Central

    Wlodarczyk, Myriam F.; Kraft, Anke R.; Chen, Hong D.; Kenney, Laurie L.; Selin, Liisa K.

    2013-01-01

    Viral infections have variable outcomes with severe disease occurring in only few individuals. We hypothesized that this variable outcome could correlate with the nature of responses made to previous microbes. To test this, mice were infected initially with IAV and in memory-phase challenged with LCMV, which we show here to have relatively minor cross-reactivity with IAV. The outcome in genetically identical mice varied from mild pneumonitis to severe acute lung injury with extensive pneumonia and bronchiolization, similar to that observed in patients that died of the 1918 H1N1 pandemic. Lesion expression did not correlate with virus titers. Instead, disease severity directly correlated with and was predicted by the frequency of IAV-PB1703- and -PA224-specific responses, which crossreacted with LCMV-GP34 and -GP276, respectively. Eradication or functional ablation of these pathogenic memory T-cell populations, using mutant-viral strains, peptide-based tolerization strategies, or short-term anti-IFNγ treatment inhibited severe lesions such as bronchiolization from occurring. Heterologous immunity can shape outcome of infections and likely individual responses to vaccination, and can be manipulated to treat or prevent severe pathology. PMID:23408839

  20. Adaptive mesh refinement for characteristic grids

    NASA Astrophysics Data System (ADS)

    Thornburg, Jonathan

    2011-05-01

    I consider techniques for Berger-Oliger adaptive mesh refinement (AMR) when numerically solving partial differential equations with wave-like solutions, using characteristic (double-null) grids. Such AMR algorithms are naturally recursive, and the best-known past Berger-Oliger characteristic AMR algorithm, that of Pretorius and Lehner (J Comp Phys 198:10, 2004), recurses on individual "diamond" characteristic grid cells. This leads to the use of fine-grained memory management, with individual grid cells kept in two-dimensional linked lists at each refinement level. This complicates the implementation and adds overhead in both space and time. Here I describe a Berger-Oliger characteristic AMR algorithm which instead recurses on null slices. This algorithm is very similar to the usual Cauchy Berger-Oliger algorithm, and uses relatively coarse-grained memory management, allowing entire null slices to be stored in contiguous arrays in memory. The algorithm is very efficient in both space and time. I describe discretizations yielding both second and fourth order global accuracy. My code implementing the algorithm described here is included in the electronic supplementary materials accompanying this paper, and is freely available to other researchers under the terms of the GNU general public license.

  1. Interconnected subsets of memory follicular helper T cells have different effector functions.

    PubMed

    Asrir, Assia; Aloulou, Meryem; Gador, Mylène; Pérals, Corine; Fazilleau, Nicolas

    2017-10-10

    Follicular helper T cells regulate high-affinity antibody production. Memory follicular helper T cells can be local in draining lymphoid organs and circulate in the blood, but the underlying mechanisms of this subdivision are unresolved. Here we show that both memory follicular helper T subsets sustain B-cell responses after reactivation. Local cells promote more plasma cell differentiation, whereas circulating cells promote more secondary germinal centers. In parallel, local memory B cells are homogeneous and programmed to become plasma cells, whereas circulating memory B cells are able to rediversify. Local memory follicular helper T cells have higher affinity T-cell receptors, which correlates with expression of peptide MHC-II at the surface of local memory B cells only. Blocking T-cell receptor-peptide MHC-II interactions induces the release of local memory follicular helper T cells in the circulating compartment. Our studies show that memory follicular helper T localization is highly intertwined with memory B cells, a finding that has important implications for vaccine design.Tfh cells can differentiate into memory cells. Here the authors describe distinct functional and phenotypic profiles of these memory Tfh cells dependent on their anatomical localization to the lymphoid organs or to the circulation.

  2. The ticking time bomb: Using eye-tracking methodology to capture attentional processing during gradual time constraints.

    PubMed

    Franco-Watkins, Ana M; Davis, Matthew E; Johnson, Joseph G

    2016-11-01

    Many decisions are made under suboptimal circumstances, such as time constraints. We examined how different experiences of time constraints affected decision strategies on a probabilistic inference task and whether individual differences in working memory accounted for complex strategy use across different levels of time. To examine information search and attentional processing, we used an interactive eye-tracking paradigm where task information was occluded and only revealed by an eye fixation to a given cell. Our results indicate that although participants change search strategies during the most restricted times, the occurrence of the shift in strategies depends both on how the constraints are applied as well as individual differences in working memory. This suggests that, in situations that require making decisions under time constraints, one can influence performance by being sensitive to working memory and, potentially, by acclimating people to the task time gradually.

  3. Therapeutic Immunization with HIV-1 Tat Reduces Immune Activation and Loss of Regulatory T-Cells and Improves Immune Function in Subjects on HAART

    PubMed Central

    Ensoli, Barbara; Bellino, Stefania; Tripiciano, Antonella; Longo, Olimpia; Francavilla, Vittorio; Marcotullio, Simone; Cafaro, Aurelio; Picconi, Orietta; Paniccia, Giovanni; Scoglio, Arianna; Arancio, Angela; Ariola, Cristina; Ruiz Alvarez, Maria J.; Campagna, Massimo; Scaramuzzi, Donato; Iori, Cristina; Esposito, Roberto; Mussini, Cristina; Ghinelli, Florio; Sighinolfi, Laura; Palamara, Guido; Latini, Alessandra; Angarano, Gioacchino; Ladisa, Nicoletta; Soscia, Fabrizio; Mercurio, Vito S.; Lazzarin, Adriano; Tambussi, Giuseppe; Visintini, Raffaele; Mazzotta, Francesco; Di Pietro, Massimo; Galli, Massimo; Rusconi, Stefano; Carosi, Giampiero; Torti, Carlo; Di Perri, Giovanni; Bonora, Stefano; Ensoli, Fabrizio; Garaci, Enrico

    2010-01-01

    Although HAART suppresses HIV replication, it is often unable to restore immune homeostasis. Consequently, non-AIDS-defining diseases are increasingly seen in treated individuals. This is attributed to persistent virus expression in reservoirs and to cell activation. Of note, in CD4+ T cells and monocyte-macrophages of virologically-suppressed individuals, there is continued expression of multi-spliced transcripts encoding HIV regulatory proteins. Among them, Tat is essential for virus gene expression and replication, either in primary infection or for virus reactivation during HAART, when Tat is expressed, released extracellularly and exerts, on both the virus and the immune system, effects that contribute to disease maintenance. Here we report results of an ad hoc exploratory interim analysis (up to 48 weeks) on 87 virologically-suppressed HAART-treated individuals enrolled in a phase II randomized open-label multicentric clinical trial of therapeutic immunization with Tat (ISS T-002). Eighty-eight virologically-suppressed HAART-treated individuals, enrolled in a parallel prospective observational study at the same sites (ISS OBS T-002), served for intergroup comparison. Immunization with Tat was safe, induced durable immune responses, and modified the pattern of CD4+ and CD8+ cellular activation (CD38 and HLA-DR) together with reduction of biochemical activation markers and persistent increases of regulatory T cells. This was accompanied by a progressive increment of CD4+ T cells and B cells with reduction of CD8+ T cells and NK cells, which were independent from the type of antiretroviral regimen. Increase in central and effector memory and reduction in terminally-differentiated effector memory CD4+ and CD8+ T cells were accompanied by increases of CD4+ and CD8+ T cell responses against Env and recall antigens. Of note, more immune-compromised individuals experienced greater therapeutic effects. In contrast, these changes were opposite, absent or partial in the OBS population. These findings support the use of Tat immunization to intensify HAART efficacy and to restore immune homeostasis. Trial registration ClinicalTrials.gov NCT00751595 PMID:21085635

  4. Therapeutic immunization with HIV-1 Tat reduces immune activation and loss of regulatory T-cells and improves immune function in subjects on HAART.

    PubMed

    Ensoli, Barbara; Bellino, Stefania; Tripiciano, Antonella; Longo, Olimpia; Francavilla, Vittorio; Marcotullio, Simone; Cafaro, Aurelio; Picconi, Orietta; Paniccia, Giovanni; Scoglio, Arianna; Arancio, Angela; Ariola, Cristina; Ruiz Alvarez, Maria J; Campagna, Massimo; Scaramuzzi, Donato; Iori, Cristina; Esposito, Roberto; Mussini, Cristina; Ghinelli, Florio; Sighinolfi, Laura; Palamara, Guido; Latini, Alessandra; Angarano, Gioacchino; Ladisa, Nicoletta; Soscia, Fabrizio; Mercurio, Vito S; Lazzarin, Adriano; Tambussi, Giuseppe; Visintini, Raffaele; Mazzotta, Francesco; Di Pietro, Massimo; Galli, Massimo; Rusconi, Stefano; Carosi, Giampiero; Torti, Carlo; Di Perri, Giovanni; Bonora, Stefano; Ensoli, Fabrizio; Garaci, Enrico

    2010-11-11

    Although HAART suppresses HIV replication, it is often unable to restore immune homeostasis. Consequently, non-AIDS-defining diseases are increasingly seen in treated individuals. This is attributed to persistent virus expression in reservoirs and to cell activation. Of note, in CD4(+) T cells and monocyte-macrophages of virologically-suppressed individuals, there is continued expression of multi-spliced transcripts encoding HIV regulatory proteins. Among them, Tat is essential for virus gene expression and replication, either in primary infection or for virus reactivation during HAART, when Tat is expressed, released extracellularly and exerts, on both the virus and the immune system, effects that contribute to disease maintenance. Here we report results of an ad hoc exploratory interim analysis (up to 48 weeks) on 87 virologically-suppressed HAART-treated individuals enrolled in a phase II randomized open-label multicentric clinical trial of therapeutic immunization with Tat (ISS T-002). Eighty-eight virologically-suppressed HAART-treated individuals, enrolled in a parallel prospective observational study at the same sites (ISS OBS T-002), served for intergroup comparison. Immunization with Tat was safe, induced durable immune responses, and modified the pattern of CD4(+) and CD8(+) cellular activation (CD38 and HLA-DR) together with reduction of biochemical activation markers and persistent increases of regulatory T cells. This was accompanied by a progressive increment of CD4(+) T cells and B cells with reduction of CD8(+) T cells and NK cells, which were independent from the type of antiretroviral regimen. Increase in central and effector memory and reduction in terminally-differentiated effector memory CD4(+) and CD8(+) T cells were accompanied by increases of CD4(+) and CD8(+) T cell responses against Env and recall antigens. Of note, more immune-compromised individuals experienced greater therapeutic effects. In contrast, these changes were opposite, absent or partial in the OBS population. These findings support the use of Tat immunization to intensify HAART efficacy and to restore immune homeostasis. ClinicalTrials.gov NCT00751595.

  5. MHC class-I associated phosphopeptides are the targets of memory-like immunity in leukemia

    PubMed Central

    Cobbold, Mark; De La Peña, Hugo; Norris, Andrew; Polefrone, Joy; Qian, Jie; English, A. Michelle; Cummings, Kara; Penny, Sarah; Turner, James E.; Cottine, Jennifer; Abelin, Jennifer G; Malaker, Stacy A; Zarling, Angela L; Huang, Hsing-Wen; Goodyear, Oliver; Freeman, Sylvie; Shabanowitz, Jeffrey; Pratt, Guy; Craddock, Charles; Williams, Michael E; Hunt, Donald F; Engelhard, Victor H

    2014-01-01

    Deregulation of signaling pathways involving phosphorylation is a hallmark of malignant transformation. Degradation of phosphoproteins generates cancer-specific phosphopeptides that are associated with MHC-I and II molecules and recognized by T-cells. We identified 95 phosphopeptides presented on the surface of primary hematological tumors and normal tissues, including 61 that were tumor-specific. Phosphopeptides were more prevalent on more aggressive and malignant samples. CD8 T-cell lines specific for these phosphopeptides recognized and killed both leukemia cell lines and HLA-matched primary leukemia cells ex vivo. Healthy individuals showed surprisingly high levels of CD8 T-cell responses against many of these phosphopeptides within the circulating memory compartment. This immunity was significantly reduced or absent in some leukemia patients, which correlated with clinical outcome, and was restored following allogeneic stem cell transplantation. These results suggest that phosphopeptides may be targets of cancer immune surveillance in humans, and point to their importance for development of vaccine-based and T-cell adoptive transfer immunotherapies.. PMID:24048523

  6. T-cell differentiation and CD56+ levels in polypoidal choroidal vasculopathy and neovascular age-related macular degeneration.

    PubMed

    Subhi, Yousif; Nielsen, Marie Krogh; Molbech, Christopher Rue; Oishi, Akio; Singh, Amardeep; Nissen, Mogens Holst; Sørensen, Torben Lykke

    2017-11-20

    Polypoidal choroidal vasculopathy (PCV) and neovascular age-related macular degeneration (AMD) are prevalent age-related diseases characterized by exudative changes in the macula. Although they share anatomical and clinical similarities, they are also distinctly characterized by their own features, e.g. vascular abnormalities in PCV and drusen-mediated progression in neovascular AMD. PCV remains etiologically uncharacterized, and ongoing discussion is whether PCV and neovascular AMD share the same etiology or constitute two substantially different diseases. In this study, we investigated T-cell differentiation and aging profile in human patients with PCV, patients with neovascular AMD, and age-matched healthy control individuals. Fresh venous blood was prepared for flow cytometry to investigate CD4 + and CD8 + T-cell differentiation (naïve, central memory, effector memory, effector memory CD45ra + ), loss of differentiation markers CD27 and CD28, and expression of aging marker CD56. Patients with PCV were similar to the healthy controls in all aspects. In patients with neovascular AMD we found significantly accelerated T-cell differentiation (more CD28 - CD27 - cells) and aging (more CD56 + cells) in the CD8 + T-cell compartment. These findings suggest that PCV and neovascular AMD are etiologically different in terms of T cell immunity, and that neovascular AMD is associated with T-cell immunosenescence.

  7. Age-Related Decline in Primary CD8+ T Cell Responses Is Associated with the Development of Senescence in Virtual Memory CD8+ T Cells.

    PubMed

    Quinn, Kylie M; Fox, Annette; Harland, Kim L; Russ, Brendan E; Li, Jasmine; Nguyen, Thi H O; Loh, Liyen; Olshanksy, Moshe; Naeem, Haroon; Tsyganov, Kirill; Wiede, Florian; Webster, Rosela; Blyth, Chantelle; Sng, Xavier Y X; Tiganis, Tony; Powell, David; Doherty, Peter C; Turner, Stephen J; Kedzierska, Katherine; La Gruta, Nicole L

    2018-06-19

    Age-associated decreases in primary CD8 + T cell responses occur, in part, due to direct effects on naive CD8 + T cells to reduce intrinsic functionality, but the precise nature of this defect remains undefined. Aging also causes accumulation of antigen-naive but semi-differentiated "virtual memory" (T VM ) cells, but their contribution to age-related functional decline is unclear. Here, we show that T VM cells are poorly proliferative in aged mice and humans, despite being highly proliferative in young individuals, while conventional naive T cells (T N cells) retain proliferative capacity in both aged mice and humans. Adoptive transfer experiments in mice illustrated that naive CD8 T cells can acquire a proliferative defect imposed by the aged environment but age-related proliferative dysfunction could not be rescued by a young environment. Molecular analyses demonstrate that aged T VM cells exhibit a profile consistent with senescence, marking an observation of senescence in an antigenically naive T cell population. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Peripheral Ferroelectric Domain Switching and Polarization Fatigue in Nonvolatile Memory Elements of Continuous Pt/SrBi2Ta2O9/Pt Thin-Film Capacitors

    NASA Astrophysics Data System (ADS)

    Chen, Min-Chuan; Jiang, An-Quan

    2011-07-01

    We verify the domain sideway motion around the peripheral regions of the crossed capacitors of top and bottom electrode bars without electrode coverage. To avoid the crosstalk problem between adjacent memory cells, the safe distance between adjacent elements of Pt/SrBi2Ta2O9/Pt thin-film capacitors is estimated to be 0.156 μm. Moreover, the fatigue of Pt/SrBi2Ta2O9/Pt thin-film capacitors is independent of the individual memory size due to the absence of etching damage.

  9. A Public Database of Memory and Naive B-Cell Receptor Sequences.

    PubMed

    DeWitt, William S; Lindau, Paul; Snyder, Thomas M; Sherwood, Anna M; Vignali, Marissa; Carlson, Christopher S; Greenberg, Philip D; Duerkopp, Natalie; Emerson, Ryan O; Robins, Harlan S

    2016-01-01

    The vast diversity of B-cell receptors (BCR) and secreted antibodies enables the recognition of, and response to, a wide range of epitopes, but this diversity has also limited our understanding of humoral immunity. We present a public database of more than 37 million unique BCR sequences from three healthy adult donors that is many fold deeper than any existing resource, together with a set of online tools designed to facilitate the visualization and analysis of the annotated data. We estimate the clonal diversity of the naive and memory B-cell repertoires of healthy individuals, and provide a set of examples that illustrate the utility of the database, including several views of the basic properties of immunoglobulin heavy chain sequences, such as rearrangement length, subunit usage, and somatic hypermutation positions and dynamics.

  10. T inflammatory memory CD8 T cells participate to antiviral response and generate secondary memory cells with an advantage in XCL1 production.

    PubMed

    Jubin, Virginie; Ventre, Erwan; Leverrier, Yann; Djebali, Sophia; Mayol, Katia; Tomkowiak, Martine; Mafille, Julien; Teixeira, Marie; Teoh, Denise Y-L; Lina, Bruno; Walzer, Thierry; Arpin, Christophe; Marvel, Jacqueline

    2012-06-01

    Besides the classically described subsets of memory CD8 T cells generated under infectious conditions, are T inflammatory memory cells generated under sterile priming conditions, such as sensitization to allergens. Although not fully differentiated as pathogen-induced memory cells, they display memory properties that distinguish them from naive CD8 T cells. Given these memory cells are generated in an antigen-specific context that is devoid of pathogen-derived danger signals and CD4 T cell help, we herein questioned whether they maintained their activation and differentiation potential, could be recruited in an immune response directed against a pathogen expressing their cognate antigen and further differentiate in fully competent secondary memory cells. We show that T inflammatory memory cells can indeed take part to the immune response triggered by a viral infection, differentiate into secondary effectors and further generate typical central memory CD8 T cells and effector memory CD8 T cells. Furthermore, the secondary memory cells they generate display a functional advantage over primary memory cells in their capacity to produce TNF-α and the XCL1 chemokine. These results suggest that cross-reactive stimulations and differentiation of cells directed against allergens or self into fully competent pathogen-induced memory cells might have incidences in inflammatory immuno-pathologies.

  11. Dynamics of Dengue Virus (DENV)–Specific B Cells in the Response to DENV Serotype 1 Infections, Using Flow Cytometry With Labeled Virions

    PubMed Central

    Woda, Marcia; Friberg, Heather; Currier, Jeffrey R.; Srikiatkhachorn, Anon; Macareo, Louis R.; Green, Sharone; Jarman, Richard G.; Rothman, Alan L.; Mathew, Anuja

    2016-01-01

    Background. The development of reagents to identify and characterize antigen-specific B cells has been challenging. Methods. We recently developed Alexa Fluor–labeled dengue viruses (AF DENVs) to characterize antigen-specific B cells in the peripheral blood of DENV-immune individuals. Results. In this study, we used AF DENV serotype 1 (AF DENV-1) together with AF DENV-2 on peripheral blood mononuclear cells (PBMCs) from children in Thailand with acute primary or secondary DENV-1 infections to analyze the phenotypes of antigen-specific B cells that reflected their exposure or clinical diagnosis. DENV serotype-specific and cross-reactive B cells were identified in PBMCs from all subjects. Frequencies of AF DENV+ class-switched memory B cells (IgD−CD27+ CD19+ cells) reached up to 8% during acute infection and early convalescence. AF DENV–labeled B cells expressed high levels of CD27 and CD38 during acute infection, characteristic of plasmablasts, and transitioned into memory B cells (CD38−CD27+) at the early convalescent time point. There was higher activation of memory B cells early during acute secondary infection, suggesting reactivation from a previous DENV infection. Conclusions. AF DENVs reveal changes in the phenotype of DENV serotype–specific and cross-reactive B cells during and after natural DENV infection and could be useful in analysis of the response to DENV vaccination. PMID:27443614

  12. Memory. Engram cells retain memory under retrograde amnesia.

    PubMed

    Ryan, Tomás J; Roy, Dheeraj S; Pignatelli, Michele; Arons, Autumn; Tonegawa, Susumu

    2015-05-29

    Memory consolidation is the process by which a newly formed and unstable memory transforms into a stable long-term memory. It is unknown whether the process of memory consolidation occurs exclusively through the stabilization of memory engrams. By using learning-dependent cell labeling, we identified an increase of synaptic strength and dendritic spine density specifically in consolidated memory engram cells. Although these properties are lacking in engram cells under protein synthesis inhibitor-induced amnesia, direct optogenetic activation of these cells results in memory retrieval, and this correlates with retained engram cell-specific connectivity. We propose that a specific pattern of connectivity of engram cells may be crucial for memory information storage and that strengthened synapses in these cells critically contribute to the memory retrieval process. Copyright © 2015, American Association for the Advancement of Science.

  13. Mechanical memory

    DOEpatents

    Gilkey, Jeffrey C [Albuquerque, NM; Duesterhaus, Michelle A [Albuquerque, NM; Peter, Frank J [Albuquerque, NM; Renn, Rosemarie A [Alburquerque, NM; Baker, Michael S [Albuquerque, NM

    2006-08-15

    A first-in-first-out (FIFO) microelectromechanical memory apparatus (also termed a mechanical memory) is disclosed. The mechanical memory utilizes a plurality of memory cells, with each memory cell having a beam which can be bowed in either of two directions of curvature to indicate two different logic states for that memory cell. The memory cells can be arranged around a wheel which operates as a clocking actuator to serially shift data from one memory cell to the next. The mechanical memory can be formed using conventional surface micromachining, and can be formed as either a nonvolatile memory or as a volatile memory.

  14. Mechanical memory

    DOEpatents

    Gilkey, Jeffrey C [Albuquerque, NM; Duesterhaus, Michelle A [Albuquerque, NM; Peter, Frank J [Albuquerque, NM; Renn, Rosemarie A [Albuquerque, NM; Baker, Michael S [Albuquerque, NM

    2006-05-16

    A first-in-first-out (FIFO) microelectromechanical memory apparatus (also termed a mechanical memory) is disclosed. The mechanical memory utilizes a plurality of memory cells, with each memory cell having a beam which can be bowed in either of two directions of curvature to indicate two different logic states for that memory cell. The memory cells can be arranged around a wheel which operates as a clocking actuator to serially shift data from one memory cell to the next. The mechanical memory can be formed using conventional surface micromachining, and can be formed as either a nonvolatile memory or as a volatile memory.

  15. Booster vaccinations: can immunologic memory outpace disease pathogenesis?

    PubMed

    Pichichero, Michael E

    2009-12-01

    Almost all current vaccines work by the induction of antibodies in serum or on the mucosa to block adherence of pathogens to epithelial cells or interfere with microbial invasion of the bloodstream. However, antibody levels usually decline after vaccination to undetectable amounts if further vaccination does not occur. Persistence of vaccine-induced antibodies usually goes well beyond the time when they should have decayed to undetectable levels because of ongoing "natural" boosting or other immunologic mechanisms. The production of memory B and T cells is of clear importance, but the likelihood that a memory response will be fast enough in the absence of a protective circulating antibody level likely depends on the pace of pathogenesis of a specific organism. This concept is discussed with regard to Haemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis; hepatitis A and B; diphtheria, tetanus, and pertussis; polio, measles, mumps, rubella, and varicella; rotavirus; and human papilloma virus. With infectious diseases for which the pace of pathogenesis is less rapid, some individuals will contract infection before the memory response is fully activated and implemented. With infectious diseases for which the pace of pathogenesis is slow, immune memory should be sufficient to prevent disease.

  16. Single-Cell Semiconductor Sequencing

    PubMed Central

    Kohn, Andrea B.; Moroz, Tatiana P.; Barnes, Jeffrey P.; Netherton, Mandy; Moroz, Leonid L.

    2014-01-01

    RNA-seq or transcriptome analysis of individual cells and small-cell populations is essential for virtually any biomedical field. It is especially critical for developmental, aging, and cancer biology as well as neuroscience where the enormous heterogeneity of cells present a significant methodological and conceptual challenge. Here we present two methods that allow for fast and cost-efficient transcriptome sequencing from ultra-small amounts of tissue or even from individual cells using semiconductor sequencing technology (Ion Torrent, Life Technologies). The first method is a reduced representation sequencing which maximizes capture of RNAs and preserves transcripts’ directionality. The second, a template-switch protocol, is designed for small mammalian neurons. Both protocols, from cell/tissue isolation to final sequence data, take up to 4 days. The efficiency of these protocols has been validated with single hippocampal neurons and various invertebrate tissues including individually identified neurons within a simpler memory-forming circuit of Aplysia californica and early (1-, 2-, 4-, 8-cells) embryonic and developmental stages from basal metazoans. PMID:23929110

  17. The mysteries of remote memory.

    PubMed

    Albo, Zimbul; Gräff, Johannes

    2018-03-19

    Long-lasting memories form the basis of our identity as individuals and lie central in shaping future behaviours that guide survival. Surprisingly, however, our current knowledge of how such memories are stored in the brain and retrieved, as well as the dynamics of the circuits involved, remains scarce despite seminal technical and experimental breakthroughs in recent years. Traditionally, it has been proposed that, over time, information initially learnt in the hippocampus is stored in distributed cortical networks. This process-the standard theory of memory consolidation-would stabilize the newly encoded information into a lasting memory, become independent of the hippocampus, and remain essentially unmodifiable throughout the lifetime of the individual. In recent years, several pieces of evidence have started to challenge this view and indicate that long-lasting memories might already ab ovo be encoded, and subsequently stored in distributed cortical networks, akin to the multiple trace theory of memory consolidation. In this review, we summarize these recent findings and attempt to identify the biologically plausible mechanisms based on which a contextual memory becomes remote by integrating different levels of analysis: from neural circuits to cell ensembles across synaptic remodelling and epigenetic modifications. From these studies, remote memory formation and maintenance appear to occur through a multi-trace, dynamic and integrative cellular process ranging from the synapse to the nucleus, and represent an exciting field of research primed to change quickly as new experimental evidence emerges.This article is part of a discussion meeting issue 'Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists'. © 2018 The Authors.

  18. The mysteries of remote memory

    PubMed Central

    2018-01-01

    Long-lasting memories form the basis of our identity as individuals and lie central in shaping future behaviours that guide survival. Surprisingly, however, our current knowledge of how such memories are stored in the brain and retrieved, as well as the dynamics of the circuits involved, remains scarce despite seminal technical and experimental breakthroughs in recent years. Traditionally, it has been proposed that, over time, information initially learnt in the hippocampus is stored in distributed cortical networks. This process—the standard theory of memory consolidation—would stabilize the newly encoded information into a lasting memory, become independent of the hippocampus, and remain essentially unmodifiable throughout the lifetime of the individual. In recent years, several pieces of evidence have started to challenge this view and indicate that long-lasting memories might already ab ovo be encoded, and subsequently stored in distributed cortical networks, akin to the multiple trace theory of memory consolidation. In this review, we summarize these recent findings and attempt to identify the biologically plausible mechanisms based on which a contextual memory becomes remote by integrating different levels of analysis: from neural circuits to cell ensembles across synaptic remodelling and epigenetic modifications. From these studies, remote memory formation and maintenance appear to occur through a multi-trace, dynamic and integrative cellular process ranging from the synapse to the nucleus, and represent an exciting field of research primed to change quickly as new experimental evidence emerges. This article is part of a discussion meeting issue ‘Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists’. PMID:29352028

  19. Collaboration can improve individual recognition memory: evidence from immediate and delayed tests.

    PubMed

    Rajaram, Suparna; Pereira-Pasarin, Luciane P

    2007-02-01

    In two experiments, we tested the effects of collaboration on individual recognition memory. In Experiment 1, participants studied pictures and words either for meaning or for surface properties and made recognition memory judgments individually either following group discussion among 3 members (collaborative condition) or in the absence of discussion (noncollaborative condition). Levels of processing and picture superiority effects were replicated, and collaboration significantly increased individual recognition memory. Experiment 2 replicated this positive effect and showed that even though memory sensitivity declined at longer delays (48 h and 1 week), collaboration continued to exert a positive influence. These findings show that (1) consensus is not necessary for producing benefits of collaboration on individual recognition, (2) collaborative facilitation on individual memory is robust, and (3) collaboration enhances individual memory further if conditions predispose individual accuracy in the absence of collaboration.

  20. Screening NK-, B- and T-cell phenotype and function in patients suffering from Chronic Fatigue Syndrome.

    PubMed

    Curriu, Marta; Carrillo, Jorge; Massanella, Marta; Rigau, Josepa; Alegre, José; Puig, Jordi; Garcia-Quintana, Ana M; Castro-Marrero, Jesus; Negredo, Eugènia; Clotet, Bonaventura; Cabrera, Cecilia; Blanco, Julià

    2013-03-20

    Chronic Fatigue Syndrome (CFS) is a debilitating neuro-immune disorder of unknown etiology diagnosed by an array of clinical manifestations. Although several immunological abnormalities have been described in CFS, their heterogeneity has limited diagnostic applicability. Immunological features of CFS were screened in 22 CFS diagnosed individuals fulfilling Fukuda criteria and 30 control healthy individuals. Peripheral blood T, B and NK cell function and phenotype were analyzed by flow cytometry in both groups. CFS diagnosed individuals showed similar absolute numbers of T, B and NK cells, with minor differences in the percentage of CD4+ and CD8+ T cells. B cells showed similar subset frequencies and proliferative responses between groups. Conversely, significant differences were observed in T cell subsets. CFS individuals showed increased levels of T regulatory cells (CD25+/FOXP3+) CD4 T cells, and lower proliferative responses in vitro and in vivo. Moreover, CD8 T cells from the CFS group showed significantly lower activation and frequency of effector memory cells. No clear signs of T-cell immunosenescence were observed. NK cells from CFS individuals displayed higher expression of NKp46 and CD69 but lower expression of CD25 in all NK subsets defined. Overall, T cell and NK cell features clearly clustered CFS individuals. Our findings suggest that alterations in T-cell phenotype and proliferative response along with the specific signature of NK cell phenotype may be useful to identify CFS individuals. The striking down modulation of T cell mediated immunity may help to understand intercurrent viral infections in CFS.

  1. Screening NK-, B- and T-cell phenotype and function in patients suffering from Chronic Fatigue Syndrome

    PubMed Central

    2013-01-01

    Background Chronic Fatigue Syndrome (CFS) is a debilitating neuro-immune disorder of unknown etiology diagnosed by an array of clinical manifestations. Although several immunological abnormalities have been described in CFS, their heterogeneity has limited diagnostic applicability. Methods Immunological features of CFS were screened in 22 CFS diagnosed individuals fulfilling Fukuda criteria and 30 control healthy individuals. Peripheral blood T, B and NK cell function and phenotype were analyzed by flow cytometry in both groups. Results CFS diagnosed individuals showed similar absolute numbers of T, B and NK cells, with minor differences in the percentage of CD4+ and CD8+ T cells. B cells showed similar subset frequencies and proliferative responses between groups. Conversely, significant differences were observed in T cell subsets. CFS individuals showed increased levels of T regulatory cells (CD25+/FOXP3+) CD4 T cells, and lower proliferative responses in vitro and in vivo. Moreover, CD8 T cells from the CFS group showed significantly lower activation and frequency of effector memory cells. No clear signs of T-cell immunosenescence were observed. NK cells from CFS individuals displayed higher expression of NKp46 and CD69 but lower expression of CD25 in all NK subsets defined. Overall, T cell and NK cell features clearly clustered CFS individuals. Conclusions Our findings suggest that alterations in T-cell phenotype and proliferative response along with the specific signature of NK cell phenotype may be useful to identify CFS individuals. The striking down modulation of T cell mediated immunity may help to understand intercurrent viral infections in CFS. PMID:23514202

  2. A Single 17D Yellow Fever Vaccination Provides Lifelong Immunity; Characterization of Yellow-Fever-Specific Neutralizing Antibody and T-Cell Responses after Vaccination

    PubMed Central

    van Leeuwen, Ester M. M.; Remmerswaal, Ester B. M.; ten Berge, Ineke J. M.; de Visser, Adriëtte W.; van Genderen, Perry J. J.; Goorhuis, Abraham; Visser, Leo G.; Grobusch, Martin P.; de Bree, Godelieve J.

    2016-01-01

    Introduction Prompted by recent amendments of Yellow Fever (YF) vaccination guidelines from boost to single vaccination strategy and the paucity of clinical data to support this adjustment, we used the profile of the YF-specific CD8+ T-cell subset profiles after primary vaccination and neutralizing antibodies as a proxy for potentially longer lasting immunity. Methods and Findings PBMCs and serum were collected in six individuals on days 0, 3, 5, 12, 28 and 180, and in 99 individuals >10 years after YF-vaccination. Phenotypic characteristics of YF- tetramer+ CD8+ T-cells were determined using class I tetramers. Antibody responses were measured using a standardized plaque reduction neutralization test (PRNT). Also, characteristics of YF-tetramer positive CD8+ T-cells were compared between individuals who had received a primary- and a booster vaccination. YF-tetramer+ CD8+ T-cells were detectable on day 12 (median tetramer+ cells as percentage of CD8+ T-cells 0.2%, range 0.07–3.1%). On day 180, these cells were still present (median 0.06%, range 0.02–0.78%). The phenotype of YF-tetramer positive CD8+ T-cells shifted from acute phase effector cells on day 12, to late differentiated or effector memory phenotype (CD45RA-/+CD27-) on day 28. Two subsets of YF-tetramer positive T-cells (CD45RA+CD27- and CD45RA+CD27+) persisted until day 180. Within all phenotypic subsets, the T-bet: Eomes ratio tended to be high on day 28 after vaccination and shifted towards predominant Eomes expression on day 180 (median 6.0 (day 28) vs. 2.2 (day 180) p = 0.0625), suggestive of imprinting compatible with long-lived memory properties. YF-tetramer positive CD8+ T-cells were detectable up to 18 years post vaccination, YF-specific antibodies were detectable up to 40 years after single vaccination. Booster vaccination did not increase titers of YF-specific antibodies (mean 12.5 vs. 13.1, p = 0.583), nor induce frequencies or alter phenotypes of YF-tetramer+ CD8+ T-cells. Conclusion The presence of a functionally competent YF-specific memory T-cell pool 18 years and sufficient titers of neutralizing antibodies 35–40 years after first vaccination suggest that single vaccination may be sufficient to provide long-term immunity. PMID:26977808

  3. Regulation and dysregulation of Epstein-Barr virus latency: implications for the development of autoimmune diseases.

    PubMed

    Niller, Hans Helmut; Wolf, Hans; Minarovits, Janos

    2008-05-01

    Epstein-Barr virus (EBV) is a human herpesvirus hiding in a latent form in memory B cells in the majority of the world population. Although, primary EBV infection is asymptomatic or causes a self-limiting disease, infectious mononucleosis, the virus is associated with a wide variety of neoplasms developing in immunosuppressed or immunodeficient individuals, but also in patients with an apparently intact immune system. In memory B cells, tumor cells, and lymphoblastoid cell lines (LCLs, transformed by EBV in vitro) the expression of the viral genes is highly restricted. There is no virus production (lytic viral replication associated with the expression of all viral genes) in tight latency. The expression of latent viral oncogenes and RNAs is under a strict epigenetic control via DNA methylation and histone modifications that results either in a complete silencing of the EBV genome in memory B cells, or in a cell-type dependent usage of latent promoters in tumor cells, germinal center B cells, and LCLs. Both the latent and lytic EBV proteins are potent immunogens and elicit vigorous B- and T-cell responses. In immunosuppressed and immunodeficient patients, or in individuals with a functional defect of EBV-specific T cells, lytic EBV replication is regularly activated and an increased viral load can be detected in the blood. Enhanced lytic replication results in new infection events and EBV-associated transformation events, and seems to be a risk factor both for malignant transformation and the development of autoimmune diseases. One may speculate that an increased load or altered presentation of a limited set of lytic or latent EBV proteins that cross-react with cellular antigens triggers and perpetuates the pathogenic processes that result in multiple sclerosis, systemic lupus erythematosus (SLE), and rheumatoid arthritis. In addition, in SLE patients EBV may cause defects of B-cell tolerance checkpoints because latent membrane protein 1, an EBV-encoded viral oncoprotein can induce BAFF, a B-cell activating factor that rescues self-reactive B cells and induces a lupus-like autoimmune disease in transgenic mice.

  4. Engram Cells Retain Memory Under Retrograde Amnesia

    PubMed Central

    Ryan, Tomás J.; Roy, Dheeraj S.; Pignatelli, Michele; Arons, Autumn; Tonegawa, Susumu

    2017-01-01

    Memory consolidation is the process by which a newly formed and unstable memory transforms into a stable long-term memory. It is unknown whether the process of memory consolidation occurs exclusively by the stabilization of memory engrams. By employing learning-dependent cell labeling, we identified an increase of synaptic strength and dendritic spine density specifically in consolidated memory engram cells. While these properties are lacking in the engram cells under protein synthesis inhibitor-induced amnesia, direct optogenetic activation of these cells results in memory retrieval, and this correlates with the retained engram cell-specific connectivity. We propose that a specific pattern of connectivity of engram cells may be crucial for memory information storage and that strengthened synapses in these cells critically contribute to the memory retrieval process. PMID:26023136

  5. Rapid Encoding of New Memories by Individual Neurons in the Human Brain

    PubMed Central

    Ison, Matias J.; Quian Quiroga, Rodrigo; Fried, Itzhak

    2015-01-01

    Summary The creation of memories about real-life episodes requires rapid neuronal changes that may appear after a single occurrence of an event. How is such demand met by neurons in the medial temporal lobe (MTL), which plays a fundamental role in episodic memory formation? We recorded the activity of MTL neurons in neurosurgical patients while they learned new associations. Pairs of unrelated pictures, one of a person and another of a place, were used to construct a meaningful association modeling the episodic memory of meeting a person in a particular place. We found that a large proportion of responsive MTL neurons expanded their selectivity to encode these specific associations within a few trials: cells initially responsive to one picture started firing to the associated one but not to others. Our results provide a plausible neural substrate for the inception of associations, which are crucial for the formation of episodic memories. PMID:26139375

  6. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease.

    PubMed

    Jo, Seonmi; Yarishkin, Oleg; Hwang, Yu Jin; Chun, Ye Eun; Park, Mijeong; Woo, Dong Ho; Bae, Jin Young; Kim, Taekeun; Lee, Jaekwang; Chun, Heejung; Park, Hyun Jung; Lee, Da Yong; Hong, Jinpyo; Kim, Hye Yun; Oh, Soo-Jin; Park, Seung Ju; Lee, Hyo; Yoon, Bo-Eun; Kim, YoungSoo; Jeong, Yong; Shim, Insop; Bae, Yong Chul; Cho, Jeiwon; Kowall, Neil W; Ryu, Hoon; Hwang, Eunmi; Kim, Daesoo; Lee, C Justin

    2014-08-01

    In Alzheimer's disease (AD), memory impairment is the most prominent feature that afflicts patients and their families. Although reactive astrocytes have been observed around amyloid plaques since the disease was first described, their role in memory impairment has been poorly understood. Here, we show that reactive astrocytes aberrantly and abundantly produce the inhibitory gliotransmitter GABA by monoamine oxidase-B (Maob) and abnormally release GABA through the bestrophin 1 channel. In the dentate gyrus of mouse models of AD, the released GABA reduces spike probability of granule cells by acting on presynaptic GABA receptors. Suppressing GABA production or release from reactive astrocytes fully restores the impaired spike probability, synaptic plasticity, and learning and memory in the mice. In the postmortem brain of individuals with AD, astrocytic GABA and MAOB are significantly upregulated. We propose that selective inhibition of astrocytic GABA synthesis or release may serve as an effective therapeutic strategy for treating memory impairment in AD.

  7. From lymphopoiesis to plasma cells differentiation, the age-related modifications of B cell compartment are influenced by "inflamm-ageing".

    PubMed

    Bulati, Matteo; Caruso, Calogero; Colonna-Romano, Giuseppina

    2017-07-01

    Ageing is a complex process characterized by a general decline in physiological functions with increasing morbidity and mortality. The most important aspect of ageing is the chronic inflammatory status, named "inflamm-ageing", strictly associated with the deterioration of the immune function, termed "immunosenescence". Both are causes of increased susceptibility of elderly to infectious diseases, cancer, dementia, cardiovascular diseases and autoimmunity, and of a decreased response to vaccination. It has been widely demonstrated that ageing has a strong impact on the remodelling of the B cell branch of immune system. The first evident effect is the significant decrease in circulating B cells, primarily due to the reduction of new B cell coming from bone marrow (BM) progenitors, as inflammation directly impacts on B lymphopoiesis. Besides, in aged individuals, there is a shift from naïve to memory immunoglobulins production, accompanied by the impaired ability to produce high affinity protective antibodies against newly encountered antigens. This is accompanied by the increase of expanded clones of B cells, which correlates with poor health status. Age-related modifications also occur in naïve/memory B cells subsets. Indeed, in the elderly, there is a reduction of naïve B cells, accompanied by the expansion of memory B cells that show a senescence-associated phenotype. Finally, elderly show the impaired ability of memory B cells to differentiate into plasma cells. It can be concluded that inflammation is the leading cause of the age-related impairment of B cell compartment, which play certainly a key role in the development of age-related diseases. This makes study of B cells in the aged an important tool for monitoring immunosenescence, chronic inflammatory disorders and the effectiveness of vaccines or pharmacological therapies. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Long-Term Effects of Radiation Exposure and Metabolic Status on Telomere Length of Peripheral Blood T Cells in Atomic Bomb Survivors.

    PubMed

    Yoshida, Kengo; Misumi, Munechika; Kubo, Yoshiko; Yamaoka, Mika; Kyoizumi, Seishi; Ohishi, Waka; Hayashi, Tomonori; Kusunoki, Yoichiro

    2016-10-01

    In a series of studies of atomic bomb survivors, radiation-dose-dependent alterations in peripheral T-cell populations have been reported. For example, reduced size in naïve T-cell pools and impaired proliferation ability of T cells were observed. Because these alterations are also generally observed with human aging, we hypothesized that radiation exposure may accelerate the aging process of the T-cell immune system. To further test this hypothesis, we conducted cross-sectional analyses of telomere length, a hallmark of cellular aging, of naïve and memory CD4 T cells and total CD8 T cells in the peripheral blood of 620 atomic bomb survivors as it relates to age and radiation dose, using fluorescence in situ hybridization with flow cytometry. Since telomere shortening has been recently demonstrated in obesity-related metabolic abnormalities and diseases, the modifying effects of metabolic status were also examined. Our results indicated nonlinear relationships between T-cell telomere length and prior radiation exposure, i.e., longer telomeres with lower dose exposure and a decreasing trend of telomere length with individuals exposed to doses higher than 0.5 Gy. There were associations between shorter T-cell telomeres and higher hemoglobin Alc levels or fatty liver development. In naïve and memory CD4 T cells, radiation dose and high-density lipoprotein (HDL) cholesterol were found to positively interact with telomere length, suggesting that the decreasing trend of telomere length from a higher radiation dose was less conspicuous in individuals with a higher HDL cholesterol. It is therefore likely that radiation exposure perturbs T-cell homeostasis involving telomere length maintenance by multiple biological mechanisms, depending on dose, and that long-term-radiation-induced effects on the maintenance of T-cell telomeres may be modified by the subsequent metabolic conditions of individuals.

  9. Identification and characterization of HIV-specific resident memory CD8+ T cells in human lymphoid tissue.

    PubMed

    Buggert, Marcus; Nguyen, Son; Salgado-Montes de Oca, Gonzalo; Bengsch, Bertram; Darko, Samuel; Ransier, Amy; Roberts, Emily R; Del Alcazar, Daniel; Brody, Irene Bukh; Vella, Laura A; Beura, Lalit; Wijeyesinghe, Sathi; Herati, Ramin S; Del Rio Estrada, Perla M; Ablanedo-Terrazas, Yuria; Kuri-Cervantes, Leticia; Sada Japp, Alberto; Manne, Sasikanth; Vartanian, Shant; Huffman, Austin; Sandberg, Johan K; Gostick, Emma; Nadolski, Gregory; Silvestri, Guido; Canaday, David H; Price, David A; Petrovas, Constantinos; Su, Laura F; Vahedi, Golnaz; Dori, Yoav; Frank, Ian; Itkin, Maxim G; Wherry, E John; Deeks, Steven G; Naji, Ali; Reyes-Terán, Gustavo; Masopust, David; Douek, Daniel C; Betts, Michael R

    2018-06-01

    Current paradigms of CD8 + T cell-mediated protection in HIV infection center almost exclusively on studies of peripheral blood, which is thought to provide a window into immune activity at the predominant sites of viral replication in lymphoid tissues (LTs). Through extensive comparison of blood, thoracic duct lymph (TDL), and LTs in different species, we show that many LT memory CD8 + T cells bear phenotypic, transcriptional, and epigenetic signatures of resident memory T cells (T RMs ). Unlike their circulating counterparts in blood or TDL, most of the total and follicular HIV-specific CD8 + T cells in LTs also resemble T RMs Moreover, high frequencies of HIV-specific CD8 + T RMs with skewed clonotypic profiles relative to matched blood samples are present in LTs of individuals who spontaneously control HIV replication in the absence of antiretroviral therapy (elite controllers). Single-cell RNA sequencing analysis confirmed that HIV-specific T RMs are enriched for effector-related immune genes and signatures compared with HIV-specific non-T RMs in elite controllers. Together, these data indicate that previous studies in blood have largely failed to capture the major component of HIV-specific CD8 + T cell responses resident within LTs. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. Differential effects of Cytomegalovirus carriage on the immune phenotype of middle-aged males and females

    PubMed Central

    van der Heiden, Marieke; van Zelm, Menno C.; Bartol, Sophinus J. W.; de Rond, Lia G. H.; Berbers, Guy A. M.; Boots, Annemieke M. H.; Buisman, Anne-Marie

    2016-01-01

    The elderly population is more susceptible to infections as a result of an altered immune response, commonly referred to as immunosenescence. Cytomegalovirus (CMV)-infection associated changes in blood lymphocytes are known to impact this process, but the interaction with gender remains unclear. Therefore, we analysed the effects and interaction of gender and CMV on the absolute numbers of a comprehensive set of naive and memory T- and B-cell subsets in people between 50 and 65 years of age. Enumeration and characterisation of lymphocyte subsets by flow cytometry was performed on fresh whole blood samples from 255 middle-aged persons. CMV-IgG serostatus was determined by ELISA. Gender was a major factor affecting immune cell numbers. CMV infection was mainly associated with an expansion of late-differentiated T-cell subsets. CMV+ males carried lower numbers of total CD4+, CD4+ central memory (CM) and follicular helper T-cells than females and CMV− males. Moreover, CMV+ males had significantly lower numbers of regulatory T (Treg)-cells and memory B-cells than CMV+ females. We here demonstrate an interaction between the effects of CMV infection and gender on T- and B-cells in middle-aged individuals. These differential effects on adaptive immunity between males and females may have implications for vaccination strategies at middle-age. PMID:27243552

  11. Coding of auditory temporal and pitch information by hippocampal individual cells and cell assemblies in the rat.

    PubMed

    Sakurai, Y

    2002-01-01

    This study reports how hippocampal individual cells and cell assemblies cooperate for neural coding of pitch and temporal information in memory processes for auditory stimuli. Each rat performed two tasks, one requiring discrimination of auditory pitch (high or low) and the other requiring discrimination of their duration (long or short). Some CA1 and CA3 complex-spike neurons showed task-related differential activity between the high and low tones in only the pitch-discrimination task. However, without exception, neurons which showed task-related differential activity between the long and short tones in the duration-discrimination task were always task-related neurons in the pitch-discrimination task. These results suggest that temporal information (long or short), in contrast to pitch information (high or low), cannot be coded independently by specific neurons. The results also indicate that the two different behavioral tasks cannot be fully differentiated by the task-related single neurons alone and suggest a model of cell-assembly coding of the tasks. Cross-correlation analysis among activities of simultaneously recorded multiple neurons supported the suggested cell-assembly model.Considering those results, this study concludes that dual coding by hippocampal single neurons and cell assemblies is working in memory processing of pitch and temporal information of auditory stimuli. The single neurons encode both auditory pitches and their temporal lengths and the cell assemblies encode types of tasks (contexts or situations) in which the pitch and the temporal information are processed.

  12. Unsolved Puzzles Surrounding HCV Immunity: Heterologous Immunity Adds Another Dimension.

    PubMed

    Agrawal, Babita; Singh, Shakti; Gupta, Nancy; Li, Wen; Vedi, Satish; Kumar, Rakesh

    2017-07-27

    Chronic infection with hepatitis C virus (HCV) afflicts 3% of the world's population and can lead to serious and late-stage liver diseases. Developing a vaccine for HCV is challenging because the correlates of protection are uncertain and traditional vaccine approaches do not work. Studies of natural immunity to HCV in humans have resulted in many enigmas. Human beings are not immunologically naïve because they are continually exposed to various environmental microbes and antigens, creating large populations of memory T cells. Heterologous immunity occurs when this pool of memory T cells cross-react against a new pathogen in an individual. Such heterologous immunity could influence the outcome when an individual is infected by a pathogen. We have recently made an unexpected finding that adenoviruses, a common environmental pathogen and an experimental vaccine vector, can induce robust cross-reactive immune responses against multiple antigens of HCV. Our unique finding of previously uncharacterized heterologous immunity against HCV opens new avenues to understand HCV pathogenesis and develop effective vaccines.

  13. Bystander hyperactivation of preimmune CD8+ T cells in chronic HCV patients

    PubMed Central

    Alanio, Cécile; Nicoli, Francesco; Sultanik, Philippe; Flecken, Tobias; Perot, Brieuc; Duffy, Darragh; Bianchi, Elisabetta; Lim, Annick; Clave, Emmanuel; van Buuren, Marit M; Schnuriger, Aurélie; Johnsson, Kerstin; Boussier, Jeremy; Garbarg-Chenon, Antoine; Bousquet, Laurence; Mottez, Estelle; Schumacher, Ton N; Toubert, Antoine; Appay, Victor; Heshmati, Farhad; Thimme, Robert; Pol, Stanislas; Mallet, Vincent; Albert, Matthew L

    2015-01-01

    Chronic infection perturbs immune homeostasis. While prior studies have reported dysregulation of effector and memory cells, little is known about the effects on naïve T cell populations. We performed a cross-sectional study of chronic hepatitis C (cHCV) patients using tetramer-associated magnetic enrichment to study antigen-specific inexperienced CD8+ T cells (i.e., tumor or unrelated virus-specific populations in tumor-free and sero-negative individuals). cHCV showed normal precursor frequencies, but increased proportions of memory-phenotype inexperienced cells, as compared to healthy donors or cured HCV patients. These observations could be explained by low surface expression of CD5, a negative regulator of TCR signaling. Accordingly, we demonstrated TCR hyperactivation and generation of potent CD8+ T cell responses from the altered T cell repertoire of cHCV patients. In sum, we provide the first evidence that naïve CD8+ T cells are dysregulated during cHCV infection, and establish a new mechanism of immune perturbation secondary to chronic infection. DOI: http://dx.doi.org/10.7554/eLife.07916.001 PMID:26568315

  14. Analysis of antigen-specific B-cell memory directly ex vivo.

    PubMed

    McHeyzer-Williams, Louise J; McHeyzer-Williams, Michael G

    2004-01-01

    Helper T-cell-regulated B-cell memory develops in response to initial antigen priming as a cellular product of the germinal center (GC) reaction. On antigen recall, memory response precursors expand rapidly with exaggerated differentiation into plasma cells to produce the high-titer, high-affinity antibody(Ab) that typifies the memory B-cell response in vivo. We have devised a high-resolution flow cytometric strategy to quantify the emergence and maintenance of antigen-specific memory B cells directly ex vivo. Extended cell surface phenotype establishes a level of cellular diversity not previously appreciated for the memory B-cell compartment. Using an "exclusion transfer" strategy, we ascertain the capacity of two distinct memory B-cell populations to transfer antigen-specific memory into naive adoptive hosts. Finally, we sequence expressed messenger ribonucleic acid (mRNA) from single cells within the population to estimate the level of somatic hypermutation as the best molecular indicator of B-cell memory. In this chapter, we describe the methods used in each of these four sections that serve to provide high-resolution quantification of antigen-specific B-cell memory responses directly ex vivo.

  15. Efficient Culture of Human Naïve and Memory B cells for Use as Antigen-presenting Cells

    PubMed Central

    Su, Kuei-Ying; Watanabe, Akiko; Yeh, Chen-Hao; Kelsoe, Garnett; Kuraoka, Masayuki

    2016-01-01

    The ability to culture and expand B cells in vitro has become a useful tool for studying human immunity. A limitation of current methods for human B-cell culture is the capacity to support mature B-cell proliferation. We have developed a culture method to support the efficient activation and proliferation of both naïve and memory human B cells. This culture supports extensive B-cell proliferation, with approximately 103-fold increases following 8 days in culture, and 106-fold increases when cultures are split and cultured for 8 more days. In culture, a significant fraction of naïve B cells undergo isotype switching and differentiate into plasmacytes. Culture-derived (CD) B cells are readily cryopreserved, and when recovered, retain their ability to proliferate and differentiate. Significantly, proliferating CD B cells express high levels of MHCII, CD80, and CD86. CD B cells act as APCs and present both alloantigens and microbial antigens to T cells. We are able to activate and expand antigen-specific memory B cells; these cultured cells are highly effective in presenting antigen to T cells. We have characterized the TCR repertoire of rare antigen-specific CD4+ T cells that proliferated in response to tetanus toxoid (TT) presented by autologous CD B cells. TCR Vβ usage by TT-activated CD4+ T cells differs from both resting and unspecifically activated CD4+ T cells. Moreover, we found that TT-specific TCR Vβ usage by CD4+ T cells was substantially different between donors. This culture method provides a platform for studying the BCR and TCR repertoires within a single individual. PMID:27815447

  16. How can individual differences in autobiographical memory distributions of older adults be explained?

    PubMed

    Wolf, Tabea; Zimprich, Daniel

    2016-10-01

    The reminiscence bump phenomenon has frequently been reported for the recall of autobiographical memories. The present study complements previous research by examining individual differences in the distribution of word-cued autobiographical memories. More importantly, we introduce predictor variables that might account for individual differences in the mean (location) and the standard deviation (scale) of individual memory distributions. All variables were derived from different theoretical accounts for the reminiscence bump phenomenon. We used a mixed location-scale logitnormal model, to analyse the 4602 autobiographical memories reported by 118 older participants. Results show reliable individual differences in the location and the scale. After controlling for age and gender, individual proportions of first-time experiences and individual proportions of positive memories, as well as the ratings on Openness to new Experiences and Self-Concept Clarity accounted for 29% of individual differences in location and 42% of individual differences in scale of autobiographical memory distributions. Results dovetail with a life-story account for the reminiscence bump which integrates central components of previous accounts.

  17. Environmental enrichment alters dentate granule cell morphology in oldest-old rat.

    PubMed

    Darmopil, Sanja; Petanjek, Zdravko; Mohammed, Abdul H; Bogdanović, Nenad

    2009-08-01

    The hippocampus of aged rats shows marked age-related morphological changes that could cause memory deficits. Experimental evidence has established that environmental enrichment attenuates memory deficits in aged rats. We therefore studied whether environmental enrichment produces morphological changes on the dentate granule cells of aged rats. Fifteen male Sprague-Dawley rats, 24 months of age, were randomly distributed in two groups that were housed under standard (n = 7) or enriched (n = 8) environmental conditions for 26 days. Quantitative data of dendritic morphology from dentate gyrus granule cells were obtained on Golgi-Cox stained sections. Environmental enrichment significantly increased the complexity and size of dendritic tree (total number of segments increased by 61% and length by 116%), and spine density (88% increase). There were large interindividual differences within the enriched group, indicating differential individual responses to environmental stimulation. Previous studies in young animals have shown changes produced by environmental enrichment in the morphology of dentate gyrus granule cells. The results of the present study show that environmental enrichment can also produce changes in dentate granule cell morphology in the senescent brain. In conclusion, the hippocampus retains its neuroplastic capacity during aging, and enriched environmental housing conditions can attenuate age-related dendritic regression and synaptic loss, thus preserving memory functions.

  18. Identification of Parvalbumin Interneurons as Cellular Substrate of Fear Memory Persistence.

    PubMed

    Çaliskan, Gürsel; Müller, Iris; Semtner, Marcus; Winkelmann, Aline; Raza, Ahsan S; Hollnagel, Jan O; Rösler, Anton; Heinemann, Uwe; Stork, Oliver; Meier, Jochen C

    2016-05-01

    Parvalbumin-positive (PV) basket cells provide perisomatic inhibition in the cortex and hippocampus and control generation of memory-related network activity patterns, such as sharp wave ripples (SPW-R). Deterioration of this class of fast-spiking interneurons has been observed in neuropsychiatric disorders and evidence from animal models suggests their involvement in the acquisition and extinction of fear memories. Here, we used mice with neuron type-targeted expression of the presynaptic gain-of-function glycine receptor RNA variant GlyR α3L(185L)to genetically enhance the network activity of PV interneurons. These mice showed reduced extinction of contextual fear memory but normal auditory cued fear memory. They furthermore displayed increase of SPW-R activity in area CA3 and CA1 and facilitated propagation of this particular network activity pattern, as determined in ventral hippocampal slice preparations. Individual freezing levels during extinction and SPW-R propagation were correlated across genotypes. The same was true for parvalbumin immunoreactivity in the ventral hippocampus, which was generally augmented in the GlyR mutant mice and correlated with individual freezing levels. Together, these results identify PV interneurons as critical cellular substrate of fear memory persistence and associated SPW-R activity in the hippocampus. Our findings may be relevant for the identification and characterization of physiological correlates for posttraumatic stress and anxiety disorders. © The Author 2016. Published by Oxford University Press.

  19. Identification of Parvalbumin Interneurons as Cellular Substrate of Fear Memory Persistence

    PubMed Central

    Çalışkan, Gürsel; Müller, Iris; Semtner, Marcus; Winkelmann, Aline; Raza, Ahsan S.; Hollnagel, Jan O.; Rösler, Anton; Heinemann, Uwe; Stork, Oliver; Meier, Jochen C.

    2016-01-01

    Parvalbumin-positive (PV) basket cells provide perisomatic inhibition in the cortex and hippocampus and control generation of memory-related network activity patterns, such as sharp wave ripples (SPW-R). Deterioration of this class of fast-spiking interneurons has been observed in neuropsychiatric disorders and evidence from animal models suggests their involvement in the acquisition and extinction of fear memories. Here, we used mice with neuron type-targeted expression of the presynaptic gain-of-function glycine receptor RNA variant GlyR α3L185L to genetically enhance the network activity of PV interneurons. These mice showed reduced extinction of contextual fear memory but normal auditory cued fear memory. They furthermore displayed increase of SPW-R activity in area CA3 and CA1 and facilitated propagation of this particular network activity pattern, as determined in ventral hippocampal slice preparations. Individual freezing levels during extinction and SPW-R propagation were correlated across genotypes. The same was true for parvalbumin immunoreactivity in the ventral hippocampus, which was generally augmented in the GlyR mutant mice and correlated with individual freezing levels. Together, these results identify PV interneurons as critical cellular substrate of fear memory persistence and associated SPW-R activity in the hippocampus. Our findings may be relevant for the identification and characterization of physiological correlates for posttraumatic stress and anxiety disorders. PMID:26908632

  20. Cancer immunotherapy and immunological memory.

    PubMed

    Murata, Kenji; Tsukahara, Tomohide; Torigoe, Toshihiko

    2016-01-01

    Human immunological memory is the key distinguishing hallmark of the adaptive immune system and plays an important role in the prevention of morbidity and the severity of infection. The differentiation system of T cell memory has been clarified using mouse models. However, the human T cell memory system has great diversity induced by natural antigens derived from many pathogens and tumor cells throughout life, and profoundly differs from the mouse memory system constructed using artificial antigens and transgenic T cells. We believe that only human studies can elucidate the human immune system. The importance of immunological memory in cancer immunotherapy has been pointed out, and the trafficking properties and long-lasting anti-tumor capacity of memory T cells play a crucial role in the control of malignant tumors. Adoptive cell transfer of less differentiated T cells has consistently demonstrated superior anti-tumor capacity relative to more differentiated T cells. Therefore, a human T cell population with the characteristics of stem cell memory is thought to be attractive for peptide vaccination and adoptive cell transfer. A novel human memory T cell population that we have identified is closer to the naive state than previous memory T cells in the T cell differentiation lineage, and has the characteristics of stem-like chemoresistance. Here we introduce this novel population and describe the fundamentals of immunological memory in cancer immunotherapy.

  1. Working memory predicts the rejection of false memories.

    PubMed

    Leding, Juliana K

    2012-01-01

    The relationship between working memory capacity (WMC) and false memories in the memory conjunction paradigm was explored. Previous research using other paradigms has shown that individuals high in WMC are not as likely to experience false memories as low-WMC individuals, the explanation being that high-WMC individuals are better able to engage in source monitoring. In the memory conjunction paradigm participants are presented at study with parent words (e.g., eyeglasses, whiplash). At test, in addition to being presented with targets and foils, participants are presented with lures that are composed of previously studied features (e.g., eyelash). It was found that high-WMC individuals had lower levels of false recognition than low-WMC individuals. Furthermore, recall-to-reject responses were analysed (e.g., "I know I didn't see eyelash because I remember seeing eyeglasses") and it was found that high-WMC individuals were more likely to utilise this memory editing strategy, providing direct evidence that one reason that high-WMC individuals are not as prone to false memories is because they are better able to engage in source monitoring.

  2. Enduring Memory Impairments Provoked by Developmental Febrile Seizures Are Mediated by Functional and Structural Effects of Neuronal Restrictive Silencing Factor

    PubMed Central

    Patterson, Katelin P.; Barry, Jeremy M.; Singh-Taylor, Akanksha; Brennan, Gary; Page, Matias; Holmes, Gregory L.

    2017-01-01

    In a subset of children experiencing prolonged febrile seizures (FSs), the most common type of childhood seizures, cognitive outcomes are compromised. However, the underlying mechanisms are unknown. Here we identified significant, enduring spatial memory problems in male rats following experimental prolonged FS (febrile status epilepticus; eFSE). Remarkably, these deficits were abolished by transient, post hoc interference with the chromatin binding of the transcriptional repressor neuron restrictive silencing factor (NRSF or REST). This transcriptional regulator is known to contribute to neuronal differentiation during development and to programmed gene expression in mature neurons. The mechanisms of the eFSE-provoked memory problems involved complex disruption of memory-related hippocampal oscillations recorded from CA1, likely resulting in part from impairments of dendritic filtering of cortical inputs as well as abnormal synaptic function. Accordingly, eFSE provoked region-specific dendritic loss in the hippocampus, and aberrant generation of excitatory synapses in dentate gyrus granule cells. Blocking NRSF transiently after eFSE prevented granule cell dysmaturation, restored a functional balance of γ-band network oscillations, and allowed treated eFSE rats to encode and retrieve spatial memories. Together, these studies provide novel insights into developing networks that underlie memory, the mechanisms by which early-life seizures influence them, and the means to abrogate the ensuing cognitive problems. SIGNIFICANCE STATEMENT Whereas seizures have been the central focus of epilepsy research, they are commonly accompanied by cognitive problems, including memory impairments that contribute to poor quality of life. These deficits often arise before the onset of spontaneous seizures, or independent from them, yet the mechanisms involved are unclear. Here, using a rodent model of common developmental seizures that provoke epilepsy in a subset of individuals, we identify serious consequent memory problems. We uncover molecular, cellular, and circuit-level mechanisms that underlie these deficits and successfully abolish them by targeted therapeutic interventions. These findings may be important for understanding and preventing cognitive problems in individuals suffering long febrile seizures. PMID:28275159

  3. Enduring Memory Impairments Provoked by Developmental Febrile Seizures Are Mediated by Functional and Structural Effects of Neuronal Restrictive Silencing Factor.

    PubMed

    Patterson, Katelin P; Barry, Jeremy M; Curran, Megan M; Singh-Taylor, Akanksha; Brennan, Gary; Rismanchi, Neggy; Page, Matias; Noam, Yoav; Holmes, Gregory L; Baram, Tallie Z

    2017-04-05

    In a subset of children experiencing prolonged febrile seizures (FSs), the most common type of childhood seizures, cognitive outcomes are compromised. However, the underlying mechanisms are unknown. Here we identified significant, enduring spatial memory problems in male rats following experimental prolonged FS (febrile status epilepticus; eFSE). Remarkably, these deficits were abolished by transient, post hoc interference with the chromatin binding of the transcriptional repressor neuron restrictive silencing factor (NRSF or REST). This transcriptional regulator is known to contribute to neuronal differentiation during development and to programmed gene expression in mature neurons. The mechanisms of the eFSE-provoked memory problems involved complex disruption of memory-related hippocampal oscillations recorded from CA1, likely resulting in part from impairments of dendritic filtering of cortical inputs as well as abnormal synaptic function. Accordingly, eFSE provoked region-specific dendritic loss in the hippocampus, and aberrant generation of excitatory synapses in dentate gyrus granule cells. Blocking NRSF transiently after eFSE prevented granule cell dysmaturation, restored a functional balance of γ-band network oscillations, and allowed treated eFSE rats to encode and retrieve spatial memories. Together, these studies provide novel insights into developing networks that underlie memory, the mechanisms by which early-life seizures influence them, and the means to abrogate the ensuing cognitive problems. SIGNIFICANCE STATEMENT Whereas seizures have been the central focus of epilepsy research, they are commonly accompanied by cognitive problems, including memory impairments that contribute to poor quality of life. These deficits often arise before the onset of spontaneous seizures, or independent from them, yet the mechanisms involved are unclear. Here, using a rodent model of common developmental seizures that provoke epilepsy in a subset of individuals, we identify serious consequent memory problems. We uncover molecular, cellular, and circuit-level mechanisms that underlie these deficits and successfully abolish them by targeted therapeutic interventions. These findings may be important for understanding and preventing cognitive problems in individuals suffering long febrile seizures. Copyright © 2017 the authors 0270-6474/17/373799-14$15.00/0.

  4. Not explicit but implicit memory is influenced by individual perception style

    PubMed Central

    Tsushima, Yoshiaki

    2018-01-01

    Not only explicit but also implicit memory has considerable influence on our daily life. However, it is still unclear whether explicit and implicit memories are sensitive to individual differences. Here, we investigated how individual perception style (global or local) correlates with implicit and explicit memory. As a result, we found that not explicit but implicit memory was affected by the perception style: local perception style people more greatly used implicit memory than global perception style people. These results help us to make the new effective application adapting to individual perception style and understand some clinical symptoms such as autistic spectrum disorder. Furthermore, this finding might give us new insight of memory involving consciousness and unconsciousness as well as relationship between implicit/explicit memory and individual perception style. PMID:29370212

  5. Not explicit but implicit memory is influenced by individual perception style.

    PubMed

    Hine, Kyoko; Tsushima, Yoshiaki

    2018-01-01

    Not only explicit but also implicit memory has considerable influence on our daily life. However, it is still unclear whether explicit and implicit memories are sensitive to individual differences. Here, we investigated how individual perception style (global or local) correlates with implicit and explicit memory. As a result, we found that not explicit but implicit memory was affected by the perception style: local perception style people more greatly used implicit memory than global perception style people. These results help us to make the new effective application adapting to individual perception style and understand some clinical symptoms such as autistic spectrum disorder. Furthermore, this finding might give us new insight of memory involving consciousness and unconsciousness as well as relationship between implicit/explicit memory and individual perception style.

  6. The Effects of Cell Phone Conversations on the Attention and Memory of Bystanders

    PubMed Central

    Galván, Veronica V.; Vessal, Rosa S.; Golley, Matthew T.

    2013-01-01

    The pervasive use of cell phones impacts many people–both cell phone users and bystanders exposed to conversations. This study examined the effects of overhearing a one-sided (cell phone) conversation versus a two-sided conversation on attention and memory. In our realistic design, participants were led to believe they were participating in a study examining the relationship between anagrams and reading comprehension. While the participant was completing an anagram task, the researcher left the room and participants overheard a scripted conversation, either two confederates talking with each other or one confederate talking on a cell phone. Upon the researcher’s return, the participant took a recognition memory task with words from the conversation, and completed a questionnaire measuring the distracting nature of the conversation. Participants who overheard the one-sided conversation rated the conversation as significantly higher in distractibility than those who overheard the two-sided conversation. Also, participants in the one-sided condition scored higher on the recognition task. In particular they were more confident and accurate in their responses to words from the conversation than participants in the two-sided condition. However, participants’ scores on the anagram task were not significantly different between conditions. As in real world situations, individual participants could pay varying amounts of attention to the conversation since they were not explicitly instructed to ignore it. Even though the conversation was irrelevant to the anagram task and contained less words and noise, one-sided conversations still impacted participants’ self-reported distractibility and memory, thus showing people are more attentive to cell phone conversations than two-sided conversations. Cell phone conversations may be a common source of distraction causing negative consequences in workplace environments and other public places. PMID:23516514

  7. The effects of cell phone conversations on the attention and memory of bystanders.

    PubMed

    Galván, Veronica V; Vessal, Rosa S; Golley, Matthew T

    2013-01-01

    The pervasive use of cell phones impacts many people-both cell phone users and bystanders exposed to conversations. This study examined the effects of overhearing a one-sided (cell phone) conversation versus a two-sided conversation on attention and memory. In our realistic design, participants were led to believe they were participating in a study examining the relationship between anagrams and reading comprehension. While the participant was completing an anagram task, the researcher left the room and participants overheard a scripted conversation, either two confederates talking with each other or one confederate talking on a cell phone. Upon the researcher's return, the participant took a recognition memory task with words from the conversation, and completed a questionnaire measuring the distracting nature of the conversation. Participants who overheard the one-sided conversation rated the conversation as significantly higher in distractibility than those who overheard the two-sided conversation. Also, participants in the one-sided condition scored higher on the recognition task. In particular they were more confident and accurate in their responses to words from the conversation than participants in the two-sided condition. However, participants' scores on the anagram task were not significantly different between conditions. As in real world situations, individual participants could pay varying amounts of attention to the conversation since they were not explicitly instructed to ignore it. Even though the conversation was irrelevant to the anagram task and contained less words and noise, one-sided conversations still impacted participants' self-reported distractibility and memory, thus showing people are more attentive to cell phone conversations than two-sided conversations. Cell phone conversations may be a common source of distraction causing negative consequences in workplace environments and other public places.

  8. Immunobiography and the Heterogeneity of Immune Responses in the Elderly: A Focus on Inflammaging and Trained Immunity

    PubMed Central

    Franceschi, Claudio; Salvioli, Stefano; Garagnani, Paolo; de Eguileor, Magda; Monti, Daniela; Capri, Miriam

    2017-01-01

    Owing to its memory and plasticity, the immune system (IS) is capable of recording all the immunological experiences and stimuli it was exposed to. The combination of type, dose, intensity, and temporal sequence of antigenic stimuli that each individual is exposed to has been named “immunobiography.” This immunological history induces a lifelong continuous adaptation of the IS, which is responsible for the capability to mount strong, weak or no response to specific antigens, thus determining the large heterogeneity of immunological responses. In the last years, it is becoming clear that memory is not solely a feature of adaptive immunity, as it has been observed that also innate immune cells are provided with a sort of memory, dubbed “trained immunity.” In this review, we discuss the main characteristics of trained immunity as a possible contributor to inflammaging within the perspective of immunobiography, with particular attention to the phenotypic changes of the cell populations known to be involved in trained immunity. In conclusion, immunobiography emerges as a pervasive and comprehensive concept that could help in understanding and interpret the individual heterogeneity of immune responses (to infections and vaccinations) that becomes particularly evident at old age and could affect immunosenescence and inflammaging. PMID:28861086

  9. A Novel Single-Cell FISH-Flow Assay Identifies Effector Memory CD4+ T cells as a Major Niche for HIV-1 Transcription in HIV-Infected Patients.

    PubMed

    Grau-Expósito, Judith; Serra-Peinado, Carla; Miguel, Lucia; Navarro, Jordi; Curran, Adrià; Burgos, Joaquin; Ocaña, Imma; Ribera, Esteban; Torrella, Ariadna; Planas, Bibiana; Badía, Rosa; Castellví, Josep; Falcó, Vicenç; Crespo, Manuel; Buzon, Maria J

    2017-07-11

    Cells that actively transcribe HIV-1 have been defined as the "active viral reservoir" in HIV-infected individuals. However, important technical limitations have precluded the characterization of this specific viral reservoir during both treated and untreated HIV-1 infections. Here, we used a novel single-cell RNA fluorescence in situ hybridization-flow cytometry (FISH-flow) assay that requires only 15 million unfractionated peripheral blood mononuclear cells (PBMCs) to characterize the specific cell subpopulations that transcribe HIV RNA in different subsets of CD4 + T cells. In samples from treated and untreated HIV-infected patients, effector memory CD4 + T cells were the main cell population supporting HIV RNA transcription. The number of cells expressing HIV correlated with the plasma viral load, intracellular HIV RNA, and proviral DNA quantified by conventional methods and inversely correlated with the CD4 + T cell count and the CD4/CD8 ratio. We also found that after ex vivo infection of unstimulated PBMCs, HIV-infected T cells upregulated the expression of CD32. In addition, this new methodology detected increased numbers of primary cells expressing viral transcripts and proteins after ex vivo viral reactivation with latency reversal agents. This RNA FISH-flow technique allows the identification of the specific cell subpopulations that support viral transcription in HIV-1-infected individuals and has the potential to provide important information on the mechanisms of viral pathogenesis, HIV persistence, and viral reactivation. IMPORTANCE Persons infected with HIV-1 contain several cellular viral reservoirs that preclude the complete eradication of the viral infection. Using a novel methodology, we identified effector memory CD4 + T cells, immune cells preferentially located in inflamed tissues with potent activity against pathogens, as the main cells encompassing the transcriptionally active HIV-1 reservoir in patients on antiretroviral therapy. Importantly, the identification of such cells provides us with an important target for new therapies designed to target the hidden virus and thus to eliminate the virus from the human body. In addition, because of its ability to identify cells forming part of the viral reservoir, the assay used in this study represents an important new tool in the field of HIV pathogenesis and viral persistence. Copyright © 2017 Grau-Expósito et al.

  10. Effector CD8 T cells dedifferentiate into long-lived memory cells.

    PubMed

    Youngblood, Ben; Hale, J Scott; Kissick, Haydn T; Ahn, Eunseon; Xu, Xiaojin; Wieland, Andreas; Araki, Koichi; West, Erin E; Ghoneim, Hazem E; Fan, Yiping; Dogra, Pranay; Davis, Carl W; Konieczny, Bogumila T; Antia, Rustom; Cheng, Xiaodong; Ahmed, Rafi

    2017-12-21

    Memory CD8 T cells that circulate in the blood and are present in lymphoid organs are an essential component of long-lived T cell immunity. These memory CD8 T cells remain poised to rapidly elaborate effector functions upon re-exposure to pathogens, but also have many properties in common with naive cells, including pluripotency and the ability to migrate to the lymph nodes and spleen. Thus, memory cells embody features of both naive and effector cells, fuelling a long-standing debate centred on whether memory T cells develop from effector cells or directly from naive cells. Here we show that long-lived memory CD8 T cells are derived from a subset of effector T cells through a process of dedifferentiation. To assess the developmental origin of memory CD8 T cells, we investigated changes in DNA methylation programming at naive and effector cell-associated genes in virus-specific CD8 T cells during acute lymphocytic choriomeningitis virus infection in mice. Methylation profiling of terminal effector versus memory-precursor CD8 T cell subsets showed that, rather than retaining a naive epigenetic state, the subset of cells that gives rise to memory cells acquired de novo DNA methylation programs at naive-associated genes and became demethylated at the loci of classically defined effector molecules. Conditional deletion of the de novo methyltransferase Dnmt3a at an early stage of effector differentiation resulted in reduced methylation and faster re-expression of naive-associated genes, thereby accelerating the development of memory cells. Longitudinal phenotypic and epigenetic characterization of the memory-precursor effector subset of virus-specific CD8 T cells transferred into antigen-free mice revealed that differentiation to memory cells was coupled to erasure of de novo methylation programs and re-expression of naive-associated genes. Thus, epigenetic repression of naive-associated genes in effector CD8 T cells can be reversed in cells that develop into long-lived memory CD8 T cells while key effector genes remain demethylated, demonstrating that memory T cells arise from a subset of fate-permissive effector T cells.

  11. Distinct T helper cell dependence of memory B-cell proliferation versus plasma cell differentiation.

    PubMed

    Zabel, Franziska; Fettelschoss, Antonia; Vogel, Monique; Johansen, Pål; Kündig, Thomas M; Bachmann, Martin F

    2017-03-01

    Several memory B-cell subclasses with distinct functions have been described, of which the most effective is the class-switched (CS) memory B-cell population. We have previously shown, using virus-like particles (VLPs), that the proliferative potential of these CS memory B cells is limited and they fail to re-enter germinal centres (GCs). However, VLP-specific memory B cells quickly differentiated into secondary plasma cells (PCs) with the virtue of elevated antibody production compared with primary PCs. Whereas the induction of VLP + memory B cells was strongly dependent on T helper cells, we were wondering whether re-stimulation of VLP + memory B cells and their differentiation into secondary PCs would also require T helper cells. Global absence of T helper cells led to strongly impaired memory B cell proliferation and PC differentiation. In contrast, lack of interleukin-21 receptor-dependent follicular T helper cells or CD40 ligand signalling strongly affected proliferation of memory B cells, but differentiation into mature secondary PCs exhibiting increased antibody production was essentially normal. This contrasts with primary B-cell responses, where a strong dependence on CD40 ligand but limited importance of interleukin-21 receptor was seen. Hence, T helper cell dependence differs between primary and secondary B-cell responses as well as between memory B-cell proliferation and PC differentiation. © 2016 John Wiley & Sons Ltd.

  12. Dynamics of Dengue Virus (DENV)-Specific B Cells in the Response to DENV Serotype 1 Infections, Using Flow Cytometry With Labeled Virions.

    PubMed

    Woda, Marcia; Friberg, Heather; Currier, Jeffrey R; Srikiatkhachorn, Anon; Macareo, Louis R; Green, Sharone; Jarman, Richard G; Rothman, Alan L; Mathew, Anuja

    2016-10-01

    The development of reagents to identify and characterize antigen-specific B cells has been challenging. We recently developed Alexa Fluor-labeled dengue viruses (AF DENVs) to characterize antigen-specific B cells in the peripheral blood of DENV-immune individuals. In this study, we used AF DENV serotype 1 (AF DENV-1) together with AF DENV-2 on peripheral blood mononuclear cells (PBMCs) from children in Thailand with acute primary or secondary DENV-1 infections to analyze the phenotypes of antigen-specific B cells that reflected their exposure or clinical diagnosis. DENV serotype-specific and cross-reactive B cells were identified in PBMCs from all subjects. Frequencies of AF DENV(+) class-switched memory B cells (IgD(-)CD27(+) CD19(+) cells) reached up to 8% during acute infection and early convalescence. AF DENV-labeled B cells expressed high levels of CD27 and CD38 during acute infection, characteristic of plasmablasts, and transitioned into memory B cells (CD38(-)CD27(+)) at the early convalescent time point. There was higher activation of memory B cells early during acute secondary infection, suggesting reactivation from a previous DENV infection. AF DENVs reveal changes in the phenotype of DENV serotype-specific and cross-reactive B cells during and after natural DENV infection and could be useful in analysis of the response to DENV vaccination. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  13. Vaccine-elicited SIV and HIV envelope-specific IgA and IgG memory B cells in rhesus macaque peripheral blood correlate with functional antibody responses and reduced viremia

    PubMed Central

    Brocca-Cofano, Egidio; McKinnon, Katherine; Demberg, Thorsten; Venzon, David; Hidajat, Rachmat; Xiao, Peng; Daltabuit-Test, Mara; Patterson, L. Jean; Robert-Guroff, Marjorie

    2011-01-01

    An effective HIV vaccine requires strong systemic and mucosal, cellular and humoral immunity. Numerous non-human primate studies have investigated memory T cells, but not memory B cells. Humoral immunologic memory is mediated by long-lived antibody-secreting plasma cells and differentiation of memory B cells into short-lived plasma blasts following re-exposure to immunizing antigen. Here we studied memory B cells in vaccinated rhesus macaques. PBMC were stimulated polyclonally using CD40 Ligand, IL-21 and CpG to induce B cell proliferation and differentiation into antibody secreting cells (ASC). Flow cytometry was used for phenotyping and evaluating proliferation by CFSE dilution. B cell responses were quantified by ELISPOT. Methodology was established using PBMC of vaccinated elite-controller macaques that exhibited strong, multi-functional antibody activities. Subsequently, memory B cells elicited by two replicating Ad-recombinant prime/envelope boost regimens were retrospectively evaluated pre- and post- SIV and SHIV challenges. The vaccine regimens induced SIV and HIV Env-specific IgG and IgA memory B cells. Prior to challenge, IgA memory B cells were more numerous than IgG memory B cells, reflecting the mucosal priming immunizations. Pre- and post-challenge memory B cells were correlated with functional antibody responses including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cell-mediated viral inhibition (ADCVI) and transcytosis inhibition. Post-challenge, Env-specific IgG and IgA memory B cells were correlated with reduced chronic viremia. We conclude that functional antibody responses elicited by our prime/boost regimen were effectively incorporated into the memory B cell pool where they contributed to control of viremia following re-exposure to the immunizing antigen. PMID:21382487

  14. Bim controls IL-15 availability and limits engagement of multiple BH3-only proteins

    PubMed Central

    Kurtulus, S; Sholl, A; Toe, J; Tripathi, P; Raynor, J; Li, K-P; Pellegrini, M; Hildeman, D A

    2015-01-01

    During the effector CD8+ T-cell response, transcriptional differentiation programs are engaged that promote effector T cells with varying memory potential. Although these differentiation programs have been used to explain which cells die as effectors and which cells survive and become memory cells, it is unclear if the lack of cell death enhances memory. Here, we investigated effector CD8+ T-cell fate in mice whose death program has been largely disabled because of the loss of Bim. Interestingly, the absence of Bim resulted in a significant enhancement of effector CD8+ T cells with more memory potential. Bim-driven control of memory T-cell development required T-cell-specific, but not dendritic cell-specific, expression of Bim. Both total and T-cell-specific loss of Bim promoted skewing toward memory precursors, by enhancing the survival of memory precursors, and limiting the availability of IL-15. Decreased IL-15 availability in Bim-deficient mice facilitated the elimination of cells with less memory potential via the additional pro-apoptotic molecules Noxa and Puma. Combined, these data show that Bim controls memory development by limiting the survival of pre-memory effector cells. Further, by preventing the consumption of IL-15, Bim limits the role of Noxa and Puma in causing the death of effector cells with less memory potential. PMID:25124553

  15. Bim controls IL-15 availability and limits engagement of multiple BH3-only proteins.

    PubMed

    Kurtulus, S; Sholl, A; Toe, J; Tripathi, P; Raynor, J; Li, K-P; Pellegrini, M; Hildeman, D A

    2015-01-01

    During the effector CD8+ T-cell response, transcriptional differentiation programs are engaged that promote effector T cells with varying memory potential. Although these differentiation programs have been used to explain which cells die as effectors and which cells survive and become memory cells, it is unclear if the lack of cell death enhances memory. Here, we investigated effector CD8+ T-cell fate in mice whose death program has been largely disabled because of the loss of Bim. Interestingly, the absence of Bim resulted in a significant enhancement of effector CD8+ T cells with more memory potential. Bim-driven control of memory T-cell development required T-cell-specific, but not dendritic cell-specific, expression of Bim. Both total and T-cell-specific loss of Bim promoted skewing toward memory precursors, by enhancing the survival of memory precursors, and limiting the availability of IL-15. Decreased IL-15 availability in Bim-deficient mice facilitated the elimination of cells with less memory potential via the additional pro-apoptotic molecules Noxa and Puma. Combined, these data show that Bim controls memory development by limiting the survival of pre-memory effector cells. Further, by preventing the consumption of IL-15, Bim limits the role of Noxa and Puma in causing the death of effector cells with less memory potential.

  16. CD8 T cell memory: it takes all kinds

    PubMed Central

    Hamilton, Sara E.; Jameson, Stephen C.

    2012-01-01

    Understanding the mechanisms that regulate the differentiation and maintenance of CD8+ memory T cells is fundamental to the development of effective T cell-based vaccines. Memory cell differentiation is influenced by the cytokines that accompany T cell priming, the history of previous antigen encounters, and the tissue sites into which memory cells migrate. These cues combine to influence the developing CD8+ memory pool, and recent work has revealed the importance of multiple transcription factors, metabolic molecules, and surface receptors in revealing the type of memory cell that is generated. Paired with increasingly meticulous subsetting and sorting of memory populations, we now know the CD8+ memory pool to be phenotypically and functionally heterogeneous in nature. This includes both recirculating and tissue-resident memory populations, and cells with varying degrees of inherent longevity and protective function. These data point to the importance of tailored vaccine design. Here we discuss how the diversity of the memory CD8+ T cell pool challenges the notion that “one size fits all” for pathogen control, and how distinct memory subsets may be suited for distinct aspects of protective immunity. PMID:23230436

  17. A parallel implementation of an off-lattice individual-based model of multicellular populations

    NASA Astrophysics Data System (ADS)

    Harvey, Daniel G.; Fletcher, Alexander G.; Osborne, James M.; Pitt-Francis, Joe

    2015-07-01

    As computational models of multicellular populations include ever more detailed descriptions of biophysical and biochemical processes, the computational cost of simulating such models limits their ability to generate novel scientific hypotheses and testable predictions. While developments in microchip technology continue to increase the power of individual processors, parallel computing offers an immediate increase in available processing power. To make full use of parallel computing technology, it is necessary to develop specialised algorithms. To this end, we present a parallel algorithm for a class of off-lattice individual-based models of multicellular populations. The algorithm divides the spatial domain between computing processes and comprises communication routines that ensure the model is correctly simulated on multiple processors. The parallel algorithm is shown to accurately reproduce the results of a deterministic simulation performed using a pre-existing serial implementation. We test the scaling of computation time, memory use and load balancing as more processes are used to simulate a cell population of fixed size. We find approximate linear scaling of both speed-up and memory consumption on up to 32 processor cores. Dynamic load balancing is shown to provide speed-up for non-regular spatial distributions of cells in the case of a growing population.

  18. Mnemonic transmission, social contagion, and emergence of collective memory: Influence of emotional valence, group structure, and information distribution.

    PubMed

    Choi, Hae-Yoon; Kensinger, Elizabeth A; Rajaram, Suparna

    2017-09-01

    Social transmission of memory and its consequence on collective memory have generated enduring interdisciplinary interest because of their widespread significance in interpersonal, sociocultural, and political arenas. We tested the influence of 3 key factors-emotional salience of information, group structure, and information distribution-on mnemonic transmission, social contagion, and collective memory. Participants individually studied emotionally salient (negative or positive) and nonemotional (neutral) picture-word pairs that were completely shared, partially shared, or unshared within participant triads, and then completed 3 consecutive recalls in 1 of 3 conditions: individual-individual-individual (control), collaborative-collaborative (identical group; insular structure)-individual, and collaborative-collaborative (reconfigured group; diverse structure)-individual. Collaboration enhanced negative memories especially in insular group structure and especially for shared information, and promoted collective forgetting of positive memories. Diverse group structure reduced this negativity effect. Unequally distributed information led to social contagion that creates false memories; diverse structure propagated a greater variety of false memories whereas insular structure promoted confidence in false recognition and false collective memory. A simultaneous assessment of network structure, information distribution, and emotional valence breaks new ground to specify how network structure shapes the spread of negative memories and false memories, and the emergence of collective memory. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. High frequency of central memory regulatory T cells allows detection of liver recipients at risk of early acute rejection within the first month after transplantation

    PubMed Central

    Boix-Giner, Francisco; Millan, Olga; San Segundo, David; Muñoz-Cacho, Pedro; Mancebo, Esther; Llorente, Santiago; Rafael-Valdivia, Lourdes; Rimola, Antoni; Fábrega, Emilio; Mrowiec, Anna; Allende, Luis; Minguela, Alfredo; Bolarín, Jose M.; Paz-Artal, Estela; López-Hoyos, Marcos; Brunet, Mercé

    2016-01-01

    Several studies have analyzed the potential of T regulatory cells (Treg cells) as biomarkers of acute rejection (AR). The aim of the present multicenter study was to correlate the percentage of peripheral Treg cells in liver graft recipients drawn at baseline up to 12 months after transplantation with the presence of AR. The percentage of central memory (cm) Treg cells (CD4+CD25highCD45RO+CD62L+) was monitored at pre-transplant and at 1 and 2 weeks, and 1, 2, 3 and 6 months and 1 year post-transplantation. The same validation standard operating procedures were used in all participating centers. Fifteen patients developed AR (23.4%). Hepatitis C virus recurrence was observed in 16 recipients, who displayed low peripheral blood cmTreg levels compared with patients who did not. A steady increase of cmTregs was observed during the first month after transplantation with statistically significant differences between AR and non-AR patients. The high frequency of memory Treg cells allowed us to monitor rejection episodes during the first month post-transplantation. On the basis of these data, we developed a prediction model for assessing risk of AR that can provide clinicians with useful information for managing patients individually and customizing immunosuppressive therapies. PMID:26270267

  20. TLR4 signaling augments B lymphocyte migration and overcomes the restriction that limits access to germinal center dark zones

    PubMed Central

    Hwang, Il-Young; Park, Chung; Harrison, Kathleen

    2009-01-01

    B lymphocyte–intrinsic Toll-like receptor (TLR) signals amplify humoral immunity and can exacerbate autoimmune diseases. We identify a new mechanism by which TLR signals may contribute to autoimmunity and chronic inflammation. We show that TLR4 signaling enhances B lymphocyte trafficking into lymph nodes (LNs), induces B lymphocyte clustering and interactions within LN follicles, leads to sustained in vivo B cell proliferation, overcomes the restriction that limits the access of nonantigen-activated B cells to germinal center dark zones, and enhances the generation of memory and plasma cells. Intravital microscopy and in vivo tracking studies of B cells transferred to recipient mice revealed that TLR4-activated, but not nonstimulated, B cells accumulated within the dark zones of preexisting germinal centers even when transferred with antigen-specific B cells. The TLR4-activated cells persist much better than nonstimulated cells, expanding both within the memory and plasma cell compartments. TLR-mediated activation of B cells may help to feed and stabilize the spontaneous and ectopic germinal centers that are so commonly found in autoimmune individuals and that accompany chronic inflammation. PMID:19917774

  1. HIV-infected persons with bipolar disorder are less aware of memory deficits than HIV-infected persons without bipolar disorder.

    PubMed

    Blackstone, Kaitlin; Tobin, Alexis; Posada, Carolina; Gouaux, Ben; Grant, Igor; Moore, David J; The Hiv Neurobehavioral Research Program Hnrp

    2012-01-01

    Episodic memory deficits are common in HIV infection and bipolar disorder, but patient insight into such deficits remains unclear. Thirty-four HIV-infected individuals without bipolar disorder (HIV+/BD-) and 47 HIV+ individuals with comorbid bipolar disorder (HIV+/BD+) were administered the Hopkins Verbal Learning Test-Revised and the Brief Visuospatial Memory Test-Revised to examine objective learning/memory functioning. Subjective memory complaints were assessed via the memory subscale of the Patient's Assessment of Own Functioning Inventory. HIV+/BD+ individuals performed poorer on tests of visual learning and visual/verbal recall than did HIV+/BD- participants (ps < .05). Memory complaints only predicted verbal learning (at a trend level, p = .10) and recall (p = .03) among the HIV+/BD- individuals. Memory complaints were not associated with memory performance within the HIV+/BD+ group (ps > .10). Memory complaints were associated with depressive symptoms in both groups (ps < 0.05). These complaints were also predictive of immunosuppression, higher unemployment, and greater dependence on activities of daily living among the HIV+/BD+ individuals (ps < .05). Awareness of memory abilities was particularly poor among HIV+/BD+ individuals (i.e., objective learning/memory did not correspond to reported complaints), which has important implications for the capacity of these individuals to engage in error-monitoring and compensatory strategies in daily life. Memory complaints are associated with depressed mood regardless of group membership. Among HIV+/BD+ individuals, these complaints may also signify worse HIV disease status and problems with everyday functioning. Clinicians and researchers should be cognizant of what these complaints indicate in order to lead treatment most effectively; use of objective neurocognitive assessments may still be warranted when working with these populations.

  2. Germinal-center development of memory B cells driven by IL-9 from follicular helper T cells.

    PubMed

    Wang, Yifeng; Shi, Jingwen; Yan, Jiacong; Xiao, Zhengtao; Hou, Xiaoxiao; Lu, Peiwen; Hou, Shiyue; Mao, Tianyang; Liu, Wanli; Ma, Yuanwu; Zhang, Lianfeng; Yang, Xuerui; Qi, Hai

    2017-08-01

    Germinal centers (GCs) support high-affinity, long-lived humoral immunity. How memory B cells develop in GCs is not clear. Through the use of a cell-cycle-reporting system, we identified GC-derived memory precursor cells (GC-MP cells) that had quit cycling and reached G0 phase while in the GC, exhibited memory-associated phenotypes with signs of affinity maturation and localized toward the GC border. After being transferred into adoptive hosts, GC-MP cells reconstituted a secondary response like genuine memory B cells. GC-MP cells expressed the interleukin 9 (IL-9) receptor and responded to IL-9. Acute treatment with IL-9 or antibody to IL-9 accelerated or retarded the positioning of GC-MP cells toward the GC edge and exit from the GC, and enhanced or inhibited the development of memory B cells, which required B cell-intrinsic responsiveness to IL-9. Follicular helper T cells (T FH cells) produced IL-9, and deletion of IL-9 from T cells or, more specifically, from GC T FH cells led to impaired memory formation of B cells. Therefore, the GC development of memory B cells is promoted by T FH cell-derived IL-9.

  3. Methodological approach to the ex vivo expansion and detection of T. cruzi-specific T cells from chronic Chagas disease patients

    PubMed Central

    Acevedo, Gonzalo R.; Longhi, Silvia A.; Bunying, Alcinette; Sabri, Nazila; Atienza, Augusto; Zago, María P.; Santos, Radleigh

    2017-01-01

    The discovery of T cell epitopes is essential not only for gaining knowledge about host response to infectious disease but also for the development of immune-intervention strategies. In Chagas disease, given the size and complexity of the Trypanosoma cruzi proteome and its interaction with the host’s immune system, the fine specificity of T cells has not been extensively studied yet, and this is particularly true for the CD4+ T cell compartment. The aim of the present work was to optimize a protocol for the generation of parasite-specific memory T cell lines, representative of their in vivo precursor populations and capable of responding to parasite antigens after long-term culture. Accordingly, peripheral blood mononuclear cells (PBMC) from both chronic asymptomatic and cardiac patients, and from non-infected individuals, underwent different in vitro culture and stimulation conditions. Subsequently, cells were tested for their capacity to respond against T. cruzi lysate by measuring [3H]-thymidine incorporation and interferon-γ and GM-CSF secretion. Results allowed us to adjust initial T. cruzi lysate incubation time as well as the number of expansions with phytohemagglutinin (PHA) and irradiated allogeneic PBMC prior to specificity evaluation. Moreover, our data demonstrated that parasite specific T cells displayed a clear and strong activation by using T. cruzi lysate pulsed, Epstein-Barr virus (EBV)-transformed human B lymphocytes (B-LCL), as autologous antigen presenting cells. Under these culture conditions, we generated a clone from an asymptomatic patient’s memory CD4+ T cells which responded against epimastigote and trypomastigote protein lysate. Our results describe a culture method for isolating T. cruzi specific T cell clones from patients with Chagas disease, which enable the acquisition of information on functionality and specificity of individual T cells. PMID:28552984

  4. Methodological approach to the ex vivo expansion and detection of T. cruzi-specific T cells from chronic Chagas disease patients.

    PubMed

    Acevedo, Gonzalo R; Longhi, Silvia A; Bunying, Alcinette; Sabri, Nazila; Atienza, Augusto; Zago, María P; Santos, Radleigh; Judkowski, Valeria A; Pinilla, Clemencia; Gómez, Karina A

    2017-01-01

    The discovery of T cell epitopes is essential not only for gaining knowledge about host response to infectious disease but also for the development of immune-intervention strategies. In Chagas disease, given the size and complexity of the Trypanosoma cruzi proteome and its interaction with the host's immune system, the fine specificity of T cells has not been extensively studied yet, and this is particularly true for the CD4+ T cell compartment. The aim of the present work was to optimize a protocol for the generation of parasite-specific memory T cell lines, representative of their in vivo precursor populations and capable of responding to parasite antigens after long-term culture. Accordingly, peripheral blood mononuclear cells (PBMC) from both chronic asymptomatic and cardiac patients, and from non-infected individuals, underwent different in vitro culture and stimulation conditions. Subsequently, cells were tested for their capacity to respond against T. cruzi lysate by measuring [3H]-thymidine incorporation and interferon-γ and GM-CSF secretion. Results allowed us to adjust initial T. cruzi lysate incubation time as well as the number of expansions with phytohemagglutinin (PHA) and irradiated allogeneic PBMC prior to specificity evaluation. Moreover, our data demonstrated that parasite specific T cells displayed a clear and strong activation by using T. cruzi lysate pulsed, Epstein-Barr virus (EBV)-transformed human B lymphocytes (B-LCL), as autologous antigen presenting cells. Under these culture conditions, we generated a clone from an asymptomatic patient's memory CD4+ T cells which responded against epimastigote and trypomastigote protein lysate. Our results describe a culture method for isolating T. cruzi specific T cell clones from patients with Chagas disease, which enable the acquisition of information on functionality and specificity of individual T cells.

  5. Super non-linear RRAM with ultra-low power for 3D vertical nano-crossbar arrays.

    PubMed

    Luo, Qing; Xu, Xiaoxin; Liu, Hongtao; Lv, Hangbing; Gong, Tiancheng; Long, Shibing; Liu, Qi; Sun, Haitao; Banerjee, Writam; Li, Ling; Gao, Jianfeng; Lu, Nianduan; Liu, Ming

    2016-08-25

    Vertical crossbar arrays provide a cost-effective approach for high density three-dimensional (3D) integration of resistive random access memory. However, an individual selector device is not allowed to be integrated with the memory cell separately. The development of V-RRAM has impeded the lack of satisfactory self-selective cells. In this study, we have developed a high performance bilayer self-selective device using HfO2 as the memory switching layer and a mixed ionic and electron conductor as the selective layer. The device exhibits high non-linearity (>10(3)) and ultra-low half-select leakage (<0.1 pA). A four layer vertical crossbar array was successfully demonstrated based on the developed self-selective device. High uniformity, ultra-low leakage, sub-nA operation, self-compliance, and excellent read/write disturbance immunity were achieved. The robust array level performance shows attractive potential for low power and high density 3D data storage applications.

  6. Polyfunctional response by ImmTAC (IMCgp100) redirected CD8+ and CD4+ T cells.

    PubMed

    Boudousquie, Caroline; Bossi, Giovanna; Hurst, Jacob M; Rygiel, Karolina A; Jakobsen, Bent K; Hassan, Namir J

    2017-11-01

    The success of immune system-based cancer therapies depends on a broad immune response engaging a range of effector cells and mechanisms. Immune mobilizing monoclonal T cell receptors (TCRs) against cancer (ImmTAC™ molecules: fusion proteins consisting of a soluble, affinity enhanced TCR and an anti-CD3 scFv antibody) were previously shown to redirect CD8 + and CD4 + T cells against tumours. Here we present evidence that IMCgp100 (ImmTAC recognizing a peptide derived from the melanoma-specific protein, gp100, presented by HLA-A*0201) efficiently redirects and activates effector and memory cells from both CD8 + and CD4 + repertoires. Using isolated subpopulations of T cells, we find that both terminally differentiated and effector memory CD8 + T cells redirected by IMCgp100 are potent killers of melanoma cells. Furthermore, CD4 + effector memory T cells elicit potent cytotoxic activity leading to melanoma cell killing upon redirection by IMCgp100. The majority of T cell subsets belonging to both the CD8 + and CD4 + repertoires secrete key pro-inflammatory cytokines (tumour necrosis factor-α, interferon-γ, interleukin-6) and chemokines (macrophage inflammatory protein-1α-β, interferon-γ-inducible protein-10, monocyte chemoattractant protein-1). At an individual cell level, IMCgp100-redirected T cells display a polyfunctional phenotype, which is a hallmark of a potent anti-cancer response. This study demonstrates that IMCgp100 induces broad immune responses that extend beyond the induction of CD8 + T cell-mediated cytotoxicity. These findings are of particular importance because IMCgp100 is currently undergoing clinical trials as a single agent or in combination with check point inhibitors for patients with malignant melanoma. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd.

  7. Systemic Sclerosis Patients Present Alterations in the Expression of Molecules Involved in B-Cell Regulation

    PubMed Central

    Soto, Lilian; Ferrier, Ashley; Aravena, Octavio; Fonseca, Elianet; Berendsen, Jorge; Biere, Andrea; Bueno, Daniel; Ramos, Verónica; Aguillón, Juan Carlos; Catalán, Diego

    2015-01-01

    The activation threshold of B cells is tightly regulated by an array of inhibitory and activator receptors in such a way that disturbances in their expression can lead to the appearance of autoimmunity. The aim of this study was to evaluate the expression of activating and inhibitory molecules involved in the modulation of B cell functions in transitional, naive, and memory B-cell subpopulations from systemic sclerosis patients. To achieve this, blood samples were drawn from 31 systemic sclerosis patients and 53 healthy individuals. Surface expression of CD86, MHC II, CD19, CD21, CD40, CD22, Siglec 10, CD35, and FcγRIIB was determined by flow cytometry. IL-10 production was evaluated by intracellular flow cytometry from isolated B cells. Soluble IL-6 and IL-10 levels were measured by ELISA from supernatants of stimulated B cells. Systemic sclerosis patients exhibit an increased frequency of transitional and naive B cells related to memory B cells compared with healthy controls. Transitional and naive B cells from patients express higher levels of CD86 and FcγRIIB than healthy donors. Also, B cells from patients show high expression of CD19 and CD40, whereas memory cells from systemic sclerosis patients show reduced expression of CD35. CD19 and CD35 expression levels associate with different autoantibody profiles. IL-10+ B cells and secreted levels of IL-10 were markedly reduced in patients. In conclusion, systemic sclerosis patients show alterations in the expression of molecules involved in B-cell regulation. These abnormalities may be determinant in the B-cell hyperactivation observed in systemic sclerosis. PMID:26483788

  8. Phenotypic and Functional Alterations in Circulating Memory CD8 T Cells with Time after Primary Infection.

    PubMed

    Martin, Matthew D; Kim, Marie T; Shan, Qiang; Sompallae, Ramakrishna; Xue, Hai-Hui; Harty, John T; Badovinac, Vladimir P

    2015-10-01

    Memory CD8 T cells confer increased protection to immune hosts upon secondary viral, bacterial, and parasitic infections. The level of protection provided depends on the numbers, quality (functional ability), and location of memory CD8 T cells present at the time of infection. While primary memory CD8 T cells can be maintained for the life of the host, the full extent of phenotypic and functional changes that occur over time after initial antigen encounter remains poorly characterized. Here we show that critical properties of circulating primary memory CD8 T cells, including location, phenotype, cytokine production, maintenance, secondary proliferation, secondary memory generation potential, and mitochondrial function change with time after infection. Interestingly, phenotypic and functional alterations in the memory population are not due solely to shifts in the ratio of effector (CD62Llo) and central memory (CD62Lhi) cells, but also occur within defined CD62Lhi memory CD8 T cell subsets. CD62Lhi memory cells retain the ability to efficiently produce cytokines with time after infection. However, while it is was not formally tested whether changes in CD62Lhi memory CD8 T cells over time occur in a cell intrinsic manner or are due to selective death and/or survival, the gene expression profiles of CD62Lhi memory CD8 T cells change, phenotypic heterogeneity decreases, and mitochondrial function and proliferative capacity in either a lymphopenic environment or in response to antigen re-encounter increase with time. Importantly, and in accordance with their enhanced proliferative and metabolic capabilities, protection provided against chronic LCMV clone-13 infection increases over time for both circulating memory CD8 T cell populations and for CD62Lhi memory cells. Taken together, the data in this study reveal that memory CD8 T cells continue to change with time after infection and suggest that the outcome of vaccination strategies designed to elicit protective memory CD8 T cells using single or prime-boost immunizations depends upon the timing between antigen encounters.

  9. Memory T and memory B cells share a transcriptional program of self-renewal with long-term hematopoietic stem cells

    PubMed Central

    Luckey, Chance John; Bhattacharya, Deepta; Goldrath, Ananda W.; Weissman, Irving L.; Benoist, Christophe; Mathis, Diane

    2006-01-01

    The only cells of the hematopoietic system that undergo self-renewal for the lifetime of the organism are long-term hematopoietic stem cells and memory T and B cells. To determine whether there is a shared transcriptional program among these self-renewing populations, we first compared the gene-expression profiles of naïve, effector and memory CD8+ T cells with those of long-term hematopoietic stem cells, short-term hematopoietic stem cells, and lineage-committed progenitors. Transcripts augmented in memory CD8+ T cells relative to naïve and effector T cells were selectively enriched in long-term hematopoietic stem cells and were progressively lost in their short-term and lineage-committed counterparts. Furthermore, transcripts selectively decreased in memory CD8+ T cells were selectively down-regulated in long-term hematopoietic stem cells and progressively increased with differentiation. To confirm that this pattern was a general property of immunologic memory, we turned to independently generated gene expression profiles of memory, naïve, germinal center, and plasma B cells. Once again, memory-enriched and -depleted transcripts were also appropriately augmented and diminished in long-term hematopoietic stem cells, and their expression correlated with progressive loss of self-renewal function. Thus, there appears to be a common signature of both up- and down-regulated transcripts shared between memory T cells, memory B cells, and long-term hematopoietic stem cells. This signature was not consistently enriched in neural or embryonic stem cell populations and, therefore, appears to be restricted to the hematopoeitic system. These observations provide evidence that the shared phenotype of self-renewal in the hematopoietic system is linked at the molecular level. PMID:16492737

  10. Conceptualizing and Measuring Working Memory and its Relationship to Aphasia

    PubMed Central

    Wright, Heather Harris; Fergadiotis, Gerasimos

    2011-01-01

    Background General agreement exists in the literature that individuals with aphasia can exhibit a working memory deficit that contributes to their language processing impairments. Though conceptualized within different working memory frameworks, researchers have suggested that individuals with aphasia have limited working memory capacity, impaired attention-control processes as well as impaired inhibitory mechanisms. However, across studies investigating working memory ability in individuals with aphasia, different measures have been used to quantify their working memory ability and identify the relationship between working memory and language performance. Aims The primary objectives of this article are to (1) review current working memory theoretical frameworks, (2) review tasks used to measure working memory, and (3) discuss findings from studies that have investigated working memory as they relate to language processing in aphasia. Main Contribution Though findings have been consistent across studies investigating working memory ability in individuals with aphasia, discussion of how working memory is conceptualized and defined is often missing, as is discussion of results within a theoretical framework. This is critical, as working memory is conceptualized differently across the different theoretical frameworks. They differ in explaining what limits capacity and the source of individual differences as well as how information is encoded, maintained, and retrieved. When test methods are considered within a theoretical framework, specific hypotheses can be tested and stronger conclusions that are less susceptible to different interpretations can be made. Conclusions Working memory ability has been investigated in numerous studies with individuals with aphasia. To better understand the underlying cognitive constructs that contribute to the language deficits exhibited by individuals with aphasia, future investigations should operationally define the cognitive constructs of interest and discuss findings within theoretical frameworks. PMID:22639480

  11. Regulatory T-cell activity but not conventional HIV-specific T-cell responses are associated with protection from HIV-1 infection

    PubMed Central

    Pattacini, Laura; Baeten, Jared M.; Thomas, Katherine K.; Fluharty, Tayler R.; Murnane, Pamela M.; Donnell, Deborah; Bukusi, Elizabeth; Ronald, Allan; Mugo, Nelly; Lingappa, Jairam R.; Celum, Connie; McElrath, M. Juliana; Lund, Jennifer M.

    2015-01-01

    Objective Two distinct hypotheses have been proposed for T-cell involvement in protection from HIV-1 acquisition. First, HIV-1-specific memory T-cell responses generated upon HIV-1 exposure could mount an efficient response to HIV-1 and inhibit the establishment of an infection. Second, a lower level of immune activation could reduce the numbers of activated, HIV-1-susceptible CD4+ T-cells, thereby diminishing the likelihood of infection. Methods To test these hypotheses, we conducted a prospective study among high-risk heterosexual men and women, and tested peripheral blood samples from individuals who subsequently acquired HIV-1 during follow-up (cases) and from a subset of those who remained HIV-1 uninfected (controls). Results We found no difference in HIV-1-specific immune responses between cases and controls, but Treg frequency was higher in controls as compared to cases and was negatively associated with frequency of effector memory CD4+ T-cells. Conclusions Our findings support the hypothesis that low immune activation assists in protection from HIV-1 infection. PMID:26656786

  12. GABAergic contributions to gating, timing, and phase precession of hippocampal neuronal activity during theta oscillations.

    PubMed

    Cutsuridis, Vassilis; Hasselmo, Michael

    2012-07-01

    Successful spatial exploration requires gating, storage, and retrieval of spatial memories in the correct order. The hippocampus is known to play an important role in the temporal organization of spatial information. Temporally ordered spatial memories are encoded and retrieved by the firing rate and phase of hippocampal pyramidal cells and inhibitory interneurons with respect to ongoing network theta oscillations paced by intra- and extrahippocampal areas. Much is known about the anatomical, physiological, and molecular characteristics as well as the connectivity and synaptic properties of various cell types in the hippocampal microcircuits, but how these detailed properties of individual neurons give rise to temporal organization of spatial memories remains unclear. We present a model of the hippocampal CA1 microcircuit based on observed biophysical properties of pyramidal cells and six types of inhibitory interneurons: axo-axonic, basket, bistratistified, neurogliaform, ivy, and oriens lacunosum-moleculare cells. The model simulates a virtual rat running on a linear track. Excitatory transient inputs come from the entorhinal cortex (EC) and the CA3 Schaffer collaterals and impinge on both the pyramidal cells and inhibitory interneurons, whereas inhibitory inputs from the medial septum impinge only on the inhibitory interneurons. Dopamine operates as a gate-keeper modulating the spatial memory flow to the PC distal dendrites in a frequency-dependent manner. A mechanism for spike-timing-dependent plasticity in distal and proximal PC dendrites consisting of three calcium detectors, which responds to the instantaneous calcium level and its time course in the dendrite, is used to model the plasticity effects. The model simulates the timing of firing of different hippocampal cell types relative to theta oscillations, and proposes functional roles for the different classes of the hippocampal and septal inhibitory interneurons in the correct ordering of spatial memories as well as in the generation and maintenance of theta phase precession of pyramidal cells (place cells) in CA1. The model leads to a number of experimentally testable predictions that may lead to a better understanding of the biophysical computations in the hippocampus and medial septum. Copyright © 2011 Wiley Periodicals, Inc.

  13. Increased numbers of preexisting memory CD8 T cells and decreased T-bet expression can restrain terminal differentiation of secondary effector and memory CD8 T cells.

    PubMed

    Joshi, Nikhil S; Cui, Weiguo; Dominguez, Claudia X; Chen, Jonathan H; Hand, Timothy W; Kaech, Susan M

    2011-10-15

    Memory CD8 T cells acquire effector memory cell properties after reinfection and may reach terminally differentiated, senescent states ("Hayflick limit") after multiple infections. The signals controlling this process are not well understood, but we found that the degree of secondary effector and memory CD8 T cell differentiation was intimately linked to the amount of T-bet expressed upon reactivation and preexisting memory CD8 T cell number (i.e., primary memory CD8 T cell precursor frequency) present during secondary infection. Compared with naive cells, memory CD8 T cells were predisposed toward terminal effector (TE) cell differentiation because they could immediately respond to IL-12 and induce T-bet, even in the absence of Ag. TE cell formation after secondary (2°) or tertiary infections was dependent on increased T-bet expression because T-bet(+/-) cells were resistant to these phenotypic changes. Larger numbers of preexisting memory CD8 T cells limited the duration of 2° infection and the amount of IL-12 produced, and consequently, this reduced T-bet expression and the proportion of 2° TE CD8 T cells that formed. Together, these data show that over repeated infections, memory CD8 T cell quality and proliferative fitness is not strictly determined by the number of serial encounters with Ag or cell divisions, but is a function of the CD8 T cell differentiation state, which is genetically controlled in a T-bet-dependent manner. This differentiation state can be modulated by preexisting memory CD8 T cell number and the intensity of inflammation during reinfection. These results have important implications for vaccinations involving prime-boost strategies.

  14. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection.

    PubMed

    Ng, Oi-Wing; Chia, Adeline; Tan, Anthony T; Jadi, Ramesh S; Leong, Hoe Nam; Bertoletti, Antonio; Tan, Yee-Joo

    2016-04-12

    Severe acute respiratory syndrome (SARS) is a highly contagious infectious disease which first emerged in late 2002, caused by a then novel human coronavirus, SARS coronavirus (SARS-CoV). The virus is believed to have originated from bats and transmitted to human through intermediate animals such as civet cats. The re-emergence of SARS-CoV remains a valid concern due to the continual persistence of zoonotic SARS-CoVs and SARS-like CoVs (SL-CoVs) in bat reservoirs. In this study, the screening for the presence of SARS-specific T cells in a cohort of three SARS-recovered individuals at 9 and 11 years post-infection was carried out, and all memory T cell responses detected target the SARS-CoV structural proteins. Two CD8(+) T cell responses targeting the SARS-CoV membrane (M) and nucleocapsid (N) proteins were characterized by determining their HLA restriction and minimal T cell epitope regions. Furthermore, these responses were found to persist up to 11 years post-infection. An absence of cross-reactivity of these CD8(+) T cell responses against the newly-emerged Middle East respiratory syndrome coronavirus (MERS-CoV) was also demonstrated. The knowledge of the persistence of SARS-specific celullar immunity targeting the viral structural proteins in SARS-recovered individuals is important in the design and development of SARS vaccines, which are currently unavailable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. IgG1 memory B cells keep the memory of IgE responses.

    PubMed

    He, Jin-Shu; Subramaniam, Sharrada; Narang, Vipin; Srinivasan, Kandhadayar; Saunders, Sean P; Carbajo, Daniel; Wen-Shan, Tsao; Hidayah Hamadee, Nur; Lum, Josephine; Lee, Andrea; Chen, Jinmiao; Poidinger, Michael; Zolezzi, Francesca; Lafaille, Juan J; Curotto de Lafaille, Maria A

    2017-09-21

    The unique differentiation of IgE cells suggests unconventional mechanisms of IgE memory. IgE germinal centre cells are transient, most IgE cells are plasma cells, and high affinity IgE is produced by the switching of IgG1 cells to IgE. Here we investigate the function of subsets of IgG1 memory B cells in IgE production and find that two subsets of IgG1 memory B cells, CD80 + CD73 + and CD80 - CD73 - , contribute distinctively to the repertoires of high affinity pathogenic IgE and low affinity non-pathogenic IgE. Furthermore, repertoire analysis indicates that high affinity IgE and IgG1 plasma cells differentiate from rare CD80 + CD73 + high affinity memory clones without undergoing further mutagenesis. By identifying the cellular origin of high affinity IgE and the clonal selection of high affinity memory B cells into the plasma cell fate, our findings provide fundamental insights into the pathogenesis of allergies, and on the mechanisms of antibody production in memory B cell responses.IgE is an important mediator of protective immunity as well as allergic reaction, but how high affinity IgE antibodies are produced in memory responses is not clear. Here the authors show that IgE can be generated via class-switch recombination in IgG1 memory B cells without additional somatic hypermutation.

  16. The CD8+ memory T-cell state of readiness is actively maintained and reversible

    PubMed Central

    Allam, Atef; Conze, Dietrich B.; Giardino Torchia, Maria Letizia; Munitic, Ivana; Yagita, Hideo; Sowell, Ryan T.; Marzo, Amanda L.

    2009-01-01

    The ability of the adaptive immune system to respond rapidly and robustly upon repeated antigen exposure is known as immunologic memory, and it is thought that acquisition of memory T-cell function is an irreversible differentiation event. In this study, we report that many phenotypic and functional characteristics of antigen-specific CD8 memory T cells are lost when they are deprived of contact with dendritic cells. Under these circumstances, memory T cells reverted from G1 to the G0 cell-cycle state and responded to stimulation like naive T cells, as assessed by proliferation, dependence upon costimulation, and interferon-γ production, without losing cell surface markers associated with memory. The memory state was maintained by signaling via members of the tumor necrosis factor receptor superfamily, CD27 and 4-1BB. Foxo1, a transcription factor involved in T-cell quiescence, was reduced in memory cells, and stimulation of naive CD8 cells via CD27 caused Foxo1 to be phosphorylated and emigrate from the nucleus in a phosphatidylinositol-3 kinase–dependent manner. Consistent with these results, maintenance of G1 in vivo was compromised in antigen-specific memory T cells in vesicular stomatitis virus-infected CD27-deficient mice. Therefore, sustaining the functional phenotype of T memory cells requires active signaling and maintenance. PMID:19617575

  17. The role of cytokines in T-cell memory in health and disease.

    PubMed

    Raeber, Miro E; Zurbuchen, Yves; Impellizzieri, Daniela; Boyman, Onur

    2018-05-01

    Upon stimulation with their cognate antigen, naive T cells undergo proliferation and differentiation into effector cells, followed by apoptosis or survival as precursors of long-lived memory cells. These phases of a T-cell response and the ensuing maintenance of memory T cells are shaped by cytokines, most notably interleukin-2 (IL-2), IL-7, and IL-15 that share the common γ chain (γ c ) cytokine receptor. Steady-state production of IL-7 and IL-15 is necessary for background proliferation and homeostatic survival of CD4 + and CD8 + memory T cells. During immune responses, augmented levels of IL-2, IL-15, IL-21, IL-12, IL-18, and type-I interferons determine the memory potential of antigen-specific effector CD8 + cells, while increased IL-2 and IL-15 cause bystander proliferation of heterologous CD4 + and CD8 + memory T cells. Limiting availability of γ c cytokines, reduction in regulatory T cells or IL-10, and persistence of inflammation or cognate antigen can result in memory T cells, which fail to become cytokine-dependent long-lived cells. Conversely, increased IL-7 and IL-15 can expand memory T cells, including pathogenic tissue-resident memory T cells, as seen in lymphopenia and certain chronic-inflammatory disorders and malignancies. These abovementioned factors impact immunotherapy and vaccines directed at memory T cells in cancer and chronic infection. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Akt signaling is critical for memory CD8+ T-cell development and tumor immune surveillance.

    PubMed

    Rogel, Anne; Willoughby, Jane E; Buchan, Sarah L; Leonard, Henry J; Thirdborough, Stephen M; Al-Shamkhani, Aymen

    2017-02-14

    Memory CD8 + T cells confer long-term immunity against tumors, and anticancer vaccines therefore should maximize their generation. Multiple memory CD8 + T-cell subsets with distinct functional and homing characteristics exist, but the signaling pathways that regulate their development are ill defined. Here we examined the role of the serine/threonine kinase Akt in the generation of protective immunity by CD8 + T cells. Akt is known to be activated by the T-cell antigen receptor and the cytokine IL-2, but its role in T-cell immunity in vivo has not been explored. Using CD8 + T cells from pdk1 K465E/K465E knockin mice, we found that decreased Akt activity inhibited the survival of T cells during the effector-to-memory cell transition and abolished their differentiation into C-X-C chemokine receptor 3 (CXCR3) lo CD43 lo effector-like memory cells. Consequently, antitumor immunity by CD8 + T cells that display defective Akt signaling was substantially diminished during the memory phase. Reduced memory T-cell survival and altered memory cell differentiation were associated with up-regulation of the proapoptotic protein Bim and the T-box transcription factor eomesodermin, respectively. These findings suggest an important role for effector-like memory CD8 + T cells in tumor immune surveillance and identify Akt as a key signaling node in the development of protective memory CD8 + T-cell responses.

  19. Akt signaling is critical for memory CD8+ T-cell development and tumor immune surveillance

    PubMed Central

    Rogel, Anne; Willoughby, Jane E.; Buchan, Sarah L.; Leonard, Henry J.; Thirdborough, Stephen M.; Al-Shamkhani, Aymen

    2017-01-01

    Memory CD8+ T cells confer long-term immunity against tumors, and anticancer vaccines therefore should maximize their generation. Multiple memory CD8+ T-cell subsets with distinct functional and homing characteristics exist, but the signaling pathways that regulate their development are ill defined. Here we examined the role of the serine/threonine kinase Akt in the generation of protective immunity by CD8+ T cells. Akt is known to be activated by the T-cell antigen receptor and the cytokine IL-2, but its role in T-cell immunity in vivo has not been explored. Using CD8+ T cells from pdk1K465E/K465E knockin mice, we found that decreased Akt activity inhibited the survival of T cells during the effector-to-memory cell transition and abolished their differentiation into C-X-C chemokine receptor 3 (CXCR3)loCD43lo effector-like memory cells. Consequently, antitumor immunity by CD8+ T cells that display defective Akt signaling was substantially diminished during the memory phase. Reduced memory T-cell survival and altered memory cell differentiation were associated with up-regulation of the proapoptotic protein Bim and the T-box transcription factor eomesodermin, respectively. These findings suggest an important role for effector-like memory CD8+ T cells in tumor immune surveillance and identify Akt as a key signaling node in the development of protective memory CD8+ T-cell responses. PMID:28137869

  20. Memory vs memory-like: The different facets of CD8+ T-cell memory in HCV infection.

    PubMed

    Hofmann, Maike; Wieland, Dominik; Pircher, Hanspeter; Thimme, Robert

    2018-05-01

    Memory CD8 + T cells are essential in orchestrating protection from re-infection. Hallmarks of virus-specific memory CD8 + T cells are the capacity to mount recall responses with rapid induction of effector cell function and antigen-independent survival. Growing evidence reveals that even chronic infection does not preclude virus-specific CD8 + T-cell memory formation. However, whether this kind of CD8 + T-cell memory that is established during chronic infection is indeed functional and provides protection from re-infection is still unclear. Human chronic hepatitis C virus infection represents a unique model system to study virus-specific CD8 + T-cell memory formation during and after cessation of persisting antigen stimulation. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Human memory CD8 T cell effector potential is epigenetically preserved during in vivo homeostasis.

    PubMed

    Abdelsamed, Hossam A; Moustaki, Ardiana; Fan, Yiping; Dogra, Pranay; Ghoneim, Hazem E; Zebley, Caitlin C; Triplett, Brandon M; Sekaly, Rafick-Pierre; Youngblood, Ben

    2017-06-05

    Antigen-independent homeostasis of memory CD8 T cells is vital for sustaining long-lived T cell-mediated immunity. In this study, we report that maintenance of human memory CD8 T cell effector potential during in vitro and in vivo homeostatic proliferation is coupled to preservation of acquired DNA methylation programs. Whole-genome bisulfite sequencing of primary human naive, short-lived effector memory (T EM ), and longer-lived central memory (T CM ) and stem cell memory (T SCM ) CD8 T cells identified effector molecules with demethylated promoters and poised for expression. Effector-loci demethylation was heritably preserved during IL-7- and IL-15-mediated in vitro cell proliferation. Conversely, cytokine-driven proliferation of T CM and T SCM memory cells resulted in phenotypic conversion into T EM cells and was coupled to increased methylation of the CCR7 and Tcf7 loci. Furthermore, haploidentical donor memory CD8 T cells undergoing in vivo proliferation in lymphodepleted recipients also maintained their effector-associated demethylated status but acquired T EM -associated programs. These data demonstrate that effector-associated epigenetic programs are preserved during cytokine-driven subset interconversion of human memory CD8 T cells. © 2017 Abdelsamed et al.

  2. CD4 T-Cell Memory Generation and Maintenance

    PubMed Central

    Gasper, David J.; Tejera, Melba Marie; Suresh, M.

    2014-01-01

    Immunologic memory is the adaptive immune system's powerful ability to remember a previous antigen encounter and react with accelerated vigor upon antigen re-exposure. It provides durable protection against reinfection with pathogens and is the foundation for vaccine-induced immunity. Unlike the relatively restricted immunologic purview of memory B cells and CD8 T cells, the field of CD4 T-cell memory must account for multiple distinct lineages with diverse effector functions, the issue of lineage commitment and plasticity, and the variable distribution of memory cells within each lineage. Here, we discuss the evidence for lineage-specific CD4 T-cell memory and summarize the known factors contributing to memory-cell generation, plasticity, and long-term maintenance. PMID:24940912

  3. IL-15 regulates memory CD8+ T cell O-glycan synthesis and affects trafficking

    PubMed Central

    Nolz, Jeffrey C.; Harty, John T.

    2014-01-01

    Memory and naive CD8+ T cells exhibit distinct trafficking patterns. Specifically, memory but not naive CD8+ T cells are recruited to inflamed tissues in an antigen-independent manner. However, the molecular mechanisms that regulate memory CD8+ T cell trafficking are largely unknown. Here, using murine models of infection and T cell transfer, we found that memory but not naive CD8+ T cells dynamically regulate expression of core 2 O-glycans, which interact with P- and E-selectins to modulate trafficking to inflamed tissues. Following infection, antigen-specific effector CD8+ T cells strongly expressed core 2 O-glycans, but this glycosylation pattern was lost by most memory CD8+ T cells. After unrelated infection or inflammatory challenge, memory CD8+ T cells synthesized core 2 O-glycans independently of antigen restimulation. The presence of core 2 O-glycans subsequently directed these cells to inflamed tissue. Memory and naive CD8+ T cells exhibited the opposite pattern of epigenetic modifications at the Gcnt1 locus, which encodes the enzyme that initiates core 2 O-glycan synthesis. The open chromatin configuration in memory CD8+ T cells permitted de novo generation of core 2 O-glycans in a TCR-independent, but IL-15–dependent, manner. Thus, IL-15 stimulation promotes antigen-experienced memory CD8+ T cells to generate core 2 O-glycans, which subsequently localize them to inflamed tissues. These findings suggest that CD8+ memory T cell trafficking potentially can be manipulated to improve host defense and immunotherapy. PMID:24509081

  4. Nonspatial Sequence Coding in CA1 Neurons

    PubMed Central

    Allen, Timothy A.; Salz, Daniel M.; McKenzie, Sam

    2016-01-01

    The hippocampus is critical to the memory for sequences of events, a defining feature of episodic memory. However, the fundamental neuronal mechanisms underlying this capacity remain elusive. While considerable research indicates hippocampal neurons can represent sequences of locations, direct evidence of coding for the memory of sequential relationships among nonspatial events remains lacking. To address this important issue, we recorded neural activity in CA1 as rats performed a hippocampus-dependent sequence-memory task. Briefly, the task involves the presentation of repeated sequences of odors at a single port and requires rats to identify each item as “in sequence” or “out of sequence”. We report that, while the animals' location and behavior remained constant, hippocampal activity differed depending on the temporal context of items—in this case, whether they were presented in or out of sequence. Some neurons showed this effect across items or sequence positions (general sequence cells), while others exhibited selectivity for specific conjunctions of item and sequence position information (conjunctive sequence cells) or for specific probe types (probe-specific sequence cells). We also found that the temporal context of individual trials could be accurately decoded from the activity of neuronal ensembles, that sequence coding at the single-cell and ensemble level was linked to sequence memory performance, and that slow-gamma oscillations (20–40 Hz) were more strongly modulated by temporal context and performance than theta oscillations (4–12 Hz). These findings provide compelling evidence that sequence coding extends beyond the domain of spatial trajectories and is thus a fundamental function of the hippocampus. SIGNIFICANCE STATEMENT The ability to remember the order of life events depends on the hippocampus, but the underlying neural mechanisms remain poorly understood. Here we addressed this issue by recording neural activity in hippocampal region CA1 while rats performed a nonspatial sequence memory task. We found that hippocampal neurons code for the temporal context of items (whether odors were presented in the correct or incorrect sequential position) and that this activity is linked with memory performance. The discovery of this novel form of temporal coding in hippocampal neurons advances our fundamental understanding of the neurobiology of episodic memory and will serve as a foundation for our cross-species, multitechnique approach aimed at elucidating the neural mechanisms underlying memory impairments in aging and dementia. PMID:26843637

  5. Prospective memory in schizophrenia: relationship to medication management skills, neurocognition, and symptoms in individuals with schizophrenia.

    PubMed

    Raskin, Sarah A; Maye, Jacqueline; Rogers, Alexandra; Correll, David; Zamroziewicz, Marta; Kurtz, Matthew

    2014-05-01

    Impaired adherence to medication regimens is a serious concern for individuals with schizophrenia linked to relapse and poorer outcomes. One possible reason for poor adherence to medication is poor ability to remember future intentions, labeled prospective memory skills. It has been demonstrated in several studies that individuals with schizophrenia have impairments in prospective memory that are linked to everyday life skills. However, there have been no studies, to our knowledge, examining the relationship of a clinical measure of prospective memory to medication management skills, a key element of successful adherence. In this Study 41 individuals with schizophrenia and 25 healthy adults were administered a standardized test battery that included measures of prospective memory, medication management skills, neurocognition, and symptoms. Individuals with schizophrenia demonstrated impairments in prospective memory (both time and event-based) relative to healthy controls. Performance on the test of prospective memory was correlated with the standardized measure of medication management in individuals with schizophrenia. Moreover, the test of prospective memory predicted skills in medication adherence even after measures of neurocognition were accounted for. This suggests that prospective memory may play a key role in medication management skills and thus should be a target of cognitive remediation programs.

  6. Visual perspective in autobiographical memories: reliability, consistency, and relationship to objective memory performance.

    PubMed

    Siedlecki, Karen L

    2015-01-01

    Visual perspective in autobiographical memories was examined in terms of reliability, consistency, and relationship to objective memory performance in a sample of 99 individuals. Autobiographical memories may be recalled from two visual perspectives--a field perspective in which individuals experience the memory through their own eyes, or an observer perspective in which individuals experience the memory from the viewpoint of an observer in which they can see themselves. Participants recalled nine word-cued memories that differed in emotional valence (positive, negative and neutral) and rated their memories on 18 scales. Results indicate that visual perspective was the most reliable memory characteristic overall and is consistently related to emotional intensity at the time of recall and amount of emotion experienced during the memory. Visual perspective is unrelated to memory for words, stories, abstract line drawings or faces.

  7. Learning, memory and exploratory similarities in genetically identical cloned dogs.

    PubMed

    Shin, Chi Won; Kim, Geon A; Park, Won Jun; Park, Kwan Yong; Jeon, Jeong Min; Oh, Hyun Ju; Kim, Min Jung; Lee, Byeong Chun

    2016-12-30

    Somatic cell nuclear transfer allows generation of genetically identical animals using donor cells derived from animals with particular traits. To date, few studies have investigated whether or not these cloned dogs will show identical behavior patterns. To address this question, learning, memory and exploratory patterns were examined using six cloned dogs with identical nuclear genomes. The variance of total incorrect choice number in the Y-maze test among cloned dogs was significantly lower than that of the control dogs. There was also a significant decrease in variance in the level of exploratory activity in the open fields test compared to age-matched control dogs. These results indicate that cloned dogs show similar cognitive and exploratory patterns, suggesting that these behavioral phenotypes are related to the genotypes of the individuals.

  8. Enhancement of Immune Memory Responses to Respiratory Infection

    DTIC Science & Technology

    2017-08-01

    induction of highly specific B and T cell responses against viral infections. Despite recent progress in vaccine development, the molecular mechanisms...highly expressed in memory B cells in mice, and Atg7 is required for maintenance of long-term memory B cells needed to protect against influenza...infection. Human influenza-specific memory B cells also have high levels of autophagy, but whether autophagy protects memory B cell survival in humans

  9. Allograft dendritic cell p40 homodimers activate donor-reactive memory CD8+ T cells

    PubMed Central

    Tsuda, Hidetoshi; Su, Charles A.; Tanaka, Toshiaki; Ayasoufi, Katayoun; Min, Booki; Valujskikh, Anna; Fairchild, Robert L.

    2018-01-01

    Recipient endogenous memory T cells with donor reactivity pose an important barrier to successful transplantation and costimulatory blockade–induced graft tolerance. Longer ischemic storage times prior to organ transplantation increase early posttransplant inflammation and negatively impact early graft function and long-term graft outcome. Little is known about the mechanisms enhancing endogenous memory T cell activation to mediate tissue injury within the increased inflammatory environment of allografts subjected to prolonged cold ischemic storage (CIS). Endogenous memory CD4+ and CD8+ T cell activation is markedly increased within complete MHC-mismatched cardiac allografts subjected to prolonged versus minimal CIS, and the memory CD8+ T cells directly mediate CTLA-4Ig–resistant allograft rejection. Memory CD8+ T cell activation within allografts subjected to prolonged CIS requires memory CD4+ T cell stimulation of graft DCs to produce p40 homodimers, but not IL-12 p40/p35 heterodimers. Targeting p40 abrogates memory CD8+ T cell proliferation within the allografts and their ability to mediate CTLA-4Ig–resistant allograft rejection. These findings indicate a critical role for memory CD4+ T cell–graft DC interactions to increase the intensity of endogenous memory CD8+ T cell activation needed to mediate rejection of higher-risk allografts subjected to increased CIS. PMID:29467328

  10. Pregnancy persistently affects memory T cell populations.

    PubMed

    Kieffer, Tom E C; Faas, Marijke M; Scherjon, Sicco A; Prins, Jelmer R

    2017-02-01

    Pregnancy is an immune challenge to the maternal immune system. The effects of pregnancy on maternal immunity and particularly on memory T cells during and after pregnancy are not fully known. This observational study aims to show the short term and the long term effects of pregnancy on the constitution, size and activation status of peripheral human memory T-lymphocyte populations. Effector memory (EM) and central memory (CM) T-lymphocytes were analyzed using flow cytometry of peripheral blood from 14 nulligravid, 12 primigravid and 15 parous women that were on average 18 months postpartum. The short term effects were shown by the significantly higher CD4+ EM cell and activated CD4+ memory cell proportions in primigravid women compared to nulligravid women. The persistent effects found in this study were the significantly higher proportions of CD4+ EM, CD4+ CM and activated memory T cells in parous women compared to nulligravid women. In contrast to CD4+ cells, activation status of CD8+ memory cells did not differ between the groups. This study shows that pregnancy persistently affects the pre-pregnancy CD4+ memory cell pool in human peripheral blood. During pregnancy, CD4+ T-lymphocytes might differentiate into EM cells followed by persistent higher proportions of CD4+ CM and EM cells postpartum. The persistent effects of pregnancy on memory T cells found in this study support the hypothesis that memory T cells are generated during pregnancy and that these cells could be involved in the lower complication risks in multiparous pregnancies in humans. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Development of memory CD8+ T cells and their recall responses during blood-stage infection with Plasmodium berghei ANKA.

    PubMed

    Miyakoda, Mana; Kimura, Daisuke; Honma, Kiri; Kimura, Kazumi; Yuda, Masao; Yui, Katsuyuki

    2012-11-01

    Conditions required for establishing protective immune memory vary depending on the infecting microbe. Although the memory immune response against malaria infection is generally thought to be relatively slow to develop and can be lost rapidly, experimental evidence is insufficient. In this report, we investigated the generation, maintenance, and recall responses of Ag-specific memory CD8(+) T cells using Plasmodium berghei ANKA expressing OVA (PbA-OVA) as a model system. Mice were transferred with OVA-specific CD8(+) T (OT-I) cells and infected with PbA-OVA or control Listeria monocytogenes expressing OVA (LM-OVA). Central memory type OT-I cells were maintained for >2 mo postinfection and recovery from PbA-OVA. Memory OT-I cells produced IFN-γ as well as TNF-α upon activation and were protective against challenge with a tumor expressing OVA, indicating that functional memory CD8(+) T cells can be generated and maintained postinfection with P. berghei ANKA. Cotransfer of memory OT-I cells with naive OT-I cells to mice followed by infection with PbA-OVA or LM-OVA revealed that clonal expansion of memory OT-I cells was limited during PbA-OVA infection compared with expansion of naive OT-I cells, whereas it was more rapid during LM-OVA infection. The expression of inhibitory receptors programmed cell death-1 and LAG-3 was higher in memory-derived OT-I cells than naive-derived OT-I cells during infection with PbA-OVA. These results suggest that memory CD8(+) T cells can be established postinfection with P. berghei ANKA, but their recall responses during reinfection are more profoundly inhibited than responses of naive CD8(+) T cells.

  12. Hoxb4 overexpression in CD4 memory phenotype T cells increases the central memory population upon homeostatic proliferation.

    PubMed

    Frison, Héloïse; Giono, Gloria; Thébault, Paméla; Fournier, Marilaine; Labrecque, Nathalie; Bijl, Janet J

    2013-01-01

    Memory T cell populations allow a rapid immune response to pathogens that have been previously encountered and thus form the basis of success in vaccinations. However, the molecular pathways underlying the development and maintenance of these cells are only starting to be unveiled. Memory T cells have the capacity to self renew as do hematopoietic stem cells, and overlapping gene expression profiles suggested that these cells might use the same self-renewal pathways. The transcription factor Hoxb4 has been shown to promote self-renewal divisions of hematopoietic stem cells resulting in an expansion of these cells. In this study we investigated whether overexpression of Hoxb4 could provide an advantage to CD4 memory phenotype T cells in engrafting the niche of T cell deficient mice following adoptive transfer. Competitive transplantation experiments demonstrated that CD4 memory phenotype T cells derived from mice transgenic for Hoxb4 contributed overall less to the repopulation of the lymphoid organs than wild type CD4 memory phenotype T cells after two months. These proportions were relatively maintained following serial transplantation in secondary and tertiary mice. Interestingly, a significantly higher percentage of the Hoxb4 CD4 memory phenotype T cell population expressed the CD62L and Ly6C surface markers, characteristic for central memory T cells, after homeostatic proliferation. Thus Hoxb4 favours the maintenance and increase of the CD4 central memory phenotype T cell population. These cells are more stem cell like and might eventually lead to an advantage of Hoxb4 T cells after subjecting the cells to additional rounds of proliferation.

  13. Evolution of costly explicit memory and cumulative culture.

    PubMed

    Nakamaru, Mayuko

    2016-06-21

    Humans can acquire new information and modify it (cumulative culture) based on their learning and memory abilities, especially explicit memory, through the processes of encoding, consolidation, storage, and retrieval. Explicit memory is categorized into semantic and episodic memories. Animals have semantic memory, while episodic memory is unique to humans and essential for innovation and the evolution of culture. As both episodic and semantic memory are needed for innovation, the evolution of explicit memory influences the evolution of culture. However, previous theoretical studies have shown that environmental fluctuations influence the evolution of imitation (social learning) and innovation (individual learning) and assume that memory is not an evolutionary trait. If individuals can store and retrieve acquired information properly, they can modify it and innovate new information. Therefore, being able to store and retrieve information is essential from the perspective of cultural evolution. However, if both storage and retrieval were too costly, forgetting and relearning would have an advantage over storing and retrieving acquired information. In this study, using mathematical analysis and individual-based simulations, we investigate whether cumulative culture can promote the coevolution of costly memory and social and individual learning, assuming that cumulative culture improves the fitness of each individual. The conclusions are: (1) without cumulative culture, a social learning cost is essential for the evolution of storage-retrieval. Costly storage-retrieval can evolve with individual learning but costly social learning does not evolve. When low-cost social learning evolves, the repetition of forgetting and learning is favored more than the evolution of costly storage-retrieval, even though a cultural trait improves the fitness. (2) When cumulative culture exists and improves fitness, storage-retrieval can evolve with social and/or individual learning, which is not influenced by the degree of the social learning cost. Whether individuals socially learn a low level of culture from observing a high or the low level of culture influences the evolution of memory and learning, especially individual learning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Silent memory engrams as the basis for retrograde amnesia

    PubMed Central

    Roy, Dheeraj S.; Muralidhar, Shruti; Smith, Lillian M.

    2017-01-01

    Recent studies identified neuronal ensembles and circuits that hold specific memory information (memory engrams). Memory engrams are retained under protein synthesis inhibition-induced retrograde amnesia. These engram cells can be activated by optogenetic stimulation for full-fledged recall, but not by stimulation using natural recall cues (thus, amnesia). We call this state of engrams “silent engrams” and the cells bearing them “silent engram cells.” The retention of memory information under amnesia suggests that the time-limited protein synthesis following learning is dispensable for memory storage, but may be necessary for effective memory retrieval processes. Here, we show that the full-fledged optogenetic recall persists at least 8 d after learning under protein synthesis inhibition-induced amnesia. This long-term retention of memory information correlates with equally persistent retention of functional engram cell-to-engram cell connectivity. Furthermore, inactivation of the connectivity of engram cell ensembles with its downstream counterparts, but not upstream ones, prevents optogenetic memory recall. Consistent with the previously reported lack of retention of augmented synaptic strength and reduced spine density in silent engram cells, optogenetic memory recall under amnesia is stimulation strength-dependent, with low-power stimulation eliciting only partial recall. Finally, the silent engram cells can be converted to active engram cells by overexpression of α-p-21–activated kinase 1, which increases spine density in engram cells. These results indicate that memory information is retained in a form of silent engram under protein synthesis inhibition-induced retrograde amnesia and support the hypothesis that memory is stored as the specific connectivity between engram cells. PMID:29078397

  15. Silent memory engrams as the basis for retrograde amnesia.

    PubMed

    Roy, Dheeraj S; Muralidhar, Shruti; Smith, Lillian M; Tonegawa, Susumu

    2017-11-14

    Recent studies identified neuronal ensembles and circuits that hold specific memory information (memory engrams). Memory engrams are retained under protein synthesis inhibition-induced retrograde amnesia. These engram cells can be activated by optogenetic stimulation for full-fledged recall, but not by stimulation using natural recall cues (thus, amnesia). We call this state of engrams "silent engrams" and the cells bearing them "silent engram cells." The retention of memory information under amnesia suggests that the time-limited protein synthesis following learning is dispensable for memory storage, but may be necessary for effective memory retrieval processes. Here, we show that the full-fledged optogenetic recall persists at least 8 d after learning under protein synthesis inhibition-induced amnesia. This long-term retention of memory information correlates with equally persistent retention of functional engram cell-to-engram cell connectivity. Furthermore, inactivation of the connectivity of engram cell ensembles with its downstream counterparts, but not upstream ones, prevents optogenetic memory recall. Consistent with the previously reported lack of retention of augmented synaptic strength and reduced spine density in silent engram cells, optogenetic memory recall under amnesia is stimulation strength-dependent, with low-power stimulation eliciting only partial recall. Finally, the silent engram cells can be converted to active engram cells by overexpression of α-p-21-activated kinase 1, which increases spine density in engram cells. These results indicate that memory information is retained in a form of silent engram under protein synthesis inhibition-induced retrograde amnesia and support the hypothesis that memory is stored as the specific connectivity between engram cells.

  16. Pathogen stimulation history impacts donor-specific CD8+ T cell susceptibility to costimulation/integrin blockade-based therapy

    PubMed Central

    Badell, IR; Kitchens, WH; Wagener, ME; Lukacher, AE; Larsen, CP; Ford, ML

    2017-01-01

    Recent studies have shown that the quantity of donor-reactive memory T cells is an important factor in determining the relative heterologous immunity barrier posed during transplantation. Here, we hypothesized that the quality of T cell memory also potently influences the response to costimulation blockade-based immunosuppression. Using a murine skin graft model of CD8+ memory T cell-mediated costimulation blockade resistance, we elicited donor-reactive memory T cells using three distinct types of pathogen infections. Strikingly, we observed differential efficacy of a costimulation and integrin blockade regimen based on the type of pathogen used to elicit the donor-reactive memory T cell response. Intriguingly, the most immunosuppression-sensitive memory T cell populations were composed primarily of central memory cells that possessed greater recall potential, exhibited a less differentiated phenotype, and contained more multi-cytokine producers. These data therefore demonstrate that the memory T cell barrier is dependent on the specific type of pathogen infection via which the donor-reactive memory T cells are elicited, and suggest that the immune stimulation history of a given transplant patient may profoundly influence the relative barrier posed by heterologous immunity during transplantation. PMID:26228897

  17. Semantic representations in the temporal pole predict false memories

    PubMed Central

    Chadwick, Martin J.; Anjum, Raeesa S.; Kumaran, Dharshan; Schacter, Daniel L.; Spiers, Hugo J.; Hassabis, Demis

    2016-01-01

    Recent advances in neuroscience have given us unprecedented insight into the neural mechanisms of false memory, showing that artificial memories can be inserted into the memory cells of the hippocampus in a way that is indistinguishable from true memories. However, this alone is not enough to explain how false memories can arise naturally in the course of our daily lives. Cognitive psychology has demonstrated that many instances of false memory, both in the laboratory and the real world, can be attributed to semantic interference. Whereas previous studies have found that a diverse set of regions show some involvement in semantic false memory, none have revealed the nature of the semantic representations underpinning the phenomenon. Here we use fMRI with representational similarity analysis to search for a neural code consistent with semantic false memory. We find clear evidence that false memories emerge from a similarity-based neural code in the temporal pole, a region that has been called the “semantic hub” of the brain. We further show that each individual has a partially unique semantic code within the temporal pole, and this unique code can predict idiosyncratic patterns of memory errors. Finally, we show that the same neural code can also predict variation in true-memory performance, consistent with an adaptive perspective on false memory. Taken together, our findings reveal the underlying structure of neural representations of semantic knowledge, and how this semantic structure can both enhance and distort our memories. PMID:27551087

  18. Semantic representations in the temporal pole predict false memories.

    PubMed

    Chadwick, Martin J; Anjum, Raeesa S; Kumaran, Dharshan; Schacter, Daniel L; Spiers, Hugo J; Hassabis, Demis

    2016-09-06

    Recent advances in neuroscience have given us unprecedented insight into the neural mechanisms of false memory, showing that artificial memories can be inserted into the memory cells of the hippocampus in a way that is indistinguishable from true memories. However, this alone is not enough to explain how false memories can arise naturally in the course of our daily lives. Cognitive psychology has demonstrated that many instances of false memory, both in the laboratory and the real world, can be attributed to semantic interference. Whereas previous studies have found that a diverse set of regions show some involvement in semantic false memory, none have revealed the nature of the semantic representations underpinning the phenomenon. Here we use fMRI with representational similarity analysis to search for a neural code consistent with semantic false memory. We find clear evidence that false memories emerge from a similarity-based neural code in the temporal pole, a region that has been called the "semantic hub" of the brain. We further show that each individual has a partially unique semantic code within the temporal pole, and this unique code can predict idiosyncratic patterns of memory errors. Finally, we show that the same neural code can also predict variation in true-memory performance, consistent with an adaptive perspective on false memory. Taken together, our findings reveal the underlying structure of neural representations of semantic knowledge, and how this semantic structure can both enhance and distort our memories.

  19. Neuronal correlate of visual associative long-term memory in the primate temporal cortex

    NASA Astrophysics Data System (ADS)

    Miyashita, Yasushi

    1988-10-01

    In human long-term memory, ideas and concepts become associated in the learning process1. No neuronal correlate for this cognitive function has so far been described, except that memory traces are thought to be localized in the cerebral cortex; the temporal lobe has been assigned as the site for visual experience because electric stimulation of this area results in imagery recall,2 and lesions produce deficits in visual recognition of objects3-9. We previously reported that in the anterior ventral temporal cortex of monkeys, individual neurons have a sustained activity that is highly selective for a few of the 100 coloured fractal patterns used in a visual working-memory task10. Here I report the development of this selectivity through repeated trials involving the working memory. The few patterns for which a neuron was conjointly selective were frequently related to each other through stimulus-stimulus association imposed during training. The results indicate that the selectivity acquired by these cells represents a neuronal correlate of the associative long-term memory of pictures.

  20. Performance and process in collective and individual memory: the role of social decision schemes and memory bias in collective memory.

    PubMed

    Van Swol, Lyn M

    2008-04-01

    To assess performance and processes in collective and individual memory, participants watched two job candidates on video. Beforehand, half the participants were told they would be tested on their memory of the interviews, and the other half were asked to make a decision to hire one of the candidates. Afterwards, participants completed a recognition memory task in either a group or individual condition. Groups had better recognition memory than individuals. Individuals made more false positives than false negatives and groups exaggerated this. Post-hoc analysis found that groups only exaggerated the tendency towards false positives on items that reflected negatively on the job candidate. There was no significant difference between instruction conditions. When reaching consensus on the recognition task, groups tended to choose the correct answer if at least two members had the correct answer. This method of consensus is discussed as a factor in groups' superior memory performance.

  1. Acute Alcohol Effects on Narrative Recall and Contextual Memory: An Examination of Fragmentary Blackouts

    PubMed Central

    Wetherill, Reagan R.; Fromme, Kim

    2011-01-01

    The present study examined the effects of alcohol consumption on narrative recall and contextual memory among individuals with and without a history of fragmentary blackouts in an attempt to better understand why some individuals experience alcohol-induced memory impairments whereas others do not, even at comparable blood alcohol concentrations (BACs). Standardized beverage (alcohol, no alcohol) administration procedures and neuropsychological assessments measured narrative recall and context memory performance before and after alcohol consumption in individuals with (n = 44) and without (n = 44) a history of fragmentary blackouts. Findings indicate acute alcohol intoxication led to impairments in free recall, but not next-day cued recall. Further, participants showed similar memory performance when sober, but individuals who consumed alcohol and had a positive history of fragmentary blackouts showed greater contextual memory impairments than those who had not previously experienced a fragmentary blackout. Thus, it appears that some individuals may have an inherent vulnerability to alcohol-induced memory impairments due to alcohol’s effects on contextual memory processes. PMID:21497445

  2. The effect of two types of memory training on subjective and objective memory performance in healthy individuals aged 55 years and older: a randomized controlled trial.

    PubMed

    Valentijn, Susanne A M; van Hooren, Susan A H; Bosma, Hans; Touw, Dory M; Jolles, Jelle; van Boxtel, Martin P J; Ponds, Rudolf W H M

    2005-04-01

    The objective of the study was to examine the effectiveness of two types of memory training (collective and individual), compared to control (waiting list), on memory performance. Participants were 139 community-dwelling older individuals recruited through media advertisements asking for people with subjective memory complaints to participate in a study. Data were collected at baseline, and at 1 week and 4 months after the intervention. Training efficacy was assessed using measures of subjective and objective memory performance. After the intervention, participants in the collective training group reported more stability in memory functioning and had fewer feelings of anxiety and stress about memory functioning. In addition, positive effects were found on objective memory functioning. Compared with the other two groups, the collective training group participants had an improved recall of a previously learned word list. Compared to controls, participants in the individual training group reported fewer feelings of anxiety and stress in relation to memory functioning.

  3. Interactions of cognitive and auditory abilities in congenitally blind individuals.

    PubMed

    Rokem, Ariel; Ahissar, Merav

    2009-02-01

    Congenitally blind individuals have been found to show superior performance in perceptual and memory tasks. In the present study, we asked whether superior stimulus encoding could account for performance in memory tasks. We characterized the performance of a group of congenitally blind individuals on a series of auditory, memory and executive cognitive tasks and compared their performance to that of sighted controls matched for age, education and musical training. As expected, we found superior verbal spans among congenitally blind individuals. Moreover, we found superior speech perception, measured by resilience to noise, and superior auditory frequency discrimination. However, when memory span was measured under conditions of equivalent speech perception, by adjusting the signal to noise ratio for each individual to the same level of perceptual difficulty (80% correct), the advantage in memory span was completely eliminated. Moreover, blind individuals did not possess any advantage in cognitive executive functions, such as manipulation of items in memory and math abilities. We propose that the short-term memory advantage of blind individuals results from better stimulus encoding, rather than from superiority at subsequent processing stages.

  4. The hippocampo-amygdala control of contextual fear expression is affected in a model of intellectual disability.

    PubMed

    Zhang, Chun-Lei; Houbaert, Xander; Lepleux, Marilyn; Deshors, Melissa; Normand, Elisabeth; Gambino, Frédéric; Herzog, Etienne; Humeau, Yann

    2015-11-01

    The process of learning mainly depends on the ability to store new information, while the ability to retrieve this information and express appropriate behaviors are also crucial for the adaptation of individuals to environmental cues. Thereby, all three components contribute to the cognitive fitness of an individual. While a lack of behavioral adaptation is a recurrent trait of intellectually disabled patients, discriminating between memory formation, memory retrieval or behavioral expression deficits is not easy to establish. Here, we report some deficits in contextual fear behavior in knockout mice for the intellectual disability gene Il1rapl1. Functional in vivo experiments revealed that the lack of conditioned response resulted from a local inhibitory to excitatory (I/E) imbalance in basolateral amygdala (BLA) consecutive to a loss of excitatory drive onto BLA principal cells by caudal hippocampus axonal projections. A normalization of the fear behavior was obtained in adult mutant mice following opsin-based in vivo synaptic priming of hippocampo-BLA synapses in adult il1rapl1 knockout mice, indicating that synaptic efficacy at hippocampo-BLA projections is crucial for contextual fear memory expression. Importantly, because this restoration was obtained after the learning phase, our results suggest that some of the genetically encoded cognitive deficits in humans may originate from a lack of restitution of genuinely formed memories rather than an exclusive inability to store new memories.

  5. Distinct alterations in the distribution of CD45RO+ T-cell subsets in HIV-2 compared with HIV-1 infection.

    PubMed

    Jaleco, A C; Covas, M J; Pinto, L A; Victorino, R M

    1994-12-01

    Some clinical studies indicate that disease progression in HIV-2-infected subjects may be slower than in HIV-1. We investigated whether there were differences in the distribution of CD45RO+ (memory) and CD45RA+ (naive) T-cell subsets between HIV-1 and HIV-2 infection. Analysis of lymphocyte subsets was performed by flow cytometry in peripheral blood mononuclear cells from healthy controls, HIV-1-(n = 49) and HIV-2-infected (n = 47) individuals divided into two groups: asymptomatic (ASY)/persistent generalized lymphadenopathy (PGL) and AIDS-related complex (ARC)/AIDS. Both HIV-1- and HIV-2-infected patients had significant reductions in the absolute number and percentage of CD4+ lymphocytes compared with seronegative individuals. No significant differences were found between HIV-2- and HIV-1-infected subjects in the same clinical stage. CD4+CD45RA+ cells were significantly reduced in HIV-1 and HIV-2 ARC/AIDS patients and mildly reduced in ASY/PGL HIV-1 and HIV-2 patients. There were no differences in the degree of reduction of CD4+CD45RO+ cells in ASY/PGL HIV-1 versus HIV-2 patients. However, in HIV-1-infected ARC/AIDS individuals the reduction in the percentage of this subset was more pronounced than in HIV-2 infection and this difference reached statistical significance. The increase in CD8+ lymphocytes (percentage and absolute number) was more pronounced in HIV-1 and the differences between HIV-1- and HIV-2-infected patients were statistically significant. CD8+CD45RO+ cells were significantly increased both in ASY/PGL and ARC/AIDS HIV-1-infected patients, whereas HIV-2-infected ASY/PGL patients had normal levels of these cells and HIV-2-infected ARC/AIDS patients had increases that were much less pronounced than that observed in HIV-1-infected ARC/AIDS patients. Significant differences in the absolute number and percentage of this subset between HIV-1- and HIV-2-infected individuals in similar clinical stages were found. HIV-2-infected individuals exhibit a lesser degree of depletion of memory CD4+ cells and a more limited expansion of CD8+CD45RO+ subset, which could be related to the putative lower immunopathogenicity of HIV-2.

  6. Through the Immune Looking Glass: A Model for Brain Memory Strategies

    PubMed Central

    Sánchez-Ramón, Silvia; Faure, Florence

    2016-01-01

    The immune system (IS) and the central nervous system (CNS) are complex cognitive networks involved in defining the identity (self) of the individual through recognition and memory processes that enable one to anticipate responses to stimuli. Brain memory has traditionally been classified as either implicit or explicit on psychological and anatomical grounds, with reminiscences of the evolutionarily-based innate-adaptive IS responses. Beyond the multineuronal networks of the CNS, we propose a theoretical model of brain memory integrating the CNS as a whole. This is achieved by analogical reasoning between the operational rules of recognition and memory processes in both systems, coupled to an evolutionary analysis. In this new model, the hippocampus is no longer specifically ascribed to explicit memory but rather it both becomes part of the innate (implicit) memory system and tightly controls the explicit memory system. Alike the antigen presenting cells for the IS, the hippocampus would integrate transient and pseudo-specific (i.e., danger-fear) memories and would drive the formation of long-term and highly specific or explicit memories (i.e., the taste of the Proust’s madeleine cake) by the more complex and recent, evolutionarily speaking, neocortex. Experimental and clinical evidence is provided to support the model. We believe that the singularity of this model’s approximation could help to gain a better understanding of the mechanisms operating in brain memory strategies from a large-scale network perspective. PMID:26869886

  7. Protective Capacity of Memory CD8+ T Cells is Dictated by Antigen Exposure History and Nature of the Infection

    PubMed Central

    Nolz, Jeffrey C.; Harty, John T.

    2011-01-01

    SUMMARY Infection or vaccination confers heightened resistance to pathogen re-challenge due to quantitative and qualitative differences between naïve and primary memory T cells. Herein, we show that secondary (boosted) memory CD8+ T cells were better than primary memory CD8+ T cells in controlling some, but not all acute infections with diverse pathogens. However, secondary memory CD8+ T cells were less efficient than an equal number of primary memory cells at preventing chronic LCMV infection and are more susceptible to functional exhaustion. Importantly, localization of memory CD8+ T cells within lymph nodes, which is reduced by antigen re-stimulation, was critical for both viral control in lymph nodes and for the sustained CD8+ T cell response required to prevent chronic LCMV infection. Thus, repeated antigen-stimulation shapes memory CD8+ T cell populations to either enhance or decrease per cell protective immunity in a pathogen-specific manner, a concept of importance in vaccine design against specific diseases. PMID:21549619

  8. Induction and Maintenance of CX3CR1-Intermediate Peripheral Memory CD8+ T Cells by Persistent Viruses and Vaccines.

    PubMed

    Gordon, Claire Louse; Lee, Lian Ni; Swadling, Leo; Hutchings, Claire; Zinser, Madeleine; Highton, Andrew John; Capone, Stefania; Folgori, Antonella; Barnes, Eleanor; Klenerman, Paul

    2018-04-17

    The induction and maintenance of T cell memory is critical to the success of vaccines. A recently described subset of memory CD8 + T cells defined by intermediate expression of the chemokine receptor CX3CR1 was shown to have self-renewal, proliferative, and tissue-surveillance properties relevant to vaccine-induced memory. We tracked these cells when memory is sustained at high levels: memory inflation induced by cytomegalovirus (CMV) and adenovirus-vectored vaccines. In mice, both CMV and vaccine-induced inflationary T cells showed sustained high levels of CX3R1 int cells exhibiting an effector-memory phenotype, characteristic of inflationary pools, in early memory. In humans, CX3CR1 int CD8 + T cells were strongly induced following adenovirus-vectored vaccination for hepatitis C virus (HCV) (ChAd3-NSmut) and during natural CMV infection and were associated with a memory phenotype similar to that in mice. These data indicate that CX3CR1 int cells form an important component of the memory pool in response to persistent viruses and vaccines in both mice and humans. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. IL-7Rαlow memory CD8+ T cells are significantly elevated in patients with systemic lupus erythematosus.

    PubMed

    Kim, Jung-Sik; Cho, Bon-A; Sim, Ji Hyun; Shah, Kamini; Woo, Connie M; Lee, Eun Bong; Lee, Dong-Sup; Kang, Jae Seung; Lee, Wang Jae; Park, Chung-Gyu; Craft, Joe; Kang, Insoo; Kim, Hang-Rae

    2012-09-01

    Human effector memory (EM) CD8(+) T cells include IL-7Rα(high) and IL-7Rα(low) cells with distinct cellular characteristics, including the expression of cytotoxic molecules. Both NK cells and the NK cell-associated molecule 2B4 that is expressed on CD8(+) T cells promote cytotoxicity. Here we analysed the expression of 2B4 on IL-7Rα(high) and IL-7Rα(low) EM CD8(+) T cells and its contribution to cytotoxicity. We also analysed the frequency of IL-7Rα(high) and IL-7Rα(low) EM CD8(+) T cells in patients with SLE or lupus and in healthy individuals given the potential role of cytotoxic CD8(+) T cells in the pathogenesis of lupus. We used flow cytometry to measure the expression of 2B4 on IL-7Rα(high) and IL-7Rα(low) EM CD8(+) T cells as well as the frequency of these cell populations in the peripheral blood of healthy individuals and patients with SLE. Also, 2B4-mediated cytotoxicity was quantitated in IL-7Rα(high) and IL-7Rα(low) EM CD8(+) T cells using target cells with CD48 antigen. We found that IL-7Rα(high) EM CD8(+) T cells had higher levels of 2B4 expression compared with IL-7Rα(low) EM CD8(+) T cells. Triggering 2B4 enhanced the cytotoxic function of IL-7Rα(low) EM CD8(+) T cells against target cells. We also noticed that patients with SLE had an increased frequency of IL-7Rα(low) EM CD8(+) T cells that correlated with disease manifestation. Our findings show that SLE patients have increased IL-7Rα(low) EM CD8(+) T cells, possibly contributing to tissue damage through 2B4-mediated cytotoxicity.

  10. Identification of Nascent Memory CD8 T Cells and Modeling of Their Ontogeny.

    PubMed

    Crauste, Fabien; Mafille, Julien; Boucinha, Lilia; Djebali, Sophia; Gandrillon, Olivier; Marvel, Jacqueline; Arpin, Christophe

    2017-03-22

    Primary immune responses generate short-term effectors and long-term protective memory cells. The delineation of the genealogy linking naive, effector, and memory cells has been complicated by the lack of phenotypes discriminating effector from memory differentiation stages. Using transcriptomics and phenotypic analyses, we identify Bcl2 and Mki67 as a marker combination that enables the tracking of nascent memory cells within the effector phase. We then use a formal approach based on mathematical models describing the dynamics of population size evolution to test potential progeny links and demonstrate that most cells follow a linear naive→early effector→late effector→memory pathway. Moreover, our mathematical model allows long-term prediction of memory cell numbers from a few early experimental measurements. Our work thus provides a phenotypic means to identify effector and memory cells, as well as a mathematical framework to investigate their genealogy and to predict the outcome of immunization regimens in terms of memory cell numbers generated. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Studies on B-cell memory. III. T-dependent aspect of B memory generation in mice immunized with T-independent type-2(TI-2) antigen.

    PubMed

    Hosokawa, T; Tanaka, Y; Aoike, A; Kawai, K; Muramatsu, S

    1984-09-01

    The time course of B-cell memory development to a dinitrophenyl (DNP) T-independent type-2 (TI-2) antigen was investigated by adoptive cell transfer. Strong IgM and IgG memory developed in BALB/c mice after immunization with DNP-dextran, to be recalled by challenge with either T-dependent (TD) antigen or TI-2 antigen. However, only weak IgM memory and very feeble IgG memory were detected in athymic nude mice receiving the same immunization as euthymic mice. Once memory was established under probable T cell influence, its recall by TI-2 antigen challenge seemed independent of T cell help and did not require sharing of carriers between priming and challenge antigens. The following may be concluded. (i) Long-term IgM and IgG memory is induced by TI-2 antigen priming in the presence of functional T cells. (ii) The class switch from IgM to IgG in the memory B cell pool is driven effectively by TI-2 antigen and is probably T cell-dependent.

  12. Training echo state networks for rotation-invariant bone marrow cell classification.

    PubMed

    Kainz, Philipp; Burgsteiner, Harald; Asslaber, Martin; Ahammer, Helmut

    2017-01-01

    The main principle of diagnostic pathology is the reliable interpretation of individual cells in context of the tissue architecture. Especially a confident examination of bone marrow specimen is dependent on a valid classification of myeloid cells. In this work, we propose a novel rotation-invariant learning scheme for multi-class echo state networks (ESNs), which achieves very high performance in automated bone marrow cell classification. Based on representing static images as temporal sequence of rotations, we show how ESNs robustly recognize cells of arbitrary rotations by taking advantage of their short-term memory capacity. The performance of our approach is compared to a classification random forest that learns rotation-invariance in a conventional way by exhaustively training on multiple rotations of individual samples. The methods were evaluated on a human bone marrow image database consisting of granulopoietic and erythropoietic cells in different maturation stages. Our ESN approach to cell classification does not rely on segmentation of cells or manual feature extraction and can therefore directly be applied to image data.

  13. Individual differences in susceptibility to false memories: The effect of memory specificity.

    PubMed

    Dewhurst, Stephen A; Anderson, Rachel J; Berry, Donna M; Garner, Sarah R

    2017-06-25

    Previous research has highlighted the wide individual variability in susceptibility to the false memories produced by the Deese/Roediger-McDermott (DRM) procedure [Deese, J. (1959). On the prediction of occurrence of particular verbal intrusions in immediate recall. Journal of Experimental Psychology, 58, 17-22; Roediger, H. L., III, & McDermott, K. B. (1995). Creating false memories: Remembering words not presented in lists. Journal of Experimental Psychology: Learning, Memory, & Cognition, 21, 803-814]. The current study investigated whether susceptibility to false memories is influenced by individual differences in the specificity of autobiographical memory retrieval. Memory specificity was measured using the Sentence Completion for Events from the Past Test (SCEPT) [Raes, F., Hermans, D., Williams, J. M. G., & Eelen, P. (2007). A sentence completion procedure as an alternative to the Autobiographical Memory Test for assessing overgeneral memory in non-clinical populations. Memory, 15, 495-507]. Memory specificity did not correlate with correct recognition, but a specific retrieval style was positively correlated with levels of false recognition. It is proposed that the contextual details that frequently accompany false memories of nonstudied lures are more accessible in individuals with specific retrieval styles.

  14. Distinct cellular pathways select germline-encoded and somatically mutated antibodies into immunological memory

    PubMed Central

    Kaji, Tomohiro; Ishige, Akiko; Hikida, Masaki; Taka, Junko; Hijikata, Atsushi; Kubo, Masato; Nagashima, Takeshi; Takahashi, Yoshimasa; Kurosaki, Tomohiro; Okada, Mariko; Ohara, Osamu

    2012-01-01

    One component of memory in the antibody system is long-lived memory B cells selected for the expression of somatically mutated, high-affinity antibodies in the T cell–dependent germinal center (GC) reaction. A puzzling observation has been that the memory B cell compartment also contains cells expressing unmutated, low-affinity antibodies. Using conditional Bcl6 ablation, we demonstrate that these cells are generated through proliferative expansion early after immunization in a T cell–dependent but GC-independent manner. They soon become resting and long-lived and display a novel distinct gene expression signature which distinguishes memory B cells from other classes of B cells. GC-independent memory B cells are later joined by somatically mutated GC descendants at roughly equal proportions and these two types of memory cells efficiently generate adoptive secondary antibody responses. Deletion of T follicular helper (Tfh) cells significantly reduces the generation of mutated, but not unmutated, memory cells early on in the response. Thus, B cell memory is generated along two fundamentally distinct cellular differentiation pathways. One pathway is dedicated to the generation of high-affinity somatic antibody mutants, whereas the other preserves germ line antibody specificities and may prepare the organism for rapid responses to antigenic variants of the invading pathogen. PMID:23027924

  15. Is There Natural Killer Cell Memory and Can It Be Harnessed by Vaccination? Vaccination Strategies Based on NK Cell and ILC Memory.

    PubMed

    Cooper, Megan A; Fehniger, Todd A; Colonna, Marco

    2017-12-18

    Studies over the last decade have decisively shown that innate immune natural killer (NK) cells exhibit enhanced long-lasting functional responses following a single activation event. With the increased recognition of memory and memory-like properties of NK cells, questions have arisen with regard to their ability to effectively mediate vaccination responses in humans. Moreover, recently discovered innate lymphoid cells (ILCs) could also potentially exhibit memory-like functions. Here, we review different forms of NK cell memory, and speculate about the ability of these cells and ILCs to meaningfully contribute to vaccination responses. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  16. An engram found? Evaluating the evidence from fruit flies.

    PubMed

    Gerber, Bertram; Tanimoto, Hiromu; Heisenberg, Martin

    2004-12-01

    Is it possible to localize a memory trace to a subset of cells in the brain? If so, it should be possible to show: first, that neuronal plasticity occurs in these cells. Second, that neuronal plasticity in these cells is sufficient for memory. Third, that neuronal plasticity in these cells is necessary for memory. Fourth, that memory is abolished if these cells cannot provide output during testing. And fifth, that memory is abolished if these cells cannot receive input during training. With regard to olfactory learning in flies, we argue that the notion of the olfactory memory trace being localized to the Kenyon cells of the mushroom bodies is a reasonable working hypothesis.

  17. Ventromedial prefrontal cortex pyramidal cells have a temporal dynamic role in recall and extinction of cocaine-associated memory.

    PubMed

    Van den Oever, Michel C; Rotaru, Diana C; Heinsbroek, Jasper A; Gouwenberg, Yvonne; Deisseroth, Karl; Stuber, Garret D; Mansvelder, Huibert D; Smit, August B

    2013-11-13

    In addicts, associative memories related to the rewarding effects of drugs of abuse can evoke powerful craving and drug seeking urges, but effective treatment to suppress these memories is not available. Detailed insight into the neural circuitry that mediates expression of drug-associated memory is therefore of crucial importance. Substantial evidence from rodent models of addictive behavior points to the involvement of the ventromedial prefrontal cortex (vmPFC) in conditioned drug seeking, but specific knowledge of the temporal role of vmPFC pyramidal cells is lacking. To this end, we used an optogenetics approach to probe the involvement of vmPFC pyramidal cells in expression of a recent and remote conditioned cocaine memory. In mice, we expressed Channelrhodopsin-2 (ChR2) or Halorhodopsin (eNpHR3.0) in pyramidal cells of the vmPFC and studied the effect of activation or inhibition of these cells during expression of a cocaine-contextual memory on days 1-2 (recent) and ∼3 weeks (remote) after conditioning. Whereas optical activation of pyramidal cells facilitated extinction of remote memory, without affecting recent memory, inhibition of pyramidal cells acutely impaired recall of recent cocaine memory, without affecting recall of remote memory. In addition, we found that silencing pyramidal cells blocked extinction learning at the remote memory time-point. We provide causal evidence of a critical time-dependent switch in the contribution of vmPFC pyramidal cells to recall and extinction of cocaine-associated memory, indicating that the circuitry that controls expression of cocaine memories reorganizes over time.

  18. Epstein-Barr Virus Infection of Polarized Epithelial Cells via the Basolateral Surface by Memory B Cell-Mediated Transfer Infection

    PubMed Central

    Shannon-Lowe, Claire; Rowe, Martin

    2011-01-01

    Epstein Barr virus (EBV) exhibits a distinct tropism for both B cells and epithelial cells. The virus persists as a latent infection of memory B cells in healthy individuals, but a role for infection of normal epithelial is also likely. Infection of B cells is initiated by the interaction of the major EBV glycoprotein gp350 with CD21 on the B cell surface. Fusion is triggered by the interaction of the EBV glycoprotein, gp42 with HLA class II, and is thereafter mediated by the core fusion complex, gH/gL/gp42. In contrast, direct infection of CD21-negative epithelial cells is inefficient, but efficient infection can be achieved by a process called transfer infection. In this study, we characterise the molecular interactions involved in the three stages of transfer infection of epithelial cells: (i) CD21-mediated co-capping of EBV and integrins on B cells, and activation of the adhesion molecules, (ii) conjugate formation between EBV-loaded B cells and epithelial cells via the capped adhesion molecules, and (iii) interaction of EBV glycoproteins with epithelial cells, with subsequent fusion and uptake of virions. Infection of epithelial cells required the EBV gH and gL glycoproteins, but not gp42. Using an in vitro model of normal polarized epithelia, we demonstrated that polarization of the EBV receptor(s) and adhesion molecules restricted transfer infection to the basolateral surface. Furthermore, the adhesions between EBV-loaded B cells and the basolateral surface of epithelial cells included CD11b on the B cell interacting with heparan sulphate moieties of CD44v3 and LEEP-CAM on epithelial cells. Consequently, transfer infection was efficiently mediated via CD11b-positive memory B cells but not by CD11b–negative naïve B cells. Together, these findings have important implications for understanding the mechanisms of EBV infection of normal and pre-malignant epithelial cells in vivo. PMID:21573183

  19. Modeling individual differences in working memory performance: a source activation account

    PubMed Central

    Daily, Larry Z.; Lovett, Marsha C.; Reder, Lynne M.

    2008-01-01

    Working memory resources are needed for processing and maintenance of information during cognitive tasks. Many models have been developed to capture the effects of limited working memory resources on performance. However, most of these models do not account for the finding that different individuals show different sensitivities to working memory demands, and none of the models predicts individual subjects' patterns of performance. We propose a computational model that accounts for differences in working memory capacity in terms of a quantity called source activation, which is used to maintain goal-relevant information in an available state. We apply this model to capture the working memory effects of individual subjects at a fine level of detail across two experiments. This, we argue, strengthens the interpretation of source activation as working memory capacity. PMID:19079561

  20. Antiviral Innate Immune Activation in HIV-Infected Adults Negatively Affects H1/IC31-Induced Vaccine-Specific Memory CD4+ T Cells

    PubMed Central

    Schindler, Tobias; Kagina, Benjamin M.; Zhang, Jitao David; Lukindo, Tedson; Mpina, Maxmillian; Bang, Peter; Kromann, Ingrid; Hoff, Søren T.; Andersen, Peter; Reither, Klaus; Churchyard, Gavin J.; Certa, Ulrich

    2015-01-01

    Tuberculosis (TB) remains a global health problem, with vaccination being a necessary strategy for disease containment and elimination. A TB vaccine should be safe and immunogenic as well as efficacious in all affected populations, including HIV-infected individuals. We investigated the induction and maintenance of vaccine-induced memory CD4+ T cells following vaccination with the subunit vaccine H1/IC31. H1/IC31 was inoculated twice on study days 0 and 56 among HIV-infected adults with CD4+ lymphocyte counts of >350 cells/mm3. Whole venous blood stimulation was conducted with the H1 protein, and memory CD4+ T cells were analyzed using intracellular cytokine staining and polychromatic flow cytometry. We identified high responders, intermediate responders, and nonresponders based on detection of interleukin-2 (IL-2), tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ) expressing central (TCM) and effector memory CD4+ T cells (TEM) 182 days after the first immunization. Amplicon-based transcript quantification using next-generation sequencing was performed to identify differentially expressed genes that correlated with vaccine-induced immune responses. Genes implicated in resolution of inflammation discriminated the responders from the nonresponders 3 days after the first inoculation. The volunteers with higher expression levels of genes involved in antiviral innate immunity at baseline showed impaired H1-specific TCM and TEM maintenance 6 months after vaccination. Our study showed that in HIV-infected volunteers, expression levels of genes involved in the antiviral innate immune response affected long-term maintenance of H1/IC31 vaccine-induced cellular immunity. (The clinical trial was registered in the Pan African Clinical Trials Registry [PACTR] with the identifier PACTR201105000289276.) PMID:25924764

  1. Memory CD4 T cell subsets are kinetically heterogeneous and replenished from naive T cells at high levels

    PubMed Central

    Gossel, Graeme; Hogan, Thea; Cownden, Daniel

    2017-01-01

    Characterising the longevity of immunological memory requires establishing the rules underlying the renewal and death of peripheral T cells. However, we lack knowledge of the population structure and how self-renewal and de novo influx contribute to the maintenance of memory compartments. Here, we characterise the kinetics and structure of murine CD4 T cell memory subsets by measuring the rates of influx of new cells and using detailed timecourses of DNA labelling that also distinguish the behaviour of recently divided and quiescent cells. We find that both effector and central memory CD4 T cells comprise subpopulations with highly divergent rates of turnover, and show that inflows of new cells sourced from the naive pool strongly impact estimates of memory cell lifetimes and division rates. We also demonstrate that the maintenance of CD4 T cell memory subsets in healthy mice is unexpectedly and strikingly reliant on this replenishment. DOI: http://dx.doi.org/10.7554/eLife.23013.001 PMID:28282024

  2. Antigen-Induced but Not Innate Memory CD8 T Cells Express NKG2D and Are Recruited to the Lung Parenchyma upon Viral Infection.

    PubMed

    Grau, Morgan; Valsesia, Séverine; Mafille, Julien; Djebali, Sophia; Tomkowiak, Martine; Mathieu, Anne-Laure; Laubreton, Daphné; de Bernard, Simon; Jouve, Pierre-Emmanuel; Ventre, Erwan; Buffat, Laurent; Walzer, Thierry; Leverrier, Yann; Marvel, Jacqueline

    2018-05-15

    The pool of memory-phenotype CD8 T cells is composed of Ag-induced (AI) and cytokine-induced innate (IN) cells. IN cells have been described as having properties similar to those of AI memory cells. However, we found that pathogen-induced AI memory cells can be distinguished in mice from naturally generated IN memory cells by surface expression of NKG2D. Using this marker, we described the increased functionalities of AI and IN memory CD8 T cells compared with naive cells, as shown by comprehensive analysis of cytokine secretion and gene expression. However, AI differed from IN memory CD8 T cells by their capacity to migrate to the lung parenchyma upon inflammation or infection, a process dependent on their expression of ITGA1/CD49a and ITGA4/CD49d integrins. Copyright © 2018 by The American Association of Immunologists, Inc.

  3. Memory CD4 T cell subsets are kinetically heterogeneous and replenished from naive T cells at high levels.

    PubMed

    Gossel, Graeme; Hogan, Thea; Cownden, Daniel; Seddon, Benedict; Yates, Andrew J

    2017-03-10

    Characterising the longevity of immunological memory requires establishing the rules underlying the renewal and death of peripheral T cells. However, we lack knowledge of the population structure and how self-renewal and de novo influx contribute to the maintenance of memory compartments. Here, we characterise the kinetics and structure of murine CD4 T cell memory subsets by measuring the rates of influx of new cells and using detailed timecourses of DNA labelling that also distinguish the behaviour of recently divided and quiescent cells. We find that both effector and central memory CD4 T cells comprise subpopulations with highly divergent rates of turnover, and show that inflows of new cells sourced from the naive pool strongly impact estimates of memory cell lifetimes and division rates. We also demonstrate that the maintenance of CD4 T cell memory subsets in healthy mice is unexpectedly and strikingly reliant on this replenishment.

  4. Parallel Profiles of Inflammatory and Effector Memory T Cells in Visceral Fat and Liver of Obesity-Associated Cancer Patients.

    PubMed

    Conroy, Melissa J; Galvin, Karen C; Doyle, Suzanne L; Kavanagh, Maria E; Mongan, Ann-Marie; Cannon, Aoife; Moore, Gillian Y; Reynolds, John V; Lysaght, Joanne

    2016-10-01

    In the midst of a worsening obesity epidemic, the incidence of obesity-associated morbidities, including cancer, diabetes, cardiac and liver disease is increasing. Insights into mechanisms underlying pathological obesity-associated inflammation are lacking. Both the omentum, the principal component of visceral fat, and liver of obese individuals are sites of excessive inflammation, but to date the T cell profiles of both compartments have not been assessed or compared in a patient cohort with obesity-associated disease. We have previously identified that omentum is enriched with inflammatory cytokines, chemokines and T cells. Here, we compared the inflammatory profile of T cells in the omentum and liver of patients with the obesity-associated malignancy oesophageal adenocarcinoma (OAC). Furthermore, we assessed the secreted cytokine profile in OAC patient serum, omentum and liver to assess systemic and local inflammation. We observed parallel T cell cytokine profiles and phenotypes in the omentum and liver of OAC patients, in particular CD69(+) and inflammatory effector memory T cells. This study reflects similar processes of inflammation and T cell activation in the omentum and liver, and may suggest common targets to modulate pathological inflammation at these sites.

  5. IFN-γ Induces the Erosion of Preexisting CD8 T Cell Memory during Infection with a Heterologous Intracellular Bacterium1

    PubMed Central

    Dudani, Renu; Murali-Krishna, Kaja; Krishnan, Lakshmi; Sad, Subash

    2014-01-01

    Memory T cells are critical for the control of intracellular pathogens and require few signals for maintenance; however, erosion of established preexisting memory CD8+ T cells has been shown to occur during infection with heterologous viral infections. We evaluated whether this also occurs during infection with various intracellular bacteria and what mechanisms may be involved. We demonstrate that erosion of established memory is also induced during infection of mice with various intracellular bacteria, such as Listeria monocytogenes, Salmonella typhimurium, and Mycobacterium bovis (bacillus Calmette-Guérin). The extent of erosion of established CD8+ T cell memory was dependent on the virulence of the heterologous pathogen, not persistence. Furthermore, when antibiotics were used to comprehensively eliminate the heterologous pathogen, the numbers of memory CD8+ T cells were not restored, indicating that erosion of preexisting memory CD8+ T cells was irreversible. Irrespective of the initial numbers of memory CD8+ T cells, challenge with the heterologous pathogen resulted in a similar extent of erosion of memory CD8+ T cells, suggesting that cellular competition was not responsible for erosion. After challenge with the heterologous pathogen, effector memory CD8+ T cells were rapidly eliminated. More importantly, erosion of preexisting memory CD8+ T cells was abrogated in the absence of IFN-γ. These studies help reveal the paradoxical role of IFN-γ. Although IFN-γ promotes the control of intracellular bacterial replication during primary infection, this comes at the expense of erosion of preexisting memory CD8+ T cells in the wake of infection with heterologous pathogens. PMID:18641306

  6. Memory T cells in organ transplantation: progress and challenges

    PubMed Central

    Espinosa, Jaclyn R.; Samy, Kannan P.; Kirk, Allan D.

    2017-01-01

    Antigen-experienced T cells, also known as memory T cells, are functionally and phenotypically distinct from naive T cells. Their enhanced expression of adhesion molecules and reduced requirement for co-stimulation enables them to mount potent and rapid recall responses to subsequent antigen encounters. Memory T cells generated in response to prior antigen exposures can cross-react with other nonidentical, but similar, antigens. This heterologous cross-reactivity not only enhances protective immune responses, but also engenders de novo alloimmunity. This latter characteristic is increasingly recognized as a potential barrier to allograft acceptance that is worthy of immunotherapeutic intervention, and several approaches have been investigated. Calcineurin inhibition effectively controls memory T-cell responses to allografts, but this benefit comes at the expense of increased infectious morbidity. Lymphocyte depletion eliminates allospecific T cells but spares memory T cells to some extent, such that patients do not completely lose protective immunity. Co-stimulation blockade is associated with reduced adverse-effect profiles and improved graft function relative to calcineurin inhibition, but lacks efficacy in controlling memory T-cell responses. Targeting the adhesion molecules that are upregulated on memory T cells might offer additional means to control co-stimulation-blockade-resistant memory T-cell responses. PMID:26923209

  7. Human medial temporal lobe neurons respond preferentially to personally relevant images

    PubMed Central

    Viskontas, Indre V.; Quiroga, Rodrigo Quian; Fried, Itzhak

    2009-01-01

    People with whom one is personally acquainted tend to elicit richer and more vivid memories than people with whom one does not have a personal connection. Recent findings from neurons in the human medial temporal lobe (MTL) have shown that individual cells respond selectively and invariantly to representations of famous people [Quian Quiroga R, Reddy L, Kreiman G, Koch C, Fried I (2005) Nature 435(7045):1102–1107]. Observing these cells, we wondered whether photographs of personally relevant individuals, such as family members, might be more likely to generate such responses. To address this issue, we recorded the activity of 2,330 neurons in the human MTL while patients viewed photographs of varying personal relevance: previously unknown faces and landscapes, familiar but not necessarily personally relevant faces and landscapes, and finally, photographs of the patients themselves, their families, and the experimenters. Our findings indicate that personally relevant photographs are indeed more likely to elicit selective responses in MTL neurons than photographs of individuals with whom the patients have had no personal contact. These findings further suggest that relevant stimuli are encoded by a larger proportion of neurons than less relevant stimuli, given that familiar or personally relevant items are linked to a larger variety of experiences and memories of these experiences. PMID:19955441

  8. Memory and Obstructive Sleep Apnea: A Meta-Analysis

    PubMed Central

    Wallace, Anna; Bucks, Romola S.

    2013-01-01

    Study Objectives: To examine episodic memory performance in individuals with obstructive sleep apnea (OSA). Design Meta-analysis was used to synthesize results from individual studies examining the impact of OSA on episodic memory performance. The performance of individuals with OSA was compared to healthy controls or normative data. Participants Forty-two studies were included, comprising 2,294 adults with untreated OSA and 1,364 healthy controls. Studies that recorded information about participants at baseline prior to treatment interventions were included in the analysis. Measurements Participants were assessed with tasks that included a measure of episodic memory: immediate recall, delayed recall, learning, and/or recognition memory. Results: The results of the meta-analyses provide evidence that individuals with OSA are significantly impaired when compared to healthy controls on verbal episodic memory (immediate recall, delayed recall, learning, and recognition) and visuo-spatial episodic memory (immediate and delayed recall), but not visual immediate recall or visuo-spatial learning. When patients were compared to norms, negative effects of OSA were found only in verbal immediate and delayed recall. Conclusions: This meta-analysis contributes to understanding of the nature of episodic memory deficits in individuals with OSA. Impairments to episodic memory are likely to affect the daily functioning of individuals with OSA. Citation Wallace A; Bucks RS. Memory and obstructive sleep apnea: a meta-analysis. SLEEP 2013;36(2):203-220. PMID:23372268

  9. Prospective memory in schizophrenia: Relationship to medication management skills, neurocognition and symptoms in individuals with schizophrenia

    PubMed Central

    Raskin, S.; Maye, J.; Rogers, A.; Correll, D.; Zamroziewicz, M.; Kurtz, M.

    2014-01-01

    Objective Impaired adherence to medication regimens is a serious concern for individuals with schizophrenia linked to relapse and poorer outcomes. One possible reason for poor adherence to medication is poor ability to remember future intentions, labeled prospective memory skills. It has been demonstrated in several studies that individuals with schizophrenia have impairments in prospective memory that are linked to everyday life skills. However, there have been no studies, to our knowledge, examining the relationship of a clinical measure of prospective memory to medication management skills, a key element of successful adherence. Methods In this study 41 individuals with schizophrenia and 25 healthy adults were administered a standardized test battery that included measures of prospective memory, medication management skills, neurocognition and symptoms. Results Individuals with schizophrenia demonstrated impairments in prospective memory (both time and event-based) relative to healthy controls. Performance on the test of prospective memory was correlated with the standardized measure of medication management in individuals with schizophrenia. Moreover, the test of prospective memory predicted skills in medication adherence even after measures of neurocognition were accounted for. Conclusions This suggests that prospective memory may play a key role in medication management skills and thus should be a target of cognitive remediation programs. PMID:24188118

  10. Self-imagining enhances recognition memory in memory-impaired individuals with neurological damage.

    PubMed

    Grilli, Matthew D; Glisky, Elizabeth L

    2010-11-01

    The ability to imagine an elaborative event from a personal perspective relies on several cognitive processes that may potentially enhance subsequent memory for the event, including visual imagery, semantic elaboration, emotional processing, and self-referential processing. In an effort to find a novel strategy for enhancing memory in memory-impaired individuals with neurological damage, we investigated the mnemonic benefit of a method we refer to as self-imagining-the imagining of an event from a realistic, personal perspective. Fourteen individuals with neurologically based memory deficits and 14 healthy control participants intentionally encoded neutral and emotional sentences under three instructions: structural-baseline processing, semantic processing, and self-imagining. Findings revealed a robust "self-imagination effect (SIE)," as self-imagination enhanced recognition memory relative to deep semantic elaboration in both memory-impaired individuals, F(1, 13) = 32.11, p < .001, η2 = .71; and healthy controls, F(1, 13) = 5.57, p < .05, η2 = .30. In addition, results indicated that mnemonic benefits of self-imagination were not limited by severity of the memory disorder nor were they related to self-reported vividness of visual imagery, semantic processing, or emotional content of the materials. The findings suggest that the SIE may depend on unique mnemonic mechanisms possibly related to self-referential processing and that imagining an event from a personal perspective makes that event particularly memorable even for those individuals with severe memory deficits. Self-imagining may thus provide an effective rehabilitation strategy for individuals with memory impairment.

  11. miR-150 Regulates Memory CD8 T Cell Differentiation via c-Myb.

    PubMed

    Chen, Zeyu; Stelekati, Erietta; Kurachi, Makoto; Yu, Sixiang; Cai, Zhangying; Manne, Sasikanth; Khan, Omar; Yang, Xiaolu; Wherry, E John

    2017-09-12

    MicroRNAs play an important role in T cell responses. However, how microRNAs regulate CD8 T cell memory remains poorly defined. Here, we found that miR-150 negatively regulates CD8 T cell memory in vivo. Genetic deletion of miR-150 disrupted the balance between memory precursor and terminal effector CD8 T cells following acute viral infection. Moreover, miR-150-deficient memory CD8 T cells were more protective upon rechallenge. A key circuit whereby miR-150 repressed memory CD8 T cell development through the transcription factor c-Myb was identified. Without miR-150, c-Myb was upregulated and anti-apoptotic targets of c-Myb, such as Bcl-2 and Bcl-xL, were also increased, suggesting a miR-150-c-Myb survival circuit during memory CD8 T cell development. Indeed, overexpression of non-repressible c-Myb rescued the memory CD8 T cell defects caused by overexpression of miR-150. Overall, these results identify a key role for miR-150 in memory CD8 T cells through a c-Myb-controlled enhanced survival circuit. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Episodic autobiographical memory is associated with variation in the size of hippocampal subregions.

    PubMed

    Palombo, Daniela J; Bacopulos, Agnes; Amaral, Robert S C; Olsen, Rosanna K; Todd, Rebecca M; Anderson, Adam K; Levine, Brian

    2018-02-01

    Striking individual differences exist in the human capacity to recollect past events, yet, little is known about the neural correlates of such individual differences. Studies investigating hippocampal volume in relation to individual differences in laboratory measures of episodic memory in young adults suggest that whole hippocampal volume is unrelated (or even negatively associated) with episodic memory. However, anatomical and functional specialization across hippocampal subregions suggests that individual differences in episodic memory may be linked to particular hippocampal subregions, as opposed to whole hippocampal volume. Given that the DG/CA 2/3 circuitry is thought to be especially critical for supporting episodic memory in humans, we predicted that the volume of this region would be associated with individual variability in episodic memory. This prediction was supported using high-resolution MRI of the hippocampal subfields and measures of real-world (autobiographical) episodic memory. In addition to the association with DG/CA 2/3 , we further observed a relationship between episodic autobiographical memory and subiculum volume, whereas no association was observed with CA 1 or with whole hippocampal volume. These findings provide insight into the possible neural substrates that mediate individual differences in real-world episodic remembering in humans. © 2017 Wiley Periodicals, Inc.

  13. Protecting and rescuing the effectors: roles of differentiation and survival in the control of memory T cell development

    PubMed Central

    Kurtulus, Sema; Tripathi, Pulak; Hildeman, David A.

    2013-01-01

    Vaccines, arguably the single most important intervention in improving human health, have exploited the phenomenon of immunological memory. The elicitation of memory T cells is often an essential part of successful long-lived protective immunity. Our understanding of T cell memory has been greatly aided by the development of TCR Tg mice and MHC tetrameric staining reagents that have allowed the precise tracking of antigen-specific T cell responses. Indeed, following acute infection or immunization, naïve T cells undergo a massive expansion culminating in the generation of a robust effector T cell population. This peak effector response is relatively short-lived and, while most effector T cells die by apoptosis, some remain and develop into memory cells. Although the molecular mechanisms underlying this cell fate decision remain incompletely defined, substantial progress has been made, particularly with regards to CD8+ T cells. For example, the effector CD8+ T cells generated during a response are heterogeneous, consisting of cells with more or less potential to develop into full-fledged memory cells. Development of CD8+ T cell memory is regulated by the transcriptional programs that control the differentiation and survival of effector T cells. While the type of antigenic stimulation and level of inflammation control effector CD8+ T cell differentiation, availability of cytokines and their ability to control expression and function of Bcl-2 family members governs their survival. These distinct differentiation and survival programs may allow for finer therapeutic intervention to control both the quality and quantity of CD8+ T cell memory. Effector to memory transition of CD4+ T cells is less well characterized than CD8+ T cells, emerging details will be discussed. This review will focus on the recent progress made in our understanding of the mechanisms underlying the development of T cell memory with an emphasis on factors controlling survival of effector T cells. PMID:23346085

  14. TLR4 ligands lipopolysaccharide and monophosphoryl lipid a differentially regulate effector and memory CD8+ T Cell differentiation.

    PubMed

    Cui, Weiguo; Joshi, Nikhil S; Liu, Ying; Meng, Hailong; Kleinstein, Steven H; Kaech, Susan M

    2014-05-01

    Vaccines formulated with nonreplicating pathogens require adjuvants to help bolster immunogenicity. The role of adjuvants in Ab production has been well studied, but how they influence memory CD8(+) T cell differentiation remains poorly defined. In this study we implemented dendritic cell-mediated immunization to study the effects of commonly used adjuvants, TLR ligands, on effector and memory CD8(+) T cell differentiation in mice. Intriguingly, we found that the TLR4 ligand LPS was far more superior to other TLR ligands in generating memory CD8(+) T cells upon immunization. LPS boosted clonal expansion similar to the other adjuvants, but fewer of the activated CD8(+) T cells died during contraction, generating a larger pool of memory cells. Surprisingly, monophosphoryl lipid A (MPLA), another TLR4 ligand, enhanced clonal expansion of effector CD8(+) T cells, but it also promoted their terminal differentiation and contraction; thus, fewer memory CD8(+) T cells formed, and MPLA-primed animals were less protected against secondary infection compared with those primed with LPS. Furthermore, gene expression profiling revealed that LPS-primed effector cells displayed a stronger pro-memory gene expression signature, whereas the gene expression profile of MPLA-primed effector cells aligned closer with terminal effector CD8(+) T cells. Lastly, we demonstrated that the LPS-TLR4-derived "pro-memory" signals were MyD88, but not Toll/IL-1R domain-containing adapter inducing IFN-β, dependent. This study reveals the influential power of adjuvants on the quantity and quality of CD8(+) T cell memory, and that attention to adjuvant selection is crucial because boosting effector cell expansion may not always equate with more memory T cells or greater protection.

  15. Engrams and Circuits Crucial for Systems Consolidation of a Memory

    PubMed Central

    Kitamura, Takashi; Ogawa, Sachie K.; Roy, Dheeraj S.; Okuyama, Teruhiro; Morrissey, Mark D.; Smith, Lillian M.; Redondo, Roger L.; Tonegawa, Susumu

    2017-01-01

    Episodic memories initially require rapid synaptic plasticity within the hippocampus for their formation and are gradually consolidated in neocortical networks for permanent storage. However, the engrams and circuits that support neocortical memory consolidation remain unknown. We found that neocortical prefrontal memory engram cells, critical for remote contextual fear memory, were rapidly generated during initial learning via inputs from both hippocampal-entorhinal cortex and basolateral amygdala. After their generation, the prefrontal engram cells, with support from hippocampal memory engram cells, became functionally mature with time. Whereas hippocampal engram cells gradually became silent with time, engram cells in the basolateral amygdala, which were necessary for fear memory, are maintained. Our data provide new insights into the functional reorganization of engrams and circuits underlying systems consolidation of memory. PMID:28386011

  16. Generation of effector CD8+ T cells and their conversion to memory T cells

    PubMed Central

    Cui, Weiguo; Kaech, Susan M.

    2015-01-01

    Summary Immunological memory is a cardinal feature of adaptive immunity. We are now beginning to elucidate the mechanisms that govern the formation of memory T cells and their ability to acquire longevity, survive the effector-to-memory transition, and mature into multipotent, functional memory T cells that self-renew. Here, we discuss the recent findings in this area and highlight extrinsic and intrinsic factors that regulate the cellular fate of activated CD8+ T cells. PMID:20636815

  17. Quiescence of Memory CD8(+) T Cells Is Mediated by Regulatory T Cells through Inhibitory Receptor CTLA-4.

    PubMed

    Kalia, Vandana; Penny, Laura Anne; Yuzefpolskiy, Yevgeniy; Baumann, Florian Martin; Sarkar, Surojit

    2015-06-16

    Immune memory cells are poised to rapidly expand and elaborate effector functions upon reinfection yet exist in a functionally quiescent state. The paradigm is that memory T cells remain inactive due to lack of T cell receptor (TCR) stimuli. Here, we report that regulatory T (Treg) cells orchestrate memory T cell quiescence by suppressing effector and proliferation programs through inhibitory receptor, cytotoxic-T-lymphocyte-associated protein-4 (CTLA-4). Loss of Treg cells resulted in activation of genome-wide transcriptional programs characteristic of effector T cells and drove transitioning as well as established memory CD8(+) T cells toward terminally differentiated KLRG-1(hi)IL-7Rα(lo)GzmB(hi) phenotype, with compromised metabolic fitness, longevity, polyfunctionality, and protective efficacy. CTLA-4 functionally replaced Treg cells in trans to rescue memory T cell defects and restore homeostasis. These studies present the CTLA-4-CD28-CD80/CD86 axis as a potential target to accelerate vaccine-induced immunity and improve T cell memory quality in current cancer immunotherapies proposing transient Treg cell ablation. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Vaccine-elicited memory CD4+ T cell expansion is impaired in the lungs during tuberculosis.

    PubMed

    Carpenter, Stephen M; Yang, Jason D; Lee, Jinhee; Barreira-Silva, Palmira; Behar, Samuel M

    2017-11-01

    Immunological memory is the key biological process that makes vaccines possible. Although tuberculosis vaccines elicit protective immunity in animals, few provide durable protection. To understand why protection is transient, we evaluated the ability of memory CD4+ T cells to expand, differentiate, and control Mycobacterium tuberculosis. Both naïve and memory CD4+ T cells initially proliferated exponentially, and the accumulation of memory T cells in the lung correlated with early bacterial control. However, later during infection, memory CD4+ T cell proliferation was curtailed and no protection was observed. We show that memory CD4+ T cells are first activated in the LN and their recruitment to the lung attenuates bacterial growth. However, their interaction with Mtb-infected macrophages does not promote continued proliferation. We conclude that a lack of sustained expansion by memory-derived T cells in the lung limits the durability of their protection, linking their slower expansion with transient protection in vaccinated mice.

  19. Retention of Ag-specific memory CD4+ T cells in the draining lymph node indicates lymphoid tissue resident memory populations.

    PubMed

    Marriott, Clare L; Dutton, Emma E; Tomura, Michio; Withers, David R

    2017-05-01

    Several different memory T-cell populations have now been described based upon surface receptor expression and migratory capabilities. Here we have assessed murine endogenous memory CD4 + T cells generated within a draining lymph node and their subsequent migration to other secondary lymphoid tissues. Having established a model response targeting a specific peripheral lymph node, we temporally labelled all the cells within draining lymph node using photoconversion. Tracking of photoconverted and non-photoconverted Ag-specific CD4 + T cells revealed the rapid establishment of a circulating memory population in all lymph nodes within days of immunisation. Strikingly, a resident memory CD4 + T cell population became established in the draining lymph node and persisted for several months in the absence of detectable migration to other lymphoid tissue. These cells most closely resembled effector memory T cells, usually associated with circulation through non-lymphoid tissue, but here, these cells were retained in the draining lymph node. These data indicate that lymphoid tissue resident memory CD4 + T-cell populations are generated in peripheral lymph nodes following immunisation. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Is There Natural Killer Cell Memory and Can It Be Harnessed by Vaccination? Natural Killer Cells in Vaccination.

    PubMed

    Neely, Harold R; Mazo, Irina B; Gerlach, Carmen; von Andrian, Ulrich H

    2017-12-18

    Natural killer (NK) cells have historically been considered to be a part of the innate immune system, exerting a rapid response against pathogens and tumors in an antigen (Ag)-independent manner. However, over the past decade, evidence has accumulated suggesting that at least some NK cells display certain characteristics of adaptive immune cells. Indeed, NK cells can learn and remember encounters with a variety of Ags, including chemical haptens and viruses. Upon rechallenge, memory NK cells mount potent recall responses selectively to those Ags. This phenomenon, traditionally termed "immunological memory," has been reported in mice, nonhuman primates, and even humans and appears to be concentrated in discrete NK cell subsets. Because immunological memory protects against recurrent infections and is the central goal of active vaccination, it is crucial to define the mechanisms and consequences of NK cell memory. Here, we summarize the different kinds of memory responses that have been attributed to specific NK cell subsets and discuss the possibility to harness NK cell memory for vaccination purposes. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  1. Collaboration enhances later individual memory for emotional material.

    PubMed

    Bärthel, Gwennis A; Wessel, Ineke; Huntjens, Rafaële J C; Verwoerd, Johan

    2017-05-01

    Research on collaborative remembering suggests that collaboration hampers group memory (i.e., collaborative inhibition), yet enhances later individual memory. Studies examining collaborative effects on memory for emotional stimuli are scarce, especially concerning later individual memory. In the present study, female undergraduates watched an emotional movie and recalled it either collaboratively (n = 60) or individually (n = 60), followed by an individual free recall test and a recognition test. We replicated the standard collaborative inhibition effect. Further, in line with the literature, the collaborative condition displayed better post-collaborative individual memory. More importantly, in post-collaborative free recall, the centrality of the information to the movie plot did not play an important role. Recognition rendered slightly different results. Although collaboration rendered more correct recognition for more central details, it did not enhance recognition of background details. Secondly, the collaborative and individual conditions did not differ with respect to overlap of unique correct items in free recall. Yet, during recognition former collaborators more unanimously endorsed correct answers, as well as errors. Finally, extraversion, neuroticism, social anxiety, and depressive symptoms did not moderate the influence of collaboration on memory. Implications for the fields of forensic and clinical psychology are discussed.

  2. A transcriptome-based model of central memory CD4 T cell death in HIV infection.

    PubMed

    Olvera-García, Gustavo; Aguilar-García, Tania; Gutiérrez-Jasso, Fany; Imaz-Rosshandler, Iván; Rangel-Escareño, Claudia; Orozco, Lorena; Aguilar-Delfín, Irma; Vázquez-Pérez, Joel A; Zúñiga, Joaquín; Pérez-Patrigeon, Santiago; Espinosa, Enrique

    2016-11-22

    Human central memory CD4 T cells are characterized by their capacity of proliferation and differentiation into effector memory CD4 T cells. Homeostasis of central memory CD4 T cells is considered a key factor sustaining the asymptomatic stage of Human Immunodeficiency Virus type 1 (HIV-1) infection, while progression to acquired immunodeficiency syndrome is imputed to central memory CD4 T cells homeostatic failure. We investigated if central memory CD4 T cells from patients with HIV-1 infection have a gene expression profile impeding proliferation and survival, despite their activated state. Using gene expression microarrays, we analyzed mRNA expression patterns in naive, central memory, and effector memory CD4 T cells from healthy controls, and naive and central memory CD4 T cells from patients with HIV-1 infection. Differentially expressed genes, defined by Log 2 Fold Change (FC) ≥ |0.5| and Log (odds) > 0, were used in pathway enrichment analyses. Central memory CD4 T cells from patients and controls showed comparable expression of differentiation-related genes, ruling out an effector-like differentiation of central memory CD4 T cells in HIV infection. However, 210 genes were differentially expressed in central memory CD4 T cells from patients compared with those from controls. Expression of 75 of these genes was validated by semi quantitative RT-PCR, and independently reproduced enrichment results from this gene expression signature. The results of functional enrichment analysis indicated movement to cell cycle phases G1 and S (increased CCNE1, MKI67, IL12RB2, ADAM9, decreased FGF9, etc.), but also arrest in G2/M (increased CHK1, RBBP8, KIF11, etc.). Unexpectedly, the results also suggested decreased apoptosis (increased CSTA, NFKBIA, decreased RNASEL, etc.). Results also suggested increased IL-1β, IFN-γ, TNF, and RANTES (CCR5) activity upstream of the central memory CD4 T cells signature, consistent with the demonstrated milieu in HIV infection. Our findings support a model where progressive loss of central memory CD4 T cells in chronic HIV-1 infection is driven by increased cell cycle entry followed by mitotic arrest, leading to a non-apoptotic death pathway without actual proliferation, possibly contributing to increased turnover.

  3. Increased memory T cell populations in Pb-exposed children from an e-waste-recycling area.

    PubMed

    Cao, Junjun; Xu, Xijin; Zhang, Yu; Zeng, Zhijun; Hylkema, Machteld N; Huo, Xia

    2018-03-01

    Chronic exposure to heavy metals could affect cell-mediated immunity. The aim of this study was to explore the status of memory T cell development in preschool children from an e-waste recycling area. Blood lead (Pb) levels, peripheral T cell subpopulations, and serum levels of cytokines (IL-2/IL-7/IL-15), relevant to generation and homeostasis of memory T cells were evaluated in preschool children from Guiyu (e-waste-exposed group) and Haojiang (reference group). The correlations between blood Pb levels and percentages of memory T cell subpopulations were also evaluated. Guiyu children had higher blood Pb levels and increased percentages of CD4 + central memory T cells and CD8 + central memory T cells than in the Haojiang group. Moreover, blood Pb levels were positively associated with the percentages of CD4 + central memory T cells. In contrast, Pb exposure contributed marginally in the change of percentages of CD8 + central memory T cells in children. There was no significant difference in the serum cytokine levels between the e-waste-exposed and reference children. Taken together, preschool children from an e-waste recycling area suffer from relatively higher levels of Pb exposure, which might facilitate the development of CD4 + central memory T cells in these children. Copyright © 2017. Published by Elsevier B.V.

  4. Mental Imagery and Visual Working Memory

    PubMed Central

    Keogh, Rebecca; Pearson, Joel

    2011-01-01

    Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory - but not iconic visual memory - can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance diminished performance on visual working memory and imagery tasks, but not working memory for number strings. This suggests that luminance signals were disrupting sensory-based imagery mechanisms and not a general working memory system. Individuals with poor imagery still performed above chance in the visual working memory task, but their performance was not affected by the background luminance, suggesting a dichotomy in strategies for visual working memory: individuals with strong mental imagery rely on sensory-based imagery to support mnemonic performance, while those with poor imagery rely on different strategies. These findings could help reconcile current controversy regarding the mechanism and location of visual mnemonic storage. PMID:22195024

  5. Mental imagery and visual working memory.

    PubMed

    Keogh, Rebecca; Pearson, Joel

    2011-01-01

    Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory--but not iconic visual memory--can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance diminished performance on visual working memory and imagery tasks, but not working memory for number strings. This suggests that luminance signals were disrupting sensory-based imagery mechanisms and not a general working memory system. Individuals with poor imagery still performed above chance in the visual working memory task, but their performance was not affected by the background luminance, suggesting a dichotomy in strategies for visual working memory: individuals with strong mental imagery rely on sensory-based imagery to support mnemonic performance, while those with poor imagery rely on different strategies. These findings could help reconcile current controversy regarding the mechanism and location of visual mnemonic storage.

  6. Acute alcohol effects on narrative recall and contextual memory: an examination of fragmentary blackouts.

    PubMed

    Wetherill, Reagan R; Fromme, Kim

    2011-08-01

    The present study examined the effects of alcohol consumption on narrative recall and contextual memory among individuals with and without a history of fragmentary blackouts in an attempt to better understand why some individuals experience alcohol-induced memory impairments whereas others do not, even at comparable blood alcohol concentrations (BACs). Standardized beverage (alcohol and no alcohol) administration procedures and neuropsychological assessments measured narrative recall and context memory performance before and after alcohol consumption in individuals with (n=44) and without (n=44) a history of fragmentary blackouts. Findings indicate that acute alcohol intoxication led to impairments in free recall, but not next-day cued recall. Further, participants showed similar memory performance when sober, but individuals who consumed alcohol and had a positive history of fragmentary blackouts showed greater contextual memory impairments than those who had not previously experienced a fragmentary blackout. Thus, it appears that some individuals may have an inherent vulnerability to alcohol-induced memory impairments due to alcohol's effects on contextual memory processes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Working Memory Delay Activity Predicts Individual Differences in Cognitive Abilities

    PubMed Central

    Unsworth, Nash; Fukuda, Keisuke; Awh, Edward; Vogel, Edward K.

    2015-01-01

    A great deal of prior research has examined the relation between estimates of working memory and cognitive abilities. Yet, the neural mechanisms that account for these relations are still not very well understood. The current study explored whether individual differences in working memory delay activity would be a significant predictor of cognitive abilities. A large number of participants performed multiple measures of capacity, attention control, long-term memory, working memory span, and fluid intelligence, and latent variable analyses were used to examine the data. During two working memory change detection tasks, we acquired EEG data and examined the contra-lateral delay activity. The results demonstrated that the contralateral delay activity was significantly related to cognitive abilities, and importantly these relations were because of individual differences in both capacity and attention control. These results suggest that individual differences in working memory delay activity predict individual differences in a broad range of cognitive abilities, and this is because of both differences in the number of items that can be maintained and the ability to control access to working memory. PMID:25436671

  8. Working memory delay activity predicts individual differences in cognitive abilities.

    PubMed

    Unsworth, Nash; Fukuda, Keisuke; Awh, Edward; Vogel, Edward K

    2015-05-01

    A great deal of prior research has examined the relation between estimates of working memory and cognitive abilities. Yet, the neural mechanisms that account for these relations are still not very well understood. The current study explored whether individual differences in working memory delay activity would be a significant predictor of cognitive abilities. A large number of participants performed multiple measures of capacity, attention control, long-term memory, working memory span, and fluid intelligence, and latent variable analyses were used to examine the data. During two working memory change detection tasks, we acquired EEG data and examined the contralateral delay activity. The results demonstrated that the contralateral delay activity was significantly related to cognitive abilities, and importantly these relations were because of individual differences in both capacity and attention control. These results suggest that individual differences in working memory delay activity predict individual differences in a broad range of cognitive abilities, and this is because of both differences in the number of items that can be maintained and the ability to control access to working memory.

  9. Stroma: the forgotten cells of innate immune memory.

    PubMed

    Crowley, Thomas; Buckley, Christopher D; Clark, Andrew R

    2018-05-05

    All organisms are constantly exposed to a variety of infectious and injurious stimuli. These induce inflammatory responses tailored to the threat posed. Whilst the innate immune system is the front line of response to each stimulant, it has been traditionally considered to lack memory, acting in a generic fashion until the adaptive immune arm can take over. This outmoded simplification of the roles of innate and acquired arms of the immune system has been challenged by evidence of myeloid cells altering their response to subsequent encounters based on earlier exposure. This concept of "innate immune memory" has been known for nearly a century, and is accepted amongst myeloid biologists. In recent years, other innate immune cells, such as natural killer cells, have been shown to display memory, suggesting innate immune memory is a trait common to several cell types. Over the last thirty years, evidence has slowly accumulated in favour of not only haematopoietic cells, but also stromal cells, being imbued with memory following inflammatory episodes. A recent publication showing this also to be true in epithelial cells suggests innate immune memory to be widespread, if underappreciated, in non-haematopoietic cells. In this review, we will examine the evidence supporting the existence of innate immune memory in stromal cells. We will also discuss the ramifications of memory in long-lived tissue-resident cells. Finally, we will pose questions we feel to be important in the understanding of these forgotten cells in the field of innate memory. This article is protected by copyright. All rights reserved. © 2018 British Society for Immunology.

  10. Different importance of the volatile and non-volatile fractions of an olfactory signature for individual social recognition in rats versus mice and short-term versus long-term memory.

    PubMed

    Noack, Julia; Richter, Karin; Laube, Gregor; Haghgoo, Hojjat Allah; Veh, Rüdiger W; Engelmann, Mario

    2010-11-01

    When tested in the olfactory cued social recognition/discrimination test, rats and mice differ in their retention of a recognition memory for a previously encountered conspecific juvenile: Rats are able to recognize a given juvenile for approximately 45 min only whereas mice show not only short-term, but also long-term recognition memory (≥ 24 h). Here we modified the social recognition/social discrimination procedure to investigate the neurobiological mechanism(s) underlying the species differences. We presented a conspecific juvenile repeatedly to the experimental subjects and monitored the investigation duration as a measure for recognition. Presentation of only the volatile fraction of the juvenile olfactory signature was sufficient for both short- and long-term recognition in mice but not rats. Applying additional volatile, mono-molecular odours to the "to be recognized" juveniles failed to affect short-term memory in both species, but interfered with long-term recognition in mice. Finally immunocytochemical analysis of c-Fos as a marker for cellular activation, revealed that juvenile exposure stimulated areas involved in the processing of olfactory signals in both the main and the accessory olfactory bulb in mice. In rats, we measured an increased c-Fos synthesis almost exclusively in cells of the accessory olfactory bulb. Our data suggest that the species difference in the retention of social recognition memory is based on differences in the processing of the volatile versus non-volatile fraction of the individuals' olfactory signature. The non-volatile fraction is sufficient for retaining a short-term social memory only. Long-term social memory - as observed in mice - requires a processing of both the volatile and non-volatile fractions of the olfactory signature. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Medial prefrontal-hippocampal connectivity during emotional memory encoding predicts individual differences in the loss of associative memory specificity.

    PubMed

    Berkers, Ruud M W J; Klumpers, Floris; Fernández, Guillén

    2016-10-01

    Emotionally charged items are often remembered better, whereas a paradoxical loss of specificity is found for associative emotional information (specific memory). The balance between specific and generalized emotional memories appears to show large individual differences, potentially related to differences in (the risk for) affective disorders that are characterized by 'overgeneralized' emotional memories. Here, we investigate the neural underpinnings of individual differences in emotional associative memory. A large group of healthy male participants were scanned while encoding associations of face-photographs and written occupational identities that were of either neutral ('driver') or negative ('murderer') valence. Subsequently, memory was tested by prompting participants to retrieve the occupational identities corresponding to each face. Whereas in both valence categories a similar amount of faces was labeled correctly with 'neutral' and 'negative' identities, (gist memory), specific associations were found to be less accurately remembered when the occupational identity was negative compared to neutral (specific memory). This pattern of results suggests reduced memory specificity for associations containing a negatively valenced component. The encoding of these negative associations was paired with a selective increase in medial prefrontal cortex activity and medial prefrontal-hippocampal connectivity. Individual differences in valence-specific neural connectivity were predictive of valence-specific reduction of memory specificity. The relationship between loss of emotional memory specificity and medial prefrontal-hippocampal connectivity is in line with the hypothesized role of a medial prefrontal-hippocampal circuit in regulating memory specificity, and warrants further investigations in individuals displaying 'overgeneralized' emotional memories. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Association of subjective memory complaints with subsequent cognitive decline in community-dwelling elderly individuals with baseline cognitive impairment.

    PubMed

    Schofield, P W; Marder, K; Dooneief, G; Jacobs, D M; Sano, M; Stern, Y

    1997-05-01

    The validity of subjective memory complaints has been questioned by clinical studies that have shown little relationship between memory complaints and objective memory performance. These studies often have been cross-sectional in design, have excluded individuals with cognitive impairment, or have lacked a comparison group. The authors conducted a study that attempted to avoid these limitations. Memory complaints of 364 nondemented, community-dwelling elderly individuals were recorded as present or absent at the baseline evaluation. After 1 year, 169 subjects were reevaluated. Standardized neurologic and neuropsychological evaluations were used at each assessment to classify subjects as normal or cognitively impaired. At baseline, 31% of the normal subjects and 47% of those with cognitive impairment had memory complaints. Subjects with memory complaints had higher Hamilton depression scale scores than subjects without memory complaints but equivalent scores on a measure of total recall. At follow-up, multivariate analyses showed that subjects with baseline memory complaints had significantly greater decline in memory and cognition than subjects without memory complaints. Secondary analyses showed this effect to be confined to subjects with baseline cognitive impairment. Memory complaints may lack validity in subjects with normal cognition, but in nondemented individuals with cognitive impairment, memory complaints may predict subsequent cognitive decline.

  13. Regulation of gene expression in autoimmune disease loci and the genetic basis of proliferation in CD4+ effector memory T cells.

    PubMed

    Hu, Xinli; Kim, Hyun; Raj, Towfique; Brennan, Patrick J; Trynka, Gosia; Teslovich, Nikola; Slowikowski, Kamil; Chen, Wei-Min; Onengut, Suna; Baecher-Allan, Clare; De Jager, Philip L; Rich, Stephen S; Stranger, Barbara E; Brenner, Michael B; Raychaudhuri, Soumya

    2014-06-01

    Genome-wide association studies (GWAS) and subsequent dense-genotyping of associated loci identified over a hundred single-nucleotide polymorphism (SNP) variants associated with the risk of rheumatoid arthritis (RA), type 1 diabetes (T1D), and celiac disease (CeD). Immunological and genetic studies suggest a role for CD4-positive effector memory T (CD+ TEM) cells in the pathogenesis of these diseases. To elucidate mechanisms of autoimmune disease alleles, we investigated molecular phenotypes in CD4+ effector memory T cells potentially affected by these variants. In a cohort of genotyped healthy individuals, we isolated high purity CD4+ TEM cells from peripheral blood, then assayed relative abundance, proliferation upon T cell receptor (TCR) stimulation, and the transcription of 215 genes within disease loci before and after stimulation. We identified 46 genes regulated by cis-acting expression quantitative trait loci (eQTL), the majority of which we detected in stimulated cells. Eleven of the 46 genes with eQTLs were previously undetected in peripheral blood mononuclear cells. Of 96 risk alleles of RA, T1D, and/or CeD in densely genotyped loci, eleven overlapped cis-eQTLs, of which five alleles completely explained the respective signals. A non-coding variant, rs389862A, increased proliferative response (p=4.75 × 10-8). In addition, baseline expression of seventeen genes in resting cells reliably predicted proliferative response after TCR stimulation. Strikingly, however, there was no evidence that risk alleles modulated CD4+ TEM abundance or proliferation. Our study underscores the power of examining molecular phenotypes in relevant cells and conditions for understanding pathogenic mechanisms of disease variants.

  14. Patients with cystic fibrosis have inducible IL-17+IL-22+ memory cells in lung draining lymph nodes.

    PubMed

    Chan, Yvonne R; Chen, Kong; Duncan, Steven R; Lathrop, Kira L; Latoche, Joseph D; Logar, Alison J; Pociask, Derek A; Wahlberg, Brendon J; Ray, Prabir; Ray, Anuradha; Pilewski, Joseph M; Kolls, Jay K

    2013-04-01

    IL-17 is an important cytokine signature of the TH differentiation pathway TH17. This T-cell subset is crucial in mediating autoimmune disease or antimicrobial immunity in animal models, but its presence and role in human disease remain to be completely characterized. We set out to determine the frequency of TH17 cells in patients with cystic fibrosis (CF), a disease in which there is recurrent infection with known pathogens. Explanted lungs from patients undergoing transplantation or organ donors (CF samples=18; non-CF, nonbronchiectatic samples=10) were collected. Hilar nodes and parenchymal lung tissue were processed and examined for TH17 signature by using immunofluorescence and quantitative real-time PCR. T cells were isolated and stimulated with antigens from Pseudomonas aeruginosa and Aspergillus species. Cytokine profiles and staining with flow cytometry were used to assess the reactivity of these cells to antigen stimulation. We found a strong IL-17 phenotype in patients with CF compared with that seen in control subjects without CF. Within this tissue, we found pathogenic antigen-responsive CD4+IL-17+ cells. There were double-positive IL-17+IL-22+ cells [TH17(22)], and the IL-22+ population had a higher proportion of memory characteristics. Antigen-specific TH17 responses were stronger in the draining lymph nodes compared with those seen in matched parenchymal lungs. Inducible proliferation of TH17(22) with memory cell characteristics is seen in the lungs of patients with CF. The function of these individual subpopulations will require further study regarding their development. T cells are likely not the exclusive producers of IL-17 and IL-22, and this will require further characterization. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  15. Multibit Polycristalline Silicon-Oxide-Silicon Nitride-Oxide-Silicon Memory Cells with High Density Designed Utilizing a Separated Control Gate

    NASA Astrophysics Data System (ADS)

    Rok Kim, Kyeong; You, Joo Hyung; Dal Kwack, Kae; Kim, Tae Whan

    2010-10-01

    Unique multibit NAND polycrystalline silicon-oxide-silicon nitride-oxide-silicon (SONOS) memory cells utilizing a separated control gate (SCG) were designed to increase memory density. The proposed NAND SONOS memory device based on a SCG structure was operated as two bits, resulting in an increase in the storage density of the NVM devices in comparison with conventional single-bit memories. The electrical properties of the SONOS memory cells with a SCG were investigated to clarify the charging effects in the SONOS memory cells. When the program voltage was supplied to each gate of the NAND SONOS flash memory cells, the electrons were trapped in the nitride region of the oxide-nitride-oxide layer under the gate to supply the program voltage. The electrons were accumulated without affecting the other gate during the programming operation, indicating the absence of cross-talk between two trap charge regions. It is expected that the inference effect will be suppressed by the lower program voltage than the program voltage of the conventional NAND flash memory. The simulation results indicate that the proposed unique NAND SONOS memory cells with a SCG can be used to increase memory density.

  16. Cytomegalovirus-Responsive CD8+ T Cells Expand After Solid Organ Transplantation in the Absence of CMV Disease.

    PubMed

    Higdon, L E; Trofe-Clark, J; Liu, S; Margulies, K B; Sahoo, M K; Blumberg, E; Pinsky, B A; Maltzman, J S

    2017-08-01

    Cytomegalovirus (CMV) is a major cause of morbidity and mortality in solid organ transplant recipients. Approximately 60% of adults are CMV seropositive, indicating previous exposure. Following resolution of the primary infection, CMV remains in a latent state. Reactivation is controlled by memory T cells in healthy individuals; transplant recipients have reduced memory T cell function due to chronic immunosuppressive therapies. In this study, CD8 + T cell responses to CMV polypeptides immediate-early-1 and pp65 were analyzed in 16 CMV-seropositive kidney and heart transplant recipients longitudinally pretransplantation and posttransplantation. All patients received standard of care maintenance immunosuppression, antiviral prophylaxis, and CMV viral load monitoring, with approximately half receiving T cell-depleting induction therapy. The frequency of CMV-responsive CD8 + T cells, defined by the production of effector molecules in response to CMV peptides, increased during the course of 1 year posttransplantation. The increase commenced after the completion of antiviral prophylaxis, and these T cells tended to be terminally differentiated effector cells. Based on this small cohort, these data suggest that even in the absence of disease, antigenic exposure may continually shape the CMV-responsive T cell population posttransplantation. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  17. CD73 expression identifies a subset of IgM+ antigen-experienced cells with memory attributes that is T cell and CD40 signalling dependent.

    PubMed

    D'Souza, Lucas; Gupta, Sneh Lata; Bal, Vineeta; Rath, Satyajit; George, Anna

    2017-12-01

    B-cell memory was long characterized as isotype-switched, somatically mutated and germinal centre (GC)-derived. However, it is now clear that the memory pool is a complex mixture that includes unswitched and unmutated cells. Further, expression of CD73, CD80 and CD273 has allowed the categorization of B-cell memory into multiple subsets, with combinatorial expression of the markers increasing with GC progression, isotype-switching and acquisition of somatic mutations. We have extended these findings to determine whether these markers can be used to identify IgM memory phenotypically as arising from T-dependent versus T-independent responses. We report that CD73 expression identifies a subset of antigen-experienced IgM + cells that share attributes of functional B-cell memory. This subset is reduced in the spleens of T-cell-deficient and CD40-deficient mice and in mixed marrow chimeras made with mutant and wild-type marrow, the proportion of CD73 + IgM memory is restored in the T-cell-deficient donor compartment but not in the CD40-deficient donor compartment, indicating that CD40 ligation is involved in its generation. We also report that CD40 signalling supports optimal expression of CD73 on splenic T cells and age-associated B cells (ABCs), but not on other immune cells such as neutrophils, marginal zone B cells, peritoneal cavity B-1 B cells and regulatory T and B cells. Our data indicate that in addition to promoting GC-associated memory generation during B-cell differentiation, CD40-signalling can influence the composition of the unswitched memory B-cell pool. They also raise the possibility that a fraction of ABCs may represent T-cell-dependent IgM memory. © 2017 John Wiley & Sons Ltd.

  18. Enhanced anti-tumour immunity requires the interplay between resident and circulating memory CD8+ T cells

    PubMed Central

    Enamorado, Michel; Iborra, Salvador; Priego, Elena; Cueto, Francisco J.; Quintana, Juan A.; Martínez-Cano, Sarai; Mejías-Pérez, Ernesto; Esteban, Mariano; Melero, Ignacio; Hidalgo, Andrés; Sancho, David

    2017-01-01

    The goal of successful anti-tumoural immunity is the development of long-term protective immunity to prevent relapse. Infiltration of tumours with CD8+ T cells with a resident memory (Trm) phenotype correlates with improved survival. However, the interplay of circulating CD8+ T cells and Trm cells remains poorly explored in tumour immunity. Using different vaccination strategies that fine-tune the generation of Trm cells or circulating memory T cells, here we show that, while both subsets are sufficient for anti-tumour immunity, the presence of Trm cells improves anti-tumour efficacy. Transferred central memory T cells (Tcm) generate Trm cells following viral infection or tumour challenge. Anti-PD-1 treatment promotes infiltration of transferred Tcm cells within tumours, improving anti-tumour immunity. Moreover, Batf3-dependent dendritic cells are essential for reactivation of circulating memory anti-tumour response. Our findings show the plasticity, collaboration and requirements for reactivation of memory CD8+ T cells subsets needed for optimal tumour vaccination and immunotherapy. PMID:28714465

  19. Long-term memory for verbal and visual information in Down syndrome and Williams syndrome: performance on the Doors and People test.

    PubMed

    Jarrold, Christopher; Baddeley, Alan D; Phillips, Caroline

    2007-02-01

    Previous studies have suggested that Williams syndrome and Down syndrome may be associated with specific short-term memory deficits. Individuals with Williams syndrome perform relatively poorly on tests of visuo-spatial short-term memory and individuals with Down syndrome show a relative deficit on verbal short-term memory tasks. However, these patterns of impairments may reflect the impact of generally impaired visuo-spatial processing skills in Williams syndrome, and verbal abilities in Down syndrome. The current study explored this possibility by assessing long-term memory among 15 individuals with Williams syndrome and 20 individuals with Down syndrome using the Doors and People test, a battery which assesses recall and recognition of verbal and visual information. Individuals' performance was standardised for age and level of intellectual ability with reference to that shown by a sample of 110 typically developing children. The results showed that individuals with Down syndrome have no differential deficits in long-term memory for verbal information, implying that verbal short-term memory deficits in this population are relatively selective. Instead both individuals with Down syndrome and with Williams syndrome showed some evidence of relatively poor performance on tests of long-term memory for visual information. It is therefore possible that visuo-spatial short-term memory deficits that have previously been demonstrated in Williams syndrome may be secondary to more general problems in visuo-spatial processing in this population.

  20. Humans with chronic granulomatous disease maintain humoral immunologic memory despite low frequencies of circulating memory B cells

    PubMed Central

    Santich, Brian H.; Kim, Jin Young; Posada, Jacqueline G.; Ho, Jason; Buckner, Clarisa M.; Wang, Wei; Kardava, Lela; Garofalo, Mary; Marciano, Beatriz E.; Manischewitz, Jody; King, Lisa R.; Khurana, Surender; Chun, Tae-Wook; Golding, Hana; Fauci, Anthony S.; Malech, Harry L.

    2012-01-01

    CD27+ memory B cells are reduced in the blood of patients with chronic granulomatous disease (CGD) for reasons and consequences that remain unclear. Here we confirm not only decreased CD27+ but also IgG+ B cells in the blood of CGD patients compared with healthy donors (HDs). However, among IgG+ B cells, the ratio of CD27− to CD27+ was significantly higher in CGD patients compared with HDs. Similar to conventional memory B cells, CD27−IgG+ B cells of CGD patients expressed activation markers and had undergone somatic hypermutation, albeit at levels lower than their CD27+ counterparts. Functional analyses revealed slight reductions in frequencies of total IgG but not influenza-specific memory B-cell responses, as measured by Elispot in CGD patients compared with HDs. Serum IgG levels and influenza-specific antibodies were also normal in these CGD patients. Finally, we provide evidence that influenza-specific memory B cells can be present within the CD27−IgG+ B-cell compartment. Together, these findings show that, despite reduced circulating CD27+ memory B cells, CGD patients maintain an intact humoral immunologic memory, with potential contribution from CD27− B cells. PMID:23074274

  1. Humans with chronic granulomatous disease maintain humoral immunologic memory despite low frequencies of circulating memory B cells.

    PubMed

    Moir, Susan; De Ravin, Suk See; Santich, Brian H; Kim, Jin Young; Posada, Jacqueline G; Ho, Jason; Buckner, Clarisa M; Wang, Wei; Kardava, Lela; Garofalo, Mary; Marciano, Beatriz E; Manischewitz, Jody; King, Lisa R; Khurana, Surender; Chun, Tae-Wook; Golding, Hana; Fauci, Anthony S; Malech, Harry L

    2012-12-06

    CD27(+) memory B cells are reduced in the blood of patients with chronic granulomatous disease (CGD) for reasons and consequences that remain unclear. Here we confirm not only decreased CD27(+) but also IgG(+) B cells in the blood of CGD patients compared with healthy donors (HDs). However, among IgG(+) B cells, the ratio of CD27(-) to CD27(+) was significantly higher in CGD patients compared with HDs. Similar to conventional memory B cells, CD27(-)IgG(+) B cells of CGD patients expressed activation markers and had undergone somatic hypermutation, albeit at levels lower than their CD27(+) counterparts. Functional analyses revealed slight reductions in frequencies of total IgG but not influenza-specific memory B-cell responses, as measured by Elispot in CGD patients compared with HDs. Serum IgG levels and influenza-specific antibodies were also normal in these CGD patients. Finally, we provide evidence that influenza-specific memory B cells can be present within the CD27(-)IgG(+) B-cell compartment. Together, these findings show that, despite reduced circulating CD27(+) memory B cells, CGD patients maintain an intact humoral immunologic memory, with potential contribution from CD27(-) B cells.

  2. Programmed Death 1 Regulates Memory Phenotype CD4 T Cell Accumulation, Inhibits Expansion of the Effector Memory Phenotype Subset and Modulates Production of Effector Cytokines

    PubMed Central

    Charlton, Joanna J.; Tsoukatou, Debbie; Mamalaki, Clio; Chatzidakis, Ioannis

    2015-01-01

    Memory phenotype CD4 T cells are found in normal mice and arise through response to environmental antigens or homeostatic mechanisms. The factors that regulate the homeostasis of memory phenotype CD4 cells are not clear. In the present study we demonstrate that there is a marked accumulation of memory phenotype CD4 cells, specifically of the effector memory (TEM) phenotype, in lymphoid organs and tissues of mice deficient for the negative co-stimulatory receptor programmed death 1 (PD-1). This can be correlated with decreased apoptosis but not with enhanced homeostatic turnover potential of these cells. PD-1 ablation increased the frequency of memory phenotype CD4 IFN-γ producers but decreased the respective frequency of IL-17A-producing cells. In particular, IFN-γ producers were more abundant but IL-17A producing cells were more scarce among PD-1 KO TEM-phenotype cells relative to WT. Transfer of peripheral naïve CD4 T cells suggested that accumulated PD-1 KO TEM-phenotype cells are of peripheral and not of thymic origin. This accumulation effect was mediated by CD4 cell-intrinsic mechanisms as shown by mixed bone marrow chimera experiments. Naïve PD-1 KO CD4 T cells gave rise to higher numbers of TEM-phenotype lymphopenia-induced proliferation memory cells. In conclusion, we provide evidence that PD-1 has an important role in determining the composition and functional aspects of memory phenotype CD4 T cell pool. PMID:25803808

  3. Memory for “mean” over “nice”: The influence of threat on children’s face memory

    PubMed Central

    Kinzler, Katherine D.; Shutts, Kristin

    2008-01-01

    Adults remember faces of threatening over non-threatening individuals. This memory advantage could be indicative of a system rooted deeply in cognitive evolution to track and remember individuals who have been harmful in the past and therefore might be harmful again. Conversely, adults may have learned through experience that it pays to be vigilant. In the present research, we investigated whether attention to threatening individuals is privileged in young children’s face memory. In Experiment 1, preschool-age children showed a face recognition memory advantage for individuals who were said to have committed harmful rather than helpful actions. In a further experiment, children did not selectively remember individuals who were described as the recipients of these actions, suggesting that the memory enhancement was produced by threat rather than negative valence. Together, these findings provide evidence for an early-developing system for remembering threatening individuals, consistent with an evolutionary account of its origins. PMID:18001702

  4. Working memory and inattentional blindness.

    PubMed

    Bredemeier, Keith; Simons, Daniel J

    2012-04-01

    Individual differences in working memory predict many aspects of cognitive performance, especially for tasks that demand focused attention. One negative consequence of focused attention is inattentional blindness, the failure to notice unexpected objects when attention is engaged elsewhere. Yet, the relationship between individual differences in working memory and inattentional blindness is unclear; some studies have found that higher working memory capacity is associated with greater noticing, but others have found no direct association. Given the theoretical and practical significance of such individual differences, more definitive tests are needed. In two studies with large samples, we tested the relationship between multiple working memory measures and inattentional blindness. Individual differences in working memory predicted the ability to perform an attention-demanding tracking task, but did not predict the likelihood of noticing an unexpected object present during the task. We discuss the reasons why we might not expect such individual differences in noticing and why other studies may have found them.

  5. Temporal context memory in high-functioning autism.

    PubMed

    Gras-Vincendon, Agnès; Mottron, Laurent; Salamé, Pierre; Bursztejn, Claude; Danion, Jean-Marie

    2007-11-01

    Episodic memory, i.e. memory for specific episodes situated in space and time, seems impaired in individuals with autism. According to weak central coherence theory, individuals with autism have general difficulty connecting contextual and item information which then impairs their capacity to memorize information in context. This study investigated temporal context memory for visual information in individuals with autism. Eighteen adolescents and adults with high-functioning autism (HFA) or Asperger syndrome (AS) and age- and IQ-matched typically developing participants were tested using a recency judgement task. The performance of the autistic group did not differ from that of the control group, nor did the performance between the AS and HFA groups. We conclude that autism in high-functioning individuals does not impair temporal context memory as assessed on this task. We suggest that individuals with autism are as efficient on this task as typically developing subjects because contextual memory performance here involves more automatic than organizational processing.

  6. Low interleukin-2 concentration favors generation of early memory T cells over effector phenotypes during chimeric antigen receptor T-cell expansion.

    PubMed

    Kaartinen, Tanja; Luostarinen, Annu; Maliniemi, Pilvi; Keto, Joni; Arvas, Mikko; Belt, Heini; Koponen, Jonna; Loskog, Angelica; Mustjoki, Satu; Porkka, Kimmo; Ylä-Herttuala, Seppo; Korhonen, Matti

    2017-06-01

    Adoptive T-cell therapy offers new options for cancer treatment. Clinical results suggest that T-cell persistence, depending on T-cell memory, improves efficacy. The use of interleukin (IL)-2 for in vitro T-cell expansion is not straightforward because it drives effector T-cell differentiation but does not promote the formation of T-cell memory. We have developed a cost-effective expansion protocol for chimeric antigen receptor (CAR) T cells with an early memory phenotype. Lymphocytes were transduced with third-generation lentiviral vectors and expanded using CD3/CD28 microbeads. The effects of altering the IL-2 supplementation (0-300 IU/mL) and length of expansion (10-20 days) on the phenotype of the T-cell products were analyzed. High IL-2 levels led to a decrease in overall generation of early memory T cells by both decreasing central memory T cells and augmenting effectors. T memory stem cells (T SCM , CD95 + CD45RO - CD45RA + CD27 + ) were present variably during T-cell expansion. However, their presence was not IL-2 dependent but was linked to expansion kinetics. CD19-CAR T cells generated in these conditions displayed in vitro antileukemic activity. In summary, production of CAR T cells without any cytokine supplementation yielded the highest proportion of early memory T cells, provided a 10-fold cell expansion and the cells were functionally potent. The number of early memory T cells in a T-cell preparation can be increased by simply reducing the amount of IL-2 and limiting the length of T-cell expansion, providing cells with potentially higher in vivo performance. These findings are significant for robust and cost-effective T-cell manufacturing. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  7. Aging-dependent decline of IL-10 producing B cells coincides with production of antinuclear antibodies but not rheumatoid factors.

    PubMed

    van der Geest, Kornelis S M; Lorencetti, Pedro G; Abdulahad, Wayel H; Horst, Gerda; Huitema, Minke; Roozendaal, Caroline; Kroesen, Bart-Jan; Brouwer, Elisabeth; Boots, Annemieke M H

    2016-03-01

    Aging is associated with development of autoimmunity. Loss of B cell tolerance in the elderly is suggested by an increased prevalence of anti-nuclear antibodies (ANAs) and rheumatoid factors (RFs). Accumulating evidence indicates that B cells also impact autoimmunity via secretion of cytokines. So far, few studies have directly assessed the effect of aging on the latter B cell function. Here, we determined if and how human aging influences the production of cytokines by B cells. In a cross-sectional study, we found that absolute numbers of circulating B cells were similar in 31 young (ages 19-39) and 73 old (age ≥ 60) individuals. Numbers of transitional B cells (CD19(+)CD27(-)CD38(High)CD24(High)) were decreased in old individuals, whereas numbers of naive and memory B cell subsets were comparable in young and old individuals. Short-term in vitro stimulation of whole blood samples revealed that numbers of B cells capable of producing TNF-α were similar in young and old individuals. In contrast, B cells capable of IL-10 production were decreased in old subjects. This decline of IL-10(+) B cells was observed in old individuals that were ANA positive, and in those that were negative for both ANAs and RFs. However, IL-10(+) B cells were remarkably well retained in the circulation of old subjects that were RF positive. Thus, pro-inflammatory TNF-α(+) B cells are retained in the elderly, whereas IL-10(+) B cells generally decline. In addition, our findings indicate that IL-10(+) B cells may differentially impact the development of ANAs and RFs in the elderly. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Self-Imagining Enhances Recognition Memory in Memory-Impaired Individuals with Neurological Damage

    PubMed Central

    Grilli, Matthew D.; Glisky, Elizabeth L.

    2010-01-01

    Objective The ability to imagine an elaborative event from a personal perspective relies on a number of cognitive processes that may potentially enhance subsequent memory for the event, including visual imagery, semantic elaboration, emotional processing, and self-referential processing. In an effort to find a novel strategy for enhancing memory in memory-impaired individuals with neurological damage, the present study investigated the mnemonic benefit of a method we refer to as “self-imagining” – or the imagining of an event from a realistic, personal perspective. Method Fourteen individuals with neurologically-based memory deficits and fourteen healthy control participants intentionally encoded neutral and emotional sentences under three instructions: structural-baseline processing, semantic processing, and self-imagining. Results Findings revealed a robust “self-imagination effect” as self-imagination enhanced recognition memory relative to deep semantic elaboration in both memory-impaired individuals, F (1, 13) = 32.11, p < .001, η2 = .71, and healthy controls, F (1, 13) = 5.57, p < .05, η2 = .30. In addition, results indicated that mnemonic benefits of self-imagination were not limited by severity of the memory disorder nor were they related to self-reported vividness of visual imagery, semantic processing, or emotional content of the materials. Conclusions The findings suggest that the self-imagination effect may depend on unique mnemonic mechanisms possibly related to self-referential processing, and that imagining an event from a personal perspective makes that event particularly memorable even for those individuals with severe memory deficits. Self-imagining may thus provide an effective rehabilitation strategy for individuals with memory impairment. PMID:20873930

  9. Increased numbers of pre-existing memory CD8 T cells and decreased T-bet expression can restrain terminal differentiation of secondary effector and memory CD8 T cells1

    PubMed Central

    Joshi, Nikhil S.; Cui, Weiguo; Dominguez, Claudia; Chen, Jonathan H.; Hand, Timothy W.; Kaech, Susan M.

    2011-01-01

    Memory CD8 T cells acquire TEM properties following reinfection, and may reach terminally differentiated, senescent states (“Hayflick limit”) after multiple infections. The signals controlling this process are not well understood, but we found that the degree of 2o effector and memory CD8 T cell differentiation was intimately linked to the amount of T-bet expressed upon reactivation and pre-existing memory CD8 T cell number (i.e., 1o memory CD8 T cell precursor frequency) present during secondary infection. Compared to naïve cells, memory CD8 T cells were predisposed towards terminal effector (TE) cell differentiation because they could immediately respond to IL-12 and induce T-bet, even in the absence of antigen. TE cell formation following 2o or 3o infections was dependent on increased T-bet expression because T-bet+/− cells were resistant to these phenotypic changes. Larger numbers of pre-existing memory CD8 T cells limited the duration of 2o infection and the amount of IL-12 produced, and consequently, this reduced T-bet expression and the proportion of 2o TE CD8 T cells that formed. Together, these data show that, over repeated infections, memory CD8 T cell quality and proliferative fitness is not strictly determined by the number of serial encounters with antigen or cell divisions, but is a function of the CD8 T cell differentiation state, which is genetically controlled in a T-bet-dependent manner. This differentiation state can be modulated by pre-existing memory CD8 T cell number and the intensity of inflammation during reinfection. These results have important implications for vaccinations involving prime-boost strategies. PMID:21930973

  10. Individual differences in learning predict the return of fear.

    PubMed

    Gershman, Samuel J; Hartley, Catherine A

    2015-09-01

    Using a laboratory analogue of learned fear (Pavlovian fear conditioning), we show that there is substantial heterogeneity across individuals in spontaneous recovery of fear following extinction training. We propose that this heterogeneity might stem from qualitative individual differences in the nature of extinction learning. Whereas some individuals tend to form a new memory during extinction, leaving their fear memory intact, others update the original threat association with new safety information, effectively unlearning the fear memory. We formalize this account in a computational model of fear learning and show that individuals who, according to the model, are more likely to form new extinction memories tend to show greater spontaneous recovery compared to individuals who appear to only update a single memory. This qualitative variation in fear and extinction learning may have important implications for understanding vulnerability and resilience to fear-related psychiatric disorders.

  11. CD4+CD25+ regulatory T cells suppress allograft rejection mediated by memory CD8+ T cells via a CD30-dependent mechanism.

    PubMed

    Dai, Zhenhua; Li, Qi; Wang, Yinong; Gao, Ge; Diggs, Lonnette S; Tellides, George; Lakkis, Fadi G

    2004-01-01

    CD4(+)CD25(+) regulatory T (Treg) cells suppress naive T cell responses, prevent autoimmunity, and delay allograft rejection. It is not known, however, whether Treg cells suppress allograft rejection mediated by memory T cells, as the latter mount faster and stronger immune responses than their naive counterparts. Here we show that antigen-induced, but not naive, Treg cells suppress allograft rejection mediated by memory CD8(+) T cells. Suppression was allospecific, as Treg cells induced by third-party antigens did not delay allograft rejection. In vivo and in vitro analyses revealed that the apoptosis of allospecific memory CD8(+) T cells is significantly increased in the presence of antigen-induced Treg cells, while their proliferation remains unaffected. Importantly, neither suppression of allograft rejection nor enhanced apoptosis of memory CD8(+) T cells was observed when Treg cells lacked CD30 or when CD30 ligand-CD30 interaction was blocked with anti-CD30 ligand Ab. This study therefore provides direct evidence that pathogenic memory T cells are amenable to suppression in an antigen-specific manner and identifies CD30 as a molecule that is critical for the regulation of memory T cell responses.

  12. CD4+CD25+ regulatory T cells suppress allograft rejection mediated by memory CD8+ T cells via a CD30-dependent mechanism

    PubMed Central

    Dai, Zhenhua; Li, Qi; Wang, Yinong; Gao, Ge; Diggs, Lonnette S.; Tellides, George; Lakkis, Fadi G.

    2004-01-01

    CD4+CD25+ regulatory T (Treg) cells suppress naive T cell responses, prevent autoimmunity, and delay allograft rejection. It is not known, however, whether Treg cells suppress allograft rejection mediated by memory T cells, as the latter mount faster and stronger immune responses than their naive counterparts. Here we show that antigen-induced, but not naive, Treg cells suppress allograft rejection mediated by memory CD8+ T cells. Suppression was allospecific, as Treg cells induced by third-party antigens did not delay allograft rejection. In vivo and in vitro analyses revealed that the apoptosis of allospecific memory CD8+ T cells is significantly increased in the presence of antigen-induced Treg cells, while their proliferation remains unaffected. Importantly, neither suppression of allograft rejection nor enhanced apoptosis of memory CD8+ T cells was observed when Treg cells lacked CD30 or when CD30 ligand–CD30 interaction was blocked with anti–CD30 ligand Ab. This study therefore provides direct evidence that pathogenic memory T cells are amenable to suppression in an antigen-specific manner and identifies CD30 as a molecule that is critical for the regulation of memory T cell responses. PMID:14722622

  13. False memories in highly superior autobiographical memory individuals

    PubMed Central

    Patihis, Lawrence; Frenda, Steven J.; LePort, Aurora K. R.; Petersen, Nicole; Nichols, Rebecca M.; Stark, Craig E. L.; McGaugh, James L.; Loftus, Elizabeth F.

    2013-01-01

    The recent identification of highly superior autobiographical memory (HSAM) raised the possibility that there may be individuals who are immune to memory distortions. We measured HSAM participants’ and age- and sex-matched controls’ susceptibility to false memories using several research paradigms. HSAM participants and controls were both susceptible to false recognition of nonpresented critical lure words in an associative word-list task. In a misinformation task, HSAM participants showed higher overall false memory compared with that of controls for details in a photographic slideshow. HSAM participants were equally as likely as controls to mistakenly report they had seen nonexistent footage of a plane crash. Finding false memories in a superior-memory group suggests that malleable reconstructive mechanisms may be fundamental to episodic remembering. Paradoxically, HSAM individuals may retrieve abundant and accurate autobiographical memories using fallible reconstructive processes. PMID:24248358

  14. The Multifold Relationship between Memory and Decision Making: An Individual-Differences Study

    ERIC Educational Resources Information Center

    Del Missier, Fabio; Mäntylä, Timo; Hansson, Patrik; Bruine de Bruin, Wändi; Parker, Andrew M.; Nilsson, Lars-Göran

    2013-01-01

    Several judgment and decision-making tasks are assumed to involve memory functions, but significant knowledge gaps on the memory processes underlying these tasks remain. In a study on 568 adults between 25 and 80 years of age, hypotheses were tested on the specific relationships between individual differences in working memory, episodic memory,…

  15. External Memory Aid Preferences of Individuals with Mild Memory Impairments.

    PubMed

    Lanzi, Alyssa; Wallace, Sarah E; Bourgeois, Michelle S

    2018-07-01

    Individuals with mild memory impairments often rely on external memory aids (EMAs) to compensate for impaired cognitive abilities and to support independent completion of activities of daily living. These strategies are evidence based; however, professionals have limited knowledge regarding individual preferences and guidance on how to incorporate a person-centered approach into the EMA development phase. The purpose of the current study was to qualitatively investigate individuals' preferences and experiences as they relate to EMAs. Data analysis included (1) evaluation of a posttreatment questionnaire to explore individual strategy preferences following intervention and (2) evaluation of group intervention videos using thematic coding to investigate individuals' experiences with strategies during intervention. Results suggest that older adults with mild memory impairments have unique preferences and experiences, despite limited variability in demographic characteristics. Some themes that emerged included memory ability awareness and attitudes toward technology. Within a person-centered approach, skilled professionals must consider individuals' unique needs, preferences, and experiences when developing strategies throughout the continuum of care to promote sustained EMA use within everyday settings. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  16. Factors involved in the generation of memory CD8+ T cells in patients with X-linked lymphoproliferative disease (XLP)

    PubMed Central

    Belmonte, L; Parodi, C; Baré, P; Malbrán, A; Ruibal-Ares, B; de E de Bracco, María M

    2007-01-01

    We have analysed the phenotype of T lymphocytes in two X-linked lymphoproliferative disease (XLP) patients with the same SH2D1A mutation differing in initial exposure to Epstein–Barr virus (EBV) and treatment. While memory T lymphocytes (with low CCR7 and CD62L expression) prevailed in both XLP patients, in patient 9, who developed acute infectious mononucleosis (AIM) and received B cell ablative treatment, the predominant phenotype was that of late effector CD8 T cells (CD27–, CD28–, CCR7–, CD62L–, CD45 RA+, perforin+), while in patient 4 (who did not suffer AIM) the prevalent phenotype of CD8 T lymphocytes was similar to that of normal controls (N) or to that of adult individuals who recovered from AIM: CD27+, CD28+, CCR7–, CD62L–, CD45 RO+ and perforin–. CD57 expression (related to senescence) was also higher in CD8 T cells from patient 9 than in patient 4, AIM or N. Persistently high EBV viral load was observed in patient 9. The results obtained from this limited number of XLP patients suggest that events related to the initial EBV encounter (antigen load, treatment, cytokine environment) may have more weight than lack of SH2D1A in determining the long-term differentiation pattern of CD8 memory T cells. PMID:17302894

  17. Liver-primed memory T cells generated under noninflammatory conditions provide anti-infectious immunity.

    PubMed

    Böttcher, Jan P; Schanz, Oliver; Wohlleber, Dirk; Abdullah, Zeinab; Debey-Pascher, Svenja; Staratschek-Jox, Andrea; Höchst, Bastian; Hegenbarth, Silke; Grell, Jessica; Limmer, Andreas; Atreya, Imke; Neurath, Markus F; Busch, Dirk H; Schmitt, Edgar; van Endert, Peter; Kolanus, Waldemar; Kurts, Christian; Schultze, Joachim L; Diehl, Linda; Knolle, Percy A

    2013-03-28

    Development of CD8(+) T cell (CTL) immunity or tolerance is linked to the conditions during T cell priming. Dendritic cells (DCs) matured during inflammation generate effector/memory T cells, whereas immature DCs cause T cell deletion/anergy. We identify a third outcome of T cell priming in absence of inflammation enabled by cross-presenting liver sinusoidal endothelial cells. Such priming generated memory T cells that were spared from deletion by immature DCs. Similar to central memory T cells, liver-primed T cells differentiated into effector CTLs upon antigen re-encounter on matured DCs even after prolonged absence of antigen. Their reactivation required combinatorial signaling through the TCR, CD28, and IL-12R and controlled bacterial and viral infections. Gene expression profiling identified liver-primed T cells as a distinct Neuropilin-1(+) memory population. Generation of liver-primed memory T cells may prevent pathogens that avoid DC maturation by innate immune escape from also escaping adaptive immunity through attrition of the T cell repertoire. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Consistency of handedness, regardless of direction, predicts baseline memory accuracy and potential for memory enhancement.

    PubMed

    Lyle, Keith B; Hanaver-Torrez, Shelley D; Hackländer, Ryan P; Edlin, James M

    2012-01-01

    Research has shown that consistently right-handed individuals have poorer memory than do inconsistently right- or left-handed individuals under baseline conditions but more reliably exhibit enhanced memory retrieval after making a series of saccadic eye movements. From this it could be that consistent versus inconsistent handedness, regardless of left/right direction, is an important individual difference factor in memory. Or, more specifically, it could be the presence or absence of consistent right-handedness that matters for memory. To resolve this ambiguity, we compared consistent and inconsistent left- and right-handers on associative recognition tests taken after saccades or a no-saccades control activity. Consistent-handers exhibited poorer memory than did inconsistent-handers following the control activity, and saccades enhanced retrieval for consistent-handers only. Saccades impaired retrieval for inconsistent-handers. None of these effects depended on left/right direction. Hence, this study establishes handedness consistency, regardless of direction, as an important individual difference factor in memory.

  19. Peripheral B cells latently infected with Epstein–Barr virus display molecular hallmarks of classical antigen-selected memory B cells

    PubMed Central

    Souza, Tatyana A.; Stollar, B. David; Sullivan, John L.; Luzuriaga, Katherine; Thorley-Lawson, David A.

    2005-01-01

    Epstein–Barr virus (EBV) establishes a lifelong persistent infection within peripheral blood B cells with the surface phenotype of memory cells. To date there is no proof that these cells have the genotype of true germinal-center-derived memory B cells. It is critical to understand the relative contribution of viral mimicry versus antigen signaling to the production of these cells because EBV encodes proteins that can affect the surface phenotype of infected cells and provide both T cell help and B cell receptor signals in the absence of cognate antigen. To address these questions we have developed a technique to identify single EBV-infected cells in the peripheral blood and examine their expressed Ig genes. The genes were all isotype-switched and somatically mutated. Furthermore, the mutations do not cause stop codons and display the pattern expected for antigen-selected memory cells based on their frequency, type, and location within the Ig gene. We conclude that latently infected peripheral blood B cells display the molecular hallmarks of classical antigen-selected memory B cells. Therefore, EBV does not disrupt the normal processing of latently infected cells into memory, and deviations from normal B cell biology are not tolerated in the infected cells. This article provides definitive evidence that EBV in the peripheral blood persists in true memory B cells. PMID:16330748

  20. Loss of memory B cells impairs maintenance of long-term serologic memory during HIV-1 infection.

    PubMed

    Titanji, Kehmia; De Milito, Angelo; Cagigi, Alberto; Thorstensson, Rigmor; Grützmeier, Sven; Atlas, Ann; Hejdeman, Bo; Kroon, Frank P; Lopalco, Lucia; Nilsson, Anna; Chiodi, Francesca

    2006-09-01

    Circulating memory B cells are severely reduced in the peripheral blood of HIV-1-infected patients. We investigated whether dysfunctional serologic memory to non-HIV antigens is related to disease progression by evaluating the frequency of memory B cells, plasma IgG, plasma levels of antibodies to measles, and Streptococcus pneumoniae, and enumerating measles-specific antibody-secreting cells in patients with primary, chronic, and long-term nonprogressive HIV-1 infection. We also evaluated the in vitro production of IgM and IgG antibodies against measles and S pneumoniae antigens following polyclonal activation of peripheral blood mononuclear cells (PBMCs) from patients. The percentage of memory B cells correlated with CD4+ T-cell counts in patients, thus representing a marker of disease progression. While patients with primary and chronic infection had severe defects in serologic memory, long-term nonprogressors had memory B-cell frequency and levels of antigen-specific antibodies comparable with controls. We also evaluated the effect of antiretroviral therapy on these serologic memory defects and found that antiretroviral therapy did not restore serologic memory in primary or in chronic infection. We suggest that HIV infection impairs maintenance of long-term serologic immunity to HIV-1-unrelated antigens and this defect is initiated early in infection. This may have important consequences for the response of HIV-infected patients to immunizations.

  1. NFκB–Pim-1–Eomesodermin axis is critical for maintaining CD8 T-cell memory quality

    PubMed Central

    Knudson, Karin M.; Saxena, Vikas; Altman, Amnon; Daniels, Mark A.; Teixeiro, Emma

    2017-01-01

    T-cell memory is critical for long-term immunity. However, the factors involved in maintaining the persistence, function, and phenotype of the memory pool are undefined. Eomesodermin (Eomes) is required for the establishment of the memory pool. Here, we show that in T cells transitioning to memory, the expression of high levels of Eomes is not constitutive but rather requires a continuum of cell-intrinsic NFκB signaling. Failure to maintain NFκB signals after the peak of the response led to impaired Eomes expression and a defect in the maintenance of CD8 T-cell memory. Strikingly, we found that antigen receptor [T-cell receptor (TCR)] signaling regulates this process through expression of the NFκB-dependent kinase proviral integration site for Moloney murine leukemia virus-1 (PIM-1), which in turn regulates NFκB and Eomes. T cells defective in TCR-dependent NFκB signaling were impaired in late expression of Pim-1, Eomes, and CD8 memory. These defects were rescued when TCR-dependent NFκB signaling was restored. We also found that NFκB–Pim-1 signals were required at memory to maintain memory CD8 T-cell longevity, effector function, and Eomes expression. Hence, an NFκB–Pim-1–Eomes axis regulates Eomes levels to maintain memory fitness. PMID:28193872

  2. Individual differences in memory span: the contribution of rehearsal, access to lexical memory, and output speed.

    PubMed

    Tehan, G; Lalor, D M

    2000-11-01

    Rehearsal speed has traditionally been seen to be the prime determinant of individual differences in memory span. Recent studies, in the main using young children as the subject population, have suggested other contributors to span performance, notably contributions from long-term memory and forgetting and retrieval processes occurring during recall. In the current research we explore individual differences in span with respect to measures of rehearsal, output time, and access to lexical memory. We replicate standard short-term phenomena; we show that the variables that influence children's span performance influence adult performance in the same way; and we show that lexical memory access appears to be a more potent source of individual differences in span than either rehearsal speed or output factors.

  3. A Higher Activation Threshold of Memory CD8+ T Cells Has a Fitness Cost That Is Modified by TCR Affinity during Tuberculosis.

    PubMed

    Carpenter, Stephen M; Nunes-Alves, Cláudio; Booty, Matthew G; Way, Sing Sing; Behar, Samuel M

    2016-01-01

    T cell vaccines against Mycobacterium tuberculosis (Mtb) and other pathogens are based on the principle that memory T cells rapidly generate effector responses upon challenge, leading to pathogen clearance. Despite eliciting a robust memory CD8+ T cell response to the immunodominant Mtb antigen TB10.4 (EsxH), we find the increased frequency of TB10.4-specific CD8+ T cells conferred by vaccination to be short-lived after Mtb challenge. To compare memory and naïve CD8+ T cell function during their response to Mtb, we track their expansions using TB10.4-specific retrogenic CD8+ T cells. We find that the primary (naïve) response outnumbers the secondary (memory) response during Mtb challenge, an effect moderated by increased TCR affinity. To determine whether the expansion of polyclonal memory T cells is restrained following Mtb challenge, we used TCRβ deep sequencing to track TB10.4-specific CD8+ T cells after vaccination and subsequent challenge in intact mice. Successful memory T cells, defined by their clonal expansion after Mtb challenge, express similar CDR3β sequences suggesting TCR selection by antigen. Thus, both TCR-dependent and -independent factors affect the fitness of memory CD8+ responses. The impaired expansion of the majority of memory T cell clonotypes may explain why some TB vaccines have not provided better protection.

  4. A Higher Activation Threshold of Memory CD8+ T Cells Has a Fitness Cost That Is Modified by TCR Affinity during Tuberculosis

    PubMed Central

    Carpenter, Stephen M.; Nunes-Alves, Cláudio; Booty, Matthew G.; Way, Sing Sing; Behar, Samuel M.

    2016-01-01

    T cell vaccines against Mycobacterium tuberculosis (Mtb) and other pathogens are based on the principle that memory T cells rapidly generate effector responses upon challenge, leading to pathogen clearance. Despite eliciting a robust memory CD8+ T cell response to the immunodominant Mtb antigen TB10.4 (EsxH), we find the increased frequency of TB10.4-specific CD8+ T cells conferred by vaccination to be short-lived after Mtb challenge. To compare memory and naïve CD8+ T cell function during their response to Mtb, we track their expansions using TB10.4-specific retrogenic CD8+ T cells. We find that the primary (naïve) response outnumbers the secondary (memory) response during Mtb challenge, an effect moderated by increased TCR affinity. To determine whether the expansion of polyclonal memory T cells is restrained following Mtb challenge, we used TCRβ deep sequencing to track TB10.4-specific CD8+ T cells after vaccination and subsequent challenge in intact mice. Successful memory T cells, defined by their clonal expansion after Mtb challenge, express similar CDR3β sequences suggesting TCR selection by antigen. Thus, both TCR-dependent and -independent factors affect the fitness of memory CD8+ responses. The impaired expansion of the majority of memory T cell clonotypes may explain why some TB vaccines have not provided better protection. PMID:26745507

  5. Diversity in T cell memory: An embarrassment of riches

    PubMed Central

    Jameson, Stephen C.; Masopust, David

    2010-01-01

    The adaptive immune response meets the needs of the organism to generate effector cells capable of controlling pathogens, but also leads to production of memory cells, which mediate more effective protection during rechallenge. In this review we focus on the generation, maintenance and function of memory T cells, with a special emphasis on the increasing evidence for great diversity among functional memory T cell subsets. PMID:20064446

  6. Constituents of the anti–asthma herbal formula ASHMI™ synergistically inhibit IL–4 and IL–5 secretion by murine Th2 memory cells, and eotaxin by human lung fibroblasts in vitro

    PubMed Central

    Jayaprakasam, Bolleddula; Yang, Nan; Wen, Ming-Chun; Wang, Rong; Goldfarb, Joseph; Sampson, Hugh; Li, Xiu-Min

    2015-01-01

    OBJECTIVE Anti-asthma herbal medicine intervention (ASHMI™), a combination of three traditional Chinese medicinal herbs developed in our laboratory, has demonstrated efficacy in both mouse models of allergic asthma, and a double-blind placebo-controlled clinical trial in patients with asthma. This study was designed to determine if the anti-inflammatory effects of individual herbal constituents of ASHMI™ exhibited synergy. METHODS Effects of ASHMI and its components aqueous extracts of Lingzhi (Ganoderma lucidum), Kushen (Sophora flavescens) and Gancao (Glycyrrhiza uralensis), on Th2 cytokine secretion by murine memory Th2 cells (D10.G4.1) and eotaxin-1 secretion by human lung fibroblast (HLF-1) cells were determined by measuring levels in culture supernatants by enzyme-linked immunosorbent assay. Potential synergistic effects were determined by computing interaction indices from concentration-effect curve parameters. RESULTS Individual Lingzhi, Kushen and Gancao extracts and ASHMI (the combination of individual extracts) inhibited production of interleukin (IL)-4 and IL-5 by murine memory Th2 cells and eotaxin-1 production by HLF-1 cells. The mean 25%-inhibitory-concentration (IC25) values (mg/mL) for ASHMI, Lingzhi, Kushen and Gancao for IL-4 production were 30.9, 79.4, 123, and 64.6, respectively; for IL-5 production were 30.2, 263, 123.2 and 100, respectively; for eotaxin-1 were 13.2, 16.2, 30.2, and 25.1, respectively. The IC50 values (mg/mL) for ASHMI, Lingzhi, Kushen and Gancao for IL-4 production were 158.5, 239.9, 446.7, and 281.8, respectively; for eotaxin-1 were 38.1, 33.1, 100, and 158.5, respectively. The interaction indices of ASHMI constituents at IC25 were 0.35 for IL-4, 0.21 for IL-5 and 0.59 for eotaxin-1. The interaction indices at IC50 values were 0.50 for IL-4 and 0.62 for eotaxin-1 inhibition. Inhibition of IL-5 did not reach IC50 values. All interaction indices were below 1 which indicated synergy. CONCLUSION By comparing the interaction index values, we find that constituents in ASHMI™ synergistically inhibited eotaxin-1 production as well as Th2 cytokine production. PMID:23743163

  7. Endogenous Memory CD8 T Cells Directly Mediate Cardiac Allograft Rejection

    PubMed Central

    Su, C. A.; Iida, S.; Abe, T.; Fairchild, R. L.

    2014-01-01

    Differences in levels of environmentally induced memory T cells that cross-react with donor MHC molecules are postulated to account for the efficacy of allograft tolerance inducing strategies in rodents versus their failure in nonhuman primates and human transplant patients. Strategies to study the impact of donor-reactive memory T cells on allografts in rodents have relied on the pre-transplant induction of memory T cells cross-reactive with donor allogeneic MHC molecules through recipient viral infection, priming directly with donor antigen, or adoptive transfer of donor-antigen primed memory T cells. Each approach accelerates allograft rejection and confers resistance to tolerance induction, but also biases the T cell repertoire to strong donor-reactivity. The ability of endogenous memory T cells within unprimed mice to directly reject an allograft is unknown. Here we show a direct association between increased duration of cold ischemic allograft storage and numbers and enhanced functions of early graft infiltrating endogenous CD8 memory T cells. These T cells directly mediate rejection of allografts subjected to prolonged ischemia and this rejection is resistant to costimulatory blockade. These findings recapitulate the clinically significant impact of endogenous memory T cells with donor reactivity in a mouse transplant model in the absence of prior recipient priming. PMID:24502272

  8. Cell-autonomous CCL5 transcription by memory CD8 T cells is regulated by IL-4.

    PubMed

    Marçais, Antoine; Coupet, Charles-Antoine; Walzer, Thierry; Tomkowiak, Martine; Ghittoni, Raffaella; Marvel, Jacqueline

    2006-10-01

    Immunological memory is associated with the display of improved effector functions. The maintenance by CD8 memory cells of high levels of untranslated CCL5 mRNA allows these cells to immediately secrete this chemokine upon Ag stimulation. Untranslated mRNA storage is a newly described process supporting the immediate display of an effector function by memory lymphocytes. We have tested the capacity of different cytokines to regulate the memorization of CCL5 by memory CD8 T cells. We found that IL-4 treatment of murine CD8 T cells impairs immediate CCL5 secretion capacity by inhibiting CCL5 mRNA transcription through a STAT6-dependent pathway. The inhibition by IL-4 is reversible, as memory CD8 T cells reconstitute their CCL5 mRNA stores and reacquire their immediate CCL5 secretion capacity when IL-4 is withdrawn. This recovery is cell autonomous because it proceeds in culture medium in the absence of exogenous growth factors, suggesting that CCL5 expression by memory CD8 T cells is a default process. Overall, these results indicate that the expression of CCL5 is an intrinsic property acquired by memory CD8 T cells that is regulated by environmental factors.

  9. Memory T cells maintain protracted protection against malaria.

    PubMed

    Krzych, Urszula; Zarling, Stasya; Pichugin, Alexander

    2014-10-01

    Immunologic memory is one of the cardinal features of antigen-specific immune responses, and the persistence of memory cells contributes to prophylactic immunizations against infectious agents. Adequately maintained memory T and B cell pools assure a fast, effective and specific response against re-infections. However, many aspects of immunologic memory are still poorly understood, particularly immunologic memory inducible by parasites, for example, Plasmodium spp., the causative agents of malaria. For example, memory responses to Plasmodium antigens amongst residents of malaria endemic areas appear to be either inadequately developed or maintained, because persons who survive episodes of childhood malaria remain vulnerable to intermittent malaria infections. By contrast, multiple exposures of humans and laboratory rodents to radiation-attenuated Plasmodium sporozoites (γ-spz) induce sterile and long-lasting protection against experimental sporozoite challenge. Multifactorial immune mechanisms maintain this protracted and sterile protection. While the presence of memory CD4 T cell subsets has been associated with lasting protection in humans exposed to multiple bites from Anopheles mosquitoes infected with attenuated Plasmodium falciparum, memory CD8 T cells maintain protection induced with Plasmodium yoelii and Plasmodium berghei γ-spz in murine models. In this review, we discuss our observations that show memory CD8 T cells specific for antigens expressed by P. berghei liver stage parasites as an indispensable component for the maintenance of protracted protective immunity against experimental malaria infection; moreover, the provision of an Ag-depot assures a quick recall of memory T cells as IFN-γ-producing effector CD8 T cells and IL-4- producing CD4 T cells that collaborate with B cells for an effective antibody response. Published by Elsevier B.V.

  10. TLR4 ligands LPS and MPLA differentially regulate effector and memory CD8+ T cell differentiation

    PubMed Central

    Cui, Weiguo; Joshi, Nikhil S.; Liu, Ying; Meng, Hailong; Kleinstein, Steven H; Kaech, Susan M.

    2014-01-01

    Vaccines formulated with non-replicating pathogens require adjuvants to help bolster immunogenicity. The role of adjuvants in antibody production has been well studied, but how they influence memory CD8+ T cell differentiation remains poorly defined. Here we implemented dendritic cell (DC)-mediated immunization to study the effects of commonly used adjuvants, TLR ligands, on effector and memory CD8+ T cell differentiation in mice. Intriguingly, we found that the TLR4 ligand LPS was far more superior to other TLR ligands in generating memory CD8+ T cells upon immunization. LPS boosted clonal expansion similar to the other adjuvants, but fewer of the activated CD8+ T cells died during contraction, generating a larger pool of memory cells. Surprisingly, monophosphoryl lipid A (MPLA), another TLR4 ligand, enhanced clonal expansion of effector CD8+ T cells, but also promoted their terminal differentiation and contraction; thus, fewer memory CD8+ T cells formed and MPLA-primed animals were less protected against secondary infection compared to those primed with LPS. Furthermore, gene expression profiling revealed that LPS-primed effector cells displayed a stronger pro-memory gene expression signature, whereas the gene expression profile of MPLA-primed effector cells aligned closer with terminal effector CD8+ T cells. Lastly, we demonstrated that the LPS-TLR4-derived “pro-memory” signals were MyD88, but not Trif, dependent. This study reveals the influential power of adjuvants on the quantity and quality of CD8+ T cell memory, and that attention to adjuvant selection is crucial because boosting effector cell expansion may not always equate with more memory T cells or greater protection. PMID:24659688

  11. Differential cross-reactivity of monoclonal antibody OPD4 (anti-CD45RO) in macaques

    PubMed Central

    Wang, Xiaolei; Pahar, Bapi; Rasmussen, Terri; Alvarez, Xavier; Dufour, Jason; Rasmussen, Kelsi; Lackner, Andrew A.; Veazey, Ronald S.

    2008-01-01

    Immunologic research in nonhuman primates is occasionally limited by the availability of reagents that cross react in nonhuman primates. One major limitation has been the lack of a monoclonal antibody to CD45RO. Although the monoclonal antibody UCHL-1 is used to detect CD45RO isoforms in humans, it does not react with nonhuman primates, mandating the use of alternative strategies to define “memory” T cell responses in nonhuman primates. The current study examined the reactivity and specificity of another antibody against CD45RO, clone OPD4, in macaques. Here we demonstrate that OPD4 specifically labels memory CD4+ T cells in ~44% of rhesus macaques (Macaca mulatta) of Indian, but not Chinese origin. In contrast, tissues from pigtail macaques (Macaca nemestrina) react with this clone, indicating that OPD4 may be useful for examining memory CD4+ T cells in certain macaques, but its utility may be limited in other species or even among individual macaques. PMID:18304631

  12. A Genome-wide Regulatory Network Identifies Key Transcription Factors for Memory CD8+ T Cell Development

    PubMed Central

    Hu, Guangan; Chen, Jianzhu

    2014-01-01

    Memory CD8+ T cell development is defined by the expression of a specific set of memory signature genes (MSGs). Despite recent progress, many components of the transcriptional control of memory CD8+ T cell development are still unknown. To identify transcription factors (TFs) and their interactions in memory CD8+ T cell development, we construct a genome-wide regulatory network and apply it to identify key TFs that regulate MSGs. Most of the known TFs in memory CD8+ T cell development are rediscovered and about a dozen new TFs are also identified. Sox4, Bhlhe40, Bach2 and Runx2 are experimentally verified and Bach2 is further shown to promote both development and recall proliferation of memory CD8+ T cells through Prdm1 and Id3. Gene perturbation study identifies the mode of interactions among the TFs with Sox4 as a hub. The identified TFs and insights into their interactions should facilitate further dissection of molecular mechanisms underlying memory CD8+ T cell development. PMID:24335726

  13. Memory-like Responses of Natural Killer Cells

    PubMed Central

    Cooper, Megan A.; Yokoyama, Wayne M.

    2010-01-01

    Summary Natural killer (NK) cells are lymphocytes with the capacity to produce cytokines and kill target cells upon activation. NK cells have long been categorized as members of the innate immune system and as such have been thought to follow the ‘rules’ of innate immunity, including the principle that they have no immunologic memory, a property thought to be strictly limited to adaptive immunity. However, recent studies have suggested that NK cells have the capacity to alter their behavior based on prior activation. This property is analogous to adaptive immune memory; however, some NK cell memory-like functions are not strictly antigen-dependent and can be demonstrated following cytokine stimulation. Here we discuss the recent evidence that NK cells can exhibit properties of immunologic memory, focusing on the ability of cytokines to non-specifically induce memory-like NK cells with enhanced responses to restimulation. PMID:20536571

  14. Interregional synaptic maps among engram cells underlie memory formation.

    PubMed

    Choi, Jun-Hyeok; Sim, Su-Eon; Kim, Ji-Il; Choi, Dong Il; Oh, Jihae; Ye, Sanghyun; Lee, Jaehyun; Kim, TaeHyun; Ko, Hyoung-Gon; Lim, Chae-Seok; Kaang, Bong-Kiun

    2018-04-27

    Memory resides in engram cells distributed across the brain. However, the site-specific substrate within these engram cells remains theoretical, even though it is generally accepted that synaptic plasticity encodes memories. We developed the dual-eGRASP (green fluorescent protein reconstitution across synaptic partners) technique to examine synapses between engram cells to identify the specific neuronal site for memory storage. We found an increased number and size of spines on CA1 engram cells receiving input from CA3 engram cells. In contextual fear conditioning, this enhanced connectivity between engram cells encoded memory strength. CA3 engram to CA1 engram projections strongly occluded long-term potentiation. These results indicate that enhanced structural and functional connectivity between engram cells across two directly connected brain regions forms the synaptic correlate for memory formation. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  15. Engrams and circuits crucial for systems consolidation of a memory.

    PubMed

    Kitamura, Takashi; Ogawa, Sachie K; Roy, Dheeraj S; Okuyama, Teruhiro; Morrissey, Mark D; Smith, Lillian M; Redondo, Roger L; Tonegawa, Susumu

    2017-04-07

    Episodic memories initially require rapid synaptic plasticity within the hippocampus for their formation and are gradually consolidated in neocortical networks for permanent storage. However, the engrams and circuits that support neocortical memory consolidation have thus far been unknown. We found that neocortical prefrontal memory engram cells, which are critical for remote contextual fear memory, were rapidly generated during initial learning through inputs from both the hippocampal-entorhinal cortex network and the basolateral amygdala. After their generation, the prefrontal engram cells, with support from hippocampal memory engram cells, became functionally mature with time. Whereas hippocampal engram cells gradually became silent with time, engram cells in the basolateral amygdala, which were necessary for fear memory, were maintained. Our data provide new insights into the functional reorganization of engrams and circuits underlying systems consolidation of memory. Copyright © 2017, American Association for the Advancement of Science.

  16. Arbitrary and semantic associations in subjective memory impairment and amnestic mild cognitive impairment among Taiwanese individuals: A cross-sectional study.

    PubMed

    Chang, Hsin-Te; Chen, Ta-Fu; Cheng, Ting-Wen; Lai, Ya-Mei; Hua, Mau-Sun

    2018-05-01

    Researchers have recently proposed a preclinical stage of dementia of Alzheimer's type (DAT), referred to as subjective memory impairment (SMI), with the aim of developing methods for the early detection of DAT and subsequent intervention. It has been proposed that the objective memory functions of individuals with SMI are normal; however, arbitrary and semantic associations are both used to describe the processes of memory. No previous studies have investigated these processes among individuals with SMI. Cross-sectional analysis was used to compare the memory function of individuals with SMI, amnestic mild cognitive impairment (aMCI), or DAT. One hundred and eighty-three participants were recruited from the Memory Clinic of National Taiwan University Hospital and communities in northern Taiwan, including individuals with no memory complaints (HC, n = 30) and individuals with SMI (n = 61), aMCI-single domain (n = 24), aMCI-multiple domain (n = 33), or DAT (n = 35). The Word Sequence Learning Test (WSLT) was used to assess the formation of arbitrary associations and the Logical Memory subtest of the Wechsler Memory Scale-Third Edition was used to assess the formation of semantic associations. Compared to the HC group, the SMI group performed poorly only on the WSLT, whereas the other groups performed poorly on both of the memory tasks. This study demonstrated that SMI individuals tend to perform poorly in the formation of arbitrary associations. Our findings suggest that tasks requiring arbitrary associations may provide greater sensitivity in the detection cognitive changes associated with preclinical DAT. Copyright © 2017. Published by Elsevier B.V.

  17. Structural brain correlates of associative memory in older adults.

    PubMed

    Becker, Nina; Laukka, Erika J; Kalpouzos, Grégoria; Naveh-Benjamin, Moshe; Bäckman, Lars; Brehmer, Yvonne

    2015-09-01

    Associative memory involves binding two or more items into a coherent memory episode. Relative to memory for single items, associative memory declines greatly in aging. However, older individuals vary substantially in their ability to memorize associative information. Although functional studies link associative memory to the medial temporal lobe (MTL) and prefrontal cortex (PFC), little is known about how volumetric differences in MTL and PFC might contribute to individual differences in associative memory. We investigated regional gray-matter volumes related to individual differences in associative memory in a sample of healthy older adults (n=54; age=60years). To differentiate item from associative memory, participants intentionally learned face-scene picture pairs before performing a recognition task that included single faces, scenes, and face-scene pairs. Gray-matter volumes were analyzed using voxel-based morphometry region-of-interest (ROI) analyses. To examine volumetric differences specifically for associative memory, item memory was controlled for in the analyses. Behavioral results revealed large variability in associative memory that mainly originated from differences in false-alarm rates. Moreover, associative memory was independent of individuals' ability to remember single items. Older adults with better associative memory showed larger gray-matter volumes primarily in regions of the left and right lateral PFC. These findings provide evidence for the importance of PFC in intentional learning of associations, likely because of its involvement in organizational and strategic processes that distinguish older adults with good from those with poor associative memory. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Skin-resident CD4+ T cells protect against Leishmania major by recruiting and activating inflammatory monocytes

    PubMed Central

    Glennie, Nelson D.; Volk, Susan W.

    2017-01-01

    Tissue-resident memory T cells are required for establishing protective immunity against a variety of different pathogens, although the mechanisms mediating protection by CD4+ resident memory T cells are still being defined. In this study we addressed this issue with a population of protective skin-resident, IFNγ-producing CD4+ memory T cells generated following Leishmania major infection. We previously found that resident memory T cells recruit circulating effector T cells to enhance immunity. Here we show that resident memory CD4+ T cells mediate the delayed-hypersensitivity response observed in immune mice and provide protection without circulating T cells. This protection occurs rapidly after challenge, and requires the recruitment and activation of inflammatory monocytes, which limit parasites by production of both reactive oxygen species and nitric oxide. Overall, these data highlight a novel role for tissue-resident memory cells in recruiting and activating inflammatory monocytes, and underscore the central role that skin-resident T cells play in immunity to cutaneous leishmaniasis. PMID:28419151

  19. γδ T cells exhibit multifunctional and protective memory in intestinal tissues

    PubMed Central

    Sheridan, Brian S.; Romagnoli, Pablo A.; Pham, Quynh-Mai; Fu, Han-Hsuan; Alonzo, Francis; Schubert, Wolf-Dieter; Freitag, Nancy E.; Lefrançois, Leo

    2013-01-01

    Summary The study of T cell memory and the target of vaccine design has focused on memory subsumed by T cells bearing the αβ T cell receptor. Alternatively, γδ T cells are thought to provide rapid immunity particularly at mucosal borders. Here we have shown that a distinct subset of mucosal γδ T cells mounts an immune response to oral Listeria monocytogenes (Lm) infection leading to the development of multifunctional memory T cells in the murine intestinal mucosa that is capable of simultaneously producing interferon-γ and interleukin-17A. Challenge infection with oral Lm, but not oral Salmonella or intravenous Lm, induced rapid expansion of memory γδ T cells suggesting contextual specificity to the priming pathogen. Importantly, memory γδ T cells were able to provide enhanced protection against infection. These findings illustrate a previously unrecognized role for γδ T cells with hallmarks of adaptive immunity in the intestinal mucosa. PMID:23890071

  20. Mapping the Structure of Semantic Memory

    ERIC Educational Resources Information Center

    Morais, Ana Sofia; Olsson, Henrik; Schooler, Lael J.

    2013-01-01

    Aggregating snippets from the semantic memories of many individuals may not yield a good map of an individual's semantic memory. The authors analyze the structure of semantic networks that they sampled from individuals through a new snowball sampling paradigm during approximately 6 weeks of 1-hr daily sessions. The semantic networks of individuals…

  1. Antibody and B Cell Subset Perturbations in Human Immunodeficiency Virus-Uninfected Patients With Cryptococcosis

    PubMed Central

    Rohatgi, Soma; Nakouzi, Antonio; Carreño, Leandro J; Slosar-Cheah, Magdalena; Kuniholm, Mark H; Wang, Tao; Pappas, Peter G

    2018-01-01

    Abstract The importance of antibody immunity in protection against Cryptococcus neoformans remains unresolved. We measured serum C neoformans-specific and total antibody levels and peripheral blood B cell subsets of 12 previously healthy patients with cryptococcosis (cases) and 21 controls. Before and after adjustment for age, sex, and race, cryptococcal capsular polysaccharide immunoglobulin G was higher in cases than controls, whereas total B and memory B cell levels were lower. These associations parallel previous findings in patients with human immunodeficiency virus-associated cryptococcosis and suggest that B cell subset perturbations may also associate with disease in previously normal individuals with cryptococcosis. PMID:29354657

  2. Antibody and B Cell Subset Perturbations in Human Immunodeficiency Virus-Uninfected Patients With Cryptococcosis.

    PubMed

    Rohatgi, Soma; Nakouzi, Antonio; Carreño, Leandro J; Slosar-Cheah, Magdalena; Kuniholm, Mark H; Wang, Tao; Pappas, Peter G; Pirofski, Liise-Anne

    2018-01-01

    The importance of antibody immunity in protection against Cryptococcus neoformans remains unresolved. We measured serum C neoformans -specific and total antibody levels and peripheral blood B cell subsets of 12 previously healthy patients with cryptococcosis (cases) and 21 controls. Before and after adjustment for age, sex, and race, cryptococcal capsular polysaccharide immunoglobulin G was higher in cases than controls, whereas total B and memory B cell levels were lower. These associations parallel previous findings in patients with human immunodeficiency virus-associated cryptococcosis and suggest that B cell subset perturbations may also associate with disease in previously normal individuals with cryptococcosis.

  3. Ezh2 phosphorylation state determines its capacity to maintain CD8+ T memory precursors for antitumor immunity.

    PubMed

    He, Shan; Liu, Yongnian; Meng, Lijun; Sun, Hongxing; Wang, Ying; Ji, Yun; Purushe, Janaki; Chen, Pan; Li, Changhong; Madzo, Jozef; Issa, Jean-Pierre; Soboloff, Jonathan; Reshef, Ran; Moore, Bethany; Gattinoni, Luca; Zhang, Yi

    2017-12-14

    Memory T cells sustain effector T-cell production while self-renewing in reaction to persistent antigen; yet, excessive expansion reduces memory potential and impairs antitumor immunity. Epigenetic mechanisms are thought to be important for balancing effector and memory differentiation; however, the epigenetic regulator(s) underpinning this process remains unknown. Herein, we show that the histone methyltransferase Ezh2 controls CD8 + T memory precursor formation and antitumor activity. Ezh2 activates Id3 while silencing Id2, Prdm1 and Eomes, promoting the expansion of memory precursor cells and their differentiation into functional memory cells. Akt activation phosphorylates Ezh2 and decreases its control of these transcriptional programs, causing enhanced effector differentiation at the expense of T memory precursors. Engineering T cells with an Akt-insensitive Ezh2 mutant markedly improves their memory potential and capability of controlling tumor growth compared to transiently inhibiting Akt. These findings establish Akt-mediated phosphorylation of Ezh2 as a critical target to potentiate antitumor immunotherapeutic strategies.

  4. Circulating B cells in type 1 diabetics exhibit fewer maturation-associated phenotypes.

    PubMed

    Hanley, Patrick; Sutter, Jennifer A; Goodman, Noah G; Du, Yangzhu; Sekiguchi, Debora R; Meng, Wenzhao; Rickels, Michael R; Naji, Ali; Luning Prak, Eline T

    2017-10-01

    Although autoantibodies have been used for decades as diagnostic and prognostic markers in type 1 diabetes (T1D), further analysis of developmental abnormalities in B cells could reveal tolerance checkpoint defects that could improve individualized therapy. To evaluate B cell developmental progression in T1D, immunophenotyping was used to classify circulating B cells into transitional, mature naïve, mature activated, and resting memory subsets. Then each subset was analyzed for the expression of additional maturation-associated markers. While the frequencies of B cell subsets did not differ significantly between patients and controls, some T1D subjects exhibited reduced proportions of B cells that expressed transmembrane activator and CAML interactor (TACI) and Fas receptor (FasR). Furthermore, some T1D subjects had B cell subsets with lower frequencies of class switching. These results suggest circulating B cells exhibit variable maturation phenotypes in T1D. These phenotypic variations may correlate with differences in B cell selection in individual T1D patients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Transcriptional Profiling of Antigen-Dependent Murine B Cell Differentiation and Memory Formation1

    PubMed Central

    Bhattacharya, Deepta; Cheah, Ming T.; Franco, Christopher B.; Hosen, Naoki; Pin, Christopher L.; Sha, William C.; Weissman, Irving L.

    2015-01-01

    Humoral immunity is characterized by the generation of Ab-secreting plasma cells and memory B cells that can more rapidly generate specific Abs upon Ag exposure than their naive counterparts. To determine the intrinsic differences that distinguish naive and memory B cells and to identify pathways that allow germinal center B cells to differentiate into memory B cells, we compared the transcriptional profiles of highly purified populations of these three cell types along with plasma cells isolated from mice immunized with a T-dependent Ag. The transcriptional profile of memory B cells is similar to that of naive B cells, yet displays several important differences, including increased expression of activation-induced deaminase and several antiapoptotic genes, chemotactic receptors, and costimulatory molecules. Retroviral expression of either Klf2 or Ski, two transcriptional regulators specifically enriched in memory B cells relative to their germinal center precursors, imparted a competitive advantage to Ag receptor and CD40-engaged B cells in vitro. These data suggest that humoral recall responses are more rapid than primary responses due to the expression of a unique transcriptional program by memory B cells that allows them to both be maintained at high frequencies and to detect and rapidly respond to antigenic re-exposure. PMID:17982071

  6. FOXO1 opposition of CD8+ T cell effector programming confers early memory properties and phenotypic diversity.

    PubMed

    Delpoux, Arnaud; Lai, Chen-Yen; Hedrick, Stephen M; Doedens, Andrew L

    2017-10-17

    The factors and steps controlling postinfection CD8 + T cell terminal effector versus memory differentiation are incompletely understood. Whereas we found that naive TCF7 (alias "Tcf-1") expression is FOXO1 independent, early postinfection we report bimodal, FOXO1-dependent expression of the memory-essential transcription factor TCF7 in pathogen-specific CD8 + T cells. We determined the early postinfection TCF7 high population is marked by low TIM3 expression and bears memory signature hallmarks before the appearance of established memory precursor marker CD127 (IL-7R). These cells exhibit diminished TBET, GZMB, mTOR signaling, and cell cycle progression. Day 5 postinfection, TCF7 high cells express higher memory-associated BCL2 and EOMES, as well as increased accumulation potential and capacity to differentiate into memory phenotype cells. TCF7 retroviral transduction opposes GZMB expression and the formation of KLRG1 pos phenotype cells, demonstrating an active role for TCF7 in extinguishing the effector program and forestalling terminal differentiation. Past the peak of the cellular immune response, we report a gradient of FOXO1 and TCF7 expression, which functions to oppose TBET and orchestrate a continuum of effector-to-memory phenotypes.

  7. Ablation of SLP-76 signaling after T cell priming generates memory CD4 T cells impaired in steady-state and cytokine-driven homeostasis.

    PubMed

    Bushar, Nicholas D; Corbo, Evann; Schmidt, Michelle; Maltzman, Jonathan S; Farber, Donna L

    2010-01-12

    The intracellular signaling mechanisms regulating the generation and long-term persistence of memory T cells in vivo remain unclear. In this study, we used mouse models with conditional deletion of the key T cell receptor (TCR)-coupled adaptor molecule SH2-domain-containing phosphoprotein of 76 kDa (SLP-76), to analyze signaling mechanisms for memory CD4 T cell generation, maintenance, and homeostasis. We found that ablation of SLP-76 expression after T cell priming did not inhibit generation of phenotypic effector or memory CD4 T cells; however, the resultant SLP-76-deficient memory CD4 T cells could not produce recall cytokines in response to TCR-mediated stimulation and showed decreased persistence in vivo. In addition, SLP-76-deficient memory CD4 T cells exhibited reduced steady-state homeostasis and were impaired in their ability to homeostatically expand in vivo in response to the gamma(c) cytokine IL-7, despite intact proximal signaling through the IL-7R-coupled JAK3/STAT5 pathway. Direct in vivo deletion of SLP-76 in polyclonal memory CD4 T cells likewise led to impaired steady-state homeostasis as well as impaired homeostatic responses to IL-7. Our findings demonstrate a dominant role for SLP-76-dependent TCR signals in regulating turnover and perpetuation of memory CD4 T cells and their responses to homeostatic cytokines, with implications for the selective survival of memory CD4 T cells following pathogen exposure, vaccination, and aging.

  8. Individual Differences in Autobiographical Memory.

    PubMed

    Palombo, Daniela J; Sheldon, Signy; Levine, Brian

    2018-07-01

    Although humans have a remarkable capacity to recall a wealth of detail from the past, there are marked interindividual differences in the quantity and quality of our mnemonic experiences. Such differences in autobiographical memory may appear self-evident, yet there has been little research on this topic. In this review, we synthesize an emerging body of research regarding individual differences in autobiographical memory. We focus on two syndromes that fall at the extremes of the 'remembering' dimension: highly superior autobiographical memory (HSAM) and severely deficient autobiographical memory (SDAM). We also discuss findings from research on less extreme individual differences in autobiographical memory. This avenue of research is pivotal for a full description of the behavioral and neural substrates of autobiographical memory. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Dynamic phenotypic restructuring of the CD4 and CD8 T-cell subsets with age in healthy humans: a compartmental model analysis.

    PubMed

    Jackola, D R; Hallgren, H M

    1998-11-16

    In healthy humans, phenotypic restructuring occurs with age within the CD3+ T-lymphocyte complement. This is characterized by a non-linear decrease of the percentage of 'naive' (CD45RA+) cells and a corresponding non-linear increase of the percentage of 'memory' (CD45R0+) cells among both the CD4+ and CD8+ T-cell subsets. We devised a simple compartmental model to study the age-dependent kinetics of phenotypic restructuring. We also derived differential equations whose parameters determined yearly gains minus losses of the percentage and absolute numbers of circulating naive cells, yearly gains minus losses of the percentage and absolute numbers of circulating memory cells, and the yearly rate of conversion of naive to memory cells. Solutions of these evaluative differential equations demonstrate the following: (1) the memory cell complement 'resides' within its compartment for a longer time than the naive cell complement within its compartment for both CD4 and CD8 cells; (2) the average, annual 'turnover rate' is the same for CD4 and CD8 naive cells. In contrast, the average, annual 'turnover rate' for memory CD8 cells is 1.5 times that of memory CD4 cells; (3) the average, annual conversion rate of CD4 naive cells to memory cells is twice that of the CD8 conversion rate; (4) a transition in dynamic restructuring occurs during the third decade of life that is due to these differences in turnover and conversion rates, between and from naive to memory cells.

  10. The contribution of epigenetic memory to immunologic memory.

    PubMed

    Zediak, Valerie P; Wherry, E John; Berger, Shelley L

    2011-04-01

    Memory T lymphocytes are distinct from antigen-inexperienced naïve T cells in that memory T cells can respond more rapidly when they re-encounter a pathogen. Work over the past decade has begun to define the epigenetic underpinnings of the transcriptional component of the memory T cell response. An emerging theme is the persistence of an active chromatin signature at relevant gene loci in resting memory T cells, even when those genes are transcriptionally inactive. This gives strength to the concept of gene poising, and has shown that memory T lymphocytes are an ideal model in which to further define various mechanisms of epigenetic poising. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Functional classification of memory CD8(+) T cells by CX3CR1 expression.

    PubMed

    Böttcher, Jan P; Beyer, Marc; Meissner, Felix; Abdullah, Zeinab; Sander, Jil; Höchst, Bastian; Eickhoff, Sarah; Rieckmann, Jan C; Russo, Caroline; Bauer, Tanja; Flecken, Tobias; Giesen, Dominik; Engel, Daniel; Jung, Steffen; Busch, Dirk H; Protzer, Ulrike; Thimme, Robert; Mann, Matthias; Kurts, Christian; Schultze, Joachim L; Kastenmüller, Wolfgang; Knolle, Percy A

    2015-09-25

    Localization of memory CD8(+) T cells to lymphoid or peripheral tissues is believed to correlate with proliferative capacity or effector function. Here we demonstrate that the fractalkine-receptor/CX3CR1 distinguishes memory CD8(+) T cells with cytotoxic effector function from those with proliferative capacity, independent of tissue-homing properties. CX3CR1-based transcriptome and proteome-profiling defines a core signature of memory CD8(+) T cells with effector function. We find CD62L(hi)CX3CR1(+) memory T cells that reside within lymph nodes. This population shows distinct migration patterns and positioning in proximity to pathogen entry sites. Virus-specific CX3CR1(+) memory CD8(+) T cells are scarce during chronic infection in humans and mice but increase when infection is controlled spontaneously or by therapeutic intervention. This CX3CR1-based functional classification will help to resolve the principles of protective CD8(+) T-cell memory.

  12. Reinstatement of Individual Past Events Revealed by the Similarity of Distributed Activation Patterns during Encoding and Retrieval

    PubMed Central

    Wing, Erik A.; Ritchey, Maureen; Cabeza, Roberto

    2015-01-01

    Neurobiological memory models assume memory traces are stored in neocortex, with pointers in the hippocampus, and are then reactivated during retrieval, yielding the experience of remembering. Whereas most prior neuroimaging studies on reactivation have focused on the reactivation of sets or categories of items, the current study sought to identify cortical patterns pertaining to memory for individual scenes. During encoding, participants viewed pictures of scenes paired with matching labels (e.g., “barn,” “tunnel”), and, during retrieval, they recalled the scenes in response to the labels and rated the quality of their visual memories. Using representational similarity analyses, we interrogated the similarity between activation patterns during encoding and retrieval both at the item level (individual scenes) and the set level (all scenes). The study yielded four main findings. First, in occipitotemporal cortex, memory success increased with encoding-retrieval similarity (ERS) at the item level but not at the set level, indicating the reactivation of individual scenes. Second, in ventrolateral pFC, memory increased with ERS for both item and set levels, indicating the recapitulation of memory processes that benefit encoding and retrieval of all scenes. Third, in retrosplenial/posterior cingulate cortex, ERS was sensitive to individual scene information irrespective of memory success, suggesting automatic activation of scene contexts. Finally, consistent with neurobiological models, hippocampal activity during encoding predicted the subsequent reactivation of individual items. These findings show the promise of studying memory with greater specificity by isolating individual mnemonic representations and determining their relationship to factors like the detail with which past events are remembered. PMID:25313659

  13. Fine-Needle Aspiration Biopsy of the Lymph Node: A Novel Tool for the Monitoring of Immune Responses after Skin Antigen Delivery.

    PubMed

    Tatovic, Danijela; Young, Philippa; Kochba, Efrat; Levin, Yotam; Wong, F Susan; Dayan, Colin M

    2015-07-01

    Assessment of immune responses in lymph nodes (LNs) is routine in animals, but rarely done in humans. We have applied minimally invasive ultrasound-guided fine-needle aspiration of the LN to a before-and-after study of the immune response to intradermally delivered Ag in healthy volunteers (n = 25). By comparison with PBMCs from the same individual, LN cells (LNCs) were characterized by reduced numbers of effector memory cells, especially CD8(+) TEMRA cells (3.37 ± 1.93 in LNCs versus 22.53 ± 7.65 in PBMCs; p = 0.01) and a marked increased in CD69 expression (27.67 ± 7.49 versus 3.49 ± 2.62%, LNCs and PBMCs, respectively; p < 0.0001). At baseline, there was a striking absence of IFN-γ ELISPOT responses to recall Ags (purified protein derivative, Tetanus toxoid, or flu/EBV/CMV viral mix) in LN, despite strong responses in the peripheral blood. However, 48 h after tuberculin purified protein derivative administration in the ipsilateral forearm resulting in a positive skin reaction, a clear increase in IFN-γ ELISPOT counts was seen in the draining LN but not in PBMCs. This response was lost by 5 d. These data suggest that the low levels of effector memory cells in the LN may explain the low background of baseline ELISPOT responses in LNs as compared with PBMCs, and the appearance of a response after 48 h is likely to represent migration of effector memory cells from the skin to the LN. Hence, it appears that the combination of intradermal Ag administration and draining LN sampling can be used as a sensitive method to probe the effector memory T cell repertoire in the skin. Copyright © 2015 by The American Association of Immunologists, Inc.

  14. Coping style and memory specificity in adolescents and adults with histories of child sexual abuse.

    PubMed

    Harris, Latonya S; Block, Stephanie D; Ogle, Christin M; Goodman, Gail S; Augusti, Else-Marie; Larson, Rakel P; Culver, Michelle A; Pineda, Annarheen R; Timmer, Susan G; Urquiza, Anthony

    2016-09-01

    Individuals with histories of childhood trauma may adopt a nonspecific memory retrieval strategy to avoid unpleasant and intrusive memories. In a sample of 93 adolescents and adults with or without histories of child sexual abuse (CSA), we tested the hypothesis that nonspecific memory retrieval is related to an individual's general tendency to use avoidant (i.e., distancing) coping as a personal problem-solving or coping strategy, especially in victims of CSA. We also examined age differences and other individual differences (e.g., trauma-related psychopathology) as predictors of nonspecific memories. Distancing coping was significantly associated with less specific autobiographical memory. Younger age, lower vocabulary scores, and non-CSA childhood maltreatment (i.e., physical and emotional abuse) also uniquely predicted less autobiographical memory specificity, whereas trauma-related psychopathology was associated with more specific memory. Implications for the development of autobiographical memory retrieval in the context of coping with childhood maltreatment are discussed.

  15. Massive infection and loss of CD4+ T cells occurs in the intestinal tract of neonatal rhesus macaques in acute SIV infection.

    PubMed

    Wang, Xiaolei; Rasmussen, Terri; Pahar, Bapi; Poonia, Bhawna; Alvarez, Xavier; Lackner, Andrew A; Veazey, Ronald S

    2007-02-01

    Rapid, profound, and selective depletion of memory CD4+ T cells has now been confirmed to occur in simian immunodeficiency virus (SIV)-infected adult macaques and human immunodeficiency virus (HIV)-infected humans. Within days of infection, marked depletion of memory CD4+ T cells occurs primarily in mucosal tissues, the major reservoir for memory CD4+ T cells in adults. However, HIV infection in neonates often results in higher viral loads and rapid disease progression, despite the paucity of memory CD4+ T cells in the peripheral blood. Here, we examined the immunophenotype of CD4+ T cells in normal and SIV-infected neonatal macaques to determine the distribution of naive and memory T-cell subsets in tissues. We demonstrate that, similar to adults, neonates have abundant memory CD4+ T cells in the intestinal tract and spleen and that these are selectively infected and depleted in primary SIV infection. Within 12 days of SIV infection, activated (CD69+), central memory (CD95+CD28+) CD4+ T cells are marked and persistently depleted in the intestine and other tissues of neonates compared with controls. The results in dicate that "activated" central memory CD4+ T cells are the major target for early SIV infection and CD4+ T cell depletion in neonatal macaques.

  16. Massive infection and loss of CD4+ T cells occurs in the intestinal tract of neonatal rhesus macaques in acute SIV infection

    PubMed Central

    Wang, Xiaolei; Rasmussen, Terri; Pahar, Bapi; Poonia, Bhawna; Alvarez, Xavier; Lackner, Andrew A.; Veazey, Ronald S.

    2007-01-01

    Rapid, profound, and selective depletion of memory CD4+ T cells has now been confirmed to occur in simian immunodeficiency virus (SIV)–infected adult macaques and human immunodeficiency virus (HIV)–infected humans. Within days of infection, marked depletion of memory CD4+ T cells occurs primarily in mucosal tissues, the major reservoir for memory CD4+ T cells in adults. However, HIV infection in neonates often results in higher viral loads and rapid disease progression, despite the paucity of memory CD4+ T cells in the peripheral blood. Here, we examined the immunophenotype of CD4+ T cells in normal and SIV-infected neonatal macaques to determine the distribution of naive and memory T-cell subsets in tissues. We demonstrate that, similar to adults, neonates have abundant memory CD4+ T cells in the intestinal tract and spleen and that these are selectively infected and depleted in primary SIV infection. Within 12 days of SIV infection, activated (CD69+), central memory (CD95+CD28+) CD4+ T cells are marked and persistently depleted in the intestine and other tissues of neonates compared with controls. The results in dicate that “activated” central memory CD4+ T cells are the major target for early SIV infection and CD4+ T cell depletion in neonatal macaques. PMID:17047153

  17. Neutron imaging integrated circuit and method for detecting neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagarkar, Vivek V.; More, Mitali J.

    The present disclosure provides a neutron imaging detector and a method for detecting neutrons. In one example, a method includes providing a neutron imaging detector including plurality of memory cells and a conversion layer on the memory cells, setting one or more of the memory cells to a first charge state, positioning the neutron imaging detector in a neutron environment for a predetermined time period, and reading a state change at one of the memory cells, and measuring a charge state change at one of the plurality of memory cells from the first charge state to a second charge statemore » less than the first charge state, where the charge state change indicates detection of neutrons at said one of the memory cells.« less

  18. Memory B cells in Guillain-Barré syndrome.

    PubMed

    Wang, Qian; Xing, Chunye; Hao, Yanlei; Shi, Qiguang; Qi, Ziyou; Lv, Zhanyun; Song, Yan; Xu, Peng; Feng, Xungang; Zhang, Lili; Zhang, Yong; Wang, Yuzhong; Yuki, Nobuhiro

    2017-04-15

    IgG autoantibodies against gangliosides show the highest titers at the disease onset of axonal Guillain-Barré syndrome (GBS), in which there are no IgM anti-ganglioside antibodies. We hypothesized that memory B cells take part in the development of producing IgG autoantibodies. In this study, we analyzed the memory B cells in patients with GBS using flow cytometry. There was significantly higher percentage of memory B cells in patients with GBS than the healthy controls. The Spearman correlation analysis demonstrated that increased percentage of memory B cells was positively correlated with the clinical severity of the patients with GBS. Our study provides the evidences that memory B cells may be involved in mechanism of GBS. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. De novo alloreactive memory CD8+ T cells develop following allogeneic challenge when CNI immunosuppression is delayed.

    PubMed

    Hart-Matyas, M; Gareau, A J; Hirsch, G M; Lee, T D G

    2015-01-01

    Allospecific memory T cells are a recognized threat to the maintenance of solid-organ transplants. Limited information exists regarding the development of alloreactive memory T cells when post-transplant immunosuppression is present. The clinical practice of delaying calcineurin inhibitor (CNI) initiation post-transplant may permit the development of a de novo allospecific memory population. We investigated the development of de novo allospecific memory CD8+ T cells following the introduction of CNI immunosuppression in a murine model using allogeneic cell priming. Recipient mice alloprimed with splenocytes from fully mismatched donors received cyclosporine (CyA), initiated at 0, 2, 6, or 10days post-prime. Splenocytes from recipients were analyzed by flow cytometry or enzyme-linked immunosorbent assay for evidence of memory cell formation. Memory and effector CD8+ T cell development was prevented when CyA was initiated at 0day or 2days post-prime (p<0.001), but not 6days post-prime. Following a boost challenge, these memory CD8+ T cells were capable of producing a similarly sized population of secondary effectors as recipients not treated with CyA (p>0.05). Delaying CyA up to 6days or later post-prime permits the development of functional de novo allospecific memory CD8+ T cells. The development of this potentially detrimental T cell population in patients could be prevented by starting CNI immunosuppression early post-transplant. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Individual Differences in Working Memory Capacity Predict Sleep-Dependent Memory Consolidation

    ERIC Educational Resources Information Center

    Fenn, Kimberly M.; Hambrick, David Z.

    2012-01-01

    Decades of research have established that "online" cognitive processes, which operate during conscious encoding and retrieval of information, contribute substantially to individual differences in memory. Furthermore, it is widely accepted that "offline" processes during sleep also contribute to memory performance. However, the question of whether…

  1. Autobiographical Memory, Autonoetic Consciousness, and Identity in Asperger Syndrome

    ERIC Educational Resources Information Center

    Tanweer, Tilait; Rathbone, Clare J.; Souchay, Celine

    2010-01-01

    Previous results from research on individuals with Asperger syndrome (AS) suggest a diminished ability for recalling episodic autobiographical memory (AM). The primary aim of this study was to explore autobiographical memory in individuals with Asperger syndrome and specifically to investigate whether memories in those with AS are characterized by…

  2. CLONAL MEMORY

    PubMed Central

    McMichael, A. J.; Williamson, A. R.

    1974-01-01

    A single clone of B cells producing anti-DNP antibody recognizable by the isoelectric-focusing spectrum has been used, in a double transfer system, to study clonal memory. Trasnsferable B memory develops between 4 and 7 days after the first transfer with antigen. B-memory cells thus proliferate before or concomitantly with antibody-forming cells. PMID:4545165

  3. Telomerase Is Involved in IL-7-Mediated Differential Survival of Naive and Memory CD4+ T Cells1

    PubMed Central

    Yang, Yinhua; An, Jie; Weng, Nan-ping

    2008-01-01

    IL-7 plays an essential role in T cell maintenance and survival. The survival effect of IL-7 is thought to be mediated through regulation of Bcl2 family proteins. After a comparative analysis of IL-7-induced growth and cell death of human naive and memory CD4+ T cells, we observed that more memory CD4+ T cells underwent cell division and proceeded to apoptosis than naive cells in response to IL-7. However, IL-7-induced expressions of Bcl2 family members (Bcl2, Bcl-xL, Bax, and Bad) were similar between naive and memory cells. Instead, we found that IL-7 induced higher levels of telomerase activity in naive cells than in memory cells, and the levels of IL-7-induced telomerase activity had a significant inverse correlation with cell death in CD4+ T cells. Furthermore, we showed that reducing expression of telomerase reverse transcriptase and telomerase activity significantly increased cell death of IL-7-cultured CD4+ T cells. Together, these findings demonstrate that telomerase is involved in IL-7-mediated differential survival of naive and memory CD4+ T cells. PMID:18322183

  4. Friends not foes: CTLA-4 blockade and mTOR inhibition cooperate during CD8+ T cell priming to promote memory formation and metabolic readiness.

    PubMed

    Pedicord, Virginia A; Cross, Justin R; Montalvo-Ortiz, Welby; Miller, Martin L; Allison, James P

    2015-03-01

    During primary Ag encounter, T cells receive numerous positive and negative signals that control their proliferation, function, and differentiation, but how these signals are integrated to modulate T cell memory has not been fully characterized. In these studies, we demonstrate that combining seemingly opposite signals, CTLA-4 blockade and rapamycin-mediated mammalian target of rapamycin inhibition, during in vivo T cell priming leads to both an increase in the frequency of memory CD8(+) T cells and improved memory responses to tumors and bacterial challenges. This enhanced efficacy corresponds to increased early expansion and memory precursor differentiation of CD8(+) T cells and increased mitochondrial biogenesis and spare respiratory capacity in memory CD8(+) T cells in mice treated with anti-CTLA-4 and rapamycin during immunization. Collectively, these results reveal that mammalian target of rapamycin inhibition cooperates with rather than antagonizes blockade of CTLA-4, promoting unrestrained effector function and proliferation, and an optimal metabolic program for CD8(+) T cell memory. Copyright © 2015 by The American Association of Immunologists, Inc.

  5. Flexible and twistable non-volatile memory cell array with all-organic one diode-one resistor architecture.

    PubMed

    Ji, Yongsung; Zeigler, David F; Lee, Dong Su; Choi, Hyejung; Jen, Alex K-Y; Ko, Heung Cho; Kim, Tae-Wook

    2013-01-01

    Flexible organic memory devices are one of the integral components for future flexible organic electronics. However, high-density all-organic memory cell arrays on malleable substrates without cross-talk have not been demonstrated because of difficulties in their fabrication and relatively poor performances to date. Here we demonstrate the first flexible all-organic 64-bit memory cell array possessing one diode-one resistor architectures. Our all-organic one diode-one resistor cell exhibits excellent rewritable switching characteristics, even during and after harsh physical stresses. The write-read-erase-read output sequence of the cells perfectly correspond to the external pulse signal regardless of substrate deformation. The one diode-one resistor cell array is clearly addressed at the specified cells and encoded letters based on the standard ASCII character code. Our study on integrated organic memory cell arrays suggests that the all-organic one diode-one resistor cell architecture is suitable for high-density flexible organic memory applications in the future.

  6. Mood induction effects on motor sequence learning and stop signal reaction time.

    PubMed

    Greeley, Brian; Seidler, Rachael D

    2017-01-01

    The neurobiological theory of positive affect proposes that positive mood states may benefit cognitive performance due to an increase of dopamine throughout the brain. However, the results of many positive affect studies are inconsistent; this may be due to individual differences. The relationship between dopamine and performance is not linear, but instead follows an inverted "U" shape. Given this, we hypothesized that individuals with high working memory capacity, a proxy measure for dopaminergic transmission, would not benefit from positive mood induction and in fact performance in dopamine-mediated tasks would decline. In contrast, we predicted that individuals with low working memory capacities would receive the most benefit after positive mood induction. Here, we explored the effect of positive affect on two dopamine-mediated tasks, an explicit serial reaction time sequence learning task and the stop signal task, predicting that an individual's performance is modulated not only by working memory capacity, but also on the type of mood. Improvements in explicit sequence learning from pre- to post-positive mood induction were associated with working memory capacity; performance declined in individuals with higher working memory capacities following positive mood induction, but improved in individuals with lower working memory capacities. This was not the case for negative or neutral mood induction. Moreover, there was no relationship between the change in stop signal reaction time with any of the mood inductions and individual differences in working memory capacity. These results provide partial support for the neurobiological theory of positive affect and highlight the importance of taking into account individual differences in working memory when examining the effects of positive mood induction.

  7. Humoral Immune Reconstitution Kinetics after Allogeneic Hematopoietic Stem Cell Transplantation in Children: A Maturation Block of IgM Memory B Cells May Lead to Impaired Antibody Immune Reconstitution.

    PubMed

    Abdel-Azim, Hisham; Elshoury, Amro; Mahadeo, Kris M; Parkman, Robertson; Kapoor, Neena

    2017-09-01

    Although T cell immune reconstitution after allogeneic hematopoietic stem cell transplantation (allo-HSCT) has been well studied, long-term B cell immune reconstitution remains less characterized. We evaluated humoral immune reconstitution among 71 pediatric allo-HSCT recipients. Although tetanus toxoid antibody levels were normal at 1 year after allo-HSCT, antipolysaccharide carbohydrate antibodies remained persistently low for up to 5 years. While naive B cell counts normalized by 6 months, IgM memory B cell deficiency persisted for up to 2 years (P = .01); switched memory B cell deficiency normalized by 1 year after allo-HSCT. CD4 + T cell immune reconstitution correlated with that of switched memory B cells as early as 6 months after allo-HSCT (r = .55, P = .002) but did not correlate with IgM memory B cells at any time point after allo-HSCT. Taken together, this suggests that allo-HSCT recipients have impaired antibody immune reconstitution, mainly due to IgM memory B cell maturation block, compared with more prompt T cell-dependent switched memory cell immune reconstitution. We further explored other factors that might affect humoral immune reconstitution. The use of total body irradiation was associated with lower naive B cells counts at 6 months after HSCT (P = .04) and lower IgM (P = .008) and switched (P = .003) memory B cells up to 2 years. Allo-HSCT recipients with extensive chronic graft-versus-host disease had lower IgM memory B cell counts (P = .03) up to 2 years after allo-HSCT. The use of cord blood was associated with better naive (P = .01), IgM (P = .0005), and switched memory (P = .006) B cells immune reconstitution. These findings may inform future prophylaxis and treatment strategies regarding risk of overwhelming infection, graft-versus-host disease, and post-allogeneic HSCT revaccination. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  8. Immune memory: the basics and how to trigger an efficient long-term immune memory.

    PubMed

    Beverley, P C L

    2010-01-01

    Immunological memory consists of expanded clones of T and B lymphocytes that show an increased rate of cell division and shortened telomeres compared with naïve cells. However, exhaustion of clones is delayed by kinetic heterogeneity within clones and altered survival and up-regulation of telomerase. Prolonged maintenance of protective B-cell immunity is T-cell dependent and requires a balance between plasma cells and memory B cells. Protective T-cell immunity also requires correct quality of T cells and that they are located appropriately. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. In Vitro-Generated Tc17 Cells Present a Memory Phenotype and Serve As a Reservoir of Tc1 Cells In Vivo

    PubMed Central

    Flores-Santibáñez, Felipe; Cuadra, Bárbara; Fernández, Dominique; Rosemblatt, Mariana V.; Núñez, Sarah; Cruz, Pablo; Gálvez-Cancino, Felipe; Cárdenas, J. César; Lladser, Alvaro; Rosemblatt, Mario; Bono, María Rosa; Sauma, Daniela

    2018-01-01

    Memory CD8+ T cells are ideal candidates for cancer immunotherapy because they can mediate long-term protection against tumors. However, the therapeutic potential of different in vitro-generated CD8+ T cell effector subsets to persist and become memory cells has not been fully characterized. Type 1 CD8+ T (Tc1) cells produce interferon-γ and are endowed with high cytotoxic capacity, whereas IL-17-producing CD8+ T (Tc17) cells are less cytotoxic but display enhanced self-renewal capacity. We sought to evaluate the functional properties of in vitro-generated Tc17 cells and elucidate their potential to become long lasting memory cells. Our results show that in vitro-generated Tc17 cells display a greater in vivo persistence and expansion in response to secondary antigen stimulation compared to Tc1 cells. When transferred into recipient mice, Tc17 cells persist in secondary lymphoid organs, present a recirculation behavior consistent with central memory T cells, and can shift to a Tc1 phenotype. Accordingly, Tc17 cells are endowed with a higher mitochondrial spare respiratory capacity than Tc1 cells and express higher levels of memory-related molecules than Tc1 cells. Together, these results demonstrate that in vitro-generated Tc17 cells acquire a central memory program and provide a lasting reservoir of Tc1 cells in vivo, thus supporting the use of Tc17 lymphocytes in the design of novel and more effective therapies. PMID:29472932

  10. Epigenetic mechanisms in the development of memory and their involvement in certain neurological diseases.

    PubMed

    Rosales-Reynoso, M A; Ochoa-Hernández, A B; Juárez-Vázquez, C I; Barros-Núñez, P

    Today, scientists accept that the central nervous system of an adult possesses considerable morphological and functional flexibility, allowing it to perform structural remodelling processes even after the individual is fully developed and mature. In addition to the vast number of genes participating in the development of memory, different known epigenetic mechanisms are involved in normal and pathological modifications to neurons and therefore also affect the mechanisms of memory development. This study entailed a systematic review of biomedical article databases in search of genetic and epigenetic factors that participate in synaptic function and memory. The activation of gene expression in response to external stimuli also occurs in differentiated nerve cells. Neural activity induces specific forms of synaptic plasticity that permit the creation and storage of long-term memory. Epigenetic mechanisms play a key role in synaptic modification processes and in the creation and development of memory. Changes in these mechanisms result in the cognitive and memory impairment seen in neurodegenerative diseases (Alzheimer disease, Huntington disease) and in neurodevelopmental disorders (Rett syndrome, fragile X, and schizophrenia). Nevertheless, results obtained from different models are promising and point to potential treatments for some of these diseases. Copyright © 2013 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Long-term T-cell-mediated immunologic memory to hepatitis B vaccine in young adults following neonatal vaccination.

    PubMed

    Saffar, Hiva; Saffar, Mohammed Jafar; Ajami, Abolghasem; Khalilian, Ali Reza; Shams-Esfandabad, Kian; Mirabi, Araz Mohammad

    2014-09-01

    The long-term duration of cell-mediated immunity induced by neonatal hepatitis B virus (HBV) vaccination is unknown. Study was designed to determine the cellular immunity memory status among young adults twenty years after infantile HB immunization. Study subjects were party selected from a recent seroepidemiologic study in young adults, who had been vaccinated against HBV twenty years earlier. Just before and ten to 14 days after one dose of HBV vaccine booster injection, blood samples were obtained and sera concentration of cytokines (interleukin 2 and interferon) was measured. More than twofold increase after boosting was considered positive immune response. With regard to the serum level of antibody against HBV surface antigen (HBsAb) before boosting, the subjects were divided into four groups as follow: GI, HBsAb titer < 2; GII, titer 2 to 9.9; GIII, titer 10 to 99; and GIV, titers ≥ 100 IU/L. Mean concentration level (MCL) of each cytokines for each group at preboosting and postboosting and the proportion of responders in each groups were determined. Paired descriptive statistical analysis method (t test) was used to compare the MCL of each cytokines in each and between groups and the frequency of responders in each group. Before boosting, among 176 boosted individuals, 75 (42.6%) had HBsAb 10 IU/L and were considered seroprotected. Among 101 serosusceptible persons, more than 80% of boosted individuals showed more than twofold increase in cytokines concentration, which meant positive HBsAg-specific cell-mediated immunity. MCL of both cytokines after boosting in GIV were decreased more than twofold, possibly because of recent natural boosting. Findings showed that neonatal HBV immunization was efficacious in inducing long-term immunity and cell-mediated immune memory for up to two decades, and booster vaccination are not required. Further monitoring of vaccinated subjects for HBV infections are recommended.

  12. CXCR4 is critical for CD8+ memory T cell homeostatic self-renewal but not rechallenge self-renewal1

    PubMed Central

    Chaix, Julie; Nish, Simone A.; Lin, Wen-Hsuan W.; Rothman, Nyanza J.; Ding, Lei; Wherry, E. John; Reiner, Steven L.

    2014-01-01

    Central memory (CM) CD8+ T cells “remember” prior encounters because they maintain themselves through cell division in the absence of ongoing challenge (homeostatic self-renewal) as well as reproduce the central memory fate while manufacturing effector cells during secondary antigen encounters (rechallenge self-renewal). We tested the consequence of conditional deletion of the bone marrow (BM) homing receptor CXCR4 on antiviral T cell responses. CXCR4-deficient CD8+ T cells have impaired memory cell maintenance due to defective homeostatic proliferation. Upon rechallenge, however, CXCR4-deficient T cells can re-expand and renew the central memory pool while producing secondary effector cells. The critical BM-derived signals essential for CD8+ T cell homeostatic self-renewal appear to be dispensable to yield self-renewing, functionally asymmetric cell fates during rechallenge. PMID:24973450

  13. Effects of coarse-graining on fluctuations in gene expression

    NASA Astrophysics Data System (ADS)

    Pedraza, Juan; Paulsson, Johan

    2008-03-01

    Many cellular components are present in such low numbers per cell that random births and deaths of individual molecules can cause significant `noise' in concentrations. But biochemical events do not necessarily occur in steps of individual molecules. Some processes are greatly randomized when synthesis or degradation occurs in large bursts of many molecules in a short time interval. Conversely, each birth or death of a macromolecule could involve several small steps, creating a memory between individual events. Here we present generalized theory for stochastic gene expression, formulating the variance in protein abundance in terms of the randomness of the individual events, and discuss the effective coarse-graining of the molecular hardware. We show that common molecular mechanisms produce gestation and senescence periods that can reduce noise without changing average abundances, lifetimes, or any concentration-dependent control loops. We also show that single-cell experimental methods that are now commonplace in cell biology do not discriminate between qualitatively different stochastic principles, but that this in turn makes them better suited for identifying which components introduce fluctuations.

  14. CD4+CD62L+ Central Memory T Cells Can Be Converted to Foxp3+ T Cells

    PubMed Central

    Zhang, Xiaolong; Chang Li, Xian; Xiao, Xiang; Sun, Rui; Tian, Zhigang; Wei, Haiming

    2013-01-01

    The peripheral Foxp3+ Treg pool consists of naturally arising Treg (nTreg) and adaptive Treg cells (iTreg). It is well known that naive CD4+ T cells can be readily converted to Foxp3+ iTreg in vitro, and memory CD4+ T cells are resistant to conversion. In this study, we investigated the induction of Foxp3+ T cells from various CD4+ T-cell subsets in human peripheral blood. Though naive CD4+ T cells were readily converted to Foxp3+ T cells with TGF-β and IL-2 treatment in vitro, such Foxp3+ T cells did not express the memory marker CD45RO as do Foxp3+ T cells induced in the peripheral blood of Hepatitis B Virus (HBV) patients. Interestingly, a subset of human memory CD4+ T cells, defined as CD62L+ central memory T cells, could be induced by TGF-β to differentiate into Foxp3+ T cells. It is well known that Foxp3+ T cells derived from human CD4+CD25- T cells in vitro are lack suppressive functions. Our data about the suppressive functions of CD4+CD62L+ central memory T cell-derived Foxp3+ T cells support this conception, and an epigenetic analysis of these cells showed a similar methylation pattern in the FOXP3 Treg-specific demethylated region as the naive CD4+ T cell-derived Foxp3+ T cells. But further research showed that mouse CD4+ central memory T cells also could be induced to differentiate into Foxp3+ T cells, such Foxp3+ T cells could suppress the proliferation of effector T cells. Thus, our study identified CD4+CD62L+ central memory T cells as a novel potential source of iTreg. PMID:24155942

  15. Individual Differences in Susceptibility to False Memory in the Deese-Roediger-McDermott Paradigm

    ERIC Educational Resources Information Center

    Watson, Jason M.; Bunting, Michael F.; Poole, Bradley J.; Conway, Andrew R. A.

    2005-01-01

    The authors addressed whether individual differences in the working memory capacity (WMC) of young adults influence susceptibility to false memories for nonpresented critical words in the Deese-Roediger-McDermott associative list paradigm. The results of 2 experiments indicated that individuals with greater WMC recalled fewer critical words than…

  16. Effects of Hearing Status and Sign Language Use on Working Memory

    ERIC Educational Resources Information Center

    Marschark, Marc; Sarchet, Thomastine; Trani, Alexandra

    2016-01-01

    Deaf individuals have been found to score lower than hearing individuals across a variety of memory tasks involving both verbal and nonverbal stimuli, particularly those requiring retention of serial order. Deaf individuals who are native signers, meanwhile, have been found to score higher on visual-spatial memory tasks than on verbal-sequential…

  17. Working memory capacity in generalized social phobia.

    PubMed

    Amir, Nader; Bomyea, Jessica

    2011-05-01

    Research suggests that understanding complex social cues depends on the availability of cognitive resources (e.g., Phillips, Channon, Tunstall, Hedenstrom, & Lyons, 2008). In spite of evidence suggesting that executive control functioning may impact anxiety (e.g., Eysenck, Derakshan, Santos, & Calvo, 2007), relatively few studies have examined working memory in individuals with generalized social phobia. Moreover, few studies have examined the role of threat-relevant content in working memory performance in clinically anxious populations. To this end, the present study assessed working memory capacity (WMC) in individuals with generalized social phobia and nonanxious controls using an operation span task with threat-relevant and neutral stimuli. Results revealed that nonanxious individuals demonstrated better WMC than individuals with generalized social phobia for neutral words but not for social threat words. Individuals with generalized social phobia demonstrated better WMC performance for threat words relative to neutral words. These results suggest that individuals with generalized social phobia may have relatively enhanced working memory performance for salient, socially relevant information. This enhanced working memory capacity for threat-relevant information may be the result of practice with this information in generalized social phobia.

  18. Origin and Function of Circulating Plasmablasts during Acute Viral Infections.

    PubMed

    Fink, Katja

    2012-01-01

    Activated B cells proliferate and differentiate into antibody-producing cells, long-lived plasma cells, and memory B cells after immunization or infection. Repeated encounter of the same antigen triggers the rapid re-activation of pre-existing specific memory B cells, which then potentially enter new germinal center reactions and differentiate into short-lived plasmablasts or remain in the system as memory B cells. Short-lived class-switched IgG and IgA plasmablasts appear in the circulation transiently and the frequency of these cells can be remarkably high. The specificities and affinities of single plasmablasts in humans have been reported for several viral infections, so far most extensively for influenza and HIV. In general, the immunoglobulin variable regions of plasmablasts are highly mutated and diverse, suggesting that plasmablasts are derived from memory B cells, yet it is unclear which memory B cell subsets are activated and whether activated memory B cells adapt or mature before differentiation. This review summarizes what is known about the phenotype and the origin of human plasmablasts in the context of viral infections and whether these cells can be predictors of long-lived immunity.

  19. Working memory capacity and retrieval limitations from long-term memory: an examination of differences in accessibility.

    PubMed

    Unsworth, Nash; Spillers, Gregory J; Brewer, Gene A

    2012-01-01

    In two experiments, the locus of individual differences in working memory capacity and long-term memory recall was examined. Participants performed categorical cued and free recall tasks, and individual differences in the dynamics of recall were interpreted in terms of a hierarchical-search framework. The results from this study are in accordance with recent theorizing suggesting a strong relation between working memory capacity and retrieval from long-term memory. Furthermore, the results also indicate that individual differences in categorical recall are partially due to differences in accessibility. In terms of accessibility of target information, two important factors drive the difference between high- and low-working-memory-capacity participants. Low-working-memory-capacity participants fail to utilize appropriate retrieval strategies to access cues, and they also have difficulty resolving cue overload. Thus, when low-working-memory-capacity participants were given specific cues that activated a smaller set of potential targets, their recall performance was the same as that of high-working-memory-capacity participants.

  20. Epigenetic control of CD8+ T cell differentiation.

    PubMed

    Henning, Amanda N; Roychoudhuri, Rahul; Restifo, Nicholas P

    2018-05-01

    Upon stimulation, small numbers of naive CD8 + T cells proliferate and differentiate into a variety of memory and effector cell types. CD8 + T cells can persist for years and kill tumour cells and virally infected cells. The functional and phenotypic changes that occur during CD8 + T cell differentiation are well characterized, but the epigenetic states that underlie these changes are incompletely understood. Here, we review the epigenetic processes that direct CD8 + T cell differentiation and function. We focus on epigenetic modification of DNA and associated histones at genes and their regulatory elements. We also describe structural changes in chromatin organization that affect gene expression. Finally, we examine the translational potential of epigenetic interventions to improve CD8 + T cell function in individuals with chronic infections and cancer.

  1. Bcl-2 Allows Effector and Memory CD8+ T Cells To Tolerate Higher Expression of Bim

    PubMed Central

    Kurtulus, Sema; Tripathi, Pulak; Moreno-Fernandez, Maria E.; Sholl, Allyson; Katz, Jonathan D.; Grimes, H. Leighton; Hildeman, David A.

    2014-01-01

    As acute infections resolve, most effector CD8+ T cells die, whereas some persist and become memory T cells. Recent work showed that subsets of effector CD8+ T cells, identified by reciprocal expression of killer cell lectin-like receptor G1 (KLRG1) and CD127, have different lifespans. Similar to previous reports, we found that effector CD8+ T cells reported to have a longer lifespan (i.e., KLRG1lowCD127high) have increased levels of Bcl-2 compared with their shorter-lived KLRG1highCD127low counterparts. Surprisingly, we found that these effector KLRG1lowCD127high CD8+ T cells also had increased levels of Bim compared with KLRG1highCD127low cells. Similar effects were observed in memory cells, in which CD8+ central memory T cells expressed higher levels of Bim and Bcl-2 than did CD8+ effector memory T cells. Using both pharmacologic and genetic approaches, we found that survival of both subsets of effector and memory CD8+ T cells required Bcl-2 to combat the proapoptotic activity of Bim. Interestingly, inhibition or absence of Bcl-2 led to significantly decreased expression of Bim in surviving effector and memory T cells. In addition, manipulation of Bcl-2 levels by IL-7 or IL-15 also affected expression of Bim in effector CD8+ T cells. Finally, we found that Bim levels were significantly increased in effector CD8+ T cells lacking Bax and Bak. Together, these data indicate that cells having the highest levels of Bim are selected against during contraction of the response and that Bcl-2 determines the level of Bim that effector and memory T cells can tolerate. PMID:21451108

  2. Working memory and reward association learning impairments in obesity.

    PubMed

    Coppin, Géraldine; Nolan-Poupart, Sarah; Jones-Gotman, Marilyn; Small, Dana M

    2014-12-01

    Obesity has been associated with impaired executive functions including working memory. Less explored is the influence of obesity on learning and memory. In the current study we assessed stimulus reward association learning, explicit learning and memory and working memory in healthy weight, overweight and obese individuals. Explicit learning and memory did not differ as a function of group. In contrast, working memory was significantly and similarly impaired in both overweight and obese individuals compared to the healthy weight group. In the first reward association learning task the obese, but not healthy weight or overweight participants consistently formed paradoxical preferences for a pattern associated with a negative outcome (fewer food rewards). To determine if the deficit was specific to food reward a second experiment was conducted using money. Consistent with Experiment 1, obese individuals selected the pattern associated with a negative outcome (fewer monetary rewards) more frequently than healthy weight individuals and thus failed to develop a significant preference for the most rewarded patterns as was observed in the healthy weight group. Finally, on a probabilistic learning task, obese compared to healthy weight individuals showed deficits in negative, but not positive outcome learning. Taken together, our results demonstrate deficits in working memory and stimulus reward learning in obesity and suggest that obese individuals are impaired in learning to avoid negative outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects

    PubMed Central

    Sylwester, Andrew W.; Mitchell, Bridget L.; Edgar, John B.; Taormina, Cara; Pelte, Christian; Ruchti, Franziska; Sleath, Paul R.; Grabstein, Kenneth H.; Hosken, Nancy A.; Kern, Florian; Nelson, Jay A.; Picker, Louis J.

    2005-01-01

    Human cytomegalovirus (HCMV) infections of immunocompetent hosts are characterized by a dynamic, life-long interaction in which host immune responses, particularly of T cells, restrain viral replication and prevent disease but do not eliminate the virus or preclude transmission. Because HCMV is among the largest and most complex of known viruses, the T cell resources committed to maintaining this balance have never been characterized completely. Here, using cytokine flow cytometry and 13,687 overlapping 15mer peptides comprising 213 HCMV open reading frames (ORFs), we found that 151 HCMV ORFs were immunogenic for CD4+ and/or CD8+ T cells, and that ORF immunogenicity was influenced only modestly by ORF expression kinetics and function. We further documented that total HCMV-specific T cell responses in seropositive subjects were enormous, comprising on average ∼10% of both the CD4+ and CD8+ memory compartments in blood, whereas cross-reactive recognition of HCMV proteins in seronegative individuals was limited to CD8+ T cells and was rare. These data provide the first glimpse of the total human T cell response to a complex infectious agent and will provide insight into the rules governing immunodominance and cross-reactivity in complex viral infections of humans. PMID:16147978

  4. Neem leaf glycoprotein promotes dual generation of central and effector memory CD8(+) T cells against sarcoma antigen vaccine to induce protective anti-tumor immunity.

    PubMed

    Ghosh, Sarbari; Sarkar, Madhurima; Ghosh, Tithi; Guha, Ipsita; Bhuniya, Avishek; Saha, Akata; Dasgupta, Shayani; Barik, Subhasis; Bose, Anamika; Baral, Rathindranath

    2016-03-01

    We have previously shown that Neem Leaf Glycoprotein (NLGP) mediates sustained tumor protection by activating host immune response. Now we report that adjuvant help from NLGP predominantly generates CD44(+)CD62L(high)CCR7(high) central memory (TCM; in lymph node) and CD44(+)CD62L(low)CCR7(low) effector memory (TEM; in spleen) CD8(+) T cells of Swiss mice after vaccination with sarcoma antigen (SarAg). Generated TCM and TEM participated either to replenish memory cell pool for sustained disease free states or in rapid tumor eradication respectively. TCM generated after SarAg+NLGP vaccination underwent significant proliferation and IL-2 secretion following SarAg re-stimulation. Furthermore, SarAg+NLGP vaccination helps in greater survival of the memory precursor effector cells at the peak of the effector response and their maintenance as mature memory cells, in comparison to single modality treatment. Such response is corroborated with the reduced phosphorylation of FOXO in the cytosol and increased KLF2 in the nucleus associated with enhanced CD62L, CCR7 expression of lymph node-resident CD8(+) T cells. However, spleen-resident CD8(+) T memory cells show superior efficacy for immediate memory-to-effector cell conversion. The data support in all aspects that SarAg+NLGP demonstrate superiority than SarAg vaccination alone that benefits the host by rapid effector functions whenever required, whereas, central-memory cells are thought to replenish the memory cell pool for ultimate sustained disease free survival till 60 days following post-vaccination tumor inoculation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Keeping memories at an arm's length: vantage point of trauma memories.

    PubMed

    Kenny, Lucy M; Bryant, Richard A

    2007-08-01

    This study investigated the relationship between memory vantage point and avoidance following trauma. Sixty trauma survivors with differing levels of avoidance were interviewed about the vantage point of their memory for trauma, a positive memory, and a neutral memory. Avoidant individuals were more likely to remember their trauma from an observer perspective than individuals with a lower level of avoidance. Avoidance did not influence vantage point for positive or neutral memories. These data support the proposal that adoption of the observer vantage point for trauma memories may serve an avoidant function for people affected by trauma.

  6. Generation of memory B cells and their reactivation.

    PubMed

    Inoue, Takeshi; Moran, Imogen; Shinnakasu, Ryo; Phan, Tri Giang; Kurosaki, Tomohiro

    2018-05-01

    The successful establishment of humoral memory response depends on at least two layers of defense. Pre-existing protective antibodies secreted by long-lived plasma cells act as a first line of defense against reinfection ("constitutive humoral memory"). Previously, a second line of defense in which pathogen-experienced memory B cells are rapidly reactivated to produce antibodies ("reactive humoral memory"), was considered as simply a back-up system for the first line (particularly for re-infection with homologous viruses). However, in the case of re-infection with similar but different strains of viruses, or in response to viral escape mutants, the reactive humoral memory plays a crucial role. Here, we review recent progress in our understanding of how memory B cells are generated in the pre-GC stage and during the GC reaction, and how these memory B cells are robustly reactivated with the help of memory Tfh cells to generate the secondary antibody response. In addition, we discuss how these advances may be relevant to the quest for a vaccine that can induce broadly reactive antibodies against influenza and HIV. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Induction of CD4 T cell memory by local cellular collectivity.

    PubMed

    Polonsky, Michal; Rimer, Jacob; Kern-Perets, Amos; Zaretsky, Irina; Miller, Stav; Bornstein, Chamutal; David, Eyal; Kopelman, Naama Meira; Stelzer, Gil; Porat, Ziv; Chain, Benjamin; Friedman, Nir

    2018-06-15

    Cell differentiation is directed by signals driving progenitors into specialized cell types. This process can involve collective decision-making, when differentiating cells determine their lineage choice by interacting with each other. We used live-cell imaging in microwell arrays to study collective processes affecting differentiation of naïve CD4 + T cells into memory precursors. We found that differentiation of precursor memory T cells sharply increases above a threshold number of locally interacting cells. These homotypic interactions involve the cytokines interleukin-2 (IL-2) and IL-6, which affect memory differentiation orthogonal to their effect on proliferation and survival. Mathematical modeling suggests that the differentiation rate is continuously modulated by the instantaneous number of locally interacting cells. This cellular collectivity can prioritize allocation of immune memory to stronger responses. Copyright © 2018, American Association for the Advancement of Science.

  8. Requirement for CD4 T Cell Help in Generating Functional CD8 T Cell Memory

    NASA Astrophysics Data System (ADS)

    Shedlock, Devon J.; Shen, Hao

    2003-04-01

    Although primary CD8 responses to acute infections are independent of CD4 help, it is unknown whether a similar situation applies to secondary responses. We show that depletion of CD4 cells during the recall response has minimal effect, whereas depletion during the priming phase leads to reduced responses by memory CD8 cells to reinfection. Memory CD8 cells generated in CD4+/+ mice responded normally when transferred into CD4-/- hosts, whereas memory CD8 cells generated in CD4-/- mice mounted defective recall responses in CD4+/+ adoptive hosts. These results demonstrate a previously undescribed role for CD4 help in the development of functional CD8 memory.

  9. Dynamics of the cytotoxic T cell response to a model of acute viral infection.

    PubMed

    DeWitt, William S; Emerson, Ryan O; Lindau, Paul; Vignali, Marissa; Snyder, Thomas M; Desmarais, Cindy; Sanders, Catherine; Utsugi, Heidi; Warren, Edus H; McElrath, Juliana; Makar, Karen W; Wald, Anna; Robins, Harlan S

    2015-04-01

    A detailed characterization of the dynamics and breadth of the immune response to an acute viral infection, as well as the determinants of recruitment to immunological memory, can greatly contribute to our basic understanding of the mechanics of the human immune system and can ultimately guide the design of effective vaccines. In addition to neutralizing antibodies, T cells have been shown to be critical for the effective resolution of acute viral infections. We report the first in-depth analysis of the dynamics of the CD8(+) T cell repertoire at the level of individual T cell clonal lineages upon vaccination of human volunteers with a single dose of YF-17D. This live attenuated yellow fever virus vaccine yields sterile, long-term immunity and has been previously used as a model to understand the immune response to a controlled acute viral infection. We identified and enumerated unique CD8(+) T cell clones specifically induced by this vaccine through a combined experimental and statistical approach that included high-throughput sequencing of the CDR3 variable region of the T cell receptor β-chain and an algorithm that detected significantly expanded T cell clones. This allowed us to establish that (i) on average, ∼ 2,000 CD8(+) T cell clones were induced by YF-17D, (ii) 5 to 6% of the responding clones were recruited to long-term memory 3 months postvaccination, (iii) the most highly expanded effector clones were preferentially recruited to the memory compartment, and (iv) a fraction of the YF-17D-induced clones could be identified from peripheral blood lymphocytes solely by measuring clonal expansion. The exhaustive investigation of pathogen-induced effector T cells is essential to accurately quantify the dynamics of the human immune response. The yellow fever vaccine (YFV) has been broadly used as a model to understand how a controlled, self-resolving acute viral infection induces an effective and long-term protective immune response. Here, we extend this previous work by reporting the identity of activated effector T cell clones that expand in response to the YFV 2 weeks postvaccination (as defined by their unique T cell receptor gene sequence) and by tracking clones that enter the memory compartment 3 months postvaccination. This is the first study to use high-throughput sequencing of immune cells to characterize the breadth of the antiviral effector cell response and to determine the contribution of unique virus-induced clones to the long-lived memory T cell repertoire. Thus, this study establishes a benchmark against which future vaccines can be compared to predict their efficacy. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Dynamics of the Cytotoxic T Cell Response to a Model of Acute Viral Infection

    PubMed Central

    DeWitt, William S.; Emerson, Ryan O.; Lindau, Paul; Vignali, Marissa; Snyder, Thomas M.; Desmarais, Cindy; Sanders, Catherine; Utsugi, Heidi; Warren, Edus H.; McElrath, Juliana; Makar, Karen W.; Wald, Anna

    2015-01-01

    ABSTRACT A detailed characterization of the dynamics and breadth of the immune response to an acute viral infection, as well as the determinants of recruitment to immunological memory, can greatly contribute to our basic understanding of the mechanics of the human immune system and can ultimately guide the design of effective vaccines. In addition to neutralizing antibodies, T cells have been shown to be critical for the effective resolution of acute viral infections. We report the first in-depth analysis of the dynamics of the CD8+ T cell repertoire at the level of individual T cell clonal lineages upon vaccination of human volunteers with a single dose of YF-17D. This live attenuated yellow fever virus vaccine yields sterile, long-term immunity and has been previously used as a model to understand the immune response to a controlled acute viral infection. We identified and enumerated unique CD8+ T cell clones specifically induced by this vaccine through a combined experimental and statistical approach that included high-throughput sequencing of the CDR3 variable region of the T cell receptor β-chain and an algorithm that detected significantly expanded T cell clones. This allowed us to establish that (i) on average, ∼2,000 CD8+ T cell clones were induced by YF-17D, (ii) 5 to 6% of the responding clones were recruited to long-term memory 3 months postvaccination, (iii) the most highly expanded effector clones were preferentially recruited to the memory compartment, and (iv) a fraction of the YF-17D-induced clones could be identified from peripheral blood lymphocytes solely by measuring clonal expansion. IMPORTANCE The exhaustive investigation of pathogen-induced effector T cells is essential to accurately quantify the dynamics of the human immune response. The yellow fever vaccine (YFV) has been broadly used as a model to understand how a controlled, self-resolving acute viral infection induces an effective and long-term protective immune response. Here, we extend this previous work by reporting the identity of activated effector T cell clones that expand in response to the YFV 2 weeks postvaccination (as defined by their unique T cell receptor gene sequence) and by tracking clones that enter the memory compartment 3 months postvaccination. This is the first study to use high-throughput sequencing of immune cells to characterize the breadth of the antiviral effector cell response and to determine the contribution of unique virus-induced clones to the long-lived memory T cell repertoire. Thus, this study establishes a benchmark against which future vaccines can be compared to predict their efficacy. PMID:25653453

  11. Thy1+IL-7+ lymphatic endothelial cells in iBALT provide a survival niche for memory T-helper cells in allergic airway inflammation

    PubMed Central

    Shinoda, Kenta; Hirahara, Kiyoshi; Iinuma, Tomohisa; Ichikawa, Tomomi; Suzuki, Akane S.; Sugaya, Kaoru; Tumes, Damon J.; Yamamoto, Heizaburo; Hara, Takahiro; Tani-ichi, Shizue; Ikuta, Koichi; Okamoto, Yoshitaka; Nakayama, Toshinori

    2016-01-01

    Memory CD4+ T helper (Th) cells are central to long-term protection against pathogens, but they can also be pathogenic and drive chronic inflammatory disorders. How these pathogenic memory Th cells are maintained, particularly at sites of local inflammation, remains unclear. We found that ectopic lymphoid-like structures called inducible bronchus-associated lymphoid tissue (iBALT) are formed during chronic allergic inflammation in the lung, and that memory-type pathogenic Th2 (Tpath2) cells capable of driving allergic inflammation are maintained within the iBALT structures. The maintenance of memory Th2 cells within iBALT is supported by Thy1+IL-7–producing lymphatic endothelial cells (LECs). The Thy1+IL-7–producing LECs express IL-33 and T-cell–attracting chemokines CCL21 and CCL19. Moreover, ectopic lymphoid structures consisting of memory CD4+ T cells and IL-7+IL-33+ LECs were found in nasal polyps of patients with eosinophilic chronic rhinosinusitis. Thus, Thy1+IL-7–producing LECs control chronic allergic airway inflammation by providing a survival niche for memory-type Tpath2 cells. PMID:27140620

  12. Memory retrieval by activating engram cells in mouse models of early Alzheimer's disease.

    PubMed

    Roy, Dheeraj S; Arons, Autumn; Mitchell, Teryn I; Pignatelli, Michele; Ryan, Tomás J; Tonegawa, Susumu

    2016-03-24

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory decline and subsequent loss of broader cognitive functions. Memory decline in the early stages of AD is mostly limited to episodic memory, for which the hippocampus has a crucial role. However, it has been uncertain whether the observed amnesia in the early stages of AD is due to disrupted encoding and consolidation of episodic information, or an impairment in the retrieval of stored memory information. Here we show that in transgenic mouse models of early AD, direct optogenetic activation of hippocampal memory engram cells results in memory retrieval despite the fact that these mice are amnesic in long-term memory tests when natural recall cues are used, revealing a retrieval, rather than a storage impairment. Before amyloid plaque deposition, the amnesia in these mice is age-dependent, which correlates with a progressive reduction in spine density of hippocampal dentate gyrus engram cells. We show that optogenetic induction of long-term potentiation at perforant path synapses of dentate gyrus engram cells restores both spine density and long-term memory. We also demonstrate that an ablation of dentate gyrus engram cells containing restored spine density prevents the rescue of long-term memory. Thus, selective rescue of spine density in engram cells may lead to an effective strategy for treating memory loss in the early stages of AD.

  13. Tolerance induction of IgG+ memory B cells by T cell-independent type II antigens.

    PubMed

    Haniuda, Kei; Nojima, Takuya; Ohyama, Kyosuke; Kitamura, Daisuke

    2011-05-15

    Memory B cells generated during a T cell-dependent immune response rapidly respond to a secondary immunization by producing abundant IgG Abs that bind cognate Ag with high affinity. It is currently unclear whether this heightened recall response by memory B cells is due to augmented IgG-BCR signaling, which has only been demonstrated in the context of naive transgenic B cells. To address this question, we examined whether memory B cells can respond in vivo to Ags that stimulate only through BCR, namely T cell-independent type II (TI-II) Ags. In this study, we show that the TI-II Ag (4-hydroxy-3-nitrophenyl) acetyl (NP)-Ficoll cannot elicit the recall response in mice first immunized with the T cell-dependent Ag NP-chicken γ-globulin. Moreover, the NP-Ficoll challenge in vivo as well as in vitro significantly inhibits a subsequent recall response to NP-chicken γ-globulin in a B cell-intrinsic manner. This NP-Ficoll-mediated tolerance is caused by the preferential elimination of IgG(+) memory B cells binding to NP with high affinity. These data indicate that BCR cross-linking with a TI-II Ag does not activate IgG(+) memory B cells, but rather tolerizes them, identifying a terminal checkpoint of memory B cell differentiation that may prevent autoimmunity.

  14. Memory CD8+ T Cells Protect Dendritic Cells from CTL Killing1

    PubMed Central

    Watchmaker, Payal B.; Urban, Julie A.; Berk, Erik; Nakamura, Yutaro; Mailliard, Robbie B.; Watkins, Simon C.; van Ham, S. Marieke; Kalinski, Pawel

    2010-01-01

    CD8+ T cells have been shown to be capable of either suppressing or promoting immune responses. To reconcile these contrasting regulatory functions, we compared the ability of human effector and memory CD8+ T cells to regulate survival and functions of dendritic cells (DC). We report that, in sharp contrast to the effector cells (CTLs) that kill DCs in a granzyme B- and perforin-dependent mechanism, memory CD8+ T cells enhance the ability of DCs to produce IL-12 and to induce functional Th1 and CTL responses in naive CD4+ and CD8+ T cell populations. Moreover, memory CD8+ T cells that release the DC-activating factor TNF-α before the release of cytotoxic granules induce DC expression of an endogenous granzyme B inhibitor PI-9 and protect DCs from CTL killing with similar efficacy as CD4+ Th cells. The currently identified DC-protective function of memory CD8+ T cells helps to explain the phenomenon of CD8+ T cell memory, reduced dependence of recall responses on CD4+ T cell help, and the importance of delayed administration of booster doses of vaccines for the optimal outcome of immunization. PMID:18322193

  15. CD4+ virtual memory: Antigen-inexperienced T cells reside in the naïve, regulatory, and memory T cell compartments at similar frequencies, implications for autoimmunity.

    PubMed

    Marusina, Alina I; Ono, Yoko; Merleev, Alexander A; Shimoda, Michiko; Ogawa, Hiromi; Wang, Elizabeth A; Kondo, Kayo; Olney, Laura; Luxardi, Guillaume; Miyamura, Yoshinori; Yilma, Tilahun D; Villalobos, Itzel Bustos; Bergstrom, Jennifer W; Kronenberg, Daniel G; Soulika, Athena M; Adamopoulos, Iannis E; Maverakis, Emanual

    2017-02-01

    It is widely accepted that central and effector memory CD4 + T cells originate from naïve T cells after they have encountered their cognate antigen in the setting of appropriate co-stimulation. However, if this were true the diversity of T cell receptor (TCR) sequences within the naïve T cell compartment should be far greater than that of the memory T cell compartment, which is not supported by TCR sequencing data. Here we demonstrate that aged mice with far fewer naïve T cells, respond to the model antigen, hen eggwhite lysozyme (HEL), by utilizing the same TCR sequence as their younger counterparts. CD4 + T cell repertoire analysis of highly purified T cell populations from naive animals revealed that the HEL-specific clones displayed effector and central "memory" cell surface phenotypes even prior to having encountered their cognate antigen. Furthermore, HEL-inexperienced CD4 + T cells were found to reside within the naïve, regulatory, central memory, and effector memory T cell populations at similar frequencies and the majority of the CD4 + T cells within the regulatory and memory populations were unexpanded. These findings support a new paradigm for CD4 + T cell maturation in which a specific clone can undergo a differentiation process to exhibit a "memory" or regulatory phenotype without having undergone a clonal expansion event. It also demonstrates that a foreign-specific T cell is just as likely to reside within the regulatory T cell compartment as it would the naïve compartment, arguing against the specificity of the regulatory T cell compartment being skewed towards self-reactive T cell clones. Finally, we demonstrate that the same set of foreign and autoreactive CD4 + T cell clones are repetitively generated throughout adulthood. The latter observation argues against T cell-depleting strategies or autologous stem cell transplantation as therapies for autoimmunity-as the immune system has the ability to regenerate pathogenic clones. Published by Elsevier Ltd.

  16. Dynamic search and working memory in social recall.

    PubMed

    Hills, Thomas T; Pachur, Thorsten

    2012-01-01

    What are the mechanisms underlying search in social memory (e.g., remembering the people one knows)? Do the search mechanisms involve dynamic local-to-global transitions similar to semantic search, and are these transitions governed by the general control of attention, associated with working memory span? To find out, we asked participants to recall individuals from their personal social networks and measured each participant's working memory capacity. Additionally, participants provided social-category and contact-frequency information about the recalled individuals as well as information about the social proximity among the recalled individuals. On the basis of these data, we tested various computational models of memory search regarding their ability to account for the patterns in which participants recalled from social memory. Although recall patterns showed clustering based on social categories, models assuming dynamic transitions between representations cued by social proximity and frequency information predicted participants' recall patterns best-no additional explanatory power was gained from social-category information. Moreover, individual differences in the time between transitions were positively correlated with differences in working memory capacity. These results highlight the role of social proximity in structuring social memory and elucidate the role of working memory for maintaining search criteria during search within that structure.

  17. Bigger is better and worse: on the intricate relationship between hippocampal size and memory.

    PubMed

    Molnár, Katalin; Kéri, Szabolcs

    2014-04-01

    The structure-function relationship between the hippocampal region and memory is a debated topic in the literature. It has been suggested that larger hippocampi are associated with less effective memory performance in healthy young adults because of a partial synaptic pruning. Here, we tested this hypothesis in individuals with Fragile X Syndrome (FXS) with known abnormal pruning and IQ- and age-matched individuals with hypoxic brain injury, preterm birth, and obstetric complications. Results revealed larger normalized hippocampal volume in FXS compared with neurotypical controls, whereas individuals with hypoxic injury had smaller hippocampi. In neurotypical controls and individuals with hypoxic injury, better general memory, as indexed by the Wechsler Memory Scale-Revised, was associated with larger hippocampus. In contrast, in FXS we observed the opposite relationship: larger hippocampus was associated with worse general memory. Caudate volume did not correlate with memory in either group. These results suggest that incomplete pruning in young healthy adults may not contribute to less efficient memory capacity, and hippocampal size is positively associated with memory performance. However, abnormally large and poorly pruned hippocampus may indeed be less effective in FXS. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Immune signatures of protective spleen memory CD8 T cells.

    PubMed

    Brinza, Lilia; Djebali, Sophia; Tomkowiak, Martine; Mafille, Julien; Loiseau, Céline; Jouve, Pierre-Emmanuel; de Bernard, Simon; Buffat, Laurent; Lina, Bruno; Ottmann, Michèle; Rosa-Calatrava, Manuel; Schicklin, Stéphane; Bonnefoy, Nathalie; Lauvau, Grégoire; Grau, Morgan; Wencker, Mélanie; Arpin, Christophe; Walzer, Thierry; Leverrier, Yann; Marvel, Jacqueline

    2016-11-24

    Memory CD8 T lymphocyte populations are remarkably heterogeneous and differ in their ability to protect the host. In order to identify the whole range of qualities uniquely associated with protective memory cells we compared the gene expression signatures of two qualities of memory CD8 T cells sharing the same antigenic-specificity: protective (Influenza-induced, Flu-TM) and non-protective (peptide-induced, TIM) spleen memory CD8 T cells. Although Flu-TM and TIM express classical phenotypic memory markers and are polyfunctional, only Flu-TM protects against a lethal viral challenge. Protective memory CD8 T cells express a unique set of genes involved in migration and survival that correlate with their unique capacity to rapidly migrate within the infected lung parenchyma in response to influenza infection. We also enlighten a new set of poised genes expressed by protective cells that is strongly enriched in cytokines and chemokines such as Ccl1, Ccl9 and Gm-csf. CCL1 and GM-CSF genes are also poised in human memory CD8 T cells. These immune signatures are also induced by two other pathogens (vaccinia virus and Listeria monocytogenes). The immune signatures associated with immune protection were identified on circulating cells, i.e. those that are easily accessible for immuno-monitoring and could help predict vaccines efficacy.

  19. Characterization of a CD44/CD122int memory CD8 T cell subset generated under sterile inflammatory conditions.

    PubMed

    Mbitikon-Kobo, Florentin-Martial; Vocanson, Marc; Michallet, Marie-Cécile; Tomkowiak, Martine; Cottalorda, Anne; Angelov, Georgi S; Coupet, Charles-Antoine; Djebali, Sophia; Marçais, Antoine; Dubois, Bertrand; Bonnefoy-Bérard, Nathalie; Nicolas, Jean-François; Arpin, Christophe; Marvel, Jacqueline

    2009-03-15

    Most memory CD8 T cell subsets that have been hitherto defined are generated in response to infectious pathogens. In this study, we have characterized the CD8 T cells that survive priming conditions, devoid of pathogen-derived danger signals. In both a TCR-transgenic model and a model of contact hypersensitivity, we show that the priming of naive CD8 T cells under sterile inflammatory conditions generates memory. The corresponding memory CD8 T cells can be identified by their intermediate expression levels of CD44 and CD122. We also show that CD44/122(int) memory CD8 T cells spontaneously develop in wild type mice and that they display intermediate levels of several other memory traits including functional (IFN-gamma secretion capacity, CCL5 messenger stores), phenotypic, and molecular (T-bet and eomesodermin expression levels) features. We finally show that they correspond to an early differentiation stage and can further differentiate in CD44/122(high) memory T cells. Altogether, our results identify a new memory CD8 T cell subset that is generated under sterile inflammatory conditions and involved in the recall contact hypersensitivity reactions that are responsible for allergic contact dermatitis.

  20. The Benefit of Attention-to-Memory Depends on the Interplay of Memory Capacity and Memory Load

    PubMed Central

    Lim, Sung-Joo; Wöstmann, Malte; Geweke, Frederik; Obleser, Jonas

    2018-01-01

    Humans can be cued to attend to an item in memory, which facilitates and enhances the perceptual precision in recalling this item. Here, we demonstrate that this facilitating effect of attention-to-memory hinges on the overall degree of memory load. The benefit an individual draws from attention-to-memory depends on her overall working memory performance, measured as sensitivity (d′) in a retroactive cue (retro-cue) pitch discrimination task. While listeners maintained 2, 4, or 6 auditory syllables in memory, we provided valid or neutral retro-cues to direct listeners’ attention to one, to-be-probed syllable in memory. Participants’ overall memory performance (i.e., perceptual sensitivity d′) was relatively unaffected by the presence of valid retro-cues across memory loads. However, a more fine-grained analysis using psychophysical modeling shows that valid retro-cues elicited faster pitch-change judgments and improved perceptual precision. Importantly, as memory load increased, listeners’ overall working memory performance correlated with inter-individual differences in the degree to which precision improved (r = 0.39, p = 0.029). Under high load, individuals with low working memory profited least from attention-to-memory. Our results demonstrate that retrospective attention enhances perceptual precision of attended items in memory but listeners’ optimal use of informative cues depends on their overall memory abilities. PMID:29520246

  1. Kinetic Inductance Memory Cell and Architecture for Superconducting Computers

    NASA Astrophysics Data System (ADS)

    Chen, George J.

    Josephson memory devices typically use a superconducting loop containing one or more Josephson junctions to store information. The magnetic inductance of the loop in conjunction with the Josephson junctions provides multiple states to store data. This thesis shows that replacing the magnetic inductor in a memory cell with a kinetic inductor can lead to a smaller cell size. However, magnetic control of the cells is lost. Thus, a current-injection based architecture for a memory array has been designed to work around this problem. The isolation between memory cells that magnetic control provides is provided through resistors in this new architecture. However, these resistors allow leakage current to flow which ultimately limits the size of the array due to power considerations. A kinetic inductance memory array will be limited to 4K bits with a read access time of 320 ps for a 1 um linewidth technology. If a power decoder could be developed, the memory architecture could serve as the blueprint for a fast (<1 ns), large scale (>1 Mbit) superconducting memory array.

  2. White Adipose Tissue Is a Reservoir for Memory T Cells and Promotes Protective Memory Responses to Infection.

    PubMed

    Han, Seong-Ji; Glatman Zaretsky, Arielle; Andrade-Oliveira, Vinicius; Collins, Nicholas; Dzutsev, Amiran; Shaik, Jahangheer; Morais da Fonseca, Denise; Harrison, Oliver J; Tamoutounour, Samira; Byrd, Allyson L; Smelkinson, Margery; Bouladoux, Nicolas; Bliska, James B; Brenchley, Jason M; Brodsky, Igor E; Belkaid, Yasmine

    2017-12-19

    White adipose tissue bridges body organs and plays a fundamental role in host metabolism. To what extent adipose tissue also contributes to immune surveillance and long-term protective defense remains largely unknown. Here, we have shown that at steady state, white adipose tissue contained abundant memory lymphocyte populations. After infection, white adipose tissue accumulated large numbers of pathogen-specific memory T cells, including tissue-resident cells. Memory T cells in white adipose tissue expressed a distinct metabolic profile, and white adipose tissue from previously infected mice was sufficient to protect uninfected mice from lethal pathogen challenge. Induction of recall responses within white adipose tissue was associated with the collapse of lipid metabolism in favor of antimicrobial responses. Our results suggest that white adipose tissue represents a memory T cell reservoir that provides potent and rapid effector memory responses, positioning this compartment as a potential major contributor to immunological memory. Published by Elsevier Inc.

  3. The roles of working memory and intervening task difficulty in determining the benefits of repetition

    PubMed Central

    Bui, Dung C.; Maddox, Geoffrey B.; Balota, David A.

    2014-01-01

    Memory is better when learning events are spaced, as compared with massed (i.e., the spacing effect). Recent theories posit that retrieval of an item’s earlier presentation contributes to the spacing effect, which suggests that individual differences in the ability to retrieve an earlier event may influence the benefit of spaced repetition. The present study examined (1) the difficulty of task demands between repetitions, which should modulate the ability to retrieve the earlier information, and (2) individual differences in working memory in a spaced repetition paradigm. Across two experiments, participants studied a word set twice, each separated by an interval where duration was held constant, and the difficulty of the intervening task was manipulated. After a short retention interval following the second presentation, participants recalled the word set. Those who scored high on working memory measures benefited more from repeated study than did those who scored lower on working memory measures, regardless of task difficulty. Critically, a crossover interaction was observed between working memory and intervening task difficulty: Individuals with low working memory scores benefited more when task difficulty was easy than when it was difficult, but individuals with high working memory scores produced the opposite effect. These results suggest that individual differences in working memory should be considered in optimizing the benefits of repetition learning. PMID:23224905

  4. Enhanced clonal burst size corrects an otherwise defective memory response by CD8+ recent thymic emigrants

    PubMed Central

    Deets, Katherine A.; Berkley, Amy M.; Bergsbaken, Tessa; Fink, Pamela J.

    2016-01-01

    The youngest peripheral T cells (recent thymic emigrants or RTEs) are functionally distinct from naïve T cells that have completed post-thymic maturation. We now assess the RTE memory response, and find that RTEs produced less granzyme B than their mature counterparts during infection, but proliferated more and therefore generated equivalent target killing in vivo. After infection, RTE numbers contracted less dramatically than those of mature T cells, but RTEs were delayed in their transition to central memory, displaying impaired expression of CD62L, IL-2, Eomesodermin, and CXCR4, which resulted in impaired bone marrow localization. RTE-derived and mature memory cells expanded equivalently during rechallenge, indicating the robust proliferative capacity of RTEs was maintained independently of central memory phenotype. Thus, the diminished effector function and delayed central memory differentiation of RTE-derived memory cells are counterbalanced by their increased proliferative capacity, driving the efficacy of the RTE response to that of mature T cells. PMID:26873989

  5. Cutting Edge: Enhanced Clonal Burst Size Corrects an Otherwise Defective Memory Response by CD8+ Recent Thymic Emigrants.

    PubMed

    Deets, Katherine A; Berkley, Amy M; Bergsbaken, Tessa; Fink, Pamela J

    2016-03-15

    The youngest peripheral T cells (recent thymic emigrants [RTEs]) are functionally distinct from naive T cells that have completed postthymic maturation. We assessed the RTE memory response and found that RTEs produced less granzyme B than their mature counterparts during infection but proliferated more and, therefore, generated equivalent target killing in vivo. Postinfection, RTE numbers contracted less dramatically than those of mature T cells, but RTEs were delayed in their transition to central memory, displaying impaired expression of CD62L, IL-2, Eomesodermin, and CXCR4, which resulted in impaired bone marrow localization. RTE-derived and mature memory cells expanded equivalently during rechallenge, indicating that the robust proliferative capacity of RTEs was maintained independently of central memory phenotype. Thus, the diminished effector function and delayed central memory differentiation of RTE-derived memory cells are counterbalanced by their increased proliferative capacity, driving the efficacy of the RTE response to that of mature T cells. Copyright © 2016 by The American Association of Immunologists, Inc.

  6. Associative memory cells and their working principle in the brain

    PubMed Central

    Wang, Jin-Hui; Cui, Shan

    2018-01-01

    The acquisition, integration and storage of exogenous associated signals are termed as associative learning and memory. The consequences and processes of associative thinking and logical reasoning based on these stored exogenous signals can be memorized as endogenous signals, which are essential for decision making, intention, and planning. Associative memory cells recruited in these primary and secondary associative memories are presumably the foundation for the brain to fulfill cognition events and emotional reactions in life, though the plasticity of synaptic connectivity and neuronal activity has been believed to be involved in learning and memory. Current reports indicate that associative memory cells are recruited by their mutual synapse innervations among co-activated brain regions to fulfill the integration, storage and retrieval of associated signals. The activation of these associative memory cells initiates information recall in the mind, and the successful activation of their downstream neurons endorses memory presentations through behaviors and emotion reactions. In this review, we aim to draw a comprehensive diagram for associative memory cells, working principle and modulation, as well as propose their roles in cognition, emotion and behaviors. PMID:29487741

  7. Variability in memory performance in aged healthy individuals: an fMRI study.

    PubMed

    Grön, Georg; Bittner, Daniel; Schmitz, Bernd; Wunderlich, Arthur P; Tomczak, Reinhard; Riepe, Matthias W

    2003-01-01

    Episodic memory performance varies in older subjects but underlying biological correlates remain as yet ambiguous. We investigated episodic memory in healthy older individuals (n=24; mean age: 64.4+/-6.7 years) without subjective memory complaints or objective cognitive impairment. Episodic memory was assessed with repetitive learning and recall of abstract geometric patterns during fMRI. Group analysis of brain activity during initial learning and maximum recall revealed hippocampal activation. Correlation analysis of brain activation and task performance demonstrated significant hippocampal activity during initial learning and maximum recall in a success-dependent manner. Neither age nor gray matter densities correlated with hippocampal activation. Functional imaging of episodic memory thus permits to detect objectively variability in hippocampal recruitment in healthy aged individuals without subjective memory complaints. Correlation analysis of brain activation and performance during an episodic memory task may be used to determine and follow-up hippocampal malfunction in a very sensitive manner.

  8. In Vitro Measles Virus Infection of Human Lymphocyte Subsets Demonstrates High Susceptibility and Permissiveness of both Naive and Memory B Cells.

    PubMed

    Laksono, Brigitta M; Grosserichter-Wagener, Christina; de Vries, Rory D; Langeveld, Simone A G; Brem, Maarten D; van Dongen, Jacques J M; Katsikis, Peter D; Koopmans, Marion P G; van Zelm, Menno C; de Swart, Rik L

    2018-04-15

    Measles is characterized by a transient immune suppression, leading to an increased risk of opportunistic infections. Measles virus (MV) infection of immune cells is mediated by the cellular receptor CD150, expressed by subsets of lymphocytes, dendritic cells, macrophages, and thymocytes. Previous studies showed that human and nonhuman primate memory T cells express higher levels of CD150 than naive cells and are more susceptible to MV infection. However, limited information is available about the CD150 expression and relative susceptibility to MV infection of B-cell subsets. In this study, we assessed the susceptibility and permissiveness of naive and memory T- and B-cell subsets from human peripheral blood or tonsils to in vitro MV infection. Our study demonstrates that naive and memory B cells express CD150, but at lower frequencies than memory T cells. Nevertheless, both naive and memory B cells proved to be highly permissive to MV infection. Furthermore, we assessed the susceptibility and permissiveness of various functionally distinct T and B cells, such as helper T (T H ) cell subsets and IgG- and IgA-positive memory B cells, in peripheral blood and tonsils. We demonstrated that T H 1T H 17 cells and plasma and germinal center B cells were the subsets most susceptible and permissive to MV infection. Our study suggests that both naive and memory B cells, along with several other antigen-experienced lymphocytes, are important target cells of MV infection. Depletion of these cells potentially contributes to the pathogenesis of measles immune suppression. IMPORTANCE Measles is associated with immune suppression and is often complicated by bacterial pneumonia, otitis media, or gastroenteritis. Measles virus infects antigen-presenting cells and T and B cells, and depletion of these cells may contribute to lymphopenia and immune suppression. Measles has been associated with follicular exhaustion in lymphoid tissues in humans and nonhuman primates, emphasizing the importance of MV infection of B cells in vivo However, information on the relative susceptibility of B-cell subsets is scarce. Here, we compared the susceptibility and permissiveness to in vitro MV infection of human naive and memory T- and B-cell subsets isolated from peripheral blood or tonsils. Our results demonstrate that both naive and memory B cells are more permissive to MV infection than T cells. The highest infection levels were detected in plasma cells and germinal center B cells, suggesting that infection and depletion of these populations contribute to reduced host resistance. Copyright © 2018 Laksono et al.

  9. In Vitro Measles Virus Infection of Human Lymphocyte Subsets Demonstrates High Susceptibility and Permissiveness of both Naive and Memory B Cells

    PubMed Central

    Laksono, Brigitta M.; Grosserichter-Wagener, Christina; de Vries, Rory D.; Langeveld, Simone A. G.; Brem, Maarten D.; van Dongen, Jacques J. M.; Koopmans, Marion P. G.

    2018-01-01

    ABSTRACT Measles is characterized by a transient immune suppression, leading to an increased risk of opportunistic infections. Measles virus (MV) infection of immune cells is mediated by the cellular receptor CD150, expressed by subsets of lymphocytes, dendritic cells, macrophages, and thymocytes. Previous studies showed that human and nonhuman primate memory T cells express higher levels of CD150 than naive cells and are more susceptible to MV infection. However, limited information is available about the CD150 expression and relative susceptibility to MV infection of B-cell subsets. In this study, we assessed the susceptibility and permissiveness of naive and memory T- and B-cell subsets from human peripheral blood or tonsils to in vitro MV infection. Our study demonstrates that naive and memory B cells express CD150, but at lower frequencies than memory T cells. Nevertheless, both naive and memory B cells proved to be highly permissive to MV infection. Furthermore, we assessed the susceptibility and permissiveness of various functionally distinct T and B cells, such as helper T (TH) cell subsets and IgG- and IgA-positive memory B cells, in peripheral blood and tonsils. We demonstrated that TH1TH17 cells and plasma and germinal center B cells were the subsets most susceptible and permissive to MV infection. Our study suggests that both naive and memory B cells, along with several other antigen-experienced lymphocytes, are important target cells of MV infection. Depletion of these cells potentially contributes to the pathogenesis of measles immune suppression. IMPORTANCE Measles is associated with immune suppression and is often complicated by bacterial pneumonia, otitis media, or gastroenteritis. Measles virus infects antigen-presenting cells and T and B cells, and depletion of these cells may contribute to lymphopenia and immune suppression. Measles has been associated with follicular exhaustion in lymphoid tissues in humans and nonhuman primates, emphasizing the importance of MV infection of B cells in vivo. However, information on the relative susceptibility of B-cell subsets is scarce. Here, we compared the susceptibility and permissiveness to in vitro MV infection of human naive and memory T- and B-cell subsets isolated from peripheral blood or tonsils. Our results demonstrate that both naive and memory B cells are more permissive to MV infection than T cells. The highest infection levels were detected in plasma cells and germinal center B cells, suggesting that infection and depletion of these populations contribute to reduced host resistance. PMID:29437964

  10. Altered cognitive development in the siblings of individuals with schizophrenia

    PubMed Central

    Barch, Deanna M.; Cohen, Rachel; Csernansky, John

    2014-01-01

    The goal of the current study was to further investigate the late neurodevelopmental hypothesis of schizophrenia by examining cross-sectional, age-related changes in cognitive function among young adult: 1) siblings of individuals with schizophrenia (N = 66); (2) healthy control participants (N = 77); and (3) the siblings of healthy controls (N = 77). All subjects participated in a battery of tasks in four domains: 1) IQ; 2) working memory; 3) episodic memory; and 4) executive function. We found significant group differences in the relationships between age and performance in working memory and episodic memory, with similar patterns for executive function and verbal IQ. The siblings of individuals with schizophrenia showed impaired performance in working memory, episodic memory, and executive function. In addition, healthy controls and/or their siblings showed age-related improvements in all four cognitive domains, while the siblings of individuals with schizophrenia only showed this for verbal IQ. PMID:25485180

  11. Altered cognitive development in the siblings of individuals with schizophrenia.

    PubMed

    Barch, Deanna M; Cohen, Rachel; Csernansky, John

    2014-03-01

    The goal of the current study was to further investigate the late neurodevelopmental hypothesis of schizophrenia by examining cross-sectional, age-related changes in cognitive function among young adult: 1) siblings of individuals with schizophrenia (N = 66); (2) healthy control participants (N = 77); and (3) the siblings of healthy controls (N = 77). All subjects participated in a battery of tasks in four domains: 1) IQ; 2) working memory; 3) episodic memory; and 4) executive function. We found significant group differences in the relationships between age and performance in working memory and episodic memory, with similar patterns for executive function and verbal IQ. The siblings of individuals with schizophrenia showed impaired performance in working memory, episodic memory, and executive function. In addition, healthy controls and/or their siblings showed age-related improvements in all four cognitive domains, while the siblings of individuals with schizophrenia only showed this for verbal IQ.

  12. Autobiographical memory bias in social anxiety.

    PubMed

    Krans, Julie; de Bree, June; Bryant, Richard A

    2014-01-01

    In social anxiety the psychological self is closely related to the feared stimulus. Socially anxious individuals are, by definition, concerned about how the self is perceived and evaluated by others. As autobiographical memory is strongly related to views of the self it follows that biases in autobiographical memory play an important role in social anxiety. In the present study high (n = 19) and low (n = 29) socially anxious individuals were compared on autobiographical memory bias, current goals, and self-discrepancy. Individuals high in social anxiety showed a bias towards recalling more negative and more social anxiety-related autobiographical memories, reported more current goals related to overcoming social anxiety, and showed larger self-discrepancies. The pattern of results is largely in line with earlier research in individuals with PTSD and complicated grief. This suggests that the relation between autobiographical memory bias and the self is a potentially valuable trans-diagnostic factor.

  13. Speed and Accuracy of Accessing Information in Working Memory: An Individual Differences Investigation of Focus Switching

    ERIC Educational Resources Information Center

    Unsworth, Nash; Engle, Randall W.

    2008-01-01

    Three experiments examined the nature of individual differences in switching the focus of attention in working memory. Participants performed 3 versions of a continuous counting task that required successive updating and switching between counts. Across all 3 experiments, individual differences in working memory span and fluid intelligence were…

  14. Role of Verbal Memory in Reading Text Comprehension of Individuals with Down Syndrome

    ERIC Educational Resources Information Center

    Levorato, Maria Chiara; Roch, Maja; Florit, Elena

    2011-01-01

    This study analyzed the relationship between verbal memory and reading text comprehension in individuals with Down syndrome. The hypothesis that verbal memory provides unique contribution to reading text comprehension after controlling for verbal skills was tested. Twenty-three individuals with Down syndrome (ages 11 years, 2 months-18 years, 1…

  15. Human Infant Memory B Cell and CD4+ T Cell Responses to HibMenCY-TT Glyco-Conjugate Vaccine

    PubMed Central

    Fuery, Angela; Richmond, Peter C.; Currie, Andrew J.

    2015-01-01

    Carrier-specific T cell and polysaccharide-specific B cell memory responses are not well characterised in infants following glyco-conjugate vaccination. We aimed to determine if the number of Meningococcal (Men) C- and Y- specific memory B cells and; number and quality of Tetanus Toxoid (TT) carrier-specific memory CD4+ T cells are associated with polysaccharide-specific IgG post HibMenCY-TT vaccination. Healthy infants received HibMenCY-TT vaccine at 2, 4 and 6 months with a booster at 12 months. Peripheral blood mononuclear cells were isolated and polysaccharide-specific memory B cells enumerated using ELISpot. TT-specific memory CD4+ T cells were detected and phenotyped based on CD154 expression and intracellular TNF-α, IL-2 and IFN-γ expression following stimulation. Functional polysaccharide-specific IgG titres were measured using the serum bactericidal activity (SBA) assay. Polysaccharide-specific Men C- but not Men Y- specific memory B cell frequencies pre-boost (12 months) were significantly associated with post-boost (13 months) SBA titres. Regression analysis showed no association between memory B cell frequencies post-priming (at 6 or 7 months) and SBA at 12 months or 13 months. TT-specific CD4+ T cells were detected at frequencies between 0.001 and 0.112 as a percentage of CD3+ T cells, but their numbers were not associated with SBA titres. There were significant negative associations between SBA titres at M13 and cytokine expression at M7 and M12. Conclusion: Induction of persistent polysaccharide-specific memory B cells prior to boosting is an important determinant of secondary IgG responses in infants. However, polysaccharide-specific functional IgG responses appear to be independent of the number and quality of circulating carrier-specific CD4+ T cells after priming. PMID:26191794

  16. Different Dynamics for IgG and IgA Memory B Cells in Adolescents following a Meningococcal Serogroup C Tetanus Toxoid Conjugate Booster Vaccination Nine Years after Priming: A Role for Priming Age?

    PubMed Central

    Stoof, Susanne P.; Buisman, Anne-Marie; van Rooijen, Debbie M.; Boonacker, Rianne; van der Klis, Fiona R. M.; Sanders, Elisabeth A. M.; Berbers, Guy A. M.

    2015-01-01

    Background Antibody levels wane rapidly after Meningococcal serogroup C conjugate (MenCC) vaccination in young children, rendering the need for an adolescent booster dose. It is not clear whether circulating memory B cells are associated with persistence of MenC-specific antibody levels. Methods Measurement of MenC-specific IgG and IgA memory B cells and levels of serum and salivary MenC-specific IgG and IgA in healthy 10-, 12- and 15-year-olds prior to and one month and one year after a MenCC booster vaccination. All participants had received a primary MenCC vaccination nine years earlier. Results The number of circulating MenC-specific IgG memory B cells prior to booster was low and not predictive for MenC-specific IgG responses in serum or saliva post-booster, whereas the number of MenC-specific IgA memory B cells pre-booster positively correlated with MenC-specific IgA levels in saliva post-booster (R = 0.5, P<0.05). The booster induced a clear increase in the number of MenC-specific IgG and IgA memory B cells. The number of MenC-PS-specific IgG memory B cells at 1 month post-booster was highest in the 12-year-olds. The number of MenC-specific memory B cells at one month post-booster showed no correlation with the rate of MenC-specific antibody decay throughout the first year post-booster. Conclusions Circulating MenC-specific IgA memory B cells correlate with IgA responses in saliva, whereas circulating MenC-specific IgG memory B cells are not predictive for MenC-specific IgG responses in serum or saliva. Our results are suggestive for age-dependent differences in pre-existing memory against MenC. PMID:26458006

  17. Different Dynamics for IgG and IgA Memory B Cells in Adolescents following a Meningococcal Serogroup C Tetanus Toxoid Conjugate Booster Vaccination Nine Years after Priming: A Role for Priming Age?

    PubMed

    Stoof, Susanne P; Buisman, Anne-Marie; van Rooijen, Debbie M; Boonacker, Rianne; van der Klis, Fiona R M; Sanders, Elisabeth A M; Berbers, Guy A M

    2015-01-01

    Antibody levels wane rapidly after Meningococcal serogroup C conjugate (MenCC) vaccination in young children, rendering the need for an adolescent booster dose. It is not clear whether circulating memory B cells are associated with persistence of MenC-specific antibody levels. Measurement of MenC-specific IgG and IgA memory B cells and levels of serum and salivary MenC-specific IgG and IgA in healthy 10-, 12- and 15-year-olds prior to and one month and one year after a MenCC booster vaccination. All participants had received a primary MenCC vaccination nine years earlier. The number of circulating MenC-specific IgG memory B cells prior to booster was low and not predictive for MenC-specific IgG responses in serum or saliva post-booster, whereas the number of MenC-specific IgA memory B cells pre-booster positively correlated with MenC-specific IgA levels in saliva post-booster (R = 0.5, P<0.05). The booster induced a clear increase in the number of MenC-specific IgG and IgA memory B cells. The number of MenC-PS-specific IgG memory B cells at 1 month post-booster was highest in the 12-year-olds. The number of MenC-specific memory B cells at one month post-booster showed no correlation with the rate of MenC-specific antibody decay throughout the first year post-booster. Circulating MenC-specific IgA memory B cells correlate with IgA responses in saliva, whereas circulating MenC-specific IgG memory B cells are not predictive for MenC-specific IgG responses in serum or saliva. Our results are suggestive for age-dependent differences in pre-existing memory against MenC.

  18. Histone acetylation is associated with differential gene expression in the rapid and robust memory CD8+ T-cell response

    PubMed Central

    Fann, Monchou; Godlove, Jason M.; Catalfamo, Marta; Wood, William H.; Chrest, Francis J.; Chun, Nicholas; Granger, Larry; Wersto, Robert; Madara, Karen; Becker, Kevin; Henkart, Pierre A.; Weng, Nan-ping

    2006-01-01

    To understand the molecular basis for the rapid and robust memory T-cell responses, we examined gene expression and chromatin modification by histone H3 lysine 9 (H3K9) acetylation in resting and activated human naive and memory CD8+ T cells. We found that, although overall gene expression patterns were similar, a number of genes are differentially expressed in either memory or naive cells in their resting and activated states. To further elucidate the basis for differential gene expression, we assessed the role of histone H3K9 acetylation in differential gene expression. Strikingly, higher H3K9 acetylation levels were detected in resting memory cells, prior to their activation, for those genes that were differentially expressed following activation, indicating that hyperacetylation of histone H3K9 may play a role in selective and rapid gene expression of memory CD8+ T cells. Consistent with this model, we showed that inducing high levels of H3K9 acetylation resulted in an increased expression in naive cells of those genes that are normally expressed differentially in memory cells. Together, these findings suggest that differential gene expression mediated at least in part by histone H3K9 hyperacetylation may be responsible for the rapid and robust memory CD8+ T-cell response. PMID:16868257

  19. Primary Sjögren's syndrome is characterized by distinct phenotypic and transcriptional profiles of IgD+ unswitched memory B cells.

    PubMed

    Roberts, Mustimbo E P; Kaminski, Denise; Jenks, Scott A; Maguire, Craig; Ching, Kathryn; Burbelo, Peter D; Iadarola, Michael J; Rosenberg, Alexander; Coca, Andreea; Anolik, Jennifer; Sanz, Iñaki

    2014-09-01

    The significance of distinct B cell abnormalities in primary Sjögren's syndrome (SS) remains to be established. We undertook this study to analyze the phenotype and messenger RNA (mRNA) transcript profiles of B cell subsets in patients with primary SS and to compare them with those in sicca syndrome patients and healthy controls. CD19+ B cells from 26 patients with primary SS, 27 sicca syndrome patients, and 22 healthy controls were analyzed by flow cytometry. Gene expression profiles of purified B cell subsets (from 3-5 subjects per group per test) were analyzed using Affymetrix gene arrays. Patients with primary SS had lower frequencies of CD27+IgD- switched memory B cells and CD27+IgD+ unswitched memory B cells compared with healthy controls. Unswitched memory B cell frequencies were also lower in sicca syndrome patients and correlated inversely with serologic hyperactivity in both disease states. Further, unswitched memory B cells in primary SS had lower expression of CD1c and CD21. Gene expression analysis of CD27+ memory B cells separated patients with primary SS from healthy controls and identified a subgroup of sicca syndrome patients with a primary SS-like transcript profile. Moreover, unswitched memory B cell gene expression analysis identified 187 genes differentially expressed between patients with primary SS and healthy controls. A decrease in unswitched memory B cells with serologic hyperactivity is characteristic of both established primary SS and a subgroup of sicca syndrome, which suggests the value of these B cells both as biomarkers of future disease progression and for understanding disease pathogenesis. Overall, the mRNA transcript analysis of unswitched memory B cells suggests that their activation in primary SS takes place through innate immune pathways in the context of attenuated antigen-mediated adaptive signaling. Thus, our findings provide important insight into the mechanisms and potential consequences of decreased unswitched memory B cells in primary SS. Copyright © 2014 by the American College of Rheumatology.

  20. Persistence of memory B-cell and T-cell responses to the quadrivalent HPV vaccine in HIV-infected children.

    PubMed

    Weinberg, Adriana; Huang, Sharon; Moscicki, Anna-Barbara; Saah, Afred; Levin, Myron J

    2018-04-24

    To determine the magnitude and persistence of quadrivalent human papillomavirus (HPV)16 and HPV18 B-cell and T-cell memory after three or four doses of quadrivalent HPV vaccine (QHPV) in HIV-infected children. Seventy-four HIV-infected children immunized with four doses and 23 with three doses of QHPV had HPV16 and HPV18 IgG B-cell and IFNγ and IL2 T-cell ELISPOT performed at 2, 3.5 and 4-5 years after the last dose. HPV16 and HPV18 T-cell responses were similar in both treatment groups, with higher responses to HPV16 vs. HPV18. These HPV T-cell responses correlated with HIV disease characteristics at the study visits. Global T-cell function declined over time as measured by nonspecific mitogenic stimulation. B-cell memory was similar across treatment groups and HPV genotypes. There was a decline in HPV-specific B-cell memory over time that reached statistical significance for HPV16 in the four-dose group. B-cell and T-cell memory did not significantly differ after either three or four doses of QHPV in HIV-infected children. The clinical consequences of decreasing global T-cell function and HPV B-cell memory over time in HIV-infected children requires further investigation.

  1. Prime, Shock, and Kill: Priming CD4 T Cells from HIV Patients with a BCL-2 Antagonist before HIV Reactivation Reduces HIV Reservoir Size

    PubMed Central

    Cummins, Nathan W.; Sainski, Amy M.; Dai, Haiming; Natesampillai, Sekar; Pang, Yuan-Ping; Bren, Gary D.; de Araujo Correia, Maria Cristina Miranda; Sampath, Rahul; Rizza, Stacey A.; O'Brien, Daniel; Yao, Joseph D.

    2016-01-01

    ABSTRACT Understanding how some HIV-infected cells resist the cytotoxicity of HIV replication is crucial to enabling HIV cure efforts. HIV killing of CD4 T cells that replicate HIV can involve HIV protease-mediated cleavage of procaspase 8 to generate a fragment (Casp8p41) that directly binds and activates the mitochondrial proapoptotic protein BAK. Here, we demonstrate that Casp8p41 also binds with nanomolar affinity to the antiapoptotic protein Bcl-2, which sequesters Casp8p41 and prevents apoptosis. Further, we show that central memory CD4 T cells (TCM) from HIV-infected individuals have heightened expression of BCL-2 relative to procaspase 8, possibly explaining the persistence of HIV-infected TCM despite generation of Casp8p41. Consistent with this hypothesis, the selective BCL-2 antagonist venetoclax induced minimal killing of uninfected CD4 T cells but markedly increased the death of CD4 T cells and diminished cell-associated HIV DNA when CD4 T cells from antiretroviral therapy (ART)-suppressed HIV patients were induced with αCD3/αCD28 to reactivate HIV ex vivo. Thus, priming CD4 T cells from ART suppressed HIV patients with a BCL-2 antagonist, followed by HIV reactivation, achieves reductions in cell-associated HIV DNA, whereas HIV reactivation alone does not. IMPORTANCE HIV infection is incurable due to a long-lived reservoir of HIV+ memory CD4 T cells, and no clinically relevant interventions have been identified that reduce the number of these HIV DNA-containing cells. Since postintegration HIV replication can result in HIV protease generation of Casp8p41, which activates BAK, causing infected CD4 T cell death, we sought to determine whether this occurs in memory CD4 T cells. Here, we demonstrate that memory CD4 T cells can generate Casp8p41 and yet are intrinsically resistant to death induced by diverse stimuli, including Casp8p41. Furthermore, BCL-2 expression is relatively increased in these cells and directly binds and inhibits Casp8p41's proapoptotic effects. Antagonizing BCL-2 with venetoclax derepresses this antagonism, resulting in death, preferentially in HIV DNA containing cells, since only these cells generate Casp8p41. Thus, BCL-2 antagonism is a clinically relevant intervention with the potential to reduce HIV reservoir size in patients. PMID:26842479

  2. Similar verbal memory impairments in schizophrenia and healthy aging. Implications for understanding of neural mechanisms.

    PubMed

    Silver, Henry; Bilker, Warren B

    2015-03-30

    Memory is impaired in schizophrenia patients but it is not clear whether this is specific to the illness and whether different types of memory (verbal and nonverbal) or memories in different cognitive domains (executive, object recognition) are similarly affected. To study relationships between memory impairments and schizophrenia we compared memory functions in 77 schizophrenia patients, 58 elderly healthy individuals and 41 young healthy individuals. Tests included verbal associative and logical memory and memory in executive and object recognition domains. We compared relationships of memory functions to each other and to other cognitive functions including psychomotor speed and verbal and spatial working memory. Compared to the young healthy group, schizophrenia patients and elderly healthy individuals showed similar severe impairment in logical memory and in the ability to learn new associations (NAL), and similar but less severe impairment in spatial working memory and executive and object memory. Verbal working memory was significantly more impaired in schizophrenia patients than in the healthy elderly. Verbal episodic memory impairment in schizophrenia may share common mechanisms with similar impairment in healthy aging. Impairment in verbal working memory in contrast may reflect mechanisms specific to schizophrenia. Study of verbal explicit memory impairment tapped by the NAL index may advance understanding of abnormal hippocampus dependent mechanisms common to schizophrenia and aging. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. BDNF and TNF-α polymorphisms in memory.

    PubMed

    Yogeetha, B S; Haupt, L M; McKenzie, K; Sutherland, H G; Okolicsyani, R K; Lea, R A; Maher, B H; Chan, R C K; Shum, D H K; Griffiths, L R

    2013-09-01

    Here, we investigate the genetic basis of human memory in healthy individuals and the potential role of two polymorphisms, previously implicated in memory function. We have explored aspects of retrospective and prospective memory including semantic, short term, working and long-term memory in conjunction with brain derived neurotrophic factor (BDNF) and tumor necrosis factor-alpha (TNF-α). The memory scores for healthy individuals in the population were obtained for each memory type and the population was genotyped via restriction fragment length polymorphism for the BDNF rs6265 (Val66Met) SNP and via pyrosequencing for the TNF-α rs113325588 SNP. Using univariate ANOVA, a significant association of the BDNF polymorphism with visual and spatial memory retention and a significant association of the TNF-α polymorphism was observed with spatial memory retention. In addition, a significant interactive effect between BDNF and TNF-α polymorphisms was observed in spatial memory retention. In practice visual memory involves spatial information and the two memory systems work together, however our data demonstrate that individuals with the Val/Val BDNF genotype have poorer visual memory but higher spatial memory retention, indicating a level of interaction between TNF-α and BDNF in spatial memory retention. This is the first study to use genetic analysis to determine the interaction between BDNF and TNF-α in relation to memory in normal adults and provides important information regarding the effect of genetic determinants and gene interactions on human memory.

  4. Modeling Coevolution between Language and Memory Capacity during Language Origin

    PubMed Central

    Gong, Tao; Shuai, Lan

    2015-01-01

    Memory is essential to many cognitive tasks including language. Apart from empirical studies of memory effects on language acquisition and use, there lack sufficient evolutionary explorations on whether a high level of memory capacity is prerequisite for language and whether language origin could influence memory capacity. In line with evolutionary theories that natural selection refined language-related cognitive abilities, we advocated a coevolution scenario between language and memory capacity, which incorporated the genetic transmission of individual memory capacity, cultural transmission of idiolects, and natural and cultural selections on individual reproduction and language teaching. To illustrate the coevolution dynamics, we adopted a multi-agent computational model simulating the emergence of lexical items and simple syntax through iterated communications. Simulations showed that: along with the origin of a communal language, an initially-low memory capacity for acquired linguistic knowledge was boosted; and such coherent increase in linguistic understandability and memory capacities reflected a language-memory coevolution; and such coevolution stopped till memory capacities became sufficient for language communications. Statistical analyses revealed that the coevolution was realized mainly by natural selection based on individual communicative success in cultural transmissions. This work elaborated the biology-culture parallelism of language evolution, demonstrated the driving force of culturally-constituted factors for natural selection of individual cognitive abilities, and suggested that the degree difference in language-related cognitive abilities between humans and nonhuman animals could result from a coevolution with language. PMID:26544876

  5. Event segmentation improves event memory up to one month later.

    PubMed

    Flores, Shaney; Bailey, Heather R; Eisenberg, Michelle L; Zacks, Jeffrey M

    2017-08-01

    When people observe everyday activity, they spontaneously parse it into discrete meaningful events. Individuals who segment activity in a more normative fashion show better subsequent memory for the events. If segmenting events effectively leads to better memory, does asking people to attend to segmentation improve subsequent memory? To answer this question, participants viewed movies of naturalistic activity with instructions to remember the activity for a later test, and in some conditions additionally pressed a button to segment the movies into meaningful events or performed a control condition that required button-pressing but not attending to segmentation. In 5 experiments, memory for the movies was assessed at intervals ranging from immediately following viewing to 1 month later. Performing the event segmentation task led to superior memory at delays ranging from 10 min to 1 month. Further, individual differences in segmentation ability predicted individual differences in memory performance for up to a month following encoding. This study provides the first evidence that manipulating event segmentation affects memory over long delays and that individual differences in event segmentation are related to differences in memory over long delays. These effects suggest that attending to how an activity breaks down into meaningful events contributes to memory formation. Instructing people to more effectively segment events may serve as a potential intervention to alleviate everyday memory complaints in aging and clinical populations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Modeling Coevolution between Language and Memory Capacity during Language Origin.

    PubMed

    Gong, Tao; Shuai, Lan

    2015-01-01

    Memory is essential to many cognitive tasks including language. Apart from empirical studies of memory effects on language acquisition and use, there lack sufficient evolutionary explorations on whether a high level of memory capacity is prerequisite for language and whether language origin could influence memory capacity. In line with evolutionary theories that natural selection refined language-related cognitive abilities, we advocated a coevolution scenario between language and memory capacity, which incorporated the genetic transmission of individual memory capacity, cultural transmission of idiolects, and natural and cultural selections on individual reproduction and language teaching. To illustrate the coevolution dynamics, we adopted a multi-agent computational model simulating the emergence of lexical items and simple syntax through iterated communications. Simulations showed that: along with the origin of a communal language, an initially-low memory capacity for acquired linguistic knowledge was boosted; and such coherent increase in linguistic understandability and memory capacities reflected a language-memory coevolution; and such coevolution stopped till memory capacities became sufficient for language communications. Statistical analyses revealed that the coevolution was realized mainly by natural selection based on individual communicative success in cultural transmissions. This work elaborated the biology-culture parallelism of language evolution, demonstrated the driving force of culturally-constituted factors for natural selection of individual cognitive abilities, and suggested that the degree difference in language-related cognitive abilities between humans and nonhuman animals could result from a coevolution with language.

  7. A Differential Deficit in Time- versus Event-based Prospective Memory in Parkinson's Disease

    PubMed Central

    Raskin, Sarah A.; Woods, Steven Paul; Poquette, Amelia J.; McTaggart, April B.; Sethna, Jim; Williams, Rebecca C.; Tröster, Alexander I.

    2010-01-01

    Objective The aim of the current study was to clarify the nature and extent of impairment in time- versus event-based prospective memory in Parkinson's disease (PD). Prospective memory is thought to involve cognitive processes that are mediated by prefrontal systems and are executive in nature. Given that individuals with PD frequently show executive dysfunction, it is important to determine whether these individuals may have deficits in prospective memory that could impact daily functions, such as taking medications. Although it has been reported that individuals with PD evidence impairment in prospective memory, it is still unclear whether they show a greater deficit for time- versus event-based cues. Method Fifty-four individuals with PD and 34 demographically similar healthy adults were administered a standardized measure of prospective memory that allows for a direct comparison of time-based and event-based cues. In addition, participants were administered a series of standardized measures of retrospective memory and executive functions. Results Individuals with PD demonstrated impaired prospective memory performance compared to the healthy adults, with a greater impairment demonstrated for the time-based tasks. Time-based prospective memory performance was moderately correlated with measures of executive functioning, but only the Stroop Neuropsychological Screening Test emerged as a unique predictor in a linear regression. Conclusions Findings are interpreted within the context of McDaniel and Einstein's (2000) multi-process theory to suggest that individuals with PD experience particular difficulty executing a future intention when the cue to execute the prescribed intention requires higher levels of executive control. PMID:21090895

  8. Selective CD28 Antagonist Blunts Memory Immune Responses and Promotes Long-Term Control of Skin Inflammation in Nonhuman Primates.

    PubMed

    Poirier, Nicolas; Chevalier, Melanie; Mary, Caroline; Hervouet, Jeremy; Minault, David; Baker, Paul; Ville, Simon; Le Bas-Bernardet, Stephanie; Dilek, Nahzli; Belarif, Lyssia; Cassagnau, Elisabeth; Scobie, Linda; Blancho, Gilles; Vanhove, Bernard

    2016-01-01

    Novel therapies that specifically target activation and expansion of pathogenic immune cell subsets responsible for autoimmune attacks are needed to confer long-term remission. Pathogenic cells in autoimmunity include memory T lymphocytes that are long-lived and present rapid recall effector functions with reduced activation requirements. Whereas the CD28 costimulation pathway predominantly controls priming of naive T cells and hence generation of adaptive memory cells, the roles of CD28 costimulation on established memory T lymphocytes and the recall of memory responses remain controversial. In contrast to CD80/86 antagonists (CTLA4-Ig), selective CD28 antagonists blunt T cell costimulation while sparing CTLA-4 and PD-L1-dependent coinhibitory signals. Using a new selective CD28 antagonist, we showed that Ag-specific reactivation of human memory T lymphocytes was prevented. Selective CD28 blockade controlled both cellular and humoral memory recall in nonhuman primates and induced long-term Ag-specific unresponsiveness in a memory T cell-mediated inflammatory skin model. No modification of memory T lymphocytes subsets or numbers was observed in the periphery, and importantly no significant reactivation of quiescent viruses was noticed. These findings indicate that pathogenic memory T cell responses are controlled by both CD28 and CTLA-4/PD-L1 cosignals in vivo and that selectively targeting CD28 would help to promote remission of autoimmune diseases and control chronic inflammation. Copyright © 2015 by The American Association of Immunologists, Inc.

  9. Aiolos Overexpression in Systemic Lupus Erythematosus B Cell Subtypes and BAFF-Induced Memory B Cell Differentiation Are Reduced by CC-220 Modulation of Cereblon Activity.

    PubMed

    Nakayama, Yumi; Kosek, Jolanta; Capone, Lori; Hur, Eun Mi; Schafer, Peter H; Ringheim, Garth E

    2017-10-01

    BAFF is a B cell survival and maturation factor implicated in the pathogenesis of systemic lupus erythematosus (SLE). In this in vitro study, we describe that soluble BAFF in combination with IL-2 and IL-21 is a T cell contact-independent inducer of human B cell proliferation, plasmablast differentiation, and IgG secretion from circulating CD27 + memory and memory-like CD27 - IgD - double-negative (DN) B cells, but not CD27 - IgD + naive B cells. In contrast, soluble CD40L in combination with IL-2 and IL-21 induces these activities in both memory and naive B cells. Blood from healthy donors and SLE patients have similar circulating levels of IL-2, whereas SLE patients exhibit elevated BAFF and DN B cells and reduced IL-21. B cell differentiation transcription factors in memory, DN, and naive B cells in SLE show elevated levels of Aiolos, whereas Ikaros levels are unchanged. Treatment with CC-220, a modulator of the cullin ring ligase 4-cereblon E3 ubiquitin ligase complex, reduces Aiolos and Ikaros protein levels and BAFF- and CD40L-induced proliferation, plasmablast differentiation, and IgG secretion. The observation that the soluble factors BAFF, IL-2, and IL-21 induce memory and DN B cell activation and differentiation has implications for extrafollicular plasmablast development within inflamed tissue. Inhibition of B cell plasmablast differentiation by reduction of Aiolos and Ikaros may have utility in the treatment of SLE, where elevated levels of BAFF and Aiolos may prime CD27 + memory and DN memory-like B cells to become Ab-producing plasmablasts in the presence of BAFF and proinflammatory cytokines. Copyright © 2017 by The American Association of Immunologists, Inc.

  10. The Respiratory Environment Diverts the Development of Antiviral Memory CD8 T Cells.

    PubMed

    Shane, Hillary L; Reagin, Katie L; Klonowski, Kimberly D

    2018-06-01

    Our understanding of memory CD8 + T cells has been largely derived from acute, systemic infection models. However, memory CD8 + T cells generated from mucosal infection exhibit unique properties and, following respiratory infection, are not maintained in the lung long term. To better understand how infection route modifies memory differentiation, we compared murine CD8 + T cell responses to a vesicular stomatitis virus (VSV) challenge generated intranasally (i.n.) or i.v. The i.n. infection resulted in greater peak expansion of VSV-specific CD8 + T cells. However, this numerical advantage was rapidly lost during the contraction phase of the immune response, resulting in memory CD8 + T cell numerical deficiencies when compared with i.v. infection. Interestingly, the antiviral CD8 + T cells generated in response to i.n. VSV exhibited a biased and sustained proportion of early effector cells (CD127 lo KLRG1 lo ) akin to the developmental program favored after i.n. influenza infection, suggesting that respiratory infection broadly favors an incomplete memory differentiation program. Correspondingly, i.n. VSV infection resulted in lower CD122 expression and eomesodermin levels by VSV-specific CD8 + T cells, further indicative of an inferior transition to bona fide memory. These results may be due to distinct (CD103 + CD11b + ) dendritic cell subsets in the i.n. versus i.v. T cell priming environments, which express molecules that regulate T cell signaling and the balance between tolerance and immunity. Therefore, we propose that distinct immunization routes modulate both the quality and quantity of antiviral effector and memory CD8 + T cells in response to an identical pathogen and should be considered in CD8 + T cell-based vaccine design. Copyright © 2018 by The American Association of Immunologists, Inc.

  11. Aiolos Overexpression in Systemic Lupus Erythematosus B Cell Subtypes and BAFF-Induced Memory B Cell Differentiation Are Reduced by CC-220 Modulation of Cereblon Activity

    PubMed Central

    Nakayama, Yumi; Kosek, Jolanta; Capone, Lori; Schafer, Peter H.

    2017-01-01

    BAFF is a B cell survival and maturation factor implicated in the pathogenesis of systemic lupus erythematosus (SLE). In this in vitro study, we describe that soluble BAFF in combination with IL-2 and IL-21 is a T cell contact-independent inducer of human B cell proliferation, plasmablast differentiation, and IgG secretion from circulating CD27+ memory and memory-like CD27−IgD− double-negative (DN) B cells, but not CD27−IgD+ naive B cells. In contrast, soluble CD40L in combination with IL-2 and IL-21 induces these activities in both memory and naive B cells. Blood from healthy donors and SLE patients have similar circulating levels of IL-2, whereas SLE patients exhibit elevated BAFF and DN B cells and reduced IL-21. B cell differentiation transcription factors in memory, DN, and naive B cells in SLE show elevated levels of Aiolos, whereas Ikaros levels are unchanged. Treatment with CC-220, a modulator of the cullin ring ligase 4-cereblon E3 ubiquitin ligase complex, reduces Aiolos and Ikaros protein levels and BAFF- and CD40L-induced proliferation, plasmablast differentiation, and IgG secretion. The observation that the soluble factors BAFF, IL-2, and IL-21 induce memory and DN B cell activation and differentiation has implications for extrafollicular plasmablast development within inflamed tissue. Inhibition of B cell plasmablast differentiation by reduction of Aiolos and Ikaros may have utility in the treatment of SLE, where elevated levels of BAFF and Aiolos may prime CD27+ memory and DN memory-like B cells to become Ab-producing plasmablasts in the presence of BAFF and proinflammatory cytokines. PMID:28848067

  12. Alpha 2B adrenoceptor genotype moderates effect of reboxetine on negative emotional memory bias in healthy volunteers.

    PubMed

    Gibbs, Ayana A; Bautista, Carla E; Mowlem, Florence D; Naudts, Kris H; Duka, Theodora

    2013-10-23

    Evidence suggests that emotional memory plays a role in the pathophysiology of depression/anxiety disorders. Noradrenaline crucially modulates emotional memory. Genetic variants involved in noradrenergic signaling contribute to individual differences in emotional memory and vulnerability to psychopathology. A functional deletion polymorphism in the α-2B adrenoceptor gene (ADRA2B) has been linked to emotional memory and post-traumatic stress disorder. The noradrenaline reuptake inhibitor reboxetine attenuates enhanced memory for negative stimuli in healthy and depressed individuals. We examined whether the effect of reboxetine on emotional memory in healthy individuals would be moderated by ADRA2B genotype. ADRA2B deletion carriers demonstrated enhanced emotional memory for negative stimuli compared with deletion noncarriers, consistent with prior studies. Reboxetine attenuated enhanced memory for negative stimuli in deletion noncarriers but had no significant effect in deletion carriers. This is the first demonstration of genetic variation influencing antidepressant drug effects on emotional processing in healthy humans.

  13. B-cell activation with CD40L or CpG measures the function of B-cell subsets and identifies specific defects in immunodeficient patients.

    PubMed

    Marasco, Emiliano; Farroni, Chiara; Cascioli, Simona; Marcellini, Valentina; Scarsella, Marco; Giorda, Ezio; Piano Mortari, Eva; Leonardi, Lucia; Scarselli, Alessia; Valentini, Diletta; Cancrini, Caterina; Duse, Marzia; Grimsholm, Ola; Carsetti, Rita

    2017-01-01

    Around 65% of primary immunodeficiencies are antibody deficiencies. Functional tests are useful tools to study B-cell functions in vitro. However, no accepted guidelines for performing and evaluating functional tests have been issued yet. Here, we report our experience on the study of B-cell functions in infancy and throughout childhood. We show that T-independent stimulation with CpG measures proliferation and differentiation potential of memory B cells. Switched memory B cells respond better than IgM memory B cells. On the other hand, CD40L, a T-dependent stimulus, does not induce plasma cell differentiation, but causes proliferation of naïve and memory B cells. During childhood, the production of plasmablasts in response to CpG increases with age mirroring the development of memory B cells. The response to CD40L does not change with age. In patients with selective IgA deficiency (SIgAD), we observed that switched memory B cells are reduced due to the absence of IgA memory B cells. In agreement, IgA plasma cells are not generated in response to CpG. Unexpectedly, B cells from SIgAD patients show a reduced proliferative response to CD40L. Our results demonstrate that functional tests are an important tool to assess the functions of the humoral immune system. © 2016 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A Novel Metal-Ferroelectric-Semiconductor Field-Effect Transistor Memory Cell Design

    NASA Technical Reports Server (NTRS)

    Phillips, Thomas A.; Bailey, Mark; Ho, Fat Duen

    2004-01-01

    The use of a Metal-Ferroelectric-Semiconductor Field-Effect Transistor (MFSFET) in a resistive-load SRAM memory cell has been investigated A typical two-transistor resistive-load SRAM memory cell architecture is modified by replacing one of the NMOS transistors with an n-channel MFSFET. The gate of the MFSFET is connected to a polling voltage pulse instead of the other NMOS transistor drain. The polling voltage pulses are of sufficient magnitude to saturate the ferroelectric gate material and force the MFSFET into a particular logic state. The memory cell circuit is further modified by the addition of a PMOS transistor and a load resistor in order to improve the retention characteristics of the memory cell. The retention characteristics of both the "1" and "0" logic states are simulated. The simulations show that the MFSFET memory cell design can maintain both the "1" and "0" logic states for a long period of time.

  15. Telomere length dynamics in human memory T cells specific for viruses causing acute or latent infections

    PubMed Central

    2013-01-01

    Background Declining telomere length (TL) is associated with T cell senescence. While TL in naïve and memory T cells declines with increasing age, there is limited data on TL dynamics in virus-specific memory CD4+ T cells in healthy adults. We combined BrdU-labeling of virus-stimulated T cells followed with flow cytometry-fluorescent in situ hybridization for TL determination. We analyzed TL in T cells specific for several virus infections: non-recurring acute (vaccinia virus, VACV), recurring-acute (influenza A virus, IAV), and reactivating viruses (varicella-zoster virus, VZV, and cytomegalovirus, CMV) in 10 healthy subjects. Additionally, five subjects provided multiple blood samples separated by up to 10 years. Results VACV- and CMV-specific T cells had longer average TL than IAV-specific CD4+ T cells. Although most virus-specific cells were CD45RA-, we observed a minor population of BrdU+ CD45RA+ T cells characterized by long telomeres. Longitudinal analysis demonstrated a slow decline in average TL in virus-specific T cells. However, in one subject, VZV reactivation led to an increase in average TL in VZV-specific memory T cells, suggesting a conversion of longer TL cells from the naïve T cell repertoire. Conclusions TLs in memory CD4+ T cells in otherwise healthy adults are heterogeneous and follow distinct virus-specific kinetics. These findings suggests that the distribution of TL and the creation and maintenance of long TL memory T cells could be important for the persistence of long-lived T cell memory. PMID:23971624

  16. Telomere length dynamics in human memory T cells specific for viruses causing acute or latent infections.

    PubMed

    O'Bryan, Joel M; Woda, Marcia; Co, Mary; Mathew, Anuja; Rothman, Alan L

    2013-08-26

    Declining telomere length (TL) is associated with T cell senescence. While TL in naïve and memory T cells declines with increasing age, there is limited data on TL dynamics in virus-specific memory CD4+ T cells in healthy adults. We combined BrdU-labeling of virus-stimulated T cells followed with flow cytometry-fluorescent in situ hybridization for TL determination. We analyzed TL in T cells specific for several virus infections: non-recurring acute (vaccinia virus, VACV), recurring-acute (influenza A virus, IAV), and reactivating viruses (varicella-zoster virus, VZV, and cytomegalovirus, CMV) in 10 healthy subjects. Additionally, five subjects provided multiple blood samples separated by up to 10 years. VACV- and CMV-specific T cells had longer average TL than IAV-specific CD4+ T cells. Although most virus-specific cells were CD45RA-, we observed a minor population of BrdU+ CD45RA+ T cells characterized by long telomeres. Longitudinal analysis demonstrated a slow decline in average TL in virus-specific T cells. However, in one subject, VZV reactivation led to an increase in average TL in VZV-specific memory T cells, suggesting a conversion of longer TL cells from the naïve T cell repertoire. TLs in memory CD4+ T cells in otherwise healthy adults are heterogeneous and follow distinct virus-specific kinetics. These findings suggests that the distribution of TL and the creation and maintenance of long TL memory T cells could be important for the persistence of long-lived T cell memory.

  17. Recognition Memory and Source Memory in Autism Spectrum Disorder: A Study of the Intention Superiority and Enactment Effects

    ERIC Educational Resources Information Center

    Grainger, Catherine; Williams, David M.; Lind, Sophie E.

    2017-01-01

    It is well established that neurotypical individuals generally show better memory for actions they have performed than actions they have observed others perform or merely read about, a so-called "enactment effect." Strikingly, research has also shown that neurotypical individuals demonstrate superior memory for actions they…

  18. Consistency of Handedness, Regardless of Direction, Predicts Baseline Memory Accuracy and Potential for Memory Enhancement

    ERIC Educational Resources Information Center

    Lyle, Keith B.; Hanaver-Torrez, Shelley D.; Hacklander, Ryan P.; Edlin, James M.

    2012-01-01

    Research has shown that consistently right-handed individuals have poorer memory than do inconsistently right- or left-handed individuals under baseline conditions but more reliably exhibit enhanced memory retrieval after making a series of saccadic eye movements. From this it could be that consistent versus inconsistent handedness, regardless of…

  19. Simian immunodeficiency virus infection induces severe loss of intestinal central memory T cells which impairs CD4+ T-cell restoration during antiretroviral therapy.

    PubMed

    Verhoeven, D; Sankaran, S; Dandekar, S

    2007-08-01

    Simian immunodeficiency virus (SIV) infection leads to severe loss of intestinal CD4(+) T cells and, as compared to peripheral blood, restoration of these cells is slow during antiretroviral therapy (ART). Mechanisms for this delay have not been examined in context of which specific CD4(+) memory subsets or lost and fail to regenerate during ART. Fifteen rhesus macaques were infected with SIV, five of which received ART (FTC/PMPA) for 30 weeks. Viral loads were measured by real-time PCR. Flow cytometric analysis determined changes in T-cell subsets and their proliferative state. Changes in proliferative CD4(+) memory subsets during infection accelerated their depletion. This reduced the central memory CD4(+) T-cell pool and contributed to slow CD4(+) T-cell restoration during ART. There was a lack of restoration of the CD4(+) central memory and effector memory T-cell subsets in gut-associated lymphoid tissue during ART, which may contribute to the altered intestinal T-cell homeostasis in SIV infection.

  20. Autoreactive Memory CD4+ T Lymphocytes that mediate Chronic Uveitis Reside in the Bone Marrow through STAT3-dependent Mechanisms

    PubMed Central

    Oh, Hyun-Mee; Yu, Cheng-Rong; Lee, YongJun; Chan, Chi-Chao; Maminishkis, Arvydas; Egwuagu, Charles E.

    2011-01-01

    Organ-specific autoimmune diseases are usually characterized by repeated cycles of remission and recurrent inflammation. However, where the autoreactive memory T-cells reside in-between episodes of recurrent inflammation is largely unknown. In this study, we have established a mouse model of chronic uveitis characterized by progressive photoreceptor-cell loss, retinal-degeneration, focal retinitis, retinal vasculitis, multifocal-choroiditis and choroidal neovascularization, providing for the first time a useful model for studying long-term pathological consequences of chronic inflammation of the neuroretina. We show that several months after inception of acute uveitis that autoreactive memory T-cells specific to retinal autoantigen, IRBP, relocated to bone marrow (BM). The IRBP-specific memory T-cells (IL-7RαHiLy6CHiCD4+) resided in BM in resting state but upon re-stimulation converted to IL-17-/IFN-γ-expressing effectors (IL-7RαLowLy6CLowCD4+) that mediated uveitis. We further show that T-cells from STAT3-deficient (CD4-STAT3KO) mice are defective in α4β1 and osteopontin expression; defects that correlated with inability of IRBP-specific memory CD4-STAT3KO T-cells to traffic into BM. We adoptively transferred uveitis to naïve mice using BM cells from WT mice with chronic uveitis but not BM cells from CD4-STAT3KO, providing direct evidence that memory T-cells that mediate uveitis reside in BM and that STAT3-dependent mechanism may be required for migration into and retention of memory T-cells in BM. Identifying BM as survival-niche for T-cells that cause uveitis, suggests that BM stromal cells that provide survival signals to autoreactive memory T-cells and STAT3-dependent mechanisms that mediate their relocation into BM, are attractive therapeutic targets that can be exploited to selectively deplete memory T-cells that drive chronic inflammation. PMID:21832158

  1. Clonal expansion of genome-intact HIV-1 in functionally polarized Th1 CD4+ T cells

    PubMed Central

    Orlova-Fink, Nina; Einkauf, Kevin; Chowdhury, Fatema Z.; Sun, Xiaoming; Harrington, Sean; Kuo, Hsiao-Hsuan; Hua, Stephane; Chen, Hsiao-Rong; Ouyang, Zhengyu; Reddy, Kavidha; Dong, Krista; Ndung’u, Thumbi; Walker, Bruce D.; Rosenberg, Eric S.; Yu, Xu G.

    2017-01-01

    HIV-1 causes a chronic, incurable disease due to its persistence in CD4+ T cells that contain replication-competent provirus, but exhibit little or no active viral gene expression and effectively resist combination antiretroviral therapy (cART). These latently infected T cells represent an extremely small proportion of all circulating CD4+ T cells but possess a remarkable long-term stability and typically persist throughout life, for reasons that are not fully understood. Here we performed massive single-genome, near-full-length next-generation sequencing of HIV-1 DNA derived from unfractionated peripheral blood mononuclear cells, ex vivo-isolated CD4+ T cells, and subsets of functionally polarized memory CD4+ T cells. This approach identified multiple sets of independent, near-full-length proviral sequences from cART-treated individuals that were completely identical, consistent with clonal expansion of CD4+ T cells harboring intact HIV-1. Intact, near-full-genome HIV-1 DNA sequences that were derived from such clonally expanded CD4+ T cells constituted 62% of all analyzed genome-intact sequences in memory CD4 T cells, were preferentially observed in Th1-polarized cells, were longitudinally detected over a duration of up to 5 years, and were fully replication- and infection-competent. Together, these data suggest that clonal proliferation of Th1-polarized CD4+ T cells encoding for intact HIV-1 represents a driving force for stabilizing the pool of latently infected CD4+ T cells. PMID:28628034

  2. Clonal expansion of genome-intact HIV-1 in functionally polarized Th1 CD4+ T cells.

    PubMed

    Lee, Guinevere Q; Orlova-Fink, Nina; Einkauf, Kevin; Chowdhury, Fatema Z; Sun, Xiaoming; Harrington, Sean; Kuo, Hsiao-Hsuan; Hua, Stephane; Chen, Hsiao-Rong; Ouyang, Zhengyu; Reddy, Kavidha; Dong, Krista; Ndung'u, Thumbi; Walker, Bruce D; Rosenberg, Eric S; Yu, Xu G; Lichterfeld, Mathias

    2017-06-30

    HIV-1 causes a chronic, incurable disease due to its persistence in CD4+ T cells that contain replication-competent provirus, but exhibit little or no active viral gene expression and effectively resist combination antiretroviral therapy (cART). These latently infected T cells represent an extremely small proportion of all circulating CD4+ T cells but possess a remarkable long-term stability and typically persist throughout life, for reasons that are not fully understood. Here we performed massive single-genome, near-full-length next-generation sequencing of HIV-1 DNA derived from unfractionated peripheral blood mononuclear cells, ex vivo-isolated CD4+ T cells, and subsets of functionally polarized memory CD4+ T cells. This approach identified multiple sets of independent, near-full-length proviral sequences from cART-treated individuals that were completely identical, consistent with clonal expansion of CD4+ T cells harboring intact HIV-1. Intact, near-full-genome HIV-1 DNA sequences that were derived from such clonally expanded CD4+ T cells constituted 62% of all analyzed genome-intact sequences in memory CD4 T cells, were preferentially observed in Th1-polarized cells, were longitudinally detected over a duration of up to 5 years, and were fully replication- and infection-competent. Together, these data suggest that clonal proliferation of Th1-polarized CD4+ T cells encoding for intact HIV-1 represents a driving force for stabilizing the pool of latently infected CD4+ T cells.

  3. Individual differences in the effects of chronic stress on memory: behavioral and neurochemical correlates of resiliency.

    PubMed

    Sweis, B M; Veverka, K K; Dhillon, E S; Urban, J H; Lucas, L R

    2013-08-29

    Chronic stress has been shown to impair memory, however, the extent to which memory can be impaired is often variable across individuals. Predisposed differences in particular traits, such as anxiety, may reveal underlying neurobiological mechanisms that could be driving individual differences in sensitivity to stress and, thus, stress resiliency. Such pre-morbid characteristics may serve as early indicators of susceptibility to stress. Neuropeptide Y (NPY) and enkephalin (ENK) are neurochemical messengers of interest implicated in modulating anxiety and motivation circuitry; however, little is known about how these neuropeptides interact with stress resiliency and memory. In this experiment, adult male rats were appetitively trained to locate sugar rewards in a motivation-based spatial memory task before undergoing repeated immobilization stress and then being tested for memory retention. Anxiety-related behaviors, among other characteristics, were monitored longitudinally. Results indicated that stressed animals which showed little to no impairments in memory post-stress (i.e., the more stress-resilient individuals) exhibited lower anxiety levels prior to stress when compared to stressed animals that showed large deficits in memory (i.e., the more stress-susceptible individuals). Interestingly, all stressed animals, regardless of memory change, showed reduced body weight gain as well as thymic involution, suggesting that the effects of stress on metabolism and the immune system were dissociated from the effects of stress on higher cognition, and that stress resiliency seems to be domain-specific rather than a global characteristic within an individual. Neurochemical analyses revealed that NPY in the hypothalamus and amygdala and ENK in the nucleus accumbens were modulated differentially between stress-resilient and stress-susceptible individuals, with elevated expression of these neuropeptides fostering anxiolytic and pro-motivation function, thus driving cognitive resiliency in a domain-specific manner. Findings suggest that such neurochemical markers may be novel targets for pharmacological interventions that can serve to prevent or ameliorate the negative effects of stress on memory. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Shaping the CD4+ memory immune response against tuberculosis: the role of antigen persistence, location and multi-functionality.

    PubMed

    Ancelet, Lindsay; Kirman, Joanna

    2012-02-01

    Abstract Effective vaccination against intracellular pathogens, such as tuberculosis (TB), relies on the generation and maintenance of CD4 memory T cells. An incomplete understanding of the memory immune response has hindered the rational design of a new, more effective TB vaccine. This review discusses how the persistence of antigen, the location of memory cells, and their multifunctional ability shape the CD4 memory T cell response against TB.

  5. Peripheral CD4+ naïve/memory ratio is an independent predictor of survival in non-small cell lung cancer

    PubMed Central

    Yang, Peng; Ma, Junhong; Yang, Xin; Li, Wei

    2017-01-01

    Background To investigate the clinical significance of naïve T cells, memory T cells, CD45RA+CD45RO+ T cells, and naïve/memory ratio in non-small cell lung cancer (NSCLC) patients. Methods Pretreatment peripheral blood samples from 76 NSCLC patients and 28 age- and sex-matched healthy volunteers were collected and tested for immune cells by flow cytometry. We compared the expression of these immune cells between patients and healthy controls and evaluated their predictive roles for survival in NSCLC by cox proportional hazards model. Results Decreased naïve CD4+ T cells, naïve CD8+ T cells, CD4+ naïve/memory ratios and CD4+CD45RA+CD45RO+ T cells, and increased memory CD4+ T cells, were observed in 76 NSCLC patients compared to healthy volunteers. Univariate analysis revealed that elevated CD4+ naïve/memory ratio correlated with prolonged progression-free survival (P=0.013). Multivariate analysis confirmed its predictive role with a hazard ratio of 0.35 (95% confidence interval, 0.19-0.75, P=0.012). Conclusions Peripheral CD4+ naïve/memory ratio can be used as a predictive biomarker in NSCLC patients and used to optimize personalized treatment strategies. PMID:29137371

  6. A new model for CD8+ T cell memory inflation based upon a recombinant adenoviral vector1

    PubMed Central

    Bolinger, Beatrice; Sims, Stuart; O’Hara, Geraldine; de Lara, Catherine; Tchilian, Elma; Firner, Sonja; Engeler, Daniel; Ludewig, Burkhard; Klenerman, Paul

    2013-01-01

    CD8+ T cell memory inflation, first described in murine cytomegalovirus (MCMV) infection, is characterized by the accumulation of high-frequency, functional antigen-specific CD8+ T cell pools with an effector-memory phenotype and enrichment in peripheral organs. Although persistence of antigen is considered essential, the rules underpinning memory inflation are still unclear. The MCMV model is, however, complicated by the virus’s low-level persistence, and stochastic reactivation. We developed a new model of memory inflation based upon a βgal-recombinant adenovirus vector (Ad-LacZ). After i.v. administration in C57BL/6 mice we observe marked memory inflation in the βgal96 epitope, while a second epitope, βgal497, undergoes classical memory formation. The inflationary T cell responses show kinetics, distribution, phenotype and functions similar to those seen in MCMV and are reproduced using alternative routes of administration. Memory inflation in this model is dependent on MHC Class II. As in MCMV, only the inflating epitope showed immunoproteasome-independence. These data define a new model for memory inflation, which is fully replication-independent, internally controlled and reproduces the key immunologic features of the CD8+ T cell response. This model provides insight into the mechanisms responsible for memory inflation, and since it is based on a vaccine vector, also is relevant to novel T cell-inducing vaccines in humans. PMID:23509359

  7. CMV induces expansion of highly polyfunctional CD4+ T cell subset coexpressing CD57 and CD154.

    PubMed

    Pera, Alejandra; Vasudev, Anusha; Tan, Crystal; Kared, Hassen; Solana, Rafael; Larbi, Anis

    2017-02-01

    CD4 + T cells are essential for human CMV infection control. CMV-specific CD4 + T cells possess antiviral functions and participate in anti-CMV humoral/cellular responses. In the elderly, CMV infection impairs immunity to other viruses and has been traditionally associated with T cell senescence; however, recent results suggest that, in younger people, CMV confers immune protection against other pathogens (heterologous immunity). To shed light on this controversy, we analyzed latent CMV infection effects on the quality of young individuals' immune response, specifically, the presence of polyfunctional T cells through an extensive phenotypic and functional characterization of the CD4 + T cell subset. CD154 expression, degranulation (CD107a), and cytokine production (IFN-γ, TNF-α, and IL-2) as well as T cell phenotype markers (CD57, CD28, and CD27) were analyzed. We demonstrate that CD4 + T cells that coexpress CD57 and CD154, which are exclusively present in CMV-positive individuals, are the most polyfunctional CD4 + subset, whereas CD4 + CD27 + CD28 - T cells associate with lower polyfunctionality. Conversely, the frequency of CD4 + CD28 + T cells correlates with higher polyfunctionality of CD4 + CD57 - T cells from CMV-seronegative individuals and CD4 + CD57 + CD154 + T cells from CMV-seropositive individuals. Thus, polyfunctionality is a property of central memory CD4 + T cells in CMV-seronegative individuals, whereas after CMV infection, polyfunctional T cells become highly differentiated, which allows efficient eradication of infections. We extend previous observations of the impact of CMV on CD8 + T cell functionality to the CD4 + T cell compartment, revealing CD57 as a polyfunctionality marker of T cells which expands after CMV infection. CD57 + T cells have been associated with inflammatory conditions, but their potential role in the response against infectious disease and vaccination should now be investigated. © Society for Leukocyte Biology.

  8. Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease

    PubMed Central

    Roy, Dheeraj S.; Arons, Autumn; Mitchell, Teryn I.; Pignatelli, Michele; Ryan, Tomás J.; Tonegawa, Susumu

    2016-01-01

    Summary Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive memory decline and subsequent loss of broader cognitive functions1. Memory decline in early stages of Alzheimer’s is mostly limited to episodic memory, for which the hippocampus (HPC) plays a crucial role2. However, it has been uncertain whether the observed amnesia in early stages of Alzheimer’s is due to disrupted encoding and consolidation of episodic information, or an impairment in the retrieval of stored memory information. Here we show that in transgenic mouse models of early Alzheimer’s, direct optogenetic activation of hippocampal memory engram cells results in memory retrieval despite the fact that these mice are amnesic in long-term memory tests when natural recall cues are utilized, revealing a retrieval, rather than a storage impairment. Prior to amyloid plaque deposition, the amnesia in these mice is age-dependent3–5, which correlates with a progressive reduction of spine density of hippocampal dentate gyrus (DG) engram cells. We show that optogenetic induction of long-term potentiation (LTP) at perforant path (PP) synapses of DG engram cells restores both spine density and long-term memory. We also demonstrate that an ablation of DG engram cells containing restored spine density prevents the rescue of long-term memory. Thus, selective rescue of spine density in engram cells may lead to an effective strategy for treating memory loss in early stages of Alzheimer’s disease. PMID:26982728

  9. IL-15 signaling promotes adoptive effector T-cell survival and memory formation in irradiation-induced lymphopenia.

    PubMed

    Xu, Aizhang; Bhanumathy, Kalpana Kalyanasundaram; Wu, Jie; Ye, Zhenmin; Freywald, Andrew; Leary, Scot C; Li, Rongxiu; Xiang, Jim

    2016-01-01

    Lymphopenia promotes naïve T-cell homeostatic proliferation and adoptive effector T-cell survival and memory formation. IL-7 plays a critical role in homeostatic proliferation, survival and memory formation of naïve T-cells in lymphopenia, and its underlying molecular mechanism has also been well studied. However, the mechanism for adoptively transferred effector T-cell survival and memory formation is not fully understood. Here, we transferred in vitro-activated transgenic OT-I CD8(+) effector T-cells into irradiation (600 rads)-induced lymphopenic C57BL/6, IL-7 knockout (KO) and IL-15 KO mice, and investigated the survival and memory formation of transferred T-cells in lymphopenia. We demonstrate that transferred T-cells prolong their survival and enhance their memory in lymphopenic mice, in a manner that depends on IL-15 signaling, but not IL-7. We determine that in vitro stimulation of naïve or effector T-cells with IL-7 and IL-15 reduces IL-7Rα, and increases and/or maintains IL-15Rβ expression, respectively. Consistent with these findings, the expression of IL-7Rα and IL-15Rβ is down- and up-regulated, respectively, in vivo on transferred T-cells in an early phase post T-cell transfer in lymphopenia. We further show that in vitro IL-15 restimulation-induced memory T-cells (compared to IL-2 restimulation-induced effector T-cells) and in vivo transferred T-cells in irradiated IL-15-sufficient C57BL/6 mice (compared to IL-15-deficient IL-15 KO mice) have increased mitochondrial content, but less NADH and lower mitochondrial potential (ΔΨm), and demonstrate greater phosphorylation of signal transducers and activators of transcription-5 (STAT5) and Unc-51-like kinase-1 (ULK1), and higher expression of B-cell leukemia/lymphoma-2 (Bcl2) and memory-, autophagy- and mitochondrial biogenesis-related molecules. Irradiation-induced lymphopenia promotes effector T-cell survival via IL-15 signaling the STAT5/Bcl2 pathway, enhances T-cell memory formation via IL-15 activation of the forkhead-box family of transcription factor (FOXO)/eomesodermin (Eomes) memory and ULK1/autophagy-related gene-7 (ATG7) autophagy pathways, and via IL-15 activation of the mitochondrial remodeling. Our data thus identify some important targets to consider when designing potent adoptive T-cell immunotherapies of cancer.

  10. Production of IL-10 by CD4+ regulatory T cells during the resolution of infection promotes the maturation of memory CD8+ T cells

    PubMed Central

    Laidlaw, Brian J; Cui, Weiguo; Amezquita, Robert A; Gray, Simon M; Guan, Tianxia; Lu, Yisi; Kobayashi, Yasushi; Flavell, Richard A; Kleinstein, Steven H; Craft, Joe; Kaech, Susan M

    2016-01-01

    Memory CD8+ T cells are critical for host defense upon reexposure to intracellular pathogens. We found that interleukin 10 (IL-10) derived from CD4+ regulatory T cells (Treg cells) was necessary for the maturation of memory CD8+ T cells following acute infection with lymphocytic choriomeningitis virus (LCMV). Treg cell–derived IL-10 was most important during the resolution phase, calming inflammation and the activation state of dendritic cells. Adoptive transfer of IL-10-sufficient Treg cells during the resolution phase ‘restored’ the maturation of memory CD8+ T cells in IL-10-deficient mice. Our data indicate that Treg cell–derived IL-10 is needed to insulate CD8+ T cells from inflammatory signals, and reveal that the resolution phase of infection is a critical period that influences the quality and function of developing memory CD8+ T cells. PMID:26147684

  11. A short CD3/CD28 costimulation combined with IL-21 enhance the generation of human memory stem T cells for adoptive immunotherapy.

    PubMed

    Alvarez-Fernández, C; Escribà-Garcia, L; Vidal, S; Sierra, J; Briones, J

    2016-07-19

    Immunotherapy based on the adoptive transfer of gene modified T cells is an emerging approach for the induction of tumor-specific immune responses. Memory stem T cells, due to their enhanced antitumor and self-renewal capacity, have become potential candidate for adoptive T cell therapy of cancer. Methods to generate memory stem T cells ex vivo rely on CD3/CD28 costimulation and the use of cytokines such as IL-7 and IL-15 during the entire culture period. However, a strong costimulation may induce differentiation of memory stem T cells to effector memory T cells. Here we show that manipulation of the length of the costimulation and addition of IL-21 enhance the ex vivo expansion of memory stem T cells. Purified naïve T cells from healthy donors were cultured in the presence of anti-CD3/CD28 coated beads, IL-7, IL-15 and/or IL-21 (25 ng/ml). T cells phenotype from the different memory and effector subpopulations were analyzed by multiparametric flow cytometry. A short anti-CD3/CD28 costimulation of naïve T cells, combined with IL-7 and IL-15 significantly increased the frequencies of CD4(+) and CD8(+) memory stem T cells ex vivo, compared to a prolonged costimulation (34.6 ± 4.4 % vs 15.6 ± 4.24 % in CD4(+); p = 0.008, and 20.5 ± 4.00 % vs 7.7 ± 2.53 % in CD8(+); p = 0.02). Moreover, the addition of IL-21 to this condition further enhanced the enrichment and expansion of CD4(+) and CD8(+) memory stem T cells with an increase in the absolute numbers (0.7 × 10(6) ± 0.1 vs 0.26 × 10(6) ± 0.1 cells for CD4(+); p = 0.002 and 1.1 × 10(6) ± 0.1 vs 0.27 × 10(6) ± 0.1 cells for CD8(+); p = 0.0002; short + IL-21 vs long). These new in vitro conditions increase the frequencies and expansion of memory stem T cells and may have relevant clinical implications for the generation of this memory T cell subset for adoptive cell therapy of patients with cancer.

  12. Site-specific differences in T cell frequencies and phenotypes in the blood and gut of HIV-uninfected and ART-treated HIV+ adults.

    PubMed

    Yukl, Steven A; Shergill, Amandeep K; Girling, Valerie; Li, Qingsheng; Killian, Maudi; Epling, Lorrie; Li, Peilin; Kaiser, Philipp; Haase, Ashley; Havlir, Diane V; McQuaid, Kenneth; Sinclair, Elizabeth; Wong, Joseph K

    2015-01-01

    Gastrointestinal T lymphocytes are critical for mucosal immunity and HIV pathogenesis, yet little is known about normal T cell numbers and phenotypes in different regions of the gut, or the degree to which ART can restore levels to those of HIV-uninfected individuals. To investigate these questions, we measured T cell frequencies and markers of memory, activation, anergy, and homing in the blood, ileum, and rectum of HIV- and ART-suppressed HIV+ adults. In HIV- individuals, T cell frequencies and phenotypes differed significantly between sites. Compared to HIV- adults, HIV+ adults had lower absolute CD4+T cell counts in the ileal lamina propria and lower relative CD4+T cell counts in the blood and ileum. In the gut, HIV+ adults had a higher proportion of CD38+ CD4+T cells, a lower proportion of terminally-differentiated effector cells, and, in the rectum, a higher proportion of CTLA-4+ CD4+T cells. In HIV+ individuals, relative CD4+T cell numbers in the ileum correlated with the proportion of CTLA-4+ CD4+T cells, whereas in the rectum, they tended to correlate with the proportion of circulating CD4+T cells expressing α4β7 or CCR6. Mechanisms of T cell reconstitution may differ throughout the gut, with homing contributing more in the rectum while ileal reconstitution is associated with mucosal CD4+T cell anergy.

  13. Memory T cells and vaccines.

    PubMed

    Esser, Mark T; Marchese, Rocio D; Kierstead, Lisa S; Tussey, Lynda G; Wang, Fubao; Chirmule, Narendra; Washabaugh, Michael W

    2003-01-17

    T lymphocytes play a central role in the generation of a protective immune response in many microbial infections. After immunization, dendritic cells take up microbial antigens and traffic to draining lymph nodes where they present processed antigens to naïve T cells. These naïve T cells are stimulated to proliferate and differentiate into effector and memory T cells. Activated, effector and memory T cells provide B cell help in the lymph nodes and traffic to sites of infection where they secrete anti-microbial cytokines and kill infected cells. At least two types of memory cells have been defined in humans based on their functional and migratory properties. T central-memory (T(CM)) cells are found predominantly in lymphoid organs and can not be immediately activated, whereas T effector-memory (T(EM)) cells are found predominantly in peripheral tissue and sites of inflammation and exhibit rapid effector function. Most currently licensed vaccines induce antibody responses capable of mediating long-term protection against lytic viruses such as influenza and small pox. In contrast, vaccines against chronic pathogens that require cell-mediated immune responses to control, such as malaria, Mycobacterium tuberculosis (TB), human immunodeficiency virus (HIV) and hepatitis C virus (HCV), are currently not available or are ineffective. Understanding the mechanisms by which long-lived cellular immune responses are generated following vaccination should facilitate the development of safe and effective vaccines against these emerging diseases. Here, we review the current literature with respect to memory T cells and their implications to vaccine development.

  14. Individual Differences in Young Children's Suggestibility: Relations to Event Memory, Language Abilities, Working Memory, and Executive Functioning

    ERIC Educational Resources Information Center

    Roebers, C.M.; Schneider, W.

    2005-01-01

    In this paper, two empirical studies are presented in which an attempt was made to explain individual differences in two different aspects of 4-year-olds' suggestibility, that is, their ability to resist false suggestions and memory impairments due to prior misinformation. As sources of individual differences cognitive skills along the information…

  15. Differential influence of hippocampal subfields to memory formation: insights from patients with temporal lobe epilepsy.

    PubMed

    Coras, Roland; Pauli, Elisabeth; Li, Jinmei; Schwarz, Michael; Rössler, Karl; Buchfelder, Michael; Hamer, Hajo; Stefan, Hermann; Blumcke, Ingmar

    2014-07-01

    To clarify the anatomical organization of human memory remains a major challenge in clinical neuroscience. Experimental data suggest dentate gyrus granule cells play a major role in memory acquisition, i.e. pattern separation and rapid pattern completion, whereas hippocampal CA1 neurons are implicated in place memory and autobiographical memory retrieval. Patients with temporal lobe epilepsy present with a broad spectrum of memory impairment, which can be assessed during clinical examination. Although long seizure histories may contribute to a pathophysiological reorganization of functional connectivity, surgical resection of the epileptic hippocampus offers a unique possibility to anatomically study the differential contribution of hippocampal subfields to compromised learning and memory in humans. Herein, we tested the hypothesis of hippocampal subfield specialization in a series of 100 consecutive patients with temporal lobe epilepsy submitted to epilepsy surgery. Memory profiles were obtained from intracarotid amobarbital testing and non-invasive verbal memory assessment before surgery, and correlated with histopathologically quantified cell loss pattern in hippocampal subfields obtained from the same patients using the new international consensus classification for hippocampal sclerosis proposed by the International League against Epilepsy (HS ILAE). Interestingly, patients with CA1 predominant cell loss (HS ILAE Type 2; n = 13) did not show declarative memory impairment and were indistinguishable from patients without any hippocampal cell loss (n = 19). In contrast, 63 patients with neuronal loss affecting all hippocampal subfields including CA1, CA4 and dentate gyrus (HS ILAE Type 1), or predominant cell loss in CA4 and partially affecting also CA3 and dentate gyrus (HS ILAE Type 3, n = 5) showed significantly reduced declarative memory capacities (intracarotid amobarbital testing: P < 0.001; verbal memory: P < 0.05). Our results suggested an alternative model of how memory processing can be organized amongst hippocampal subfields, and that CA1 pyramidal cells are less critically involved in declarative human memory acquisition compared to dentate gyrus granule cells or CA4/CA3 pyramidal cells. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. gp49B-mediated negative regulation of antibody production by memory and marginal zone B cells.

    PubMed

    Fukao, Saori; Haniuda, Kei; Nojima, Takuya; Takai, Toshiyuki; Kitamura, Daisuke

    2014-07-15

    The rapid Ab responses observed after primary and secondary immunizations are mainly derived from marginal zone (MZ) and memory B cells, respectively, but it is largely unknown how these responses are negatively regulated. Several inhibitory receptors have been identified and their roles have been studied, but mainly on follicular B cells and much less so on MZ B, and never on memory B cells. gp49B is an Ig superfamily member that contains two ITIMs in its cytoplasmic tail, and it has been shown to negatively regulate mast cell, macrophage, and NK cell responses. In this study, we demonstrate that gp49B is preferentially expressed on memory and MZ B cells. We show that gp49B(-/-) mice produce more IgM after a primary immunization and more IgM and IgG1 after a secondary immunization than gp49B(+/+) mice in T cell-dependent immune responses. Memory and MZ B cells from gp49B(-/-) mice also produce more Abs upon in vitro stimulation with CD40 than those from gp49B(+/+) mice. The in vitro IgM production by MZ B cells from gp49B(+/+), but not gp49B(-/-), mice is suppressed by interaction with a putative gp49B ligand, the integrin αvβ3 heterodimer. In addition, gp49B(-/-) mice exhibited exaggerated IgE production in the memory recall response. These results suggest that plasma cell development from memory and MZ B cells, as well as subsequent Ab production, are suppressed via gp49B. In memory B cells, this suppression also prevents excessive IgE production, thus curtailing allergic diseases. Copyright © 2014 by The American Association of Immunologists, Inc.

  17. CD4+ T-Cell-Independent Secondary Immune Responses to Pneumocystis Pneumonia

    PubMed Central

    de la Rua, Nicholas M.; Samuelson, Derrick R.; Charles, Tysheena P.; Welsh, David A.; Shellito, Judd E.

    2016-01-01

    Pneumocystis pneumonia is a major cause of morbidity and mortality among immunocompromised patients, especially in the context of HIV/AIDS. In the murine model of Pneumocystis pneumonia, CD4+ T-cells are required for clearance of a primary infection of Pneumocystis, but not the memory recall response. We hypothesized that the memory recall response in the absence of CD4+ T-cells is mediated by a robust memory humoral response, CD8+ T-cells, and IgG-mediated phagocytosis by alveolar macrophages. To investigate the role of CD8+ T-cells and alveolar macrophages in the immune memory response to Pneumocystis, mice previously challenged with Pneumocystis were depleted of CD8+ T-cells or alveolar macrophages prior to re-infection. Mice depleted of CD4+ T-cells prior to secondary challenge cleared Pneumocystis infection within 48 h identical to immunocompetent mice during a secondary memory recall response. However, loss of CD8+ T-cells or macrophages prior to the memory recall response significantly impaired Pneumocystis clearance. Specifically, mice depleted of CD8+ T-cells or alveolar macrophages had significantly higher fungal burden in the lungs. Furthermore, loss of alveolar macrophages significantly skewed the lung CD8+ T-cell response toward a terminally differentiated effector memory population and increased the percentage of IFN-γ+ CD8+ T-cells. Finally, Pneumocystis-infected animals produced significantly more bone marrow plasma cells and Pneumocystis-specific IgG significantly increased macrophage-mediated killing of Pneumocystis in vitro. These data suggest that secondary immune memory responses to Pneumocystis are mediated, in part, by CD8+ T-cells, alveolar macrophages, and the production of Pneumocystis-specific IgG. PMID:27242785

  18. Age-related individual variability in memory performance is associated with amygdala-hippocampal circuit function and emotional pattern separation.

    PubMed

    Leal, Stephanie L; Noche, Jessica A; Murray, Elizabeth A; Yassa, Michael A

    2017-01-01

    While aging is generally associated with episodic memory decline, not all older adults exhibit memory loss. Furthermore, emotional memories are not subject to the same extent of forgetting and appear preserved in aging. We conducted high-resolution fMRI during a task involving pattern separation of emotional information in older adults with and without age-related memory impairment (characterized by performance on a word-list learning task: low performers: LP vs. high performers: HP). We found signals consistent with emotional pattern separation in hippocampal dentate (DG)/CA3 in HP but not in LP individuals, suggesting a deficit in emotional pattern separation. During false recognition, we found increased DG/CA3 activity in LP individuals, suggesting that hyperactivity may be associated with overgeneralization. We additionally observed a selective deficit in basolateral amygdala-lateral entorhinal cortex-DG/CA3 functional connectivity in LP individuals during pattern separation of negative information. During negative false recognition, LP individuals showed increased medial temporal lobe functional connectivity, consistent with overgeneralization. Overall, these results suggest a novel mechanistic account of individual differences in emotional memory alterations exhibited in aging. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Age-related individual variability in memory performance is associated with amygdala-hippocampal circuit function and emotional pattern separation

    PubMed Central

    Leal, Stephanie L.; Noche, Jessica A.; Murray, Elizabeth A.; Yassa, Michael A.

    2018-01-01

    While aging is generally associated with episodic memory decline, not all older adults exhibit memory loss. Furthermore, emotional memories are not subject to the same extent of forgetting and appear preserved in aging. We conducted high-resolution fMRI during a task involving pattern separation of emotional information in older adults with and without age-related memory impairment (characterized by performance on a word-list learning task: low performers: LP vs. high performers: HP). We found signals consistent with emotional pattern separation in hippocampal dentate (DG)/CA3 in HP but not in LP individuals, suggesting a deficit in emotional pattern separation. During false recognition, we found increased DG/CA3 activity in LP individuals, suggesting that hyperactivity may be associated with overgeneralization. We additionally observed a selective deficit in basolateral amygdala—lateral entorhinal cortex—DG/CA3 functional connectivity in LP individuals during pattern separation of negative information. During negative false recognition, LP individuals showed increased medial temporal lobe functional connectivity, consistent with overgeneralization. Overall, these results suggest a novel mechanistic account of individual differences in emotional memory alterations exhibited in aging. PMID:27723500

  20. Rapid learning dynamics in individual honeybees during classical conditioning.

    PubMed

    Pamir, Evren; Szyszka, Paul; Scheiner, Ricarda; Nawrot, Martin P

    2014-01-01

    Associative learning in insects has been studied extensively by a multitude of classical conditioning protocols. However, so far little emphasis has been put on the dynamics of learning in individuals. The honeybee is a well-established animal model for learning and memory. We here studied associative learning as expressed in individual behavior based on a large collection of data on olfactory classical conditioning (25 datasets, 3298 animals). We show that the group-averaged learning curve and memory retention score confound three attributes of individual learning: the ability or inability to learn a given task, the generally fast acquisition of a conditioned response (CR) in learners, and the high stability of the CR during consecutive training and memory retention trials. We reassessed the prevailing view that more training results in better memory performance and found that 24 h memory retention can be indistinguishable after single-trial and multiple-trial conditioning in individuals. We explain how inter-individual differences in learning can be accommodated within the Rescorla-Wagner theory of associative learning. In both data-analysis and modeling we demonstrate how the conflict between population-level and single-animal perspectives on learning and memory can be disentangled.

  1. Rapid learning dynamics in individual honeybees during classical conditioning

    PubMed Central

    Pamir, Evren; Szyszka, Paul; Scheiner, Ricarda; Nawrot, Martin P.

    2014-01-01

    Associative learning in insects has been studied extensively by a multitude of classical conditioning protocols. However, so far little emphasis has been put on the dynamics of learning in individuals. The honeybee is a well-established animal model for learning and memory. We here studied associative learning as expressed in individual behavior based on a large collection of data on olfactory classical conditioning (25 datasets, 3298 animals). We show that the group-averaged learning curve and memory retention score confound three attributes of individual learning: the ability or inability to learn a given task, the generally fast acquisition of a conditioned response (CR) in learners, and the high stability of the CR during consecutive training and memory retention trials. We reassessed the prevailing view that more training results in better memory performance and found that 24 h memory retention can be indistinguishable after single-trial and multiple-trial conditioning in individuals. We explain how inter-individual differences in learning can be accommodated within the Rescorla–Wagner theory of associative learning. In both data-analysis and modeling we demonstrate how the conflict between population-level and single-animal perspectives on learning and memory can be disentangled. PMID:25309366

  2. The relation between navigation strategy and associative memory: An individual differences approach.

    PubMed

    Ngo, Chi T; Weisberg, Steven M; Newcombe, Nora S; Olson, Ingrid R

    2016-04-01

    Although the hippocampus is implicated in both spatial navigation and associative memory, very little is known about whether individual differences in the 2 domains covary. People who prefer to navigate using a hippocampal-dependent place strategy may show better performance on associative memory tasks than those who prefer a caudate-dependent response strategy (Bohbot, Gupta, Banner, & Dahmani, 2011), but not all studies suggest such an effect (Woollett & Maguire, 2009, 2012). Here we tested nonexpert young adults and found that preference for a place strategy positively correlated with spatial (object-location) associative memory performance but did not correlate with nonspatial (face-name) associative memory performance. Importantly, these correlations differed from each other, indicating that the relation between navigation strategy and associative memory is specific to the spatial domain. In addition, the 2 associative memory tasks significantly correlated, suggesting that object-location memory taps into processes relevant to both hippocampal-dependent navigation and nonspatial associative memory. Our findings also suggest that individual differences in spatial associative memory may account for some of the variance in navigation strategies. (c) 2016 APA, all rights reserved).

  3. Kinetics and clonality of immunological memory in humans.

    PubMed

    Beverley, Peter C L

    2004-10-01

    T-cell immunological memory consists largely of clones of proliferating lymphocytes maintained by antigenic stimulation and the survival and proliferative effects of cytokines. The duration of survival of memory clones in humans is determine by the Hayflick limit on the number of cell divisions, the rate of cycling of memory cells and factors that control erosion of telomeres, including mechanisms that control telomerase.

  4. T-cell memory responses elicited by yellow fever vaccine are targeted to overlapping epitopes containing multiple HLA-I and -II binding motifs.

    PubMed

    de Melo, Andréa Barbosa; Nascimento, Eduardo J M; Braga-Neto, Ulisses; Dhalia, Rafael; Silva, Ana Maria; Oelke, Mathias; Schneck, Jonathan P; Sidney, John; Sette, Alessandro; Montenegro, Silvia M L; Marques, Ernesto T A

    2013-01-01

    The yellow fever vaccines (YF-17D-204 and 17DD) are considered to be among the safest vaccines and the presence of neutralizing antibodies is correlated with protection, although other immune effector mechanisms are known to be involved. T-cell responses are known to play an important role modulating antibody production and the killing of infected cells. However, little is known about the repertoire of T-cell responses elicited by the YF-17DD vaccine in humans. In this report, a library of 653 partially overlapping 15-mer peptides covering the envelope (Env) and nonstructural (NS) proteins 1 to 5 of the vaccine was utilized to perform a comprehensive analysis of the virus-specific CD4(+) and CD8(+) T-cell responses. The T-cell responses were screened ex-vivo by IFN-γ ELISPOT assays using blood samples from 220 YF-17DD vaccinees collected two months to four years after immunization. Each peptide was tested in 75 to 208 separate individuals of the cohort. The screening identified sixteen immunodominant antigens that elicited activation of circulating memory T-cells in 10% to 33% of the individuals. Biochemical in-vitro binding assays and immunogenetic and immunogenicity studies indicated that each of the sixteen immunogenic 15-mer peptides contained two or more partially overlapping epitopes that could bind with high affinity to molecules of different HLAs. The prevalence of the immunogenicity of a peptide in the cohort was correlated with the diversity of HLA-II alleles that they could bind. These findings suggest that overlapping of HLA binding motifs within a peptide enhances its T-cell immunogenicity and the prevalence of the response in the population. In summary, the results suggests that in addition to factors of the innate immunity, "promiscuous" T-cell antigens might contribute to the high efficacy of the yellow fever vaccines.

  5. T-Cell Memory Responses Elicited by Yellow Fever Vaccine are Targeted to Overlapping Epitopes Containing Multiple HLA-I and -II Binding Motifs

    PubMed Central

    de Melo, Andréa Barbosa; Nascimento, Eduardo J. M.; Braga-Neto, Ulisses; Dhalia, Rafael; Silva, Ana Maria; Oelke, Mathias; Schneck, Jonathan P.; Sidney, John; Sette, Alessandro; Montenegro, Silvia M. L.; Marques, Ernesto T. A.

    2013-01-01

    The yellow fever vaccines (YF-17D-204 and 17DD) are considered to be among the safest vaccines and the presence of neutralizing antibodies is correlated with protection, although other immune effector mechanisms are known to be involved. T-cell responses are known to play an important role modulating antibody production and the killing of infected cells. However, little is known about the repertoire of T-cell responses elicited by the YF-17DD vaccine in humans. In this report, a library of 653 partially overlapping 15-mer peptides covering the envelope (Env) and nonstructural (NS) proteins 1 to 5 of the vaccine was utilized to perform a comprehensive analysis of the virus-specific CD4+ and CD8+ T-cell responses. The T-cell responses were screened ex-vivo by IFN-γ ELISPOT assays using blood samples from 220 YF-17DD vaccinees collected two months to four years after immunization. Each peptide was tested in 75 to 208 separate individuals of the cohort. The screening identified sixteen immunodominant antigens that elicited activation of circulating memory T-cells in 10% to 33% of the individuals. Biochemical in-vitro binding assays and immunogenetic and immunogenicity studies indicated that each of the sixteen immunogenic 15-mer peptides contained two or more partially overlapping epitopes that could bind with high affinity to molecules of different HLAs. The prevalence of the immunogenicity of a peptide in the cohort was correlated with the diversity of HLA-II alleles that they could bind. These findings suggest that overlapping of HLA binding motifs within a peptide enhances its T-cell immunogenicity and the prevalence of the response in the population. In summary, the results suggests that in addition to factors of the innate immunity, “promiscuous” T-cell antigens might contribute to the high efficacy of the yellow fever vaccines. PMID:23383350

  6. Auditory and Visual Working Memory Functioning in College Students with Attention-Deficit/Hyperactivity Disorder and/or Learning Disabilities.

    PubMed

    Liebel, Spencer W; Nelson, Jason M

    2017-12-01

    We investigated the auditory and visual working memory functioning in college students with attention-deficit/hyperactivity disorder, learning disabilities, and clinical controls. We examined the role attention-deficit/hyperactivity disorder subtype status played in working memory functioning. The unique influence that both domains of working memory have on reading and math abilities was investigated. A sample of 268 individuals seeking postsecondary education comprise four groups of the present study: 110 had an attention-deficit/hyperactivity disorder diagnosis only, 72 had a learning disability diagnosis only, 35 had comorbid attention-deficit/hyperactivity disorder and learning disability diagnoses, and 60 individuals without either of these disorders comprise a clinical control group. Participants underwent a comprehensive neuropsychological evaluation, and licensed psychologists employed a multi-informant, multi-method approach in obtaining diagnoses. In the attention-deficit/hyperactivity disorder only group, there was no difference between auditory and visual working memory functioning, t(100) = -1.57, p = .12. In the learning disability group, however, auditory working memory functioning was significantly weaker compared with visual working memory, t(71) = -6.19, p < .001, d = -0.85. Within the attention-deficit/hyperactivity disorder only group, there were no auditory or visual working memory functioning differences between participants with either a predominantly inattentive type or a combined type diagnosis. Visual working memory did not incrementally contribute to the prediction of academic achievement skills. Individuals with attention-deficit/hyperactivity disorder did not demonstrate significant working memory differences compared with clinical controls. Individuals with a learning disability demonstrated weaker auditory working memory than individuals in either the attention-deficit/hyperactivity or clinical control groups. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Fucosyltransferase Induction during Influenza Virus Infection Is Required for the Generation of Functional Memory CD4+ T Cells

    PubMed Central

    Carrette, Florent; Henriquez, Monique L.; Fujita, Yu

    2018-01-01

    T cells mediating influenza viral control are instructed in lymphoid and nonlymphoid tissues to differentiate into memory T cells that confer protective immunity. The mechanisms by which influenza virus–specific memory CD4+ T cells arise have been attributed to changes in transcription factors, cytokines and cytokine receptors, and metabolic programming. The molecules involved in these biosynthetic pathways, including proteins and lipids, are modified to varying degrees of glycosylation, fucosylation, sialation, and sulfation, which can alter their function. It is currently unknown how the glycome enzymatic machinery regulates CD4+ T cell effector and memory differentiation. In a murine model of influenza virus infection, we found that fucosyltransferase enzymatic activity was induced in effector and memory CD4+ T cells. Using CD4+ T cells deficient in the Fut4/7 enzymes that are expressed only in hematopoietic cells, we found decreased frequencies of effector cells with reduced expression of T-bet and NKG2A/C/E in the lungs during primary infection. Furthermore, Fut4/7−/− effector CD4+ T cells had reduced survival with no difference in proliferation or capacity for effector function. Although Fut4/7−/− CD4+ T cells seeded the memory pool after primary infection, they failed to form tissue-resident cells, were dysfunctional, and were unable to re-expand after secondary infection. Our findings highlight an important regulatory axis mediated by cell-intrinsic fucosyltransferase activity in CD4+ T cell effectors that ensure the development of functional memory CD4+ T cells. PMID:29491007

  8. Tracing Donor-MHC Class II Reactive B cells in Mouse Cardiac Transplantation: Delayed CTLA4-Ig Treatment Prevents Memory Alloreactive B-Cell Generation.

    PubMed

    Yang, Jinghui; Chen, Jianjun; Young, James S; Wang, Qiang; Yin, Dengping; Sciammas, Roger; Chong, Anita S

    2016-08-01

    The dual role of B cells as drivers and suppressors of the immune responses have underscored the need to trace the fate of B cells recognizing donor major histocompatibility complex class I and class II after allograft transplantation. In this study, we used donor class II tetramers to trace the fate of I-E-specific B cells after immunization with BALB/c spleen cells or cardiac transplantation, in naive or sensitized C57BL/6 recipients. We combined this approach with genetic lineage tracing of memory B cells in activation-induced cytidine deaminase regulated Cre transgenic mice crossed to the ROSA26-enhanced yellow fluorescent protein reporter mice to track endogenous I-E-specific memory B cell generation. Immunization with BALB/c splenocytes or heart transplantation induced an expansion and differentiation of I-E-specific B cells into germinal center B cells, whereas BALB/c heart transplantation into sensitized recipients induced the preferential differentiation into antibody-secreting cells. A 10.8-fold increase in the frequency of I-E-specific memory B cells was observed by day 42 postimmunization. Treatment with CTLA4-Ig starting on day 0 or day 7 postimmunization abrogated I-E-specific memory B cell generation and sensitized humoral responses, but not if treatment commenced on day 14. The majority of donor-specific memory B cells are generated between days 7 and 14 postimmunization, thus revealing a flexible timeframe whereby delayed CTLA4-Ig administration can inhibit sensitization and the generation of memory graft-reactive B cells.

  9. Application of long-term cultured interferon-gamma enzyme-linked immunospot assay for assessing effector and memory T cell responses in cattle

    USDA-ARS?s Scientific Manuscript database

    Effector and memory T cells are generated through developmental programing of naïve cells following antigen recognition. If the infection is controlled, up to 95% of the T cells generated during the expansion phase are eliminated (i.e., contraction phase) and memory T cells remain, sometimes for a l...

  10. Spatial Working Memory Ability in Individuals at Ultra High Risk for Psychosis

    PubMed Central

    Goghari, Vina M.; Brett, Caroline; Tabraham, Paul; Johns, Louise; Valmaggia, Lucia; Broome, Matthew; Woolley, James; Bramon, Elvira; Howes, Oliver

    2014-01-01

    The goal of this investigation was to clarify the nature of spatial working memory difficulties in individuals at ultra high risk (UHR) for psychosis. We evaluated spatial working memory and intelligence in 96 individuals at UHR for psychosis, 28 patients with first episode psychosis (FEP), and 23 healthy controls. Fourteen UHR individuals developed a psychotic disorder during follow-up. Compared to controls, the UHR group was impaired in both the short-term maintenance of material and in the effective use of strategy, but not more immediate memory. These impairments were not as severe as those in the FEP group, as the UHR group performed better than the FEP group. A similar pattern of results was found for the intelligence measures. Discriminant function analyses demonstrated short-term maintenance of material significantly differentiated the UHR and healthy control groups even when accounting for full scale intelligence quotient (IQ); whereas full scale IQ significantly differentiated the UHR and FEP groups and FEP and control groups. Notably, within the UHR group, impaired spatial working memory performance was associated with lower global functioning, but not full scale IQ. The subgroup of UHR individuals who later developed psychosis was not significantly more impaired on any aspect of working memory performance than the group of UHR individuals who did not develop psychosis. Given, the relationship between spatial working memory deficits and functional outcome, these results indicate that cognitive remediation could be useful in individuals at UHR for psychosis to potentially improve functioning. PMID:24398256

  11. Th1-like Plasmodium-Specific Memory CD4+ T Cells Support Humoral Immunity.

    PubMed

    Zander, Ryan A; Vijay, Rahul; Pack, Angela D; Guthmiller, Jenna J; Graham, Amy C; Lindner, Scott E; Vaughan, Ashley M; Kappe, Stefan H I; Butler, Noah S

    2017-11-14

    Effector T cells exhibiting features of either T helper 1 (Th1) or T follicular helper (Tfh) populations are essential to control experimental Plasmodium infection and are believed to be critical for resistance to clinical malaria. To determine whether Plasmodium-specific Th1- and Tfh-like effector cells generate memory populations that contribute to protection, we developed transgenic parasites that enable high-resolution study of anti-malarial memory CD4 T cells in experimental models. We found that populations of both Th1- and Tfh-like Plasmodium-specific memory CD4 T cells persist. Unexpectedly, Th1-like memory cells exhibit phenotypic and functional features of Tfh cells during recall and provide potent B cell help and protection following transfer, characteristics that are enhanced following ligation of the T cell co-stimulatory receptor OX40. Our findings delineate critical functional attributes of Plasmodium-specific memory CD4 T cells and identify a host-specific factor that can be targeted to improve resolution of acute malaria and provide durable, long-term protection against Plasmodium parasite re-exposure. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Cytokine activation induces human memory-like NK cells.

    PubMed

    Romee, Rizwan; Schneider, Stephanie E; Leong, Jeffrey W; Chase, Julie M; Keppel, Catherine R; Sullivan, Ryan P; Cooper, Megan A; Fehniger, Todd A

    2012-12-06

    Natural killer (NK) cells are lymphocytes that play an important role in the immune response to infection and malignancy. Recent studies in mice have shown that stimulation of NK cells with cytokines or in the context of a viral infection results in memory-like properties. We hypothesized that human NK cells exhibit such memory-like properties with an enhanced recall response after cytokine preactivation. In the present study, we show that human NK cells preactivated briefly with cytokine combinations including IL-12, IL-15, and IL-18 followed by a 7- to 21-day rest have enhanced IFN-γ production after restimulation with IL-12 + IL-15, IL-12 + IL-18, or K562 leukemia cells. This memory-like phenotype was retained in proliferating NK cells. In CD56(dim) NK cells, the memory-like IFN-γ response was correlated with the expression of CD94, NKG2A, NKG2C, and CD69 and a lack of CD57 and KIR. Therefore, human NK cells have functional memory-like properties after cytokine activation, which provides a novel rationale for integrating preactivation with combinations of IL-12, IL-15, and IL-18 into NK cell immunotherapy strategies.

  13. B cells in chronically hepatitis C virus-infected individuals lack a virus-induced mutation signature in the TP53, CTNNB1, and BCL6 genes.

    PubMed

    Tucci, Felicia Anna; Broering, Ruth; Johansson, Patricia; Schlaak, Joerg F; Küppers, Ralf

    2013-03-01

    Hepatitis C virus (HCV) is considered to have a causative role in B-cell lymphoproliferative diseases, including B-cell lymphomas, in chronic virus carriers. Previous data from in vitro HCV-infected B-cell lines and peripheral blood mononuclear cells from HCV-positive individuals suggested that HCV might have a direct mutagenic effect on B cells, inducing mutations in the tumor suppressor gene TP53 and the proto-oncogenes BCL6 and CTNNB1 (β-catenin). To clarify whether HCV indeed has a mutagenic effect on B cells in vivo, we analyzed naive and memory B cells from the peripheral blood of four chronic HCV carriers and intrahepatic B cells from the livers of two HCV-positive patients for mutations in the three reported target genes. However, no mutations were found in the TP53 and CTNNB1 genes. For BCL6, which is a physiological target of the somatic hypermutation process in germinal-center B cells, the mutation levels identified were not higher than those reported in the respective B-cell subsets in healthy individuals. Hence, we conclude that in chronic HCV carriers, the virus does not generally induce mutations in the cancer-related genes TP53, CTNNB1, and BCL6 in B cells. Based on these findings, new targets have to be investigated as potential mediators of HCV-associated B-cell lymphomagenesis.

  14. Functional capacities of human IgM memory B cells in early inflammatory responses and secondary germinal center reactions.

    PubMed

    Seifert, Marc; Przekopowitz, Martina; Taudien, Sarah; Lollies, Anna; Ronge, Viola; Drees, Britta; Lindemann, Monika; Hillen, Uwe; Engler, Harald; Singer, Bernhard B; Küppers, Ralf

    2015-02-10

    The generation and functions of human peripheral blood (PB) IgM(+)IgD(+)CD27(+) B lymphocytes with somatically mutated IgV genes are controversially discussed. We determined their differential gene expression to naive B cells and to IgM-only and IgG(+) memory B cells. This analysis revealed a high similarity of IgM(+)(IgD(+))CD27(+) and IgG(+) memory B cells but also pointed at distinct functional capacities of both subsets. In vitro analyses revealed a tendency of activated IgM(+)IgD(+)CD27(+) B cells to migrate to B-cell follicles and undergo germinal center (GC) B-cell differentiation, whereas activated IgG(+) memory B cells preferentially showed a plasma cell (PC) fate. This observation was supported by reverse regulation of B-cell lymphoma 6 and PR domain containing 1 and differential BTB and CNC homology 1, basic leucine zipper transcription factor 2 expression. Moreover, IgM(+)IgD(+)CD27(+) B lymphocytes preferentially responded to neutrophil-derived cytokines. Costimulation with catecholamines, carcinoembryonic antigen cell adhesion molecule 8 (CEACAM8), and IFN-γ caused differentiation of IgM(+)IgD(+)CD27(+) B cells into PCs, induced class switching to IgG2, and was reproducible in cocultures with neutrophils. In conclusion, this study substantiates memory B-cell characteristics of human IgM(+)IgD(+)CD27(+) B cells in that they share typical memory B-cell transcription patterns with IgG(+) post-GC B cells and show a faster and more vigorous restimulation potential, a hallmark of immune memory. Moreover, this work reveals a functional plasticity of human IgM memory B cells by showing their propensity to undergo secondary GC reactions upon reactivation, but also by their special role in early inflammation via interaction with immunomodulatory neutrophils.

  15. SONOS Nonvolatile Memory Cell Programming Characteristics

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Phillips, Thomas A.; Ho, Fat D.

    2010-01-01

    Silicon-oxide-nitride-oxide-silicon (SONOS) nonvolatile memory is gaining favor over conventional EEPROM FLASH memory technology. This paper characterizes the SONOS write operation using a nonquasi-static MOSFET model. This includes floating gate charge and voltage characteristics as well as tunneling current, voltage threshold and drain current characterization. The characterization of the SONOS memory cell predicted by the model closely agrees with experimental data obtained from actual SONOS memory cells. The tunnel current, drain current, threshold voltage and read drain current all closely agreed with empirical data.

  16. The overall pathological status of the left hippocampus determines preoperative verbal memory performance in left mesial temporal lobe epilepsy.

    PubMed

    Witt, Juri-Alexander; Coras, Roland; Schramm, Johannes; Becker, Albert J; Elger, Christian E; Blümcke, Ingmar; Helmstaedter, Christoph

    2014-04-01

    Studies on hippocampal cell loss in epilepsy have produced diverging evidence as to which subfields are specifically related to memory. This may be due to rather small and often heterogeneous samples, or to different memory measures. Therefore, the current study examined hippocampal cell densities and memory in a large sample of patients with solely mesial temporal lobe epilepsy (mTLE), employing measures with proven sensitivity to mesiotemporal pathology. In 104 patients who had undergone epilepsy surgery for mTLE, we evaluated the role of segmental hippocampal cell loss and its underlying factor structure with regard to presurgical verbal and figural memory while controlling for side-of-surgery and hemispheric dominance. First of all, patients showed material-specific memory impairment concordant with the lateralization of epilepsy. Factor analysis of segmental cell loss revealed a single factor reflecting the overall integrity of the hippocampus. The overall pathological status of the left hippocampus correlated with verbal memory parameters (r = 0.33-0.34, P < 0.05), especially when controlling for atypical hemispheric dominance (r = 0.50-0.57, P < 0.01), and explained up to 33% of the observed variance. Further analyses revealed no superior role of a single subfield or cell loss pattern for memory performance. No systematic relations between neuronal cell densities of the right hippocampus and memory function were found, nor did left or right hippocampal pathology explain figural memory parameters. The results suggest that the overall pathological status of the left hippocampus - rather than a specific subfield pathology - is predictive for verbal memory in mTLE. The finding that figural memory parameters, although sensitive to right mTLE, were not related to neuronal cell densities of the right hippocampus, puts the left/right hippocampus verbal/nonverbal memory dichotomy into perspective. Copyright © 2013 Wiley Periodicals, Inc.

  17. Mucosal BCG Vaccination Induces Protective Lung-Resident Memory T Cell Populations against Tuberculosis

    PubMed Central

    Perdomo, Carolina; Zedler, Ulrike; Kühl, Anja A.; Lozza, Laura; Saikali, Philippe; Sander, Leif E.; Vogelzang, Alexis; Kupz, Andreas

    2016-01-01

    ABSTRACT Mycobacterium bovis Bacille Calmette-Guérin (BCG) is the only licensed vaccine against tuberculosis (TB), yet its moderate efficacy against pulmonary TB calls for improved vaccination strategies. Mucosal BCG vaccination generates superior protection against TB in animal models; however, the mechanisms of protection remain elusive. Tissue-resident memory T (TRM) cells have been implicated in protective immune responses against viral infections, but the role of TRM cells following mycobacterial infection is unknown. Using a mouse model of TB, we compared protection and lung cellular infiltrates of parenteral and mucosal BCG vaccination. Adoptive transfer and gene expression analyses of lung airway cells were performed to determine the protective capacities and phenotypes of different memory T cell subsets. In comparison to subcutaneous vaccination, intratracheal and intranasal BCG vaccination generated T effector memory and TRM cells in the lung, as defined by surface marker phenotype. Adoptive mucosal transfer of these airway-resident memory T cells into naive mice mediated protection against TB. Whereas airway-resident memory CD4+ T cells displayed a mixture of effector and regulatory phenotype, airway-resident memory CD8+ T cells displayed prototypical TRM features. Our data demonstrate a key role for mucosal vaccination-induced airway-resident T cells in the host defense against pulmonary TB. These results have direct implications for the design of refined vaccination strategies. PMID:27879332

  18. Distinct Effects of Saracatinib on Memory CD8+ T-cell Differentiation

    PubMed Central

    Takai, Shinji; Sabzevari, Helen; Farsaci, Benedetto; Schlom, Jeffrey; Greiner, John W.

    2012-01-01

    Immunologic memory involving CD8+ T-cells is a hallmark of an adaptive antigen-specific immune response and comprises a critical component of protective immunity. Designing approaches that enhance long-term T-cell memory would, for the most part, fortify vaccines and enhance host protection against infectious diseases and, perhaps, cancer immunotherapy. A better understanding of the cellular programs involved in the antigen-specific T-cell response has led to new approaches that target the magnitude and quality of the memory T-cell response. Here we show that T-cells from T-cell receptor transgenic mice for the nucleoprotein of influenza virus NP68 exhibit the distinct phases priming, expansion, contraction, memory - of an antigen-specific T-cell response when exposed in vitro to the cognate peptide. Saracatinib, a specific inhibitor of Src family kinases, administered at low doses during the expansion or contraction phases, increased CD62Lhigh/CD44high central memory CD8+ T-cells and IFN-γ production, while suppressing immunity when added during the priming phase. These effects by saracatinib were not accompanied by the expected decline of Src family kinases, but were accompanied by Akt-mTOR suppression and/or mediated via another pathway. Increased central memory cells by saracatinib were recapitulated in mice using a poxvirus-based influenza vaccine, thus underscoring the importance of dose and timing of the inhibitor in the context of memory T-cell differentiation. Finally, vaccine plus saracatinib treatment showed better protection against tumor challenge. The immune-potentiating effects on CD8+ T-cells by a low dose of saracatinib might afford better protection from pathogen or cancer when combined with vaccine. PMID:22450814

  19. Intravaginal infection with herpes simplex virus type-2 (HSV-2) generates a functional effector memory T cell population that persists in the murine genital tract.

    PubMed

    Tang, Vera A; Rosenthal, Kenneth L

    2010-12-01

    Although the female genital tract is the main portal of entry for sexually transmitted infections in women, we still have limited understanding of the generation, maintenance and characteristics of memory T cells in the local tissue. Here, we utilized a mouse model of intravaginal HSV-2 infection and tetramers against the immunodominant HSV glycoprotein B epitope recognized by CD8+ T cells to examine the generation, maintenance and characteristics of anti-HSV memory T cells in the genital tract following acute infection. Our results show that the highest percentage of HSVgB-specific CD8+ T cells was found in the genital tract compared to the spleen or iliac lymphnode. Indeed, although the actual number of CD8+ T cells contracted following viral clearance, approximately one quarter of the CD8+ population that remained in the genital tissue was HSVgB-specific. Memory gB-tetramer+CD8 T cells in the genital tract were positive for CD127 and KLRG1 and negative for CD62L and CCR7, thus confirming that HSV-specific CD8 cells were effector memory T cells that lack the capacity for homing to lymphoid tissues. Functionally, both memory CD8+ and CD4+ HSV-specific populations in the genital tract produced IFNγ when stimulated in vitro and CD4+ cells also produced TNFα. Genital HSVgB-specific memory T cells expressed tissue-homing integrins CD103 (αE integrin) and CD49a (VLA-1 or α1 integrin). Our findings suggest that HSV-specific memory T cells are retained in the genital tract, poised to act as an early line of defense against future virus encounter. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Tumor-Targeting Anti-CD20 Antibodies Mediate In Vitro Expansion of Memory Natural Killer Cells: Impact of CD16 Affinity Ligation Conditions and In Vivo Priming.

    PubMed

    Capuano, Cristina; Battella, Simone; Pighi, Chiara; Franchitti, Lavinia; Turriziani, Ombretta; Morrone, Stefania; Santoni, Angela; Galandrini, Ricciarda; Palmieri, Gabriella

    2018-01-01

    Natural killer (NK) cells represent a pivotal player of innate anti-tumor immune responses. The impact of environmental factors in shaping the representativity of different NK cell subsets is increasingly appreciated. Human cytomegalovirus (HCMV) infection profoundly affects NK cell compartment, as documented by the presence of a CD94/NKG2C + FcεRIγ - long-lived "memory" NK cell subset, endowed with enhanced CD16-dependent functional capabilities, in a fraction of HCMV-seropositive subjects. However, the requirements for memory NK cell pool establishment/maintenance and activation have not been fully characterized yet. Here, we describe the capability of anti-CD20 tumor-targeting therapeutic monoclonal antibodies (mAbs) to drive the selective in vitro expansion of memory NK cells and we show the impact of donor' HCMV serostatus and CD16 affinity ligation conditions on this event. In vitro expanded memory NK cells maintain the phenotypic and functional signature of their freshly isolated counterpart; furthermore, our data demonstrate that CD16 affinity ligation conditions differently affect memory NK cell proliferation and functional activation, as rituximab-mediated low-affinity ligation represents a superior proliferative stimulus, while high-affinity aggregation mediated by glycoengineered obinutuzumab results in improved multifunctional responses. Our work also expands the molecular and functional characterization of memory NK cells, and investigates the possible impact of CD16 functional allelic variants on their in vivo and in vitro expansions. These results reveal new insights in Ab-driven memory NK cell responses in a therapeutic setting and may ultimately inspire new NK cell-based intervention strategies against cancer, in which the enhanced responsiveness to mAb-bound target could significantly impact therapeutic efficacy.

  1. MAO-A Phenotype Effects Response Sensitivity and the Parietal Old/New Effect during Recognition Memory

    PubMed Central

    Ross, Robert S.; Smolen, Andrew; Curran, Tim; Nyhus, Erika

    2018-01-01

    A critical problem for developing personalized treatment plans for cognitive disruptions is the lack of understanding how individual differences influence cognition. Recognition memory is one cognitive ability that varies from person to person and that variation may be related to different genetic phenotypes. One gene that may impact recognition memory is the monoamine oxidase A gene (MAO-A), which influences the transcription rate of MAO-A. Examination of how MAO-A phenotypes impact behavioral and event-related potentials (ERPs) correlates of recognition memory may help explain individual differences in recognition memory performance. Therefore, the current study uses electroencephalography (EEG) in combination with genetic phenotyping of the MAO-A gene to determine how well-characterized ERP components of recognition memory, the early frontal old/new effect, left parietal old/new effect, late frontal old/new effect, and the late posterior negativity (LPN) are impacted by MAO-A phenotype during item and source memory. Our results show that individuals with the MAO-A phenotype leading to increased transcription have lower response sensitivity during both item and source memory. Additionally, during item memory the left parietal old/new effect is not present due to increased ERP amplitude for correct rejections. The results suggest that MAO-A phenotype changes EEG correlates of recognition memory and influences how well individuals differentiate between old and new items. PMID:29487517

  2. Remembering the object you fear: brain potentials during recognition of spiders in spider-fearful individuals.

    PubMed

    Michalowski, Jaroslaw M; Weymar, Mathias; Hamm, Alfons O

    2014-01-01

    In the present study we investigated long-term memory for unpleasant, neutral and spider pictures in 15 spider-fearful and 15 non-fearful control individuals using behavioral and electrophysiological measures. During the initial (incidental) encoding, pictures were passively viewed in three separate blocks and were subsequently rated for valence and arousal. A recognition memory task was performed one week later in which old and new unpleasant, neutral and spider pictures were presented. Replicating previous results, we found enhanced memory performance and higher confidence ratings for unpleasant when compared to neutral materials in both animal fearful individuals and controls. When compared to controls high animal fearful individuals also showed a tendency towards better memory accuracy and significantly higher confidence during recognition of spider pictures, suggesting that memory of objects prompting specific fear is also facilitated in fearful individuals. In line, spider-fearful but not control participants responded with larger ERP positivity for correctly recognized old when compared to correctly rejected new spider pictures, thus showing the same effects in the neural signature of emotional memory for feared objects that were already discovered for other emotional materials. The increased fear memory for phobic materials observed in the present study in spider-fearful individuals might result in an enhanced fear response and reinforce negative beliefs aggravating anxiety symptomatology and hindering recovery.

  3. A critical role for STAT3 transcription factor signaling in the development and maintenance of human T cell memory.

    PubMed

    Siegel, Andrea M; Heimall, Jennifer; Freeman, Alexandra F; Hsu, Amy P; Brittain, Erica; Brenchley, Jason M; Douek, Daniel C; Fahle, Gary H; Cohen, Jeffrey I; Holland, Steven M; Milner, Joshua D

    2011-11-23

    STAT3 transcription factor signaling in specific T helper cell differentiation has been well described, although the broader roles for STAT3 in lymphocyte memory are less clear. Patients with autosomal-dominant hyper-IgE syndrome (AD-HIES) carry dominant-negative STAT3 mutations and are susceptible to a variety of bacterial and fungal infections. We found that AD-HIES patients have a cell-intrinsic defect in the number of central memory CD4(+) and CD8(+) T cells compared to healthy controls. Naive T cells from AD-HIES patients had lower expression of memory-related transcription factors BCL6 and SOCS3, a primary proliferation defect, and they failed to acquire central memory-like surface phenotypes in vitro. AD-HIES patients showed a decreased ability to control varicella zoster virus (VZV) and Epstein-Barr virus (EBV) latency, and T cell memory to both of these viruses was compromised. These data point to a specific role for STAT3 in human central memory T cell formation and in control of certain chronic viruses. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Effect of musical experience on verbal memory in Williams syndrome: evidence from a novel word learning task.

    PubMed

    Martens, Marilee A; Jungers, Melissa K; Steele, Anita L

    2011-09-01

    Williams syndrome (WS) is a neurogenetic developmental disorder characterized by an increased affinity for music, deficits in verbal memory, and atypical brain development. Music has been shown to improve verbal memory in typical individuals as well as those with learning difficulties, but no studies have examined this relationship in WS. The aim of our two studies was to examine whether music can enhance verbal memory in individuals with WS. In Study 1, we presented a memory task of eight spoken or sung sentences that described an animal and identified its group name to 38 individuals with WS. Study 2, involving another group of individuals with WS (n=38), included six spoken or sung sentences that identified an animal group name. In both studies, those who had participated in formal music lessons scored significantly better on the verbal memory task when the sentences were sung than when they were spoken. Those who had not taken formal lessons showed no such benefit. We also found that increased enjoyment of music and heightened emotional reactions to music did not impact performance on the memory task. These compelling findings provide the first evidence that musical experience may enhance verbal memory in individuals with WS and shed more light on the complex relationship between aspects of cognition and altered neurodevelopment in this unique disorder. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Storage of features, conjunctions and objects in visual working memory.

    PubMed

    Vogel, E K; Woodman, G F; Luck, S J

    2001-02-01

    Working memory can be divided into separate subsystems for verbal and visual information. Although the verbal system has been well characterized, the storage capacity of visual working memory has not yet been established for simple features or for conjunctions of features. The authors demonstrate that it is possible to retain information about only 3-4 colors or orientations in visual working memory at one time. Observers are also able to retain both the color and the orientation of 3-4 objects, indicating that visual working memory stores integrated objects rather than individual features. Indeed, objects defined by a conjunction of four features can be retained in working memory just as well as single-feature objects, allowing many individual features to be retained when distributed across a small number of objects. Thus, the capacity of visual working memory must be understood in terms of integrated objects rather than individual features.

  6. Association between memory B-cells and clinical and immunological features of primary Sjögren's syndrome and Sicca patients.

    PubMed

    Barcelos, Filipe; Martins, Catarina; Papoila, Ana; Geraldes, Carlos; Cardigos, Joana; Nunes, Glória; Lopes, Teresa; Alves, Nuno; Vaz-Patto, José; Branco, Jaime; Borrego, Luís-Miguel

    2018-06-01

    B-cells play a pivotal role in primary Sjögren's syndrome (pSS) pathogenesis. We aim to (1) evaluate the distribution of B-lymphocyte subpopulations in pSS and Sicca patients, (2) establish cut-off points that discriminate pSS from controls, (3) evaluate the association between memory B-cells and phenotypic features in pSS. We included 57 pSS patients, 68 Sicca and 24 healthy controls. Circulating B-cells were characterized by flow cytometry as naïve and memory subsets and classified from Bm1 to Bm5. Compared to controls, pSS patients had lower percentages (29.5 vs 44.4%) and absolute numbers (47 vs 106 cells/µl) of memory B-cells. Through ROC curves, a cut-off of ≤ 58 total memory B-cells/µl yielded a specificity of 0.88 and a sensitivity of 0.60 for pSS, and was met by 59.6% of pSS patients, 38.8% of Sicca and 12.5% of controls. A cut-off of < 23.5 Switched-memory B-cells/µl yielded a specificity of 0.88 and a sensitivity of 0.54 and was met by 54.4% of pSS patients, 37.3% of Sicca and 12.5% of controls. In pSS, lower total memory B-cells count was associated with longer disease duration (14.3 vs 8.1 years, p = 0.006) and more active disease profile, as evaluated by the European League Against Rheumatism (EULAR) Sjögren's Syndrome Disease Activity Index (ESSDAI) (3.1 vs 1.4, p = 0.043). Decreased numbers of memory B-cells clearly discriminated pSS from controls and can also have prognostic value. It remains to be clarified whether Sicca patients with decreased memory B-cells represent pSS and if B-cell profiling could help in the diagnosis of pSS.

  7. Blurring emotional memories using eye movements: individual differences and speed of eye movements.

    PubMed

    van Schie, Kevin; van Veen, Suzanne C; Engelhard, Iris M; Klugkist, Irene; van den Hout, Marcel A

    2016-01-01

    In eye movement desensitization and reprocessing (EMDR), patients make eye movements (EM) while recalling traumatic memories. Making EM taxes working memory (WM), which leaves less resources available for imagery of the memory. This reduces memory vividness and emotionality during future recalls. WM theory predicts that individuals with small working memory capacities (WMCs) benefit more from low levels of taxing (i.e., slow EM) whereas individuals with large WMC benefit more from high levels of taxing (i.e., fast EM). We experimentally examined and tested four prespecified hypotheses regarding the role of WMC and EM speed in reducing emotionality and vividness ratings: 1) EM-regardless of WMC and EM speed-are more effective compared to no dual task, 2) increasing EM speed only affects the decrease in memory ratings irrespective of WMC, 3) low-WMC individuals-compared to high-WMC individuals-benefit more from making either type of EM, 4) the EM intervention is most effective when-as predicted by WM theory-EM are adjusted to WMC. Undergraduates with low (n=31) or high (n=35) WMC recalled three emotional memories and rated vividness and emotionality before and after each condition (recall only, recall + slow EM, and recall + fast EM). Contrary to the theory, the data do not support the hypothesis that EM speed should be adjusted to WMC (hypothesis 4). However, the data show that a dual task in general is more effective in reducing memory ratings than no dual task (hypothesis 1), and that a more cognitively demanding dual task increases the intervention's effectiveness (hypothesis 2). Although adjusting EM speed to an individual's WMC seems a straightforward clinical implication, the data do not show any indication that such a titration is helpful.

  8. Individual prediction of change in delayed recall of prose passages after left-sided anterior temporal lobectomy.

    PubMed

    Jokeit, H; Ebner, A; Holthausen, H; Markowitsch, H J; Moch, A; Pannek, H; Schulz, R; Tuxhorn, I

    1997-08-01

    Prognostic variables for individual memory outcome after left anterior temporal lobectomy (ATL) were studied in 27 patients with refractory temporal lobe epilepsy. The difference between pre- and postoperative performance in the delayed recall of two prose passages (Story A and B) from the Wechsler Memory Scale served as measure of postoperative memory change. Fifteen independent clinical, neuropsychological, and electrophysiological variables were submitted to a multiple linear regression analysis. Preoperative immediate and delayed recall of story content and right hemisphere Wada memory performance for pictorial and verbal items explained very well postoperative memory changes in recall of Story B. Delayed recall of Story B, but not of Story A, had high concurrent validity to other measures of memory. Patients who became seizure-free did not differ in memory change from patients who continued to have seizures after ATL. The variables age at epilepsy onset and probable age at temporal lobe damage provided complementary information for individual prediction but with less effectiveness than Wada test data. Our model confirmed that good preoperative memory functioning and impaired right hemispheric Wada memory performance for pictorial items predict a high risk of memory loss after left ATL. The analyses demonstrate that the combination of independent measures delivers more information than Wada test performance or any other variable alone. The suggested function can be used routinely to estimate the individual severity of verbal episodic memory impairment that might occur after left-sided ATL and offers a rational basis for the counseling of patients.

  9. Quantitative Characterization of the T Cell Receptor Repertoire of Naïve and Memory Subsets Using an Integrated Experimental and Computational Pipeline Which Is Robust, Economical, and Versatile

    PubMed Central

    Oakes, Theres; Heather, James M.; Best, Katharine; Byng-Maddick, Rachel; Husovsky, Connor; Ismail, Mazlina; Joshi, Kroopa; Maxwell, Gavin; Noursadeghi, Mahdad; Riddell, Natalie; Ruehl, Tabea; Turner, Carolin T.; Uddin, Imran; Chain, Benny

    2017-01-01

    The T cell receptor (TCR) repertoire can provide a personalized biomarker for infectious and non-infectious diseases. We describe a protocol for amplifying, sequencing, and analyzing TCRs which is robust, sensitive, and versatile. The key experimental step is ligation of a single-stranded oligonucleotide to the 3′ end of the TCR cDNA. This allows amplification of all possible rearrangements using a single set of primers per locus. It also introduces a unique molecular identifier to label each starting cDNA molecule. This molecular identifier is used to correct for sequence errors and for effects of differential PCR amplification efficiency, thus producing more accurate measures of the true TCR frequency within the sample. This integrated experimental and computational pipeline is applied to the analysis of human memory and naive subpopulations, and results in consistent measures of diversity and inequality. After error correction, the distribution of TCR sequence abundance in all subpopulations followed a power law over a wide range of values. The power law exponent differed between naïve and memory populations, but was consistent between individuals. The integrated experimental and analysis pipeline we describe is appropriate to studies of T cell responses in a broad range of physiological and pathological contexts. PMID:29075258

  10. Maintenance of HIV-Specific Memory B-Cell Responses in Elite Controllers Despite Low Viral Burdens.

    PubMed

    Buckner, Clarisa M; Kardava, Lela; Zhang, Xiaozhen; Gittens, Kathleen; Justement, J Shawn; Kovacs, Colin; McDermott, Adrian B; Li, Yuxing; Sajadi, Mohammad M; Chun, Tae-Wook; Fauci, Anthony S; Moir, Susan

    2016-08-01

    Human immunodeficiency virus (HIV)-specific B-cell responses in infected individuals are maintained by active HIV replication. Suppression of viremia by antiretroviral therapy (ART) leads to quantitative and qualitative changes that remain unclear. Accordingly, B-cell responses were investigated in elite controllers (ECs), who maintain undetectable HIV levels without ART, and in individuals whose viremia was suppressed by ART. Despite a higher HIV burden in the ART group, compared with the EC group, frequencies of HIV-specific B cells were higher in the EC group, compared with those in the ART group. However, the initiation of ART in several ECs was associated with reduced frequencies of HIV-specific B cells, suggesting that responses are at least in part sustained by HIV replication. Furthermore, B-cell responses to tetanus toxin but not influenza hemagglutinin in the ART group were lower than those in the EC group. Thus, the superior HIV-specific humoral response in ECs versus ART-treated individuals is likely due to a more intact humoral immune response in ECs and/or distinct responses to residual HIV replication. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  11. Maintenance of memory-type pathogenic Th2 cells in the pathophysiology of chronic airway inflammation.

    PubMed

    Hirahara, Kiyoshi; Shinoda, Kenta; Endo, Yusuke; Ichikawa, Tomomi; Nakayama, Toshinori

    2018-01-01

    Immunological memory is critical for long-standing protection against microorganisms; however, certain antigen-specific memory CD4 + T helper (Th) cells drive immune-related pathology, including chronic allergic inflammation such as asthma. The IL-5-producing memory-type Tpath2 subset is important for the pathogenesis of chronic allergic inflammation. This memory-type pathogenic Th2 cell population (Tpath2) can be detected in various allergic inflammatory lesions. However, how these pathogenic populations are maintained at the local inflammatory site has remained unclear. We performed a series of experiments using mice model for chronic airway inflammation. We also investigated the human samples from patients with eosinophilic chronic rhinosinusitis. We recently reported that inducible bronchus-associated lymphoid tissue (iBALT) was shaped during chronic inflammation in the lung. We also found that memory-type Tpath2 cells are maintained within iBALT. The maintenance of the Tpath2 cells within iBALT is supported by specific cell subpopulations within the lung. Furthermore, ectopic lymphoid structures consisting of memory CD4 + T cells were found in nasal polyps of eosinophilic chronic rhinosinusitis patients, indicating that the persistence of inflammation is controlled by these structures. Thus, the cell components that organize iBALT formation may be therapeutic targets for chronic allergic airway inflammation.

  12. Inducible nitric oxide synthase in T cells regulates T cell death and immune memory

    PubMed Central

    Vig, Monika; Srivastava, Smita; Kandpal, Usha; Sade, Hadassah; Lewis, Virginia; Sarin, Apurva; George, Anna; Bal, Vineeta; Durdik, Jeannine M.; Rath, Satyajit

    2004-01-01

    The progeny of T lymphocytes responding to immunization mostly die rapidly, leaving a few long-lived survivors functioning as immune memory. Thus, control of this choice of death versus survival is critical for immune memory. There are indications that reactive radicals may be involved in this death pathway. We now show that, in mice lacking inducible nitric oxide synthase (iNOS), higher frequencies of both CD4 and CD8 memory T cells persist in response to immunization, even when iNOS+/+ APCs are used for immunization. Postactivation T cell death by neglect is reduced in iNOS–/– T cells, and levels of the antiapoptotic proteins Bcl-2 and Bcl-xL are increased. Inhibitors of the iNOS-peroxynitrite pathway also enhance memory responses and block postactivation death by neglect in both mouse and human T cells. However, early primary immune responses are not enhanced, which suggests that altered survival, rather than enhanced activation, is responsible for the persistent immunity observed. Thus, in primary immune responses, iNOS in activated T cells autocrinely controls their susceptibility to death by neglect to determine the level of persisting CD4 and CD8 T cell memory, and modulation of this pathway can enhance the persistence of immune memory in response to vaccination. PMID:15199408

  13. Functions of autobiographical memory in Taiwanese and American emerging adults.

    PubMed

    Liao, Hsiao-Wen; Bluck, Susan; Alea, Nicole; Cheng, Ching-Ling

    2016-01-01

    The study addresses cultural and person-level factors contributing to emerging adult's use of memory to serve adaptive functions. The focus is on three functions: self-continuity, social-bonding and directing-behaviour. Taiwanese (N = 85, 52 women) and American (N = 95, 51 women) emerging adults completed the Thinking about Life Experiences scale, and measures of trait personality, self-concept clarity and future time perspective. Findings show that individuals from both cultures use memory to serve these three functions, but Taiwanese individuals use memory more frequently than Americans to maintain self-continuity. Culture also interacted with person-level factors: in Taiwan, but not America, memory is more frequently used to create self-continuity in individuals high in conscientiousness. Across cultures, having lower self-concept clarity was related to greater use of memory to create self-continuity. Findings are discussed in terms of how memory serves functions in context and specific aspects of the Taiwanese and American cultural context that may predict the functional use of memory in emerging adulthood.

  14. Natural Killer Cell Memory

    PubMed Central

    O’Sullivan, Timothy E.; Sun, Joseph C.; Lanier, Lewis L.

    2015-01-01

    Natural killer (NK) cells have historically been considered short-lived cytolytic cells that can rapidly respond against pathogens and tumors in an antigen-independent manner, and then undergo cell death. Recently, however, NK cells have been shown to possess traits of adaptive immunity, and can acquire immunological memory in a similar manner to T and B cells. In this review, we discuss evidence for NK cell memory and the mechanisms involved in the generation and survival of these innate lymphocytes. PMID:26488815

  15. Naive T-cell receptor transgenic T cells help memory B cells produce antibody

    PubMed Central

    Duffy, Darragh; Yang, Chun-Ping; Heath, Andrew; Garside, Paul; Bell, Eric B

    2006-01-01

    Injection of the same antigen following primary immunization induces a classic secondary response characterized by a large quantity of high-affinity antibody of an immunoglobulin G class produced more rapidly than in the initial response – the products of memory B cells are qualitatively distinct from that of the original naive B lymphocytes. Very little is known of the help provided by the CD4 T cells that stimulate memory B cells. Using antigen-specific T-cell receptor transgenic CD4 T cells (DO11.10) as a source of help, we found that naive transgenic T cells stimulated memory B cells almost as well (in terms of quantity and speed) as transgenic T cells that had been recently primed. There was a direct correlation between serum antibody levels and the number of naive transgenic T cells transferred. Using T cells from transgenic interleukin-2-deficient mice we showed that interleukin-2 was not required for a secondary response, although it was necessary for a primary response. The results suggested that the signals delivered by CD4 T cells and required by memory B cells for their activation were common to both antigen-primed and naive CD4 T cells. PMID:17067314

  16. CD8α+ DC trans-presentation of IL-15 to naïve CD8+ T cells produces antigen inexperienced T cells in the periphery with memory phenotype and function

    PubMed Central

    Sosinowski, Tomasz; White, Jason T.; Cross, Eric; Haluszczak, Catherine; Marrack, Philippa; Gapin, Laurent; Kedl, Ross M.

    2013-01-01

    Various populations of memory phenotype CD8+ T cells have been described over the last 15–20 years, all of which possess elevated effector functions relative to naïve phenotype cells. Using a technique for isolating antigen specific cells from unprimed hosts, we recently identified a new subset of cells, specific for nominal antigen, but phenotypically and functionally similar to memory cells arising as a result of homeostatic proliferation (HP). We show here that these “Virtual Memory” cells are independent of previously identified “innate memory” cells, arising as a result of their response to IL-15 trans-presentation by lymphoid tissue-resident CD8α+ DCs in the periphery. The absence of IL-15, CD8+ T cell expression of either CD122 or Eomes, or of CD8a+ DCs all lead to the loss of Virtual Memory cells in the host. Our results show that CD8+ T cell homeostatic expansion is an active process within the non-lymphopenic environment, is mediated by IL-15, and produces antigen inexperienced memory cells which retain the capacity to respond to nominal antigen with memory-like function. Preferential engagement of these “Virtual Memory” T cells into a vaccine response could dramatically enhance the rate by which immune protection develops. PMID:23355737

  17. Differences in Mouse and Human Non-Memory B Cell Pools1

    PubMed Central

    Benitez, Abigail; Weldon, Abby J.; Tatosyan, Lynnette; Velkuru, Vani; Lee, Steve; Milford, Terry-Ann; Francis, Olivia L.; Hsu, Sheri; Nazeri, Kavoos; Casiano, Carlos M.; Schneider, Rebekah; Gonzalez, Jennifer; Su, Rui-Jun; Baez, Ineavely; Colburn, Keith; Moldovan, Ioana; Payne, Kimberly J.

    2014-01-01

    Identifying cross-species similarities and differences in immune development and function is critical for maximizing the translational potential of animal models. Co-expression of CD21 and CD24 distinguishes transitional and mature B cell subsets in mice. Here, we validate these markers for identifying analogous subsets in humans and use them to compare the non-memory B cell pools in mice and humans, across tissues, during fetal/neonatal and adult life. Among human CD19+IgM+ B cells, the CD21/CD24 schema identifies distinct populations that correspond to T1 (transitional 1), T2 (transitional 2), FM (follicular mature), and MZ (marginal zone) subsets identified in mice. Markers specific to human B cell development validate the identity of MZ cells and the maturation status of human CD21/CD24 non-memory B cell subsets. A comparison of the non-memory B cell pools in bone marrow (BM), blood, and spleen in mice and humans shows that transitional B cells comprise a much smaller fraction in adult humans than mice. T1 cells are a major contributor to the non-memory B cell pool in mouse BM where their frequency is more than twice that in humans. Conversely, in spleen the T1:T2 ratio shows that T2 cells are proportionally ∼8 fold higher in humans than mouse. Despite the relatively small contribution of transitional B cells to the human non-memory pool, the number of naïve FM cells produced per transitional B cell is 3-6 fold higher across tissues than in mouse. These data suggest differing dynamics or mechanisms produce the non-memory B cell compartments in mice and humans. PMID:24719464

  18. The self-imagination effect: benefits of a self-referential encoding strategy on cued recall in memory-impaired individuals with neurological damage.

    PubMed

    Grilli, Matthew D; Glisky, Elizabeth L

    2011-09-01

    Knowledge of oneself is preserved in many memory-impaired individuals with neurological damage. Therefore, cognitive strategies that capitalize on mechanisms related to the self may be particularly effective at enhancing memory in this population. The present study investigated the effect of "self-imagining," imagining an event from a personal perspective, on short and long delayed cued recall in memory-impaired individuals with neurological damage. Sixteen patients intentionally encoded word pairs under four separate conditions: visual imagery, semantic elaboration, other person imagining, and self-imagining. The results revealed that self-imagining led to better performance than other-imagining, semantic elaboration, and visual imagery. Furthermore, the "self-imagination effect" (SIE) was preserved after a 30-min delay and was independent of memory functioning. These findings indicate that self-imagining provides a mnemonic advantage in brain-injured individuals, even those with relatively poor memory functioning, and suggest that self-imagining may tap into mnemonic mechanisms related to the self.

  19. Patterns of prospective memory impairment among individuals with depression: the influence of cue type and delay interval.

    PubMed

    Li, Yanqi Ryan; Weinborn, Michael; Loft, Shayne; Maybery, Murray

    2013-07-01

    The present study investigated the impact of cue type and delay interval on prospective memory performance in depressed, compared to non-depressed, individuals using a clinically relevant measure, the Memory for Intentions Screening Test. The depressed group demonstrated impaired performance on time-based, but not event-based, prospective memory tasks relative to the nondepressed group. The depressed group also demonstrated impaired prospective memory on tasks with longer delay intervals (15 min), but not on tasks with shorter delay intervals (2 min). These data support theoretical frameworks that posit that depression is associated with deficits in cognitive initiative (i.e., reduced ability to voluntarily direct attention to relevant tasks) and thus that depressed individuals are susceptible to poor performance on strategically demanding tasks. The results also raise multiple avenues for developing interventions (e.g., implementation intentions) to improve prospective memory performance among individuals with depression, with potential implications for medication and other treatment adherence.

  20. Immunophenotyping of rheumatoid arthritis reveals a linkage between HLA-DRB1 genotype, CXCR4 expression on memory CD4(+) T cells, and disease activity.

    PubMed

    Nagafuchi, Yasuo; Shoda, Hirofumi; Sumitomo, Shuji; Nakachi, Shinichiro; Kato, Rika; Tsuchida, Yumi; Tsuchiya, Haruka; Sakurai, Keiichi; Hanata, Norio; Tateishi, Shoko; Kanda, Hiroko; Ishigaki, Kazuyoshi; Okada, Yukinori; Suzuki, Akari; Kochi, Yuta; Fujio, Keishi; Yamamoto, Kazuhiko

    2016-07-07

    Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease that leads to destructive arthritis. Although the HLA class II locus is the strongest genetic risk factor for rheumatoid arthritis, the relationship between HLA class II alleles and lymphocyte activation remains unclear. We performed immunophenotyping of peripheral blood mononuclear cells on 91 HLA-DRB1-genotyped RA patients and 110 healthy donors. The frequency of memory CXCR4(+)CD4(+) T cells, and not Th1 and Th17 cells, was significantly associated with disease severity by multiple linear regression analysis. RA patients with one or more susceptible HLA-DR haplotypes (shared epitope: SE) displayed a significantly higher frequency of memory CXCR4(+)CD4(+) T cells. Moreover, the frequency of memory CXCR4(+)CD4(+) T cells significantly correlated with the expression level of HLA-DR on B cells, which was elevated in RA patients with SE. In vitro analysis and transcriptomic pathway analysis suggested that the interaction between HLA-DR and T cell receptors is an important regulator of memory CXCR4(+)CD4(+) T cells. Clinically, a higher frequency of memory CXCR4(+)CD4(+) T cells predicted a better response to CTLA4-Ig. Memory CXCR4(+)CD4(+) T cells may serve as a powerful biomarker for unraveling the linkage between HLA-DRB1 genotype and disease activity in RA.

  1. Acute Infection with Epstein-Barr Virus Targets and Overwhelms the Peripheral Memory B-Cell Compartment with Resting, Latently Infected Cells

    PubMed Central

    Hochberg, Donna; Souza, Tatyana; Catalina, Michelle; Sullivan, John L.; Luzuriaga, Katherine; Thorley-Lawson, David A.

    2004-01-01

    In this paper we demonstrate that during acute infection with Epstein-Barr virus (EBV), the peripheral blood fills up with latently infected, resting memory B cells to the point where up to 50% of all the memory cells may carry EBV. Despite this massive invasion of the memory compartment, the virus remains tightly restricted to memory cells, such that, in one donor, fewer than 1 in 104 infected cells were found in the naive compartment. We conclude that, even during acute infection, EBV persistence is tightly regulated. This result confirms the prediction that during the early phase of infection, before cellular immunity is effective, there is nothing to prevent amplification of the viral cycle of infection, differentiation, and reactivation, causing the peripheral memory compartment to fill up with latently infected cells. Subsequently, there is a rapid decline in infected cells for the first few weeks that approximates the decay in the cytotoxic-T-cell responses to viral replicative antigens. This phase is followed by a slower decline that, even by 1 year, had not reached a steady state. Therefore, EBV may approach but never reach a stable equilibrium. PMID:15113901

  2. Potential Therapeutic Effects of Lipoic Acid on Memory Deficits Related to Aging and Neurodegeneration.

    PubMed

    Molz, Patrícia; Schröder, Nadja

    2017-01-01

    The aging process comprises a series of organic alterations, affecting multiple systems, including the nervous system. Aging has been considered the main risk factor for the advance of neurodegenerative diseases, many of which are accompanied by cognitive impairment. Aged individuals show cognitive decline, which has been associated with oxidative stress, as well as mitochondrial, and consequently energetic failure. Lipoic acid (LA), a natural compound present in food and used as a dietary supplement, has been considered a promising agent for the treatment and/or prevention of neurodegenerative disorders. In spite of a number of preclinical studies showing beneficial effects of LA in memory functioning, and pointing to its neuroprotective potential effect, to date only a few studies have examined its effects in humans. Investigations performed in animal models of memory loss associated to aging and neurodegenerative disorders have shown that LA improves memory in a variety of behavioral paradigms. Moreover, cell and molecular mechanisms underlying LA effects have also been investigated. Accordingly, LA displays antioxidant, antiapoptotic, and anti-inflammatory properties in both in vivo and in vitro studies. In addition, it has been shown that LA reverses age-associated loss of neurotransmitters and their receptors, which can underlie its effects on cognitive functions. The present review article aimed at summarizing and discussing the main studies investigating the effects of LA on cognition as well as its cell and molecular effects, in order to improve the understanding of the therapeutic potential of LA on memory loss during aging and in patients suffering from neurodegenerative disorders, supporting the development of clinical trials with LA.

  3. Potential Therapeutic Effects of Lipoic Acid on Memory Deficits Related to Aging and Neurodegeneration

    PubMed Central

    Molz, Patrícia; Schröder, Nadja

    2017-01-01

    The aging process comprises a series of organic alterations, affecting multiple systems, including the nervous system. Aging has been considered the main risk factor for the advance of neurodegenerative diseases, many of which are accompanied by cognitive impairment. Aged individuals show cognitive decline, which has been associated with oxidative stress, as well as mitochondrial, and consequently energetic failure. Lipoic acid (LA), a natural compound present in food and used as a dietary supplement, has been considered a promising agent for the treatment and/or prevention of neurodegenerative disorders. In spite of a number of preclinical studies showing beneficial effects of LA in memory functioning, and pointing to its neuroprotective potential effect, to date only a few studies have examined its effects in humans. Investigations performed in animal models of memory loss associated to aging and neurodegenerative disorders have shown that LA improves memory in a variety of behavioral paradigms. Moreover, cell and molecular mechanisms underlying LA effects have also been investigated. Accordingly, LA displays antioxidant, antiapoptotic, and anti-inflammatory properties in both in vivo and in vitro studies. In addition, it has been shown that LA reverses age-associated loss of neurotransmitters and their receptors, which can underlie its effects on cognitive functions. The present review article aimed at summarizing and discussing the main studies investigating the effects of LA on cognition as well as its cell and molecular effects, in order to improve the understanding of the therapeutic potential of LA on memory loss during aging and in patients suffering from neurodegenerative disorders, supporting the development of clinical trials with LA. PMID:29311912

  4. Cladribine treatment of multiple sclerosis is associated with depletion of memory B cells.

    PubMed

    Ceronie, Bryan; Jacobs, Benjamin M; Baker, David; Dubuisson, Nicolas; Mao, Zhifeng; Ammoscato, Francesca; Lock, Helen; Longhurst, Hilary J; Giovannoni, Gavin; Schmierer, Klaus

    2018-05-01

    The mechanism of action of oral cladribine, recently licensed for relapsing multiple sclerosis, is unknown. To determine whether cladribine depletes memory B cells consistent with our recent hypothesis that effective, disease-modifying treatments act by physical/functional depletion of memory B cells. A cross-sectional study examined 40 people with multiple sclerosis at the end of the first cycle of alemtuzumab or injectable cladribine. The relative proportions and absolute numbers of peripheral blood B lymphocyte subsets were measured using flow cytometry. Cell-subtype expression of genes involved in cladribine metabolism was examined from data in public repositories. Cladribine markedly depleted class-switched and unswitched memory B cells to levels comparable with alemtuzumab, but without the associated initial lymphopenia. CD3 + T cell depletion was modest. The mRNA expression of metabolism genes varied between lymphocyte subsets. A high ratio of deoxycytidine kinase to group I cytosolic 5' nucleotidase expression was present in B cells and was particularly high in mature, memory and notably germinal centre B cells, but not plasma cells. Selective B cell cytotoxicity coupled with slow repopulation kinetics results in long-term, memory B cell depletion by cladribine. These may offer a new target, possibly with potential biomarker activity, for future drug development.

  5. Mobile phones as a new memory aid: a preliminary investigation using case studies.

    PubMed

    Wade, T K; Troy, J C

    2001-04-01

    Memory impairment is one of the most common concerns following a brain injury of any severity. The use of effective external memory aids can help minimize the devastating effects such memory impairment can have on an individual's everyday life. Reviewed in this report are case studies of five individuals suffering significant everyday memory problems that were given a new memory aid that utilizes standard mobile phones. Measurements included diary-format observations and qualitative feedback. The results of the study show promising outcomes for all of the cases, and have led to recent adaptations to allow for wider and more effective use of this memory aid.

  6. Chronic exposure to water pollutant trichloroethylene increased epigenetic drift in CD4(+) T cells.

    PubMed

    Gilbert, Kathleen M; Blossom, Sarah J; Erickson, Stephen W; Reisfeld, Brad; Zurlinden, Todd J; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Cooney, Craig A

    2016-05-01

    Autoimmune disease and CD4(+) T-cell alterations are induced in mice exposed to the water pollutant trichloroethylene (TCE). We examined here whether TCE altered gene-specific DNA methylation in CD4(+) T cells as a possible mechanism of immunotoxicity. Naive and effector/memory CD4(+) T cells from mice exposed to TCE (0.5 mg/ml in drinking water) for 40 weeks were examined by bisulfite next-generation DNA sequencing. A probabilistic model calculated from multiple genes showed that TCE decreased methylation control in CD4(+) T cells. Data from individual genes fitted to a quadratic regression model showed that TCE increased gene-specific methylation variance in both CD4 subsets. TCE increased epigenetic drift of specific CpG sites in CD4(+) T cells.

  7. Early transcriptional and epigenetic regulation of CD8+ T cell differentiation revealed by single-cell RNA-seq

    PubMed Central

    Kakaradov, Boyko; Arsenio, Janilyn; Widjaja, Christella E.; He, Zhaoren; Aigner, Stefan; Metz, Patrick J.; Yu, Bingfei; Wehrens, Ellen J.; Lopez, Justine; Kim, Stephanie H.; Zuniga, Elina I.; Goldrath, Ananda W.; Chang, John T.; Yeo, Gene W.

    2017-01-01

    SUMMARY During microbial infection, responding CD8+ T lymphocytes differentiate into heterogeneous subsets that together provide immediate and durable protection. To elucidate the dynamic transcriptional changes that underlie this process, we applied a single-cell RNA sequencing approach and analyzed individual CD8+ T lymphocytes sequentially throughout the course of a viral infection in vivo. Our analyses revealed a striking transcriptional divergence among cells that had undergone their first division and identified previously unknown molecular determinants controlling CD8+ T lymphocyte fate specification. These findings suggest a model of terminal effector cell differentiation initiated by an early burst of transcriptional activity and subsequently refined by epigenetic silencing of transcripts associated with memory lymphocytes, highlighting the power and necessity of single-cell approaches. PMID:28218746

  8. Asymptomatic memory CD8+ T cells

    PubMed Central

    Khan, Arif Azam; Srivastava, Ruchi; Lopes, Patricia Prado; Wang, Christine; Pham, Thanh T; Cochrane, Justin; Thai, Nhi Thi Uyen; Gutierrez, Lucas; BenMohamed, Lbachir

    2014-01-01

    Generation and maintenance of high quantity and quality memory CD8+ T cells determine the level of protection from viral, bacterial, and parasitic re-infections, and hence constitutes a primary goal for T cell epitope-based human vaccines and immunotherapeutics. Phenotypically and functionally characterizing memory CD8+ T cells that provide protection against herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2) infections, which cause blinding ocular herpes, genital herpes, and oro-facial herpes, is critical for better vaccine design. We have recently categorized 2 new major sub-populations of memory symptomatic and asymptomatic CD8+ T cells based on their phenotype, protective vs. pathogenic function, and anatomical locations. In this report we are discussing a new direction in developing T cell-based human herpes vaccines and immunotherapeutics based on the emerging new concept of “symptomatic and asymptomatic memory CD8+ T cells.” PMID:24499824

  9. Pediatric common variable immunodeficiency: immunologic and phenotypic associations with switched memory B cells.

    PubMed

    Yong, Pierre L; Orange, Jordan S; Sullivan, Kathleen E

    2010-08-01

    Recent studies suggest that patients with common variable immunodeficiency (CVID) and low numbers of switched memory B cells have lower IgG levels and higher rates of autoimmune disease, splenomegaly, and granulomatous disease; however, no prior literature has focused exclusively on pediatric cases. We examined the relationship between switched memory B cells and clinical and immunologic manifestations of CVID in a pediatric population. Forty-five patients were evaluated. Patients were categorized as Group I (<5 switched memory B cells/ml, n = 24) or Group II (> or =5 switched memory B cells/mL, n = 21). CD3(+) T-cell counts and CD19(+) B-cell levels were lower among Group I patients. Only those in Group I had meningitis, sepsis, bronchiectasis, granulomatous lung disease, autoimmune cytopenias, or hematologic malignancies. Segregation of pediatric patients into high risk (Group I) and average risk (Group II) may assist in targeting surveillance appropriately.

  10. Immunologic considerations for generating memory CD8 T cells through vaccination.

    PubMed

    Butler, Noah S; Nolz, Jeffrey C; Harty, John T

    2011-07-01

    Following infection or vaccination, naïve CD8 T cells that receive the appropriate integration of antigenic, co-stimulatory and inflammatory signals undergo a programmed series of biological changes that ultimately results in the generation of memory cells. Memory CD8 T cells, in contrast to naïve cells, more effectively limit or prevent pathogen re-infection because of both qualitative and quantitative changes that occur following their induction. Unlike vaccination strategies aimed at generating antibody production, the ability to generate protective memory CD8 T cells has proven more complicated and problematic. However, recent experimental results have revealed important principles regarding the molecular and genetic basis for memory CD8 T cell formation, as well as identified ways to manipulate their development through vaccination, resulting in potential new avenues to enhance protective immunity. © 2011 Blackwell Publishing Ltd.

  11. Bimanual coordination positively predicts episodic memory: A combined behavioral and MRI investigation.

    PubMed

    Lyle, Keith B; Dombroski, Brynn A; Faul, Leonard; Hopkins, Robin F; Naaz, Farah; Switala, Andrew E; Depue, Brendan E

    2017-11-01

    Some people remember events more completely and accurately than other people, but the origins of individual differences in episodic memory are poorly understood. One way to advance understanding is by identifying characteristics of individuals that reliably covary with memory performance. Recent research suggests motor behavior is related to memory performance, with individuals who consistently use a single preferred hand for unimanual actions performing worse than individuals who make greater use of both hands. This research has relied on self-reports of behavior. It is unknown whether objective measures of motor behavior also predict memory performance. Here, we tested the predictive power of bimanual coordination, an important form of manual dexterity. Bimanual coordination, as measured objectively on the Purdue Pegboard Test, was positively related to correct recall on the California Verbal Learning Test-II and negatively related to false recall. Furthermore, MRI data revealed that cortical surface area in right lateral prefrontal regions was positively related to correct recall. In one of these regions, cortical thickness was negatively related to bimanual coordination. These results suggest that individual differences in episodic memory may partially reflect morphological variation in right lateral prefrontal cortex and suggest a relationship between neural correlates of episodic memory and motor behavior. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The Majority of HIV Type 1 DNA in Circulating CD4+ T Lymphocytes Is Present in Non-Gut-Homing Resting Memory CD4+ T Cells

    PubMed Central

    Xu, Yin; Bailey, Michelle; Seddiki, Nabila; Suzuki, Kazuo; Murray, John M.; Gao, Yuan; Yan, Celine; Cooper, David A.; Kelleher, Anthony D.; Koelsch, Kersten K.; Zaunders, John

    2013-01-01

    Abstract Memory CD4+ T lymphocytes in peripheral blood that express integrins α4ß7 preferentially recirculate through gut-associated lymphoid tissue (GALT), a proposed site of significant HIV-1 replication. Tregs and activated CD4+ T cells in GALT could also be particularly susceptible to infection. We therefore hypothesized that infection of these subsets of memory CD4+ T cells may contribute disproportionately to the HIV-1 reservoir. A cross-sectional study of CD4+ T cell subsets of memory CD45RO+ cells in peripheral blood mononuclear cells (PBMCs) was conducted using leukapheresis from eight subjects with untreated chronic HIV-1 infection. Real-time polymerase chain reaction (PCR) was used to quantify total and integrated HIV-1 DNA levels from memory CD4+ T cells sorted into integrin β7+ vs. β7−, CD25+CD127low Treg vs. CD127high, and activated CD38+ vs. CD38−. More than 80% of total HIV-1 DNA was found to reside in the integrin β7-negative non-gut-homing subset of CD45RO+ memory CD4+ T cells. Less than 10% was found in highly purified Tregs or CD38+ activated memory cells. Similarly, integrated HIV-1 DNA copies were found to be more abundant in resting non-gut-homing memory CD4+ T cells (76%) than in their activated counterparts (23%). Our investigations showed that the majority of both total and integrated HIV-1 DNA was found within non-gut-homing resting CD4+ T cells. PMID:23971972

  13. The Primary School Students of 1950s' Yozgat: Our Memories about Our Primary School Education

    ERIC Educational Resources Information Center

    Saglam, Mehmet

    2015-01-01

    The objective of the study is to lay bare the educational memories of primary school students in 1950s' Yozgat city which is in the center of Turkey. Memories that belong to education are also reflections of the individuals' past educational practices. Why they take part in lives of individuals as memories may let us see the importance of…

  14. Effects of complete monocular deprivation in visuo-spatial memory.

    PubMed

    Cattaneo, Zaira; Merabet, Lotfi B; Bhatt, Ela; Vecchi, Tomaso

    2008-09-30

    Monocular deprivation has been associated with both specific deficits and enhancements in visual perception and processing. In this study, performance on a visuo-spatial memory task was compared in congenitally monocular individuals and sighted control individuals viewing monocularly (i.e., patched) and binocularly. The task required the individuals to view and memorize a series of target locations on two-dimensional matrices. Overall, congenitally monocular individuals performed worse than sighted individuals (with a specific deficit in simultaneously maintaining distinct spatial representations in memory), indicating that the lack of binocular visual experience affects the way visual information is represented in visuo-spatial memory. No difference was observed between the monocular and binocular viewing control groups, suggesting that early monocular deprivation affects the development of cortical mechanisms mediating visuo-spatial cognition.

  15. Pharmacologic Induction of CD8+ T Cell Memory: Better Living Through Chemistry

    PubMed Central

    Gattinoni, Luca; Klebanoff, Christopher A.; Restifo, Nicholas P.

    2011-01-01

    The generation of a robust population of memory T cells is critical for effective vaccine and cell-based therapies to prevent and treat infectious diseases and cancer. A series of recent papers have established a new, cell-intrinsic approach in which small molecules target key metabolic and developmental pathways to enhance the formation and maintenance of highly functional CD8+ memory T cells. These findings raise the exciting new possibility of using small molecules, many of which are already approved for human use, for the pharmacologic induction of immunologic memory. PMID:20371454

  16. Functional Brain Network Modularity Captures Inter- and Intra-Individual Variation in Working Memory Capacity

    PubMed Central

    Stevens, Alexander A.; Tappon, Sarah C.; Garg, Arun; Fair, Damien A.

    2012-01-01

    Background Cognitive abilities, such as working memory, differ among people; however, individuals also vary in their own day-to-day cognitive performance. One potential source of cognitive variability may be fluctuations in the functional organization of neural systems. The degree to which the organization of these functional networks is optimized may relate to the effective cognitive functioning of the individual. Here we specifically examine how changes in the organization of large-scale networks measured via resting state functional connectivity MRI and graph theory track changes in working memory capacity. Methodology/Principal Findings Twenty-two participants performed a test of working memory capacity and then underwent resting-state fMRI. Seventeen subjects repeated the protocol three weeks later. We applied graph theoretic techniques to measure network organization on 34 brain regions of interest (ROI). Network modularity, which measures the level of integration and segregation across sub-networks, and small-worldness, which measures global network connection efficiency, both predicted individual differences in memory capacity; however, only modularity predicted intra-individual variation across the two sessions. Partial correlations controlling for the component of working memory that was stable across sessions revealed that modularity was almost entirely associated with the variability of working memory at each session. Analyses of specific sub-networks and individual circuits were unable to consistently account for working memory capacity variability. Conclusions/Significance The results suggest that the intrinsic functional organization of an a priori defined cognitive control network measured at rest provides substantial information about actual cognitive performance. The association of network modularity to the variability in an individual's working memory capacity suggests that the organization of this network into high connectivity within modules and sparse connections between modules may reflect effective signaling across brain regions, perhaps through the modulation of signal or the suppression of the propagation of noise. PMID:22276205

  17. T cell-B cell interactions in primary immunodeficiencies.

    PubMed

    Tangye, Stuart G; Deenick, Elissa K; Palendira, Umaimainthan; Ma, Cindy S

    2012-02-01

    Regulated interactions between cells of the immune system facilitate the generation of successful immune responses, thereby enabling efficient neutralization and clearance of pathogens and the establishment of both cell- and humoral-mediated immunological memory. The corollary of this is that impediments to efficient cell-cell interactions, normally necessary for differentiation and effector functions of immune cells, underly the clinical features and disease pathogenesis of primary immunodeficiencies. In affected individuals, these defects manifest as impaired long-term humoral immunity and susceptibility to infection by specific pathogens. In this review, we discuss the importance of, and requirements for, effective interactions between B cells and T cells during the formation of CD4(+) T follicular helper cells and the elicitation of cytotoxic function of virus-specific CD8(+) T cells, as well as how these processes are abrogated in primary immunodeficiencies due to loss-of-function mutations in defined genes. © 2012 New York Academy of Sciences.

  18. Diet-induced obesity in mice reduces the maintenance of influenza-specific CD8+ memory T cells.

    PubMed

    Karlsson, Erik A; Sheridan, Patricia A; Beck, Melinda A

    2010-09-01

    Obesity has been associated with increasing the risk for type 2 diabetes and heart disease, but its influence on the immune response to viral infection is understudied. Memory T cells generated during a primary influenza infection are important for protection against subsequent influenza exposures. Previously, we have demonstrated that diet-induced obese (DIO) mice have increased morbidity and mortality following secondary influenza infection compared with lean mice. To determine whether the problem resided in a failure to maintain functional, influenza-specific CD8(+) memory T cells, male DIO and lean mice were infected with influenza X-31. At 84 d postinfection, DIO mice had a 10% reduction in memory T cell numbers. This reduction may have resulted from significantly reduced memory T cell expression of interleukin 2 receptor beta (IL-2R beta, CD122), but not IL-7 receptor alpha (CD127), which are both required for memory cell maintenance. Peripheral leptin resistance in the DIO mice may be a contributing factor to the impairment. Indeed, leptin receptor mRNA expression was significantly reduced in the lungs of obese mice, whereas suppressor of cytokine signaling (Socs)1 and Socs3 mRNA expression were increased. It is imperative to understand how the obese state alters memory T cells, because impairment in maintenance of functional memory responses has important implications for vaccine efficacy in an obese population.

  19. Homeostasis of naive and memory CD4+ T cells: IL-2 and IL-7 differentially regulate the balance between proliferation and Fas-mediated apoptosis.

    PubMed

    Jaleco, Sara; Swainson, Louise; Dardalhon, Valérie; Burjanadze, Maryam; Kinet, Sandrina; Taylor, Naomi

    2003-07-01

    Cytokines play a crucial role in the maintenance of polyclonal naive and memory T cell populations. It has previously been shown that ex vivo, the IL-7 cytokine induces the proliferation of naive recent thymic emigrants (RTE) isolated from umbilical cord blood but not mature adult-derived naive and memory human CD4(+) T cells. We find that the combination of IL-2 and IL-7 strongly promotes the proliferation of RTE, whereas adult CD4(+) T cells remain relatively unresponsive. Immunological activity is controlled by a balance between proliferation and apoptotic cell death. However, the relative contributions of IL-2 and IL-7 in regulating these processes in the absence of MHC/peptide signals are not known. Following exposure to either IL-2 or IL-7 alone, RTE, as well as mature naive and memory CD4(+) T cells, are rendered only minimally sensitive to Fas-mediated cell death. However, in the presence of the two cytokines, Fas engagement results in a high level of caspase-dependent apoptosis in both RTE as well as naive adult CD4(+) T cells. In contrast, equivalently treated memory CD4(+) T cells are significantly less sensitive to Fas-induced cell death. The increased susceptibility of RTE and naive CD4(+) T cells to Fas-induced apoptosis correlates with a significantly higher IL-2/IL-7-induced Fas expression on these T cell subsets than on memory CD4(+) T cells. Thus, IL-2 and IL-7 regulate homeostasis by modulating the equilibrium between proliferation and apoptotic cell death in RTE and mature naive and memory T cell subsets.

  20. Human Stem Cell-like Memory T Cells Are Maintained in a State of Dynamic Flux.

    PubMed

    Ahmed, Raya; Roger, Laureline; Costa Del Amo, Pedro; Miners, Kelly L; Jones, Rhiannon E; Boelen, Lies; Fali, Tinhinane; Elemans, Marjet; Zhang, Yan; Appay, Victor; Baird, Duncan M; Asquith, Becca; Price, David A; Macallan, Derek C; Ladell, Kristin

    2016-12-13

    Adaptive immunity requires the generation of memory T cells from naive precursors selected in the thymus. The key intermediaries in this process are stem cell-like memory T (T SCM ) cells, multipotent progenitors that can both self-renew and replenish more differentiated subsets of memory T cells. In theory, antigen specificity within the T SCM pool may be imprinted statically as a function of largely dormant cells and/or retained dynamically by more transitory subpopulations. To explore the origins of immunological memory, we measured the turnover of T SCM cells in vivo using stable isotope labeling with heavy water. The data indicate that T SCM cells in both young and elderly subjects are maintained by ongoing proliferation. In line with this finding, T SCM cells displayed limited telomere length erosion coupled with high expression levels of active telomerase and Ki67. Collectively, these observations show that T SCM cells exist in a state of perpetual flux throughout the human lifespan. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

Top