Science.gov

Sample records for individual metal nanoparticles

  1. Virus templated metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Aljabali, Alaa A. A.; Barclay, J. Elaine; Lomonossoff, George P.; Evans, David J.

    2010-12-01

    Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. <=35 nm. CPMV-templated particles were prepared with cobalt, nickel, iron, platinum, cobalt-platinum and nickel-iron.Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. <=35 nm. CPMV-templated particles were prepared with cobalt, nickel, iron, platinum, cobalt-platinum and nickel-iron. Electronic supplementary information (ESI) available: Additional experimental detail, agarose gel electrophoresis results, energy dispersive X-ray spectra, ζ-potential measurements, dynamic light scattering data, nanoparticle tracking analysis and an atomic force microscopy image of Ni-CPMV. See DOI: 10.1039/c0nr00525h

  2. Metallic magnetic nanoparticles.

    PubMed

    Hernando, A; Crespo, P; García, M A

    2005-12-22

    In this paper, we reviewed some relevant aspects of the magnetic properties of metallic nanoparticles with small size (below 4 nm), covering the size effects in nanoparticles of magnetic materials, as well as the appearance of magnetism at the nanoscale in materials that are nonferromagnetic in bulk. These results are distributed along the text that has been organized around three important items: fundamental magnetic properties, different fabrication procedures, and characterization techniques. A general introduction and some experimental results recently obtained in Pd and Au nanoparticles have also been included. Finally, the more promising applications of magnetic nanoparticles in biomedicine are indicated. Special care was taken to complete the literature available on the subject.

  3. Single-Step DNA Detection Assay Monitoring Dual-Color Light Scattering from Individual Metal Nanoparticle Aggregates

    PubMed Central

    2017-01-01

    Efficiently detecting DNA sequences within a limited time is vital for disease screening and public health monitoring. This calls for a new method that combines high sensitivity, fast read-out time, and easy manipulation of the sample, avoiding the extensive steps of DNA amplification, purification, or grafting to a surface. Here, we introduce photon cross-correlation spectroscopy as a new method for specific DNA sensing with high sensitivity in a single-step homogeneous solution phase. Our approach is based on confocal dual-color illumination and detection of the scattering intensities from individual silver nanoparticles and gold nanorods. In the absence of the target DNA, the nanoparticles move independently and their respective scattering signals are uncorrelated. In the presence of the target DNA, the probe-functionalized gold and silver nanoparticles assemble via DNA hybridization with the target, giving rise to temporal coincidence between the signals scattered by each nanoparticle. The degree of coincidence accurately quantifies the amount of target DNA. To demonstrate the efficiency of our technique, we detect a specific DNA sequence of sesame, an allergenic food ingredient, for a range of concentration from 5 pM to 1.5 nM with a limit of detection of 1 pM. Our method is sensitive and specific enough to detect single nucleotide deletion and mismatch. With the dual-color scattering signals being much brighter than fluorescence-based analogs, the analysis is fast, quantitative, and simple to operate, making it valuable for biosensing applications. PMID:28261666

  4. Method for producing metallic nanoparticles

    DOEpatents

    Phillips, Jonathan; Perry, William L.; Kroenke, William J.

    2004-02-10

    Method for producing metallic nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating non-oxidizing plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone to metal vapor. The metal vapor is directed away from the hot zone and to the plasma afterglow where it cools and condenses to form solid metallic nanoparticles.

  5. Fabrication of Metallic Hollow Nanoparticles

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo (Inventor); Choi, Sr., Sang H. (Inventor); Lillehei, Peter T. (Inventor); Chu, Sang-Hyon (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2016-01-01

    Metal and semiconductor nanoshells, particularly transition metal nanoshells, are fabricated using dendrimer molecules. Metallic colloids, metallic ions or semiconductors are attached to amine groups on the dendrimer surface in stabilized solution for the surface seeding method and the surface seedless method, respectively. Subsequently, the process is repeated with additional metallic ions or semiconductor, a stabilizer, and NaBH.sub.4 to increase the wall thickness of the metallic or semiconductor lining on the dendrimer surface. Metallic or semiconductor ions are automatically reduced on the metallic or semiconductor nanoparticles causing the formation of hollow metallic or semiconductor nanoparticles. The void size of the formed hollow nanoparticles depends on the dendrimer generation. The thickness of the metallic or semiconductor thin film around the dendrimer depends on the repetition times and the size of initial metallic or semiconductor seeds.

  6. Metallic nanoparticles meet metadynamics

    NASA Astrophysics Data System (ADS)

    Pavan, L.; Rossi, K.; Baletto, F.

    2015-11-01

    Metadynamics coupled with classical molecular dynamics has been successfully applied to sample the configuration space of metallic and bimetallic nanoclusters. We implement a new set of collective variables related to the pair distance distribution function of the nanoparticle to achieve an exhaustive isomer sampling. As paradigmatic examples, we apply our methodology to Ag147, Pt147, and their alloy AgshellPtcore at 2:1 and 1:1 chemical compositions. The proposed scheme is able to reproduce the known solid-solid structural transformation pathways, based on the Lipscomb's diamond-square-diamond mechanisms, both in mono and bimetallic nanoparticles. A discussion of the free energy barriers involved in these processes is provided.

  7. Metal Nanoparticle Aerogel Composites

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Sibille, Laurent; Ignont, Erica; Snow, Lanee; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have fabricated sol-gels containing gold and silver nanoparticles. Formation of an aerogel produces a blue shift in the surface plasmon resonance as a result of the decrease in the dielectric constant of the matrix upon supercritical extraction of the solvent. However, as a result of chemical interface damping this blue shift does not obey effective medium theories. Annealing the samples in a reducing atmosphere at 400 C eliminates this discrepancy and results in narrowing and further blue shifting of the plasmon resonance. Metal particle aggregation also results in a deviation from the predictions of effective medium theories, but can be controlled through careful handling and by avoiding the use of alcohol. By applying effective medium theories to the heterogeneous interlayer surrounding each metal particle, we extend the technique of immersion spectroscopy to inhomogeneous materials characterized by spatially dependent dielectric constants, such as aerogels. We demonstrate that the shift in the surface plasmon wavelength provides the average fractional composition of each component (air and silica) in this inhomogeneous layer, i.e. the porosity of the aerogel or equivalently, for these materials, the catalytic dispersion. Additionally, the kinetics suggest that collective particle interactions in coagulated metal clusters are perturbed during silica gelation resulting in a change in the aggregate geometry.

  8. Synthesis metal nanoparticle

    DOEpatents

    Bunge, Scott D.; Boyle, Timothy J.

    2005-08-16

    A method for providing an anhydrous route for the synthesis of amine capped coinage-metal (copper, silver, and gold) nanoparticles (NPs) using the coinage-metal mesityl (mesityl=C.sub.6 H.sub.2 (CH.sub.3).sub.3 -2,4,6) derivatives. In this method, a solution of (Cu(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5, (Ag(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.4, or (Au(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5 is dissolved in a coordinating solvent, such as a primary, secondary, or tertiary amine; primary, secondary, or tertiary phosphine, or alkyl thiol, to produce a mesityl precursor solution. This solution is subsequently injected into an organic solvent that is heated to a temperature greater than approximately 100.degree. C. After washing with an organic solvent, such as an alcohol (including methanol, ethanol, propanol, and higher molecular-weight alcohols), oxide free coinage NP are prepared that could be extracted with a solvent, such as an aromatic solvent (including, for example, toluene, benzene, and pyridine) or an alkane (including, for example, pentane, hexane, and heptane). Characterization by UV-Vis spectroscopy and transmission electron microscopy showed that the NPs were approximately 9.2.+-.2.3 nm in size for Cu.degree., (no surface oxide present), approximately 8.5.+-.1.1 nm Ag.degree. spheres, and approximately 8-80 nm for Au.degree..

  9. Antimicrobial polymers with metal nanoparticles.

    PubMed

    Palza, Humberto

    2015-01-19

    Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms.

  10. Antimicrobial Polymers with Metal Nanoparticles

    PubMed Central

    Palza, Humberto

    2015-01-01

    Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms. PMID:25607734

  11. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    DOEpatents

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  12. Optical Properties of Metallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Vallée, F.

    The bright and changing colours obtained by dispersing metallic compounds in a glass matrix have been known empirically for centuries. Indeed, glasses have been coloured in the bulk by inclusion of metallic powders since ancient times to make jewellery and ornaments (see Chap. 25). Then in the Middle Ages, they were used for stained glass windows and later on for coloured glass artefacts, e.g., ruby red glass objects. However, the role played by nanoparticles in this colouring effect, i.e., the effects of nanoparticles on optical properties, were only first studied scientifically in the nineteenth century, by Michael Faraday [1].

  13. Synthesis of noble metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Bahadory, Mozhgan

    Improved methods were developed for the synthesis of noble metal nanoparticles. Laboratory experiments were designed for introducing of nanotechnology into the undergraduate curriculum. An optimal set of conditions for the synthesis of clear yellow colloidal silver was investigated. Silver nanoparticles were obtained by borohydride reduction of silver nitrate, a method which produces particles with average size of 12+/-2 nm, determined by Transmission Electron Microscopy (TEM). The plasmon absorbance is at 397 nm and the peak width at half maximum (PWHM) is 70-75 nm. The relationship between aggregation and optical properties was determined along with a method to protect the particles using polyvinylpyrrolidone (PVP). A laboratory experiment was designed in which students synthesize yellow colloidal silver, estimate particle size using visible spectroscopy, and study aggregation effects. The synthesis of the less stable copper nanoparticles is more difficult because copper nanopaticles are easily oxidized. Four methods were used for the synthesis of copper nanoparticles, including chemical reduction with sodium borohydride, sodium borohydride with potassium iodide, isopropyl alcohol with cetyltrimethylammonium bormide (CTAB) and reducing sugars. The latter method was also the basis for an undergraduate laboratory experiment. For each reaction, the dependence of stability of the copper nanoparticles on reagent concentrations, additives, relative amounts of reactants, and temperature is explored. Atomic force microscopy (AFM), TEM and UV-Visible Spectroscopy were used to characterize the copper nanoparticles. A laboratory experiment to produce copper nanoparticles from household chemicals was developed.

  14. Metal nanoparticles for biodetection

    NASA Astrophysics Data System (ADS)

    Oldenburg, Steven; Mock, Jack; Glass, James R.; Asenjo, Ana B.; Genick, Christine C.; Smith, David R.; Schultz, David A.; Schultz, Sheldon

    2002-10-01

    The large scattering cross section of plasmon resonant gold and silver nanoparticles functionalized with the appropriate ligand allows for sensitive and specific detection of nucleic acids and proteins. By varying the size, shape, and material morphology populations with a specific peak plasmon resonance can be prepared. By varying the order and length of plasmon resonant bar segment in a composite nanowire one can obtain a large number of particle populations. Distinct populations can be used for labels for multiplexing or as a platform for biological assays. An larger number of color populations can be obtained with composite nanowires that are fabricated with various lengths of silver, gold, or nickel segments. The order and length of the different plasmon resonance rod segments can be used to uniquely identify a rod population allowing for a large degree of multiplexing within a single sample.

  15. Metal nanoparticle inks

    SciTech Connect

    Lewis, Jennifer A.; Ahn, Bok Yeop; Duoss, Eric B.

    2011-04-12

    Stabilized silver particles comprise particles comprising silver, a short-chain capping agent adsorbed on the particles, and a long-chain capping agent adsorbed on the particles. The short-chain capping agent is a first anionic polyelectrolyte having a molecular weight (Mw) of at most 10,000, and the long-chain capping agent is a second anionic polyelectrolyte having a molecular weight (Mw) of at least 25,000. The stabilized silver particles have a solid loading of metallic silver of at least 50 wt %.

  16. Metallic nano-particles for trapping light.

    PubMed

    Tang, Yongan; Vlahovic, Branislav

    2013-02-07

    We study metallic nano-particles for light trapping by investigating the optical absorption efficiency of the hydrogenated amorphous silicon thin film with and without metallic nano-particles on its top. The size and shape of these nano-particles are investigated as to their roles of light trapping: scattering light to the absorption medium and converting light to surface plasmons. The optical absorption enhancement in the red light region (e.g., 650nm) due to the light trapping of the metallic nano-particles is observed when a layer of metallic nano-particle array has certain structures. The investigation of the light with incident angles shows the importance of the coupling efficiency of light to surface plasmons in the metallic nano-particle light trapping. PACS: 73.20.Mf, 42.25.s, 88.40.hj.

  17. Lattice measurement and alloy compositions in metal and bimetallic nanoparticles.

    PubMed

    Tsen, S-C Y; Crozier, P A; Liu, J

    2003-12-01

    A new reliable method for determining the lattice spacings of metallic and bimetallic nanoparticles in phase contrast high resolution electron microscopy (HREM) images was developed. In this study, we discuss problems in applying HREM techniques to single metal (Pt and Au) and bimetallic (AuPd) nanoparticles of unknown shapes and random orientations. Errors arising from particle tilt and edge effects are discussed and analysis criteria are presented to reduce these errors in measuring the lattice parameters of nanoparticles. The accuracy of an individual particle lattice measurement is limited by an effective standard deviation which depends on the size of the individual nanoparticle. For example, the standard deviation for 20-30 A Pt or Au nanoparticles is about 1.5%. To increase the accuracy in determining the lattice spacings of nanoparticles, statistical methods have to be used to obtain the average lattice spacing of an ensemble of nanoparticles. We measured approximately 100 nanoparticles with sizes in the range of 20-30 A and found that the mean lattice spacing can be determined to within 0.2%. By applying Vegard's law to the AuPd bimetallic systems we successfully detected the presence of alloying. For 30 A nanoparticles, the estimated ultimate error in determining the composition of the AuPd alloy is about 3% provided that at least 100 particles are measured. Finally, the challenges in determining the presence of more than one alloy phases in bimetallic nanoparticle systems were also discussed.

  18. Environmentally friendly preparation of metal nanoparticles

    EPA Science Inventory

    The book chapter summarizes the “state of the art” in the exploitation of various environmentally-friendly synthesis approaches, reaction precursors and conditions to manufacture metal and metal oxide nanoparticles for a vast variety of purposes.

  19. Method for producing metal oxide nanoparticles

    DOEpatents

    Phillips, Jonathan; Mendoza, Daniel; Chen, Chun-Ku

    2008-04-15

    Method for producing metal oxide nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone into metal vapor. The metal vapor is directed away from the hot zone and into the cooler plasma afterglow where it oxidizes, cools and condenses to form solid metal oxide nanoparticles.

  20. Metal-metal bonding using silver/copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Kobayashi, Y.; Maeda, T.; Yasuda, Y.; Morita, T.

    2016-08-01

    A method for producing nanoparticles composed of silver and copper and a metal-metal bonding technique using the silver/copper nanoparticles are proposed. The method consists of three steps. First, copper oxide nanoparticles are produced by mixing Cu(NO3)2 aqueous solution and NaOH aqueous solution. Second, copper metal nanoparticles are fabricated by reducing the copper oxide nanoparticles with hydrazine in the presence of poly(vinylpyrrolidone) (PVP). Third, silver/copper nanoparticles are synthesized by reducing Ag+ ions with hydrazine in the presence of the copper metal nanoparticles. Initial concentrations in the final silver/copper particle colloid, composed of 0.0075 M Cu2+, 0.0025 M Ag+, 1.0 g/L PVP, and 0.6 M hydrazine, produced silver/copper nanoparticles with an average size of 49 nm and a crystal size of 16.8 nm. Discs of copper metal were successfully bonded by the silver/copper nanoparticles under annealing at 400 °C and pressurizing at 1.2 MPa for 5 min in not only hydrogen gas but also nitrogen gas. The shear force required to separate the bonded discs was 22.3 MPa for the hydrogen gas annealing and 14.9 MPa for the nitrogen gas annealing (namely, 66.8 % of that for hydrogen gas annealing).

  1. Physiologically important metal nanoparticles and their toxicity.

    PubMed

    Sengupta, Jayeeta; Ghosh, Sourav; Datta, Poulami; Gomes, Aparna; Gomes, Antony

    2014-01-01

    Nanotechnology has been setting benchmarks for the last two decades, but the origins of this technology reach back to ancient history. Today, nanoparticles of both metallic and non-metallic origin are under research and development for applications in various fields of biology/therapeutics. Physiologically important metals are of concern because they are compatible with the human system in terms of absorption, assimilation, excretion, and side effects. There are several physiologically inorganic metals that are present in the human body with a wide range of biological activities. Some of these metals are magnesium, chromium, manganese, iron, cobalt, copper, zinc, selenium and molybdenum. These metals are synthesized in the form of nanoparticles by different physical and chemical methods. Physiologically important nanoparticles are currently under investigation for their bio-medical applications as well as for therapeutics. Along with the applicative aspects of nanoparticles, another domain that is of great concern is the risk assessment of these nanoparticles to avoid unnecessary hazards. It has been seen that these nanoparticles have been shown to possess toxicity in biological systems. Conventional physical and chemical methods of metal nanoparticle synthesis may be one possible reason for nanoparticle toxicity that can be overcome by synthesis of nanoparticles from biological sources. This review is an attempt to establish metal nanoparticles of physiological importance to be the best candidates for future nanotechnological tools and medicines, owing to the acceptability and safety in the human body. This can only be successful if these particles are synthesized with a better biocompatibility and low or no toxicity.

  2. Optical Spectroscopy of Hybrid Semiconductor Quantum Dots and Metal Nanoparticles

    DTIC Science & Technology

    2014-11-07

    SECURITY CLASSIFICATION OF: Optical studies of semiconductor quantum dots (SQDs), metal nanoparticles (MNPs), and their hybrid nanomaterials are...Distribution Unlimited Final Report: Optical Spectroscopy of Hybrid Semiconductor Quantum Dots and Metal Nanoparticles The views, opinions and/or findings...Semiconductor Quantum Dots and Metal Nanoparticles Report Title Optical studies of semiconductor quantum dots (SQDs), metal nanoparticles (MNPs), and their

  3. Assembly of metals and nanoparticles into novel nanocomposite superstructures

    PubMed Central

    Xu, Jiaquan; Chen, Lianyi; Choi, Hongseok; Konish, Hiromi; Li, Xiaochun

    2013-01-01

    Controlled assembly of nanoscale objects into superstructures is of tremendous interests. Many approaches have been developed to fabricate organic-nanoparticle superstructures. However, effective fabrication of inorganic-nanoparticle superstructures (such as nanoparticles linked by metals) remains a difficult challenge. Here we show a novel, general method to assemble metals and nanoparticles rationally into nanocomposite superstructures. Novel metal-nanoparticle superstructures are achieved by self-assembly of liquid metals and nanoparticles in immiscible liquids driven by reduction of free energy. Superstructures with various architectures, such as metal-core/nanoparticle-shell, nanocomposite-core/nanoparticle-shell, network of metal-linked core/shell nanostructures, and network of metal-linked nanoparticles, were successfully fabricated by simply tuning the volume ratio between nanoparticles and liquid metals. Our approach provides a simple, general way for fabrication of numerous metal-nanoparticle superstructures and enables a rational design of these novel superstructures with desired architectures for exciting applications.

  4. Chemoelectronic circuits based on metal nanoparticles.

    PubMed

    Yan, Yong; Warren, Scott C; Fuller, Patrick; Grzybowski, Bartosz A

    2016-07-01

    To develop electronic devices with novel functionalities and applications, various non-silicon-based materials are currently being explored. Nanoparticles have unique characteristics due to their small size, which can impart functions that are distinct from those of their bulk counterparts. The use of semiconductor nanoparticles has already led to improvements in the efficiency of solar cells, the processability of transistors and the sensitivity of photodetectors, and the optical and catalytic properties of metal nanoparticles have led to similar advances in plasmonics and energy conversion. However, metals screen electric fields and this has, so far, prevented their use in the design of all-metal nanoparticle circuitry. Here, we show that simple electronic circuits can be made exclusively from metal nanoparticles functionalized with charged organic ligands. In these materials, electronic currents are controlled by the ionic gradients of mobile counterions surrounding the 'jammed' nanoparticles. The nanoparticle-based electronic elements of the circuitry can be interfaced with metal nanoparticles capable of sensing various environmental changes (humidity, gas, the presence of various cations), creating electronic devices in which metal nanoparticles sense, process and ultimately report chemical signals. Because the constituent nanoparticles combine electronic and chemical sensing functions, we term these systems 'chemoelectronic'. The circuits have switching times comparable to those of polymer electronics, selectively transduce parts-per-trillion chemical changes into electrical signals, perform logic operations, consume little power (on the scale of microwatts), and are mechanically flexible. They are also 'green', in the sense that they comprise non-toxic nanoparticles cast at room temperature from alcohol solutions.

  5. Chemoelectronic circuits based on metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Yan, Yong; Warren, Scott C.; Fuller, Patrick; Grzybowski, Bartosz A.

    2016-07-01

    To develop electronic devices with novel functionalities and applications, various non-silicon-based materials are currently being explored. Nanoparticles have unique characteristics due to their small size, which can impart functions that are distinct from those of their bulk counterparts. The use of semiconductor nanoparticles has already led to improvements in the efficiency of solar cells, the processability of transistors and the sensitivity of photodetectors, and the optical and catalytic properties of metal nanoparticles have led to similar advances in plasmonics and energy conversion. However, metals screen electric fields and this has, so far, prevented their use in the design of all-metal nanoparticle circuitry. Here, we show that simple electronic circuits can be made exclusively from metal nanoparticles functionalized with charged organic ligands. In these materials, electronic currents are controlled by the ionic gradients of mobile counterions surrounding the ‘jammed’ nanoparticles. The nanoparticle-based electronic elements of the circuitry can be interfaced with metal nanoparticles capable of sensing various environmental changes (humidity, gas, the presence of various cations), creating electronic devices in which metal nanoparticles sense, process and ultimately report chemical signals. Because the constituent nanoparticles combine electronic and chemical sensing functions, we term these systems ‘chemoelectronic’. The circuits have switching times comparable to those of polymer electronics, selectively transduce parts-per-trillion chemical changes into electrical signals, perform logic operations, consume little power (on the scale of microwatts), and are mechanically flexible. They are also ‘green’, in the sense that they comprise non-toxic nanoparticles cast at room temperature from alcohol solutions.

  6. Antitumor Activities of Metal Oxide Nanoparticles

    PubMed Central

    Vinardell, Maria Pilar; Mitjans, Montserrat

    2015-01-01

    Nanoparticles have received much attention recently due to their use in cancer therapy. Studies have shown that different metal oxide nanoparticles induce cytotoxicity in cancer cells, but not in normal cells. In some cases, such anticancer activity has been demonstrated to hold for the nanoparticle alone or in combination with different therapies, such as photocatalytic therapy or some anticancer drugs. Zinc oxide nanoparticles have been shown to have this activity alone or when loaded with an anticancer drug, such as doxorubicin. Other nanoparticles that show cytotoxic effects on cancer cells include cobalt oxide, iron oxide and copper oxide. The antitumor mechanism could work through the generation of reactive oxygen species or apoptosis and necrosis, among other possibilities. Here, we review the most significant antitumor results obtained with different metal oxide nanoparticles.

  7. Antimicrobial activity of the metals and metal oxide nanoparticles.

    PubMed

    Dizaj, Solmaz Maleki; Lotfipour, Farzaneh; Barzegar-Jalali, Mohammad; Zarrintan, Mohammad Hossein; Adibkia, Khosro

    2014-11-01

    The ever increasing resistance of pathogens towards antibiotics has caused serious health problems in the recent years. It has been shown that by combining modern technologies such as nanotechnology and material science with intrinsic antimicrobial activity of the metals, novel applications for these substances could be identified. According to the reports, metal and metal oxide nanoparticles represent a group of materials which were investigated in respect to their antimicrobial effects. In the present review, we focused on the recent research works concerning antimicrobial activity of metal and metal oxide nanoparticles together with their mechanism of action. Reviewed literature indicated that the particle size was the essential parameter which determined the antimicrobial effectiveness of the metal nanoparticles. Combination therapy with the metal nanoparticles might be one of the possible strategies to overcome the current bacterial resistance to the antibacterial agents. However, further studies should be performed to minimize the toxicity of metal and metal oxide nanoparticles to apply as proper alternatives for antibiotics and disinfectants especially in biomedical applications.

  8. Bulk photoemission from metal films and nanoparticles

    SciTech Connect

    Ikhsanov, R Sh; Babicheva, V E; Protsenko, I E; Uskov, A V; Guzhva, M E

    2015-01-31

    Internal emission of photoelectrons from metal films and nanoparticles (nanowires and nanospheres) into a semiconductor matrix is studied theoretically by taking into account the jump of the effective electron mass at the metal – semiconductor interface and the cooling effect of hot electrons due to electron – electron collisions in the metal. The internal quantum efficiency of photoemission for the film and nanoparticles of two types (nanospheres and nanowires) is calculated. It is shown that the reduction of the effective mass of the electron during its transition from metal to semiconductor may lead to a significant (orders of magnitude and higher) decrease in the internal quantum efficiency of bulk photoemission. (nanostructures)

  9. Stabilizing metal nanoparticles for heterogeneous catalysis.

    PubMed

    Cao, Anmin; Lu, Rongwen; Veser, Götz

    2010-11-07

    Metal nanoparticles hold great promise for heterogeneous catalysis due to their high dispersion, large concentration of highly undercoordinated surface sites, and the presence of quantum confinement effects, which can drastically alter their reactivity. However, the poor thermal stability of nano-sized particles limits their use to low temperature conditions and constitutes one of the key hurdles towards industrial application. The present perspective paper briefly reviews the mechanisms underlying nanoparticle sintering, and then gives an overview of emerging approaches towards stabilizing metal nanoparticles for heterogeneous catalysis. We conclude by highlighting the current needs for further developments in the field.

  10. Photopolymerization of conductive polymeric metal nanoparticles.

    PubMed

    Cai, Xichen; Anyaogu, Kelechi C; Neckers, Douglas C

    2009-11-01

    5-Mercapto-2,2'-bithiophene functionalized metal nanoparticles BTSMs [M: copper (Cu), silver (Ag), and gold (Au)] of different diameters (2-8 nm) were synthesized. Conductive polymeric metal nanoparticles were formed from BTSM by UV irradiation. The photopolymerization mechanism was investigated using transient absorption measurements. Intramolecular electron transfer from the ligand to the metal nano-core was confirmed. Nanoparticle size, as well as plasmon electronic interactions, are important factors. The smaller the nanoparticle and the stronger the electronic interactions, the faster the electron transfer is. The three-dimensional structure of the polymerized BTSM was identified using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The conductivity of polymerized BTSM measured in poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) film is higher than that of the nonpolymerized BTSM.

  11. Laser trapping of colloidal metal nanoparticles.

    PubMed

    Lehmuskero, Anni; Johansson, Peter; Rubinsztein-Dunlop, Halina; Tong, Lianming; Käll, Mikael

    2015-01-01

    Optical trapping using focused laser beams (laser tweezers) has been proven to be extremely useful for contactless manipulation of a variety of small objects, including biological cells, organelles within cells, and a wide range of other dielectric micro- and nano-objects. Colloidal metal nanoparticles have drawn increasing attention in the field of optical trapping because of their unique interactions with electromagnetic radiation, caused by surface plasmon resonance effects, enabling a large number of nano-optical applications of high current interest. Here we try to give a comprehensive overview of the field of laser trapping and manipulation of metal nanoparticles based on results reported in the recent literature. We also discuss and describe the fundamentals of optical forces in the context of plasmonic nanoparticles, including effects of polarization, optical angular momentum, and laser heating effects, as well as the various techniques that have been used to trap and manipulate metal nanoparticles. We conclude by suggesting possible directions for future research.

  12. Biomolecule-coated metal nanoparticles on titanium.

    PubMed

    Christensen, Stephen L; Chatt, Amares; Zhang, Peng

    2012-02-07

    Immobilizations of nanoparticles and biomolecules on biocompatible substrates such as titanium are two promising approaches to bringing new functionalities to Ti-based biomaterials. Herein, we used a variety of X-ray spectroscopic techniques to study and better understand metal-thiolate interactions in biofunctionalized metal nanoparticle systems supported on Ti substrates. Using a facile one-step procedure, a series of Au nanoparticle samples with varied biomolecule coatings ((2-mercatopropionyl)glycine (MPG) and bovine serum albumin (BSA)) and biomolecule concentrations are prepared. Ag and Pd systems are also studied to observe change with varying metal composition. The structure and properties of these biomolecule-coated nanoparticles are investigated with scanning electron microscopy (SEM) and element-specific X-ray techniques, including extended X-ray absorption fine structure (Au L(3)-edge), X-ray absorption near-edge structure (Au L(3), Ag L(3), Pd L(3), and S K-edge), and X-ray photoelectron spectroscopy (Au 4f, Ag 3d, Pd 3d, and S 2p core level). It was found that, by comparison of SEM and X-ray spectroscopy results, the coating of metal nanoparticles with varying model biomolecule systems can have a significant effect on both surface coverage and organization. This work offers a facile chemical method for bio- and nanofunctionalization of Ti substrates as well as provides a physical picture of the structure and bonding of biocoated metal nanoparticles, which may lead to useful applications in orthopedics and biomedicine.

  13. Spectroscopic studies of individual plasmon resonant nanoparticles

    NASA Astrophysics Data System (ADS)

    Mock, Jack J.; Smith, David R.; Barbic, Mladen; Oldenburg, Steven J.; Schultz, David A.; Schultz, Sheldon

    2003-11-01

    We present a detailed description of the apparatus and techniques that we have utilized in our experimental study of individual plas on resonant nanoparticles,along with a brief description of some major results. The apparatus consists of a spectroscopic system combined with a modified darkfield microscope, which enables the user to sequentially select individual resonant nanostructures in the microscopic field of view for spectroscopic study. Plasmon resonant nanostructures scatter light elastically,and typically have very large scattering cross-sections at their resonant optical wavelengths. In general, spectra can be obtained with acquisition times between .1 to 30 seconds,and color images can be captured using consumer digital color cameras. Spheres,tetrahedrons,and pentagonal platelets were fabricated using colloidal chemistry techniques. To produce highly anisotropic structures such as nanorods and "barbells", templates were used. Many of these nanostructures have been individually spectroscopically characterized,and their spectra correlated with their shape and size as determined by transmission electron icroscope (TEM). The unique shape,size, composition,and dielectric surroundings of the individual plasmon resonant nanostructures determine their plasmon resonant behavior. We will show how the composition of the substrate on which the particles are immobilized and the dielectric of the surrounding medium have a significant effect on the plasmon resonance of the individual particles.

  14. Metal-insulator-metal capacitor using electrosprayed nanoparticles

    NASA Astrophysics Data System (ADS)

    Véliz, Bremnen; Bermejo, Sandra; Coll, Arnau; Castañer, Luis

    2014-07-01

    An electrospray technique has been used to deposit SiO2 nanoparticles as insulator layer of a metal-insulator-metal device. Impedance spectroscopy measurements show that a 4.4 factor increase in capacitance is achieved compared to a continuous dielectric layer of the same permittivity and dimensions.

  15. Metal hybrid nanoparticles for catalytic organic and photochemical transformations.

    PubMed

    Song, Hyunjoon

    2015-03-17

    functions, such as magnetism and light absorption, to the catalytic properties. In particular, metal-semiconductor hybrid nanostructures could behave as effective visible photocatalysts for hydrogen evolution and CO oxidation reactions. Resulting from the large surface area and high local concentration of the reactants, a double-shell hollow structure showed reaction activities higher than those of filled nanoparticles. The introduction of plasmonic Au probes into the Pt-CdS double-shell hollow particles facilitated the monitoring of photocatalytic hydrogen generation that occurred on an individual particle surface by single particle measurements. Further development of catalysis research using well-defined metal hybrid nanocatalysts with various in situ spectroscopic tools provides a means of maximizing catalytic performances until they are comparable to or better than those of homogeneous catalysts, and this would have possibly useful implications for industrial applications.

  16. Spectral dependence of fluorescence near plasmon resonant metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Yeechi

    The optical properties of fluorophores are significantly modified when placed within the near field (0--100 nm) of plasmon resonant metal nanostructures, due to the competition between increased decay rates and "hotspots" of concentrated electric fields. The decay rates and effective electric field intensities are highly dependent on the relative position of dye and metal and the overlap between plasmon resonance and dye absorption and emission. Understanding these dependencies can greatly improve the performance of biosensing and nanophotonic devices. In this dissertation, the fluorescence intensity of organic dyes and CdSe quantum dots near single metal nanoparticles is studied as a function of the local surface plasmon resonance (LSPR) of the nanoparticle. Single metal nanoparticles have narrow, well-defined, intense local surface plasmon resonances that are tunable across the visible spectrum by changes in size and shape. First, we show that organic dyes can be self-assembled on single silver nanoprisms into known configurations by the hybridization of thiolated DNA oligomers. We correlate the fluorescence intensity of the dyes to the LSPR of the individual nanoprism to which they are attached. For each of three different organic dyes, we observe a strong correlation between the fluorescence intensity of the dye and the degree of spectral overlap with the plasmon resonance of the nanoparticle. On average, we observe the brightest fluorescence from dyes attached to metal nanoparticles that have a LSPR scattering peak 40--120 meV higher in energy than the emission peak of the fluorophore. Second, the plasmon-enhanced fluorescence from CdSe/CdS/CdZnS/ZnS core/shell quantum dots is studied near a variety of silver and gold nanoparticles. With single-particle scattering spectroscopy, the localized surface plasmon resonance spectra of single metal nanoparticles is correlated with the photoluminescence excitation (PLE) spectra of the nearby quantum dots. The PLE

  17. Advanced Organic Ligands for Protecting Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Yu, Jonathan Ka-Wing

    Organic monolayer protected metal nanoparticles have been utilized in many different fields such as catalysis, drug delivery, and sensor chemistry. However, these nanomaterials are prone to increase in size consequently losing its function at the nanoscale. The stability these nanoparticles have been a great interest of research. This thesis focuses on the synthesis of a novel cross-linkable ligand for the protection of metal nanoparticles. Chapter 1 reviews key concepts of nanoparticles, its usefulness in applications, some of the stabilizing strategies employed, and the scope of the thesis project. Chapter 2 describes the synthetic attempts and optimization of the novel cross-linkable ligand. In addition, its characterization data is also included. Section 2.8 also highlights another fully synthesized novel hydrophobic ligand. Chapter 3 contains the summary of the work and closing remarks. Future works is also included to describe the prospects of the synthesis of the novel ligand. Chapter 4 entails the experimental data and supplementary information.

  18. Noble Metal Nanoparticles for Biosensing Applications

    PubMed Central

    Doria, Gonçalo; Conde, João; Veigas, Bruno; Giestas, Leticia; Almeida, Carina; Assunção, Maria; Rosa, João; Baptista, Pedro V.

    2012-01-01

    In the last decade the use of nanomaterials has been having a great impact in biosensing. In particular, the unique properties of noble metal nanoparticles have allowed for the development of new biosensing platforms with enhanced capabilities in the specific detection of bioanalytes. Noble metal nanoparticles show unique physicochemical properties (such as ease of functionalization via simple chemistry and high surface-to-volume ratios) that allied with their unique spectral and optical properties have prompted the development of a plethora of biosensing platforms. Additionally, they also provide an additional or enhanced layer of application for commonly used techniques, such as fluorescence, infrared and Raman spectroscopy. Herein we review the use of noble metal nanoparticles for biosensing strategies—from synthesis and functionalization to integration in molecular diagnostics platforms, with special focus on those that have made their way into the diagnostics laboratory. PMID:22438731

  19. Metallic and semiconducting nanoparticles in LCs

    NASA Astrophysics Data System (ADS)

    Sharma, Anshul; Urbanski, Martin; Mori, Taizo; Kitzerow, Heinz-S.; Hegmann, Torsten

    This chapter provides an overview of recent advances in nanoparticleliquid crystal dispersions with a particular focus on bulk versus surface effects. Surface effects will include the role of surface functionalization of metal and semiconducting nanoparticles as well as interfacial effects, alignment and anchoring in thin liquid crystal films related to nanoparticle segregation. We will also try to provide a practical guide for experimental work on nanoparticle-liquid crystal dispersions, including tips and best practices for preparing dispersions, detecting and preventing inhomogeneities as well as Dos and Don'ts for handling samples and filling test cells for electrooptic, spectroscopic, and other experiments critical for research in this area.

  20. Structure and Energy Stability of Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Barron, Hector; Palomares-Baez, Juan Pedro; Velazquez-Salazar, Jesus; Rodriguez-Lopez, Jose Luis; Jose-Yacaman, Miguel; University of Texas at San Antonio Collaboration; Instituto Potosino de Investigacion Cientufica y Tecnologica Collaboration

    2011-03-01

    In this work we present a theoretical model for the structural evolution and energy stability for metal nanoparticles from the small (1-2 nm) to the big (~ 50 nm) size ranges. We have found that the appearances of structural lattice defects as well as surface reconstructions are important factors that highly influence the growth process. A simple assembly model for a path transformation for metal nanoparticles is presented and compare with experimental evidence. Acknowledgements: Financial support from National Science Foundation Grant DMR-0934218 is acknowledged, as well as grants for the use of High Performance Computational Resources from the supercomputer center TACC-University of Texas at Austin.

  1. Electroluminescence Efficiency Enhancement using Metal Nanoparticles

    DTIC Science & Technology

    2008-06-22

    the vicinity of isolated metal nanoparticles and their arrays. Using the example of an InGaN /GaN quantum-well active region positioned in close...emitters placed in the vicinity of isolated metal nanoparticles and their arrays. Using the example of an InGaN /GaN quantum-well active region...electron-hole pair states are localized on the scale of the coherent length on the order of a few nanometers at room temperature, the spontaneous

  2. Laser-Induced Transfer of Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Arseniy I.; Koch, Jürgen; Chichkov, Boris N.

    2010-10-01

    A novel approach for the fabrication of metallic micro- and nanostructures based on femtosecond laser-induced transfer of metallic nanodroplets is developed. The size of the transferred droplets depends on the volume of laser-molten metal and can be varied by changing the laser beam focus on the sample surface and the metal film thickness. Controllable fabrication of high quality spherical gold micro- and nanoparticles with sizes between 170 nm and 1500 nm is realized. Fabrication of miscellaneous structures consisting of gold particles as elementary building blocks is demonstrated.

  3. Alloy metal nanoparticles for multicolor cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Baptista, Pedro V.; Doria, Gonçalo; Conde, João

    2011-03-01

    Cancer is a multigenic complex disease where multiple gene loci contribute to the phenotype. The ability to simultaneously monitor differential expression originating from each locus results in a more accurate indicator of degree of cancerous activity than either locus alone. Metal nanoparticles have been thoroughly used as labels for in vitro identification and quantification of target sequences. We have synthesized nanoparticles with assorted noble metal compositions in an alloy format and functionalized them with thiol-modified ssDNA (nanoprobes). These nanoprobes were then used for the simultaneous specific identification of several mRNA targets involved in cancer development - one pot multicolor detection of cancer expression. The different metal composition in the alloy yield different "colors" that can be used as tags for identification of a given target. Following a non-cross-linking hybridization procedure previously developed in our group for gold nanoprobes, these multicolor nanoprobes were used for the molecular recognition of several different targets including differently spliced variants of relevant genes (e.g. gene products involved in chronic myeloid leukemia BCR, ABL, BCR-ABL fusion product). Based on the spectral signature of mixtures, before and after induced aggregation of metal nanoparticles, the correct identification could be made. Further application to differentially quantify expression of each locus in relation to another will be presented. The differences in nanoparticle stability and labeling efficiency for each metal combination composing the colloids, as well as detection capability for each nanoprobe will be discussed. Additional studies will be conducted towards allele specific expression studies.

  4. Spectral variation of fluorescence lifetime near single metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Jia; Krasavin, Alexey V.; Webster, Linden; Segovia, Paulina; Zayats, Anatoly V.; Richards, David

    2016-02-01

    We explore the spectral dependence of fluorescence enhancement and the associated lifetime modification of fluorescent molecules coupled to single metal nanoparticles. Fluorescence lifetime imaging microscopy and single-particle dark-field spectroscopy are combined to correlate the dependence of fluorescence lifetime reduction on the spectral overlap between the fluorescence emission and the localised surface plasmon (LSP) spectra of individual gold nanoparticles. A maximum lifetime reduction is observed when the fluorescence and LSP resonances coincide, with good agreement provided by numerical simulations. The explicit comparison between experiment and simulation, that we obtain, offers an insight into the spectral engineering of LSP mediated fluorescence and may lead to optimized application in sensing and biomedicine.

  5. Metal and metal oxide nanoparticle synthesis from metal organic frameworks (MOFs): finding the border of metal and metal oxides.

    PubMed

    Das, Raja; Pachfule, Pradip; Banerjee, Rahul; Poddar, Pankaj

    2012-01-21

    Herein, for the first time, we report a generalized strategy for the successful synthesis of highly crystalline metal and metal oxide nanoparticles embedded in a carbon matrix by the controlled thermolysis of metal organic frameworks (MOFs). The rationalized synthesis strategy of a broad range of metal and metal oxides nanoparticles, such as Cu/CuO, Co/Co(3)O(4), ZnO, Mn(2)O(3), MgO and CdS/CdO, by thermolysis of MOFs demonstrates for the first time that metal ions with a reduction potential of -0.27 volts or higher present in MOFs always form pure metal nanoparticles during thermolysis in N(2), whereas metal ions with a reduction potential lower than -0.27 volts form metal oxide nanoparticles during thermolysis in N(2). Another point of interest is the fact that we have found a unique relationship between the nanoparticle size and the distance between the secondary building units inside the MOF precursors. Interestingly, the crystallinity of the carbon matrix was also found to be greatly influenced by the environment (N(2) and air) during thermolysis. Moreover, these nanoparticles dispersed in a carbon matrix showed promising H(2) and CO(2) adsorption properties depending on the environment used for the thermolysis of MOFs.

  6. Synthesis of Graphite Encapsulated Metal Nanoparticles and Metal Catalyzed Nanotubes

    NASA Technical Reports Server (NTRS)

    vanderWal, R. L.; Dravid, V. P.

    1999-01-01

    This work focuses on the growth and inception of graphite encapsulated metal nanoparticles and metal catalyzed nanotubes using combustion chemistry. Deciphering the inception and growth mechanism(s) for these unique nanostructures is essential for purposeful synthesis. Detailed knowledge of these mechanism(s) may yield insights into alternative synthesis pathways or provide data on unfavorable conditions. Production of these materials is highly desirable given many promising technological applications.

  7. Terahertz pulse generation from metal nanoparticle ink

    NASA Astrophysics Data System (ADS)

    Kato, Kosaku; Takano, Keisuke; Tadokoro, Yuzuru; Phan, Thanh Nhat Khoa; Nakajima, Makoto

    2016-11-01

    Terahertz pulse generation from metallic nanostructures irradiated by femtosecond laser pulses is of interest because the conversion efficiency from laser pulses to terahertz waves is increased by the local field enhancement resulting from the plasmon oscillation. In this talk we present our recent study on terahertz generation from metal nanoparticle ink. We baked a silver nanoparticle ink spin-coated onto a glass coverslip in various temperatures. On the surface of the baked ink, bumpy nanostructures are spontaneously formed, and the average size of bumps depends on the baking temperature. These structures are expected to lead to local field enhancement and then large nonlinear polarizations on the surface. The baked ink was irradiated by the output of regeneratively amplified Ti:sapphire femtosecond laser at an incidence angle of 45°. Waveforms of generated terahertz pulses are detected by electro-optical sampling. The generation efficiency was high when the average diameter of bumps was around 100 nm, which is realized when the ink is baked in 205 to 235°C in our setup. One of our next research targets is terahertz wave generation from micro-patterned metallic nanoparticle ink. It is an advantage of the metal nanoparticle ink that by using inkjet printers one can fabricate various patterns with micrometer scales, in which terahertz waves have a resonance. Combination of microstructures made by a printer and nanostructure spontaneously formed in the baking process will provide us terahertz emitters with unique frequency characteristics.

  8. Metal nanoparticles in DBS card materials modification

    NASA Astrophysics Data System (ADS)

    Metelkin, A.; Frolov, G.; Kuznetsov, D.; Kolesnikov, E.; Chuprunov, K.; Kondakov, S.; Osipov, A.; Samsonova, J.

    2015-11-01

    In the recent years the method of collecting and storing Dried Blood Spots (DBS) on special cellulose membrane (paper) has gained wide popularity. But possible damage of biosamples caused by microorganisms in case of their incomplete drying is a disadvantage of the method. It can be overcome by treating sample-collection membranes with colloidal solutions of metal nanoparticles, having antibacterial effect. The team studied antibacterial properties of nonwoven material samples with various coatings (alcohol sols of copper, aluminium, iron, titanium, silver and vanadium nanoparticles). Colloidal solutions of nanoparticles were obtained by means of electroerosion method with further low-temperature plasma condensation. Antibacterial activity of fiberglass and cellulose membrane samples with nanoparticle coatings was studied using B. cereus and plaque bacteria cultures. It was revealed that nanostructured coatings can suppress bacterial activity; in addition they can diffuse from the membrane surface into medium which leads to widening the areas of inhibiting testing cultures’ growth. Thus, membrane materials treatment with alcohol-sols of metal nanoparticles can be seen as promising for conferring antibacterial properties to DBS carriers.

  9. Stimuli responsive release of metalic nanoparticles on semiconductor substrates.

    PubMed

    Santiago-Cordoba, Miguel; Topal, Özge; Allara, David L; Kalkan, A Kaan; Demirel, Melik C

    2012-04-10

    Optically active metal nanoparticles have been of recent and broad interest for applications to biomarker detection because of their ability to enable high sensitivity enhancements in various optical detection techniques. Here, we report stimuli responsive release of metallic nanoparticles on a semiconductor thin film array structure based on pH change. The metallic nanoparticles are obtained by a simple redox procedure on the semiconductor surface. This approach allows controlling nanoparticle surface coatings in situ for biomolecule conjugation, such as DNA probes on nanoparticles, and rapid stimuli responsive release of these nanoparticles upon pH change.

  10. Metal-doped semiconductor nanoparticles and methods of synthesis thereof

    DOEpatents

    Ren, Zhifeng; Chen, Gang; Poudel, Bed; Kumar, Shankar; Wang, Wenzhong; Dresselhaus, Mildred

    2009-09-08

    The present invention generally relates to binary or higher order semiconductor nanoparticles doped with a metallic element, and thermoelectric compositions incorporating such nanoparticles. In one aspect, the present invention provides a thermoelectric composition comprising a plurality of nanoparticles each of which includes an alloy matrix formed of a Group IV element and Group VI element and a metallic dopant distributed within the matrix.

  11. Metal-doped semiconductor nanoparticles and methods of synthesis thereof

    NASA Technical Reports Server (NTRS)

    Ren, Zhifeng (Inventor); Chen, Gang (Inventor); Poudel, Bed (Inventor); Kumar, Shankar (Inventor); Wang, Wenzhong (Inventor); Dresselhaus, Mildred (Inventor)

    2009-01-01

    The present invention generally relates to binary or higher order semiconductor nanoparticles doped with a metallic element, and thermoelectric compositions incorporating such nanoparticles. In one aspect, the present invention provides a thermoelectric composition comprising a plurality of nanoparticles each of which includes an alloy matrix formed of a Group IV element and Group VI element and a metallic dopant distributed within the matrix.

  12. Poisson's ratio of individual metal nanowires.

    PubMed

    McCarthy, Eoin K; Bellew, Allen T; Sader, John E; Boland, John J

    2014-07-07

    The measurement of Poisson's ratio of nanomaterials is extremely challenging. Here we report a lateral atomic force microscope experimental method to electromechanically measure the Poisson's ratio and gauge factor of individual nanowires. Under elastic loading conditions we monitor the four-point resistance of individual metallic nanowires as a function of strain and different levels of electrical stress. We determine the gauge factor of individual wires and directly measure the Poisson's ratio using a model that is independently validated for macroscopic wires. For macroscopic wires and nickel nanowires we find Poisson's ratios that closely correspond to bulk values, whereas for silver nanowires significant deviations from the bulk silver value are observed. Moreover, repeated measurements on individual silver nanowires at different levels of mechanical and electrical stress yield a small spread in Poisson ratio, with a range of mean values for different wires, all of which are distinct from the bulk value.

  13. Carbon-supported base metal nanoparticles: cellulose at work.

    PubMed

    Hoekstra, Jacco; Versluijs-Helder, Marjan; Vlietstra, Edward J; Geus, John W; Jenneskens, Leonardus W

    2015-03-01

    Pyrolysis of base metal salt loaded microcrystalline cellulose spheres gives a facile access to carbon-supported base metal nanoparticles, which have been characterized with temperature-dependent XRD, SEM, TEM, ICP-MS and elemental analysis. The role of cellulose is multifaceted: 1) it facilitates a homogeneous impregnation of the aqueous base metal salt solutions, 2) it acts as an efficacious (carbonaceous) support material for the uniformly dispersed base metal salts, their oxides and the metal nanoparticles derived therefrom, and 3) it contributes as a reducing agent via carbothermal reduction for the conversion of the metal oxide nanoparticles into the metal nanoparticles. Finally, the base metal nanoparticles capable of forming metastable metal carbides catalytically convert the carbonaceous support into a mesoporous graphitic carbon material.

  14. Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles

    PubMed Central

    Płaza, Grażyna A.; Chojniak, Joanna; Banat, Ibrahim M.

    2014-01-01

    Developing a reliable experimental protocol for the synthesis of nanomaterials is one of the challenging topics in current nanotechnology particularly in the context of the recent drive to promote green technologies in their synthesis. The increasing need to develop clean, nontoxic and environmentally safe production processes for nanoparticles to reduce environmental impact, minimize waste and increase energy efficiency has become essential in this field. Consequently, recent studies on the use of microorganisms in the synthesis of selected nanoparticles are gaining increased interest as they represent an exciting area of research with considerable development potential. Microorganisms are known to be capable of synthesizing inorganic molecules that are deposited either intra- or extracellularly. This review presents a brief overview of current research on the use of biosurfactants in the biosynthesis of selected metallic nanoparticles and their potential importance. PMID:25110864

  15. Noble Metal Nanoparticles Applications in Cancer

    PubMed Central

    Conde, João; Doria, Gonçalo; Baptista, Pedro

    2012-01-01

    Nanotechnology has prompted new and improved materials for biomedical applications with particular emphasis in therapy and diagnostics. Special interest has been directed at providing enhanced molecular therapeutics for cancer, where conventional approaches do not effectively differentiate between cancerous and normal cells; that is, they lack specificity. This normally causes systemic toxicity and severe and adverse side effects with concomitant loss of quality of life. Because of their small size, nanoparticles can readily interact with biomolecules both at surface and inside cells, yielding better signals and target specificity for diagnostics and therapeutics. This way, a variety of nanoparticles with the possibility of diversified modification with biomolecules have been investigated for biomedical applications including their use in highly sensitive imaging assays, thermal ablation, and radiotherapy enhancement as well as drug and gene delivery and silencing. Here, we review the available noble metal nanoparticles for cancer therapy, with particular focus on those already being translated into clinical settings. PMID:22007307

  16. SERS of Individual Nanoparticles on a Mirror: Size Does Matter, but so Does Shape

    PubMed Central

    2016-01-01

    Coupling noble metal nanoparticles by a 1 nm gap to an underlying gold mirror confines light to extremely small volumes, useful for sensing on the nanoscale. Individually measuring 10 000 of such gold nanoparticles of increasing size dramatically shows the different scaling of their optical scattering (far-field) and surface-enhanced Raman emission (SERS, near-field). Linear red-shifts of the coupled plasmon modes are seen with increasing size, matching theory. The total SERS from the few hundred molecules under each nanoparticle dramatically increases with increasing size. This scaling shows that maximum SERS emission is always produced from the largest nanoparticles, irrespective of tuning to any plasmonic resonances. Changes of particle facet with nanoparticle size result in vastly weaker scaling of the near-field SERS, without much modifying the far-field, and allows simple approaches for optimizing practical sensing. PMID:27223478

  17. Microbial-mediated method for metal oxide nanoparticle formation

    DOEpatents

    Rondinone, Adam J.; Moon, Ji Won; Love, Lonnie J.; Yeary, Lucas W.; Phelps, Tommy J.

    2015-09-08

    The invention is directed to a method for producing metal oxide nanoparticles, the method comprising: (i) subjecting a combination of reaction components to conditions conducive to microbial-mediated formation of metal oxide nanoparticles, wherein said combination of reaction components comprise: metal-reducing microbes, a culture medium suitable for sustaining said metal-reducing microbes, an effective concentration of one or more surfactants, a reducible metal oxide component containing one or more reducible metal species, and one or more electron donors that provide donatable electrons to said metal-reducing microbes during consumption of the electron donor by said metal-reducing microbes; and (ii) isolating said metal oxide nanoparticles, which contain a reduced form of said reducible metal oxide component. The invention is also directed to metal oxide nanoparticle compositions produced by the inventive method.

  18. Quantum plasmonics with a metal nanoparticle array

    NASA Astrophysics Data System (ADS)

    Lee, Changhyoup; Tame, Mark; Lim, James; Lee, Jinhyoung

    2012-06-01

    We investigate an array of metal nanoparticles as a channel for nanophotonic quantum communication and the generation of quantum plasmonic interference. We consider the transfer of quantum states, including single qubits as plasmonic wave packets, and highlight the necessity of a quantum-mechanical description by comparing the predictions of quantum theory with those of classical electromagnetic theory. The effects of loss in the metal are included, thus putting our investigation into a practical setting and enabling the quantification of the performance of realistic nanoparticle arrays as plasmonic quantum channels. We explore the interference of single plasmons, finding nonlinear absorption effects associated with the quantum properties of the plasmon excitations. This work highlights the benefits and drawbacks of using nanophotonic periodic systems for quantum plasmonic applications, such as quantum communication and the generation of quantum interference.

  19. Nanoscale chirality in metal and semiconductor nanoparticles.

    PubMed

    Kumar, Jatish; Thomas, K George; Liz-Marzán, Luis M

    2016-10-18

    The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided.

  20. Nanoscale chirality in metal and semiconductor nanoparticles

    PubMed Central

    Thomas, K. George

    2016-01-01

    The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided. PMID:27752651

  1. Quantification of ZnO nanoparticle uptake, distribution, and dissolution within individual human macrophages.

    PubMed

    James, Simon A; Feltis, Bryce N; de Jonge, Martin D; Sridhar, Manoj; Kimpton, Justin A; Altissimo, Matteo; Mayo, Sheridan; Zheng, Changxi; Hastings, Andrew; Howard, Daryl L; Paterson, David J; Wright, Paul Frank A; Moorhead, Gareth F; Turney, Terence W; Fu, Jing

    2013-12-23

    The usefulness of zinc oxide (ZnO) nanoparticles has led to their wide distribution in consumer products, despite only a limited understanding of how this nanomaterial behaves within biological systems. From a nanotoxicological viewpoint the interaction(s) of ZnO nanoparticles with cells of the immune system is of specific interest, as these nanostructures are readily phagocytosed. In this study, rapid scanning X-ray fluorescence microscopy was used to assay the number ZnO nanoparticles associated with ∼1000 individual THP-1 monocyte-derived human macrophages. These data showed that nanoparticle-treated cells endured a 400% elevation in total Zn levels, 13-fold greater than the increase observed when incubated in the presence of an equitoxic concentration of ZnCl2. Even after excluding the contribution of internalized nanoparticles, Zn levels in nanoparticle treated cells were raised ∼200% above basal levels. As dissolution of ZnO nanoparticles is critical to their cytotoxic response, we utilized a strategy combining ion beam milling, X-ray fluorescence and scanning electron microscopy to directly probe the distribution and composition of ZnO nanoparticles throughout the cellular interior. This study demonstrated that correlative photon and ion beam imaging techniques can provide both high-resolution and statistically powerful information on the biology of metal oxide nanoparticles at the single-cell level. Our approach promises ready application to broader studies of phenomena at the interface of nanotechnology and biology.

  2. The Effect of Metal Oxide on Nanoparticles from Thermite Reactions

    ERIC Educational Resources Information Center

    Moore, Lewis Ryan

    2006-01-01

    The purpose of this research was to determine how metal oxide used in a thermite reaction can impact the production of nanoparticles. The results showed the presence of nanoparticles (less than 1 micron in diameter) of at least one type produced by each metal oxide. The typical particles were metallic spheres, which ranged from 300 nanometers in…

  3. Screening Methods for Metal-Containing Nanoparticles in Water

    EPA Science Inventory

    Screening-level analysis of water for metal-containing nanoparticles is achieved with single particle-inductively coupled plasma mass spectrometry (SP-ICPMS). This method measures both the concentration of nanoparticles containing an analyte metal and the mass of the metal in eac...

  4. Exploring the potential of metallic nanoparticles within synthetic biology.

    PubMed

    Edmundson, Matthew C; Capeness, Michael; Horsfall, Louise

    2014-12-25

    The fields of metallic nanoparticle study and synthetic biology have a great deal to offer one another. Metallic nanoparticles as a class of material have many useful properties. Their small size allows for more points of contact than would be the case with a similar bulk compound, making nanoparticles excellent candidates for catalysts or for when increased levels of binding are required. Some nanoparticles have unique optical qualities, making them well suited as sensors, while others display para-magnetism, useful in medical imaging, especially by magnetic resonance imaging (MRI). Many of these metallic nanoparticles could be used in creating tools for synthetic biology, and conversely the use of synthetic biology could itself be utilised to create nanoparticle tools. Examples given here include the potential use of quantum dots (QDs) and gold nanoparticles as sensing mechanisms in synthetic biology, and the use of synthetic biology to create nanoparticle-sensing devices based on current methods of detecting metals and metalloids such as arsenate. There are a number of organisms which are able to produce a range of metallic nanoparticles naturally, such as species of the fungus Phoma which produces anti-microbial silver nanoparticles. The biological synthesis of nanoparticles may have many advantages over their more traditional industrial synthesis. If the proteins involved in biological nanoparticle synthesis can be put into a suitable bacterial chassis then they might be manipulated and the pathways engineered in order to produce more valuable nanoparticles.

  5. Radio-frequency capacitance spectroscopy of metallic nanoparticles.

    PubMed

    Frake, James C; Kano, Shinya; Ciccarelli, Chiara; Griffiths, Jonathan; Sakamoto, Masanori; Teranishi, Toshiharu; Majima, Yutaka; Smith, Charles G; Buitelaar, Mark R

    2015-06-04

    Recent years have seen great progress in our understanding of the electronic properties of nanomaterials in which at least one dimension measures less than 100 nm. However, contacting true nanometer scale materials such as individual molecules or nanoparticles remains a challenge as even state-of-the-art nanofabrication techniques such as electron-beam lithography have a resolution of a few nm at best. Here we present a fabrication and measurement technique that allows high sensitivity and high bandwidth readout of discrete quantum states of metallic nanoparticles which does not require nm resolution or precision. This is achieved by coupling the nanoparticles to resonant electrical circuits and measurement of the phase of a reflected radio-frequency signal. This requires only a single tunnel contact to the nanoparticles thus simplifying device fabrication and improving yield and reliability. The technique is demonstrated by measurements on 2.7 nm thiol coated gold nanoparticles which are shown to be in excellent quantitative agreement with theory.

  6. Silicon nanocrystal-noble metal hybrid nanoparticles

    NASA Astrophysics Data System (ADS)

    Sugimoto, H.; Fujii, M.; Imakita, K.

    2016-05-01

    We report a novel and facile self-limiting synthesis route of silicon nanocrystal (Si NC)-based colloidally stable semiconductor-metal (gold, silver and platinum) hybrid nanoparticles (NPs). For the formation of hybrid NPs, we employ ligand-free colloidal Si NCs with heavily boron (B) and phosphorus (P) doped shells. By simply mixing B and P codoped colloidal Si NCs with metal salts, hybrid NPs consisting of metal cores and Si NC shells are spontaneously formed. We demonstrate the synthesis of highly uniform and size controllable hybrid NPs. It is shown that codoped Si NCs act as a reducing agent for metal salts and also as a protecting layer to stop metal NP growth. The process is thus self-limiting. The development of a variety of Si NC-based hybrid NPs is a promising first step for the design of biocompatible multifunctional NPs with broad material choices for biosensing, bioimaging and solar energy conversion.We report a novel and facile self-limiting synthesis route of silicon nanocrystal (Si NC)-based colloidally stable semiconductor-metal (gold, silver and platinum) hybrid nanoparticles (NPs). For the formation of hybrid NPs, we employ ligand-free colloidal Si NCs with heavily boron (B) and phosphorus (P) doped shells. By simply mixing B and P codoped colloidal Si NCs with metal salts, hybrid NPs consisting of metal cores and Si NC shells are spontaneously formed. We demonstrate the synthesis of highly uniform and size controllable hybrid NPs. It is shown that codoped Si NCs act as a reducing agent for metal salts and also as a protecting layer to stop metal NP growth. The process is thus self-limiting. The development of a variety of Si NC-based hybrid NPs is a promising first step for the design of biocompatible multifunctional NPs with broad material choices for biosensing, bioimaging and solar energy conversion. Electronic supplementary information (ESI) available: Additional TEM images and extinction spectra of Si-metal hybrid NPs are shown in Fig. S1

  7. Direct Imaging of Single Plasmonic Metal Nanoparticles in Capillary with Laser Light-Sheet Scattering Imaging.

    PubMed

    Cao, Xuan; Feng, Jingjing; Pan, Qi; Xiong, Bin; He, Yan; Yeung, Edward S

    2017-03-07

    Understanding the heterogeneous distribution of the physical and chemical properties of plasmonic metal nanoparticles is fundamentally important to their basic and applied research. Traditionally, they are obtained either indirectly via bulk spectroscopic measurements plus electron microscopic characterizations or through single molecule/particle imaging of nanoparticles immobilized on planar substrates. In this study, by using light-sheet scattering microscopy with a supercontinuum white laser, highly sensitive imaging of individual metal nanoparticles (MNPs) flowing inside a capillary, driven by either pressure or electric field, was achieved for the first time. We demonstrate that single plasmonic nanoparticles with different size or chemical modification could be differentiated through their electrophoretic mobility in a few minutes. This technique could potentially be applied to high throughput characterization and evaluation of single metal nanoparticles as well as their dynamic interactions with various local environments.

  8. “Green” Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants

    PubMed Central

    Makarov, V. V.; Love, A. J.; Sinitsyna, O. V.; Makarova, S. S.; Yaminsky, I. V.; Taliansky, M. E.; Kalinina, N. O.

    2014-01-01

    While metal nanoparticles are being increasingly used in many sectors of the economy, there is growing interest in the biological and environmental safety of their production. The main methods for nanoparticle production are chemical and physical approaches that are often costly and potentially harmful to the environment. The present review is devoted to the possibility of metal nanoparticle synthesis using plant extracts. This approach has been actively pursued in recent years as an alternative, efficient, inexpensive, and environmentally safe method for producing nanoparticles with specified properties. This review provides a detailed analysis of the various factors affecting the morphology, size, and yield of metal nanoparticles. The main focus is on the role of the natural plant biomolecules involved in the bioreduction of metal salts during the nanoparticle synthesis. Examples of effective use of exogenous biomatrices (peptides, proteins, and viral particles) to obtain nanoparticles in plant extracts are discussed. PMID:24772325

  9. Surface energy of metal alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Takrori, Fahed M.; Ayyad, Ahmed

    2017-04-01

    The measurement of surface energy of alloy nanoparticles experimentally is still a challenge therefore theoretical work is necessary to estimate its value. In continuation of our previous work on the calculation of the surface energy of pure metallic nanoparticles we have extended our work to calculate the surface energy of different alloy systems, namely, Co-Ni, Au-Cu, Cu-Al, Cu-Mg and Mo-Cs binary alloys. It is shown that the surface energy of metallic binary alloy decreases with decreasing particle size approaching relatively small values at small sizes. When both metals in the alloy obey the Hume-Rothery rules, the difference in the surface energy is small at the macroscopic as well as in the nano-scale. However when the alloy deviated from these rules the difference in surface energy is large in the macroscopic and in the nano scales. Interestingly when solid solution formation is not possible at the macroscopic scale according to the Hume-Rothery rules, it is shown it may form at the nano-scale. To our knowledge these findings here are presented for the first time and is challenging from fundamental as well as technological point of views.

  10. Spectral variation of fluorescence lifetime near single metal nanoparticles

    PubMed Central

    Li, Jia; Krasavin, Alexey V.; Webster, Linden; Segovia, Paulina; Zayats, Anatoly V.; Richards, David

    2016-01-01

    We explore the spectral dependence of fluorescence enhancement and the associated lifetime modification of fluorescent molecules coupled to single metal nanoparticles. Fluorescence lifetime imaging microscopy and single-particle dark-field spectroscopy are combined to correlate the dependence of fluorescence lifetime reduction on the spectral overlap between the fluorescence emission and the localised surface plasmon (LSP) spectra of individual gold nanoparticles. A maximum lifetime reduction is observed when the fluorescence and LSP resonances coincide, with good agreement provided by numerical simulations. The explicit comparison between experiment and simulation, that we obtain, offers an insight into the spectral engineering of LSP mediated fluorescence and may lead to optimized application in sensing and biomedicine. PMID:26876780

  11. Photoactivable caps for reactive metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Patel, Ashish

    The synthesis and stabilization of reactive metal nanoparticles is often challenging under normal atmospheric conditions. This problem can be alleviated by capping and passivation. Our lab has focused on forming polymer coatings on the surface of reactive metal nanoparticles. We discovered a convenient and effective route for stabilization of aluminum nanoparticles (Al NPs), which uses the nascent metal core as a polymerization initiator for various organic monomers. In our previous work, we used this method to passivate the Al NPs using variety of epoxides and copolymers of epoxides and alkenes. These products have demonstrated air stability for weeks to months with little to no degradation in the active Al content. Since our previously synthesized Al NP's were not beneficial for rapid and efficient thermodynamic access to the active Al core, our goal was find polymers that could easily be photochemically activated to enhance such access. Since poly(methyl methacrylate) (PMMA) has photodegrading properties, we used PMMA as a capping agent to passivate Al NPs. In this work, we present capping and stabilization of Al NPs with PMMA, and also with 1,2-epoxyhexane/ PMMA. In our previous work, we increased the stability of Al NP capped with 1,2-epoxy-9-decene by adding 1,13-tetradecadiene as a cross-linker. Here, we used the methyl methacrylate (MMA) monomer as cross-linker for Al NP capped with 1,2-epoxy-9-decene. We have also used the MMA as capping agent. We use powder x-ray diffractametry (PXRD), differential scanning calorimetry (DSC), and thermogravity analysis (TGA) to confirm the presence of elemental Al and ATR-FTIR to confirm the presence of polymers.

  12. Optical Properties of Controlled Nanoscale Assemblies of Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Westcott, S. L.; Oldenburg, S. J.; Lee, T. R.; Halas, N. J.

    1998-03-01

    The optical response of a metal nanoparticle in an assembly of nanoparticles is affected by scattering from the other nanoparticles in the assembly. In general, this interaction leads to the appearance of lower energy peaks in the absorption spectrum with their location dependent on the geometry of the assembly(M. Quinten and U. Kreibig, Surface Science 172), 557 (1986).. We construct two types of assemblies using functionalized silica nanoparticles as substrates for the immobilization of metal nanoparticles. First, surprisingly monodisperse clusters of small gold nanoparticles spontaneously form and attach to the silica nanoparticles under appropriate solvent conditions. Second, controlled aggregates of metal nanoparticles are synthesized using bifunctional molecular linkers in a step-by-step procedure. The distances between the constituent metallic nanoparticles, as well as the electronic properties of the region between the nanoparticles, are controlled by the choice of bifunctional molecular linker. As a result of either assembly method, metallic nanoparticles can be brought sufficiently close to each other so that interactions may be observed.

  13. Ferroplasmons: Intense Localized Surface Plasmons in Metal-Ferromagnetic Nanoparticles

    SciTech Connect

    Sachan, Ritesh; Malasi, Abhinav; Ge, Jingxuan; Yadavali, Sagar P; Gangopadhyay, Anup; Krishna, Dr. Hare; Garcia, Hernando; Duscher, Gerd J M; Kalyanaraman, Ramki

    2014-01-01

    Interaction of photons with matter at length scales far below their wavelengths has given rise to many novel phenomena, including localized surface plasmon resonance (LSPR). However, LSPR with narrow bandwidth (BW) is observed only in a select few noble metals, and ferromagnets are not among them. Here, we report the discovery of LSPR in ferromagnetic Co and CoFe alloy (8% Fe) in contact with Ag in the form of bimetallic nanoparticles prepared by pulsed laser dewetting. These plasmons in metal-erromagnetic nanostructures, or ferroplasmons (FP) for short, are in the visible spectrum with comparable intensity and BW to those of the LSPRs from the Ag regions. This finding was enabled by electron energy-loss mapping across individual nanoparticles in a monochromated scanning transmission electron microscope. The appearance of the FP is likely due to plasmonic interaction between the contacting Ag and Co nanoparticles. Since there is no previous evidence for materials that simultaneously show ferromagnetism and such intense LSPRs, this discovery may lead to the design of improved plasmonic materials and applications. It also demonstrates that materials with interesting plasmonic properties can be synthesized using bimetallic nanostructures in contact with each other.

  14. Metal Nanoparticle Catalysts for Carbon Nanotube Growth

    NASA Technical Reports Server (NTRS)

    Pierce, Benjamin F.

    2003-01-01

    Work this summer involved and new and unique process for producing the metal nanoparticle catalysts needed for carbon nanotube (CNT) growth. There are many applications attributed to CNT's, and their properties have deemed them to be a hot spot in research today. Many groups have demonstrated the versatility in CNT's by exploring a wide spectrum of roles that these nanotubes are able to fill. A short list of such promising applications are: nanoscaled electronic circuitry, storage media, chemical sensors, microscope enhancement, and coating reinforcement. Different methods have been used to grow these CNT's. Some examples are laser ablation, flame synthesis, or furnace synthesis. Every single approach requires the presence of a metal catalyst (Fe, Co, and Ni are among the best) that is small enough to produce a CNT. Herein lies the uniqueness of this work. Microemulsions (containing inverse micelles) were used to generate these metal particles for subsequent CNT growth. The goal of this summer work was basically to accomplish as much preliminary work as possible. I strived to pinpoint which variable (experimental process, metal product, substrate, method of application, CVD conditions, etc.) was the determining factor in the results. The resulting SEM images were sufficient for the appropriate comparisons to be made. The future work of this project consists of the optimization of the more promising experimental procedures and further exploration onto what exactly dictated the results.

  15. Biocompatibility of transition metal-substituted cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Sanpo, Noppakun; Tharajak, Jirasak; Li, Yuncang; Berndt, Christopher C.; Wen, Cuie; Wang, James

    2014-07-01

    Transition metals of copper, zinc, manganese, and nickel were substituted into cobalt ferrite nanoparticles via a sol-gel route using citric acid as a chelating agent. The microstructure and elemental compositions of the nanoparticles were characterized using scanning electron microscopy combined with energy dispersive X-ray spectroscopy. The particle size of the nanoparticles was investigated using particle size analyzer, and the zeta potentials were measured using zeta potential analyzer. The phase components of the synthesized transition metal-substituted cobalt ferrite nanoparticles were studied using Raman spectroscopy. The biocompatibility of the nanoparticles was assessed using osteoblast-like cells. Results indicated that the substitution of transition metals strongly influences the physical, chemical properties, and biocompatibility of the cobalt ferrite nanoparticles.

  16. Fate and toxicity of metallic and metal-containing nanoparticles for biomedical applications.

    PubMed

    Li, Yu-Feng; Chen, Chunying

    2011-11-04

    It is important to obtain a better understanding of the uptake, trafficking, pharmacokinetics, clearance, and role of nanomaterials in biological systems, so that their possible undesirable effects can be avoided. A number of metallic or metal-containing nanomaterials, such as gold nanoparticles and nanorods, quantum dots, iron oxides nanoparticles, and endohedral metallofullerenes, have already been or will soon become very promising for biomedical applications. This review presents a summary of currently available data on the fate and toxicity of these metallic or metal-containing nanoparticles based on animal studies. Several issues regarding the nanotoxicity assessment and future directions on the study of the fate of these nanoparticles are also proposed.

  17. Marine microorganisms as potential biofactories for synthesis of metallic nanoparticles.

    PubMed

    Manivasagan, Panchanathan; Nam, Seung Yun; Oh, Junghwan

    2016-11-01

    The use of marine microorganisms as potential biofactories for green synthesis of metallic nanoparticles is a relatively new field of research with considerable prospects. This method is eco-friendly, time saving, and inexpensive and can be easily scaled up for large-scale synthesis. The increasing need to develop simple, nontoxic, clean, and environmentally safe production methods for nanoparticles and to decrease environmental impact, minimize waste, and increase energy productivity has become important in this field. Marine microorganisms are tiny organisms that live in marine ecosystems and account for >98% of biomass of the world's ocean. Marine microorganisms synthesize metallic nanoparticles either intracellularly or extracellularly. Marine microbially-produced metallic nanoparticles have received considerable attention in recent years because of their expected impact on various applications such as medicine, energy, electronic, and space industries. The present review discusses marine microorganisms as potential biofactories for the green synthesis of metallic nanoparticles and their potential applications.

  18. Shape Evolution of Metal Nanoparticles in Water Vapor Environment.

    PubMed

    Zhu, Beien; Xu, Zhen; Wang, Chunlei; Gao, Yi

    2016-04-13

    The structures of the metal nanoparticles are crucial for their catalytic activities. How to understand and even control the shape evolution of nanoparticles under reaction condition is a big challenge in heterogeneous catalysis. It has been proved that many reactive gases hold the capability of changing the structures and properties of metal nanoparticles. One interesting question is whether water vapor, such a ubiquitous environment, could induce the shape evolution of metal nanoparticles. So far this question has not received enough attention yet. In this work, we developed a model based on the density functional theory, the Wulff construction, and the Langmuir adsorption isotherm to explore the shape of metal nanoparticle at given temperature and water vapor pressure. By this model, we show clearly that water vapor could notably increase the fraction of (110) facets and decrease that of (111) facets for 3-8 nm Cu nanoparticles, which is perfectly consistent with the experimental observations. Further investigations indicate the water vapor has different effects on the different metal species (Cu, Au, Pt, and Pd). This work not only helps to understand the water vapor effect on the structures of metal nanoparticles but also proposes a simple but effective model to predict the shape of nanoparticles in certain environment.

  19. Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium.

    PubMed

    Butet, Jérémy; Duboisset, Julien; Bachelier, Guillaume; Russier-Antoine, Isabelle; Benichou, Emmanuel; Jonin, Christian; Brevet, Pierre-François

    2010-05-12

    We report the optical second harmonic generation from individual 150 nm diameter gold nanoparticles dispersed in gelatin. The quadratic hyperpolarizability of the particles is determined and the input polarization dependence of the second harmonic intensity obtained. These results are found in excellent agreement with ensemble measurements and finite element simulations. These results open up new perspectives for the investigation of the nonlinear optical properties of noble metal nanoparticles.

  20. Paper surfaces for metal nanoparticle inkjet printing

    NASA Astrophysics Data System (ADS)

    Öhlund, Thomas; Örtegren, Jonas; Forsberg, Sven; Nilsson, Hans-Erik

    2012-10-01

    The widespread usage of paper and board offer largely unexploited possibilities for printed electronics applications. Reliability and performance of printed devices on comparatively rough and inhomogenous surfaces of paper does however pose challenges. Silver nanoparticle ink has been deposited on ten various paper substrates by inkjet printing. The papers are commercially available, and selected over a range of different types and construction. A smooth nonporous polyimide film was included as a nonporous reference substrate. The substrates have been characterized in terms of porosity, absorption rate, apparent surface energy, surface roughness and material content. The electrical conductivity of the resulting printed films have been measured after drying at 60 °C and again after additional curing at 110 °C. A qualitative analysis of the conductivity differences on the different substrates based on surface characterization and SEM examination is presented. Measurable parameters of importance to the final conductivity are pointed out, some of which are crucial to achieve conductivity. When certain criteria of the surfaces are met, paper media can be used as low cost, but comparably high performance substrates for metal nanoparticle inks in printed electronics applications.

  1. Asymmetric light reflectance from metal nanoparticle arrays on dielectric surfaces

    NASA Astrophysics Data System (ADS)

    Huang, K.; Pan, W.; Zhu, J. F.; Li, J. C.; Gao, N.; Liu, C.; Ji, L.; Yu, E. T.; Kang, J. Y.

    2015-12-01

    Asymmetric light reflectance associated with localized surface plasmons excited in metal nanoparticles on a quartz substrate is observed and analyzed. This phenomenon is explained by the superposition of two waves, the wave reflected by the air/quartz interface and that reflected by the metal nanoparticles, and the resulting interference effects. Far field behavior investigation suggests that zero reflection can be achieved by optimizing the density of metal nanoparticles. Near field behavior investigation suggests that the coupling efficiency of localized surface plasmon can be additionally enhanced by separating the metal NPs from substrates using a thin film with refractive index smaller than the substrate. The latter behavior is confirmed via surface-enhanced Raman spectroscopy studies using metal nanoparticles on Si/SiO2 substrates.

  2. Asymmetric light reflectance from metal nanoparticle arrays on dielectric surfaces.

    PubMed

    Huang, K; Pan, W; Zhu, J F; Li, J C; Gao, N; Liu, C; Ji, L; Yu, E T; Kang, J Y

    2015-12-18

    Asymmetric light reflectance associated with localized surface plasmons excited in metal nanoparticles on a quartz substrate is observed and analyzed. This phenomenon is explained by the superposition of two waves, the wave reflected by the air/quartz interface and that reflected by the metal nanoparticles, and the resulting interference effects. Far field behavior investigation suggests that zero reflection can be achieved by optimizing the density of metal nanoparticles. Near field behavior investigation suggests that the coupling efficiency of localized surface plasmon can be additionally enhanced by separating the metal NPs from substrates using a thin film with refractive index smaller than the substrate. The latter behavior is confirmed via surface-enhanced Raman spectroscopy studies using metal nanoparticles on Si/SiO2 substrates.

  3. Interference between nanoparticles and metal homeostasis

    NASA Astrophysics Data System (ADS)

    Petit, A. N.; Aude Garcia, C.; Candéias, S.; Casanova, A.; Catty, P.; Charbonnier, P.; Chevallet, M.; Collin-Faure, V.; Cuillel, M.; Douki, T.; Herlin-Boime, N.; Lelong, C.; Luche, S.; Mintz, E.; Moulis, J. M.; Nivière, V.; Ollagnier de Choudens, S.; Rabilloud, T.; Ravanat, J. L.; Sauvaigo, S.; Carrière, M.; Michaud-Soret, I.

    2011-07-01

    The TiO2 nanoparticles (NPs) are now produced abundantly and widely used in a variety of consumer products. Due to the important increase in the production of TiO2-NPs, potential widespread exposure of humans and environment may occur during both the manufacturing process and final use. Therefore, the potential toxicity of TiO2-NPs on human health and environment has attracted particular attention. Unfortunately, the results of the large number of studies on the toxicity of TiO2-NPs differ significantly, mainly due to an incomplete characterization of the used nanomaterials in terms of size, shape and crystalline structure and to their unknown state of agglomeration/aggregation. The purpose of our project entitled NanoBioMet is to investigate if interferences between nanoparticles and metal homeostasis could be observed and to study the toxicity mechanisms of TiO2-NPs with well-characterized physicochemical parameters, using proteomic and molecular approaches. A perturbation of metal homeostasis will be evaluated upon TiO2-NPs exposure which could generate reactive oxygen species (ROS) production. Moreover, oxidative stress consequences such as DNA damage and lipid peroxidation will be studied. The toxicity of TiO2-NPs of different sizes and crystalline structures will be evaluated both in prokaryotic (E. coli) and eukaryotic cells (A549 human pneumocytes, macrophages, and hepatocytes). First results of the project will be presented concerning the dispersion of TiO2-NPs in bacterial medium, proteomic studies on total extracts of macrophages and genotoxicity on pneumocytes.

  4. Enhancement of Raman scattering from molecules placed near metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Barbiellini, B.

    2017-01-01

    Large Raman scattering cross sections from molecules on surfaces of metallic nanoparticles are described within a renormalization-group theory. In this approach the valence electrons of the molecules are embedded in an effective medium described by a dielectric function, which integrates out the effect of the plasmonic excitations of the metallic nanoparticles. The source of the enhanced photon inelastic scattering is produced by the resonant excitation of surface plasmons at the metallic nanoparticles. A similar theory has been successfully used to explain the resonant x-ray inelastic scattering and the behavior of nonlinear susceptibilities at the x-ray edges.

  5. Synthesis of Lithium Metal Oxide Nanoparticles by Induction Thermal Plasmas

    PubMed Central

    Tanaka, Manabu; Kageyama, Takuya; Sone, Hirotaka; Yoshida, Shuhei; Okamoto, Daisuke; Watanabe, Takayuki

    2016-01-01

    Lithium metal oxide nanoparticles were synthesized by induction thermal plasma. Four different systems—Li–Mn, Li–Cr, Li–Co, and Li–Ni—were compared to understand formation mechanism of Li–Me oxide nanoparticles in thermal plasma process. Analyses of X-ray diffractometry and electron microscopy showed that Li–Me oxide nanoparticles were successfully synthesized in Li–Mn, Li–Cr, and Li–Co systems. Spinel structured LiMn2O4 with truncated octahedral shape was formed. Layer structured LiCrO2 or LiCoO2 nanoparticles with polyhedral shapes were also synthesized in Li–Cr or Li–Co systems. By contrast, Li–Ni oxide nanoparticles were not synthesized in the Li–Ni system. Nucleation temperatures of each metal in the considered system were evaluated. The relationship between the nucleation temperature and melting and boiling points suggests that the melting points of metal oxides have a strong influence on the formation of lithium metal oxide nanoparticles. A lower melting temperature leads to a longer reaction time, resulting in a higher fraction of the lithium metal oxide nanoparticles in the prepared nanoparticles.

  6. Actinomycetes mediated biogenic synthesis of metal and metal oxide nanoparticles: Progress and challenges.

    PubMed

    Manimaran, Manickavelu; Kannabiran, Krishnan

    2017-03-07

    Actinomycetes mediated biogenic synthesis of metal nanoparticles and their antimicrobial activities are well documented. Actinomycetes facilitate both intracellular and extracellular metal nanoparticles synthesis and are efficient candidates for the production of polydispersed, stable and ultra-small size metal nanoparticles. Secondary metabolites and new chemical entities derived from actinomycetes have not been extensively studied for the synthesis of metal/ metal oxide nanoparticles. The present review focuses on biogenic synthesis of metal nanoparticles from actinomycetes and the scope for exploring actinomycetes derived compounds (enzymes, organics acids and bioactive compounds) as metal and metal oxide reducing agents for the synthesis of desired nanoparticles. This review also focuses on challenges faced in the applications nanoparticles and the methods to synthesise biogenic metal nanoparticles with desired physiochemical properties such as ultra-small size, large surface to mass ratio, high reactivity etc. Methods to evade their toxicity and unique interactions with biological systems to improve their chance as an alternative therapeutic agent in medical and pharmaceutical industry are also discussed. This article is protected by copyright. All rights reserved.

  7. Temperature and size-dependent Hamaker constants for metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Jiang, K.; Pinchuk, P.

    2016-08-01

    Theoretical values of the Hamaker constant have been calculated for metal nanoparticles using Lifshitz theory. The theory describes the Hamaker constant in terms of the permittivity of the interacting bodies. Metal nanoparticles exhibit an internal size effect that alters the dielectric permittivity of the particle when its size falls below the mean free path of the conducting electrons. This size dependence of the permittivity leads to size-dependence of the Hamaker constant for metal nanoparticles. Additionally, the electron damping and the plasma frequency used to model the permittivity of the particle exhibit temperature-dependence, which lead to temperature dependence of the Hamaker constant. In this work, both the size and temperature dependence for gold, silver, copper, and aluminum nanoparticles is demonstrated. The results of this study might be of interest for studying the colloidal stability of nanoparticles in solution.

  8. Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties.

    PubMed

    Zaleska-Medynska, Adriana; Marchelek, Martyna; Diak, Magdalena; Grabowska, Ewelina

    2016-03-01

    Nanoparticles composed of two different metal elements show novel electronic, optical, catalytic or photocatalytic properties from monometallic nanoparticles. Bimetallic nanoparticles could show not only the combination of the properties related to the presence of two individual metals, but also new properties due to a synergy between two metals. The structure of bimetallic nanoparticles can be oriented in random alloy, alloy with an intermetallic compound, cluster-in-cluster or core-shell structures and is strictly dependent on the relative strengths of metal-metal bond, surface energies of bulk elements, relative atomic sizes, preparation method and conditions, etc. In this review, selected properties, such as structure, optical, catalytic and photocatalytic of noble metals-based bimetallic nanoparticles, are discussed together with preparation routes. The effects of preparation method conditions as well as metal properties on the final structure of bimetallic nanoparticles (from alloy to core-shell structure) are followed. The role of bimetallic nanoparticles in heterogeneous catalysis and photocatalysis are discussed. Furthermore, structure and optical characteristics of bimetallic nanoparticles are described in relation to the some features of monometallic NPs. Such a complex approach allows to systematize knowledge and to identify the future direction of research.

  9. General and programmable synthesis of hybrid liposome/metal nanoparticles

    PubMed Central

    Lee, Jin-Ho; Shin, Yonghee; Lee, Wooju; Whang, Keumrai; Kim, Dongchoul; Lee, Luke P.; Choi, Jeong-Woo; Kang, Taewook

    2016-01-01

    Hybrid liposome/metal nanoparticles are promising candidate materials for biomedical applications. However, the poor selectivity and low yield of the desired hybrid during synthesis pose a challenge. We designed a programmable liposome by selective encoding of a reducing agent, which allows self-crystallization of metal nanoparticles within the liposome to produce stable liposome/metal nanoparticles alone. We synthesized seven types of liposome/monometallic and more complex liposome/bimetallic hybrids. The resulting nanoparticles are tunable in size and metal composition, and their surface plasmon resonance bands are controllable in visible and near infrared. Owing to outer lipid bilayer, our liposome/Au nanoparticle shows better colloidal stability in biologically relevant solutions as well as higher endocytosis efficiency than gold nanoparticles without the liposome. We used this hybrid in intracellular imaging of living cells via surface-enhanced Raman spectroscopy, taking advantage of its improved physicochemical properties. We believe that our method greatly increases the utility of metal nanoparticles in in vivo applications. PMID:28028544

  10. Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities.

    PubMed

    Jin, Rongchao; Zeng, Chenjie; Zhou, Meng; Chen, Yuxiang

    2016-09-28

    Colloidal nanoparticles are being intensely pursued in current nanoscience research. Nanochemists are often frustrated by the well-known fact that no two nanoparticles are the same, which precludes the deep understanding of many fundamental properties of colloidal nanoparticles in which the total structures (core plus surface) must be known. Therefore, controlling nanoparticles with atomic precision and solving their total structures have long been major dreams for nanochemists. Recently, these goals are partially fulfilled in the case of gold nanoparticles, at least in the ultrasmall size regime (1-3 nm in diameter, often called nanoclusters). This review summarizes the major progress in the field, including the principles that permit atomically precise synthesis, new types of atomic structures, and unique physical and chemical properties of atomically precise nanoparticles, as well as exciting opportunities for nanochemists to understand very fundamental science of colloidal nanoparticles (such as the stability, metal-ligand interfacial bonding, ligand assembly on particle surfaces, aesthetic structural patterns, periodicities, and emergence of the metallic state) and to develop a range of potential applications such as in catalysis, biomedicine, sensing, imaging, optics, and energy conversion. Although most of the research activity currently focuses on thiolate-protected gold nanoclusters, important progress has also been achieved in other ligand-protected gold, silver, and bimetal (or alloy) nanoclusters. All of these types of unique nanoparticles will bring unprecedented opportunities, not only in understanding the fundamental questions of nanoparticles but also in opening up new horizons for scientific studies of nanoparticles.

  11. Biogenic synthesis of metallic nanoparticles and prospects toward green chemistry.

    PubMed

    Adil, Syed Farooq; Assal, Mohamed E; Khan, Mujeeb; Al-Warthan, Abdulrahman; Siddiqui, Mohammed Rafiq H; Liz-Marzán, Luis M

    2015-06-07

    The immense importance of nanoparticles and their applications is a strong motivation for exploring new synthetic techniques. However, due to strict regulations that manage the potential environmental impacts greener alternatives for conventional synthesis are the focus of intense research. In the scope of this perspective, a concise discussion about the use of green reducing and stabilizing agents toward the preparation of metal nanoparticles is presented. Reports on the synthesis of noble metal nanoparticles using plant extracts, ascorbic acid and sodium citrate as green reagents are summarized and discussed, pointing toward an urgent need of understanding the mechanistic aspects of the involved reactions.

  12. Synthesis and deposition of metal nanoparticles by gas condensation process

    SciTech Connect

    Maicu, Marina Glöß, Daniel; Frach, Peter; Schmittgens, Ralph; Gerlach, Gerald; Hecker, Dominic

    2014-03-15

    In this work, the synthesis of Pt and Ag nanoparticles by means of the inert gas phase condensation of sputtered atomic vapor is presented. The process parameters (power, sputtering time, and gas flow) were varied in order to study the relationship between deposition conditions and properties of the nanoparticles such as their quantity, size, and size distribution. Moreover, the gas phase condensation process can be combined with a plasma enhanced chemical vapor deposition procedure in order to deposit nanocomposite coatings consisting of metallic nanoparticles embedded in a thin film matrix material. Selected examples of application of the generated nanoparticles and nanocomposites are discussed.

  13. Shape effects on nanoparticle engulfment for metal matrix nanocomposites

    NASA Astrophysics Data System (ADS)

    Ozsoy, Istemi Baris; Li, Gang; Choi, Hongseok; Zhao, Huijuan

    2015-07-01

    Obtaining a uniform dispersion of the nanoparticles and their structural integrity in metal matrix is a prominent obstacle to use the intrinsic properties of metal matrix nanocomposites (MMNCs) to the full extent. In this study, a potential way to overcome the scientific and technical barrier of nanoparticle dispersion in high performance lightweight MMNCs is presented. The goal is to identify the shape and size of Al2O3 nanoparticle for its optimal dispersion in Al matrix. Critical velocity of solidification is calculated numerically for spherical, cylindrical and disk-shaped nanoparticles using an analytical model which incorporates drag force, intermolecular force and inertia effect. The results show that it is possible to reduce the critical solidification velocity for nanoparticle capture by 6 times with proper shape modification.

  14. Shape-controlled growth of metal nanoparticles: an atomistic view.

    PubMed

    Konuk, Mine; Durukanoğlu, Sondan

    2016-01-21

    Recent developments in shape-controlled synthesis of metallic nano-particles present a promising path for precisely tuning chemical activity, selectivity, and stability of nano-materials. While previous studies have highlighted the macroscopic description of synthesis processes, there is less understanding as to whether individual atomic-scale processes possess any significant role in controlling the growth of nano-products. The presented molecular static and dynamic simulations are the first simulations to understand the underlying atomistic mechanisms of the experimentally determined growth modes of metal nano-clusters. Our simulations on Ag nano-cubes confirm that metal nano-seeds enclosed by {100} facets can be directed to grow into octopods, concave, truncated cubes, and cuboctahedra when the relative surface diffusion and deposition rates are finely tuned. Here we further showed that atomic level processes play a significant role in controllably fine tuning the two competing rates: surface diffusion and deposition. We also found that regardless of temperature and the initial shape of the nano-seeds, the exchange of the deposited atom with an edge atom of the seed is by far the governing diffusion mechanism between the neighboring facets, and thus is the leading atomistic process determining the conditions for fine tuning of macroscopic processes.

  15. In Situ Synthesis of Metal Nanoparticle Embedded Hybrid Soft Nanomaterials.

    PubMed

    Divya, Kizhmuri P; Miroshnikov, Mikhail; Dutta, Debjit; Vemula, Praveen Kumar; Ajayan, Pulickel M; John, George

    2016-09-20

    The allure of integrating the tunable properties of soft nanomaterials with the unique optical and electronic properties of metal nanoparticles has led to the development of organic-inorganic hybrid nanomaterials. A promising method for the synthesis of such organic-inorganic hybrid nanomaterials is afforded by the in situ generation of metal nanoparticles within a host organic template. Due to their tunable surface morphology and porosity, soft organic materials such as gels, liquid crystals, and polymers that are derived from various synthetic or natural compounds can act as templates for the synthesis of metal nanoparticles of different shapes and sizes. This method provides stabilization to the metal nanoparticles by the organic soft material and advantageously precludes the use of external reducing or capping agents in many instances. In this Account, we exemplify the green chemistry approach for synthesizing these materials, both in the choice of gelators as soft material frameworks and in the reduction mechanisms that generate the metal nanoparticles. Established herein is the core design principle centered on conceiving multifaceted amphiphilic soft materials that possess the ability to self-assemble and reduce metal ions into nanoparticles. Furthermore, these soft materials stabilize the in situ generated metal nanoparticles and retain their self-assembly ability to generate metal nanoparticle embedded homogeneous organic-inorganic hybrid materials. We discuss a remarkable example of vegetable-based drying oils as host templates for metal ions, resulting in the synthesis of novel hybrid nanomaterials. The synthesis of metal nanoparticles via polymers and self-assembled materials fabricated via cardanol (a bioorganic monomer derived from cashew nut shell liquid) are also explored in this Account. The organic-inorganic hybrid structures were characterized by several techniques such as UV-visible spectroscopy, scanning electron microscopy (SEM), and

  16. Fabrication of Metal Nanoparticles from Fungi and Metal Salts: Scope and Application

    NASA Astrophysics Data System (ADS)

    Siddiqi, Khwaja Salahuddin; Husen, Azamal

    2016-02-01

    Fungi secrete enzymes and proteins as reducing agents which can be used for the synthesis of metal nanoparticles from metal salts. Large-scale production of nanoparticles from diverse fungal strains has great potential since they can be grown even in vitro. In recent years, various approaches have been made to maximize the yield of nanoparticles of varying shape, size, and stability. They have been characterized by thermogravimetric analysis, X-ray diffractometry, SEM/TEM, zeta potential measurements, UV-vis, and Fourier transform infrared (FTIR) spectroscopy. In this review, we focus on the biogenic synthesis of metal nanoparticles by fungi to explore the chemistry of their formation extracellularly and intracellularly. Emphasis has been given to the potential of metal nanoparticles as an antimicrobial agent to inhibit the growth of pathogenic fungi, and on other potential applications.

  17. Optical forces on metallic nanoparticles induced by a photonic nanojet.

    PubMed

    Cui, Xudong; Erni, Daniel; Hafner, Christian

    2008-09-01

    We investigate the optical forces acting on a metallic nanoparticle when the nanoparticle is introduced within a photonic nanojet (PNJ). Optical forces at resonance and off-resonance conditions of the microcylinder or nanoparticle are investigated. Under proper polarization conditions, the whispering gallery mode can be excited in the microcylinder, even at off resonance provided that scattering from the nanoparticle is strong enough. The optical forces are enhanced at resonance either of the single microcylinder or of the nanoparticle with respect to the forces under off-resonant illuminations. We found that the optical forces acting on the nanoparticle depend strongly on the dielectric permittivity of the nanoparticle, as well as on the intensity and the beam width of the PNJ. Hence, metallic sub-wavelength nanoparticle can be efficiently trapped by PNJs. Furthermore, the PNJ's attractive force can be simply changed to a repulsive force by varying the polarization of the incident beam. The changed sign of the force is related to the particle's polarizability and the excitation of localized surface plasmons in the nanoparticle.

  18. Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications.

    PubMed

    Sanpo, Noppakun; Berndt, Christopher C; Wen, Cuie; Wang, James

    2013-03-01

    Transition metals of copper, zinc, chromium and nickel were substituted into cobalt ferrite nanoparticles via a sol-gel route using citric acid as a chelating agent. The microstructure and elemental composition were characterized using scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. Phase analysis of transition metal-substituted cobalt ferrite nanoparticles was performed via X-ray diffraction. Surface wettability was measured using the water contact angle technique. The surface roughness of all nanoparticles was measured using profilometry. Moreover, thermogravimetric analysis and differential scanning calorimetry were performed to determine the temperature at which the decomposition and oxidation of the chelating agents took place. Results indicated that the substitution of transition metals influences strongly the microstructure, crystal structure and antibacterial property of the cobalt ferrite nanoparticles.

  19. Optical absorption enhancement of hybrid-plasmonic-based metal-semiconductor-metal photodetector incorporating metal nanogratings and embedded metal nanoparticles.

    PubMed

    Tan, Chee Leong; Karar, Ayman; Alameh, Kamal; Lee, Yong Tak

    2013-01-28

    We propose and numerically demonstrate a high absorption hybrid-plasmonic-based metal semiconductor metal photodetector (MSM-PD) comprising metal nanogratings, a subwavelength slit and amorphous silicon or germanium embedded metal nanoparticles (NPs). Simulation results show that by optimizing the metal nanograting parameters, the subwavelength slit and the embedded metal NPs, a 1.3 order of magnitude increase in electric field is attained, leading to 28-fold absorption enhancement, in comparison with conventional MSM-PD structures. This is 3.5 times better than the absorption of surface plasmon polariton (SPP) based MSM-PD structures employing metal nanogratings and a subwavelength slit. This absorption enhancement is due to the ability of the embedded metal NPs to enhance their optical absorption and scattering properties through light-stimulated resonance aided by the conduction electrons of the NPs.

  20. Shape-controlled syntheses of metal oxide nanoparticles by the introduction of rare-earth metals.

    PubMed

    Song, Hyo-Won; Kim, Na-Young; Park, Ji-Eun; Ko, Jae-Hyeon; Hickey, Robert J; Kim, Yong-Hyun; Park, So-Jung

    2017-02-23

    Here, we report the size- and shape-controlled synthesis of metal oxide nanoparticles through the introduction of rare-earth metals. The addition of gadolinium oleate in the synthesis of iron oxide nanoparticles induced sphere-to-cube shape changes of nanoparticles and generated iron oxide nanocubes coated with gadolinium. Based on experimental investigations and density functional theory (DFT) calculations, we attribute the shape change to the facet-selective binding of undecomposed gadolinium oleates. While many previous studies on the shape-controlled syntheses of nanoparticles rely on the stabilization of specific crystal facets by anionic surfactants or their decomposition products, this study shows that the interaction between growing transition metal oxide nanoparticles and rare-earth metal complexes can be used as a robust new mechanism for shape-controlled syntheses. Indeed, we demonstrated that this approach was applicable to other transition metal oxide nanoparticles (i.e., manganese oxide and manganese ferrite) and rare earth metals (i.e., gadolinium, europium, and cerium). This study also demonstrates that the nature of metal-ligand bonding can play an important role in the shape control of nanoparticles.

  1. Toxicity of heavy metals and metal-containing nanoparticles on plants.

    PubMed

    Mustafa, Ghazala; Komatsu, Setsuko

    2016-08-01

    Plants are under the continual threat of changing climatic conditions that are associated with various types of abiotic stresses. In particular, heavy metal contamination is a major environmental concern that restricts plant growth. Plants absorb heavy metals along with essential elements from the soil and have evolved different strategies to cope with the accumulation of heavy metals. The use of proteomic techniques is an effective approach to investigate and identify the biological mechanisms and pathways affected by heavy metals and metal-containing nanoparticles. The present review focuses on recent advances and summarizes the results from proteomic studies aimed at understanding the response mechanisms of plants under heavy metal and metal-containing nanoparticle stress. Transport of heavy metal ions is regulated through the cell wall and plasma membrane and then sequestered in the vacuole. In addition, the role of different metal chelators involved in the detoxification and sequestration of heavy metals is critically reviewed, and changes in protein profiles of plants exposed to metal-containing nanoparticles are discussed in detail. Finally, strategies for gaining new insights into plant tolerance mechanisms to heavy metal and metal-containing nanoparticle stress are presented. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.

  2. Dirac-like plasmons in honeycomb lattices of metallic nanoparticles.

    PubMed

    Weick, Guillaume; Woollacott, Claire; Barnes, William L; Hess, Ortwin; Mariani, Eros

    2013-03-08

    We consider a two-dimensional honeycomb lattice of metallic nanoparticles, each supporting a localized surface plasmon, and study the quantum properties of the collective plasmons resulting from the near-field dipolar interaction between the nanoparticles. We analytically investigate the dispersion, the effective Hamiltonian, and the eigenstates of the collective plasmons for an arbitrary orientation of the individual dipole moments. When the polarization points close to the normal to the plane, the spectrum presents Dirac cones, similar to those present in the electronic band structure of graphene. We derive the effective Dirac Hamiltonian for the collective plasmons and show that the corresponding spinor eigenstates represent Dirac-like massless bosonic excitations that present similar effects to electrons in graphene, such as a nontrivial Berry phase and the absence of backscattering off smooth inhomogeneities. We further discuss how one can manipulate the Dirac points in the Brillouin zone and open a gap in the collective plasmon dispersion by modifying the polarization of the localized surface plasmons, paving the way for a fully tunable plasmonic analogue of graphene.

  3. Enhanced Antimicrobial Activity Of Antibiotics Mixed With Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Kumar, Neeraj; Bhanjana, Gaurav; Thakur, Rajesh; Dilbaghi, Neeraj

    2011-12-01

    Current producers of antimicrobial technology have a long lasting, environmentally safe, non-leaching, water soluble solution that will eventually replace all poisons and heavy metals. The transition metal ions inevitably exist as metal complexes in biological systems by interaction with the numerous molecules possessing groupings capable of complexation or chelation. Nanoparticles of metal oxides offer a wide variety of potential applications in medicine due to the unprecedented advances in nanobiotechnology research. the bacterial action of antibiotics like penicillin, erythryomycin, ampicillin, streptomycin, kanamycin etc. and that of a mixture of antibiotics and metal and metal oxide nanoparticles like zinc oxide, zirconium, silver and gold on microbes was examined by the agar-well-diffusion method, enumeration of colony-forming units (CFU) and turbidimetry.

  4. Plasmonic and Catalytic Properties of Shape-Controlled Metal Nanoparticles and their Assemblies

    NASA Astrophysics Data System (ADS)

    Klinkova, Anna

    This work explores the effect of the shape of metal nanoscale building blocks on the structural, optical, and plasmonic properties of their assemblies, as well as on the catalytic performance and hydrogen interactions of individual nanoparticles with specific shapes. In Chapter 3, I describe the linear self-assembly of bifunctional metal nanoparticles in the presence of monofunctional nanoscale chain stoppers. Chain stoppers with controlled reactivity were synthesized allowing control over the morphology of the self-assembled structures. Analysis of the degree of polymerization of linear nanostructures provided information about self-assembly kinetics, side reactions, and the distribution of species in the reaction. This work facilitated testing of theoretical models developed for molecular polymerization and fabrication of linear nanoparticle assemblies with controllable properties. In Chapter 4, I developed linear solution-based self-assembly of cubic metal nanoparticles, examined the morphology of the nanocube chains and their optical characteristics. In comparison with chains of nanospheres with similar dimensions, compositions, and surface chemistry, predominant face-to-face assembly of nanocubes leads to a larger volume of plasmonic hot spots, uniform electromagnetic field enhancement in the gaps between nanocubes, and a new coupling mode for nanocube chains, associated with Fabry-Perot structure. In Chapter 5, I investigated plasmon-mediated enhancement of the catalysis by palladium-based nanoparticles with different shapes and composition, bearing surface plasmon resonance in visible range. The photocatalytic activity of palladium-based nanoparticles depended more on their shape than internal structure. These findings pave the way for the design of palladium nanocatalysts with enhanced performance acting under visible light illumination. In Chapter 6, I developed a facile scaled-up synthesis of monodisperse palladium nanoparticles with various shapes

  5. Manipulation of resonant metallic nanoparticle using 4Pi focusing system.

    PubMed

    Wang, Xiaoyan; Rui, Guanghao; Gong, Liping; Gu, Bing; Cui, Yiping

    2016-10-17

    Metallic nanoparticles have fascinated scientists for over a century and are now heavily utilized in biomedical sciences and engineering. Due to its noncontact and holding nature, optical trapping is suitable to be combined with various applications to manipulate metallic nanoparticles. However, stable trapping of resonant metallic nanoparticles remains challenging due to the strong axial scattering force and severe optical heating effect. In this work, we propose novel optical tweezers constructed around a 4Pi focusing system that is capable of manipulating metallic nanoparticles even under the resonant condition. By properly modulating the spatial distribution of the illumination and adjusting the focusing condition, specific numbers of spherical spots with controllable locations can be generated in the focal region, providing multiple probes to interrogate the sample properties. Besides, stable three-dimensional optical trapping can be formed since the axial scattering force is canceled by the counter-propagating light. The greatly enhanced optical force arising from the extremely high focusing efficiency of the 4Pi focusing system enables to avoid the overheating effect by reducing the input power without destroying the mechanical stability. Moreover, complex motion trajectory of the metallic nanoparticles can be realized via introducing specific phase modulation to the illumination sequentially. The technique demonstrated in this work may open up new avenues for optical manipulation and their applications in various scientific fields.

  6. Physicochemical model of detonation synthesis of nanoparticles from metal carboxylates

    NASA Astrophysics Data System (ADS)

    Tolochko, B. P.; Chernyshev, A. P.; Ten, K. A.; Pruuel, E. R.; Zhogin, I. L.; Zubkov, P. I.; Lyakhov, N. Z.; Luk'yanchikov, L. A.; Sheromov, M. A.

    2008-02-01

    We have shown previously that when metal carboxylates are subjected to a shock-wave action, diamond nanoparticles and nanoparticles of metals (Ag, Bi, Co, Fe, Pb) are formed and their characteristic size is about 30-200 Å. The metal nanoparticles formed are covered by an amorphous-carbon layer up to 20 Å thick. In this work we put forward a physicochemical model of the formation of diamond and metal nanoparticles from metal carboxylates upon shock-wave action. The energy released upon detonation inside the precursor is lower than in regions not occupied by the stearates. The characteristic time of temperature equalization has been estimated to be on the order of ˜10-3 s, which is greater by a factor of ˜103 than the characteristic reaction time. Due to the adiabatic nature of the processes occurring, the typical temperature of a "particle" will be lower than the temperature of the surrounding medium. In the framework of the model suggested, it has been assumed that the growth of metal clusters should occur by the diffusion mechanism; i.e., the "building material" is supplied through diffusion. The calculation using our previous experimental data on the reaction time and average size of metal particles has shown that the diffusion properties of the medium in which the metal nanoparticles are formed are close to those of the liquid state of the substance. The temperature and pressure under detonation conditions markedly exceed the analogous parameters characteristic of experiments on the thermodestruction of metal carboxylates. The small time of existence of the reaction mixture is compensated by the high mobility and concentration of reagents.

  7. Rebellious Rhapsody: Metal, Rap, Community, and Individuation.

    PubMed

    Reddick, Brad H.; Beresin, Eugene V.

    2002-03-01

    Music can be a powerful force and tool in the life of an adolescent. It forms a social context and informs the adolescent about the adult world through the lens of artists' lives, language, and presence as models. Allegiance to a form of music is allegiance to those who make it, a way to friendship and kinship, and a road to personal identity through belonging. In their relationships formed through music, teens can create a sense of community that may be lacking in the life of family. The rebellious music of earlier generations has given rise to complex musical genres, rap and heavy metal, that are strong in defiance and controversial in their violent and sexual content. What do these musical affiliations tell us about certain segments of adolescent development and culture? The authors consider this question by exploring the form and content of the music while using it to illuminate psychodynamic and psychosocial aspects of adolescent development.

  8. Photothermal effects of plasmonic metal nanoparticles in a fluid

    NASA Astrophysics Data System (ADS)

    Norton, Stephen J.; Vo-Dinh, Tuan

    2016-02-01

    There is a strong interest in the use of plasmonic metal nanoparticles in medical applications involving photothermal therapy. In this study, the problem of calculating the temperature elevation of a fluid arising from the absorption of light by a suspension of plasmonic nanoparticles is examined. The dependence of this temperature increase on the absorption cross section of nanoparticles of different shapes, in particular, nanospheres, nanospheroids, and nanostars, is studied. The nanoparticles behave as point sources of heat production and the time-dependent heat transfer equation is solved assuming that the nanoparticles are confined to a limited region. From this solution, the steady-state temperature of the fluid medium can be calculated and the time constant to achieve this temperature determined.

  9. Incorporation of metal nanoparticles into wood substrate and methods

    SciTech Connect

    Rector, Kirk D; Lucas, Marcel

    2015-11-04

    Metal nanoparticles were incorporated into wood. Ionic liquids were used to expand the wood cell wall structure for nanoparticle incorporation into the cell wall structure. Nanoparticles of elemental gold or silver were found to be effective surface enhanced Raman spectroscopy (SERS) imaging contrast or sensing agents. Nanoparticles of elemental iron were found to be efficient microwave absorbers and caused localized heating for disrupting the integrity of the lignocellulosic matrix. Controls suggest that the localized heating around the iron nanoparticles reduces losses of cellulose in the form of water, volatiles and CO.sub.2. The ionic liquid is needed during the incorporation process at room temperature. The use of small amounts of ionic liquid combined with the absence of an ionic liquid purification step and a lower energy and water use are expected to reduce costs in an up-scaled pretreatment process.

  10. Fluorescent carbon nanoparticles for the fluorescent detection of metal ions.

    PubMed

    Guo, Yongming; Zhang, Lianfeng; Zhang, Shushen; Yang, Yan; Chen, Xihan; Zhang, Mingchao

    2015-01-15

    Fluorescent carbon nanoparticles (F-CNPs) as a new kind of fluorescent nanoparticles, have recently attracted considerable research interest in a wide range of applications due to their low-cost and good biocompatibility. The fluorescent detection of metal ions is one of the most important applications. In this review, we first present the general detection mechanism of F-CNPs for the fluorescent detection of metal ions, including fluorescence turn-off, fluorescence turn-on, fluorescence resonance energy transfer (FRET) and ratiometric response. We then focus on the recent advances of F-CNPs in the fluorescent detection of metal ions, including Hg(2+), Cu(2+), Fe(3+), and other metal ions. Further, we discuss the research trends and future prospects of F-CNPs. We envision that more novel F-CNPs-based nanosensors with more accuracy and robustness will be widely used to assay and remove various metal ions, and there will be more practical applications in coming years.

  11. Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity.

    PubMed

    Golinska, Patrycja; Wypij, Magdalena; Ingle, Avinash P; Gupta, Indarchand; Dahm, Hanna; Rai, Mahendra

    2014-10-01

    Biogenic synthesis of metal nanoparticles has been well proved by using bacteria, fungi, algae, actinomycetes, plants, etc. Among the different microorganisms used for the synthesis of metal nanoparticles, actinomycetes are less known. Although, there are reports, which have shown that actinomycetes are efficient candidates for the production of metal nanoparticles both intracellularly and extracellularly. The nanoparticles synthesized by the members of actinomycetes present good polydispersity and stability and possess significant biocidal activities against various pathogens. The present review focuses on biological synthesis of metal nanoparticles and their application in medicine. In addition, the toxicity of these biogenic metal nanoparticles to human beings and environment has also been discussed.

  12. Facile manipulation of individual carbon nanotubes assisted by inorganic nanoparticles.

    PubMed

    Zhang, Rufan; Ning, Zhiyuan; Zhang, Yingying; Xie, Huanhuan; Zhang, Qiang; Qian, Weizhong; Chen, Qing; Wei, Fei

    2013-07-21

    Carbon nanotubes (CNTs) are promising building blocks for nanodevices owing to their superior electrical, thermal and mechanical properties. One of the key issues for their study and application is the efficient location, transfer and manipulation of individual CNTs. In this contribution, we show that the manipulation of individual suspended CNTs has been carried out on the macroscale under low magnification, using inorganic nanoparticles (NPs) as indicators. Individual ultralong CNTs can be stretched, cut, and transferred to other substrates for further characterization. Complicated CNT structures were fabricated under optical microscopes. The inorganic NPs also facilitate the manipulation and characterization of individual CNTs under a scanning electron microscope with low magnification. Additionally, the irregular NPs deposited on suspended CNTs can also make the outer shell of the suspended CNTs display torsion or rotation around the inner shells when placed in a flow of gas, making the fabrication of CNT-NP-hybrid-based nanodevices feasible. Our results demonstrate the extraordinary capability of this manipulation technique for individual CNTs, enabled by decoration with inorganic NPs.

  13. Structure Evolution of Metal Nanoparticles in Water Environment

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Zhu, Beien

    Metal nanoparticles have drawn extensive attentions in materials science due to their widespread applications in electronics, engineering and catalysis. A very fundamental question is their structure evolution and surface segregation. Many recent observations have shown that reactive gases or supports may have strong effects on the morphology change and surface segregation. However, the effect of water--the most common solvent and environment--has not received enough attention. Here, we will give two examples to show water adsorption could induce the morphology change and strong surface segregation tendencies for the metal nanoparticles. This finding not only prompts us to re-examine the potential effects of water on metal nanoparticles, but would be also very helpful as a guide for the further theoretical and experimental studies in this field.

  14. Precipitation of heterogeneous nanostructures: Metal nanoparticles and dielectric nanocrystallites

    SciTech Connect

    Masai, Hirokazu; Takahashi, Yoshihiro; Fujiwara, Takumi; Tokuda, Yomei; Yoko, Toshinobu

    2010-07-15

    Heterogeneous precipitation of nanocrystallites of metallic Bi and anatase was observed in CaO-Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-TiO{sub 2} glass-ceramics. Addition of AlN reduced the Bi{sub 2}O{sub 3} to Bi metal nanoparticles, which were uniformly dispersed in the glass. After heat-treatment of the Bi-precipitated glass around the glass transition temperature, nanocrystalline anatase precipitated out without aggregation of the Bi metal particles. It was found that the anatase nanocrystal size was affected by the distance between a nanocrystal and a precipitated Bi nanoparticle. The glass-ceramic produced is a functional material containing a random dispersion of different types of nanoparticles with different dielectric constants.

  15. Manipulation of metallic nanoparticle with evanescent vortex Bessel beam.

    PubMed

    Rui, Guanghao; Wang, Xiaoyan; Cui, Yiping

    2015-10-05

    In this work, we propose a novel strategy to optically trap and manipulate metallic nanoparticles using evanescent vortex Bessel beam (EVBB). A versatile method is presented to generate evanescent Bessel beam with tunable optical angular momentum by focusing a radially polarized vortex beam onto a one-dimensional photonics band gap structure. The behavior of a metallic nanoparticle in the EVBB is numerically studied. We show that such particle can be stably trapped near the surface. The orbital angular momentum drives the metallic nanoparticle to orbit around the beam axis, and the direction of the orbital motion is controlled by the handedness of the helical phase front. The technique demonstrated in this work may open up new avenues for optical manipulation, and the non-contact tunable orbiting dynamics of the trapped particle may find important applications in higher resolution imaging techniques.

  16. Optical studies of ion-beam synthesized metal alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Magudapathy, P.; Srivatsava, S. K.; Gangopadhyay, P.; Amirthapandian, S.; Sairam, T. N.; Panigrahi, B. K.

    2015-06-01

    AuxAg1-x alloy nanoparticles with tunable surface plasmon resonance (SPR) have been synthesized on a silica glass substrate. A small Au foil on an Ag foil is irradiated as target substrates such that ion beam falls on both Ag foil and Au foils. Silica slides are kept at an angle ˜45° with respect to the metallic foils. While irradiating the metallic foils with 100 keV Ar+ ions, sputtered Au and Ag atoms get deposited on the silica-glass. In this configuration the foils have been irradiated by Ar+ ions to various fluences at room temperature and the sputtered species are collected on silica slides. Formation of AuxAg1-x nanoparticles has been confirmed from the optical absorption measurements. With respect to the exposure area of Au and Ag foils to the ion beam, the SPR peak position varies from 450 to 500 nm. Green photoluminescence has been observed from these alloy metal nanoparticles.

  17. Silver-copper alloy nanoparticles for metal enhanced luminescence

    NASA Astrophysics Data System (ADS)

    Chowdhury, Sanchari; Bhethanabotla, Venkat R.; Sen, Rajan

    2009-09-01

    Large metal enhanced luminescence was realized at the vicinity of easily fabricated Ag-Cu alloy nanoparticles upon tuning of their surface plasmon resonance spectra by changing only one experimental variable—the annealing temperature, for maximum spectral overlap with the emission and excitation spectra of the luminophores. We observed strong emission enhancement of luminophores (141.48±19.20 times for Alexa Fluor 488 and 23.91±12.37 times for Alexa Fluor 594) at the vicinity of these Ag-Cu nanoparticles, which is significantly larger than for pure Ag nanoparticles. We present theoretical calculations to provide insights into these experimental findings.

  18. Removal of Metal Nanoparticles Colloidal Solutions by Water Plants

    NASA Astrophysics Data System (ADS)

    Olkhovych, Olga; Svietlova, Nataliia; Konotop, Yevheniia; Karaushu, Olena; Hrechishkina, Svitlana

    2016-11-01

    The ability of seven species of aquatic plants ( Elodea canadensis, Najas guadelupensis, Vallisneria spiralis L., Riccia fluitans L., Limnobium laevigatum, Pistia stratiotes L., and Salvinia natans L.) to absorb metal nanoparticles from colloidal solutions was studied. It was established that investigated aquatic plants have a high capacity for removal of metal nanoparticles from aqueous solution (30-100%) which indicates their high phytoremediation potential. Analysis of the water samples content for elements including the mixture of colloidal solutions of metal nanoparticles (Mn, Cu, Zn, Ag + Ag2O) before and after exposure to plants showed no significant differences when using submerged or free-floating hydrophytes so-called pleuston. However, it was found that the presence of submerged hydrophytes in aqueous medium ( E. canadensis, N. guadelupensis, V. spiralis L., and R. fluitans L.) and significant changes in the content of photosynthetic pigments, unlike free-floating hydrophytes ( L. laevigatum, P. stratiotes L., S. natans L.), had occur. Pleuston possesses higher potential for phytoremediation of contaminated water basins polluted by metal nanoparticles. In terms of removal of nanoparticles among studied free-floating hydrophytes, P. stratiotes L. and S. natans L. deserve on special attention.

  19. Laser fabrication of 2D and 3D metal nanoparticle structures and arrays.

    PubMed

    Kuznetsov, A I; Kiyan, R; Chichkov, B N

    2010-09-27

    A novel method for fabrication of 2D and 3D metal nanoparticle structures and arrays is proposed. This technique is based on laser-induced transfer of molten metal nanodroplets from thin metal films. Metal nanoparticles are produced by solidification of these nanodroplets. The size of the transferred nanoparticles can be controllably changed in the range from 180 nm to 1500 nm. Several examples of complex 2D and 3D microstructures generated form gold nanoparticles are demonstrated.

  20. Confined Growth of Metal Nanoparticles Within 3D DNA Origami Molds.

    PubMed

    Sun, Wei; Shen, Jie

    2017-01-01

    Manufacturing prescribed shaped metal nanoparticles promises emerging applications in plasmonics, energy, and disease diagnosis. The key to the shape-controllable synthesis is generating local environments encoded with prescribed geometrical information. Here, we describe a general strategy that uses 3D self-assembled DNA origami as mold to confine the casting growth of metal nanoparticle. By transferring the shape information from DNA cavities to metal nanoparticles, metal nanoparticles with prescribed shapes, dimensions, and surface binding features could be rationally designed and synthesized.

  1. Nonlinear optical susceptibilities of semiconductor quantum dot - metal nanoparticle hybrids

    NASA Astrophysics Data System (ADS)

    Terzis, A. F.; Kosionis, S. G.; Boviatsis, J.; Paspalakis, E.

    2016-03-01

    We theoretically study nonlinear optical effects of a semiconductor quantum dot and a spherical metal nanoparticle coupled via long-range Coulomb interaction. We solve the relevant density matrix equations in steady state and use proper perturbation theory to obtain closed-form analytical expressions for the nonlinear susceptibilities of the quantum dot, the metal nanoparticle, and the entire coupled system, up to fifth order. We also investigate the influence of the material of the semiconductor and the impact of the interparticle distance on the form of the spectra of the nonlinear susceptibilities.

  2. Radiation damping in metal nanoparticle pairs.

    PubMed

    Dahmen, Christian; Schmidt, Benjamin; von Plessen, Gero

    2007-02-01

    The radiation damping rate of plasmon resonances in pairs of spherical gold nanoparticles is calculated. The radiative line width of the plasmon resonance indicates significant far-field coupling between the nanoparticles over distances many times the particle diameter. The radiation damping of the coupled particle-plasmon mode alternates between superradiant and subradiant behavior when the particle spacing is varied. At small particle spacings where near-field coupling occurs, the radiation damping rate lies far below that of an isolated particle.

  3. The electrochemisty of surface modified <10 nm metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Roberts, Joseph J. P.

    Chapter One provides a general introduction of the research on metal oxide nanoparticles (MOx), highlighting their synthesis, surface modification, and functionalization. Emphasis is given to the different synthetic route for producing small (<10 nm) MOx nanoparticles with narrow size distributions. Different methods for modifying their surface with small organic molecules are discussed with focus given to silanes and phosphates. Furthermore, functionalizing surface modified nanoparticles for specific functions is addressed, with markers for analytically relevant nanoscale quantification being the primary focus. Chapter Two describes in detail the thermal degradation synthesis used for the generation of small MOx nanoparticles. It demonstrates the versatile of the synthesis by successfully synthesizing ZrO 2 and IrO2 nanoparticles. Preliminary work involving the formation of Bi2S3, Bi2O3, and RuO2 nanomaterials is also addressed. The solvothermal synthesis of indium tin oxide (ITO) is also shown for comparison to ITO produced by thermal degradation. Chapter Three details the surface modification of ITO nanoparticles and subsequent electrochemical tagging with a ferrocene moiety. ITO nanoparticles were synthesized via thermal degradation. These nanoparticles underwent a ligand exchange with a covalently binding mondentate silane terminated with a primary amine. Acyl chloride coupling between the amine and chlorocarbonylferrocene provided an electrochemical tag to quantify the level of surface modification. Electrochemisty of the quasi-diffusing nanoparticles was evaluated via cyclic voltammetry (CV), chronoamperometry (CA), and mircodisk electrode (microE) experiments. Chapter Four investigates spectroscopic tagging of ITO and ZrO2 nanoparticles as well as electrochemical tagging of ZrO 2 and IrO2 nanoparticles. An unbound azo-dye was synthesized and attempts were made to attach the dye to the surface of ITO nanoparticles. Imine couple between a spectroscopic tag

  4. Metal nanoparticles in the presence of lipopolysaccharides trigger the onset of metal allergy in mice

    NASA Astrophysics Data System (ADS)

    Hirai, Toshiro; Yoshioka, Yasuo; Izumi, Natsumi; Ichihashi, Ko-Ichi; Handa, Takayuki; Nishijima, Nobuo; Uemura, Eiichiro; Sagami, Ko-Ichi; Takahashi, Hideki; Yamaguchi, Manami; Nagano, Kazuya; Mukai, Yohei; Kamada, Haruhiko; Tsunoda, Shin-Ichi; Ishii, Ken J.; Higashisaka, Kazuma; Tsutsumi, Yasuo

    2016-09-01

    Many people suffer from metal allergy, and the recently demonstrated presence of naturally occurring metal nanoparticles in our environment could present a new candidate for inducing metal allergy. Here, we show that mice pretreated with silver nanoparticles (nAg) and lipopolysaccharides, but not with the silver ions that are thought to cause allergies, developed allergic inflammation in response to the silver. nAg-induced acquired immune responses depended on CD4+ T cells and elicited IL-17A-mediated inflammation, similar to that observed in human metal allergy. Nickel nanoparticles also caused sensitization in the mice, whereas gold and silica nanoparticles, which are minimally ionizable, did not. Quantitative analysis of the silver distribution suggested that small nAg (≤10 nm) transferred to the draining lymph node and released ions more readily than large nAg (>10 nm). These results suggest that metal nanoparticles served as ion carriers to enable metal sensitization. Our data demonstrate a potentially new trigger for metal allergy.

  5. Noble Metal Nanoparticle-loaded Mesoporous Oxide Microspheres for Catalysis

    NASA Astrophysics Data System (ADS)

    Jin, Zhao

    Noble metal nanoparticles/nanocrystals have attracted much attention as catalysts due to their unique characteristics, including high surface areas and well-controlled facets, which are not often possessed by their bulk counterparts. To avoid the loss of their catalytic activities brought about by their size and shape changes during catalytic reactions, noble metal nanoparticles/nanocrystals are usually dispersed and supported finely on solid oxide supports to prevent agglomeration, nanoparticle growth, and therefore the decrease in the total surface area. Moreover, metal oxide supports can also play important roles in catalytic reactions through the synergistic interactions with loaded metal nanoparticles/nanocrystals. In this thesis, I use ultrasonic aerosol spray to produce hybrid microspheres that are composed of noble metal nanoparticles/nanocrystals embedded in mesoporous metal oxide matrices. The mesoporous metal oxide structure allows for the fast diffusion of reactants and products as well as confining and supporting noble metal nanoparticles. I will first describe my studies on noble metal-loaded mesoporous oxide microspheres as catalysts. Three types of noble metals (Au, Pt, Pd) and three types of metal oxide substrates (TiO2, ZrO2, Al 2O3) were selected, because they are widely used for practical catalytic applications involved in environmental cleaning, pollution control, petrochemical, and pharmaceutical syntheses. By considering every possible combination of the noble metals and oxide substrates, nine types of catalyst samples were produced. I characterized the structures of these catalysts, including their sizes, morphologies, crystallinity, and porosities, and their catalytic performances by using a representative reduction reaction from nitrobenzene to aminobenzene. Comparison of the catalytic results reveals the effects of the different noble metals, their incorporation amounts, and oxide substrates on the catalytic abilities. For this particular

  6. Absorption properties of metal-semiconductor hybrid nanoparticles.

    PubMed

    Shaviv, Ehud; Schubert, Olaf; Alves-Santos, Marcelo; Goldoni, Guido; Di Felice, Rosa; Vallée, Fabrice; Del Fatti, Natalia; Banin, Uri; Sönnichsen, Carsten

    2011-06-28

    The optical response of hybrid metal-semiconductor nanoparticles exhibits different behaviors due to the proximity between the disparate materials. For some hybrid systems, such as CdS-Au matchstick-shaped hybrids, the particles essentially retain the optical properties of their original components, with minor changes. Other systems, such as CdSe-Au dumbbell-shaped nanoparticles, exhibit significant change in the optical properties due to strong coupling between the two materials. Here, we study the absorption of these hybrids by comparing experimental results with simulations using the discrete dipole approximation method (DDA) employing dielectric functions of the bare components as inputs. For CdS-Au nanoparticles, the DDA simulation provides insights on the gold tip shape and its interface with the semiconductor, information that is difficult to acquire by experimental means alone. Furthermore, the qualitative agreement between DDA simulations and experimental data for CdS-Au implies that most effects influencing the absorption of this hybrid system are well described by local dielectric functions obtained separately for bare gold and CdS nanoparticles. For dumbbell shaped CdSe-Au, we find a shortcoming of the electrodynamic model, as it does not predict the "washing out" of the optical features of the semiconductor and the metal observed experimentally. The difference between experiment and theory is ascribed to strong interaction of the metal and semiconductor excitations, which spectrally overlap in the CdSe case. The present study exemplifies the employment of theoretical approaches used to describe the optical properties of semiconductors and metal nanoparticles, to achieve better understanding of the behavior of metal-semiconductor hybrid nanoparticles.

  7. The role of metal nanoparticles and nanonetworks in alloy degradation.

    PubMed

    Zeng, Z; Natesan, K; Cai, Z; Darling, S B

    2008-08-01

    Oxide scale, which is essential to protect structural alloys from high-temperature degradation such as oxidation, carburization and metal dusting, is usually considered to consist simply of oxide phases. Here, we report on a nanobeam X-ray and magnetic force microscopy investigation that reveals that the oxide scale actually consists of a mixture of oxide materials and metal nanoparticles. The metal nanoparticles self-assemble into nanonetworks, forming continuous channels for carbon transport through the oxide scales. To avoid the formation of these metallic particles in the oxide scale, alloys must develop a scale without spinel phase. We have designed a novel alloy that has been tested in a high-carbon-activity environment. Our results show that the incubation time for carbon transport through the oxide scale of the new alloy is more than an order of magnitude longer compared with commercial alloys with similar chromium content.

  8. Low-temperature metallic alloying of copper and silver nanoparticles with gold nanoparticles through digestive ripening.

    PubMed

    Smetana, Alexander B; Klabunde, Kenneth J; Sorensen, Christopher M; Ponce, Audaldo A; Mwale, Benny

    2006-02-09

    We describe a remarkable and simple alloying procedure in which noble metal intermetallic nanoparticles are produced in gram quantities via digestive ripening. This process involves mixing of separately prepared colloids of pure Au and pure Ag or Cu particles and then heating in the presence of an alkanethiol under reflux. The result after 1 h is alloy nanoparticles. Particles synthesized according to this procedure were characterized by UV-vis spectroscopy, EDX analysis, and high-resolution electron microscopy, the results of which confirm the formation of alloy particles. The particles of 5.6+/-0.5 nm diameter for Au/Ag and 4.8+/-1.0 nm diameter for Cu/Au undergo facile self-assembly to form 3-D superlattice ordering. It appears that during this digestive ripening process, the organic ligands display an extraordinary chemistry in which atom transfer between atomically pure copper, silver, and gold metal nanoparticles yields monodisperse alloy nanoparticles.

  9. Oscillatory characteristics of metallic nanoparticles inside lipid nanotubes

    NASA Astrophysics Data System (ADS)

    Sadeghi, Fatemeh; Ansari, Reza; Darvizeh, Mansour

    2015-12-01

    This study is concerned with the oscillatory behavior of metallic nanoparticles, and in particular silver and gold nanoparticles, inside lipid nanotubes (LNTs) using the continuum approximation along with the 6-12 Lennard-Jones (LJ) potential function. The nanoparticle is modeled as a dense sphere and the LNT is assumed to be comprised of six layers including two head groups, two intermediate layers and two tail groups. To evaluate van der Waals (vdW) interactions, analytical expressions are first derived through undertaking surface and volume integrals which are then validated by a fully numerical scheme based on the differential quadrature (DQ) technique. Using the actual force distribution between the two interacting molecules, the equation of motion is directly solved utilizing the Runge-Kutta numerical integration scheme to arrive at the time history of displacement and velocity of the inner core. Also, a semi-analytical expression incorporating both geometrical parameters and initial conditions is introduced for the precise evaluation of oscillation frequency. A comprehensive study is conducted to gain an insight into the influences of nanoparticle radius, LNT length, head and tail group thicknesses and initial conditions on the oscillatory behavior of the metallic nanoparticles inside LNTs. It is found that the escape velocity and oscillation frequency of silver nanoparticles are higher than those of gold ones. It is further shown that the oscillation frequency is less affected by the tail group thickness when compared to the head group thickness.

  10. Improving proton therapy by metal-containing nanoparticles: nanoscale insights

    PubMed Central

    Schlathölter, Thomas; Eustache, Pierre; Porcel, Erika; Salado, Daniela; Stefancikova, Lenka; Tillement, Olivier; Lux, Francois; Mowat, Pierre; Biegun, Aleksandra K; van Goethem, Marc-Jan; Remita, Hynd; Lacombe, Sandrine

    2016-01-01

    The use of nanoparticles to enhance the effect of radiation-based cancer treatments is a growing field of study and recently, even nanoparticle-induced improvement of proton therapy performance has been investigated. Aiming at a clinical implementation of this approach, it is essential to characterize the mechanisms underlying the synergistic effects of nanoparticles combined with proton irradiation. In this study, we investigated the effect of platinum- and gadolinium-based nanoparticles on the nanoscale damage induced by a proton beam of therapeutically relevant energy (150 MeV) using plasmid DNA molecular probe. Two conditions of irradiation (0.44 and 3.6 keV/μm) were considered to mimic the beam properties at the entrance and at the end of the proton track. We demonstrate that the two metal-containing nanoparticles amplify, in particular, the induction of nanosize damages (>2 nm) which are most lethal for cells. More importantly, this effect is even more pronounced at the end of the proton track. This work gives a new insight into the underlying mechanisms on the nanoscale and indicates that the addition of metal-based nanoparticles is a promising strategy not only to increase the cell killing action of fast protons, but also to improve tumor targeting. PMID:27143877

  11. Site-specific deposition of single gold nanoparticles by individual growth in electrohydrodynamically-printed attoliter droplet reactors

    NASA Astrophysics Data System (ADS)

    Schneider, Julian; Rohner, Patrik; Galliker, Patrick; Raja, Shyamprasad N.; Pan, Ying; Tiwari, Manish K.; Poulikakos, Dimos

    2015-05-01

    Gold nanoparticles with unique electronic, optical and catalytic properties can be efficiently synthesized in colloidal suspensions and are of broad scientific and technical interest and utility. However, their orderly integration on functional surfaces and devices remains a challenge. Here we show that single gold nanoparticles can be directly grown in individually printed, stabilized metal-salt ink attoliter droplets, using a nanoscale electrohydrodynamic printing method with a stable high-frequency dripping mode. This enables controllable sessile droplet nanoreactor formation and sustenance on non-wetting substrates, despite simultaneous rapid evaporation. The single gold nanoparticles can be formed inside such reactors in situ or by subsequent thermal annealing and plasma ashing. With this non-contact technique, single particles with diameters tunable in the range of 5-35 nm and with narrow size distribution, high yield and alignment accuracy are generated on demand and patterned into arbitrary arrays. The nanoparticles feature good catalytic activity as shown by the exemplary growth of silicon nanowires from the nanoparticles and the etching of nanoholes by the printed nanoparticles.Gold nanoparticles with unique electronic, optical and catalytic properties can be efficiently synthesized in colloidal suspensions and are of broad scientific and technical interest and utility. However, their orderly integration on functional surfaces and devices remains a challenge. Here we show that single gold nanoparticles can be directly grown in individually printed, stabilized metal-salt ink attoliter droplets, using a nanoscale electrohydrodynamic printing method with a stable high-frequency dripping mode. This enables controllable sessile droplet nanoreactor formation and sustenance on non-wetting substrates, despite simultaneous rapid evaporation. The single gold nanoparticles can be formed inside such reactors in situ or by subsequent thermal annealing and plasma

  12. Resonance energy transfer: Dye to metal nanoparticles

    SciTech Connect

    Wari, M. N.; Pujar, G. H.; Inamdar, S. R.

    2015-06-24

    In the present study, surface energy transfer (SET) from Coumarin 540A (C540 A) to Gold nanoparticle (Au) is demonstrated. The observed results show pronounced effect on the photoluminescence intensity and shortening of the lifetime of Coumarin 540A upon interaction with the spherical gold nanoparticle, also there are measured effects on radiative rate of the dye. Experimental results are analyzed with fluorescence resonance energy transfer (FRET) and SET theories. The results obtained from distance-dependent quenching provide experimental evidence that the efficiency curve slope and distance of quenching is best modeled by surface energy transfer process.

  13. [Phytotoxicity of colloidal solutions of metal-containing nanoparticles].

    PubMed

    Konotop, Ie O; Kovalenko, M S; Ulynets', V Z; Meleshko, A O; Batsmanova, L M; Taran, N Iu

    2014-01-01

    Phytotoxicity of colloidal solutions of metal-containing nanoparticles (Ag, Cu, Fe, Zn, Mn) has been investigated using a standard Allium cepa (L.) test system. Toxicity of experimental solutions at the organism level was evaluated in terms of biomass growth of onion roots, and cytotoxicity was estimated by the mitotic index of root meristem cells. The colloidal solutions of metal nanoparticles inhibited the growth of Allium cepa (L.) roots due to their ability to penetrate into cells and interact with their components, and thus to inhibit mitosis. According to our results cytotoxicity of test solutions decreases in the following order: Cu > or = Zn > Ag > or = Fe. Solution of Mn-containing nanoparticles revealed physiological activity according to root growth reaction.

  14. Ultrafast magnetization dynamics of cobalt nanoparticles and individual ferromagnetic dots

    NASA Astrophysics Data System (ADS)

    Bigot, Jean-Yves

    2009-03-01

    The ultrafast magnetization dynamics of magnetic materials can be investigated using femtosecond laser pulses to perform femtosecond magneto-optical Kerr and Faraday measurements [1]. In this talk, we will focus on the magnetization dynamics of cobalt nanoparticles which are either ferromagnetic or super-paramagnetic at room temperature and on the dynamics of individual ferromagnetic dots. In the first case (Co nanoparticles), we will demonstrate that the magnetization dynamics preceding the fluctuations over the anisotropy energy barrier is coherent but exhibits a strongly damped precession [2]. These results, which have been obtained with a three dimensional analysis of the magnetization vector [3] will be discussed in the context of the N'eel-Brown models involving the gyromagnetic character of the magnetization. We will also examine the dynamics of self-organized supra-crystals of cobalt nanoparticles [4]. In the second case, we will present the ultrafast magnetization dynamics of individual ferromagnetic dots (CoPt3, Permalloy, Nickel) made either by e-beam lithography or induced optically on thin films deposited on sapphire and glass substrates. The technique employed is the magneto-optical pump probe imaging (MOPPI) which allows performing time resolved magneto-optical Kerr images with with spatial and temporal resolutions of 300 nm and 150 fs [5]. The study of the demagnetization of the dots for different laser intensities shows that it is possible to write and read ultrafast monodomains on thin films. [3pt] [1] E. Beaurepaire, J.-C. Merle, A. Daunois, J.-Y. Bigot Phys. Rev. Lett., 76, 4250 (1996) [0pt] [2] L.H.F. Andrade, A. Laraoui, M. Vomir, D. Muller, J.-P. Stoquert, C. Estournès, E. Beaurepaire, J.-Y. Bigot Phys. Rev. Lett. 97, 127401 (2006). [0pt] [3] M. Vomir, L. H.F. Andrade, L. Guidoni, E. Beaurepaire, J.-Y. Bigot Phys. Rev. Lett. 94, 237601 (2005). [0pt] [4] I. Lisiecki, V. Halt'e, C. Petit, M.-P. Pileni, J.-Y. Bigot Adv. Mater., 20, 4176 (2008

  15. Alloying of metal nanoparticles by ion-beam induced sputtering

    NASA Astrophysics Data System (ADS)

    Magudapathy, P.; Srivastava, S. K.; Gangopadhyay, P.; Amirthapandian, S.; Saravanan, K.; Das, A.; Panigrahi, B. K.

    2017-01-01

    Ion-beam sputtering technique has been utilized for controlled synthesis of metal alloy nanoparticles of compositions that can be tuned. Analysis of various experimental results reveals the formation of Ag-Cu alloy nanoparticles on a silica substrate. Surface-plasmon optical resonance positions and observed shifts of Ag Bragg angles in X-ray diffraction pattern particularly confirm formation of alloy nanoparticles on glass samples. Sputtering induced nano-alloying mechanism has been discussed and compared with thermal mixing of Ag and Cu thin films on glass substrates. Compositions and sizes of alloy nanoparticles formed during ion-beam induced sputtering are found to exceed far from the values of thermal mixing.

  16. Structure of reverse microemulsion-templated metal hexacyanoferrate nanoparticles

    PubMed Central

    2012-01-01

    The droplet phase of a reverse microemulsion formed by the surfactant cetyltrimethylammonium ferrocyanide was used as a matrix to synthesize nanoparticles of nickel hexacyanoferrate by adding just a solution of NiCl2 to the microemulsion media. Dynamic light scattering and small-angle neutron scattering measurements show that the reverse microemulsion droplets employed have a globular structure, with sizes that depend on water content. Transmission electron microscopy and electron diffraction are used to obtain information about the structure of the synthesized nanoparticles. The results show that the size and shape of the coordination compound nanoparticles correspond with the size and shape of the droplets, suggesting that the presented system constitutes an alternative method of the synthesis of metal hexacyanoferrate nanoparticles. PMID:22264404

  17. Phytochemicals and Biogenic Metallic Nanoparticles as Anticancer Agents

    PubMed Central

    Rao, Pasupuleti Visweswara; Nallappan, Devi; Madhavi, Kondeti; Rahman, Shafiqur; Jun Wei, Lim; Gan, Siew Hua

    2016-01-01

    Cancer is a leading cause of death worldwide. Several classes of drugs are available to treat different types of cancer. Currently, researchers are paying significant attention to the development of drugs at the nanoscale level to increase their target specificity and to reduce their concentrations. Nanotechnology is a promising and growing field with multiple subdisciplines, such as nanostructures, nanomaterials, and nanoparticles. These materials have gained prominence in science due to their size, shape, and potential efficacy. Nanomedicine is an important field involving the use of various types of nanoparticles to treat cancer and cancerous cells. Synthesis of nanoparticles targeting biological pathways has become tremendously prominent due to the higher efficacy and fewer side effects of nanodrugs compared to other commercial cancer drugs. In this review, different medicinal plants and their active compounds, as well as green-synthesized metallic nanoparticles from medicinal plants, are discussed in relation to their anticancer activities. PMID:27057273

  18. Nanoparticle-induced unusual melting and solidification behaviours of metals.

    PubMed

    Ma, Chao; Chen, Lianyi; Cao, Chezheng; Li, Xiaochun

    2017-01-18

    Effective control of melting and solidification behaviours of materials is significant for numerous applications. It has been a long-standing challenge to increase the melted zone (MZ) depth while shrinking the heat-affected zone (HAZ) size during local melting and solidification of materials. In this paper, nanoparticle-induced unusual melting and solidification behaviours of metals are reported that effectively solve this long-time dilemma. By introduction of Al2O3 nanoparticles, the MZ depth of Ni is increased by 68%, while the corresponding HAZ size is decreased by 67% in laser melting at a pulse energy of 0.18 mJ. The addition of SiC nanoparticles shows similar results. The discovery of the unusual melting and solidification of materials that contain nanoparticles will not only have impacts on existing melting and solidification manufacturing processes, such as laser welding and additive manufacturing, but also on other applications such as pharmaceutical processing and energy storage.

  19. Nanoparticle-induced unusual melting and solidification behaviours of metals

    NASA Astrophysics Data System (ADS)

    Ma, Chao; Chen, Lianyi; Cao, Chezheng; Li, Xiaochun

    2017-01-01

    Effective control of melting and solidification behaviours of materials is significant for numerous applications. It has been a long-standing challenge to increase the melted zone (MZ) depth while shrinking the heat-affected zone (HAZ) size during local melting and solidification of materials. In this paper, nanoparticle-induced unusual melting and solidification behaviours of metals are reported that effectively solve this long-time dilemma. By introduction of Al2O3 nanoparticles, the MZ depth of Ni is increased by 68%, while the corresponding HAZ size is decreased by 67% in laser melting at a pulse energy of 0.18 mJ. The addition of SiC nanoparticles shows similar results. The discovery of the unusual melting and solidification of materials that contain nanoparticles will not only have impacts on existing melting and solidification manufacturing processes, such as laser welding and additive manufacturing, but also on other applications such as pharmaceutical processing and energy storage.

  20. Tunable plasmon polaritons in arrays of interacting metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Weick, Guillaume; Mariani, Eros

    2015-01-01

    We consider a simple cubic array of metallic nanoparticles supporting extended collective plasmons that arise from the near-field dipolar interaction between localized surface plasmons in each nanoparticle. We develop a fully analytical quantum theory of the strong-coupling regime between these collective plasmons and photons resulting in plasmon polaritons in the nanoparticle array. Remarkably, we show that the polaritonic band gap and the dielectric function of the metamaterial can be significantly modulated by the polarization of light. We unveil how such an anisotropic behavior in the plasmonic metamaterial is crucially mediated by the dipolar interactions between the nanoparticles despite the symmetry of the underlying lattice. Our results thus pave the way towards the realization of tunable quantum plasmonic metamaterials presenting interaction-driven birefringence.

  1. Noble metal nanoparticles: Optical forces, electrochemical Ostwald ripening, and photovoltage

    NASA Astrophysics Data System (ADS)

    Redmond, Peter

    This thesis describes three distinct aspects of the chemical properties of noble metal nanoparticles. The first chapter introduces the surface plasmon resonance of noble metal nanoparticles. The second chapter presents an electrodynamic model for the calculation of the attractive optical forces that arise when two dielectric particles are irradiated in a light field. These forces show resonances at dipolar plasmon wavelengths, similar to resonances in the near-field electromagnetic intensities. At MW/cm2 intensities, optical forces can be stronger than van der Waals forces. The third chapter investigates the size dependent electrochemical properties of silver nanoparticles. These thermally evaporated silver nanoparticles spontaneously evolve in size when immersed in pure water on conducting substrates. The process is understood through an electrochemical Ostwald ripening mechanism driven by the size dependence of the work function and standard electrode potential. The fourth and fifth chapters consider photo-induced surface reactivity of noble metal particles. First, in the fourth chapter, the light driven deposition of copper onto gold nanoparticle electrodes is presented. The photocurrent is a nonlinear function of laser intensity and increases sharply with cathodic voltage in the underpotential deposition region. The photoreduction is attributed to laser heating (caused by decay of the plasmon oscillation) of the Au nanoparticles, rather than "hot electron" processes. Secondly, in the fifth chapter, the photo-induced oxidation of citrate is studied on silver nanoparticle electrodes. Irradiation of the citrate coated particles is shown to cause the particles to charge negatively from the irreversible transfer of electrons from citrate to the particles. It is hypothesized that the particle plasmon oscillation decays into electron hole pair(s) that causes the photo-oxidation of the surface bound citrate. Both the gold and silver particle systems are simulated using

  2. Fabrication of metallic microstructures by micromolding nanoparticles

    DOEpatents

    Morales, Alfredo M.; Winter, Michael R.; Domeier, Linda A.; Allan, Shawn M.; Skala, Dawn M.

    2002-01-01

    A method is provided for fabricating metallic microstructures, i.e., microcomponents of micron or submicron dimensions. A molding composition is prepared containing an optional binder and nanometer size (1 to 1000 nm in diameter) metallic particles. A mold, such as a lithographically patterned mold, preferably a LIGA or a negative photoresist mold, is filled with the molding composition and compressed. The resulting microstructures are then removed from the mold and the resulting metallic microstructures so provided are then sintered.

  3. Applications of metal nanoparticles in environmental cleanup

    EPA Science Inventory

    Iron nanoparticles (INPs) are one of the fastest-developing fields. INPs have a number of key physicochemical properties, such as high surface area, reactivity, optical and magnetic properties, and oxidation and reduction capacities, that make them attractive for water purificati...

  4. Adsorbate Diffusion on Transition Metal Nanoparticles

    DTIC Science & Technology

    2015-01-01

    systematically studied adsorption and diffusion of atomic and diatomic species (H, C, N, O, CO, and NO) on nanometer-sized Pt and Cu nanoparticles with...species and two diatomic molecules (H, C, N, O, CO, and NO) as adsorbates and study the adsorption and diffusion of these adsorbates across the edges

  5. Metal nanoparticles via the atom-economy green approach.

    PubMed

    Kalidindi, Suresh Babu; Sanyal, Udishnu; Jagirdar, Balaji R

    2010-05-03

    Metal nanoparticles (NPs) of Cu (air-stable), Ag, and Au have been prepared using an atom-economy green approach. Simple mechanical stirring of solid mixtures (no solvent) of a metal salt and ammonia borane at 60 degrees C resulted in the formation of metal NPs. In this reaction, ammonia borane is transformed into a BNH(x) polymer, which protects the NPs formed and halts their growth. This results in the formation of the BNH(x) polymer protected monodisperse NPs. Thus, ammonia borane used in these reactions plays a dual role (reducing agent and precursor for the stabilizing agent).

  6. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review

    PubMed Central

    Miazek, Krystian; Iwanek, Waldemar; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2015-01-01

    Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed. PMID:26473834

  7. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review.

    PubMed

    Miazek, Krystian; Iwanek, Waldemar; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2015-10-09

    Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed.

  8. Bismuth nanoparticles integration into heavy metal electrochemical stripping sensor.

    PubMed

    Cadevall, Miquel; Ros, Josep; Merkoçi, Arben

    2015-08-01

    Between their many applications bismuth nanoparticles (BiNPs) are showing interest as pre-concentrators in heavy metals detection while being applied as working electrode modifiers used in electrochemical stripping analysis. From the different reported methods to synthesize BiNPs we are focused on the typical polyol method, largely used in these types of metallic and semi-metallic nanoparticles. This study presents the strategy for an easy control of the shape and size of BiNPs including nanocubes, nanosferes and triangular nanostructures. To improve the BiNP size and shape, different reducing agents (ethylene glycol or sodium hypophosphite) and stabilizers (polyvinyl pyrrolidone, PVP, in different amounts) have been studied. The efficiency of BiNPs for heavy metals analysis in terms of detection sensitivity while being used as modifiers of screen-printed carbon electrodes including the applicability of the developed device in real sea water samples is shown. A parallel study between the obtained nanoparticles and their performance in heavy metal sensing has been described in this communication.

  9. Bulk Metallic Glass-like Scattering Signal in Small Metallic Nanoparticles

    SciTech Connect

    Doan-Nguyen, VVT; Kimber, SAJ; Pontoni, D; Hickey, DR; Diroll, BT; Yang, XH; Miglierini, M; Murray, CB; Billinge, SJL

    2014-06-01

    The atomic structure of Ni-Pd nanoparticles has been studied using atomic pair distribution function (PDF) analysis of X-ray total scattering data and with transmission electron microscopy (TEM). Larger nanoparticles have PDFs corresponding to the bulk face-centered cubic packing. However, the smallest nanoparticles have PDFs that strongly resemble those obtained from bulk metallic glasses (BMGs). In fact, by simply scaling the distance axis by the mean metallic radius, the curves may be collapsed onto each other and onto the PDF from a metallic glass sample. In common with a wide range of BMG materials, the intermediate range order may be fit with a damped single-frequency sine wave. When viewed in high-resolution TEM, these nanoparticles exhibit atomic fringes typical of those seen in small metallic clusters with icosahedral or decahedral order. These two seemingly contradictory results are reconciled by calculating the PDFs of models of icosahedra that would be consistent with the fringes seen in TEM. These model PDFs resemble the measured ones when significant atom-position disorder is introduced, drawing together the two diverse fields of metallic nanoparticles and BMGs and supporting the view that BMGs may contain significant icosahedral or decahedral order.

  10. Metallic nanoparticle deposition techniques for enhanced organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Cacha, Brian Joseph Gonda

    Energy generation via organic photovoltaic (OPV) cells provide many advantages over alternative processes including flexibility and price. However, more efficient OPVs are required in order to be competitive for applications. One way to enhance efficiency is through manipulation of exciton mechanisms within the OPV, for example by inserting a thin film of bathocuproine (BCP) and gold nanoparticles between the C60/Al and ZnPc/ITO interfaces, respectively. We find that BCP increases efficiencies by 330% due to gains of open circuit voltage (Voc) by 160% and short circuit current (Jsc) by 130%. However, these gains are complicated by the anomalous photovoltaic effect and an internal chemical potential. Exploration in the tuning of metallic nanoparticle deposition on ITO was done through four techniques. Drop casting Ag nanoparticle solution showed arduous control on deposited morphology. Spin-coating deposited very low densities of nanoparticles. Drop casting and spin-coating methods showed arduous control on Ag nanoparticle morphology due to clustering and low deposition density, respectively. Sputtered gold on glass was initially created to aid the adherence of Ag nanoparticles but instead showed a quick way to deposit aggregated gold nanoparticles. Electrodeposition of gold nanoparticles (AuNP) proved a quick method to tune nanoparticle morphology on ITO substrates. Control of deposition parameters affected AuNP size and distribution. AFM images of electrodeposited AuNPs showed sizes ranging from 39 to 58 nm. UV-Vis spectroscopy showed the presence of localized plasmon resonance through absorption peaks ranging from 503 to 614 nm. A linear correlation between electrodeposited AuNP size and peak absorbance was seen with a slope of 3.26 wavelength(nm)/diameter(nm).

  11. Metal nanoparticles triggered persistent negative photoconductivity in silk protein hydrogels

    NASA Astrophysics Data System (ADS)

    Gogurla, Narendar; Sinha, Arun K.; Naskar, Deboki; Kundu, Subhas C.; Ray, Samit K.

    2016-03-01

    Silk protein is a natural biopolymer with intriguing properties, which are attractive for next generation bio-integrated electronic and photonic devices. Here, we demonstrate the negative photoconductive response of Bombyx mori silk protein fibroin hydrogels, triggered by Au nanoparticles. The room temperature electrical conductivity of Au-silk hydrogels is found to be enhanced with the incorporation of Au nanoparticles over the control sample, due to the increased charge transporting networks within the hydrogel. Au-silk lateral photoconductor devices show a unique negative photoconductive response under an illumination of 325 nm, with excitation energy higher than the characteristic metal plasmon resonance band. The enhanced photoconductance yield in the hydrogels over the silk protein is attributed to the photo-oxidation of amino groups in the β-pleated sheets of the silk around the Au nanoparticles followed by the breaking of charge transport networks. The Au-silk nanocomposite does not show any photoresponse under visible illumination because of the localization of excited charges in Au nanoparticles. The negative photoconductive response of hybrid Au-silk under UV illumination may pave the way towards the utilization of silk for future bio-photonic devices using metal nanoparticle platforms.

  12. Metal nanoparticles triggered persistent negative photoconductivity in silk protein hydrogels.

    PubMed

    Gogurla, Narendar; Sinha, Arun K; Naskar, Deboki; Kundu, Subhas C; Ray, Samit K

    2016-04-14

    Silk protein is a natural biopolymer with intriguing properties, which are attractive for next generation bio-integrated electronic and photonic devices. Here, we demonstrate the negative photoconductive response of Bombyx mori silk protein fibroin hydrogels, triggered by Au nanoparticles. The room temperature electrical conductivity of Au-silk hydrogels is found to be enhanced with the incorporation of Au nanoparticles over the control sample, due to the increased charge transporting networks within the hydrogel. Au-silk lateral photoconductor devices show a unique negative photoconductive response under an illumination of 325 nm, with excitation energy higher than the characteristic metal plasmon resonance band. The enhanced photoconductance yield in the hydrogels over the silk protein is attributed to the photo-oxidation of amino groups in the β-pleated sheets of the silk around the Au nanoparticles followed by the breaking of charge transport networks. The Au-silk nanocomposite does not show any photoresponse under visible illumination because of the localization of excited charges in Au nanoparticles. The negative photoconductive response of hybrid Au-silk under UV illumination may pave the way towards the utilization of silk for future bio-photonic devices using metal nanoparticle platforms.

  13. Bio-related noble metal nanoparticle structure property relationships

    NASA Astrophysics Data System (ADS)

    Leonard, Donovan Nicholas

    Structure property relationships of noble metal nanoparticles (NPs) can be drastically different than bulk properties of the same metals. This research study used state-of-the-art analytical electron microscopy and scanned probe microscopy to determine material properties on the nanoscale of bio-related Au and Pd NPs. Recently, it has been demonstrated the self-assembly of Au NPs on functionalized silica surfaces creates a conductive surface. Determination of the aggregate morphology responsible for electron conduction was studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM). In addition, changes in the electrical properties of the substrates after low temperature (<350°C) annealing was also studied. It was found that coalescence and densification of the Au NP aggregates disrupted the interconnected network which subsequently created a loss of conductivity. Investigation of bio-related Au/SiO2 core-shell NPs determined why published experimental results showed the sol-gel silica shell improved, by almost an order of magnitude, the detection efficiency of a DNA detection assay. Novel 360° rotation scanning TEM (STEM) imaging allowed study of individual NP surface morphology and internal structure. Electron energy loss spectroscopy (EELS) spectrum imaging determined optoelectronic properties and chemical composition of the silica shell used to encapsulate Au NPs. Results indicated the sol-gel deposited SiO2 had a band gap energy of ˜8.9eV, bulk plasmon-peak energy of ˜25.5eV and chemical composition of stoichiometric SiO2. Lastly, an attempt to elicit structure property relationships of novel RNA mediated Pd hexagon NPs was performed. Selected area electron diffraction (SAD), low voltage scanning transmission electron microscopy (LV-STEM), electron energy loss spectroscopy (EELS) and energy dispersive spectroscopy (EDS) were chosen for characterization of atomic ordering, chemical composition and optoelectronic properties of the novel

  14. Building up strain in colloidal metal nanoparticle catalysts

    NASA Astrophysics Data System (ADS)

    Sneed, Brian T.; Young, Allison P.; Tsung, Chia-Kuang

    2015-07-01

    The focus on surface lattice strain in nanostructures as a fundamental research topic has gained momentum in recent years as scientists investigated its significant impact on the surface electronic structure and catalytic properties of nanomaterials. Researchers have begun to tell a more complete story of catalysis from a perspective which brings this concept to the forefront of the discussion. The nano-`realm' makes the effects of surface lattice strain, which acts on the same spatial scales, more pronounced due to a higher ratio of surface to bulk atoms. This is especially evident in the field of metal nanoparticle catalysis, where displacement of atoms on surfaces can significantly alter the sorption properties of molecules. In part, the concept of strain-engineering for catalysis opened up due to the achievements that were made in the synthesis of a more sophisticated nanoparticle library from an ever-expanding set of methodologies. Developing synthesis methods for metal nanoparticles with well-defined and strained architectures is a worthy goal that, if reached, will have considerable impact in the search for catalysts. In this review, we summarize the recent accomplishments in the area of surface lattice-strained metal nanoparticle synthesis, framing the discussion from the important perspective of surface lattice strain effects in catalysis.

  15. Metal Nanoparticles Preparation In Supercritical Carbon Dioxide Solutions

    SciTech Connect

    Harry W. Rollins

    2004-04-01

    The novel optical, electronic, and/or magnetic properties of metal and semiconductor nanoparticles have resulted in extensive research on new methods for their preparation. An ideal preparation method would allow the particle size, size distribution, crystallinity, and particle shape to be easily controlled, and would be applicable to a wide variety of material systems. Numerous preparation methods have been reported, each with its inherent advantages and disadvantages; however, an ideal method has yet to emerge. The most widely applied methods for nanoparticle preparation include the sonochemical reduction of organometallic reagents,(1&2) the solvothermal method of Alivisatos,(3) reactions in microemulsions,(4-6) the polyol method (reduction by alcohols),(7-9) and the use of polymer and solgel materials as hosts.(10-13) In addition to these methods, there are a variety of methods that take advantage of the unique properties of a supercritical fluid.(14&15) Through simple variations of temperature and pressure, the properties of a supercritical fluid can be continuously tuned from gas-like to liquid-like without undergoing a phase change. Nanoparticle preparation methods that utilize supercritical fluids are briefly reviewed below using the following categories: Rapid Expansion of Supercritical Solutions (RESS), Reactive Supercritical Fluid Processing, and Supercritical Fluid Microemulsions. Because of its easily accessible critical temperature and pressure and environmentally benign nature, carbon dioxide is the most widely used supercritical solvent. Supercritical CO2 is unfortunately a poor solvent for many polar or ionic species, which has impeded its use in the preparation of metal and semiconductor nanoparticles. We have developed a reactive supercritical fluid processing method using supercritical carbon dioxide for the preparation of metal and metal sulfide particles and used it to prepare narrowly distributed nanoparticles of silver (Ag) and silver sulfide

  16. Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion.

    PubMed

    Yang, Yu; Zhang, Chiqian; Hu, Zhiqiang

    2013-01-01

    Metallic and metal oxide nanomaterials have been increasingly used in consumer products (e.g. sunscreen, socks), the medical and electronic industries, and environmental remediation. Many of them ultimately enter wastewater treatment plants (WWTPs) or landfills. This review paper discusses the fate and potential effects of four types of nanoparticles, namely, silver nanoparticles (AgNPs), nano ZnO, nano TiO2, and nano zero valent iron (NZVI), on waste/wastewater treatment and anaerobic digestion. The stabilities and chemical properties of these nanoparticles (NPs) result in significant differences in antimicrobial activities. Analysis of published data of metallic and metal oxide NPs suggests that oxygen is often a prerequisite for the generation of reactive oxygen species (ROS) for AgNPs and NZVI, while illumination is necessary for ROS generation for nano TiO2 and nano ZnO. Furthermore, such nanoparticles are capable of being oxidized or dissolved in water and can release metal ions, leading to metal toxicity. Therefore, AgNPs and nano TiO2 are chemically stable NPs that have no adverse effects on microbes under anaerobic conditions. Although the toxicity of nanomaterials has been studied intensively under aerobic conditions, more research is needed to address their fate in anaerobic waste/wastewater treatment systems and their long-term effects on the environment.

  17. Biosynthesis of Metal Nanoparticles: Novel Efficient Heterogeneous Nanocatalysts

    PubMed Central

    Palomo, Jose M.; Filice, Marco

    2016-01-01

    This review compiles the most recent advances described in literature on the preparation of noble metal nanoparticles induced by biological entities. The use of different free or substituted carbohydrates, peptides, proteins, microorganisms or plants have been successfully applied as a new green concept in the development of innovative strategies to prepare these nanoparticles as different nanostructures with different forms and sizes. As a second part of this review, the application of their synthetic ability as new heterogonous catalysts has been described in C–C bond-forming reactions (as Suzuki, Heck, cycloaddition or multicomponent), oxidations and dynamic kinetic resolutions. PMID:28335213

  18. Nonlocal effects in metallic nanoparticles: The kinetic approach outlook

    NASA Astrophysics Data System (ADS)

    Tomchuk, Petro M.; Butenko, Danylo

    2017-02-01

    For the metallic nanoparticles, smaller than the free electron path, an impact of the particle’s surface on the nonlocal effects emerging is shown. Light-induced current inside the particle begins to depend on the spatial derivatives of the field that leads to modification of Maxwell’s equations. Consequently, the results of Mie theory as well as definitions of the dielectric function and optical conductivity should be revisited. For the sphere-shaped nanoparticle, the explicit expression for the high-frequency current with account of nonlocality is obtained. The dependence of the nonlocal contribution on the light frequency and particle’s size is discussed.

  19. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts.

    PubMed

    Hunt, Sean T; Milina, Maria; Alba-Rubio, Ana C; Hendon, Christopher H; Dumesic, James A; Román-Leshkov, Yuriy

    2016-05-20

    We demonstrated the self-assembly of transition metal carbide nanoparticles coated with atomically thin noble metal monolayers by carburizing mixtures of noble metal salts and transition metal oxides encapsulated in removable silica templates. This approach allows for control of the final core-shell architecture, including particle size, monolayer coverage, and heterometallic composition. Carbon-supported Ti(0.1)W(0.9)C nanoparticles coated with Pt or bimetallic PtRu monolayers exhibited enhanced resistance to sintering and CO poisoning, achieving an order of magnitude increase in specific activity over commercial catalysts for methanol electrooxidation after 10,000 cycles. These core-shell materials provide a new direction to reduce the loading, enhance the activity, and increase the stability of noble metal catalysts.

  20. Plasmon Response and Electron Dynamics in Charged Metallic Nanoparticles.

    PubMed

    Zapata Herrera, Mario; Aizpurua, Javier; Kazansky, Andrey K; Borisov, Andrei G

    2016-03-22

    Using the time-dependent density functional theory, we perform quantum calculations of the electron dynamics in small charged metallic nanoparticles (clusters) of spherical geometry. We show that the excess charge is accumulated at the surface of the nanoparticle within a narrow layer given by the typical screening distance of the electronic system. As a consequence, for nanoparticles in vacuum, the dipolar plasmon mode displays only a small frequency shift upon charging. We obtain a blue shift for positively charged clusters and a red shift for negatively charged clusters, consistent with the change of the electron spill-out from the nanoparticle boundaries. For negatively charged clusters, the Fermi level is eventually promoted above the vacuum level leading to the decay of the excess charge via resonant electron transfer into the continuum. We show that, depending on the charge, the process of electron loss can be very fast, on the femtosecond time scale. Our results are of great relevance to correctly interpret the optical response of the nanoparticles obtained in electrochemistry, and demonstrate that the measured shift of the plasmon resonances upon charging of nanoparticles cannot be explained without account for the surface chemistry and the dielectric environment.

  1. Is Neurotoxicity of Metallic Nanoparticles the Cascades of Oxidative Stress?

    NASA Astrophysics Data System (ADS)

    Song, Bin; Zhang, YanLi; Liu, Jia; Feng, XiaoLi; Zhou, Ting; Shao, LongQuan

    2016-06-01

    With the rapid development of nanotechnology, metallic (metal or metal oxide) nanoparticles (NPs) are widely used in many fields such as cosmetics, the food and building industries, and bio-medical instruments. Widespread applications of metallic NP-based products increase the health risk associated with human exposures. Studies revealed that the brain, a critical organ that consumes substantial amounts of oxygen, is a primary target of metallic NPs once they are absorbed into the body. Oxidative stress (OS), apoptosis, and the inflammatory response are believed to be the main mechanisms underlying the neurotoxicity of metallic NPs. Other studies have disclosed that antioxidant pretreatment or co-treatment can reverse the neurotoxicity of metallic NPs by decreasing the level of reactive oxygen species, up-regulating the activities of antioxidant enzymes, decreasing the proportion of apoptotic cells, and suppressing the inflammatory response. These findings suggest that the neurotoxicity of metallic NPs might involve a cascade of events following NP-induced OS. However, additional research is needed to determine whether NP-induced OS plays a central role in the neurotoxicity of metallic NPs, to develop a comprehensive understanding of the correlations among neurotoxic mechanisms and to improve the bio-safety of metallic NP-based products.

  2. Antimicrobial properties of metal and metal-halide nanoparticles and their potential applications

    NASA Astrophysics Data System (ADS)

    Torrey, Jason Robert

    Heavy metals, including silver and copper, have been known to possess antimicrobial properties against bacterial, fungal, and viral pathogens. Metal nanoparticles (aggregations of metal atoms 1-200 nm in size) have recently become the subject of intensive study for their increased antimicrobial properties. In the current studies, metal and metal-halide nanoparticles were evaluated for their antibacterial efficacy. Silver (Ag), silver bromide (AgBr), silver iodide (AgI), and copper iodide (CuI) nanoparticles significantly reduced bacterial numbers of the Gram-negative Pseudomonas aeruginosa and the Gram-positive Staphylococcus aureus within 24 hours and were more effective against P. aeruginosa. CuI nanoparticles were found to be highly effective, reducing both organisms by >4.43 log 10 within 15 minutes at 60 ppm Cu. CuI nanoparticles formulated with different stabilizers (sodium dodecyl sulfate, SDS; polyvinyl pyrrolidone, PVP) were further tested against representative Gram-positive and Gram-negative bacteria, Mycobacteria, a fungus (Candida albicans ), and a non-enveloped virus (poliovirus). Both nanoparticles caused significant reductions in most of the Gram-negative bacteria within five minutes (>5.09-log10). The Gram-positive bacterial species and C. albicans were more sensitive to the CuI-SDS than the CuI-PVP nanoparticles. In contrast, the acid-fast Mycobacterium smegmatis was more resistant to CuI-SDS than CuI-PVP nanoparticles. Poliovirus was more resistant than the other organisms tested except for Mycobacterium fortuitum, which displayed the greatest resistance to CuI nanoparticles. As an example of a real world antimicrobial application, polymer coatings embedded with various concentrations of CuI nanoparticles were tested for antibacterial efficacy against P. aeruginosa and S. aureus. Polyester-epoxy powder coatings were found to display superior uniformity, stability and antimicrobial properties against both organisms (>4.92 log 10 after six hours at

  3. Orientational and quantum plasmonic effects in the optics of metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Shah, Raman Anand

    The classical theory of plasmonics envisions spherical nanoparticles obeying classical electrodynamics. Modern colloidal synthesis of noble metal nanoparticles, in tandem with emerging methods of nanoparticle assembly, transcends the assumptions of this theory. First, strongly nonspherical particles give rise to optical spectra with complicated orientation dependence. An interpolation method is introduced to connect electrodynamic simulation results, generally carried out at fixed orientations, with experimental optical spectra, such as those of randomly oriented ensembles. Second, the ability to manipulate and arrange multiple spherical particles in solution with optical binding demands efficient calculation of the optical forces giving rise to their preferred geometries. A coupled-dipole model is developed to allow for rapid optical force calculations that predict many of the phenomena seen in the laboratory. Third, the prospect of attaching semiconductor quantum dots to metal nanoparticles in the electromagnetic near-field raises new questions about how the quantum behavior of localized surface plasmons affects the nonlinear optical response of the coupled system. Investigating such questions yields several new predictions about the optical response of plasmon-exciton systems. Under ultrafast pulsed illumination, a reversal of a Fano resonance is predicted, turning a dip into a spike in the pulsed optical spectrum. When two quantum dots are coupled to the same metal nanoparticle, it is found that their individual couplings to a quantized plasmon can give rise to coherence between the quantum dots, in particular a state enriched in an antisymmetric dark excitation that can be prepared with pulsed laser illumination. These theoretical tools and predictions, in addition to providing basic insight into plasmonic systems, will serve to guide further developments in colloidal synthesis, nanoparticle assembly, and optical applications.

  4. Theoretic investigation on plasmonics of noble metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Qian, Xiaohu

    In this thesis, we report our theoretic investigation on the surface plasmon polaritons of noble metallic nanoparticles and its applications. By means of numerical experiments, we studied the general far-field and near-field optical properties of the promising hollow metallic nanoparticles, the pattern of far-field extinction efficiency and the near-field surface-enhanced Raman scattering. We demonstrated the distribution of plasmon resonance wavelength as functions of the geometrical factor of hollow spherical gold and silver nanostructures. In addition, we utilized a novel mechanism of harnessing the mechanical strain to controllably tailor the plasmon-based optical spectra of single metallic nanospheres and the array of metallic nanoparticle of spheres and circular discs. The second goal of this thesis is to utilize a novel mechanical-strain-induced effect to enhance the light-trapping performance of plasmonic solar cells. This multi-physical scheme has the potential of considerably reducing the thickness of semiconductor layer and hence save the cost of production of the solar cells. Corresponding simulation results demonstrated this strategy is promising to decrease the fabrication budget of solar industry.

  5. Physicochemical Factors that Affect Metal and Metal Oxide Nanoparticle Passage Across Epithelial Barriers

    PubMed Central

    Elder, Alison; Vidyasagar, Sadasivan; DeLouise, Lisa

    2014-01-01

    The diversity of nanomaterials in terms of size, shape, and surface chemistry poses a challenge to those who are trying to characterize the human health and environmental risks associated with incidental and unintentional exposures. There are numerous products that are already commercially available that contain solid metal and metal oxide nanoparticles, either embedded in a matrix or in solution. Exposure assessments for these products are often incomplete or difficult due to technological challenges associated with detection and quantitation of nanoparticles in gaseous or liquid carriers. The main focus of recent research has been on hazard identification. However, risk is a product of hazard and exposure, and one significant knowledge gap is that of the target organ dose following in vivo exposures. In order to reach target organs, nanoparticles must first breech the protective barriers of the respiratory tract, gastrointestinal tract, or skin. The fate of those nanoparticles that reach physiological barriers is in large part determined by the properties of the particles and the barriers themselves. This article reviews the physiological properties of the lung, gut, and skin epithelia, the physicochemical properties of metal and metal oxide nanoparticles that are likely to affect their ability to breech epithelial barriers, and what is known about their fate following in vivo exposures. PMID:20049809

  6. Homogeneous Media Milling: Reactant-Assisted Mechanochemical Synthesis of Functionalized Nanoparticles from Malleable and Ductile Metals

    DTIC Science & Technology

    2014-01-01

    Reactant-Assisted Mechanochemical Synthesis of Functionalized Nanoparticles from Malleable and Ductile Metals 5b. GRANT NUMBER 5c. PROGRAM...Mechanochemical Synthesis of Functionalized Nanoparticles from Malleable and Ductile Metals Brandon W. McMahon†, Jesus Paulo L. Perez†, Jiang Yu†, Jerry A...confirming the dominance of bridging bidentate binding. *Corresponding Author aSenior Author Keywords: Milling, wear, nanoparticle synthesis

  7. Challenges in nanoelectrochemical and nanomechanical studies of individual anisotropic gold nanoparticles.

    PubMed

    Knittel, P; Bibikova, O; Kranz, C

    2016-11-01

    The characterization of nanoparticles and the correlation of physical properties such as size and shape to their (electro)chemical properties is an emerging field, which may facilitate future optimization and tuning of devices involving nanoparticles. This requires the investigation of individual particles rather than obtaining averaged information on large ensembles. Here, we present atomic force - scanning electrochemical microscopy (AFM-SECM) measurements of soft conductive PDMS substrates modified with gold nanostars (i.e., multibranched Au nanoparticles) in peak force tapping mode, which next to the electrochemical characterization provides information on the adhesion, deformation properties, and Young's modulus of the sample. AFM-SECM probes with integrated nanodisc electrodes (radii < 50 nm) have been used for these measurements. Most studies attempting to map individual nanoparticles have to date been performed at spherical nanoparticles, rather than highly active asymmetric gold nanoparticles. Consequently, this study discusses challenges during the nanocharacterization of individual anisotropic gold nanostars.

  8. Site-specific deposition of single gold nanoparticles by individual growth in electrohydrodynamically-printed attoliter droplet reactors.

    PubMed

    Schneider, Julian; Rohner, Patrik; Galliker, Patrick; Raja, Shyamprasad N; Pan, Ying; Tiwari, Manish K; Poulikakos, Dimos

    2015-06-07

    Gold nanoparticles with unique electronic, optical and catalytic properties can be efficiently synthesized in colloidal suspensions and are of broad scientific and technical interest and utility. However, their orderly integration on functional surfaces and devices remains a challenge. Here we show that single gold nanoparticles can be directly grown in individually printed, stabilized metal-salt ink attoliter droplets, using a nanoscale electrohydrodynamic printing method with a stable high-frequency dripping mode. This enables controllable sessile droplet nanoreactor formation and sustenance on non-wetting substrates, despite simultaneous rapid evaporation. The single gold nanoparticles can be formed inside such reactors in situ or by subsequent thermal annealing and plasma ashing. With this non-contact technique, single particles with diameters tunable in the range of 5-35 nm and with narrow size distribution, high yield and alignment accuracy are generated on demand and patterned into arbitrary arrays. The nanoparticles feature good catalytic activity as shown by the exemplary growth of silicon nanowires from the nanoparticles and the etching of nanoholes by the printed nanoparticles.

  9. Harmonic nanoparticles: noncentrosymmetric metal oxides for nonlinear optics

    NASA Astrophysics Data System (ADS)

    Rogov, Andrii; Mugnier, Yannick; Bonacina, Luigi

    2015-03-01

    The combination of nonlinear optics and nanotechnology is an extremely rich scientific domain yet widely unexplored. We present here a review of recent optical investigations on noncentrosymmetric oxide nanoparticles with a large {{χ }(2)} response, often referred to as harmonic nanoparticles (HNPs). HNPs feature a series of properties which distinguish them from other photonics nanoprobes (quantum dots, up-conversion nanoparticles, noble metal particles). HNPs emission is inherently nonlinear and based on the efficient generation of harmonics as opposed to fluorescence or surface plasmon scattering. In addition, the fully coherent signal emitted by HNPs together with their polarization sensitive response and absence of resonant interaction make them appealing for several applications ranging from multi-photon (infrared) microscopy and holography, to cell tracking and sensing.

  10. Dynamic inclusion complexes of metal nanoparticles inside nanocups.

    PubMed

    Alarcón-Correa, Mariana; Lee, Tung-Chun; Fischer, Peer

    2015-06-01

    Host-guest inclusion complexes are abundant in molecular systems and of fundamental importance in living organisms. Realizing a colloidal analogue of a molecular dynamic inclusion complex is challenging because inorganic nanoparticles (NPs) with a well-defined cavity and portal are difficult to synthesize in high yield and with good structural fidelity. Herein, a generic strategy towards the fabrication of dynamic 1:1 inclusion complexes of metal nanoparticles inside oxide nanocups with high yield (>70%) and regiospecificity (>90%) by means of a reactive double Janus nanoparticle intermediate is reported. Experimental evidence confirms that the inclusion complexes are formed by a kinetically controlled mechanism involving a delicate interplay between bipolar galvanic corrosion and alloying-dealloying oxidation. Release of the NP guest from the nanocups can be efficiently triggered by an external stimulus.

  11. Design strategies of hybrid metallic nanoparticles for theragnostic applications

    NASA Astrophysics Data System (ADS)

    Gautier, J.; Allard-Vannier, E.; Hervé-Aubert, K.; Soucé, M.; Chourpa, I.

    2013-11-01

    Metallic nanoparticles (MNPs) such as iron oxide and gold nanoparticles are interesting platforms to build theragnostic nanocarriers which combine both therapeutic and diagnostic functions within a single nanostructure. Nevertheless, their surface must be functionalized to be suitable for in vivo applications. Surface functionalization also provides binding sites for targeting ligands, and for drug loading. This review focuses on the materials and surface chemistry used to build hybrid nanocarriers that are inorganic cores functionalized with organic materials. The surface state of the MNPs largely depends on their synthesis routes, and dictates the strategies used for functionalization. Two main strategies can be found in the literature: the design of core-shell nanosystems, or embedding nanoparticles in organic materials. Emerging tendencies such as the use of clusters or alternative coating materials are also described. To present both hydrophilic and lipophilic nanosystems, we chose the doxorubicin anticancer agent as an example, as the molecule presents an affinity for both types of materials.

  12. Scaling laws in superlubric sliding of metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Feldmann, Michael; Dietzel, Dirk; Moenninghoff, Tristan; Schirmeisen, Andre; Schwarz, Udo D.

    2010-03-01

    If an interface between two incommensurate surfaces is atomically clean, a state of virtually frictionless sliding is anticipated, often referred to as ``superlubricity.'' Theory predicts that the lattice mismatch at the interface causes a decrease of shear stress with increasing contact area, ultimately leading to vanishing friction. Analyzing the contact area dependence of superlubric friction should therefore confirm the concept of superlubricity. To measure the interfacial friction we have manipulated metallic nanoparticles of different size on atomically flat surfaces by contact mode atomic force microscopy techniques. An optimized experimental setup allowed us to quantify friction of nanoparticles which previously appeared to be sliding frictionless [1]. As theoretically expected, interfacial friction showed a nonlinear contact area dependence with a shear stress decreasing with contact area. This confirms the superlubric sliding of the nanoparticles under investigation. [4pt] [1] Dietzel et al., Phys. Rev. Lett. 101, 125505 (2008).

  13. Surface modification of metal and metal coated nanoparticles to induce clustering

    NASA Astrophysics Data System (ADS)

    Gowda, M. H.; Glembocki, O. J.; Geng, S.; Prokes, S. M.; Garces, N.; Caldwell, J. D.

    2010-08-01

    Surface enhanced Raman scattering (SERS) is a powerful technique for the detection of submonolayer coverage of gold or silver surfaces. The magnitude of the effect and the spectral wavelength of the peak depend on the metal nanoparticles used and its geometry. In this paper we show that the use of chemicals that bind to gold or silver can lead to the clustering of nanoparticles. We used well defined Au nanoparticles in our experiments and add cysteamine to solutions containing the nanoparticles. The plasmonic response of the nanoparticles is measured by transmission Surface Plasmon Resonance (SPR) spectroscopy. We observed significant changes to the SPR spectra that are characteristics of close coupled nanoparticles. The time evolution of these changes indicates the formation of gold nanoparticles clusters. The SERS response of these clustered nanoparticles is observed to red shift from the designed peak wavelength in the green to the red. In addition, the placement of these clusters on dielectric surfaces shifts the SPR even more into the red. The experimental results are supported by calculations of the electromagnetic fields using finite difference methods.

  14. Investigation of metal hydride nanoparticles templated in metal organic frameworks.

    SciTech Connect

    Jacobs, Benjamin W.; Herberg, Julie L.; Highley, Aaron M.; Grossman, Jeffrey; Wagner, Lucas; Bhakta, Raghu; Peaslee, D.; Allendorf, Mark D.; Liu, X.; Behrens, Richard, Jr.; Majzoub, Eric H.

    2010-11-01

    Hydrogen is proposed as an ideal carrier for storage, transport, and conversion of energy. However, its storage is a key problem in the development of hydrogen economy. Metal hydrides hold promise in effectively storing hydrogen. For this reason, metal hydrides have been the focus of intensive research. The chemical bonds in light metal hydrides are predominantly covalent, polar covalent or ionic. These bonds are often strong, resulting in high thermodynamic stability and low equilibrium hydrogen pressures. In addition, the directionality of the covalent/ionic bonds in these systems leads to large activation barriers for atomic motion, resulting in slow hydrogen sorption kinetics and limited reversibility. One method for enhancing reaction kinetics is to reduce the size of the metal hydrides to nano scale. This method exploits the short diffusion distances and constrained environment that exist in nanoscale hydride materials. In order to reduce the particle size of metal hydrides, mechanical ball milling is widely used. However, microscopic mechanisms responsible for the changes in kinetics resulting from ball milling are still being investigated. The objective of this work is to use metal organic frameworks (MOFs) as templates for the synthesis of nano-scale NaAlH4 particles, to measure the H2 desorption kinetics and thermodynamics, and to determine quantitative differences from corresponding bulk properties. Metal-organic frameworks (MOFs) offer an attractive alternative to traditional scaffolds because their ordered crystalline lattice provides a highly controlled and understandable environment. The present work demonstrates that MOFs are stable hosts for metal hydrides and their reactive precursors and that they can be used as templates to form metal hydride nanoclusters on the scale of their pores (1-2 nm). We find that using the MOF HKUST-1 as template, NaAlH4 nanoclusters as small as 8 formula units can be synthesized inside the pores. A detailed picture of

  15. Silver metal nanoparticles study for biomedical and green house applications

    NASA Astrophysics Data System (ADS)

    Rauwel, E.; Simón-Gracia, L.; Guha, M.; Rauwel, P.; Kuunal, S.; Wragg, D.

    2017-02-01

    Metallic nanoparticles (MNP) with diameters ranging from 2 to 100nm have received extensive attention during the past decades due to their many potential applications. This paper presents a structural and cytotoxicity study of silver metal nanoparticles targeted towards biomedical applications. Spherical Ag MNPs of diameter from 20 to 50 nm have been synthesized. The encapsulation of Ag MNPs inside pH-sensitive polymersomes has been also studied for the development of biomedical applications. A cytotoxicity study of the Ag MNPs against primary prostatic cancer cell line (PPC-1) has demonstrated a high mortality rate for concentrations ranging from 100 to 200mg/L. The paper will discuss the potential for therapeutic treatments of these Ag MNPs.

  16. Lattice plasmons in dielectric nanoparticle arrays arranged on metal film

    NASA Astrophysics Data System (ADS)

    Zhang, Lianxue; Ge, Chaoyang; Zhang, Kun; Tian, Cheng; Fang, Xin; Zhai, Wenhao; Tao, Li; Li, Yanping; Ran, Guangzhao

    2016-12-01

    We propose a hybrid plasmonic photonic crystal consisting of a square array of dielectric nanoparticles arranged on a metal film with a gap inbetween. Simulations show that this plasmonic crystal supports lattice plasmon modes just like the metal nanoparticle array, exhibiting an extremely narrow and deep reflection dip. When interparticle spacing increases from 800 to 1000 nm, the full width at half the maximum of lattice plasmons decreases from 21 to 4 nm, and the lowest reflectance is close to zero. The resonant wavelength of this plasmonic crystal is highly sensitive to the local environment. It yields a sensitivity of 700 nm RIU-1 and a figure of merit of 33, which can be used in sensing of the refractive index.

  17. Tunable Optical Properties of Metal Nanoparticle Sol-Gel Composites

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Snow, Lanee A.; Sibille, Laurent; Ignont, Erica

    2001-01-01

    We demonstrate that the linear and non-linear optical properties of sol-gels containing metal nanoparticles are highly tunable with porosity. Moreover, we extend the technique of immersion spectroscopy to inhomogeneous hosts, such as aerogels, and determine rigorous bounds for the average fractional composition of each component, i.e., the porosity of the aerogel, or equivalently, for these materials, the catalytic dispersion. Sol-gels containing noble metal nanoparticles were fabricated and a significant blue-shift in the surface plasmon resonance (SPR) was observed upon formation of an aerogel, as a result of the decrease in the dielectric constant of the matrix upon supercritical extraction of the solvent. However, as a result of chemical interface damping and aggregation this blue-shift does not strictly obey standard effective medium theories. Mitigation of these complications is achieved by avoiding the use of alcohol and by annealing the samples in a reducing atmosphere.

  18. Optimization of a transferred arc reactor for metal nanoparticle synthesis.

    PubMed

    Stein, Matthias; Kruis, Frank Einar

    The demand for metal nanoparticles is increasing strongly. Transferred arc synthesis is a promising process in this respect, as it shows high production rates, good quality particles and the ability of up-scaling. The influence of several process parameters on the performance of the process in terms of production rate and particle size is investigated. These parameters are the electrode design and adjustment, the gas flow rate and power input. A novel feeding mechanism allows process operation over an extended time period. It is shown that the process is capable of producing pure metal nanoparticles with variable primary particle sizes and comparatively high production rates. Optimal process conditions for a single transferred arc electrode pair are found, which allow further scale-up by numbering up.

  19. Optimization of a transferred arc reactor for metal nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Stein, Matthias; Kruis, Frank Einar

    2016-09-01

    The demand for metal nanoparticles is increasing strongly. Transferred arc synthesis is a promising process in this respect, as it shows high production rates, good quality particles and the ability of up-scaling. The influence of several process parameters on the performance of the process in terms of production rate and particle size is investigated. These parameters are the electrode design and adjustment, the gas flow rate and power input. A novel feeding mechanism allows process operation over an extended time period. It is shown that the process is capable of producing pure metal nanoparticles with variable primary particle sizes and comparatively high production rates. Optimal process conditions for a single transferred arc electrode pair are found, which allow further scale-up by numbering up.

  20. Biocidal properties of metal oxide nanoparticles and their halogen adducts

    NASA Astrophysics Data System (ADS)

    Haggstrom, Johanna A.; Klabunde, Kenneth J.; Marchin, George L.

    2010-03-01

    Nanosized metal oxide halogen adducts possess high surface reactivities due to their unique surface morphologies. These adducts have been used as reactive materials against vegetative cells, such as Escherichia coli as well as bacterial endospores, including Bacillus subtilis and Bacillus anthracis (Δ Sterne strain). Here we report high biocidal activities against gram-positive bacteria, gram-negative bacteria, and endospores. The procedure consists of a membrane method. Transmission electron micrographs are used to compare nanoparticle-treated and untreated cells and spores. It is proposed that the abrasive character of the particles, the oxidative power of the halogens/interhalogens, and the electrostatic attraction between the metal oxides and the biological material are responsible for high biocidal activities. While some activity was demonstrated, bacterial endospores were more resistant to nanoparticle treatment than the vegetative bacteria.

  1. Central nervous system toxicity of metallic nanoparticles

    PubMed Central

    Feng, Xiaoli; Chen, Aijie; Zhang, Yanli; Wang, Jianfeng; Shao, Longquan; Wei, Limin

    2015-01-01

    Nanomaterials (NMs) are increasingly used for the therapy, diagnosis, and monitoring of disease- or drug-induced mechanisms in the human biological system. In view of their small size, after certain modifications, NMs have the capacity to bypass or cross the blood–brain barrier. Nanotechnology is particularly advantageous in the field of neurology. Examples may include the utilization of nanoparticle (NP)-based drug carriers to readily cross the blood–brain barrier to treat central nervous system (CNS) diseases, nanoscaffolds for axonal regeneration, nanoelectromechanical systems in neurological operations, and NPs in molecular imaging and CNS imaging. However, NPs can also be potentially hazardous to the CNS in terms of nano-neurotoxicity via several possible mechanisms, such as oxidative stress, autophagy, and lysosome dysfunction, and the activation of certain signaling pathways. In this review, we discuss the dual effect of NMs on the CNS and the mechanisms involved. The limitations of the current research are also discussed. PMID:26170667

  2. Unveiling the chemistry behind the green synthesis of metal nanoparticles.

    PubMed

    Santos, Sónia A O; Pinto, Ricardo J B; Rocha, Sílvia M; Marques, Paula A A P; Pascoal Neto, Carlos; Silvestre, Armando J D; Freire, Carmen S R

    2014-09-01

    Nanobiotechnology has emerged as a fundamental domain in modern science, and metallic nanoparticles (NPs) are one of the largest classes of NPs studied because of their wide spectrum of possible applications in several fields. The use of plant extracts as reducing and stabilizing agents in their synthesis is an interesting and reliable alternative to conventional methodologies. However, the role of the different components of such extracts in the reduction/stabilization of metal ions has not yet been understood clearly. Here we studied the behavior of the main components of a Eucalyptus globulus Labill. bark aqueous extract during metal-ion reduction followed by advanced chromatographic techniques, which allowed us to establish their specific role in the process. The obtained results showed that phenolic compounds, particularly galloyl derivatives, are mainly responsible for the metal-ion reduction, whereas sugars are essentially involved in the stabilization of the NPs.

  3. Serum protein adsorption and excretion pathways of metal nanoparticles

    PubMed Central

    Vinluan, Rodrigo D; Zheng, Jie

    2015-01-01

    While the synthesis of metal nanoparticles (NPs) with fascinating optical and electronic properties have progressed dramatically and their potential biomedical applications were also well demonstrated in the past decade, translation of metal NPs into the clinical practice still remains a challenge due to their severe accumulation in the body. Herein, we give a brief review on size-dependent material properties of metal NPs and their potential biomedical applications, followed by a summary of how structural parameters such as size, shape and charge influence their interactions with serum protein adsorption, cellular uptake and excretion pathways. Finally, the future challenges in minimizing serum protein adsorption and expediting clinical translation of metal NPs were also discussed. PMID:26377047

  4. Metal nanoparticle fluids with magnetically induced electrical switching properties

    NASA Astrophysics Data System (ADS)

    Kim, Younghoon; Cho, Jinhan

    2013-05-01

    We report the successful preparation of solvent-free metal nanoparticle (NP) fluids with multiple-functionalities, such as rheological properties, magnetism, ionic conductivity, and electrical properties, allowing for facile synthesis and mass production. The gold nanoparticles (AuNPs) used in this study were synthesized using tetraoctylammonium bromide (TOABr) in toluene and then directly phase-transferred to solvent-free low-molecular-weight (Mw) imidazolium-type ionic liquid media containing thiol groups (i.e., IL-SH). Magnetic metal fluids (i.e., MIL-SH-AuNPs) were prepared by the addition of FeCl3 powder to metal fluids (i.e., IL-SH-AuNPs). These fluids showed relatively high ionic and electrical conductivities compared with those of conventional metal NP fluids based on organic ILs with high Mw. Furthermore, it was demonstrated that these fluids could be used as electric switches operated using an external magnetic field in organic media.We report the successful preparation of solvent-free metal nanoparticle (NP) fluids with multiple-functionalities, such as rheological properties, magnetism, ionic conductivity, and electrical properties, allowing for facile synthesis and mass production. The gold nanoparticles (AuNPs) used in this study were synthesized using tetraoctylammonium bromide (TOABr) in toluene and then directly phase-transferred to solvent-free low-molecular-weight (Mw) imidazolium-type ionic liquid media containing thiol groups (i.e., IL-SH). Magnetic metal fluids (i.e., MIL-SH-AuNPs) were prepared by the addition of FeCl3 powder to metal fluids (i.e., IL-SH-AuNPs). These fluids showed relatively high ionic and electrical conductivities compared with those of conventional metal NP fluids based on organic ILs with high Mw. Furthermore, it was demonstrated that these fluids could be used as electric switches operated using an external magnetic field in organic media. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00653k

  5. Metal nanoparticles with sharp corners: Universal properties of plasmon resonances

    NASA Astrophysics Data System (ADS)

    Sturman, B.; Podivilov, E.; Gorkunov, M.

    2013-03-01

    We predict the simultaneous occurrence of two fundamental phenomena for metal nanoparticles possessing sharp corners with variable curvature: First, the main dipolar plasmonic mode experiences a strong red shift with increasing corner curvature; for large values of the curvature, the resonant frequency is controlled by the apex angle of the corner. Second, the split-off plasmonic mode experiences a strong localization at the corners. Altogether, this paves the way for the tailoring of metal nanostructures providing a wavelength-selective excitation of localized plasmons and a strong near-field enhancement of linear and nonlinear optical phenomena.

  6. Rapid laser sintering of metal nano-particles inks

    NASA Astrophysics Data System (ADS)

    Ermak, Oleg; Zenou, Michael; Bernstein Toker, Gil; Ankri, Jonathan; Shacham-Diamand, Yosi; Kotler, Zvi

    2016-09-01

    Fast sintering is of importance in additive metallization processes and especially on sensitive substrates. This work explores the mechanisms which set limits to the laser sintering rate of metal nano-particle inks. A comparison of sintering behavior of three different ink compositions with laser exposure times from micro-seconds to seconds reveals the dominant factor to be the organic content (OC) in the ink. With a low OC silver ink, of 2% only, sintering time falls below 100 μs with resistivity <×4 bulk silver. Still shorter exposure times result in line delamination and deformation with a similar outcome when the OC is increased.

  7. Highly Efficient Transition Metal Nanoparticle Catalysts in Aqueous Solutions.

    PubMed

    Wang, Changlong; Ciganda, Roberto; Salmon, Lionel; Gregurec, Danijela; Irigoyen, Joseba; Moya, Sergio; Ruiz, Jaime; Astruc, Didier

    2016-02-24

    A ligand design is proposed for transition metal nanoparticle (TMNP) catalysts in aqueous solution. Thus, a tris(triazolyl)-polyethylene glycol (tris-trz-PEG) amphiphilic ligand, 2, is used for the synthesis of very small TMNPs with Fe, Co, Ni, Cu, Ru, Pd, Ag, Pt, and Au. These TMNP-2 catalysts were evaluated and compared for the model 4-nitrophenol reduction, and proved to be extremely efficient. High catalytic efficiencies involving the use of only a few ppm metal of PdNPs, RuNPs, and CuNPs were also exemplified in Suzuki-Miyaura, transfer hydrogenation, and click reactions, respectively.

  8. Hydride formation in core-shell alloyed metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2016-07-01

    The model and analysis presented are focused on hydride formation in nanoparticles with a Pd shell and a core formed by another metal. The arrangement of metal atoms is assumed to be coherent (no dislocations). The lattice strain distribution, elastic energy, and chemical potential of hydrogen atoms are scrutinized. The slope of the chemical potential (as a function of hydrogen uptake) is demonstrated to decrease with increasing the core volume, and accordingly the critical temperature for hydride formation and the corresponding hysteresis loops are predicted to decrease as well.

  9. Light-scattering Characteristics of Metal Nanoparticles on a Single Bacterial Cell.

    PubMed

    Kinoshita, Takamasa; Kiso, Keita; LE, Dung Q; Shiigi, Hiroshi; Nagaoka, Tsutomu

    2016-01-01

    Metal nanoparticles express unique light-scattering characteristics based on the localized surface plasmon resonance, which depends on the metal species, particle size, and aggregation state of the nanoparticles. Therefore, we focused on the light-scattering characteristics of metal nanoparticles, such as silver, gold, and copper oxide, adsorbed on a bacterium. Monodisperse silver nanoparticles expressed the strongest scattered light among them, and showed various colors of scattered light. Although a monodisperse gold nanoparticle produced monochromatic light (green color), the color of the scattered light strongly depended on the aggregation state of the nanoparticles on a bacterium. On the other hand, copper oxide nanoparticles expressed monochromatic light (blue color), regardless of their aggregation states on a bacterium. We examined details concerning the light-scattering characteristics of metal nanoparticles, and discussed the possibility of their applications to bacterial cell imaging.

  10. Dislocation mediated alignment during metal nanoparticle coalescence

    SciTech Connect

    Lange, A. P.; Samanta, A.; Majidi, H.; Mahajan, S.; Ging, J.; Olson, T. Y.; van Benthem, K.; Elhadj, S.

    2016-09-13

    Dislocation mediated alignment processes during gold nanoparticle coalescence were studied at low and high temperatures using molecular dynamics simulations and transmission electron microscopy. Particles underwent rigid body rotations immediately following attachment in both low temperature (500 K) simulated coalescence events and low temperature (~315 K) transmission electron microscopy beam heating experiments. In many low temperature simulations, some degree of misorientation between particles remained after rigid body rotations, which was accommodated by grain boundary dislocation nodes. These dislocations were either sessile and remained at the interface for the duration of the simulation or dissociated and cross-slipped through the adjacent particles, leading to improved co-alignment. Minimal rigid body rotations were observed during or immediately following attachment in high temperature (1100 K) simulations, which is attributed to enhanced diffusion at the particles' interface. However, rotation was eventually induced by {111} slip on planes parallel to the neck groove. These deformation modes led to the formation of single and multi-fold twins whose structures depended on the initial orientation of the particles. The driving force for {111} slip is attributed to high surface stresses near the intersection of low energy {111} facets in the neck region. The details of this twinning process were examined in detail using simulated trajectories, and the results reveal possible mechanisms for the nucleation and propagation of Shockley partials on consecutive planes. Deformation twinning was also observed in-situ using transmission electron microscopy, which resulted in the co-alignment of a set of the particles' {111} planes across their grain boundary and an increase in their dihedral angle. As a result, this constitutes the first detailed experimental observation of deformation twinning during nanoparticle coalescence, validating simulation results

  11. Dislocation mediated alignment during metal nanoparticle coalescence

    DOE PAGES

    Lange, A. P.; Samanta, A.; Majidi, H.; ...

    2016-09-13

    Dislocation mediated alignment processes during gold nanoparticle coalescence were studied at low and high temperatures using molecular dynamics simulations and transmission electron microscopy. Particles underwent rigid body rotations immediately following attachment in both low temperature (500 K) simulated coalescence events and low temperature (~315 K) transmission electron microscopy beam heating experiments. In many low temperature simulations, some degree of misorientation between particles remained after rigid body rotations, which was accommodated by grain boundary dislocation nodes. These dislocations were either sessile and remained at the interface for the duration of the simulation or dissociated and cross-slipped through the adjacent particles, leadingmore » to improved co-alignment. Minimal rigid body rotations were observed during or immediately following attachment in high temperature (1100 K) simulations, which is attributed to enhanced diffusion at the particles' interface. However, rotation was eventually induced by {111} slip on planes parallel to the neck groove. These deformation modes led to the formation of single and multi-fold twins whose structures depended on the initial orientation of the particles. The driving force for {111} slip is attributed to high surface stresses near the intersection of low energy {111} facets in the neck region. The details of this twinning process were examined in detail using simulated trajectories, and the results reveal possible mechanisms for the nucleation and propagation of Shockley partials on consecutive planes. Deformation twinning was also observed in-situ using transmission electron microscopy, which resulted in the co-alignment of a set of the particles' {111} planes across their grain boundary and an increase in their dihedral angle. As a result, this constitutes the first detailed experimental observation of deformation twinning during nanoparticle coalescence, validating simulation results

  12. Functional Application of Noble Metal Nanoparticles In Situ Synthesized on Ramie Fibers

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Yao, Ya; Li, Jingliang; Qin, Si; Zhu, Haijin; Kaur, Jasjeet; Chen, Wu; Sun, Lu; Wang, Xungai

    2015-09-01

    Different functions were imparted to ramie fibers through treatment with noble metal nanoparticles including silver and gold nanoparticles. The in situ synthesis of silver and gold nanoparticles was achieved by heating in the presence of ramie fibers in the corresponding solutions of precursors. The unique optical property of synthesized noble metal nanoparticles, i.e., localized surface plasmon resonance, endowed ramie fibers with bright colors. Color strength (K/S) of fibers increased with heating temperature. Silver nanoparticles were obtained in alkaline solution, while acidic condition was conducive to gold nanoparticles. The optical properties of treated ramie fibers were investigated using UV-vis absorption spectroscopy. Scanning electron microscopy (SEM) was employed to observe the morphologies of silver and gold nanoparticles in situ synthesized on fibers. The ramie fibers treated with noble metal nanoparticles showed remarkable catalytic activity for reduction of 4-nitrophenol (4-NP) by sodium borohydride. Moreover, the silver nanoparticle treatment showed significant antibacterial property on ramie fibers.

  13. Metal nanoparticles amplify photodynamic effect on skin cells in vitro

    NASA Astrophysics Data System (ADS)

    Bauer, Brigitte; Chen, Si; Käll, Mikael; Gunnarsson, Linda; Ericson, Marica B.

    2011-03-01

    We report on an investigation aimed to increase the efficiency of photodynamic therapy (PDT) through the influence of localized surface plasmon resonances (LSPR's) in metal nanoparticles. PDT is based on photosensitizers that generate singlet oxygen at the tumour site upon exposure to visible light. Although PDT is a well-established treatment for skin cancer, a major drawback is the low quantum yield for singlet-oxygen production. This motivates the development of novel methods that enhance singlet oxygen generation during treatment. In this context, we study the photodynamic effect on cultured human skin cells in the presence or absence of gold nanoparticles with well established LSPR and field-enhancement properties. The cultured skin cells were exposed to protoporphyrin IX and gold nanoparticles and subsequently illuminated with red light. We investigated the differences in cell viability by tuning different parameters, such as incubation time and light dose. In order to find optimal parameters for specific targeting of tumour cells, we compared normal human epidermal keratinocytes with a human squamous skin cancer cell line. The study indicates significantly enhanced cell death in the presence of nanoparticles and important differences in treatment efficiency between normal and tumour cells. These results are thus promising and clearly motivate further development of nanoparticle enhanced clinical PDT treatment.

  14. Green nanochemistry: metal oxide nanoparticles and porous thin films from bare metal powders.

    PubMed

    Redel, Engelbert; Petrov, Srebri; Dag, Omer; Moir, Jonathon; Huai, Chen; Mirtchev, Peter; Ozin, Geoffrey A

    2012-01-09

    A universal, simple, robust, widely applicable and cost-effective aqueous process is described for a controlled oxidative dissolution process of micrometer-sized metal powders to form high-purity aqueous dispersions of colloidally stable 3-8 nm metal oxide nanoparticles. Their utilization for making single and multilayer optically transparent high-surface-area nanoporous films is demonstrated. This facile synthesis is anticipated to find numerous applications in materials science, engineering, and nanomedicine.

  15. Optical studies of ion-beam synthesized metal alloy nanoparticles

    SciTech Connect

    Magudapathy, P. Srivatsava, S. K.; Gangopadhyay, P.; Amirthapandian, S.; Sairam, T. N.; Panigrahi, B. K.

    2015-06-24

    Au{sub x}Ag{sub 1-x} alloy nanoparticles with tunable surface plasmon resonance (SPR) have been synthesized on a silica glass substrate. A small Au foil on an Ag foil is irradiated as target substrates such that ion beam falls on both Ag foil and Au foils. Silica slides are kept at an angle ∼45° with respect to the metallic foils. While irradiating the metallic foils with 100 keV Ar{sup +} ions, sputtered Au and Ag atoms get deposited on the silica-glass. In this configuration the foils have been irradiated by Ar{sup +} ions to various fluences at room temperature and the sputtered species are collected on silica slides. Formation of Au{sub x}Ag{sub 1-x} nanoparticles has been confirmed from the optical absorption measurements. With respect to the exposure area of Au and Ag foils to the ion beam, the SPR peak position varies from 450 to 500 nm. Green photoluminescence has been observed from these alloy metal nanoparticles.

  16. Thermoelectric Performance Enhancement by Surrounding Crystalline Semiconductors with Metallic Nanoparticles

    NASA Technical Reports Server (NTRS)

    Kim, Hyun-Jung; King, Glen C.; Park, Yeonjoon; Lee, Kunik; Choi, Sang H.

    2011-01-01

    Direct conversion of thermal energy to electricity by thermoelectric (TE) devices may play a key role in future energy production and utilization. However, relatively poor performance of current TE materials has slowed development of new energy conversion applications. Recent reports have shown that the dimensionless Figure of Merit, ZT, for TE devices can be increased beyond the state-of-the-art level by nanoscale structuring of materials to reduce their thermal conductivity. New morphologically designed TE materials have been fabricated at the NASA Langley Research Center, and their characterization is underway. These newly designed materials are based on semiconductor crystal grains whose surfaces are surrounded by metallic nanoparticles. The nanoscale particles are used to tailor the thermal and electrical conduction properties for TE applications by altering the phonon and electron transport pathways. A sample of bismuth telluride decorated with metallic nanoparticles showed less thermal conductivity and twice the electrical conductivity at room temperature as compared to pure Bi2Te3. Apparently, electrons cross easily between semiconductor crystal grains via the intervening metallic nanoparticle bridges, but phonons are scattered at the interfacing gaps. Hence, if the interfacing gap is larger than the mean free path of the phonon, thermal energy transmission from one grain to others is reduced. Here we describe the design and analysis of these new materials that offer substantial improvements in thermoelectric performance.

  17. Nanochemistry of metals

    NASA Astrophysics Data System (ADS)

    Sergeev, Gleb B.

    2001-10-01

    The results of studies on the nanochemistry of metals published in recent years are generalised. Primary attention is centred on the methods for the synthesis of nanoparticles and their chemical reactions. The means of stabilisation of nanoparticles which involve individual metals and incorporate atoms of several metals are considered as well as their physicochemical properties. Self-assembling processes of nanoparticles are described. The prospects of using metal nanoparticles in semiconductor devices, catalysis, biology and medicine are discussed. The bibliography includes 165 references.

  18. Synthesis of nickel nanoparticles supported on metal oxides using electroless plating: controlling the dispersion and size of nickel nanoparticles.

    PubMed

    Wu, Zhijie; Ge, Shaohui; Zhang, Minghui; Li, Wei; Tao, Keyi

    2009-02-15

    Nickel nanoparticles supported on metal oxides were prepared by a modified electroless nickel-plating method. The process and mechanism of electroless plating were studied by changing the active metal (Ag) loading, acidity, and surface area of metal oxides and were characterized by UV-vis spectroscopy, transmission electron microscopy, scanning electron microscopy, and H(2) chemisorption. The results showed that the dispersion of nickel nanoparticles was dependent on the interface reaction between the metal oxide and the plating solution or the active metal and the plating solution. The Ag loading and acidity of the metal oxide mainly affected the interface reaction to change the dispersion of nickel nanoparticles. The use of ultrasonic waves and microwaves and the change of solvents from water to ethylene glycol in the electroless plating could affect the dispersion and size of nickel nanoparticles.

  19. Metal nanoparticles with liquid-crystalline ligands: controlling nanoparticle superlattice structure and properties.

    PubMed

    Lewandowski, Wiktor; Wójcik, Michał; Górecka, Ewa

    2014-05-19

    Nanoparticle ordered aggregates are promising candidates for future application in a variety of sensing, optical and electronic technologies, mainly based on collective interactions between individual nano-building blocks. Physicochemical properties of such assemblies depend on nanoparticle spacing, therefore a lot of effort throughout the last years was put on development of assembly methods allowing control over aggregates structure. In this minireview we describe efficient self-assembly process based on the utilization of liquid-crystalline ligands grafted onto nanoparticle surface. We show strategies used to synthesize liquid-crystalline nanoparticles as well as discuss parameters influencing structural and thermal characteristic of aggregates. It is also demonstrated that the liquid-crystalline approach offers access to dynamic self-assembly and metamaterials with anisotropic plasmonic properties, which makes this strategy unique among others.

  20. Solid-state synthesis of embedded single-crystal metal oxide and phosphate nanoparticles and in situ crystallization.

    PubMed

    Díaz, C; Valenzuela, M L; Bravo, D; Dickinson, C; O'Dwyer, C

    2011-10-01

    A new solid state organometallic route to embedded nanoparticle-containing inorganic materials is shown, through pyrolysis of metal-containing derivatives of cyclotriphosphazenes. Pyrolysis in air and at 800 °C of new molecular precursors gives individual single-crystal nanoparticles of SiP(2)O(7), TiO(2), P(4)O(7,) WP(2)O(7) and SiO(2), depending on the precursor used. High resolution transmission electron microscopy investigations reveal, in most cases, perfect single crystals of metal oxides and the first nanostructures of negative thermal expansion metal phosphates with diameters in the range 2-6 nm for all products. While all nanoparticles are new by this method, WP(2)O(7) and SiP(2)O(7) nanoparticles are reported for the first time. In situ recrystallization formation of nanocrystals of SiP(2)O(7) was also observed due to electron beam induced reactions during measurements of the nanoparticulate pyrolytic products SiO(2) and P(4)O(7). The possible mechanism for the formation of the nanoparticles at much lower temperatures than their bulk counterparts in both cases is discussed. Degrees of stabilization from the formation of P(4)O(7) affects the nanocrystalline products: nanoparticles are observed for WP(2)O(7), with coalescing crystallization occurring for the amorphous host in which SiP(2)O(7) crystals form as a solid within a solid. The approach allows the simple formation of multimetallic, monometallic, metal-oxide and metal phosphate nanocrystals embedded in an amorphous dielectric. The method and can be extended to nearly any metal capable of successful coordination as an organometallic to allow embedded nanoparticle layers and features to be deposited or written on surfaces for application as high mobility pyrophosphate lithium-ion cathode materials, catalysis and nanocrystal embedded dielectric layers.

  1. Templated Dry Printing of Conductive Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Rolfe, David Alexander

    Printed electronics can lower the cost and increase the ubiquity of electrical components such as batteries, sensors, and telemetry systems. Unfortunately, the advance of printed electronics has been held back by the limited minimum resolution, aspect ratio, and feature fidelity of present printing techniques such as gravure, screen printing and inkjet printing. Templated dry printing offers a solution to these problems by patterning nanoparticle inks into templates before drying. This dissertation shows advancements in two varieties of templated dry nanoprinting. The first, advective micromolding in vapor-permeable templates (AMPT) is a microfluidic approach that uses evaporation-driven mold filling to create submicron features with a 1:1 aspect ratio. We will discuss submicron surface acoustic wave (SAW) resonators made through this process, and the refinement process in the template manufacturing process necessary to make these devices. We also present modeling techniques that can be applied to future AMPT templates. We conclude with a modified templated dry printing that improves throughput and isolated feature patterning by transferring dry-templated features with laser ablation. This method utilizes surface energy-defined templates to pattern features via doctor blade coating. Patterned and dried features can be transferred to a polymer substrate with an Nd:YAG MOPA fiber laser, and printed features can be smaller than the laser beam width.

  2. Fluorescence enhancement, blinking suppression, and gray states of individual semiconductor nanocrystals close to gold nanoparticles.

    PubMed

    Ma, Xuedan; Tan, Hua; Kipp, Tobias; Mews, Alf

    2010-10-13

    The optical properties of nanocrystals are drastically changed by the interaction with adjacent metal nanoparticles. By time-resolved photoluminescence spectroscopy, we investigate CdSe multishell nanocrystals coupled to self-assembled films of Au nanoparticles. The distance between emitter and metal is adjusted by coating the nanocrystals with silica shells. These NCs showed increased fluorescence intensity, a decreased fluorescence lifetime, strong blinking suppression, and fluorescence from gray states. These observations can be explained by the metal particle induced change of excitation and recombination rates.

  3. Resonances of nanoparticles with poor plasmonic metal tips

    PubMed Central

    Ringe, Emilie; DeSantis, Christopher J.; Collins, Sean M.; Duchamp, Martial; Dunin-Borkowski, Rafal E.; Skrabalak, Sara E.; Midgley, Paul A.

    2015-01-01

    The catalytic and optical properties of metal nanoparticles can be combined to create platforms for light-driven chemical energy storage and enhanced in-situ reaction monitoring. However, the heavily damped plasmon resonances of many catalytically active metals (e.g. Pt, Pd) prevent this dual functionality in pure nanostructures. The addition of catalytic metals at the surface of efficient plasmonic particles thus presents a unique opportunity if the resonances can be conserved after coating. Here, nanometer resolution electron-based techniques (electron energy loss, cathodoluminescence, and energy dispersive X-ray spectroscopy) are used to show that Au particles incorporating a catalytically active but heavily damped metal, Pd, sustain multiple size-dependent localized surface plasmon resonances (LSPRs) that are narrow and strongly localized at the Pd-rich tips. The resonances also couple with a dielectric substrate and other nanoparticles, establishing that the full range of plasmonic behavior is observed in these multifunctional nanostructures despite the presence of Pd. PMID:26617270

  4. Metallic nanoparticles reduce the migration of human fibroblasts in vitro

    NASA Astrophysics Data System (ADS)

    Vieira, Larissa Fernanda de Araújo; Lins, Marvin Paulo; Viana, Iana Mayane Mendes Nicácio; dos Santos, Jeniffer Estevão; Smaniotto, Salete; Reis, Maria Danielma dos Santos

    2017-03-01

    Nanoparticles have extremely wide applications in the medical and biological fields. They are being used in biosensors, local drug delivery, diagnostics, and medical therapy. However, the potential effects of nanoparticles on target cell and tissue function, apart from cytotoxicity, are not completely understood. Thus, the aim of this study was to investigate the in vitro effects of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) on human fibroblasts with respect to their interaction with the extracellular matrix and in cell migration. Immunofluorescence analysis revealed that treatment with AgNPs or AuNPs decreased collagen and laminin production at all the concentrations tested (0.1, 1, and 10 μg/mL). Furthermore, cytofluorometric analysis showed that treatment with AgNPs reduced the percentage of cells expressing the collagen receptor very late antigen 2, α2β1 integrin (VLA-2) and the laminin receptor very late antigen 6, α6β1 integrin (VLA-6). In contrast, AuNP treatment increased and decreased the percentages of VLA-2-positive and VLA-6-positive cells, respectively, as compared to the findings for the controls. Analysis of cytoskeletal reorganization showed that treatment with both types of nanoparticles increased the formation of stress fibres and number of cell protrusions and impaired cell polarity. Fibroblasts exposed to different concentrations of AuNPs and AgNPs showed reduced migration through transwell chambers in the functional chemotaxis assay. These results demonstrated that metal nanoparticles may influence fibroblast function by negatively modulating the deposition of extracellular matrix molecules (ECM) and altering the expression of ECM receptors, cytoskeletal reorganization, and cell migration.

  5. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    SciTech Connect

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  6. Effects of interband transitions on Faraday rotation in metallic nanoparticles.

    PubMed

    Wysin, G M; Chikan, Viktor; Young, Nathan; Dani, Raj Kumar

    2013-08-14

    The Faraday rotation in metallic nanoparticles is considered based on a quantum model for the dielectric function ϵ(ω) in the presence of a DC magnetic field B. We focus on effects in ϵ(ω) due to interband transitions (IBTs), which are important in the blue and ultraviolet for noble metals used in plasmonics. The dielectric function is found using the perturbation of the electron density matrix due to the optical field of the incident electromagnetic radiation. The calculation is applied to transitions between two bands (d and p, for example) separated by a gap, as one finds in gold at the L-point of the Fermi surface. The result of the DC magnetic field is a shift in the effective optical frequency causing IBTs by ±μBB/ħ, where opposite signs are associated with left/right circular polarizations. The Faraday rotation for a dilute solution of 17 nm diameter gold nanoparticles is measured and compared with both the IBT theory and a simpler Drude model for the bound electron response. Effects of the plasmon resonance mode on Faraday rotation in nanoparticles are also discussed.

  7. Nanoparticles reduce nickel allergy by capturing metal ions

    NASA Astrophysics Data System (ADS)

    Vemula, Praveen Kumar; Anderson, R. Rox; Karp, Jeffrey M.

    2011-05-01

    Approximately 10% of the population in the USA suffer from nickel allergy, and many are unable to wear jewellery or handle coins and other objects that contain nickel. Many agents have been developed to reduce the penetration of nickel through skin, but few formulations are safe and effective. Here, we show that applying a thin layer of glycerine emollient containing nanoparticles of either calcium carbonate or calcium phosphate on an isolated piece of pig skin (in vitro) and on the skin of mice (in vivo) prevents the penetration of nickel ions into the skin. The nanoparticles capture nickel ions by cation exchange, and remain on the surface of the skin, allowing them to be removed by simple washing with water. Approximately 11-fold fewer nanoparticles by mass are required to achieve the same efficacy as the chelating agent ethylenediamine tetraacetic acid. Using nanoparticles with diameters smaller than 500 nm in topical creams may be an effective way to limit the exposure to metal ions that can cause skin irritation.

  8. Viral nanoparticles, noble metal decorated viruses and their nanoconjugates.

    PubMed

    Capek, Ignác

    2015-08-01

    Virus-based nanotechnology has generated interest in a number of applications due to the specificity of virus interaction with inorganic and organic nanoparticles. A well-defined structure of virus due to its multifunctional proteinaceous shell (capsid) surrounding genomic material is a promising approach to obtain nanostructured materials. Viruses hold great promise in assembling and interconnecting novel nanosized components, allowing to develop organized nanoparticle assemblies. Due to their size, monodispersity, and variety of chemical groups available for modification, they make a good scaffold for molecular assembly into nanoscale devices. Virus based nanocomposites are useful as an engineering material for the construction of smart nanoobjects because of their ability to associate into desired structures including a number of morphologies. Viruses exhibit the characteristics of an ideal template for the formation of nanoconjugates with noble metal nanoparticles. These bioinspired systems form monodispersed units that are highly amenable through genetic and chemical modifications. As nanoscale assemblies, viruses have sophisticated yet highly ordered structural features, which, in many cases, have been carefully characterized by modern structural biological methods. Plant viruses are increasingly being used for nanobiotechnology purposes because of their relative structural and chemical stability, ease of production, multifunctionality and lack of toxicity and pathogenicity in animals or humans. The multifunctional viruses interact with nanoparticles and other functional additives to the generation of bioconjugates with different properties – possible antiviral and antibacterial activities.

  9. Nanoparticle-induced unusual melting and solidification behaviours of metals

    PubMed Central

    Ma, Chao; Chen, Lianyi; Cao, Chezheng; Li, Xiaochun

    2017-01-01

    Effective control of melting and solidification behaviours of materials is significant for numerous applications. It has been a long-standing challenge to increase the melted zone (MZ) depth while shrinking the heat-affected zone (HAZ) size during local melting and solidification of materials. In this paper, nanoparticle-induced unusual melting and solidification behaviours of metals are reported that effectively solve this long-time dilemma. By introduction of Al2O3 nanoparticles, the MZ depth of Ni is increased by 68%, while the corresponding HAZ size is decreased by 67% in laser melting at a pulse energy of 0.18 mJ. The addition of SiC nanoparticles shows similar results. The discovery of the unusual melting and solidification of materials that contain nanoparticles will not only have impacts on existing melting and solidification manufacturing processes, such as laser welding and additive manufacturing, but also on other applications such as pharmaceutical processing and energy storage. PMID:28098147

  10. Enhancement of the optical transmission by mixing the metallic and dielectric nanoparticles atop the silicon substrate.

    PubMed

    Yeh, Yung-Ming; Wang, Yu-Sheng; Li, Jia-Han

    2011-03-14

    We propose a structure with the metallic and dielectric nanoparticles on the surface of the silicon material and study its optical transmission properties. The structure with the radiuses of the silver and silica nanoparticles as 50 nm and 100 nm, respectively, with the gap as 8 nm between silver and silica nanoparticles is found to have the largest optical transmission into the silicon material in our simulations. The largest field intensities are on the bottom of the silver nanoparticles and these can result strong field scattering into the silicon material. From the plotting of the average power densities around the gaps and the air regions between the silver and silica nanoparticles, the light power can go thorough these regions and flow downward to the silicon material. It is also found that the light energy rotates around the bottom of the silver nanoparticles due to the strong localized surface plasmons. The rectangular arrangement of the nanoparticle structures with mixing metallic and dielectric nanoparticles are studied, and the cases for the structures with only the metallic nanoparticles or only the dielectric nanoparticles are also simulated and compared. The rectangular or hexagonal structures with mixing metallic and dielectric nanoparticles on the surface of the silicon substrate can have better optical transmission than the cases of the rectangular arrangement with only metallic or dielectric nanoparticles.

  11. Fabrication of Metal and Metal Oxide Nanoparticles by Algae and their Toxic Effects.

    PubMed

    Siddiqi, Khwaja Salahuddin; Husen, Azamal

    2016-12-01

    Of all the aquatic organisms, algae are a good source of biomolecules. Since algae contain pigments, proteins, carbohydrates, fats, nucleic acids and secondary metabolites such as alkaloids, some aromatic compounds, macrolides, peptides and terpenes, they act as reducing agents to produce nanoparticles from metal salts without producing any toxic by-product. Once the algal biomolecules are identified, the nanoparticles of desired shape or size may be fabricated. The metal and metal oxide nanoparticles thus synthesized have been investigated for their antimicrobial activity against several gram-positive and gram-negative bacterial strains and fungi. Their dimension is controlled by temperature, incubation time, pH and concentration of the solution. In this review, we have attempted to update the procedure of nanoparticle synthesis from algae, their characterization by UV-vis, Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, x-ray diffraction, energy-dispersive x-ray spectroscopy, dynamic light scattering and application in cutting-edge areas.

  12. Fabrication of Metal and Metal Oxide Nanoparticles by Algae and their Toxic Effects

    NASA Astrophysics Data System (ADS)

    Siddiqi, Khwaja Salahuddin; Husen, Azamal

    2016-08-01

    Of all the aquatic organisms, algae are a good source of biomolecules. Since algae contain pigments, proteins, carbohydrates, fats, nucleic acids and secondary metabolites such as alkaloids, some aromatic compounds, macrolides, peptides and terpenes, they act as reducing agents to produce nanoparticles from metal salts without producing any toxic by-product. Once the algal biomolecules are identified, the nanoparticles of desired shape or size may be fabricated. The metal and metal oxide nanoparticles thus synthesized have been investigated for their antimicrobial activity against several gram-positive and gram-negative bacterial strains and fungi. Their dimension is controlled by temperature, incubation time, pH and concentration of the solution. In this review, we have attempted to update the procedure of nanoparticle synthesis from algae, their characterization by UV-vis, Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, x-ray diffraction, energy-dispersive x-ray spectroscopy, dynamic light scattering and application in cutting-edge areas.

  13. Surface Functionalization of Metal Nanoparticles by Conjugated Metal-Ligand Interfacial Bonds: Impacts on Intraparticle Charge Transfer.

    PubMed

    Hu, Peiguang; Chen, Limei; Kang, Xiongwu; Chen, Shaowei

    2016-10-03

    Noble metal nanoparticles represent a unique class of functional nanomaterials with physical and chemical properties that deviate markedly from those of their atomic and bulk forms. In order to stabilize the nanoparticles and further manipulate the materials properties, surface functionalization with organic molecules has been utilized as a powerful tool. Among those, mercapto derivatives have been used extensively as the ligands of choice for nanoparticle surface functionalization by taking advantage of the strong affinity of thiol moieties to transition metal surfaces forming (polar) metal-thiolate linkages. Yet, the nanoparticle material properties are generally discussed within the context of the two structural components, the metal cores and the organic capping layers, whereas the impacts of the metal-sulfur interfacial bonds are largely ignored because of the lack of interesting chemistry. In recent years, it has been found that metal nanoparticles may also be functionalized by stable metal-carbon (or even -nitrogen) covalent bonds. Because of the formation of dπ-pπ interactions between the transition-metal nanoparticles and terminal carbon moieties, the interfacial resistance at the metal-ligand interface is markedly reduced, leading to the emergence of unprecedented optical and electronic properties. In this Account, we summarize recent progress in the studies of metal nanoparticles functionalized by conjugated metal-ligand interfacial bonds that include metal-carbene (M═C) and metal-acetylide (M-C≡)/metal-vinylidene (M═C═C) bonds. Such interfacial bonds are readily formed by ligand self-assembly onto nanoparticle metal cores. The resulting nanoparticles exhibit apparent intraparticle charge delocalization between the particle-bound functional moieties, leading to the emergence of optical and electronic properties that are analogous to those of their dimeric counterparts, as manifested in spectroscopic and electrochemical measurements. This is

  14. Accurate thermoplasmonic simulation of metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Yu, Da-Miao; Liu, Yan-Nan; Tian, Fa-Lin; Pan, Xiao-Min; Sheng, Xin-Qing

    2017-01-01

    Thermoplasmonics leads to enhanced heat generation due to the localized surface plasmon resonances. The measurement of heat generation is fundamentally a complicated task, which necessitates the development of theoretical simulation techniques. In this paper, an efficient and accurate numerical scheme is proposed for applications with complex metallic nanostructures. Light absorption and temperature increase are, respectively, obtained by solving the volume integral equation (VIE) and the steady-state heat diffusion equation through the method of moments (MoM). Previously, methods based on surface integral equations (SIEs) were utilized to obtain light absorption. However, computing light absorption from the equivalent current is as expensive as O(NsNv), where Ns and Nv, respectively, denote the number of surface and volumetric unknowns. Our approach reduces the cost to O(Nv) by using VIE. The accuracy, efficiency and capability of the proposed scheme are validated by multiple simulations. The simulations show that our proposed method is more efficient than the approach based on SIEs under comparable accuracy, especially for the case where many incidents are of interest. The simulations also indicate that the temperature profile can be tuned by several factors, such as the geometry configuration of array, beam direction, and light wavelength.

  15. Plasmonic transparent conducting metal oxide nanoparticles and nanoparticle films for optical sensing applications

    SciTech Connect

    Ohodnicki, Paul R; Wang, Congjun; Andio, Mark

    2013-07-31

    The ability to monitor gas species selectively, sensitively, and reliably in extreme temperatures and harsh conditions is critically important for more efficient energy production using conventional fossil energy based production technologies, enabling advanced technologies for fossil based power plants of the future, and improving efficiency in domestic manufacturing industries. Optical waveguide based sensing platforms have become increasingly important but a need exists for materials that exhibit useful changes in optical properties in response to changing gas atmospheres at high temperatures. In this manuscript, the onset of a near-IR absorption associated with an increase in free carrier density in doped metal oxide nanoparticles to form so-called conducting metal oxides is discussed in the context of results obtained for undoped and Al-doped ZnO nanoparticle based films. Detailed film characterization results are presented along with measured changes in optical absorption resulting from various high temperature treatments in a range of gas atmospheres. Optical property changes are also discussed in the context of a simple model for optical absorption in conducting metal oxide nanoparticles and thin films. The combination of experimental results and theoretical modeling presented here suggests that such materials have potential for high temperature optical gas sensing applications. Simulated sensing experiments were performed at 500 °C and a useful, rapid, and reproducible near-IR optical sensing response to H{sub 2} confirms that this class of materials shows great promise for optical gas sensing.

  16. Surface-mediated light transmission in metal nanoparticle chains

    NASA Astrophysics Data System (ADS)

    Compaijen, P. Jasper; Malyshev, Victor A.; Knoester, Jasper

    2013-05-01

    We study theoretically the efficiency of the transmission of optical signals through a linear chain consisting of identical and equidistantly spaced silver metal nanoparticles. Two situations are compared: the transmission efficiency through an isolated chain and through a chain in close proximity of a reflecting substrate. The Ohmic and radiative losses in each nanoparticle strongly affect the transmission efficiency of an isolated chain and suppress it to large extent. It is shown that the presence of a reflecting interface may enhance the guiding properties of the array. The reason for this is the energy exchange between the surface plasmon polaritons (SPPs) of the array and the substrate. We focus on the dependence of the transmission efficiency on the frequency and polarization of the incoming light, as well as on the influence of the array-interface spacing. Sometimes the effect of these parameters turns out to be counterintuitive, reflecting a complicated interplay of several transmission channels.

  17. Laser induced inverse Landau damping in metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Garcia, Martin E.; Castro, Alberto; Alonso, J. A.; Rubio, Angel

    2002-03-01

    We perform real space time-dependent density functional calculations to study the response of small metallic nanoparticles to femtosecond laser pulses. In particular, we analyze the role of screening effects for different laser pulse intensities and frequencies. Calculations are performed on sodium clusters using both the Jellium model and pseudopitentials Based on our results we predict that, if a pulse of sufficiently high intensity ( > 10^14 W/cm^2) excites a single-particle state of the nanoparticle, the response of the system involves both the single-particle- and the surface-plasmon states. We argue that this creation of plasmons from the decay of single-particle excitations, which can be viewed as the inverse of the well known Landau-damping effect, is related to the time-evolution of the screening of charge fluctuations.

  18. Few-cycle plasmon oscillations controlling photoemission from metal nanoparticles

    SciTech Connect

    Földi, Péter; Márton, István; Német, Nikolett; Dombi, Péter; Ayadi, Viktor

    2015-01-05

    Few-cycle optical excitation of nanosystems holds promise of fundamental discoveries and applications in ultrafast nanoscience, the development of nanostructured photocathodes, and many more. For these, surface plasmon generation on unprecedented timescales needs to be controlled. For this, few-cycle plasmon oscillations on a metal nanoparticle can be generated by keeping considerable electric field enhancement factors. As an initial application of such a high spatiotemporal localization of an ultrashort laser pulse, we numerically demonstrate the control of photoelectrons on a true sub-fs timescale in nanometric spatial domains. We show that it is only off-resonant nanoparticles that can provide few-cycle plasmons and electron control on this timescale.

  19. Optical scattering from isolated metal nanoparticles and arrays.

    SciTech Connect

    Wurtz, G. A.; Im, J. S.; Gray, S. K.; Wiederrecht, G. P.; Chemistry

    2003-12-25

    Near-field scanning optical microscopy (NSOM) is used to explore the optical scattering from isolated metal nanoparticles (MNPs) and arrays of MNPs. The optical excitation source is an evanescent wave created through total internal reflection of a continuous wave laser beam at the sample-air interface. For optical excitation of isolated Ag and Au MNPs, experimental results show that the scattered light propagates into the far field at an angle of 19{sup o} from the substrate. Finite-difference time-domain (FDTD) calculations are used to study simpler but related metallic nanowire systems under evanescent wave excitation. The FDTD results are found to be similar to the experimental results, indicating the generality of the scattering phenomenon. NSOM characterization of plasmonic arrays that consist of closely spaced Ag MNPs are subsequently reported. Confined optical signals within the array are observed along with a reduction in the far-field scattered signal. Simultaneous collection of the atomic force microscopy signal and near-field signals also shows that the spatial distribution of the near-field is strongly modified in the arrays compared to isolated MNPs. FDTD studies on arrays of nanowires also show large differences from the isolated metal nanoparticle calculations, including a decrease in the forward scattered angle (with chain length) and diminished overall forward scattering.

  20. Effect of metal nanoparticles decoration on electron field emission property of graphene sheets.

    PubMed

    Baby, Tessy Theres; Ramaprabhu, Sundara

    2011-10-05

    The electron field emission from metal nanoparticle decorated hydrogen exfoliated graphene (metal/HEG) occurs at low turn on and threshold fields due to its low work function and high field enhancement factor.

  1. Broadband absorption enhancement of organic solar cells with interstitial lattice patterned metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Luzhou; Choy, Wallace C. H.; Sha, Wei E. I.

    2013-06-01

    Light blocking induced by top patterned nanostructures is a fundamental limit in solar cells absorption. Here we propose an interstitial lattice patterned organic solar cell which can improve the light blocking of traditional square lattice and achieve broadband absorption enhancement. Compared to square lattice design, the plasmonic mode couplings between individual metallic nanoparticles in the interstitial lattice are more versatile and much stronger. Moreover, plasmonic modes can couple to the guided modes, resulting in large enhancement factor at some wavelengths. The interstitial lattice concept will be a broad interest and great help for high-performance photovoltaics.

  2. Present status and future outlook of selective metallization for electronics industry by laser irradiation to metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Watanabe, Akira

    2015-03-01

    Recently an alternative to conventional methods based on vacuum processes such as evaporation or sputtering is desired to reduce the energy consumption and the environmental impact. Printed electronics has been developed as a one of the candidates, which is based on wet processes using soluble functional materials such as organic semiconductors, inorganic nanomaterials, organic-inorganic hybrids, and so on. Although inkjet printing has been studied widely as a core technology of printed electronics, the limitation of resolution is around 20 micrometer. The combination of the inkjet printing with other selective metallization process is necessary because the resolution of several micrometers is required in some optical and electrical devices. The laser processing has emerged as an attractive technique in microelectronics because of the fascinating features such as high resolution, high degree of flexibility to control the resolution and size of the micro-patterns, high speed, and a little environmental pollution. In this paper, the present status and future outlook of selective metallization for interconnection and the formation of transparent conductive film based on the laser processing using metal nanoparticles were reported. The laser beam irradiation to metal nanoparticles causes the fast and efficient sintering by plasmon resonance of metal nanoparticle, where the absorbed energy is confined in a nanoparticle and the nanoparticle acts as a nano-heater. The laser irradiation to metal nanoparticles was applied to the laser direct writing of metal wiring and micropatterns using silver and copper nanoparticles.

  3. Contact Forces between Single Metal Oxide Nanoparticles in Gas-Phase Applications and Processes

    PubMed Central

    2017-01-01

    In this work we present a comprehensive experimental study to determine the contact forces between individual metal oxide nanoparticles in the gas-phase using atomic force microscopy. In addition, we determined the amount of physisorbed water for each type of particle surface. By comparing our results with mathematical models of the interaction forces, we could demonstrate that classical continuum models of van der Waals and capillary forces alone cannot sufficiently describe the experimental findings. Rather, the discrete nature of the molecules has to be considered, which leads to ordering at the interface and the occurrence of solvation forces. We demonstrate that inclusion of solvation forces in the model leads to quantitative agreement with experimental data and that tuning of the molecular order by addition of isopropanol vapor allows us to control the interaction forces between the nanoparticles. PMID:28186771

  4. Metallic nanoparticles for compact nanostructure fabrication and observation of single-electron phenomena at room temperature

    NASA Astrophysics Data System (ADS)

    Radojkovic, P.; Schwartzkopff, M.; Gabriel, T.; Hartmann, E.

    1998-07-01

    Metallic nanoparticles having a diameter of 2-4 nm are fabricated by inert gas evaporation techniques and subsequently deposited on an atomically stepped, H-terminated Si(111) substrate, to which they stick by means of a weak coupling force. By varying the exposure time of the particle beam to the substrate, the coverage density can be well controlled. A scanning tunneling microscope (STM) operated at room temperature and under high-vacuum conditions is used to identify, characterize, and deliberately manipulate the nanoparticles. Spectroscopic data of individual particles are compared with that obtained from a pair arrangement. In the latter case, the mutual interaction gives rise to characteristic features which we associate with single-electron phenomena. The weak particle/substrate coupling force allows to displace selected particles to predetermined locations on the substrate surface. Under conditions of high power densities provided by the electron flow emanating from the tip, a local fusion process of a small number of nanoparticles sets in, resulting in the fabrication of compact nanostructures. Particles that do not take part in the fusion process can completely be removed with the STM tip, uncovering the atomic step-terrace pattern of the Si surface. Finally, the expected temperature rise of the nanoparticles under conditions of electron beam irradiation is roughly estimated.

  5. Metal phytoremediation: General strategies, genetically modified plants and applications in metal nanoparticle contamination.

    PubMed

    Gomes, Maria Angélica da Conceição; Hauser-Davis, Rachel Ann; de Souza, Adriane Nunes; Vitória, Angela Pierre

    2016-12-01

    The accumulation of metals in different environmental compartments poses a risk to both the environment and biota health. In particular, the continuous increase of these elements in soil ecosystems is a major worldwide concern. Phytoremediation has been gaining more attention in this regard. This approach takes advantage of the unique and selective uptake capabilities of plant root systems, and applies these natural processes alongside the translocation, bioaccumulation, and contaminant degradation abilities of the entire plant and, although it is a relatively recent technology, beginning in the 90's, it is already considered a green alternative solution to the problem of metal pollution, with great potential. This review focuses on phytoremediation of metals from soil, sludge, wastewater and water, the different strategies applied, the biological and physico-chemical processes involved and the advantages and limitations of each strategy. Special note is given to the use of transgenic species and phytoremediation of metallic nanoparticles.

  6. Topological collective plasmons in bipartite chains of metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Downing, Charles A.; Weick, Guillaume

    2017-03-01

    We study a bipartite linear chain constituted by spherical metallic nanoparticles, where each nanoparticle supports a localized surface plasmon. The near-field dipolar interaction between the localized surface plasmons gives rise to collective plasmons, which are extended over the whole nanoparticle array. We derive analytically the spectrum and the eigenstates of the collective plasmonic excitations. At the edge of the Brillouin zone, the spectrum is of a pseudorelativistic nature similar to that present in the electronic band structure of polyacetylene. We find the effective Dirac Hamiltonian for the collective plasmons and show that the corresponding spinor eigenstates represent one-dimensional Dirac-like massive bosonic excitations. Therefore, the plasmonic lattice exhibits similar effects to those found for electrons in one-dimensional Dirac materials, such as the ability for transmission with highly suppressed backscattering due to Klein tunneling. We also show that the system is governed by a nontrivial Zak phase, which predicts the manifestation of edge states in the chain. When two dimerized chains with different topological phases are connected, we find the appearance of the bosonic version of a Jackiw-Rebbi midgap state. We further investigate the radiative and nonradiative lifetimes of the collective plasmonic excitations and comment on the challenges for experimental realization of the topological effects found theoretically.

  7. Selective Catalysis in Nanoparticle Metal-Organic Framework Composites

    NASA Astrophysics Data System (ADS)

    Stephenson, Casey Justin

    The design of highly selective catalysts are becoming increasingly important, especially as chemical and pharmaceutical industries seek to improve atom economy and minimize energy intensive separations that are often required to separate side products from the desired product. Enzymes are among the most selective of all catalysts, generally operating through molecular recognition whereby an active site analogous to a lock and the substrate is analogous to a key. The assembly of a porous, crystalline material around a catalytically active metal particle could serve as an artificial enzyme. In this vein, we first synthesized the polyvinylpyrrolidone (PVP) coated nanoparticles of interest and then encapsulated them within zeolitic imidazolate framework 8 or ZIF-8. 2.8 nm Pt-PVP nanoparticles, which were encapsulated within ZIF-8 to form Pt ZIF-8 composite. Pt ZIF-8 was inactive for the hydrogenation of cyclic olefins such as cis-cyclooctene and cis-cyclohexene while the composite proved to be a highly selective catalyst for the hydrogenation of terminal olefins, hydrogenating trans-1,3-hexadiene to 3-hexene in 95% selectivity after 24 hours under 1 bar H2. We extended our encapsulation method to sub-2 nm Au nanoparticles to form Au ZIF-8. Au ZIF-8 served as a highly chemoselective catalyst for the hydrogenation of crotonaldehyde an alpha,beta-unsaturated aldehyde, to crotyl alcohol an alpha,beta-unsaturated alcohol, in 90-95% selectivity. In order to investigate nanoparticle size effects on selectivity, 6-10 nm Au nanoparticles were encapsulated within ZIF-8 to form Au6 ZIF-8. Control catalysts with nanoparticles supported on the surface of ZIF-8 were synthesized as well, Au/ZIF-8 and Au6/ZIF-8. Au6 ZIF-8 hydrogenated crotonaldehyde in 85% selectivity towards the unsaturated alcohol. Catalysts with nanoparticles supported on the exterior of ZIF-8 were far less selective towards the unsaturated alcohol. Post-catalysis transmission electron microscopy analysis of Au ZIF

  8. Doping of Metal-Organic Frameworks with Functional Guest Molecules and Nanoparticles

    NASA Astrophysics Data System (ADS)

    Schröder, Felicitas; Fischer, Roland A.

    Nanoparticle synthesis within metal-organic frameworks (MOFs) is performed by the adsorption of suitable precursor molecules for the metal component and subsequent decomposition to the composite materials nanoparticles@MOF. This chapter will review different approaches of loading MOFs with more complex organic molecules and metal-organic precursor molecules. The related reactions inside MOFs are discussed with a focus on stabilizing reactive intermediates in the corresponding cavities. The syntheses of metal and metal oxide nanoparticles inside MOFs are reviewed, and different synthetic routes compared. Emphasis is placed on the micro structural characterization of the materials nanoparticles@MOF with a particular focus on the location of embedded nanoparticles using TEM methods. Some first examples of applications of the doped MOFs in heterogeneous catalysis and hydrogen storage are described.

  9. Plasmonics: Heat transfer between metal nanoparticles and supporting nanolayers

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.; Zorić, Igor; Kasemo, Bengt

    2012-09-01

    Due to plasmon-related local field enhancement, metal nanoparticles can be used in conventional surface photochemistry and also in numerous applications, e.g., for optimization of the performance of thin film solar cells and photo-electrochemical cells employed for solar-to-fuel energy conversion. In the experimental model studies related to such cells, metal nanoparticles are located on or embedded into a 40-100 nm thick active photoabsorbing material (e.g., Si or Fe2O3), supported underneath by a ∼1 mm thick glass layer. We present general equations describing heat transport in the layered systems of this type. The equations contain the coefficients of heat transfer between different nanophases. Using the Debye model, we derive an analytical expression for these coefficients. Our calculations show that for the energy flux corresponding to solar light the overheating is practically negligible. In more conventional surface photochemistry, the effect may be more appreciable with increasing the energy flux and support thickness.

  10. Multiple percolation tunneling staircase in metal-semiconductor nanoparticle composites

    SciTech Connect

    Mukherjee, Rupam; Huang, Zhi-Feng; Nadgorny, Boris

    2014-10-27

    Multiple percolation transitions are observed in a binary system of RuO{sub 2}-CaCu{sub 3}Ti{sub 4}O{sub 12} metal-semiconductor nanoparticle composites near percolation thresholds. Apart from a classical percolation transition, associated with the appearance of a continuous conductance path through RuO{sub 2} metal oxide nanoparticles, at least two additional tunneling percolation transitions are detected in this composite system. Such behavior is consistent with the recently emerged picture of a quantum conductivity staircase, which predicts several percolation tunneling thresholds in a system with a hierarchy of local tunneling conductance, due to various degrees of proximity of adjacent conducting particles distributed in an insulating matrix. Here, we investigate a different type of percolation tunneling staircase, associated with a more complex conductive and insulating particle microstructure of two types of non-spherical constituents. As tunneling is strongly temperature dependent, we use variable temperature measurements to emphasize the hierarchical nature of consecutive tunneling transitions. The critical exponents corresponding to specific tunneling percolation thresholds are found to be nonuniversal and temperature dependent.

  11. Direct observation of a propagating, planar-waveguide surface mode in a discontinuous film of metal nanoparticles.

    PubMed

    Soller, B J; Hall, D G

    2000-08-01

    We report the observation of p-polarized guided waves that propagate confined to the surface of a two-dimensional array of silver (Ag) nanoparticles of average particle diameter and film thickness of approximately 400 and 154 nm, respectively, and comparable interparticle spacing. We interpret resonant features in the attenuated total reflection angular spectrum as arising from the excitation of guided waves in our discontinuous samples. The excitation of these waves is a direct consequence of the interaction of the light field with the localized resonance of the conduction electrons in the individual metal nanoparticles.

  12. Greener syntheses of metallic nanoparticles and zinc oxide nanopowders

    NASA Astrophysics Data System (ADS)

    Samson, Jacopo

    In recent years, nanotechnology and nanomaterials synthesis have attracted a great deal of attention in the scientific community. Nanomaterials display size and morphology-related optical properties that differ from their bulk counterparts and therefore can be used for many applications in different fields such as biomedicine, electronics, antibacterial agents, and energy. Attempts to fabricate different morphologies of metallic and metal oxide nanoparticles (NPs) have successfully yielded attractive nanostructures such as particles, rods, helices, combs, tetra-pods, and flowers, all displaying properties mainly related to their enhanced surface area and/or aspect ratios. Most of the above mentioned nanomaterials productions have employed harsh synthetic routes such as high temperatures, low pressures, and the use of costly equipments. Here we show how a greener approach to nanomaterials synthesis is feasible with both minimization of aqueous precursors, energy and employment of a multi-block heater for temperature control. We present in this thesis several methods for the preparation of NPs of several materials that focus on minimizing the environmental impact of the synthesis itself. First, we describe the use of the toroidal form of plasmid DNA as a rigid narrowly dispersed bio-polymeric nanocavity, which mold the formation of disc-shaped nanoparticles of several types of metals. This approach exploits several properties of plasmid DNA: (a) DNA affinity for metal cations, (b) toroidal plasmid DNA structures which are favored by metal ionic binding, and (c) the ability to vary plasmid size. Herein, we present a complementary synthetic method based on a kinetic approach wherein the plasmid DNA acts as a template to initiate and control the formation of Au and other metallic NPs by incubation at elevated temperatures. Also reported herein is a simple, scalable hydrothermal method to make ZnO NPs that exploits temperature to precisely control the range of pH values

  13. Advanced Electrochemistry of Individual Metal Clusters Electrodeposited Atom by Atom to Nanometer by Nanometer.

    PubMed

    Kim, Jiyeon; Dick, Jeffrey E; Bard, Allen J

    2016-11-15

    Metal clusters are very important as building blocks for nanoparticles (NPs) for electrocatalysis and electroanalysis in both fundamental and applied electrochemistry. Attention has been given to understanding of traditional nucleation and growth of metal clusters and to their catalytic activities for various electrochemical applications in energy harvesting as well as analytical sensing. Importantly, understanding the properties of these clusters, primarily the relationship between catalysis and morphology, is required to optimize catalytic function. This has been difficult due to the heterogeneities in the size, shape, and surface properties. Thus, methods that address these issues are necessary to begin understanding the reactivity of individual catalytic centers as opposed to ensemble measurements, where the effect of size and morphology on the catalysis is averaged out in the measurement. This Account introduces our advanced electrochemical approaches to focus on each isolated metal cluster, where we electrochemically fabricated clusters or NPs atom by atom to nanometer by nanometer and explored their electrochemistry for their kinetic and catalytic behavior. Such approaches expand the dimensions of analysis, to include the electrochemistry of (1) a discrete atomic cluster, (2) solely a single NP, or (3) individual NPs in the ensemble sample. Specifically, we studied the electrocatalysis of atomic metal clusters as a nascent electrocatalyst via direct electrodeposition on carbon ultramicroelectrode (C UME) in a femtomolar metal ion precursor. In addition, we developed tunneling ultramicroelectrodes (TUMEs) to study electron transfer (ET) kinetics of a redox probe at a single metal NP electrodeposited on this TUME. Owing to the small dimension of a NP as an active area of a TUME, extremely high mass transfer conditions yielded a remarkably high standard ET rate constant, k(0), of 36 cm/s for outer-sphere ET reaction. Most recently, we advanced nanoscale

  14. Orientation-preserving transfer and directional light scattering from individual light-bending nanoparticles.

    PubMed

    Zhang, Yu; Barhoumi, Aoune; Lassiter, J Britt; Halas, Naomi J

    2011-04-13

    A nanocup, or semishell, is an asymmetric plasmonic "Janus" nanoparticle with electric and magnetic plasmon modes; the latter scatters light in a direction controlled by nanoparticle orientation, making it the nanoscale analog of a parabolic antenna. Here we report a method for transferring nanocups from their growth substrate to oxide-terminated substrates that precisely preserves their three-dimensional orientation, enabling their use as nanophotonic components. This enables us to selectively excite and probe the electric and magnetic plasmon modes of individual nanocups, showing how the scattered light depends on the direction of incoming light and the orientation of this nanoparticle antenna.

  15. Orientation-Preserving Transfer and Directional Light Scattering from Individual Light-Bending Nanoparticles

    SciTech Connect

    Zhang, Yu; Barhoumi, Aoune; Lassiter, J. Britt; Halas, Naomi J.

    2011-04-13

    A nanocup, or semishell, is an asymmetric plasmonic “Janus” nanoparticle with electric and magnetic plasmon modes; the latter scatters light in a direction controlled by nanoparticle orientation, making it the nanoscale analog of a parabolic antenna. Here we report a method for transferring nanocups from their growth substrate to oxide-terminated substrates that precisely preserves their three-dimensional orientation, enabling their use as nanophotonic components. This enables us to selectively excite and probe the electric and magnetic plasmon modes of individual nanocups, showing how the scattered light depends on the direction of incoming light and the orientation of this nanoparticle antenna.

  16. Synthesis of ternary metal nitride nanoparticles using mesoporous carbon nitride as reactive template.

    PubMed

    Fischer, Anna; Müller, Jens Oliver; Antonietti, Markus; Thomas, Arne

    2008-12-23

    Mesoporous graphitic carbon nitride was used as both a nanoreactor and a reactant for the synthesis of ternary metal nitride nanoparticles. By infiltration of a mixture of two metal precursors into mesoporous carbon nitride, the pores act first as a nanoconfinement, generating amorphous mixed oxide nanoparticles. During heating and decomposition, the carbon nitride second acts as reactant or, more precisely, as a nitrogen source, which converts the preformed mixed oxide nanoparticles into the corresponding nitride (reactive templating). Using this approach, ternary metal nitride particles with diameters smaller 10 nm composed of aluminum gallium nitride (Al-Ga-N) and titanium vanadium nitride (Ti-V-N) were synthesized. Due to the confinement effect of the carbon nitride matrix, the composition of the resulting metal nitride can be easily adjusted by changing the concentration of the preceding precursor solution. Thus, ternary metal nitride nanoparticles with continuously adjustable metal composition can be produced.

  17. Metallic Nickel Nanoparticles May Exhibit Higher Carcinogenic Potential than Fine Particles in JB6 Cells

    PubMed Central

    Bowman, Linda; Zou, Baobo; Mao, Guochuan; Xu, Jin; Castranova, Vincent; Zhao, Jinshun; Ding, Min

    2014-01-01

    While numerous studies have described the pathogenic and carcinogenic effects of nickel compounds, little has been done on the biological effects of metallic nickel. Moreover, the carcinogenetic potential of metallic nickel nanoparticles is unknown. Activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) have been shown to play pivotal roles in tumor initiation, promotion, and progression. Mutation of the p53 tumor suppressor gene is considered to be one of the steps leading to the neoplastic state. The present study examines effects of metallic nickel fine and nanoparticles on tumor promoter or suppressor gene expressions as well as on cell transformation in JB6 cells. Our results demonstrate that metallic nickel nanoparticles caused higher activation of AP-1 and NF-κB, and a greater decrease of p53 transcription activity than fine particles. Western blot indicates that metallic nickel nanoparticles induced a higher level of protein expressions for R-Ras, c-myc, C-Jun, p65, and p50 in a time-dependent manner. In addition, both metallic nickel nano- and fine particles increased anchorage-independent colony formation in JB6 P+ cells in the soft agar assay. These results imply that metallic nickel fine and nanoparticles are both carcinogenetic in vitro in JB6 cells. Moreover, metallic nickel nanoparticles may exhibit higher carcinogenic potential, which suggests that precautionary measures should be taken in the use of nickel nanoparticles or its compounds in nanomedicine. PMID:24691273

  18. Synthesis of low-melting-point metallic nanoparticles with an ultrasonic nanoemulsion method.

    PubMed

    Han, Z H; Yang, B; Qi, Y; Cumings, J

    2011-05-01

    A one-step, economical nanoemulsion method has been introduced to synthesize low-melting-point metallic nanoparticles. This nanoemulsion technique exploits the extremely high shear rates generated by the ultrasonic agitation and the relatively large viscosity of the continuous phase - polyalphaolefin (PAO), to rupture the molten metal down to diameter below 100 nm. Field's metal nanoparticles and Indium nanoparticles of respective average diameters of 15 nm and 30 nm have been obtained. The nanoparticles size and shape are determined by transmission electron microscopy (TEM). Their phase transition behavior is examined using a differential scanning calorimeter (DSC). It is found that these nanoparticles dispersed in PAO can undergo reversible, melting-freezing phase transition, and exhibit a relatively large hysteresis. The experimental results suggest that the nanoemulsion method is a viable route for mass production of low-melting nanoparticles.

  19. Nickel and platinum group metal nanoparticle production by Desulfovibrio alaskensis G20.

    PubMed

    Capeness, M J; Edmundson, M C; Horsfall, L E

    2015-12-25

    Desulfovibrio alaskensis G20 is an anaerobic sulfate reducing bacteria. While Desulfovibrio species have previously been shown to reduce palladium and platinum to the zero-state, forming nanoparticles in the process; there have been no reports that D. alaskensis is able to form these nanoparticles. Metal nanoparticles have properties that make them ideal for use in many industrial and medical applications, such as their size and shape giving them higher catalytic activity than the bulk form of the same metal. Nanoparticles of the platinum group metals in particular are highly sought after for their catalytic ability and herein we report the formation of both palladium and platinum nanoparticles by D. alaskensis and the biotransformation of solvated nickel ions to nanoparticle form.

  20. Investigation of laser heating effect of metallic nanoparticles on cancer treatment

    NASA Astrophysics Data System (ADS)

    Shan, G. S.; Liu, X. M.; Chen, H. J.; Yu, J. S.; Chen, X. D.; Yao, Y.; Qi, L. M.; Chen, Z. J.

    2016-07-01

    Metallic nanoparticles can be applied for hyperthermia therapy of cancer treatment to enhance the efficacy because of their high absorption rate. The absorption of laser energy by metallic nanoparticles is strongly dependent on the concentration, shape, material of nanoparticles and the wavelength of the laser. However, there is no systematic investigation on the heating effect involving different material, concentration and laser wavelength. In this paper, gold nanoparticles (AuNPs), sliver nanoparticles (AgNPs) and sliver nanowires (AgNWs) with different concentrations are heated by 450nm and 532nm wavelength laser to investigate the heating effect. The result shows that the temperature distribution of heated metallic nanoparticles is non-uniform.

  1. Metal-Based Nanoparticles and the Immune System: Activation, Inflammation, and Potential Applications

    PubMed Central

    Luo, Yueh-Hsia; Chang, Louis W.; Lin, Pinpin

    2015-01-01

    Nanomaterials, including metal-based nanoparticles, are used for various biological and medical applications. However, metals affect immune functions in many animal species including humans. Different physical and chemical properties induce different cellular responses, such as cellular uptake and intracellular biodistribution, leading to the different immune responses. The goals of this review are to summarize and discuss the innate and adaptive immune responses triggered by metal-based nanoparticles in a variety of immune system models. PMID:26125021

  2. Study and Optimization of Metal Nanoparticles for the Enhanced Efficiency Thin Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Shilpa, G. D.; Subramanyam, T. K.; Sreelakshmi, K.; Uttarakumari

    2016-09-01

    Thin film silicon solar cells have the potential to considerably decrease the cost of photovoltaic. To increase the conversion efficiency of thin film solar cells, nano-sized structures, such as nanoparticle deposition at the front end, were proposed. In the present study, spherical metal nanoparticles such as gold (Au) and silver (Ag) were deployed at the front of the silicon solar cell. The effect of metal nanoparticles on the absorption enhancement factor of the thin film solar cells was investigated using Lumerical Finite Difference Time Domain (FDTD) solutions. Also the influence of geometrical parameters of spherical nanoparticles on absorption enhancement factor was examined. The maximum absorption enhancement factor was achieved by optimizing the geometrical parameters of nanoparticles. The structure with Ag nanoparticles at the front end of the silicon solar cell exhibits higher absorption enhancement factor than the structure with Au nanoparticles.

  3. Role of metal nanoparticles on porosification of silicon by metal induced etching (MIE)

    NASA Astrophysics Data System (ADS)

    Saxena, Shailendra K.; Yogi, Priyanka; Yadav, Pooja; Mishra, Suryakant; Pandey, Haardik; Rai, Hari Mohan; Kumar, Vivek; Sagdeo, Pankaj R.; Kumar, Rajesh

    2016-06-01

    Porosification of silicon (Si) by metal induced etching (MIE) process has been studied here to understand the etching mechanism. The etching mechanism has been discussed on the basis of electron transfer from Si to metal ion (Ag+) and metal to H2O2. Role of silver nanoparticles (AgNPs) in the etching process has been investigated by studying the effect of AgNPs coverage on surface porosity. A quantitative analysis of SEM images, done using Image J, shows a direct correlation between AgNPs coverage and surface porosity after the porosification. Density of Si nanowires (NWs) also varies as a function of AgNPs fractional coverage which reasserts the fact that AgNPs governs the porosification process during MIE. The Raman and PL spectrum show the presence of Si NSs in the samples.

  4. Regulating the spatial distribution of metal nanoparticles within metal-organic frameworks to enhance catalytic efficiency

    PubMed Central

    Yang, Qiu; Liu, Wenxian; Wang, Bingqing; Zhang, Weina; Zeng, Xiaoqiao; Zhang, Cong; Qin, Yongji; Sun, Xiaoming; Wu, Tianpin; Liu, Junfeng; Huo, Fengwei; Lu, Jun

    2017-01-01

    Composites incorporating metal nanoparticles (MNPs) within metal-organic frameworks (MOFs) have broad applications in many fields. However, the controlled spatial distribution of the MNPs within MOFs remains a challenge for addressing key issues in catalysis, for example, the efficiency of catalysts due to the limitation of molecular diffusion within MOF channels. Here we report a facile strategy that enables MNPs to be encapsulated into MOFs with controllable spatial localization by using metal oxide both as support to load MNPs and as a sacrificial template to grow MOFs. This strategy is versatile to a variety of MNPs and MOF crystals. By localizing the encapsulated MNPs closer to the surface of MOFs, the resultant MNPs@MOF composites not only exhibit effective selectivity derived from MOF cavities, but also enhanced catalytic activity due to the spatial regulation of MNPs as close as possible to the MOF surface. PMID:28195131

  5. Regulating the spatial distribution of metal nanoparticles within metal-organic frameworks to enhance catalytic efficiency

    NASA Astrophysics Data System (ADS)

    Yang, Qiu; Liu, Wenxian; Wang, Bingqing; Zhang, Weina; Zeng, Xiaoqiao; Zhang, Cong; Qin, Yongji; Sun, Xiaoming; Wu, Tianpin; Liu, Junfeng; Huo, Fengwei; Lu, Jun

    2017-02-01

    Composites incorporating metal nanoparticles (MNPs) within metal-organic frameworks (MOFs) have broad applications in many fields. However, the controlled spatial distribution of the MNPs within MOFs remains a challenge for addressing key issues in catalysis, for example, the efficiency of catalysts due to the limitation of molecular diffusion within MOF channels. Here we report a facile strategy that enables MNPs to be encapsulated into MOFs with controllable spatial localization by using metal oxide both as support to load MNPs and as a sacrificial template to grow MOFs. This strategy is versatile to a variety of MNPs and MOF crystals. By localizing the encapsulated MNPs closer to the surface of MOFs, the resultant MNPs@MOF composites not only exhibit effective selectivity derived from MOF cavities, but also enhanced catalytic activity due to the spatial regulation of MNPs as close as possible to the MOF surface.

  6. Enhancement of the second-harmonic generation in a quantum dot-metallic nanoparticle hybrid system

    NASA Astrophysics Data System (ADS)

    Singh, Mahi R.

    2013-03-01

    We have investigated the second-harmonic generation (SHG) and dipole-dipole interaction in a quantum dot and metallic nanoparticle hybrid system. A strong probe field is applied to create two-photon absorption in the quantum dot and metallic nanoparticle. SHG photons and SHG surface plasmon polaritons are emitted by the quantum dot and metallic nanoparticle, respectively. Induced dipoles are created in the quantum dot and the metallic nanoparticle due to two-photon absorption and hence both systems interact with each other via the dipole-dipole interaction. It is found that SHG signals produced by the quantum dot and nanoparticle are enhanced by the dipole-dipole interaction and also that the SHG signal can be switched on and off by applying a control field. The theoretical findings of this paper are supported by recent experimental studies. The present hybrid system can be used to fabricate nano-sensors and all-optical nano-switching devices.

  7. Biofilms Versus Activated Sludge: Considerations in Metal and Metal Oxide Nanoparticle Removal from Wastewater.

    PubMed

    Walden, Connie; Zhang, Wen

    2016-08-16

    The increasing application of metal and metal oxide nanoparticles [Me(O)NPs] in consumer products has led to a growth in concentration of these nanoparticles in wastewater as emerging contaminants. This may pose a threat to ecological communities (e.g., biological nutrient removal units) within treatment plants and those subject to wastewater effluents. Here, the toxicity, fate, and process implications of Me(O)NPs within wastewater treatment, specifically during activated sludge processing and biofilm systems are reviewed and compared. Research showed activated sludge achieves high removal rate of Me(O)NPs by the formation of aggregates through adsorption. However, recent literature reveals evidence that inhibition is likely for nutrient removal capabilities such as nitrification. Biofilm systems were much less studied, but show potential to resist Me(O)NP inhibition and achieve removal through possible retention by sorption. Implicating factors during bacteria-Me(O)NP interactions such as aggregation, surface functionalization, and the presence of organics are summarized. At current modeled levels, neither activated sludge nor biofilm systems can achieve complete removal of Me(O)NPs, thus allowing for long-term environmental exposure of diverse biological communities to Me(O)NPs in streams receiving wastewater effluents. Future research directions are identified throughout in order to minimize the impact of these nanoparticles released.

  8. Colloidal Metal Nanoparticles Prepared by Laser Ablation and their Applications.

    PubMed

    Zhang, Jianming; Claverie, Jerome; Chaker, Mohamed; Ma, Dongling

    2017-02-05

    This review article highlights the recent advances of the synthesis and application of metal nanoparticles (NPs) fabricated via pulsed laser ablation in liquid (PLAL) phase and also introduces relevant NP formation mechanisms. Although wet-chemical approaches have been well established to synthesize colloidal metal NPs with various components and structures, some inherent drawbacks, such as reaction residuals and/or contaminations, largely limit some of their applications. The PLAL method has recently been developed as an alternative approach and received increasing attention for colloidal NP preparation, without involving complicated chemical reactions. In certain cases, by using PLAL, ligand-free and surface-clean NPs can be obtained and well dispersed in liquid, leading to the formation of a "surface-clean" NP dispersion. This unique feature renders PLAL-synthesised metal NPs attractive candidates for many interesting applications in catalysis, biology, sensing, and clean energy generation and storage. We conclude this review by proposing several interesting research directions and future challenges, from PLAL fabrication to applications. We hope this review can serve as a good reference and help with the further development of PLAL-NPs and their diverse applications.

  9. Direct visualization of hydrogen absorption dynamics in individual palladium nanoparticles

    NASA Astrophysics Data System (ADS)

    Narayan, Tarun C.; Hayee, Fariah; Baldi, Andrea; Leen Koh, Ai; Sinclair, Robert; Dionne, Jennifer A.

    2017-01-01

    Many energy storage materials undergo large volume changes during charging and discharging. The resulting stresses often lead to defect formation in the bulk, but less so in nanosized systems. Here, we capture in real time the mechanism of one such transformation--the hydrogenation of single-crystalline palladium nanocubes from 15 to 80 nm--to better understand the reason for this durability. First, using environmental scanning transmission electron microscopy, we monitor the hydrogen absorption process in real time with 3 nm resolution. Then, using dark-field imaging, we structurally examine the reaction intermediates with 1 nm resolution. The reaction proceeds through nucleation and growth of the new phase in corners of the nanocubes. As the hydrogenated phase propagates across the particles, portions of the lattice misorient by 1.5%, diminishing crystal quality. Once transformed, all the particles explored return to a pristine state. The nanoparticles' ability to remove crystallographic imperfections renders them more durable than their bulk counterparts.

  10. Engineered metal nanoparticles in the sub-nanomolar levels kill cancer cells

    PubMed Central

    Vodyanoy, Vitaly; Daniels, Yasmine; Pustovyy, Oleg; MacCrehan, William A; Muramoto, Shin; Stan, Gheorghe

    2016-01-01

    Background Small metal nanoparticles obtained from animal blood were observed to be toxic to cultured cancer cells, whereas noncancerous cells were much less affected. In this work, engineered zinc and copper metal nanoparticles were produced from bulk metal rods by an underwater high-voltage discharge method. The metal nanoparticles were characterized by atomic force microscopy and X-ray photoelectron spectroscopy. The metal nanoparticles, with estimated diameters of 1 nm–2 nm, were determined to be more than 85% nonoxidized. A cell viability assay and high-resolution light microscopy showed that exposure of RG2, cultured rat brain glioma cancer cells, to the zinc and copper nanoparticles resulted in cell morphological changes, including decreased cell adherence, shrinking/rounding, nuclear condensation, and budding from cell bodies. The metal-induced cell injuries were similar to the effects of staurosporine, an active apoptotic reagent. The viability experiments conducted for zinc and copper yielded values of dissociation constants of 0.22±0.08 nmol/L (standard error [SE]) and 0.12±0.02 nmol/L (SE), respectively. The noncancerous astrocytes were not affected at the same conditions. Because metal nanoparticles were lethal to the cancer cells at sub-nanomolar concentrations, they are potentially important as nanomedicine. Purpose Lethal concentrations of synthetic metal nanoparticles reported in the literature are a few orders of magnitude higher than the natural, blood-isolated metal nanoparticles; therefore, in this work, engineered metal nanoparticles were examined to mimic the properties of endogenous metal nanoparticles. Materials and methods RG2, rat brain glioma cells CTX TNA2 brain rat astrocytes, obtained from the American Type Culture Collection, high-voltage discharge, atomic force microscope, X-ray photoelectron spectroscopy, high-resolution light microscopy, zeta potential measurements, and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium

  11. Synthesis of Metal Nanoparticles and Metal Fluoride Nanoparticles from Metal Amidinate Precursors in 1‐Butyl‐3‐Methylimidazolium Ionic Liquids and Propylene Carbonate

    PubMed Central

    Schütte, Kai; Barthel, Juri; Endres, Manuel; Siebels, Marvin; Smarsly, Bernd M.; Yue, Junpei

    2016-01-01

    Abstract Decomposition of transition‐metal amidinates [M{MeC(NiPr)2}n] [M(AMD)n; M=MnII, FeII, CoII, NiII, n=2; CuI, n=1) induced by microwave heating in the ionic liquids (ILs) 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([BMIm][BF4]), 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([BMIm][PF6]), 1‐butyl‐3‐methylimidazolium trifluoromethanesulfonate (triflate) ([BMIm][TfO]), and 1‐butyl‐3‐methylimidazolium tosylate ([BMIm][Tos]) or in propylene carbonate (PC) gives transition‐metal nanoparticles (M‐NPs) in non‐fluorous media (e.g. [BMIm][Tos] and PC) or metal fluoride nanoparticles (MF2‐NPs) for M=Mn, Fe, and Co in [BMIm][BF4]. FeF2‐NPs can be prepared upon Fe(AMD)2 decomposition in [BMIm][BF4], [BMIm][PF6], and [BMIm][TfO]. The nanoparticles are stable in the absence of capping ligands (surfactants) for more than 6 weeks. The crystalline phases of the metal or metal fluoride synthesized in [BMIm][BF4] were identified by powder X‐ray diffraction (PXRD) to exclusively Ni‐ and Cu‐NPs or to solely MF2‐NPs for M=Mn, Fe, and Co. The size and size dispersion of the nanoparticles were determined by transmission electron microscopy (TEM) to an average diameter of 2(±2) to 14(±4) nm for the M‐NPs, except for the Cu‐NPs in PC, which were 51(±8) nm. The MF2‐NPs from [BMIm][BF4] were 15(±4) to 65(±18) nm. The average diameter from TEM is in fair agreement with the size evaluated from PXRD with the Scherrer equation. The characterization was complemented by energy‐dispersive X‐ray spectroscopy (EDX). Electrochemical investigations of the CoF2‐NPs as cathode materials for lithium‐ion batteries were simply evaluated by galvanostatic charge/discharge profiles, and the results indicated that the reversible capacity of the CoF2‐NPs was much lower than the theoretical value, which may have originated from the complex conversion reaction mechanism and residue on the surface of the nanoparticles. PMID:28168159

  12. Multi-Order Investigation of the Nonlinear Susceptibility Tensors of Individual Nanoparticles

    NASA Astrophysics Data System (ADS)

    Schmidt, Cédric; Riporto, Jérémy; Uldry, Aline; Rogov, Andrii; Mugnier, Yannick; Dantec, Ronan Le; Wolf, Jean-Pierre; Bonacina, Luigi

    2016-05-01

    We use Hyper Rayleigh Scattering and polarization resolved multiphoton microscopy to investigate simultaneously the second and third-order nonlinear response of Potassium Niobate and Bismuth Ferrite harmonic nanoparticles. We first derive the second-to-third harmonic intensity ratio for colloidal ensembles and estimate the average third-order efficiency of these two materials. Successively, we explore the orientation dependent tensorial response of individual nanoparticles fixed on a substrate. The multi-order polarization resolved emission curves are globally fitted with an analytical model to retrieve individual elements of susceptibility tensors.

  13. Multi-Order Investigation of the Nonlinear Susceptibility Tensors of Individual Nanoparticles

    PubMed Central

    Schmidt, Cédric; Riporto, Jérémy; Uldry, Aline; Rogov, Andrii; Mugnier, Yannick; Dantec, Ronan Le; Wolf, Jean-Pierre; Bonacina, Luigi

    2016-01-01

    We use Hyper Rayleigh Scattering and polarization resolved multiphoton microscopy to investigate simultaneously the second and third-order nonlinear response of Potassium Niobate and Bismuth Ferrite harmonic nanoparticles. We first derive the second-to-third harmonic intensity ratio for colloidal ensembles and estimate the average third-order efficiency of these two materials. Successively, we explore the orientation dependent tensorial response of individual nanoparticles fixed on a substrate. The multi-order polarization resolved emission curves are globally fitted with an analytical model to retrieve individual elements of susceptibility tensors. PMID:27140074

  14. Directed liquid phase assembly of highly ordered metallic nanoparticle arrays

    DOE PAGES

    Wu, Yueying; Dong, Nanyi; Fu, Shaofang; ...

    2014-04-01

    Directed assembly of nanomaterials is a promising route for the synthesis of advanced materials and devices. We demonstrate the directed-assembly of highly ordered two-dimensional arrays of hierarchical nanostructures with tunable size, spacing and composition. The directed assembly is achieved on lithographically patterned metal films that are subsequently pulse-laser melted; during the brief liquid lifetime, the pattened nanostructures assemble into highly ordered primary and secondary nanoparticles, with sizes below that which was originally patterned. Complementary fluid-dynamics simulations emulate the resultant patterns and show how the competition of capillary forces and liquid metal–solid substrate interaction potential drives the directed assembly. Lastly, asmore » an example of the enhanced functionality, a full-wave electromagnetic analysis has been performed to identify the nature of the supported plasmonic resonances.« less

  15. Directed liquid phase assembly of highly ordered metallic nanoparticle arrays

    SciTech Connect

    Wu, Yueying; Dong, Nanyi; Fu, Shaofang; Fowlkes, Jason D.; Kondic, Lou; Vincenti, Maria A.; de Ceglia, Domenico; Rack, Philip D.

    2014-04-01

    Directed assembly of nanomaterials is a promising route for the synthesis of advanced materials and devices. We demonstrate the directed-assembly of highly ordered two-dimensional arrays of hierarchical nanostructures with tunable size, spacing and composition. The directed assembly is achieved on lithographically patterned metal films that are subsequently pulse-laser melted; during the brief liquid lifetime, the pattened nanostructures assemble into highly ordered primary and secondary nanoparticles, with sizes below that which was originally patterned. Complementary fluid-dynamics simulations emulate the resultant patterns and show how the competition of capillary forces and liquid metal–solid substrate interaction potential drives the directed assembly. Lastly, as an example of the enhanced functionality, a full-wave electromagnetic analysis has been performed to identify the nature of the supported plasmonic resonances.

  16. Engineering Metallic Nanoparticles for Enhancing and Probing Catalytic Reactions.

    PubMed

    Collins, Gillian; Holmes, Justin D

    2016-07-01

    Recent developments in tailoring the structural and chemical properties of colloidal metal nanoparticles (NPs) have led to significant enhancements in catalyst performance. Controllable colloidal synthesis has also allowed tailor-made NPs to serve as mechanistic probes for catalytic processes. The innovative use of colloidal NPs to gain fundamental insights into catalytic function will be highlighted across a variety of catalytic and electrocatalytic applications. The engineering of future heterogenous catalysts is also moving beyond size, shape and composition considerations. Advancements in understanding structure-property relationships have enabled incorporation of complex features such as tuning surface strain to influence the behavior of catalytic NPs. Exploiting plasmonic properties and altering colloidal surface chemistry through functionalization are also emerging as important areas for rational design of catalytic NPs. This news article will highlight the key developments and challenges to the future design of catalytic NPs.

  17. Dirac plasmons in bipartite lattices of metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Jebb Sturges, Thomas; Woollacott, Claire; Weick, Guillaume; Mariani, Eros

    2015-03-01

    We study theoretically ‘graphene-like’ plasmonic metamaterials constituted by two-dimensional arrays of metallic nanoparticles, including perfect honeycomb structures with and without inversion symmetry, as well as generic bipartite lattices. The dipolar interactions between localized surface plasmons (LSPs) in different nanoparticles gives rise to collective plasmons (CPs) that extend over the whole lattice. We study the band structure of CPs and unveil its tunability with the orientation of the dipole moments associated with the LSPs. Depending on the dipole orientation, we identify a phase diagram of gapless or gapped phases in the CP dispersion. We show that the gapless phases in the phase diagram are characterized by CPs behaving as massless chiral Dirac particles, in analogy with electrons in graphene. When the inversion symmetry of the honeycomb structure is broken, CPs are described as gapped chiral Dirac modes with an energy-dependent Berry phase. We further relax the geometric symmetry of the honeycomb structure by analysing generic bipartite hexagonal lattices. In this case we study the evolution of the phase diagram and unveil the emergence of a sequence of topological phase transitions when one hexagonal sublattice is progressively shifted with respect to the other.

  18. Inhomogeneous depletion of oxygen ions in metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Vykhodets, Vladimir B.; Jarvis, Emily A. A.; Kurennykh, Tatiana E.; Beketov, Igor V.; Obukhov, Sviatoslav I.; Samatov, Oleg M.; Medvedev, Anatoly I.; Davletshin, Andrey E.; Whyte, Travis H.

    2016-02-01

    Zirconia and yttria stabilized zirconia (YSZ) have multiple uses, including catalysis, fuel cells, dental applications, and thermal coatings. We employ nuclear reaction analysis to determine elemental composition of YSZ nanoparticles synthesized by laser evaporation including 18O studies to distinguish between oxide and adsorbed oxygen content as a function of surface area. We see dramatic deviation from stoichiometry that can be traced to loss of oxygen from the oxide near the surface of these nanopowders. Density functional calculations are coupled with these experimental studies to explore the electronic structure of nonstoichiometric surfaces achieved through depletion of oxygen. Our results show oxygen-depleted surfaces present under oxygen potentials where stoichiometric, oxygen-terminated surfaces would be favored thermodynamically for crystalline systems. Oxygen depletion at nanopowder surfaces can create effective two-dimensional surface metallic states while maintaining stoichiometry in the underlying nanoparticle core. This insight into nanopowder surfaces applies to dissimilar oxides of aluminum and zirconium indicating synthesis conditions may be more influential than the inherent oxide properties and displaying need for distinct models for nanopowders of these important engineering materials where surface chemistry dominates performance.

  19. Synthesis and optical properties of anisotropic metal nanoparticles.

    PubMed

    Hao, Encai; Schatz, George C; Hupp, Joseph T

    2004-07-01

    In this paper we overview our recent studies of anisotropic noble metal (e.g. gold and silver) nanoparticles, in which a combination of theory and experiment has been used to elucidate the extinction spectra of the particles, as well as information related to their surface enhanced Raman spectroscopy. We used wet-chemical methods to generate several structurally well-defined nanostructures other than solid spheres, including silver nanodisks and triangular nanoprisms, and gold nanoshells and multipods. When solid spheres are transformed into one of these shapes, the surface plasmon resonances in these particles are strongly affected, typically red-shifting and even splitting into distinctive dipole and quadrupole plasmon modes. In parallel, we have developed computational electrodynamics methods based on the discrete dipole approximation (DDA) method to determine the origins of these intriguing optical features. This has resulted in considerable insight concerning the variation of plasmon wavelength with nanoparticle size, shape and dielectric environment, as well as the use of these particles for optical sensing applications.

  20. Magnetic metal nanoparticles coated polyacrylonitrile textiles as microwave absorber

    NASA Astrophysics Data System (ADS)

    Akman, O.; Kavas, H.; Baykal, A.; Toprak, M. S.; Çoruh, Ali; Aktaş, B.

    2013-02-01

    Polyacrylonitrile (PAN) textiles with 2 mm thickness are coated with magnetic nanoparticles in coating baths with Ni, Co and their alloys via an electroless metal deposition method. The crystal structure, morphology and magnetic nature of composites are investigated by X-ray Powder diffraction, Scanning Electron Microscopy, and dc magnetization measurement techniques. The frequency dependent microwave absorption measurements have been carried out in the frequency range of 12.4-18 GHz (X and P bands). Diamagnetic and ferromagnetic properties are also investigated. Finally, the microwave absorption of composites is found strongly dependent on the coating time. One absorption peak is observed between 14.3 and 15.8 GHz with an efficient absorption bandwidth of 3.3-4.1 GHz (under -20 dB reflection loss limit). The Reflection loss (RL) can be achieved between -30 and -50 dB. It was found that the RL is decreasing and absorption bandwidth is decreasing with increasing coating time. While absorption peak moves to lower frequencies in Ni coated PAN textile, it goes higher frequencies in Co coated ones. The Ni-Co alloy coated composites have fluctuating curve of absorption frequency with respect to coating time. These results encourage further development of magnetic nanoparticle coated textile absorbers for broadband applications.

  1. Magnetic moment of a single metal nanoparticle determined from the Faraday effect

    NASA Astrophysics Data System (ADS)

    Szczytko, Jacek; Vaupotič, Nataša; Madrak, Karolina; Sznajder, Paweł; Górecka, Ewa

    2013-03-01

    Optical properties of a composite material made of ferromagnetic metal nanoparticles embedded in a dielectric host are studied. We constructed an effective dielectric tensor of the composite material taking into account the orientational distribution of nanoparticle magnetic moments in external magnetic field. A nonlinear dependence of the optical rotation on magnetic field resulting from the reorientation of nanoparticles is demonstrated. The theoretical findings were applied to the magneto-optical experimental data of cobalt ferromagnetic nanoparticles embedded in a dielectric liquid host. The dependence of the Faraday rotation on Co-based ferromagnetic nanoparticles was measured as a function of the external magnetic field, varying the size of nanoparticles and the wavelength of light. The proposed approach enables quantitative determination of the magnetic moment and the plasma frequency of a single nanoparticle, and from this the size of the nonmagnetic shell of magnetic nanoparticles.

  2. Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control.

    PubMed

    Sau, Tapan K; Rogach, Andrey L

    2010-04-22

    Metal nanoparticles have been the subject of widespread research over the past two decades. In recent years, noble metals have been the focus of numerous studies involving synthesis, characterization, and applications. Synthesis of an impressive range of noble metal nanoparticles with varied morphologies has been reported. Researchers have made a great progress in learning how to engineer materials on a nanometer length scale that has led to the understanding of the fundamental size- and shape-dependent properties of matter and to devising of new applications. In this article, we review the recent progress in the colloid-chemical synthesis of nonspherical nanoparticles of a few important noble metals (mainly Ag, Au, Pd, and Pt), highlighting the factors that influence the particle morphology and discussing the mechanisms behind the nonspherical shape evolution. The article attempts to present a thorough discussion of the basic principles as well as state-of-the-art morphology control in noble metal nanoparticles.

  3. Synthesis of Metal Nanoparticle-decorated Carbon Nanotubes under Ambient Conditions

    NASA Technical Reports Server (NTRS)

    Lin, Yi; Watson, Kent A.; Ghose, Sayata; Smith, Joseph G.; Connell, John W.

    2008-01-01

    This viewgraph presentation reviews the production of Metal Nanoparticle-decorated carbon Nanotubes. Multi-walled carbon nanotubes (MWCNTs) were efficiently decorated with metal nanoparticles (e.g. Ag, Pt, etc.) using the corresponding metal acetate in a simple mixing process without the need of chemical reagents or further processing. The conversion of acetate compounds to the corresponding metal reached over 90%, forming nanoparticles with average diameters less than 10 nm under certain conditions. The process was readily scalable allowing for the convenient preparation of multi-gram quantities of metal nanoparticle-decorated MWCNTs in a matter of a few minutes. These materials are under evaluation for a variety of electrical and catalytic applications. The preparation and characterization of these materials will be presented. The microscopic views of the processed MWCNTs are shown

  4. Solution synthesis of mixed-metal chalcogenide nanoparticles and spray deposition of precursor films

    DOEpatents

    Schulz, Douglas L.; Curtis, Calvin J.; Ginley, David S.

    2000-01-01

    A colloidal suspension comprising metal chalcogenide nanoparticles and a volatile capping agent. The colloidal suspension is made by reacting a metal salt with a chalcogenide salt in an organic solvent to precipitate a metal chalcogenide, recovering the metal chalcogenide, and admixing the metal chalcogenide with a volatile capping agent. The colloidal suspension is spray deposited onto a substrate to produce a semiconductor precursor film which is substantially free of impurities.

  5. Photoresponse from noble metal nanoparticles-multi walled carbon nanotube composites

    SciTech Connect

    Scarselli, M.; Camilli, L.; Castrucci, P.; De Crescenzi, M.; Matthes, L.; Pulci, O.; Gatto, E.; Venanzi, M.

    2012-12-10

    In this Letter, we investigated the photo-response of multi wall carbon nanotube-based composites obtained from in situ thermal evaporation of noble metals (Au, Ag, and Cu) on the nanotube films. The metal deposition process produced discrete nanoparticles on the nanotube outer walls. The nanoparticle-carbon nanotube films were characterized by photo-electrochemical measurements in a standard three electrode cell. The photocurrent from the decorated carbon nanotubes remarkably increased with respect to that of bare multiwall tubes. With the aid of first-principle calculations, these results are discussed in terms of metal nanoparticle-nanotube interactions and electronic charge transfer at the interface.

  6. Metal nanoparticles in liquid phase catalysis; from recent advances to future goals.

    PubMed

    Zahmakıran, Mehmet; Ozkar, Saim

    2011-09-01

    Metal nanoparticles have attracted much attention over the last decade owing to their unique properties, different to their bulk counterparts, which pave the way for their application in different fields from materials science and engineering to biomedical applications. Of particular interest, the use of metal nanoparticles in catalysis has brought superior efficiency in terms of activity, selectivity and lifetime to heterogeneous catalysis. This article reviews the recent developments in the synthesis routes and the catalytic performance of metal nanoparticles depending on the solvent used for various organic and inorganic transformations. Additionally, we also discuss the prevalent complications and their possible solutions plus future prospects in the field of nanocatalysis.

  7. Direct visualization of hydrogen absorption dynamics in individual palladium nanoparticles

    PubMed Central

    Narayan, Tarun C.; Hayee, Fariah; Baldi, Andrea; Leen Koh, Ai; Sinclair, Robert; Dionne, Jennifer A.

    2017-01-01

    Many energy storage materials undergo large volume changes during charging and discharging. The resulting stresses often lead to defect formation in the bulk, but less so in nanosized systems. Here, we capture in real time the mechanism of one such transformation—the hydrogenation of single-crystalline palladium nanocubes from 15 to 80 nm—to better understand the reason for this durability. First, using environmental scanning transmission electron microscopy, we monitor the hydrogen absorption process in real time with 3 nm resolution. Then, using dark-field imaging, we structurally examine the reaction intermediates with 1 nm resolution. The reaction proceeds through nucleation and growth of the new phase in corners of the nanocubes. As the hydrogenated phase propagates across the particles, portions of the lattice misorient by 1.5%, diminishing crystal quality. Once transformed, all the particles explored return to a pristine state. The nanoparticles' ability to remove crystallographic imperfections renders them more durable than their bulk counterparts. PMID:28091597

  8. High-performance heterogeneous catalysis with surface-exposed stable metal nanoparticles.

    PubMed

    Huang, Ning; Xu, Yanhong; Jiang, Donglin

    2014-11-27

    Protection of metal nanoparticles from agglomeration is critical for their functions and applications. The conventional method for enhancing their stability is to cover them with passivation layers to prevent direct contact. However, the presence of a protective shell blocks exposure of the metal species to reactants, thereby significantly impeding the nanoparticles' utility as catalysts. Here, we report that metal nanoparticles can be prepared and used in a surface-exposed state that renders them inherently catalytically active. This strategy is realised by spatial confinement and electronic stabilisation with a dual-module mesoporous and microporous three-dimensional π-network in which surface-exposed nanoparticles are crystallised upon in situ reduction. The uncovered palladium nanoparticles serve as heterogeneous catalysts that are exceptionally active in water, catalyse unreactive aryl chlorides for straightforward carbon-carbon bond formation and are stable for repeated use in various types of cross couplings. Therefore, our results open new perspectives in developing practical heterogeneous catalysts.

  9. Extraordinary Light-Induced Local Angular Momentum near Metallic Nanoparticles.

    PubMed

    Alabastri, Alessandro; Yang, Xiao; Manjavacas, Alejandro; Everitt, Henry O; Nordlander, Peter

    2016-04-26

    The intense local field induced near metallic nanostructures provides strong enhancements for surface-enhanced spectroscopies, a major focus of plasmonics research over the past decade. Here we consider that plasmonic nanoparticles can also induce remarkably large electromagnetic field gradients near their surfaces. Sizeable field gradients can excite dipole-forbidden transitions in nearby atoms or molecules and provide unique spectroscopic fingerprinting for chemical and bimolecular sensing. Specifically, we investigate how the local field gradients near metallic nanostructures depend on geometry, polarization, and wavelength. We introduce the concept of the local angular momentum (LAM) vector as a useful figure of merit for the design of nanostructures that provide large field gradients. This quantity, based on integrated fields rather than field gradients, is particularly well-suited for optimization using numerical grid-based full wave electromagnetic simulations. The LAM vector has a more compact structure than the gradient matrix and can be straightforwardly associated with the angular momentum of the electromagnetic field incident on the plasmonic structures.

  10. Condensation Dynamics on Mimicked Metal Matrix Hydrophobic Nanoparticle-Composites

    NASA Astrophysics Data System (ADS)

    Damle, Viraj; Sun, Xiaoda; Rykaczewski, Konrad

    2014-11-01

    Use of hydrophobic surfaces promotes condensation in the dropwise mode, which is significantly more efficient than the common filmwise mode. However, limited longevity of hydrophobic surface modifiers has prevented their wide spread use in industry. Recently, metal matrix composites (MMCs) having microscale hydrophobic heterogeneities dispersed in hydrophilic metal matrix have been proposed as durable and self-healing alternative to hydrophobic surface coatings interacting with deposited water droplets. While dispersion of hydrophobic microparticles in MMC is likely to lead to surface flooding during condensation, the effect of dispersion of hydrophobic nanoparticles (HNPs) with size comparable to water nuclei critical radii and spacing is not obvious. To this end, we fabricated highly ordered arrays of Teflon nanospheres on silicon substrates that mimic the top surface of the MMCs with dispersed HNPs. We used light and electron microscopy to observe breath figures resulting from condensation on these surfaces at varied degrees of subcooling. Here, we discuss the relation between the droplet size distribution, Teflon nanosphere diameter and spacing, and condensation mode. KR acknowledges startup funding from ASU.

  11. Optical properties and circular dichroism of chiral metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Fan, Zhiyuan; Govorov, Alexander; OU Team

    2013-03-01

    In nature, biological systems are built up by homochiral building blocks, such as a sugar and protein. Circular dichroism (CD) is an effective tool of resolving molecular conformations. It utilizes circularly polarized light to detect differential absorption of chiral materials. In medicine, it will help us to develop new drugs and therapies, if we understand the connection between the physical or chemical properties of drug molecules and their conformations. With the rapid development of nanotechnologies, chiral nanomaterials attract lots of attention nowadays. CD signals of chiral molecules can be enhanced or shifted to the visible band in the presence of plasmonic nanocrystals. Here we present a plasmonic CD mechanism from a single chiral metal nanocrystal. The mechanism is essentially different from the dipolar plasmon-plasmon interaction in a chiral NP assembly, which mimics the CD mechanism of chiral molecules. Chiral metal nanocrystals are expected to have promising applications in biosensing. Recently a few experimental papers reported successful realizations of chiral nanocrystals in a macroscopic ensemble in solution. Particularly the paper described silver nanoparticles grown on chiral template molecules and demonstrating characteristic CD signals at a plasmonic wavelength. The plasmonic CD signals in Ref. can come from a dipolar plasmon-molecule interaction or from a chiral shape of nanocrystals. This work was supported by the NSF (project: CBET- 0933782) and by the Volkswagen Foundation.

  12. Metallic nanoparticles in a standing wave: Optical force and heating

    NASA Astrophysics Data System (ADS)

    Šiler, Martin; Chvátal, Lukáš; Zemánek, Pavel

    2013-09-01

    We have investigated the absorbed power in a single gold or silver metallic nanoparticle together with the optical force acting upon it if the particle is illuminated by two counter-propagating plane waves forming a standing wave. We have used the Generalized Lorenz-Mie theory (GLMT) and considered the incident wavelengths 250nm≤λvac≤1250nm and particles size parameter 0.1≤d/λvac≤4. Similarly as in the case of dielectric particle we have found that the optical force is equal to zero for all particle positions in the standing wave for certain wavelengths and particle sizes. However, in the case of a metallic object this phenomenon occurs for considerably smaller particles and the conditions change considerably with the illuminating wavelength especially near the localized surface plasmon resonances. Similarly, we have found that the absorbed heat does not change with the position of the particle in the standing wave for certain wavelengths and particle sizes. These sizes generally differ from those giving zero optical force and, therefore, the particle can be trapped at the intensity maximum or minimum and in both cases its heating is maximal or minimal depending on the particle size.

  13. Magnesium nanoparticles with transition metal decoration for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Pasquini, Luca; Callini, Elsa; Brighi, Matteo; Boscherini, Federico; Montone, Amelia; Jensen, Torben R.; Maurizio, Chiara; Vittori Antisari, Marco; Bonetti, Ennio

    2011-11-01

    We report on the hydrogen storage behaviour of Mg nanoparticles (NPs) (size range 100 nm-1 μm) with metal-oxide core-shell morphology synthesized by inert gas condensation and decorated by transition metal (TM) (Pd or Ti) clusters via in situ vacuum deposition. The structure and morphology of the as-prepared and hydrogenated NPs is studied by electron microscopy, X-ray diffraction including in situ experiments and X-ray absorption spectroscopy, in order to investigate the relationships with the hydrogen storage kinetics measured by the volumetric Sieverts method. With both Pd and Ti, the decoration deeply improves the hydrogen sorption properties: previously inert NPs exhibit complete hydrogenation with fast transformation kinetics, good stability and reversible gravimetric capacity that can attain 6 wt%. In the case of Pd-decoration, the occurrence of Mg-Pd alloying is observed at high temperatures and in dependence of the hydrogen pressure conditions. These structural transformations modify both the kinetics and thermodynamics of hydride formation, while Ti-decoration has an effect only on the kinetics. The experimental results are discussed in relation with key issues such as the amount of decoration, the heat of mixing between TM and Mg and the binding energy between TM and hydrogen.

  14. Carbon nanomaterials combined with metal nanoparticles for theranostic applications

    PubMed Central

    Modugno, Gloria; Ménard-Moyon, Cécilia; Prato, Maurizio; Bianco, Alberto

    2015-01-01

    Among targeted delivery systems, platforms with nanosize dimensions, such as carbon nanomaterials (CNMs) and metal nanoparticles (NPs), have shown great potential in biomedical applications. They have received considerable interest in recent years, especially with respect to their potential utilization in the field of cancer diagnosis and therapy. The many functions of nanomaterials provide opportunities to use them as multimodal agents for theranostics, a combination of therapy and diagnosis. Carbon nanotubes and graphene are some of the most widely used CNMs because of their unique structural and physicochemical properties. Their high specific surface area allows for efficient drug loading and the possibility of functionalization with various bioactive molecules. In addition, CNMs are ideal platforms for the attachment of NPs. In the biomedical field, NPs have also shown tremendous potential for use in drug delivery, non-invasive tumour imaging and early detection due to their optical and magnetic properties. NP/CNM hybrids not only combine the unique properties of the NPs and CNMs but they also exhibit new properties arising from interactions between the two entities. In this review, the preparation of CNMs conjugated to different types of metal NPs and their applications in diagnosis, imaging, therapy and theranostics are presented. PMID:25323135

  15. Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex.

    PubMed

    Choi, Inhee; Song, Hyeon Don; Lee, Suseung; Yang, Young In; Kang, Taewook; Yi, Jongheop

    2012-07-25

    We report core-satellites (Au-Ag) coupled plasmonic nanoassemblies based on bottom-up, high-density assembly of molecular-scale silver nanoparticles on a single gold nanoparticle surface, and demonstrate direct observation and quantification of enhanced plasmon coupling (i.e., intensity amplification and apparent spectra shift) in a single particle level. We also explore metal ion sensing capability based on our coupled plasmonic core-satellites, which enabled at least 1000 times better detection limit as compared to that of a single plasmonic nanoparticle. Our results demonstrate and suggest substantial promise for the development of coupled plasmonic nanostructures for ultrasensitive detection of various biological and chemical analytes.

  16. Excitation enhancement of CdSe quantum dots by single metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Yeechi; Munechika, Keiko; Jen-La Plante, Ilan; Munro, Andrea M.; Skrabalak, Sara E.; Xia, Younan; Ginger, David S.

    2008-08-01

    We study plasmon-enhanced fluorescence from CdSe /CdS/CdZnS/ZnS core/shell quantum dots near a variety of Ag and Au nanoparticles. The photoluminescence excitation (PLE) spectrum of quantum dots closely follows the localized surface plasmon resonance (LSPR) scattering spectrum of the nanoparticles. We measure excitation enhancement factors of ˜3 to 10 for different shapes of single metal nanoparticles.

  17. Nonaqueous synthesis of metal oxide nanoparticles: Short review and doped titanium dioxide as case study for the preparation of transition metal-doped oxide nanoparticles

    SciTech Connect

    Djerdj, Igor Arcon, Denis; Jaglicic, Zvonko; Niederberger, Markus

    2008-07-15

    The liquid-phase synthesis of metal oxide nanoparticles in organic solvents under exclusion of water is nowadays a well-established alternative to aqueous sol-gel chemistry. In this article, we highlight some of the advantages of these routes based on selected examples. The first part reviews some recent developments in the synthesis of ternary metal oxide nanoparticles by surfactant-free nonaqueous sol-gel routes, followed by the discussion of the morphology-controlled synthesis of lanthanum hydroxide nanoparticles, and the presentation of structural peculiarities of manganese oxide nanoparticles with an ordered Mn vacancy superstructure. These examples show that nonaqueous systems, on the one hand, allow the preparation of compositionally complex oxides, and, on the other hand, make use of the organic components (initially present or formed in situ) in the reaction mixture to tailor the morphology. Furthermore, obviously even the crystal structure can differ from the corresponding bulk material like in the case of MnO nanoparticles. In the second part of the paper we present original results regarding the synthesis of dilute magnetic semiconductor TiO{sub 2} nanoparticles doped with cobalt and iron. The structural characterization as well as the magnetic properties with special attention to the doping efficiency is discussed. - Graphical abstract: In the first part of this article, nonaqueous sol-gel routes to ternary metal oxide nanoparticles are briefly reviewed, followed by the discussion of the morphology-controlled synthesis of lanthanum hydroxide nanoparticles, and the appearance of an unprecedented superstructure in MnO nanoparticles. In the second part, doping experiments of TiO{sub 2} with Fe and Co are presented, along with their characterization including magnetic measurements.

  18. A Bioanalytical Chemistry Experiment for Undergraduate Students: Biosensors Based on Metal Nanoparticles

    ERIC Educational Resources Information Center

    Niagi, John; Warner, John; Andreesco, Silvana

    2007-01-01

    The study describes the development of new biosensors based on metal nanoparticles because of its high surface area and large binding ability. The adopted procedure is extremely simple and versatile and can be used in various applications of electrochemistry.

  19. Simultaneously photodeposited rhodium metal and oxide nanoparticles promoting photocatalytic hydrogen production.

    PubMed

    Shimura, Katsuya; Kawai, Hiromasa; Yoshida, Tomoko; Yoshida, Hisao

    2011-08-21

    Photodeposition of a Rh cocatalyst under atmospheric conditions could simultaneously provide both Rh metal and oxide nanoparticles on a K(2)Ti(6)O(13) photocatalyst, both of which cooperatively promoted the photocatalytic hydrogen production from water and methane.

  20. Metal nanoparticles (other than gold or silver) prepared using plant extracts for medical applications

    NASA Astrophysics Data System (ADS)

    Pasca, Roxana-Diana; Santa, Szabolcs; Racz, Levente Zsolt; Racz, Csaba Pal

    2016-12-01

    There are many modalities to prepare metal nanoparticles, but the reducing of the metal ions with plant extracts is one of the most promising because it is considerate less toxic for the environment, suitable for the use of those nanoparticles in vivo and not very expensive. Various metal ions have been already studied such as: cobalt, copper, iron, platinum, palladium, zinc, indium, manganese and mercury and the number of plant extracts used is continuously increasing. The prepared systems were characterized afterwards with a great number of methods of investigation: both spectroscopic (especially UV-Vis spectroscopy) and microscopic (in principal, electron microscopy-TEM) methods. The applications of the metal nanoparticles obtained are diverse and not completely known, but the medical applications of such nanoparticles occupy a central place, due to their nontoxic components, but some diverse industrial applications do not have to be forgotten.

  1. Effect of Percolation on the Cubic Susceptibility of Metal Nanoparticle Composites

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Bender, Matthew W.; Boyd, Robert W.

    1998-01-01

    Generalized two-dimensional and three-dimensional Maxwell Garnett and Bruggeman geometries reveal that a sign reversal in the cubic susceptibility occurs for metal nanoparticle composites near the percolation threshold.

  2. Green synthesis of metal nanoparticles: biodegradable polymers and enzymes in stabilization and surface functionalization

    EPA Science Inventory

    Current breakthroughs in green nanotechnology are capable to transform many of the existing processes and products that enhance environmental quality, reduce pollution, and conserve natural and non-renewable resources. Noteworthy, successful use of metal nanoparticles and 10 nano...

  3. Electrocatalytic reduction of carbon dioxide on post-transition metal and metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    White, James L.

    The electroreduction of carbon dioxide to liquid products is an important component in the utilization of CO2 and in the high-density storage of intermittent renewable energy in the form of chemical bonds. Materials based on indium and tin, which yield predominantly formic acid, have been investigated in order to gain a greater understanding of the electrochemically active species and the mechanism of CO2 reduction on these heavy post-transition metals, since prior studies on the bulk metals did not provide thermodynamically sensible reaction pathways. Nanoparticles of the oxides and hydroxides of tin and indium have been prepared and characterized by transmission electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, and various electrochemical methods in order to obtain structural information and analyze the role of various surface species on the CO2 reduction pathway. On both indium and tin, metastable surface-bound hydroxides bound CO2 and formed metal carbonates, which can then be reduced electrochemically. The relevant oxidation state of tin was suggested to be SnII rather than SnIV, necessitating a pre reduction to generate the CO2-binding species. Metallic indium nanoparticles partially oxidized in air and became highly efficient CO2 reduction electrocatalysts. Unit Faradaic efficiencies for formate, much higher than on bulk indium, were achieved with only 300 mV of overpotential on these particles, which possessed an oxyhydroxide shell surrounding a conductive metallic core. Alloys and mixed-metal oxide and hydroxide particles of tin and indium have also been studied for their carbon dioxide electrocatalytic capabilities, especially in comparison to the pure metal species. Additionally, a solar-driven indium-based CO2 electrolyzer was developed to investigate the overall efficiency for intermittent energy storage. The three flow cells were powered by a commercial photovoltaic array and had a maximum conversion efficiency of incident

  4. Metal nanoparticle deposited inorganic nanostructure hybrids, uses thereof and processes for their preparation

    DOEpatents

    Tenne, Reshef; Tsverin, Yulia; Burghaus, Uwe; Komarneni, Mallikharjuna Rao

    2016-01-26

    This invention relates to a hybrid component comprising at least one nanoparticle of inorganic layered compound (in the form of fullerene-like structure or nanotube), and at least one metal nanoparticle, uses thereof as a catalyst, (e.g. photocatalysis) and processes for its preparation.

  5. Biomimetic Synthesis of Gelatin Polypeptide-Assisted Noble-Metal Nanoparticles and Their Interaction Study

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Liu, Xiaoheng; Wang, Xin

    2011-12-01

    Herein, the generation of gold, silver, and silver-gold (Ag-Au) bimetallic nanoparticles was carried out in collagen (gelatin) solution. It first showed that the major ingredient in gelatin polypeptide, glutamic acid, acted as reducing agent to biomimetically synthesize noble metal nanoparticles at 80°C. The size of nanoparticles can be controlled not only by the mass ratio of gelatin to gold ion but also by pH of gelatin solution. Interaction between noble-metal nanoparticles and polypeptide has been investigated by TEM, UV-visible, fluorescence spectroscopy, and HNMR. This study testified that the degradation of gelatin protein could not alter the morphology of nanoparticles, but it made nanoparticles aggregated clusters array (opposing three-dimensional α-helix folding structure) into isolated nanoparticles stabilized by gelatin residues. This is a promising merit of gelatin to apply in the synthesis of nanoparticles. Therefore, gelatin protein is an excellent template for biomimetic synthesis of noble metal/bimetallic nanoparticle growth to form nanometer-sized device.

  6. Alkylamine capped metal nanoparticle "inks" for printable SERS substrates, electronics and broadband photodetectors.

    PubMed

    Polavarapu, Lakshminarayana; Manga, Kiran Kumar; Yu, Kuai; Ang, Priscilla Kailian; Cao, Hanh Duyen; Balapanuru, Janardhan; Loh, Kian Ping; Xu, Qing-Hua

    2011-05-01

    We report a facile and general method for the preparation of alkylamine capped metal (Au and Ag) nanoparticle "ink" with high solubility. Using these metal nanoparticle "inks", we have demonstrated their applications for large scale fabrication of highly efficient surface enhanced Raman scattering (SERS) substrates by a facile solution processing method. These SERS substrates can detect analytes down to a few nM. The flexible plastic SERS substrates have also been demonstrated. The annealing temperature dependent conductivity of the nanoparticle films indicated a transition temperature above which high conductivity was achieved. The transition temperature could be tailored to the plastic compatible temperatures by using proper alkylamine as the capping agent. The ultrafast electron relaxation studies of the nanoparticle films demonstrated that faster electron relaxation was observed at higher annealing temperatures due to stronger electronic coupling between the nanoparticles. The applications of these highly concentrated alkylamine capped metal nanoparticle inks for the printable electronics were demonstrated by printing the oleylamine capped gold nanoparticles ink as source and drain for the graphene field effect transistor. Furthermore, the broadband photoresponse properties of the Au and Ag nanoparticle films have been demonstrated by using visible and near-infrared lasers. These investigations demonstrate that these nanoparticle "inks" are promising for applications in printable SERS substrates, electronics, and broadband photoresponse devices.

  7. Biotests and Biosensors for Ecotoxicology of Metal Oxide Nanoparticles: A Minireview.

    PubMed

    Kahru, Anne; Dubourguier, Henri-Charles; Blinova, Irina; Ivask, Angela; Kasemets, Kaja

    2008-08-28

    Nanotechnologies have become a significant priority worldwide. Several manufactured nanoparticles - particles with one dimension less than 100 nm - are increasingly used in consumer products. At nanosize range, the properties of materials differ substantially from bulk materials of the same composition, mostly due to the increased specific surface area and reactivity, which may lead to increased bioavailability and toxicity. Thus, for the assessment of sustainability of nanotechnologies, hazards of manufactured nanoparticles have to be studied. Despite all the above mentioned, the data on the potential environmental effects of nanoparticles are rare. This mini-review is summarizing the emerging information on different aspects of ecotoxicological hazard of metal oxide nanoparticles, focusing on TiO₂, ZnO and CuO. Various biotests that have been successfully used for evaluation of ecotoxic properties of pollutants to invertebrates, algae and bacteria and now increasingly applied for evaluation of hazard of nanoparticles at different levels of the aquatic food-web are discussed. Knowing the benefits and potential drawbacks of these systems, a suite of tests for evaluation of environmental hazard of nanoparticles is proposed. Special attention is paid to the influence of particle solubility and to recombinant metal-sensing bacteria as powerful tools for quantification of metal bioavailability. Using recombinant metal-specific bacterial biosensors and multitrophic ecotoxicity assays in tandem will create new scientific knowledge on the respective role of ionic species and of particles in toxicity of metal oxide nanoparticles.

  8. Biotests and Biosensors for Ecotoxicology of Metal Oxide Nanoparticles: A Minireview

    PubMed Central

    Kahru, Anne; Dubourguier, Henri-Charles; Blinova, Irina; Ivask, Angela; Kasemets, Kaja

    2008-01-01

    Nanotechnologies have become a significant priority worldwide. Several manufactured nanoparticles - particles with one dimension less than 100 nm - are increasingly used in consumer products. At nanosize range, the properties of materials differ substantially from bulk materials of the same composition, mostly due to the increased specific surface area and reactivity, which may lead to increased bioavailability and toxicity. Thus, for the assessment of sustainability of nanotechnologies, hazards of manufactured nanoparticles have to be studied. Despite all the above mentioned, the data on the potential environmental effects of nanoparticles are rare. This mini-review is summarizing the emerging information on different aspects of ecotoxicological hazard of metal oxide nanoparticles, focusing on TiO2, ZnO and CuO. Various biotests that have been successfully used for evaluation of ecotoxic properties of pollutants to invertebrates, algae and bacteria and now increasingly applied for evaluation of hazard of nanoparticles at different levels of the aquatic food-web are discussed. Knowing the benefits and potential drawbacks of these systems, a suite of tests for evaluation of environmental hazard of nanoparticles is proposed. Special attention is paid to the influence of particle solubility and to recombinant metal-sensing bacteria as powerful tools for quantification of metal bioavailability. Using recombinant metal-specific bacterial biosensors and multitrophic ecotoxicity assays in tandem will create new scientific knowledge on the respective role of ionic species and of particles in toxicity of metal oxide nanoparticles. PMID:27873807

  9. Synthesis and NMR characterization of ligand-capped metal and metal-oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Sharma, Ramesh

    Ligand-capped metal and metal-oxide nanoparticles (NPs) have some interesting and useful physical properties that are not present in their respective bulk materials. These properties are of research interest in many applications such as catalysis, drug delivery, biological imaging, and plasmonics. In such applications, it is critical to understand the surface structure of NPs and the roles played by the surface bound ligands. To characterize surface environment, ligand dynamics, and exchange kinetics, ligand-capped metal and metal-oxide NPs are synthesized and studied by multinuclear NMR. Phosphines and phosphonic acids are used to passivate metal (gold and silver) and metal-oxide (tin dioxide) NPs in different sizes (1-5 nm) by following published procedures or original synthesis methods. In both solution and solid state NMR, the 31P chemical shift of surface-bound ligands are distinctly different from those observed for free ligands. Additionally, NMR line widths in surface-bound ligands are highly broadened compared to those of free ligands. The lines are broadened due to both homogeneous and inhomogeneous broadening mechanisms, determined through hole burning NMR and spin-spin relaxation measurements. In small particles (< 2 nm), the main source of line broadening is inhomogeneous and originates due to structural heterogeneity and underlying chemical shift distributions. In large particles (> 2 nm), both inhomogeneous and homogeneous line broadening mechanisms are present. When the particles' sizes increase from small to large, the homogeneous broadening mechanism becomes dominant due to strong nuclear-electron interaction and reintroduction of residual dipolar coupling as shown by a combination of 1H, 13C and 31P NMR. Results from a series of ligand exchange experiments in silver and gold NPs further indicate the presence of Au(I) and Ag(I) on the particle surfaces.

  10. Hydrothermal synthesis of platinum-group-metal nanoparticles by using HEPES as a reductant and stabilizer.

    PubMed

    So, Man-Ho; Ho, Chi-Ming; Chen, Rong; Che, Chi-Ming

    2010-06-01

    Platinum-group-metal (Ru, Os, Rh, Ir, Pd and Pt) nanoparticles are synthesized in an aqueous buffer solution of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (200 mM, pH 7.4) under hydrothermal conditions (180 degrees C). Monodispersed (monodispersity: 11-15%) metal nanoparticles were obtained with an average particle size of less than 5 nm (Ru: 1.8+/-0.2, Os: 1.6+/-0.2, Rh: 4.5+/-0.5, Ir: 2.0+/-0.3, Pd: 3.8+/-0.4, Pt: 1.9+/-0.2 nm). The size, monodispersity, and stability of the as-obtained metal nanoparticles were affected by the HEPES concentration, pH of the HEPES buffer solution, and reaction temperature. HEPES with two tertiary amines (piperazine groups) and terminal hydroxyl groups can act as a reductant and stabilizer. The HEPES molecules can bind to the surface of metal nanoparticles to prevent metal nanoparticles from aggregation. These platinum-group-metal nanoparticles could be deposited onto the surface of graphite, which catalyzed the aerobic oxidation of alcohols to aldehydes.

  11. Trapping and manipulation of individual nanoparticles in a planar Paul trap

    NASA Astrophysics Data System (ADS)

    Alda, I.; Berthelot, J.; Rica, R. A.; Quidant, R.

    2016-10-01

    Visualisation and manipulation of nanoscale matter is one of the main and current challenges in nanosciences. To this aim, different techniques have been recently developed to non-invasively trap and manipulate nano-specimens, like nanoparticles or molecules. However, operating in air or vacuum still remains very challenging since most approaches are limited to a liquid environment. In this letter, we design and characterise a planar Paul trap optimised to trap and manipulate individual charged nanoparticles. This configuration offers competitive capabilities to manipulate nano-specimens in air or vacuum, including in-plane integration, high trap confinement along with dynamical trap reconfiguration, pointing towards applications in the field of levitated optomechanics.

  12. Preparation of transition metal nanoparticles and surfaces modified with (CO) polymers synthesized by RAFT

    DOEpatents

    McCormick, III, Charles L.; Lowe, Andrew B.; Sumerlin, Brent S.

    2006-10-25

    A new, facile, general one-phase method of generating thiol-functionalized transition metal nanoparticles and surface modified by (co)polymers synthesized by the RAFT method is described. The method includes the steps of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a collidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as fuctionalization with a variety of different chemical groups, expanding their utility and application.

  13. Preparation of transition metal nanoparticles and surfaces modified with (co)polymers synthesized by RAFT

    DOEpatents

    McCormick, III, Charles L.; Lowe, Andrew B [Hattiesburg, MS; Sumerlin, Brent S [Pittsburgh, PA

    2011-12-27

    A new, facile, general one-phase method of generating thiol-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the steps of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  14. Preparation of transition metal nanoparticles and surfaces modified with (CO)polymers synthesized by RAFT

    DOEpatents

    McCormick, III., Charles L.; Lowe, Andrew B.; Sumerlin, Brent S.

    2006-11-21

    A new, facile, general one-phase method of generating thio-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the stops of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  15. Mesomorphic glass nanocomposites made of metal alkanoates and nanoparticles as emerging nonlinear-optical materials

    NASA Astrophysics Data System (ADS)

    Garbovskiy, Y.; Klimusheva, G.; Mirnaya, T.

    2016-09-01

    Mesomorphic metal alkanoates is very promising yet overlooked class of nonlinear-optical materials. Metal alkanoates can exhibit a broad variety of condensed states of matter including solid crystals, plastic crystals, lyotropic and thermotropic ionic liquid crystals, liquids, mesomorphic glasses, and Langmuir-Blodgett films. Glass-forming properties of metal alkanoates combined with their use as nano-reactors and anisotropic host open up simple and efficient way to design various photonic nanomaterials. Despite very interesting physics, the experimental data on optical and nonlinearoptical properties of such materials are scarce. The goal of the present paper is to fill the gap by discussing recent advances in the field of photonic materials made of metal alkanoates, organic dyes, and nanoparticles. Optical and nonlinear-optical properties of the following materials are reviewed: (i) mesomorphic glass doped with organic dyes; (ii) smectic glass composed of cobalt alkanoates; (iii) semiconductor nanoparticles embedded in a glassy host; (iv) metal nanoparticles - glass (the cobalt octanoate) nanocomposites.

  16. Structure and Optical Properties of Noble Metal Nanoparticles

    DTIC Science & Technology

    2012-08-29

    bare and passivated (thiolate-, phosphine-, or carboxylate-stabilized) gold and silver nanoparticles. The location of the ligands is responsible for...lowering. Nanoparticles, Nanowires, Gold, Silver , Thiolate, Phosphine, Carboxylate, Density Functional Theory, Time-Dependent Density Functional Theory...conditions under which gold and silver nanoparticles display broad/molecular or sharp surface plasmon resonance (SPR) optical absorption behavior. The

  17. Hollow nanoparticles of metal oxides and sulfides: fast preparation via laser ablation in liquid.

    PubMed

    Niu, K Y; Yang, J; Kulinich, S A; Sun, J; Du, X W

    2010-11-16

    In this work, diverse hollow nanoparticles of metal oxides and sulfides were prepared by simply laser ablating metal targets in properly chosen liquids. The Kirkendall voiding and the selective heating with an infrared laser were shown to work as two independent mechanisms for the formation of such hollow nanoparticles in only one- or two-step synthesis approaches. One of the prepared materials, ZnS hollow nanoparticles, showed high performance in gas sensing. The simple, fast, inexpensive technique that is proposed demonstrates very promising perspectives.

  18. Controlling plasmon coupling in biomolecule-linked metal nanoparticle assemblies

    NASA Astrophysics Data System (ADS)

    Sebba, David S.

    with DNA control of interparticle separation. Plasmon coupling is investigated also in binary metal systems. A new method for forming stable oligonucleotide-silver conjugates is presented, and controlled plasmon coupling is observed in reconfigurable core-satellite assemblies composed of 20 nm silver satellites linked to a 50 nm gold core by DNA tethers. Reconfiguration of the DNA linkers from a compact to an extended state results in decreased plasmon coupling and a blue-shift of the gold core plasmon resonance, similar to the response observed in analogous structures formed with gold satellites. Simulations of structures composed of gold and silver cores and satellites are performed to determine how the optical properties of binary metal assemblies may differ from those composed of a single metal. It appears that gold plasmons are systematically red shifted by silver particles, whereas plasmons supported by silver particles appear differentially sensitive to gold particles according to whether the silver particle is in a core position or a satellite shell. Next, the plasmonic properties of immobilized binary nanoparticle assemblies that incorporate a single strongly scattering component that acts as a template for assembly of weakly scattering plasmonic particles are investigated. Assemblies are composed of a streptavidin-coated gold "core" nanoparticle and BSA-biotin-coated gold or silver "satellite" particles. Through correlation of measured and simulated spectra, the dependence of assembly optical properties upon satellite coverage and satellite orientation about the core is addressed. It appears that plasmon coupling in gold core-gold satellite structures depends upon satellite orientation about the core and can manifest as either peak shifting or peak splitting, while the gold plasmon response to silver satellite assembly appears to be independent of satellite orientation. Finally, binary coupling is studied in one-dimensional particle pairs and three

  19. Facile synthesis of Curcuma longa tuber powder engineered metal nanoparticles for bioimaging applications

    NASA Astrophysics Data System (ADS)

    Sankar, Renu; Rahman, Pattanathu K. S. M.; Varunkumar, Krishnamoorthy; Anusha, Chidambaram; Kalaiarasi, Arunachalam; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2017-02-01

    Nanomaterials based fluorescent agents are rapidly becoming significant and promising transformative tools for improving medical diagnostics for extensive in vivo imaging modalities. Compared with conventional fluorescent agents, nano-fluorescence has capabilities to improve the in vivo detection and enriched targeting efficiencies. In our laboratory we synthesized fluorescent metal nanoparticles of silver, copper and iron using Curcuma longa tuber powder by simple reduction. The physicochemical properties of the synthesized metal nanoparticles were attained using UV-visible spectrophotometry, scanning electron microscopy with EDAX spectroscopy, dynamic light scattering, Fourier-transform infrared spectroscopy and X-ray diffraction. The Curcuma longa tuber powder has one of the bioactive compound Curcumin might act as a capping agent during the synthesis of nanoparticles. The synthesized metal nanoparticles fluorescence property was confirmed by spectrofluorometry. When compared with copper and iron nanoparticles the silver nanoparticles showed high fluorescence intensity under spectrofluorometry. Moreover, in vitro cell images of the silver nanoparticles in A549 cell lines also correlated with the results of spectrofluorometry. These silver nanoparticles show inspiring cell-imaging applications. They enter into cells without any further modifications, and the fluorescence property can be utilized for fluorescence-based cell imaging applications.

  20. Carbon Materials Embedded with Metal Nanoparticles as Anode in Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Hung, Ching-cheh

    2002-01-01

    Carbon materials containing metal nanoparticles that can form an alloy with lithium were tested for their capacity and cycle life to store and release lithium electrochemically. Metal nanoparticles may provide the additional lithium storage capacity as well as additional channels to conduct lithium in carbon. The cycle life of this carbon-metal composite can be long because the solid-electrolyte interface (SEI) on the carbon surface may protect both lithium and the metal particles in the carbon interior. In addition, the voids in the carbon interior may accommodate the nanoparticle's volume change, and such volume change may not cause much internal stress due to small sizes of the nanoparticles. This concept of improving carbon's performance to store and release lithium was demonstrated using experimental cells of C(Pd)/0.5M Lil-50/50 (vol.%) EC and DMC/Li, where C(Pd) was graphitized carbon fibers containing palladium nanoparticles, EC was ethylene carbonate, and DMC was dimethyl carbonate. However, such improvement was not observed if the Pd nanoparticles are replaced by aluminum, possibly because the aluminum nanoparticles were oxidized in air during storage, resulting in an inert oxide of aluminum. Further studies are needed to use this concept for practical applications.

  1. Charge transfer between sensing and targeted metal nanoparticles in indirect nanoplasmonic sensors

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.; Langhammer, Christoph

    2017-03-01

    In indirect nanoplasmonic sensors, the plasmonic metal nanoparticles are adjacent to the material of interest, and the material-related changes of their optical properties are used to probe that material. If the latter itself represents another metal in the form of nanoparticles, its deposition is accompanied by charge transfer to or from the plasmonic nanoparticles in order to equalize the Fermi levels. We estimate the value of the transferred charge and show on the two examples, nanoparticle sintering and hydride formation, that the charge transfer has negligible influence on the probed processes, because the effect of charge transfer is less important than that of nanoparticle surface energy. This further corroborates the non-invasive nature of nanoplasmonic sensors.

  2. A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles

    PubMed Central

    2013-01-01

    This review presents an introduction to the synthesis of metallic nanoparticles by radiation-induced method, especially gamma irradiation. This method offers some benefits over the conventional methods because it provides fully reduced and highly pure nanoparticles free from by-products or chemical reducing agents, and is capable of controlling the particle size and structure. The nucleation and growth mechanism of metallic nanoparticles are also discussed. The competition between nucleation and growth process in the formation of nanoparticles can determine the size of nanoparticles which is influenced by certain parameters such as the choice of solvents and stabilizer, the precursor to stabilizer ratio, pH during synthesis, and absorbed dose. PMID:24225302

  3. Structural characterization of rotavirus-directed synthesis and assembly of metallic nanoparticle arrays.

    PubMed

    Plascencia-Villa, Germán; Medina, Ariosto; Palomares, Laura A; Ramírez, Octavio T; Ascencio, Jorge A

    2013-08-01

    Self-assembled structures derived of viral proteins display sophisticated structures that are difficult to obtain with even advanced synthesis methods and the use of protein nanotubes for synthesis and organization of inorganic nanoarrays into well-defined architectures are here reported. Nanoparticle arrays derived of rotavirus VP6 nanotubes were synthesized by in situ functionalization with silver and gold nanoparticles. The size and morphology of metal nanoparticles were characterized by transmission electron microscopy (TEM) and high resolution TEM (HR-TEM). Processing of micrographs to obtain fast Fourier transforms (FFT) patterns of nanoparticles shown that the preferred morphologies are fcc-like and multiple twinned ones. Micrographs were used to assign structure and orientation, and the elemental composition analysis was performed with energy dispersive spectroscopy (EDS). Structural characterization of functionalized rotavirus VP6 demonstrated its utility for directed construction of hybrid anisotropic nanomaterials formed by arrays of metallic nanoparticles.

  4. Mesoporous SnO2-coated metal nanoparticles with enhanced catalytic efficiency.

    PubMed

    Zhou, Na; Polavarapu, Lakshminarayana; Wang, Qing; Xu, Qing-Hua

    2015-03-04

    Aggregation of plasmonic nanoparticles under harsh conditions has been one of the major obstacles to their potential applications. Here we present the preparation of uniform mesoporous SnO2 shell coated Au nanospheres, Au nanorods and Au/Ag core-shell nanorods and their applications in molecular sensing and catalysis. In these nanostructures, the mesoporous SnO2 shell stabilizes the metal nanoparticle and allows the metal core to be exposed to the surrounding environment for various applications at the same time. These nanostructures display high refractive index sensitivity, which makes them promising materials for LSPR based molecular sensing. Applications of these materials as catalysts for reduction of 4-nitrophenol by NaBH4 have also been demonstrated. Both uncoated and SnO2-coated anisotropic Au and Au/Ag nanorods were found to display significantly better catalytic efficiency compared to the corresponding spherical Au nanoparticles. Catalytic activities of different metal nanoparticles were significantly enhanced by 4-6 times upon coating with the mesoporous SnO2 shell. The enhanced catalytic activity of metal nanoparticles upon SnO2 coating was attributed to charge-redistribution between noble metal and SnO2 that disperses the electrons to a large area and prolonged electron lifetime in SnO2-coated metal nanoparticles. The charge transfer mechanism of enhanced catalytic efficiency for SnO2-coated metal nanoparticles has been further demonstrated by photochemical reduction of silver ions on the outer surface of these NPs. These metal/semiconductor core-shell nanomaterials are potentially useful for various applications such as molecular sensing and catalysis.

  5. Metallic nanoparticles functionalizing carbon nanotube networks for gas sensing applications

    NASA Astrophysics Data System (ADS)

    Abdelhalim, Ahmed; Abdellah, Alaa; Scarpa, Giuseppe; Lugli, Paolo

    2014-02-01

    We report the fabrication of carbon nanotube (CNT) based gas sensors functionalized with different metallic nanoparticles (NPs) (Au, Pd, Ag) with exceptionally high responses towards four test gases (NH3, CO2, CO and ethanol). The CNT networks were fabricated through a low cost spray deposition process while the NPs were deposited by a thermal evaporation process. CNT based gas sensors functionalized with Au with a nominal thickness of 1.0 nm showed superior response towards NH3, CO and ethanol. The sensors’ normalized responses reached 92%, 22% and 32% with concentrations of 100 ppm, 50 ppm and 100 ppm for NH3, CO and ethanol respectively. CNT based gas sensors functionalized with Pd with a nominal thickness of 1.5 nm showed the best performance with CO2. The normalized response reached 3%, 6%, 12% and 17% with concentrations of 500 ppm, 1000 ppm, 2500 ppm and 5000 ppm of CO2 respectively. We also investigated the morphological and optical changes that occur to the NPs upon thermal treatment. Functionalization of CNT films deposited on glass with Au and Ag showed surface plasmon resonance effects that are dependent on the nominal thickness of the functionalization layer.

  6. Nanostructured target fabrication with metal and semiconductor nanoparticles

    NASA Astrophysics Data System (ADS)

    Barberio, M.; Antici, P.

    2015-10-01

    The development of ultra-intense high-energy (≫1 J) short (<1 ps) laser pulses in the last decade has enabled the acceleration of high-energy short-pulse proton beams. A key parameter for enhancing the acceleration regime is the laser-to-target absorption, which heavily depends on the target structure and material. In this work, we present the realization of a nanostructured target with a sub-laser wavelength nano-layer in the front surface as a possible candidate for improving the absorption. The nanostructured film was realized by a simpler and cheaper method than using conventional lithographic techniques: A colloidal solution of metallic or semiconductor nanoparticles (NPs) was produced by laser ablation and, after a heating and sonication process, was spray-dried on the front surface of an aluminum target. The obtained nanostructured film with a thickness of 1 μm appears, at morphological and chemical analysis, uniformly nanostructured and distributed on the target surface without the presence of oxides or external contaminants. Finally, the size of the NPs can be tuned from tens to hundreds of nanometers simply by varying the growth parameters (i.e., irradiation time, fluence, and laser beam energy).

  7. Metal-passivated PbS nanoparticles: fabrication and characterization.

    PubMed

    Tchaplyguine, M; Mikkelä, M-H; Mårsell, E; Polley, C; Mikkelsen, A; Zhang, W; Yartsev, A; Hetherington, C J D; Wallenberg, L R; Björneholm, O

    2017-03-08

    Organic-shell-free PbS nanoparticles have been produced in the size range relevant for quantum-dot solar cells (QDSCs) by a vapor aggregation method involving magnetron reactive sputtering. This method creates a beam of free 5-10 nm particles in a vacuum. The dimensions of the particles were estimated after their deposition on a substrate by imaging them using ex situ SEM and HRTEM electron microscopy. The particle structure and chemical composition could be deduced "on the fly", prior to deposition, using X-ray photoelectron spectroscopy (XPS) with tunable synchrotron radiation. Our XPS results suggest that under certain conditions it is possible to fabricate particles with a semiconductor core and 1 to 2 monolayer shells of metallic lead. For this case the absolute energy of the highest occupied molecular orbital (HOMO) in PbS has been determined to be (5.0 ± 0.5) eV below the vacuum level. For such particles deposited on a substrate HRTEM has confirmed the XPS-based conclusions on the crystalline PbS structure of the semiconductor core. Absorption spectroscopy on the deposited film has given a value of ∼1 eV for the lowest exciton. Together with the valence XPS results this has allowed us to reconstruct the energy level scheme of the particles. The results obtained are discussed in the context of the properties of PbS QDSCs.

  8. Electrochemical Characterization of Ultrathin Cross-Linked Metal Nanoparticle Films.

    PubMed

    Han, Chu; Percival, Stephen J; Zhang, Bo

    2016-09-06

    Here we report the preparation, characterization, and electrochemical study of conductive, ultrathin films of cross-linked metal nanoparticles (NPs). Nanoporous films ranging from 40 to 200 nm in thickness composed of gold and platinum NPs of ∼5 nm were fabricated via a powerful layer-by-layer spin coating process. This process allows preparation of uniform NP films as large as 2 × 2 cm(2) with precise control over thickness, structure, and electrochemical and electrocatalytic properties. Gold, platinum, and bimetallic NP films were fabricated and characterized using cyclic voltammetry, scanning electron microscopy, and conductance measurements. Their electrocatalytic activity toward the oxygen reduction reaction (ORR) was investigated. Our results show that the electrochemical activity of such NP films is initially hindered by the presence of dense thiolate cross-linking ligands. Both electrochemical cycling and oxygen plasma cleaning are effective means in restoring their electrochemical activity. Gold NP films have higher electric conductivity than platinum possibly due to more uniform film structure and closer particle-particle distance. The electrochemical and electrocatalytic performance of platinum NP films can be greatly enhanced by the incorporation of gold NPs. This work focuses on electrochemical characterization of cross-linked NP films and demonstrates several unique properties. These include quick and easy preparation, ultrathin and uniform film thickness, tunable structure and composition, and transferability to many other substrates.

  9. Quantum dynamical simulations of local field enhancement in metal nanoparticles.

    PubMed

    Negre, Christian F A; Perassi, Eduardo M; Coronado, Eduardo A; Sánchez, Cristián G

    2013-03-27

    Field enhancements (Γ) around small Ag nanoparticles (NPs) are calculated using a quantum dynamical simulation formalism and the results are compared with electrodynamic simulations using the discrete dipole approximation (DDA) in order to address the important issue of the intrinsic atomistic structure of NPs. Quite remarkably, in both quantum and classical approaches the highest values of Γ are located in the same regions around single NPs. However, by introducing a complete atomistic description of the metallic NPs in optical simulations, a different pattern of the Γ distribution is obtained. Knowing the correct pattern of the Γ distribution around NPs is crucial for understanding the spectroscopic features of molecules inside hot spots. The enhancement produced by surface plasmon coupling is studied by using both approaches in NP dimers for different inter-particle distances. The results show that the trend of the variation of Γ versus inter-particle distance is different for classical and quantum simulations. This difference is explained in terms of a charge transfer mechanism that cannot be obtained with classical electrodynamics. Finally, time dependent distribution of the enhancement factor is simulated by introducing a time dependent field perturbation into the Hamiltonian, allowing an assessment of the localized surface plasmon resonance quantum dynamics.

  10. Comparative Metal Oxide Nanoparticle Toxicity Using Embryonic Zebrafish

    PubMed Central

    Wehmas, Leah C.; Anders, Catherine; Chess, Jordan; Punnoose, Alex; Pereira, Cliff B.; Greenwood, Juliet A.; Tanguay, Robert L.

    2015-01-01

    Engineered metal oxide nanoparticles (MO NPs) are finding increasing utility in the medical field as anticancer agents. Before validation of in vivo anticancer efficacy can occur, a better understanding of whole-animal toxicity is required. We compared the toxicity of seven widely used semiconductor MO NPs made from zinc oxide (ZnO), titanium dioxide, cerium dioxide and tin dioxide prepared in pure water and in synthetic seawater using a five-day embryonic zebrafish assay. We hypothesized that the toxicity of these engineered MO NPs would depend on physicochemical properties. Significant agglomeration of MO NPs in aqueous solutions is common making it challenging to associate NP characteristics such as size and charge with toxicity. However, data from our agglomerated MO NPs suggests that the elemental composition and dissolution potential are major drivers of toxicity. Only ZnO caused significant adverse effects of all MO particles tested, and only when prepared in pure water (point estimate median lethal concentration = 3.5–9.1 mg/L). This toxicity was life stage dependent. The 24 h toxicity increased greatly (~22.7 fold) when zebrafish exposures started at the larval life stage compared to the 24 hour toxicity following embryonic exposure. Investigation into whether dissolution could account for ZnO toxicity revealed high levels of zinc ion (40–89% of total sample) were generated. Exposure to zinc ion equivalents revealed dissolved Zn2+ may be a major contributor to ZnO toxicity. PMID:26029632

  11. J-aggregates on metal nanoparticles characterized through ultrafast spectroscopy and near-field optics.

    PubMed

    Wiederrecht, Gary P; Wurtz, Gregory A; Im, Jin Seo; Hranisavljevic, Jasmina

    2004-01-01

    Illumination of metal nanoparticles at the plasmon resonance produces enhanced evanescent fields on the nanoparticles' surfaces. The unusual strength of the field makes it a target for exploring photoinduced phenomena at the nanoscale, if efficient functionalization or coating of the nanoparticle surface with appropriate chromophores is possible. One direction is to use cyanine dyes that form monolayers of J-aggregates on the surface of noble metal nanoparticle colloids. The unique, collective electronic properties of J-aggregates produce excitons with enormous extinction coefficients that are of interest for their efficient energy transfer, electron transfer, and nonlinear optical properties. In that vein, we report our results on time-resolved spectroscopy and near-field scanning optical microscopy (NSOM) of J-aggregate exciton dynamics on Ag and Au nanoparticle colloids. Ultrafast transient absorption studies show that J-aggregate exciton lifetimes on Ag nanoparticles are much longer than on Au nanoparticles, with a 300 ps lifetime that is two orders of magnitude longer than the electronic processes in the nanoparticles themselves. Complementary NSOM studies of the colloids show that fluorescence from the J-aggregates on the Ag nanoparticles is induced by the scanning probe. These results may be significant for improving the nanophotonic performance of hybrid materials for nanoscale applications.

  12. Efficient removal of chromate and arsenate from individual and mixed system by malachite nanoparticles.

    PubMed

    Saikia, Jiban; Saha, Bedabrata; Das, Gopal

    2011-02-15

    Malachite nanoparticles of 100-150 nm have been efficiently and for the first time used as an adsorbent for the removal of toxic arsenate and chromate. We report a high adsorption capacity for chromate and arsenate on malachite nanoparticle from both individual and mixed solution in pH ∼4-5. However, the adsorption efficiency decreases with the increase of solution pH. Batch studies revealed that initial pH, temperature, malachite nanoparticles dose and initial concentration of chromate and arsenate were important parameters for the adsorption process. Thermodynamic analysis showed that adsorption of chromate and arsenate on malachite nanoparticles is endothermic and spontaneous. The adsorption of these anions has also been investigated quantitatively with the help of adsorption kinetics, isotherm, and selectivity coefficient (K) analysis. The adsorption data for both chromate and arsenate were fitted well in Langmuir isotherm and preferentially followed the second order kinetics. The binding affinity of chromate is found to be slightly higher than arsenate in a competitive adsorption process which leads to the comparatively higher adsorption of chromate on malachite nanoparticles surface.

  13. Bioactivity of noble metal nanoparticles decorated with biopolymers and their application in drug delivery.

    PubMed

    Rai, Mahendra; Ingle, Avinash P; Gupta, Indarchand; Brandelli, Adriano

    2015-12-30

    The unique properties of nanomaterials can be applied to solve different problems including new ways of drug delivery. Noble metal nanoparticles are most promising because they have been used for medicinal purposes since ancient time. It is evident from the past studies that the metallic nanoparticles are much more effective against various microorganisms when compared to their conventional counterparts. However, decoration of such nanoparticles with biomaterials add more advantages to their antimicrobial activity. Decoration of metal nanoparticles with biopolymers is a quite new area of research. Studies performed hitherto shown that nanoparticles of noble metals like silver, gold and platinum demonstrated better antibacterial, antifungal and antiviral activities when conjugated with biopolymers. The development of such technology has potential to develop materials that are more effective in the field of health science. Considering the importance and uniqueness of this concept, the present review aims to discuss the use of biopolymer-decorated metal nanoparticles for combating various diseases caused by microbial pathogens. Moreover, the nanotoxicity aspect has also been discussed.

  14. SINGLE-PARTICLE ICPMS FOR CHARACTERIZING METAL-BASED NANOPARTICLES IN THE ENVIRONMENT - ADVANCES AND CHALLENGES

    EPA Science Inventory

    As engineered metal-based nanomaterials become widely used in consumer and industrial products, the amount of these materials introduced into the environment by a variety of paths will increase. The concentration of metal associated with these engineered nanoparticles will be s...

  15. A SAXS study of the impregnation of pH-responsive polymeric microgels with metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Anastasiadis, S. H.; Pavlopoulou, E.; Vamvakaki, M.; Christodoulakis, K. E.; Portale, G.; Bras, W.

    2010-03-01

    We follow the synthesis of metal nanoparticles within poly(2- (diethylamino)ethyl methacrylate), PDEA, microgels by SAXS. Colloidal Pt nanocrystals are formed within the microgels by the incorporation of the appropriate metal precursor, i.e., H2PtCl6, followed by metal reduction. We report the structural study of these systems by SAXS during the three steps of the metal nanoparticle synthesis: the original dispersions in water, the metal-loaded polymer matrices and the metal-nanoparticle-containing microgels after reduction. The scattering profiles of the pure microgel dispersions exhibit two contributions; a Porod-like wavevector q contribution arising from the water/microgel interface and a power law fractal contribution due to the microgel network. Both the Porod and the power-law scattering are still evident after metal incorporation, while the shoulder appearing at higher q's can be attributed to the formation of domains of higher scattering intensity due to the aggregation of the ion- neutralized hydrophobic polymer within the microgels. After metal reduction, Pt nanoparticles are formed with sizes of around 1.5 nm in diameter. Sponsored by NATO's Scientific Affairs Division, by the Greek GSRT and by the EU.

  16. Floating AC-DEP (dielectrophoretic) manipulations of fluorescent nanoparticle at metal nanostructure for plasmonic applications

    NASA Astrophysics Data System (ADS)

    Kim, J.; Shin, H. J.; Hwang, K. S.; Park, J. H.

    2014-11-01

    We propose the fluorescent nanoparticle manipulations at nano-metal structures with floating AC-DEP force for plasmonic applications. The electrode gap was optimized to induce enough DEP force around the nano-structure for manipulation of the nanoparticles. 10um wide gap of electrode was acquired to apply the floating AC-DEP force at various designed metal nano-structure such as nanowire, y-branch and vortex. The all shape of nano-metal structures are formed at the gap of microelectrode and not connected with microelectrode. The gold nano-structures in the gap of microelectrode were fabricated with e-beam lithography and lift-off process. Before the formation of metal nanostructure, micro electrodes for applying the electric field around the metal nano-structures were fabricated with photolithography and lift-off process. Cadmium selenide (CdSe/ZnS) QDs (0.8 nM, emission wavelength of 605 nm) with a 25 nm zinc sulfide capping layer and 100nm polystyrene nano bead (1 nM, emission wavelength of 610nm) were used as fluorescent nanoparticles. We applied the 8 Vpp, 3 MHz sine wave for the positive DEP force, and it resulted in 108 V/m electric field and 1011 V/m electric field gradient around gold nanowire with floating AC. The fluorescent nanoparticle's attachment at the nanowire is confirmed by the fluorescent optical analysis. The fluorescent nanoparticles are located successfully at designed metal nano-structures for plasmonic applications.

  17. Managing light polarization via plasmon-molecule interactions within an asymmetric metal nanoparticle trimer

    SciTech Connect

    Shegai, Timur; Li, Zhipeng; Zhang, Zhenyu; Xu, Hongxing; Haran, Gilad

    2008-01-01

    The interaction of light with metal nanoparticles leads to novel phenomena mediated by surface plasmon excitations. In this paper we use single molecules to characterize the interaction of surface plasmons with light, and show that such interaction can strongly modulate the polarization of the emitted light. The simplest nanostructures that enable such polarization modulation are asymmetric silver nanocrystal trimers, where individual Raman scattering molecules are located in the gap between two of the nanoparticles. The third particle breaks the dipolar symmetry of the two-particle junction, generating a wavelength-dependent polarization pattern. Indeed, the scattered light becomes elliptically polarized and its intensity pattern is rotated in the presence of the third particle. We use a combination of spectroscopic observations on single molecules, scanning electron microscope imaging, and generalized Mie theory calculations to provide a full picture of the effect of particles on the polarization of the emitted light. Furthermore, our theoretical analysis allows us to show that the observed phenomenon is very sensitive to the size of the trimer particles and their relative position, suggesting future means for precise control of light polarization on the nanoscale.

  18. A Genetically Modified Tobacco Mosaic Virus that can Produce Gold Nanoparticles from a Metal Salt Precursor

    PubMed Central

    Love, Andrew J.; Makarov, Valentine V.; Sinitsyna, Olga V.; Shaw, Jane; Yaminsky, Igor V.; Kalinina, Natalia O.; Taliansky, Michael E.

    2015-01-01

    We genetically modified tobacco mosaic virus (TMV) to surface display a characterized peptide with potent metal ion binding and reducing capacity (MBP TMV), and demonstrate that unlike wild type TMV, this construct can lead to the formation of discrete 10–40 nm gold nanoparticles when mixed with 3 mM potassium tetrachloroaurate. Using a variety of analytical physicochemical approaches it was found that these nanoparticles were crystalline in nature and stable. Given that the MBP TMV can produce metal nanomaterials in the absence of chemical reductants, it may have utility in the green production of metal nanomaterials. PMID:26617624

  19. Enhanced absorption with quantum dots, metal nanoparticles, and 2D materials

    NASA Astrophysics Data System (ADS)

    Simsek, Ergun; Mukherjee, Bablu; Guchhait, Asim; Chan, Yin Thai

    2016-03-01

    We fabricate and characterize mono- and few- layers of MoS2 and WSe2 on glass and SiO2/Si substrates. PbS quantum dots and/or Au nanoparticles are deposited on the fabricated thin metal dichalcogenide films by controlled drop casting and electron beam evaporation techniques. The reflection spectra of the fabricated structures are measured with a spatially resolved reflectometry setup. Both experimental and numerical results show that surface functionalization with metal nanoparticles can enhance atomically thin transition metal dichalcogenides' absorption and scattering capabilities, however semiconducting quantum dots do not create such effect.

  20. Heat and mass transfer enhancement of nanofluids flow in the presence of metallic/metallic-oxides spherical nanoparticles

    NASA Astrophysics Data System (ADS)

    Qureshi, M. Zubair Akbar; Ali, Kashif; Iqbal, M. Farooq; Ashraf, Muhammad; Ahmad, Shazad

    2017-01-01

    The numerical study of heat and mass transfer for an incompressible magnetohydrodynamics (MHD) nanofluid flow containing spherical shaped nanoparticles through a channel with moving porous walls is presented. Further, another endeavour is to study the effect of two types of fluids, namely the metallic nanofluid (Au + water) and metallic-oxides nanofluid (TiO2 + water) are studied. The phenomena of spherical metallic and metallic-oxides nanoparticles have been also mathematically modelled by using the Hamilton-Crosser model. The influence of the governing parameters on the flow, heat and mass transfer aspects of the problem is discussed. The outcome of the investigation may be beneficial to the application of biotechnology and industrial purposes. Numerical solutions for the velocity, heat and mass transfer rate at the boundary are obtained and analysed.

  1. Metal oxide nanoparticle transport in porous media - an analysis about (un)certainties in environmental research

    NASA Astrophysics Data System (ADS)

    Heidmann, I.

    2013-04-01

    Research about the fate and behavior of engineered nanoparticles in the environment is despite its wide applications still in the early stages. The fast-growing area of nanoparticle research and the high level of uncertainty create a big challenge for describing clearly the recent state of the current scientific knowledge. Therefore, in this study the certain knowledge, the known uncertainties and the identified knowledge gaps concerning mobility of engineered metal oxide nanoparticles in porous media are analyzed. The mobility of nanoparticles is mainly investigated in model laboratory studies under well-defined conditions, which are often not realistic for natural systems. In these model systems, nanoparticles often retain in the pore system due to aggregation and sedimentation. However, under environmental conditions, the presence of natural organic matter may cause stabilization or disaggregation of nanoparticles and favors therefore higher mobility of nanoparticles. Additionally, potential higher mobility of particles using preferential flow paths is not considered. Knowledge of the long-term behavior of nanoparticles concerning disaggregation, dissolution or remobilization in soils under environmental conditions is scarce. Scientific uncertainty itself is rarely mentioned in the research papers. Seldom known methodically uncertainties in nanoparticle characterization are referred to. The uncertainty about the transferability of the results to environmental conditions is discussed more often. Due to the sparse studies concerning natural material or natural pore systems, certain conclusions concerning the mobility of nanoparticles in the soil environment are not possible to drawn.

  2. Assessing nanoparticle size effects on metal hydride thermodynamics using the Wulff construction.

    PubMed

    Kim, Ki Chul; Dai, Bing; Karl Johnson, J; Sholl, David S

    2009-05-20

    The reaction thermodynamics of metal hydrides are crucial to the use of these materials for reversible hydrogen storage. In addition to altering the kinetics of metal hydride reactions, the use of nanoparticles can also change the overall reaction thermodynamics. We use density functional theory to predict the equilibrium crystal shapes of seven metals and their hydrides via the Wulff construction. These calculations allow the impact of nanoparticle size on the thermodynamics of hydrogen release from these metal hydrides to be predicted. Specifically, we study the temperature required for the hydride to generate a H(2) pressure of 1 bar as a function of the radius of the nanoparticle. In most, but not all, cases the hydrogen release temperature increases slightly as the particle size is reduced.

  3. Super adsorption capability from amorphousization of metal oxide nanoparticles for dye removal

    PubMed Central

    Li, L. H.; Xiao, J.; Liu, P.; Yang, G. W.

    2015-01-01

    Transitional metal oxide nanoparticles as advanced environment and energy materials require very well absorption performance to apply in practice. Although most metal oxides are based on crystalline, high activities can also be achieved with amorphous phases. Here, we reported the adsorption behavior and mechanism of methyl blue (MB) on the amorphous transitional metal oxide (Fe, Co and Ni oxides) nanoparticles, and we demonstrated that the amorphousization of transitional metal oxide (Fe, Co and Ni oxides) nanoparticles driven by a novel process involving laser irradiation in liquid can create a super adsorption capability for MB, and the maximum adsorption capacity of the fabricated NiO amorphous nanostructure reaches up to 10584.6 mgg−1, the largest value reported to date for all MB adsorbents. The proof-of-principle investigation of NiO amorphous nanophase demonstrated the broad applicability of this methodology for obtaining new super dyes adsorbents. PMID:25761448

  4. Laser heating of metallic nanoparticles for photothermal ablation applications

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoming; Shan, Guangshuai; Yu, Junsheng; Yang, Wei; Ren, Zhaodi; Wang, Xiaohui; Xie, Xi; Chen, Hui-jiuan; Chen, Xiaodong

    2017-02-01

    In order to search for a suitable frequency and material with higher photothermal efficacy for hyperthermia application in cancer treatment, a comparative study on laser heating of Au/Ag nanoparticles and Ag nanowires has been conducted. It is found that gold nanoparticles are more photothermal efficient in comparison with silver nanoparticles and silver nanowires at 450nm and 532 nm. Gold nanoparticles are more heated by 532 nm laser than 450 nm laser. In contrast, silver nanoparticles show slightly less temperature rise at 532 nm than 450 nm laser. For silver nanowires, no significant photothermal effect has been observed. Size-dependent effect study indicates that the absorption efficiency of single gold nanoparticles of larger diameter is higher than that of smaller diameter, in the diameter range of 0-50nm. A mathematical model for describing the heating profile in the heating sample has been built. The mathematical model can be utilized to predict the optimal treatment size of tumor.

  5. Extraction of chlorpyrifos and malathion from water by metal nanoparticles.

    PubMed

    Nair, A Sreekumaran; Pradeep, T

    2007-06-01

    The nanoparticles of gold and silver in solution state and supported over activated alumina are effective systems for the quantitative removal of chlorpyrifos and malathion, two common pesticides found in surface waters of developing nations, from water. In the solution phase, these pesticides adsorb onto the nanoparticles' surfaces and upon interaction for a long time, the nanoparticles with adsorbed pesticides precipitate. In contrast, complete removal of these pesticides occurs when contaminated water is passed over nanoparticles supported on alumina. A prototype of an on-line filter was made using a column of activated alumina powder loaded with silver nanoparticles and the device was used for pesticide removal for extended periods. We believe that the method has great technological potential in drinking water purification, especially using silver nanoparticles.

  6. Adiabatic nanofocusing scattering-type optical nanoscopy of individual gold nanoparticles.

    PubMed

    Sadiq, Diyar; Shirdel, Javid; Lee, Jae Sung; Selishcheva, Elena; Park, Namkyoo; Lienau, Christoph

    2011-04-13

    We explore imaging of local electromagnetic fields in the vicinity of metallic nanoparticles using a grating-coupled scattering-type near-field scanning optical microscope. In this microscope, propagating surface plasmon polariton wavepackets are launched onto smooth gold tapers where they are adiabatically focused toward the nanometer-sized taper apex. We report two-dimensional raster-scanned optical images showing pronounced near-field contrast and demonstrating sub-30 nm resolution imaging of localized surface plasmon polariton fields of spherical and elliptical nanoparticles. By comparison to three-dimensional finite-difference time domain simulations, we conclude that virtually background-free near-field imaging is achieved. The microscope combines deep subwavelength resolution, high local field intensities and a straightforward imaging contrast, making it interesting for a variety of applications in linear and nonlinear nanospectroscopy.

  7. Peculiarities of metal oxide nanoparticles obtained in acoustoplasma discharge

    NASA Astrophysics Data System (ADS)

    Bulychev, N. A.; Kazaryan, M. A.; Nikiforov, V. N.; Shevchenko, S. N.; Yakunin, V. G.; Timoshenko, V. Yu.; Bychenko, A. B.; Sredin, V. G.

    2016-05-01

    Nanoparticles of tungsten, copper, iron, and zinc oxides were synthesized in acoustoplasma discharge. Their size distribution was studied by electron microscopy and laser correlation spectroscopy. Ultrasound was found to narrow significantly the size distribution width of zinc oxide nanoparticles. Water suspensions of zinc oxide nanoparticles showed photoluminescence in red and near infrared spectral ranges, which makes them a promising material for luminescent diagnostics of biological systems.

  8. An electrodynamics-Langevin dynamics (ED-LD) approach to simulate metal nanoparticle interactions and motion.

    PubMed

    Sule, N; Rice, S A; Gray, S K; Scherer, N F

    2015-11-16

    Understanding the formation of electrodynamically interacting assemblies of metal nanoparticles requires accurate computational methods for determining the forces and propagating trajectories. However, since computation of electromagnetic forces occurs on attosecond to femtosecond timescales, simulating the motion of colloidal nanoparticles on milliseconds to seconds timescales is a challenging multi-scale computational problem. Here, we present a computational technique for performing accurate simulations of laser-illuminated metal nanoparticles. In the simulation, we self-consistently combine the finite-difference time-domain method for electrodynamics (ED) with Langevin dynamics (LD) for the particle motions. We demonstrate the ED-LD method by calculating the 3D trajectories of a single 100-nm-diameter Ag nanoparticle and optical trapping and optical binding of two and three 150-nm-diameter Ag nanoparticles in simulated optical tweezers. We show that surface charge on the colloidal metal nanoparticles plays an important role in their optically driven self-organization. In fact, these simulations provide a more complete understanding of the assembly of different structures of two and three Ag nanoparticles that have been observed experimentally, demonstrating that the ED-LD method will be a very useful tool for understanding the self-organization of optical matter.

  9. Potential application of metal nanoparticles for dosimetric systems: Concepts and perspectives

    NASA Astrophysics Data System (ADS)

    Guidelli, Eder José; Baffa, Oswaldo

    2014-11-01

    Metallic nanoparticles increase the delivered dose and consequently enhance tissue radio sensitization during radiation therapy of cancer. The Dose Enhancement Factor (DEF) corresponds to the ratio between the dose deposited on a tissue containing nanoparticles, and the dose deposited on a tissue without nanoparticles. In this sense, we have used electron spin resonance spectroscopy (ESR) to investigate how silver and gold nanoparticles affect the dose deposition in alanine dosimeters, which act as a surrogate of soft tissue. Besides optimizing radiation absorption by the dosimeter, the optical properties of these metal nanoparticles could also improve light emission from materials employed as radiation detectors. Therefore, we have also examined how the plasmonic properties of noble metal nanoparticles could enhance radiation detection using optically stimulated luminescence (OSL) dosimetry. This work will show results on how the use of gold and silver nanoparticles are beneficial for the ESR and OSL dosimetric techniques, and will describe the difficulties we have been facing, the challenges to overcome, and the perspectives.

  10. Potential application of metal nanoparticles for dosimetric systems: Concepts and perspectives

    SciTech Connect

    Guidelli, Eder José Baffa, Oswaldo

    2014-11-07

    Metallic nanoparticles increase the delivered dose and consequently enhance tissue radio sensitization during radiation therapy of cancer. The Dose Enhancement Factor (DEF) corresponds to the ratio between the dose deposited on a tissue containing nanoparticles, and the dose deposited on a tissue without nanoparticles. In this sense, we have used electron spin resonance spectroscopy (ESR) to investigate how silver and gold nanoparticles affect the dose deposition in alanine dosimeters, which act as a surrogate of soft tissue. Besides optimizing radiation absorption by the dosimeter, the optical properties of these metal nanoparticles could also improve light emission from materials employed as radiation detectors. Therefore, we have also examined how the plasmonic properties of noble metal nanoparticles could enhance radiation detection using optically stimulated luminescence (OSL) dosimetry. This work will show results on how the use of gold and silver nanoparticles are beneficial for the ESR and OSL dosimetric techniques, and will describe the difficulties we have been facing, the challenges to overcome, and the perspectives.

  11. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties.

    PubMed

    Linic, Suljo; Christopher, Phillip; Xin, Hongliang; Marimuthu, Andiappan

    2013-08-20

    Heterogeneous catalysis by metals was among the first enabling technologies that extensively relied on nanoscience. The early intersections of catalysis and nanoscience focused on the synthesis of catalytic materials with high surface to volume ratio. These synthesis strategies mainly involved the impregnation of metal salts on high surface area supports. This would usually yield quasi-spherical nanoparticles capped by low-energy surface facets, typically with closely packed metal atoms. These high density areas often function as the catalytically active surface sites. Unfortunately, strategies to control the functioning surface facet (i.e., the geometry of active sites that performs catalytic turnover) are rare and represent a significant challenge in our ability to fine-tune and optimize the reactive surfaces. Through recent developments in colloidal chemistry, chemists have been able to synthesize metallic nanoparticles of both targeted size and desired shape. This has opened new possibilities for the design of heterogeneous catalytic materials, since metal nanoparticles of different shapes are terminated with different surface facets. By controlling the surface facet exposed to reactants, we can start affecting the chemical transformations taking place on the metal particles and changing the outcome of catalytic processes. Controlling the size and shape of metal nanoparticles also allows us to control the optical properties of these materials. For example, noble metals nanoparticles (Au, Ag, Cu) interact with UV-vis light through an excitation of localized surface plasmon resonance (LSPR), which is highly sensitive to the size and shape of the nanostructures. This excitation is accompanied by the creation of short-lived energetic electrons on the surface of the nanostructure. We showed recently that these energetic electrons could drive photocatalytic transformations on these nanostructures. The photocatalytic, electron-driven processes on metal nanoparticles

  12. Laser-ablation-induced synthesis of SiO2-capped noble metal nanoparticles in a single step.

    PubMed

    Jiménez, Ernesto; Abderrafi, Kamal; Abargues, Rafael; Valdés, José L; Martínez-Pastor, Juan P

    2010-05-18

    Here we describe a simple, powerful technique based on the laser ablation of a target immersed in a water solution of a metal salt. With this method, nanoparticles of different metals and alloys can be processed very quickly. Both the target and the salt solution can be chosen to produce metal nanoparticles of different sizes, surface-oxidized nanoparticles (silica-silver, for example), or even more complex structures to be defined by the researcher on one or more steps because the technique combines the advantages of both physical and chemical methods. We have applied this technique to the fabrication of inert silica-metal (silver, gold, and silver-gold) nanoparticles with a strong surface plasmon resonance all together in a single step. The advantage of the simultaneous production of silica during laser ablation is the stabilization of the metal nanoparticle colloid but also the possibility to reduce the toxicity of these nanoparticles.

  13. A simple urea-based route to ternary metal oxynitride nanoparticles

    SciTech Connect

    Gomathi, A.; Reshma, S.; Rao, C.N.R.

    2009-01-15

    Ternary metal oxynitrides are generally prepared by heating the corresponding metal oxides with ammonia for long durations at high temperatures. In order to find a simple route that avoids use of gaseous ammonia, we have employed urea as the nitriding agent. In this method, ternary metal oxynitrides are obtained by heating the corresponding metal carbonates and transition metal oxides with excess urea. By this route, ternary metal oxynitrides of the formulae MTaO{sub 2}N (M=Ca, Sr or Ba), MNbO{sub 2}N (M=Sr or Ba), LaTiO{sub 2}N and SrMoO{sub 3-x}N{sub x} have been prepared successfully. The oxynitrides so obtained were generally in the form of nanoparticles, and were characterized by various physical techniques. - Graphical abstract: Nanoparticles of ternary metal oxynitrides can be synthesized by means of urea route. Given is the TEM image of the nanoparticles of CaTaO{sub 2}N so obtained and the insets show the SAED pattern and HREM image of the nanoparticles.

  14. Dialkyldiselenophosphinato-metal complexes - a new class of single source precursors for deposition of metal selenide thin films and nanoparticles

    NASA Astrophysics Data System (ADS)

    Malik, Sajid N.; Akhtar, Masood; Revaprasadu, Neerish; Qadeer Malik, Abdul; Azad Malik, Mohammad

    2014-08-01

    We report here a new synthetic approach for convenient and high yield synthesis of dialkyldiselenophosphinato-metal complexes. A number of diphenyldiselenophosphinato-metal as well as diisopropyldiselenophosphinato-metal complexes have been synthesized and used as precursors for deposition of semiconductor thin films and nanoparticles. Cubic Cu2-xSe and tetragonal CuInSe2 thin films have been deposited by AACVD at 400, 450 and 500 °C whereas cubic PbSe and tetragonal CZTSe thin films have been deposited through doctor blade method followed by annealing. SEM investigations revealed significant differences in morphology of the films deposited at different temperatures. Preparation of Cu2-xSe and In2Se3 nanoparticles using diisopropyldiselenophosphinato-metal precursors has been carried out by colloidal method in HDA/TOP system. Cu2-xSe nanoparticles (grown at 250 °C) and In2Se3 nanoparticles (grown at 270 °C) have a mean diameter of 5.0 ± 1.2 nm and 13 ± 2.5 nm, respectively.

  15. Carbon Materials Metal/Metal Oxide Nanoparticle Composite and Battery Anode Composed of the Same

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    2006-01-01

    A method of forming a composite material for use as an anode for a lithium-ion battery is disclosed. The steps include selecting a carbon material as a constituent part of the composite, chemically treating the selected carbon material to receive nanoparticles, incorporating nanoparticles into the chemically treated carbon material and removing surface nanoparticles from an outside surface of the carbon material with incorporated nanoparticles. A material making up the nanoparticles alloys with lithium.

  16. Biomedical Applications of Metal-Encapsulated Fullerene Nanoparticles.

    PubMed

    Li, Tinghui; Dorn, Harry C

    2017-02-01

    The carbonaceous nanomaterials known as metallofullerenes have attracted considerable attention due to their attractive properties. The robust nature of the "Trojan Horse" fullerene cage provides an important structural component, which isolates the metal cluster from the bioenvironment. The large carbon surface area is ideally suited for multiple exo-functionalization approaches to modify the hydrophobic cage for a more hydrophilic bioenvironment. Additionally, peptides and other agents are readily covalently attached to this nanoprobe for targeting applications. The recent progress in developing metallofullerenes for next-generation biomedical applications is described. Of special interest are magnetic resonance imaging (MRI) contrast agents. Several recent studies reported cumulative gadolinium deposition in the brain and bones of individuals using commercial clinical MRI contrast agents. Gadolinium-based metallofullerenes provide 2-3 orders of magnitude improvement in MRI relaxivity and potentially lower clinical levels of toxic Gd(3+) ions deposited. Other potential biomedical applications are also reviewed herein.

  17. Facile approach for large-scale production of metal and metal oxide nanoparticles and preparation of antibacterial cotton pads.

    PubMed

    Shankar, Shiv; Rhim, Jong-Whan

    2017-05-01

    Metallic nanoparticles such as zinc oxide (ZnONPs), copper oxide (CuONPs), and silver (AgNPs) were synthesized in gram scale using green methods. The antibacterial cotton fibers/nanoparticles (cotton fibers/NPs) composite pads were prepared, and nanoparticle binding/release tests were performed. All the NPs were crystalline and showed characteristic XRD diffraction peaks and showed the characteristic FTIR bands of the respective nanoparticles. All the NPs showed strong antimicrobial activity against Gram-positive and Gram-negative pathogenic bacteria. The NPs were attached to the cotton pad by adsorption at different extent depending on the types of nanoparticles. The adsorption and release of nanoparticles on and from cotton pads were also dependent on the types of nanoparticles. The NPs-adsorbed cotton pads showed potent antibacterial activity against pathogenic bacteria such as Escherichia coli, Listeria monocytogenes, Staphylococcus aureus, and Staphylococcus epidermis. The developed NPs-adsorbed cotton pads have potential to be used as wound dressings and antibacterial food packaging applications.

  18. Ultrafast dynamics via coherent exciton-plasmon coupling in quantum dot-metallic nanoparticle systems

    NASA Astrophysics Data System (ADS)

    Sadeghi, S. M.

    2015-08-01

    When a quantum dot is in the vicinity of a metallic nanoparticle and is driven by a laser field, quantum coherence can renormalize the plasmon field of the metallic nanoparticle, forming a coherent-plasmonic field (CP field). We demonstrate that for a given form of variation of this laser field with time, the CP field around the metallic nanoparticle can offer different forms of ultrafast field dynamics, depending on the location. In other words, we show the coherent exciton-plasmon coupling in such a system allows it to act as coherent nanoantenna capable of generation position-dependent coherent-plasmonic dynamics, designating each location around the metallic nanoparticle with characteristic time-position coordinates. These investigations are carried out by demonstrating that the coherent dynamics responsible for these effects can persist in the presence of the ultrafast polarization dephasing of the quantum dots. This highlights the prospect of generation and preservation of quantum coherence effects in hybrid quantum dot-metallic nanoparticle systems at elevated temperatures. Therefore, even when the decoherence times of the quantum dots are of the order of several hundreds of femtoseconds, as observed at room temperature, such coherent dynamics can remain quite distinct and observable.

  19. Robust Synthesis of Ciprofloxacin-Capped Metallic Nanoparticles and Their Urease Inhibitory Assay.

    PubMed

    Nisar, Muhammad; Khan, Shujaat Ali; Qayum, Mughal; Khan, Ajmal; Farooq, Umar; Jaafar, Hawa Z E; Zia-Ul-Haq, Muhammad; Ali, Rashid

    2016-03-25

    The fluoroquinolone antibacterial drug ciprofloxacin (cip) has been used to cap metallic (silver and gold) nanoparticles by a robust one pot synthetic method under optimized conditions, using NaBH₄ as a mild reducing agent. Metallic nanoparticles (MNPs) showed constancy against variations in pH, table salt (NaCl) solution, and heat. Capping with metal ions (Ag/Au-cip) has significant implications for the solubility, pharmacokinetics and bioavailability of fluoroquinolone molecules. The metallic nanoparticles were characterized by several techniques such as ultraviolet visible spectroscopy (UV), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) methods. The nanoparticles synthesized using silver and gold were subjected to energy dispersive X-ray tests in order to show their metallic composition. The NH moiety of the piperazine group capped the Ag/Au surfaces, as revealed by spectroscopic studies. The synthesized nanoparticles were also assessed for urease inhibition potential. Fascinatingly, both Ag-cip and Au-cip NPs exhibited significant urease enzyme inhibitory potential, with IC50 = 1.181 ± 0.02 µg/mL and 52.55 ± 2.3 µg/mL, compared to ciprofloxacin (IC50 = 82.95 ± 1.62 µg/mL). MNPs also exhibited significant antibacterial activity against selected bacterial strains.

  20. Continuous Polyol Synthesis of Metal and Metal Oxide Nanoparticles Using a Segmented Flow Tubular Reactor (SFTR).

    PubMed

    Testino, Andrea; Pilger, Frank; Lucchini, Mattia Alberto; Quinsaat, Jose Enrico Q; Stähli, Christoph; Bowen, Paul

    2015-06-08

    Over the last years a new type of tubular plug flow reactor, the segmented flow tubular reactor (SFTR), has proven its versatility and robustness through the water-based synthesis of precipitates as varied as CaCO3, BaTiO3, Mn(1-x)NixC2O4·2H2O, YBa oxalates, copper oxalate, ZnS, ZnO, iron oxides, and TiO2 produced with a high powder quality (phase composition, particle size, and shape) and high reproducibility. The SFTR has been developed to overcome the classical problems of powder production scale-up from batch processes, which are mainly linked with mass and heat transfer. Recently, the SFTR concept has been further developed and applied for the synthesis of metals, metal oxides, and salts in form of nano- or micro-particles in organic solvents. This has been done by increasing the working temperature and modifying the particle carrying solvent. In this paper we summarize the experimental results for four materials prepared according to the polyol synthesis route combined with the SFTR. CeO2, Ni, Ag, and Ca3(PO4)2 nanoparticles (NPs) can be obtained with a production rate of about 1-10 g per h. The production was carried out for several hours with constant product quality. These findings further corroborate the reliability and versatility of the SFTR for high throughput powder production.

  1. Potential for metal contamination by direct sonication of nanoparticle suspensions

    EPA Science Inventory

    There is a growing need to examine the potential toxicity of engineered nanoparticles (ENPs) to establish regulations protective of environmental health and safety. During a series of experiments to evaluate the toxicity of titanium dioxide (TiO2) nanoparticles on terrestrial pla...

  2. A versatile self-assembly strategy for the synthesis of shape-selected colloidal noble metal nanoparticle heterodimers.

    PubMed

    Gschneidtner, Tina A; Diaz Fernandez, Yuri A; Syrenova, Svetlana; Westerlund, Fredrik; Langhammer, Christoph; Moth-Poulsen, Kasper

    2014-03-25

    The self-assembly of individual nanoparticles into dimers-so-called heterodimers-is relevant for a broad range of applications, in particular in the vibrant field of nanoplasmonics and nanooptics. In this paper we report the synthesis and characterization of material- and shape-selected nanoparticle heterodimers assembled from individual particles via electrostatic interaction. The versatility of the synthetic strategy is shown by assembling combinations of metal particles of different shapes, sizes, and metal compositions like a gold sphere (90 nm) with either a gold cube (35 nm), gold rhombic dodecahedron (50 nm), palladium truncated cube (120 nm), palladium rhombic dodecahedron (110 nm), palladium octahedron (130 nm), or palladium cubes (25 and 70 nm) as well as a silver sphere (90 nm) with palladium cubes (25 and 70 nm). The obtained heterodimer combinations are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDX), dynamic light scattering (DLS), and zeta-potential measurements. We describe the optimal experimental conditions to achieve the highest yield of heterodimers compared to other aggregates. The experimental results have been rationalized using theoretical modeling. A proof-of-principle experiment where individual Au-Pd heterodimers are exploited for indirect plasmonic sensing of hydrogen finally illustrates the potential of these structures to probe catalytic processes at the single particle level.

  3. Toxicological interactions of silver nanoparticles and non-essential metals in human hepatocarcinoma cell line.

    PubMed

    Miranda, Renata Rank; Bezerra, Arandi Ginane; Oliveira Ribeiro, Ciro Alberto; Randi, Marco Antônio Ferreira; Voigt, Carmen Lúcia; Skytte, Lilian; Rasmussen, Kaare Lund; Kjeldsen, Frank; Filipak Neto, Francisco

    2017-04-01

    Toxicological interaction represents a challenge to toxicology, particularly for novel contaminants. There are no data whether silver nanoparticles (AgNPs), present in a wide variety of products, can interact and modulate the toxicity of ubiquitous contaminants, such as nonessential metals. In the current study, we investigated the toxicological interactions of AgNP (size=1-2nm; zeta potential=-23mV), cadmium and mercury in human hepatoma HepG2 cells. The results indicated that the co-exposures led to toxicological interactions, with AgNP+Cd being more toxic than AgNP+Hg. Early (2-4h) increases of ROS (DCF assay) and mitochondrial O2(-) levels (Mitosox® assay) were observed in the cells co-exposed to AgNP+Cd/Hg, in comparison to control and individual contaminants, but the effect was partially reverted in AgNP+Hg at the end of 24h-exposure. In addition, decreases of mitochondrial metabolism (MTT), cell viability (neutral red uptake assay), cell proliferation (crystal violet assay) and ABC-transporters activity (rhodamine accumulation assay) were also more pronounced in the co-exposure groups. Foremost, co-exposure to AgNP and metals potentiated cell death (mainly by necrosis) and Hg(2+) (but not Cd(2+)) intracellular levels (ICP-MS). Therefore, toxicological interactions seem to increase the toxicity of AgNP, cadmium and mercury.

  4. Optical steering of thermally generated microbubbles in a liquid for targeted metallic nanoparticle delivery

    NASA Astrophysics Data System (ADS)

    Krishnappa, Arjun; Abeywickrema, Ujitha; Banerjee, Partha

    2016-09-01

    A novel mathematical model is developed to investigate the behavior of thermally generated microbubbles in the presence of optical radiation to understand the mechanism of their steering. Forces acting on a bubble are studied in detail using a general force model. It has been proposed that these microbubbles with agglomerated metallic nanoparticles can be used for targeted drug delivery. The model can be extended to include the steering of bubbles with agglomerated silver or gold nanoparticles on their surface.

  5. Metal ions to control the morphology of semiconductor nanoparticles: copper selenide nanocubes.

    PubMed

    Li, Wenhua; Zamani, Reza; Ibáñez, Maria; Cadavid, Doris; Shavel, Alexey; Morante, Joan Ramon; Arbiol, Jordi; Cabot, Andreu

    2013-03-27

    Morphology is a key parameter in the design of novel nanocrystals and nanomaterials with controlled functional properties. Here, we demonstrate the potential of foreign metal ions to tune the morphology of colloidal semiconductor nanoparticles. We illustrate the underlying mechanism by preparing copper selenide nanocubes in the presence of Al ions. We further characterize the plasmonic properties of the obtained nanocrystals and demonstrate their potential as a platform to produce cubic nanoparticles with different composition by cation exchange.

  6. Removal of Heavy Metals from Aqueous Systems with Thiol Functionalized Superparamagnetic Nanoparticles

    SciTech Connect

    Yantasee, Wassana; Warner, Cynthia L.; Sangvanich, Thanapon; Addleman, Raymond S.; Carter, Timothy G.; Wiacek, Robert J.; Fryxell, Glen E.; Timchalk, Chuck; Warner, Marvin G.

    2007-06-09

    We have shown that superparamagnetic iron oxide (Fe3O4) nanoparticles with a surface functionalization of dimercaptosuccinic acid is an effective, magnetic, sorbent material for toxic metals such as Hg, Ag, Pb, Cd and other soft cations. The chemical affinity, stability, capacity and kinetics of the functionalized nanoparticles has been explored and compared to conventional resin based sorbents and nanoporous silica materials with similar surface chemistries.

  7. Sizing Individual Au Nanoparticles in Solution with Sub-Nanometer Resolution.

    PubMed

    German, Sean R; Hurd, Timothy S; White, Henry S; Mega, Tony L

    2015-07-28

    Resistive-pulse sensing has generated considerable interest as a technique for characterizing nanoparticle suspensions. The size, charge, and shape of individual particles can be estimated from features of the resistive pulse, but the technique suffers from an inherent variability due to the stochastic nature of particles translocating through a small orifice or channel. Here, we report a method, and associated automated instrumentation, that allows repeated pressure-driven translocation of individual particles back and forth across the orifice of a conical nanopore, greatly reducing uncertainty in particle size that results from streamline path distributions, particle diffusion, particle asphericity, and electronic noise. We demonstrate ∼0.3 nm resolution in measuring the size of nominally 30 and 60 nm radius Au nanoparticles of spherical geometry; Au nanoparticles in solution that differ by ∼1 nm in radius are readily distinguished. The repetitive translocation method also allows differentiating particles based on surface charge density, and provides insights into factors that determine the distribution of measured particle sizes.

  8. Two-phase equilibrium states in individual Cu-Ni nanoparticles: size, depletion and hysteresis effects.

    PubMed

    Shirinyan, Aram S

    2015-01-01

    In isolated bimetallic nanoscale systems the limit amount of matter and surface-induced size effects can change the thermodynamics of first-order phase transformation. In this paper we present theoretical modification of Gibbs free energy concept describing first-order phase transformation of binary alloyed nanoparticles taking into account size effects as well as depletion and hysteresis effects. In such a way the hysteresis in a form of nonsymmetry for forth and back transforming paths takes place; compositional splitting and the loops-like splitted path on the size dependent temperature-composition phase diagram occur. Our calculations for individual Cu-Ni nanoparticle show that one must differentiate the solubility curves and the equilibrium loops (discussed here in term of solidification and melting loops). For the first time we have calculated and present here on the temperature-composition phase diagram the nanomelting loop at the size of 80 nm and the nanosolidification loop at the size of 25 nm for an individual Cu-Ni nanoparticle. So we observe the difference between the size-dependent phase diagram and solubility diagram, between two-phase equilibrium curves and solubility curves; also intersection of nanoliquidus and nanosolidus is available. These findings lead to the necessity to reconsider such basic concepts in materials science as phase diagram and solubility diagram.

  9. Structure and optical properties of noble metal and oxide nanoparticles dispersed in various polysaccharide biopolymers

    NASA Astrophysics Data System (ADS)

    Djoković, V.; Božanic, D. K.; Vodnik, V. V.; Krsmanović, R. M.; Trandafilovic, L. V.; Dimitrijević-Branković, S.

    2011-10-01

    We present the results on the structure and the optical properties of noble metal (Ag, Au) and oxide (ZnO) nanoparticles synthesized by various methods in different polysaccharide matrices such as chitosan, glycogen, alginate and starch. The structure of the obtained nanoparticles was studied in detail with microscopic techniques (TEM, SEM), while the XPS spectroscopy was used to investigate the effects at the nanoparticle-biomolecule interfaces. The antimicrobial activity of the nanocomposite films with Ag nanoparticles was tested against the Staphylococcus aureus, Escherichia coli and Candida albicans pathogens. In addition, we will present the results on the structure and optical properties of the tryptophan amino acid functionalized silver nanoparticles dispersed in water soluble polymer matrices.

  10. High-Performance, Superparamagnetic, Nanoparticle-Based Heavy Metal Sorbents for Removal of Contaminants from Natural Waters

    SciTech Connect

    Warner, Cynthia L.; Addleman, Shane; Cinson, Anthony D.; Droubay, Timothy C.; Engelhard, Mark H.; Nash, Michael A.; Yantasee, Wassana; Warner, Marvin G.

    2010-06-01

    We describe the synthesis and characterization of superparamagnetic iron oxide nanoparticle based heavy metal sorbents with various surface chemistries that demonstrate an excellent affinity for the separation of heavy metals in contaminated water systems (i.e. spiked Columbia river water). The magnetic nanoparticle sorbents are prepared from an easy to synthesize iron oxide precursor, followed by a simple, one-step ligand exchange technique to introduce the organic surface functionality of interest chosen to target either specific or broader classes of heavy metals. Functionalized superparamagnetic nanoparticles are excellent sorbent materials for the extraction of heavy metal contaminants from environmental and clinical samples since they are easily removed from the media once bound to the contaminant by simply applying a magnetic field. These engineered magnetic nanoparticle sorbents have an inherently high active surface area (often > 100 m2/g), allowing for increased binding capacity. To demonstrate the potential sorbent performance of each of the surface modified magnetic nanoparticles, river water was spiked with Hg, Pb, Cd, Ag, Co, Cu, and Tl and exposed to low concentrations of the functionalized nanoparticles. The samples were analyzed to determine the metal content before and after exposure to the magnetic nanoparticle sorbents. In almost all cases reported here the nanoparticles were found to be superior to commercially available sorbents binding a wide range of different heavy metals with extremely high affinity. Detailed characterization of the functionalized magnetic nanoparticle sorbents including FT-IR, BET surface analysis, TGA, XPS and VSM as well as the heavy metal removal experiments are presented.

  11. Where does the toxicity of metal oxide nanoparticles come from: The nanoparticles, the ions, or a combination of both?

    PubMed

    Wang, Dali; Lin, Zhifen; Wang, Ting; Yao, Zhifeng; Qin, Mengnan; Zheng, Shourong; Lu, Wei

    2016-05-05

    The toxicity of metal oxide nanoparticles (NPs) has aroused great concern over the past few years. However, there still remains the question whether the toxicity of the metal oxide NPs originates from the released ions or the NPs themselves. In this study, the metal ion release of CuO, Fe2O3, ZnO, Co3O4, Cr2O3, and NiO NPs in aqueous media was investigated, and their contributions to the metal oxide NPs' inhibition on the bioluminescence of Photobacterium phosphoreum were studied. It was found that the ions release of the metal oxide NPs in aqueous media was complex, depending on both the dissolution and adsorption processes of the metal oxide NPs. The relationships between the metal oxide NPs' antibacterial effects and their released metal ions could be divided into three categories: (1) the ZnO NPs' antibacterial effect was due solely to the released Zn(2+); (2) the CuO NPs' antibacterial effect originated from both the released Cu(2+),and the CuO particles; and (3) the antibacterial effects of Fe2O3, Co3O4, Cr2O3, and NiO NPs were caused by the NPs themselves. Our findings suggest that the ions release and their contributions to the NPs' toxicity should be considered in the toxicity evaluations of the metal oxide NPs.

  12. Size Effects in the Catalytic Activity of Unsupported Metallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Weber, Alfred P.; Seipenbusch, Martin; Kasper, Gerhard

    2003-08-01

    The influence of the size of nanoparticles on their catalytic activity was investigated for two systems on unsupported, i.e. gasborne nanoparticles. For the oxidation of hydrogen on Pt nanoparticle agglomerates, transport processes had to be taken into account to extract the real nanoparticle size effects. The results indicate an optimum particle size for the catalytic activity below 5nm which points clearly toward a real volume effect. In the case of the methanation reaction on gasborne Ni nanoparticles, no transport limitations were observed and the product concentration was directly proportional to the activity of the primary particles. We found an activity maximum for particles of about 19nm in diameter. This size is too large to be attributed to a real nanoparticle size effect induced by the electronic band structure. Therefore, we concluded that the particle size influences the adsorption behavior of the carbon monoxide molecules. In fact, it is known that intermediate adsorption enthalpies may favor dissociation processes, which is an essential step for the reaction, as manifested in the so called volcano-shaped curve. Then, in addition to the material dependence of the adsorption, we would also encounter a direct size dependence in the case of methanation on gasborne Ni nanoparticles.

  13. Charge transport and absorption study of metal nanoparticle plasmonics for organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Xue, Mei; Zhu, Jinfeng; Shen, Huajun; Kim, Seongku; Ho, Jack J.; Qasem, Hussam Aldeen S.; Otaibi, Zaid S. Al; Wang, Kang L.; Device Research Laboratory, Ucla Team; Kacst/California Institute Of Excellence On Green Nanotechnology Team

    2011-03-01

    A hybrid plasmonic nanostructure of an optically sensitive heterojunction organic film incorporating metal nanoparticles is fabricated. From the Charge Extraction in Linearly Increasing Voltage (CELIV) measurements, the mobility of this hybrid plasmonic nanostructure has been experimentally extracted to be at least one order of the magnitude higher than that of the organic film without metal nanoparticles. The measured absorption spectrum also shows the increasing of the intensity by around 28% as well as the broadening of the spectrum. The theoretical calculation confirms this broadband optical absorption enhancement results from localized surface plasmon resonance. The optimization of the density of the metal nanoparticles has been done to achieve the best performance for the photovoltaic devices. This work is supported in part by KACST/California Institute of Excellence on Green Nanotechnology.

  14. Nonlinear optical absorption and stimulated Mie scattering in metallic nanoparticle suspensions

    NASA Astrophysics Data System (ADS)

    He, Guang S.; Law, Wing-Cheung; Baev, Alexander; Liu, Sha; Swihart, Mark T.; Prasad, Paras N.

    2013-01-01

    The nonlinear optical properties of four metallic (Au-, Au/Ag-, Ag-, and Pt-) nanoparticle suspensions in toluene have been studied in both femtosecond and nanosecond regimes. Nonlinear transmission measurements in the femtosecond laser regime revealed two-photon absorption (2PA) induced nonlinear attenuation, while in the nanosecond laser regime a stronger nonlinear attenuation is due to both 2PA and 2PA-induced excited-state absorption. In the nanosecond regime, at input pump laser intensities above a certain threshold value, a new type of stimulated (Mie) scattering has been observed. Being essentially different from all other well known molecular (Raman, Brillouin) stimulated scattering effects, the newly observed stimulated Mie scattering from the metallic nanoparticles exhibits the features of no frequency shift and low pump threshold requirement. A physical model of induced Bragg grating initiated by the backward Mie scattering from metallic nanoparticles is proposed to explain the gain mechanism of the observed stimulated scattering effect.

  15. Spectral properties of a strongly coupled quantum-dot-metal-nanoparticle system

    NASA Astrophysics Data System (ADS)

    Hakami, Jabir; Wang, Ligang; Zubairy, M. Suhail

    2014-05-01

    We investigate the coherent control of the quantum optical properties of a quantum dot coupled to a metallic nanoparticle using a photon Green's function method, which is based on the exact quantization of the electromagnetic fields in a dissipative medium. The properties of the spontaneous emission spectra of such a system are studied in detail with and without involving the coherent field. The Rabi splitting effect in the spectrum emitted by the quantum dot under particular conditions is predicted for different sizes of the metal nanoparticles. We show that the spontaneous emission spectra of the transition coupled to surface plasmons may be further modified by adjusting the external coherent control on the adjacent transitions. Furthermore, the pronounced oscillatory behavior for the quantum-dot dynamics is demonstrated with the presence of the metal nanoparticle by the non-Markovian treatment. Our results may have potential applications in plasmonic-based quantum manipulation.

  16. Quantum bio-nanosensors based on quantum dot-metallic nanoparticle systems

    NASA Astrophysics Data System (ADS)

    Sadeghi, S. M.

    2013-03-01

    When metallic nanoparticles are put in the vicinity of semiconductor quantum dots and driven by a coherent light source, their intrinsic plasmonic fields can be replaced with a new type of fields (coherent-plasmonic fields). These fields are generated via coherent coupling of excitons in quantum dots and localized surface plasmon resonances (LSPRs). We show the coherent-plasmonic field of a metallic nanoparticle can lead to a significantly larger field enhancement than that caused by its LSPR. Utilizing this, we investigate how such a coherent field enhancement can improve the sensitivities plasmonic nanosensors for detection single biological molecules. The results demonstrate application of quantum coherence in quantum dot-metallic nanoparticle systems for chemical and biological sensing applications.

  17. Plasmonic electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems

    NASA Astrophysics Data System (ADS)

    Hatef, Ali; Sadeghi, Seyed M.; Singh, Mahi R.

    2012-02-01

    We study the variation of the energy absorption rate in a hybrid semiconductor quantum dot-metallic nanoparticle system doped in a photonic crystal. The quantum dot is taken as a three-level V-configuration system and is driven by two applied fields (probe and control). We consider that one of the excitonic resonance frequencies is near to the plasmonic resonance frequency of the metallic nanoparticle, and is driven by the probe field. The other excitonic resonance frequency is far from both the plasmonic resonance frequency and the photonic bandgap edge, and is driven by the control field. In the absence of the photonic crystal we found that the system supports three excitonic-induced transparencies in the energy absorption spectrum of the metallic nanoparticle. We show that the photonic crystal allows us to manipulate the frequencies of such excitonic-induced transparencies and the amplitude of the energy absorption rate.

  18. Core shell hybrids based on noble metal nanoparticles and conjugated polymers: synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Fratoddi, Ilaria; Venditti, Iole; Battocchio, Chiara; Polzonetti, Giovanni; Cametti, Cesare; Russo, Maria Vittoria

    2011-12-01

    Noble metal nanoparticles of different sizes and shapes combined with conjugated functional polymers give rise to advanced core shell hybrids with interesting physical characteristics and potential applications in sensors or cancer therapy. In this paper, a versatile and facile synthesis of core shell systems based on noble metal nanoparticles (AuNPs, AgNPs, PtNPs), coated by copolymers belonging to the class of substituted polyacetylenes has been developed. The polymeric shells containing functionalities such as phenyl, ammonium, or thiol pending groups have been chosen in order to tune hydrophilic and hydrophobic properties and solubility of the target core shell hybrids. The Au, Ag, or Pt nanoparticles coated by poly(dimethylpropargylamonium chloride), or poly(phenylacetylene-co-allylmercaptan). The chemical structure of polymeric shell, size and size distribution and optical properties of hybrids have been assessed. The mean diameter of the metal core has been measured (about 10-30 nm) with polymeric shell of about 2 nm.

  19. A review of chemical and physical characterisation of atmospheric metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Sanderson, Paul; Delgado-Saborit, Juana Maria; Harrison, Roy M.

    2014-09-01

    Knowledge of the human health impacts associated with airborne nanoparticle exposure has led to considerable research activity aimed at better characterising these particles and understanding which particle properties are most important in the context of effects on health. Knowledge of the sources, chemical composition, physical structure and ambient concentrations of nanoparticles has improved significantly as a result. Given the known toxicity of many metals and the contribution of nanoparticles to their oxidative potential, the metallic content of the nanoparticulate burden is likely to be an important factor to consider when attempting to assess the impact of nanoparticle exposure on health. This review therefore seeks to draw together the existing knowledge of metallic nanoparticles in the atmosphere and discuss future research priorities in the field. The article opens by outlining the reasons behind the current research interest in the field, and moves on to discuss sources of nanoparticles to the atmosphere. The next section reviews ambient concentrations, covering spatial and temporal variation, mass and number size distributions, air sampling and measurement techniques. Further sections discuss the chemical and physical composition of particles. The review concludes by summing up the current state of research in the area and considering where future research should be focused.

  20. Structural determination of metal nanoparticles from their vibrational (phonon) density of states

    NASA Astrophysics Data System (ADS)

    Garzon, Ignacio; Sauceda, Huziel

    2015-03-01

    The vibrational (phonon) density of states of metal nanoparticles with size between 2-6 nm can be measured using nuclear resonant inelastic x-ray or plasmon resonance Raman scattering. In this work, we present atomistic calculations, based on a semiempirical tight-binding many-body Gupta potential, of the vibrational density of states (VDOS) for FCC, decahedral, and icosahedral (ICO) gold and silver nanoparticles with sizes ~ 4 nm (~ 2000 atoms). The calculated VDOS are compared with experimental data, recently published for gold and silver nanoparticles of similar size, obtained through plasmon resonance Raman scattering. The best agreement between the calculated and measured VDOS's is obtained for the ICO morphology for both metal nanoparticles. These results indicate that most of the nanoparticles in the experimental samples should have icosahedral structures. The present study also shows that, as in the case of molecular systems and small clusters, vibrational spectroscopy of metal nanoparticles with few nanometers in size, together with theoretical calculations, are powerful tools for their structure determination. with your abstract body. Work supported by CONACYT-Mexico under Project 177981.

  1. Comparative study on the uptake and bioimpact of metal nanoparticles released into environment

    NASA Astrophysics Data System (ADS)

    Andries, Maria; Pricop, Daniela; Grigoras, Marian; Lupu, Nicoleta; Sacarescu, Liviu; Creanga, Dorina; Iacomi, Felicia

    2015-12-01

    Metallic particles of very small size are ubiquitously released in the air, water and soil from various natural and artificial sources - the last ones with enhanced extent since nanotechnology development accelerated exponentially. In this study we focused on the impact of metal nanoparticles in vegetal species of agroindustrial interest namely the maize (Zea mais L.). Laboratory simulation of environmental pollution was carried out by using engineered nanoparticles of two types: iron oxides with magnetic properties and gold nanoparticles supplied in the form of dilutes stable suspensions in the culture medium of maize seedlings. Magnetic nanoparticle (MNPs) preparation was performed by applying chemical route from iron ferric and ferrous precursor salts in alkali reaction medium at relatively high temperature (over 80 °C). Gold nanoparticles (GNPs) synthesis was accomplished from auric hydrochloride acid in alkali reaction medium in similar temperature conditions. In both types of metallic nanoparticles citrate ions were used as coating shell with role of suspension stabilization. Plantlet response was assessed at the level of assimilatory pigment contents in green tissue of seedlings in early ontogenetic stages.

  2. Revealing the nanoparticles aspect ratio in the glass-metal nanocomposites irradiated with femtosecond laser

    PubMed Central

    Chervinskii, S.; Drevinskas, R.; Karpov, D. V.; Beresna, M.; Lipovskii, A. A.; Svirko, Yu. P.; Kazansky, P. G.

    2015-01-01

    We studied a femtosecond laser shaping of silver nanoparticles embedded in soda-lime glass. Comparing experimental absorption spectra with the modeling based on Maxwell Garnett approximation modified for spheroidal inclusions, we obtained the mean aspect ratio of the re-shaped silver nanoparticles as a function of the laser fluence. We demonstrated that under our experimental conditions the spherical shape of silver nanoparticles changed to a prolate spheroid with the aspect ratio as high as 3.5 at the laser fluence of 0.6 J/cm2. The developed approach can be employed to control the anisotropy of the glass-metal composites. PMID:26348691

  3. Welder's Helper. Coordinator's Guide. Individualized Study Guide. General Metal Trades.

    ERIC Educational Resources Information Center

    Dean, James W.

    This guide provides information to enable coordinators to direct learning activities for students using an individualized study guide on being a welder's helper. The study material is designed for students enrolled in cooperative part-time training and employed, or desiring to be employed, as welders' helpers. Contents include a sample progress…

  4. Lathe Operator. Coordinator's Guide. Individualized Study Guide. General Metal Trades.

    ERIC Educational Resources Information Center

    East Texas State Univ., Commerce. Occupational Curriculum Lab.

    This guide provides information to enable coordinators to direct learning activities for students using an individualized study guide on operating a lathe. The study material is designed for students enrolled in cooperative part-time training and employed, or desiring to be employed, as lathe operators. Contents include a sample progress chart,…

  5. Transition-metal-doped ZnO nanoparticles: synthesis, characterization and photocatalytic activity under UV light.

    PubMed

    Saleh, Rosari; Djaja, Nadia Febiana

    2014-09-15

    ZnO nanoparticles doped with transition metals (Mn and Co) were prepared by a co-precipitation method. The synthesized nanoparticles were characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-rays, Fourier transform infrared spectroscopy, electron spin resonance spectroscopy and diffuse reflectance spectroscopy. The photocatalytic activities of the transition-metal-doped ZnO nanoparticles were evaluated in the degradation of methyl orange under UV irradiation. ZnO nanoparticles doped with 12 at.% of Mn and Co ions exhibited the maximum photodegradation efficiency. The experiment also demonstrated that the photodegradation efficiency of Mn-doped ZnO nanoparticles was higher than that of Co-doped ZnO nanoparticles. These results indicate that charge trapping states due to the doping were the decisive factor rather than the average particle size and energy gap. Moreover the effect of pH values on the degradation efficiency was discussed in the photocatalytic experiments using 12 at.% Mn- and Co-doped ZnO nanoparticles.

  6. Transition-metal-doped ZnO nanoparticles: Synthesis, characterization and photocatalytic activity under UV light

    NASA Astrophysics Data System (ADS)

    Saleh, Rosari; Djaja, Nadia Febiana

    2014-09-01

    ZnO nanoparticles doped with transition metals (Mn and Co) were prepared by a co-precipitation method. The synthesized nanoparticles were characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-rays, Fourier transform infrared spectroscopy, electron spin resonance spectroscopy and diffuse reflectance spectroscopy. The photocatalytic activities of the transition-metal-doped ZnO nanoparticles were evaluated in the degradation of methyl orange under UV irradiation. ZnO nanoparticles doped with 12 at.% of Mn and Co ions exhibited the maximum photodegradation efficiency. The experiment also demonstrated that the photodegradation efficiency of Mn-doped ZnO nanoparticles was higher than that of Co-doped ZnO nanoparticles. These results indicate that charge trapping states due to the doping were the decisive factor rather than the average particle size and energy gap. Moreover the effect of pH values on the degradation efficiency was discussed in the photocatalytic experiments using 12 at.% Mn- and Co-doped ZnO nanoparticles.

  7. Electrochemical synthesis of elongated noble metal nanoparticles, such as nanowires and nanorods, on high-surface area carbon supports

    DOEpatents

    Adzic, Radoslav; Blyznakov, Stoyan; Vukmirovic, Miomir

    2015-08-04

    Elongated noble-metal nanoparticles and methods for their manufacture are disclosed. The method involves the formation of a plurality of elongated noble-metal nanoparticles by electrochemical deposition of the noble metal on a high surface area carbon support, such as carbon nanoparticles. Prior to electrochemical deposition, the carbon support may be functionalized by oxidation, thus making the manufacturing process simple and cost-effective. The generated elongated nanoparticles are covalently bound to the carbon support and can be used directly in electrocatalysis. The process provides elongated noble-metal nanoparticles with high catalytic activities and improved durability in combination with high catalyst utilization since the nanoparticles are deposited and covalently bound to the carbon support in their final position and will not change in forming an electrode assembly.

  8. Metal nanoparticle-directed NiCo2O4 nanostructure growth on carbon nanofibers with high capacitance.

    PubMed

    Chen, Long; Zhu, Jiahua

    2014-08-04

    Metal nanoparticles (Ni, Co) decorated on an electrospun carbon nanofiber surface directed the growth of NiCo2O4 into nanorod and nanosheet morphologies. These metal nanoparticles served as a transition layer to strengthen the interface and promote charge transfer between carbon and NiCo2O4 to achieve a high capacitance of 781 F g(-1).

  9. In Vitro Vascular Toxicity of Metal Oxide Nanoparticles

    EPA Science Inventory

    Engineered nanoparticles (NPs) are designed to possess unique physicochemical properties, but may also produce atypical and unforeseen exposure scenarios with adverse health effects. The ability ofNPs to translocate into systemic circulation following either inhalation or ingesti...

  10. Theoretical study of nanophotonic directional couplers comprising near-field-coupled metal nanoparticles.

    PubMed

    Holmström, Petter; Yuan, Jun; Qiu, Min; Thylén, Lars; Bratkovsky, Alexander M

    2011-04-11

    The properties of integrated-photonics directional couplers composed of near-field-coupled arrays of metal nanoparticles are analyzed theoretically. It is found that it is possible to generate very compact, submicron length, high field-confinement and functionality devices with very low switch energies. The analysis is carried out for a hypothetical lossless silver to demonstrate the potential of this type of circuits for applications in telecom and interconnects. Employing losses of real silver, standalone devices with the above properties are still feasible in optimized metal nanoparticle structures.

  11. Asymmetric transport of light in linearly arrayed metallic nano-particles

    NASA Astrophysics Data System (ADS)

    Horchani, R.

    2016-02-01

    A strong asymmetric light transport in a linear chain of spherical and equidistantly spaced silver metal nano-particles (MNPs) located near a substrate is reported. The contrast ratio of the proposed structure is above 0.95. We have studied the propagation of light in the array with respect to the metal and the size of the last nano-particle of the chain and the nature of the substrate. It is shown also that the presence of a copper or gold substrate enhance the guiding properties of the array. This structure opens the possibility to design various optical devices such as broadband antennae and optical diodes.

  12. Asymmetric transport of light in linearly arrayed metallic nano-particles

    NASA Astrophysics Data System (ADS)

    Aroua, W.; Horchani, R.; AbdelMalek, F.; Haxha, S.; Kamli, Ali A.

    2016-09-01

    A strong asymmetric light transport in a linear chain of spherical and equidistantly spaced silver metal nano-particles (MNPs) located near a substrate is reported. The contrast ratio of the proposed structure is above 0.95. We have studied the propagation of light in the array with respect to the metal and the size of the last nano-particle of the chain and the nature of the substrate. It is shown also that the presence of a copper or gold substrate enhance the guiding properties of the array. This structure opens the possibility to design various optical devices such as broadband antennae and optical diodes.

  13. Study on metal nanoparticles induced third-order optical nonlinearity in phenylhydrazone derivatives with DFWM technique

    NASA Astrophysics Data System (ADS)

    Sudheesh, P.; Rao, D. Mallikharjuna; Chandrasekharan, K.

    2014-01-01

    The third-order nonlinear optical properties of newly synthesized phenylhydrazone derivatives and the influence of noble metal nanoparticles (Ag & Au) on their nonlinear optical responses were investigated by employing Degenerate Four wave Mixing (DFWM) technique with a 7 nanosecond, 10Hz Nd: YAG laser pulses at 532nm. Metal nanoparticles were prepared by laser ablation and the particle formation was confirmed using UV-Visible spectroscopy, Transmission Electron Microscopy (TEM). The nonlinear optical susceptibility were measured and found to be of the order 10-13esu. The results are encouraging and conclude that the materials are promising candidate for future optical device applications.

  14. Control of excitonic population inversion in a coupled semiconductor quantum dot-metal nanoparticle system

    NASA Astrophysics Data System (ADS)

    Paspalakis, Emmanuel; Evangelou, Sofia; Terzis, Andreas F.

    2013-06-01

    We study the potential for controlled population inversion in a coupled system comprised of a semiconductor quantum dot and a metal nanoparticle. We show that the widely used method of population inversion by a π pulse can be modified for small interparticle distances. This modification depends strongly on the pulse duration. We also present analytical solutions of the nonlinear density matrix equations, for specific pulse envelopes, which lead to efficient excitonic population inversion in the quantum dot for several distances between the semiconductor quantum dot and the metal nanoparticle.

  15. Colloidal metal nanoparticles: New building blocks for materials and amplification reagents for immunoassays

    NASA Astrophysics Data System (ADS)

    Musick, Michael David

    This thesis describes new analytical uses for colloidal metal nanoparticles. Investigations into the ligand directed self-assembly of new materials from metal nanoparticles and applications of metal nanoparticle arrays in electrochemistry and immunosensing have addressed several issues; These include (i) the development of a stepwise method to assemble materials composed of metal nanoparticles entirely from solution, (ii) characterization of morphological, optical and electrical properties of these materials, and (iii) potential applications for nanoparticle materials such as biocompatible electrodes, microband electrodes, and patterned arrays. Also discussed are (iv) interactions of colloidal metal particle arrays with surface plasmons, and (v) a new motif for ultrasensitive detection of immunological binding events. A novel method of layer-by-layer film formation from solution of metal nanoparticles film generation was developed and investigated. Atomic force microscopy of multilayered structures revealed an underlying porous nanostructure and a lack of inter- and intra particle order. Optical properties and DC resistance were monitored as a function of colloid coverage and bifunctional crosslinker. High coverage films were similar to evaporated discontinuous metal films in transmission properties (uv-vis/NIR) and in appearance by eye these films resembled their bulk metal counterparts. The measured resistivity was only 100 times greater than bulk Au. Applications in electrochemistry and the construction of a microband electrode of nanometer dimensions, is discussed and detailed further in chapter 4. Chapter 5 encompasses probing nanoparticle assemblies with surface plasmon resonance and the applications of colloidal Au nanoparticles as signal amplification reagents in a sandwich immunoassay. The binding of anti-human IgG:Au colloid conjugate to human IgG immobilized on an Au film produced a enhanced shift in plasmon angle over unconjugated antibody. Detection

  16. Study on metal nanoparticles induced third-order optical nonlinearity in phenylhydrazone derivatives with DFWM technique

    SciTech Connect

    Sudheesh, P.; Chandrasekharan, K.; Rao, D. Mallikharjuna

    2014-01-28

    The third-order nonlinear optical properties of newly synthesized phenylhydrazone derivatives and the influence of noble metal nanoparticles (Ag and Au) on their nonlinear optical responses were investigated by employing Degenerate Four wave Mixing (DFWM) technique with a 7 nanosecond, 10Hz Nd: YAG laser pulses at 532nm. Metal nanoparticles were prepared by laser ablation and the particle formation was confirmed using UV-Visible spectroscopy, Transmission Electron Microscopy (TEM). The nonlinear optical susceptibility were measured and found to be of the order 10{sup −13}esu. The results are encouraging and conclude that the materials are promising candidate for future optical device applications.

  17. Feasibility of sizing metallic nanoparticles in concentrated suspensions from effective optical properties

    NASA Astrophysics Data System (ADS)

    Morales-Luna, G.; Márquez-Islas, R.; Vázquez-Estrada, O.; Contreras-Tello, H.; García-Valenzuela, A.

    2015-08-01

    We explore using measurements of the effective refractive index of a metallic nanofluid to estimate the size of the particles in it. We assume the nanofluid consists of spherical metallic nanoparticles suspended in a transparent base liquid and discuss a way of measuring the real and imaginary parts of the effective refractive index for concentrated nanofluids to about 1% in particles' volume concentration. Specifically, we consider the case of copper nanoparticles suspended in water. We propose an unambiguous effective optical parameter as a candidate to evidence the particle size, potentially in real time. Limitations due to dependent scattering effects in concentrated nanofluids are briefly stated.

  18. Deposition of Cu Nanoparticles on the Surface of Metallic Aluminum

    NASA Astrophysics Data System (ADS)

    Lescinskis, A.; Katkevics, J.; Erts, D.; Viksna, A.

    2012-08-01

    Deposition of Cu particles by electrolysis at constant electrode potential and by internal electrolysis methods was investigated. The composition of deposited material was confirmed by optical and scanning electron microscope methods. Combination of electrolysis at constant electrode potential with internal electrolysis method was found most effective for fabrication of nanoparticle arrays. Single crystalline Cu particles are fabricated by internal electrolysis, while polycrystalline ones obtained by combined chronopotentiometric and internal electrolysis methods. The formation mechanism of Cu nanoparticles is described.

  19. Synthesizing metallic to superconducting ceramic nanoparticles using optimized microemulsion systems

    NASA Astrophysics Data System (ADS)

    Li, Fang

    A microemulsion system with cetyltrimethylammonium bromide (CTAB) as surfactant, 1-butanol as cosurfactant and n-octane as the oil phase was optimized to produce nanoparticles. Based on the results of conductivity and droplet size, oil/surfactant weight ratio of 1.5 was chosen to perform the study due to its higher solubilization and droplet stability. Nanoparticles of monometallic Fe, bimetallic Fe/Ni, oxide Y2O3, complex oxide Y 2BaCuO5 (Y211) and YBa2Cu3O7-x (Y123) have been successfully synthesized using the water-in-oil microemulsion method. The size of amorphous Fe, Fe/Ni nanoparticles were about 10 nm and 5 nm respectively. The reduction rate of trichloroethylene (TCE, a model contaminant) by the Fe produced from the microemulsion system was the highest compared to the solution product and the commercial product. In the case of Fe/Ni nanoparticles, the initial degradation rate is four times faster than for Fe nanoparticles. Nanocrystalline Y2O3 particles were flake shaped with dimension in the range of 16--30 nm. Y2BaCuO5 and YBa2Cu3O7-x nanoparticles (˜110 nm) produced using the microemulsion method had lower processing temperature than other processing methods due to their smaller particle size. As the reaction time was shortened, the Y211 particle size reduced from larger than 100 nm to the 30--100 nm range. Superconductivity of Y123 nanoparticles was verified using magnetic measurements and the critical transition temperature was 91 K. In the melt-textured Y123 disk, a single domain with a maximum trapped field of 0.14 T was successfully fabricated with the addition of 30% Y211 nanoparticles produced by the microemulsion method. The JC and size distribution of Y211 grain in the Y123 matrix were slightly better than in conventional samples.

  20. Structure and Optical Properties of Noble Metal Nanoparticles

    DTIC Science & Technology

    2012-08-29

    stabilized) gold and silver nanoparticles. The location of the ligands is responsible for causing splitting in the optical absorption spectra of...was: 1) Understand the structural and electronic origins and therefore the conditions under which gold and silver nanoparticles display broad...1-2 nm gold particles, the sharp or molecular optical spectrum of 2 nm silver particles, and the narrow SPR peak of larger (> 5 nm) gold and silver

  1. Rh Nanoparticle Anchoring on Metal Phosphates: Fundamental Aspects and Practical Impacts on Catalysis.

    PubMed

    Machida, Masato

    2016-10-01

    Metal phosphates stabilize Rh nanoparticles on their surface via Rh-O-P bonds, in contrast to the Rh-O-M bonds formed on metal oxides (MOx ). The local structure, electronic structure, and redox properties of Rh nanoparticles anchored on metal phosphates, and their practical impacts on catalysis, are reviewed based on recent publications from the author's research group. Because of the covalency of the Rh-O-P bond, Rh oxide is readily reduced to metallic Rh having a higher catalytic activity, whereas Rh oxide on metal oxide supports is more difficult to reduce with an increase of the anchoring strength. Furthermore, Rh metal shows a higher tolerance to reoxidation when supported on metal phosphates because the Rh-O-P bond is preserved under reducing atmospheres. The electron deficiency of Rh metal is another feature that affects its catalytic properties, and the extent of the electron deficiency can be tuned by replacing the metal in the metal phosphate with one of higher basicity. Further impacts on practical performance (thermal stability, poisoning stability, and lean NOx purification) in automobile catalyst applications are also described.

  2. Modelling the transport of engineered metallic nanoparticles in the river Rhine.

    PubMed

    Markus, A A; Parsons, J R; Roex, E W M; de Voogt, P; Laane, R W P M

    2016-03-15

    As engineered nanoparticles of zinc oxide, titanium dioxide and silver, are increasingly used in consumer products, they will most probably enter the natural environment via wastewater, atmospheric deposition and other routes. The aim of this study is to predict the concentrations of these nanoparticles via wastewater emissions in a typical river system by means of a numerical model. The calculations rely on estimates of the use of nanomaterials in consumer products and the removal efficiency in wastewater treatment plants as well as model calculations of the fate and transport of nanoparticles in a riverine system. The river Rhine was chosen for this work as it is one of the major and best studied rivers in Europe. The study gives insight in the concentrations that can be expected and, by comparing the model results with measurements of the total metal concentrations, of the relative contribution of these emerging contaminants. Six scenarios were examined. Two scenarios concerned the total emission: in the first it was assumed that nanoparticles are only released via wastewater (treated or untreated) and in the second it was assumed that in addition nanoparticles can enter the river system via runoff from the application of sludge as a fertilizer. In both cases the assumption was that the nanoparticles enter the river system as free, unattached particles. Four additional scenarios, based on the total emissions from the second scenario, were examined to highlight the consequences of the assumption of free nanoparticles and the uncertainties about the aggregation processes. If all nanoparticles enter as free particles, roughly a third would end up attached to suspended particulate matter due to the aggregation processes nanoparticles are subject to. For the other scenarios the contribution varies from 20 to 45%. Since the Rhine is a fast flowing river, sedimentation is unlikely to occur, except at the floodplains and the lakes in the downstream regions, as in fact

  3. Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine macroalga

    NASA Astrophysics Data System (ADS)

    Singh, M.; Kalaivani, R.; Manikandan, S.; Sangeetha, N.; Kumaraguru, A. K.

    2013-04-01

    The process of development of reliable and eco-friendly metallic nanoparticles is an important step in the field of nanotechnology. To achieve this, use of natural sources like biological systems becomes essential. In the present work, extracellular biosynthesis of gold nanoparticles using Padina gymnospora has been attempted and achieved rapid formation of gold nanoparticles in a short duration. The UV-vis spectrum of the aqueous medium containing gold ion showed peak at 527 nm corresponding to the plasmon absorbance of gold nanoparticles. Scanning electron microscopy showed the formation of well-dispersed gold nanoparticles. FTIR spectra of brown alga confirmed that hydroxyl groups present in the algal polysaccharides were involved in the gold bioreduction. AFM analysis showed the results of particle sizes (53-67 nm) and average height of the particle roughness (60.0 nm). X-ray diffraction (XRD) spectrum of the gold nanoparticles exhibited Bragg reflections corresponding to gold nanoparticles. This environment-friendly method of biological gold nanoparticle synthesis can be applied potentially in various products that directly come in contact with the human body, such as cosmetics, and foods and consumer goods, besides medical applications.

  4. Associations between iron oxyhydroxide nanoparticle growth and metal adsorption/structural incorporation

    SciTech Connect

    Kim, C.S.; Lentini, C.J.; Waychunas, G.A.

    2008-09-15

    The interaction of metal ions and oxyanions with nanoscale mineral phases has not yet been extensively studied despite the increased recognition of their prevalence in natural systems as a significant component of geomedia. A combination of macroscopic uptake studies to investigate the adsorption behavior of As(V), Cu(II), Hg(II), and Zn(II) onto nanoparticulate goethite ({alpha}-FeOOH) as a function of aging time at elevated temperature (75 C) and synchrotron-based X-ray studies to track changes in both the sorption mode and the rate of nanoparticle growth reveal the effects that uptake has on particle growth. Metal(loid) species which sorb quickly to the iron oxyhydroxide particles (As(V), Cu(II)) appear to passivate the particle surface, impeding the growth of the nanoparticles with progressive aging; in contrast, species that sorb more slowly (Hg(II), Zn(II)) have considerably less impact on particle growth. Progressive changes in the speciation of these particular metals with time suggest shifts in the mode of metal uptake with time, possibly indicating structural incorporation of the metal(loid) into the nanoparticle; this is supported by the continued increase in uptake concomitant with particle growth, implying that metal species may transform from surface-sorbed species to more structurally incorporated forms. This type of incorporation would have implications for the long-term fate and mobility of metals in contaminated regions, and affect the strategy for potential remediation/modeling efforts.

  5. In vitro antiplasmodial activity of PDDS-coated metal oxide nanoparticles against Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Jacob Inbaneson, Samuel; Ravikumar, Sundaram

    2013-06-01

    Malaria is the most important parasitic disease, leading to annual death of about one million people and the Plasmodium falciparum develops resistant to well-established antimalarial drugs. The newest antiplasmodial drug from metal oxide nanoparticles helps in addressing this problem. Commercial nanoparticles such as Fe3O4, MgO, ZrO2, Al2O3 and CeO2 coated with PDDS and all the coated and non-coated nanoparticles were screened for antiplasmodial activity against P. falciparum. The Al2O3 nanoparticles (71.42 ± 0.49 μg ml-1) showed minimum level of IC50 value and followed by MgO (72.33 ± 0.37 μg ml-1) and Fe3O4 nanoparticles (77.23 ± 0.42 μg ml-1). The PDDS-Fe3O4 showed minimum level of IC50 value (48.66 ± 0.45 μg ml-1), followed by PDDS-MgO (60.28 ± 0.42 μg ml-1) and PDDS-CeO2 (67.06 ± 0.61 μg ml-1). The PDDS-coated metal oxide nanoparticles showed superior antiplasmodial activity than the non-PDDS-coated metal oxide nanoparticles. Statistical analysis reveals that, significant in vitro antiplasmodial activity ( P < 0.05) was observed between the concentrations and time of exposure. The chemical injury to erythrocytes showed no morphological changes in erythrocytes by the nanoparticles after 48 h of incubation. It is concluded from the present study that, the PDDS-Fe3O4 showed good antiplasmodial activity and it might be used for the development of antiplasmodial drugs.

  6. Metal nanoparticle-induced micronuclei and oxidative DNA damage in mice

    PubMed Central

    Song, Ming-Fen; Li, Yun-Shan; Kasai, Hiroshi; Kawai, Kazuaki

    2012-01-01

    Several mechanisms regarding the adverse health effects of nanomaterials have been proposed. Among them, oxidative stress is considered to be one of the most important. Many in vitro studies have shown that nanoparticles generate reactive oxygen species, deplete endogenous antioxidants, alter mitochondrial function and produce oxidative damage in DNA. 8-Hydroxy-2'-deoxyguanosine is a major type of oxidative DNA damage, and is often analyzed as a marker of oxidative stress in human and animal studies. In this study, we focused on the in vivo toxicity of metal oxide and silver nanoparticles. In particular, we analyzed the induction of micronucleated reticulocyte formation and oxidative stress in mice treated with nanoparticles (CuO, Fe3O4, Fe2O3, TiO2, Ag). For the micronucleus assay, peripheral blood was collected from the tail at 0, 24, 48 and 72 h after an i.p. injection of nanoparticles. Following the administration of nanoparticles by i.p. injection to mice, the urinary 8-hydroxy-2'-deoxyguanosine levels were analyzed by the HPLC-ECD method, to monitor the oxidative stress. The levels of 8-hydroxy-2'-deoxyguanosine in liver DNA were also measured. The results showed increases in the reticulocyte micronuclei formation in all nanoparticle-treated groups and in the urinary 8-hydroxy-2'-deoxyguanosine levels. The 8-hydroxy-2'-deoxyguanosine levels in the liver DNA of the CuO-treated group increased in a dose-dependent manner. In conclusion, the metal nanoparticles caused genotoxicity, and oxidative stress may be responsible for the toxicity of these metal nanoparticles. PMID:22573923

  7. Metallic nanoparticles and their medicinal potential. Part II: aluminosilicates, nanobiomagnets, quantum dots and cochleates.

    PubMed

    Loomba, Leena; Scarabelli, Tiziano

    2013-09-01

    Metallic miniaturization techniques have taken metals to nanoscale size where they can display fascinating properties and their potential applications in medicine. In recent years, metal nanoparticles such as aluminium, silicon, iron, cadmium, selenium, indium and calcium, which find their presence in aluminosilicates, nanobiomagnets, quantum dots (Q-dots) and cochleates, have caught attention of medical industries. The increasing impact of metallic nanoparticles in life sciences has significantly advanced the production techniques for these nanoparticles. In this Review, the various methods for the synthesis of nanoparticles are outlined, followed by their physicochemical properties, some recent applications in wound healing, diagnostic imaging, biosensing, assay labeling, antimicrobial activity, cancer therapy and drug delivery are listed, and finally their toxicological impacts are revised. The first half of this article describes the medicinal uses of two noble nanoparticles - gold and silver. This Review provides further information on the ability of aluminum, silicon, iron, selenium, indium, calcium and zinc to be used as nanoparticles in biomedical sciences. Aluminosilicates find their utility in wound healing and antibacterial growth. Iron-oxide nanoparticles enhance the properties of MRI contrast agents and are also used as biomagnets. Cadmium, selenium, tellurium and indium form the core nanostructures of tiny Q-dots used in cellular assay labeling, high-resolution cell imaging and biosensing. Cochleates have the bivalent nano ions calcium, magnesium or zinc imbedded in their structures and are considered to be highly effective agents for drug and gene delivery. The aluminosilicates, nanobiomagnets, Q-dots and cochleates are discussed in the light of their properties, synthesis and utility.

  8. Case studies in surface photochemistry on metal nanoparticles

    SciTech Connect

    Menzel, Dietrich; Hyun Kim, Ki; Mulugeta, Daniel; Watanabe, Kazuo

    2013-09-15

    The authors give a survey of their work on photochemical processes at silver nanoparticles carried out in Berlin in the past decade. Using well established procedures for the preparation of silver nanoparticles (Ag NPs) supported on ultrathin alumina layers on NiAl single crystals, they have investigated the photoreactions of adsorbed (NO){sub 2} and of Xe induced by laser pulses. The authors examined the influences of photon energy (2.3, 3.5, and 4.7 eV) and polarization, mean particle size (2–10 nm), and pulse length (5 ns and 100 fs) on yields and cross sections, and on photoreaction mechanisms. Comparison with Ag(111) was made throughout. For the NO dimer layer, the authors find general agreement with known results on bulk Ag(111) in terms of possible reactions (NO desorption and NO monomer formation as well as conversion into adsorbed N{sub 2}O and O) and predominant mechanism (via transient negative ion formation, TNI); NO desorption is the strongest channel. However, on the NPs, the cross sections show selective enhancement in particular under conditions of excitation of the Mie plasmon due to the field enhancement caused by it, but—more weakly—also under off-resonant conditions which the authors interpret by excitation confinement in the NPs. For ns laser pulses, the desorption yield responds linearly to photon flux so that the cross sections are independent of laser fluence. Using fs laser pulses, nonlinear yield response is found under plasmon excitation which is interpreted as due to re-excitation of hot electrons in the NPs during a single laser pulse. The dynamics of the individual process, however, stay the same under almost all conditions, as indicated by constant energy distributions over translational, rotational, and vibrational energies of the desorbing NO molecules, even in the nonlinear range. Only for the highest photon energy (i.e., off-resonance) and the smallest particles, a new channel is observed with higher translational energy

  9. Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics.

    PubMed

    Gwo, Shangjr; Chen, Hung-Ying; Lin, Meng-Hsien; Sun, Liuyang; Li, Xiaoqin

    2016-10-21

    Localized surface plasmon resonances (LSPRs) associated with metallic nanostructures offer unique possibilities for light concentration beyond the diffraction limit, which can lead to strong field confinement and enhancement in deep subwavelength regions. In recent years, many transformative plasmonic applications have emerged, taking advantage of the spectral and spatial tunability of LSPRs enabled by near-field coupling between constituent metallic nanostructures in a variety of plasmonic metastructures (dimers, metamolecules, metasurfaces, metamaterials, etc.). For example, the "hot spot" formed at the interstitial site (gap) between two coupled metallic nanostructures in a plasmonic dimer can be spectrally tuned via the gap size. Capitalizing on these capabilities, there have been significant advances in plasmon enhanced or enabled applications in light-based science and technology, including ultrahigh-sensitivity spectroscopies, light energy harvesting, photocatalysis, biomedical imaging and theranostics, optical sensing, nonlinear optics, ultrahigh-density data storage, as well as plasmonic metamaterials and metasurfaces exhibiting unusual linear and nonlinear optical properties. In this review, we present two complementary approaches for fabricating plasmonic metastructures. We discuss how meta-atoms can be assembled into unique plasmonic metastructures using a variety of nanomanipulation methods based on single- or multiple-probes in an atomic force microscope (AFM) or a scanning electron microscope (SEM), optical tweezers, and focused electron-beam nanomanipulation. We also provide a few examples of nanoparticle metamolecules with designed properties realized in such well-controlled plasmonic metastructures. For the spatial controllability on the mesoscopic and macroscopic scales, we show that controlled self-assembly is the method of choice to realize scalable two-dimensional, and three-dimensional plasmonic metastructures. In the section of applications

  10. Metallization of DNA hydrogel: application of soft matter host for preparation and nesting of catalytic nanoparticles

    NASA Astrophysics Data System (ADS)

    Zinchenko, Anatoly; Che, Yuxin; Taniguchi, Shota; Lopatina, Larisa I.; G. Sergeyev, Vladimir; Murata, Shizuaki

    2016-07-01

    Nanoparticles (NPs) of Au, Ag, Pt, Pd, Cu and Ni of 2-3 nm average-size and narrow-size distributions were synthesized in DNA cross-linked hydrogels by reducing corresponding metal precursors by sodium borohydride. DNA hydrogel plays a role of a universal reactor in which the reduction of metal precursor results in the formation of 2-3 nm ultrafine metal NPs regardless of metal used. Hydrogels metallized with various metals showed catalytic activity in the reduction of nitroaromatic compounds, and the catalytic activity of metallized hydrogels changed as follows: Pd > Ag ≈ Au ≈ Cu > Ni > Pt. DNA hydrogel-based "soft catalysts" elaborated in this study are promising for green organic synthesis in aqueous media as well as for biomedical in vivo applications.

  11. Quantitative measurement of the magnetic moment of individual magnetic nanoparticles by magnetic force microscopy.

    PubMed

    Sievers, Sibylle; Braun, Kai-Felix; Eberbeck, Dietmar; Gustafsson, Stefan; Olsson, Eva; Schumacher, Hans Werner; Siegner, Uwe

    2012-09-10

    The quantitative measurement of the magnetization of individual magnetic nanoparticles (MNPs) using magnetic force microscopy (MFM) is described. Quantitative measurement is realized by calibration of the MFM signal using an MNP reference sample with traceably determined magnetization. A resolution of the magnetic moment of the order of 10(-18) A m(2) under ambient conditions is demonstrated, which is presently limited by the tip's magnetic moment and the noise level of the instrument. The calibration scheme can be applied to practically any magnetic force microscope and tip, thus allowing a wide range of future applications, for example in nanomagnetism and biotechnology.

  12. Lithium assisted “dissolution–alloying” synthesis of nanoalloys from individual bulk metals

    DOE PAGES

    Barkholtz, Heather M.; Gallagher, James R.; Li, Tao; ...

    2016-03-27

    Here, we report new fundamental chemistry involved in the synthesis of bimetallic nanoalloys via dissolving the pure bulk transition metals in molten lithium. It is revealed at the atomic level that when two pure bulk transition metals such as Pd and Pt are placed in molten lithium (~200°C), they undergo a dissolution process in which the metal-metal bonds in pure bulk transition metals are completely ruptured, resulting in the existence of individual Pd and Pt atoms surrounded by lithium atoms, as is evident by synchrotron Xray adsorption techniques. Then, upon the conversion of metal lithium to LiOH in humid air,more » the Pd and Pt atoms undergo an alloying process, to aggregate into nanoalloys. This method was further expanded to include PdZn, which is notoriously difficult to prepare via traditional nanoalloy synthesis methods due to the easily oxidizable Zn component. The constantly reducing environment of metallic Li allowed for preparation of PdZn nanoalloys with minimal Zn oxidation via dissolution-alloying of individual bulk transition metals in molten lithium. Additionally, this lithium assisted “dissolutionalloying” method bypasses many complications intrinsic to conventional ion reductionbased nanoalloy synthesis including the necessity of ligated metal ions, the use of proper reducing agents and dispersing surfactants, and the presence of segregated phases due to different reduction potentials of the constituent metal ions.« less

  13. Lithium assisted “dissolution–alloying” synthesis of nanoalloys from individual bulk metals

    SciTech Connect

    Barkholtz, Heather M.; Gallagher, James R.; Li, Tao; Liu, Yuzi; Winans, Randall E.; Miller, Jeffrey T.; Liu, Di -Jia; Xu, Tao

    2016-03-27

    Here, we report new fundamental chemistry involved in the synthesis of bimetallic nanoalloys via dissolving the pure bulk transition metals in molten lithium. It is revealed at the atomic level that when two pure bulk transition metals such as Pd and Pt are placed in molten lithium (~200°C), they undergo a dissolution process in which the metal-metal bonds in pure bulk transition metals are completely ruptured, resulting in the existence of individual Pd and Pt atoms surrounded by lithium atoms, as is evident by synchrotron Xray adsorption techniques. Then, upon the conversion of metal lithium to LiOH in humid air, the Pd and Pt atoms undergo an alloying process, to aggregate into nanoalloys. This method was further expanded to include PdZn, which is notoriously difficult to prepare via traditional nanoalloy synthesis methods due to the easily oxidizable Zn component. The constantly reducing environment of metallic Li allowed for preparation of PdZn nanoalloys with minimal Zn oxidation via dissolution-alloying of individual bulk transition metals in molten lithium. Additionally, this lithium assisted “dissolutionalloying” method bypasses many complications intrinsic to conventional ion reductionbased nanoalloy synthesis including the necessity of ligated metal ions, the use of proper reducing agents and dispersing surfactants, and the presence of segregated phases due to different reduction potentials of the constituent metal ions.

  14. Scanning electron microscopy of individual nanoparticle bio-markers in liquid.

    PubMed

    Liv, Nalan; Lazić, Ivan; Kruit, Pieter; Hoogenboom, Jacob P

    2014-08-01

    We investigated SEM imaging of nanoparticle biomarkers suspended below a thin membrane, with the ultimate goal of integrating functional fluorescence and structural SEM measurements of samples kept at ambient or hydrated conditions. In particular, we investigated how resolving power in liquid SEM is affected by the interaction of the electron beam with the membrane. Simulations with the Geant4-based Monte Carlo scheme developed by Kieft and Bosch (2008) [1] are compared to experimental results with suspended nanoparticles. For 20 nm and 50 nm thin membranes, we found a beam broadening of 1.5 nm and 3 nm, respectively, with an excellent agreement between simulations and experiments. 15 nm Au nanoparticles and bio-functionalized core-shell quantum dots can be individually resolved in denser clusters. We demonstrated the imaging of single EGF-conjugated quantum dots docked at filopodia during cellular uptake with both fluorescence microscopy and SEM simultaneously. These results open novel opportunities for correlating live fluorescence microscopy with structural electron microscopy.

  15. The unexpected role of metal nanoparticles and nanonetworks in alloy degradation.

    SciTech Connect

    Zeng, Z.; Natesan, K.; Cai, Z.; Darling, S. B.

    2008-08-01

    Oxide scale, which is essential to protect structural alloys from high-temperature degradation such as oxidation, carburization and metal dusting, is usually considered to consist simply of oxide phases. Here, we report on a nanobeam X-ray and magnetic force microscopy investigation that reveals that the oxide scale actually consists of a mixture of oxide materials and metal nanoparticles. The metal nanoparticles self-assemble into nanonetworks, forming continuous channels for carbon transport through the oxide scales. To avoid the formation of these metallic particles in the oxide scale, alloys must develop a scale without spinel phase. We have designed a novel alloy that has been tested in a high-carbon-activity environment. Our results show that the incubation time for carbon transport through the oxide scale of the new alloy is more than an order of magnitude longer compared with commercial alloys with similar chromium content.

  16. Metallic Nanoparticle Block Copoloymer Vesicles with Enhanced Optical Properties

    PubMed Central

    Martinez-Hurtado, Juan Leonardo

    2011-01-01

    The fabrication and characterization of template silver nanoshell structures and the encapsulation of gold nanoparticles using biocompatible poly(oxyethylene)-poly(butylene) diblock co-polymer vesicles is described in this work. These vesicles have a narrow diameter size distribution around 200 nm. Silver nanoparticles (ϕ = 1–10 nm) functionalized with decanethiol were successfully entrapped in the hydrophobic membrane and non-functionalized gold nanoparticles (ϕ = 3.0–5.5 nm) were encapsulated in the vesicle core. Transmission Electron Microscopy confirms the localisation of the particles; silver functionalized nanoparticles appear to thicken the vesicle membrane as shown with TEM image analysis. The enhancement of the optical properties is confirmed using transmission spectrophotometry; the 430 nm plasmon resonance peak of the silver nanoparticles was replaced by a broader extinction spectrum to beyond 700 nm (O.D. = 0.8). For a number density of 4.8 × 1012 mL−1 the scattering cross section was calculated to be 0.92 × 10−4 μm2 with a scattering coefficient of 0.44 mm−1. The measurements indicate scattering cross section of 3.8 × 10−5 μm2, attenuation coefficient of 0.18 mm−1 and extinction efficiency equal to 1.2 × 10−3. Stable and biocompatible block co-polymer vesicles can potentially be used as plasmon-resonant optical contrast agents for biomedical applications.

  17. Preparation of metallic nanoparticles by irradiation in starch aqueous solution

    SciTech Connect

    Nemţanu, Monica R. Braşoveanu, Mirela Iacob, Nicuşor

    2014-11-24

    Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔE{sub ab} (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle h{sup o} was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.

  18. Novel mechanochemical approaches for the synthesis of surface-functionalized metal nanoparticles

    NASA Astrophysics Data System (ADS)

    McMahon, Brandon Wade

    A novel mechanochemical milling technique, homogeneous media milling (HMM) is used to generate copious nanoparticles from a metal, parent media. Through the addition of surface-active capping agents, this method removes material from inch-scale parent material, via spallation and abrasion, resulting in gram-scale quantities of nanoparticles. Based on the principal of lowering a materials surface free energy through the chemisorption of a liquid or gaseous reagent, ductile and malleable metals can now be effectively and efficiently reduced to the nano scale. Acetonitrile was discovered to be an exceptionally good reagent for producing active aluminum nanoparticles, and oleic acid could be used to subsequently functionalize the particle surface, rendering them air-stable and hydrocarbon-fuel dispersible. In the interest of generality this process was used to make iron and copper nanoparticles via a similar method. It was discovered that acetonitrile decomposes on the surface of aluminum during HMM, resulting in the liberation of methyl group and hydrogen, which was detected as H2, CH4, and C2H6 in the headspace of the milling jar. Ammonia and methylamine, in gaseous form, are also reported to be highly effective surface-active milling agents for the production of aluminum nanoparticles. Methylamine, in particular, produced active, pyrophoric nanoparticles. For both acetonitrile and methylamine evidence of a stable surface adduct can be detected post milling using X-Ray photoelectron spectroscopy.

  19. Antimicrobial activity of metal based nanoparticles against microbes associated with diseases in aquaculture.

    PubMed

    Swain, P; Nayak, S K; Sasmal, A; Behera, T; Barik, S K; Swain, S K; Mishra, S S; Sen, A K; Das, J K; Jayasankar, P

    2014-09-01

    The emergence of diseases and mortalities in aquaculture and development of antibiotics resistance in aquatic microbes, has renewed a great interest towards alternative methods of prevention and control of diseases. Nanoparticles have enormous potential in controlling human and animal pathogens and have scope of application in aquaculture. The present investigation was carried out to find out suitable nanoparticles having antimicrobial effect against aquatic microbes. Different commercial as well as laboratory synthesized metal and metal oxide nanoparticles were screened for their antimicrobial activities against a wide range of bacterial and fungal agents including certain freshwater cyanobacteria. Among different nanoparticles, synthesized copper oxide (CuO), zinc oxide (ZnO), silver (Ag) and silver doped titanium dioxide (Ag-TiO2) showed broad spectrum antibacterial activity. On the contrary, nanoparticles like Zn and ZnO showed antifungal activity against fungi like Penicillium and Mucor species. Since CuO, ZnO and Ag nanoparticles showed higher antimicrobial activity, they may be explored for aquaculture use.

  20. Metal nanoparticles in diesel exhaust derived by in-cylinder melting of detached engine fragments

    NASA Astrophysics Data System (ADS)

    Liati, Anthi; Pandurangi, Sushant Sunil; Boulouchos, Konstantinos; Schreiber, Daniel; Arroyo Rojas Dasilva, Yadira

    2015-01-01

    A wide range of environmental and health effects are linked to combustion-generated pollutants related to traffic. Nanoparticles, in particular, are a major concern for humans since they can be inhaled and have potentially toxic effects. The variability and sources of combustion-related nanoparticle pollutants remain inadequately investigated. Here we report the presence of ca. 5-100 nm large Fe3O4 nanoparticles, in form of agglomerates, in diesel exhaust. The mode of occurrence of these nanoparticles, in combination with their chemical composition matching that of steel indicate that they derive by melting of engine fragments in the combustion chamber and subsequent crystallization during cooling. To evaluate this hypothesis, we applied CFD simulations of material transport in the cylinder of a diesel engine, assuming detachment of steel fragments from various sites of the cylinder. The CFD results show that fragments ≤20 μm in size dislodged from the piston surface or from the fuel nozzle interior can be indeed transported to such hot areas of the combustion chamber where they can melt. The simulation results concur with the experimental observations and point out that metal nanoparticle formation by in-cylinder melting of engine fragments can occur in diesel engines. The present study proposes a hitherto neglected formation mechanism of metal nanoparticle emissions from internal combustion engines raising possible environmental and health concerns, especially in urban areas.

  1. HREM analysis of graphite-encapsulated metallic nanoparticles for possible medical applications.

    PubMed

    Sinclair, Robert; Li, He; Madsen, Steven; Dai, Hongjie

    2013-11-01

    High resolution electron microscopy has been applied to study the structure of metallic nanoparticles. These have sparked considerable interest as contrast agents in the field of biological imaging, including in magnetic resonance imaging (MRI) and computed tomography (CT). Here, we describe a method of synthesizing sub-10nm superparamagnetic metal and alloy nanoparticles by reduction of metallic salts. Annealing at 900°C in a methane/hydrogen environment forms a thin graphitic-carbon shell which is expected to improve stability, biocompatibility, and functionalization. Subsequent high resolution electron microscopy verifies graphitization and allows for crystallographic analysis. Most particles consist of single crystals in the phase predicted for the bulk material at the annealing temperature. Electron energy loss spectroscopy, energy dispersive X-ray spectroscopy and lattice constant measurements show large variation in composition for alloy nanoparticles from a single synthesis. The magnetization relaxation time (T2) measurements demonstrate that Fe and AuFe nanoparticles compete with commercially available iron oxide MRI contrast agents. X-ray attenuation measurements of an AuFe alloy nanoparticle solution gave a relative radiodensity of 280 Hounsfield Units, demonstrating promise as a dual-purpose contrast agent in CT and MRI. Long term stability in an atmospheric environment was also tested, with no signs of corrosion or oxidation after several years of storage.

  2. Towards cost effective metal precursor sources for future photovoltaic material synthesis: CTS nanoparticles

    NASA Astrophysics Data System (ADS)

    Lokhande, A. C.; Gurav, K. V.; Jo, Eunjin; He, Mingrui; Lokhande, C. D.; Kim, Jin Hyeok

    2016-04-01

    Copper tin sulfide (CTS) is an emerging candidate for solar application due to its favorable band gap and higher optical absorption coefficient. Kuramite-Tetragonal Cu3SnS4 (CTS) monodisperse nanoparticles are prepared by hot injection technique involving cost effective sulfate metal precursor source. A protocol for controlled crystal structure has been demonstrated by variation of cationic Cu:Sn ratio. The crystal structure, size, phase purity, atomic composition, oxidation state and optical properties of the nanoparticles are confirmed from X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman, energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and UV-visible spectroscopy, respectively. Hexagonal shaped particles within the size distribution of 7-9 nm with an optimal band gap of 1.28 eV are obtained. XPS study shows the Cu1+, Sn4+ and S2- oxidation states. The effects of influential factors such as metal precursor ratio, metal precursor source, reaction time, heating rate and solvents have been demonstrated systematically on the synthesis of CTS nanoparticles. The plausible mechanism of the formation of CTS nanoparticles has been proposed. The obtained results provide new insight for applying CTS nanoparticles in photovoltaic applications.

  3. Metal nanoparticle/ionic liquid/cellulose: new catalytically active membrane materials for hydrogenation reactions.

    PubMed

    Gelesky, Marcos A; Scheeren, Carla W; Foppa, Lucas; Pavan, Flavio A; Dias, Silvio L P; Dupont, Jairton

    2009-07-13

    Transition metal-containing membrane films of 10, 20, and 40 μm thickness were obtained by the combination of irregularly shaped nanoparticles with monomodal size distributions of 4.8 ± 1.1 nm (Rh(0)) and 3.0 ± 0.4 nm (Pt(0)) dispersed in the ionic liquid (IL) 1-n-butyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide (BMI·(NTf)(2)) with a syrup of cellulose acetate (CA) in acetone. The Rh(0) and Pt(0) metal concentration increased proportionally with increases in film thickness up to 20 μm, and then the material became metal saturated. The presence of small and stable Rh(0) or Pt(0) nanoparticles induced an augmentation in the CA/IL film surface areas. The augmentation of the IL content resulted in an increase of elasticity and decrease in tenacity and toughness, whereas the stress at break was not influenced. The introduction of IL probably causes an increase in the separation between the cellulose macromolecules that results in a higher flexibility, lower viscosity, and better formability of the cellulose material. The nanoparticle/IL/CA combinations exhibit an excellent synergistic effect that enhances the activity and durability of the catalyst for the hydrogenation of cyclohexene. The nanoparticle/IL/cellulose acetate film membranes display higher catalytic activity (up to 7353 h(-1) for the 20 μm film of CA/IL/Pt(0)) and stability than the nanoparticles dispersed only in the IL.

  4. Metal oxide and mercuric sulfide nanoparticles synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Xu, Xin

    Commercially available and laboratory-synthesized metal based nanoparticles (NPs), iron oxide (Fe2O3), copper oxide (CuO), titanium dioxide (TiO2), zinc oxide (ZnO) and mercuric sulfide (HgS) were studied by comprehensive characterizations methods. The general synthesis process was modified sol-gel method. The size and morphology of NPs could be influenced by temperature, sonication, calcination, precursor concentration, pH and types of reaction media. All types of the laboratory-synthesized or commercially available NPs were characterized by physical and chemical processes. One characteristic of NP that can lead to ambiguous toxicity test results was the effect of agglomeration of primary nano-sized particles. Laser light scattering was used to measure the aggregated and particle size distribution. Aggregation effects were apparent and often extensive in some synthesis approaches. Electron microscopy (SEM and TEM) gave the images of those laboratory-synthesized particles and aggregation. The average single particle was about 5-20 nm of ZnO; 20-40 nm of CuO; 10-20 nm of TiO2; 20-35 nm of Fe2O3; 10-15 nm of HgS, while the aggregate size was in the range of a hundred nanometers or more. These five types of NPs were obtained with spherical and oblong formation and the agglomeration of ZnO, CuO, HgS and TiO2 was random, but Fe2O3 has web-like aggregation. Other measurements performed on the particles and aggregates include bandgap energies, surface composition, surface area, hydrodynamic radius, and particle surface charge. In aqueous environment, NPs are subject to processes such as solubilization and aggregation. These processes can be controlling factors in the fate of nanomaterials in environmental settings, including bioavailability to organisms. This study has focused primarily on measurement of the solubility in aqueous media of varying composition (pH, ionic strength, and organic carbon), sedimentation and stability. The aggregate size distribution was

  5. Plasmon-Induced Water Splitting Using Metallic-Nanoparticle-Loaded Photocatalysts and Photoelectrodes.

    PubMed

    Ueno, Kosei; Oshikiri, Tomoya; Misawa, Hiroaki

    2016-01-18

    Visible- and near-infrared-light-driven water splitting, which splits water molecules to generate hydrogen and oxygen gases, is a significant subject in artificial photosynthesis with the goal of achieving a low-carbon society. In recent years, considerable attention has been paid to studies on the development of a plasmon-induced water-splitting system responding to visible light. In this review, we categorized water-splitting systems as gold-nanoparticle-loaded semiconductor photocatalytic particles system and metallic-nanoparticles-loaded semiconductor photoelectrode systems, and introduce the latest studies according to these categories. Especially, we describe the studies that optimize a material or a structural design of metallic-nanoparticle-loaded semiconductor photoelectrodes and consider a whole water-splitting system, including a cathode design. Furthermore, we discuss important points when studying plasmon-induced water splitting, and we describe a methodology that enhances plasmon-induced water-splitting efficiency.

  6. Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles.

    PubMed

    Zhang, Wei; Saliba, Michael; Stranks, Samuel D; Sun, Yao; Shi, Xian; Wiesner, Ulrich; Snaith, Henry J

    2013-09-11

    Recently, inorganic and hybrid light absorbers such as quantum dots and organometal halide perovskites have been studied and applied in fabricating thin-film photovoltaic devices because of their low-cost and potential for high efficiency. Further boosting the performance of solution processed thin-film solar cells without detrimentally increasing the complexity of the device architecture is critically important for commercialization. Here, we demonstrate photocurrent and efficiency enhancement in meso-superstructured organometal halide perovskite solar cells incorporating core-shell Au@SiO2 nanoparticles (NPs) delivering a device efficiency of up to 11.4%. We attribute the origin of enhanced photocurrent to a previously unobserved and unexpected mechanism of reduced exciton binding energy with the incorporation of the metal nanoparticles, rather than enhanced light absorption. Our findings represent a new aspect and lever for the application of metal nanoparticles in photovoltaics and could lead to facile tuning of exciton binding energies in perovskite semiconductors.

  7. Synthesis of metallic nanoparticles through X-ray radiolysis using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Akinobu; Okada, Ikuo; Fukuoka, Takao; Sakurai, Ikuya; Utsumi, Yuichi

    2016-05-01

    The potential to fabricate metallic nanoparticles directly on silicon substrates from liquid solutions is ideal for three-dimensional lithography systems, drug delivery materials, and sensing applications. Here, we report the successful synthesis of Au, Cu, and Fe nanoparticles from the corresponding liquid solutions [gold(I) trisodium disulphite, copper(II) sulfate, and potassium ferricyanide] by synchrotron (SR) X-ray irradiation. The deposition of gold nanoparticles in the gold(I) trisodium disulphite solution was performed by monochromatic X-ray exposure from synchrotron radiation. The use of ethanol as an additive enabled the nucleation and growth of Cu particles, while no Cu particles were produced in the copper sulfate solution without ethanol with polychromatic SR X-ray irradiation. Fe particles were generated by direct polychromatic SR X-ray irradiation. These results demonstrate the behavior of three-dimensional printers, enabling us to build composite material structures with metallic and plastic materials.

  8. Fabrication of novel cryomill for synthesis of high purity metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, Nirmal; Biswas, Krishanu

    2015-08-01

    The successful preparation of free standing metal nanoparticles with high purity in bulk quantity is the pre-requisite for any potential application. This is possible by using ball milling at cryogenic temperature. However, the most of ball mills available in the market do not allow preparing high purity metal nanoparticles by this route. In addition, it is not possible to carry out in situ measurements of process parameters as well as diagnostic of the process. In the present investigation, we present a detailed study on the fabrication of a cryomill, which is capable of avoiding contaminations in the product. It also provides in situ measurements and diagnostic of the low temperature milling process. Online monitoring of the milling temperature and observation of ball motion are the important aspects in the newly designed mill. The nanoparticles prepared using this fabricated mill have been found to be free standing and also free from contaminations.

  9. Solid-State Combustion of Metallic Nanoparticles: New Possibilities for an Alternative Energy Carrier

    SciTech Connect

    Sumpter, Bobby G; Beach, David B; Labinov, Solomon Davidovich; Richards, Roger K; Rondinone, Adam Justin

    2007-01-01

    As an alternative to conventional methods of conveying and delivering energy in mobile applications or to remote locations, we have examined the combustion of nanostructured metal particles assembled into metal clusters. Clusters containing iron nanoparticles (~50 nm in diameter) were found to combust entirely in the solid state due to the high surface-to-volume ratio typical of nanoparticles. Optical temperature measurements indicated that combustion was rapid (~500 msec), and occurred at relatively low peak combustion temperatures (1000-1200 K). Combustion produces a mixture of Fe(III) oxides. Xray diffraction and gravimetric analysis indicated that combustion was nearly complete (93-95% oxidation). Oxide nanoparticles could be readily reduced at temperatures between 673 and 773 K using hydrogen at 1 atmosphere pressure, and then passivated by the growth of a thin oxide layer. The nanostructuring of the particles is retained throughout the combustion-regeneration cycle. Modeling of the combustion process is in good agreement with observed combustion characteristics.

  10. Spatio-temporal Modeling of Lasing Action in Core–Shell Metallic Nanoparticles

    PubMed Central

    2016-01-01

    Nanoscale laser sources based on single metallic nanoparticles (spasers) have attracted significant interest for their fundamental implications and technological potential. Here we theoretically investigate the spatio-temporal dynamics of lasing action in core–shell metallic nanoparticles that include optically pumped four-level gain media. By using detailed semiclassical simulations based on a time-domain generalization of the finite-element method, we study the evolution of the lasing dynamics when going from a spherical case to an elongated nanorod configuration. Our calculations show that there exists an optimal nanoparticle elongation that exhibits significantly improved lasing threshold and slope efficiency over those obtained for its spherical counterpart. These results are accounted for in terms of a coupled-mode theory analysis of the variation with elongation of the light confinement properties of localized surface plasmons. This work could be of importance for further development of nanoscale light sources based on localized surface plasmon resonances. PMID:27785457

  11. Laser interactions with embedded Ca metal nanoparticles in single crystal CaF{sub 2}

    SciTech Connect

    Cramer, L.P.; Schubert, B.E.; Petite, P.S.; Langford, S.C.; Dickinson, J.T.

    2005-04-01

    Single crystal calcium fluoride (CaF{sub 2}) is an important material for vacuum-ultraviolet optics. Nevertheless, prolonged exposure to energetic radiation can color the material by producing calcium metal nanoparticles. We compare the effectiveness of laser conditioning treatments at wavelengths ranging from the near infrared to the deep ultraviolet in removing this coloration. Treatments at 157, 532, and 1064 nm can significantly reduce the visible coloration due to nanoparticles. In contrast, irradiation at 248 nm has little effect at fluences below the damage threshold for the material employed in this work. We present evidence that the effect of laser irradiation on coloration is principally thermal and is largely confined to the first 50 ns after each laser pulse. We attribute the wavelength dependence of the bleaching process to the wavelength dependence associated with Mie absorption by metal nanoparticles. The consequences of these observations with regard to laser conditioning processes in bulk optical materials are discussed.

  12. Carrier transfer from InAs quantum dots to ErAs metal nanoparticles

    SciTech Connect

    Haughn, C. R.; Chen, E. Y.; Zide, J. M. O.; Doty, M. F.; Steenbergen, E. H.; Bissell, L. J.; Eyink, K. G.

    2014-09-08

    Erbium arsenide (ErAs) is a semi-metallic material that self-assembles into nanoparticles when grown in GaAs via molecular beam epitaxy. We use steady-state and time-resolved photoluminescence to examine the mechanism of carrier transfer between indium arsenide (InAs) quantum dots and ErAs nanoparticles in a GaAs host. We probe the electronic structure of the ErAs metal nanoparticles (MNPs) and the optoelectronic properties of the nanocomposite and show that the carrier transfer rates are independent of pump intensity. This result suggests that the ErAs MNPs have a continuous density of states and effectively act as traps. The absence of a temperature dependence tells us that carrier transfer from the InAs quantum dots to ErAs MNPs is not phonon assisted. We show that the measured photoluminescence decay rates are consistent with a carrier tunneling model.

  13. Scalable synthesis and functionalization of cobalt nanoparticles for versatile magnetic separation and metal adsorption

    NASA Astrophysics Data System (ADS)

    Mattila, Pipsa; Heinonen, Hanna; Loimula, Kalle; Forsman, Johanna; Johansson, Leena-Sisko; Tapper, Unto; Mahlberg, Riitta; Hentze, Hans-Peter; Auvinen, Ari; Jokiniemi, Jorma; Milani, Roberto

    2014-09-01

    Magnetic cobalt nanoparticles coated with a thin carbon shell were produced by means of a scalable method based on hydrogen reduction synthesis. The presence of oxidized groups on the surface of the carbon shell enabled the reaction with alkoxysilanes bearing amino and thiol reactive functions under mild conditions, and therefore the formation of a thin functional silane layer which holds the potential for further modification in consideration of specific applications, e.g., in the separation and catalysis fields. The magnetic nanoparticles bearing surface thiol groups were also used in metal adsorption tests. These nanoparticles could efficiently adsorb not only gold from a chloride salt aqueous solution, but also several other metals when incubated in a thiocyanate-leached solution obtained from crushed printed circuit boards. The combination of a scalable production method with a simple and versatile surface modification strategy opens up a wide array of potential industrial applications in the fields of separation, sensing, and biomedical devices.

  14. Fabrication of ordered metallic and magnetic heterostructured DNA-Nanoparticle hybrids.

    PubMed

    Kinsella, Joseph M; Ivanisevic, Albena

    2008-06-01

    Here we provide a method based on enzymatically catalyzed reactions to cleave and ligate DNA molecules coated with nanoparticles to fabricate multi-component structures. This is done by simultaneously digesting two solutions of nanoparticle coated DNA, one with iron oxide particles the other gold particles, which yields short DNA fragments with complementary single stranded overhangs. When added together and re-attached using ligase enzymes multi-component nanoparticle coated structures are formed providing a novel method to fabricate complicated nanoparticle arrangements from the bottom up. We evaluated the fabrication by characterizing the samples with gel electrophoresis and magnetic force microscopy (MFM). The electrophoresis provides proof that the coated DNA molecules were digested with restriction enzymes and ligated by the T4 ligase enzymes. MFM experiments allow us to visualize the multi-component strands and analyze the magnetic versus metallic segments.

  15. FDTD/TDSE study of surface-enhanced infrared absorption by metal nanoparticles.

    SciTech Connect

    Chang, S.-H.; Schatz, G. C.; Gray, S. K.; Chemistry; Northwestern Univ.; National Cheng-Kung Univ.

    2006-01-01

    We study surface-enhanced infrared absorption, including multiphoton processes, due to the excitation of surface plasmons on metal nanoparticles. The time-dependent Schroedinger equation and finite-difference time-domain method are self-consistently coupled to treat the problem.

  16. Conventional and microwave hydrothermal synthesis of monodispersed metal oxide nanoparticles at liquid-liquid interface

    EPA Science Inventory

    Monodispersed nanoparticles of metal oxide including ferrites MFe2O4 (M=, Ni, Co, Mn) and γ-Fe2O3, Ta2O5 etc. have been synthesized using a water-toluene interface under both conventional and microwave hydrothermal conditions. This general synthesis procedure uses readily availab...

  17. Evolution of the Surface Science of Catalysis from Single Crystals to Metal Nanoparticles under Pressure

    SciTech Connect

    Somorjai, Gabor A.; Park, Jeong Y.

    2008-03-06

    Vacuum studies of metal single crystal surfaces using electron and molecular beam scattering revealed that the surface atoms relocate when the surface is clean (reconstruction) and when it is covered by adsorbates (adsorbate induced restructuring). It was also discovered that atomic steps and other low coordination surface sites are active for breaking chemical bonds (H-H, O=O, C-H, C=O and C-C) with high reaction probability. Investigations at high reactant pressures using sum frequency generation (SFG)--vibrational spectroscopy and high pressure scanning tunneling microscopy (HPSTM) revealed bond breaking at low reaction probability sites on the adsorbate-covered metal surface, and the need for adsorbate mobility for continued turnover. Since most catalysts (heterogeneous, enzyme and homogeneous) are nanoparticles, colloid synthesis methods were developed to produce monodispersed metal nanoparticles in the 1-10 nm range and controlled shapes to use them as new model catalyst systems in two-dimensional thin film form or deposited in mesoporous three-dimensional oxides. Studies of reaction selectivity in multipath reactions (hydrogenation of benzene, cyclohexene and crotonaldehyde) showed that reaction selectivity depends on both nanoparticle size and shape. The oxide-metal nanoparticle interface was found to be an important catalytic site because of the hot electron flow induced by exothermic reactions like carbon monoxide oxidation.

  18. Nonpeturbative cavity-QED between a single quantum dot and a metal nanoparticle

    NASA Astrophysics Data System (ADS)

    Van Vlack, C.; Trøst Kristensen, Philip; Hughes, S.

    2012-04-01

    We investigate the quantum optical properties of an excited single photon emitter (quantum dot) near the surface of a finite-size metal nanoparticle using a photon Green function technique that rigorously quantizes the electromagnetic fields. We obtain Purcell factors of up to 5×104 due to higher order plasmon modes for both a 7-nm and 20-nm radius metal nanoparticle, and show the failure of employing a dipole approximation in regimes where useful quantum optical interactions occur. We also calculate enormous photonic Lamb shifts of up to 40 meV giving a normalized frequency shift up to |Δω|max/ωd = 1.28×10-2. Considering a small quantum-dot, positioned 2-nm from the metal nanoparticle surface, we demonstrate that the strong coupling regime should be observable in the far-field spontaneous emission spectrum, even at room temperature and despite the non-propagating nature of the higher order modes. The vacuum Rabi doublet becomes a rich spectral quartet with two of the four peaks anticrossing, and surviving in spite of significant non-radiative decays. We also discuss the role of optical quenching and highlight the importance of accounting for photon transport from the dot to the detector. Our formalism is quite general and can easily be extended to include interactions between multiple quantum dots and multiple metal nanoparticles.

  19. Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field

    NASA Astrophysics Data System (ADS)

    Kosionis, Spyridon G.; Terzis, Andreas F.; Sadeghi, Seyed M.; Paspalakis, Emmanuel

    2013-01-01

    We study optical effects in a hybrid system composed of a semiconductor quantum dot and a spherical metal nanoparticle that interacts with a weak probe electromagnetic field. We use modified nonlinear density matrix equations for the description of the optical properties of the system and obtain a closed-form expression for the linear susceptibilities of the quantum dot, the metal nanoparticle, and the total system. We then investigate the dependence of the susceptibility on the interparticle distance as well as on the material parameters of the hybrid system. We find that the susceptibility of the quantum dot exhibits optical transparency for specific frequencies. In addition, we show that there is a range of frequencies of the applied field for which the susceptibility of the semiconductor quantum dot leads to gain. This suggests that in such a hybrid system quantum coherence can reverse the course of energy transfer, allowing flow of energy from the metallic nanoparticle to the quantum dot. We also explore the susceptibility of the metal nanoparticle and show that it is strongly influenced by the presence of the quantum dot.

  20. Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field.

    PubMed

    Kosionis, Spyridon G; Terzis, Andreas F; Sadeghi, Seyed M; Paspalakis, Emmanuel

    2013-01-30

    We study optical effects in a hybrid system composed of a semiconductor quantum dot and a spherical metal nanoparticle that interacts with a weak probe electromagnetic field. We use modified nonlinear density matrix equations for the description of the optical properties of the system and obtain a closed-form expression for the linear susceptibilities of the quantum dot, the metal nanoparticle, and the total system. We then investigate the dependence of the susceptibility on the interparticle distance as well as on the material parameters of the hybrid system. We find that the susceptibility of the quantum dot exhibits optical transparency for specific frequencies. In addition, we show that there is a range of frequencies of the applied field for which the susceptibility of the semiconductor quantum dot leads to gain. This suggests that in such a hybrid system quantum coherence can reverse the course of energy transfer, allowing flow of energy from the metallic nanoparticle to the quantum dot. We also explore the susceptibility of the metal nanoparticle and show that it is strongly influenced by the presence of the quantum dot.

  1. Evolution of the surface science of catalysis from single crystals to metal nanoparticles under pressure

    NASA Astrophysics Data System (ADS)

    Somorjai, Gabor A.; Park, Jeong Y.

    2008-05-01

    Vacuum studies of metal single crystal surfaces using electron and molecular beam scattering revealed that the surface atoms relocate when the surface is clean (reconstruction) and when it is covered by adsorbates (adsorbate-induced restructuring). It was also discovered that atomic steps and other low coordination surface sites are active for breaking chemical bonds (H-H, O O, C-H, C O, and C-C) with high reaction probability. Investigations at high reactant pressures using sum frequency generation—vibrational spectroscopy and high pressure scanning tunneling microscopy revealed bond breaking at low reaction probability sites on the adsorbate-covered metal surface and the need for adsorbate mobility for continued turnover. Since most catalysts (heterogeneous, enzyme, and homogeneous) are nanoparticles, colloid synthesis methods were developed to produce monodispersed metal nanoparticles in the 1-10nm range and controlled shapes to use them as new model catalyst systems in two-dimensional monolayer film or deposited in mesoporous three-dimensional oxides. Studies of reaction selectivity in multipath reactions (hydrogenation of benzene, cyclohexene, and crotonaldehyde) showed that the reaction selectivity depends on both nanoparticle size and shape. The oxide-metal nanoparticle interface was found to be an important catalytic site that is associated with the hot electron flow induced by exothermic reactions such as carbon monoxide oxidation.

  2. Crystallography Without Crystals: Determining the Structure of Individual Biological Molecules and Nanoparticles

    ScienceCinema

    Ourmazd, Abbas [University of Wisconsin, Milwaukee, Wisconsin, USA

    2016-07-12

    Ever shattered a valuable vase into 10 to the 6th power pieces and tried to reassemble it under a light providing a mean photon count of 10 minus 2 per detector pixel with shot noise? If you can do that, you can do single-molecule crystallography. This talk will outline how this can be done in principle. In more technical terms, the talk will describe how the combination of scattering physics and Bayesian algorithms can be used to reconstruct the 3-D diffracted intensity distribution from a collection of individual 2-D diffiraction patterns down to a mean photon count of 10 minus 2 per pixel, the signal level anticipated from the Linac Coherent Light Source, and hence determine the structure of individual macromolecules and nanoparticles.

  3. Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy.

    PubMed

    Stiegler, Johannes M; Abate, Yohannes; Cvitkovic, Antonija; Romanyuk, Yaroslav E; Huber, Andreas J; Leone, Stephen R; Hillenbrand, Rainer

    2011-08-23

    Infrared absorption spectroscopy is a powerful and widely used tool for analyzing the chemical composition and structure of materials. Because of the diffraction limit, however, it cannot be applied for studying individual nanostructures. Here we demonstrate that the phase contrast in substrate-enhanced scattering-type scanning near-field optical microscopy (s-SNOM) provides a map of the infrared absorption spectrum of individual nanoparticles with nanometer-scale spatial resolution. We succeeded in the chemical identification of silicon nitride nanoislands with heights well below 10 nm, by infrared near-field fingerprint spectroscopy of the Si-N stretching bond. Employing a novel theoretical model, we show that the near-field phase spectra of small particles correlate well with their far-field absorption spectra. On the other hand, the spectral near-field contrast does not scale with the volume of the particles. We find a nearly linear scaling law, which we can attribute to the near-field coupling between the near-field probe and the substrate. Our results provide fundamental insights into the spectral near-field contrast of nanoparticles and clearly demonstrate the capability of s-SNOM for nanoscale chemical mapping based on local infrared absorption.

  4. Constructing metal nanoparticle multilayers with polyphenylene dendrimer/gold nanoparticles via "click" chemistry.

    PubMed

    Li, Huiqiang; Li, Zhanxian; Wu, Linzhi; Zhang, Yuna; Yu, Mingming; Wei, Liuhe

    2013-03-26

    Multilayer films composed of azide-functional polymer and polyphenylene dendrimer-stabilized gold nanoparticles with alkynes in their peripheries have been fabricated using a layer-by-layer (LBL) approach via "click" chemistry. This method permits facile covalent linking of the polymer/nanoparticle interlayers in the mixture of DMF and water, which provides a general and powerful technique for preparing uniform nanoparticle (NP) thin films. The deposition process is linearly related to the number of bilayers as monitored by UV-vis spectroscopy. The multilayer structure and morphology have been characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and contact angle.

  5. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells

    PubMed Central

    2011-01-01

    Background Some manufactured nanoparticles are metal-based and have a wide variety of applications in electronic, engineering and medicine. Until now, many studies have described the potential toxicity of NPs on pulmonary target, while little attention has been paid to kidney which is considered to be a secondary target organ. The objective of this study, on human renal culture cells, was to assess the toxicity profile of metallic nanoparticles (TiO2, ZnO and CdS) usable in industrial production. Comparative studies were conducted, to identify whether particle properties impact cytotoxicity by altering the intracellular oxidative status. Results Nanoparticles were first characterized by size, surface charge, dispersion and solubility. Cytotoxicity of NPs was then evaluated in IP15 (glomerular mesangial) and HK-2 (epithelial proximal) cell lines. ZnO and CdS NPs significantly increased the cell mortality, in a dose-dependent manner. Cytotoxic effects were correlated with the physicochemical properties of NPs tested and the cell type used. Analysis of reactive oxygen species and intracellular levels of reduced and oxidized glutathione revealed that particles induced stress according to their composition, size and solubility. Protein involved in oxidative stress such as NF-κb was activated with ZnO and CdS nanoparticles. Such effects were not observed with TiO2 nanoparticles. Conclusion On glomerular and tubular human renal cells, ZnO and CdS nanoparticles exerted cytotoxic effects that were correlated with metal composition, particle scale and metal solubility. ROS production and oxidative stress induction clearly indicated their nephrotoxic potential. PMID:21371295

  6. QM/MD simulation of SWNT nucleation on transition-metal carbide nanoparticles.

    PubMed

    Page, Alister J; Yamane, Honami; Ohta, Yasuhito; Irle, Stephan; Morokuma, Keiji

    2010-11-10

    The mechanism and kinetics of single-walled carbon nanotube (SWNT) nucleation from Fe- and Ni-carbide nanoparticle precursors have been investigated using quantum chemical molecular dynamics (QM/MD) methods. The dependence of the nucleation mechanism and its kinetics on environmental factors, including temperature and metal-carbide carbon concentration, has also been elucidated. It was observed that SWNT nucleation occurred via three distinct stages, viz. the precipitation of the carbon from the metal-carbide, the formation of a "surface/subsurface" carbide intermediate species, and finally the formation of a nascent sp(2)-hybidrized carbon structure supported by the metal catalyst. The SWNT cap nucleation mechanism itself was unaffected by carbon concentration and/or temperature. However, the kinetics of SWNT nucleation exhibited distinct dependences on these same factors. In particular, SWNT nucleation from Ni(x)C(y) nanoparticles proceeded more favorably compared to nucleation from Fe(x)C(y) nanoparticles. Although SWNT nucleation from Fe(x)C(y) and Ni(x)C(y) nanoparticle precursors occurred via an identical route, the ultimate outcomes of these processes also differed substantially. Explicitly, the Ni(x)-supported sp(2)-hybridized carbon structures tended to encapsulate the catalyst particle itself, whereas the Fe(x)-supported structures tended to form isolated SWNT cap structures on the catalyst surface. These differences in SWNT nucleation kinetics were attributed directly to the relative strengths of the metal-carbon interaction, which also dictates the precipitation of carbon from the nanoparticle bulk and the longevity of the resultant surface/subsurface carbide species. The stability of the surface/subsurface carbide was also influenced by the phase of the nanoparticle itself. The observations agree well with experimentally available data for SWNT growth on iron and nickel catalyst particles.

  7. Chemical durability of metallic copper nanoparticles in silica thin films synthesized by sol gel

    NASA Astrophysics Data System (ADS)

    Akhavan, O.

    2008-12-01

    In this study, chemical durability of metallic copper nanoparticles dispersed in sol-gel silica thin films was investigated by exposing the films to air after a reduction process. At first, heat treatment in air for 1 h produced silica films containing crystalline cupric oxide nanoparticles agglomerated on the film surface. Subsequently, reduction of the oxidized films in a reducing environment of N2-H2 for another 1 h at temperatures of 400, 500 and 600 °C resulted in the formation of crystalline metallic Cu nanoparticles diffused in the silica matrix. The time evolution of the surface plasmon resonance absorption peak of the reduced Cu nanoparticles was studied after the reduction processes at different temperatures. By fitting the optical absorption spectra with the Mie model, the conversion of Cu into CuO in the silica films exposed to air was examined as a function of the elapsing time. It was found that increasing the reducing temperature resulted in greater diffusion of the reduced Cu nanoparticles into the substrate, and also, in a decrease in the water content of the silica film. Diffusion of the nanoparticles decreased the number of particles exposed to air, and further, the decrease in the water content densified the silica film surrounding the diffused nanoparticles. While after the reduction process of the films at 400 °C, the presence of water in the film and considerable copper on the surface resulted in conversion of 94% of the reduced Cu into CuO in just 24 h, by reducing the film at the high temperature of 600 °C, no water and small copper concentration could be detected on the silica film so that only 8% of the Cu nanoparticles converted to CuO in as much as 12 months.

  8. Metal deposition by electroless plating on polydopamine functionalized micro- and nanoparticles.

    PubMed

    Mondin, Giovanni; Wisser, Florian M; Leifert, Annika; Mohamed-Noriega, Nasser; Grothe, Julia; Dörfler, Susanne; Kaskel, Stefan

    2013-12-01

    A novel approach for the fabrication of metal coated micro- and nanoparticles by functionalization with a thin polydopamine layer followed by electroless plating is reported. The particles are initially coated with polydopamine via self-polymerization. The resulting polydopamine coated particles have a surface rich in catechols and amino groups, resulting in a high affinity toward metal ions. Thus, they provide an effective platform for selective electroless metal deposition without further activation and sensitization steps. The combination of a polydopamine-based functionalization with electroless plating ensures a simple, scalable, and cost-effective metal coating strategy. Silver-plated tungsten carbide microparticles, copper-plated tungsten carbide microparticles, and copper-plated alumina nanoparticles were successfully fabricated, showing also the high versatility of the method, since the polymerization of dopamine leads to the formation of an adherent polydopamine layer on the surface of particles of any material and size. The metal coated particles produced with this process are particularly well suited for the production of metal matrix composites, since the metal coating increases the wettability of the particles by the metal, promoting their integration within the matrix. Such composite materials are used in a variety of applications including electrical contacts, components for the automotive industries, magnets, and electromagnetic interference shielding.

  9. Water-gas-shift reaction on metal nanoparticles and surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Rodriguez, José A.

    2007-04-01

    Density functional theory was employed to investigate the water-gas-shift reaction (WGS, CO +H2O→H2+CO2) on Au29 and Cu29 nanoparticles seen with scanning tunneling microscopy in model Au /CeO2(111) and Cu /CeO2(111) catalysts. Au(100) and Cu(100) surfaces were also included for comparison. According to the calculations of the authors, the WGS on these systems operate via either redox or associative carboxyl mechanism, while the rate-limiting step is the same, water dissociation. The WGS activity decreases in a sequence: Cu29>Cu(100)>Au29>Au(100), which agrees well with the experimental observations. Both nanoparticles are more active than their parent bulk surfaces. The nanoscale promotion on the WGS activity is associated with the low-coordinated corner and the edge sites as well as the fluxionality of the particles, which makes the nanoparticles more active than the flat surfaces for breaking the O-H bond. In addition, the role of the oxide support during the WGS was addressed by comparing the activity seen in the calculations of the authors for the Au29 and Cu29 nanoparticles and activity reported for X /CeO2(111) and X /ZnO(000ı¯)(X =Cu or Au) surfaces.

  10. Metal nanoparticles and IR laser applications in medicine for biotissue ablation and welding

    NASA Astrophysics Data System (ADS)

    Lalayan, A. A.; Israelyan, S. S.

    2016-05-01

    We report the possibility of laser welding and ablation of biotissue by using metal and hybrid metal nanoparticles (NPs) and infrared laser irradiation spectrally located far from plasmon resonances. A nanosecond YAG:Nd laser of wavelength 1064 nm has been used for synthesis of metal NPs. The Ag, Au, Cu, Ti and Ni, as well as Au-Ag and Au-Cu hybrid metal colloidal NPs were formed in a liquid medium. The diagnostic technique of second harmonic generation (SHG) has been applied to determine the biotissue ablation area after IR laser irradiation. The effectiveness of biotissue ablation was 4-5 times larger in the case of a tissue sample colored with metal NPs than for an uncolored sample. IR laser welding has been demonstrated for deep-located biotissue layers colored by metal NPs.

  11. Biosynthesis of nanoparticles of metals and metalloids by basidiomycetes. Preparation of gold nanoparticles by using purified fungal phenol oxidases.

    PubMed

    Vetchinkina, Elena P; Loshchinina, Ekaterina A; Vodolazov, Ilya R; Kursky, Viktor F; Dykman, Lev A; Nikitina, Valentina E

    2017-02-01

    The work shows the ability of cultured Basidiomycetes of different taxonomic groups-Lentinus edodes, Pleurotus ostreatus, Ganoderma lucidum, and Grifola frondosa-to recover gold, silver, selenium, and silicon, to elemental state with nanoparticles formation. It examines the effect of these metal and metalloid compounds on the parameters of growth and accumulation of biomass; the optimal cultivation conditions and concentrations of the studied ion-containing compounds for recovery of nanoparticles have been identified. Using the techniques of transmission electron microscopy, dynamic light scattering, X-ray fluorescence and X-ray phase analysis, the degrees of oxidation of the bioreduced elements, the ζ-potential of colloidal solutions uniformity, size, shape, and location of the nanoparticles in the culture fluid, as well as on the surface and the inside of filamentous hyphae have been determined. The study has found the part played by homogeneous chromatographically pure fungal phenol-oxidizing enzymes (laccases, tyrosinases, and Mn-peroxidases) in the recovery mechanism with formation of electrostatically stabilized colloidal solutions. A hypothetical mechanism of gold(III) reduction from HAuCl4 to gold(0) by phenol oxidases with gold nanoparticles formation of different shapes and sizes has been introduced.

  12. Enhancing the Anti-Enterococci Activity of Different Antibiotics by Combining With Metal Oxide Nanoparticles

    PubMed Central

    Iram, Saira; Akbar Khan, Jawad; Aman, Nargis; Nadhman, Akhtar; Zulfiqar, Zikra; Arfat Yameen, Muhammad

    2016-01-01

    Background Enterococci have emerged as more virulent and multidrug-resistant in community and hospital settings. The emergence of vancomycin resistant enterococci (VRE) in hospitals has posed a serious threat to public health. The widespread use of antibiotics to treat VRE infections has resulted in the development of resistant forms of these organisms. Objectives Present study deals with the efficacy of antibiotic-nanoparticle combination against clinical isolates of VRE. This study has effectively evaluated the anti-enterococcal activity of metallic nanoparticles and their combination with antibiotics with the aim to search for new biocidal combinations. Materials and Methods Initially, the isolates were identified by various biochemical tests and also by PCR, targeting ddl, vanA and vanB genes. Antibiotic susceptibility testing was carried out by disc diffusion method. Minimum inhibitory concentration (MIC) of both antibiotics and metal nanoparticles against VRE was done using broth dilution method. On the basis of MICs, a combination of both antibiotics and nanoparticles was used by physical mixing of antibiotics and different concentrations of nanoparticles. Results The MIC of metal nanoparticles were found in the range of 0.31 - 30 mM. The combination of both antibiotics and nanoparticles has effectively reduced the MICs of ciprofloxacin from 16 - 256 μg/mL to 2 - 16 μg/mL, erythromycin 1024 - 2048 μg/mL to 128 - 512 μg/mL, methicillin 32 - 256 μg/mL to 8 - 64 μg/mL and vancomycin 2 - 512 μg/mL to 0.5 - 64 μg/mL. Conclusions Among the nanoparticles, ZnO was found as a potent metallic nanoparticle which effectively reduced the MIC upon combination with the antibiotics. The combination exhibited enhanced bactericidal activity against multidrug resistant clinical strains of VRE with dose dependency. Further extensive study on this aspect can prove their beneficial clinical use against resistant pathogens to combat increasing resistance to antibiotics

  13. Photoreactive surfactants: a facile and clean route to oxide and metal nanoparticles in reverse micelles.

    PubMed

    de Oliveira, Rodrigo J; Brown, Paul; Correia, Gemima B; Rogers, Sarah E; Heenan, Richard; Grillo, Isabelle; Galembeck, André; Eastoe, Julian

    2011-08-02

    A new class of photoreactive surfactants (PRSs) is presented here, consisting of amphiphiles that can also act as reagents in photochemical reactions. An example PRS is cobalt 2-ethylhexanoate (Co(EH)(2)), which forms reverse micelles (RMs) in a hydrocarbon solvent, as well as mixed reversed micelles with the standard surfactant Aerosol-OT (AOT). Small-angle neutron scattering (SANS) data show that mixed AOT/PRS RMs have a spherical structure and size similar to that of pure AOT micelles. Excitation of the ligand-to-metal charge transfer (LMCT) band in the PRSs promotes electron transfer from PRS to associated metal counterions, leading to the generation of metal and metal-oxide nanoparticles inside the RMs. This work presents proof of concept for employing PRSs as precursors to obtain nearly monodisperse inorganic nanoparticles: here both Co(3)O(4) and Bi nanoparticles have been synthesized at high metal concentration (10(-2) M) by simply irradiating the RMs. These results point toward a new approach of photoreactive self-assembly, which represents a clean and straightforward route to the generation of nanomaterials.

  14. Manufacturing carbon nanofiber electrodes with embedded metallic nanoparticles using block copolymers templates

    NASA Astrophysics Data System (ADS)

    Ghazinejad, Maziar; Holmberg, Sunshine; Madou, Marc

    2016-09-01

    Owing to its superb thermal and electrical attributes, as well as electrochemical stability, carbon is emerging as an attractive material for fabrication of many bioelectrochemical devices such as biosensors and biofuel cells. However, carbon's inert nature makes it difficult to functionalize with biocatalysts; often requiring harsh chemical treatment, such as nitric acid oxidation, to attach reactive amines and carboxylic acids to its surface. Recent studies, however, points toward a self-assembly approach for fabricating well organized layers of carbon loaded with arrays of metallic nanoparticles patterned by block-copolymers (BCP) templates. Herein, we demonstrate an effective method for developing carbon nanofibers meshes embedded with metal nanoparticles, by incorporating a BCP self-assembly approach into our C-MEMS fabrication technique. The main phase of this hybrid method includes electrospinning metal salt-loaded BCP into nanofiber meshes, and subsequently reducing the metal salts into metal nanoparticles prior to pyrolysis. This cost-effective process will pave the way for fabricating scalable advanced 3-D carbon electrodes that can be applied to biosensors and biofuel cells devices.

  15. Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: hints from nano-QSAR studies.

    PubMed

    Gajewicz, Agnieszka; Schaeublin, Nicole; Rasulev, Bakhtiyor; Hussain, Saber; Leszczynska, Danuta; Puzyn, Tomasz; Leszczynski, Jerzy

    2015-05-01

    The production of nanomaterials increases every year exponentially and therefore the probability these novel materials that they could cause adverse outcomes for human health and the environment also expands rapidly. We proposed two types of mechanisms of toxic action that are collectively applied in a nano-QSAR model, which provides governance over the toxicity of metal oxide nanoparticles to the human keratinocyte cell line (HaCaT). The combined experimental-theoretical studies allowed the development of an interpretative nano-QSAR model describing the toxicity of 18 nano-metal oxides to the HaCaT cell line, which is a common in vitro model for keratinocyte response during toxic dermal exposure. The comparison of the toxicity of metal oxide nanoparticles to bacteria Escherichia coli (prokaryotic system) and a human keratinocyte cell line (eukaryotic system), resulted in the hypothesis that different modes of toxic action occur between prokaryotic and eukaryotic systems.

  16. Surface functionalization by gold nanoparticles and its prospects for application in conductometric metal oxide gas sensors

    NASA Astrophysics Data System (ADS)

    Korotcenkov, G.; Brinzari, V.; Cho, B. K.

    2017-03-01

    Approaches to surface functionalizing by gold nanoparticles of metal oxides aimed for gas sensors applications are discussed in this paper. It is demonstrated that surface modification by gold nanoparticles is accompanied by improvement of sensor performance. However, analysis of obtained results has shown that the achievement of strong improvement of gas sensor parameters is not a trivial task. For its reduction, it is necessary to ensure several specific conditions related to the size and density of gold clusters on the surface of metal oxide crystallites, the state of gold in the cluster, and to the properties of the metal oxide support used. It is also demonstrated that additional studies are required before conductometric gas sensors modified by gold nanoclusters will appear in gas-sensor market.

  17. Noble-metal Ag nanoparticle chains: annealing Ag/Bi superlattice nanowires in vacuum

    NASA Astrophysics Data System (ADS)

    Xu, Shao Hui; Fei, Guang Tao; You, Qiao; Gao, Xu Dong; Huo, Peng Cheng; De Zhang, Li

    2016-09-01

    One-dimensional noble-metal Ag nanoparticle chains have been prepared by electrodepositing Ag/Bi superlattice nanowires in a porous anodic alumina oxide (AAO) template and following an annealing process in vacuum. It is found that Bi, as a sacrificial metal, can be removed completely after annealing at 450 °C with a vacuum degree of 10-5 Torr. The regulation of particle size, shape and interparticle spacing of Ag NP chains has been realized by adjusting the segment length of the Ag/Bi superlattice nanowires and the annealing condition. With an extension of the annealing time, it is observed that Ag particles display the transform trend from ellipsoid to sphere. Our findings could inspire further investigation on the design and fabrication of metal nanoparticle chains.

  18. Noble-metal Ag nanoparticle chains: annealing Ag/Bi superlattice nanowires in vacuum.

    PubMed

    Xu, Shao Hui; Fei, Guang Tao; You, Qiao; Gao, Xu Dong; Huo, Peng Cheng; De Zhang, Li

    2016-09-16

    One-dimensional noble-metal Ag nanoparticle chains have been prepared by electrodepositing Ag/Bi superlattice nanowires in a porous anodic alumina oxide (AAO) template and following an annealing process in vacuum. It is found that Bi, as a sacrificial metal, can be removed completely after annealing at 450 °C with a vacuum degree of 10(-5) Torr. The regulation of particle size, shape and interparticle spacing of Ag NP chains has been realized by adjusting the segment length of the Ag/Bi superlattice nanowires and the annealing condition. With an extension of the annealing time, it is observed that Ag particles display the transform trend from ellipsoid to sphere. Our findings could inspire further investigation on the design and fabrication of metal nanoparticle chains.

  19. Comparison of characteristics of selected metallic and metal oxide nanoparticles produced by picosecond laser ablation at 532 and 1064 nm wavelengths

    NASA Astrophysics Data System (ADS)

    Hamad, Abubaker; Li, Lin; Liu, Zhu

    2016-10-01

    Picosecond laser generation of nanoparticles was only recently reported. The effect of laser wavelength in picosecond laser generation of nanoparticles is not yet fully understood. This investigation reports the new findings comparing the characteristics of Au, Ag, Ag-TiO2, TiO2, ZnO and iron oxide nanoparticles generated by picosecond laser ablation in deionised water at 532 and 1064 nm laser wavelengths. The laser ablation was carried out at a fixed pulse width of 10 ps, a repetition rate of 400 kHz and a scan speed of 250 mm/s. The nanoparticles were characterised by UV-Vis optical spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD). The work shows that there is no noticeable difference in the size of the metal oxide nanoparticles produced at 532 and 1064 nm, especially for the TiO2 and ZnO nanoparticles; however, a considerable size difference can be seen for metallic (e.g. Au) and metallic compound (e.g. Ag-TiO2) nanoparticles at the two wavelengths. It demonstrates that noble metals are more profoundly affected by laser wavelengths. The reasons behind these results are discussed. In addition, the work shows that there are different crystalline structures of the TiO2 nanoparticles at 1064 and 532 nm wavelengths.

  20. Nanoparticle-based flow virometry for the analysis of individual virions

    PubMed Central

    Arakelyan, Anush; Fitzgerald, Wendy; Margolis, Leonid; Grivel, Jean-Charles

    2013-01-01

    While flow cytometry has been used to analyze the antigenic composition of individual cells, the antigenic makeup of viral particles is still characterized predominantly in bulk. Here, we describe a technology, “flow virometry,” that can be used for antigen detection on individual virions. The technology is based on binding magnetic nanoparticles to virions, staining the virions with monoclonal antibodies, separating the formed complexes with magnetic columns, and characterizing them with flow cytometers. We used this technology to study the distribution of two antigens (HLA-DR and LFA-1) that HIV-1 acquires from infected cells among individual HIV-1 virions. Flow virometry revealed that the antigenic makeup of virions from a single preparation is heterogeneous. This heterogeneity could not be detected with bulk analysis of viruses. Moreover, in two preparations of the same HIV-1 produced by different cells, the distribution of antigens among virions was different. In contrast, HIV-1 of two different HIV-1 genotypes replicating in the same cells became somewhat antigenically similar. This nanotechnology allows the study of virions in bodily fluids without virus propagation and in principle is not restricted to the analysis of HIV, but can be applied to the analysis of the individual surface antigenic makeup of any virus. PMID:23925291

  1. Metal nanoparticle-graphene oxide composites: Photophysical properties and sensing applications

    NASA Astrophysics Data System (ADS)

    Murphy, Sean J.

    Composite nanomaterials allow for attractive properties of multiple functional components to be combined. Fundamental understanding of the interaction between different nanomaterials, their surroundings, and nearby molecular species is pertinent for implementation into devices. Metal nanoparticles have been used for their optical properties in many applications including stained glass, cancer therapy, solar steam generation, surface enhanced Raman spectroscopy (SERS), and catalysis. Carbon-based nanomaterials such as graphene and carbon nanotubes show potential for a wide variety of applications including solar energy harvesting, chemical sensors, and electronics. Combining useful and in some cases new properties of composite nanomaterials offers exciting opportunities in fundamental science and device development. In this dissertation, I aim to address understanding photoinduced interaction between porphyrin and silver nanoparticles, inter-sheet interaction between stacked graphene oxide (GO) sheets in thin films, complexation of reduced GO with Raman active target molecule in SERS applications, and efficacy of graphene-metal nanoparticle composites for sensing applications. Molecule-metal nanoparticle composite material made up of photoactive porphyrin and silver nanoparticles was studied using various spectroscopic tools. UV-visible absorption and surface enhanced Raman spectroscopic results suggest formation of a charge-transfer complex for porphyrin-silver nanoparticle composite. Ultrafast transient absorption and fluorescence upconversion spectroscopies further corroborate electronic interaction by providing evidence for excited state electron transfer between porphyrin and silver nanoparticles. Understanding electronic interaction between adsorbed photoactive molecules and metal nanoparticles may be of use for applications in photocatalysis or light-energy harvesting. Graphene oxide (GO) thin films have been prepared and studied using transient absorption

  2. Energy transfer in monodisperse quantum dot solids in the presence of self-organized array of metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Sadeghi, S. M.; West, R. G.

    2013-03-01

    We examined the interdot energy transfer between monodisperse quantum dots under different degrees of plasmonic effects (plasmonic field enhancement and Forster energy transfer from quantum dots to metallic nanoparticles). For this we studied emission of CdSe/ZnS quantum dots deposited on substrates containing self-organized arrays of gold nanoislands with radially distributed sizes gradually reduced from the centers of the substrates to their sides. The results suggest how metallic nanoparticles can be used to enhance interdot energy transfer in monodisperse quantum dots and how this process can explain some of the spectral changes seen in the emission of quantum dots when they are close to the metallic nanoparticles.

  3. Increased mobility of metal oxide nanoparticles due to photo and thermal induced disagglomeration.

    PubMed

    Zhou, Dongxu; Bennett, Samuel W; Keller, Arturo A

    2012-01-01

    Significant advances have been made on our understanding of the fate and transport of engineered nanomaterials. One unexplored aspect of nanoparticle aggregation is how environmental stimuli such as light exposure and temperature variations affect the mobility of engineered nanoparticles. In this study, TiO(2), ZnO, and CeO(2) were chosen as model materials for investigating the mobility of nanoparticles under three external stimuli: heat, light and sonication. Sunlight and high power sonication were able to partially disagglomerate metal oxide clusters, but primary particles bonded by solid state necks were left intact. A cycle of temperature increase from 25°C to 65°C and then decrease back was found to disagglomerate the compact clusters in the heating phase and reagglomerate them as more open fractal structures during the cooling phase. A fractal model summing the pair-wise DLVO interactions between primary particles within two fractal agglomerates predicts weak attractions on the order of a few kT. Our study shows that common environmental stimuli such as light exposure or temperature variation can disagglomerate nanoparticle clusters and enhance their mobility in open waters. This phenomenon warrants attention since it is likely that metal oxide nanoparticles will experience these natural stimuli during their transport in the environment.

  4. Evaluation of the thermodynamic properties of hydrated metal oxide nanoparticles by INS techniques

    SciTech Connect

    Spencer, Elinor; Ross, Dr. Nancy; Parker, Stewart F.; Kolesnikov, Alexander I

    2013-01-01

    In this contribution we will present a detailed methodology for the elucidation of the following aspects of the thermodynamic properties of hydrated metal oxide nanoparticles from high-resolution, low-temperature inelastic neutron scattering (INS) data: (i) the isochoric heat capacity and entropy of the hydration layers both chemi- and physisorbed to the particle surface; (ii) the magnetic contribution to the heat capacity of the nanoparticles. This will include the calculation of the vibrational density of states (VDOS) from the raw INS spectra, and the subsequent extraction of the thermodynamic data from the VDOS. This technique will be described in terms of a worked example namely, cobalt oxide (Co3O4 and CoO). To complement this evaluation of the physical properties of metal oxide nanoparticle systems, we will emphasise the importance of high-resolution, high-energy INS for the determination of the structure and dynamics of the water species, namely molecular (H2O) and dissociated water (OH, hydroxyl), confined to the oxide surfaces. For this component of the chapter we will focus on INS investigations of hydrated isostructural rutile (a-TiO2) and cassiterite (SnO2) nanoparticles. We will complete this discussion of nanoparticle analysis by including an appraisal of the INS instrumentation employed in such studies with particular focus on TOSCA [ISIS, Rutherford Appleton Laboratory (RAL), U.K.] and the newly developed spectrometer SEQUOIA [SNS, Oak Ridge National Laboratory (ORNL), U.S.A].

  5. Optical properties of dielectric films dispersed with metal nanoparticles and applications to optically functional materials

    NASA Astrophysics Data System (ADS)

    Wakaki, Moriaki; Yokoyama, Eisuke

    2010-12-01

    Nanoparticles of noble metals exhibit variety of colors in the visible light region due to a surface plasmon resonance. The size-induced properties of nanoparticles enable addition of flexibility to existing systems in many areas. To design a material with desired electrical and optical properties is the aim in many composite materials. In this paper, we report the preparation and characterization of silver nanoparticles in SiO2, TiO2 and ZrO2 films and gold nanoparticles in TiO2 and ZrO2 films. To analyze the dielectric characteristic of the metal-dielectric nanocomposite film, three kinds of matrices with a different refractive index were compared. Titanium dioxide (TiO2) is one of the most promising photocatalysts and actively used in various practical applications. However, only a narrow band in the ultraviolet region of solar light, about 3-4%, is available for photocatalytic reaction. Therefore, the development of TiO2 photocatalysts with higher photoelectric conversion efficiency for visible light is required. Plasmon-induced photocatalytic activity in the ultraviolet and visible light region was studied for the TiO2 thin film dispersed with gold nanoparticles. Photocatalytic activity of Au/TiO2 film was analyzed by degradation of stearic acid, and compared with non-doped TiO2film.

  6. Optical properties of dielectric films dispersed with metal nanoparticles and applications to optically functional materials

    NASA Astrophysics Data System (ADS)

    Wakaki, Moriaki; Yokoyama, Eisuke

    2011-08-01

    Nanoparticles of noble metals exhibit variety of colors in the visible light region due to a surface plasmon resonance. The size-induced properties of nanoparticles enable addition of flexibility to existing systems in many areas. To design a material with desired electrical and optical properties is the aim in many composite materials. In this paper, we report the preparation and characterization of silver nanoparticles in SiO2, TiO2 and ZrO2 films and gold nanoparticles in TiO2 and ZrO2 films. To analyze the dielectric characteristic of the metal-dielectric nanocomposite film, three kinds of matrices with a different refractive index were compared. Titanium dioxide (TiO2) is one of the most promising photocatalysts and actively used in various practical applications. However, only a narrow band in the ultraviolet region of solar light, about 3-4%, is available for photocatalytic reaction. Therefore, the development of TiO2 photocatalysts with higher photoelectric conversion efficiency for visible light is required. Plasmon-induced photocatalytic activity in the ultraviolet and visible light region was studied for the TiO2 thin film dispersed with gold nanoparticles. Photocatalytic activity of Au/TiO2 film was analyzed by degradation of stearic acid, and compared with non-doped TiO2film.

  7. An experimental assessment of toxic potential of nanoparticle preparation of heavy metals in streptozotocin induced diabetes.

    PubMed

    Gandhi, Sonia; Srinivasan, B P; Akarte, Atul Sureshrao

    2013-11-01

    Nanoparticle preparations of heavy metals have attracted enormous scientific and technological interest. Biologically produced nanoparticle preparations of heavy metals are elaborately described in traditional texts and being widely prescribed. The underlying interactions of nano preparations within the physiological fluids are key feature to understand their biological impact. In this perspective, we performed an experimental assessment of the toxicity potential of a marketed metallic preparation named Vasant Kusumakar Ras (VKR), wherein different heavy metals in composite form are reduced to nanoparticle size to produce the desired effect in diabetes and its complications. VKR (50mg/kg) was administered to Albino Wistar rats rendered diabetic using streptozotocin (90mg/kg) in 2 days old neonates. Anti-hyperglycemic effect was observed with VKR along with increased levels of plasma insulin. Renal variables including total proteins and albumin along with glomerular filtration rate were found to improve biochemically. The results were supplemented by effects on different inflammatory and growth factors like TNF-α, nitric oxide, TGF-β and VEGF. However, the results observed in kidney histopathology were not in accordance with the biochemical parameters. Inflammation observed in kidney was confirmed by immunostaining metallothionein, which was due to the accumulation of heavy metals. Furthermore, mercury accumulation in kidney further confirmed by autometallography, which activated mononuclear phagocyte system, which generated an immune response. This was further supported by increase in the extent of apoptosis in kidney tissues. In conclusion, nanoparticle preparations of heavy metals can be toxic to kidney if it is not regulated with respect to its surface chemistry and dosage.

  8. Electronic Coupling and Optimal Gap Size Between Two Metal Nanoparticles

    SciTech Connect

    Zhao, Ke; Troparevsky, Claudia; Xiao, Di; Eguiluz, Adolfo G; Zhang, Zhenyu

    2009-01-01

    We study the electronic coupling between two silver nanoparticles using ab initio density functional theory for real atoms. We show that the electronic coupling depends on both the gap size of the dimer system and the relative orientation of the particles. As the two particles are separated from touching contact, the dimer undergoes a bond-breaking step, which also establishes the striking existence of an optimal gap size dened by a maximal static polarizability of the dimer. For some dimers, the electronic coupling before the bond breaking can be strong enough to give rise to a net magnetic moment of the dimer, even though the isolated particles are nonmagnetic. These ndings may prove to be instrumental in understanding and controlling the optical, magnetic, electrical, and chemical properties of closely-packed nanoparticle aggregates.

  9. Nanoparticle-Seeding Approach to Buried (Semi) Metal Film Growth

    DTIC Science & Technology

    2014-05-20

    carrier distribution in a short base transistor . (a) Cross-sectional sketch of embedding process, (b) erbium surface concentration versus distance...only sink at the subsurface ErAs nanoparticles. The model is then analogous to the minority carrier concentration in a short-base bipolar - junction... transistor , where the slope of the erbium concentration corresponds to the flux (or growth rate). The steady state surface concentration is a

  10. The Transport and Impact of Metal Nanoparticles in Soil

    NASA Astrophysics Data System (ADS)

    Dror, Ishai; Berkowitz, Brian

    2014-05-01

    The fate, transport and mobility of nanoparticles in soil are strongly dependent on environmental conditions. In this study we present the effect of soil properties on the transport of silver nanoparticles (AgNPs) in a set of laboratory column experiments, using different combinations of size fractions of a Mediterranean sandy clay soil. AgNPs are shown to have high mobility in soil with outlet relative concentrations ranging from 30% to 70%, depending on experimental conditions. The AgNP mobility through the column decreases when the fraction of smaller soil aggregates is larger. An early breakthrough pattern was found for the AgNP but not observed for AgNPs in pure quartz columns nor for bromide tracer in soil columns, suggesting that early breakthrough is related to the nature of AgNP transport in natural soils. Micro-CT and image analysis used to investigate structural features of the soil, suggest that soil aggregate size strongly affects AgNP transport in natural soil. These findings point to the importance of AgNP-soil chemical interactions as a retention mechanism, and demonstrate the need to employ natural soils rather than glass beads or quartz in representative experimental investigations. It is further noted that little is known about the possible effects of nanoparticles on soil chemical, physical and biological properties. Here we show that although copper oxide nanoparticles (nCuO) had little impact on the macroscopic properties of the soil, they did cause changes to humic substance structure and affected the soil bacterial community composition. In particular, the nCuO was found to have a strong effect on bacterial hydrolytic activity, oxidative potential, community composition and size in Bet-Dagan soil. These results indicate that CuO NPs are potentially harmful to soil environments. Furthermore, the results suggest that the clay fraction and organic matter in different soils interact with the nCuO and reduce its toxicity.

  11. From iron coordination compounds to metal oxide nanoparticles

    PubMed Central

    Iacob, Mihail; Racles, Carmen; Tugui, Codrin; Stiubianu, George; Bele, Adrian; Sacarescu, Liviu; Timpu, Daniel

    2016-01-01

    Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe2 IIIFeIIO(CH3COO)6(H2O)3]·2H2O (FeAc1), μ3-oxo trinuclear iron(III) acetate, [Fe3O(CH3COO)6(H2O)3]NO3∙4H2O (FeAc2), iron furoate, [Fe3O(C4H3OCOO)6(CH3OH)3]NO3∙2CH3OH (FeF), iron chromium furoate, FeCr2O(C4H3OCOO)6(CH3OH)3]NO3∙2CH3OH (FeCrF), and an iron complex with an original macromolecular ligand (FePAZ) were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination) or using a nonconventional energy source (i.e., microwave or ultrasonic treatment) to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles. PMID:28144555

  12. Adsorption and detection of sport doping drugs on metallic plasmonic nanoparticles of different morphology.

    PubMed

    Izquierdo-Lorenzo, Irene; Alda, Irene; Sanchez-Cortes, Santiago; Garcia-Ramos, José Vicente

    2012-06-19

    A comparative study of different plasmonic nanoparticles with different morphologies (nanospheres and triangular nanoprisms) and metals (Ag and Au) was done in this work and applied to the ultrasensitive detection of aminoglutethimide (AGI) drug by surface enhanced Raman spectroscopy (SERS) and plasmon resonance. AGI is an aromatase inhibitor used as an antitumoral drug with remarkable pharmacological interest and also in illegal sport doping. The application of very sensitive spectroscopic techniques based on the localization of an electromagnetic field on plasmonic nanoparticles confirms the previous study of the adsorption of drugs onto a metal surface due to the near field character of these techniques. The adsorption of AGI on the above substrates was investigated at different pH values and surface coverages, and the results were analyzed on the basis of AGI/metal affinity, considering the interaction mechanism, the existence of two binding sites in AGI, and the influence of the interface on the adsorption in terms of surface charge due to the presence of other ions linked to the surface. Finally, a comparative quantitative detection of AGI was performed on both spherical and triangular nanoprism nanoparticles, and a limit of detection lower than those reported so far was deduced on the latter nanoparticles.

  13. USING ZERO-VALENT METAL NANOPARTICLES TO REMEDIATE ORGANIC CONTAMINANTS

    EPA Science Inventory

    The transport of organic contaminants down the soil profile constitutes a serious threat to the quality of ground water. Zero-valent metals are considered innocuous abiotic agents capable of mediating decontamination processes in terrestrial systems. In this investigation, ze...

  14. A simple approach to obtain hybrid Au-loaded polymeric nanoparticles with a tunable metal load

    NASA Astrophysics Data System (ADS)

    Luque-Michel, Edurne; Larrea, Ane; Lahuerta, Celia; Sebastian, Víctor; Imbuluzqueta, Edurne; Arruebo, Manuel; Blanco-Prieto, María J.; Santamaría, Jesús

    2016-03-01

    A new strategy to nanoengineer multi-functional polymer-metal hybrid nanostructures is reported. By using this protocol the hurdles of most of the current developments concerning covalent and non-covalent attachment of polymers to preformed inorganic nanoparticles (NPs) are overcome. The strategy is based on the in situ reduction of metal precursors using the polymeric nanoparticle as a nanoreactor. Gold nanoparticles and poly(dl-lactic-co-glycolic acid), PLGA, are located in the core and shell, respectively. This novel technique enables the production of PLGA NPs smaller than 200 nm that bear either a single encapsulated Au NP or several smaller NPs with tunable sizes and a 100% loading efficiency. In situ reduction of Au ions inside the polymeric NPs was achieved on demand by using heat to activate the reductive effect of citrate ions. In addition, we show that the loading of the resulting Au NPs inside the PLGA NPs is highly dependent on the surfactant used. Electron microscopy, laser irradiation, UV-Vis and fluorescence spectroscopy characterization techniques confirm the location of Au nanoparticles. These promising results indicate that these hybrid nanomaterials could be used in theranostic applications or as contrast agents in dark-field imaging and computed tomography.A new strategy to nanoengineer multi-functional polymer-metal hybrid nanostructures is reported. By using this protocol the hurdles of most of the current developments concerning covalent and non-covalent attachment of polymers to preformed inorganic nanoparticles (NPs) are overcome. The strategy is based on the in situ reduction of metal precursors using the polymeric nanoparticle as a nanoreactor. Gold nanoparticles and poly(dl-lactic-co-glycolic acid), PLGA, are located in the core and shell, respectively. This novel technique enables the production of PLGA NPs smaller than 200 nm that bear either a single encapsulated Au NP or several smaller NPs with tunable sizes and a 100% loading

  15. Self-focusing of an intense laser pulse interacting with a periodic lattice of metallic nanoparticle

    SciTech Connect

    Sepehri Javan, N.

    2015-09-15

    The motivation for the present work is the study of self-focusing of an intense laser beam propagating through a periodic array of metallic nanoparticle. Using a perturbative method, a wave equation describing the nonlinear interaction of a laser beam with nanoparticles is derived. Evolution of laser spot size with the Gaussian profile for the circular and linear polarizations is considered. It is found that, in the same intensity, the linear polarization in a special interval of frequency resonantly acts better than the circular one.

  16. Nanoscale optical properties of metal nanoparticles probed by Second Harmonic Generation microscopy.

    PubMed

    Shen, Hong; Nguyen, Ngoc; Gachet, David; Maillard, Vincent; Toury, Timothée; Brasselet, Sophie

    2013-05-20

    We report spatial and vectorial imaging of local fields' confinement properties in metal nanoparticles with branched shapes, using Second Harmonic Generation (SHG) microscopy. Taking advantage of the coherent nature of this nonlinear process, the technique provides a direct evidence of the coupling between the excitation polarization and both localization and polarization specificities of local fields at the sub-diffraction scale. These combined features, which are governed by the nanoparticles' symmetry, are not accessible using other contrasts such as linear optical techniques or two-photon luminescence.

  17. Structural Modification of Metal Oxide Nanoparticles in Chemical Vapor Synthesis and Related Properties

    NASA Astrophysics Data System (ADS)

    Lee, Jai-Sung; Lee, Chang-Woo; Lee, Kyoung-No

    2011-10-01

    This paper overviews recent studies on structural modification of metal oxide nanoparticles occurring in the process of chemical vapour condensation (CVC) and related peculiar properties. Hollow nanostructure is controlled at specific process conditions where the pressure in the reactor and the evaporation temperature play an important role in terms of kinematical equilibrium during particle formation and decomposition of precursors in the CVC reactor. As a natural consequence, particle properties also rely on a large surface area from the hollow nanostructure. In this review paper, phase transformation, chemical reactivity and microstructural evolution of nanoparticles are discussed based on hollow nanostructure.

  18. NiO as a peculiar support for metal nanoparticles in polyols oxidation

    SciTech Connect

    Villa, Alberto; Veith, Gabriel M; Ferri, Davide; Weidenkaff, Anke; Perry, Kelly A; Campisi, Sebastiano; Prati, Laura

    2013-01-01

    The peculiar influence of a NiO support was studied by preparing gold catalysts supported on NiO(1-x) TiO2(x) mixed oxides. PVA protected Au nanoparticles showed high activity when supported on NiO for the selective oxidation of glycerol and ethan-1,2-diol. A detailed characterization of the resulting Au catalysts revealed a preferential deposition of the metal nanoparticles on the NiO phase. However, the activity of Au on NiO(1-x)-TiO2(x) decreased with respect to pure NiO and the selectivity evolved with changes to the support.

  19. Spectral gaps and mode localization in Fibonacci chains of metal nanoparticles.

    PubMed

    Dal Negro, Luca; Feng, Ning-Ning

    2007-10-29

    In this paper we study the spectral, localization and dispersion properties of dipolar modes in quasi-periodically modulated nanoparticle chains based on the Fibonacci sequence. By developing a transfer matrix approach for the calculation of resonant frequencies, oscillation eigenvectors and integrated density of states (IDS) of spatially-modulated dipole chains, we demonstrate the presence of large spectral gaps and calculate the pseudo-dispersion diagram of Fibonacci plasmonic chains. The presence of plasmonic band-gaps and localized states in metal nanoparticle chains based on quasi-periodic order can have a large impact in the design and fabrication of novel nanophotonics devices.

  20. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering

    SciTech Connect

    Barke, Ingo; Hartmann, Hannes; Rupp, Daniela; Flückiger, Leonie; Sauppe, Mario; Adolph, Marcus; Schorb, Sebastian; Bostedt, Christoph; Treusch, Rolf; Peltz, Christian; Bartling, Stephan; Fennel, Thomas; Meiwes-Broer, Karl-Heinz; Möller, Thomas

    2015-02-04

    The diversity of nanoparticle shapes generated by condensation from gaseous matter reflects the fundamental competition between thermodynamic equilibration and the persistence of metastable configurations during growth. In the kinetically limited regime, intermediate geometries that are favoured only in early formation stages can be imprinted in the finally observed ensemble of differently structured specimens. Here we demonstrate that single-shot wide-angle scattering of femtosecond soft X-ray free-electron laser pulses allows three-dimensional characterization of the resulting metastable nanoparticle structures. For individual free silver particles, which can be considered frozen in space for the duration of photon exposure, both shape and orientation are uncovered from measured scattering images. We identify regular shapes, including species with fivefold symmetry and surprisingly large aspect ratio up to particle radii of the order of 100 nm. Our approach includes scattering effects beyond Born’s approximation and is remarkably efficient—opening up new routes in ultrafast nanophysics and free-electron laser science

  1. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering

    DOE PAGES

    Barke, Ingo; Hartmann, Hannes; Rupp, Daniela; ...

    2015-02-04

    The diversity of nanoparticle shapes generated by condensation from gaseous matter reflects the fundamental competition between thermodynamic equilibration and the persistence of metastable configurations during growth. In the kinetically limited regime, intermediate geometries that are favoured only in early formation stages can be imprinted in the finally observed ensemble of differently structured specimens. Here we demonstrate that single-shot wide-angle scattering of femtosecond soft X-ray free-electron laser pulses allows three-dimensional characterization of the resulting metastable nanoparticle structures. For individual free silver particles, which can be considered frozen in space for the duration of photon exposure, both shape and orientation are uncoveredmore » from measured scattering images. We identify regular shapes, including species with fivefold symmetry and surprisingly large aspect ratio up to particle radii of the order of 100 nm. Our approach includes scattering effects beyond Born’s approximation and is remarkably efficient—opening up new routes in ultrafast nanophysics and free-electron laser science« less

  2. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering

    PubMed Central

    Barke, Ingo; Hartmann, Hannes; Rupp, Daniela; Flückiger, Leonie; Sauppe, Mario; Adolph, Marcus; Schorb, Sebastian; Bostedt, Christoph; Treusch, Rolf; Peltz, Christian; Bartling, Stephan; Fennel, Thomas; Meiwes-Broer, Karl-Heinz; Möller, Thomas

    2015-01-01

    The diversity of nanoparticle shapes generated by condensation from gaseous matter reflects the fundamental competition between thermodynamic equilibration and the persistence of metastable configurations during growth. In the kinetically limited regime, intermediate geometries that are favoured only in early formation stages can be imprinted in the finally observed ensemble of differently structured specimens. Here we demonstrate that single-shot wide-angle scattering of femtosecond soft X-ray free-electron laser pulses allows three-dimensional characterization of the resulting metastable nanoparticle structures. For individual free silver particles, which can be considered frozen in space for the duration of photon exposure, both shape and orientation are uncovered from measured scattering images. We identify regular shapes, including species with fivefold symmetry and surprisingly large aspect ratio up to particle radii of the order of 100 nm. Our approach includes scattering effects beyond Born’s approximation and is remarkably efficient—opening up new routes in ultrafast nanophysics and free-electron laser science. PMID:25650004

  3. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering

    NASA Astrophysics Data System (ADS)

    Barke, Ingo; Hartmann, Hannes; Rupp, Daniela; Flückiger, Leonie; Sauppe, Mario; Adolph, Marcus; Schorb, Sebastian; Bostedt, Christoph; Treusch, Rolf; Peltz, Christian; Bartling, Stephan; Fennel, Thomas; Meiwes-Broer, Karl-Heinz; Möller, Thomas

    2015-02-01

    The diversity of nanoparticle shapes generated by condensation from gaseous matter reflects the fundamental competition between thermodynamic equilibration and the persistence of metastable configurations during growth. In the kinetically limited regime, intermediate geometries that are favoured only in early formation stages can be imprinted in the finally observed ensemble of differently structured specimens. Here we demonstrate that single-shot wide-angle scattering of femtosecond soft X-ray free-electron laser pulses allows three-dimensional characterization of the resulting metastable nanoparticle structures. For individual free silver particles, which can be considered frozen in space for the duration of photon exposure, both shape and orientation are uncovered from measured scattering images. We identify regular shapes, including species with fivefold symmetry and surprisingly large aspect ratio up to particle radii of the order of 100 nm. Our approach includes scattering effects beyond Born’s approximation and is remarkably efficient—opening up new routes in ultrafast nanophysics and free-electron laser science.

  4. Surface interactions of gold nanorods and polysaccharides: From clusters to individual nanoparticles.

    PubMed

    de Barros, Heloise Ribeiro; Piovan, Leandro; Sassaki, Guilherme L; de Araujo Sabry, Diego; Mattoso, Ney; Nunes, Ábner Magalhães; Meneghetti, Mario R; Riegel-Vidotti, Izabel C

    2016-11-05

    Gold nanorods (AuNRs) are suitable for constructing self-assembled structures for the development of biosensing devices and are usually obtained in the presence of cetyltrimethylammonium bromide (CTAB). Here, a sulfated chitosan (ChiS) and gum arabic (GA) were employed to encapsulate CTAB/AuNRs with the purpose of studying the interactions of the polysaccharides with CTAB, which is cytotoxic and is responsible for the instability of nanoparticles in buffer solutions. The presence of a variety of functional groups such as the sulfate groups in ChiS and the carboxylic groups in GA, led to efficient interactions with CTAB/AuNRs as evidenced through UV-vis and FTIR spectroscopies. Electron microscopies (HR-SEM and TEM) revealed that nanoparticle clusters were formed in the GA-AuNRs sample, whereas individual AuNRs, surrounded by a dense layer of polysaccharides, were observed in the ChiS-AuNRs sample. Therefore, the presented work contributes to the understanding of the driving forces that control the surface interactions of the studied materials, providing useful information in the building-up of gold self-assembled nanostructures.

  5. Controlled synthesis of metallic iron nanoparticles and their magnetic hyperthermia performance in polyaniline composite nanofibers

    NASA Astrophysics Data System (ADS)

    Yang, Ta-I.; Chang, Su-Hua

    2017-02-01

    Electrospun magnetic iron/polyaniline nanofibers with applicable heating performance in an AC magnetic field were developed. A new and low-cost method was introduced to synthesize metallic iron (Fe0) nanoparticles with uniform size distribution. The Fe0 nanoparticles were synthesized in an aqueous environment at room temperature with the assistance of polyvinylpyrrolidone and sodium citrate to tailor their particle sizes ranging from 10 to 20 nm. The experimental results showed that regulating the free iron ions present in the solution is critical for obtaining Fe0 nanoparticles with narrow size distribution. The Fe0 nanoparticles were subsequently incorporated with conductive polyaniline (PANI) to fabricate Fe0/PANI/polycaprolactone nanofibers using an electrospinning technique. The resultant composite nanofibers have controlled fiber diameters and also show electrochemical redox properties originating from the PANI polymer. The heating performance test concluded that both eddy current loss from PANI and Neel relaxation loss of magnetic Fe0 nanoparticles can contribute to the power dissipation of the prepared composite nanofibers. The optimal heating performance can be obtained by adjusting the composition of Fe0 nanoparticles and PANI in nanofibers.

  6. Role of metal and dielectric nanoparticles in the performance enhancement of silicon solar cells

    NASA Astrophysics Data System (ADS)

    Das, Sonali; Kundu, Avra; Saha, Hiranmay; Datta, Swapan K.

    2012-08-01

    The suitability of using spherical metal and dielectric nanoparticles on the top of a silicon solar cell has been investigated. An enhancement index factor (EIF) for each wavelength of light and an averaged EIF for the AM 1.5 solar spectrum, weighted by the photon flux, has been introduced. These factors estimate the effect of the nanoparticles in improving the performance of the solar cells, considering the absorption loss due to joule heating, fraction of radiation scattered into the substrate and the front scattered radiation pattern. A systematic comparison between silver and dielectric nanoparticles (silica, silicon nitride, titanium dioxide) shows that titanium dioxide and silicon nitride nano particles of sizes ≥100 nm exhibit larger enhancements compared to that of silver nanoparticles of similar sizes. Further, as the dielectric constant of the dielectric nanoparticles increases, the optimal particle size corresponding to maximal enhancement shifts towards lower value. At optimal particle sizes, the enhancement is 1.5-2 times greater than that due to silver nanoparticles.

  7. Metal Oxide Nanoparticles: The Importance of Size, Shape, Chemical Composition, and Valence State in Determining Toxicity

    NASA Astrophysics Data System (ADS)

    Dunnick, Katherine

    Nanoparticles, which are defined as a structure with at least one dimension between 1 and 100 nm, have the potential to be used in a variety of consumer products due to their improved functionality compared to similar particles of larger size. Their small size is associated with increased strength, improved catalytic properties, and increased reactivity; however, their size is also associated with increased toxicity in vitro and in vivo. Numerous toxicological studies have been conducted to determine the properties of nanomaterials that increase their toxicity in order to manufacture new nanomaterials with decreased toxicity. Data indicates that size, shape, chemical composition, and valence state of nanomaterials can dramatically alter their toxicity profile. Therefore, the purpose of this dissertation was to determine how altering the shape, size, and chemical composition of various metal oxide nanoparticles would affect their toxicity. Metal oxides are used in variety of consumer products, from spray-sun screens, to food coloring agents; thus, understanding the toxicity of metal oxides and determining which aspects affect their toxicity may provide safe alternatives nanomaterials for continued use in manufacturing. Tungstate nanoparticles toxicity was assessed in an in vitro model using RAW 264.7 cells. The size, shape, and chemical composition of these nanomaterials were altered and the effect on reactive oxygen species and general cytotoxicity was determined using a variety of techniques. Results demonstrate that shape was important in reactive oxygen species production as wires were able to induce significant reactive oxygen species compared to spheres. Shape, size, and chemical composition did not have much effect on the overall toxicity of these nanoparticles in RAW 264.7 cells over a 72 hour time course, implicating that the base material of the nanoparticles was not toxic in these cells. To further assess how chemical composition can affect toxicity

  8. Direct photocatalysis for organic synthesis by using plasmonic-metal nanoparticles irradiated with visible light.

    PubMed

    Xiao, Qi; Jaatinen, Esa; Zhu, Huaiyong

    2014-11-01

    Recent advances in direct-use plasmonic-metal nanoparticles (NPs) as photocatalysts to drive organic synthesis reactions under visible-light irradiation have attracted great interest. Plasmonic-metal NPs are characterized by their strong interaction with visible light through excitation of the localized surface plasmon resonance (LSPR). Herein, we review recent developments in direct photocatalysis using plasmonic-metal NPs and their applications. We focus on the role played by the LSPR of the metal NPs in catalyzing organic transformations and, more broadly, the role that light irradiation plays in catalyzing the reactions. Through this, the reaction mechanisms that these light-excited energetic electrons promote will be highlighted. This review will be of particular interest to researchers who are designing and fabricating new plasmonic-metal NP photocatalysts by identifying important reaction mechanisms that occur through light irradiation.

  9. Insulin-coated gold nanoparticles: a plasmonic device for studying metal-protein interactions.

    PubMed

    Chanana, Munish; Correa-Duarte, Miguel A; Liz-Marzán, Luis M

    2011-09-19

    Insulin-capped gold nanoparticles (Au@insulin NPs) are highly sensitive towards pH and heavy metals, due to the protein coating. Au@insulin NPs aggregate and disaggregate reversibly with pH and in the presence of various heavy metal ions, which can be monitored through reversible changes in their optical properties. The sensitivity of the NPs towards different metal ions is dissimilar and depends on the coordinative properties of each specific metal ion, its valence number, concentration, and reaction time (kinetics), representing a simple tool for studying fundamental metal-protein interactions. Moreover, Au@insulin NPs are biocompatible and highly stable at high ionic strengths, due to their robust protein coating.

  10. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment.

    PubMed

    Wu, Xiangyang; Cobbina, Samuel J; Mao, Guanghua; Xu, Hai; Zhang, Zhen; Yang, Liuqing

    2016-05-01

    The rational for the study was to review the literature on the toxicity and corresponding mechanisms associated with lead (Pb), mercury (Hg), cadmium (Cd), and arsenic (As), individually and as mixtures, in the environment. Heavy metals are ubiquitous and generally persist in the environment, enabling them to biomagnify in the food chain. Living systems most often interact with a cocktail of heavy metals in the environment. Heavy metal exposure to biological systems may lead to oxidation stress which may induce DNA damage, protein modification, lipid peroxidation, and others. In this review, the major mechanism associated with toxicities of individual metals was the generation of reactive oxygen species (ROS). Additionally, toxicities were expressed through depletion of glutathione and bonding to sulfhydryl groups of proteins. Interestingly, a metal like Pb becomes toxic to organisms through the depletion of antioxidants while Cd indirectly generates ROS by its ability to replace iron and copper. ROS generated through exposure to arsenic were associated with many modes of action, and heavy metal mixtures were found to have varied effects on organisms. Many models based on concentration addition (CA) and independent action (IA) have been introduced to help predict toxicities and mechanisms associated with metal mixtures. An integrated model which combines CA and IA was further proposed for evaluating toxicities of non-interactive mixtures. In cases where there are molecular interactions, the toxicogenomic approach was used to predict toxicities. The high-throughput toxicogenomics combines studies in genetics, genome-scale expression, cell and tissue expression, metabolite profiling, and bioinformatics.

  11. Synthesis and characterisation of metal nanoparticles and their effects on seed germination and seedling growth in commercially important Eruca sativa.

    PubMed

    Zaka, Mehreen; Abbasi, Bilal Haider; Rahman, Latif-Ur; Shah, Afzal; Zia, Muhammad

    2016-06-01

    The synthesis, characterisation and application of metal nanoparticles have become an important and attractive branch of nanotechnology. In current study, metallic nanoparticles of silver, copper, and gold were synthesised using environment friendly method (polyols process), and applied on medicinally important plant: Eruca sativa. Effects of application of these nanoparticles were evaluated on seed germination frequency and biochemical parameters of plant tissues. Seeds of E. sativa were germinated on Murashige and Skoog (MS) medium incorporated with various combinations of nanoparticles suspension (30 µg/ml). Phytotoxicity study showed that nanoparticles could induce stress in plants by manipulating the endogenous mechanisms. In response to these stresses, plants release various defensive compounds; known as antioxidant secondary metabolites. These plants derived secondary metabolites having a great potential in treating the common human ailments. In the authors study, small-sized nanoparticles showed higher toxicity levels and enhanced secondary metabolites production, total protein content, total flavonoids content and total phenolics content.

  12. Measuring the Size and Slip Lengths of Individual Nanoparticles using Suspended Microchannel Resonators

    NASA Astrophysics Data System (ADS)

    Collis, Jesse; Sader, John; Olcum, Selim; Manalis, Scott

    2015-11-01

    Characterizing nanometer-scale particles immersed in liquids using cantilever-based sensing methods can be challenging due to large hydrodynamic damping forces. Suspended Microchannel Resonators (SMRs) differ to conventional cantilever sensors by embedding a microfluidic channel within a vacuum-encased cantilever. These devices can be used as sensitive mass balances for individual nanoparticles flowing through the microfluidic channel; resolution at the attogram scale has been demonstrated recently. We explore a new modality for these devices, where the particle size and surface properties can be characterized. The theoretical framework for this modality is developed using both asymptotic and numerical methods, for which excellent agreement is observed. Comparison of experimental data with Monte-Carlo simulations shows we are able to accurately quantify the slip lengths of these particles.

  13. Preparation of Magnesium, Cobalt and Nickel Ferrite Nanoparticles from Metal Oxides using Deep Eutectic Solvents.

    PubMed

    Söldner, Anika; Zach, Julia; Iwanow, Melanie; Gärtner, Tobias; Schlosser, Marc; Pfitzner, Arno; König, Burkhard

    2016-09-05

    Natural deep eutectic solvents (DESs) dissolve simple metal oxides and are used as a reaction medium to synthesize spinel-type ferrite nanoparticles MFe2 O4 (M=Mg, Zn, Co, Ni). The best results for phase-pure spinel ferrites are obtained with the DES consisting of choline chloride (ChCl) and maleic acid. By employing DESs, the reactions proceed at much lower temperatures than usual for the respective solid-phase reactions of the metal oxides and at the same temperatures as synthesis with comparable calcination processes using metal salts. The method therefore reduces the overall required energy for the nanoparticle synthesis. Thermogravimetric analysis shows that the thermolysis process of the eutectic melts in air occurs in one major step. The phase-pure spinel-type ferrite particles are thoroughly characterized by X-ray diffraction, diffuse-reflectance UV/Vis spectroscopy, and scanning electron microscopy. The properties of the obtained nanoparticles are shown to be comparable to those obtained by other methods, illustrating the potential of natural DESs for processing metal oxides.

  14. The formation of silver metal nanoparticles by ion implantation in silicate glasses

    NASA Astrophysics Data System (ADS)

    Vytykacova, S.; Svecova, B.; Nekvindova, P.; Spirkova, J.; Mackova, A.; Miksova, R.; Böttger, R.

    2016-03-01

    It has been shown that glasses containing silver metal nanoparticles are promising photonics materials for the fabrication of all-optical components. The resulting optical properties of the nanocomposite glasses depend on the composition and structure of the glass, as well as on the type of metal ion implanted and the experimental procedures involved. The main aim of this article was to study the influence of the conditions of the ion implantation and the composition of the glass on the formation of metal nanoparticles in such glasses. Four various types of silicate glasses were implanted with Ag+ ions with different energy (330 keV, 1.2 MeV and 1.7 MeV), with the fluence being kept constant (1 × 1016 ions cm-2). The as-implanted samples were annealed at 600 °C for 1 h. The samples were characterised in terms of: the nucleation of metal nanoparticles (linear optical absorption), the migration of silver through the glass matrix during the implantation and post-implantation annealing (Rutherford backscattering spectroscopy), and the oxidation state of silver (photoluminescence in the visible region).

  15. Two distinctive energy migration pathways of monolayer molecules on metal nanoparticle surfaces

    PubMed Central

    Li, Jiebo; Qian, Huifeng; Chen, Hailong; Zhao, Zhun; Yuan, Kaijun; Chen, Guangxu; Miranda, Andrea; Guo, Xunmin; Chen, Yajing; Zheng, Nanfeng; Wong, Michael S.; Zheng, Junrong

    2016-01-01

    Energy migrations at metal nanomaterial surfaces are fundamentally important to heterogeneous reactions. Here we report two distinctive energy migration pathways of monolayer adsorbate molecules on differently sized metal nanoparticle surfaces investigated with ultrafast vibrational spectroscopy. On a 5 nm platinum particle, within a few picoseconds the vibrational energy of a carbon monoxide adsorbate rapidly dissipates into the particle through electron/hole pair excitations, generating heat that quickly migrates on surface. In contrast, the lack of vibration-electron coupling on approximately 1 nm particles results in vibrational energy migration among adsorbates that occurs on a twenty times slower timescale. Further investigations reveal that the rapid carbon monoxide energy relaxation is also affected by the adsorption sites and the nature of the metal but to a lesser extent. These findings reflect the dependence of electron/vibration coupling on the metallic nature, size and surface site of nanoparticles and its significance in mediating energy relaxations and migrations on nanoparticle surfaces. PMID:26883665

  16. Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids

    USGS Publications Warehouse

    Aiken, George R.; Hsu-Kim, Heileen; Ryan, Joseph N.

    2011-01-01

    We have known for decades that dissolved organic matter (DOM) plays a critical role in the biogeochemical cycling of trace metals and the mobility of colloidal particles in aquatic environments. In recent years, concerns about the ecological and human health effects of metal-based engineered nanoparticles released into natural waters have increased efforts to better define the nature of DOM interactions with metals and surfaces. Nanomaterials exhibit unique properties and enhanced reactivities that are not apparent in larger materials of the same composition1,2 or dissolved ions of metals that comprise the nanoparticles. These nanoparticle-specific properties generally result from the relatively large proportion of the atoms located at the surface, which leads to very high specific surface areas and a high proportion of crystal lattice imperfections relative to exposed surface area. Nanoscale colloids are ubiquitous in nature,2 and many engineered nanomaterials have analogs in the natural world. The properties of these materials, whether natural or manmade, are poorly understood, and new challenges have been presented in assessing their environmental fate. These challenges are particularly relevant in aquatic environments where interactions with DOM are key, albeit often overlooked, moderators of reactivity at the molecular and nanocolloidal scales.

  17. Direct quantification of rare earth doped titania nanoparticles in individual human cells

    NASA Astrophysics Data System (ADS)

    Jeynes, J. C. G.; Jeynes, C.; Palitsin, V.; Townley, H. E.

    2016-07-01

    There are many possible biomedical applications for titania nanoparticles (NPs) doped with rare earth elements (REEs), from dose enhancement and diagnostic imaging in radiotherapy, to biosensing. However, there are concerns that the NPs could disintegrate in the body thus releasing toxic REE ions to undesired locations. As a first step, we investigate how accurately the Ti/REE ratio from the NPs can be measured inside human cells. A quantitative analysis of whole, unsectioned, individual human cells was performed using proton microprobe elemental microscopy. This method is unique in being able to quantitatively analyse all the elements in an unsectioned individual cell with micron resolution, while also scanning large fields of view. We compared the Ti/REE signal inside cells to NPs that were outside the cells, non-specifically absorbed onto the polypropylene substrate. We show that the REE signal in individual cells co-localises with the titanium signal, indicating that the NPs have remained intact. Within the uncertainty of the measurement, there is no difference between the Ti/REE ratio inside and outside the cells. Interestingly, we also show that there is considerable variation in the uptake of the NPs from cell-to-cell, by a factor of more than 10. We conclude that the NPs enter the cells and remain intact. The large heterogeneity in NP concentrations from cell-to-cell should be considered if they are to be used therapeutically.

  18. Metal and nanoparticle occurrence in biosolid-amended soils.

    PubMed

    Yang, Yu; Wang, Yifei; Westerhoff, Paul; Hristovski, Kiril; Jin, Virginia L; Johnson, Mari-Vaughn V; Arnold, Jeffrey G

    2014-07-01

    Metals can accumulate in soils amended with biosolids in which metals have been concentrated during wastewater treatment. The goal of this study is to inspect agricultural sites with long-term biosolid application for a suite of regulated and unregulated metals, including some potentially present as commonly used engineered nanomaterials (ENMs). Sampling occurred in fields at a municipal and a privately operated biosolid recycling facilities in Texas. Depth profiles of various metals were developed for control soils without biosolid amendment and soils with different rates of biosolid application (6.6 to 74 dry tons per hectare per year) over 5 to 25 years. Regulated metals of known toxicity, including chromium, copper, cadmium, lead, and zinc, had higher concentrations in the upper layer of biosolid-amended soils (top 0-30 cm or 0-15 cm) than in control soils. The depth profiles of unregulated metals (antimony, hafnium, molybdenum, niobium, gold, silver, tantalum, tin, tungsten, and zirconium) indicate higher concentrations in the 0-30 cm soil increment than in the 70-100 cm soil increment, indicating low vertical mobility after entering the soils. Titanium-containing particles between 50 nm and 250 nm in diameter were identified in soil by transmission electron microscopy (TEM) coupled with energy dispersive x-ray spectroscopy (EDX) analysis. In conjunction with other studies, this research shows the potential for nanomaterials used in society that enter the sewer system to be removed at municipal biological wastewater treatment plants and accumulate in agricultural fields. The metal concentrations observed herein could be used as representative exposure levels for eco-toxicological studies in these soils.

  19. Molecular orbital view of the electronic coupling between two metal nanoparticles

    SciTech Connect

    Troparevsky, Claudia; Zhao, Ke; Xiao, Di; Eguiluz, Adolfo G; Zhang, Zhenyu

    2010-01-01

    The electronic coupling between metal nanoparticles is responsible for intriguing new phenomena observed when the particles are near touching contact, which is exemplified by recent investigations of nanoparticle dimers. However, little is known about the role of the molecular orbitals of the nanoparticle dimers. The expectation is that the physics and chemistry of the system must be reflected in the orbitals that control the bonding at touching contact. This expectation is borne out in the present investigation in which we present a comprehensive theoretical study based on density-functional theory of the electronic coupling between two silver nanoparticles. We explain our findings by studying the molecular orbitals of the dimers as a function of the separation and relative orientation between the nanoparticles. We show that as the nanoparticles approach each other a bond-forming step takes place, and that the strength of the hybridization is a key element to determine various properties of the system. We find that the relative orientation between the nanoparticles plays an important role in determining the strength of the coupling which can be visualized by the spatial distribution of the highest occupied molecular orbitals. Moreover, the strength of the coupling will in turn determine the ease of their transition to the nonlinear dielectric-response regime. This effect allows for the tunability of the electronic coupling and magnetic moment of the dimer. Our findings are essential for understanding and tailoring desired physical and chemical properties of closely aggregated nanoparticles relevant for applications such as surface-enhanced Raman scattering and quantum transport in molecular devices.

  20. Assessment of Carbon- and Metal-Based Nanoparticle DNA Damage with Microfluidic Electrophoretic Separation Technology.

    PubMed

    Schrand, Amanda M; Powell, Thomas; Robertson, Tiffany; Hussain, Saber M

    2015-02-01

    In this study, we examined the feasibility of extracting DNA from whole cell lysates exposed to nanoparticles using two different methodologies for evaluation of fragmentation with microfluidic electrophoretic separation. Human lung macrophages were exposed to five different carbon- and metal-based nanoparticles at two different time points (2 h, 24 h) and two different doses (5 µg/ml, 100 µg/ml). The primary difference in the banding patterns after 2 h of nanoparticle exposure is more DNA fragmentation at the higher NP concentration when examining cells exposed to nanoparticles of the same composition. However, higher doses of carbon and silver nanoparticles at both short and long dosing periods can contribute to erroneous or incomplete data with this technique. Also comparing DNA isolation methodologies, we recommend the centrifugation extraction technique, which provides more consistent banding patterns in the control samples compared to the spooling technique. Here we demonstrate that multi-walled carbon nanotubes, 15 nm silver nanoparticles and the positive control cadmium oxide cause similar DNA fragmentation at the short time point of 2 h with the centrifugation extraction technique. Therefore, the results of these studies contribute to elucidating the relationship between nanoparticle physicochemical properties and DNA fragmentation results while providing the pros and cons of altering the DNA isolation methodology. Overall, this technique provides a high throughput way to analyze subcellular alterations in DNA profiles of cells exposed to nanomaterials to aid in understanding the consequences of exposure and mechanistic effects. Future studies in microfluidic electrophoretic separation technologies should be investigated to determine the utility of protein or other assays applicable to cellular systems exposed to nanoparticles.

  1. Far-field optical nanothermometry using individual sub-50 nm upconverting nanoparticles

    NASA Astrophysics Data System (ADS)

    Kilbane, Jacob D.; Chan, Emory M.; Monachon, Christian; Borys, Nicholas J.; Levy, Elizabeth S.; Pickel, Andrea D.; Urban, Jeffrey J.; Schuck, P. James; Dames, Chris

    2016-06-01

    We demonstrate far-field optical thermometry using individual NaYF4 nanoparticles doped with 2% Er3+ and 20% Yb3+. Isolated 20 × 20 × 40 nm3 particles were identified using only far-field optical imaging, confirmed by subsequent scanning electron microscopy. The luminescence thermometry response for five such single particles was characterized for temperatures from 300 K to 400 K. A standard Arrhenius model widely used for larger particles can still be accurately applied to these sub-50 nm particles, with good particle-to-particle uniformity (response coefficients exhibited standard deviations below 5%). With its spatial resolution on the order of 50 nm when imaging a single particle, far below the diffraction limit, this technique has potential applications for both fundamental thermal measurements and nanoscale metrology in industrial applications.We demonstrate far-field optical thermometry using individual NaYF4 nanoparticles doped with 2% Er3+ and 20% Yb3+. Isolated 20 × 20 × 40 nm3 particles were identified using only far-field optical imaging, confirmed by subsequent scanning electron microscopy. The luminescence thermometry response for five such single particles was characterized for temperatures from 300 K to 400 K. A standard Arrhenius model widely used for larger particles can still be accurately applied to these sub-50 nm particles, with good particle-to-particle uniformity (response coefficients exhibited standard deviations below 5%). With its spatial resolution on the order of 50 nm when imaging a single particle, far below the diffraction limit, this technique has potential applications for both fundamental thermal measurements and nanoscale metrology in industrial applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01479h

  2. Enhancement of light absorption in polyazomethines due to plasmon excitation on randomly distributed metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Wróbel, P.; Antosiewicz, T. J.; Stefaniuk, T.; Ciesielski, A.; Iwan, A.; Wronkowska, A. A.; Wronkowski, A.; Szoplik, T.

    2015-05-01

    In photovoltaic devices, metal nanoparticles embedded in a semiconductor layer allow the enhancement of solar-toelectric energy conversion efficiency due to enhanced light absorption via a prolonged optical path, enhanced electric fields near the metallic inclusions, direct injection of hot electrons, or local heating. Here we pursue the first two avenues. In the first, light scattered at an angle beyond the critical angle for reflection is coupled into the semiconductor layer and confined within such planar waveguide up to possible exciton generation. In the second, light is trapped by the excitation of localized surface plasmons on metal nanoparticles leading to enhanced near-field plasmon-exciton coupling at the peak of the plasmon resonance. We report on results of a numerical experiment on light absorption in polymer- (fullerene derivative) blends, using the 3D FDTD method, where exact optical parameters of the materials involved are taken from our recent measurements. In simulations we investigate light absorption in randomly distributed metal nanoparticles dispersed in polyazomethine-(fullerene derivative) blends, which serve as active layers in bulkheterojunction polymer solar cells. In the study Ag and Al nanoparticles of different diameters and fill factors are diffused in two air-stable aromatic polyazomethines with different chemical structures (abbreviated S9POF and S15POF) mixed with phenyl-C61-butyric acid methyl ester (PCBM) or [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM). The mixtures are spin coated on a 100 nm thick Al layer deposited on a fused silica substrate. Optical constants of the active layers are taken from spectroscopic ellipsometry and reflectance measurements using a rotating analyzer type ellipsometer with auto-retarder performed in the wavelength range from 225 nm to 2200 nm. The permittivities of Ag and Al particles of diameters from 20 to 60 nm are assumed to be equal to those measured on 100 to 200 nm thick metal films.

  3. Swelled plastics in supercritical CO2 as media for stabilization of metal nanoparticles and for catalytic hydrogenation.

    PubMed

    Ohde, Hiroyuki; Ohde, Mariko; Wai, Chien M

    2004-04-21

    Swelled plastics in supercritical carbon dioxide provide unique environments for stabilizing palladium and rhodium nanoparticles and for catalytic hydrogenation. Complete hydrogenation of benzene to cyclohexane can be achieved in 10 minutes using the plastic stabilized Rh nanoparticles at 50 degrees C in supercritical CO(2). High efficiency, reusability, and rapid separation of products are some advantages of the plastic stabilized metal nanoparticles for catalytic hydrogenation in supercritical CO(2).

  4. Refractive index chemical sensing with noble metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Blake, Phillip

    Chemical sensing is a key component in modern society, especially in engineering applications. Because of their widespread impact, improvements to chemical sensors are a significant area of research. One class of sensors, plasmonic sensors, is being heavily researched because of their ability to detect low levels of analyte in near real time without destroying the analyte. This work studies a new class of plasmonic sensor that utilizes diffractive coupling to improve sensor performance. Specifically, this work outlines the first study of diffractive coupling sensors with typical nanoparticle shapes. Sensitivity of this new class of sensor is directly compared to typical localized surface plasmon resonance sensors. Spectral peak location sensitivity was found to be equal to or greater than typical plasmonic sensors. These results were corroborated with numerical simulation with and without nanoparticle interaction to demonstrate the power of harnessing diffractive coupling in nanoparticle sensors. The sensing results were then extended to analyze ordered arrays of nanorings. Nanorings were chosen because they have the highest reported sensitivity of any plasmonic shape (880 nm/RIU) in the literature and have a high surface area to volume ratio, which is a key parameter for plasmonic sensors. Theoretical simulations of diffractive coupling nanorings indicate that sensitivity is comparable to non-coupling nanorings in the literature (890 nm/RIU vs. 880 nm/RIU, respectively). Another metric of sensor performance, the figure of merit, was much higher (34) than the non-coupling ring (2). Ordered nanoring arrays which exhibit diffractive coupling improve upon current refractive index based plasmonic sensors. Further improvements to nanoring sensors' figure of merit are possible based on simulation results for nanosphere arrays.

  5. Metallic nickel nanoparticles and their effect on the embryonic development of the sea urchin Paracentrotus lividus.

    PubMed

    Kanold, Julia Maxi; Wang, Jiabin; Brümmer, Franz; Šiller, Lidija

    2016-05-01

    The presence of nanoparticles in many industrial applications and daily products is making it nowadays crucial to assess their impact when exposed to the environment. Metallic nickel nanoparticles (Ni NPs) are of high industrial interest due to their ability to catalyze the reversible hydration of CO2 to carbonic acid at ambient conditions. We characterized metallic Ni NPs by XRD, HRTEM and EDS and determined the solubility of free nickel ions from 3 mg/L metallic Ni NPs in seawater by ICP-MS over 96 h, which was below 3%. Further, embryonic development of the sea urchin Paracentrotus lividus was investigated for 48 h in the presence of metallic Ni NPs (0.03 mg/L to 3 mg/L), but no lethal effects were observed. However, 3 mg/L metallic Ni NPs caused a size reduction similar to 1.2 mg/L NiCl2*6 H2O. The obtained results contribute to current studies on metallic Ni NPs and point to their consequences for the marine ecosystem.

  6. Adsorption of Heavy Metals in Industrial Wastewater by Magnetic Nano-particles

    NASA Astrophysics Data System (ADS)

    Tu, Y.; You, C.

    2010-12-01

    Industrial wastewater containing heavy metals is of great concern because of their toxic impact to living species and environments. Removal of metal ions from industrial effluent using nano-particles is an area of extensive research. This study collected wastewaters and effluents from 11 industrial companies in tanning, electronic plating, printed circuit board manufacturing, semi-conductor, and metal surface treatment industry and studied in detailed the major and trace element compositions to develop potential fingerprinting technique for pollutant source identification. The results showed that electronic plating and metal surface treatment industry produce high Fe, Mn, Cr, Zn, Ni and Mo wastewater. The tanning industry and the printed circuit board manufacturing industry released wastewater with high Fe and Cr, Cu and Ni, respectively. For semi-conductor industry, significant dissolved In was detected in wastewater. The absorption experiments to remove heavy metals in waters were conducted using Fe3O4 nano-particles. Under optimal conditions, more than 99 % dissolved metals were removed in a few minutes.

  7. Preparation of Chitosan/Polystyrene Sulfonate Multilayered Composite Metal Nanoparticles and Its Application.

    PubMed

    Xiong, Fangxin; Chen, Chunxiao; Liu, Shantang

    2016-06-01

    Metal-Chitosan (CTS) composite was first synthesized through the metal composition of chitosan (CTS) and metal ions. The formed composite was alternately deposited on the base with sodium polystyrene sulfonate (PSS) through a layer-by-layer self-assembling technique, followed by an in situ reduction by sodium borohydride to produce a polyelectrolyte nanocomposite thin film containing metal nanoparticles. Assembly, surface morphology and electrochemical properties of the composite membrane were analyzed by UV-visible absorption spectroscopy (UV-vis), atomic force microscopy (AFM) and cyclic voltammetry (CV). The UV-Vis results indicated that the absorbance of the multilayer film at the characteristic absorption peak increased as the membrane bilayers increased, in a good linear relationship, which demonstrated that the multilayer film was uniformly assembled on the base. AFM images showed that the surface of the multilayer thin-film composite had some degree of roughness and metal nanoparticles of 10-20 nm in size were generated on the membrane. The CV results indicated that the metal nanocomposite film had excellent electrocatalytic activity to glucose and had a potential for applications in electrochemical sensors.

  8. Asymmetric organic/metal(oxide) hybrid nanoparticles: synthesis and applications

    NASA Astrophysics Data System (ADS)

    He, Jie; Liu, Yijing; Hood, Taylor C.; Zhang, Peng; Gong, Jinlong; Nie, Zhihong

    2013-05-01

    Asymmetric particles (APs) with broken centrosymmetry are of great interest, due to the asymmetric surface properties and diverse functionalities. In particular, organic/metal(oxide) APs naturally combine the significantly different and complementary properties of organic and inorganic species, leading to their unique applications in various fields. In this review article, we highlighted recent advances in the synthesis and applications of organic/metal(oxide) APs. This type of APs is grounded on chemical or physical interactions between metal(oxide) NPs and organic small molecular or polymeric ligands. The synthetic methodologies were summarized in three categories, including the selective surface modifications, phase separation of mixed ligands on the surface of metal(oxide) NPs, and direct synthesis of APs. We further discussed the unique applications of organic/metal(oxide) APs in self-assembly, sensors, catalysis, and biomedicine, as a result of the distinctions between asymmetrically distributed organic and inorganic components. Finally, challenges and future directions are discussed in an outlook section.

  9. Asymmetric organic/metal(oxide) hybrid nanoparticles: synthesis and applications.

    PubMed

    He, Jie; Liu, Yijing; Hood, Taylor C; Zhang, Peng; Gong, Jinlong; Nie, Zhihong

    2013-06-21

    Asymmetric particles (APs) with broken centrosymmetry are of great interest, due to the asymmetric surface properties and diverse functionalities. In particular, organic/metal(oxide) APs naturally combine the significantly different and complementary properties of organic and inorganic species, leading to their unique applications in various fields. In this review article, we highlighted recent advances in the synthesis and applications of organic/metal(oxide) APs. This type of APs is grounded on chemical or physical interactions between metal(oxide) NPs and organic small molecular or polymeric ligands. The synthetic methodologies were summarized in three categories, including the selective surface modifications, phase separation of mixed ligands on the surface of metal(oxide) NPs, and direct synthesis of APs. We further discussed the unique applications of organic/metal(oxide) APs in self-assembly, sensors, catalysis, and biomedicine, as a result of the distinctions between asymmetrically distributed organic and inorganic components. Finally, challenges and future directions are discussed in an outlook section.

  10. Direct electrochemiluminescence of gold nanoparticles bifunctionalized by luminol analogue-metal complexes in neutral and alkaline media.

    PubMed

    Shu, Jiangnan; Wang, Wei; Cui, Hua

    2015-07-21

    Electrochemiluminescence of gold nanoparticles bifunctionalized by luminol analogue-metal complexes was studied for the first time. Strong direct electrochemiluminescence was observed in neutral and alkaline media without an additional coreactant.

  11. Beet juice utilization: Expeditious green synthesis of nobel metal nanoparticles (Ag, Au, Pt, and Pd) using microwaves

    EPA Science Inventory

    Metal nanoparticles of Ag, Au, Pt, and Pd were prepared in aqueous solutions via a rapid microwave-assisted green method using beet juice, an abundant sugar-rich agricultural produce, served as both a reducing and a capping reagent. The Ag nanoparticles with capping prepared by b...

  12. Tuning Ferritin's Band Gap through Mixed Metal Oxide Nanoparticle Formation.

    PubMed

    Olsen, Cameron; Embley, Jacob; Hansen, Kameron; Henrichsen, Andrew; Peterson, J; Colton, John S; Watt, Richard

    2017-03-23

    This study uses the formation of a mixed metal oxide inside ferritin to tune the band gap energy of the ferritin mineral. The mixed metal oxide is composed of both Co and Mn, and is formed by reacting aqueous Co2+ with MnO4- in the presence of apoferritin. Altering the ratio between the two reactants allowed for controlled tuning of the band gap energies. All minerals formed were indirect band gap materials, with indirect band gap energies ranging from 0.52 to 1.30 eV. The direct transitions were also measured, with energy values ranging from 2.71 to 3.11 eV. Tuning the band gap energies of these samples changes the wavelengths absorbed by each mineral, increasing ferritin's potential in solar-energy harvesting. Additionally, the success of using MnO4- in ferritin mineral formation opens the possibility for new mixed metal oxide cores inside ferritin.

  13. On the Size Dependences of the Metallic Nanoparticle Evaporation and Sublimation Heats: Thermodynamics and Atomistic Modeling

    NASA Astrophysics Data System (ADS)

    Bembel, A. G.

    2017-02-01

    Size dependences of the nanocrystal sublimation and the evaporation heats of the corresponding nanodrops are investigated using the isothermal molecular dynamics and the tight-binding potential (on examples of Ni and Au nanoparticles). Results of computer simulation demonstrating linear dependences of the evaporation and sublimation heats on the particle reciprocal radius are compared with results of thermodynamic calculations as well as with experimental data for bulk phases of the same metals. It has been found that the size dependences of the evaporation and sublimation heats are directly related with the behavior of the size dependence of the melting heat that in its turn correlates with structural transformations in nanoparticles induced by the change of their size. The conclusion is drawn that there is some characteristic nanoparticle size (of the order of 1 nm) at which its crystal and liquid states become indistinguishable.

  14. A study of shape optimization on the metallic nanoparticles for thin-film solar cells.

    PubMed

    Zhou, Shiwei; Huang, Xiaodong; Li, Qing; Xie, Yi Min

    2013-10-29

    The shape of metallic nanoparticles used to enhance the performance of thin-film solar cells is described by Gielis' superformula and optimized by an evolutionary algorithm. As a result, we have found a lens-like nanoparticle capable of improving the short circuit current density to 19.93 mA/cm2. Compared with a two-scale nanospherical configuration recently reported to synthesize the merits of large and small spheres into a single structure, the optimized nanoparticle enables the solar cell to achieve a further 7.75% improvement in the current density and is much more fabrication friendly due to its simple shape and tolerance to geometrical distortions.

  15. A molecular dynamics study of the phase transition in bcc metal nanoparticles.

    PubMed

    Shibuta, Yasushi; Suzuki, Toshio

    2008-10-14

    The phase transition between liquid and solid phases in body-centered cubic (bcc) metal nanoparticles of iron, chromium, molybdenum, and tungsten with size ranging from 2000 to 31,250 atoms was investigated using a molecular dynamics simulation. The nucleation from an undercooled liquid droplet was observed during cooling in all nanoparticles considered. It was found that a nucleus was generated near one side of the particle and solidification spread toward the other side the during nucleation process. On the other hand, the surface melting and subsequent inward melting of the solid core of the nanoparticles were observed during heating. The depression of the melting point was proportional to the inverse of the particle radius due to the Gibbs-Thomson effect. On the other hand, the depression of the nucleation temperature during cooling was not monotonic with respect to the particle radius since the nucleation from an undercooled liquid depends on the event probability of an embryo or a nucleus.

  16. Antimicrobial precious-metal nanoparticles and their use in novel materials.

    PubMed

    Senior, Katharina; Müller, Stefanie; Schacht, Veronika J; Bunge, Michael

    2012-12-01

    Nanotechnology offers powerful new approaches to controlling unwanted microorganisms and other potential biohazards. Engineered nanoparticles with antifungal, antimicrobial, and antiviral properties are now being developed for a variety of applications, including manufacture and maintenance of sterile surfaces, prevention and control of biological contamination, food and water safety, and treatment of infectious diseases and cancer. The great potential of antimicrobial precious-metal nanoparticles is reflected by the high number of recent publications and patent applications, which is summarized, at least in part, in this paper. This review should provide an overview and offer guidance to the scientific community interested in nano(bio)technology, nanomedicine, and nanotoxicology, and may also be of interest to a broader scientific audience. Furthermore, this review covers specific topics in research and development addressing the effects of nanoparticles on microorganisms as well as novel nanotechnology-based approaches for controlling potentially pathogenic microorganisms.

  17. A study of shape optimization on the metallic nanoparticles for thin-film solar cells

    PubMed Central

    2013-01-01

    The shape of metallic nanoparticles used to enhance the performance of thin-film solar cells is described by Gielis' superformula and optimized by an evolutionary algorithm. As a result, we have found a lens-like nanoparticle capable of improving the short circuit current density to 19.93 mA/cm2. Compared with a two-scale nanospherical configuration recently reported to synthesize the merits of large and small spheres into a single structure, the optimized nanoparticle enables the solar cell to achieve a further 7.75% improvement in the current density and is much more fabrication friendly due to its simple shape and tolerance to geometrical distortions. PMID:24168131

  18. Near field intensity enhancement and localization in noble metal nanoparticle ensembles

    NASA Astrophysics Data System (ADS)

    Nedyalkov, N. N.; Nikov, Ru G.; Atanasov, P. A.

    2013-03-01

    Theoretical analysis on the electromagnetic field properties in vicinity of noble metal nanostructures is presented. The study is done on the basis of numerical simulation using Finite Difference Time Domain approach. The systems under consideration are two- and three-dimensional arrays composed of gold or silver nanoparticles. The near field intensity distribution and its enhancement are calcu