Science.gov

Sample records for indocyanine green angiography

  1. Dynamic indocyanine green angiography measurements

    NASA Astrophysics Data System (ADS)

    Holmes, Timothy; Invernizzi, Alessandro; Larkin, Sean; Staurenghi, Giovanni

    2012-11-01

    Dynamic indocyanine green imaging uses a scanning laser ophthalmoscope and a fluorescent dye to produce movies of the dye-filling pattern in the retina and choroid of the eye. It is used for evaluating choroidal neovascularization. Movies are examined to identify the anatomy of the pathology for planning treatment and to evaluate progression or response to treatment. The popularity of this approach is affected by the complexity and difficulty in interpreting the movies. Software algorithms were developed to produce images from the movies that are easy to interpret. A mathematical model is formulated of the flow dynamics, and a fitting algorithm is designed that solves for the flow parameters. The images provide information about flow and perfusion, including regions of change between examinations. Imaged measures include the dye fill-time, temporal dispersion, and magnitude of the dye dilution temporal curves associated with image pixels. Cases show how the software can help to identify clinically relevant anatomy such as feeder vessels, drain vessels, capillary networks, and normal choroidal draining vessels. As a potential tool for research into the character of neovascular conditions and treatments, it reveals the flow dynamics and character of the lesion. Future varieties of this methodology may be used for evaluating the success of engineered tissue transplants, surgical flaps, reconstructive surgery, breast surgery, and many other surgical applications where flow, perfusion, and vascularity of tissue are important.

  2. Indocyanine green angiography in chronic central serous chorioretinopathy

    PubMed Central

    Gajdzik-Gajdecka, Urszula; Dorecka, Mariola; Nita, Ewa; Michalska, Anna; Miniewicz-Kurkowska, Joanna; Romaniuk, Wanda

    2012-01-01

    Summary Background Central serous chorioretinopathy (CSC) is a condition that originates from alterations of the choroidal circulation. The aim of this paper was to evaluate the use of indocyanine green angiography (ICGA) in patients with chronic CSC. Material/Methods The analysis included 17 patients (34 eyes) with chronic CSC in at least 1 eye. The eye examination included: distance and near visual acuity, biomicroscopy, applanation tonometry, fundus examination, colored and red-free fundus photography, evaluation of autofluorescence, optical coherence tomography, and fluorescein and indocyanine green angiography. Results In 34 eyes (100%) involved in the ICGA study the results revealed zones of transient increased choroidal vessels permeability. In 18 eyes (52.9%) choroidal changes were accompanied by a focal serous pigment epithelial detachment. In 4 eyes (11.8%) of 3 patients’ the ICGA examination confirmed the presence of occult choroidal neovascularization (CNV). In the patient with bilateral diffuse retinal pigment epitheliopathy, CNV was present in 1 eye, in the patient with unilateral chronic CSC it was also present in 1 eye, and in the third patient with bilateral chronic CSC it was detected in both eyes. Conclusions ICGA is a very useful examination that enables ophthalmologists to visualize choroidal changes due to chronic CSC, as well as to diagnose occult CNV in chronic CSC. PMID:22293877

  3. Intraoperative Indocyanine Green Laser Angiography in Pediatric Autologous Ear Reconstruction

    PubMed Central

    Martins, Deborah B.; Farias-Eisner, Gina; Mandelbaum, Rachel S.; Hoang, Han; Bradley, James P.

    2016-01-01

    Summary: Skin flap vascularity is a critical determinant of aesthetic results in autologous ear reconstruction. In this study, we investigate the use of intraoperative laser-assisted indocyanine green angiography (ICGA) as an adjunctive measure of skin flap vascularity in pediatric autologous ear reconstruction. Twenty-one consecutive pediatric patients undergoing first-stage autologous total ear reconstruction were retrospectively evaluated. The first 10 patients were treated traditionally (non-ICGA), and the latter 11 patients were evaluated with ICGA intraoperatively after implantation of the cartilage construct and administration of suction. Relative and absolute perfusion units in the form of contour maps were generated. Statistical analyses were performed using independent sample Student t test. Statistically significant differences in exposure and infection were not found between the 2 groups. However, decreased numbers of surgical revisions were required in cases with ICGA versus without ICGA (P = 0.03), suggesting that greater certainty in skin flap perfusion correlated with a reduction in revision surgeries. In cases of exposure, we found an average lowest absolute perfusion unit of 14.3, whereas cases without exposure had an average of 26.1 (P = 0.02), thereby defining objective parameters for utilizing ICGA data in tailoring surgical decision making for this special population of patients. Defined quantitative parameters for utilizing ICGA in evaluating skin flap vascularity may be a useful adjunctive technique in pediatric autologous ear reconstruction. PMID:27579233

  4. Intraoperative Indocyanine Green Laser Angiography in Pediatric Autologous Ear Reconstruction.

    PubMed

    Martins, Deborah B; Farias-Eisner, Gina; Mandelbaum, Rachel S; Hoang, Han; Bradley, James P; Lee, Justine C

    2016-05-01

    Skin flap vascularity is a critical determinant of aesthetic results in autologous ear reconstruction. In this study, we investigate the use of intraoperative laser-assisted indocyanine green angiography (ICGA) as an adjunctive measure of skin flap vascularity in pediatric autologous ear reconstruction. Twenty-one consecutive pediatric patients undergoing first-stage autologous total ear reconstruction were retrospectively evaluated. The first 10 patients were treated traditionally (non-ICGA), and the latter 11 patients were evaluated with ICGA intraoperatively after implantation of the cartilage construct and administration of suction. Relative and absolute perfusion units in the form of contour maps were generated. Statistical analyses were performed using independent sample Student t test. Statistically significant differences in exposure and infection were not found between the 2 groups. However, decreased numbers of surgical revisions were required in cases with ICGA versus without ICGA (P = 0.03), suggesting that greater certainty in skin flap perfusion correlated with a reduction in revision surgeries. In cases of exposure, we found an average lowest absolute perfusion unit of 14.3, whereas cases without exposure had an average of 26.1 (P = 0.02), thereby defining objective parameters for utilizing ICGA data in tailoring surgical decision making for this special population of patients. Defined quantitative parameters for utilizing ICGA in evaluating skin flap vascularity may be a useful adjunctive technique in pediatric autologous ear reconstruction. PMID:27579233

  5. Indocyanine green-based fluorescent angiography in breast reconstruction

    PubMed Central

    Chae, Michael P.; Rozen, Warren Matthew

    2016-01-01

    Background Fluorescent angiography (FA) has been useful for assessing blood flow and assessing tissue perfusion in ophthalmology and other surgical disciplines for decades. In plastic surgery, indocyanine green (ICG) dye-based FA is a relatively novel imaging technology with high potential in various applications. We review the various FA detector systems currently available and critically appraise its utility in breast reconstruction. Methods A review of the published English literature dating from 1950 to 2015 using databases, such as PubMed, Medline, Web of Science, and EMBASE was undertaken. Results In comparison to the old fluorescein dye, ICG has a superior side effect profile and can be accurately detected by various commercial devices, such as SPY Elite (Novadaq, Canada), FLARE (Curadel LLC, USA), PDE-Neo (Hamamatsu Photonics, Japan), Fluobeam 800 (Fluoptics, France), and IC-View (Pulsion Medical Systems AG, Germany). In breast reconstruction, ICG has established as a safer, more accurate tracer agent, in lieu of the traditional blue dyes, for detection of sentinel lymph nodes with radioactive isotopes (99m-Technetium). In prosthesis-based breast reconstruction, intraoperative assessment of the mastectomy skin flap to guide excision of hypoperfused areas translates to improved clinical outcomes. Similarly, in autologous breast reconstructions, FA can be utilized to detect poorly perfused areas of the free flap, evaluate microvascular anastomosis for patency, and assess SIEA vascular territory for use as an alternative free flap with minimal donor site morbidity. Conclusions ICG-based FA is a novel, useful tool for various applications in breast reconstruction. More studies with higher level of evidence are currently lacking to validate this technology. PMID:27047782

  6. [Intraoperative verification of a perforator flap vascularization by indocyanine green angiography].

    PubMed

    Royer, E; Rausky, J; Binder, J-P; May, P; Virzi, D; Revol, M

    2014-02-01

    After Koshima and Soeda first described perforator flaps in 1988, Wei has improved the technique by describing the "free style perforator flap". These flaps have the advantage of being performed on all skin perforators and in reducing donor site morbidity. The disadvantage, however is that the size of their angiosome is not defined and the evaluation of their relay on the experience of the surgeon. An evaluation of the size of an angiosome by conducting intraoperative angiography is proposed. Intraoperative angiography is performed after injection of indocyanine green. Stimulation of the indocyanine green by infrared causes the emission of fluorescent radiation. This fluorescence is then detected by a specific camera that displays real-time visualization of the skin's perfusion. We present the case of a 39-year-old patient who had an open tibial pilon fracture, for which we performed a pedicled propeller flap based on a posterior tibial perforator. Angiography was used to determine accurately the optimal skin perfusion of the propeller flap, which was based on a perforator from the posterior tibial artery. Angiography identified several levels of skin perfusion with a high fluorescence, intermediate and absent. The non-vascularized part of the skin paddle was resected. Given the unreliability of this technique, hypoperfused area was retained. Debridment of this area, however was necessary at day 5 postoperative with repositionning of the flap. Indocyanine green angiography may be a useful decision-making tool for intraoperative surgeon. It allows to adjust the size of the propeller flap's skin paddle to it angiosome. However, this evaluation method needs to be improved with the introduction of a quantitative threshold.

  7. Indocyanine Green Near-Infrared Laser Angiography Predicts Timing for the Division of a Forehead Flap

    PubMed Central

    Christensen, Joani M.; Baumann, Donald P.; Myers, Jeffrey N.; Buretta, Kate; Sacks, Justin M.

    2012-01-01

    Introduction: Reconstruction with flaps requiring delayed division remains common, even with increasing use of free tissue transfer. Patient quality of life and function are significantly decreased during the delay period. Delay could be minimized by developing methods to reliably determine when the flap has developed sufficient vascular supply to undergo successful division. We report the use of laser angiography to determine the appropriate time for division of a forehead flap pedicle. Methods: The patient who had risk factors for microvascular disease underwent near-infrared laser angiography using indocyanine green on postoperative day 21 to assess vascular perfusion of the flap. Although traditional clinical examination indicated the flap was not adequately perfused, laser angiography revealed perfusion to all areas of the flap, so the pedicle was divided. Results: Pedicle division was successful, with no epidermolysis or necrosis. Conclusion: Near-infrared laser angiography with indocyanine green can assess perfusion status of the entire flap and inform the decision to divide the flap in an objective manner. PMID:22977676

  8. Combined use of intraoperative indocyanine green and dynamic angiography in rotational vertebral artery occlusion.

    PubMed

    Chaudhry, Nauman S; Ambekar, Sudheer; Elhammady, Mohamed Samy; Riley, Jonathan P; Pradilla, Gustavo; Nogueira, Raul G; Ahmad, Faiz U

    2016-08-01

    Rotational vertebral artery occlusion, also known as bow hunter's syndrome, is a well-documented surgically amenable cause of vertebrobasilar insufficiency. Traditionally, patients have been imaged using dynamic rotational angiography. The authors sought to determine whether intraoperative indocyanine green (ICG) angiography could reliably assess the adequacy of surgical decompression of the vertebral artery (VA). The authors report two patients who presented with multiple transient episodes of syncope provoked by turning their head to the right. Rotational dynamic angiography revealed a dominant VA that became occluded with head rotation to the right side. The patients underwent successful surgical decompression of the VA via an anterior cervical approach. Intraoperative ICG angiography demonstrated patency of the VA with head rotation. This was further confirmed by intraoperative dynamic catheter angiography. To our knowledge, we present the first two cases of the use of ICG combined with intraoperative dynamic rotational angiography to document the adequacy of surgical decompression of the VA in a patient with rotational vertebral artery occlusion. Intraoperative ICG angiography is a useful adjunct and may potentially supplant the need for intraoperative catheter angiography. PMID:27041076

  9. [Indocyanine green infrared fluorescence angiography and histopathological correlation in experimental choroidal circulatory disturbance. Report 2].

    PubMed

    Matsunaga, H; Ando, A; Matsubara, T; Fukushima, I; Takahashi, K; Ohkuma, H; Uyama, M

    1997-02-01

    We performed an experimental study on choroidal circulatory disturbance to clarify basic problems about interpretation of retino-choroidal lesions in indocyanine green fluorescence angiography (ICG angiography). We severed the posterior ciliary arteries to produce choroidal circulatory disturbance. Fluorescein angiography and ICG angiography were performed at one week, and one month after occlusion. These findings were compared with histopathological findings. One week after occlusion, the area of choroidal infarct showed occlusion of choriocapillaris and proliferation of the retinal pigment epithelial (RPE) cells, this area showed hypofluorescence in the early phase ICG angiography. The hypofluorescence area increased in the late phase. One month after occlusion, the lesion showed loss of choriocapillaris at the center and proliferation of fibroblast-like cells at the edge of the lesion. The subretinal strand showed hyperfluorescence in late phase ICG angiography. Proliferated RPE cells masked ICG fluorescence in the late phase. Fibroblast-like cells showed tissue staining. When reading ICG angiography, we have to take into account that the ICG angiogram is greatly modified by condition of the RPE.

  10. Parathyroid gland angiography with indocyanine green fluorescence to predict parathyroid function after thyroid surgery

    PubMed Central

    Vidal Fortuny, J.; Belfontali, V.; Sadowski, S. M.; Karenovics, W.; Guigard, S.

    2016-01-01

    Background Postoperative hypoparathyroidism remains the most common complication following thyroidectomy. The aim of this pilot study was to evaluate the use of intraoperative parathyroid gland angiography in predicting normal parathyroid gland function after thyroid surgery. Methods Angiography with the fluorescent dye indocyanine green (ICG) was performed in patients undergoing total thyroidectomy, to visualize vascularization of identified parathyroid glands. Results Some 36 patients underwent ICG angiography during thyroidectomy. All patients received standard calcium and vitamin D supplementation. At least one well vascularized parathyroid gland was demonstrated by ICG angiography in 30 patients. All 30 patients had parathyroid hormone (PTH) levels in the normal range on postoperative day (POD) 1 and 10, and only one patient exhibited asymptomatic hypocalcaemia on POD 1. Mean(s.d.) PTH and calcium levels in these patients were 3·3(1·4) pmol/l and 2·27(0·10) mmol/l respectively on POD 1, and 4·0(1.6) pmol/l and 2·32(0·08) mmol/l on POD 10. Two of the six patients in whom no well vascularized parathyroid gland could be demonstrated developed transient hypoparathyroidism. None of the 36 patients presented symptomatic hypocalcaemia, and none received treatment for hypoparathyroidism. Conclusion PTH levels on POD 1 were normal in all patients who had at least one well vascularized parathyroid gland demonstrated during surgery by ICG angiography, and none required treatment for hypoparathyroidism. PMID:26864909

  11. Wall-to-lumen ratio of intracranial arteries measured by indocyanine green angiography

    PubMed Central

    Nakagawa, Daichi; Shojima, Masaaki; Yoshino, Masanori; Kin, Taichi; Imai, Hideaki; Nomura, Seiji; Saito, Toki; Nakatomi, Hirofumi; Oyama, Hiroshi; Saito, Nobuhito

    2016-01-01

    Background: The wall-to-lumen ratio (WLR) is an important parameter in vascular medicine because it indicates the character of vascular wall as well as the degree of stenosis. Despite the advances in medical imaging technologies, it is still difficult to measure the thin-walled normal intracranial arteries, and the reports on the WLR of normal intracranial artery are limited. It might be possible to calculate the WLR using the indocyanine green (ICG) angiography, which is used to observe intracranial vessels during microsurgery. Purpose: To evaluate the WLR of normal intracranial arteries using ICG angiography. Materials and Methods: From the three cases in which ICG angiography was recorded with a ruler during microsurgery, 20 measurement points were chosen for the analysis. The ICG was injected intravenously with a dose of 0.2 mg/kg, and the vessels were inspected at high magnification using an operating microscope equipped with near-infrared illumination system. The vessel outer diameter and the luminal diameter were measured using the images before and after the ICG arrival based on the pixel ratio method using a ruler as reference, respectively. The WLR was calculated as 0.5 × (vessel outer diameter − vessel luminal diameter). Results: The WLR (mean ± standard deviation) of normal intracranial arteries was 0.086 ± 0.022. The WLR tended to be high in small arteries. Conclusion: The WLR of normal intracranial arteries calculated using ICG angiography was consistent with the WLR reported in the previous reports based on human autopsy.

  12. Wall-to-lumen ratio of intracranial arteries measured by indocyanine green angiography

    PubMed Central

    Nakagawa, Daichi; Shojima, Masaaki; Yoshino, Masanori; Kin, Taichi; Imai, Hideaki; Nomura, Seiji; Saito, Toki; Nakatomi, Hirofumi; Oyama, Hiroshi; Saito, Nobuhito

    2016-01-01

    Background: The wall-to-lumen ratio (WLR) is an important parameter in vascular medicine because it indicates the character of vascular wall as well as the degree of stenosis. Despite the advances in medical imaging technologies, it is still difficult to measure the thin-walled normal intracranial arteries, and the reports on the WLR of normal intracranial artery are limited. It might be possible to calculate the WLR using the indocyanine green (ICG) angiography, which is used to observe intracranial vessels during microsurgery. Purpose: To evaluate the WLR of normal intracranial arteries using ICG angiography. Materials and Methods: From the three cases in which ICG angiography was recorded with a ruler during microsurgery, 20 measurement points were chosen for the analysis. The ICG was injected intravenously with a dose of 0.2 mg/kg, and the vessels were inspected at high magnification using an operating microscope equipped with near-infrared illumination system. The vessel outer diameter and the luminal diameter were measured using the images before and after the ICG arrival based on the pixel ratio method using a ruler as reference, respectively. The WLR was calculated as 0.5 × (vessel outer diameter − vessel luminal diameter). Results: The WLR (mean ± standard deviation) of normal intracranial arteries was 0.086 ± 0.022. The WLR tended to be high in small arteries. Conclusion: The WLR of normal intracranial arteries calculated using ICG angiography was consistent with the WLR reported in the previous reports based on human autopsy. PMID:27695538

  13. The feasibility of detecting cerebral blood flow direction using the indocyanine green video angiography.

    PubMed

    Murai, Yasuo; Nakagawa, Syunsuke; Matano, Fumihiro; Shirokane, Kazutaka; Teramoto, Akira; Morita, Akio

    2016-10-01

    The intraoperative confirmation of blood flow direction is necessary in cerebral vascular surgery. Using indocyanine green video angiography (ICG-VAG) with the FLOW 800 system, we examined the transit time of the blood vessel of interest and semiquantitatively evaluated the delay time (T1/2max) from indocyanine green (ICG) injection into the donor artery in reconstructive surgery and the middle cerebral artery (MCA) in aneurysmal surgery. The direction of cerebral blood flow (CBF), which can often be confirmed by ICG-VAG, may be more difficult to determine with faster blood flow. Here, we report our findings regarding the feasibility of detecting CBF direction using the FLOW 800 system. Twenty patients undergoing superficial temporal artery (STA) to MCA anastomosis for carotid occlusive disease and 13 patients with a small MCA aneurysm clipping were evaluated using the T1/2max, semiquantitative method with the FLOW 800 system. In STA-MCA anastomosis cases, the regions of interest (ROIs) included: the proximal donor STA and a region more than 10 mm on the distal side of the donor STA near the anastomosis site. In MCA aneurysms, the ROIs included the proximal M1 and distal M2 sides of the MCA aneurysm. T1/2max was significantly shorter for the proximal sites compared to the distal sites for all subjects (ps < 0.01). T1/2max was shorter for all subjects in the proximal sites. The direction of CBF can be determined using the FLOW 800 system.

  14. Intraoperative indocyanine green angiography for the objective measurement of blood flow

    PubMed Central

    Park, Ho-Chul; Han, Sang-Ah; Ahn, Hyung Joon

    2016-01-01

    Purpose Intraoperative assessment of tissue perfusion is important to predict wound healing or improvement of symptoms in patients with peripheral arterial disease (PAD) or vascular trauma. There is no widely accepted standard for intraoperative measurement of tissue perfusion. Here, we report the use of indocyanine green (ICG)-based angiography to determine the blood flow in patients with PAD and vascular trauma. Methods The SPY fluorescent imaging system was utilized. A dose of 3–5 mL of ICG (2.5 mg/mL) was injected intravenously followed by a 10 mL normal saline flush. The SPY imaging system was used to quantitatively assess perfusion. During the study period, the SPY imaging system was applied in 4 patients with PAD and one patient with vascular trauma. Results In 3 patients with PAD associated with an ischemic wound, complete wound healing was achieved with the indication of viable tissue by the SPY system. In one patient with severe claudication in both lower extremities, the ICG angiography was used to determine the increased blood flow after revascularization. In the case of vascular trauma, this imaging system enabled the delineation of viability of the injured tissue. Conclusion ICG angiography can determine the surface tissue viability in PAD patients. In cases of severe vascular trauma,the SPY system can be used to determine tissue perfusion. Further study is warranted to define the definite utility of this technology to assess perfusion, response to revascularization, and potentially, to predict the likelihood of wound healing. PMID:27186573

  15. Intraoperative indocyanine green fluorescence angiography--an objective evaluation of anastomotic perfusion in colorectal surgery.

    PubMed

    Protyniak, Bogdan; Dinallo, Anthony M; Boyan, William P; Dressner, Roy M; Arvanitis, Michael L

    2015-06-01

    The essentials for any bowel anastomosis are: adequate perfusion, tension free, accurate tissue apposition, and minimal local spillage. Traditionally, perfusion is measured by assessing palpable pulses in the mesentery, active bleeding at cut edges, and lack of tissue discoloration. However, subjective methods lack predictive accuracy for an anastomotic leak. We used intraoperative indocyanine green (ICG) fluorescence angiography to objectively assess colon perfusion before a bowel anastomosis. Seventy-seven laparoscopic colorectal operations, between June 2013 and June 2014, were retrospectively reviewed. The perfusion to the colon and ileum was clinically assessed, and then measured using the SPY Elite Imaging System. The absolute value provided an objective number on a 0-256 gray-scale to represent differences in ICG fluorescence intensity. The lowest absolute value was used in data analysis for each anastomosis (including small bowel) to represent the theoretical least perfused/weakest anastomotic area. The lowest absolute value recorded was 20 in a patient who underwent a laparoscopic right hemicolectomy for an adenoma, with no postoperative complications. Four low anterior resection patients had additional segments of descending colon resected. There was one mortality in a patient who underwent a laparoscopic right hemicolectomy. This study illustrates an initial experience with the SPY system in colorectal surgery. The SPY provides an objective, numerical value of bowel perfusion. However, evidence is scant as to the significance of these numbers. Large-scale randomized controlled trials are required to determine specific cutoff values correlated with surgical outcomes, specifically anastomotic leak rates. PMID:26031270

  16. Improved technique for evaluating oral free flaps by pinprick testing assisted by indocyanine green near-infrared fluorescence angiography.

    PubMed

    Nagata, Tetsuji; Masumoto, Kazuma; Uchiyama, Yoshiyuki; Watanabe, Yoshiko; Azuma, Ryuichi; Morimoto, Yuji; Katou, Fuminori

    2014-10-01

    In head and neck surgery, free-flap reconstruction using a microvascular anastomosis is an indispensable option after tumor ablation. Because the success of free-flap reconstruction is enhanced by rapid identification and salvage of failing flaps, postoperative monitoring of free flaps is essential. We describe a new technique using indocyanine green (ICG) near-infrared angiography and pinprick testing to monitor intraoral free flaps. A solution of ICG (Diagnogreen, 5 ml) was intravenously injected, and scanning was performed with a near-infrared video camera system. Thirty seconds after ICG injection, a pinprick test was performed by placing a 24-gage needle through the dermis to the subcutaneous fat of the flap. Pinprick testing during ICG fluorescence imaging was performed in 30 patients. Flap perfusion was confirmed in all patients, and all flaps survived postoperatively. ICG fluorescence imaging demonstrated that flap perfusion was maintained.

  17. Intraoperative Combined Use of Somatosensory Evoked Potential, Microvascular Doppler Sonography, and Indocyanine Green Angiography in Clipping of Intracranial Aneurysm

    PubMed Central

    Li, Zhili; Zhang, Guanni; Huang, Guangfu; Wang, Zhengyu; Tan, Haibin; Liu, Jinping; Li, Aiguo

    2016-01-01

    Background The aim of this study was to evaluate the effect of combining application of somatosensory evoked potential (SEP), microvascular Doppler sonography (MDS), and indocyanine green angiography (ICGA) in intracranial aneurysm clipping surgery. Material/Methods A total of 158 patients undergoing an intracranial aneurysm clipping operation were recruited. All patients were evaluated with intraoperative SEP and MDS monitoring, and 28 of them were evaluated with intraoperative combined monitoring of SEP, MDS, and ICGA. Results The SEP waves dropped during temporary occlusion of arteries in 19 cases (12.0%), and returned to normal after the clips were repositioned. After aneurysms were clipped, the vortex flow signals were detected by MDS in 6 cases. The aneurysm neck remnants were detected by ICGA in 2 cases of olfactory artery (OA) and in 1 case of middle cerebral artery (MCA), which disappeared after the clips were repositioned. Postoperative CTA or DSA showed that aneurysms were clipped completely and parent arteries and perforating vessels were patent. GOS at 1 month after the surgery was good in 111 cases (70.3%), mild disability in 22 cases (13.9%), severe disability in 14 cases (8.9%), vegetative state in 5 cases (3.2%), and death in 6 cases (3.8%). Conclusions Intraoperative combining application of SEP, MDS, and ICGA can reduce brain tissue ischemia and damage and disability and mortality rate after effective clipping of intracranial aneurysms, thereby improving surgical outcomes. PMID:26845425

  18. Comparing Quantitative Values of Two Generations of Laser-Assisted Indocyanine Green Dye Angiography Systems: Can We Predict Necrosis?

    PubMed Central

    Fourman, Mitchell S.; Rivara, Andrew; Dagum, Alexander B.; Huston, Tara L.; Ganz, Jason C.; Bui, Duc T.; Khan, Sami U.

    2014-01-01

    Objective: Several devices exist today to assist the intraoperative determination of skin flap perfusion. Laser-Assisted Indocyanine Green Dye Angiography (LAICGA) has been shown to accurately predict mastectomy skin flap necrosis using quantitative perfusion values. The laser properties of the latest LAICGA device (SPY Elite) differ significantly from its predecessor system (SPY 2001), preventing direct translation of previous published data. The purpose of this study was to establish a mathematical relationship of perfusion values between these 2 devices. Methods: Breast reconstruction patients were prospectively enrolled into a clinical trial where skin flap evaluation and excision was based on quantitative SPY Q values previously established in the literature. Initial study patients underwent mastectomy skin flap evaluation using both SPY systems simultaneously. Absolute perfusion unit (APU) values at identical locations on the breast were then compared graphically. Results: 210 data points were identified on the same patients (n = 4) using both SPY systems. A linear relationship (y = 2.9883x + 12.726) was identified with a high level or correlation (R2 = 0.744). Previously published values using SPY 2001 (APU 3.7) provided a value of 23.8 APU on the SPY Elite. In addition, postoperative necrosis in these patients correlated to regions of skin identified with the SPY Elite with APU less than 23.8. Conclusion: Intraoperative comparison of LAICGA systems has provided direct correlation of perfusion values predictive of necrosis that were previously established in the literature. An APU value of 3.7 from the SPY 2001 correlates to a SPY Elite APU value of 23.8. PMID:25525483

  19. Detecting abnormalities in choroidal vasculature in a mouse model of age-related macular degeneration by time-course indocyanine green angiography.

    PubMed

    Kumar, Sandeep; Berriochoa, Zachary; Jones, Alex D; Fu, Yingbin

    2014-02-19

    Indocyanine Green Angiography (or ICGA) is a technique performed by ophthalmologists to diagnose abnormalities of the choroidal and retinal vasculature of various eye diseases such as age-related macular degeneration (AMD). ICGA is especially useful to image the posterior choroidal vasculature of the eye due to its capability of penetrating through the pigmented layer with its infrared spectrum. ICGA time course can be divided into early, middle, and late phases. The three phases provide valuable information on the pathology of eye problems. Although time-course ICGA by intravenous (IV) injection is widely used in the clinic for the diagnosis and management of choroid problems, ICGA by intraperitoneal injection (IP) is commonly used in animal research. Here we demonstrated the technique to obtain high-resolution ICGA time-course images in mice by tail-vein injection and confocal scanning laser ophthalmoscopy. We used this technique to image the choroidal lesions in a mouse model of age-related macular degeneration. Although it is much easier to introduce ICG to the mouse vasculature by IP, our data indicate that it is difficult to obtain reproducible ICGA time course images by IP-ICGA. In contrast, ICGA via tail vein injection provides high quality ICGA time-course images comparable to human studies. In addition, we showed that ICGA performed on albino mice gives clearer pictures of choroidal vessels than that performed on pigmented mice. We suggest that time-course IV-ICGA should become a standard practice in AMD research based on animal models.

  20. An investigation of the application of laser-assisted indocyanine green fluorescent dye angiography in pedicle transverse rectus abdominus myocutaneous breast reconstruction

    PubMed Central

    Newman, Martin I; Samson, Michel C; Tamburrino, Joseph F; Swartz, Kimberly A; Brunworth, Louis

    2011-01-01

    BACKGROUND: Pedicle transverse rectus abdominus myocutaneous (pTRAM) flaps remain the most common method of autologous tissue breast reconstruction. Using pTRAM flaps, complications often arise postoperatively, secondary to inadequate circulation. Tissues from distant angiosomes are associated with poorer perfusion, but this differs among patients. Many modalities have been used to reduce the risk of complications, but none have achieved widespread application. The authors believe that laser-assisted indocyanine green fluorescent dye angiography (LA-ICGA) can potentially reduce the risk of complications. METHODS: In two routine, single-pedicle, ipsilateral pTRAM flaps, LA-ICGA imaging was performed following the division of the distal rectus muscle and deep inferior epigastric pedicle. The resulting images were used to guide design of the flap and debridement. RESULTS: In case 1, good perfusion was observed in zone 1 and part of zone 2. In case 2, good perfusion was observed in zone 1 and 50% of zone 3, with little perfusion in zone 2. In both cases, tissues with poor perfusion were debrided before transfer and inset. In both patients, there were no issues with wound healing, tissue necrosis or fat necrosis. CONCLUSIONS: The variability of perfusion of the pTRAM flap among individuals is well appreciated. LA-ICGA helped to determine the limits of good perfusion and, therefore, the limits of tissue to be preserved for transfer and inset. This helped to avoid harvesting poorly perfused tissue that would have almost certainly experienced necrosis and, ultimately, would have reduced the risk of postoperative complications. PMID:22379372

  1. Cracking the perfusion code?: Laser-assisted Indocyanine Green angiography and combined laser Doppler spectrophotometry for intraoperative evaluation of tissue perfusion in autologous breast reconstruction with DIEP or ms-TRAM flaps.

    PubMed

    Ludolph, Ingo; Arkudas, Andreas; Schmitz, Marweh; Boos, Anja M; Taeger, Christian D; Rother, Ulrich; Horch, Raymund E; Beier, Justus P

    2016-10-01

    The aim of this prospective study was to assess the correlation of flap perfusion analysis based on laser-assisted Indocyanine Green (ICG) angiography with combined laser Doppler spectrophotometry in autologous breast reconstruction using free DIEP/ms-TRAM flaps. Between February 2014 and July 2015, 35 free DIEP/ms-TRAM flaps were included in this study. Besides the clinical evaluation of flaps, intraoperative perfusion dynamics were assessed by means of laser-assisted ICG angiography and post-capillary oxygen saturation and relative haemoglobin content (rHb) using combined laser Doppler spectrophotometry. Correlation of the aforementioned parameters was analysed, as well as the impact on flap design and postoperative complications. Flap survival rate was 100%. There were no partial flap losses. In three cases, flap design was based on the angiography, contrary to clinical evaluation and spectrophotometry. The final decision on the inclusion of flap areas was based on the angiographic perfusion pattern. Angiography and spectrophotometry showed a correlation in most of the cases regarding tissue perfusion, post-capillary oxygen saturation and relative haemoglobin content. Laser-assisted ICG angiography is a useful tool for intraoperative evaluation of flap perfusion in autologous breast reconstruction with DIEP/ms-TRAM flaps, especially in decision making in cases where flap perfusion is not clearly assessable by clinical signs and exact determination of well-perfused flap margins is difficult to obtain. It provides an objective real-time analysis of flap perfusion, with high sensitivity for the detection of poorly perfused flap areas. Concerning the topographical mapping of well-perfused flap areas, laser-assisted angiography is superior to combined laser Doppler spectrophotometry.

  2. Indocyanine green fluorescence-guided redo parathyroidectomy.

    PubMed

    Chakedis, Jeffery M; Maser, Christina; Brumund, Kevin T; Bouvet, Michael

    2015-09-02

    Re-operative neck surgery for hyperparathyroidism is a technically difficult operation that requires adjunctive studies to assist with finding the parathyroid tissues. Intraoperative tests help minimise exploration of the neck and decrease injuries to the surrounding structures. Indocyanine green is a near-infrared fluorescent dye that in pre-clinical models was found to be useful in locating the parathyroid glands of dogs. No study has yet reported its use as a tool for parathyroid localisation in humans. We investigated the use of indocyanine green to assist with localisation of a recurrent parathyroid adenoma using a near-infrared imaging system. After exposure of the neck tissues, the parathyroid gland fluoresced brightly and directed our dissection. Exploration of the neck was minimal, and allowed for fast localisation and excision of the adenoma. Overall, use of indocyanine green is a simple and safe technique of intraoperative parathyroid localisation that warrants further investigation.

  3. Indocyanine green fluorescence-guided redo parathyroidectomy.

    PubMed

    Chakedis, Jeffery M; Maser, Christina; Brumund, Kevin T; Bouvet, Michael

    2015-01-01

    Re-operative neck surgery for hyperparathyroidism is a technically difficult operation that requires adjunctive studies to assist with finding the parathyroid tissues. Intraoperative tests help minimise exploration of the neck and decrease injuries to the surrounding structures. Indocyanine green is a near-infrared fluorescent dye that in pre-clinical models was found to be useful in locating the parathyroid glands of dogs. No study has yet reported its use as a tool for parathyroid localisation in humans. We investigated the use of indocyanine green to assist with localisation of a recurrent parathyroid adenoma using a near-infrared imaging system. After exposure of the neck tissues, the parathyroid gland fluoresced brightly and directed our dissection. Exploration of the neck was minimal, and allowed for fast localisation and excision of the adenoma. Overall, use of indocyanine green is a simple and safe technique of intraoperative parathyroid localisation that warrants further investigation. PMID:26336189

  4. Efficiency of staining hair with indocyanine green

    NASA Astrophysics Data System (ADS)

    Kulyabina, Tatyana V.; Kochubey, Vyacheslav I.

    2005-06-01

    The efficiency of staining hair with indocyanine green (ICG) solution depending on type of hair, natural color, staining time and other parameters was investigated. Bonding ICG with hair material occurs due to interaction between ICG molecules and keratinocyte albumin. The penetration of ICG dye into hair meets with difficulties owing to surface protective layer.

  5. The role of indocyanine green angiography imaging in further differential diagnosis of patients with nAMD who are morphologically poor responders to ranibizumab in a real-life setting.

    PubMed

    Ozkaya, A; Alagoz, C; Garip, R; Alkin, Z; Perente, I; Yazici, A T; Taskapili, M

    2016-07-01

    PurposeTo evaluate the neovascular age-related macular degeneration (nAMD) in patients who were morphologically poor responders to intravitreal ranibizumab (IVR) treatment using indocyanine green angiography (ICGA) for further investigation.MethodsThis was a cross-sectional, retrospective study. The patients with an initial diagnosis of nAMD who made through the clinical examination, optical coherence tomography, and fluorescein angiography imaging, and were treated with at least three monthly IVR injections that resulted with a morphological poor response, were included. ICGA was obtained from the patients and evaluated in regard to differential diagnosis of other macular diseases, which might mimic nAMD.ResultsThe study included 132 eyes of 117 patients. The mean age was 67.4±9.4 years. After ICGA imaging, 13 eyes (9.8%) were diagnosed as true nAMD, 74 eyes (56.1%) as polypoidal choroidal vasculopathy (PCV), 35 eyes (26.5%) as chronic central serous chorioretinopathy (CSC), 3 eyes (2.3%) as retinal angiomatous proliferation (RAP), 3 eyes (2.3%) as choroidal neovascularization secondary to CSC, 2 eyes (1.5%) as adult-onset vitelliform macular dystrophy, and 2 eyes (1.5%) as drusenoid pigment epithelial detachment with vitelliform material, respectively. The duration between the initial diagnosis and the revised diagnosis was 15.6±10.5 months in the non-AMD group, and the mean injection number of these patients was 6.6±4.4.ConclusionsMost of the nAMD patients who were thought to be morphologically poor responders to IVR were diagnosed as having non-AMD diseases via ICGA. A detailed differential diagnostic work-up is needed before considering these patients as poor responders. PMID:27080484

  6. Indocyanine green for intraoperative localization of ureter.

    PubMed

    Siddighi, Sam; Yune, Junchan Joshua; Hardesty, Jeffrey

    2014-10-01

    Intraurethral injection of indocyanine green (ICG; Akorn, Lake Forest, IL) and visualization under near-infrared (NIR) light allows for real-time delineation of the ureter. This technology can be helpful to prevent iatrogenic ureteral injury during pelvic surgery. Patients were scheduled to undergo robot-assisted laparoscopic sacrocolpopexy. Before the robotic surgery started, the tip of a 6-F ureteral catheter was inserted into the ureteral orifice. Twenty-five milligrams of ICG was dissolved in 10-mL of sterile water and injected through the open catheter. The same procedure was repeated on the opposite side. The ICG reversibly stained the inside lining of the ureter by binding to proteins on urothelial layer. During the course of robotic surgery, the NIR laser on the da Vinci Si surgical robot (Intuitive Surgical, Inc, Sunnyvale, CA) was used to excite ICG molecules, and infrared emission was captured by the da Vinci filtered lens system and electronically converted to green color. Thus, the ureter fluoresced green, which allowed its definitive identification throughout the entire case. In all cases of >10 patients, we were able to visualize bilateral ureters with this technology, even though there was some variation in brightness that depended on the depth of the ureter from the peritoneal surface. For example, in a morbidly obese patient, the ureters were not as bright green. There were no intraoperative or postoperative adverse effects attributable to ICG administration for up to 2 months of observation. In our experience, this novel method of intraurethral ICG injection was helpful to identify the entire course of ureter and allowed a safe approach to tissues that were adjacent to the urinary tract. The advantage of our technique is that it requires the insertion of just the tip of ureteral catheter. Despite our limited cohort of patients, our findings are consistent with previous reports of the excellent safety profile of intravenous and intrabiliary ICG

  7. Toxicity of indocyanine green in vitreoretinal surgery.

    PubMed

    Gandorfer, Arnd; Haritoglou, Christos; Kampik, Anselm

    2008-01-01

    Indocyanine green (ICG) selectively stains the internal limiting membrane (ILM) of the retina, and helps to visualize and remove the membrane from the retina. Toxicity and damage to the retina has been reported in in vitro and in vivo studies, and following macular surgery. Toxic effects can occur to retinal glial cells, to the nerve fiber layer, to retinal ganglion cells, and to the optic nerve. In case of subretinal application, the retinal pigment epithelium can be affected. The mechanisms of toxicity are unclear. Whether the dye itself or some preparations only are causing harm to the retina is subject of an ongoing debate. ICG changes the light absorption properties of the ILM and enhances the stiffness of the membrane, probably by crosslinking of collagen fibers. Beside better visualization, this effect is responsible for the ease of membrane removal compared to unaided ILM peeling. Whether a phototoxic effect, which has been demonstrated in vitro and in vivo, plays a clinically significant role in macular surgery has neither been proven nor ruled out yet. ICG at concentrations higher than 1.25% or application of the dye in air are very likely causing retinal damage. In addition, lower concentrations also carry the risk of iatrogenic damage, depending on the final concentration of potentially toxic substances at the vitreomacular interface and on other mechanisms. Due to its instability and the unpredictable effects of ICG at the macula, it cannot be recommended for clinical use before its safety has been proven. This chapter reviews the literature related to ICG toxicity, and summarizes dye-related untoward effects in postmortem eyes and ex vivo models, in in vitro and in vivo animal models, and in macular surgery.

  8. A Review of Indocyanine Green Fluorescent Imaging in Surgery

    PubMed Central

    Alander, Jarmo T.; Kaartinen, Ilkka; Laakso, Aki; Pätilä, Tommi; Spillmann, Thomas; Tuchin, Valery V.; Venermo, Maarit; Välisuo, Petri

    2012-01-01

    The purpose of this paper is to give an overview of the recent surgical intraoperational applications of indocyanine green fluorescence imaging methods, the basics of the technology, and instrumentation used. Well over 200 papers describing this technique in clinical setting are reviewed. In addition to the surgical applications, other recent medical applications of ICG are briefly examined. PMID:22577366

  9. Labeling of indocyanine green with carrier-free iodine-123

    DOEpatents

    Ansari, Azizullah N.; Lambrecht, Richard M.; Redvanly, Carol S.; Wolf, Alfred P.

    1976-01-01

    The method of labeling indocyanine green (ICG) with carrier-free iodine-123 comprising the steps of condensing xenon-123 on crystals of ICG followed by permitting decay of the .sup.123 Xe a sufficient length of time to produce .sup.123 I-electronically excited ions and atoms which subsequently label ICG.

  10. Uptake of indocyanine green by hamster sebaceous glands

    NASA Astrophysics Data System (ADS)

    McMillan, Kathleen; Lo, Kai-Ming; Wang, Zhi

    2001-05-01

    Photothermal injury to the sebaceous glands is a potential curative treatment for the common skin disease acne vulgaris. Accumulation of the exogenous chromophore indocyanine green in the sebaceous glands may be accomplished using an emulsion or liposomal formulation applied to the skin surface. An emulsion containing 0.09% by weight indocyanine green (ICG) was applied to the epidermis of hamster ears ex vivo and the flank organ in vivo. Fluorescence microscopy demonstrated selective accumulation of ICG in the underlying sebaceous glands. The concentration of ICG that may be expected to accumulate in sebaceous glands of humans was then estimated on the basis of the gland size and orifice area, for the case of topical application of a more concentrated 1% ICG liposomal formulation. Monte Carlo modeling and heat transfer calculations showed that the sebaceous glands containing the exogenous chromophore may be selectively damaged by pulsed 810 nm laser radiation in conjunction with cryogen spray cooling.

  11. [The indocyanine green (Ujoviridin) test in patients with hyperemesis gravidarum].

    PubMed

    Rudolf, K; Rudolf, H; Töwe, J

    1982-01-01

    A dose of 0.5 mg/kg body weight of indocyanine-green (Ujoviridin), a chromodiagnostic, was applied in one single injection under standardised conditions to 16 patients, aged between 21 and 31 years (25.9 years on average), with slight to moderate hyperemesis gravidarum, with the view to making an assessment of hepatic excretion.--Also determined were aminotransferases, alanine-aminopeptidase, and bilirubin in serum, accompanied by thymol turbidity tests.--The values of indocyanine-green half-life were all, but for one patient, within or at the upper limit of normal.--While the informative value of individual measurements is limited, the above findings seem to suggest that in cases of slight or moderate hyperemesis the laboratory parameters tested are unlikely to rise to pathological levels, except for slight increases which may be associated to certain individual cases. PMID:6126975

  12. Visualisation of the distributions of melanin and indocyanine green in biological tissues

    SciTech Connect

    Genina, E A; Fedosov, I V; Bashkatov, A N; Zimnyakov, D A; Tuchin, V V; Altshuler, G B

    2008-03-31

    A double-wavelength laser scanning microphotometer with the high spectral and spatial resolutions is developed for studying the distribution of endogenic and exogenic dyes in biological tissues. Samples of hair and skin biopsy with hair follicles stained with indocyanine green are studied. The spatial distribution of indocyanine green and melanin in the biological tissue is determined from the measured optical transmittance. (laser biology)

  13. LASER BIOLOGY: Visualisation of the distributions of melanin and indocyanine green in biological tissues

    NASA Astrophysics Data System (ADS)

    Genina, E. A.; Fedosov, I. V.; Bashkatov, A. N.; Zimnyakov, D. A.; Altshuler, G. B.; Tuchin, V. V.

    2008-03-01

    A double-wavelength laser scanning microphotometer with the high spectral and spatial resolutions is developed for studying the distribution of endogenic and exogenic dyes in biological tissues. Samples of hair and skin biopsy with hair follicles stained with indocyanine green are studied. The spatial distribution of indocyanine green and melanin in the biological tissue is determined from the measured optical transmittance.

  14. A standardized model for predicting flap failure using indocyanine green dye

    NASA Astrophysics Data System (ADS)

    Zimmermann, Terence M.; Moore, Lindsay S.; Warram, Jason M.; Greene, Benjamin J.; Nakhmani, Arie; Korb, Melissa L.; Rosenthal, Eben L.

    2016-03-01

    Techniques that provide a non-invasive method for evaluation of intraoperative skin flap perfusion are currently available but underutilized. We hypothesize that intraoperative vascular imaging can be used to reliably assess skin flap perfusion and elucidate areas of future necrosis by means of a standardized critical perfusion threshold. Five animal groups (negative controls, n=4; positive controls, n=5; chemotherapy group, n=5; radiation group, n=5; chemoradiation group, n=5) underwent pre-flap treatments two weeks prior to undergoing random pattern dorsal fasciocutaneous flaps with a length to width ratio of 2:1 (3 x 1.5 cm). Flap perfusion was assessed via laser-assisted indocyanine green dye angiography and compared to standard clinical assessment for predictive accuracy of flap necrosis. For estimating flap-failure, clinical prediction achieved a sensitivity of 79.3% and a specificity of 90.5%. When average flap perfusion was more than three standard deviations below the average flap perfusion for the negative control group at the time of the flap procedure (144.3+/-17.05 absolute perfusion units), laser-assisted indocyanine green dye angiography achieved a sensitivity of 81.1% and a specificity of 97.3%. When absolute perfusion units were seven standard deviations below the average flap perfusion for the negative control group, specificity of necrosis prediction was 100%. Quantitative absolute perfusion units can improve specificity for intraoperative prediction of viable tissue. Using this strategy, a positive predictive threshold of flap failure can be standardized for clinical use.

  15. Green light for liver function monitoring using indocyanine green? An overview of current clinical applications.

    PubMed

    Vos, J J; Wietasch, J K G; Absalom, A R; Hendriks, H G D; Scheeren, T W L

    2014-12-01

    The dye indocyanine green is familiar to anaesthetists, and has been studied for more than half a century for cardiovascular and hepatic function monitoring. It is still, however, not yet in routine clinical use in anaesthesia and critical care, at least in Europe. This review is intended to provide a critical analysis of the available evidence concerning the indications for clinical measurement of indocyanine green elimination as a diagnostic and prognostic tool in two areas: its role in peri-operative liver function monitoring during major hepatic resection and liver transplantation; and its role in critically ill patients on the intensive care unit, where it is used for prediction of mortality, and for assessment of the severity of acute liver failure or that of intra-abdominal hypertension. Although numerous studies have demonstrated that indocyanine green elimination measurements in these patient populations can provide diagnostic or prognostic information to the clinician, 'hard' evidence - i.e. high-quality prospective randomised controlled trials - is lacking, and therefore it is not yet time to give a green light for use of indocyanine green in routine clinical practice.

  16. Degradation kinetics of indocyanine green in aqueous solution.

    PubMed

    Saxena, Vishal; Sadoqi, Mostafa; Shao, Jun

    2003-10-01

    The degradation kinetics of a near-infrared fluorescent, diagnostic, and photodynamic agent, indocyanine green (ICG), was investigated in aqueous solution by steady-state fluorescence technique. The influence of ICG concentration on its fluorescence spectrum was determined. The degradation kinetics of ICG in aqueous solution was studied as a function of light exposure, type of light exposed, temperature, and ICG concentration. The degradation of ICG was found to follow first-order kinetics. Exposure to light and high temperatures caused acceleration in the degradation. The type and intensity of exposed light also affected degradation. ICG aqueous solutions were found to be more stable in dark, at low temperatures, and at higher ICG concentrations.

  17. Study of diffusion of indocyanine green as a photodynamic dye into skin using backscattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Genina, E. A.; Bashkatov, A. N.; Tuchin, V. V.

    2014-07-01

    One of the lines of development of modern medicine is theranostics consisting in simultaneous diagnosis and laser treatment with the use of multifunctional agents such as fluorescent indocyanine green that has photodynamic and photothermal properties. Diffusion of indocyanine green dissolved in water and aqueous solutions of alcohols (glycerol, propylene glycol and ethanol) into the dermis is studied by using backscattering spectroscopy. The coefficients of the dye diffusion into the dermis are obtained for the first time by using these solvents.

  18. Study of diffusion of indocyanine green as a photodynamic dye into skin using backscattering spectroscopy

    SciTech Connect

    Genina, E A; Bashkatov, A N; Tuchin, V V

    2014-07-31

    One of the lines of development of modern medicine is theranostics consisting in simultaneous diagnosis and laser treatment with the use of multifunctional agents such as fluorescent indocyanine green that has photodynamic and photothermal properties. Diffusion of indocyanine green dissolved in water and aqueous solutions of alcohols (glycerol, propylene glycol and ethanol) into the dermis is studied by using backscattering spectroscopy. The coefficients of the dye diffusion into the dermis are obtained for the first time by using these solvents. (laser biophotonics)

  19. Pharmacokinetic study of indocyanine Green after intravenous administration by UPLC-MS/MS.

    PubMed

    Chen, Yu; Chen, Dongxin; Hu, Wenhao; Lin, Guanyang; Huang, Shiyong

    2015-01-01

    Indocyanine Green is widely used in medical diagnosis and to evaluate liver function and other regional blood flows in clinical application or animal experiments. In this work, a sensitive and selective ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for determination of Indocyanine Green in rat plasma was developed and validated. After addition of rutin as an internal standard (IS), protein precipitation by acetonitrile-methanol (9:1, v/v) was used to prepare samples. Chromatographic separation was achieved on a UPLC BEH C18 column (2.1 mm × 100 mm, 1.7 μm) with 0.1% formic acid and acetonitrile as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; multiple reactions monitoring (MRM) mode was used for quantification using target fragment ions m/z 753.4→330.2 for Indocyanine Green, and m/z 611.1→303.1 for IS. Calibration plots were linear throughout the range 20-5000 ng/mL for Indocyanine Green in rat plasma. Mean recoveries of Indocyanine Green in rat plasma ranged from 79.5% to 85.4%. RSD of intra-day and inter-day precision were both < 12%. The accuracy of the method was between 95.9% and 113.9%. The method was successfully applied to pharmacokinetic study of Indocyanine Green after intravenous administration.

  20. Pharmacokinetic study of indocyanine Green after intravenous administration by UPLC-MS/MS

    PubMed Central

    Chen, Yu; Chen, Dongxin; Hu, Wenhao; Lin, Guanyang; Huang, Shiyong

    2015-01-01

    Indocyanine Green is widely used in medical diagnosis and to evaluate liver function and other regional blood flows in clinical application or animal experiments. In this work, a sensitive and selective ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for determination of Indocyanine Green in rat plasma was developed and validated. After addition of rutin as an internal standard (IS), protein precipitation by acetonitrile-methanol (9:1, v/v) was used to prepare samples. Chromatographic separation was achieved on a UPLC BEH C18 column (2.1 mm × 100 mm, 1.7 μm) with 0.1% formic acid and acetonitrile as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; multiple reactions monitoring (MRM) mode was used for quantification using target fragment ions m/z 753.4→330.2 for Indocyanine Green, and m/z 611.1→303.1 for IS. Calibration plots were linear throughout the range 20-5000 ng/mL for Indocyanine Green in rat plasma. Mean recoveries of Indocyanine Green in rat plasma ranged from 79.5% to 85.4%. RSD of intra-day and inter-day precision were both < 12%. The accuracy of the method was between 95.9% and 113.9%. The method was successfully applied to pharmacokinetic study of Indocyanine Green after intravenous administration. PMID:26629038

  1. Photoacoustic tomography of human hepatic malignancies using intraoperative indocyanine green fluorescence imaging.

    PubMed

    Miyata, Akinori; Ishizawa, Takeaki; Kamiya, Mako; Shimizu, Atsushi; Kaneko, Junichi; Ijichi, Hideaki; Shibahara, Junji; Fukayama, Masashi; Midorikawa, Yutaka; Urano, Yasuteru; Kokudo, Norihiro

    2014-01-01

    Recently, fluorescence imaging following the preoperative intravenous injection of indocyanine green has been used in clinical settings to identify hepatic malignancies during surgery. The aim of this study was to evaluate the ability of photoacoustic tomography using indocyanine green as a contrast agent to produce representative fluorescence images of hepatic tumors by visualizing the spatial distribution of indocyanine green on ultrasonographic images. Indocyanine green (0.5 mg/kg, intravenous) was preoperatively administered to 9 patients undergoing hepatectomy. Intraoperatively, photoacoustic tomography was performed on the surface of the resected hepatic specimens (n = 10) under excitation with an 800 nm pulse laser. In 4 hepatocellular carcinoma nodules, photoacoustic imaging identified indocyanine green accumulation in the cancerous tissue. In contrast, in one hepatocellular carcinoma nodule and five adenocarcinoma foci (one intrahepatic cholangiocarcinoma and 4 colorectal liver metastases), photoacoustic imaging delineated indocyanine green accumulation not in the cancerous tissue but rather in the peri-cancerous hepatic parenchyma. Although photoacoustic tomography enabled to visualize spatial distribution of ICG on ultrasonographic images, which was consistent with fluorescence images on cut surfaces of the resected specimens, photoacoustic signals of ICG-containing tissues decreased approximately by 40% even at 4 mm depth from liver surfaces. Photoacoustic tomography using indocyanine green also failed to identify any hepatocellular carcinoma nodules from the body surface of model mice with non-alcoholic steatohepatitis. In conclusion, photoacoustic tomography has a potential to enhance cancer detectability and differential diagnosis by ultrasonographic examinations and intraoperative fluorescence imaging through visualization of stasis of bile-excreting imaging agents in and/or around hepatic tumors. However, further technical advances are needed

  2. Indocyanine-green-loaded microballoons for biliary imaging in cholecystectomy

    PubMed Central

    Mitra, Kinshuk; Melvin, James; Chang, Shufang; Park, Kyoungjin; Yilmaz, Alper; Melvin, Scott

    2012-01-01

    Abstract. We encapsulate indocyanine green (ICG) in poly[(D,L-lactide-co-glycolide)-co-PEG] diblock (PLGA-PEG) microballoons for real-time fluorescence and hyperspectral imaging of biliary anatomy. ICG-loaded microballoons show superior fluorescence characteristics and slower degradation in comparison with pure ICG. The use of ICG-loaded microballoons in biliary imaging is demonstrated in both biliary-simulating phantoms and an ex vivo tissue model. The biliary-simulating phantoms are prepared by embedding ICG-loaded microballoons in agar gel and imaged by a fluorescence imaging module in a Da Vinci surgical robot. The ex vivo model consists of liver, gallbladder, common bile duct, and part of the duodenum freshly dissected from a domestic swine. After ICG-loaded microballoons are injected into the gallbladder, the biliary structure is imaged by both hyperspectral and fluorescence imaging modalities. Advanced spectral analysis and image processing algorithms are developed to classify the tissue types and identify the biliary anatomy. While fluorescence imaging provides dynamic information of movement and flow in the surgical region of interest, data from hyperspectral imaging allow for rapid identification of the bile duct and safe exclusion of any contaminant fluorescence from tissue not part of the biliary anatomy. Our experiments demonstrate the technical feasibility of using ICG-loaded microballoons for biliary imaging in cholecystectomy. PMID:23214186

  3. Quantitative imaging of lymphatic function with liposomal indocyanine green.

    PubMed

    Proulx, Steven T; Luciani, Paola; Derzsi, Stefanie; Rinderknecht, Matthias; Mumprecht, Viviane; Leroux, Jean-Christophe; Detmar, Michael

    2010-09-15

    Lymphatic vessels play a major role in cancer progression and in postsurgical lymphedema, and several new therapeutic approaches targeting lymphatics are currently being developed. Thus, there is a critical need for quantitative imaging methods to measure lymphatic flow. Indocyanine green (ICG) has been used for optical imaging of the lymphatic system, but it is unstable in solution and may rapidly enter venous capillaries after local injection. We developed a novel liposomal formulation of ICG (LP-ICG), resulting in vastly improved stability in solution and an increased fluorescence signal with a shift toward longer wavelength absorption and emission. When injected intradermally to mice, LP-ICG was specifically taken up by lymphatic vessels and allowed improved visualization of deep lymph nodes. In a genetic mouse model of lymphatic dysfunction, injection of LP-ICG showed no enhancement of draining lymph nodes and slower clearance from the injection site. In mice bearing B16 luciferase-expressing melanomas expressing vascular endothelial growth factor-C (VEGF-C), sequential near-IR imaging of intradermally injected LP-ICG enabled quantification of lymphatic flow. Increased flow through draining lymph nodes was observed in mice bearing VEGF-C-expressing tumors without metastases, whereas a decreased flow pattern was seen in mice with a higher lymph node tumor burden. This new method will likely facilitate quantitative studies of lymphatic function in preclinical investigations and may also have potential for imaging of lymphedema or improved sentinel lymph detection in cancer. PMID:20823159

  4. Biodistribution of Encapsulated Indocyanine Green in Healthy Mice

    PubMed Central

    Yaseen, Mohammad A.; Yu, Jie; Jung, Bongsu; Wong, Michael S.; Anvari, Bahman

    2009-01-01

    Indocyanine Green (ICG) is a fluorescent probe used in various optically-mediated diagnostic and therapeutic applications. However, utility of ICG remains limited by its unstable optical properties and non-specific localization. We have encapsulated ICG within electrostatically-assembled mesocapsules (MCs) to explore its potential for targeted optical diagnosis and therapy. In this study, we investigate how the surface coating and size of the MCs influences ICG's biodistribution in vivo. ICG was administered intravenously to Swiss Webster mice as a free solution or encapsulated within either 100 nm diameter MCs coated with dextran; 500 nm diameter MCs coated with dextran; or 100 nm diameter MCs coated with 10 nm ferromagnetic iron oxide nanoparticles, themselves coated with polyethylene glycol. ICG was extracted from harvested blood and organs at various times and its amount quantified with fluorescence measurements. MCs containing ICG accumulated in organs of the reticuloendothelial system, namely the liver and spleen, as well as the lungs. The circulation kinetics of ICG remained unaffected by encapsulation; however, the deposition within organs other than the liver suggests a different biodistribution mechanism. Results suggest that the capsules' coating influences their biodistribution to a greater extent than their size. The MC encapsulation system allows for delivery of ICG to organs other than the liver, enabling the potential development of new optical imaging and therapeutic strategies. PMID:19799463

  5. Indocyanine green-laser thermolysis of acne vulgaris

    NASA Astrophysics Data System (ADS)

    Genina, Elina A.; Bashkatov, Alexey N.; Simonenko, Georgy V.; Tuchin, Valery V.; Yaroslavsky, Ilya V.; Altshuler, Gregory B.

    2005-08-01

    The near-infrared (NIR) laser radiation due to its high penetration depth is widely used in phototherapy and photothermolysis. In application to skin appendages a high selectivity of laser treatment is needed to prevent light action on surrounding tissues. Indocyanine Green (ICG) dye may provide a high selectivity of treatment due to effective ICG uploading by a target and its narrow band of considerable absorption just at the wavelength of the NIR diode laser. The goal of this study is to demonstrate the efficacy of the NIR diode laser photothermolysis in combination with topical application of ICG suggested for treatment of acne vulgaris. Two volunteers with back-located acne were enrolled. Skin sites of subjects were stained by ICG and irradiated by NIR laser-diode light (803 or 809 nm). The individual acne lesions were photothermally treated at 18 W/cm2 (803 nm, 0.5 sec) without skin surface cooling or at 200 W/cm2 (809 nm, 0.5 sec) with cooling. The results of the observations during a month after the treatment have shown that ICG stained acne inflammatory elements were destructed for light exposures of 0.5 sec.

  6. Fluorescence spectroscopy using indocyanine green for lymph node mapping

    NASA Astrophysics Data System (ADS)

    Haj-Hosseini, Neda; Behm, Pascal; Shabo, Ivan; Wârdell, Karin

    2014-02-01

    The principles of cancer treatment has for years been radical resection of the primary tumor. In the oncologic surgeries where the affected cancer site is close to the lymphatic system, it is as important to detect the draining lymph nodes for metastasis (lymph node mapping). As a replacement for conventional radioactive labeling, indocyanine green (ICG) has shown successful results in lymph node mapping; however, most of the ICG fluorescence detection techniques developed are based on camera imaging. In this work, fluorescence spectroscopy using a fiber-optical probe was evaluated on a tissue-like ICG phantom with ICG concentrations of 6-64 μM and on breast tissue from five patients. Fiber-optical based spectroscopy was able to detect ICG fluorescence at low intensities; therefore, it is expected to increase the detection threshold of the conventional imaging systems when used intraoperatively. The probe allows spectral characterization of the fluorescence and navigation in the tissue as opposed to camera imaging which is limited to the view on the surface of the tissue.

  7. Indocyanine green alters transepithelial electrical parameters of the distal colon.

    PubMed

    Hameed, Burhan; Smith, David M; Verrechio, Jon J; Schmidt, J David; Gillooley, Leesa E; Valenzano, Mary Carmen; Lewis, Simon A; Mullin, James M

    2004-09-01

    Indocyanine green (ICG) is used as a dye marker of the vascular space in gastroenterology, ophthalmology, neurology, and critical care medicine. It is widely regarded to be inert. We report, however, that ICG demonstrates effects on colonic transepithelial electrical parameters which could form a basis for a growing number of deleterious gastrointestinal and other clinical effects. Short-circuit current (Iscc), transepithelial conductance (gt), and transepithelial paracellular flux of 14C-D-mannitol were monitored across sheets of rat distal colon. Dye was introduced to mucosal or serosal tissue surfaces at a concentration similar to that used in vivo (10 microg/ml). ICG decreased Iscc by over 50% and gt by over 10%. Transepithelial mannitol flux was not altered. Dye was effective only from the serosal surface. Cyclic AMP-induced spiking of Iscc was not affected by ICG. Preincubation with amiloride or furosemide did not affect the action of the dye on gt or Iscc. ICG at in vivo dosages is clearly capable of inhibiting ion transport across colon epithelial tissue. The serosal site of action indicates activity on a basal-lateral transport system or diffusion into the cell only across the basal-lateral membrane followed by inhibition of a transporter from the intracellular side. ICG should not be considered inert in vivo. Leakage of ICG from the vascular space into the interstitial fluid space will likely result in tissue morbidity. PMID:15481307

  8. Micellar formulation of indocyanine green for phototherapy of melanoma.

    PubMed

    Mundra, Vaibhav; Peng, Yang; Rana, Sandeep; Natarajan, Amarnath; Mahato, Ram I

    2015-12-28

    Phototherapy (PT), a light activated treatment modality, is a potential therapeutic option for the treatment of melanoma. In spite of the excellent safety profile and absorption in the near infrared (NIR) range, clinical potential of indocyanine green (ICG) as PT is limited by its short half-life and inefficient tumor accumulation. In this study, we have covalently conjugated ICG-NH2 to the pendant carboxyl groups of poly (ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate) (PEG-PCC) copolymer using carbodiimide coupling, which self-assembled into micelles with a particle size of 30-50 nm and high ICG loading. These ICG conjugated micelles exhibited significant in vitro photodynamic cytotoxicity. Use of sodium azide and NIR radiate on at 4 °C revealed photodynamic and photothermal as mechanism of cytotoxicity of ICG solution and ICG conjugated micelles, respectively. In vivo NIR imaging demonstrated that ICG conjugated micelles prolonged its circulation and increased tumor accumulation through enhanced permeability and retention (EPR) effect. Enhanced tumor accumulation improved therapeutic efficacy with complete tumor regression in NIR irradiated ICG conjugated micelles compared to ICG solution and control in a A375 human melanoma tumor model in athymic nude mice. These results suggest that ICG conjugated micelles can be potentially utilized for PT and imaging of melanoma.

  9. Indocyanine-green-loaded microballoons for biliary imaging in cholecystectomy

    NASA Astrophysics Data System (ADS)

    Mitra, Kinshuk; Melvin, James; Chang, Shufang; Park, Kyoungjin; Yilmaz, Alper; Melvin, Scott; Xu, Ronald X.

    2012-11-01

    We encapsulate indocyanine green (ICG) in poly[(D,L-lactide-co-glycolide)-co-PEG] diblock (PLGA-PEG) microballoons for real-time fluorescence and hyperspectral imaging of biliary anatomy. ICG-loaded microballoons show superior fluorescence characteristics and slower degradation in comparison with pure ICG. The use of ICG-loaded microballoons in biliary imaging is demonstrated in both biliary-simulating phantoms and an ex vivo tissue model. The biliary-simulating phantoms are prepared by embedding ICG-loaded microballoons in agar gel and imaged by a fluorescence imaging module in a Da Vinci surgical robot. The ex vivo model consists of liver, gallbladder, common bile duct, and part of the duodenum freshly dissected from a domestic swine. After ICG-loaded microballoons are injected into the gallbladder, the biliary structure is imaged by both hyperspectral and fluorescence imaging modalities. Advanced spectral analysis and image processing algorithms are developed to classify the tissue types and identify the biliary anatomy. While fluorescence imaging provides dynamic information of movement and flow in the surgical region of interest, data from hyperspectral imaging allow for rapid identification of the bile duct and safe exclusion of any contaminant fluorescence from tissue not part of the biliary anatomy. Our experiments demonstrate the technical feasibility of using ICG-loaded microballoons for biliary imaging in cholecystectomy.

  10. Sentinel lymph node biopsy under fluorescent indocyanin green guidance: Initial experience

    PubMed Central

    Aydoğan, Fatih; Arıkan, Akif Enes; Aytaç, Erman; Velidedeoğlu, Mehmet; Yılmaz, Mehmet Halit; Sager, Muhammet Sait; Çelik, Varol; Uras, Cihan

    2016-01-01

    Objective: Sentinel lymph node biopsy can be applied by using either blue dye or radionuclide method or both in breast cancer. Fluorescent imaging with indocyanine green is a new defined method. This study evaluates the applicability of sentinel lymph node biopsy via fluorescent indocyanine green. Material and Methods: IC-VIEW (Pulsion Medical Systems AG, Munich, Germany) infrared visualization system was used for imaging. Two mL of indocyanine green was injected to visualize sentinel lymph nodes. After injection, subcutaneous lymphatics were traced and sentinel lymph nodes were found with simultaneous imaging. Sentinel lymph nodes were excised under fluorescent light guidance, and excised lymph nodes were examined histopathologically. Patients with sentinel lymph node metastases underwent axillary dissection. Results: Four patients with sentinel lymph node biopsy due to breast cancer were included in the study. Sentinel lymph nodes were visualized with indocyanine green in all patients. The median number of excised sentinel lymph node was 2 (2–3). Two patients with lymph node metastasis underwent axillary dissection. No metastasis was detected in lymph nodes other than the sentinel nodes in patients with axillary dissection. There was no complication during and after the operation related to the method. Conclusion: According to our limited experience, sentinel lymph node biopsy under fluorescent indocyanine green guidance, which has an advantage of simultaneous visualization, is technically feasible. PMID:26985159

  11. Clinical application of indocyanine green-fluorescence imaging during hepatectomy

    PubMed Central

    Ishizawa, Takeaki; Saiura, Akio

    2016-01-01

    In hepatobiliary surgery, the fluorescence and bile excretion of indocyanine green (ICG) can be used for real-time visualization of biological structure. Fluorescence cholangiography is used to obtain fluorescence images of the bile ducts following intrabiliary injection of 0.025−0.5 mg/mL ICG or intravenous injection of 2.5 mg ICG. Recently, the latter technique has been used in laparoscopic/robotic cholecystectomy. Intraoperative fluorescence imaging can be used to identify subcapsular hepatic tumors. Primary and secondary hepatic malignancy can be identified by intraoperative fluorescence imaging using preoperative intravenous injection of ICG through biliary excretion disorders that exist in cancerous tissues of hepatocellular carcinoma (HCC) and in non-cancerous hepatic parenchyma around adenocarcinoma foci. Intraoperative fluorescence imaging may help detect tumors to be removed, especially during laparoscopic hepatectomy, in which visual inspection and palpation are limited, compared with open surgery. Fluorescence imaging can also be used to identify hepatic segments. Boundaries of hepatic segments can be visualized following injection of 0.25−2.5 mg/mL ICG into the portal veins or by intravenous injection of 2.5 mg ICG following closure of the proximal portal pedicle toward hepatic regions to be removed. These techniques enable identification of hepatic segments before hepatectomy and during parenchymal transection for anatomic resection. Advances in imaging systems will increase the use of fluorescence imaging as an intraoperative navigation tool that can enhance the safety and accuracy of open and laparoscopic/robotic hepatobiliary surgery. PMID:27500144

  12. Selective Uptake of Indocyanine Green by Reticulocytes in Circulation

    PubMed Central

    Wei, Xunbin; Runnels, Judith M.; Lin, Charles P.

    2010-01-01

    Purpose Hyperfluorescent cells labeled with indocyanine green (ICG) have been observed in retinal and choroidal circulation using scanning laser ophthalmoscopy. It has been suggested that ICG labels leukocytes and that ICG can be used to track leukocyte movement in vivo. The purpose of this study is to identify the cell population that takes up ICG and to study their trafficking pattern in vivo by confocal fluorescence microscopy. Methods ICG was injected into the mouse tail vein, and images were taken by in vivo confocal microscopy. The trafficking pattern of ICG-labeled cells was compared with that of rhodamine 6G-labeled leukocytes. In vitro labeling of human blood cells with antibodies against cell lineage markers and with DNA stains was further used to identify the ICG-labeled cells. Antibodies against the following cell surface markers were used: CD45 (leukocytes), CD3 (T lymphocytes), CD19 (B lymphocytes), CD16 (Fc receptor), glycophorin A (erythroid lineage cells), and CD71 (transferrin receptor). Results The ICG-labeled cells were made up of two blood cell populations with distinct levels of ICG uptake. The strongly ICG-labeled cells did not roll on dermal vascular endothelium in vivo, in contrast to rhodamine 6G–labeled leukocytes. They were identified as reticulocytes because antibody staining showed that they were CD 45−, glycophorin A+ and CD 71+. The weakly ICG-labeled cells were identified as neutrophils because they were CD45+, CD16+, CD3−, and CD19−. Conclusions ICG strongly labels reticulocytes and weakly labels neutrophils. To the authors' knowledge, this is the first report of selective staining of reticulocytes by ICG. PMID:14507897

  13. Indocyanine green as an adjunct for resection of insular gliomas

    PubMed Central

    Shah, Abhidha; Rangarajan, Vithal; Kaswa, Amol; Jain, Sonal; Goel, Atul

    2016-01-01

    Objective: Many controversies exist regarding the extent of resection for insular gliomas and the timing of resection. Several techniques and adjuncts are used to maximize safety during resection of these tumors. We describe the use of indocyanine green (ICG) to identify the branches of the middle cerebral artery and discuss its utility to increase safety for resection for insular gliomas. Materials and Methods: Five patients with insular gliomas were surgically treated by the authors from June 2013 to June 2014. The patients presented with complaints of either a headache or recurring episodes of convulsions. All the patients were operated with the aid of neuronavigation and tractography. The long perforating branches of the middle cerebral artery course through the insula and pass onward to supply the corona radiata. It is essential to preserve these vessels to prevent postoperative neurological deficits. ICG (Aurogreen) was used to identify and preserve the long perforating arteries of the middle cerebral artery. Results: ICG dye correctly identified the long perforating branches of the middle cerebral artery and easily distinguished these vessels from the short perforating branches. All the branches of the middle cerebral artery that coursed through the tumor and had an onward course were preserved in all the patients. Only one patient developed a transient right sided hemiparesis that had improved at follow-up. Conclusions: Surgery for insular gliomas is challenging due to its location adjacent to eloquent areas, important white fiber tracts and the course of the middle cerebral artery within it. ICG is useful to identify and preserve the long perforating branches of the middle cerebral artery that course through the tumor and traverse onward to supply the corona radiata. PMID:27366256

  14. Application of femtosecond ultrashort pulse laser to photodynamic therapy mediated by indocyanine green

    PubMed Central

    Sawa, M; Awazu, K; Takahashi, T; Sakaguchi, H; Horiike, H; Ohji, M; Tano, Y

    2004-01-01

    Backgrounds/aims: To evaluate treatment with high peak power pulse energy by femtosecond ultrashort pulse laser (titanium sapphire laser) delivered at an 800 nm wavelength for corneal neovascularisation using photodynamic therapy (PDT) mediated by indocyanine green (ICG). Methods: Using a gelatin solid as an in vitro corneal model, the safety of laser power was studied to determine if it degenerated gelatin with or without ICG. The authors then induced corneal neovascularisation in rabbit eyes by an intracorneal suturing technique. Fluorescein angiography was used to evaluate occlusion before PDT and 0, 1, 3, and 10 days after PDT. The authors performed light microscopy with haematoxylin eosin staining and transmission electron microscopy to determine thrombosis formation in the neovascular regions. Results: The threshold of peak laser power density ranged from 39 to 53 W/cm2. Laser irradiation was started 30 seconds after a 10 mg/kg ICG injection, and all irradiated segments were occluded at 0, 1, 3, and 10 days at 3.8 J/cm2. Light and electron microscopy documented thrombosis formation in the neovascular region. Conclusion: Femtosecond pulse laser enhanced by ICG can be used for PDT. Because of effective closure of corneal neovascularisation at a low energy level, the high peak power pulse energy of the femtosecond pulse laser might be more efficacious than continuous wave laser for use with PDT. PMID:15148220

  15. Indocyanine green as effective antibody conjugate for intracellular molecular targeted photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Wang, Sijia; Hüttmann, Gereon; Rudnitzki, Florian; Diddens-Tschoeke, Heyke; Zhang, Zhenxi; Rahmanzadeh, Ramtin

    2016-07-01

    The fluorescent dye indocyanine green (ICG) is clinically approved and has been applied for ophthalmic and intraoperative angiography, measurement of cardiac output and liver function, or as contrast agent in cancer surgery. Though ICG is known for its photochemical effects, it has played a minor role so far in photodynamic therapy or techniques for targeted protein-inactivation. Here, we investigated ICG as an antibody-conjugate for the selective inactivation of the protein Ki-67 in the nucleus of cells. Conjugates of the Ki-67 antibody TuBB-9 with different amounts of ICG were synthesized and delivered into HeLa and OVCAR-5 cells through conjugation to the nuclear localization sequence. Endosomal escape of the macromolecular antibodies into the cytoplasm was optically triggered by photochemical internalization with the photosensitizer BPD. The second light irradiation at 690 nm inactivated Ki-67 and subsequently caused cell death. Here, we show that ICG as an antibody-conjugate can be an effective photosensitizing agent. Best effects were achieved with 1.8 ICG molecules per antibody. Conjugated to antibodies, the ICG absorption peaks vary proportionally with concentration. The absorption of ICG above 650 nm within the optical window of tissue opens the possibility of selective Ki-67 inactivation deep inside of tissues.

  16. Indocyanine green as effective antibody conjugate for intracellular molecular targeted photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Wang, Sijia; Hüttmann, Gereon; Rudnitzki, Florian; Diddens-Tschoeke, Heyke; Zhang, Zhenxi; Rahmanzadeh, Ramtin

    2016-07-01

    The fluorescent dye indocyanine green (ICG) is clinically approved and has been applied for ophthalmic and intraoperative angiography, measurement of cardiac output and liver function, or as contrast agent in cancer surgery. Though ICG is known for its photochemical effects, it has played a minor role so far in photodynamic therapy or techniques for targeted protein-inactivation. Here, we investigated ICG as an antibody-conjugate for the selective inactivation of the protein Ki-67 in the nucleus of cells. Conjugates of the Ki-67 antibody TuBB-9 with different amounts of ICG were synthesized and delivered into HeLa and OVCAR-5 cells through conjugation to the nuclear localization sequence. Endosomal escape of the macromolecular antibodies into the cytoplasm was optically triggered by photochemical internalization with the photosensitizer BPD. The second light irradiation at 690 nm inactivated Ki-67 and subsequently caused cell death. Here, we show that ICG as an antibody-conjugate can be an effective photosensitizing agent. Best effects were achieved with 1.8 ICG molecules per antibody. Conjugated to antibodies, the ICG absorption peaks vary proportionally with concentration. The absorption of ICG above 650 nm within the optical window of tissue opens the possibility of selective Ki-67 inactivation deep inside of tissues.

  17. Enhancement of indocyanine green stability and cellular uptake by incorporating cationic lipid into indocyanine green-loaded nanoemulsions.

    PubMed

    Lee, Eun-Hye; Kim, Jin-Ki; Lim, Joon-Seok; Lim, Soo-Jeong

    2015-12-01

    Indocyanine green (ICG) is a near-infrared optical dye approved by the Food and Drug Administration. ICG has been investigated as a simultaneous color and fluorescence-imaging tracer for the intraoperative identification of sentinel lymph nodes, but its use has recently expanded to include application as a photosensitizer for the local photodynamic/thermal treatment of identified lymph node metastases. The current study was designed to develop an ICG-loaded nanoemulsion as an effective agent for both the diagnosis and treatment of lymph node metastases. Incorporating the cationic lipid stearylamine (SA) together with ICG in the shell of nanoemulsions did not affect the loaded ICG concentration, but changed the surface charge of nanoemulsions from a negative to a positive value and improved the physical stability of nanoemulsions. Loading ICG into SA-incorporated nanoemulsions more effectively blocked the aggregation and degradation of ICG compared to loading in SA-free nanoemulsions. SA incorporation also enhanced tumor cell uptake of ICG-loaded nanoemulsions, resulting in greater cell killing upon light irradiation. After subcutaneous injection into the footpad of mice, SA-incorporated nanoemulsions increased the concentration of ICG accumulated in popliteal lymph nodes to a greater extent than SA-free nanoemulsions without affecting the kinetics of lymph node uptake of nanoemulsions. These multiple beneficial effects of incorporating SA in nanoemulsions are likely attributable to the electrostatic interaction between anionic ICG and cationic SA, as well as the change in the nanoemulsion surface charge from negative to positive. Our findings indicate that SA-incorporated nanoemulsions are promising ICG carriers for combined diagnosis and treatment of lymph node metastases.

  18. Indocyanine Green Loaded Nanoconstructs for Optical Imaging and Phototherapeutic Applications

    NASA Astrophysics Data System (ADS)

    Bahmani, Baharak

    Development of theranostic nano-constructs may enable diagnosis and treatment of diseases at high spatial resolution. Optically active nanoparticles are widely pursued as exogenous chromophores in diagnostic imaging and phototherapeutic applications. However, the blood circulation time of nanoparticles remains limited due to the rapid clearance of the nanoparticles by reticuloendothelial system (RES). Coating with Polyethylene glycol (PEG) is a strategy to extend the circulation time of nanoparticles. Here, we report PEGylation of polymeric-based nanocapsules loaded with Indocyanine green (ICG) and effect of PEG's molecular weight on the uptake of these nanocapsules by human spleen macrophages and hepatocytes using flow cytometry. To characterize the biodistribution of the constructs, we performed in vivo quantitative fluorescence imaging in mice and subsequently analyzed the various extracted organs. Our results suggest that encapsulation of ICG in these PEGylated constructs is an effective approach to prolong the circulation time of ICG and delay its hepatic accumulation. Increased bioavailability of ICG, offers the potential of extending the clinical applications of ICG. Targeted delivery of therapeutic and imaging agents using surface modified nanovectors has been explored immensely in recent years. The growing demand for site-specific and efficient delivery of nanovectors entails stable surface conjugation of targeting moieties. Our ICG-loaded polymeric nanocapsules (ICG-NCs) have potential for covalent coupling of various targeting moieties and materials due to presence of amine groups on the surface. Here, we covalently bioconjugate PEG-coated ICG-NCs with monoclonal anti- HER2 through reductive amination-mediated procedures. The targeting abilities of HER2 functionalized ICG-NCs toward ovarian cancer was investigated in-vitro. Since these functionalized nanoconstructs have potential applications in laser-induced photodestruction of ovarian cancer cells, we

  19. Development of a polymeric nanoparticulate delivery system for indocyanine green

    NASA Astrophysics Data System (ADS)

    Saxena, Vishal

    Purpose. The objective of this project was to develop an intravenously administrable poly(dl-lactic-co-glycolic acid) (PLGA) nanoparticulate delivery system for Indocyanine Green (ICG), to enhance the potential for ICG use in tumor imaging and therapy. Methods. For this purpose PLGA nanoparticles entrapping ICG were engineered by spontaneous emulsification solvent diffusion method. ICG entrapment in nanoparticles was determined and physicochemical characterization of nanoparticles was performed. The stability of ICG in nanoparticles formulation under various conditions was determined. The intracellular uptake of ICG in nanoparticles by B16-F10 and C-33A cancer cell lines was studied in comparison with the free ICG solution. Anti-proliferation studies against cancer cells were performed to prove the photodynamic activity of ICG in nanoparticles. Biodistribution of ICG when delivered through nanoparticles and solution were evaluated in mice after tail vein injection. Results. PLGA nanoparticles with a mean diameter of 350 nm and 74% ICG entrapment were obtained. The nanoparticles were nearly spherical in shape with zeta potential of -16 mV. The nanoparticles formulation provided overall stability to ICG with degradation half-lives of 2.5--3.5 days as compared to 10--20 hr of free ICG solutions. The intracellular uptake of ICG through nanoparticles was directly proportional to time and extracellular nanoparticle concentration. The intracellular uptake of ICG was enhanced about 100-fold by nanoparticles formulation as compared to the free ICG solution. Nanoparticles formulation showed significant photodynamic effect at nano-molar ICG concentrations and very low light dose (fluence: 0.22 W/cm2 and energy density: 1.1 J/cm2). In-vivo, the blood circulation-time and retention-time of ICG in various organs was enhanced 2--5 times by nanoparticles formulation as compared to the free ICG solution. Conclusions. A PLGA nanoparticlute delivery system was developed for ICG

  20. Use of invisible near infrared light fluorescence with indocyanine green and methylene blue in urology. Part 2

    PubMed Central

    Markuszewski, Marcin; Rho, Young Soo; Matuszewski, Marcin

    2014-01-01

    Introduction In the second part of this paper, concerning the use of invisible near infrared light (NIR) fluorescence with indocyanine green (ICG) and methylene blue (MB) in urology, other possible uses of this new technique will be presented. In kidney transplantation, this concerns allograft perfusion and real time NIR–guided angiography; moreover, perfusion angiography of tissue flaps, NIRF visualization of ureters, NIR–guided visualization of urinary calcifications, NIRF in male infertility and semen quality assessment. In this part, we have also analysed cancer targeting and imaging fluorophores as well as cost benefits associated with the use of these new techniques. Material and methods PubMed and Medline databases were searched for ICG and MB use in urological settings, along with data published in abstracts of urological conferences. Results Although NIR–guided ICG and MB are still in their initial phases, there have been significant developments in a few more major domains of urology, including 1) kidney transplantation: kidney allograft perfusion and vessel reconstruction; 2) angiography perfusion of tissue flaps; 3) visualization of ureters; 4) visualization of urinary calcifications; and 5) NIRF in male infertility and semen quality assessment. Conclusions Near infrared technology in urology is at its early stages. More studies are needed to assess the true potential and limitations of the technology. Initial studies show that this pioneering tool may influence various aspects of urology. PMID:25247093

  1. Hepatectomy Based on Future Liver Remnant Plasma Clearance Rate of Indocyanine Green.

    PubMed

    Uchida, Yuichiro; Furuyama, Hiroaki; Yasukawa, Daiki; Nishino, Hiroto; Ando, Yasuhisa; Hata, Toshiyuki; Machimoto, Takafumi; Yoshimura, Tsunehiro

    2016-01-01

    Background. Hepatectomy, an important treatment modality for liver malignancies, has high perioperative morbidity and mortality rates. Safe, comprehensive criteria for selecting patients for hepatectomy are needed. Since June 2011, we have used a cut-off value of ≧ 0.05 for future liver remnant plasma clearance rate of indocyanine green as a criterion for hepatectomy. The aim of this study was to verify the validity of this criterion. Methods. From June 2011 to December 2015, 212 hepatectomies were performed in Tenri Yorozu Hospital. Of these 212 patients, 107 who underwent preoperative computed tomography imaging volumetry, indocyanine green clearance test, and hepatectomy (excluding partial resection or enucleation) were retrospectively analyzed. Results. There was no postoperative mortality. Posthepatectomy liver failure occurred in 59 patients (55.1%) (International Study Group of Liver Surgery Grade A: 43 cases (40.2%), Grade B: 16 cases (15.0%), and Grade C: no cases). Operative morbidity greater than Clavien-Dindo Grade 3 occurred in 23 patients (21.5%). A low future liver remnant plasma clearance rate of indocyanine green was a good predictor for Grade B cases (area under curve = 0.804; 95% confidence interval, 0.712-0.895). Conclusion. Liver remnant plasma clearance rate of indocyanine green is a valid criterion for hepatectomy.

  2. False-negative indocyanine green videoangiography among complex unruptured middle cerebral artery aneurysms: the importance of further aneurysm inspection.

    PubMed

    Kulwin, Charles; Cohen-Gadol, Aaron A

    2014-10-01

    Successful surgical treatment of cerebral aneurysms requires complete occlusion of the aneurysm lumen while maintaining patency of the adjacent branching and perforating arteries. Intraoperative flow assessment allows aneurysm clip repositioning in the event these requirements are not met, avoiding the risk of postoperative rehemorrhage or infarction. A number of modalities have been proposed for primarily intraoperative qualitative blood flow assessment, including microdoppler ultrasonography, intraoperative digital subtraction angiography (DSA), and more recently noninvasive fluorescent angiography including indocyanine green (ICG) fluorescent imaging. Puncture of the aneurysm dome to exclude aneurysm sac filling may also assess the efficacy of clip placement. Although a high concordance between ICG and DSA has been reported, there remains an important subset of aneurysms for which negative ICG study may erroneously suggest aneurysm occlusion. A high-risk situation for such a false-negative study is an atherosclerotic middle cerebral artery (MCA) aneurysm in which vessel wall plaque interferes with the ICG signal. Furthermore, a decreased flow within the aneurysm may not allow enough emission light for detection under the current technology. In this report, we describe our experience with cases of MCA aneurysms with false-negative ICG-VA studies requiring clip adjustment for optimal surgical treatment and discuss two illustrative cases of MCA aneurysms with intraoperative fluorescence studies that were falsely negative, requiring puncture of the aneurysm to correctly identify incomplete aneurysm occlusion. PMID:24552255

  3. In vivo measurement of Indocyanine green biodistribution in mammalian organs using fiber based system

    NASA Astrophysics Data System (ADS)

    Chen, Qixiao; Mao, Shuo; Bai, Jing

    2009-11-01

    Indocyanine green (ICG) is a fluorescent probe widely used in recent years, and it is also the fluorescent dye that can be clinical used, in both imaging and treatment. So it is important to study its biodistribution and metabolism in mammalian organs, but the accuracy and sampling speed is limited by the traditional in-vitro methods. Now we present a design of an in-vivo multi-channel fluorescence intensity measurement system and an algorism of data processing, to achieve the accurate measurement of fluorescence intensity, continuous sampling, real time monitoring and curve fitting. This system design is based on customized fiber bundles and the principle of reflective fluorescence microscopy. We also present a mouse experiment using this system to study the Indocyanine green (ICG) biodistribution in small mammalian liver, in order to demonstrate the potential applications of this system and also present a new experiment method in the study of dye biodistribution and metabolism.

  4. [INDOCYANINE GREEN (ICG) IN THE DETECTION OF SENTINEL LYMPH NODES IN ENDOMETRIAL AND CERVIX CANCER].

    PubMed

    Berlev, I V; Ulrikh, E A; Ibragimov, Z N; Guseinov, K D; Gorodnova, T V; Korolkova, E N; Trifanov, Yu N; Nekrasova, E A; Saparov, A B; Khadzhimba, A V; Mikaya, N A; Urmancheeva, A F

    2015-01-01

    We analyzed the international and our own experience of using different dyes in the identification of sentinel lymph nodes in oncogynecological practice. We evaluated the possibility of using indocyanine green (ICG) in the detection of sentinel lymph nodes in patients with endometrial and cervical cancer. The first results of the use of ICG at the Oncogynecology Department of the N.N.Petrov Research Institute of Oncology are presented.

  5. Monocytes loaded with indocyanine green as active homing contrast agents permit optical differentiation of infectious and non-infectious inflammation.

    PubMed

    Christensen, Joani M; Brat, Gabriel A; Johnson, Kristine E; Chen, Yongping; Buretta, Kate J; Cooney, Damon S; Brandacher, Gerald; Lee, W P Andrew; Li, Xingde; Sacks, Justin M

    2013-01-01

    Distinguishing cutaneous infection from sterile inflammation is a diagnostic challenge and currently relies upon subjective interpretation of clinical parameters, microbiological data, and nonspecific imaging. Assessing characteristic variations in leukocytic infiltration may provide more specific information. In this study, we demonstrate that homing of systemically administered monocytes tagged using indocyanine green (ICG), an FDA-approved near infrared dye, may be assessed non-invasively using clinically-applicable laser angiography systems to investigate cutaneous inflammatory processes. RAW 264.7 mouse monocytes co-incubated with ICG fluoresce brightly in the near infrared range. In vitro, the loaded cells retained the ability to chemotax toward monocyte chemotactic protein-1. Following intravascular injection of loaded cells into BALB/c mice with induced sterile inflammation (Complete Freund's Adjuvant inoculation) or infection (Group A Streptococcus inoculation) of the hind limb, non-invasive whole animal imaging revealed local fluorescence at the inoculation site. There was significantly higher fluorescence of the inoculation site in the infection model than in the inflammation model as early as 2 hours after injection (p<0.05). Microscopic examination of bacterial inoculation site tissue revealed points of near infrared fluorescence, suggesting the presence of ICG-loaded cells. Development of a non-invasive technique to rapidly image inflammatory states without radiation may lead to new tools to distinguish infectious conditions from sterile inflammatory conditions at the bedside.

  6. Enhancement of high-resolution photoacoustic imaging with indocyanine green-conjugated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Phuc Nguyen, Van; Oh, Yunok; Ha, Kanglyeol; Oh, Junghwan; Kang, Hyun Wook

    2015-07-01

    The current study indicates the feasibility of photoacoustic imaging (PAI) enhanced with contrast agents. A single-element ultrasound transducer (20 MHz) was used to detect PA signals for image reconstruction. To improve PA sensitivity, single-walled carbon nanotubes (SWNTs) conjugated with indocyanine green (ICG) were injected into samples at various concentrations. PA signal amplitudes linearly increased with SWNT-ICG concentration owing to strong light absorption. Compared with SWNTs, SWNT-ICG augmented the signal intensity by approximately 2-fold (concentration: 300 nM). The enhanced optical absorption can allow the application of SWNT-ICG to enable PAI for specifically identifying tumors with high sensitivity.

  7. In vivo investigation of interaction of indocyanine green solutions with human epidermis

    NASA Astrophysics Data System (ADS)

    Kulyabina, Tatyana V.; Kochubey, Vyacheslav I.

    2004-08-01

    The main mechanism of penetration of the indocyanine green dye (ICG) (1) in upper human skin layers was determined for ICG water, ethanol and glycerol solutions. Some experiments with/without clearance of protection skin fat coat were carried out. We stained hand skin then we did several series of epidermis detachments by scotch. The spectra of stained skin were recorded by standard CARY-2415 spectrophotometer with an integrating sphere. The conclusion about the main mechanism of penetration of the ICG in human epidermis has been drown by analyze of the experiment results.

  8. Control of optical transmittance of fat tissue slices at NIR photodynamic action mediated by indocyanine green

    NASA Astrophysics Data System (ADS)

    Yanina, I. Y.; Doubrovsky, V. A.; Tuchin, V. V.

    2013-02-01

    The changes in optical transmittance of human adipose cell layers sensitized by indocyanine green (ICG) as a result of photodynamic action were found and studied. It was revealed experimentally that due to the selective action of laser radiation on fat tissue sensitized by ICG the spatial distribution of its optical transmittance becomes more homogeneous. The statistical computer processing of digital images allowed one to estimate tissue optical transmittance, its spatial and temporal distributions. These quantitative estimations correlated well with the visible changes of tissue images. The measurements carried out gave an opportunity to suggest the interpretation of the phenomenon observed.

  9. Laparoscopic Indocyanine Green Sentinel Lymph Node Mapping in Pregnant Cervical Cancer Patients.

    PubMed

    Papadia, Andrea; Mohr, Stefan; Imboden, Sara; Lanz, Susanne; Bolla, Daniele; Mueller, Michael D

    2016-02-01

    We present cases of 2 pregnant patients with early-stage cervical cancer who have undergone indocyanine green (ICG) sentinel lymph node (SLN) mapping followed by laparoscopic SLN biopsy, pelvic lymphadenectomy, and cervical conization. Eight milliliters of ICG were injected in the 4 quadrants of the cervix after having obtained an adequate pneumoperitoneum and having inspected the abdominal cavity. SLNs were identified in both hemipelvises in both patients. In the final pathologic analysis, both SLNs and non-SLNs were negative for metastatic disease. No adverse events from ICG injection were recorded. ICG SLN mapping seems to be feasible in pregnant cervical cancer patients.

  10. Liposomally formulated phospholipid-conjugated indocyanine green for intra-operative brain tumor detection and resection.

    PubMed

    Suganami, Akiko; Iwadate, Yasuo; Shibata, Sayaka; Yamashita, Masamichi; Tanaka, Tsutomu; Shinozaki, Natsuki; Aoki, Ichio; Saeki, Naokatsu; Shirasawa, Hiroshi; Okamoto, Yoshiharu; Tamura, Yutaka

    2015-12-30

    Some tumor-specific near-infrared (NIR) fluorescent dyes such as indocyanine green (ICG), IDRye800CW, and 5-aminolevulinic acid have been used clinically for detecting tumor margins or micro-cancer lesions. In this study, we evaluated the physicochemical properties of liposomally formulated phospholipid-conjugated ICG, denoted by LP-iDOPE, as a clinically translatable NIR imaging nanoparticle for brain tumors. We also confirmed its brain-tumor-specific biodistribution and its characteristics as the intra-operative NIR imaging nanoparticles for brain tumor surgery. These properties of LP-iDOPE may enable neurosurgeons to achieve more accurate identification and more complete resection of brain tumor.

  11. Combined Epiretinal and Internal Limiting Membrane Peeling Facilitated by High Dilution Indocyanine Green Negative Staining

    PubMed Central

    Kaehr, Mark M.; Apte, Rajendra S.

    2015-01-01

    We describe the utilization of indocyanine green (ICG) dye to facilitate combined/en bloc removal of epiretinal membranes (ERM) along with internal limiting membranes (ILM). The method utilizes a highly diluted preparation of ICG in dextrose water solvent (D5W). Elimination of fluid air exchange step facilitating staining in the fluid phase and low intensity lighting help minimize potential ICG toxicity. The technique demonstrates how ICG facilitates negative staining of ERMs and how ILM peeling concomitantly can allow complete and efficient ERM removal minimizing surgical time and the necessity for dual or sequential staining. PMID:27051499

  12. Phototoxic effect of conjugates of plasmon-resonance nanoparticles with indocyanine green dye on Staphylococcus aureus induced by IR laser radiation

    SciTech Connect

    Tuchina, E S; Tuchin, Valerii V; Khlebtsov, B N; Khlebtsov, Nikolai G

    2011-04-30

    The effect of IR laser radiation ({lambda} = 805 - 808 nm) on the bacteria of the strain Staphylococcus aureus 209 P, incubated in indocyanine green solutions, is studied, as well as that of colloid gold nanoshells, nanocages and their conjugates with indocyanine green. It is found that the S. aureus 209 P cells are equally subjected to the IR laser radiation ({lambda} = 805 nm) after preliminary sensitisation with indocyanine green and gold nanoparticles separately and with conjugates of nanoparticles and indocyanine green. The enhancement of photodynamic and photothermal effects by 5 % is observed after 30 min of laser illumination ({lambda} = 808 nm) of bacteria, treated with conjugates of indocyanine green and nanocages. (optical technologies in biophysics and medicine)

  13. NIRS and indocyanine-green-determined muscle blood flow during exercise in humans

    NASA Astrophysics Data System (ADS)

    Boushel, Robert; Ide, Kojiro; Moller-Sorensen, Hasse; Fernandes, Alvito; Pott, Frank; Secher, Niels H.

    1998-01-01

    We present a method for determination of muscle blood flow (MBF) using near infrared spectroscopy (NIRS) with indocyanine green (ICG) as the tracer. MBF was quantified using the integrated arterial [ICG] and the accumulation of ICG in muscle. MBF was determined together with ICG-assessed cardiac output (CO) at rest and during incremental cycling. To further modify CO, the same work loads were performed after cardio-selective beta blockade by metoprolol. In one subject both MBF (9 to 110 ml (DOT) 100 g-1 (DOT) min-1) and CO increased linearly with work rate (8 to 19 l (DOT) min-1). Under beta blockade, both the increase in MBF and CO were lower: 5 to 70 ml (DOT) 100 g-1 (DOT) min-1 and 5 to 161 DOT min-1, respectively. During exercise with and without beta blockade, MBF increased with work load to represent a larger proportion of CO. Also, NIRS could detect an attenuated increase in MBF manifest by the restrained CO during leg exercise after cardio-selective beta blockade. Both observations indicate that NIRS detection of indocyanine green provides an estimate of muscle blood flow over the range from rest to intense exercise.

  14. NIRS and indocyanine-green-determined muscle blood flow during exercise in humans

    NASA Astrophysics Data System (ADS)

    Boushel, Robert; Ide, Kojiro; Moller-Sorensen, Hasse; Fernandes, Alvito; Pott, Frank; Secher, Niels H.

    1997-12-01

    We present a method for determination of muscle blood flow (MBF) using near infrared spectroscopy (NIRS) with indocyanine green (ICG) as the tracer. MBF was quantified using the integrated arterial [ICG] and the accumulation of ICG in muscle. MBF was determined together with ICG-assessed cardiac output (CO) at rest and during incremental cycling. To further modify CO, the same work loads were performed after cardio-selective beta blockade by metoprolol. In one subject both MBF (9 to 110 ml (DOT) 100 g-1 (DOT) min-1) and CO increased linearly with work rate (8 to 19 l (DOT) min-1). Under beta blockade, both the increase in MBF and CO were lower: 5 to 70 ml (DOT) 100 g-1 (DOT) min-1 and 5 to 161 DOT min-1, respectively. During exercise with and without beta blockade, MBF increased with work load to represent a larger proportion of CO. Also, NIRS could detect an attenuated increase in MBF manifest by the restrained CO during leg exercise after cardio-selective beta blockade. Both observations indicate that NIRS detection of indocyanine green provides an estimate of muscle blood flow over the range from rest to intense exercise.

  15. Indocyanine green encapsulated nanogels for hyaluronidase activatable and selective near infrared imaging of tumors and lymph nodes.

    PubMed

    Mok, Hyejung; Jeong, Hyunkyung; Kim, Sun-Jung; Chung, Bong Hyun

    2012-09-01

    Indocyanine green (ICG) encapsulated hyaluronic acid (HA) nanogels were first studied for highly selective detection of specific cancers and lymph nodes via hyaluronidase sensitive switch-on of near infrared fluorescence as a long-lasting and stimuli-responsive imaging probe.

  16. Near infrared dye indocyanine green doped silica nanoparticles for biological imaging.

    PubMed

    Quan, Bo; Choi, Kihwan; Kim, Young-Hwa; Kang, Keon Wook; Chung, Doo Soo

    2012-09-15

    Indocyanine green (ICG) is an FDA-approved near infrared (NIR) fluorescent dye used in clinical imaging. However, its applications remain limited due to its short half-life, nonspecific plasma binding, optical instability, and poor aqueous stability. Dye doped silica nanoparticles provide an effective barrier in keeping the dye away from the surrounding environment, but ICG cannot be encapsulated into silica easily by conventional methods. In this study, ICG molecules ion-paired with a cationic polymer polyethylenimine (PEI) were successfully encapsulated into a silica matrix to form ICG doped silica nanoparticles by using the Stöber method. Pairing with PEI reduced self-quenching of fluorescence by preventing the aggregation of ICG molecules in silica nanoparticles. Dye leakage was also reduced to the level of 3-6% loss in 5 days. NIR fluorescence images of ICG doped silica NPs below a 2.0 cm thick porcine muscle sample illuminated by NIR light were obtained.

  17. Tumor homing indocyanine green encapsulated micelles for near infrared and photoacoustic imaging of tumors.

    PubMed

    Uthaman, Saji; Bom, Joon-suk; Kim, Hyeon Sik; John, Johnson V; Bom, Hee-Seung; Kim, Seon-Jong; Min, Jung-Joon; Kim, Il; Park, In-Kyu

    2016-05-01

    Photoacoustic imaging (PAI) is an emerging analytical modality that is under intense preclinical development for the early diagnosis of various medical conditions, including cancer. However, the lack of specific tumor targeting by various contrast agents used in PAI obstructs its clinical applications. In this study, we developed indocyanine green (ICG)-encapsulated micelles specific for the CD 44 receptor and used in near infrared and photoacoustic imaging of tumors. ICG was hydrophobically modified prior to loading into hyaluronic acid (HA)-based micelles utilized for CD 44 based-targeting. We investigated the physicochemical characteristics of prepared HA only and ICG-encapsulated HA micelles (HA-ICG micelles). After intravenous injection of tumor-bearing mice, the bio-distribution and in vivo photoacoustic images of ICG-encapsulated HA micelles accumulating in tumors were also investigated. Our study further encourages the application of this HA-ICG-based nano-platform as a tumor-specific contrast agent for PAI.

  18. Retention of indocyanine green as a potential marker for optical detection of blood brain barrier disruption

    NASA Astrophysics Data System (ADS)

    Ergin, A.; Joshi, S.; Wang, M.; Bigio, I. J.

    2011-03-01

    Preliminary studies have shown that there is great variability in the degree of disruption of blood-brain barrier (BBBD) after the intraarterial injection of mannitol in rabbit models. The disruption of blood-brain barrier (BBB) is affected by a number of factors, and the variations could have a profound impact on regional delivery of chemotherapeutics. Optically measured brain tissue concentrations of indocyanine green (ICG) and Evan's blue (EB) enable the quantification of BBBD after intraarterial administration of mannitol. Using the optical pharmacokinetics technique, a variation of diffuse reflectance spectroscopy, we are able to track in vivo brain tissue concentrations of ICG and EB in rabbits, before and after barrier disruption. This study shows the feasibility of optical monitoring of BBBD, a method that can help improve intraarterial delivery of chemotherapeutic drugs.

  19. Preparation and characterization of phospholipid-conjugated indocyanine green as a near-infrared probe.

    PubMed

    Suganami, Akiko; Toyota, Taro; Okazaki, Shigetoshi; Saito, Kengo; Miyamoto, Katsuhiko; Akutsu, Yasunori; Kawahira, Hiroshi; Aoki, Akira; Muraki, Yutaka; Madono, Tomoyuki; Hayashi, Hideki; Matsubara, Hisahiro; Omatsu, Takashige; Shirasawa, Hiroshi; Tamura, Yutaka

    2012-12-15

    We have rationally designed and synthesized a novel near-infrared (NIR) photoactivating probe, designated by iDOPE, in which an indocyanine green (ICG) fluorophore is covalently conjugated with a phospholipid moiety, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), to incorporate into liposome bilayers. NIR irradiation showed that iDOPE retained the optical and fluorescence properties of ICG and demonstrated photoactivator characteristics: fluorescence emission at around 820 nm in a solvent, singlet oxygen production, and concentration-dependent heat generation. Additionally, iDOPE was incorporated into liposome bilayers and maintained stable liposomally formulated iDOPE (LP-iDOPE) over 1week under physiological conditions. We also observed the tumor-specific biodistribution of LP-iDOPE of in vivo xenografts. These findings suggest that LP-iDOPE might be a promising tool for NIR optical imaging, photodynamic therapy, and photothermal therapy.

  20. Optical measurement of mouse strain differences in cerebral blood flow using indocyanine green.

    PubMed

    Kang, Hye-Min; Sohn, Inkyung; Kim, Seunggyu; Kim, Daehwan; Jung, Junyang; Jeong, Joo-Won; Park, Chan

    2015-06-01

    C57BL/6 mice have more cerebral arterial branches and collaterals than BALB/c mice. We measured and compared blood flow dynamics of the middle cerebral artery (MCA) in these two strains, using noninvasive optical imaging with indocyanine green (ICG). Relative maximum fluorescence intensity (Imax) and the time needed for ICG to reach Imax in the MCA of C57BL/c were lower than that in BALB/c mice. Moreover, the mean transit time was significantly lower in C57BL/6 than in BALB/c mice. These data suggest that the higher number of arterial branches and collaterals in C57BL/6 mice yields a lower blood flow per cerebral artery.

  1. Lipid nanoparticle vectorization of indocyanine green improves fluorescence imaging for tumor diagnosis and lymph node resection.

    PubMed

    Navarro, Fabrice P; Berger, Michel; Guillermet, Stéphanie; Josserand, Véronique; Guyon, Laurent; Neumann, Emmanuelle; Vinet, Françoise; Texier, Isabelle

    2012-10-01

    Fluorescence imaging is opening a new era in image-guided surgery and other medical applications. The only FDA approved contrast agent in the near infrared is IndoCyanine Green (ICG), which despites its low toxicity, displays poor chemical and optical properties for long-term and sensitive imaging applications in human. Lipid nanoparticles are investigated for improving ICG optical properties and in vivo fluorescence imaging sensitivity. 30 nm diameter lipid nanoparticles (LNP) are loaded with ICG. Their characterization and use for tumor and lymph node imaging are described. Nano-formulation benefits dye optical properties (6 times improved brightness) and chemical stability (>6 months at 4 degrees C in aqueous buffer). More importantly, LNP vectorization allows never reported sensitive and prolonged (>1 day) labeling of tumors and lymph nodes. Composed of human-use approved ingredients, this novel ICG nanometric formulation is foreseen to expand rapidly the field of clinical fluorescence imaging applications.

  2. [Video-assisted Thoracoscopic Segmentectomy Using Infrared Thoracoscopy with Indocyanine Green].

    PubMed

    Tarumi, Shintaro; Yokomise, Hiroyasu

    2016-07-01

    The maintenance of a good surgical view is mandatory in video-assisted thoracoscopic surgery (VATS). For routine segmentectomy, it is necessary to re-inflate the lung in order to identify the intersegmental borders. However, such re-inflation can occasionally obstruct the surgical view and can lead to prolongation of operation time, particularly in the context of VATS. Infrared thoracoscopy( IRT) with indocyanine green (ICG) is a new method of evaluating lung perfusion. There are 2 methods in IRT. One is based on ICG absorption, and the other is based on ICG fluorescence. In our experience, both of them were useful for identification of segmental borders. However, the former method was superior for the clarity of images. No complications attributable to IRT with ICG were observed. IRT with ICG is based on blood flow rather than on ventilation and can thus achieve anatomical segmentectomy without lung re-inflation. This method will be especially useful for VATS segmentectomy. PMID:27440031

  3. In Vivo Photoacoustic and Fluorescence Cystography Using Clinically Relevant Dual Modal Indocyanine Green

    PubMed Central

    Park, Sungjo; Kim, Jeesu; Jeon, Mansik; Song, Jaewon; Kim, Chulhong

    2014-01-01

    Conventional X-ray-based cystography uses radio-opaque materials, but this method uses harmful ionizing radiation and is not sensitive. In this study, we demonstrate nonionizing and noninvasive photoacoustic (PA) and fluorescence (FL) cystography using clinically relevant indocyanine green (ICG) in vivo. After transurethral injection of ICG into rats through a catheter, their bladders were photoacoustically and fluorescently visualized. A deeply positioned bladder below the skin surface (i.e., ∼1.5–5 mm) was clearly visible in the PA and FL image using a laser pulse energy of less than 2 mJ/cm2 (1/15 of the safety limit). Then, the in vivo imaging results were validated through in situ studies. Our results suggest that dual modal cystography can provide a nonionizing and noninvasive imaging tool for bladder mapping. PMID:25337743

  4. Optical measurement of mouse strain differences in cerebral blood flow using indocyanine green

    PubMed Central

    Kang, Hye-Min; Sohn, Inkyung; Kim, Seunggyu; Kim, Daehwan; Jung, Junyang; Jeong, Joo-Won; Park, Chan

    2015-01-01

    C57BL/6 mice have more cerebral arterial branches and collaterals than BALB/c mice. We measured and compared blood flow dynamics of the middle cerebral artery (MCA) in these two strains, using noninvasive optical imaging with indocyanine green (ICG). Relative maximum fluorescence intensity (Imax) and the time needed for ICG to reach Imax in the MCA of C57BL/c were lower than that in BALB/c mice. Moreover, the mean transit time was significantly lower in C57BL/6 than in BALB/c mice. These data suggest that the higher number of arterial branches and collaterals in C57BL/6 mice yields a lower blood flow per cerebral artery. PMID:25833343

  5. Segmental analysis of indocyanine green pharmacokinetics for the reliable diagnosis of functional vascular insufficiency

    NASA Astrophysics Data System (ADS)

    Kang, Yujung; Lee, Jungsul; An, Yuri; Jeon, Jongwook; Choi, Chulhee

    2011-03-01

    Accurate and reliable diagnosis of functional insufficiency of peripheral vasculature is essential since Raynaud phenomenon (RP), most common form of peripheral vascular insufficiency, is commonly associated with systemic vascular disorders. We have previously demonstrated that dynamic imaging of near-infrared fluorophore indocyanine green (ICG) can be a noninvasive and sensitive tool to measure tissue perfusion. In the present study, we demonstrated that combined analysis of multiple parameters, especially onset time and modified Tmax which means the time from onset of ICG fluorescence to Tmax, can be used as a reliable diagnostic tool for RP. To validate the method, we performed the conventional thermographic analysis combined with cold challenge and rewarming along with ICG dynamic imaging and segmental analysis. A case-control analysis demonstrated that segmental pattern of ICG dynamics in both hands was significantly different between normal and RP case, suggesting the possibility of clinical application of this novel method for the convenient and reliable diagnosis of RP.

  6. Near-infrared-fluorescence imaging of lymph nodes by using liposomally formulated indocyanine green derivatives.

    PubMed

    Toyota, Taro; Fujito, Hiromichi; Suganami, Akiko; Ouchi, Tomoki; Ooishi, Aki; Aoki, Akira; Onoue, Kazutaka; Muraki, Yutaka; Madono, Tomoyuki; Fujinami, Masanori; Tamura, Yutaka; Hayashi, Hideki

    2014-01-15

    Liposomally formulated indocyanine green (LP-ICG) has drawn much attention as a highly sensitive near-infrared (NIR)-fluorescence probe for tumors or lymph nodes in vivo. We synthesized ICG derivatives tagged with alkyl chains (ICG-Cn), and we examined NIR-fluorescence imaging for lymph nodes in the lower extremities of mice by using liposomally formulated ICG-Cn (LP-ICG-Cn) as well as conventional liposomally formulated ICG (LP-ICG) and ICG. Analysis with a noninvasive preclinical NIR-fluorescence imaging system revealed that LP-ICG-Cn accumulates in only the popliteal lymph node 1h after injection into the footpad, whereas LP-ICG and ICG accumulate in the popliteal lymph node and other organs like the liver. This result indicates that LP-ICG-Cn is a useful NIR-fluorescence probe for noninvasive in vivo bioimaging, especially for the sentinel lymph node.

  7. Indocyanine Green Fluorescence Endoscopy at Endonasal Transsphenoidal Surgery for an Intracavernous Sinus Dermoid Cyst: Case Report

    PubMed Central

    HIDE, Takuichiro; YANO, Shigetoshi; KURATSU, Jun-ichi

    2014-01-01

    The complete resection of intracavernous sinus dermoid cysts is very difficult due to tumor tissue adherence to important anatomical structures such as the internal carotid artery (ICA), cavernous sinus, and cranial nerves. As residual dermoid cyst tissue sometimes induces symptoms and repeat surgery may be required after cyst recurrence, minimal invasiveness is an important consideration when selecting the surgical approach to the lesion. We addressed a recurrent intracavernous sinus dermoid cyst by the endoscopic endonasal transsphenoidal approach assisted by neuronavigation and indocyanine green (ICG) endoscopy to confirm the ICA and patency of the cavernous sinus. The ICG endoscope detected the fluorescence signal from the ICA and cavernous sinus; its intensity changed with the passage of time. The ICG endoscope was very useful for real-time imaging, and its high spatial resolution facilitated the detection of the ICA and the patent cavernous sinus. We found it to be of great value for successful endonasal transsphenoidal surgery. PMID:25446381

  8. Principal component analysis of indocyanine green fluorescence dynamics for diagnosis of vascular diseases

    NASA Astrophysics Data System (ADS)

    Seo, Jihye; An, Yuri; Lee, Jungsul; Choi, Chulhee

    2015-03-01

    Indocyanine green (ICG), a near-infrared fluorophore, has been used in visualization of vascular structure and non-invasive diagnosis of vascular disease. Although many imaging techniques have been developed, there are still limitations in diagnosis of vascular diseases. We have recently developed a minimally invasive diagnostics system based on ICG fluorescence imaging for sensitive detection of vascular insufficiency. In this study, we used principal component analysis (PCA) to examine ICG spatiotemporal profile and to obtain pathophysiological information from ICG dynamics. Here we demonstrated that principal components of ICG dynamics in both feet showed significant differences between normal control and diabetic patients with vascula complications. We extracted the PCA time courses of the first three components and found distinct pattern in diabetic patient. We propose that PCA of ICG dynamics reveal better classification performance compared to fluorescence intensity analysis. We anticipate that specific feature of spatiotemporal ICG dynamics can be useful in diagnosis of various vascular diseases.

  9. Vital staining with indocyanine green: a review of the clinical and experimental studies relating to safety.

    PubMed

    Stanescu-Segall, D; Jackson, T L

    2009-03-01

    Indocyanine green (ICG) is extremely effective when used as a vital stain during macular hole surgery. By staining the internal limiting membrane, ICG facilitates removal of this delicate and sometimes hard to visualize structure. There is, however, considerable debate regarding its safety. This review considers the clinical and experimental studies of ICG and a related agent, infracyanine green. Some clinical papers show visual field defects, reduced visual acuity, and persistence of ICG at the macula and optic nerve. Other clinical studies fail to demonstrate toxicity. The experimental studies are also conflicting, but there are emerging trends. These suggest that surgeons who continue to use ICG should use concentrations not greater than 0.05 mg/ml, in fluid-filled eyes, with short exposure times, iso-osmolar solutions, and avoid proximal or prolonged endoillumination of stained tissue. A smaller number of studies suggest that infracyanine green produces similar staining to ICG, and may possibly be safer, but there are too few well-designed studies to reach a conclusion. Although the use of ICG continues, on the balance of evidence, this review suggests that it is has the potential to produce subtle visual damage.

  10. Molecular Targeted Fluorescence-Guided Intraoperative Imaging of Bladder Cancer Nodal Drainage Using Indocyanine Green During Radical and Partial Cystectomy.

    PubMed

    Patel, Manish N; Hemal, Ashok K

    2016-10-01

    Optical imaging is a relatively inexpensive, fast, and sensitive addition to a surgeon's arsenal for the non-invasive detection of malignant dissemination. Optical cameras in the near infrared spectrum are able to successfully identify injected indocyanine green in lymphatic channels and sentinel lymph nodes. The use of this technology is now being used in the operating room to help with lymph node dissection and improve the prognosis of patients diagnosed with muscle invasive bladder cancer. Indocyanine green has the potential for many more applications due to its versatility. In the future, there is a potential to use it for lymphangiography during nephroureterctomy for upper tract urothelial carcinoma, adrenal surgery for partial or radical adrenalectomy. Further investigations at multiple centers will validate this technique and its efficiency.

  11. A Classic Near-Infrared Probe Indocyanine Green for Detecting Singlet Oxygen.

    PubMed

    Tang, Cheng-Yi; Wu, Feng-Yao; Yang, Min-Kai; Guo, Yu-Min; Lu, Gui-Hua; Yang, Yong-Hua

    2016-01-01

    The revelation of mechanisms of photodynamic therapy (PDT) at the cellular level as well as singlet oxygen (¹O₂) as a second messengers requires the quantification of intracellular ¹O₂. To detect singlet oxygen, directly measuring the phosphorescence emitted from ¹O₂ at 1270 nm is simple but limited for the low quantum yield and intrinsic efficiency of ¹O₂ emission. Another method is chemically trapping ¹O₂ and measuring fluorescence, absorption and Electron Spin Resonance (ESR). In this paper, we used indocyanine green (ICG), the only near-infrared (NIR) probe approved by the Food and Drug Administration (FDA), to detect ¹O₂ in vitro. Once it reacts with ¹O₂, ICG is decomposed and its UV absorption at 780 nm decreases with the laser irradiation. Our data demonstrated that ICG could be more sensitive and accurate than Singlet Oxygen Sensor Green reagent(®) (SOSG, a commercialized fluorescence probe) in vitro, moreover, ICG functioned with Eosin Y while SOSG failed. Thus, ICG would reasonably provide the possibility to sense ¹O₂ in vitro, with high sensitivity, selectivity and suitability to most photosensitizers. PMID:26861313

  12. Selective protection of normal hepatocytes by indocyanine green in photodynamic therapy for the hepatoma of rat

    NASA Astrophysics Data System (ADS)

    Gu, Ying; Li, Junheng; Guo, Zhong-He

    1993-03-01

    Using hepatocarcinoma transplanted rats, the present study made consecutive observation for the color change and indocyanine green (ICG) absorption peak of the normal liver and tumor tissues after intravenous injection of ICG. The normal liver tissue of the rat was found to turn violet-green soon after ICG injection and the optic density (OD) of ICG-characteristic spectral peak of the tissue homogenate reached its maximum value at 35 minutes post-injection, while neither color change nor OD value increase was noticed in the tissue of transplanted hepatocarcinoma, suggesting that there is a specific absorption of ICG by the normal liver tissue. Chemiluminescentoassay revealed inhibited luminal chemiluminescence by ICG, indicating the depression of singlet oxygen and reactive oxygen species (ROS) oxidation during HPD photosensitization by ICG. In PDT of the hepatocarcinoma, the irradiated area was examined under microscope and auto-microimage analysis system after ICG administration. For tumor-free tissue, the photosensitization induced necrotic area was found smaller in those with than those without ICG administration, whereas the tumor killing effect was almost the same of the two. It is suggested that ICG may offer selective protection for healthy hepatocytes without diminishing the destruction of tumor cells. The protection of healthy hepatocytes by ICG is thought to be in accordance with the amount of ICG in the cell and the distribution of light energy.

  13. In Vitro Efficacy and Mechanistic Role of Indocyanine Green as a Photodynamic Therapy Agent for Human Melanoma

    SciTech Connect

    Mamoon, A.; Gamal-Eldeen, A; Ruppel, M; Smith, R; Tsang, T; Miller, L

    2009-01-01

    Photodynamic therapy (PDT) is a promising treatment for superficial cancer. However, poor therapeutic results have been reported for melanoma, due to the high melanin content. Indocyanine green (ICG) has near infrared absorption (700-800nm) and melanins do not absorb strongly in this area. This study explores the efficiency of ICG as a PDT agent for human melanoma, and its mechanistic role in the cell death pathway.

  14. Indocyanine Green Fluorescence Imaging in the Surgical Management of an Iatrogenic Lymphatic Fistula: Description of a Surgical Technique.

    PubMed

    Papadia, Andrea; Imboden, Sara; Mohr, Stefan; Lanz, Susanne; Nirgianakis, Konstantinos; Mueller, Michael D

    2015-01-01

    We present a case of laparoscopic surgical management of an iatrogenic lymphorrhea using indocyanine green (ICG). A case of a patient who developed recurrent symptomatic lymphorrhea after laparoscopic radical hysterectomy and bilateral pelvic lymphadenectomy for an early stage cervical cancer is presented. Intraoperative bipedal interdigital subcutaneous injection of ICG exactly localized the disrupted lymphatic duct on fluorescence imaging performed with a near-infrared laparoscopic fluorescent optic device, thus allowing a successful surgical repair.

  15. The use of diffuse laser photonic energy and indocyanine green photosensitiser as an adjunct to periodontal therapy.

    PubMed

    Parker, S

    2013-08-01

    Light-activated chemical therapy - generally known as photodynamic therapy (PDT) - has been developed within medicine, to allow the use of an applied agent (photosensitiser) that could be activated using laser photonic energy, leading to the destruction of target cellular structures. In clinical dentistry, PDT has been utilised within a wide scope of topical application in endodontic, periodontal and oral epithelial pathology where specifically, anti-bacterial action may prove useful. Underlying the complex and multi-factorial aetiology, periodontal disease remains of essentially-bacterial origin and anti-bacterial PDT (aPDT) has been investigated as an adjunctive to other periodontal treatment therapies. Of several topically-applied photosensitisers, one agent, indocyanine green, may be activated using a diode laser wavelength (810 nm) that is commonly-available in clinical dental practice, to provide generalised bacteriocidal effect. Unlike antibiotics and antibacterial mouthwashes, the mode of action appears to be nonspecific to bacterial species and is linked to cell death through a process of oxidative stress. Additionally, indocyanine green has otherwise low toxicity to non-target host tissue and dental restorative materials. This paper explores the background to this therapy, its position within the broader delivery of periodontal treatment and the specific application of indocyanine green in clinical dental practice.

  16. Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green

    PubMed Central

    Fang, Cheng; Wang, Kun; Zeng, Chaoting; Chi, Chongwei; Shang, Wenting; Ye, Jinzuo; Mao, Yamin; Fan, Yingfang; Yang, Jian; Xiang, Nan; Zeng, Ning; Zhu, Wen; Fang, Chihua; Tian, Jie

    2016-01-01

    Tissue necrosis commonly accompanies the development of a wide range of serious diseases. Therefore, highly sensitive detection and precise boundary delineation of necrotic tissue via effective imaging techniques are crucial for clinical treatments; however, no imaging modalities have achieved satisfactory results to date. Although fluorescence molecular imaging (FMI) shows potential in this regard, no effective necrosis-avid fluorescent probe has been developed for clinical applications. Here, we demonstrate that indocyanine green (ICG) can achieve high avidity of necrotic tissue owing to its interaction with lipoprotein (LP) and phospholipids. The mechanism was explored at the cellular and molecular levels through a series of in vitro studies. Detection of necrotic tissue and real-time image-guided surgery were successfully achieved in different organs of different animal models with the help of FMI using in house-designed imaging devices. The results indicated that necrotic tissue with a 0.6 mm diameter could be effectively detected with precise boundary definition. We believe that the new discovery and the associated imaging techniques will improve personalized and precise surgery in the near future. PMID:26864116

  17. An Activatable Theranostic Nanomedicine Platform Based on Self-Quenchable Indocyanine Green-Encapsulated Polymeric Micelles.

    PubMed

    Liu, Lanxia; Ma, Guilei; Zhang, Chao; Wang, Hai; Sun, Hongfan; Wang, Chun; Song, Cunxian; Kong, Deling

    2016-06-01

    Self-quenchable indocyanine green (ICG)-encapsulated micelles with folic acid (FA)-targeting specificity (FA-ICG-micelles) were developed for biologically activatable photodynamic theranostics. FA-ICG-micelles were successfully prepared using the thin-film hydration method, which allows ICG to be encapsulated with a high drug loading that induces an efficient ICG-based quenched state. FA-ICG-micelles are initially in the "OFF" state with no fluorescence signal or phototoxicity, but they become highly fluorescent and phototoxic in cellular degradative environments. Importantly, via folate receptor-mediated endocytosis, the FA targeting of FA-ICG-micelles enhanced intracellular uptake and photodynamic therapy (PDT) efficacy. Systematic administration of FA-ICG-micelles to folate receptor-positive tumor-bearing mice elicited prolonged blood circulation, enhanced tumor accumulation and improved therapeutic efficiency compared to free ICG. Therefore, based on the FA-targeted specificity and switchable photoactivity, FA-ICG-micelles have potential for photodynamic theranostics in cancer. PMID:27319216

  18. Targeted imaging of ovarian cancer cells using viral nanoparticles doped with indocyanine green

    NASA Astrophysics Data System (ADS)

    Guerrero, Yadir; Bahmani, Baharak; Jung, Bonsu; Vullev, Valentine; Kundra, Vikas; Anvari, Bahman

    2013-03-01

    Our group has constructed a new type of viral nanoparticles (VNPs) from genome-depleted plant infecting brome mosaic virus (BMV) that encapsulates the FDA-approved near infrared (NIR) indocyanine green (ICG)[1]. We refer to these VNPs as optical viral ghosts (OVGs) since the constructs lack the genomic content of wild-type BMV. One of our areas of interest is the application of OVGs for real-time intraoperative NIR fluorescence imaging of small peritoneal ovarian tumor nodules. We target human epidermal growth factor receptor-2 (HER-2) expression in ovarian cancer as a biomarker associated with ovarian cancer, since its over-expression is linked to the disease's progression to death. We functionalize the OVGs with anti-HER-2 monoclonal antibodies using reductive amination methods. We used fluorescence imaging to visualize the SKOV-3 cells (high HER-2 expression) after incubation with free ICG, OVGs, and functionalized OVGs. Our results suggest the possibility of using anti-HER2 conjugated OVGs in conjunction with cytoreductive surgery to detect small tumor nodules (<5cm) which currently are not excised during surgery.

  19. Current use and perspective of indocyanine green clearance in liver diseases.

    PubMed

    Levesque, Eric; Martin, Eléonore; Dudau, Daniela; Lim, Chetana; Dhonneur, Gilles; Azoulay, Daniel

    2016-02-01

    Indocyanine green (ICG) is a water-soluble anionic compound that binds to plasma proteins after intravenous administration. It is selectively taken up at the first pass by hepatocytes and excreted unchanged into the bile. With the development of ICG elimination measurement by spectrophotometry, the ICG retention test has become a safe, rapid, reproducible, inexpensive and noninvasive tool for the assessment of liver function. Clinical evidence suggests that the ICG retention test can enable the establishment of tailored management strategies by providing prognostic information. In particular, this method has been evaluated as a prognostic marker in patients with advanced cirrhosis or awaiting liver transplantation. In addition, it is used as a marker of portal hypertension in cirrhotic patients, as a prognostic factor in intensive care units and for the assessment of liver function in patients undergoing liver surgery. Since recent technology enables ICG-PDR to be measured noninvasively at the bedside, this parameter is an attractive addition to liver function and regional haemodynamic monitoring. However, the current state-of-the-art as concerns this technology remains at a low level of evidence and thorough assessment is required. PMID:26477363

  20. In vitro efficiency and mechanistic role of indocyanine green as photodynamic therapy agent for human melanoma

    SciTech Connect

    Mamoon, A.M.; Miller, L.; Gamal-Eldeen, A. M.; Ruppel, M. E.; Smith, R. J.; Tsang, T.; Miller, L. M.

    2009-05-02

    Photodynamic therapy (PDT) is a promising treatment for superficial cancer. However, poor therapeutic results have been reported for melanoma, due to the high melanin content. Indocyanine green (ICG) has near infrared absorption (700-800 nm) and melanins do not absorb strongly in this area. This study explores the efficiency of ICG as a PDT agent for human melanoma, and its mechanistic role in the cell death pathway. Human skin melanoma cells (Sk-Mel-28) were incubated with ICG and exposed to a low power Ti:Sapphire laser. Synchrotron-assisted Fourier transform infrared microspectroscopy and hierarchical cluster analysis were used to assess the cell damage and changes in lipid, protein, and nucleic acids. The cell death pathway was determined by analysis of cell viability and apoptosis and necrosis markers. In the cell death pathway, {sup 1}O{sub 2} generation evoked rapid multiple consequences that trigger apoptosis after laser exposure for only 15min including the release of cytochrome c, the activation of total caspases, caspase-3, and caspase-9, the inhibition of NF-{Kappa}B P65, and the enhancement of DNA fragmentation, and histone acetylation. ICG/PDT can efficiently and rapidly induce apoptosis in human melanoma cells and it can be considered as a new therapeutic approach for topical treatment of melanoma.

  1. Tracheal anastomosis using indocyanine green dye enhanced fibrinogen with a near-infrared diode laser

    NASA Astrophysics Data System (ADS)

    Auteri, Joseph S.; Jeevanandam, Valluvan; Oz, Mehmet C.; Libutti, Steven K.; Kirby, Thomas J.; Smith, Craig R.; Treat, Michael R.

    1990-06-01

    A major obstacle to lung transplantation and combined heart- lung transplantation is dehiscence of the tracheobronchial anastomosis. We explored the possibility of laser welded anastomoses in canine tracheas in vivo. Laser anastomoses were performed on three-quarter circumferential anterior tracheotomies. A continous wave diode laser (808 +1 nm) at a power density of 9.6 watts/cm was used. Human fibrinogen was mixed with indocyanine green dye (ICG, max absorbance 805 nm) and applied to the anastomosis site prior to laser exposure. Animals were sacrificed at 0, 21 and 28 days post-operatively. At sacrifice weld bursting pressures were measured by raising intratracheal pressure using forced ventilation via an endotracheal tube. Sutured and laser welded anastomoses had similar bursting pressures, and exhibited satisfactory histologic evidence of healing. However, compared to polypropylene sutured controls, the laser welded anastomoses exhibited less peritracheal inflammatory reaction and showed visibly smoother luminal surfaces at 21 and 28 days post- operatively. Tracheal anastomosis using ICG dye enhanced fibrinogen combined with the near-infrared diode laser is a promising extension of the technology of laser tissue fusion and deserves further study.

  2. [Place of indocyanine green coupled with fluorescence imaging in research of breast cancer sentinel node].

    PubMed

    Vermersch, Charlotte; Raia Barjat, Tiphaine; Perrot, Marianne; Lima, Suzanne; Chauleur, Céline

    2016-04-01

    The sentinel node has a fundamental role in the management of early breast cancer. Currently, the double detection of blue and radioisotope is recommended. But in common practice, many centers use a single method. However, with a single detection, the risk of false negatives and the identification failure rate increase to a significant extent and the number of sentinel lymph node detected and removed is not enough. Furthermore, the tracers used until now show inconveniences. The purpose of this work is to present a new method of detection, using the green of indocyanine coupled with fluorescence imaging, and to compare it with the already existing methods. The method combined by fluorescence and isotopic is reliable, sure, of fast learning and could constitute a good strategy of detection. The major interest is to obtain a satisfactory number of sentinel nodes. The profit could be even more important for overweight patients. The fluorescence used alone is at the moment not possible. Wide ranging studies are necessary. The FLUOTECH, randomized study of 100 patients, comparing the isotopic method of double isotope technique and fluorescence, is underway to confirm these data.

  3. Recent advances in near-infrared fluorescence-guided imaging surgery using indocyanine green.

    PubMed

    Namikawa, Tsutomu; Sato, Takayuki; Hanazaki, Kazuhiro

    2015-12-01

    Near-infrared (NIR) fluorescence imaging has better tissue penetration, allowing for the effective rejection of excitation light and detection deep inside organs. Indocyanine green (ICG) generates NIR fluorescence after illumination by an NIR ray, enabling real-time intraoperative visualization of superficial lymphatic channels and vessels transcutaneously. The HyperEye Medical System (HEMS) can simultaneously detect NIR rays under room light to provide color imaging, which enables visualization under bright light. Thus, NIR fluorescence imaging using ICG can provide for excellent diagnostic accuracy in detecting sentinel lymph nodes in cancer and microvascular circulation in various ischemic diseases, to assist us with intraoperative decision making. Including HEMS in this system could further improve the sentinel lymph node mapping and intraoperative identification of blood supply in reconstructive organs and ischemic diseases, making it more attractive than conventional imaging. Moreover, the development of new laparoscopic imaging systems equipped with NIR will allow fluorescence-guided surgery in a minimally invasive setting. Future directions, including the conjugation of NIR fluorophores to target specific cancer markers might be realistic technology with diagnostic and therapeutic benefits.

  4. Indocyanine Green Liposomes for Diagnosis and Therapeutic Monitoring of Cerebral Malaria

    PubMed Central

    Portnoy, Emma; Vakruk, Natalia; Bishara, Ameer; Shmuel, Miriam; Magdassi, Shlomo; Golenser, Jacob; Eyal, Sara

    2016-01-01

    Cerebral malaria (CM) is a major cause of death of Plasmodium falciparum infection. Misdiagnosis of CM often leads to treatment delay and mortality. Conventional brain imaging technologies are rarely applicable in endemic areas. Here we address the unmet need for a simple, non-invasive imaging methodology for early diagnosis of CM. This study presents the diagnostic and therapeutic monitoring using liposomes containing the FDA-approved fluorescent dye indocyanine green (ICG) in a CM murine model. Increased emission intensity of liposomal ICG was demonstrated in comparison with free ICG. The Liposomal ICG's emission was greater in the brains of the infected mice compared to naïve mice and drug treated mice (where CM was prevented). Histological analyses suggest that the accumulation of liposomal ICG in the cerebral vasculature is due to extensive uptake mediated by activated phagocytes. Overall, liposomal ICG offers a valuable diagnostic tool and a biomarker for effectiveness of CM treatment, as well as other diseases that involve inflammation and blood vessel occlusion. PMID:26877776

  5. Enhanced laser tissue soldering using indocyanine green chromophore and gold nanoshells combination.

    PubMed

    Khosroshahi, Mohammad E; Nourbakhsh, Mohammad S

    2011-08-01

    Gold nanoshells (GNs) are new materials that have an optical response dictated by the plasmon resonance. The wavelength at which the resonance occurs depends on the core and shell sizes. The purposes of this study were to use the combination of indocyanine green (ICG) and different concentration of gold nanoshells for skin tissue soldering and also to examine the effect of laser soldering parameters on the properties of repaired skin. Two mixtures of albumin solder and different combinations of ICG and gold nanoshells were prepared. A full thickness incision of 2 × 20 mm(2) was made on the surface and after addition of mixtures it was irradiated by an 810 nm diode laser at different power densities. The changes of tensile strength (σ(t)) due to temperature rise, number of scan (Ns), and scan velocity (Vs) were investigated. The results showed at constant laser power density (I), σ(t) of repaired incisions increases by increasing the concentration of gold nanoshells in solder, Ns, and decreasing Vs. It was demonstrated that laser soldering using combination of ICG + GNs could be practical provided the optothermal properties of the tissue are carefully optimized. Also, the tensile strength of soldered skin is higher than skins that soldered with only ICG or GNs. In our case, this corresponds to σ(t) = 1800 g cm(-2) at I ∼ 47 Wcm(-2), T ∼ 85 [ordinal indicator, masculine]C, Ns = 10, and Vs = 0.3 mms(-1). PMID:21895342

  6. Development and validation of a custom made indocyanine green fluorescence lymphatic vessel imager.

    PubMed

    Pallotta, Olivia J; van Zanten, Malou; McEwen, Mark; Burrow, Lynne; Beesley, Jack; Piller, Neil

    2015-06-01

    Lymphoedema is a chronic progressive condition often producing significant morbidity. An in-depth understanding of an individual's lymphatic architecture is valuable both in the understanding of underlying pathology and for targeting and tailoring treatment. Severe lower limb injuries resulting in extensive loss of soft tissue require transposition of a flap consisting of muscle and/or soft tissue to close the defect. These patients are at risk of lymphoedema and little is known about lymphatic regeneration within the flap. Indocyanine green (ICG), a water-soluble dye, has proven useful for the imaging of lymphatic vessels. When injected into superficial tissues it binds to plasma proteins in lymph. By exposing the dye to specific wavelengths of light, ICG fluoresces with near-infrared light. Skin is relatively transparent to ICG fluorescence, enabling the visualization and characterization of superficial lymphatic vessels. An ICG fluorescence lymphatic vessel imager was manufactured to excite ICG and visualize real-time fluorescence as it travels through the lymphatic vessels. Animal studies showed successful ICG excitation and detection using this imager. Clinically, the imager has assisted researchers to visualize otherwise hidden superficial lymphatic pathways in patients postflap surgery. Preliminary results suggest superficial lymphatic vessels do not redevelop in muscle flaps.

  7. Development and validation of a custom made indocyanine green fluorescence lymphatic vessel imager

    NASA Astrophysics Data System (ADS)

    Pallotta, Olivia J.; van Zanten, Malou; McEwen, Mark; Burrow, Lynne; Beesley, Jack; Piller, Neil

    2015-06-01

    Lymphoedema is a chronic progressive condition often producing significant morbidity. An in-depth understanding of an individual's lymphatic architecture is valuable both in the understanding of underlying pathology and for targeting and tailoring treatment. Severe lower limb injuries resulting in extensive loss of soft tissue require transposition of a flap consisting of muscle and/or soft tissue to close the defect. These patients are at risk of lymphoedema and little is known about lymphatic regeneration within the flap. Indocyanine green (ICG), a water-soluble dye, has proven useful for the imaging of lymphatic vessels. When injected into superficial tissues it binds to plasma proteins in lymph. By exposing the dye to specific wavelengths of light, ICG fluoresces with near-infrared light. Skin is relatively transparent to ICG fluorescence, enabling the visualization and characterization of superficial lymphatic vessels. An ICG fluorescence lymphatic vessel imager was manufactured to excite ICG and visualize real-time fluorescence as it travels through the lymphatic vessels. Animal studies showed successful ICG excitation and detection using this imager. Clinically, the imager has assisted researchers to visualize otherwise hidden superficial lymphatic pathways in patients postflap surgery. Preliminary results suggest superficial lymphatic vessels do not redevelop in muscle flaps.

  8. (177)Lu-Labeled Cerasomes Encapsulating Indocyanine Green for Cancer Theranostics.

    PubMed

    Jing, Lijia; Shi, Jiyun; Fan, Di; Li, Yaqian; Liu, Renfa; Dai, Zhifei; Wang, Fan; Tian, Jie

    2015-10-01

    This Article reported the fabrication of a robust theranostic cerasome encapsulating indocyanine green (ICG) by incorporating 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethylene glycol)2000]-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid monoamide (DSPE-PEG2000-DOTA), followed by chelating radioisotope of (177)Lu. Its applications in optical and nuclear imaging of tumor uptake and biodistribution, as well as photothermal killing of cancer cells, were investigated. It was found that the obtained cerasome could act efficiently as fluorescence contrast agent as well as nuclear imaging tracer. Encapsulating ICG into cerasome could protect ICG from degradation, aggregation, and fast elimination from body, resulting in remarkable improvement in near-infrared fluorescence imaging, photothermal stability, and in vivo pharmacokinetic profile. Both fluorescence and nuclear imaging showed that such agent could selectively accumulate in tumor site after intravenous injection of the cerasome agent into Lewis lung carcinoma tumor bearing mice, resulting in efficient photothermal ablation of tumor through a one-time NIR laser irradiation at the best time window. The ability to track the uptake of cerasomes on a whole body basis could provide researchers with an excellent tool for developing cerasome-based drug delivery agents, especially the strategy of labeling cerasomes with theranostic radionuclide (177)Lu, enabling the ability of the (177)Lu-labeled cerasomes for radionuclide cancer therapy and even the combined therapy.

  9. Photodynamic therapy using nanoparticle loaded with indocyanine green for experimental peritoneal dissemination of gastric cancer.

    PubMed

    Tsujimoto, Hironori; Morimoto, Yuji; Takahata, Risa; Nomura, Shinsuke; Yoshida, Kazumichi; Horiguchi, Hiroyuki; Hiraki, Shuichi; Ono, Satoshi; Miyazaki, Hiromi; Saito, Daizo; Hara, Isao; Ozeki, Eiichi; Yamamoto, Junji; Hase, Kazuo

    2014-12-01

    Although there have been multiple advances in the development of novel anticancer agents and operative procedures, prognosis of patients with advanced gastric cancer remains poor, especially in patients with peritoneal metastasis. In this study, we established nanoparticles loaded with indocyanine green (ICG) derivatives: ICG loaded lactosomes (ICGm) and investigated the diagnostic and therapeutic value of photodynamic therapy (PDT) using ICGm for experimental peritoneal dissemination of gastric cancer. Experimental peritoneal disseminated xenografts of human gastric cancer were established in nude mice. Three weeks after intraperitoneal injection of the cancer cells, either ICGm (ICGm-treated mice) or ICG solution (ICG-treated mice) was injected through the tail vein. Forty-eight hours after injection of the photosensitizer, in vivo and ex vivo imaging was carried out. For PDT, 48 h after injection of the photosensitizer, other mice were irradiated through the abdominal wall, and the body weight and survival rate were monitored. In vivo imaging revealed that peritoneal tumors were visualized through the abdominal wall in ICGm-treated mice, whereas only non-specific fluorescence was observed in ICG-treated mice. The PDT reduced the total weight of the disseminated nodules and significantly improved weight loss and survival rate in ICGm-treated mice. In conclusion, ICGm can be used as a novel diagnostic and therapeutic nanodevice in peritoneal dissemination of gastric cancer.

  10. Indocyanine Green Liposomes for Diagnosis and Therapeutic Monitoring of Cerebral Malaria.

    PubMed

    Portnoy, Emma; Vakruk, Natalia; Bishara, Ameer; Shmuel, Miriam; Magdassi, Shlomo; Golenser, Jacob; Eyal, Sara

    2016-01-01

    Cerebral malaria (CM) is a major cause of death of Plasmodium falciparum infection. Misdiagnosis of CM often leads to treatment delay and mortality. Conventional brain imaging technologies are rarely applicable in endemic areas. Here we address the unmet need for a simple, non-invasive imaging methodology for early diagnosis of CM. This study presents the diagnostic and therapeutic monitoring using liposomes containing the FDA-approved fluorescent dye indocyanine green (ICG) in a CM murine model. Increased emission intensity of liposomal ICG was demonstrated in comparison with free ICG. The Liposomal ICG's emission was greater in the brains of the infected mice compared to naïve mice and drug treated mice (where CM was prevented). Histological analyses suggest that the accumulation of liposomal ICG in the cerebral vasculature is due to extensive uptake mediated by activated phagocytes. Overall, liposomal ICG offers a valuable diagnostic tool and a biomarker for effectiveness of CM treatment, as well as other diseases that involve inflammation and blood vessel occlusion.

  11. In vivo observing x-ray attenuation of intratumor injection of indocyanine green

    NASA Astrophysics Data System (ADS)

    Ye, Chang; Luo, Qingming; Liang, Wenxi; Lu, Jinling

    2003-12-01

    We report our experimental results of in vivo observing x-ray attenuation of intra-tumor injection of indocyanine green (ICG). An eight- to nine-week-old male BALB/c mouse weighting between 15 and 20 g is used in the experiments, which has been implanted with myeloma cell line (SP2/0) two week before. The system used to monitor the intratumor diffusion of ICG is a digital x-ray imaging system. It works at 33kVp, 0.3mAs, 4 seconds and 1.5×magnification. The objective of this research is to study the x-ray attenuation at different area, which represented by gray-scale value. Compare to the ROI in the tissue without ICG and ROI of black background in the image, there is an obvious change before and after injecting ICG in the tumor, which is the area ICG can diffuse to. It shows the feasibility of using digital x-ray imaging system to dynamically, effectively and noninterventionly monitor the diffusion of the ICG.

  12. Targeting tumor hypoxia with 2-nitroimidazole-indocyanine green dye conjugates.

    PubMed

    Xu, Yan; Zanganeh, Saeid; Mohammad, Innus; Aguirre, Andres; Wang, Tianheng; Yang, Yi; Kuhn, Liisa; Smith, Michael B; Zhu, Quing

    2013-06-01

    Tumor hypoxia is a major indicator of treatment resistance to chemotherapeutic drugs, and fluorescence optical tomography has tremendous potential to provide clinically useful, functional information by identifying tumor hypoxia. The synthesis of a 2-nitroimidazole-indocyanine green conjugate using a piperazine linker (piperazine-2-nitroimidazole-ICG) capable of robust fluorescent imaging of tumor hypoxia is described. In vivo mouse tumor imaging studies were completed and demonstrate an improved imaging capability of the new dye relative to an earlier version of the dye that was synthesized with an ethanolamine linker (ethanolamine-2-nitroimidazole-ICG). Mouse tumors located at imaging depths of 1.5 and 2.0 cm in a turbid medium were imaged at various time points after intravenous injection of the dyes. On average, the reconstructed maximum fluorescence concentration of the tumors injected with piperazine-2-nitroimidazole-ICG was twofold higher than that injected with ethanolamine-2-nitroimidazole-ICG within 3 h postinjection period and 1.6 to 1.7 times higher beyond 3 h postinjection. The untargeted bis-carboxylic acid ICG completely washed out after 3 h postinjection. Thus, the optimal window to assess tumor hypoxia is beyond 3 h postinjection. These findings were supported with fluorescence images of histological sections of tumor samples and an immunohistochemistry technique for identifying tumor hypoxia.

  13. Targeting tumor hypoxia with 2-nitroimidazole-indocyanine green dye conjugates

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Zanganeh, Saeid; Mohammad, Innus; Aguirre, Andres; Wang, Tianheng; Yang, Yi; Kuhn, Liisa; Smith, Michael B.; Zhu, Quing

    2013-06-01

    Tumor hypoxia is a major indicator of treatment resistance to chemotherapeutic drugs, and fluorescence optical tomography has tremendous potential to provide clinically useful, functional information by identifying tumor hypoxia. The synthesis of a 2-nitroimidazole-indocyanine green conjugate using a piperazine linker (piperazine-2-nitroimidazole-ICG) capable of robust fluorescent imaging of tumor hypoxia is described. In vivo mouse tumor imaging studies were completed and demonstrate an improved imaging capability of the new dye relative to an earlier version of the dye that was synthesized with an ethanolamine linker (ethanolamine-2-nitroimidazole-ICG). Mouse tumors located at imaging depths of 1.5 and 2.0 cm in a turbid medium were imaged at various time points after intravenous injection of the dyes. On average, the reconstructed maximum fluorescence concentration of the tumors injected with piperazine-2-nitroimidazole-ICG was twofold higher than that injected with ethanolamine-2-nitroimidazole-ICG within 3 h postinjection period and 1.6 to 1.7 times higher beyond 3 h postinjection. The untargeted bis-carboxylic acid ICG completely washed out after 3 h postinjection. Thus, the optimal window to assess tumor hypoxia is beyond 3 h postinjection. These findings were supported with fluorescence images of histological sections of tumor samples and an immunohistochemistry technique for identifying tumor hypoxia.

  14. Indocyanine green enhanced near infrared laser treatment of SCK tumors in a mouse model pilot study

    NASA Astrophysics Data System (ADS)

    Shafirstein, Gal; Bäumler, Wolfgang; Friedman, Ran; Hennings, Leah; Webber, Jessica; Suen, James; Griffin, Robert J.

    2011-03-01

    Background and Purpose. Determine the efficacy of indocyanine green (ICG) dye in enhancing near infrared (NIR) laser ablation of tumors in a mouse model. Methods. Mammary carcinoma cells of A/J mice were injected subcutaneously in the lower back of female A/J mice (n=6). Five to seven days post inoculation the tumors (7-9 mm) were treated with 755-nm laser using 70 J/cm2 radiant exposures and 3-ms pulse time. Epidermal cooling was accomplished by cryogen spray cooling. Two minutes prior to laser irradiation mice were injected, intravenously, with 4 mg/kg body weight of ICG solution. Results. Complete tumor ablation was observed in the tumor region and minor damage was seen in the healthy skin. No major skin damage was observed post treatment. Substantial damage (up to 100% coagulative necrosis) was observed in tissue collected from tumors that were treated with laser/ICG. Conclusions. Intravenous administration of 4 mg/kg ICG significantly enhanced thermal ablation of tumors during NIR laser irradiation while sparing healthy skin.

  15. Cell tolerability and biodistribution in mice of indocyanine green-loaded lipid nanoparticles.

    PubMed

    Navarro, Fabrice P; Mittler, Frédérique; Berger, Michel; Josserand, Véronique; Gravier, Julien; Vinet, Françoise; Texier, Isabelle

    2012-08-01

    Considering toxicity requirements for clinical translation of fluorescence imaging applications, the use of biocompatible carriers for designing near infrared emitting contrast agents appears as an attractive alternative to semiconductor nanocrystals. Lipid nanoparticles (LNP) have been designed to serve as carriers for indocyanine green (ICG), the presently only human-use approved near infrared dye. The cytotoxicity and hemocompatibility of these nanoparticle-based probes are determined in vitro, respectively in mouse 3T3 fibroblasts and human blood samples. Comparative biodistribution of free ICG and ICG-LNP in mice is monitored, and an ex vivo fluorescence organ quantification is performed considering large animal cohorts. Good tolerability and very low hemolytic activity are demonstrated for naked and ICG-loaded LNP. Interestingly, ICG-LNP lead to long-term plasma fluorescence (> 24 hours) but also a partial intestinal reabsorption of ICG between 5 and 24 hours after injection. This novel ICG nanoformulation is foreseen to expand rapidly the field of clinical fluorescence imaging applications.

  16. Hybrid polypeptide micelles loading indocyanine green for tumor imaging and photothermal effect study.

    PubMed

    Wu, Lei; Fang, Shengtao; Shi, Shuai; Deng, Jizhe; Liu, Bin; Cai, Lintao

    2013-09-01

    Indocyanine green (ICG) is a near-infrared (NIR) fluorescence dye for extensive applications; however, it is limited for further biological application due to its poor aqueous stability in vitro, concentration-dependent aggregation, rapid elimination from the body, and lack of target specificity. To overcome its limitations, ICG was encapsulated in the core of a polymeric micelle, which self-assembled from amphiphilic PEG-polypeptide hybrid triblock copolymers of poly(ethylene glycol)-b-poly(l-lysine)-b-poly(l-leucine) (PEG-PLL-PLLeu), with PLLeu as the hydrophobic core and PEG as the hydrophilic shell. The ICG was associated with the hydrophobic core via hydrophobic interaction and also the hydrophilic heads through electrostatic attractive interaction. Compared with free ICG, PEG-PLL-PLLeu-ICG micelles significantly improved quantum yield and fluorescent stability. The cellular uptake experiments showed that PEG-PLL-PLLeu-ICG micelles have a high cellular uptake rate. And the in vivo experiments revealed the excellent passive tumor targeting ability and long circulation time of PEG-PLL-PLLeu-ICG. The above results indicated the broad prospects of PEG-PLL-PLLeu-ICG application in the fields of tumor diagnosis and imaging. In addition, temperature measurements under NIR laser irradiation and in vitro photothermal ablation studies proved the potential application of PEG-PLL-PLLeu-ICG in tumor photothermal therapy.

  17. Minibody-indocyanine green based activatable optical imaging probes: the role of short polyethylene glycol linkers.

    PubMed

    Watanabe, Rira; Sato, Kazuhide; Hanaoka, Hirofumi; Harada, Toshiko; Nakajima, Takahito; Kim, Insook; Paik, Chang H; Wu, Anna M; Choyke, Peter L; Kobayashi, Hisataka

    2014-04-10

    Minibodies show rapider blood clearance than IgGs due to smaller size that improves target-to-background ratio (TBR) in in vivo imaging. Additionally, the ability to activate an optical probe after binding to the target greatly improves the TBR. An optical imaging probe based on a minibody against prostate-specific membrane antigen (PSMA-MB) and conjugated with an activatable fluorophore, indocyanine green (ICG), was designed to fluoresce only after binding to cell-surface PSMA. To further reduce background signal, short polyethylene glycol (PEG) linkers were employed to improve the covalent bonding ratio of ICG. New PSMA-MBs conjugated with bifunctional ICG derivatives specifically visualized PSMA-positive tumor xenografts in mice bearing both PSMA-positive and -negative tumors within 6 h postinjection. The addition of short PEG linkers significantly improved TBRs; however, it did not significantly alter the biodistribution. Thus, minibody-ICG conjugates could be a good alternative to IgG-ICG in the optical cancer imaging for further clinical applications.

  18. Indocyanine green-loaded nanoparticles for image-guided tumor surgery.

    PubMed

    Hill, Tanner K; Abdulahad, Asem; Kelkar, Sneha S; Marini, Frank C; Long, Timothy E; Provenzale, James M; Mohs, Aaron M

    2015-02-18

    Detecting positive tumor margins and local malignant masses during surgery is critical for long-term patient survival. The use of image-guided surgery for tumor removal, particularly with near-infrared fluorescent imaging, is a potential method to facilitate removing all neoplastic tissue at the surgical site. In this study we demonstrate a series of hyaluronic acid (HLA)-derived nanoparticles that entrap the near-infrared dye indocyanine green, termed NanoICG, for improved delivery of the dye to tumors. Self-assembly of the nanoparticles was driven by conjugation of one of three hydrophobic moieties: aminopropyl-1-pyrenebutanamide (PBA), aminopropyl-5β-cholanamide (5βCA), or octadecylamine (ODA). Nanoparticle self-assembly, dye loading, and optical properties were characterized. NanoICG exhibited quenched fluorescence that could be activated by disassembly in a mixed solvent. NanoICG was found to be nontoxic at physiologically relevant concentrations and exposure was not found to inhibit cell growth. Using an MDA-MB-231 tumor xenograft model in mice, strong fluorescence enhancement in tumors was observed with NanoICG using a fluorescence image-guided surgery system and a whole-animal imaging system. Tumor contrast with NanoICG was significantly higher than with ICG alone.

  19. Photoacoustic imaging enhanced by indocyanine green-conjugated single-wall carbon nanotubes.

    PubMed

    Zanganeh, Saeid; Li, Hai; Kumavor, Patrick D; Alqasemi, Umar; Aguirre, Andres; Mohammad, Innus; Stanford, Courtney; Smith, Michael B; Zhu, Quing

    2013-09-01

    A photoacoustic contrast agent that is based on bis-carboxylic acid derivative of indocyanine green (ICG) covalently conjugated to single-wall carbon nanotubes (ICG/SWCNT) is presented. Covalently attaching ICG to the functionalized SWCNT provides a more robust system that delivers much more ICG to the tumor site. The detection sensitivity of the new contrast agent in a mouse tumor model is demonstrated in vivo by our custom-built photoacoustic imaging system. The summation of the photoacoustic tomography (PAT) beam envelope, referred to as the "PAT summation," is used to demonstrate the postinjection light absorption of tumor areas in ICG- and ICG/SWCNT-injected mice. It is shown that ICG is able to provide 33% enhancement at approximately 20 min peak response time with reference to the preinjection PAT level, while ICG/SWCNT provides 128% enhancement at 80 min and even higher enhancement of 196% at the end point of experiments (120 min on average). Additionally, the ICG/SWCNT enhancement was mainly observed at the tumor periphery, which was confirmed by fluorescence images of the tumor samples. This feature is highly valuable in guiding surgeons to assess tumor boundaries and dimensions in vivo and to achieve clean tumor margins to improve surgical resection of tumors.

  20. Noninvasive optical measurement of cerebral blood flow in mice using molecular dynamics analysis of indocyanine green.

    PubMed

    Ku, Taeyun; Choi, Chulhee

    2012-01-01

    In preclinical studies of ischemic brain disorders, it is crucial to measure cerebral blood flow (CBF); however, this requires radiological techniques with heavy instrumentation or invasive procedures. Here, we propose a noninvasive and easy-to-use optical imaging technique for measuring CBF in experimental small animals. Mice were injected with indocyanine green (ICG) via tail-vein catheterization. Time-series near-infrared fluorescence signals excited by 760 nm light-emitting diodes were imaged overhead by a charge-coupled device coupled with an 830 nm bandpass-filter. We calculated four CBF parameters including arrival time, rising time and mean transit time of a bolus and blood flow index based on time and intensity information of ICG fluorescence dynamics. CBF maps were generated using the parameters to estimate the status of CBF, and they dominantly represented intracerebral blood flows in mice even in the presence of an intact skull and scalp. We demonstrated that this noninvasive optical imaging technique successfully detected reduced local CBF during middle cerebral artery occlusion. We further showed that the proposed method is sufficiently sensitive to detect the differences between CBF status in mice anesthetized with either isoflurane or ketamine-xylazine, and monitor the dynamic changes in CBF after reperfusion during transient middle cerebral artery occlusion. The near-infrared optical imaging of ICG fluorescence combined with a time-series analysis of the molecular dynamics can be a useful noninvasive tool for preclinical studies of brain ischemia.

  1. Multidrug resistance p-glycoprotein 2 is essential for the biliary excretion of indocyanine green.

    PubMed

    Huang, L; Vore, M

    2001-05-01

    Multidrug resistance P-glycoprotein 2 (Mdr2) is a phospholipid translocator in the canalicular membrane that is essential for the formation of biliary phospholipid vesicles and mixed lipid/bile salt micelles. Incorporation into biliary vesicles and micelles is thought to contribute to the hepatobiliary excretion of certain hydrophobic organic anions, such as indocyanine green (ICG). The present studies characterized the biliary excretion of two hydrophobic organic anions, ICG and estradiol-17beta(beta-D-glucuronide) (E(2)17G), in the single-pass isolated perfused liver and the biliary excretion of glutathione (GSH) in vivo in wild-type and Mdr2-/- female mice. The biliary excretion of ICG (0.4 micromol) was reduced by 90%, while the biliary excretion of total GSH was decreased by 65% in Mdr2-/- mice relative to wild-type mice. In contrast, the biliary excretion of E(2)17G (0.1 micromol) was increased by 30% in Mdr2-/- mice. These data indicate that the absence of Mdr2 differentially influences the biliary excretion of these organic anions and suggest that phospholipid vesicles and mixed micelles in bile are essential for the biliary excretion of ICG.

  2. Changes in susceptibility to acetaminophen-induced liver injury by the organic anion indocyanine green.

    PubMed

    Silva, V M; Chen, C; Hennig, G E; Whiteley, H E; Manautou, J E

    2001-03-01

    The non-metabolizable organic anion indocyanine green (ICG) has been shown previously to reduce markedly the biliary secretion of acetaminophen, particularly the glutathione conjugate of APAP (APAP-GSH), suggesting that this APAP metabolite may compete with other xenobiotics for excretion into the bile via a canalicular organic anion transport process. This study was conducted to determine whether changes in the biliary disposition of APAP induced by ICG could lead to alterations in susceptibility to APAP hepatotoxicity. To investigate this, groups of overnight-fasted male CD-1 mice received 30 micromol ICG/kg, intravenously, immediately prior to APAP dosing (500 mg/kg, ip). Controls were given propylene glycol vehicle. Mice were killed at 4 h after APAP challenge for immunochemical analysis of cytosolic protein arylation and determination of non-protein sulfhydryl (NPSH) depletion, or at 12 and 24 h for biochemical and histological assessment of liver injury. Elevated plasma sorbitol dehydrogenase activity and centrilobular hepatocellular necrosis was present in control mice receiving APAP at 12 and 24 h. Treatment with ICG did not alter susceptibility to APAP toxicity when measured at 12 h after challenge. However, the severity of histologic lesions in the ICG-APAP group was significantly lower at 24 h after challenge. Furthermore, treatment with ICG did not alter APAP-induced glutathione depletion or cytosolic protein arylation. These data suggest that the organic anion ICG has a protective effect on APAP toxicity that promotes a faster recovery from liver injury.

  3. Effect of penicillic acid on biliary excretion of indocyanine green in the mouse and rat.

    PubMed

    Chan, P K; Hayes, A W

    1981-02-01

    Penicillic acid (PA), a mycotoxin, is hepatotoxic. A study was undertaken to investigate its effects on hepatobiliary excretory function, using the anionic compounds indocyanine green (ICG), in mice and rats. Pretreatment with a single dose of PA (90 mg/kg, ip, an LD50 dose in both species) resulted in depression of ICG excretion in both species. This depression was dose- and time-dependent. Decreases of 42 and 57% in biliary excretion of ICG were observed in rats and mice 48 and 72 h after PA pretreatment, respectively. Although bile flow was depressed significantly when expressed in terms of body weight, it was not altered in mice when expressed in terms of liver weight. Bile flow was not affected in rats. While the serum ICG concentration was increased after PA treatment in both species, the liver ICG concentration was not affected. The liver-to-serum, bile-to-serum, and bile-to-liver ICG concentration ratios decreased in PA-treated animals. These data suggest that the PA-induced hepatobiliary excretory dysfunction may result from depression of both uptake of ICG into the liver and bile canlicular transport of ICG.

  4. Noninvasive Optical Measurement of Cerebral Blood Flow in Mice Using Molecular Dynamics Analysis of Indocyanine Green

    PubMed Central

    Ku, Taeyun; Choi, Chulhee

    2012-01-01

    In preclinical studies of ischemic brain disorders, it is crucial to measure cerebral blood flow (CBF); however, this requires radiological techniques with heavy instrumentation or invasive procedures. Here, we propose a noninvasive and easy-to-use optical imaging technique for measuring CBF in experimental small animals. Mice were injected with indocyanine green (ICG) via tail-vein catheterization. Time-series near-infrared fluorescence signals excited by 760 nm light-emitting diodes were imaged overhead by a charge-coupled device coupled with an 830 nm bandpass-filter. We calculated four CBF parameters including arrival time, rising time and mean transit time of a bolus and blood flow index based on time and intensity information of ICG fluorescence dynamics. CBF maps were generated using the parameters to estimate the status of CBF, and they dominantly represented intracerebral blood flows in mice even in the presence of an intact skull and scalp. We demonstrated that this noninvasive optical imaging technique successfully detected reduced local CBF during middle cerebral artery occlusion. We further showed that the proposed method is sufficiently sensitive to detect the differences between CBF status in mice anesthetized with either isoflurane or ketamine–xylazine, and monitor the dynamic changes in CBF after reperfusion during transient middle cerebral artery occlusion. The near-infrared optical imaging of ICG fluorescence combined with a time-series analysis of the molecular dynamics can be a useful noninvasive tool for preclinical studies of brain ischemia. PMID:23119000

  5. In vivo fluorescence confocal microscopy: indocyanine green enhances the contrast of epidermal and dermal structures

    NASA Astrophysics Data System (ADS)

    Skvara, Hans; Kittler, Harald; Schmid, Johannes A.; Plut, Ulrike; Jonak, Constanze

    2011-09-01

    In recent years, in vivo skin imaging devices have been successfully implemented in skin research as well as in clinical routine. Of particular importance is the use of reflectance confocal microscopy (RCM) and fluorescence confocal microscopy (FCM) that enable visualization of the tissue with a resolution comparable to histology. A newly developed commercially available multi-laser device in which both technologies are integrated now offers the possibility to directly compare RCM with FCM. The fluorophore indocyanine green (ICG) was intradermally injected into healthy forearm skin of 10 volunteers followed by in vivo imaging at various time points. In the epidermis, accurate assessment of cell morphology with FCM was supplemented by identification of pigmented cells and structures with RCM. In dermal layers, only with FCM connective tissue fibers were clearly contoured down to a depth of more than 100 μm. The fluorescent signal still provided a favorable image contrast 24 and 48 hours after injection. Subsequently, ICG was applied to different types of skin diseases (basal cell carcinoma, actinic keratosis, seborrhoeic keratosis, and psoriasis) in order to demonstrate the diagnostic benefit of FCM when directly compared with RCM. Our data suggest a great impact of FCM in combination with ICG on clinical and experimental dermatology in the future.

  6. Gadolinium-doped silica nanoparticles encapsulating indocyanine green for near infrared and magnetic resonance imaging.

    PubMed

    Sharma, Parvesh; Bengtsson, Niclas E; Walter, Glenn A; Sohn, Han-Byul; Zhou, Guangyin; Iwakuma, Nobutaka; Zeng, Huadong; Grobmyer, Stephen R; Scott, Edward W; Moudgil, Brij M

    2012-09-24

    Clinical applications of the indocyanine green (ICG) dye, the only near infrared (NIR) imaging dye approved by the Food and Drug Administration (FDA) in the USA, are limited due to rapid protein binding, fast clearance, and instability in physiologically relevant conditions. Encapsulating ICG in silica particles can enhance its photostability, minimize photobleaching, increase the signal-to-noise (S/N) ratio and enable in vivo studies. Furthermore, a combined magnetic resonance (MR) and NIR imaging particulate can integrate the advantage of high-resolution 3D anatomical imaging with high-sensitivity deep-tissue in-vivo fluorescent imaging. In this report, a novel synthesis technique that can achieve these goals is presented. A reverse-microemulsion-based synthesis protocol is employed to produce 25 nm ICG-doped silica nanoparticles (NPs). The encapsulation of ICG is achieved by manipulating coulombic attractions with bivalent ions and aminated silanes and carrying out silica synthesis in salt-catalyzed, mildly basic pH conditions using dioctyl sulfosuccinate (AOT)/heptane/water microemulsion system. Furthermore, paramagnetic properties are imparted by chelating paramagnetic Gd to the ICG-doped silica NPs. Aqueous ICG-dye-doped silica NPs show increased photostability (over a week) and minimal photobleaching as compared to the dye alone. The MR and optical imaging capabilities of these particles are demonstrated through phantom, in vitro and in vivo experiments. The described particles have the potential to act as theranostic agents by combining photodynamic therapy through the absorption of NIR irradiated light.

  7. Diode laser anastemoses of medium-size arteries with indocyanine green dye-enhanced albumine

    NASA Astrophysics Data System (ADS)

    Weng, Guo-Xing; Williamson, Warren; Aretz, H. Thomas

    1998-11-01

    In order to achieve a better long-term patency result and solve the problem of tensile strength in laser artery anastomoses, diode laser and Indocyanine Green (ICG) enhanced albumin were applied to medium-size artery anastomoses with three different methods, that is, direct laser vascular anastomoses, direct method enforced with ICG albumin, and laser welding with ICG albumin as 'solder'. Internal mammary artery (IMA) harvested from patients undergoing coronary bypass procedures, in vivo rat abdominal artery, and in vitro swine heart and IMA were chosen as the experimental materials. The results revealed that only 3.15 +/- 0.36 minutes were required for each anastomosis; the bursting pressure and tensile strength were greater in the groups enforced with ICG albumin and laser welding than that with direct laser anastomoses. In the laser soldering group, the thermal damage was limited in the adventitial layer, only at a depth of 200 micrometers . There was also a satisfied result in the in vivo laser welding rat's abdominal adventitial layer, only at a depth of 200 micrometers . There was also a satisfied result in the in vivo laser welding rat's abdominal arteries. However, end-to-side laser welding of IMA soronary artery with ICG albumin needs further investigation about its tensile strength in an in vivo model.

  8. Laser-initiated decomposition products of indocyanine green (ICG) and carbon black sensitized biological tissues

    NASA Astrophysics Data System (ADS)

    Kokosa, John M.; Przyjazny, Andrzej; Bartels, Kenneth E.; Motamedi, Massoud; Hayes, Donald J.; Wallace, David B.; Frederickson, Christopher J.

    1997-05-01

    Organic dyes have found increasing use a s sensitizers in laser surgical procedures, due to their high optical absorbances. Little is known, however, about the nature of the degradation products formed when these dyes are irradiated with a laser. Previous work in our laboratories has shown that irradiation of polymeric and biological tissues with CO2 and Nd:YAG lasers produces a host of volatile and semivolatile by-products, some of which are known to be potential carcinogens. This work focuses on the identification of the chemical by-products formed by diode laser and Nd:YAG laser irradiation of indocyanine green (ICG) and carbon black based ink sensitized tissues, including bone, tendon and sheep's teeth. Samples were mounted in a 0.5-L Pyrex sample chamber equipped with quartz optical windows, charcoal filtered air inlet and an outlet attached to an appropriate sample trap and a constant flow pump. By-products were analyzed by GC/MS and HPLC. Volatiles identified included benzene and formaldehyde. Semi-volatiles included traces of polycyclic aromatics, arising from the biological matrix and inks, as well as fragments of ICG and the carbon ink components. The significance of these results will be discussed, including the necessity of using appropriate evacuation devices when utilizing lasers for surgical procedures.

  9. Indocyanine green fluorescence and three-dimensional imaging of right gastroepiploic artery in gastric tube cancer.

    PubMed

    Nakano, Toru; Sakurai, Tadashi; Maruyama, Shota; Ozawa, Yohei; Kamei, Takashi; Miyata, Go; Ohuchi, Noriaki

    2015-01-01

    A 79-year-old male was admitted to our hospital for the treatment of cancer of the gastric tube. Gastrointestinal examination revealed a T1b Union for International Cancer Control (UICC) tumor at the pyloric region of the gastric tube. Laparotomy did not reveal infiltration into the serosa, peritoneal dissemination, regional lymph node swelling, or distant metastasis. We performed a distal gastrectomy preserving the right gastroepiploic artery by referencing the preoperative three-dimensional computed tomoangiography. We also evaluated the blood flow of the right gastroepiploic artery and in the proximal gastric tube by using indocyanine green fluorescence imaging intra-operatively and then followed with a gastrojejunal anastomosis with Roux-en-Y reconstruction. The definitive diagnosis was moderately differentiated adenocarcinoma of the gastric tube, pT1bN0M0, pStage IA (UICC). His postoperative course was uneventful. Three-dimensional computed tomographic imaging is effective for assessing the course of blood vessels and the relationship with the surrounding structures. Intraoperative evaluation of blood flow of the right gastroepiploic artery and of the gastric tube in the anastomotic portion is very valuable information and could contribute to a safe gastrointestinal reconstruction. PMID:25574113

  10. Sentinel Lymph Node Detection Using Laser-Assisted Indocyanine Green Dye Lymphangiography in Patients with Melanoma

    PubMed Central

    Jain, Vikalp; Phillips, Brett T.

    2013-01-01

    Introduction. Sentinel lymph node (SLN) biopsy is a vital component of staging and management of multiple cancers. The current gold standard utilizes technetium 99 (tech99) and a blue dye to detect regional nodes. While the success rate is typically over 90%, these two methods can be inconclusive or inconvenient for both patient and surgeon. We evaluated a new technique using laser-assisted ICG dye lymphangiography to identify SLN. Methods. In this retrospective analysis, we identified patients with melanoma who were candidates for SLN biopsy. In addition to tech99 and methylene blue, patients received a dermal injection of indocyanine green (ICG). The infrared signal was detected with the SPY machine (Novadaq), and nodes positive by any method were excised. Results. A total of 15 patients were evaluated, with 40 SLNs removed. Four patients were found to have nodal metastases on final pathology. 100% of these 4 nodes were identified by ICG, while only 75% (3/4) were positive for tech99 and/or methylene blue. Furthermore, none of the nodes missed by ICG (4/40) had malignant cells. Conclusion. ICG dye lymphangiography is a reasonable alternative for locating SLNs in patients with melanoma. Prospective studies are needed to better ascertain the full functionality of this technique. PMID:24382997

  11. Indocyanine Green-Loaded Liposomes for Light-Triggered Drug Release.

    PubMed

    Lajunen, Tatu; Kontturi, Leena-Stiina; Viitala, Lauri; Manna, Moutusi; Cramariuc, Oana; Róg, Tomasz; Bunker, Alex; Laaksonen, Timo; Viitala, Tapani; Murtomäki, Lasse; Urtti, Arto

    2016-06-01

    Light-triggered drug delivery systems enable site-specific and time-controlled drug release. In previous work, we have achieved this with liposomes containing gold nanoparticles in the aqueous core. Gold nanoparticles absorb near-infrared light and release the energy as heat that increases the permeability of the liposomal bilayer, thus releasing the contents of the liposome. In this work, we replaced the gold nanoparticles with the clinically approved imaging agent indocyanine green (ICG). The ICG liposomes were stable at storage conditions (4-22 °C) and at body temperature, and fast near-infrared (IR) light-triggered drug release was achieved with optimized phospholipid composition and a 1:50 ICG-to-lipid molar ratio. Encapsulated small molecular calcein and FITC-dextran (up to 20 kDa) were completely released from the liposomes after light exposure for 15 s. Location of ICG in the PEG layer of the liposomes was simulated with molecular dynamics. ICG has important benefits as a light-triggering agent in liposomes: fast content release, improved stability, improved possibility of liposomal size control, regulatory approval to use in humans, and the possibility of imaging the in vivo location of the liposomes based on the fluorescence of ICG. Near-infrared light used as a triggering mechanism has good tissue penetration and safety. Thus, ICG liposomes are an attractive option for light-controlled and efficient delivery of small and large drug molecules. PMID:27097108

  12. Pilot Clinical Trial of Indocyanine Green Fluorescence-Augmented Colonoscopy in High Risk Patients.

    PubMed

    Sheth, Rahul A; Heidari, Pedram; Woods, Kevin; Chung, Daniel; Chan, Andrew T; Mahmood, Umar

    2016-01-01

    White light colonoscopy is the current gold standard for early detection and treatment of colorectal cancer, but emerging data suggest that this approach is inherently limited. Even the most experienced colonoscopists, under optimal conditions, miss at least 15-25% of adenomas. There is an unmet clinical need for an adjunctive modality to white light colonoscopy with improved lesion detection and characterization. Optical molecular imaging with exogenously administered organic fluorochromes is a burgeoning imaging modality poised to advance the capabilities of colonoscopy. In this proof-of-principle clinical trial, we investigated the ability of a custom-designed fluorescent colonoscope and indocyanine green, a clinically approved fluorescent blood pool imaging agent, to visualize polyps in high risk patients with polyposis syndromes or known distal colonic masses. We demonstrate (1) the successful performance of real-time, wide-field fluorescence endoscopy using off-the-shelf equipment, (2) the ability of this system to identify polyps as small as 1 mm, and (3) the potential for fluorescence imaging signal intensity to differentiate between neoplastic and benign polyps. PMID:26989406

  13. Antibacterial photodynamic therapy with 808-nm laser and indocyanine green on abrasion wound models

    NASA Astrophysics Data System (ADS)

    Topaloglu, Nermin; Güney, Melike; Yuksel, Sahru; Gülsoy, Murat

    2015-02-01

    Infections with pathogens could cause serious health problems, such as septicemia and subsequent death. Some of these deaths are caused by nosocomial, chronic, or burn-related wound infections. Photodynamic therapy (PDT) can be useful for the treatment of these infections. Our aim was to investigate the antibacterial effect of indocyanine green (ICG) and 808-nm laser on a rat abrasion wound model infected with the multidrug resistant Staphylococcus aureus strain. Abrasion wounds were infected with a multidrug resistant clinical isolate of S. aureus. ICG concentrations of 500, 1000, and 2000 μg/ml were applied with a 450 J/cm2 energy dose. Temperature change was monitored by a thermocouple system. The remaining bacterial burden was determined by the serial dilution method after each application. Wounds were observed for 11 days posttreatment. The recovery process was assessed macroscopically. Tissue samples were also examined histologically by hematoxylin-eosin staining. Around a 90% reduction in bacterial burden was observed after PDT applications. In positive control groups (ICG-only and laser-only groups), there was no significant reduction. The applied energy dose did not cause any thermal damage to the target tissue or host environment. Results showed that ICG together with a 808-nm laser might be a promising antibacterial method to eliminate infections in animals and accelerate the wound-healing process.

  14. Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green.

    PubMed

    Fang, Cheng; Wang, Kun; Zeng, Chaoting; Chi, Chongwei; Shang, Wenting; Ye, Jinzuo; Mao, Yamin; Fan, Yingfang; Yang, Jian; Xiang, Nan; Zeng, Ning; Zhu, Wen; Fang, Chihua; Tian, Jie

    2016-02-11

    Tissue necrosis commonly accompanies the development of a wide range of serious diseases. Therefore, highly sensitive detection and precise boundary delineation of necrotic tissue via effective imaging techniques are crucial for clinical treatments; however, no imaging modalities have achieved satisfactory results to date. Although fluorescence molecular imaging (FMI) shows potential in this regard, no effective necrosis-avid fluorescent probe has been developed for clinical applications. Here, we demonstrate that indocyanine green (ICG) can achieve high avidity of necrotic tissue owing to its interaction with lipoprotein (LP) and phospholipids. The mechanism was explored at the cellular and molecular levels through a series of in vitro studies. Detection of necrotic tissue and real-time image-guided surgery were successfully achieved in different organs of different animal models with the help of FMI using in house-designed imaging devices. The results indicated that necrotic tissue with a 0.6 mm diameter could be effectively detected with precise boundary definition. We believe that the new discovery and the associated imaging techniques will improve personalized and precise surgery in the near future.

  15. Advantage of microscope integrated for both indocyanine green and fluorescein videoangiography on aneurysmal surgery: case report.

    PubMed

    Yoshioka, Hideyuki; Kinouchi, Hiroyuki; Nishiyama, Yoshihisa; Kanemaru, Kazuya; Yagi, Takashi; Hanihara, Mitsuto; Horikoshi, Toru

    2014-01-01

    Neck clipping of a large middle cerebral artery aneurysm was performed using a newly developed surgical microscope integrated with modules for both indocyanine green (ICG) and fluorescein videoangiography. During surgery, ICG and fluorescein videoangiography by intra-arterial or intravenous injection were safely carried out without interrupting the surgical procedure. Based on the findings obtained from the case, we evaluated the differences between the dyes and the injection routes. With intra-arterial injection, fluorescein offered sharper contrast images and was better at depicting fine arteries than ICG. Patchy staining of vessel walls was observed in intravenous fluorescein videoangiography, while it was not evident in ICG. Intra-arterial injection method had a great advantage in the rapid clearance of the dyes, which allowed us to perform repeated videoangiography within a short period, and was useful in detecting incomplete clipping in this case; however, catheter insertion requires additional work and carries a potential risk. Use of a microscope integrated for both ICG and fluorescein videoangiography would be another method for repeated evaluation. Namely, alternate use of the dyes enables us to perform videoangiography in a short time even via intravenous injection.

  16. Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green.

    PubMed

    Fang, Cheng; Wang, Kun; Zeng, Chaoting; Chi, Chongwei; Shang, Wenting; Ye, Jinzuo; Mao, Yamin; Fan, Yingfang; Yang, Jian; Xiang, Nan; Zeng, Ning; Zhu, Wen; Fang, Chihua; Tian, Jie

    2016-01-01

    Tissue necrosis commonly accompanies the development of a wide range of serious diseases. Therefore, highly sensitive detection and precise boundary delineation of necrotic tissue via effective imaging techniques are crucial for clinical treatments; however, no imaging modalities have achieved satisfactory results to date. Although fluorescence molecular imaging (FMI) shows potential in this regard, no effective necrosis-avid fluorescent probe has been developed for clinical applications. Here, we demonstrate that indocyanine green (ICG) can achieve high avidity of necrotic tissue owing to its interaction with lipoprotein (LP) and phospholipids. The mechanism was explored at the cellular and molecular levels through a series of in vitro studies. Detection of necrotic tissue and real-time image-guided surgery were successfully achieved in different organs of different animal models with the help of FMI using in house-designed imaging devices. The results indicated that necrotic tissue with a 0.6 mm diameter could be effectively detected with precise boundary definition. We believe that the new discovery and the associated imaging techniques will improve personalized and precise surgery in the near future. PMID:26864116

  17. Fabrication of indocyanine green encapsulated biodegradable microbubbles for structural and functional imaging of cancer

    NASA Astrophysics Data System (ADS)

    Xu, Ronald X.; Huang, Jiwei; Xu, Jeff S.; Sun, Duxin; Hinkle, George H.; Martin, Edward W.; Povoski, Stephen P.

    2009-05-01

    We developed a novel dual-modal contrast agent for the structural and functional imaging of cancer. The contrast agent was fabricated by encapsulating indocyanine green (ICG) in poly(lactic-co-glycolic acid) (PLGA) microbubbles using a modified double-emulsion method. More stabilized absorption and fluorescence emission characteristics were observed for aqueous and plasma suspensions of ICG-encapsulated microbubbles. The technical feasibility of concurrent structural and functional imaging was demonstrated through a series of benchtop tests in which the aqueous suspension of ICG-encapsulated microbubbles was injected into a transparent tube embedded in an Intralipid phantom at different flow rates and concentrations. Concurrent fluorescence imaging and B-mode ultrasound imaging successfully captured the changes of microbubble flow rate and concentration with high linearity and accuracy. One potential application of the proposed ICG-encapsulated PLGA microbubbles is for the identification and characterization of peritumoral neovasculature for enhanced coregistration between tumor structural and functional boundaries in ultrasound-guided near-infrared diffuse optical tomography.

  18. An Activatable Theranostic Nanomedicine Platform Based on Self-Quenchable Indocyanine Green-Encapsulated Polymeric Micelles.

    PubMed

    Liu, Lanxia; Ma, Guilei; Zhang, Chao; Wang, Hai; Sun, Hongfan; Wang, Chun; Song, Cunxian; Kong, Deling

    2016-06-01

    Self-quenchable indocyanine green (ICG)-encapsulated micelles with folic acid (FA)-targeting specificity (FA-ICG-micelles) were developed for biologically activatable photodynamic theranostics. FA-ICG-micelles were successfully prepared using the thin-film hydration method, which allows ICG to be encapsulated with a high drug loading that induces an efficient ICG-based quenched state. FA-ICG-micelles are initially in the "OFF" state with no fluorescence signal or phototoxicity, but they become highly fluorescent and phototoxic in cellular degradative environments. Importantly, via folate receptor-mediated endocytosis, the FA targeting of FA-ICG-micelles enhanced intracellular uptake and photodynamic therapy (PDT) efficacy. Systematic administration of FA-ICG-micelles to folate receptor-positive tumor-bearing mice elicited prolonged blood circulation, enhanced tumor accumulation and improved therapeutic efficiency compared to free ICG. Therefore, based on the FA-targeted specificity and switchable photoactivity, FA-ICG-micelles have potential for photodynamic theranostics in cancer.

  19. Estimation of indocyanine green concentration in blood from fluorescence emission: application to hemodynamic assessment during hemodialysis

    NASA Astrophysics Data System (ADS)

    Maarek, Jean-Michel I.; Holschneider, Daniel P.

    2009-09-01

    There is considerable interest in assessing cardiovascular function noninvasively in patients receiving hemodialysis. A possible approach is to measure the blood concentration of bolus-injected indocyanine green dye and to apply the dye-dilution method for estimating cardiac output and blood volume. Blood ICG concentration can be derived from a measurement of the ICG fluorescence through the dialysis tubing if a simple and unique calibration relationship can be established between transmural fluorescence intensity and blood ICG concentration. We investigated this relationship using Monte Carlo simulations of light transport in blood with varying hematocrit and ICG concentrations and performed empiric measurements of optical absorption and ICG fluorescence emission to confirm our findings. The ICG fluorescence intensity measured at the blood surface, as well as the light intensity remitted by the blood, varied as hematocrit changes modified the absorption and scattering characteristics of the blood. Calibration relationships were developed between fluorescence intensity and ICG concentration that accounted for hematocrit changes. Combining the backreflected fluorescence and the reflected light measured near the point of illumination provided optimal signal intensity, linearity, and robustness to hematocrit changes. These results provide a basis for developing a noninvasive approach to derive optically circulating blood ICG concentration in hemodialysis circuits.

  20. Establishment of an indocyanine green test using an automatic chemistry analyzer.

    PubMed

    Seong, Moon-Woo; Song, Sang-Hoon; Oh, Joo-Young; Park, Joong-Won; Lee, Do-Hoon

    2006-01-01

    The indocyanine green (ICG) clearance test has been used to assess the reserve of hepatic function. This method is based on the spectrometric measurement of its plasma concentration at maximum wavelength of 805 nm, which requires a spectrophotometer and associated maintenance. We established an ICG clearance test using a Toshiba 200FR automatic chemistry analyzer that can be tuned to a wavelength of approximately 805 nm. Five pooled sera spiked from 0 to 4.0 mg/dL were analyzed for linearity test and precision was determined at five levels in the range 0.1-2.0 mg/dL. The ICG retention rate at 15 min (R15) was determined for 38 patients using a conventional method and our method. The ICG clearance test using the automatic chemistry analyzer showed good linearity, and precision ranged from 0.3% to 1.0% for within-run CVs and from 0.6% to 4.7% for total CVs. The degree of agreement between the two methods was also acceptable (mean difference of 1.5%). It is expected that the ICG test using the automatic chemistry analyzer can replace the conventional ICG clearance test, considering the excellent agreement, good precision and linearity over a clinically relevant range.

  1. Tumor homing indocyanine green encapsulated micelles for near infrared and photoacoustic imaging of tumors.

    PubMed

    Uthaman, Saji; Bom, Joon-suk; Kim, Hyeon Sik; John, Johnson V; Bom, Hee-Seung; Kim, Seon-Jong; Min, Jung-Joon; Kim, Il; Park, In-Kyu

    2016-05-01

    Photoacoustic imaging (PAI) is an emerging analytical modality that is under intense preclinical development for the early diagnosis of various medical conditions, including cancer. However, the lack of specific tumor targeting by various contrast agents used in PAI obstructs its clinical applications. In this study, we developed indocyanine green (ICG)-encapsulated micelles specific for the CD 44 receptor and used in near infrared and photoacoustic imaging of tumors. ICG was hydrophobically modified prior to loading into hyaluronic acid (HA)-based micelles utilized for CD 44 based-targeting. We investigated the physicochemical characteristics of prepared HA only and ICG-encapsulated HA micelles (HA-ICG micelles). After intravenous injection of tumor-bearing mice, the bio-distribution and in vivo photoacoustic images of ICG-encapsulated HA micelles accumulating in tumors were also investigated. Our study further encourages the application of this HA-ICG-based nano-platform as a tumor-specific contrast agent for PAI. PMID:26743660

  2. In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes.

    PubMed

    Wang, Huina; Liu, Chengbo; Gong, Xiaojing; Hu, Dehong; Lin, Riqiang; Sheng, Zonghai; Zheng, Cuifang; Yan, Meng; Chen, Jingqin; Cai, Lintao; Song, Liang

    2014-11-01

    As an optical-acoustic hybrid imaging technology, photoacoustic imaging uniquely combines the advantages of rich optical contrast with high ultrasonic resolution in depth, opening up many new possibilities not attainable with conventional pure optical imaging technologies. To perform photoacoustic molecular imaging, optically absorbing exogenous contrast agents are needed to enhance the signals from specifically targeted disease activity. In this work, we designed and developed folate receptor targeted, indocyanine green dye doped poly(d,l-lactide-co-glycolide) lipid nanoparticles (FA-ICG-PLGA-lipid NPs) for molecular photoacoustic imaging of tumor. The fabricated FA-ICG-PLGA-lipid NPs exhibited good aqueous stability, a high folate-receptor targeting efficiency, and remarkable optical absorption in near-infrared wavelengths, providing excellent photoacoustic signals in vitro. Furthermore, after intravenous administration of FA-ICG-PLGA-lipid NPs, mice bearing MCF-7 breast carcinomas showed significantly enhanced photoacoustic signals in vivo in the tumor regions, compared with those using non-targeted ICG-PLGA-lipid NPs. Given the existing wide clinical use of ICG and PLGA, the developed FA-ICG-PLGA-lipid NPs, in conjunction with photoacoustic imaging technology, offer a great potential to be translated into the clinic for non-ionizing molecular imaging of breast cancer in vivo.

  3. In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes

    NASA Astrophysics Data System (ADS)

    Wang, Huina; Liu, Chengbo; Gong, Xiaojing; Hu, Dehong; Lin, Riqiang; Sheng, Zonghai; Zheng, Cuifang; Yan, Meng; Chen, Jingqin; Cai, Lintao; Song, Liang

    2014-11-01

    As an optical-acoustic hybrid imaging technology, photoacoustic imaging uniquely combines the advantages of rich optical contrast with high ultrasonic resolution in depth, opening up many new possibilities not attainable with conventional pure optical imaging technologies. To perform photoacoustic molecular imaging, optically absorbing exogenous contrast agents are needed to enhance the signals from specifically targeted disease activity. In this work, we designed and developed folate receptor targeted, indocyanine green dye doped poly(d,l-lactide-co-glycolide) lipid nanoparticles (FA-ICG-PLGA-lipid NPs) for molecular photoacoustic imaging of tumor. The fabricated FA-ICG-PLGA-lipid NPs exhibited good aqueous stability, a high folate-receptor targeting efficiency, and remarkable optical absorption in near-infrared wavelengths, providing excellent photoacoustic signals in vitro. Furthermore, after intravenous administration of FA-ICG-PLGA-lipid NPs, mice bearing MCF-7 breast carcinomas showed significantly enhanced photoacoustic signals in vivo in the tumor regions, compared with those using non-targeted ICG-PLGA-lipid NPs. Given the existing wide clinical use of ICG and PLGA, the developed FA-ICG-PLGA-lipid NPs, in conjunction with photoacoustic imaging technology, offer a great potential to be translated into the clinic for non-ionizing molecular imaging of breast cancer in vivo.

  4. Free DOX and chitosan-N-arginine conjugate stabilized indocyanine green nanoparticles for combined chemophotothermal therapy.

    PubMed

    Jheng, Pei-Ru; Lu, Kun-Ying; Yu, Shu-Huei; Mi, Fwu-Long

    2015-12-01

    Indocyanine green (ICG) is a FDA-approved near-infrared (NIR) cyanine dye used in medical diagnostics. However, the utility of ICG remains limited by its unstable optical property, and concentration-dependent aggregation and precipitation. A chitosan-arginine conjugate (CS-N-Arg) was developed to increase the stability of ICG in physiological buffer saline via formation of strong electrostatic interactions between ICG and CS-N-Arg. The CS-N-Arg/ICG complex prevented ICG from aggregation and precipitation, thus it could serve as a theranostic nanomaterial for image-guided photothermal cancer therapy. The CS-N-Arg/ICG NPs showed excellent photostability, clear fluorescent images, and rapid temperature rise under laser irradiation. Cell viability assay indicated that CS-N-Arg/ICG NPs could efficiently suppress the growth of doxorubicin (DOX) resistant breast cancer cell (MCF-7/ADR cells) under NIR photothermal treatments. In combination of DOX with CS-N-Arg/ICG NPs, a combined effect was observed in MCF-7/ADR breast cancer cells due to dual hyperthermia and chemical therapeutic effects. The present observations suggest that CS-N-Arg/ICG NPs can effectively deliver ICG molecules to MCF-7/ADR breast cancer cells and overcome DOX resistance in the cells by hyperthermia.

  5. Clinical application of near-infrared thoracoscope with indocyanine green in video-assisted thoracoscopic bullectomy

    PubMed Central

    Li, Hao; Zhou, Jian; Chi, Chongwei; Mao, Yamin; Yang, Fan; Tian, Jie

    2016-01-01

    Failure to identify all the possible bullous lesions was considered an important reason for the higher recurrence rate after the VATS bullectomy. We applied the latest near-infrared (NIR) thoracoscope with indocyanine green (ICG) to detect bullous lesions for patients with spontaneous pneumothorax. Two male patients with spontaneous pneumothorax and poorly identified bullae intraoperatively were included in this pilot study. An NIR thoracoscope with two different doses of ICG injection (0.2 and 0.6 mg/kg) was used to detect bullous lesions during VATS bullectomy. Partial lung resections of the bullous lesions were performed under syncretic mode. Data was managed with ImageJ software. No procedure-related complications were observed. The fluorescent signal was detected in normal lung tissue 10.5 seconds (mean, 10–11 seconds) after the ICG bolus, and lasted up to 525 seconds (mean, 480–570 seconds). The bullous lesions showed an obviously decreased fluorescent densities comparing to adjacent normal tissue. At the dosage of 0.6 mg/kg, ICG emits sufficient fluorescence to demonstrate the precise border of bullae, with the max SBR of 6.32. All resected specimens were confirmed as bullous lesions microscopically. NIR thoracoscope with intravenous ICG is a safe, accurate and real-time method to detect bullous lesions of lung tissue difficult to be found under normal light in human subjects. Trial registration NCT02611245 (https://register.clinicaltrials.gov/). PMID:27499979

  6. Cerebral blood flow imaging using time-series analysis of indocyanine green molecular dynamics in mice

    NASA Astrophysics Data System (ADS)

    Ku, Taeyun; Lee, Jungsul; Choi, Chulhee

    2010-02-01

    Measurement of cerebral perfusion is important for study of various brain disorders such as stroke, epilepsy, and vascular dementia; however, efficient and convenient methods which can provide quantitative information about cerebral blood flow are not developed. Here we propose an optical imaging method using time-series analysis of dynamics of indocyanine green (ICG) fluorescence to generate cerebral blood flow maps. In scalp-removed mice, ICG was injected intravenously, and 740nm LED light was illuminated for fluorescence emission signals around 820nm acquired by cooled-CCD. Time-lapse 2-dimensional images were analyzed by custom-built software, and the maximal time point of fluorescent influx in each pixel was processed as a blood flow-related parameter. The generated map exactly reflected the shape of the brain without any interference of the skull, the dura mater, and other soft tissues. This method may be further applicable for study of other disease models in which the cerebral hemodynamics is changed either acutely or chronically.

  7. Polyoxazoline multivalently conjugated with indocyanine green for sensitive in vivo photoacoustic imaging of tumors

    PubMed Central

    Kanazaki, Kengo; Sano, Kohei; Makino, Akira; Homma, Tsutomu; Ono, Masahiro; Saji, Hideo

    2016-01-01

    Photoacoustic imaging, which enables high-resolution imaging in deep tissues, has lately attracted considerable attention. For tumor imaging, photoacoustic probes have been proposed to enhance the photoacoustic effect to improve detection sensitivity. Here, we evaluated the feasibility of using a biocompatible hydrophilic polymer, polyoxazoline, conjugated with indocyanine green (ICG) as a tumor-targeted photoacoustic probe via enhanced permeability and retention effect. ICG molecules were multivalently conjugated to partially hydrolyzed polyoxazoline, thereby serving as highly sensitive photoacoustic probes. Interestingly, loading multiple ICG molecules to polyoxazoline significantly enhanced photoacoustic signal intensity under the same ICG concentration. In vivo biodistribution studies using tumor bearing mice demonstrated that 5% hydrolyzed polyoxazoline (50 kDa) conjugated with ICG (ICG/polyoxazoline = 7.8), P14-ICG7.8, showed relatively high tumor accumulation (9.4%ID/g), resulting in delivery of the highest dose of ICG among the probes tested. P14-ICG7.8 enabled clear visualization of the tumor regions by photoacoustic imaging 24 h after administration; the photoacoustic signal increased in proportion with the injected dose. In addition, the signal intensity in blood vessels in the photoacoustic images did not show much change, which was attributed to the high tumor-to-blood ratios of P14-ICG7.8. These results suggest that polyoxazoline-ICG would serve as a robust probe for sensitive photoacoustic tumor imaging. PMID:27667374

  8. Symmetricity analysis of time to peak parameter of indocyanine green dynamics

    NASA Astrophysics Data System (ADS)

    An, Yuri; Lee, Jungsul; Choi, Chulhee

    2013-03-01

    We have previously discovered that near-infrared optical imaging of indocyanine green (ICG) signal and analyzing its dynamics can be applied for measurement of blood perfusion rate and detection of Raynaud's phenomenon (RP). Especially, RP is closely associated with abnormal vasomotor responses and can progress to tissue necrosis due to excessively sustained vasoconstriction. Therefore, early detecting of RP is one of important implication to prevent tissue damage from peripheral vascular disorders. In the present study, we propose new analysis and scoring method of symmetricity of Tmax value of left and right extremities. Moreover, this symmetricity analysis can give further information about microvascular insufficiency. For validation of the proposed method, we tested whether the segmental and paired analysis of Tmax value (time-to-peak) of ICG dynamics can be used for sensitive diagnosis of microvascular abnormalities which cannot be detected by conventional methods. From the near-infrared images of diabetes mellitus patients with vascular complications, the trend of asymmetry in Tmax value was observed. We assumed that decreasing local blood perfusion by autonomic nerve dysfunction causes the asymmetric Tmax value of right and left feet. These results collectively indicate that the proposed method can be used as a useful diagnostic tool for RP or other microvascular disorders.

  9. Polymeric nanoparticulate delivery system for Indocyanine green: biodistribution in healthy mice.

    PubMed

    Saxena, Vishal; Sadoqi, Mostafa; Shao, Jun

    2006-02-01

    The objective of this study is to investigate the biodistribution of Indocyanine green (ICG) in healthy mice, when delivered through polymeric nanoparticles. The poly(DL-lactic-co-glycolic acid) (PLGA) nanoparticles entrapping ICG were engineered and characterized. The extraction method for ICG recovery from biological samples was developed. The biodistribution of ICG was determined in healthy C57BL/6 mice (female, 10-week old) when delivered through PLGA nanoparticles in comparison to free ICG solution, using a fluorometric assay method. The extraction method for ICG shows efficiency above 80% for various organs and plasma. When nanoparticles were used to deliver ICG, 2-8 times higher concentrations of ICG was deposited in various organs, with 5-10 times higher plasma levels till 4 h, after an i.v. dose as compared to free ICG solution. In conclusion, the nanoparticle formulation significantly increased the ICG concentration and circulation time in plasma as well as the ICG uptake, accumulation and retention in various organs. Overall, this study represents the first step in exploring and establishing the potential of nanoparticles as an ICG-delivery system for use in tumor-diagnosis and photodynamic therapy.

  10. (177)Lu-Labeled Cerasomes Encapsulating Indocyanine Green for Cancer Theranostics.

    PubMed

    Jing, Lijia; Shi, Jiyun; Fan, Di; Li, Yaqian; Liu, Renfa; Dai, Zhifei; Wang, Fan; Tian, Jie

    2015-10-01

    This Article reported the fabrication of a robust theranostic cerasome encapsulating indocyanine green (ICG) by incorporating 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethylene glycol)2000]-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid monoamide (DSPE-PEG2000-DOTA), followed by chelating radioisotope of (177)Lu. Its applications in optical and nuclear imaging of tumor uptake and biodistribution, as well as photothermal killing of cancer cells, were investigated. It was found that the obtained cerasome could act efficiently as fluorescence contrast agent as well as nuclear imaging tracer. Encapsulating ICG into cerasome could protect ICG from degradation, aggregation, and fast elimination from body, resulting in remarkable improvement in near-infrared fluorescence imaging, photothermal stability, and in vivo pharmacokinetic profile. Both fluorescence and nuclear imaging showed that such agent could selectively accumulate in tumor site after intravenous injection of the cerasome agent into Lewis lung carcinoma tumor bearing mice, resulting in efficient photothermal ablation of tumor through a one-time NIR laser irradiation at the best time window. The ability to track the uptake of cerasomes on a whole body basis could provide researchers with an excellent tool for developing cerasome-based drug delivery agents, especially the strategy of labeling cerasomes with theranostic radionuclide (177)Lu, enabling the ability of the (177)Lu-labeled cerasomes for radionuclide cancer therapy and even the combined therapy. PMID:26398723

  11. [Place of indocyanine green coupled with fluorescence imaging in research of breast cancer sentinel node].

    PubMed

    Vermersch, Charlotte; Raia Barjat, Tiphaine; Perrot, Marianne; Lima, Suzanne; Chauleur, Céline

    2016-04-01

    The sentinel node has a fundamental role in the management of early breast cancer. Currently, the double detection of blue and radioisotope is recommended. But in common practice, many centers use a single method. However, with a single detection, the risk of false negatives and the identification failure rate increase to a significant extent and the number of sentinel lymph node detected and removed is not enough. Furthermore, the tracers used until now show inconveniences. The purpose of this work is to present a new method of detection, using the green of indocyanine coupled with fluorescence imaging, and to compare it with the already existing methods. The method combined by fluorescence and isotopic is reliable, sure, of fast learning and could constitute a good strategy of detection. The major interest is to obtain a satisfactory number of sentinel nodes. The profit could be even more important for overweight patients. The fluorescence used alone is at the moment not possible. Wide ranging studies are necessary. The FLUOTECH, randomized study of 100 patients, comparing the isotopic method of double isotope technique and fluorescence, is underway to confirm these data. PMID:26946971

  12. Stability assessment of indocyanine green within dextran-coated mesocapsules by absorbance spectroscopy.

    PubMed

    Yaseen, Mohammad A; Yu, Jie; Wong, Michael S; Anvari, Bahman

    2007-01-01

    The biocompatibility and high absorption in the near IR range of indocyanine green (ICG) have made it a suitable candidate chromophore for optical imaging and laser-mediated therapy of superficial tumors. However, its clinical efficacy remains limited by factors such as rapid circulation kinetics, lack of target specificity, and molecular instability. Such drawbacks motivated us to encapsulate ICG into carrier particles to improve target specificity and retention time. We use absorbance spectroscopy to investigate the effects of encapsulating ICG within dextran-coated capsules. The mesocapsules (MCs) containing ICG are synthesized using a previously reported charge-assembly technique. Both freely dissolved ICG and ICG-MCs are prepared with ICG concentrations of either 50 or 10 microg/ml. Samples are exposed either to a broadband light source or incubated at 3, 23, or 40 degrees C. Absorbance spectra are recorded at various time points up to 96 h. At the lower concentration of 10 microg/ml, ICG within MCs experiences less light-induced degradation. The MC system also protects ICG from thermal degradation at all tested temperatures. The polymer-salt aggregate core of the MCs hinders the mobility of ICG molecules. The MC system shields ICG from vibrational and translational agitation as well as molecular changes such as fragmentation.

  13. Indocyanine green enhanced co-registered diffuse optical tomography and photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Kumavor, Patrick D.; Alqasemi, Umar; Li, Hai; Xu, Yan; Zanganeh, Saeid; Zhu, Quing

    2013-12-01

    To overcome the intensive light scattering in biological tissue, diffuse optical tomography (DOT) in the near-infrared range for breast lesion detection is usually combined with other imaging modalities, such as ultrasound, x-ray, and magnetic resonance imaging, to provide guidance. However, these guiding imaging modalities may depend on different contrast mechanisms compared to the optical contrast in the DOT. As a result, they cannot provide reliable guidance for DOT because some lesions may not be detectable by a nonoptical modality but may have a high optical contrast. An imaging modality that relies on optical contrast to provide guidance is desirable for DOT. We present a system that combines a frequency-domain DOT and real-time photoacoustic tomography (PAT) systems to detect and characterize deeply seated targets embedded in a turbid medium. To further improve the contrast, the exogenous contrast agent, indocyanine green (ICG), is used. Our experimental results show that the combined system can detect a tumor-mimicking phantom, which is immersed in intralipid solution with the concentrations ranging from 100 to 10 μM and with the dimensions of 0.8 cm×0.8 cm×0.6 cm, up to 2.5 cm in depth. Mice experiments also confirmed that the combined system can detect tumors and monitor the ICG uptake and washout in the tumor region. This method can potentially improve the accuracy to detect small breast lesions as well as lesions that are sensitive to background tissue changes, such as the lesions located just above the chest wall.

  14. Near Infrared Imaging of Indocyanine Green Distribution in Pregnant Mice and Effects of Concomitant Medications.

    PubMed

    Bishara, Ameer; Meir, Michal; Portnoy, Emma; Shmuel, Miri; Eyal, Sara

    2015-09-01

    The transfer of indocyanine green (ICG) across the placenta is considered to be very low based on measurements in fetal blood. The goal of this study was to evaluate in mice ICG's distribution within fetuses themselves and effects of concomitant medications on fetal exposure. Mid-gestational (day 12.5) and late-gestational (day 17.5) age mice were imaged after administration of ICG (0.167 mg), in the presence and the absence of the organic anion transporting polypeptide (OATP) inhibitor rifampin (10 mg/kg, n = 11, or 20 mg/kg, n = 1) or the P-glycoprotein inhibitor valspodar (12.5 mg/kg). In vivo ICG emission intensity was followed by ex vivo analysis of blood and tissue emission. Both valspodar and rifampin increased ICG's emission intensity within maternal tissues. In addition, valspodar enhanced the ex vivo signal in mid-pregnancy placentae (2.1-fold; p < 0.01) and fetuses (2.4-fold; p < 0.01), and reduced late-pregnancy placenta:blood and fetus:blood ratios. Rifampin increased placental (1.4-fold, p < 0.05, and 2.3-fold, p < 0.01, in mid- and late-pregnancy, respectively) and fetal (2.2-fold, p < 0.01, and 3.2-fold, p < 0.01, in mid- and late-pregnancy) ICG signal. Similarly to valspodar, late-pregnancy placenta:blood and fetus:blood ratios were reduced by rifampin. Both inhibitors enhanced ICG's emission in fetal leg, liver, and brain. In conclusion, ICG distribution into the mouse fetus can be enhanced when used concomitantly with OATP or P-glycoprotein inhibitors. The greater distribution within individual fetal tissues is likely related to ICG's greater transplacental transfer. Until further data are available on ICG's safety when combined with medications that affect its maternal handling, such combinations should be used with caution.

  15. Nanotubes-Embedded Indocyanine Green-Hyaluronic Acid Nanoparticles for Photoacoustic-Imaging-Guided Phototherapy.

    PubMed

    Wang, Guohao; Zhang, Fan; Tian, Rui; Zhang, Liwen; Fu, Guifeng; Yang, Lily; Zhu, Lei

    2016-03-01

    Phototherapy is a light-triggered treatment for tumor ablation and growth inhibition via photodynamic therapy (PDT) and photothermal therapy (PTT). Despite extensive studies in this area, a major challenge is the lack of selective and effective phototherapy agents that can specifically accumulate in tumors to reach a therapeutic concentration. Although recent attempts have produced photosensitizers complexed with photothermal nanomaterials, the tedious preparation steps and poor tumor efficiency of therapy still hampers the broad utilization of these nanocarriers. Herein, we developed a CD44 targeted photoacoustic (PA) nanophototherapy agent by conjugating Indocyanine Green (ICG) to hyaluronic acid nanoparticles (HANPs) encapsulated with single-walled carbon nanotubes (SWCNTs), resulting in a theranostic nanocomplex of ICG-HANP/SWCNTs (IHANPT). We fully characterized its physical features as well as PA imaging and photothermal and photodynamic therapy properties in vitro and in vivo. Systemic delivery of IHANPT theranostic nanoparticles led to the accumulation of the targeted nanoparticles in tumors in a human cancer xenograft model in nude mice. PA imaging confirmed targeted delivery of the IHANPT nanoparticles into tumors (T/M ratio = 5.19 ± 0.3). The effect of phototherapy was demonstrated by low-power laser irradiation (808 nm, 0.8 W/cm(2)) to induce efficient photodynamic effect from ICG dye. The photothermal effect from the ICG and SWCNTs rapidly raised the tumor temperature to 55.4 ± 1.8 °C. As the result, significant tumor growth inhibition and marked induction of tumor cell death and necrosis were observed in the tumors in the tumors. There were no apparent systemic and local toxic effects found in the mice. The dynamic thermal stability of IHANPT was studied to ensure that PTT does not affect ICG-dependent PDT in phototherapy. Therefore, our results highlight imaging property and therapeutic effect of the novel IHANPT theranostic nanoparticle for CD44

  16. Indocyanine green enhanced co-registered diffuse optical tomography and photoacoustic tomography.

    PubMed

    Xu, Chen; Kumavor, Patrick D; Alqasemi, Umar; Li, Hai; Xu, Yan; Zanganeh, Saeid; Zhu, Quing

    2013-12-01

    To overcome the intensive light scattering in biological tissue, diffuse optical tomography (DOT) in the near-infrared range for breast lesion detection is usually combined with other imaging modalities, such as ultrasound, x-ray, and magnetic resonance imaging, to provide guidance. However, these guiding imaging modalities may depend on different contrast mechanisms compared to the optical contrast in the DOT. As a result, they cannot provide reliable guidance for DOT because some lesions may not be detectable by a nonoptical modality but may have a high optical contrast. An imaging modality that relies on optical contrast to provide guidance is desirable for DOT. We present a system that combines a frequency-domain DOT and real-time photoacoustic tomography (PAT) systems to detect and characterize deeply seated targets embedded in a turbid medium. To further improve the contrast, the exogenous contrast agent, indocyanine green (ICG), is used. Our experimental results show that the combined system can detect a tumor-mimicking phantom, which is immersed in intralipid solution with the concentrations ranging from 100 to 10 μM and with the dimensions of 0.8 cm × 0.8 cm × 0.6 cm, up to 2.5 cm in depth. Mice experiments also confirmed that the combined system can detect tumors and monitor the ICG uptake and washout in the tumor region. This method can potentially improve the accuracy to detect small breast lesions as well as lesions that are sensitive to background tissue changes, such as the lesions located just above the chest wall.

  17. Enhanced tumor treatment using biofunctional indocyanine green-containing nanostructure by intratumoral or intravenous injection.

    PubMed

    Zheng, Xiaohui; Zhou, Feifan; Wu, Baoyan; Chen, Wei R; Xing, Da

    2012-03-01

    Indocyanine green (ICG) is a conventional dye that can be used in clinical near-infrared (NIR) imaging, and it is also an effective light absorber for laser-mediated photothermal therapy. However, applications of ICG were limited due to its fast degradation in aqueous media and quick clearance from the body. Herein, an ICG-containing nanostructure, ICG-PL-PEG, was developed for photothermal therapy, which was self-assembled by ICG and phospholipid-polyethylene glycol (PL-PEG). Our in vitro and in vivo experiments demonstrated that ICG-PL-PEG suspension was more efficient in producing a NIR-dependent temperature increase than ICG alone, due to the increase of ICG monomers from the addition of PL-PEG to match the central wavelength of the 808 nm laser. When conjugated with integrin α(v)β(3) monoclonal antibody (mAb), ICG-PL-PEG could be selectively internalized and retained in target tumor cells. Irradiation of an 808 nm laser after intravenous administration of ICG-PL-PEG-mAb resulted in tumor suppression in mice, while ICG alone had only limited effect. This is the first time an ICG-containing nanostructure has been used through systemic administration to achieve an efficient in vivo photothermal effect for cancer treatment. Therefore, ICG-PL-PEG could be used as a fluorescent marker as well as a light-absorber for imaging-guided photothermal therapy. All the components of ICG-PL-PEG have been approved for human use. Therefore, this unique ICG-containing nanostructure has great potential in clinical applications.

  18. Targeted indocyanine-green-loaded calcium phosphosilicate nanoparticles for in vivo photodynamic therapy of leukemia.

    PubMed

    Barth, Brian M; I Altinoğlu, Erhan; Shanmugavelandy, Sriram S; Kaiser, James M; Crespo-Gonzalez, Daniza; DiVittore, Nicole A; McGovern, Christopher; Goff, Trevor M; Keasey, Nicole R; Adair, James H; Loughran, Thomas P; Claxton, David F; Kester, Mark

    2011-07-26

    Leukemia is one of the most common and aggressive adult cancers, as well as the most prevalent childhood cancer. Leukemia is a cancer of the hematological system and can be divided into a diversity of unique malignancies based on the onset of the disease as well as the specific cell lineages involved. Cancer stem cells, including recently identified leukemia stem cells (LSCs), are hypothesized to be responsible for cancer development, relapse, and resistance to treatment, and new therapeutics targeting these cellular populations are urgently needed. Nontoxic and nonaggregating calcium phosphosilicate nanoparticles (CPSNPs) encapsulating the near-infrared fluoroprobe indocyanine green (ICG) were recently developed for diagnostic imaging and drug delivery as well as for photodynamic therapy (PDT) of solid tumors. Prior studies revealed that specific targeting of CPSNPs allowed for enhanced accumulation within breast cancer tumors, via CD71 targeting, or pancreatic cancer tumors, via gastrin receptor targeting. In the present study, ICG-loaded CPSNPs were evaluated as photosensitizers for PDT of leukemia. Using a novel bioconjugation approach to specifically target CD117 or CD96, surface features enhanced on leukemia stem cells, in vitro ICG-CPSNP PDT of a murine leukemia cell line and human leukemia samples were dramatically improved. Furthermore, the in vivo efficacy of PDT was dramatically enhanced in a murine leukemia model by utilizing CD117-targeted ICG-CPSNPs, resulting in 29% disease-free survival. Altogether, this study demonstrates that leukemia-targeted ICG-loaded CPSNPs offer the promise to effectively treat relapsing and multidrug-resistant leukemia and to improve the life of leukemia patients.

  19. Indocyanine green enhanced near-infrared laser treatment of murine mammary carcinoma.

    PubMed

    Shafirstein, Gal; Bäumler, Wolfgang; Hennings, Leah J; Siegel, Eric R; Friedman, Ran; Moreno, Mauricio A; Webber, Jessica; Jackson, Cassie; Griffin, Robert J

    2012-03-01

    It is well accepted that near-infrared (NIR) lasers are appropriate to ablate benign lesions and induce irreversible thermal injury in deeply seated blood vessels. At this wavelength, the laser light penetrates deep (3-5 mm) into the skin. However, many researchers have reported noticeable pain, extending from mild to severe, during and immediately after NIR laser treatment. Intravenous administration of an exogenous chromophore [indocyanine green (ICG), dye] can effectively convert NIR laser light into heat. In this approach, the presence of ICG has shown to enhance thermal injury of blood vessels in the treatment of healthy tissues. However, the effectiveness of thermal injury on the regression of cutaneous carcinomas during ICG/NIR laser therapy has not been assessed. The purpose of our study was to evaluate the potential benefit of using ICG/NIR laser therapy to regress superficial carcinoma with thermal injury. Two groups of A/J mice with subcutaneous mammary adenocarcinoma tumors (7-9 mm) were irradiated with a 808-nm NIR laser preceded by tail vein injection of ICG dye or sterile saline. Histological evaluation of the subcutaneous tissue revealed minor thermal damage and necrosis in the laser/saline group and substantial damage (up to 100% necrosis) in the laser/ICG group. The laser/ICG-treated group showed a steady reduction in tumor volume compared to the laser/saline group: 48% by day 5 (p = 0.045) and 69-70% by days 8, 9 and 10 (p values 0.0005 or less). The vascular-targeted ICG-NIR laser therapy appears to have potential for treating superficial tumors.

  20. A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo

    NASA Astrophysics Data System (ADS)

    Navarro, Fabrice P.; Berger, Michel; Goutayer, Mathieu; Guillermet, Stéphanie; Josserand, Véronique; Rizo, Philippe; Vinet, Françoise; Texier, Isabelle

    2009-02-01

    Fluorescence imaging (FLI) allows the in vivo monitoring of biological events associated with disease and represents a new promising tool for drug discovery. In particular, it speeds up the development and assessment of new therapies in oncology, helps in diagnosis, and improves surgery by fluorescence-guided tumor resection. This technique is highly sensitive, non-ionizing, easy to use and relatively inexpensive. Nevertheless, the main limitation of FLI lies in the optical properties of biological tissues. Mainly because of haemoglobin and water absorption, only near-infrared (NIR) light is adapted to image tissues in depth. Using a contrasting agent absorbing and emitting in the NIR region is therefore necessary to improve the background signal ratio, and thus the image contrast. Among many commercially available NIR optical contrast agents, only indocyanine green (ICG), has been approved by the United State Food and Drug Administration (FDA) for various medical applications. However, its instability (photo-degradation, thermal-degradation and low aqueous solubility) limits its applications as a fluorescent probe for imaging purposes. In order to improve the effectiveness of ICG, we engineered ICG-doped lipid nanoparticles (LNP). In this communication, we will report the design of these novel fluorescent nanoparticle probes. These low cost nanocarriers have numerous advantages, including their high chemical stability and biocompatibility. The characterization of the optical properties of the nanoparticles entrapping ICG will also be discussed. Finally, the biodistribution in mice of ICG when delivered through nanoparticles in comparison to free ICG in solution is presented. It demonstrates the efficient accumulation of ICG-doped nanoparticles in the tumor site.

  1. The effects of ultrasound and light on indocyanine-green-treated tumour cells and tissues.

    PubMed

    Nomikou, Nikolitsa; Sterrett, Christine; Arthur, Ciara; McCaughan, Bridgeen; Callan, John F; McHale, Anthony P

    2012-08-01

    Photodynamic therapy (PDT) is emerging as a treatment modality for the management of neoplastic disease. Despite considerable clinical success, its application for the treatment of deep-seated lesions is constrained by the inability of visible light to penetrate deeply into tissues. An emerging alternative approach exploits the fact that many photosensitisers respond to ultrasound, eliciting cytotoxic effects on target cells and tissues; this has become known as sonodynamic therapy (SDT). The objectives of this study were 1) to determine whether the IR-absorbing dye, indocyanine green (ICG), can be employed as a sonosensitiser and 2) to determine whether ultrasound can be used to enhance ICG-mediated PDT. Exposing ICG-treated mouse fibrosarcoma cells to ultrasound at an energy density of 30 J cm(-2) decreased cell viability by 65 %. Prior exposure of ICG-treated cells to light (λ 830 nm) and subsequent treatment with ultrasound led to a 90 % decrease in cell viability. In combination treatments a synergistic effect was observed at lower doses of ultrasound. Microscopic examination of cell populations treated with light or ultrasound demonstrated the production of intracellular reactive oxygen species (ROS). Using a mouse tumour model, treatment with light, ultrasound, or a combination thereof led to respective decreases in tumour growth of 42, 67, and 98 % at day 27 post-treatment. These results could provide a means of circumventing light-penetration issues that currently challenge the widespread use of PDT in the treatment of cancer.

  2. The effect of mannosylation of liposome-encapsulated indocyanine green on imaging of sentinel lymph node.

    PubMed

    Jeong, Hwan-Seok; Lee, Chang-Moon; Cheong, Su-Jin; Kim, Eun-Mi; Hwang, Hyosook; Na, Kyung Sook; Lim, Seok Tae; Sohn, Myung-Hee; Jeong, Hwan-Jeong

    2013-12-01

    The imaging of sentinel lymph nodes (SLN) has been researched for its role in assessing cancer progression and postsurgical lymphedema. Indocyanine green (ICG) is a near-infrared (NIR) optical dye that has been approved by the Food and Drug Administration. It is known that liposome-encapsulated ICG (LP-ICG) has improved stability and fluorescence signal compared with ICG. We designed mannosylated liposome-encapsulated ICG (M-LP-ICG) as an optical contrast agent for SLN. M-LP-ICG has a higher UV absorbance spectrum and fluorescence intensity than LP-ICG. The stability of M-LP-ICG measured in 50% fetal bovine serum solution by a dialysis method was better than that of LP-ICG. M-LP-ICG demonstrated a high uptake in RAW 264.7 macrophage cell because the density of mannose is high. There were differences between M-LP-ICG and glucosylated liposome-encapsulated ICG (G-LP-ICG), which are geometrical isomers. The result of an inhibition study of M-LP-ICG showed a statistically significant decrease in uptake in RAW 264.7 cells after either co-treatment or pre-treatment with D-(+)-mannose as an inhibitor. Results from an in vitro experiment demonstrated that M-LP-ICG was specifically taken up by macrophage cells through the mannose receptor on its surface. The time-series images acquired from a normal mouse model after subcutaneous injection showed that the signal from M-LP-ICG in SLN and other organs appeared early and disappeared quickly in comparison with signals from LP-ICG. Not only the sentinel but also the draining lymph nodes were observed partly in M-LP-ICG. M-LP-ICG appears to increase the specificity of uptake and retention in macrophages, making it a good candidate contrast agent for an optic imaging system for SLN and the lymphatic system.

  3. Laser-induced heating of dextran-coated mesocapsules containing indocyanine green.

    PubMed

    Yaseen, Mohammad A; Yu, Jie; Wong, Michael S; Anvari, Bahman

    2007-01-01

    Indocyanine green (ICG) is a photosensitive reagent with clinically relevant diagnostic and therapeutic applications. Recently, ICG has been investigated for its utility as an exogenous chromophore during laser-induced heating. However, ICG's effectiveness remains hindered by its molecular instability, rapid circulation kinetics, and nonspecific systemic distribution. To overcome these limitations, we have encapsulated ICG within dextran-coated mesocapsules (MCs). Our objective in this study was to explore the ability of MCs to induce thermal damage in response to laser irradiation. To simulate tumorous tissue targeted with MCs, cylindrical phantoms were prepared consisting of gelatin, intralipid emulsion, and various concentrations of MCs. The phantoms were embedded within fresh chicken breast tissue representing surrounding normal tissue. The tissue models were irradiated at lambda = 808 nm for 10 min at constant power (P = 4.2 W). Five hypodermic thermocouples were used to record the temperature at various depths below the tissue surface and transverse distances from the laser beam central axis during irradiation. Temperature profiles were processed to remove the baseline temperature and influence of light absorption by the thermocouple and subsequently used to calculate a damage index based on the Arrhenius damage integral. Tissue models containing MCs experienced a maximum temperature change of 18.5 degrees C. Damage index calculations showed that the heat generation from MCs at these parameters is sufficient to induce thermal damage, while no damage was predicted in the absence of MCs. ICG maintains its heat-generating capabilities in response to NIR laser irradiation when encapsulated within MCs. Such encapsulation provides a potentially useful methodology for laser-induced therapeutic strategies. PMID:17914861

  4. Preferential tumor cellular uptake and retention of indocyanine green for in vivo tumor imaging.

    PubMed

    Onda, Nobuhiko; Kimura, Masayuki; Yoshida, Toshinori; Shibutani, Makoto

    2016-08-01

    Indocyanine green (ICG) is a fluorescent agent approved for clinical applications by the Food and Drug Administration and European Medicines Agency. This study examined the mechanism of tumor imaging using intravenously administered ICG. The in vivo kinetics of intravenously administered ICG were determined in tumor xenografts using microscopic approaches that enabled both spatio-temporal and high-magnification analyses. The mechanism of ICG-based tumor imaging was examined at the cellular level in six phenotypically different human colon cancer cell lines exhibiting different grades of epithelioid organization. ICG fluorescence imaging detected xenograft tumors, even those < 1 mm in size, based on their preferential cellular uptake and retention of the dye following its rapid tissue-non-specific delivery, in contrast to its rapid clearance by normal tissue. Live-cell imaging revealed that cellular ICG uptake is temperature-dependent and occurs after ICG binding to the cellular membrane, a pattern suggesting endocytic uptake as the mechanism. Cellular ICG uptake correlated inversely with the formation of tight junctions. Intracellular ICG was entrapped in the membrane traffic system, resulting in its slow turnover and prolonged retention by tumor cells. Our results suggest that tumor-specific imaging by ICG involves non-specific delivery of the dye to tissues followed by preferential tumor cellular uptake and retention. The tumor cell-preference of ICG is driven by passive tumor cell-targeting, the inherent ability of ICG to bind to cell membranes, and the high endocytic activity of tumor cells in association with the disruption of their tight junctions.

  5. Preferential tumor cellular uptake and retention of indocyanine green for in vivo tumor imaging.

    PubMed

    Onda, Nobuhiko; Kimura, Masayuki; Yoshida, Toshinori; Shibutani, Makoto

    2016-08-01

    Indocyanine green (ICG) is a fluorescent agent approved for clinical applications by the Food and Drug Administration and European Medicines Agency. This study examined the mechanism of tumor imaging using intravenously administered ICG. The in vivo kinetics of intravenously administered ICG were determined in tumor xenografts using microscopic approaches that enabled both spatio-temporal and high-magnification analyses. The mechanism of ICG-based tumor imaging was examined at the cellular level in six phenotypically different human colon cancer cell lines exhibiting different grades of epithelioid organization. ICG fluorescence imaging detected xenograft tumors, even those < 1 mm in size, based on their preferential cellular uptake and retention of the dye following its rapid tissue-non-specific delivery, in contrast to its rapid clearance by normal tissue. Live-cell imaging revealed that cellular ICG uptake is temperature-dependent and occurs after ICG binding to the cellular membrane, a pattern suggesting endocytic uptake as the mechanism. Cellular ICG uptake correlated inversely with the formation of tight junctions. Intracellular ICG was entrapped in the membrane traffic system, resulting in its slow turnover and prolonged retention by tumor cells. Our results suggest that tumor-specific imaging by ICG involves non-specific delivery of the dye to tissues followed by preferential tumor cellular uptake and retention. The tumor cell-preference of ICG is driven by passive tumor cell-targeting, the inherent ability of ICG to bind to cell membranes, and the high endocytic activity of tumor cells in association with the disruption of their tight junctions. PMID:27006261

  6. Photothermal and photochemical effects of laser light absorption by indocyanine green (ICG)

    NASA Astrophysics Data System (ADS)

    Yaseen, Mohammad A.; Diagaradjane, Parmeswaran; Pikkula, Brian M.; Yu, Jie; Wong, Michael S.; Anvari, Bahman

    2005-04-01

    Indocyanine Green (ICG) is clinically used as a fluorescent dye for imaging purposes. Its rapid circulation kinetics and minimal toxicity has prompted investigation into ICG's utility as a photosentitizer for therapeutic applications. Traditionally, optically mediated tumor therapy has focused on photodynamic therapy, which employs a photochemical mechanism resulting from the absorption of low intensity CW laser light by localized photosensitizers such as Photofrin II, Benzoporphyrin Derivative (BPD), ICG. Treatment of cutaneous vascular malformations such as port-wine stains, on the other hand, is based on a photothermal mechanism resulting from the absorption of high intensity pulsed laser light by hemoglobin. In this study, we compared the effectiveness of combining photochemical and photothermal mechanisms during application of ICG in conjunction with laser irradiation with the intention that the combined approach may lead to a reduction in the threshold dose of pulsed laser light required to treat hypervascular malformations. The blood vessels in rabbit ears were used as an in vivo model for targeted vasculature. Irradiation of the ears with IR light (λ=785 nm, Δτ = 3 min, Io = 120 mW) was used to elicit photochemical damage, while photothermal damage was brought about using pulses from a ruby laser (λ=694 nm, τ = 3 ms) with different fluences. For the combined modality, photochemical damage was induced first and followed by photothermal irradiation. This modality was compared with photothermal irradiation alone. The effectiveness of each irradiation scheme was assessed using histopathological analysis. We present preliminary data that suggests that pretreatment with photodynamic therapy before photothermal coagulation results in more severe vascular damage with lower photothermal fluence levels. The results of this study provide the foundation work for further exploration of the therapeutic potentials of photochemical and photothermal effects during

  7. Monocytes Loaded with Indocyanine Green as Active Homing Contrast Agents Permit Optical Differentiation of Infectious and Non-Infectious Inflammation

    PubMed Central

    Christensen, Joani M.; Brat, Gabriel A.; Johnson, Kristine E.; Chen, Yongping; Buretta, Kate J.; Cooney, Damon S.; Brandacher, Gerald; Lee, W. P. Andrew; Li, Xingde; Sacks, Justin M.

    2013-01-01

    Distinguishing cutaneous infection from sterile inflammation is a diagnostic challenge and currently relies upon subjective interpretation of clinical parameters, microbiological data, and nonspecific imaging. Assessing characteristic variations in leukocytic infiltration may provide more specific information. In this study, we demonstrate that homing of systemically administered monocytes tagged using indocyanine green (ICG), an FDA-approved near infrared dye, may be assessed non-invasively using clinically-applicable laser angiography systems to investigate cutaneous inflammatory processes. RAW 264.7 mouse monocytes co-incubated with ICG fluoresce brightly in the near infrared range. In vitro, the loaded cells retained the ability to chemotax toward monocyte chemotactic protein-1. Following intravascular injection of loaded cells into BALB/c mice with induced sterile inflammation (Complete Freund’s Adjuvant inoculation) or infection (Group A Streptococcus inoculation) of the hind limb, non-invasive whole animal imaging revealed local fluorescence at the inoculation site. There was significantly higher fluorescence of the inoculation site in the infection model than in the inflammation model as early as 2 hours after injection (p<0.05). Microscopic examination of bacterial inoculation site tissue revealed points of near infrared fluorescence, suggesting the presence of ICG-loaded cells. Development of a non-invasive technique to rapidly image inflammatory states without radiation may lead to new tools to distinguish infectious conditions from sterile inflammatory conditions at the bedside. PMID:24282595

  8. Investigation on laser-assisted tissue repair with NIR millisecond-long light pulses and Indocyanine Green-biopolymeric patches

    NASA Astrophysics Data System (ADS)

    Matteini, Paolo; Banchelli, Martina; Cottat, Maximilien; Osticioli, Iacopo; de Angelis, Marella; Rossi, Francesca; Pini, Roberto

    2016-03-01

    In previous works a minimally invasive laser-assisted technique for vascular repair was presented. The technique rests on the photothermal adhesion of a biocompatible and bioresorbable patch containing Indocyanine Green that is brought into contact with the site to be repaired. Afterward the use of NIR millisecond-long light pulses generates a strong welding effect between the patch and the underlying tissue and in turn the repair of the wound. This technique was shown to be effective in animal model and provides several advantages over conventional suturing methods. Here we investigate and discuss the optical stability of the ICG-biopolymeric patches and the photothermal effects induced to the irradiated tissue.

  9. Fat tissue histological study at indocyanine green-mediated photothermal/photodynamic treatment of the skin in vivo

    NASA Astrophysics Data System (ADS)

    Yanina, Irina Yu.; Tuchin, Valery V.; Navolokin, Nikita A.; Matveeva, Olga V.; Bucharskaya, Alla B.; Maslyakova, Galina N.; Altshuler, Gregory B.

    2012-05-01

    Histological slices of skin samples with the subcutaneous adipose tissue after photothermal/photodynamic treatment are analyzed. In the case of subcutaneous indocyanine green injection and 808-nm diode laser exposure of the rat skin site in vivo, the greatest changes in tissue condition were observed. Processes were characterized by dystrophy, necrosis, and desquamation of the epithelial cells, swelling and necrosis of the connective tissue, and widespread necrosis of the subcutaneous adipose tissue. The obtained data are useful for safe layer-by-layer dosimetry of laser illumination of ICG-stained adipose tissue for treatment of obesity and cellulite.

  10. Predictive lymphatic mapping: a method for mapping lymphatic channels in patients with advanced unilateral lymphedema using indocyanine green lymphography.

    PubMed

    Mihara, Makoto; Seki, Yukio; Hara, Hisako; Iida, Takuya; Oka, Aiko; Kikuchi, Kazuki; Narushima, Mitsunaga; Haragi, Makiko; Furniss, Dominic; Hin-Lun, Lawrence; Mitsui, Kito; Murai, Noriyuki; Koshima, Isao

    2014-01-01

    In severe lymphedema, indocyanine green lymphography cannot be used to map lymphatic channels before lymphaticovenular anastomosis (LVA) because linear lymphatics cannot be detected in a severely affected leg. Here, we describe a new method, which we refer to as predictive lymphatic mapping, to predict the location of lymphatics for anastomosis in unilateral lymphedema, thereby improving surgical accuracy and efficiency. The approach consists of marking anatomical landmarks and joining selected landmarks with fixed lines. The distance from these fixed lines to lymphatic channels mapped by indocyanine green lymphography in the unaffected leg is then measured, scaled up based on the difference in circumference between the legs, and transposed to the affected leg. To date, we have used this method in 5 cases of unilateral or asymmetric lymphedema of the lower extremities. In no cases have we failed to find a lymphatic channel suitable for LVA within a 2-cm incision. These results suggest that predictive lymphatic mapping is a useful additional tool for surgeons performing LVA under local anesthesia, which will help to improve the accuracy of incisions and the efficiency of surgery.

  11. Effects of clofibrate and indocyanine green on the hepatobiliary disposition of acetaminophen and its metabolites in male CD-1 mice.

    PubMed

    Chen, C; Hennig, G E; McCann, D J; Manautou, J E

    2000-11-01

    1. The effects of clofibrate (CFB) and indocyanine green (ICG) on the biliary excretion of acetaminophen (APAP) and its metabolites were investigated. 2. Male CD-1 mice were pretreated with 500 mg CFB/kg, i.p. for 10 days. Controls received corn oil vehicle only. After overnight fasting, common bile duct-cannulated mice were challenged with a non-toxic dose of APAP (1 mmol/kg, i.v.). 3. CFB pretreatment did not affect bile flow rate, nor did it affect the cumulative biliary excretion of APAP and its conjugated metabolites. 4. Additional CFB or corn oil pretreated mice were given 30 mumol indocyanine green (ICG)/kg, i.v., immediately before APAP dosing. ICG is a non-metabolizable organic anion that is completely excreted into the bile through a canalicular transport process for organic anions. 5. ICG significantly decreased the bile flow rate and biliary concentration of APAP-glutathione, APAP-glucuronide and APAP-mercapturate within the first hour after dosing without affecting the biliary concentration of APAP. 6. The results indicate that CFB pretreatment does not affect the total amount of APAP and its metabolites excreted in bile. They also suggest that the biliary excretion of several conjugated metabolites of APAP share the same excretory pathway with the organic anion ICG.

  12. Pilot study: intravenous use of indocyanine green as an enhancer for 808-nm diode laser application in the equine

    NASA Astrophysics Data System (ADS)

    Tate, Lloyd P.; Blikslager, Anthony T.; Papich, Mark G.

    2000-05-01

    The 808-nm diode laser, delivering 20 - 40 watts of power, has been produced for medical applications by several manufacturers over the past 10 years. This laser's power output is less than most Neodymium:yttrium aluminum garnet (Nd:YAG) lasers and other high power cutting lasers that use fiberoptic delivery systems. The 808-nm diode laser has not gained popularity in equine transendoscopic laser surgery. Indocyanine green (ICG) is absorbed at 810-nm of light which when concentrated in tissue should be an excellent absorber for the energy produced by the 808-nm diode laser. This study compares the depths and widths of penetration achieved with the 808-nm diode laser after intravenous injection of ICG in equine respiratory tissue. Indocyanine green was administered at two doses: 1.5 mg/kg and 3 mg/kg. The 808-nm diode laser was set to deliver 200 joules of energy. The depths and widths of penetration were also compared to the Nd:YAG laser applied at the same energy setting.

  13. In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy

    PubMed Central

    Tam, Johnny; Liu, Jianfei; Dubra, Alfredo; Fariss, Robert

    2016-01-01

    Purpose The purpose of this study was to establish that retinal pigment epithelial (RPE) cells take up indocyanine green (ICG) dye following systemic injection and that adaptive optics enhanced indocyanine green ophthalmoscopy (AO-ICG) enables direct visualization of the RPE mosaic in the living human eye. Methods A customized adaptive optics scanning light ophthalmoscope (AOSLO) was used to acquire high-resolution retinal fluorescence images of residual ICG dye in human subjects after intravenous injection at the standard clinical dose. Simultaneously, multimodal AOSLO images were also acquired, which included confocal reflectance, nonconfocal split detection, and darkfield. Imaging was performed in 6 eyes of three healthy subjects with no history of ocular or systemic diseases. In addition, histologic studies in mice were carried out. Results The AO-ICG channel successfully resolved individual RPE cells in human subjects at various time points, including 20 minutes and 2 hours after dye administration. Adaptive optics-ICG images of RPE revealed detail which could be correlated with AO dark-field images of the same cells. Interestingly, there was a marked heterogeneity in the fluorescence of individual RPE cells. Confirmatory histologic studies in mice corroborated the specific uptake of ICG by the RPE layer at a late time point after systemic ICG injection. Conclusions Adaptive optics-enhanced imaging of ICG dye provides a novel way to visualize and assess the RPE mosaic in the living human eye alongside images of the overlying photoreceptors and other cells. PMID:27564519

  14. [Unilateral pleural effusion caused by vessel perforation due to peripherally inserted central catheter: Indocyanine green as a diagnostic tool].

    PubMed

    Álvarez-Baena, L; Duque, P; Ramos, R; Zarain Obrador, L; Fernández-Quero, L

    2016-01-01

    A peripherally inserted central catheter (PICC) was inserted into a 44-year-old man to provide parenteral nutrition in a protein-calorie malnutrition secondary to a benign pyloric stenosis. On the fifth day while monitoring the catheter, the patient presented with a massive whitish pleural effusion after undergoing gastric endoscopy in order to treat pyloric stenosis. Chylothorax was initially suspected, and the patient was admitted to a recovery unit. Indocyanine green was administered through the PICC, obtaining a greenish discoloration in the pleural effusion 30 min later. This led to the diagnosis of a pleural effusion caused by a vessel perforation due to the PICC, leading to parenteral nutrition extravasation. Thoraco-abdominal computed tomography was performed, which confirmed an innominate vein perforation due to the PICC. PICC insertion may be associated with severe complications, such as central vessel perforation, and therefore the correct position of a central catheter should be always checked. Intravenous computed tomography contrast is the gold standard for central vascular perforation diagnosis. However if a pleural effusion occurs in this context, it is possible to use a dye, which administered intravenously can lead us to the correct diagnosis in situ. Indocyanine green was used for this purpose in this case.

  15. Evaluation of the near infrared compound indocyanine green as a probe substrate of p-glycoprotein.

    PubMed

    Portnoy, Emma; Gurina, Marina; Magdassi, Shlomo; Eyal, Sara

    2012-12-01

    The efflux transporter P-glycoprotein (P-gp) affects the pharmacokinetics of many drugs. Currently used methods for characterization of P-gp's functional activity in vivo involve the use of radiolabeled substrates, are costly, and are technically demanding. Our objective was to evaluate whether the FDA-approved near-infrared compound indocyanine green (ICG) can be used as a probe substrate of P-gp. We also characterized the interaction of ICG with another efflux transporter, the breast cancer resistance protein (BCRP). We evaluated ICG accumulation and transport in MDCK cells overexpressing P-gp or BCRP (MDCK-MDR1 and MDCK-BCRP, respectively) compared to control MDCK cells, in the presence or the absence of transporter inhibitors. In vivo imaging of ICG biodistribution in mice was conducted over 3.5 h using valspodar as the P-gp inhibitor. The EC50 values for ICG accumulation in control MDCK and MDCK-MDR1 cells were 9.0 × 10(-6) ± 5.7 × 10(-7) M and 1.5 × 10(-5) ± 1.1 × 10(-6) M, respectively. The efflux ratio for ICG in MDCK-MDR1 cells was 6.8-fold greater than in control cells. P-gp inhibition attenuated ICG efflux from MDR1-MDCK cells, and their effects in those cells were greater than in control MDCK cells. In contrast, BCRP level of expression or pharmacological inhibition did not significantly affect ICG cellular accumulation. In vivo imaging indicated enhanced cerebral ICG distribution with valspodar (brain - foot area under the concentration-time curves of 3.0 × 10(10), 5.6 × 10(10) and 3.7 × 10(10) h·[p/s/sr]/μW in valspodar-treated mice vs 9.0 × 10(9) and 5.3 × 10(9) h·[p/s/sr]/μW in controls). The findings from this pilot study suggest that near-infrared imaging using ICG as the probe substrate should be further characterized as a methodology for in vivo evaluation of P-gp activity.

  16. Dynamic fluorescent imaging with indocyanine green for monitoring the therapeutic effects of photoimmunotherapy.

    PubMed

    Ali, Towhid; Nakajima, Takahito; Sano, Kohei; Sato, Kazuhide; Choyke, Peter L; Kobayashi, Hisataka

    2014-01-01

    A new type of monoclonal antibody (mAb)-based, highly specific phototherapy (photoimmunotherapy; PIT) that uses a near-infrared (NIR) phthalocyanine dye, IRDye700DX (IR700) conjugated with an mAb, has recently been described. NIR light exposure leads to immediate, target-selective necrotic cell death. However, tumor shrinkage takes several days to occur, making it difficult to detect earlier changes in the tumor. In this study, Panitumumab targeting the epidermal growth factor receptor (EGFR1) conjugated to IR700 was used to treat EGFR-expressing A431 tumor cells and in vivo xenografts. PIT was performed at varying doses of NIR light (10, 30, 50 and 100 J cm(-2)) in xenograft tumors in mice. Indocyanine green (ICG) dynamic imaging was evaluated for monitoring cytotoxic effects for the first hour after PIT. Our results demonstrated a statistical difference (p < 0.05) in ICG intensity between control and PIT treated tumors in the higher light exposure groups (50 J cm(-2): 2.94 ± 0.35 vs 5.22 ± 0.92, p = 0.02; and 100 J cm(-2) : 3.56 ± 0.96 vs 5.71 ± 1.43, p = 0.008) as early as 20 min post ICG injection. However, no significant difference (p > 0.05) in ICG intensity between control and PIT treated tumors was evident in the lower light exposure group at any time points up to 60 min (10 J cm(-2) : 1.92 ± 0.49 vs 1.71 ± 0.3, p = 0.44; and 30 J cm(-2): 1.57 ± 0.35 vs 2.75 ± 0.59, p = 0.07). Similarly, the retention index (background to corrected uptake ratio of ICG) varied with light exposure. In conclusion, ICG may serve as a potential indicator of acute cytotoxic effects of mAb-IR700-induced PIT even before morphological changes can be seen in targeted tumors.

  17. Indocyanine green kinetics to assess liver function: Ready for a clinical dynamic assessment in major liver surgery?

    PubMed

    De Gasperi, Andrea; Mazza, Ernestina; Prosperi, Manlio

    2016-03-01

    Indocyanine green (ICG) kinetics (PDR/R15) used to quantitatively assess hepatic function in the perioperative period of major resective surgery and liver transplantation have been the object of an extensive, updated and critical review. New, non invasive bedside monitors (pulse dye densitometry technology) make this opportunity widely available in clinical practice. After having reviewed basic concepts of hepatic clearance, we analysed the most common indications ICG kinetic parameters have nowadays in clinical practice, focusing in particular on the diagnostic and prognostic role of PDR and R15 in the perioperative period of major liver surgery and liver transplantation. As recently pointed out, even if of extreme interest, ICG clearance parameters have still some limitations, to be considered when using these tests. PMID:26981173

  18. Indocyanine green kinetics to assess liver function: Ready for a clinical dynamic assessment in major liver surgery?

    PubMed Central

    De Gasperi, Andrea; Mazza, Ernestina; Prosperi, Manlio

    2016-01-01

    Indocyanine green (ICG) kinetics (PDR/R15) used to quantitatively assess hepatic function in the perioperative period of major resective surgery and liver transplantation have been the object of an extensive, updated and critical review. New, non invasive bedside monitors (pulse dye densitometry technology) make this opportunity widely available in clinical practice. After having reviewed basic concepts of hepatic clearance, we analysed the most common indications ICG kinetic parameters have nowadays in clinical practice, focusing in particular on the diagnostic and prognostic role of PDR and R15 in the perioperative period of major liver surgery and liver transplantation. As recently pointed out, even if of extreme interest, ICG clearance parameters have still some limitations, to be considered when using these tests. PMID:26981173

  19. Hepatic function in rats with dietary-induced fatty liver, as measured by the uptake of indocyanine green.

    PubMed

    Jahoor, F; Jackson, A A

    1982-05-01

    1. The hepatic uptake of indocyanine green (ICG) has been measured in rats receiving a 50 g protein/kg diet for 6, 12 or 20 d or a choline-deficient diet for 2 or 6 d. 2. There was no effect on ICG uptake on the choline-deficient diet, although all the rats developed an intense fatty infiltration of the liver by 6 d. 3. The rats on the 50 g protein/kg diet showed impaired uptake of ICG at 6, 12 and 20 d, which appeared to be related to the extent of fatty infiltration. 4. It is concluded that ICG uptake is predominantly a function of the periportal zone of the liver lobule, and therefore likely to be sensitive to insults that exert their predominant effect in this zone.

  20. Time-resolved fluorescence for breast cancer detection using an octreotate-indocyanine green derivative dye conjugate

    NASA Astrophysics Data System (ADS)

    Sordillo, Laura A.; Das, B. B.; Pu, Yang; Liang, Kexian; Milione, Giovanni; Sordillo, Peter P.; Achilefu, Sam; Alfano, R. R.

    2013-03-01

    Time-resolved fluorescence was used to investigate malignant and normal adjacent breast tissues stained with a conjugate of indocyanine green and octreotate. A marked increase in fluorescence lifetime intensity was seen in the breast cancer sample compared to the normal sample. The fluorescent lifetimes were also investigated and showed similar fluorescence decay curves in stained malignant and normal breast tissue. These results confirm that somatostatin receptors occur on human breast carcinomas, suggest that the presence of somatostatin receptors should be investigated as a marker of breast cancer aggressiveness, and suggest that this conjugate might be used to detect the presence of residual breast cancer after surgery, allowing better assessment of tumor margins and reducing the need for second or repeat biopsies in selected patients. These results may also provide clues for designing future treatment options for breast cancer patients.

  1. Role of Indocyanine Green in Sentinel Node Mapping in Gynecologic Cancer: Is Fluorescence Imaging the New Standard?

    PubMed

    Darin, María Cecilia; Gómez-Hidalgo, Natalia Rodriguez; Westin, Shannon N; Soliman, Pamela T; Escobar, Pedro F; Frumovitz, Michael; Ramirez, Pedro T

    2016-02-01

    Sentinel lymph node biopsy has proven safe and feasible in a number of gynecologic cancers such as vulvar cancer, cervical cancer, and endometrial cancer. The proposed aim of lymphatic mapping and sentinel node identification is to decrease the associated morbidity of a complete lymphadenectomy, particularly the rate of lymphedema, while also increasing the detection of small tumor deposits in the node. Different tracers have been shown to be useful, including technetium-99 and blue dye, with a detection reported in 66% to 86%. Recently, there has been increasing interest in the use of fluorescent dies such as indocyanine green (ICG). In this report we provide a review of the existing literature regarding the use of ICG in cervical or endometrial cancer with the goal to provide details on its utility and compare it with other tracers.

  2. Assessment of Preoperative Liver Function in Patients with Hepatocellular Carcinoma – The Albumin-Indocyanine Green Evaluation (ALICE) Grade

    PubMed Central

    Kokudo, Takashi; Hasegawa, Kiyoshi; Amikura, Katsumi; Uldry, Emilie; Shirata, Chikara; Yamaguchi, Takamune; Arita, Junichi; Kaneko, Junichi; Akamatsu, Nobuhisa; Sakamoto, Yoshihiro; Takahashi, Amane; Sakamoto, Hirohiko; Makuuchi, Masatoshi; Matsuyama, Yutaka; Demartines, Nicolas; Malagó, Massimo; Kokudo, Norihiro; Halkic, Nermin

    2016-01-01

    Background Most patients with hepatocellular carcinoma (HCC) have underlying liver disease, therefore, precise preoperative evaluation of the patient’s liver function is essential for surgical decision making. Methods We developed a grading system incorporating only two variables, namely, the serum albumin level and the indocyanine green retention rate at 15 minutes (ICG R15), to assess the preoperative liver function, based on the overall survival of 1868 patients with HCC who underwent liver resection. We then tested the model in a European cohort (n = 70) and analyzed the predictive power for the postoperative short-term outcome. Results The Albumin-Indocyanine Green Evaluation (ALICE) grading system was developed in a randomly assigned training cohort: linear predictor = 0.663 × log10ICG R15 (%)−0.0718 × albumin (g/L) (cut-off value: -2.20 and -1.39). This new grading system showed a predictive power for the overall survival similar to the Child-Pugh grading system in the validation cohort. Determination of the ALICE grade in Child-Pugh A patients allowed further stratification of the postoperative prognosis. This result was reproducible in the European cohort. Determination of the ALICE grade allowed better prediction of the risk of postoperative liver failure and mortality (ascites: grade 1, 2.1%; grade 2, 6.5%; grade 3, 16.0%; mortality: grade 1, 0%; grade 2, 1.3%; grade 3, 5.3%) than the previously reported model based on the presence/absence of portal hypertension. Conclusions This new grading system is a simple method for prediction of the postoperative long-term and short-term outcomes. PMID:27434062

  3. Indocyanine Green Loaded Reduced Graphene Oxide for In Vivo Photoacoustic/Fluorescence Dual-Modality Tumor Imaging

    NASA Astrophysics Data System (ADS)

    Chen, Jingqin; Liu, Chengbo; Zeng, Guang; You, Yujia; Wang, Huina; Gong, Xiaojing; Zheng, Rongqin; Kim, Jeesu; Kim, Chulhong; Song, Liang

    2016-02-01

    Multimodality imaging based on multifunctional nanocomposites holds great promise to fundamentally augment the capability of biomedical imaging. Specifically, photoacoustic and fluorescence dual-modality imaging is gaining much interest because of their non-invasiveness and the complementary nature of the two modalities in terms of imaging resolution, depth, sensitivity, and speed. Herein, using a green and facile method, we synthesize indocyanine green (ICG) loaded, polyethylene glycol (PEG)ylated, reduced nano-graphene oxide nanocomposite (rNGO-PEG/ICG) as a new type of fluorescence and photoacoustic dual-modality imaging contrast. The nanocomposite is shown to have minimal toxicity and excellent photoacoustic/fluorescence signals both in vitro and in vivo. Compared with free ICG, the nanocomposite is demonstrated to possess greater stability, longer blood circulation time, and superior passive tumor targeting capability. In vivo study shows that the circulation time of rNGO-PEG/ICG in the mouse body can sustain up to 6 h upon intravenous injection; while after 1 day, no obvious accumulation of rNGO-PEG/ICG is found in any major organs except the tumor regions. The demonstrated high fluorescence/photoacoustic dual contrasts, together with its low toxicity and excellent circulation life time, suggest that the synthesized rNGO-PEG/ICG can be a promising candidate for further translational studies on both the early diagnosis and image-guided therapy/surgery of cancer.

  4. Indocyanine Green Loaded Reduced Graphene Oxide for In Vivo Photoacoustic/Fluorescence Dual-Modality Tumor Imaging.

    PubMed

    Chen, Jingqin; Liu, Chengbo; Zeng, Guang; You, Yujia; Wang, Huina; Gong, Xiaojing; Zheng, Rongqin; Kim, Jeesu; Kim, Chulhong; Song, Liang

    2016-12-01

    Multimodality imaging based on multifunctional nanocomposites holds great promise to fundamentally augment the capability of biomedical imaging. Specifically, photoacoustic and fluorescence dual-modality imaging is gaining much interest because of their non-invasiveness and the complementary nature of the two modalities in terms of imaging resolution, depth, sensitivity, and speed. Herein, using a green and facile method, we synthesize indocyanine green (ICG) loaded, polyethylene glycol (PEG)ylated, reduced nano-graphene oxide nanocomposite (rNGO-PEG/ICG) as a new type of fluorescence and photoacoustic dual-modality imaging contrast. The nanocomposite is shown to have minimal toxicity and excellent photoacoustic/fluorescence signals both in vitro and in vivo. Compared with free ICG, the nanocomposite is demonstrated to possess greater stability, longer blood circulation time, and superior passive tumor targeting capability. In vivo study shows that the circulation time of rNGO-PEG/ICG in the mouse body can sustain up to 6 h upon intravenous injection; while after 1 day, no obvious accumulation of rNGO-PEG/ICG is found in any major organs except the tumor regions. The demonstrated high fluorescence/photoacoustic dual contrasts, together with its low toxicity and excellent circulation life time, suggest that the synthesized rNGO-PEG/ICG can be a promising candidate for further translational studies on both the early diagnosis and image-guided therapy/surgery of cancer.

  5. Indocyanine green in-situ administration and photothermal destruction of tumor cells using an 808-nm diode laser

    NASA Astrophysics Data System (ADS)

    Chen, Wei R.; Phillips, Claudia S.; Bartels, Kenneth E.; Adams, Robert L.; Nordquist, Robert E.

    1996-05-01

    Laser tumor tissue photothermal interaction was studied using an 808 nm diode laser and indocyanine green as the photosensitizer. This in vitro study employed laser power in the range of 3 to 5 watts and an aqueous ICG solution that was administered to murine mammary tumor tissue by intralesional injection. Histology revealed a highly selective photothermal tumor tissue destruction at the center of the ICG injection, while the tumor cells not in the ICG area were spared. Also studied was the retention of photosensitizer in tissue following different methods of administration. The absorption spectra of tissue in the range of 400 to 900 nm were obtained at different time intervals after ICG injections for liver and kidney tissue, as well as tumor tissue. Our results showed, shortly after intracardiac injection, a rapid increase of ICG concentration in liver and virtually no accumulation of ICG in the subcutaneous tumor tissue. In contrast, the intratumoral-injected ICG remained in the tumor with sufficient concentration for a duration up to 48 hours, particularly in the case of well- circumscribed tumors. The combination of the in situ ICG administration and the 808-nm diode laser provided selective and controllable cancer tissue destruction when appropriate laser powers and dosage of ICG were employed.

  6. Indocyanine Green-Loaded Polydopamine-Reduced Graphene Oxide Nanocomposites with Amplifying Photoacoustic and Photothermal Effects for Cancer Theranostics.

    PubMed

    Hu, Dehong; Zhang, Jingnan; Gao, Guanhui; Sheng, Zonghai; Cui, Haodong; Cai, Lintao

    2016-01-01

    Photoacoustic (PA) imaging and photothermal therapy (PTT) as light-induced theranostic platforms have been attracted much attention in recent years. However, the development of highly efficient and integrated phototheranostic nanoagents for amplifying PA imaging and PTT treatments poses great challenges. Here, we report a novel phototheranostic nanoagent using indocyanine green-loaded polydopamine-reduced graphene oxide nanocomposites (ICG-PDA-rGO) with amplifying PA and PTT effects for cancer theranostics. The results demonstrate that the PDA layer coating on the surface of rGO could effectively absorb a large number of ICG molecules, quench ICG's fluorescence, and enhance the PDA-rGO's optical absorption at 780 nm. The obtained ICG-PDA-rGO exhibits stronger PTT effect and higher PA contrast than that of pure GO and PDA-rGO. After PA imaging-guided PTT treatments, the tumors in 4T1 breast subcutaneous and orthotopic mice models are suppressed completely and no treatment-induced toxicity being observed. It illustrates that the ICG-PDA-rGO nanocomposites constitute a new class of theranostic nanomedicine for amplifying PA imaging and PTT treatments. PMID:27217837

  7. Diagnostic Performance of Indocyanine Green-Guided Sentinel Lymph Node Biopsy in Breast Cancer: A Meta-Analysis

    PubMed Central

    Zhou, Yidong; Mao, Feng; Lin, Yan; Guan, Jinghong; Sun, Qiang

    2016-01-01

    Background The diagnostic performance of indocyanine green (ICG) fluorescence-guided sentinel lymph node biopsy (SLNB) for the presence of metastases in breast cancer remains unclear. Objective We performed a meta-analysis to investigate the diagnostic performance of ICG-guided SLNB. Methods Eligible studies were identified from searches of the databases PubMed and EMBASE up to September 2015. Studies that reported the detection rate of ICG fluorescence-guided SLNB with full axillary lymph node dissection and histological or immunohistochemical examinations were included. A meta-analysis was performed to generate pooled detection rate, sensitivity, specificity, false negative rate, diagnostic odds ratio (DOR) and a summary receiver operator characteristic curve (SROC). Results Nineteen published studies were included to generate a pooled detection rate, comprising 2594 patients. The pooled detection rate was 0.98 (95% confidence interval [CI], 0.96–0.99). Six studies finally met the criteria for meta-analysis, which yielded a pooled sensitivity of 0.92 (95% CI, 0.85–0.96), specificity 1 (95% CI, 0.97–1), and DOR 311.47 (95% CI, 84.11–1153.39). The area under the SROC was 0.9758. No publication bias was found. Conclusion ICG fluorescence-guided SLNB is viable for detection of lymph node metastases in breast cancer. Large-scale randomized multi-center trials are necessary to confirm our results. PMID:27280407

  8. Double sentinel lymph node mapping with indocyanine green and 99m-technetium-tin colloid in oral squamous cell carcinoma.

    PubMed

    Murase, R; Tanaka, H; Hamakawa, T; Goda, H; Tano, T; Ishikawa, A; Hino, S; Sumida, T; Nakashiro, K; Hamakawa, H

    2015-10-01

    Oral squamous cell carcinoma (OSCC) frequently metastasizes to cervical lymph nodes, which is the most known prognostic factor. Screening methods to identify sentinel lymph nodes (SLNs) are therefore of great interest for the management of potential neck metastasis. The purpose of this study was to evaluate the clinical benefit of double SLN mapping with indocyanine green (ICG) and 99m-technetium-tin colloid ((99m)Tc-tin colloid) for sentinel node navigation surgery (SNNS). Between 2007 and 2010, 16 patients diagnosed with OSCC were investigated by SLN biopsy using the double mapping method. (99m)Tc-tin colloid was injected into the peri-tumoural region on the preoperative day, and ICG was administered intraoperatively in the same position to assist in detecting nodes during surgery. Based on the gamma-ray signal and near-infrared (NIR) fluorescence of ICG, SLNs were identified and thereafter assessed pathologically and genetically for cancer involvement. Radio-guided detection was successful for all patients. ICG mapping identified a relatively larger number of nodes, suggesting that several non-SLNs were potentially involved. The double mapping method assisted surgeons to explore SLNs. Since the ICG fluorescence was shielded by the subcutaneous fatty tissue and the muscle layer including platysma and sternocleidomastoid, it was necessary to retract the tissue away from nodes.

  9. Morphological study in B16F10 murine melanoma cells after photodynamic hyperthermal therapy with indocyanine green (ICG).

    PubMed

    Radzi, Rozanaliza; Osaki, Tomohiro; Tsuka, Takeshi; Imagawa, Tomohiro; Minami, Saburo; Okamoto, Yoshiharu

    2012-04-01

    Photodynamic hyperthermal therapy (PHT) with indocyanine green (ICG) is a combination of photodynamic therapy (PDT) and hyperthermia (HT). The low toxicity of ICG with an absorption wavelength of 700-800 nm is thought to make it a good candidate as a photosensitizer for PHT. Upon irradiation, ICG produces oxygen radicals and generates heat. The optimal concentration of ICG and the PHT post-irradiation time effects were evaluated by the cytotoxicity of the treatment on B16F10 murine melanoma. The cytotoxicity of PHT was determined based on the morphology of apoptotic and necrotic cells under phase-contrast microscope, confocal laser scanning microscope (CLSM) with DAPI and Annexin V-FITC/PI double staining, and cell surface structure evaluation by scanning electron microscopy (SEM). The use of ICG at a concentration of 150 µM was selected, as cell proliferation was inhibited from 0 to 24 hr post-PHT with a 3-fold decrease in cell viability (P<0.001) compared to the control group. A morphological observation revealed apoptotic and some degree of necrotic features in the PHT-treated cells. PMID:22134111

  10. A simple method for in vivo labelling of infiltrating leukocytes in the mouse retina using indocyanine green dye.

    PubMed

    Sim, Dawn A; Chu, Colin J; Selvam, Senthil; Powner, Michael B; Liyanage, Sidath; Copland, David A; Keane, Pearse A; Tufail, Adnan; Egan, Catherine A; Bainbridge, James W B; Lee, Richard W; Dick, Andrew D; Fruttiger, Marcus

    2015-11-01

    We have developed a method to label and image myeloid cells infiltrating the mouse retina and choroid in vivo, using a single depot injection of indocyanine green dye (ICG). This was demonstrated using the following ocular models of inflammation and angiogenesis: endotoxin-induced uveitis, experimental autoimmune uveoretinitis and laser-induced choroidal neovascularization model. A near-infrared scanning ophthalmoscope was used for in vivo imaging of the eye, and flow cytometry was used on blood and spleen to assess the number and phenotype of labelled cells. ICG was administered 72 h before the induction of inflammation to ensure clearance from the systemic circulation. We found that in vivo intravenous administration failed to label any leukocytes, whereas depot injection, either intraperitoneal or subcutaneous, was successful in labelling leukocytes infiltrating into the retina. Progression of inflammation in the retina could be traced over a period of 14 days following a single depot injection of ICG. Additionally, bright-field microscopy, spectrophotometry and flow cytometric analysis suggest that the predominant population of cells stained by ICG are circulating myeloid cells. The translation of this approach into clinical practice would enable visualization of immune cells in situ. This will not only provide a greater understanding of pathogenesis, monitoring and assessment of therapy in many human ocular diseases but might also open the ability to image immunity live for neurodegenerative disorders, cardiovascular disease and systemic immune-mediated disorders.

  11. Indocyanine green loaded SPIO nanoparticles with phospholipid-PEG coating for dual-modal imaging and photothermal therapy.

    PubMed

    Ma, Yan; Tong, Sheng; Bao, Gang; Gao, Chuang; Dai, Zhifei

    2013-10-01

    A biodegradable nanotheranostic agent has been successfully constructed for fluorescence/magnetic resonance dual-modal imaging guided photothermal therapy by loading indocyanine green (ICG) molecules into 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)] (DSPE-PEG) coated superparamagnetic iron oxide (SPIO) nanoparticles (NPs). It was proved that the obtained SPIO@DSPE-PEG/ICG NPs with an average diameter around 27.4 nm could serve as an efficient probe to simultaneously enhance fluorescence imaging and magnetic resonance imaging greatly in vivo. After tail vein injection, the SPIO@DSPE-PEG/ICG NPs were found selectively accumulate at the tumor site. Encapsulation of ICG into the lipid coating of SPIO NPs results in higher photostability than free ICG due to the protection from degradation. SPIO@DSPE-PEG/ICG NPs exhibited significant photothermal cytotoxicity. Cancer cells could be killed in vitro and tumors could be ablated in vivo efficiently through photothermal effects of SPIO@DSPE-PEG/ICG NPs under laser irradiation. In summary, SPIO@DSPE-PEG/ICG NPs integrate multiple capabilities for effective tumor imaging and therapy. This is very helpful for accurately interpreting the obtained images, identifying the size and location of the tumor, as well as guiding and monitoring the photothermal therapy through a single agent.

  12. Short PEG-linkers improve the performance of targeted, activatable monoclonal antibody-indocyanine green optical imaging probes.

    PubMed

    Sano, Kohei; Nakajima, Takahito; Miyazaki, Kiminori; Ohuchi, Yuya; Ikegami, Takashi; Choyke, Peter L; Kobayashi, Hisataka

    2013-05-15

    The ability to switch optical imaging probes from the quenched (off) to the active state (on) has greatly improved target to background ratios. The optimal activation efficiency of an optical probe depends on complete quenching before activation and complete dequenching after activation. For instance, monoclonal antibody-indocyanine green (mAb-ICG) conjugates, which are promising agents for clinical translation, are normally quenched, but can be activated when bound to a cell surface receptor and internalized. However, the small fraction of commonly used ICG derivative (ICG-Sulfo-OSu) can bind noncovalently to its mAb and is, thus, gradually released from the mAb leading to relatively high background signal especially in the liver and the abdomen. In this study, we re-engineered a mAb-ICG conjugate, (Panitumumab-ICG) using bifunctional ICG derivatives (ICG-PEG4-Sulfo-OSu and ICG-PEG8-Sulfo-OSu) with short polyethylene glycol (PEG) linkers. Higher covalent binding (70-86%) was observed using the bifunctional ICG with short PEG linkers resulting in less in vivo noncovalent dissociation. Panitumumab-ICG conjugates with short PEG linkers were able to detect human epidermal growth factor receptor 1 (EGFR)-positive tumors with high tumor-to-background ratios (15.8 and 6.9 for EGFR positive tumor-to-negative tumor and tumor-to-liver ratios, respectively, at 3 d postinjection).

  13. Effects of nanoencapsulation and PEGylation on biodistribution of indocyanine green in healthy mice: quantitative fluorescence imaging and analysis of organs.

    PubMed

    Bahmani, Baharak; Lytle, Christian Y; Walker, Ameae M; Gupta, Sharad; Vullev, Valentine I; Anvari, Bahman

    2013-01-01

    Near-infrared nanoconstructs present a potentially effective platform for site-specific and deep tissue optical imaging and phototherapy. We have engineered a polymeric nanocapsule composed of polyallylamine hydrochloride (PAH) chains cross-linked with sodium phosphate and doped with indocyanine green (ICG) toward such endeavors. The ICG-doped nanocapsules were coated covalently with polyethylene glycol (5000 daltons) through reductive amination. We administrated the constructs by tail vein injection to healthy mice. To characterize the biodistribution of the constructs, we performed in vivo quantitative fluorescence imaging and subsequently analyzed the various extracted organs. Our results suggest that encapsulation of ICG in these PEGylated constructs is an effective approach to prolong the circulation time of ICG and delay its hepatic accumulation. Increased bioavailability of ICG, due to encapsulation, offers the potential of extending the clinical applications of ICG, which are currently limited due to rapid elimination of ICG from the vasculature. Our results also indicate that PAH and ICG-doped nanocapsules (ICG-NCs) are not cytotoxic at the levels used in this study.

  14. Indocyanine green-loaded biodegradable tumor targeting nanoprobes for in vitro and in vivo imaging.

    PubMed

    Zheng, Cuifang; Zheng, Mingbin; Gong, Ping; Jia, Dongxue; Zhang, Pengfei; Shi, Bihua; Sheng, Zonghai; Ma, Yifan; Cai, Lintao

    2012-08-01

    Indocyanine green (ICG) is a near-infrared (NIR) fluorescence dye for extensive biological application, but limited by its poor aqueous stability in vitro, concentration-dependent aggregation, rapid elimination from the body, and lack of target specificity. In this paper, to overcome these limitations, folate receptor-targeted, ICG dye-doped poly(d,l-lactide-co-glycolide) (PLGA) lipid nanoparticles (FA-ICG-PLGA-lipid NPs) were constructed by a single-step self-assemble and nanoprecipitation method. The prepared FA-ICG-PLGA-lipid NPs exhibited good biocompatibility, monodispersity, excellent NIR penetration ability, significant stability against photobleaching and long circulation time. The intracellular uptake experiment proved the targeting efficacy of the FA-ICG-PLGA-lipid NPs was more effective in folate receptor over-expressing MCF-7 cells than folate receptor negative A549 cells. Furthermore, the in vivo experiments showed the FA-ICG-PLGA-lipid NPs were specifically targeted to the tumor, and its circulation time was much longer than free ICG. These biocompatible and biodegradable NIR-NPs prove a potential application in tumor diagnosis and targeted imaging due to its high aqueous stability, excellent NIR optical properties and significantly targeting property in vivo.

  15. Morphological study in B16F10 murine melanoma cells after photodynamic hyperthermal therapy with indocyanine green (ICG).

    PubMed

    Radzi, Rozanaliza; Osaki, Tomohiro; Tsuka, Takeshi; Imagawa, Tomohiro; Minami, Saburo; Okamoto, Yoshiharu

    2012-04-01

    Photodynamic hyperthermal therapy (PHT) with indocyanine green (ICG) is a combination of photodynamic therapy (PDT) and hyperthermia (HT). The low toxicity of ICG with an absorption wavelength of 700-800 nm is thought to make it a good candidate as a photosensitizer for PHT. Upon irradiation, ICG produces oxygen radicals and generates heat. The optimal concentration of ICG and the PHT post-irradiation time effects were evaluated by the cytotoxicity of the treatment on B16F10 murine melanoma. The cytotoxicity of PHT was determined based on the morphology of apoptotic and necrotic cells under phase-contrast microscope, confocal laser scanning microscope (CLSM) with DAPI and Annexin V-FITC/PI double staining, and cell surface structure evaluation by scanning electron microscopy (SEM). The use of ICG at a concentration of 150 µM was selected, as cell proliferation was inhibited from 0 to 24 hr post-PHT with a 3-fold decrease in cell viability (P<0.001) compared to the control group. A morphological observation revealed apoptotic and some degree of necrotic features in the PHT-treated cells.

  16. Use of indocyanine green for detecting the sentinel lymph node in breast cancer patients: from preclinical evaluation to clinical validation.

    PubMed

    Chi, Chongwei; Ye, Jinzuo; Ding, Haolong; He, De; Huang, Wenhe; Zhang, Guo-Jun; Tian, Jie

    2013-01-01

    Assessment of the sentinel lymph node (SLN) in patients with early stage breast cancer is vital in selecting the appropriate surgical approach. However, the existing methods, including methylene blue and nuclides, possess low efficiency and effectiveness in mapping SLNs, and to a certain extent exert side effects during application. Indocyanine green (ICG), as a fluorescent dye, has been proved reliable usage in SLN detection by several other groups. In this paper, we introduce a novel surgical navigation system to detect SLN with ICG. This system contains two charge-coupled devices (CCD) to simultaneously capture real-time color and fluorescent video images through two different bands. During surgery, surgeons only need to follow the fluorescence display. In addition, the system saves data automatically during surgery enabling surgeons to find the registration point easily according to image recognition algorithms. To test our system, 5 mice and 10 rabbits were used for the preclinical setting and 22 breast cancer patients were utilized for the clinical evaluation in our experiments. The detection rate was 100% and an average of 2.7 SLNs was found in 22 patients. Our results show that the usage of our surgical navigation system with ICG to detect SLNs in breast cancer patients is technically feasible.

  17. Indocyanine Green-Loaded Polydopamine-Reduced Graphene Oxide Nanocomposites with Amplifying Photoacoustic and Photothermal Effects for Cancer Theranostics.

    PubMed

    Hu, Dehong; Zhang, Jingnan; Gao, Guanhui; Sheng, Zonghai; Cui, Haodong; Cai, Lintao

    2016-01-01

    Photoacoustic (PA) imaging and photothermal therapy (PTT) as light-induced theranostic platforms have been attracted much attention in recent years. However, the development of highly efficient and integrated phototheranostic nanoagents for amplifying PA imaging and PTT treatments poses great challenges. Here, we report a novel phototheranostic nanoagent using indocyanine green-loaded polydopamine-reduced graphene oxide nanocomposites (ICG-PDA-rGO) with amplifying PA and PTT effects for cancer theranostics. The results demonstrate that the PDA layer coating on the surface of rGO could effectively absorb a large number of ICG molecules, quench ICG's fluorescence, and enhance the PDA-rGO's optical absorption at 780 nm. The obtained ICG-PDA-rGO exhibits stronger PTT effect and higher PA contrast than that of pure GO and PDA-rGO. After PA imaging-guided PTT treatments, the tumors in 4T1 breast subcutaneous and orthotopic mice models are suppressed completely and no treatment-induced toxicity being observed. It illustrates that the ICG-PDA-rGO nanocomposites constitute a new class of theranostic nanomedicine for amplifying PA imaging and PTT treatments.

  18. Dual-Modal Imaging-Guided Theranostic Nanocarriers Based on Indocyanine Green and mTOR Inhibitor Rapamycin.

    PubMed

    Pang, Xiaojuan; Wang, Jinping; Tan, Xiaoxiao; Guo, Fang; Lei, Mingzhu; Ma, Man; Yu, Meng; Tan, Fengping; Li, Nan

    2016-06-01

    The development of treatment protocols that resulted in a complete response to photothermal therapy (PTT) was usually hampered by uneven heat distribution and low effectiveness. Here, we reported an NIR fluorescence and photoacoustic dual-modal imaging-guided active targeted thermal sensitive liposomes (TSLs) based on the photothermal therapy agent Indocyanine green (ICG) and antiangiogenesis agent Rapamycin (RAPA) to realize enhanced therapeutic and diagnostic functions. As expected, the in vitro drug release studies exhibited the satisfactory result of drug released from the TSLs under hyperthermia conditions induced by NIR stimulation. The in vitro cellular studies confirmed that the FA-ICG/RAPA-TSLs plus NIR laser exhibited efficient drug accumulation and cytotoxicity in tumor cells and epithelial cells. After 24 h intravenous injection of FA-ICG/RAPA-TSLs, the margins of tumor and normal tissue were accurately identified via the in vivo NIR fluorescence and photoacoustic dual-modal imaging. In addition, FA-ICG/RAPA-TSLs combined with NIR irradiation treated tumor-bearing nude mice inhibited tumor growth to a great extent and possessed much lower side effects to normal organs. All detailed evidence suggested that the theranostic TSLs which were capable of enhancing the therapeutic index might be a suitable drug delivery system for dual-modal imaging-guided therapeutic tools for diagnostics as well as the treatment of tumors.

  19. Activatable fluorescent cys-diabody conjugated with indocyanine green derivative: consideration of fluorescent catabolite kinetics on molecular imaging.

    PubMed

    Sano, Kohei; Nakajima, Takahito; Ali, Towhid; Bartlett, Derek W; Wu, Anna M; Kim, Insook; Paik, Chang H; Choyke, Peter L; Kobayashi, Hisataka

    2013-10-01

    Antibody fragments including diabodies have more desirable pharmacokinetic characteristics than whole antibodies. An activatable optical imaging probe based on a cys-diabody targeting prostate-specific membrane antigen conjugated with the near-infrared fluorophore, indocyanine green (ICG), was designed such that it can only be activated when bound to the tumor, leading to high signal-to-background ratios. We employed short polyethylene glycol (PEG) linkers between the ICG and the reactive functional group (Sulfo-OSu group), resulting in covalent conjugation of ICG to the cys-diabody, which led to lower dissociation of ICG from cys-diabody early after injection, reducing hepatic uptake. However, unexpectedly, high and long-term fluorescence was observed in the kidneys, liver, and blood pool more than 1 h after injection of the cys-diabody PEG-ICG conjugate. A biodistribution study using I125-labeled cys-diabody-ICG showed immediate uptake in the kidneys followed by a rapid decrease, while gastric activity increased due to released radioiodine during rapid cys-diabody-ICG catabolism in the kidneys. To avoid this catabolic pathway, it would be preferable to use antibody fragments large enough not to be filtered through glomerulus or to conjugate the fragments with fluorescent dyes that are readily excreted into urine when cleaved from the cys-diabody to achieve high tumor-specific detection.

  20. Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT).

    PubMed

    Beziere, Nicolas; Lozano, Neus; Nunes, Antonio; Salichs, Juan; Queiros, Daniel; Kostarelos, Kostas; Ntziachristos, Vasilis

    2015-01-01

    Multispectral optoacoustic tomography (MSOT) is a powerful modality that allows high-resolution imaging of photo-absorbers deep within tissue, beyond the classical depth and resolution limitations of conventional optical imaging. Imaging of intrinsic tissue contrast can be complemented by extrinsically administered gold nanoparticles or fluorescent molecular probes. Instead, we investigated herein generation of re-engineered clinically-used PEGylated liposomes incorporating indocyanine green (LipoICG) as a contrast strategy that combines materials already approved for clinical use, with strong photo-absorbing signal generation available today only from some metallic nanoparticles (e.g. gold nanorods). Using MSOT we confirmed LipoICG as a highly potent optoacoustic agent and resolved tissue accumulation in tumor-bearing animals over time with high-sensitivity and resolution using two tumor models of different vascularisation. We further showcase a paradigm shift in pharmacology studies and nanoparticle investigation, by enabling detailed volumetric optical imaging in vivo through the entire tumor tissue non-invasively, elucidating never before seen spatiotemporal features of optical agent distribution. These results point to LipoICG as a particle with significant advantageous characteristics over gold nanoparticles and organic dyes.

  1. [A study of serum protein fraction binding to indocyanine green (ICG) by combined method of immunoelectrophoresis and ICG fundus videosystem].

    PubMed

    Saito, T; Komatsu, Y; Mori, S; Deguchi, T; Koyama, I; Yoneya, S

    1996-08-01

    Binding characteristics of indocyanine green (ICG) to human serum were investigated, with a combination of immunoelectrophoresis and an ICG fundus video system. Serum samples were obtained from three healthy volunteers, 1 minute after intravenous administration of 50 mg/2 ml ICG, and then fractionated immunoelectrophoretically on agarose plates. Electrophoretic patterns on these plates could be observed with an ICG fundus video system as well as an immunoviewer. Using anti-human sera, only one infrared fluorescent line showing the ICG binding immunoprecipitate was recognized near the area of beta fraction, which was also identified by the use of anti-beta-lipoprotein (Lp) antibody. We also studied the affinity of ICG for apolipoproteins (Apo) AI, B, and CIII, which were the main protein components of serum Lps. Electrophoresis showed that ICG bound only to Apo-B, but not to the others. These results indicated that ICG mainly bound to beta-Lp in the blood, and that ICG angiographic patterns were directly reflecting the dynamics of serum Lps, especially for LDL. The high affinity of ICG for only Apo-B could explain the reason why ICG mainly bound to beta-Lp among several serum Lps, because large amounts of Apo-B are included in beta-Lp but a little in other serum Lps.

  2. Fabrication of Indocyanine Green and 2H, 3H-perfluoropentane loaded microbubbles for fluorescence and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    He, Yutong; Wu, Qiang; Ma, Rong; Chang, Shufang; Shao, Pengfei; Xu, Ronald

    2016-03-01

    As a near-infrared (NIR) fluorescence dye, Indocyanine Green (ICG) has not gained broader clinical applications, owing to its multiple limitations such as concentration-dependent aggregation, low fluorescence quantum yield, poor physicochemical stability and rapid elimination from the body. In the meanwhile, 2H,3H-perfluoropentane (H-PFP) has been widely studied in ultrasound imaging as a vehicle for targeted delivery of contrast agents and drugs. We synthesized a novel dual-modal fluorescence and ultrasound contrast agent by encapsulating ICG and H-PFP in lipid microbubbles using a liquid-driven coaxial flow focusing (LDCFF) process. Uniform microbubbles with the sizes ranging from 1-10um and great ICG loading efficiency was achieved by this method. Our benchtop experiments showed that ICG/H-PFP microbubbles exhibited less aggregation, increased fluorescence intensity and more stable photostability compared to free ICG aqueous solution. Our phantom experiments demonstrated that ICG/H-PFP microbubbles enhanced the imaging contrasts in fluorescence imaging and ultrasonography. Our animal experiments indicated that ICG/H-PFP microbubbles extended the ICG life time and facilitated dual mode fluorescence and ultrasound imaging in vivo.

  3. Intraoperative Near-infrared Fluorescence Imaging with Novel Indocyanine Green-Loaded Nanocarrier for Spinal Metastasis: A Preliminary Animal Study

    PubMed Central

    Funayama, Toru; Sakane, Masataka; Abe, Tetsuya; Hara, Isao; Ozeki, Eiichi; Ochiai, Naoyuki

    2012-01-01

    Marginal resection during resection of a spinal metastasis is frequently difficult because of the presence of important tissues such as the aorta, vena cava, and dura mater, including the spinal cord adjacent to the vertebral body. Thus, there is an urgent need for novel intraoperative imaging modalities with the ability to clearly identify bone metastasis. We have proposed a novel nanocarrier loaded with indocyanine green (ICG) (ICG-lactosome) with tumor selectivity attributable to its enhanced permeation and retention (EPR) effect. We studied its feasibility in intraoperative near-infrared (NIR) fluorescence diagnosis with ICG-lactosome for imaging spinal metastasis. A rat model of subcutaneous mammary tumor and a rat model of spinal metastasis of breast cancer were used. Fluorescence emitted by the subcutaneous tumors and the spinal metastasis were clearly detected for at least 24 h. Moreover, imaging of the dissected spine revealed clear fluorescence emitted by the metastatic lesion in the L6 vertebra while the normal bone lacked fluorescence. This study was the first report on NIR fluorescence imaging of spinal metastasis in vivo. NIR fluorescence imaging with ICG-lactosome could be an effective intraoperative imaging modality for detecting spinal metastasis. PMID:22787518

  4. Efficiency of photodynamic therapy using indocyanine green and infrared light on MCF-7 breast cancer cells in vitro

    NASA Astrophysics Data System (ADS)

    Ruhi, Mustafa K.; Ak, Ayşe.; Gülsoy, Murat

    2016-03-01

    Cancer is one of the main reasons of death in all around the world. The main treatments of cancer include surgical intervention, radiation therapy and chemotherapy. These treatments can be applied separately or in a combined manner. Another therapeutic method that is still being researched and recently has started to be used in clinical applications is Photodynamic Therapy (PDT). Most photosensitizers currently being investigated are sensitive to red light. However, it is known that infrared light has a better penetration into the skin or tissue. Indocyanine Green (ICG), which is used in this study, is sensitive to infrared light. The aim of this in vitro study is to investigate the effect of PDT on breast cancer cells by using different doses of ICG and infrared light irradiation. 25, 50 and 100 μM ICG concentrations and 25 and 50 J/cm2 laser energy doses were applied to MCF-7 cell lines. MTT analyses were performed on 24, 48 and 72 hours following the treatments. As a result, inhibition of cell viability was observed in a time and dose dependent manner. It can be concluded that ICG-PDT application is a good alternative to conventional radiation therapy and chemotherapy for breast cancer treatment.

  5. Multifunctionality of indocyanine green-loaded biodegradable nanoparticles for enhanced optical imaging and hyperthermia intervention of cancer.

    PubMed

    Patel, Ronak H; Wadajkar, Aniket S; Patel, Nimit L; Kavuri, Venkaiah C; Nguyen, Kytai T; Liu, Hanli

    2012-04-01

    The aim of this study was to develop and characterize multifunctional biodegradable and biocompatible poly lactic-co-glycolic acid (PLGA) nanoparticles loaded with indocyanine green (ICG) as an optical-imaging contrast agent for cancer imaging and as a photothermal therapy agent for cancer treatment. PLGA-ICG nanoparticles (PIN) were synthesized with a particle diameter of 246±11 nm, a polydispersity index of 0.10±0.03, and ICG loading efficiency of 48.75±5.48%. PIN were optically characterized with peak excitation and emission at 765 and 810±5 nm, a fluorescence lifetime of 0.30±0.01 ns, and peak absorbance at 780 nm. The cytocompatibility study of PIN showed 85% cell viability till 1-mg/ml concentration of PIN. Successful cellular uptake of ligand conjugated PIN by prostate cancer cells (PC3) was also obtained. Both phantom-based and in vitro cell culture results demonstrated that PIN (1) have the great potential to induce local hyperthermia (i.e., temperature increase of 8 to 10°C) in tissue within 5 mm both in radius and in depth; (2) result in improved optical stability, excellent biocompatibility with healthy cells, and a great targeting capability; (3) have the ability to serve as an image contrast agent for deep-tissue imaging in diffuse optical tomography.

  6. Multifunctionality of indocyanine green-loaded biodegradable nanoparticles for enhanced optical imaging and hyperthermia intervention of cancer

    NASA Astrophysics Data System (ADS)

    Patel, Ronak H.; Wadajkar, Aniket S.; Patel, Nimit L.; Kavuri, Venkaiah C.; Nguyen, Kytai T.; Liu, Hanli

    2012-04-01

    The aim of this study was to develop and characterize multifunctional biodegradable and biocompatible poly lactic-co-glycolic acid (PLGA) nanoparticles loaded with indocyanine green (ICG) as an optical-imaging contrast agent for cancer imaging and as a photothermal therapy agent for cancer treatment. PLGA-ICG nanoparticles (PIN) were synthesized with a particle diameter of 246+/-11 nm, a polydispersity index of 0.10+/-0.03, and ICG loading efficiency of 48.75+/-5.48%. PIN were optically characterized with peak excitation and emission at 765 and 810+/- 5 nm, a fluorescence lifetime of 0.30+/-0.01 ns, and peak absorbance at 780 nm. The cytocompatibility study of PIN showed 85% cell viability till 1-mg/ml concentration of PIN. Successful cellular uptake of ligand conjugated PIN by prostate cancer cells (PC3) was also obtained. Both phantom-based and in vitro cell culture results demonstrated that PIN (1) have the great potential to induce local hyperthermia (i.e., temperature increase of 8 to 10°C) in tissue within 5 mm both in radius and in depth; (2) result in improved optical stability, excellent biocompatibility with healthy cells, and a great targeting capability; (3) have the ability to serve as an image contrast agent for deep-tissue imaging in diffuse optical tomography.

  7. A simple method for in vivo labelling of infiltrating leukocytes in the mouse retina using indocyanine green dye

    PubMed Central

    Sim, Dawn A.; Chu, Colin J.; Selvam, Senthil; Powner, Michael B.; Liyanage, Sidath; Copland, David A.; Keane, Pearse A.; Tufail, Adnan; Egan, Catherine A.; Bainbridge, James W. B.; Lee, Richard W.; Dick, Andrew D.; Fruttiger, Marcus

    2015-01-01

    ABSTRACT We have developed a method to label and image myeloid cells infiltrating the mouse retina and choroid in vivo, using a single depot injection of indocyanine green dye (ICG). This was demonstrated using the following ocular models of inflammation and angiogenesis: endotoxin-induced uveitis, experimental autoimmune uveoretinitis and laser-induced choroidal neovascularization model. A near-infrared scanning ophthalmoscope was used for in vivo imaging of the eye, and flow cytometry was used on blood and spleen to assess the number and phenotype of labelled cells. ICG was administered 72 h before the induction of inflammation to ensure clearance from the systemic circulation. We found that in vivo intravenous administration failed to label any leukocytes, whereas depot injection, either intraperitoneal or subcutaneous, was successful in labelling leukocytes infiltrating into the retina. Progression of inflammation in the retina could be traced over a period of 14 days following a single depot injection of ICG. Additionally, bright-field microscopy, spectrophotometry and flow cytometric analysis suggest that the predominant population of cells stained by ICG are circulating myeloid cells. The translation of this approach into clinical practice would enable visualization of immune cells in situ. This will not only provide a greater understanding of pathogenesis, monitoring and assessment of therapy in many human ocular diseases but might also open the ability to image immunity live for neurodegenerative disorders, cardiovascular disease and systemic immune-mediated disorders. PMID:26398933

  8. Effect of near-infrared diode laser and indocyanine green to treat infections on different wound models

    NASA Astrophysics Data System (ADS)

    Topaloglu, Nermin; Yuksel, Sahru; Gulsoy, Murat

    2014-05-01

    The emergence of antibiotic resistant bacteria causes significant increase in deaths due to wound infections around the world. Nowadays, it could be impossible to find appropriate antibiotics to treat some bacterial strains, especially multidrug resistant types. The aim of this study is to use photodynamic therapy that destroys these kinds of bacteria with the interaction of Indocyanine green (ICG) and 808-nm diode laser. In this study, antibacterial Photodynamic Therapy technique that we call ICG-IR Laser PDT was applied on antibiotic-resistant strains of Staphylococcus aureus that infected two different types of wound model (excisional and abrasion wound model) in vivo. Wistar albino rats were used to create animal wound models. Excisional or abrasion wounds were formed on the dorsal skin of the rats. They were infected with Staphylococcus aureus. 300 mW and 500 mW of 808-nm diode laser were applied on the wounds for 30 minutes and 15 minutes of exposure duration, respectively. ICG concentrations applied topically were 500, 1000, 1500 and 2000 μg/ml. Then the tissue was dissected properly and homogenized in buffer solution. From this solution, bacterial cell count was determined by serial dilution method. 1-2 log reduction in viable cell count was observed after these applications. The temperature increase in the tissue was between 6-8°C during these applications. From these findings, it was understood that this method with 808-nm and ICG is promising but it must be improved by further dosimetry studies.

  9. Enhanced photo-stability, thermal-stability and aqueous-stability of indocyanine green in polymeric nanoparticulate systems.

    PubMed

    Saxena, Vishal; Sadoqi, Mostafa; Shao, Jun

    2004-03-19

    Photo-degradation, thermal-degradation and aqueous-instability of indocyanine green (ICG) limits its application as a fluorescence contrast agent for imaging purposes. Thus, the objective of this study is to develop polymeric nanoparticles entrapping ICG and to establish its effectiveness in providing photo-stability, thermal stability and aqueous stability to ICG. Nanoparticles entrapping ICG were engineered, characterized and the degradation kinetics of ICG in the nanoparticles was investigated in aqueous media. The entrapment of ICG in the nanoparticles causes a shift in its wavelength of peak fluorescence and a decrease in its peak fluorescence intensity. The degradation of ICG in aqueous nanoparticle suspension followed first-order kinetics for the time period studied. ICG entrapment in the nanoparticles enhanced aqueous-stability of ICG (half-life, t(1/2) was 72.2+/-6.1 h for ICG in the nanoparticles as compared to 16.8+/-1.5 h for free ICG solution), photo-stability of ICG (t(1/2) was 73.7+/-7.5 h for ICG in the nanoparticles as compared to 14.4+/-2.4 h for free ICG solution when exposed to room light from two 32 W normal fluorescent tubes) and thermal-stability of ICG (t(1/2) of ICG at 42 degrees C was 62.4+/-1.7 h for ICG in the nanoparticles as compared to 10.1+/-0.6 h for free ICG solution).

  10. Indocyanine Green-Loaded Polydopamine-Reduced Graphene Oxide Nanocomposites with Amplifying Photoacoustic and Photothermal Effects for Cancer Theranostics

    PubMed Central

    Hu, Dehong; Zhang, Jingnan; Gao, Guanhui; Sheng, Zonghai; Cui, Haodong; Cai, Lintao

    2016-01-01

    Photoacoustic (PA) imaging and photothermal therapy (PTT) as light-induced theranostic platforms have been attracted much attention in recent years. However, the development of highly efficient and integrated phototheranostic nanoagents for amplifying PA imaging and PTT treatments poses great challenges. Here, we report a novel phototheranostic nanoagent using indocyanine green-loaded polydopamine-reduced graphene oxide nanocomposites (ICG-PDA-rGO) with amplifying PA and PTT effects for cancer theranostics. The results demonstrate that the PDA layer coating on the surface of rGO could effectively absorb a large number of ICG molecules, quench ICG's fluorescence, and enhance the PDA-rGO's optical absorption at 780 nm. The obtained ICG-PDA-rGO exhibits stronger PTT effect and higher PA contrast than that of pure GO and PDA-rGO. After PA imaging-guided PTT treatments, the tumors in 4T1 breast subcutaneous and orthotopic mice models are suppressed completely and no treatment-induced toxicity being observed. It illustrates that the ICG-PDA-rGO nanocomposites constitute a new class of theranostic nanomedicine for amplifying PA imaging and PTT treatments. PMID:27217837

  11. Self-assembly synthesis, tumor cell targeting, and photothermal capabilities of antibody-coated indocyanine green nanocapsules.

    PubMed

    Yu, Jie; Javier, David; Yaseen, Mohammad A; Nitin, Nitin; Richards-Kortum, Rebecca; Anvari, Bahman; Wong, Michael S

    2010-02-17

    New colloidal materials that can generate heat upon irradiation are being explored for photothermal therapy as a minimally invasive approach to cancer treatment. The near-infrared dye indocyanine green (ICG) could serve as a basis for such a material, but its encapsulation and subsequent use are difficult to carry out. We report the three-step room-temperature synthesis of approximately 120-nm capsules loaded with ICG within salt-cross-linked polyallylamine aggregates, and coated with antiepidermal growth factor receptor (anti-EGFR) antibodies for tumor cell targeting capability. We studied the synthesis conditions such as temperature and water dilution to control the capsule size and characterized the size distribution via dynamic light scattering and scanning electron microscopy. We further studied the specificity of tumor cell targeting using three carcinoma cell lines with different levels of EGFR expression and investigated the photothermal effects of ICG containing nanocapsules on EGFR-rich tumor cells. Significant thermal toxicity was observed for encapsulated ICG as compared to free ICG at 808 nm laser irradiation with radiant exposure of 6 W/cm(2). These results illustrate the ability to design a colloidal material with cell targeting and heat generating capabilities using noncovalent chemistry.

  12. Activatable fluorescent cys-diabody conjugated with indocyanine green derivative: consideration of fluorescent catabolite kinetics on molecular imaging

    PubMed Central

    Sano, Kohei; Nakajima, Takahito; Ali, Towhid; Bartlett, Derek W.; Wu, Anna M.; Kim, Insook; Paik, Chang H.; Choyke, Peter L.

    2013-01-01

    Abstract. Antibody fragments including diabodies have more desirable pharmacokinetic characteristics than whole antibodies. An activatable optical imaging probe based on a cys-diabody targeting prostate-specific membrane antigen conjugated with the near-infrared fluorophore, indocyanine green (ICG), was designed such that it can only be activated when bound to the tumor, leading to high signal-to-background ratios. We employed short polyethylene glycol (PEG) linkers between the ICG and the reactive functional group (Sulfo-OSu group), resulting in covalent conjugation of ICG to the cys-diabody, which led to lower dissociation of ICG from cys-diabody early after injection, reducing hepatic uptake. However, unexpectedly, high and long-term fluorescence was observed in the kidneys, liver, and blood pool more than 1 h after injection of the cys-diabody PEG-ICG conjugate. A biodistribution study using I125-labeled cys-diabody-ICG showed immediate uptake in the kidneys followed by a rapid decrease, while gastric activity increased due to released radioiodine during rapid cys-diabody-ICG catabolism in the kidneys. To avoid this catabolic pathway, it would be preferable to use antibody fragments large enough not to be filtered through glomerulus or to conjugate the fragments with fluorescent dyes that are readily excreted into urine when cleaved from the cys-diabody to achieve high tumor-specific detection. PMID:23752742

  13. In vitro and in vivo analysis of indocyanine green-labeled panitumumab for optical imaging-a cautionary tale.

    PubMed

    Zhou, Yang; Kim, Young-Seung; Milenic, Diane E; Baidoo, Kwamena E; Brechbiel, Martin W

    2014-10-15

    Indocyanine green (IC-Green), the only FDA approved near-infrared (NIR) fluorophore for clinical use, is attractive to researchers for the development of targeted optical imaging agents by modification of its structure and conjugation to monoclonal antibodies (mAbs) or their fragments. IC-Green derivative, ICG-sulfo-OSu (ICG-sOSu), is frequently used for antibody conjugation. However, ICG-sOSu is amphiphilic and readily facilitates aggregation of mAbs that is not easily separable from the desired immunoconjugates. Complications originating from this behavior are frequently overlooked by researchers. This study examined detailed chemical and biological characteristics of an ICG-sOSu-labeled mAb, panitumumab, and provided a clinically applicable strategy to deliver a pure conjugation product. Size-exclusion high-performance liquid chromatography (SE-HPLC) analysis of conjugation reactions, performed at molar reaction ratios of ICG-sOSu: mAb of 5, 10, or 20, resulted in isolable desired ICG-sOSu-panitumumab conjugation product in 72%, 53%, and 19% yields, respectively, with the remainder consisting of high molecular weight aggregates (>150 kDa) 14%, 30%, and 51%, respectively. The HPLC-purified ICG-sOSu-panitumumab products were analyzed by native and SDS polyacrylamide gel electrophoresis (PAGE) followed by optical imaging. Results indicated that the interaction between ICG-sOSu and panitumumab was due to both covalent and noncovalent binding of the ICG-sOSu to the protein. Noncovalently bound dye in the ICG-sOSu-panitumumab conjugate products was removed by extraction with ethyl acetate to further purify the HPLC-isolated conjugation products. With conserved immunoreactivity, excellent target-specific uptake of the doubly purified bioconjugates was observed with minimal liver retention in athymic nude mice bearing HER1-expressing tumor xenografts. In summary, the preparation of well-defined bioconjugate products labeled with commercial ICG-sOSu dye is not a simple

  14. Indocyanine green (ICG) as a new adjuvant for the antimicrobial photo-dynamic therapy (aPDT) in dentistry

    NASA Astrophysics Data System (ADS)

    Meister, Joerg; Hopp, Michael; Schäfers, Johannes; Verbeek, Jonas; Kraus, Dominik; Frentzen, Matthias

    2014-02-01

    Clinical surveys show a continuous increase of antimicrobial resistance related to the frequency of the administrated medication. The antimicrobial photodynamic therapy (aPDT) is an effective adjuvant to reduce the need of antibiotics in dentistry, especially in periodontics. The antimicrobial effect of lightactivated photosensitizers in periodontics is demonstrated in clinical studies and case reports. Indocyanine green (ICG) as a new adjuvant shows the high potential of antiphlogistic and antimicrobial effects in combination with laser-light activation. In trying to answer the question of just how far the influence of temperature is acting on bacteria, this study was carried out. The influences of ICG at different concentrations (0.01 up to 1 mg/ml) in combination with a culture medium (brain-heart-infusion) and a bacteria culture (Streptococcus salivarius) at different optical densities (OD600 0.5 and 0.1) were investigated under laser-light activation. Laser activation was carried out with diode laser at 810 nm and two different power settings (100 mW/300 mW). The pulse repetition rate was 2 kHz. Taking account of the fiber diameter, distance and spot size on the sample surface, the applicated intensities were 6.2 and 18.7 W/cm2. Total irradiation time was 20 s for all meaurements. Transmitted laser power and temperature increase in the culture medium as well as in the bacteria culture were determined. Additionally the influence of ICG regarding bacterial growth and bactericidal effect was investigated in the bacteria culture without laser irradiation. Without laser, no bactericidal effect of ICG was observed. Only a bacteriostatic effect could be proved. In dependence of the ICG concentration and the applied intensities a temperature increase of ΔT up to 80°C was measured.

  15. Laparoscopic sentinel lymph node mapping after cervical injection of indocyanine green for endometrial cancer – preliminary report

    PubMed Central

    Reinholz-Jaskolska, Malgorzata; Bidzinski, Mariusz

    2015-01-01

    Introduction Endometrial cancer (EC) has an increasing incidence worldwide, with lymph node metastases as the main prognostic factor. Systemic lymphadenectomy is connected with elevated morbidity. Sentinel lymph node (SLN) biopsy is intended to avoid extensive lymphadenectomy and provide significant oncologic information. Aim To evaluate the accuracy of laparoscopic SLN biopsy guided by indocyanine green (ICG) injection into the cervix in EC patients and to develop ideas to improve this method. The optimal time from dye injection to lymph node visualization was assessed. Material and methods This retrospective study was conducted between July 2014 and March 2015 in a group of 9 women with EC, at low and intermediate risk of recurrence, scheduled for total laparoscopic hysterectomy and pelvic lymphadenectomy. All patients underwent cervical ICG injection and SLN biopsy, followed by surgery. Pelvic lymph nodes were located using an ICG endoscopic camera. Results The following data were collected: There were 9 patients with endometrial cancer at low and intermediate risk of recurrence. Median patient age was 59 years, median body mass index (BMI) 28 kg/m2, endometrioid adenocarcinoma in 9 cases, grading: G1 – 1 patient, G2 – 8 patients. No intraoperative or postoperative complications were noted. Median time from ICG injection and SLN detection during surgery was 25 min. There were no lymph nodes metastasis, all identified by the SLN protocol using ICG injection. Conclusions Sentinel lymph node mapping can play a significant role in lymph node assessment and staging in early-stage EC patients with low risk of recurrence according to the ESMO classification. The use of SLN mapping in EC is much needed and the therapeutic benefit is high. PMID:26649087

  16. Blood flow speed of the gastric conduit assessed by indocyanine green fluorescence: New predictive evaluation of anastomotic leakage after esophagectomy.

    PubMed

    Koyanagi, Kazuo; Ozawa, Soji; Oguma, Junya; Kazuno, Akihito; Yamazaki, Yasushi; Ninomiya, Yamato; Ochiai, Hiroki; Tachimori, Yuji

    2016-07-01

    Anastomotic leakage is considered as an independent risk factor for postoperative mortality after esophagectomy, and an insufficient blood flow in the reconstructed conduit may be a risk factor of anastomotic leakage. We investigated the clinical significance of blood flow visualization by indocyanine green (ICG) fluorescence in the gastric conduit as a means of predicting the leakage of esophagogastric anastomosis after esophagectomy.Forty patients who underwent an esophagectomy with gastric conduit reconstruction were prospectively investigated. ICG fluorescence imaging of the gastric conduit was detected by a near-infrared camera system during esophagectomy and correlated with clinical parameters or surgical outcomes.In 25 patients, the flow speed of ICG fluorescence in the gastric conduit wall was simultaneous with that of the greater curvature vessels (simultaneous group), whereas in 15 patients this was slower than that of the greater curvature vessels (delayed group). The reduced speed of ICG fluorescence stream in the gastric conduit wall was associated with intraoperative blood loss (P = 0.008). Although anastomotic leakage was not found in the simultaneous group, it occurred in 7 patients of the delayed group (P < 0.001). A flow speed of ICG fluorescence in the gastric conduit wall of 1.76 cm/s or less was determined by a receiver operating characteristic (ROC) curve, identified as a significant independent predictor of anastomotic leakage after esophagectomy (P = 0.004).This preliminary study demonstrates that intraoperative evaluation of blood flow speed by ICG fluorescence in the gastric conduit wall is a useful means to predict the risk of anastomotic leakage after esophagectomy. PMID:27472732

  17. Near infrared fluorescence-guided real-time endoscopic detection of peritoneal ovarian cancer nodules using intravenously injected indocyanine green.

    PubMed

    Kosaka, Nobuyuki; Mitsunaga, Makoto; Longmire, Michelle R; Choyke, Peter L; Kobayashi, Hisataka

    2011-10-01

    Near infrared fluorescence-guidance can be used for the detection of small cancer metastases and can aid in the endoscopic management of cancer. Indocyanine green (ICG) is a Food and Drug Administration (FDA)-approved fluorescence agent. Through non-specific interactions with serum proteins, ICG achieves enhanced permeability and retention (EPR) effects. Yet, ICG demonstrates rapid clearance from the circulation. Therefore, ICG may be an ideal contrast agent for real-time fluorescence imaging of tumors. To evaluate the usefulness of real-time dual fluorescence and white light endoscopic optical imaging to detect tumor implants using the contrast agent ICG, fluorescence-guided laparoscopic procedures were performed in mouse models of peritoneally disseminated ovarian cancers. Animals were administered intravenous ICG or a control contrast agent, IR800-conjugated to albumin. The ability to detect small ovarian cancer implants was then compared. Using the dual view microendoscope, ICG clearly enabled visualization of peritoneal ovarian cancer metastatic nodules derived from SHIN3 and OVCAR5 cells at 6 and 24 hr after injection with significantly higher tumor-to-background ratio than the control agent, IR800-albumin (p < 0.001). In conclusion, ICG has the desirable properties of having both EPR effects and rapid clearance for the real-time endoscopic detection of tiny ovarian cancer peritoneal implants compared to a control macromolecular agent with theoretically better EPR effects but longer circulatory retention. Given that ICG is already FDA-approved and has a long track record of human use, this method could be easily translated to the clinic as a robust tool for fluorescence-guided endoscopic procedures for the management and treatment of cancer.

  18. Enhancement of the photostability and retention time of indocyanine green in sentinel lymph node mapping by anionic polyelectrolytes.

    PubMed

    Noh, Young-Woock; Park, Hye Sun; Sung, Moon-Hee; Lim, Yong Taik

    2011-09-01

    Sentinel lymph node (SLN) biopsy techniques have been widely used in the diagnosis of cancer metastasis because lymph node metastasis is one of the most important prognostic signs. Indocyanine green (ICG) has potential application as a molecular imaging probe for SLN mapping due to its fluorescent properties emitting in the near-infrared (NIR) region, where light transmission through biological tissue is maximized. However, its low photostability in an aqueous solution at the physiological temperature and its rapid diffusion behavior through SLN into the second lymph node have limited its wide use in real clinical fields. In this study, we developed a new NIR imaging contrast system consisting of ICG and poly (γ-glutamic acid) (γ-PGA) polymers for efficient sentinel lymph node mapping. By a combination of clinically used ICG and the biocompatible anionic polyelectrolyte, γ-PGA, the photostabilities of aqueous ICG solutions at room and body temperatures were drastically enhanced. When the ICG/γ-PGA complex was injected subcutaneously into the front paw of a mouse, it entered the lymphatics and migrated to the axillary sentinel lymph node (SLN) within 2 min. Furthermore, the NIR fluorescent signal intensity and retention time of ICG/γ-PGA complex in lymph node were superior to those of ICG only. In addition, a histofluorescentstudy of the SLN resected under NIR imaging revealed that ICG and γ-PGA were co-localized in the lymph node.Taken together, the experimental results on the enhanced photostability and retention time of the ICG/γ-PGA complex provide strong evidence that it has promising potential for improved sentinel lymph node mapping.

  19. Silibinin and indocyanine green-loaded nanoparticles inhibit the growth and metastasis of mammalian breast cancer cells in vitro

    PubMed Central

    Sun, Hui-ping; Su, Jing-han; Meng, Qing-shuo; Yin, Qi; Zhang, Zhi-wen; Yu, Hai-jun; Zhang, Peng-cheng; Wang, Si-ling; Li, Ya-ping

    2016-01-01

    Aim: To improve the therapeutic efficacy of cancer treatments, combinational therapies based on nanosized drug delivery system (NDDS) has been developed recently. In this study we designed a new NDDS loaded with an anti-metastatic drug silibinin and a photothermal agent indocyanine green (ICG), and investigated its effects on the growth and metastasis of breast cancer cells in vitro. Methods: Silibinin and ICG were self-assembled into PCL lipid nanoparticles (SIPNs). Their physical characteristics including the particle size, zeta potential, morphology and in vitro drug release were examined. 4T1 mammalian breast cancer cells were used to evaluate their cellular internalization, cytotoxicity, and their influences on wound healing, in vitro cell migration and invasion. Results: SIPNs showed a well-defined spherical shape with averaged size of 126.3±0.4 nm and zeta potential of −10.3±0.2 mV. NIR laser irradiation substantially increased the in vitro release of silibinin from the SIPNs (58.3% at the first 8 h, and 97.8% for the total release). Furthermore, NIR laser irradiation markedly increased the uptake of SIPNs into 4T1 cells. Under the NIR laser irradiation, both SIPNs and IPNs (PCL lipid nanoparticles loaded with ICG alone) caused dose-dependent ablation of 4T1 cells. The wound healing, migration and invasion experiments showed that SIPNs exposed to NIR laser irradiation exhibited dramatic in vitro anti-metastasis effects. Conclusion: SIPNs show temperature-sensitive drug release following NIR laser irradiation, which can inhibit the growth and metastasis of breast cancer cells in vitro. PMID:27133295

  20. Indocyanine green clearance varies as a function of N-acetylcysteine treatment in a murine model of acetaminophen toxicity.

    PubMed

    Milesi-Hallé, Alessandra; Abdel-Rahman, Susan M; Brown, Aliza; McCullough, Sandra S; Letzig, Lynda; Hinson, Jack A; James, Laura P

    2011-02-01

    Standard assays to assess acetaminophen (APAP) toxicity in animal models include determination of ALT (alanine aminotransferase) levels and examination of histopathology of liver sections. However, these assays do not reflect the functional capacity of the injured liver. To examine a functional marker of liver injury, the pharmacokinetics of indocyanine green (ICG) were examined in mice treated with APAP, saline, or APAP followed by N-acetylcysteine (NAC) treatment.Male B6C3F1 mice were administered APAP (200 mg/kg IP) or saline. Two additional groups of mice received APAP followed by NAC at 1 or 4 h after APAP. At 24 h, mice were injected with ICG (10 mg/kg IV) and serial blood samples (0, 2, 10, 30, 50 and 75 min) were obtained for determination of serum ICG concentrations and ALT. Mouse livers were removed for measurement of APAP protein adducts and examination of histopathology. Toxicity (ALT values and histology) was significantly increased above saline treated mice in the APAP and APAP/NAC 4 h mice. Mice treated with APAP/NAC 1 h had complete protection from toxicity. APAP protein adducts were increased in all APAP treated groups and were highest in the APAP/NAC 1 h group. Pharmacokinetic analysis of ICG demonstrated that the total body clearance (Cl(T)) of ICG was significantly decreased and the mean residence time (MRT) was significantly increased in the APAP mice compared to the saline mice. Mice treated with NAC at 1 h had Cl(T) and MRT values similar to those of saline treated mice. Conversely, mice that received NAC at 4 h had a similar ICG pharmacokinetic profile to that of the APAP only mice. Prompt treatment with NAC prevented loss of functional activity while late treatment with NAC offered no improvement in ICG clearance at 24 h. ICG clearance in mice with APAP toxicity can be utilized in future studies testing the effects of novel treatments for APAP toxicity.

  1. Optimization of the enhanced permeability and retention effect for near-infrared imaging of solid tumors with indocyanine green

    PubMed Central

    Jiang, Jack X; Keating, Jane J; Jesus, Elizabeth M De; Judy, Ryan P; Madajewski, Brian; Venegas, Ollin; Okusanya, Olugbenga T; Singhal, Sunil

    2015-01-01

    Surgery is the most effective method to cure patients with solid tumors. New techniques in near-infrared (NIR) cancer imaging are being used to identify surgical margins and residual tumor cells in the wound. Our goal was to determine the optimal time and dose for imaging solid tumors using Indocyanine Green. Syngeneic murine flank tumor models were used to test NIR imaging of ICG at various doses ranging from 0 to 10 mg/kg. Imaging was performed immediately after injection and up to 72 hours later. Biodistribution in the blood and murine organs were quantified by spectroscopy and fluorescence microscopy. Based on these results, a six patient dose titration study was performed. In murine flank tumors, the tumor-to-background ratio (TBR) for ICG at doses less than 5 mg/kg were less than 2 fold at all time points, and the surgeons could not subjectively identify tissue contrast. However, for doses ranging from 5 mg/kg to 10 mg/kg, the TBR ranged from 2.1 to 8.0. The tumor signal was best appreciated at 24 hours and the background was least pronounced after 24 hours. Biodistribution studies in the blood and murine organs revealed excretion through the biliary tree and gastrointestinal tract, with minimal blood fluorescence at the higher doses. A follow up pilot study confirmed that these findings were applicable to lung cancer patients, and tumor was clearly delineated from surrounding normal tissue by NIR imaging. For non-hepatic solid tumors, we found ICG was optimal when dosed at 5 mg/kg and 24 hours before surgery. PMID:26269776

  2. Indocyanine Green Clearance Varies as a Function of N-Acetylcysteine Treatment in a Murine Model of Acetaminophen Toxicity

    PubMed Central

    Milesi-Hallé, Alessandra; Abdel-Rahman, Susan M.; Brown, Aliza; McCullough, Sandra S.; Letzig, Lynda; Hinson, Jack A.; James, Laura P.

    2011-01-01

    Standard assays to assess acetaminophen (APAP) toxicity in animal models include determination of ALT (alanine aminotransferase) levels and examination of histopathology of liver sections. However, these assays do not reflect the functional capacity of the injured liver. To examine a functional marker of liver injury, the pharmacokinetics of indocyanine green (ICG) were examined in mice treated with APAP, saline, or APAP followed by N-acetylcysteine (NAC) treatment. Male B6C3F1 mice were administered APAP (200 mg/kg IP) or saline. Two additional groups of mice received APAP followed by NAC at 1 or 4 h after APAP. At 24 h, mice were injected with ICG (10 mg/kg IV) and serial blood samples (0, 2, 10, 30, 50 and 75 min) were obtained for determination of serum ICG concentrations and ALT. Mouse livers were removed for measurement of APAP protein adducts and examination of histopathology. Toxicity (ALT values and histology) was significantly increased above saline treated mice in the APAP and APAP/NAC 4 h mice. Mice treated with APAP/NAC 1 h had complete protection from toxicity. APAP protein adducts were increased in all APAP treated groups and were highest in the APAP/NAC 1 h group. Pharmacokinetic analysis of ICG demonstrated that the total body clearance (ClT) of ICG was significantly decreased and the mean residence time (MRT) was significantly increased in the APAP mice compared to the saline mice. Mice treated with NAC at 1 h had ClT and MRT values similar to those of saline treated mice. Conversely, mice that received NAC at 4 h had a similar ICG pharmacokinetic profile to that of the APAP only mice. Prompt treatment with NAC prevented loss of functional activity while late treatment with NAC offered no improvement in ICG clearance at 24 h. ICG clearance in mice with APAP toxicity can be utilized in future studies testing the effects of novel treatments for APAP toxicity. PMID:21145883

  3. Photothermal ablation of human lung cancer by low-power near-infrared laser and topical injection of indocyanine green.

    PubMed

    Hirohashi, Kentaro; Anayama, Takashi; Wada, Hironobu; Nakajima, Takahiro; Kato, Tatsuya; Keshavjee, Shaf; Orihashi, Kazumasa; Yasufuku, Kazuhiro

    2015-04-01

    The present study was designed to evaluate the efficacy of photothermal ablation therapy for lung cancer by low-power near-infrared laser and topical injection of indocyanine green (ICG). In vitro study 1: an 808 nm laser with 250 mW was irradiated for 10 minutes using different dilutions of ICG and the temporal thermal effect was monitored. ICG (1 mL of 0.5 g/L) was heated to a temperature of >30°C from the base temperature by laser irradiation. In vitro study 2: the cytotoxic effect of hyperthermia on human lung cancer cells was examined in different temperature and time settings. Cell viability was quantified by both an MTS assay and reculturing. Fatal conditions evaluated by reculturing were as follows: thermal treatment at 55°C for 5 minutes, 53°C for 10 minutes, and 51°C for 15 minutes. The MTS assay study suggested that thermal treatment at 59°C for 5 minutes and 57°C for 20 minutes showed a severe cytotoxic effect. In vivo study: nude mouse subcutaneous NCI-H460 human lung cancer xenograft models were used for the study. Saline or 0.5 g/L of ICG was injected topically into the tumor (n=3/group). Tumors were irradiated with a laser at 500 mW for 10 minutes. Although the tumor diameter reached 1 cm within 24 days after treatment in all 3 mice using saline/laser, tumor sizes were gradually reduced in all 3 mice using the ICG/laser. In 2 of the 3 mice using ICG/laser, tumors had disappeared macroscopically. The efficacy of the photothermal ablation therapy by low-power near-infrared laser and a topical injection of ICG was clarified using a mouse subcutaneous a lung cancer xenograft model.

  4. Influence of different output powers on the efficacy of photodynamic therapy with 809-nm diode laser and indocyanine green

    NASA Astrophysics Data System (ADS)

    Topaloglu, Nermin; Yuksel, Sahru; Gulsoy, Murat

    2013-02-01

    Photodynamic therapy (PDT) is an alternative antimicrobial treatment method. Different wavelengths of light sources mostly in the visible spectrum have been investigated for antimicrobial Photodynamic Therapy. Even though the wavelengths in near infrared spectrum have the advantage of higher penetration capability in biological tissue, they have not been preferred for PDT because of their possible photothermal effect in biological tissues. In our previous studies, the desired PDT effect was achieved with 809-nm diode laser and indocyanine green (ICG) on drug resistant pathogens. In this study, it was aimed to investigate the influence of different output powers during PDT applications with 809-nm diode laser to clarify whether there is a photothermal effect to kill the pathogens or only the photochemical effect of photodynamic therapy. 4 different output powers (500 mW, 745 mW, 1000 mW, 1500 mW) were examined in Laseronly and PDT groups of P. aeruginosa ATCC 27853 in vitro. In the PDT groups, a non-phototoxic ICG concentration (50 μl/ml) has been chosen to eliminate the toxic effect of ICG and evaluate only the thermal effect of laser. Applied energy dose (252 J/cm2) was kept constant by increasing the exposure duration (300, 240, 180 and 120 seconds respectively). These output powers in Laser-only or PDT groups did not seem to cause photothermal effect. There was not any significant decrease or increase on bacterial load after the applications with different output powers. Higher output powers in PDT groups with the same ICG concentration did not cause any higher killing effect.

  5. Comparison of the photothermal effects of 808nm gold nanorod and indocyanine green solutions using an 805nm diode laser

    NASA Astrophysics Data System (ADS)

    Hasanjee, Aamr M.; Zhou, Feifan; West, Connor; Silk, Kegan; Doughty, Austin; Bahavar, Cody F.; Chen, Wei R.

    2016-03-01

    Non-invasive laser immunotherapy (NLIT) is a treatment method for metastatic cancer which combines noninvasive laser irradiation with immunologically modified nanostructures to ablate a primary tumor and induce a systemic anti-tumor response. To further expand the development of NLIT, two different photosensitizing agents were compared: gold nanorods (GNR) with an optical absorption peak of 808 nm and indocyanine green (ICG) with an optical absorption peak of ~800 nm. Various concentrations of GNR and ICG solutions were irradiated at different power densities using an 805 nm diode laser, and the temperature of the solutions was monitored during irradiation using a thermal camera. For comparison, dye balls made up of a 1:1 volume ratio of gel solution to GNR or ICG solution were placed in phantom gels and were then irradiated using the 805 nm diode laser to imitate the effect of laser irradiation on in vivo tumors. Non-invasive laser irradiation of GNR solution for 2 minutes resulted in a maximum increase in temperature by 31.8 °C. Additionally, similar irradiation of GNR solution dye ball within phantom gel for 10 minutes resulted in a maximum temperature increase of 8.2 °C. Comparatively, non-invasive laser irradiation of ICG solution for 2 minutes resulted in a maximum increase in temperature by 28.0 °C. Similar irradiation of ICG solution dye ball within phantom gel for 10 minutes yielded a maximum temperature increase of only 3.4 °C. Qualitatively, these studies showed that GNR solutions are more effective photosensitizing agents than ICG solution.

  6. Near-infrared spectroscopy extended with indocyanine green dye dilution for cerebral blood flow measurement: Median values in healthy volunteers

    NASA Astrophysics Data System (ADS)

    Mudra, R.; Muroi, C.; Niederer, P.; Keller, E.

    2008-09-01

    The cerebral blood flow (CBF) is an important vital parameter in neurointensive care. Currently, there is no non-invasive method for its measurement that can easily be applied at the bedside. A new tool to determine CBF is based on near-infrared spectroscopy (NIRS) applied together with indocyanine green (ICG) dye dilution. From a bilateral measurement on selected regions on the head of infrared (IR) absorption at various wavelengths during the dilution maneuver, the vascular perfusion characteristics of the two brain hemispheres can be determined in terms of mean transit time (mtt) of ICG, cerebral blood volume (CBV) and CBF. So far, on nine healthy volunteers, NIRS ICG dye dilution bihemispheric measurements were performed, which yielded to mtt given as median (range) of 9.3 s (5.1-16.3 s), CBV of 3.5 ml/100 g (1.7-4.1 ml/100 g), and CBF of 18.2 ml/(100 g×min) [11.1-48.6 ml/(100 g×min)]. Additionally, the blood flow index (BFI) was calculated with BFI= 13.8 mg/(100 g×s) [6.6-15.2 mg/(100 g×s)]. The Spearman rank correlation coefficient between CBF and BFI was RS = 0.76. However, as the Bland & Altman plot between CBFNIRS and the CBFBFI documents, the limits of agreement are rather wide (21.9±6.7). Under physiological conditions in healthy volunteers, no differences could be detected between the hemispheres.

  7. Effects of indocyanine green in treatment of murine mammary tumor by an 808-nm diode laser: an in-vivo study

    NASA Astrophysics Data System (ADS)

    Chen, Wei R.; Wichert, Kelly G.; Higgins, Aaron K.; Bartels, Kenneth E.; Adams, Robert L.; Nordquist, Robert E.

    1996-04-01

    Indocyanine green was used to enhance laser-induced photothermal destruction of murine mammary tumor cells. The 808-nm diode laser used in these experiments matches the absorption peak of the indocyanine green. The combination of the laser and in situ administration of aqueous ICG provided a highly selective photothermal destruction pattern of the tumor tissue. Histology showed that within the power range of 3 to 5 watts. The ICG- targeted tumor tissues were fatally injured, while the peripheral tissues such as skin and other interdicting tissue not containing ICG were spared. Higher powers (10 to 15 watts) could inflict severe surface damage but only resulted in limited tissue penetration. Post-treatment observation also revealed surviving tumor cells, the cause of which might be the non-uniform distribution of ICG as well as the random scattering of photons inside tissue. After laser-ICG treatment, the tumor continued to grow, but at a slower rate, and to metastasize, leading to the death of the rats. The findings of our experiments question the long-term efficacy of the photothermal effect of a single treatment using the ICG and diode laser. However, the controlled killing of tumor cells on a large scale may be proven crucial when the treatment is applied repeatedly and/or in an earlier stage so that tumor growth could be stopped and metastases prevented. This photothermal interaction may also be effective when used in conjunction with other modalities.

  8. Improvement of the sentinel lymph node detection rate of cervical sentinel lymph node biopsy using real-time fluorescence navigation with indocyanine green in head and neck skin cancer.

    PubMed

    Nakamura, Yasuhiro; Fujisawa, Yasuhiro; Nakamura, Yoshiyuki; Maruyama, Hiroshi; Furuta, Jun-ichi; Kawachi, Yasuhiro; Otsuka, Fujio

    2013-06-01

    The standard technique using lymphoscintigraphy, blue dye and a gamma probe has established a reliable method for sentinel node biopsy for skin cancer. However, the detection rate of cervical sentinel lymph nodes (SLN) is generally lower than that of inguinal or axillary SLN because of the complexity of lymphatic drainage in the head and neck region and the "shine-through" phenomenon. Recently, indocyanine green fluorescence imaging has been reported as a new method to detect SLN. We hypothesized that fluorescence navigation with indocyanine green in combination with the standard technique would improve the detection rate of cervical sentinel nodes. We performed cervical sentinel node biopsies using the standard technique in 20 basins of 18 patients (group A) and using fluorescence navigation in combination with the standard technique in 12 basins of 16 patients (group B). The mean number of sentinel nodes was two per basin (range, 1-4) in group A and three per basin (range, 1-5) in group B. The detection rate of sentinel nodes was 83% (29/35) in group A and 95% (36/38) in group B. The false-negative rate was 6% (1/18 patients) in group A and 0% in group B. Fluorescence navigation with indocyanine green may improve the cervical sentinel node detection rate. However, greater collection of data regarding the usefulness of cervical sentinel node biopsy using indocyanine green is necessary.

  9. Photodynamic hyperthermal therapy with indocyanine green (ICG) induces apoptosis and cell cycle arrest in B16F10 murine melanoma cells.

    PubMed

    Radzi, Rozanaliza; Osaki, Tomohiro; Tsuka, Takeshi; Imagawa, Tomohiro; Minami, Saburo; Nakayama, Yuji; Okamoto, Yoshiharu

    2012-05-01

    We examined the effects of photodynamic hyperthemal therapy (PHT), which is a combination of photodynamic therapy (PDT) and hyperthermia (HT), on the apoptosis and cell cycle progression of murine melanoma B16F10 cells. The percentage of apoptotic cell was determined by flow cytometry using fluorescein isothiocyanate (FITC)-conjugated Annexin V and propidium iodide (PI) double staining. The cell cycle analysis was performed by PI staining with flow cytometry. The expression of cyclins and heat shock protein 70 (Hsp70) were examined by a Western blotting analysis. PHT induces death in B16F10 cells, and PHT-mediated apoptosis occurred acutely and persistently in vitro. Our study demonstrated that PHT using indocyanine green (ICG) and near infrared (NIR) light source induces apoptosis and G0/G1 cell cycle arrest in the B16F10 cells. PMID:22146339

  10. Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/x-ray computed tomography system.

    PubMed

    Zhang, Guanglei; Liu, Fei; Zhang, Bin; He, Yun; Luo, Jianwen; Bai, Jing

    2013-04-01

    Pharmacokinetic rates have the potential to provide quantitative physiological and pathological information for biological studies and drug development. Fluorescence molecular tomography (FMT) is an attractive imaging tool for three-dimensionally resolving fluorophore distribution in small animals. In this letter, pharmacokinetic rates of indocyanine green (ICG) in mouse liver are imaged with a hybrid FMT and x-ray computed tomography (XCT) system. A recently developed FMT method using structural priors from an XCT system is adopted to improve the quality of FMT reconstruction. In the in vivo experiments, images of uptake and excretion rates of ICG in mouse liver are obtained, which can be used to quantitatively evaluate liver function. The accuracy of the results is validated by a fiber-based fluorescence measurement system.

  11. Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/x-ray computed tomography system

    NASA Astrophysics Data System (ADS)

    Zhang, Guanglei; Liu, Fei; Zhang, Bin; He, Yun; Luo, Jianwen; Bai, Jing

    2013-04-01

    Pharmacokinetic rates have the potential to provide quantitative physiological and pathological information for biological studies and drug development. Fluorescence molecular tomography (FMT) is an attractive imaging tool for three-dimensionally resolving fluorophore distribution in small animals. In this letter, pharmacokinetic rates of indocyanine green (ICG) in mouse liver are imaged with a hybrid FMT and x-ray computed tomography (XCT) system. A recently developed FMT method using structural priors from an XCT system is adopted to improve the quality of FMT reconstruction. In the in vivo experiments, images of uptake and excretion rates of ICG in mouse liver are obtained, which can be used to quantitatively evaluate liver function. The accuracy of the results is validated by a fiber-based fluorescence measurement system.

  12. Mesoporous silica-coated gold nanorods with embedded indocyanine green for dual mode X-ray CT and NIR fluorescence imaging.

    PubMed

    Luo, Teng; Huang, Peng; Gao, Guo; Shen, Guangxia; Fu, Shen; Cui, Daxiang; Zhou, Chuanqing; Ren, Qiushi

    2011-08-29

    Indocyanine green-loaded mesoporous silica-coated gold nanorods (ICG-loaded Au@SiO2) were prepared for the dual capability of X-ray computed tomography (CT) and fluorescence imaging. X-ray CT scanning showed that ICG-loaded Au@SiO2 could provide significant contrast enhancement; Near-infrared fluorescence generated by the nanomaterial was present up to 12 h post intratumoral injection, thus enabling ICG-loaded Au@SiO2 to be used as a promising dual mode imaging contrast agent. Multiplexed images can be more easily obtained with this novel type of multimodal nanostructure compared with traditional contrast agents. The dual mode imaging probe has great potential for use in applications such as cancer targeting, molecular imaging in combination with radiotherapy, and photothermolysis.

  13. Photodynamic hyperthermal therapy with indocyanine green (ICG) induces apoptosis and cell cycle arrest in B16F10 murine melanoma cells.

    PubMed

    Radzi, Rozanaliza; Osaki, Tomohiro; Tsuka, Takeshi; Imagawa, Tomohiro; Minami, Saburo; Nakayama, Yuji; Okamoto, Yoshiharu

    2012-05-01

    We examined the effects of photodynamic hyperthemal therapy (PHT), which is a combination of photodynamic therapy (PDT) and hyperthermia (HT), on the apoptosis and cell cycle progression of murine melanoma B16F10 cells. The percentage of apoptotic cell was determined by flow cytometry using fluorescein isothiocyanate (FITC)-conjugated Annexin V and propidium iodide (PI) double staining. The cell cycle analysis was performed by PI staining with flow cytometry. The expression of cyclins and heat shock protein 70 (Hsp70) were examined by a Western blotting analysis. PHT induces death in B16F10 cells, and PHT-mediated apoptosis occurred acutely and persistently in vitro. Our study demonstrated that PHT using indocyanine green (ICG) and near infrared (NIR) light source induces apoptosis and G0/G1 cell cycle arrest in the B16F10 cells.

  14. Analysis of the optical characteristics of adipose tissue in vitro sensitized by indocyanine green and exposed to IR-laser irradiation

    NASA Astrophysics Data System (ADS)

    Yanina, I. Yu.; Doubrovski, V. A.; Tuchin, V. V.

    2015-03-01

    The effect of IR-laser irradiation on adipose tissue sensitized by indocyanine green is studied in vitro. Experiments and statistical analysis are used to show that wavelength-selective irradiation leads to an increase in the homogeneity of optical images of adipose cells with time. The transmission coefficient that is averaged over the image area weakly depends on the observation time. An increase in the homogeneity of images is interpreted as a result of immersion of optical inhomogeneities of tissue owing to the intracellular liquid that is released through the photochemically induced pores in cellular membranes. An increase in the optical homogeneity of the medium is compensated for by a decrease in the transmission coefficient of the sensitizer, which is manifested as a weak time dependence of the image-averaged transmittance of tissue.

  15. In vivo dual-modality imaging of lymphatic systems using indocyanine green in rats: three-dimensional photoacoustic imaging and planar fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Kim, Chulhong; Song, Kwang Hyun; Wang, Lihong V.

    2010-02-01

    The purpose of this study is to map non-invasively sentinel lymph nodes (SLNs) and lymphatic vessels of rats in vivo using FDA-approved indocyanine green (ICG) and two non-ionizing imaging modalities: volumetric spectroscopic photoacoustic (PA) imaging, which measures optical absorption, and planar fluorescence imaging, which measures fluorescent emission. SLNs and lymphatic vessels were clearly visible after a 0.2 ml-intradermal-injection of 1 mM ICG in both imaging systems. We also imaged deeply positioned lymph nodes in vivo by layering biological tissues on top of rats. These two modalities, when used together with ICG, have the potential to map SLNs in axillary staging and to study tumor metastasis in breast cancer patients.

  16. Indocyanine green-encapsulating calcium phosphosilicate nanoparticles: Bifunctional theranostic vectors for near infrared diagnostic imaging and photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Altinoglu, Erhan I.

    The synthesis, laundering, and properties of calcium phosphosilicate nanoparticles (CPSNPs) that encapsulate the NIR fluorophore indocyanine green (ICG) related to multifunctional fluorescent photosensitization is presented. Imaging with transmission electron microscopy (TEM) revealed the well dispersed state of the nanoparticles, the spherical morphology, and the log normal mean particle diameter of 16 nm. Electron energy loss spectroscopy (EELS) mapping identified a Ca:P:Si ratio of 1:1.72:0.41 and a homogeneous composition without evidence of an element rich or deficient architecture. Zeta potential of the as-synthesized, citrate-functionalized CPSNPs was -29 +/-3 mV. A theoretical solids loading of 1.9 x 1013 CPSNP/mL was calculated for a standard suspension. The mean ICG content per suspension is 2 x 10 -6 M, which equates to approximately 63 fluorophore molecules encapsulated per CPSNP. For imaging and diagnostic considerations, the doped CPSNPs exhibited significantly greater intensity at the maximum emission wavelength relative to the free constituent fluorophore. The quantum efficiency of the fluorescent agent is 200% greater at 0.053+/-0.003 over the free fluorophore in PBS. Also, photostability based on fluorescence half-life of encapsulated ICG in PBS is 500% longer under typical clinical imaging conditions relative to the free dye. These performance enhancements are attributed to the matrix shielding effect of the NP around the internalized fluorophore molecules. The in vivo emission signal stability from ICG-CPSNPs was compared to the free fluorophore by whole animal NIR imaging. The duration of fluorescent signal from the ICG-CPSPNPs was extended to up to four days post-injection, highlighting the potential for long-term imaging and sensitive tracking applications using ICG when encapsulated within the protective matrix of CPSNPs. The surfaces of the ICG-CPSNPs were covalently bound with polyethylene glycol (PEG). The pharmacokinetic behavior of the

  17. Ultra-widefield fluorescein angiography reveals retinal phlebitis in Susac's syndrome.

    PubMed

    Klufas, Michael A; Dinkin, Marc J; Bhaleeya, Swetangi D; Chapman, Kristin O; Riley, Claire S; Kiss, Szilárd

    2014-01-01

    A 23-year-old woman with history of headaches and auditory changes presented with acute-onset visual field loss in the right eye. The combination of multiple retinal branch artery occlusions of the right eye on funduscopic examination, characteristic white matter lesions in the corpus callosum on magnetic resonance imaging, and hearing loss on audiometric testing led to a diagnosis of Susac's syndrome. Ultra-widefield fluorescein angiography revealed involvement of the retinal veins, which has not been previously reported with this condition. Additionally, ultra-widefield indocyanine green angiography demonstrated changes in the choroidal circulation, which are controversial in this syndrome. PMID:24972181

  18. Usage of invisible near infrared light (NIR) fluorescence with indocyanine green (ICG) and methylene blue (MB) in urological oncology. Part 1

    PubMed Central

    Markuszewski, Marcin; Rho, Young Soo; Matuszewski, Marcin

    2014-01-01

    Introduction Near infrared (NIR) technology has recently garnered much interest as a tool for intraoperative image–guided surgery in various surgical sub–disciplines. In urology, although nascent, NIR technology is also fostering much enthusiasm. This review discusses the two major fluorophores, indocyanine green (ICG) and methlyene blue (MB), with NIR guidance in experimental and clinical urology. The authors aim to illustrate and analyze the currently available initial studies to better understand the potential and practicability of NIR–guided imaging in the diagnosis and surgical outcome improvement. In the first part of the study we analyzed problems associated with sentinel lymph node biopsy, NIR–guided detection and imaging of tumors. Material and methods PubMed and Medline databases were searched for ICG and MB use in urological settings, along with data published in abstracts of urological conferences. Results Although NIR–guided ICG and MB are still in their initial phases, there have been significant developments in major domains of urology, including uro–oncological surgery: 1) sentinel lymph node biopsy, 2) detection and imaging of tumors Conclusions Much like in other fields of surgical medicine, the application of NIR technology in urology is at its early stages. Therefore, more studies are needed to assess the true potential and limitations of the technology. However, initial developments hint towards a pioneering tool that may influence various aspects of urology. PMID:25140227

  19. Encapsulation and stabilization of indocyanine green within poly(styrene-alt-maleic anhydride) block-poly(styrene) micelles for near-infrared imaging.

    PubMed

    Rodriguez, Victoria B; Henry, Scott M; Hoffman, Allan S; Stayton, Patrick S; Li, Xingde; Pun, Suzie H

    2008-01-01

    Indocyanine green (ICG) is a Federal Drug Administration-approved near-infrared imaging agent susceptible to chemical degradation, nonspecific binding to blood proteins, and rapid clearance from the body. In this study, we describe the encapsulation of ICG within polymeric micelles formed from poly(styrene-alt-maleic anhydride)-block-poly(styrene) (PSMA-b-PSTY) diblock copolymers to stabilize ICG for applications in near-infrared diagnostic imaging. In aqueous solution, the diblock copolymers self-assemble to form highly stable micelles approximately 55 nm in diameter with a critical micelle concentration (CMC) of approximately 1 mg/L. Hydrophobic ICG salts readily partition into the PSTY core of these micelles with high efficiency, and produce no change in micelle morphology or CMC. Once loaded in the micelle core, ICG is protected from aqueous and thermal degradation, with no significant decrease in fluorescence emission over 14 days at room temperature and retaining 63% of its original emission at 37 degrees C. Free ICG does not release rapidly from the micelle core, with only 11% release over 24 h. The ICG-loaded micelles do not exhibit significant cell toxicity. This system has the potential to greatly improve near-infrared imaging in breast cancer detection by increasing the stability of ICG for formulation/administration, and by providing a means to target ICG to tumor tissue.

  20. A Near-Infrared Photothermal Effect-Responsive Drug Delivery System Based on Indocyanine Green and Doxorubicin-Loaded Polymeric Micelles Mediated by Reversible Diels-Alder Reaction.

    PubMed

    Li, Hui; Li, Junjie; Ke, Wendong; Ge, Zhishen

    2015-10-01

    Near-infrared light (NIR) possesses great advantages for light-responsive controllable drug release, such as deep tissue penetration and low damage to healthy tissues. Herein, a NIR-responsive drug delivery system is developed based on a NIR dye, indocyanine green (ICG), and anticancer drug, doxorubicin (DOX)-loaded thermoresponsive block copolymer micelles, in which the drug release can be controlled via NIR irradiation. First, block copolymers, poly(oligo(ethylene glycol) methacrylate)-block-poly(furfuryl methacrylate) (POEGMA-b-PFMA), are synthesized by sequential reversible addition-fragmentation chain-transfer (RAFT) polymerization, followed by modification with N-octyl maleimide through Diels-Alder (DA) reaction to produce POEGMA-b-POMFMA. The self-assembly of POEGMA-b-POMFMA by nano-precipitation in aqueous solution affords the polymeric micelles which are used to simultaneously encapsulate ICG and DOX. Upon irradiation by NIR light (805 nm), the loaded DOX is released rapidly from the micelles due to partial retro DA reaction and local temperature increase-induced faster drug diffusion by the photothermal effect. Cytotoxicity evaluation and intracellular distribution observation demonstrate significant synergistic effects of NIR-triggered drug release, photothermal, and chemotherapy toward cancer cells under NIR irradiation.

  1. Prussian blue/serum albumin/indocyanine green as a multifunctional nanotheranostic agent for bimodal imaging guided laser mediated combinatorial phototherapy.

    PubMed

    Sahu, Abhishek; Lee, Jong Hyun; Lee, Hye Gyeong; Jeong, Yong Yeon; Tae, Giyoong

    2016-08-28

    Developing novel nanotheranostic agent using only clinically approved materials is highly desirable and challenging. In this study, we combined three clinically approved materials, Prussian blue (PB), serum albumin (BSA), and indocyanine green (ICG), by a simple and biocompatible method to prepare a multifunctional theranostic PB-BSA-ICG nanoparticle. The multifunctional nanoparticle system could provide dual mode magnetic resonance (MR) and near infrared (NIR) fluorescence imaging as well as combined photothermal and photodynamic (PTT-PDT) therapy in response to a single NIR laser. This nanoparticle showed an excellent stability in physiological solutions and could suppress the photo-instability of ICG. In the absence of light, the nanoparticles showed no cytotoxicity, but significant cell death was induced through combined PTT-PDT effect after irradiation with NIR laser light. A high tumor accumulation and minimal nonspecific uptake by other major organs of PB-BSA-ICG nanoparticle were observed in vivo, analyzed by T1-weighted MR and NIR fluorescence bimodal imaging in tumor xenograft mice after intravenous injection. The nanoparticles efficiently suppressed the tumor growth through combinatorial phototherapy with no tumor recurrence upon a single NIR laser irradiation. These results demonstrated that PB-BSA-ICG is potentially an interesting nanotheranostic agent for imaging guided cancer therapy by overcoming the limitations of each technology and enhancing the therapeutic efficiency as well as reducing side effects. PMID:27349352

  2. Highly enhanced optical properties of indocyanine green/perfluorocarbon nanoemulsions for efficient lymph node mapping using near-infrared and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Bae, Pan Kee; Jung, Juyeon; Chung, Bong Hyun

    2014-03-01

    The near-infrared (NIR) fluorescence probe has better tissue penetration and lower autofluorescence. Indocyanine green (ICG) is an NIR organic dye for extensive biological application, and it has been clinically approved for human medical imaging and diagnosis. However, application of this dye is limited by its numerous disadvantageous properties in aqueous solution, including its concentration-dependent aggregation, poor aqueous stability in vitro, and low quantum yield. Its use in molecular imaging probes is limited because it loses fluorescence after binding to nonspecific plasma proteins, leading to rapid elimination from the body with a half-life of 2 - 4 min. In this study, the multifunctional perfluorocarbon (PFC)/ICG nanoemulsions were investigated with the aim of overcoming these limitations. The PFC/ICG nanoemulsions as a new type of delivery vehicle for contrast agents have both NIR optical imaging and 19 F-MR imaging moieties. These nanoemulsions exhibited less aggregation, increased fluorescence intensity, long-term stability, and physicochemical stability against external light and temperature compared to free aqueous ICG. Also, the PFC/ICG bimodal nanoemulsions allow excellent detection of lymph nodes in vivo through NIR optical imaging and 19 F-MR imaging. This result showed the suitability of the proposed nanoemulsions for non-invasive lymph node mapping as they enable long-time detection of lymph nodes.

  3. Erythrocyte-derived photo-theranostic agents: hybrid nano-vesicles containing indocyanine green for near infrared imaging and therapeutic applications

    NASA Astrophysics Data System (ADS)

    Bahmani, Baharak; Bacon, Danielle; Anvari, Bahman

    2013-07-01

    Development of theranostic nano-constructs may enable diagnosis and treatment of diseases at high spatial resolution. Some key requirements for clinical translation of such constructs are that they must be non-toxic, non-immunogenic, biodegradable, with extended circulating lifetime. Cell-based structures, particularly those derived from erythrocytes, are promising candidate carrier systems to satisfy these requirements. One particular type of theranostic materials utilize light-sensitive agents that once photo-activated can provide diagnostic imaging capability, and elicit therapeutic effects. Here we demonstrate the first successful engineering of hybrid nano-scale constructs derived from membranes of hemoglobin-depleted erythrocytes that encapsulate the near infrared chromophore, indocyanine green. We show the utility of the constructs as photo-theranostic agents in fluorescence imaging and photothermal destruction of human cells. These erythrocyte-mimicking nano-structures can be derived autologously, and may have broad applications in personal nanomedicine ranging from imaging and photo-destruction of cancerous tissues to vascular abnormalities, and longitudinal evaluations of therapeutic interventions.

  4. Sulfobutyl ether β-cyclodextrin (Captisol(®) ) and methyl β-cyclodextrin enhance and stabilize fluorescence of aqueous indocyanine green.

    PubMed

    DeDora, Daniel J; Suhrland, Cassandra; Goenka, Shilpi; Mullick Chowdhury, Sayan; Lalwani, Gaurav; Mujica-Parodi, Lilianne R; Sitharaman, Balaji

    2016-10-01

    As the only FDA-approved near-infrared fluorophore, indocyanine green (ICG) is commonly used to image vasculature in vivo. ICG degrades rapidly in solution, which limits its usefulness in certain applications, including time-sensitive surgical procedures. We propose formulations that address this shortcoming via complexation with β-cyclodextrin derivatives (β-CyD), which are known to create stabilizing inclusion complexes with hydrophobic molecules. Here, we complexed ICG with highly soluble methyl β-CyD and FDA-approved sulfobutyl ether β-CyD (Captisol(®) ) in aqueous solution. We measured the fluorescence of the complexes over 24 h. We found that both CyD+ICG complexes exhibit sustained fluorescence increases of >2.0× versus ICG in water and >20.0× in PBS. Using transmission electron microscopy, we found evidence of reduced aggregation in complexes versus ICG alone. We thus conclude that this reduction in aggregation helps mitigate fluorescence autoquenching of CyD+ICG complexes compared in ICG alone. We also found that while ICG complexed with methyl β-CyD severely reduced the viability of MRC-5 fibroblasts, ICG complexed with sulfobutyl ether β-CyD had no effect on viability. These results represent an important first step toward enhancing the utility of aqueous ICG by reducing aggregation-dependent fluorescence degradation. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1457-1464, 2016.

  5. Interactions of indocyanine green and lipid in enhancing near-infrared fluorescence properties: the basis for near-infrared imaging in vivo.

    PubMed

    Kraft, John C; Ho, Rodney J Y

    2014-03-01

    Indocyanine green (ICG) is a near-infrared (NIR) contrast agent commonly used for in vivo cardiovascular and eye imaging. For medical diagnosis, ICG is limited by its aqueous instability, concentration-dependent aggregation, and rapid degradation. To overcome these limitations, scientists have formulated ICG in various liposomes, which are spherical lipid membrane vesicles with an aqueous core. Some encapsulate ICG, while others mix it with liposomes. There is no clear understanding of lipid-ICG interactions. Therefore, we investigated lipid-ICG interactions by fluorescence and photon correlation spectroscopy. These data were used to design stable and maximally fluorescent liposomal ICG nanoparticles for NIR optical imaging of the lymphatic system. We found that ICG binds to and is incorporated completely and stably into the lipid membrane. At a lipid:ICG molar ratio of 250:1, the maximal fluorescence intensity was detected. ICG incorporated into liposomes enhanced the fluorescence intensity that could be detected across 1.5 cm of muscle tissue, while free ICG only allowed 0.5 cm detection. When administered subcutaneously in mice, lipid-bound ICG in liposomes exhibited a higher intensity, NIR image resolution, and enhanced lymph node and lymphatic vessel visualization. It also reduced the level of fluorescence quenching due to light exposure and degradation in storage. Lipid-bound ICG could provide additional medical diagnostic value with NIR optical imaging for early intervention in cases of lymphatic abnormalities.

  6. Prussian blue/serum albumin/indocyanine green as a multifunctional nanotheranostic agent for bimodal imaging guided laser mediated combinatorial phototherapy.

    PubMed

    Sahu, Abhishek; Lee, Jong Hyun; Lee, Hye Gyeong; Jeong, Yong Yeon; Tae, Giyoong

    2016-08-28

    Developing novel nanotheranostic agent using only clinically approved materials is highly desirable and challenging. In this study, we combined three clinically approved materials, Prussian blue (PB), serum albumin (BSA), and indocyanine green (ICG), by a simple and biocompatible method to prepare a multifunctional theranostic PB-BSA-ICG nanoparticle. The multifunctional nanoparticle system could provide dual mode magnetic resonance (MR) and near infrared (NIR) fluorescence imaging as well as combined photothermal and photodynamic (PTT-PDT) therapy in response to a single NIR laser. This nanoparticle showed an excellent stability in physiological solutions and could suppress the photo-instability of ICG. In the absence of light, the nanoparticles showed no cytotoxicity, but significant cell death was induced through combined PTT-PDT effect after irradiation with NIR laser light. A high tumor accumulation and minimal nonspecific uptake by other major organs of PB-BSA-ICG nanoparticle were observed in vivo, analyzed by T1-weighted MR and NIR fluorescence bimodal imaging in tumor xenograft mice after intravenous injection. The nanoparticles efficiently suppressed the tumor growth through combinatorial phototherapy with no tumor recurrence upon a single NIR laser irradiation. These results demonstrated that PB-BSA-ICG is potentially an interesting nanotheranostic agent for imaging guided cancer therapy by overcoming the limitations of each technology and enhancing the therapeutic efficiency as well as reducing side effects.

  7. Erythrocyte-derived photo-theranostic agents: hybrid nano-vesicles containing indocyanine green for near infrared imaging and therapeutic applications.

    PubMed

    Bahmani, Baharak; Bacon, Danielle; Anvari, Bahman

    2013-01-01

    Development of theranostic nano-constructs may enable diagnosis and treatment of diseases at high spatial resolution. Some key requirements for clinical translation of such constructs are that they must be non-toxic, non-immunogenic, biodegradable, with extended circulating lifetime. Cell-based structures, particularly those derived from erythrocytes, are promising candidate carrier systems to satisfy these requirements. One particular type of theranostic materials utilize light-sensitive agents that once photo-activated can provide diagnostic imaging capability, and elicit therapeutic effects. Here we demonstrate the first successful engineering of hybrid nano-scale constructs derived from membranes of hemoglobin-depleted erythrocytes that encapsulate the near infrared chromophore, indocyanine green. We show the utility of the constructs as photo-theranostic agents in fluorescence imaging and photothermal destruction of human cells. These erythrocyte-mimicking nano-structures can be derived autologously, and may have broad applications in personal nanomedicine ranging from imaging and photo-destruction of cancerous tissues to vascular abnormalities, and longitudinal evaluations of therapeutic interventions.

  8. Noninvasive Optical Imaging and In Vivo Cell Tracking of Indocyanine Green Labeled Human Stem Cells Transplanted at Superficial or In-Depth Tissue of SCID Mice.

    PubMed

    Sabapathy, Vikram; Mentam, Jyothsna; Jacob, Paul Mazhuvanchary; Kumar, Sanjay

    2015-01-01

    Stem cell based therapies hold great promise for the treatment of human diseases; however results from several recent clinical studies have not shown a level of efficacy required for their use as a first-line therapy, because more often in these studies fate of the transplanted cells is unknown. Thus monitoring the real-time fate of in vivo transplanted cells is essential to validate the full potential of stem cells based therapy. Recent studies have shown how real-time in vivo molecular imaging has helped in identifying hurdles towards clinical translation and designing potential strategies that may contribute to successful transplantation of stem cells and improved outcomes. At present, there are no cost effective and efficient labeling techniques for tracking the cells under in vivo conditions. Indocyanine green (ICG) is a safer, economical, and superior labelling technique for in vivo optical imaging. ICG is a FDA-approved agent and decades of usage have clearly established the effectiveness of ICG for human clinical applications. In this study, we have optimized the ICG labelling conditions that is optimal for noninvasive optical imaging and demonstrated that ICG labelled cells can be successfully used for in vivo cell tracking applications in SCID mice injury models.

  9. Establishment of novel detection system for embryonic stem cell-derived hepatocyte-like cells based on nongenetic manipulation with indocyanine green.

    PubMed

    Yoshie, Susumu; Ito, Jun; Shirasawa, Sakiko; Yokoyama, Tadayuki; Fujimura, Yuu; Takeda, Kazuo; Mizuguchi, Masahiro; Matsumoto, Ken; Tomotsune, Daihachiro; Sasaki, Katsunori

    2012-01-01

    Hepatocytes derived from embryonic stem cells (ESCs) are expected to be useful for basic research and clinical applications. However, in several studies, genetic methods used to detect and obtain them are difficult and pose major safety problems. Therefore, in this study, we established a novel detection system for hepatocytes by using indocyanine green (ICG), which is selectively taken up by hepatocytes, based on nongenetic manipulation. ICG has maximum light absorption near 780 nm, and it fluoresces between 800 and 900 nm. Making use of these properties, we developed flow cytometry equipped with an excitation lazer of 785 nm and specific bandpass filters and successfully detected ESC-derived ICG-positive cells that were periodic acid-Schiff positive and expressed hepatocyte phenotypic mRNAs. These results demonstrate that this detection system based on nongenetic manipulation with ICG will lead to isolate hepatocytes generated from ESCs and provide the appropriate levels of stability, quality, and safety required for cell source for cell-based therapy and pharmaceutical studies such as toxicology.

  10. Near-Infrared Sentinel Lymph Node Mapping With Indocyanine Green Using the VITOM II ICG Exoscope for Open Surgery for Gynecologic Malignancies.

    PubMed

    Buda, Alessandro; Dell'Anna, Tiziana; Vecchione, Francesca; Verri, Debora; Di Martino, Giampaolo; Milani, Rodolfo

    2016-01-01

    Sentinel lymph node (SLN) mapping is emerging as an effective method for surgical staging of different gynecologic malignancies. Near-infrared (NIR) technology using a fluorescent dye such as indocyanine green (ICG) represents an interesting and feasible method for SLN mapping even in traditional open surgeries by applying video telescope operating microscope (VITOM) system technology. We report our preliminary experience in 12 women who underwent surgical nodal staging for early-stage vulvar and uterine or cervical cancer. Surgical and pathological outcomes are described, and the VITOM II ICG system's intraoperative image quality, handling and docking, and teaching value are assessed. The general impression of the surgical staff was that the VITOM II system is easy to use, and that the image quality of the anatomic structures is impressive. Traditional open SLN mapping with ICG appears to be easy to perform and reproducible, providing a new tool in the management of patients with gynecologic malignancies. Moreover, we believe that this technology has great potential as an operative teaching and learning modality for trainers for open surgical cases. Additional studies involving the VITOM system with a large sample size of patients are needed to confirm these promising results. PMID:26921484

  11. Preliminary report: comparison of 980-nm, 808-nm diode laser enhanced with indocyanine green to the Nd:YAG laser applied to equine respiratory tissue

    NASA Astrophysics Data System (ADS)

    Tate, Lloyd P.; Blikslager, Anthony T.; Campbell, Nigel B.

    2001-05-01

    The Neodynium: Yttrium Aluminum Garnet (Nd:YAG) laser has been the mainstay of performing upper respiratory laser surgery in the equine since 1984. The 808-nm diode laser has also been applied transendoscopically as well as the 980-nm diode laser over recent years. It has been shown that Indocyanine Green (ICG) enhances the performance of the 808- nm laser because it is absorbed at 810 nm of light. The 808- nm laser's tissue interaction combined with ICG is equivalent to or greater than the Nd:YAG laser's cutting ability. The 980-nm diode laser performance was similar to that of the Nd:YAG as determined by the parameters of this study. This study compared the depths and widths of penetration achieved with the 808-nm diode laser after intravenous injection of ICG on equine respiratory tissue. It also compared depths and widths of penetration achieved by the non-contact application of the 980-nm diode laser delivering the same energy of 200 joules. The depths and widths of penetration of both diode lasers were compared to themselves and to the Nd:YAG laser with all factors remaining constant.

  12. Erythrocyte-derived photo-theranostic agents: hybrid nano-vesicles containing indocyanine green for near infrared imaging and therapeutic applications

    PubMed Central

    Bahmani, Baharak; Bacon, Danielle; Anvari, Bahman

    2013-01-01

    Development of theranostic nano-constructs may enable diagnosis and treatment of diseases at high spatial resolution. Some key requirements for clinical translation of such constructs are that they must be non-toxic, non-immunogenic, biodegradable, with extended circulating lifetime. Cell-based structures, particularly those derived from erythrocytes, are promising candidate carrier systems to satisfy these requirements. One particular type of theranostic materials utilize light-sensitive agents that once photo-activated can provide diagnostic imaging capability, and elicit therapeutic effects. Here we demonstrate the first successful engineering of hybrid nano-scale constructs derived from membranes of hemoglobin-depleted erythrocytes that encapsulate the near infrared chromophore, indocyanine green. We show the utility of the constructs as photo-theranostic agents in fluorescence imaging and photothermal destruction of human cells. These erythrocyte-mimicking nano-structures can be derived autologously, and may have broad applications in personal nanomedicine ranging from imaging and photo-destruction of cancerous tissues to vascular abnormalities, and longitudinal evaluations of therapeutic interventions. PMID:23846447

  13. Analysis of near-infrared spectroscopy and indocyanine green dye dilution with Monte Carlo simulation of light propagation in the adult brain

    NASA Astrophysics Data System (ADS)

    Mudra, Regina M.; Nadler, Andreas; Keller, Emanuela; Niederer, Peter F.

    2006-07-01

    Near-infrared spectroscopy (NIRS) combined with indocyanine green (ICG) dilution is applied externally on the head to determine the cerebral hemodynamics of neurointensive care patients. We applied Monte Carlo simulation for the analysis of a number of problems associated with this method. First, the contamination of the optical density (OD) signal due to the extracerebral tissue was assessed. Second, the measured OD signal depends essentially on the relative blood content (with respect to its absorption) in the various transilluminated tissues. To take this into account, we weighted the calculated densities of the photon distribution under baseline conditions within the different tissues with the changes and aberration of the relative blood volumes that are typically observed under healthy and pathologic conditions. Third, in case of NIRS ICG dye dilution, an ICG bolus replaces part of the blood such that a transient change of absorption in the brain tissues occurs that can be recorded in the OD signal. Our results indicate that for an exchange fraction of Δ=30% of the relative blood volume within the intracerebral tissue, the OD signal is determined from 64 to 74% by the gray matter and between 8 to 16% by the white matter maximally for a distance of d=4.5 cm.

  14. Biodegradable polymer thin film for enhancement of laser-assisted incision closure with an indocyanine-green-doped liquid albumin solder

    NASA Astrophysics Data System (ADS)

    Sorg, Brian S.; McNally-Heintzelman, Karen M.; Welch, Ashley J.

    2000-05-01

    The purpose of this study was to determine if solid material reinforcement of a liquid albumin solder coagulum could improve the cohesive strength of the solder and thus the ultimate breaking strength of the incision repair in vitro. A 50%(w/v) bovine serum albumin solder with 0.5 mg/mL Indocyanine Green (ICG) dye was used to repair an incision in bovine aorta. The solder was coagulated with an 806 nm CW diode laser. A 50 micrometer thick poly(DL-lactic-co-glycolic acid) film was used to reinforce the solder (the controls had no reinforcement). Acute breaking strengths were measured and the data were analyzed by one-way ANOVA (P less than 0.05). Multiple comparisons of means were performed using the Newman- Keuls test. Observations of the failure modes indicated cohesive strength reinforcement of the test specimens versus the controls. At the higher laser powers used in this study (400 and 450 mW), the reinforced solder was consistently stronger than the controls. Reinforcement of liquid albumin solders in laser-assisted incision repair may have mechanical advantages in terms of acute breaking strength over conventional methods that do not reinforce the cohesive strength of the solder.

  15. Impact of Indocyanine Green Concentration, Exposure Time, and Degree of Dissolution in Creating Toxic Anterior Segment Syndrome: Evaluation in a Rabbit Model

    PubMed Central

    Khoramnia, Ramin; Uwe Auffarth, Gerd

    2016-01-01

    Purpose. To investigate the role of indocyanine green (ICG) dye as a causative material of toxic anterior segment syndrome (TASS) in an experimental rabbit model. Method. Eight eyes of four rabbits were allocated to this study. Capsular staining was performed using ICG dye, after which the anterior chamber was irrigated with a balanced salt solution. The effects of different concentrations (control, 0.25, 0.5, and 1.0%), exposure times (10 and 60 seconds), and the degree of dissolution (differently vortexed) were investigated. The analysis involved anterior segment photography, ultrasound pachymetry, prostaglandin assay (PGE2 Parameter Assay, R&D systems, Inc.), and scanning electron microscopy of each iris. Result. There was no reaction in the control eye. A higher aqueous level of PGE2 and more severe inflammatory reaction were observed in cases of eyes with higher concentration, longer exposure time, and poorly dissolved dye. Additionally, scanning electron microscopy revealed larger and coarser ICG particles. Conclusion. TASS occurrence may be associated with the concentration, exposure time, and degree of dissolution of ICG dye during cataract surgery. PMID:27478634

  16. Sentinel Lymph Node Mapping With Near-Infrared Fluorescent Imaging Using Indocyanine Green: A New Tool for Laparoscopic Platform in Patients With Endometrial and Cervical Cancer.

    PubMed

    Buda, Alessandro; Bussi, Beatrice; Di Martino, Giampaolo; Di Lorenzo, Paolo; Palazzi, Sharon; Grassi, Tommaso; Milani, Rodolfo

    2016-02-01

    Indocyanine green (ICG) represents a feasible alternative to the more traditional methods of sentinel lymph node (SLN) mapping, and interest in this promising tracer is growing. This report outlines our experience with ICG in a minimally invasive laparoscopic approach in women with endometrial cancer and cervical cancer using the Storz SPIES ICG near-infrared fluorescence imaging technology. A total of 49 patients with clinical stage I endometrial cancer (n = 40) or stage I cervical cancer (n = 9) were retrospectively reviewed. All patients had undergone simple or radical laparoscopic hysterectomy with pelvic and/or aortic lymphadenectomy and SLN mapping by means of an intracervical injection of ICG dye at the 3 o'clock and 9 o'clock locations after the induction of general anesthesia. The detection rate of ICG was 100% (49 of 49). The rate of bilateral SLN detection was 86% (42 of 49). Positive lymph nodes were found in 6 patients (12%), with at least 1 positive SLN. The sensitivity and negative predictive value of SLN detection were 100%. All procedures were successfully completed without conversion to open laparotomy, and no intraoperative or postoperative complications occurred. In our preliminary experience, ICG showed a high overall detection rate, and bilateral mapping appears to be a feasible alternative to the more traditional methods of SLN mapping in patients with endometrial cancer and cervical cancer. Laparoscopic SLN mapping with ICG appears to be safe, easy, and reproducible, with a positive impact on patient management.

  17. A Near-Infrared Photothermal Effect-Responsive Drug Delivery System Based on Indocyanine Green and Doxorubicin-Loaded Polymeric Micelles Mediated by Reversible Diels-Alder Reaction.

    PubMed

    Li, Hui; Li, Junjie; Ke, Wendong; Ge, Zhishen

    2015-10-01

    Near-infrared light (NIR) possesses great advantages for light-responsive controllable drug release, such as deep tissue penetration and low damage to healthy tissues. Herein, a NIR-responsive drug delivery system is developed based on a NIR dye, indocyanine green (ICG), and anticancer drug, doxorubicin (DOX)-loaded thermoresponsive block copolymer micelles, in which the drug release can be controlled via NIR irradiation. First, block copolymers, poly(oligo(ethylene glycol) methacrylate)-block-poly(furfuryl methacrylate) (POEGMA-b-PFMA), are synthesized by sequential reversible addition-fragmentation chain-transfer (RAFT) polymerization, followed by modification with N-octyl maleimide through Diels-Alder (DA) reaction to produce POEGMA-b-POMFMA. The self-assembly of POEGMA-b-POMFMA by nano-precipitation in aqueous solution affords the polymeric micelles which are used to simultaneously encapsulate ICG and DOX. Upon irradiation by NIR light (805 nm), the loaded DOX is released rapidly from the micelles due to partial retro DA reaction and local temperature increase-induced faster drug diffusion by the photothermal effect. Cytotoxicity evaluation and intracellular distribution observation demonstrate significant synergistic effects of NIR-triggered drug release, photothermal, and chemotherapy toward cancer cells under NIR irradiation. PMID:26274805

  18. Impact of Indocyanine Green Concentration, Exposure Time, and Degree of Dissolution in Creating Toxic Anterior Segment Syndrome: Evaluation in a Rabbit Model.

    PubMed

    Tandogan, Tamer; Khoramnia, Ramin; Uwe Auffarth, Gerd; Janusz Koss, Michael; Young Choi, Chul

    2016-01-01

    Purpose. To investigate the role of indocyanine green (ICG) dye as a causative material of toxic anterior segment syndrome (TASS) in an experimental rabbit model. Method. Eight eyes of four rabbits were allocated to this study. Capsular staining was performed using ICG dye, after which the anterior chamber was irrigated with a balanced salt solution. The effects of different concentrations (control, 0.25, 0.5, and 1.0%), exposure times (10 and 60 seconds), and the degree of dissolution (differently vortexed) were investigated. The analysis involved anterior segment photography, ultrasound pachymetry, prostaglandin assay (PGE2 Parameter Assay, R&D systems, Inc.), and scanning electron microscopy of each iris. Result. There was no reaction in the control eye. A higher aqueous level of PGE2 and more severe inflammatory reaction were observed in cases of eyes with higher concentration, longer exposure time, and poorly dissolved dye. Additionally, scanning electron microscopy revealed larger and coarser ICG particles. Conclusion. TASS occurrence may be associated with the concentration, exposure time, and degree of dissolution of ICG dye during cataract surgery. PMID:27478634

  19. Synthesis and Characterization of Chitosan-Coated Near-Infrared (NIR) Layered Double Hydroxide-Indocyanine Green Nanocomposites for Potential Applications in Photodynamic Therapy

    PubMed Central

    Wei, Pei-Ru; Kuthati, Yaswanth; Kankala, Ranjith Kumar; Lee, Chia-Hung

    2015-01-01

    We designed a study for photodynamic therapy (PDT) using chitosan coated Mg–Al layered double hydroxide (LDH) nanoparticles as the delivery system. A Food and Drug Administration (FDA) approved near-infrared (NIR) fluorescent dye, indocyanine green (ICG) with photoactive properties was intercalated into amine modified LDH interlayers by ion-exchange. The efficient positively charged polymer (chitosan (CS)) coating was achieved by the cross linkage using surface amine groups modified on the LDH nanoparticle surface with glutaraldehyde as a spacer. The unique hybridization of organic-inorganic nanocomposites rendered more effective and successful photodynamic therapy due to the photosensitizer stabilization in the interlayer of LDH, which prevents the leaching and metabolization of the photosensitizer in the physiological conditions. The results indicated that the polymer coating and the number of polymer coats have a significant impact on the photo-toxicity of the nano-composites. The double layer chitosan coated LDH–NH2–ICG nanoparticles exhibited enhanced photo therapeutic effect compared with uncoated LDH–NH2–ICG and single layer chitosan-coated LDH–NH2–ICG due to the enhanced protection to photosensitizers against photo and thermal degradations. This new class of organic-inorganic hybrid nanocomposites can potentially serve as a platform for future non-invasive cancer diagnosis and therapy. PMID:26340627

  20. Synthesis and Characterization of Chitosan-Coated Near-Infrared (NIR) Layered Double Hydroxide-Indocyanine Green Nanocomposites for Potential Applications in Photodynamic Therapy.

    PubMed

    Wei, Pei-Ru; Kuthati, Yaswanth; Kankala, Ranjith Kumar; Lee, Chia-Hung

    2015-09-01

    We designed a study for photodynamic therapy (PDT) using chitosan coated Mg-Al layered double hydroxide (LDH) nanoparticles as the delivery system. A Food and Drug Administration (FDA) approved near-infrared (NIR) fluorescent dye, indocyanine green (ICG) with photoactive properties was intercalated into amine modified LDH interlayers by ion-exchange. The efficient positively charged polymer (chitosan (CS)) coating was achieved by the cross linkage using surface amine groups modified on the LDH nanoparticle surface with glutaraldehyde as a spacer. The unique hybridization of organic-inorganic nanocomposites rendered more effective and successful photodynamic therapy due to the photosensitizer stabilization in the interlayer of LDH, which prevents the leaching and metabolization of the photosensitizer in the physiological conditions. The results indicated that the polymer coating and the number of polymer coats have a significant impact on the photo-toxicity of the nano-composites. The double layer chitosan coated LDH-NH₂-ICG nanoparticles exhibited enhanced photo therapeutic effect compared with uncoated LDH-NH₂-ICG and single layer chitosan-coated LDH-NH₂-ICG due to the enhanced protection to photosensitizers against photo and thermal degradations. This new class of organic-inorganic hybrid nanocomposites can potentially serve as a platform for future non-invasive cancer diagnosis and therapy.

  1. pH triggered in vivo photothermal therapy and fluorescence nanoplatform of cancer based on responsive polymer-indocyanine green integrated reduced graphene oxide.

    PubMed

    Sharker, Shazid Md; Lee, Jung Eun; Kim, Sung Han; Jeong, Ji Hoon; In, Insik; Lee, Haeshin; Park, Sung Young

    2015-08-01

    We have synthesized a pH-dependent, NIR-sensitive, reduced graphene oxide (rGO) hybrid nano-composite via electrostatic interaction with indocyanine green (ICG) which is designed not only to destroy localized cancer cells but also be minimally invasive to surrounding normal cells. The near-infrared (NIR) irradiated hybrid nano-composites showed pH dependent photo-thermal heat generation capability from pH 5.0 to 7.4 due to the pH response relief and quenching effects of poly(2-dimethyl amino ethyl methacrylate) [poly(PDMAEMA)] with ICG on a single rGO sheet. This pH-triggered relief and quenching mechanism regulated in vitro photo-thermolysis as the pH changed from 5.0 to 7.4. The in vitro cellular uptake and confocal laser scan microscopic (CLSM) images at different pH values show promise for environment sensitive bio-imaging. The NIR-absorbing hybrid nanomaterials showed a remarkably improved in vitro cancer cell targeted photothermal destruction compared to free ICG. Upon local NIR irradiation, these hybrid nano-composites-treated tumors showed necrotic, shrunken, ablation of malignant cells and totally healed after 18 days treatment. Our finding regarding the acidic pH stimulus of cancer cellular environment has proven to be a wining platform for the fight against cancer.

  2. Intestinal blood flow assessment by indocyanine green fluorescence imaging in a patient with the incarcerated umbilical hernia: Report of a case.

    PubMed

    Ryu, Shunjin; Yoshida, Masashi; Ohdaira, Hironori; Tsutsui, Nobuhiro; Suzuki, Norihiko; Ito, Eisaku; Nakajima, Keigo; Yanagisawa, Satoru; Kitajima, Masaki; Suzuki, Yutaka

    2016-06-01

    After reduction of the incarceration during surgery for incarcerated hernia, intestinal blood flow (IBF) and the need for bowel resection must be evaluated. We report the case of a patient with incarcerated umbilical hernia in whom the bowel was preserved after evaluating IBF using indocyanine green (ICG) fluorescence. A woman in her 40s with a chief complaint of abdominal pain visited our hospital, was diagnosed with incarcerated umbilical hernia and underwent surgery. Laparotomy was performed to reduce bowel incarceration. After reducing the incarceration, IBF was observed using ICG fluorescence detected using a brightfield full-color fluorescence camera. The small bowel that had been incarcerated showed deep-red discoloration on gross evaluation, but intravenous injection of ICG revealed uniform fluorescence of the mesentery and bowel wall. This indicated an absence of irreversible ischemic changes of the bowel, so no resection was performed. The patient showed a good postoperative course, including resumption of eating on day 4 and discharge on day 11. In surgery for incarcerated hernia, ICG fluorescence may offer a useful method to evaluate IBF after reducing the incarceration. This case implied that PINPOINT could be used in open conventional surgery. PMID:27257484

  3. pH triggered in vivo photothermal therapy and fluorescence nanoplatform of cancer based on responsive polymer-indocyanine green integrated reduced graphene oxide.

    PubMed

    Sharker, Shazid Md; Lee, Jung Eun; Kim, Sung Han; Jeong, Ji Hoon; In, Insik; Lee, Haeshin; Park, Sung Young

    2015-08-01

    We have synthesized a pH-dependent, NIR-sensitive, reduced graphene oxide (rGO) hybrid nano-composite via electrostatic interaction with indocyanine green (ICG) which is designed not only to destroy localized cancer cells but also be minimally invasive to surrounding normal cells. The near-infrared (NIR) irradiated hybrid nano-composites showed pH dependent photo-thermal heat generation capability from pH 5.0 to 7.4 due to the pH response relief and quenching effects of poly(2-dimethyl amino ethyl methacrylate) [poly(PDMAEMA)] with ICG on a single rGO sheet. This pH-triggered relief and quenching mechanism regulated in vitro photo-thermolysis as the pH changed from 5.0 to 7.4. The in vitro cellular uptake and confocal laser scan microscopic (CLSM) images at different pH values show promise for environment sensitive bio-imaging. The NIR-absorbing hybrid nanomaterials showed a remarkably improved in vitro cancer cell targeted photothermal destruction compared to free ICG. Upon local NIR irradiation, these hybrid nano-composites-treated tumors showed necrotic, shrunken, ablation of malignant cells and totally healed after 18 days treatment. Our finding regarding the acidic pH stimulus of cancer cellular environment has proven to be a wining platform for the fight against cancer. PMID:26005762

  4. Dynamic optical angiography of mouse anatomy using radial projections

    NASA Astrophysics Data System (ADS)

    Lam, Richard B.; Kruger, Robert A.; Reinecke, Daniel R.; DelRio, Stephen P.; Thornton, Michael M.; Picot, Paul A.; Morgan, Timothy G.

    2010-02-01

    We demonstrate the feasibility of optical angiography on live mice using a new photoacoustic computed tomography (PCT) scanner. The scanner uses a sparse array of discrete ultrasound detectors geometrically arranged to capture 128 simultaneous radial "projections" through a 25-mm-diameter volume of interest. Denser sets of interleaved radial projections are acquired by rotating the sparse array continuously about its vertical axis during data acquisition. The device has been designed specifically for imaging laboratory mice, which remain stationary during data collection. Angiographic data are acquired at a rate of 1280 radial projections per second following a bolus injection of 2 mg/mL of indocyanine green (ICG).

  5. Intraoperative near-infrared indocyanine green-videoangiography (ICG-VA) and graphic analysis of fluorescence intensity in cerebral aneurysm surgery.

    PubMed

    Oda, Jumpei; Kato, Yoko; Chen, S F; Sodhiya, Paresh; Watabe, T; Imizu, S; Oguri, D; Sano, H; Hirose, Y

    2011-08-01

    We present our preliminary experience with intraoperative near-infrared indocyanine green-videoangiography (ICG-VA) and analysis of blood flow dynamics using fluorescence intensity assessment in cerebral aneurysm clipping surgery. Thirty-nine patients with 43 intracranial aneurysms underwent microsurgical clipping. Intraoperative ICG-VA was performed before and after clip application. An infrared fluorescence module integrated into a surgical microscope was used to visualize fluorescence in the surgical field and we recorded the emitted fluorescent light. An integrated analytical visualization tool simultaneously analyzed the video sequence and converted it into an intensity diagram, which allowed an objective evaluation of the results rather than the subjective assessment of fluorescence using ICG-VA. Overall, ICG-VA was performed 137 times. Incomplete clipping was detected in four patients, which allowed suitable adjustment to completely obliterate the aneurysm. In 12 patients, perforators arising close to, or from, the aneurysmal neck were identified in the surgical field. In three patients, the ICG-VA intensity diagram provided valuable information leading to modification of the primary surgical maneuver. ICG-VA provides high resolution images allowing real-time assessment of the blood flow in the parent artery and arterial branches, including the perforators. The intensity diagram is useful for providing a more objective record of the hemodynamics than the traditional ICG-VA, which relies more on subjective assessment and may allow interobserver variability. We conclude that ICG-VA, combined with the intensity diagram, can reduce the morbidity and complications associated with aneurysm clipping and improve patient outcomes.

  6. Excitation-resolved wide-field fluorescence imaging of indocyanine green visualizes the microenvironment properties in vivo via solvatochromic shift (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cho, Jaedu; Kim, Chang-Seok; Gulsen, Gultekin

    2016-03-01

    Near-infrared fluorescence imaging (NIRF) is a powerful wide-field optical imaging tool that has a potential to visualize molecular-specific exogenous fluorescence agents, such as FDA approved Indocyanine Green (ICG), in thick tissue. Indeed, ICG is sensitive to biochemical environment such that it can be used to detect micro- or macroscopic environmental changes in tissue by solvatochromic shift that is defined by the dependence of absorption and emission spectra with the solvent polarity. For example, dimethyl sulfoxide (DMSO) is a very powerful drug carrier that can penetrate biological barriers such as the skin, the membranes, and the blood-brain-barrier. In presence of DMSO, ICG in tissue shows the excitation blue shift. However, NIRF imaging of microenvironment dependent changes of ICG has been challenging for the following reasons. First, the Stoke's shift of ICG is too small to separate the excitation and emission spectra easily. Second, the solvatochromic shift of ICG is too small to be detected by conventional NIRF techniques. Last but not least, the multiple scattering in tissue degrades not only the spatial information but also the spectral contents by the red-shift. We developed a wavelength-swept laser-based NIRF system that can resolve the excitation shift of ICG in tissue such that DMSO can be indirectly visualized. We plan to conduct an in-vivo lymph-node drug-delivery study in a mouse model to show feasibility of the indirect imaging of the drug-carrier with the wavelength-swept-laser based NIRF system.

  7. A new LigaSure technique for the formation of segmental plane by intravenous indocyanine green fluorescence during thoracoscopic anatomical segmentectomy

    PubMed Central

    Dejima, Hitoshi; Mizumo, Tetsuya; Sakakura, Noriaki; Sakao, Yukinori

    2016-01-01

    Background The purpose of this study was to present a new approach to the formation of a segmental plane by LigaSure (Covidien, Mansfield, MA, USA) with indocyanine green (ICG) fluorescence system during thoracoscopic segmentectomy. Methods This was a consecutive study that compared 12 patients who underwent a new LigaSure technique (LT) for segmental plane formation during thoracoscopic anatomical segmentectomy with 38 patients who underwent conventional methods using the staple technique (ST). Eleven patients were followed up more than 3 months after discharge. Results The mean age of the patients was 66 years in the LT group and 67 years in ST. The mean duration for the formation of segmental plane and the mean number of staples was 22.8 min and 1.8 per surgery, respectively, in the LT group; and 16.2 min and 3.4 per surgery, respectively, in ST. No patient had a prolonged air leak (PAL) of more than 7 days. Minor air leak was identified early in two and was delayed in one. Two-thirds of patients with early minor air leak had low index of prolonged air leak (IPAL) score. There was no air leak in the patients with high IPAL score. Eventually, we deduced that the cause of the minor air leak was a technical problem. Conclusions In the formation of segmental plane during thoracoscopic segmentectomy, a combination of ICG fluorescence and LigaSure may be beneficial for patients. As a new operative instrument, LT constitutes, in our opinion, a feasible and easy alternative to other thoracoscopic techniques. PMID:27293839

  8. Left paraaortic, inframesenteric lymphadenectomy preserving the superior hypogastric plexus supported by indocyanine green (ICG) labeling of the lymphatic compartment in cervical cancer.

    PubMed

    Kimmig, Rainer; Rusch, Peter; Buderath, Paul; Aktas, Bahriye

    2016-11-01

    Superior hypogastric plexus (SHG) contains mainly sympathetic and most probably also postganglionic parasympathetic fibers. Thus, surgical damage of SHG may cause autonomic pelvic organ dysfunction (Kraima et al., 2015). As already shown for rectal cancer, preservation of the autonomic nerves is facilitated by robotic surgery and may avoid sexual dysfunctions and voiding disorders (Kim et al., 2015). In this educational video, we demonstrate left lower paraaortic lymph node dissection preserving the SHG using ICG fluorescence to label the lymphatic compartment. Prior to total mesometrial resection (TMMR) with therapeutic lymphadenectomy for cervical cancer (Höckel et al., 2009, Kimmig et al., 2013) 4 × 0.5 ml of a 1.66 mg/ml Indocyanine green solution (ICG Pulsion®, PMS SE, Feldkirchen, Germany) was injected into the uterine cervix at all four quadrants, 0.5 cm in depth (Kimmig et al., 2016). The lymphatic network of the downstream common iliac and inferior paraaortic lymph compartments of the uterine cervix is visualized (ICG fluorescence) including the individual connecting vessels between the different compartments. As can be demonstrated, the medial upper common iliac (subaortic) compartment drains preferentially into the anterior (mesenteric) compartment, whereas lateral common iliac lymphatic vessels mainly drain to the posterior (lumbar) paraaortic compartment. The autonomic nerve fibers of the SHP may easily be identified and preserved due to the excellent image resolution and the discrimination from fluorescent lymphatic structures. The video shows the preparation of left lower paraaortic nodes in cervical cancer following ICG labeling using a da Vinci Xi system®. This technique seems not only advantageous for preserving SHP, but even more highly educational to learn surgical anatomy for trainees.

  9. Enhanced fluorescence diffuse optical tomography with indocyanine green-encapsulating liposomes targeted to receptors for vascular endothelial growth factor in tumor vasculature

    NASA Astrophysics Data System (ADS)

    Zanganeh, Saeid; Xu, Yan; Hamby, Carl V.; Backer, Marina V.; Backer, Joseph M.; Zhu, Quing

    2013-12-01

    To develop an indocyanine green (ICG) tracer with slower clearance kinetics, we explored ICG-encapsulating liposomes (Lip) in three different formulations: untargeted (Lip/ICG), targeted to vascular endothelial growth factor (VEGF) receptors (scVEGF-Lip/ICG) by the receptor-binding moiety single-chain VEGF (scVEGF), or decorated with inactivated scVEGF (inactive-Lip/ICG) that does not bind to VEGF receptors. Experiments were conducted with tumor-bearing mice that were placed in a scattering medium with tumors located at imaging depths of either 1.5 or 2.0 cm. Near-infrared fluorescence diffuse optical tomography that provides depth-resolved spatial distributions of fluorescence in tumor was used for the detection of postinjection fluorescent signals. All liposome-based tracers, as well as free ICG, were injected intravenously into mice in the amounts corresponding to 5 nmol of ICG/mouse, and the kinetics of increase and decrease of fluorescent signals in tumors were monitored. A signal from free ICG reached maximum at 15-min postinjection and then rapidly declined with t of ˜20 min. The signals from untargeted Lip/ICG and inactive-Lip/ICG also reached maximum at 15-min postinjection, however, declined somewhat slower than free ICG with t of ˜30 min. By contrast, a signal from targeted scVEGF-Lip/ICG grew slower than that of all other tracers, reaching maximum at 30-min postinjection and declined much slower than that of other tracers with t of ˜90 min, providing a more extended observation window. Higher scVEGF-Lip/ICG tumor accumulation was further confirmed by the analysis of fluorescence on cryosections of tumors that were harvested from animals at 400 min after injection with different tracers.

  10. In vivo photoacoustic imaging of cancer using indocyanine green-labeled monoclonal antibody targeting the epidermal growth factor receptor.

    PubMed

    Sano, Kohei; Ohashi, Manami; Kanazaki, Kengo; Ding, Ning; Deguchi, Jun; Kanada, Yuko; Ono, Masahiro; Saji, Hideo

    2015-08-28

    Photoacoustic (PA) imaging is an attractive imaging modality for sensitive and depth imaging of biomolecules with high resolution in vivo. The aim of this study was to evaluate the effectiveness of an anti-epidermal growth factor receptor (EGFR) monoclonal antibody (panitumumab; Pan) labeled with indocyanine green derivative (ICG-EG4-Sulfo-OSu), Pan-EG4-ICG, as a PA imaging probe to target cancer-associated EGFR. In vitro PA imaging studies demonstrated that Pan-EG4-ICG yielded high EGFR-specific PA signals in EGFR-positive cells. To determine the optimal injection dose and scan timing, we investigated the biodistribution of radiolabeled Pan-EG4-ICG (200-400 μg) in A431 tumor (EGFR++)-bearing mice. The highest tumor accumulation (29.4% injected dose/g) and high tumor-to-blood ratio (2.1) was observed 7 days after injection of Pan-EG4-ICG (400 μg). In in vivo PA imaging studies using Pan-EG4-ICG (400 μg), the increase in PA signal (114%) was observed in A431 tumors inoculated in the mammary glands 7 days post-injection. Co-injection of excess Pan resulted in a 35% inhibition of this PA signal, indicating the EGFR-specific accumulation. In conclusion, the ICG-labeled monoclonal antibody (i.e., panitumumab) has the potential to enhance target-specific PA signal, leading to the discrimination of aggressiveness and metastatic potential of tumors and the selection of effective therapeutic strategies.

  11. Enhanced fluorescence diffuse optical tomography with indocyanine green-encapsulating liposomes targeted to receptors for vascular endothelial growth factor in tumor vasculature.

    PubMed

    Zanganeh, Saeid; Xu, Yan; Hamby, Carl V; Backer, Marina V; Backer, Joseph M; Zhu, Quing

    2013-12-01

    To develop an indocyanine green (ICG) tracer with slower clearance kinetics, we explored ICG-encapsulating liposomes (Lip) in three different formulations: untargeted (Lip/ICG), targeted to vascular endothelial growth factor (VEGF) receptors (scVEGF-Lip/ICG) by the receptor-binding moiety single-chain VEGF (scVEGF), or decorated with inactivated scVEGF (inactive-Lip/ICG) that does not bind to VEGF receptors. Experiments were conducted with tumor-bearing mice that were placed in a scattering medium with tumors located at imaging depths of either 1.5 or 2.0 cm. Near-infrared fluorescence diffuse optical tomography that provides depth-resolved spatial distributions of fluorescence in tumor was used for the detection of postinjection fluorescent signals. All liposome-based tracers, as well as free ICG, were injected intravenously into mice in the amounts corresponding to 5 nmol of ICG/mouse, and the kinetics of increase and decrease of fluorescent signals in tumors were monitored. A signal from free ICG reached maximum at 15-min postinjection and then rapidly declined with t1/2 of ~20 min. The signals from untargeted Lip/ICG and inactive-Lip/ICG also reached maximum at 15-min postinjection, however, declined somewhat slower than free ICG with t1/2 of ~30 min. By contrast, a signal from targeted scVEGF-Lip/ICG grew slower than that of all other tracers, reaching maximum at 30-min postinjection and declined much slower than that of other tracers with t1/2 of ~90 min, providing a more extended observation window. Higher scVEGF-Lip/ICG tumor accumulation was further confirmed by the analysis of fluorescence on cryosections of tumors that were harvested from animals at 400 min after injection with different tracers.

  12. Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy.

    PubMed

    Sheng, Zonghai; Hu, Dehong; Zheng, Mingbin; Zhao, Pengfei; Liu, Huilong; Gao, Duyang; Gong, Ping; Gao, Guanhui; Zhang, Pengfei; Ma, Yifan; Cai, Lintao

    2014-12-23

    Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is a light-activated local treatment modality that is under intensive preclinical and clinical investigations for cancer. To enhance the treatment efficiency of phototherapy and reduce the light-associated side effects, it is highly desirable to improve drug accumulation and precision guided phototherapy for efficient conversion of the absorbed light energy to reactive oxygen species (ROS) and local hyperthermia. In the present study, a programmed assembly strategy was developed for the preparation of human serum albumin (HSA)-indocyanine green (ICG) nanoparticles (HSA-ICG NPs) by intermolecular disulfide conjugations. This study indicated that HSA-ICG NPs had a high accumulation with tumor-to-normal tissue ratio of 36.12±5.12 at 24 h and a long-term retention with more than 7 days in 4T1 tumor-bearing mice, where the tumor and its margin, normal tissue were clearly identified via ICG-based in vivo near-infrared (NIR) fluorescence and photoacoustic dual-modal imaging and spectrum-resolved technology. Meanwhile, HSA-ICG NPs efficiently induced ROS and local hyperthermia simultaneously for synergetic PDT/PTT treatments under a single NIR laser irradiation. After an intravenous injection of HSA-ICG NPs followed by imaging-guided precision phototherapy (808 nm, 0.8 W/cm2 for 5 min), the tumor was completely suppressed, no tumor recurrence and treatments-induced toxicity were observed. The results suggest that HSA-ICG NPs generated by programmed assembly as smart theranostic nanoplatforms are highly potential for imaging-guided cancer phototherapy with PDT/PTT synergistic effects.

  13. Left paraaortic, inframesenteric lymphadenectomy preserving the superior hypogastric plexus supported by indocyanine green (ICG) labeling of the lymphatic compartment in cervical cancer.

    PubMed

    Kimmig, Rainer; Rusch, Peter; Buderath, Paul; Aktas, Bahriye

    2016-11-01

    Superior hypogastric plexus (SHG) contains mainly sympathetic and most probably also postganglionic parasympathetic fibers. Thus, surgical damage of SHG may cause autonomic pelvic organ dysfunction (Kraima et al., 2015). As already shown for rectal cancer, preservation of the autonomic nerves is facilitated by robotic surgery and may avoid sexual dysfunctions and voiding disorders (Kim et al., 2015). In this educational video, we demonstrate left lower paraaortic lymph node dissection preserving the SHG using ICG fluorescence to label the lymphatic compartment. Prior to total mesometrial resection (TMMR) with therapeutic lymphadenectomy for cervical cancer (Höckel et al., 2009, Kimmig et al., 2013) 4 × 0.5 ml of a 1.66 mg/ml Indocyanine green solution (ICG Pulsion®, PMS SE, Feldkirchen, Germany) was injected into the uterine cervix at all four quadrants, 0.5 cm in depth (Kimmig et al., 2016). The lymphatic network of the downstream common iliac and inferior paraaortic lymph compartments of the uterine cervix is visualized (ICG fluorescence) including the individual connecting vessels between the different compartments. As can be demonstrated, the medial upper common iliac (subaortic) compartment drains preferentially into the anterior (mesenteric) compartment, whereas lateral common iliac lymphatic vessels mainly drain to the posterior (lumbar) paraaortic compartment. The autonomic nerve fibers of the SHP may easily be identified and preserved due to the excellent image resolution and the discrimination from fluorescent lymphatic structures. The video shows the preparation of left lower paraaortic nodes in cervical cancer following ICG labeling using a da Vinci Xi system®. This technique seems not only advantageous for preserving SHP, but even more highly educational to learn surgical anatomy for trainees. PMID:27672677

  14. Feasibility and optimal dosage of indocyanine green fluorescence for sentinel lymph node detection using robotic single-site instrumentation: preclinical study.

    PubMed

    Levinson, Kimberly L; Mahdi, Haider; Escobar, Pedro F

    2013-01-01

    The present study was performed to determine the optimal dosage of indocyanine green (ICG) to accurately differentiate the sentinel node from surrounding tissue and then to test this dosage using novel single-port robotic instrumentation. The study was performed in healthy female pigs. After induction of anesthesia, all pigs underwent exploratory laparotomy, dissection of the bladder, and colpotomy to reveal the cervical os. With use of a 21-gauge needle, 0.5 mL normal saline solution was injected at the 3- and 9-o'clock positions as control. Four concentrations of ICG were constituted for doses of 1000, 500, 250, and 175 μg per 0.5 mL. ICG was then injected at the 3- and 9-o'clock positions on the cervix. The SPY camera was used to track ICG into the sentinel nodes and to quantify the intensity of light emitted. SPY technology uses an intensity scale of 1 to 256; this scale was used to determine the difference in intensity between the sentinel node and surrounding tissues. The optimal dosage was tested using single-port robotic instrumentation with the same injection techniques. A sentinel node was identified at all doses except 175 μg, at which ICG stayed in the cervix and vasculature only. For both the 500- and 250-μg doses, the sentinel node was identified before reaching maximum intensity. At maximum intensity, the difference between the surrounding tissue and the node was 207 (251 vs 44) for the 500-μg dose and 159 (251 vs 92) for the 250-μg dose. Sentinel lymph node (SLN) biopsy was successfully performed using single-port robotic technology with both the 250- and 500-μg doses. For SLN detection, the dose of ICG is related to the ability to differentiate the sentinel node from the surrounding tissue. An ICG dose of 250 to 500 μg enables identification of a SLN with more distinction from the surrounding tissues, and this procedure is feasible using single-port robotics instrumentation. PMID:24034538

  15. Optical Coherence Tomography Angiography of Chorioretinal Diseases.

    PubMed

    Novais, Eduardo A; Roisman, Luiz; de Oliveira, Paulo Ricardo Chaves; Louzada, Ricardo N; Cole, Emily D; Lane, Mark; Filho, Marco Bonini; Romano, André; de Oliveira Dias, João Rafael; Regatieri, Caio V; Chow, David; Belfort, Rubens; Rosenfeld, Philip; Waheed, Nadia K; Ferrara, Daniela; Duker, Jay S

    2016-09-01

    Fluorescein angiography (FA) and indocyanine green angiography (ICGA) have been the gold standard for the evaluation of retinal and choroidal vasculature in the last three decades and have revolutionized the diagnosis of retinal and choroidal vascular diseases. The advantage of these imaging modalities lies in their ability to document retinal and choroidal vasculature through the dynamic assessment of contrast transit over time in the intravascular and extravascular spaces. However, disadvantages include the absence of depth resolution, blurring of details by contrast leakage, and the inability to selectively evaluate different levels of the retinal and choroidal microvasculature. In addition, these angiographic methods require intravenous dye, which may cause adverse reactions such as nausea, vomiting, and rarely, anaphylaxis. Optical coherence tomography angiography (OCTA) is a noninvasive imaging technique that, in contrast to dye-based angiography, is faster and depth-resolved, allowing in some cases for more precise evaluation of the vascular plexuses of the retina and choroid. The method has been demonstrated in the assessment of various vascular diseases such as venous occlusions, diabetic retinopathy, macular neovascularization, and others. Limitations of this imaging modality include a small registered field of view and the inability to visualize leakage and dye transit over time. It is also subject to a variety of artifacts, including those generated by blinking and eye movement during image acquisition. However, more than an alternative for FA and ICGA, OCTA is bringing new insights to our understanding of retinal and choroidal vascular structure and is changing fundamental paradigms in the clinical management of pathologic conditions. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:848-861.]. PMID:27631482

  16. Angiography with a multifunctional line scanning ophthalmoscope

    PubMed Central

    Ferguson, R. Daniel; Patel, Ankit H.; Vazquez, Vanessa; Husain, Deeba

    2012-01-01

    Abstract. A multifunctional line scanning ophthalmoscope (mLSO) was designed, constructed, and tested on human subjects. The mLSO could sequentially acquire wide-field, confocal, near-infrared reflectance, fluorescein angiography (FA), and indocyanine green angiography (ICGA) retinal images. The system also included a retinal tracker (RT) and a photodynamic therapy laser treatment port. The mLSO was tested in a pilot clinical study on human subjects with and without retinal disease. The instrument exhibited robust retinal tracking and high-contrast line scanning imaging. The FA and ICGA angiograms showed a similar appearance of hyper- and hypo-pigmented disease features and a nearly equivalent resolution of fine capillaries compared to a commercial flood-illumination fundus imager. An mLSO-based platform will enable researchers and clinicians to image human and animal eyes with a variety of modalities and deliver therapeutic beams from a single automated interface. This approach has the potential to improve patient comfort and reduce imaging session times, allowing clinicians to better diagnose, plan, and conduct patient procedures with improved outcomes. PMID:22463040

  17. Intraoperative fluorescence vascular angiography: during tibial bypass.

    PubMed

    Perry, Diana; Bharara, Manish; Armstrong, David G; Mills, Joseph

    2012-01-01

    Preventing amputations in persons with lower extremity complications of diabetes is a complex endeavor, particularly in those with concomitant ischemia and tissue loss. Fluorescence angiography (Novadaq SPY system) may provide a tool for objective evaluations of tissue viability in the diabetic foot, which is an important indicator of the ability of the diabetic ulcer to heal adequately. The SPY system uses a low-power laser coupled with a charge-coupled device camera and indocyanine green (ICG) to sequence perfusion at the surface of the skin. We present an illustrated example of the potential utility of ICG fluorescence angiography (ICGFA) before and after vascular intervention in a high-risk limb. ICGFA appeared to reveal demarcation between viable and nonviable tissue and real-time perfusion, specifically capillary fill. ICGFA clarified the extent of necessary debridement and provided an immediate indication of improvement in regional perfusion status following revascularization. Future studies involving ICGFA may include pre- and postdebridement and closure perfusion, comparison of tissue perfusion pre- and post-endovascular therapy, and lower extremity flap viability. Future works will also address the consistency of results with ICGFA by analyzing a larger cohort of patients being treated by our unit. PMID:22401340

  18. Angiography with a multifunctional line scanning ophthalmoscope

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Ferguson, R. Daniel; Patel, Ankit H.; Vazquez, Vanessa; Husain, Deeba

    2012-02-01

    A multifunctional line scanning ophthalmoscope (mLSO) was designed, constructed, and tested on human subjects. The mLSO could sequentially acquire wide-field, confocal, near-infrared reflectance, fluorescein angiography (FA), and indocyanine green angiography (ICGA) retinal images. The system also included a retinal tracker (RT) and a photodynamic therapy laser treatment port. The mLSO was tested in a pilot clinical study on human subjects with and without retinal disease. The instrument exhibited robust retinal tracking and high-contrast line scanning imaging. The FA and ICGA angiograms showed a similar appearance of hyper- and hypo-pigmented disease features and a nearly equivalent resolution of fine capillaries compared to a commercial flood-illumination fundus imager. An mLSO-based platform will enable researchers and clinicians to image human and animal eyes with a variety of modalities and deliver therapeutic beams from a single automated interface. This approach has the potential to improve patient comfort and reduce imaging session times, allowing clinicians to better diagnose, plan, and conduct patient procedures with improved outcomes.

  19. Fluorescence measurement of diode (805 nm) laser-induced release of 5,6-CF from DSPC liposomes for monitoring of temperature: an in vivo study in rat liver using indocyanine green potentiation

    NASA Astrophysics Data System (ADS)

    Mordon, Serge R.; Desmettre, Thomas; Devoisselle, Jean-Marie; Soulie-Begu, Sylvie

    1995-05-01

    This in-vivo study examines the validity of fluorescence measurement of laser-induced release of temperature sensitive liposome-encapsulated dye for monitoring of temperature and prediction of tissue thermal damage. It is performed in rat liver after i.v. injection of liposomes loaded with a fluorescent dye and i.v. injection of Indocyanine Green (ICG) for diode laser potentiation. Temperature sensitive liposomes (DSPC: Di- Stearoyl-Phosphatidyl-Choline) are loaded with 5,6-Carboxyfluorescein (5,6-CF). These liposomes (1.5 ml solution) and ICG (1.5 ml solution-5 mg/kg) are injected to adult male wistar rats. Two hours later, the liver is exposed and irradiated with a 0.8 W diode laser using pulses lasting from 1 s to 6 s (fluence ranging from 16 to 98 J/cm+2)). Simultaneously, the fluorescence emission is measured with a fluorescent imaging system. Results show that the fluorescence intensity increases linearly form 18 J/cm2 up to 75 J/cm2. These fluences correspond to surface temperatures between 42°C to 64°C. The measurements appear to be highly reproducible. In this temperature range, the accuracy is +/- 3°C. The maximum intensity is observed immediately after the laser is switched off and a decrease of the fluorescence intensity is observed (27% in 20 minutes) due to the 5.6-CF clearance. However, the ratio (IF/Ibck) remains almost stable over this period of time and the determination of the temperature is still possible with a good accuracy even 20 minutes after laser irradiation. In conclusion, temperature monitoring by using fluorescence measurement of laser-induced release of liposome-encapsulated dye is clearly demonstrated. This procedure could conceivably prove useful for controlling the thermal coagulation of biological tissues.

  20. Cerebral angiography

    MedlinePlus

    ... Carotid angiogram; Cervicocerebral catheter-based angiography; Intra-arterial digital subtraction angiography; IADSA ... with the dye are seen. This is called digital subtraction angiography (DSA). After the x-rays are ...

  1. Optical Coherence Tomography Angiography in Retinal Vascular Diseases and Choroidal Neovascularization

    PubMed Central

    Mastropasqua, Rodolfo; Di Antonio, Luca; Di Staso, Silvio; Agnifili, Luca; Di Gregorio, Angela; Ciancaglini, Marco; Mastropasqua, Leonardo

    2015-01-01

    Purpose. To assess the ability of optical coherence tomography-angiography (OCT-A) to show and analyze retinal vascular patterns and the choroidal neovascularization (CNV) in retinal vascular diseases. Methods. Seven eyes of seven consecutive patients with retinal vascular diseases were examined. Two healthy subjects served as controls. All eyes were scanned with the SD-OCT XR Avanti (Optovue Inc, Fremont CA, USA). Split spectrum amplitude decorrelation angiography algorithm was used to identify the blood flow within the tissue. Fluorescein angiography (FA) and indocyanine green angiography (ICGA) with Spectralis HRA + OCT (Heidelberg Engineering GmbH) were performed. Results. In healthy subjects OCT-A visualized major macular vessels and detailed capillary networks around the foveal avascular zone. Patients were affected with myopic CNV (2 eyes), age-related macular degeneration related (2), branch retinal vein occlusion (BRVO) (2), and branch retinal artery occlusion (BRAO) (1). OCT-A images provided distinct vascular patterns, distinguishing perfused and nonperfused areas in BRVO and BRAO and recognizing the presence, location, and size of CNV. Conclusions. OCT-A provides detailed images of retinal vascular plexuses and quantitative data of pathologic structures. Further studies are warranted to define the role of OCT-A in the assessment of retinovascular diseases, with respect to conventional FA and ICG-A. PMID:26491548

  2. En face OCT angiography demonstrates flow in early type 3 neovascularization (retinal angiomatous proliferation)

    PubMed Central

    Dansingani, K K; Naysan, J; Freund, K B

    2015-01-01

    Introduction The characteristics of type 3 neovascularization (NV), also known as retinal angiomatous proliferation, have been well described clinically, as well as with fluorescein angiography (FA), indocyanine green angiography, and optical coherence tomography (OCT). OCT angiography (OCT-A) is a novel and non-invasive technique for imaging retinal microvasculature by detecting changes, with respect to time, in reflectivity related to blood flow. Method In this case series, we describe two patients who presented with type 3 NV and underwent clinical examination and multimodal imaging, including OCT-A. Results In the first patient, OCT-A demonstrated flow within two separate lesions in the same eye, one of which was only weakly detected by FA. In the second patient, sequential OCT-A demonstrated a reduction in intralesional flow following intravitreal therapy. Conclusions OCT-A may have a role in the early diagnosis of type 3 NV and in assessing the response to treatment. Further studies are needed to determine sensitivity and specificity. PMID:25744441

  3. In vivo flow cytometry and time-resolved near-IR angiography and lymphography

    NASA Astrophysics Data System (ADS)

    Galanzha, Ekaterina I.; Tuchin, Valery V.; Brock, Robert W.; Zharov, Vladimir P.

    2007-05-01

    Integration of photoacoustic and photothermal techniques with high-speed, high-resolution transmission and fluorescence microscopy shows great potential for in vivo flow cytometry and indocyanine green (ICG) near-infrared (IR) angiography of blood and lymph microvessels. In particular, the capabilities of in vivo flow cytometry using rat mesentery and nude mouse ear models are demonstrated for real-time quantitative detection of circulating and migrating individual blood and cancer cells in skin, mesentery, lymph nodes, liver, kidney; studying vascular dynamics with a focus on lymphatics; monitoring cell traffic between blood and lymph systems; high-speed imaging of cell deformability in flow; and label-free real-time monitoring of single cell extravasation from blood vessel lumen into tissue. As presented, the advantages of ICG IR-angiography include estimation of time resolved dye dynamics (appearance and clearance) in blood and lymph microvessels using fluorescent and photoacoustic modules of the integrated technique. These new approaches are important for monitoring and quantifying metastatic and apoptotic cells; comparative measurements of plasma and cell velocities; analysis of immune responses; monitoring of circulating macromolecules, chylomicrons, bacteria, viruses and nanoparticles; molecular imaging. In the future, we believe that the integrated technique presented will have great potential for translation to early disease diagnoses (e.g. cancer) or assessment of innovative therapeutic interventions in humans.

  4. Fluorescein angiography

    MedlinePlus

    ... abnormal vessels, and there are no blockages or leakages. ... If blockage or leakage is present, the pictures will map the location for possible treatment. An abnormal value on a fluorescein angiography may ...

  5. Clinical use and research applications of Heidelberg retinal angiography and spectral-domain optical coherence tomography - a review.

    PubMed

    Hassenstein, Andrea; Meyer, Carsten H

    2009-01-01

    Fluorescein angiography (FA) was discovered by Nowotny and Alvis in the 1960s of the 20th century and has evolved to become the 'Gold standard' for macular diagnostics. Scanning laser imaging technology achieved enhancement of contrast and resolution. The combined Heidelberg retina angiograph (HRA2) adds novel innovative features to established fundus cameras. The principle of confocal scanning laser imaging provides a high resolution of retinal and choroidal vasculature with low light exposure providing comfort and safety for the patient. Enhanced contrast, details and image sharpness image are generated using confocality. For the visualization of the choroid an indocyanine green angiography (ICGA) is the most suitable application. The main indications for ICGA are age-related macular degeneration, choroidal polypoidal vasculopathy and choroidal haemangiomas. Simultaneous digital FA and ICGA images with three-dimensional resolution offer improved diagnosis of retinal and choroidal pathologies. High-speed ICGA dynamic imaging can identify feeder vessels and retinal choroidal anastomoses, ensuring safer treatment of choroidal neovascularization. Autofluorescence imaging and fundus reflectance imaging with blue and infrared light offer new follow-up parameters for retinal diseases. Finally, the real-time optical coherence tomography provides a new level of accuracy for assessment of the angiographic and morphological correlation. The combination of various macular diagnostic tools, such as infrared, blue reflectance, fundus autofluorescence, FA, ICGA and also spectral domain optical coherence tomography, lead to a better understanding and improved knowledge of macular diseases. PMID:19338610

  6. CT Angiography (CTA)

    MedlinePlus

    ... CT Angiography? Angiography is a minimally invasive medical test that helps physicians diagnose and treat medical conditions. Angiography uses one of three imaging technologies and, in most cases, a contrast material injection ...

  7. CT angiography - chest

    MedlinePlus

    Computed tomography angiography - thorax; CTA - lungs; Pulmonary embolism - CTA chest; Thoracic aortic aneurysm - CTA chest; Venous thromboembolism - CTA lung; Blood clot - CTA lung; Embolus - CTA lung; CT ...

  8. Synthesis and characterization of a glycine-modified heptamethine indocyanine dye for in vivo cancer-targeted near-infrared imaging.

    PubMed

    Liu, Tao; Luo, Shenglin; Wang, Yang; Tan, Xu; Qi, Qingrong; Shi, Chunmeng

    2014-01-01

    Near-infrared (NIR) fluorescent sensors have emerged as promising molecular tools for cancer imaging and detection in living systems. However, cancer NIR fluorescent sensors are very challenging to develop because they are required to exhibit good specificity and low toxicity as an eligible contrast agent. Here, we describe the synthesis of a new heptamethine indocyanine dye (NIR-27) modified with a glycine at the end of each N-alkyl side chain, and its biological characterization for in vivo cancer-targeted NIR imaging. In addition to its high specificity, NIR-27 also shows lower cytotoxicity than indocyanine green, a nonspecific NIR probe widely used in clinic. These characteristics suggest that NIR-27 is a promising prospect as a new NIR fluorescent sensor for sensitive cancer detection.

  9. Targeting tumor hypoxia: a third generation 2-nitroimidazole-indocyanine dye-conjugate with improved fluorescent yield.

    PubMed

    Zhou, Feifei; Zanganeh, Saeid; Mohammad, Innus; Dietz, Christopher; Abuteen, Akram; Smith, Michael B; Zhu, Quing

    2015-12-14

    Tumor hypoxia is associated with the rapid proliferation and growth of malignant tumors, and the ability to detect tumor hypoxia is important for predicting tumor response to anti-cancer treatments. We have developed a class of dye-conjugates that are related to indocyanine green (ICG, ) to target tumor hypoxia, based on in vivo infrared fluorescence imaging using nitroimidazole moieties linked to indocyanine fluorescent dyes. We previously reported that linking 2-nitroimidazole to an indocyanine dicarboxylic acid dye derivative () using an ethanolamine linker (ethanolamine-2-nitroimidazole-ICG, ), led to a dye-conjugate that gave promising results for targeting cancer hypoxia in vivo. Structural modification of the dye conjugate replaced the ethanolamine unit with a piperazineacetyl unit and led a second generation dye conjugate, piperzine-2-nitroimidazole-ICG (). This second generation dye-conjugate showed improved targeting of tumor hypoxia when compared with . Based on the hypothesis that molecules with more planar and rigid structures have a higher fluorescence yield, as they could release less absorbed energy through molecular vibration or collision, we have developed a new 2-nitroimidazole ICG conjugate, , with two carbon atoms less in the polyene linker. Dye-conjugate was prepared from our new dye (), and coupled to 2-nitroimidazole using a piperazine linker to produce this third-generation dye-conjugate. Spectral measurements showed that the absorption/emission wavelengths of 657/670 were shifted ∼100 nm from the second-generation hypoxia dye of 755/780 nm. Its fluorescence quantum yield was measured to be 0.467, which is about 5 times higher than that of (0.083). In vivo experiments were conducted with balb/c mice and showed more than twice the average in vivo fluorescence intensity in the tumor beyond two hours post retro-orbital injection as compared with . These initial results suggest that may significantly improve in vivo tumor hypoxia targeting.

  10. Fluorescein angiography printouts.

    PubMed

    Merin, L M

    1980-04-01

    Nineteen years after the pioneering efforts of Novotny and Alvis, fluorescein angiography has reached a level of acceptance and use which reflects its high value in ophthalmic diagnosis. Angiography laboratories are commonplace in hospitals, and many private physicians own fundus cameras and perform fluorescein angiograms routinely. As the use of this test has substantially increased, so has the number of methods used to present the film for analysis and interpretation. At this writing there are no fewer than 12 different ways of presenting fluorescein angiograms in common use (Table 1). Not all of these techniques are able to yield equal amounts of information, however, and as consultations between different laboratories occur, much difficulty results from the disparate styles. Evaluation of these varying techniques of fluorescein angiography presentation depends on the production complexity and the amount of useful information which each may yield. PMID:7235472

  11. CT angiography - head and neck

    MedlinePlus

    Computed tomography angiography - brain; CTA - skull; CTA - cranial; TIA-CTA head; Stroke-CTA head; Computed tomography angiography - neck; CTA - neck; Vertebral artery - CTA; Carotid artery stenosis - CTA; ...

  12. Spine MR angiography.

    PubMed

    Bowen, B C; Pattany, P M

    1997-01-01

    The use of MR angiography to evaluate spinal vessels is in an early stage of development. Both time-of-flight (3D) and phase-contrast (2D and 3D) techniques have been applied, and for both types of techniques, the vessels are best visualized following intravenous gadolinium administration. The vessels of interest are the millimeter-sized intradural arteries and veins, which are located on the cord surface and travel from the cord to the epidural space. Only the post gadolinium 3D TOF technique has been shown to display normal intradural vessels (thoracolumbar region), principally veins. Both TOF and PC techniques provide better delineation of enlarged intradural vessels associated with spinal vascular malformations than standard MR imaging alone. PC techniques are much less sensitive in detecting the arterial supply to dural arteriovenous fistula than intramedullary arteriovenous malformation. The TOF technique can predict the foraminal level of a dural fistula when an enlarged medullary vein, resulting from retrograde drainage, is present. MR angiography, in conjunction with MR imaging, is now suggested for screening of suspected spinal vascular malformation. Other applications such as vascular tumors and arterial or venous occlusive disease are under investigation.

  13. Optical coherence angiography

    PubMed Central

    Wylęgała, Adam; Teper, Sławomir; Dobrowolski, Dariusz; Wylęgała, Edward

    2016-01-01

    Abstract Background: Retinal vascular diseases are one of the most common causes of blindness in the developed world. Optical Coherence Tomography Angiography (OCT-A) is a new noninvasive method that uses several algorithms to detect blood movement. This enables the creation of high-resolution vascular images with contrast depicting motionless tissue. Methods: This review presents the results of articles relevant to age-related macular degeneration (AMD), diabetic retinopathy (DR), and OCT-A. The OCT-A technique can successfully be used in the diagnosis of neovascularization, retinal vein occlusion (RVO) and retinal artery occlusion (RAO), vessel abnormalities and even anterior segment neovascularization. OCT-A can also be applied to compute data such as vessel density, and flow index in both superficial and deep plexuses. Results: Many studies have compared fluorescein angiography with OCT-A. Other studies have reported differences in vascular density in AMD patients and have compared them with people having healthy eyes. Although OCT-A offers rapid picture acquisition, high repeatability and resolution, it also has many drawbacks. The most common are: motion artifacts, projections from overlying vessels and limited field of view. An interesting new application is the possibility to assess changes during antivascular endothelial growth factor (anti-VEGF) therapy. Another function of OCT-A is the possible application in the study of choriocapillaries in many fields of ocular pathology. Conclusion: OCT-A is a new promising method that allows the visualization of the retinal vascular network and the counting of blood flow parameters. This technique provides reliable images useful in clinical routines. PMID:27741104

  14. CT angiography - abdomen and pelvis

    MedlinePlus

    Computed tomography angiography - abdomen and pelvis; CTA - abdomen and pelvis; Renal artery - CTA; Aortic - CTA; Mesenteric CTA ... belly or pelvis Masses and tumors in the abdomen or pelvis, including cancer, when needed to help ...

  15. Atrial myxomas and coronary angiography.

    PubMed

    Rafiq, Isma; Parthasarthy, H; Clark, C Grahame

    2010-07-01

    Coronary angiography is not an only important component of preoperative evaluation of the patient with underlying coronary artery disease but also diagnostic tool for delineating cardiac myxomas. This also serve as an important surgical anatomical marker. We present two cases which presented with repeated episode of chest pain, were found to have atrial blushing on coronary angiography subsequent confirmation of diagnosis of atrial myxoma on echocardiography. PMID:20578102

  16. CT Angiography after 20 Years

    PubMed Central

    Rubin, Geoffrey D.; Leipsic, Jonathon; Schoepf, U. Joseph; Fleischmann, Dominik; Napel, Sandy

    2015-01-01

    Through a marriage of spiral computed tomography (CT) and graphical volumetric image processing, CT angiography was born 20 years ago. Fueled by a series of technical innovations in CT and image processing, over the next 5–15 years, CT angiography toppled conventional angiography, the undisputed diagnostic reference standard for vascular disease for the prior 70 years, as the preferred modality for the diagnosis and characterization of most cardiovascular abnormalities. This review recounts the evolution of CT angiography from its development and early challenges to a maturing modality that has provided unique insights into cardiovascular disease characterization and management. Selected clinical challenges, which include acute aortic syndromes, peripheral vascular disease, aortic stent-graft and transcatheter aortic valve assessment, and coronary artery disease, are presented as contrasting examples of how CT angiography is changing our approach to cardiovascular disease diagnosis and management. Finally, the recently introduced capabilities for multispectral imaging, tissue perfusion imaging, and radiation dose reduction through iterative reconstruction are explored with consideration toward the continued refinement and advancement of CT angiography. PMID:24848958

  17. Coronary magnetic resonance angiography.

    PubMed

    Stuber, Matthias; Weiss, Robert G

    2007-08-01

    Coronary magnetic resonance angiography (MRA) is a powerful noninvasive technique with high soft-tissue contrast for the visualization of the coronary anatomy without X-ray exposure. Due to the small dimensions and tortuous nature of the coronary arteries, a high spatial resolution and sufficient volumetric coverage have to be obtained. However, this necessitates scanning times that are typically much longer than one cardiac cycle. By collecting image data during multiple RR intervals, one can successfully acquire coronary MR angiograms. However, constant cardiac contraction and relaxation, as well as respiratory motion, adversely affect image quality. Therefore, sophisticated motion-compensation strategies are needed. Furthermore, a high contrast between the coronary arteries and the surrounding tissue is mandatory. In the present article, challenges and solutions of coronary imaging are discussed, and results obtained in both healthy and diseased states are reviewed. This includes preliminary data obtained with state-of-the-art techniques such as steady-state free precession (SSFP), whole-heart imaging, intravascular contrast agents, coronary vessel wall imaging, and high-field imaging. Simultaneously, the utility of electron beam computed tomography (EBCT) and multidetector computed tomography (MDCT) for the visualization of the coronary arteries is discussed. PMID:17610288

  18. Fluorescent property of indocyanine green (ICG) rubber ring using LED and laser light sources.

    PubMed

    Hong, Nha Young; Kim, Hong Rae; Lee, Hyun Min; Sohn, Dae Kyung; Kim, Kwang Gi

    2016-05-01

    Fluorescent properties of ICG depends on solvent. Fluorescent characteristics of ICG rubber rings and optimized detection system condition were identified. The fluorescent rubber rings are produced by drying mixture of ICG solution and liquid rubber. LED and laser light sources were used to test differences between them. Other variables are ICG molar concentration (100, 80, 60, 40, 20, 10μM), excitation light spectrum (740, 760, 785nm) and angle of view (0~80°). We observed that ICG ring emitted fluorescence at longer wavelength than in blood and aqueous state. Observation angle between 0 and 50 provided similar brightness of images, while others are significantly less luminous. Excitation light between 740~760nm ensured non-overlapping spectrums of excitation light and fluorescence emission. PMID:27280060

  19. Enhanced visualization of the bile duct via parallel white light and indocyanine green fluorescence laparoscopic imaging

    NASA Astrophysics Data System (ADS)

    Demos, Stavros G.; Urayama, Shiro

    2014-03-01

    Despite best efforts, bile duct injury during laparoscopic cholecystectomy is a major potential complication. Precise detection method of extrahepatic bile duct during laparoscopic procedures would minimize the risk of injury. Towards this goal, we have developed a compact imaging instrumentation designed to enable simultaneous acquisition of conventional white color and NIR fluorescence endoscopic/laparoscopic imaging using ICG as contrast agent. The capabilities of this system, which offers optimized sensitivity and functionality, are demonstrated for the detection of the bile duct in an animal model. This design could also provide a low-cost real-time surgical navigation capability to enhance the efficacy of a variety of other image-guided minimally invasive procedures.

  20. Indocyanine green: A test of hepatic function and a measure of plasma volume in the duck

    USGS Publications Warehouse

    Patton, J.F.

    1978-01-01

    1. 1. The exponential removal of ICG from the plasma by the mallard duck liver made possible the measurement of fractional dye clearance (K), plasma volume (PV) and plasma clearance (PC). 2. 2. Values obtained for K (14.9%/min), PV (39.2 ml/kg) and PC (5.8 ml/min per kg) agreed with those obtained by other techniques used in a number of species. 3. 3. Sex did not affect the removal of ICG by the liver. However, increases in K, PV and PC were noted in hen mallards in laying condition. 4. 4. The data should prove useful as baseline values for physiological and pathological studies on the avian liver

  1. Radiation dose measurements in coronary CT angiography

    PubMed Central

    Sabarudin, Akmal; Sun, Zhonghua

    2013-01-01

    Coronary computed tomography (CT) angiography is associated with high radiation dose and this has raised serious concerns in the literature. Awareness of various parameters for dose estimates and measurements of coronary CT angiography plays an important role in increasing our understanding of the radiation exposure to patients, thus, contributing to the implementation of dose-saving strategies. This article provides an overview of the radiation dose quantity and its measurement during coronary CT angiography procedures. PMID:24392190

  2. Pulmonary Thromboembolism: Evaluation By Intravenous Angiography

    NASA Astrophysics Data System (ADS)

    Pond, Gerald D.; Cook, Glenn C.; Woolfenden, James M.; Dodge, Russell R.

    1981-11-01

    Using perfusion lung scans as a guide, digital video subtraction angiography of the pulmonary arteries was performed in human subjects suspected of having pulmonary embolism. Dogs were employed as a pulmonary embolism model and both routine pulmonary angiography and intravenous pulmonary angiograms were obtained for comparison purposes. We have shown by our preliminary results that the technique is extremely promising as a safe and accurate alternative to routine pulmonary angiography in selected patients.

  3. A novel near-infrared indocyanine dye-polyethylenimine conjugate allows DNA delivery imaging in vivo.

    PubMed

    Masotti, Andrea; Vicennati, Paola; Boschi, Federico; Calderan, Laura; Sbarbati, Andrea; Ortaggi, Giancarlo

    2008-05-01

    Near-infrared (NIR) fluorescence light has been applied to monitor several biological events in vivo since it penetrates tissues more efficiently than visible light. Dyes exhibiting NIR fluorescence and having large Stokes shift are key elements for this promising optical imaging technology. Here, we report the synthesis of a novel conjugate between a near-infrared indocyanine dye and an organic polyamine polymer (polyethylenimine, PEI) (IR820-PEI) with high chemical stability and good optical properties. IR820-PEI absorbs at 665 nm, emits at 780 nm, and displays a large Stokes shift (115 nm). Moreover, the reported conjugate is able to bind DNA, and the delivery process can be monitored in vivo with noninvasive optical imaging techniques. These characteristics make IR820-PEI one of the most effective and versatile indocyanine dye polymeric-conjugate reported so far.

  4. [Angiography of urotuberculosis (author's transl)].

    PubMed

    Klein, U; Eisenberger, F; Heinze, H G; Lissner, J; Pfeifer, K J; Runte, R; Thym, W

    1976-06-01

    119 kidneys demonstrating changes consistent with renal tuberculosis were studied in a total of 94 patients by means of selective, transfemoral renal antiography. In the first stage of the disease, this method detected parenchymal involvement which could not be visualized by excretory urography. In stage II the arcuate arteries and occasionally the intralobular arteries, showed typical changes. Cavitation, pathognomonic for the presence of renal tuberculosis were found in 39.3% of these cases. In 40% of the cases the angiographic findingd were more extensive than the apparent findings of excretory urography. Angiography, thus, can render valuable information pertaining to the course of the disease and the necessity of operative intervention. Stage III was usually characterized by extensive changes specific for parenchymal destruction. Typical vascular lesions were readily recognized. Cavitation was found in 86.5% of these cases. Tortuosity and dilatation of the renal pelvis- and/or ureter-arteries revealed evidence of ureteral involvement (stage III2). In the presence of a non-functioning kidney angiography is mandatory to rule out renal aplasia and to differentiate between a kidney destroyed by other disease processes and the complete cavitary destruction of end-stage renal tuberculosis (stage III3). PMID:959508

  5. "Geyser" leakage on fluorescein angiography.

    PubMed

    Levy, Jaime; Fagan, Xavier J; Lifshitz, Tova; Schneck, Marina

    2013-11-22

    An 82-year-old patient with diabetes was followed up due to moderate nonproliferative diabetic retinopathy with macular edema in the right eye. Visual acuity was 6/36. Focal macular laser was conducted (A). Three years later, the patient presented with blurry vision in the right eye. Visual acuity was 3/60. Vitreous hemorrhage was observed (B), and neovascularization of the disc was suspected (C). Fluorescein angiography (D, mid venous phase; E-F, recirculation phase) confirmed neovascularization of the disc and depicted a striking vertical leakage. Panretinal photocoagulation was started. Possible explanations for the "geyser" leakage may be either a partial posterior vitreous detachment allowing the fluorescein to track upwards but not elsewhere or a pocket of syneretic vitreous allowing the fluorescein passage in which to diffuse, much like the passage the blood would have taken.

  6. "Geyser" leakage on fluorescein angiography.

    PubMed

    Levy, Jaime; Fagan, Xavier J; Lifshitz, Tova; Schneck, Marina

    2013-01-01

    An 82-year-old patient with diabetes was followed up due to moderate nonproliferative diabetic retinopathy with macular edema in the right eye. Visual acuity was 6/36. Focal macular laser was conducted (A). Three years later, the patient presented with blurry vision in the right eye. Visual acuity was 3/60. Vitreous hemorrhage was observed (B), and neovascularization of the disc was suspected (C). Fluorescein angiography (D, mid venous phase; E-F, recirculation phase) confirmed neovascularization of the disc and depicted a striking vertical leakage. Panretinal photocoagulation was started. Possible explanations for the "geyser" leakage may be either a partial posterior vitreous detachment allowing the fluorescein to track upwards but not elsewhere or a pocket of syneretic vitreous allowing the fluorescein passage in which to diffuse, much like the passage the blood would have taken. PMID:24548789

  7. Digital subtraction angiography of the heart and lungs

    SciTech Connect

    Moodie, D.S.; Yiannikas, J.

    1986-01-01

    This book contains 12 chapters. Some of the chapter titles are: Physical Principles of Cardiac Digital Subtraction Angiography, The Use of Intravenous Digital Subtraction Angiography in Evaluating Patients with Complex Congenital Heart Disease, Exercise Intravenous Digital Subtraction Angiograpny, Cardiomyopathic and Cardiac Neoplastic Disease, Digital Subtraction Angiography in the Catheterization Laboratory, and Cardiac Digital Subtraction Angiography - Future Directions.

  8. Silent polypoidal choroidal vasculopathy in a patient with angioid streaks.

    PubMed

    Cebeci, Zafer; Bayraktar, Serife; Oray, Merih; Kir, Nur

    2016-01-01

    We present a case of silent polypoidal choroidal vasculopathy (PCV) in a patient with angioid streaks. PCV was detected during a routine ophthalmic examination and confirmed by fluorescein angiography, indocyanine green angiography, and optical coherence tomography. After 2 years of follow-up, the PCV remained silent without any complications. We report this rare coexistence and review literature on this topic. PMID:27463636

  9. Your Radiologist Explains Magnetic Resonance Angiography (MRA)

    MedlinePlus

    ... this Site RadiologyInfo.org is produced by: Image/Video Gallery Your Radiologist Explains Magnetic Resonance Angiography (MRA) ... time and for your attention! Spotlight Recently posted: Video: Ultrasound-guided Breast Biopsy Video: Breast MRI Video: ...

  10. Giant coronary aneurysm caused by Kawasaki disease: consistency between catheter angiography and electrocardiogram gated dual-source computed tomography angiography.

    PubMed

    Hwang, Eun-Ha; Ju, Jung-Ki; Cho, Min-Jung; Lee, Ji-Won; Lee, Hyoung-Doo

    2015-12-01

    We present the case of a 5-year-old child with coronary complications due to Kawasaki disease; this patient unintentionally underwent both dual-source computed tomography (DSCT) coronary angiography and invasive coronary angiographic examination in 2 months. This case highlights the strong consistency of the results between DSCT coronary angiography and invasive coronary angiography. Compared to conventional invasive coronary angiography, DSCT coronary angiography offered additional advantages such as minimal invasiveness and less radiation exposure. PMID:26770226

  11. MD CT Angiography and MR Angiography of Nonatherosclerotic Renal Artery Disease

    SciTech Connect

    Flors, Lucia; Leiva-Salinas, Carlos; Ahmad, Ehab Ali; Norton, Patrick T.; Turba, Ulku C.; Bozlar, Ugur; Hagspiel, Klaus D.

    2011-12-15

    We reviewed the computed tomographic and magnetic resonance angiographic appearances of the various nonatherosclerotic renal artery pathologies. Rapid progress in cross-sectional techniques has allowed computed tomography and magnetic resonance angiography to replace digital subtraction angiography in most circumstances. When state-of-the-art equipment and optimized protocols are used, diagnosing a wide range of nonatherosclerotic pathologies is possible.

  12. Complications with Outpatient Angiography and Interventional Procedures

    SciTech Connect

    Young, Noel; Chi, Ka-Kit; Ajaka, Joe; McKay, Lesa; O'Neill, Diane; Wong, Kai Ping

    2002-03-15

    Purpose: To prospectively identify the complications, and rates of complication, in outpatient angiography and interventional procedures. Methods: There were 1050 consecutive patients, 646 men and 404 women, aged 17-89 years, with a total of 1239 procedures studied in a 2-year period, 1997 to 1999. Results: There were 560 cases of aorto-femoral angiography,resulting in 124 complications (22%), with pain or hematoma in 110.There were 206 cases of neck and cerebral angiography, resulting in 51 complications (25%), with pain and hematoma in 34, transient ischemic attack in 2 and cerebrovascular accident in 1. There were 197 interfentional procedures, with 177 being balloon dilatations, resulting in 68 complications (35%), with 2 having hematomas and 1 having hematoma/abscess requiring active treatment. There were 276 cases having various 'other' procedures (e.g., renal angiography),resulting in 65 complications (24%), with pain and hematoma in 61. No procedure-related death occurred. Eighteen cases (1.5%) had significant complications, with contrast allergy in eight. Conclusion: Outpatient angiography and intervention are relatively safe, with low significant complication rates.

  13. Newer cardiac imaging techniques: multidetector CT angiography.

    PubMed

    Davidoff, Ravin; Ruberg, Frederick L

    2006-01-01

    An update of new developments with multidetector computed tomography (MDCT) coronary angiography is presented. Similar to what has occurred with the introduction of other new technologies such as electron beam computed tomography (EBCT), life insurance medical directors are expected to evaluate a technology before there are sufficient data from large clinical trials. Well-performed studies of the performance of MDCT coronary angiography have only recently appeared. MDCT appears to perform well for excluding significant coronary disease, and will perhaps be useful in emergency room "rule-out" situations. Other applications may be for the diagnosis of significant coronary obstruction (> 75% stenosis), as well as for the evaluation of bypass grafts. Limitations include the requirement for radiologic contrast administration and significant radiation exposure. MDCT does not provide information on atheroma morphology. Given these limitations, MDCT coronary angiography utilization will grow, and it will prove to be a useful tool in specific situations. PMID:16845845

  14. Magnetic resonance angiography in neck masses.

    PubMed

    Colletti, P M; Terk, M R; Zee, C S

    1996-01-01

    Carotid MR angiography has primarily been used to evaluate for stenotic lesions. We performed 2D time of flight MR angiography in 25 patients with palpable neck masses. There were 23 masses confirmed histologically. Two of the masses represented abnormal carotid arteries. Carotid deviation was seen in 23 of 25 (92%) of patients. Widening of the carotid bifurcation was identified in seven patients, including four carotid body tumors, one inflammatory mass, one benign salivary gland tumor, and one schwannoma. Increased vascularity was identified in one carotid body tumor and in one metastatic papillary carcinoma of the thyroid. MR angiography may be useful to demonstrate flow within vessels and represents a familiar imaging display for surgical planning. Splaying of the carotid bifurcation is useful in demonstrating carotid space lesions.

  15. Optical Coherence Tomography Angiography in Fovea Plana.

    PubMed

    Dolz-Marco, Rosa; Phasukkijwatana, Nopasak; Sarraf, David; Freund, K Bailey

    2016-07-01

    Fovea plana is characterized by the anatomical absence of the foveal pit in eyes with normal visual function. The authors have analyzed three cases of idiopathic fovea plana with optical coherence tomography angiography (OCTA). As previously reported, the authors found the absence of a foveal avascular zone in all cases with OCTA; however, a preserved fusion of both the superficial and the deep capillary plexuses was found around the foveal center. This novel observation cannot be detected with conventional dye-based angiography, in which the deep capillary plexus is not visualized. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:670-673.].

  16. Intraarterial digital subtraction angiography of renal transplants

    SciTech Connect

    Picus, D.; Neeley, J.P.; McClennan, B.L.; Weyman, P.J.; Heiken, J.P.

    1985-07-01

    Twenty-four intraarterial digital subtraction angiography (IA-DSA) studies were performed in 23 renal transplant recipients for evaluation of possible postoperative complications. Ten patients had normal studies. Five patients had minimal (<50%) narrowing at the renal artery anastomosis and five had more severe stenoses. Three patients had vascular occlusions. IA-DSA results correlated well with findings at surgery and/or conventional angiography. The major advantage of IA-DSA is the small amount of contrast material needed to perform the study. IA-DSA is particularly well suited to the evaluation of vascular problems in renal transplant patients.

  17. Brooklyn Green, North Green, South Green, & West Green, parts ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Brooklyn Green, North Green, South Green, & West Green, parts of Brown Road, Canterbury Road (Route 169), Hartford Road (Route 6), Hyde Road, Pomfret Road (Route 169), Prince Hill Road, Providence Road (Route 6), Wauregan Road (Routes 169 & 205), & Wolf Den Road, Brooklyn, Windham County, CT

  18. Renal Artery Stenting Using CO2 Gas Angiography in Combination with Iodinated Contrast Angiography.

    PubMed

    Adachi, Yuya; Endo, Akihiro; Nakashima, Ryuma; Sugamori, Takashi; Takahashi, Nobuyuki; Kinoshita, Yoshihisa; Tanabe, Kazuaki

    2016-01-01

    A 76-year-old woman was hospitalized repeatedly due to unexplained heart failure. On admission, she had hypertensive acute heart failure. Her symptoms disappeared promptly after the initial treatment; however, her systolic blood pressure remained at over 160 mmHg despite her taking three antihypertensive drugs. Closer examination revealed hemodynamically significant right renal artery stenosis and a lack of left kidney function. We performed percutaneous transluminal renal angioplasty using CO2 angiography in combination with iodinated contrast agents. The patient's renal function and blood pressure improved, however, CO2 gas-induced mild ischemic colitis occurred. We discuss the possibility of the use of combined iodinated contrast angiography and CO2 angiography to avoid contrast-induced nephropathy and the complications peculiar to CO2 angiography. PMID:27580543

  19. Unexpected Angiography Findings and Effects on Management

    PubMed Central

    Neill, Matthew; Charles, Hearns W; Gross, Jonathan S; Farquharson, Sean; Deipolyi, Amy R

    2016-01-01

    Despite progress in noninvasive imaging with computed tomography and magnetic resonance imaging, conventional angiography still contributes to the diagnostic workup of oncologic and other diseases. Arteriography can reveal tumors not evident on cross-sectional imaging, in addition to defining aberrant or unexpected arterial supply to targeted lesions. This additional and potentially unanticipated information can alter management decisions during interventional procedures. PMID:27688932

  20. Unexpected Angiography Findings and Effects on Management.

    PubMed

    Neill, Matthew; Charles, Hearns W; Gross, Jonathan S; Farquharson, Sean; Deipolyi, Amy R

    2016-01-01

    Despite progress in noninvasive imaging with computed tomography and magnetic resonance imaging, conventional angiography still contributes to the diagnostic workup of oncologic and other diseases. Arteriography can reveal tumors not evident on cross-sectional imaging, in addition to defining aberrant or unexpected arterial supply to targeted lesions. This additional and potentially unanticipated information can alter management decisions during interventional procedures. PMID:27688932

  1. Digital subtraction angiography: patient preparation and care.

    PubMed

    Hunt, A H

    1987-08-01

    The use of digital subtraction angiography (DSA) is increasing. Nurses must be prepared to provide quality care to patients who have this relatively new method for radiographically studying the blood vessels. A description of DSA and its applications is provided. Patient preparation, assessment, teaching, and management are described. Complications of the procedure and their management are presented. PMID:2958568

  2. Computed tomographic angiography in tetralogy of Fallot.

    PubMed

    Kasar, Pankajkumar Ashok; Ravikumar, Radhakrishnan; Varghese, Roy; Kotecha, Monika; Vimala, Jesudian; Kumar, Raghavan Nair Suresh

    2011-10-01

    Echocardiography is often inadequate for imaging tetralogy of Fallot, prompting cineangiography. This study prospectively evaluated multidetector computed tomographic angiography for preoperative evaluation of tetralogy of Fallot in 112 consecutive patients. Forty-eight had nonconfluent or hypoplastic pulmonary arteries (mean z-score, -2; range, -11.1-0.13) permitting only palliative or no surgery; 64 had adequate pulmonary artery anatomy (mean z-score, 0.59; range, -2.53-3.4) allowing total repair. The surgical data of 50 patients who underwent total correction were compared with transthoracic echocardiography and multidetector computed tomographic angiography findings. Multidetector computed tomographic angiography tended to reveal unsuspected collaterals and coronary abnormalities besides outlining the right ventricular outflow tract and pulmonary artery branches. The branch pulmonary artery diameter z-score was the most important determinant of surgical strategy, with the worst figures being associated with no surgical options or palliative surgery, and the best figures leading to corrective surgery. The mean radiation dose was 3.45 mSv. Multidetector computed tomographic angiography is a powerful supplement to echocardiography in the preoperative evaluation of tetralogy of Fallot.

  3. Unexpected Angiography Findings and Effects on Management

    PubMed Central

    Neill, Matthew; Charles, Hearns W; Gross, Jonathan S; Farquharson, Sean; Deipolyi, Amy R

    2016-01-01

    Despite progress in noninvasive imaging with computed tomography and magnetic resonance imaging, conventional angiography still contributes to the diagnostic workup of oncologic and other diseases. Arteriography can reveal tumors not evident on cross-sectional imaging, in addition to defining aberrant or unexpected arterial supply to targeted lesions. This additional and potentially unanticipated information can alter management decisions during interventional procedures.

  4. Filamentous, mixed micelles of triblock copolymers enhance tumor localization of indocyanine green in a murine xenograft model

    PubMed Central

    Kim, Tae Hee; Mount, Christopher W; Dulken, Benjamin W; Ramos, Jenelyn; Fu, Caroline J; Khant, Htet A; Chiu, Wah; Gombotz, Wayne R; Pun, Suzie H

    2012-01-01

    Polymeric micelles formed by the self-assembly of amphiphilic block copolymers can be used to encapsulate hydrophobic drugs for tumor-delivery applications. Filamentous carriers with high aspect ratios offer potential advantages over spherical carriers, including prolonged circulation times. In this work, mixed micelles comprised of poly (ethylene oxide)-poly-[(R)-3-hydroxybutyrate]-poly (ethylene oxide) (PEO-PHB-PEO) and Pluronic F-127 (PF-127) were used to encapsulate a near-infrared fluorophore. The micelle formulations were assessed for tumor accumulation after tail vein injection to xenograft tumor-bearing mice by non-invasive optical imaging. The mixed micelle formulation that facilitated the highest tumor accumulation was shown by cryo-electron microscopy to be filamentous in structure compared to spherical structures of pure PF-127 micelles. In addition, increased dye loading efficiency and dye stability was attained in this mixed micelle formulation compared to pure PEO-PHB-PEO micelles. Therefore, the optimized PEO-PHB-PEO/PF-127 mixed micelle formulation offers advantages for cancer delivery over micelles formed from the individual copolymer components. PMID:22118658

  5. Filamentous, mixed micelles of triblock copolymers enhance tumor localization of indocyanine green in a murine xenograft model.

    PubMed

    Kim, Tae Hee; Mount, Christopher W; Dulken, Benjamin W; Ramos, Jenelyn; Fu, Caroline J; Khant, Htet A; Chiu, Wah; Gombotz, Wayne R; Pun, Suzie H

    2012-01-01

    Polymeric micelles formed by the self-assembly of amphiphilic block copolymers can be used to encapsulate hydrophobic drugs for tumor-delivery applications. Filamentous carriers with high aspect ratios offer potential advantages over spherical carriers, including prolonged circulation times. In this work, mixed micelles composed of poly(ethylene oxide)-poly[(R)-3-hydroxybutyrate]-poly(ethylene oxide) (PEO-PHB-PEO) and Pluronic F-127 (PF-127) were used to encapsulate a near-infrared fluorophore. The micelle formulations were assessed for tumor accumulation after tail vein injection to xenograft tumor-bearing mice by noninvasive optical imaging. The mixed micelle formulation that facilitated the highest tumor accumulation was shown by cryo-electron microscopy to be filamentous in structure compared to spherical structures of pure PF-127 micelles. In addition, increased dye loading efficiency and dye stability were attained in this mixed micelle formulation compared to pure PEO-PHB-PEO micelles. Therefore, the optimized PEO-PHB-PEO/PF-127 mixed micelle formulation offers advantages for cancer delivery over micelles formed from the individual copolymer components.

  6. Biostimulative effect of 809-nm diode laser and indocyanine green on p. aeruginosa instead of photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Aysan, Nuray; Topaloglu, Nermin; Yuksel, Sahru; Gulsoy, Murat

    2013-03-01

    Photodynamic therapy (PDT) is a safe and alternative antimicrobial treatment that consists of a chemical agent, called photosensitizer, which can be activated by light of an appropriate wavelength to produce reactive oxygen species (ROS). PDT can be used for photoinactivation of bacteria in an attempt to overcome the problem of bacterial multidrug resistance. In particular, it is an effective antimicrobial treatment against infected wounds that have antibiotic resistance and wound infections would otherwise lead to mortality and morbidity. The main purpose of this study was to demonstrate the importance of PDT dosimetry (light dose and concentration of photosensitizer). If the dosimetry of PDT was not optimized properly, photoinactivation of bacteria cannot be achieved and even worse biostimulation on pathogens could be observed. This study investigated whether there is a biostimulative effect due to free oxygen radicals of PDT when light dose and photosensitizer concentration are too low. In this study, the biostimulative effect on P. aeruginosa strain was observed instead of the PDT effect, when 84 J/cm2 of energy dose (809-nm diode laser) was applied with 20, 50, 100 and 150 μg/ml of ICG concentrations. The killing effect of PDT was observed with higher ICG concentrations, such as 200, 250 μg/ml of ICG. However the killing effect was not enough to destroy pathogen efficiently with these high concentrations of ICG.

  7. Patients with Life-Threatening Arterial Renal Hemorrhage: CT Angiography and Catheter Angiography with Subsequent Superselective Embolization

    SciTech Connect

    Sommer, C. M. Stampfl, U.; Bellemann, N.; Ramsauer, S.; Loenard, B. M.; Haferkamp, A.; Hallscheidt, P.; Richter, G. M.; Kauczor, H. U.; Radeleff, B. A.

    2010-06-15

    The purpose of this study was to evaluate the technical and clinical success of superselective embolization in patients with life-threatening arterial renal hemorrhage undergoing preinterventional CT angiography. Forty-three patients with clinical signs of life-threatening arterial renal hemorrhage underwent CT angiography and catheter angiography. Superselective embolization was indicated in the case of a positive catheter angiography. Primary study goals were technical and clinical success of superselective embolization. Secondary study goals were CT angiographic and catheter angiographic image findings and clinical follow-up. The mean time interval between CT angiography and catheter angiography was 8.3 {+-} 10.3 h (range, 0.2-34.1 h). Arterial renal hemorrhage was identified with CT angiography in 42 of 43 patients (98%) and catheter angiography in 39 of 43 patients (91%) (overview angiography in 4 of 43 patients [9%], selective angiography in 16 of 43 patients [37%], and superselective angiography in 39 of 43 patients [91%]). Superselective embolization was performed in 39 of 43 patients (91%) and technically successful in 37 of 39 patients (95%). Therefore, coil embolization was performed in 13 of 37 patients (35%), liquid embolization in 9 of 37 patients (24%), particulate embolization in 1 of 37 patients (3%), and a combination in 14 of 37 patients (38%). Clinical failure occurred in 8 of 39 patients (21%) and procedure-related complications in 2 of 39 patients (5%). The 30-day mortality rate was 3%. Hemoglobin decreased significantly prior to intervention (P < 0.001) and increased significantly after intervention (P < 0.005). In conclusion, superselective embolization is effective, reliable, and safe in patients with life-threatening arterial renal hemorrhage. In contrast to overview and selective angiography, only superselective angiography allows reliable detection of arterial renal hemorrhage. Preinterventional CT angiography is excellent for detection

  8. Prognostic utility of coronary computed tomographic angiography

    PubMed Central

    Otaki, Yuka; Berman, Daniel S.; Min, James K.

    2013-01-01

    Coronary computed tomographic angiography (CCTA) employing CT scanners of 64-detector rows or greater represents a noninvasive method that enables accurate detection and exclusion of anatomically obstructive coronary artery disease (CAD), providing excellent diagnostic information when compared to invasive angiography. There are numerous potential advantages of CCTA beyond simply luminal stenosis assessment including quantification of atherosclerotic plaque volume as well as assessment of plaque composition, extent, location and distribution. In recent years, an array of studies has evaluated the prognostic utility of CCTA findings of CAD for the prediction of major adverse cardiac events, all-cause death and plaque instability. This prognostic information enhances risk stratification and, if properly acted upon, may improve medical therapy and/or behavioral changes that may enhance event-free survival. The goal of the present article is to summarize the current status of the prognostic utility of CCTA findings of CAD. PMID:23809386

  9. Types of diaphragmatic motion during hepatic angiography.

    PubMed

    Katsuda, T; Kuroda, C; Fujita, M

    1997-01-01

    To determine the types and causes of diaphragmatic motion during hepatic angiography, the authors used transarterial cut-film portography (TAP) to study movement of the diaphragm during breath-holding. Thirty-three TAP sequences were studied, and the patients' diaphragmatic motions were classified into four categories according to the distance their diaphragms moved. Results showed that the diaphragm was stationary in 33% of the TAP studies, while perpetual motion occurred in 15% of the studies, early-phase motion occurred in 12% and late-phase motion occurred in 40%. Ten sequences showed diaphragmatic motion of more than 10 mm, with eight sequences showing caudal motion and two showing cranial motion. This article discusses the cause of diaphragmatic motion during breath-holding for hepatic angiography and presents suggestions to reduce motion artifacts during the exam.

  10. Coronary angiography in Lebanon: Use and overuse.

    PubMed

    Sibai, Abla-Mehio; Tohme, Rania A; Saade, Georges A

    2008-04-25

    Coronary angiography remains the gold standard for coronary artery disease diagnosis. In Lebanon, the density of cardiac catheterization centers is almost three times that of France (9.32 vs. 2.92 per 1,000,000 individuals) and recently collated national data indicate notably a high utilization rate of 53 per 10,000 individuals, placing Lebanon third after the United States and Germany. PMID:17399809

  11. 5-F catheter in cerebral angiography

    SciTech Connect

    O'Reilly, G.V.; Naheedy, M.H.; Colucci, V.M.; Hammerschlag, S.B.

    1981-11-01

    Although the 5-F catheter is reputed to cause less vascular trauma than larger catheters, subintimal injections of contrast material have occurred following intimal damage by the catheter tip. Microscopic studies of the tips of two widely used 5-F polyethylene catheters have revealed a difference in configuration resulting in one of the catheters becoming markedly damaged during angiography. The authors make recommendations for finishing and protecting the catheter tip.

  12. Optical Coherence Tomography Angiography in Retinal Diseases

    PubMed Central

    Chalam, K. V.; Sambhav, Kumar

    2016-01-01

    Optical coherence tomography angiography (OCTA) is a new, non-invasive imaging system that generates volumetric data of retinal and choroidal layers. It has the ability to show both structural and blood flow information. Split-spectrum amplitude-decorrelation angiography (SSADA) algorithm (a vital component of OCTA software) helps to decrease the signal to noise ratio of flow detection thus enhancing visualization of retinal vasculature using motion contrast. Published studies describe potential efficacy for OCTA in the evaluation of common ophthalmologic diseases such as diabetic retinopathy, age related macular degeneration (AMD), retinal vascular occlusions and sickle cell disease. OCTA provides a detailed view of the retinal vasculature, which allows accurate delineation of microvascular abnormalities in diabetic eyes and vascular occlusions. It helps quantify vascular compromise depending upon the severity of diabetic retinopathy. OCTA can also elucidate the presence of choroidal neovascularization (CNV) in wet AMD. In this paper, we review the knowledge, available in English language publications regarding OCTA, and compare it with the conventional angiographic standard, fluorescein angiography (FA). Finally, we summarize its potential applications to retinal vascular diseases. Its current limitations include a relatively small field of view, inability to show leakage, and tendency for image artifacts. Further larger studies will define OCTA's utility in clinical settings and establish if the technology may offer a non-invasive option of visualizing the retinal vasculature, enabling us to decrease morbidity through early detection and intervention in retinal diseases. PMID:27195091

  13. Optical Coherence Tomography Angiography in Retinal Diseases.

    PubMed

    Chalam, K V; Sambhav, Kumar

    2016-01-01

    Optical coherence tomography angiography (OCTA) is a new, non-invasive imaging system that generates volumetric data of retinal and choroidal layers. It has the ability to show both structural and blood flow information. Split-spectrum amplitude-decorrelation angiography (SSADA) algorithm (a vital component of OCTA software) helps to decrease the signal to noise ratio of flow detection thus enhancing visualization of retinal vasculature using motion contrast. Published studies describe potential efficacy for OCTA in the evaluation of common ophthalmologic diseases such as diabetic retinopathy, age related macular degeneration (AMD), retinal vascular occlusions and sickle cell disease. OCTA provides a detailed view of the retinal vasculature, which allows accurate delineation of microvascular abnormalities in diabetic eyes and vascular occlusions. It helps quantify vascular compromise depending upon the severity of diabetic retinopathy. OCTA can also elucidate the presence of choroidal neovascularization (CNV) in wet AMD. In this paper, we review the knowledge, available in English language publications regarding OCTA, and compare it with the conventional angiographic standard, fluorescein angiography (FA). Finally, we summarize its potential applications to retinal vascular diseases. Its current limitations include a relatively small field of view, inability to show leakage, and tendency for image artifacts. Further larger studies will define OCTA's utility in clinical settings and establish if the technology may offer a non-invasive option of visualizing the retinal vasculature, enabling us to decrease morbidity through early detection and intervention in retinal diseases.

  14. Diagnostic yield and accuracy of CT angiography, MR angiography, and digital subtraction angiography for detection of macrovascular causes of intracerebral haemorrhage: prospective, multicentre cohort study

    PubMed Central

    Velthuis, Birgitta K; Rinkel, Gabriël J E; Algra, Ale; de Kort, Gérard A P; Witkamp, Theo D; de Ridder, Johanna C M; van Nieuwenhuizen, Koen M; de Leeuw, Frank-Erik; Schonewille, Wouter J; de Kort, Paul L M; Dippel, Diederik W; Raaymakers, Theodora W M; Hofmeijer, Jeannette; Wermer, Marieke J H; Kerkhoff, Henk; Jellema, Korné; Bronner, Irene M; Remmers, Michel J M; Bienfait, Henri Paul; Witjes, Ron J G M; Greving, Jacoba P; Klijn, Catharina J M

    2015-01-01

    Study question What are the diagnostic yield and accuracy of early computed tomography (CT) angiography followed by magnetic resonance imaging/angiography (MRI/MRA) and digital subtraction angiography (DSA) in patients with non-traumatic intracerebral haemorrhage? Methods This prospective diagnostic study enrolled 298 adults (18-70 years) treated in 22 hospitals in the Netherlands over six years. CT angiography was performed within seven days of haemorrhage. If the result was negative, MRI/MRA was performed four to eight weeks later. DSA was performed when the CT angiography or MRI/MRA results were inconclusive or negative. The main outcome was a macrovascular cause, including arteriovenous malformation, aneurysm, dural arteriovenous fistula, and cavernoma. Three blinded neuroradiologists independently evaluated the images for macrovascular causes of haemorrhage. The reference standard was the best available evidence from all findings during one year’s follow-up. Study answer and limitations A macrovascular cause was identified in 69 patients (23%). 291 patients (98%) underwent CT angiography; 214 with a negative result underwent additional MRI/MRA and 97 with a negative result for both CT angiography and MRI/MRA underwent DSA. Early CT angiography detected 51 macrovascular causes (yield 17%, 95% confidence interval 13% to 22%). CT angiography with MRI/MRA identified two additional macrovascular causes (18%, 14% to 23%) and these modalities combined with DSA another 15 (23%, 18% to 28%). This last extensive strategy failed to detect a cavernoma, which was identified on MRI during follow-up (reference strategy). The positive predictive value of CT angiography was 72% (60% to 82%), of additional MRI/MRA was 35% (14% to 62%), and of additional DSA was 100% (75% to 100%). None of the patients experienced complications with CT angiography or MRI/MRA; 0.6% of patients who underwent DSA experienced permanent sequelae. Not all patients with negative CT angiography and

  15. Green Architecture

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Ho

    Today, the environment has become a main subject in lots of science disciplines and the industrial development due to the global warming. This paper presents the analysis of the tendency of Green Architecture in France on the threes axes: Regulations and Approach for the Sustainable Architecture (Certificate and Standard), Renewable Materials (Green Materials) and Strategies (Equipments) of Sustainable Technology. The definition of 'Green Architecture' will be cited in the introduction and the question of the interdisciplinary for the technological development in 'Green Architecture' will be raised up in the conclusion.

  16. Computed Tomographic Angiography of the Abdominal Aorta.

    PubMed

    Hansen, Neil J

    2016-01-01

    Computed tomographic (CT) angiography (CTA) has become the preferred imaging test of choice for various aortic conditions because of its excellent spatial resolution, rapid image acquisition, and its wide availability. CTA provides a robust tool for planning aortic interventions and diagnosing acute and chronic vascular diseases in the abdomen. CTA is the standard for imaging aneurysms before intervention and evaluating the aorta in the acute setting to assess traumatic injury, dissection, and aneurysm rupture. Knowledge of the imaging features of these disease processes, inflammatory vasculitides, and occlusive atherosclerotic disease is essential for guiding surgical and medical management of patients. PMID:26654390

  17. Diagnostic angiography of the cerebrospinal vasculature.

    PubMed

    Rabinov, James D; Leslie-Mazwi, Thabele M; Hirsch, Joshua A

    2016-01-01

    Diagnostic catheter angiography remains the gold standard for evaluation of vascular lesions of the brain, head and neck, and spine. It is often combined with cross-sectional and functional imaging to provide a complete anatomic and physiologic workup of patients. Such data are combined with clinical information to help make treatment decisions. This chapter describes the specific techniques for arterial access and catheter navigation of the cerebrospinal vasculature. Discussion of patient positioning, injection rates, and basic anatomy of arterial and venous systems is included. Finally, important safety issues related to contrast allergy, renal failure, and complications are considered. PMID:27432664

  18. Microfluidic platform for photodynamic therapy cytotoxicity analysis of nanoencapsulated indocyanine-type photosensitizers.

    PubMed

    Jastrzębska, Elżbieta; Bazylińska, Urszula; Bułka, Magdalena; Tokarska, Katarzyna; Chudy, Michał; Dybko, Artur; Wilk, Kazimiera Anna; Brzózka, Zbigniew

    2016-01-01

    The application of nanotechnology is important to improve research and development of alternative anticancer therapies. In order to accelerate research related to cancer diagnosis and to improve the effectiveness of cancer treatment, various nanomaterials are being tested. The main objective of this work was basic research focused on examination of the mechanism and effectiveness of the introduction of nanoencapsulated photosensitizers to human carcinoma (A549) and normal cells (MRC-5). Newly encapsulated hydrophobic indocyanine-type photosensitizer (i.e., IR-780) was subjected to in vitro studies to determine its release characteristics on a molecular level. The photosensitizers were delivered to carcinoma and normal cells cultured under model conditions using multiwell plates and with the use of the specially designed hybrid (poly(dimethylsiloxane) (PDMS)/glass) microfluidic system. The specific geometry of our microsystem allows for the examination of intercellular interactions between cells cultured in the microchambers connected with microchannels of precisely defined length. Our microsystem allows investigating various therapeutic procedures (e.g., photodynamic therapy) on monoculture, coculture, and mixed culture, simultaneously, which is very difficult to perform using standard multiwell plates. In addition, we tested the cellular internalization of nanoparticles (differing in size, surface properties) in carcinoma and normal lung cells. We proved that cellular uptake of nanocapsules loaded with cyanine IR-780 in carcinoma cells was more significant than in normal cells. We demonstrated non cytotoxic effect of newly synthesized nanocapsules built with polyelectrolytes (PEs) of opposite surface charges: polyanion-polysodium-4-styrenesulphonate and polycation-poly(diallyldimethyl-ammonium) chloride loaded with cyanine IR-780 on human lung carcinoma and normal cell lines. However, the differences observed in the photocytotoxic effect between two types of

  19. Lateral rectus palsy following coronary angiography and percutaneous coronary intervention

    PubMed Central

    Nicholson, Luke; Jones, Ruth; Hughes, David S

    2014-01-01

    We present a rare case of unilateral lateral rectus palsy following an elective coronary angiography and percutaneous coronary intervention in a 78-year-oldwoman. Ophthalmoplegia following coronary angiography is extremely rare and this is the first case of a unilateral lateral rectus palsy following the procedure. PMID:24536054

  20. Contrast agent choice for intravenous coronary angiography

    SciTech Connect

    Zeman, H.D.; Siddons, D.P.

    1989-01-01

    The screening of the general population for coronary artery disease would be practical if a method existed for visualizing the extent of occlusion after an intravenous injection of contrast agent. Measurements performed with monochromatic synchrotron radiation x-rays and an iodine containing contrast agent at the Stanford Synchrotron Radiation Laboratory have shown that such an intravenous angiography procedure would be possible with an adequately intense monochromatic x-ray source. Because of the size and cost of synchrotron radiation facilities it would be desirable to make the most efficient use of the intensity available, while reducing as much as possible the radiation dose experienced by the patient. By choosing contrast agents containing elements with a higher atomic number than iodine, it is possible to both improve the image quality and reduce the patient radiation dose, while using the same synchrotron source. By using Si monochromator crystals with a small mosaic spread, it is possible to increase the x-ray flux available for imaging by over an order of magnitude, without any changes in the storage ring or wiggler magnet. The most critical imaging task for intravenous coronary angiography utilizing synchrotron radiation x-rays is visualizing a coronary artery through the left ventricle or aorta which also contains a contrast agent. Calculations have been made of the signal to noise ratio expected for this imaging task for various contrast agents with atomic numbers between that of iodine and bismuth.

  1. Computed tomography imaging and angiography - principles.

    PubMed

    Kamalian, Shervin; Lev, Michael H; Gupta, Rajiv

    2016-01-01

    The evaluation of patients with diverse neurologic disorders was forever changed in the summer of 1973, when the first commercial computed tomography (CT) scanners were introduced. Until then, the detection and characterization of intracranial or spinal lesions could only be inferred by limited spatial resolution radioisotope scans, or by the patterns of tissue and vascular displacement on invasive pneumoencaphalography and direct carotid puncture catheter arteriography. Even the earliest-generation CT scanners - which required tens of minutes for the acquisition and reconstruction of low-resolution images (128×128 matrix) - could, based on density, noninvasively distinguish infarct, hemorrhage, and other mass lesions with unprecedented accuracy. Iodinated, intravenous contrast added further sensitivity and specificity in regions of blood-brain barrier breakdown. The advent of rapid multidetector row CT scanning in the early 1990s created renewed enthusiasm for CT, with CT angiography largely replacing direct catheter angiography. More recently, iterative reconstruction postprocessing techniques have made possible high spatial resolution, reduced noise, very low radiation dose CT scanning. The speed, spatial resolution, contrast resolution, and low radiation dose capability of present-day scanners have also facilitated dual-energy imaging which, like magnetic resonance imaging, for the first time, has allowed tissue-specific CT imaging characterization of intracranial pathology. PMID:27432657

  2. Carbon Dioxide Angiography: Scientific Principles and Practice

    PubMed Central

    Cho, Kyung Jae

    2015-01-01

    Carbon dioxide (CO2) is a colorless, odorless gas which occurs naturally in the atmosphere and human body. With the advent of digital subtraction angiography, the gas has been used as a safe and useful alternative contrast agent in both arteriography and venography. Because of its lack of renal toxicity and allergic potential, CO2 is a preferred contrast agent in patients with renal failure or contrast allergy, and particularly in patients who require large volumes of contrast medium for complex endovascular procedures. Understanding of the unique physical properties of CO2 (high solubility, low viscosity, buoyancy, and compressibility) is essential in obtaining a successful CO2 angiogram and in guiding endovascular intervention. Unlike iodinated contrast material, CO2 displaces the blood and produces a negative contrast for digital subtraction imaging. Indications for use of CO2 as a contrast agent include: aortography and runoff, detection of bleeding, renal transplant arteriography, portal vein visualization with wedged hepatic venous injection, venography, arterial and venous interventions, and endovascular aneurysm repair. CO2 should not be used in the thoracic aorta, the coronary artery, and cerebral circulation. Exploitation of CO2 properties, avoidance of air contamination and facile catheterization technique are important to the safe and effective performance of CO2 angiography and CO2-guided endovascular intervention. PMID:26509137

  3. Perfusion Angiography in Acute Ischemic Stroke

    PubMed Central

    Liebeskind, David S.

    2016-01-01

    Visualization and quantification of blood flow are essential for the diagnosis and treatment evaluation of cerebrovascular diseases. For rapid imaging of the cerebrovasculature, digital subtraction angiography (DSA) remains the gold standard as it offers high spatial resolution. This paper lays out a methodological framework, named perfusion angiography, for the quantitative analysis and visualization of blood flow parameters from DSA images. The parameters, including cerebral blood flow (CBF) and cerebral blood volume (CBV), mean transit time (MTT), time-to-peak (TTP), and Tmax, are computed using a bolus tracking method based on the deconvolution of the time-density curve on a pixel-by-pixel basis. The method is tested on 66 acute ischemic stroke patients treated with thrombectomy and/or tissue plasminogen activator (tPA) and also evaluated on an estimation task with known ground truth. This novel imaging tool provides unique insights into flow mechanisms that cannot be observed directly in DSA sequences and might be used to evaluate the impact of endovascular interventions more precisely. PMID:27446232

  4. Coronary CT angiography: Beyond morphological stenosis analysis.

    PubMed

    Sun, Zhonghua

    2013-12-26

    Rapid technological developments in computed tomography (CT) imaging technique have made coronary CT angiography an attractive imaging tool in the detection of coronary artery disease. Despite visualization of excellent anatomical details of the coronary lumen changes, coronary CT angiography does not provide hemodynamic changes caused by presence of plaques. Computational fluid dynamics (CFD) is a widely used method in the mechanical engineering field to solve complex problems through analysing fluid flow, heat transfer and associated phenomena by using computer simulations. In recent years, CFD is increasingly used in biomedical research due to high performance hardware and software. CFD techniques have been used to study cardiovascular hemodynamics through simulation tools to assist in predicting the behaviour of circulatory blood flow inside the human body. Blood flow plays a key role in the localization and progression of coronary artery disease. CFD simulation based on 3D luminal reconstructions can be used to analyse the local flow fields and flow profiling due to changes of vascular geometry, thus, identifying risk factors for development of coronary artery disease. The purpose of this article is to provide an overview of the coronary CT-derived CFD applications in coronary artery disease.

  5. Motion analysis and removal in intensity variation based OCT angiography.

    PubMed

    Liu, Xuan; Kirby, Mitchell; Zhao, Feng

    2014-11-01

    In this work, we investigated how bulk motion degraded the quality of optical coherence tomography (OCT) angiography that was obtained through calculating interframe signal variation, i.e., interframe signal variation based optical coherence angiography (isvOCA). We demonstrated theoretically and experimentally that the spatial average of isvOCA signal had an explicit functional dependency on bulk motion. Our result suggested that the bulk motion could lead to an increased background in angiography image. Based on our motion analysis, we proposed to reduce image artifact induced by transient bulk motion in isvOCA through adaptive thresholding. The motion artifact reduced angiography was demonstrated in a 1.3μm spectral domain OCT system. We implemented signal processing using graphic processing unit for real-time imaging and conducted in vivo microvasculature imaging on human skin. Our results clearly showed that the adaptive thresholding method was highly effective in the motion artifact removal for OCT angiography.

  6. Pulmonary arterial hypertension: an imaging review comparing MR pulmonary angiography and perfusion with multidetector CT angiography

    PubMed Central

    Junqueira, F P; Lima, C M A O; Coutinho, A C; Parente, D B; Bittencourt, L K; Bessa, L G P; Domingues, R C; Marchiori, E

    2012-01-01

    Pulmonary hypertension (PH) is a progressive disease that leads to substantial morbidity and eventual death. Pulmonary multidetector CT angiography (MDCTA), pulmonary MR angiography (MRA) and MR-derived pulmonary perfusion (MRPP) imaging are non-invasive imaging techniques for the differential diagnosis of PH. MDCTA is considered the gold standard for the diagnosis of pulmonary embolism, one of the most common causes of PH. MRA and MRPP are promising techniques that do not require the use of ionising radiation or iodinated contrast material, and can be useful for patients for whom such material cannot be used. This review compares the imaging aspects of pulmonary MRA and 64-row MDCTA in patients with chronic thromboembolic or idiopathic PH. PMID:22932061

  7. Patient radiation dose from computed tomography angiography and digital subtraction angiography of the brain

    NASA Astrophysics Data System (ADS)

    Netwong, Y.; Krisanachinda, A.

    2016-03-01

    The 64-row multidetector computed tomography angiography (64-MDCTA) provides vascular image quality of the brain similar to digital subtraction angiography (DSA), but the effective dose of CTA is lower than DSA studied in phantom. The purpose of this study is to evaluate the effective dose from 64-MDCTA and DSA. Effective dose (according to ICRP 103) from 64-MDCTA and DSA flat panel detector for cerebral vessels examination of the brain using standard protocols as recommended by the manufacturer was calculated for 30 cases of MDCTA (15 male and 15 female).The mean patient age was 49.5 (23-89) yrs. 30 cases of DSA (14 male and 16 female), the mean patient age was 46.8 (21-81) yrs. For CTA, the mean effective dose was 3.7 (2.82- 5.19) mSv. For DSA, the mean effective dose was 5.78 (3.3-10.06) mSv. The effective dose of CTA depends on the scanning protocol and scan length. Low tube current can reduce patient dose whereas the number of exposures and number of series in 3D rotational angiography (3D RA) resulted in increasing effective dose in DSA patients.

  8. Magnetic resonance angiography: physical principles and applications.

    PubMed

    Kiruluta, Andrew J M; González, R Gilberto

    2016-01-01

    Magnetic resonance angiography (MRA) is the visualization of hemodynamic flow using imaging techniques that discriminate flowing spins in blood from those in stationary tissue. There are two classes of MRA methods based on whether the magnetic resonance imaging signal in flowing blood is derived from the amplitude of the moving spins, the time-of-flight methods, or is based on the phase accumulated by these flowing spins, as in phase contrast methods. Each method has particular advantages and limitations as an angiographic imaging technique, as evidenced in their application space. Here we discuss the physics of MRA for both classes of imaging techniques, including contrast-enhanced approaches and the recent rapid expansion of the techniques to fast acquisition and processing techniques using parallel imaging coils as well as their application in high-field MR systems such as 3T and 7T. PMID:27432663

  9. Adaptive thresholding of digital subtraction angiography images

    NASA Astrophysics Data System (ADS)

    Sang, Nong; Li, Heng; Peng, Weixue; Zhang, Tianxu

    2005-10-01

    In clinical practice, digital subtraction angiography (DSA) is a powerful technique for the visualization of blood vessels in the human body. Blood vessel segmentation is a main problem for 3D vascular reconstruction. In this paper, we propose a new adaptive thresholding method for the segmentation of DSA images. Each pixel of the DSA images is declared to be a vessel/background point with regard to a threshold and a few local characteristic limits depending on some information contained in the pixel neighborhood window. The size of the neighborhood window is set according to a priori knowledge of the diameter of vessels to make sure that each window contains the background definitely. Some experiments on cerebral DSA images are given, which show that our proposed method yields better results than global thresholding methods and some other local thresholding methods do.

  10. Digital subtraction angiography: overview of technical principles.

    PubMed

    Harrington, D P; Boxt, L M; Murray, P D

    1982-10-01

    The rapid development of equipment for digital subtraction angiography (DSA) has created a new diagnostic imaging method, the limits of which have not been scientifically determined. Yet through aggressive marketing, the technique is already beginning to permeate radiologic practice. The radiologist requires technical understanding of the instrumentation for informed judgment on clinical applications. DSA depends on the mating of high-resolution image-intensifier and television technology with computerized information manipulation and storage. In this overview, the individual components of the system are analyzed, from the generator to the image intensifier to the television system to the associated computer. By examining the role of each component, the current limitations and the areas of possible future development of DSA can be understood. This provides a basis for dealing with current technology and for evaluating the rapid technological changes that will occur over the next few years. PMID:6751053

  11. Targeted ROTational magnetic resonance angiography (TROTA).

    PubMed

    Goldfarb, James W

    2007-09-01

    An MR angiographic method is presented in which a rotating 2D slice is centered on and targets a region or vessel of interest. Collecting a series of slices rotating about the center of the targeted region yields projection data sufficient for the calculation of 3D volumetric data of the region using conventional backprojection reconstruction techniques. These volumetric data depict the internal structure of the vessel and can be processed and displayed with multiplanar reformation, maximum intensity projections, and 3D rendering algorithms. The rotational angiographic acquisition preserves the high temporal resolution of 2D-MR digital subtraction angiography with the added benefit of 3D reformatting and display. The method is explained in detail and results from phantom and human experiments are presented.

  12. Digital subtraction angiography in extremity trauma

    SciTech Connect

    Goodman, P.C.; Jeffrey, R.B. Jr.; Brant-Zawadzki, M.

    1984-10-01

    Digital subtraction angiography (DSA) may have considerable impact on the work-up of patients who have suffered trauma. The angiographic evaluation of vascular injuries can be accomplished rapidly and with minimal catheter use and manipulation, which is particularly important for those critically ill patients who have significant immobility because of multiple fractures. The authors retrospectively reviewed the digital subtraction angiograms in 50 consecutive cases of extremity trauma. The quality of the images in 44 of these permitted a confident diagnosis, the accuracy of which was confirmed by surgical or clinical follow-up. DSA reduces the time required to perform the procedure, the amount of contrast material injected, patient discomfort, and film cost. Its major disadvantage is the limited field size of the image intensifier.

  13. Indications for angiography in blunt thoracic trauma

    SciTech Connect

    Barcia, T.C.; Livoni, J.P.

    1983-04-01

    The clinical charts and radiographs of 113 patients who underwent aortography for suspected blunt injury to the aorta and brachiocephalic vessels were reviewed to identify the most useful indications for angiography. Eight previously described clinical criteria and 14 previously described radiographic criteria were evaluated in each of these patients, 27 of whom had either an aortic or brachiocephalic injury. Contrary to previous reports, our data indicate that no single clinical or radiographic sign is highly specific for vascular injury. An abnormal aortic outline and mediastinal widening remain the most sensitive criteria, although these were also present in a large number of patients without vascular injury. Displaced paraspinous lines and nasogastric tubes are also useful signs.

  14. Code Green.

    ERIC Educational Resources Information Center

    McMinn, John

    2002-01-01

    Assesses the integrated approach to green design in the new Computer Science Building at Toronto's York University. The building design fulfills the university's demand to combine an energy efficient design with sustainability. Floor and site plans are included. (GR)

  15. Green Infrastructure

    EPA Science Inventory

    Large paved surfaces keep rain from infiltrating the soil and recharging groundwater supplies. Alternatively, Green infrastructure uses natural processes to reduce and treat stormwater in place by soaking up and storing water. These systems provide many environmental, social, an...

  16. Green Roofs

    SciTech Connect

    2004-08-01

    A New Technology Demonstration Publication Green roofs can improve the energy performance of federal buildings, help manage stormwater, reduce airborne emissions, and mitigate the effects of urban heat islands.

  17. Green Coffee

    MedlinePlus

    ... orange in combination with caffeine or caffeine-containing herbs can increase blood pressure and heart rate in ... serious heart problems. Avoid this combination.Caffeine-containing herbs and supplementsUsing green coffee along with other caffeine- ...

  18. Iris angiography in cystoid macular edema after cataract extraction.

    PubMed

    Kottow, M; Hendrickson, P

    1975-07-01

    Iris angiography was performed on eight patients (nine eyes), who had cystoid macular edema postcataract extraction. The fundus fluorescein angiographies showed typical star-shaped, multiloculated staining of the macular area. The iris angiographies demonstrated moderate to massive leakage of dye from the iris, and possibly leakage of ciliary body vessels into the anterior chamber, thus evidencing the until now suspected but undocumented fact that fluorescein leakage is not restricted to the fundus vessels. These data tend to support the idea that this type of macular edema is due to a vascular abnormality, and not to altered vitreous mechanics.

  19. Radionuclide angiography in juvenile angiofibroma of the nasopharynx.

    PubMed

    Castor, W F; Lentle, B C; Glazebrook, G A

    1975-01-01

    Radionuclide angiography was performed by intravenous injection of 99mTc-pertechnetate and recorded by serial gamma camera scintiphotographs. Its usefulness as a prebiopsy or preoperative procedure is demonstrated by two case reports of angiofibroma of the nasopharynx and it was also found to be useful for radiation therapy follow-up assessment. Radionuclide angiography offers a convenient and safe method to assess the vascularity of a mass and by this technique the surgeon may be alerted to the possibility of severe postbiopsy hemorrhage and also the occasional dramatic complications of radiological carotid angiography can be avoided.

  20. Nuclide angiography in Paget's disease of the skull: Case report.

    PubMed

    Fitzer, P M

    1975-07-01

    Early-appearing and persistent uptake on nuclear angiography in a patient with early Paget's disease of the skull is described. The diagnosis of subdural hematoma may be ruled out at the time of brain scanning. PMID:1167280

  1. Digital subtraction angiography in pediatric cerebrovascular occlusive disease

    SciTech Connect

    Faerber, E.N.; Griska, L.A.B.; Swartz, J.D.; Capitanio, M.A.; Popky, G.L.

    1984-08-01

    While conventional angiography has been used to demonstrate cerebrovascular occlusive disease in the past, digital subtraction angiography (DSA) is capable of showing progressive vascular involvement with ease, simplicity, and extremely low morbidity, making it particularly well suited for children and outpatients either alone or coordinated with computed tomography. The authors discuss the usefulness and advantages of DSA as demonstrated in 7 infants and children with hemiplegia, 4 of whom had sickle-cell disease.

  2. [The importance of angiography in primary retroperitoneal tumors (author's transl)].

    PubMed

    Bardach, G; Grabenwöger, F

    1982-08-01

    During the past ten years, 18 patients with primary retroperitoneal tumours were operated on in the Second Surgical Department of Vienna University. Angiography was performed preoperatively in seven patients. In five out of seven patients, the origin of the tumour and its histological grade could be determined angiographically. Hence, angiography is indicated if surgery is contemplated in addition to the more recent tomographic imaging techniques (ultrasound, computed tomography).

  3. Diagnosing intracranial vasculitis: The roles of MR and angiography

    SciTech Connect

    Harris, K.G.; Tran, D.D.; Sickels, W.J.; Cornell, S.H.; Yuh, W.T.C. )

    1994-02-01

    To describe our experience with MR and angiography in diagnosing intracranial vasculitis and to test the hypothesis that MR can be used to screen for patients unlikely to have vasculitis. Ninety-two patients who had angiography with [open quotes]exclude vasculitis[close quotes] as the indication or who had angiography and a clinical diagnosis of vasculitis were identified. Angiograms of all 92 patients and the MRs of the 70 patients who had both studies were reviewed. Eleven patients had intracranial vasculitis. Angiography showed characteristic changes in 8. MR performed in 9 of 11 vasculitis cases, was significantly abnormal in all 9. Among 70 patients who had both studies, 19 had MR that was completely normal or showed only incidental findings. None of these 19 was diagnosed with vasculitis. The diagnostic yield of angiography performed to exclude vasculitis was only 6%. Evaluation for intracranial vasculitis should include MR. A negative MR excludes intracranial vasculitis more definitively than does a negative angiogram and makes the likelihood of finding vasculitis with angiography negligible. 23 refs., 5 figs., 4 tabs.

  4. Optical Coherence Tomography Angiography in Choroideremia

    PubMed Central

    Jain, Nieraj; Jia, Yali; Gao, Simon S.; Zhang, Xinbo; Weleber, Richard G.; Huang, David; Pennesi, Mark E.

    2016-01-01

    Importance Novel therapies for choroideremia, an X-linked recessive chorioretinal degeneration, demand a better understanding of the primary site(s) of cellular degeneration. Optical coherence tomography angiography allows for choriocapillaris (CC) imaging. We compared the extent of structural alterations of the CC, retinal pigment epithelium, and photoreceptors with multimodal imaging. Observations In a clinical case series conducted from September 15,2014, through February 5,2015,14 eyes of 7 male patients with choroideremia (median age, 34 years [interquartile range, 15-46 years]; age range, 13-48 years), 4 eyes of 2 women with choroideremia carrier state (both in mid-50s), and 6 eyes of 6 controls (median age, 42.5 years [interquartile range, 33-55 years]; age range, 24-55 years) underwent multimodal imaging with optical coherence tomography angiography and electroretinography. The mean (SD) macular CC density was 82.9% (13.4%) in patients with choroideremia, 93.0% (3.8%) in female carriers, and 98.2% (1.3%) in controls. The mean (SD) CC density in affected eyes was higher in regions with preserved (92.6% [5.8%]) vs absent (75.9% [12.6%]) ellipsoid zone (mean difference. 16.7%; 95% CI, 12.1% to 21.3%; P < .001). Seventeen of 18 eyes of the patients and carriers had outer retinal tubulations forming pseudopod-like extensions from islands of preserved ellipsoid zone. Outer retinal tubulations were associated with absence of underlying retinal pigment epithelium and were longer (r = −0.62; 95% CI, −0.84 to −0.19; P < .001) and more numerous (r = −0.71; 95% CI, −0.91 to −0.27; P < .001) in more severely affected eyes. Conclusions and Relevance These findings suggest that regional changes in CC density correlate with photoreceptor structural alterations in choroideremia. Although closely coupled, the results suggest that retinal pigment epithelium loss is more extensive than photoreceptor loss. PMID:27149258

  5. Contrast agent choice for intravenous coronary angiography

    NASA Astrophysics Data System (ADS)

    Zeman, H. D.; Siddons, D. P.

    1990-05-01

    The screening of the general population for coronary artery disease would be practical if a method existed for visualizing the extent of occlusion after an intravenous injection of contrast agent. Measurements performed with monochromatic synchrotron radiation X-rays and an iodine-containing contrast agent at the Stanford Synchrotron Radiation Laboratory have shown that such an intravenous angiography procedure would be possible with an adequately intense monochromatic X-ray source. Because of the size and cost of synchrotron radiation facilities it would be desirable to make the most efficient use of the intensity available, while reducing as much as possible the radiation dose experienced by the patient. By choosing contrast agents containing elements with a higher atomic number than iodine, it is possible to both improve the image quality and reduce the patient radiation dose, while using the same synchrotron radiation source. By using Si monochromator crystals with a small mosaic spread, it is possible to increase the X-ray flux available for imaging by over an order of magnitude, without any changes in the storage ring or wiggler magnet. The most critical imaging task for intravenous coronary angiography utilizing synchrotron radiation X-rays is visualizing a coronary artery through the left ventricle or aorta which also contain contrast agent. Calculations have been made of the signal to noise ratio expected for this imaging task for various contrast agents with atomic numbers between that of iodine and bismuth. The X-ray energy spectrum of the X-17 superconduction wiggler beam line at the National Synchrotron Light Source at Brookhaven National Laboratory has been used for these calculations. Both perfect Si crystals and Si crystals with a small mosaic spread are considered as monochromators. Contrast agents containing Gd or Yb seem to have about the optimal calculated signal to noise ratio. Gd-DTPA is already approved for use as a contrast agent for

  6. Green foot.

    PubMed

    LeFeber, W P; Golitz, L E

    1984-07-01

    Pseudomonas aeruginosa may infect the skin surface, nails, hair follicles, or deeper tissues. We report a 13-year-old male with an asymptomatic green discoloration of the toenails and sole of the right foot. Pseudomonas aeruginosa was cultured from the shoe, but not from the discolored skin. We suspect that constant wearing of occlusive, rubber-soled, basketball shoes associated with hyperhidrosis allowed colonization of his shoe with pseudomonas. This case is unique in that colonization resulted in a green color of the foot not associated with infection of the skin.

  7. Unusual congenital aortic anomaly with rare common celiamesenteric trunk variation: MR angiography and digital substraction angiography findings.

    PubMed

    Tosun, Ozgur; Sanlidilek, Umman; Cetin, Huseyin; Ozdemir, Ozcan; Kurt, Aydin; Sakarya, Mehmet Emin; Tas, Ismet

    2007-01-01

    Magnetic resonance angiography and digital substraction angiography (DSA) findings in a case with a rare congenital thoracoabdominal aortic hypoplasia and common celiamesenteric trunk variation with occlusion of infrarenal abdominal aorta are described here. To our knowledge, this aortic anomaly has not been previously described in the English literature. DSA is the optimum imaging modality for determination of aortic hypoplasia, associated vascular malformations, collateral vessels, and direction of flow within vessels. PMID:17468907

  8. Unusual Congenital Aortic Anomaly with Rare Common Celiamesenteric Trunk Variation: MR Angiography and Digital Substraction Angiography Findings

    SciTech Connect

    Tosun, Ozgur Sanlidilek, Umman; Cetin, Huseyin; Ozdemir, Ozcan; Kurt, Aydin; Sakarya, Mehmet Emin; Tas, Ismet

    2007-09-15

    Magnetic resonance angiography and digital substraction angiography (DSA) findings in a case with a rare congenital thoracoabdominal aortic hypoplasia and common celiamesenteric trunk variation with occlusion of infrarenal abdominal aorta are described here. To our knowledge, this aortic anomaly has not been previously described in the English literature. DSA is the optimum imaging modality for determination of aortic hypoplasia, associated vascular malformations, collateral vessels, and direction of flow within vessels.

  9. Microfocal angiography of the pulmonary vasculature

    NASA Astrophysics Data System (ADS)

    Clough, Anne V.; Haworth, Steven T.; Roerig, David T.; Linehan, John H.; Dawson, Christopher A.

    1998-07-01

    X-ray microfocal angiography provides a means of assessing regional microvascular perfusion parameters using residue detection of vascular indicators. As an application of this methodology, we studied the effects of alveolar hypoxia, a pulmonary vasoconstrictor, on the pulmonary microcirculation to determine changes in regional blood mean transit time, volume and flow between control and hypoxic conditions. Video x-ray images of a dog lung were acquired as a bolus of radiopaque contrast medium passed through the lobar vasculature. X-ray time-absorbance curves were acquired from arterial and microvascular regions-of-interest during both control and hypoxic alveolar gas conditions. A mathematical model based on indicator-dilution theory applied to image residue curves was applied to the data to determine changes in microvascular perfusion parameters. Sensitivity of the model parameters to the model assumptions was analyzed. Generally, the model parameter describing regional microvascular volume, corresponding to area under the microvascular absorbance curve, was the most robust. The results of the model analysis applied to the experimental data suggest a significant decrease in microvascular volume with hypoxia. However, additional model assumptions concerning the flow kinematics within the capillary bed may be required for assessing changes in regional microvascular flow and mean transit time from image residue data.

  10. Coherent bremsstrahlung used for digital subtraction angiography

    NASA Astrophysics Data System (ADS)

    Überall, Herbert

    2007-05-01

    Digital subtraction angiography (DSA), also known as Dichromography, using synchrotron radiation beams has been developed at Stanford University (R. Hofstadter) and was subsequently taken over at the Brookhaven Synchrotron and later at Hamburg (HASYLAB) [see, e.g., W.R. Dix, Physik in unserer Zeit. 30 (1999) 160]. The imaging of coronary arteries is carried out with an iodine-based contrast agent which need not be injected into the heart. The radiation must be monochromatized and is applied above and below the K-edge of iodine (33.16 keV), with a subsequent digital subtraction of the two images. Monochromatization of the synchrotron radiation causes a loss of intensity of 10 -3. We propose instead the use of coherent bremsstrahlung [see, e.g., A.W. Saenz and H. Uberall, Phys. Rev. B25 (1982) 448] which is inherently monochromatic, furnishing a flux of 10 12 photon/sec. This requires a 10-20 MeV electron linac which can be obtained by many larger hospitals, eliminating the scheduling problems present at synchrotrons. The large, broad incoherent bremsstrahlung background underlying the monochromatic spike would lead to inadmissible overexposure of the patient. This problem can be solved with the use of Kumakhov's capillary optics [see e.g., S.B.Dabagov, Physics-Uspekhi 46 (2003) 1053]: the low-energy spiked radiation can be deflected towards the patient, while the higher energy incoherent background continues forward, avoiding the patient who is placed several meters from the source.

  11. Going Green.

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2001-01-01

    Discusses the benefits that schools and universities can gain by adopting environmentally sensitive practices in their design and operations. Includes resources for locating additional information about green schools and a list of 11 features that represent a comprehensive, sustainable school. (GR)

  12. Green Schools.

    ERIC Educational Resources Information Center

    Kozlowski, David, Ed.

    1998-01-01

    Discusses "going green" concept in school-building design, its cost-savings benefits through more efficient energy use, and its use by the State University of New York at Buffalo as solution to an energy retrofit program. Examples are provided of how this concept can be used, even for small colleges without large capital budgets, and how it can…

  13. Green Power

    ERIC Educational Resources Information Center

    Schaffhauser, Dian

    2009-01-01

    In the world of higher education, even the most ambitious sustainability plans often begin with tiny steps taken by individual departments. Michael Crowley, a program manager for Environmental Health & Engineering (EH&E) and former assistant director of the Harvard (Massachusetts) Green Campus Initiative, explains that going for small wins through…

  14. Buying Green

    ERIC Educational Resources Information Center

    Layng, T. V. Joe

    2010-01-01

    In "Buying Green," Joe Layng recognizes that, like all choices we make, our decisions as consumers are more likely to be influenced by their short-term consequences for us as individuals (price, quality) than they are by their long-term consequences for society (environmental impact). He believes that the equation can be tilted in favor of greener…

  15. Green pioneers.

    PubMed

    Trueland, Jennifer

    The government has set tough targets for the NHS in England to reduce its carbon footprint. In this article, nurses and managers at Nottinghamshire Healthcare NHS Trust explain how a programme of 'greening' initiatives - including a trial of electric cars for community staff - have slashed the trust's CO2 output.

  16. Think green.

    PubMed

    Serb, Chris

    2008-08-01

    Hospitals typically don't come to mind when you think about cutting-edge environmental programs, but that's changing. Rising energy costs, the need to replace older facilities, and a growing environmental consciousness have spurred hospitals nationwide to embrace a green ideology. The executive suite is a vocal and active player in these efforts. PMID:19062433

  17. Green pioneers.

    PubMed

    Trueland, Jennifer

    The government has set tough targets for the NHS in England to reduce its carbon footprint. In this article, nurses and managers at Nottinghamshire Healthcare NHS Trust explain how a programme of 'greening' initiatives - including a trial of electric cars for community staff - have slashed the trust's CO2 output. PMID:23763098

  18. Going Green

    ERIC Educational Resources Information Center

    Witkowsky, Kathy

    2009-01-01

    Going green saves money and can even make money. Sustainable practices promote better health, less absenteeism, and more productivity. They also attract students, who are paying increasing attention to schools' environmental policies. Beyond being the smart thing to do, administrators at the University of Washington say repeatedly, it's the right…

  19. Green Leaders

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2008-01-01

    More and more people are viewing the world through green-tinted glasses, and those ideas about making school and university facilities more environmentally friendly suddenly are appearing to be prudent and responsible. Among the groups that have been advocating for environmentally friendly school design for years are the Collaborative for High…

  20. Think green.

    PubMed

    Serb, Chris

    2008-08-01

    Hospitals typically don't come to mind when you think about cutting-edge environmental programs, but that's changing. Rising energy costs, the need to replace older facilities, and a growing environmental consciousness have spurred hospitals nationwide to embrace a green ideology. The executive suite is a vocal and active player in these efforts.

  1. Multidetector computed tomographic angiography of aberrant subclavian arteries.

    PubMed

    Türkvatan, Aysel; Büyükbayraktar, Fatma Gül; Olçer, Tülay; Cumhur, Turhan

    2009-02-01

    The purpose of this study was to evaluate the utility of 16-slice multidetector computed tomographic (MDCT) angiography for identifying anatomic features of aberrant subclavian arteries. Seventeen patients with aberrant subclavian arteries were assessed by MDCT angiography. The aortic arch position, the presence of a Kommerell's diverticulum, aneurysm, vascular compression of trachea and oesophagus and associated cardiovascular abnormalities were evaluated. MDCT findings were confirmed by surgery in eight patients but in the other nine patients no further evaluation or management was warranted as the aberrant subclavian artery had no significant clinical consequence. Eleven patients had an aberrant right subclavian artery arising from the left aortic arch and six patients had an aberrant left subclavian artery arising from the right aortic arch. Kommerell's diverticulum was identified in three patients with an aberrant right subclavian artery and in five patients with an aberrant left subclavian artery. In two patients it was aneurysmal. Oesophageal compression was detected in eight patients, and tracheal compression was identified in only one paediatric patient. An aberrant subclavian artery was associated with complex congenital heart disease in one patient, intracardiac defects in two patients, aortic coarctation in two patients, patent ductus arteriosus in two patients and an aberrant vertebral artery in one patient. In conclusion, MDCT angiography is superior to digital subtraction angiography for the assessment of aberrant subclavian arteries since digital subtraction angiography has only a poor ability to visualize adjacent structures completely and is invasive in nature. MDCT angiography or magnetic resonance angiography are the current standard in the initial evaluation of thoracic vascular anomalies.

  2. Multi-Detector Computed Tomography Angiography for Coronary Artery Disease

    PubMed Central

    2005-01-01

    Executive Summary Purpose Computed tomography (CT) scanning continues to be an important modality for the diagnosis of injury and disease, most notably for indications of the head and abdomen. (1) According to a recent report published by the Canadian Institutes of Health Information, (1) there were about 10.3 scanners per million people in Canada as of January 2004. Ontario had the fewest number of CT scanners per million compared to the other provinces (8 CT scanners per million). The wait time for CT in Ontario of 5 weeks approaches the Canadian median of 6 weeks. This health technology and policy appraisal systematically reviews the published literature on multidetector CT (MDCT) angiography as a diagnostic tool for the newest indication for CT, coronary artery disease (CAD), and will apply the results of the review to current health care practices in Ontario. This review does not evaluate MDCT to detect coronary calcification without contrast medium for CAD screening purposes. The Technology Compared with conventional CT scanning, MDCT can provide smaller pieces of information and can cover a larger area faster. (2) Advancing MDCT technology (8, 16, 32, 64 slice systems) is capable of producing more images in less time. For general CT scanning, this faster capability can reduce the time that patients must stay still during the procedure, thereby reducing potential movement artefact. However, the additional clinical utility of images obtained from faster scanners compared to the images obtained from conventional CT scanners for current CT indications (i.e., non-moving body parts) is not known. There are suggestions that the new fast scanners can reduce wait times for general CT. MDCT angiography that utilizes a contrast medium, has been proposed as a minimally invasive replacement to coronary angiography to detect coronary artery disease. MDCT may take between 15 to 45 minutes; coronary angiography may take up to 1 hour. Although 16-slice and 32-slice CT

  3. Delayed kidney injury following coronary angiography

    PubMed Central

    WANG, FENG; PENG, CHENG; ZHANG, GUANGYUAN; ZHAO, QING; XUAN, CHANGYOU; WEI, MENG; WANG, NIANSONG

    2016-01-01

    It is occasionally observed that patients without contrast-induced nephropathy (CIN) develop kidney injury within 1–6 months after coronary angiography (CAG), termed delayed CIN or delayed kidney injury (DKI) following CAG. The present study aimed to investigate the associated risk factors of delayed CIN and its possible pathogenesis. Subjects with CAG or coronary stenting from January 2008 to December 2009 were studied. A retrospective survey on DKI after CAG was conducted and the risk factors were analyzed. There were 436 cases receiving CAG with complete medical records enrolled in the present cohort, in which the DKI incidence was 7.1% (31/436). Patients with DKI after CAG exhibited lower hemoglobin (121.2±17.3 vs. 133.8±18.6 g/l), estimated glomerular filtration rate (eGFR; 66.4±30.2 vs. 71.9±28.6 ml/min), higher serum creatinine (110.9±43.2 vs. 91.7±37.6 µmol/l), higher rate of heart failure (22.6 vs. 5.4%) and 300 mg aspirin therapy (29 vs. 5.7%) compared with non-DKI patients (all P<0.05). However, no differences were observed in morbidities of diabetes, hypertension, hyperlipidemia and proteinuria, or in the treatments with angiotensin converting enzyme (ACE) inhibitors/angiotensin II receptor-1 blockers (ARBs), diuretics, statins and other anti-platelets between the two groups (P>0.05). Logistic regression revealed that anemia, heart failure and 300 mg aspirin intake were risk factors of DKI (P<0.05), while the contrast level, isotonic contrast, diabetes, ACE inhibitors/ARBs, eGFR and other factors were not associated with DKI (P>0.05). Heart dysfunction and 300 mg aspirin therapy may contribute to DKI after CAG, and iodinated contrast media administration is not a risk factor. PMID:27347090

  4. 3D angiography. Clinical interest. First applications in interventional neuroradiology.

    PubMed

    Anxionnat, R; Bracard, S; Macho, J; Da Costa, E; Vaillant, R; Launay, L; Trousset, Y; Romeas, R; Picard, L

    1998-12-01

    3D angiography is a true technical revolution that allows improvement in the quality and safety of diagnostic and endovascular treatment procedures. 3D angiography images are obtained by reconstruction of a rotational angiography acquisition done on a C-arm (GE Medical Systems) spinning at 40 degrees per second. The carotid or vertebral selective injection of a total of 15 ml of non-ionic contrast media at 3 ml/sec over 5 seconds allows the selection of the "arterial phase". Four hundred sixty 3D angiographic studies were performed from December 1996 to September 1998 on 260 patients and have been analyzed in MIP (Maximum Intensity Projection) and SSD (Shaded Surface Display) views. The exploration of intracranial aneurysms is simplified and only requires, for each vascular axis, a biplane PA and Lateral run followed by a single rotational angiography run. The 3D angiography image is available on the workstation's screen (Advantage Workstation 3.1, GE Medical Systems) in less than 10 minutes after the acquisition of the rotational run. It therefore allows one to analyze, during the intervention, the aneurysm's angioarchitecture, in particular the neck, and select the best therapeutic technique. When endovascular treatment is the best indication, 3D angiography allows one to define the optimal angle of view and accurately select the microcoils dimensions. 3D angiography replaces the multiple oblique views that used to be required to analyze the complex aneurysms and therefore allows a reduction of the total contrast medium quantity, the patient X-ray dose and the length of the intervention time which is a safety factor. Also, in particular for complex cases, it brings additional elements complementing the results of standard 2D DSA and rotational angiograms. In the cervical vascular pathology, 3D angiography allows for a better assessment of the stenosis level and of dissection lesions. Our current research activities focus on the matching without stereotactic frame

  5. Stent sizing strategies in renal artery stenting: the comparison of conventional invasive renal angiography with renal computed tomographic angiography

    PubMed Central

    Michalowska, Ilona; Pregowski, Jerzy; Janaszek-Sitkowska, Hanna; Lech, Katarzyna; Kabat, Marek; Staruch, Adam; Januszewicz, Andrzej; Witkowski, Adam

    2016-01-01

    Introduction Randomized trials comparing invasive treatment of renal artery stenosis with standard pharmacotherapy did not show substantial benefit from revascularization. One of the potential reasons for that may be suboptimal procedure technique. Aim To compare renal stent sizing using two modalities: three-dimensional renal computed tomography angiography (CTA) versus conventional angiography. Material and methods Forty patients (41 renal arteries), aged 65.1 ±8.5 years, who underwent renal artery stenting with preprocedural CTA performed within 6 months, were retrospectively analyzed. In CTA analysis, reference diameter (CTA-D) and lesion length (CTA_LL) were measured and proposed stent diameter and length were recorded. Similarly, angiographic reference diameter (ANGIO_D) and lesion length (ANGIO_LL) as well as proposed stent dimensions were obtained by visual estimation. Results The median CTA_D was 0.5 mm larger than the median ANGIO_D (p < 0.001). Also, the proposed stent diameter in CTA evaluation was 0.5 mm larger than that in angiography (p < 0.0001). The median CTA_LL was 1 mm longer than the ANGIO_LL (p = NS), with significant correlation of these variables (r = 0.66, p < 0.0001). The median proposed stent length with CTA was equal to that proposed with angiography. The median diameter of the implanted stent was 0.5 mm smaller than that proposed in CTA (p < 0.0005) and identical to that proposed in angiography. The median length of the actual stent was longer than that proposed in angiography (p = 0.0001). Conclusions Renal CTA has potential advantages as a tool adjunctive to angiography in appropriate stent sizing. Careful evaluation of the available CTA scans may be beneficial and should be considered prior to the planned procedure. PMID:27279870

  6. Transient Global Amnesia following Neural and Cardiac Angiography May Be Related to Ischemia.

    PubMed

    Duan, Hongzhou; Li, Liang; Zhang, Yang; Zhang, Jiayong; Chen, Ming; Bao, Shengde

    2016-01-01

    Introduction. Transient global amnesia (TGA) following angiography is rare, and the pathogenesis has not been illustrated clearly till now. The aim of this research is to explore the pathogenesis of TGA following angiography by analyzing our data and reviewing the literature. Methods. We retrospectively studied 20836 cases with angiography in our hospital between 2007 and 2015 and found 9 cases with TGA following angiography. The data of these 9 cases were analyzed. Results. We found all 9 cases with TGA following neural angiography (5 in 4360) or cardiac angiography (4 in 8817) and no case with TGA following peripheral angiography (0 in 7659). Statistical difference was found when comparing the neural and cardiac angiography group with peripheral group (p = 0.022). Two cases with TGA were confirmed with small acute infarctions in hippocampus after angiography. This might be related to the microemboli which were rushed into vertebral artery following blood flow during neural angiography or cardiac angiography. There was no statistical difference when comparing the different approaches for angiography (p = 0.82) and different contrast agents (p = 0.619). Conclusion. Based on the positive findings of imaging study and our analysis, we speculate that ischemia in the medial temporal lobe with the involvement of the hippocampus might be an important reason of TGA following angiography. PMID:27419129

  7. Transient Global Amnesia following Neural and Cardiac Angiography May Be Related to Ischemia

    PubMed Central

    Zhang, Yang; Chen, Ming; Bao, Shengde

    2016-01-01

    Introduction. Transient global amnesia (TGA) following angiography is rare, and the pathogenesis has not been illustrated clearly till now. The aim of this research is to explore the pathogenesis of TGA following angiography by analyzing our data and reviewing the literature. Methods. We retrospectively studied 20836 cases with angiography in our hospital between 2007 and 2015 and found 9 cases with TGA following angiography. The data of these 9 cases were analyzed. Results. We found all 9 cases with TGA following neural angiography (5 in 4360) or cardiac angiography (4 in 8817) and no case with TGA following peripheral angiography (0 in 7659). Statistical difference was found when comparing the neural and cardiac angiography group with peripheral group (p = 0.022). Two cases with TGA were confirmed with small acute infarctions in hippocampus after angiography. This might be related to the microemboli which were rushed into vertebral artery following blood flow during neural angiography or cardiac angiography. There was no statistical difference when comparing the different approaches for angiography (p = 0.82) and different contrast agents (p = 0.619). Conclusion. Based on the positive findings of imaging study and our analysis, we speculate that ischemia in the medial temporal lobe with the involvement of the hippocampus might be an important reason of TGA following angiography. PMID:27419129

  8. Green toxicology.

    PubMed

    Maertens, Alexandra; Anastas, Nicholas; Spencer, Pamela J; Stephens, Martin; Goldberg, Alan; Hartung, Thomas

    2014-01-01

    Historically, early identification and characterization of adverse effects of industrial chemicals was difficult because conventional toxicological test methods did not meet R&D needs for rapid, relatively inexpensive methods amenable to small amounts of test material. The pharmaceutical industry now front-loads toxicity testing, using in silico, in vitro, and less demanding animal tests at earlier stages of product development to identify and anticipate undesirable toxicological effects and optimize product development. The Green Chemistry movement embraces similar ideas for development of less toxic products, safer processes, and less waste and exposure. Further, the concept of benign design suggests ways to consider possible toxicities before the actual synthesis and to apply some structure/activity rules (SAR) and in silico methods. This requires not only scientific development but also a change in corporate culture in which synthetic chemists work with toxicologists. An emerging discipline called Green Toxicology (Anastas, 2012) provides a framework for integrating the principles of toxicology into the enterprise of designing safer chemicals, thereby minimizing potential toxicity as early in production as possible. Green Toxicology`s novel utility lies in driving innovation by moving safety considerations to the earliest stage in a chemical`s lifecycle, i.e., to molecular design. In principle, this field is no different than other subdisciplines of toxicology that endeavor to focus on a specific area - for example, clinical, environmental or forensic toxicology. We use the same principles and tools to evaluate an existing substance or to design a new one. The unique emphasis is in using 21st century toxicology tools as a preventative strategy to "design out" undesired human health and environmental effects, thereby increasing the likelihood of launching a successful, sustainable product. Starting with the formation of a steering group and a series of workshops

  9. Anterior segment fluorescein angiography in inflammatory diseases of the cornea.

    PubMed

    Saari, K M

    1979-10-01

    To study the vascular changes in inflammatory diseases of the cornea 22 patients with various corneal inflammations were examined by means of anterior segment fluorescein angiography. Simple avascular central and marginal corneal ulcers stained with fluorescein in the late phase of angiography. An inflamed limbus and an early microscopic pannus adjacent to the ulcer were seeen in simple corneal ulcers. Progressive pannus with pronounced fluorescein leakage was observed in chronic corneal ulcer, disciform keratitis, Mooren's ulcer, and complicated acute keratoconus. In sclerokeratouveitis and in gutter associated with rheumatoid arthritis the corneal vessels showed less leakage. The iris vessels showed fluorescein leakage as a sign of irritative iritis during the active stage of simple and chronic corneal ulcers, in disciform keratitis, Mooren's ulcer, and in graft rejection. It is concluded that anterior segment fluorescein angiography gives valuable information of the vascular architecture, flow and leakage in inflammatory diseases of the cornea.

  10. Split-spectrum phase-gradient optical coherence tomography angiography.

    PubMed

    Liu, Gangjun; Jia, Yali; Pechauer, Alex D; Chandwani, Rahul; Huang, David

    2016-08-01

    A phase gradient angiography (PGA) method is proposed for optical coherence tomography (OCT). This method allows the use of phase information to map the microvasculature in tissue without the correction of bulk motion and laser trigger jitter induced phase artifacts. PGA can also be combined with the amplitude/intensity to improve the performance. Split-spectrum technique can further increase the signal to noise ratio by more than two times. In-vivo imaging of human retinal circulation is shown with a 70 kHz, 840 nm spectral domain OCT system and a 200 kHz, 1050 nm swept source OCT system. Four different OCT angiography methods are compared. The best performance was achieved with split-spectrum amplitude and phase-gradient angiography. PMID:27570689

  11. Split-spectrum phase-gradient optical coherence tomography angiography

    PubMed Central

    Liu, Gangjun; Jia, Yali; Pechauer, Alex D.; Chandwani, Rahul; Huang, David

    2016-01-01

    A phase gradient angiography (PGA) method is proposed for optical coherence tomography (OCT). This method allows the use of phase information to map the microvasculature in tissue without the correction of bulk motion and laser trigger jitter induced phase artifacts. PGA can also be combined with the amplitude/intensity to improve the performance. Split-spectrum technique can further increase the signal to noise ratio by more than two times. In-vivo imaging of human retinal circulation is shown with a 70 kHz, 840 nm spectral domain OCT system and a 200 kHz, 1050 nm swept source OCT system. Four different OCT angiography methods are compared. The best performance was achieved with split-spectrum amplitude and phase-gradient angiography. PMID:27570689

  12. Glucagon-Induced Vasospasm of Hepatic Artery Branches During Visceral Angiography

    SciTech Connect

    Dziedzic, T. Scott; Smith, Tony P.

    2008-07-15

    Glucagon is often used in radiology to decrease bowel motility for enhanced imaging, including visceral digital subtraction angiography. We present a case in which branch hepatic artery vasospasm followed the intravenous administration of glucagon during visceral angiography.

  13. When is rotational angiography superior to conventional single‐plane angiography for planning coronary angioplasty?

    PubMed Central

    Taylor, Jane; Boutong, Sara; Brett, Sarah; Louis, Amal; Heppenstall, James; Morton, Allison C.; Gunn, Julian P.

    2015-01-01

    Objectives To investigate the value of rotational coronary angiography (RoCA) in the context of percutaneous coronary intervention (PCI) planning. Background As a diagnostic tool, RoCA is associated with decreased patient irradiation and contrast use compared with conventional coronary angiography (CA) and provides superior appreciation of three‐dimensional anatomy. However, its value in PCI remains unknown. Methods We studied stable coronary artery disease assessment and PCI planning by interventional cardiologists. Patients underwent either RoCA or conventional CA pre‐PCI for planning. These were compared with the referral CA (all conventional) in terms of quantitative lesion assessment and operator confidence. An independent panel reanalyzed all parameters. Results Six operators performed 127 procedures (60 RoCA, 60 conventional CA, and 7 crossed‐over) and assessed 212 lesions. RoCA was associated with a reduction in the number of lesions judged to involve a bifurcation (23 vs. 30 lesions, P < 0.05) and a reduction in the assessment of vessel caliber (2.8 vs. 3.0 mm, P < 0.05). RoCA improved confidence assessing lesion length (P = 0.01), percentage stenosis (P = 0.02), tortuosity (P < 0.04), and proximity to a bifurcation (P = 0.03), particularly in left coronary artery cases. X‐ray dose, contrast agent volume, and procedure duration were not significantly different. Conclusions Compared with conventional CA, RoCA augments quantitative lesion assessment, enhances confidence in the assessment of coronary artery disease and the precise details of the proposed procedure, but does not affect X‐ray dose, contrast agent volume, or procedure duration. © 2015 Wiley Periodicals, Inc. PMID:26012725

  14. Optical Coherence Tomography Angiography in Mice: Comparison with Confocal Scanning Laser Microscopy and Fluorescein Angiography

    PubMed Central

    Giannakaki-Zimmermann, Helena; Kokona, Despina; Wolf, Sebastian; Ebneter, Andreas; Zinkernagel, Martin S.

    2016-01-01

    Purpose Optical coherence tomography angiography (OCT-A) allows noninvasive visualization of retinal vessels in vivo. OCT-A was used to characterize the vascular network of the mouse retina and was compared with fluorescein angiography (FA) and histology. Methods In the present study, OCT-A based on a Heidelberg Engineering Spectralis system was used to investigate the vascular network in mice. Data was compared with FA and confocal microscopy of flat-mount histology stained with isolectin IB4. For quantitative analysis the National Cancer Institute's AngioTool software was used. Vessel density, the number of vessel junctions, and endpoints were measured and compared between the imaging modalities. Results The configuration of the superficial capillary network was comparable with OCT-A and flat-mount histology in BALBc mice. However, vessel density and the number of vessel junctions per region of interest (P = 0.0161 and P = 0.0015, respectively) in the deep vascular network of BALBc mice measured by OCT-A was significantly higher than with flat-mount histology. In C3A.Cg-Pde6b+Prph2Rd2/J mice, where the deep capillary plexus is absent, analysis of the superficial network provided similar results for all three imaging modalities. Conclusion OCT-A is a helpful imaging tool for noninvasive, in vivo imaging of the vascular plexus in mice. It may offer advantages over FA and confocal microscopy especially for imaging the deep vascular plexus. Translational Relevance The present study shows that OCT-A can be employed for small animal imaging to assess the vascular network and offers advantages over flat-mount histology and FA. PMID:27570710

  15. Optical Coherence Tomography Angiography of Optic Disc Perfusion in Glaucoma

    PubMed Central

    Jia, Yali; Wei, Eric; Wang, Xiaogang; Zhang, Xinbo; Morrison, John C.; Parikh, Mansi; Lombardi, Lori H.; Gattey, Devin M.; Armour, Rebecca L.; Edmunds, Beth; Kraus, Martin F.; Fujimoto, James G.; Huang, David

    2014-01-01

    Purpose To compare optic disc perfusion between normal and glaucoma subjects using optical coherence tomography (OCT) angiography and detect optic disc perfusion changes in glaucoma. Design Observational, cross-sectional study. Participants Twenty-four normal subjects and 11 glaucoma patients were included. Methods One eye of each subject was scanned by a high-speed 1050 nm wavelength swept-source OCT instrument. The split-spectrum amplitude-decorrelation angiography algorithm (SSADA) was used to compute three-dimensional optic disc angiography. A disc flow index was computed from four registered scans. Confocal scanning laser ophthalmoscopy (cSLO) was used to measure disc rim area, and stereo photography was used to evaluate cup/disc ratios. Wide field OCT scans over the discs were used to measure retinal nerve fiber layer (NFL) thickness. Main Outcome Measurements Variability was assessed by coefficient of variation (CV). Diagnostic accuracy was assessed by sensitivity and specificity. Comparisons between glaucoma and normal groups were analyzed by Wilcoxon rank-sum test. Correlations between disc flow index, structural assessments, and visual field (VF) parameters were assessed by linear regression. Results In normal discs, a dense microvascular network was visible on OCT angiography. This network was visibly attenuated in glaucoma subjects. The intra-visit repeatability, inter-visit reproducibility, and normal population variability of the optic disc flow index were 1.2%, 4.2%, and 5.0% CV respectively. The disc flow index was reduced by 25% in the glaucoma group (p = 0.003). Sensitivity and specificity were both 100% using an optimized cutoff. The flow index was highly correlated with VF pattern standard deviation (R2 = 0.752, p = 0.001). These correlations were significant even after accounting for age, cup/disc area ratio, NFL, and rim area. Conclusions OCT angiography, generated by the new SSADA algorithm, repeatably measures optic disc perfusion. OCT

  16. Right ventricular volume analysis by angiography in right ventricular cardiomyopathy.

    PubMed

    Indik, Julia H; Dallas, William J; Gear, Kathleen; Tandri, Harikrishna; Bluemke, David A; Moukabary, Talal; Marcus, Frank I

    2012-06-01

    Imaging of the right ventricle (RV) for the diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is commonly performed by echocardiography or magnetic resonance imaging (MRI). Angiography is an alternative modality, particularly when MRI cannot be performed. We hypothesized that RV volume and ejection fraction computed by angiography would correlate with these quantities as computed by MRI. RV volumes and ejection fraction were computed for subjects enrolled in the North American ARVC/D Registry, with both RV angiography and MRI studies. Angiography was performed in the 30° right anterior oblique (RAO) and 60° left anterior oblique (LAO) views. Angiographic volumes were computed by RAO view and two-view (RAO and LAO) formulae. 17 subjects were analyzed (11 men and 6 women), with 15 subjects classified as affected, and two as unaffected by modified Task Force criteria. The correlation coefficient of MRI to the two-view angiographic analysis was 0.72 (P = 0.003) for end-diastolic volume and 0.68 (P = 0.005) for ejection fraction. Angiographically derived volumes were larger than MRI derived volume (P = 0.009) and with the slope in a linear relationship equal to 0.8 for end diastolic volume, and 0.9 for RV ejection fraction (P < 0.001), computed by the two view formula. End-diastolic volumes and ejection fractions of the RV obtained by dual view angiography correlate with these quantities by MRI. RV end-diastolic volumes are larger by RV angiography in comparison with MRI.

  17. Detection of viable myocardium using coronary angiography and ventriculography.

    PubMed

    Conti, C Richard

    2002-08-01

    In 2002, coronary angiography is the only way to assess precisely the combination of proximal stenoses, distal target vessels, collaterals, microcirculation, and TIMI antegrade flow. At the time of coronary angiography, global LV function is best determined using biplane ventriculography in order to correlate wall motion with coronary stenoses, distal target vessels, microcirculation, collaterals, and antegrade TIMI flow. This can be done under resting conditions after nitrates or after postextrasystolic potentiation. The absolute diagnosis of viability can only be made retrospectively. Large areas of ischemic viable myocardium should improve contraction after revascularization, decrease symptoms, and prolong survival.

  18. Technical innovation: Multidimensional computerized software enabled subtraction computed tomographic angiography.

    PubMed

    Bhatia, Mona; Rosset, Antoine; Platon, Alexandra; Didier, Dominique; Becker, Christoph D; Poletti, Pierre-Alexandre

    2010-01-01

    Computed tomographic angiography (CTA) is a frequent noninvasive alternative to digital subtraction angiography. We previously reported the development of a new subtraction software to overcome limitations of adjacent bone and calcification in CT angiographic subtraction. Our aim was to further develop and improve this fast and automated computerized software, universally available for free use and compatible with most CT scanners, thus enabling better delineation of vascular structures, artifact reduction, and shorter reading times with potential clinical benefits. This computer-based free software will be available as an open source in the next release of OsiriX at the Web site http://www.osirix-viewer.com.

  19. A comparison of iopamidol and iohexol in cerebral angiography.

    PubMed

    Pelz, D M; Fox, A J; Viñuela, F; Lylyk, P

    1988-01-01

    Iopamidol and iohexol, the new nonionic low-osmolality contrast agents, have both been shown to be safe, effective, and better tolerated than conventional ionic agents for cerebral angiography. In this randomized, double-blind study involving 40 patients, these two agents were compared for adverse effects, radiographic quality, and patient tolerance. No significant differences were observed in 220 injections. Because we found iopamidol and iohexol to be equally safe and effective for cerebral angiography, the choice of which contrast agent to use should be based on other considerations.

  20. Treatment of arteriovenous malformations with stereotactic radiosurgery employing both magnetic resonance angiography and standard angiography as a database

    SciTech Connect

    Petereit, D.; Mehta, M.; Turski, P.; Levin, A.; Strother, C.; Mistretta, C.; Mackie, R.; Gehring, M.; Kubsad, S.; Kinsella, T. )

    1993-01-15

    Twenty-one arteriovenous malformations were prospectively evaluated using magnetic resonance angiography, compare it to stereotactic angiography, employ magnetic resonance angiography in follow-up, and semiquanitfy flow. A correlative evaluation between flow and response to stereotactic radiosurgery was carried out. Phase contrast angiograms were obtained at flow velocities of 400, 200, 100, 60 and 20 cm/sec. The fractionated velocities provided images that selectively demonstrated the arterial and venous components of the arteriovenous malformations. Qualitative assessment of the velocity within the arteriovenous malformations and the presence of fistulae were also determined by multiple velocity images. In addition, 3-dimensional time-of-flight magnetic resonance angiograms were obtained to define the exact size and shape of the nidus. This technique also permitted evaluation of the nidus and feeding arteries for the the presence of low flow aneurysms. Correlation between the two imaging modalities was carried out by subjective and semiquantitative estimation of flow velocity and estimation of nidus size. The following velocity parameters were employed: fast, intermediate, slow, and none. Early analysis suggests that slower flowing arteriovenous malformations may obliterate faster after stereotactic radiosurgery an flow parameters should be employed to predict response. In conclusion, magnetic resonance angiography permits semiquantitative flow velocity assessment and may therefore be superior to stereotactic angiography. An additional advantage of magnetic resonance angiography is the generation of serial transverse images which can replace the conventional CT scan employed for stereotactic radiosurgery treatment planning. A single diagnostic test may therefore be used for diagnosis, radiosurgical treatment planning, follow-up, and treatment selection by identifying patients likely to respond early to radiosurgical management.

  1. Green Manufacturing

    SciTech Connect

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  2. A difunctional squarylium indocyanine dye distinguishes dead cells through diverse staining of the cell nuclei/membranes.

    PubMed

    Li, Jie; Guo, Kunru; Shen, Jie; Yang, Wantai; Yin, Meizhen

    2014-04-01

    Functionalized fluorescent dyes have attracted great interest for the specific staining of subcellular organelles in multicellular organisms. A novel nanometer-sized water-soluble multi-functional squarylium indocyanine dye (D1) that contains four primary amines is synthesized. The dye exhibits good photostability, non-toxicity and biocompatibility. Isothermal titration calorimetry demonstrates that an affinity between D1 and DNA is higher than that between D1 and analogue of phospholipids. Analysis of circular dichroism spectra indicates that D1 targets to the DNA minor groove and aggregates to a helix. Because of the distinct affinity between the dye and subcellular organelles, the dye exhibits difunctional abilities to label the cell nuclei in fixed cells/tissue and the cell membranes in live cells/tissue. By combination of the two staining capabilities, the dye is further explored as a specific marker to distinguish apoptotic cells in live cells/tissue. The research opens a new way to design novel multifunctional dyes for life science applications.

  3. Doyne memorial lecture, 1981. Fluorescein angiography. Twenty years later.

    PubMed

    Norton, E W

    1981-01-01

    A new method to study and permanently record function and structure in the living eye became available with the introduction of fluorescein angiography by Novotny and Alvis (1961). Flow and permeability in the retinal and choroidal vessels could now be correlated with anatomical changes. This presentation will review some of the major advances in our knowledge resulting from this technique. PMID:6192565

  4. Nuclear angiography in a dog with congestive cardiomyopathy

    SciTech Connect

    Lippert, A.C.; Twardock, A.R.; Gelberg, H.B.

    1986-03-01

    Nuclear angiography was used as a diagnostic aid and in monitoring the clinical course of a case of congestive cardiomyopathy in a dog. Serial examinations revealed progressively deteriorating values for left ventricular ejection fraction before the dog's death. This noninvasive technique can be an alternative to echocardiography for the evaluation of cardiac performance.

  5. Advances in post-mortem CT-angiography

    PubMed Central

    Grimm, J; Dominguez, A; Vanhaebost, J; Mangin, P

    2014-01-01

    Performing a post-mortem multidetector CT (MDCT) scan has already become routine in some institutes of forensic medicine. To better visualize the vascular system, different techniques of post-mortem CT-angiography have been explored, which can essentially be divided into partial- and whole-body angiography techniques. Probably the most frequently applied technique today is the so-called multiphase post-mortem CT-angiography (MPMCTA) a standardized method for investigating the vessels of the head, thorax and abdomen. Different studies exist, describing its use for medicolegal investigations, and its advantages as well as its artefacts and pitfalls. With the aim to investigate the performance of PMCTA and to develop and validate techniques, an international working group was created in 2012 called the “Technical Working Group Post-mortem Angiography Methods” (TWGPAM). Beyond its primary perspective, the goals of this group include creating recommendations for the indication of the investigation and for the interpretation of the images and to distribute knowledge about PMCTA. This article provides an overview about the different approaches that have been developed and tested in recent years and an update about ongoing research in this field. It will explain the technique of MPMCTA in detail and give an outline of its indications, application, advantages and limitations. PMID:24234582

  6. Case Report of Bullous Pemphigoid following Fundus Fluorescein Angiography.

    PubMed

    Demirci, Goktug; Demirci, Gulsen Tukenmez; Gulkilik, Gokhan

    2010-01-01

    PURPOSE: To report a first case of bullous pemphigoid (BP) following intravenous fluorescein for fundus angiography. Clinical Features: A 70-year-old male patient was admitted to the intensive care unit with BP and sepsis. He reported a history of fundus fluorescein angiography with a pre-diagnosis of senile macular degeneration 2 months prior to presentation. At that time, fluorescein extravasated at the antecubital region. Following the procedure, pruritus and erythema began at the wrists bilaterally, and quickly spread to the entire body. The patient also reported a history of allergy to human albumin solution (Plamasteril(R); Abbott) 15 years before, during bypass surgery. On dermatologic examination, erythematous patches were present on the scalp, chest and anogenital region. Vesicles and bullous lesions were present on upper and lower extremities. On day 2 of hospitalization, tense bullae appeared on the upper and lower extremities. The patient was treated with oral methylprednisolone 48 mg (Prednol(R); Mustafa Nevzat), topical clobetasol dipropionate 0.05% cream (Dermovate(R); Glaxo SmithKline), and topical 4% urea lotion (Excipial Lipo(R); Orva) for presumptive bullous pemphigoid. Skin punch biopsy provided tissue for histopathology, direct immunofluorescence examination, and salt extraction, which were all consistent with BP. After 1 month, the patient was transferred to the intensive care unit with sepsis secondary to urinary tract infection; he died 2 weeks later from sepsis and cardiac failure. CONCLUSIONS: To our knowledge, this is the first reported case of BP following fundus fluorescein angiography in a patient with known human albumin solution allergy. Consideration should be made to avoid fluorescein angiography, change administration route, or premedicate with antihistamines in patients with known human albumin solution allergy. The association between fundus fluorescein angiography and BP should be further investigated.

  7. Green Phosphors

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Chakradhar, R. P. S.; Rao, J. L.; Dhoble, S. J.; Kim, S. H.

    2014-11-01

    Manganese-doped LaMgAl11O19 powder has been prepared by an easy combustion method. Powder x-ray diffraction and scanning electron microscopy have been used to characterize the as-prepared phosphor. The electron paramagnetic resonance (EPR) spectrum of LaMgAl11O19:Mn2+ phosphor exhibits six-line hyperfine structure centered at g ≈ 1.973. The number of spins participating in resonance ( N) and the paramagnetic susceptibility ( χ) for the resonance signal at g ≈ 1.973 have been calculated as a function of temperature. The photoluminescence spectrum exhibits green emission at 516 nm, which is attributed to 4T1 → 6A1 transition of Mn2+ ions. From EPR and luminescence studies, it is observed that Mn2+ ions occupy Mg2+ sites and Mn2+ ions are located at tetrahedral sites in the prepared phosphors.

  8. Current role of hybrid CT/angiography system compared with C-arm cone beam CT for interventional oncology.

    PubMed

    Tanaka, T; Arai, Y; Inaba, Y; Inoue, M; Nishiofuku, H; Anai, H; Hori, S; Sakaguchi, H; Kichikawa, K

    2014-09-01

    Hybrid CT/angiography (angiography) system and C-arm cone beam CT provide cross-sectional imaging as an adjunct to angiography. Current interventional oncological procedures can be conducted precisely using these two technologies. In this article, several cases using a hybrid CT/angiography system are shown first, and then the advantages and disadvantages of the hybrid CT/angiography and C-arm cone beam CT are discussed with literature reviews.

  9. Green nanotechnology

    NASA Astrophysics Data System (ADS)

    Smith, Geoff B.

    2011-10-01

    Nanotechnology, in particular nanophotonics, is proving essential to achieving green outcomes of sustainability and renewable energy at the scales needed. Coatings, composites and polymeric structures used in windows, roof and wall coatings, energy storage, insulation and other components in energy efficient buildings will increasingly involve nanostructure, as will solar cells. Nanostructures have the potential to revolutionize thermoelectric power and may one day provide efficient refrigerant free cooling. Nanomaterials enable optimization of optical, opto-electrical and thermal responses to this urgent task. Optical harmonization of material responses to environmental energy flows involves (i) large changes in spectral response over limited wavelength bands (ii) tailoring to environmental dynamics. The latter includes engineering angle of incidence dependencies and switchable (or chromogenic) responses. Nanomaterials can be made at sufficient scale and low enough cost to be both economic and to have a high impact on a short time scale. Issues to be addressed include human safety and property changes induced during manufacture, handling and outdoor use. Unexpected bonuses have arisen in this work, for example the savings and environmental benefits of cool roofs extend beyond the more obvious benefit of reduced heat flows from the roof into the building.

  10. Routine Use of Three-Dimensional Contrast-Enhanced Moving-Table MR Angiography in Patients with Peripheral Arterial Occlusive Disease: Comparison with Selective Digital Subtraction Angiography

    SciTech Connect

    Deutschmann, Hannes A.; Schoellnast, Helmut; Portugaller, Horst R.; Preidler, Klaus W.; Reittner, Pia; Tillich, Manfred; Pilger, Ernst; Szolar, Dieter H. M.

    2006-10-15

    Purpose. To compare the diagnostic accuracy of contrast-enhanced (CE) three-dimensional (3D) moving-table magnetic resonance (MR) angiography with that of selective digital subtraction angiography (DSA) for routine clinical investigation in patients with peripheral arterial occlusive disease. Methods. Thirty-eight patients underwent CE 3D moving-table MR angiography of the pelvic and peripheral arteries. A commercially available large-field-of-view adapter and a dedicated peripheral vascular phased-array coil were used. MR angiograms were evaluated for grade of arterial stenosis, diagnostic quality, and presence of artifacts. MR imaging results for each patient were compared with those of selective DSA. Results. Two hundred and twenty-six arterial segments in 38 patients were evaluated by both selective DSA and MR angiography. No complications related to MR angiography were observed. There was agreement in stenosis classification in 204 (90.3%) segments; MR angiography overgraded 16 (7%) segments and undergraded 6 (2.7%) segments. Compared with selective DSA, MR angiography provided high sensitivity and specificity and excellent interobserver agreement for detection of severe stenosis (97% and 95%, {kappa} = 0.9 {+-} 0.03) and moderate stenosis (96.5% and 94.3%, {kappa} = 0.9 {+-} 0.03). Conclusion. Compared with selective DSA, moving-table MR angiography proved to be an accurate, noninvasive method for evaluation of peripheral arterial occlusive disease and may thus serve as an alternative to DSA in clinical routine.

  11. Determination of Stent Stenosis: An In Vivo Experimental Comparison of Intravascular Ultrasound and Angiography with Histology

    SciTech Connect

    Schuermann, Karl; Vorwerk, Dierk; Uppenkamp, Robert; Klosterhalfen, Bernd; Buecker, Arno; Guenther, Rolf W.

    1998-05-15

    Purpose: To compare intravascular ultrasound (IVUS) and angiography with histology in determining the degree of stent stenosis in an in vivo experiment. Methods: In 16 sheep, a total of 64 stents were implanted into the external iliac arteries. Two stents were inserted on either side. Patency was followed by angiography and IVUS. Four types of stent were used: two Dacron-covered (Cragg Endopro and heparinized Cragg Endopro) and two non-covered (Cragg and Memotherm stents). Eight animals were killed after 1 month, eight others after 6 months. Histological sections were prepared from the stented vessels. Measurements of the patent and total stent diameters determined by IVUS, angiography, and histology were compared. Results: Correlation between IVUS and angiography was 0.75, between IVUS and histology 0.77, and between angiography and histology 0.85. A mean stent stenosis of 17 {+-} 11% (range 0-51%) was found on angiography, of 10 {+-} 11% (0-46%) on IVUS, and of 20 {+-} 11% (4%-49%) on histology. In comparison with histology, IVUS underestimated the degree of stenosis by 10 {+-} 8%, and angiography underestimated it by 3 {+-} 6%. Resolution of IVUS was calculated to be about 0.35 mm and that of angiography to be about 0.15 mm. Conclusion: Under experimental conditions, IVUS was not superior to angiography in determining the degree of stent stenosis in long-segment stenoses of iliac artery stents, when measurements were correlated with histology. Angiography is sufficient for following the patency of iliac artery stents.

  12. Fluorescence Identification of Head and Neck Squamous Cell Carcinoma and High-Risk Oral Dysplasia With BLZ-100, a Chlorotoxin-Indocyanine Green Conjugate

    PubMed Central

    Baik, FM; Hansen, S; Knoblaugh, SE; Sahetya, D; Mitchell, RM; Xu, C; Olson, JM; Parrish-Novak, J; Méndez, E

    2016-01-01

    Importance Surgical cure of head and neck squamous cell carcinoma (HNSCC) remains hampered by inadequately resected tumors and poor recognition of lesions with malignant potential. BLZ-100 is chlorotoxin-based tumor targeting agent which has not yet been studied in HNSCC. Objective To evaluate BLZ-100 uptake in models of HNSCC and oral dysplasia. Design Observational study (including sensitivity/specificity analysis) of BLZ-100 uptake in an orthotopic xenograft mouse model of HNSCC and a carcinogen-induced dysplasia model of hamster cheek pouches. Setting Research laboratory Participants NSG mice, Golden Syrian hamsters Interventions Various HNSCC xenografts were established in the tongues of NSG mice. BLZ-100 was intravenously injected and fluorescence uptake was measured. To induce dysplasia, the carcinogen DMBA was applied to the cheek pouch of Golden Syrian hamsters for 9–16 weeks. BLZ-100 was subcutaneously injected and fluorescence uptake was measured. Main Outcomes and Measures The signal-to-background ratio (SBR) of BLZ-100 was measured in tumor xenografts. To calculate the sensitivity and specificity of BLZ-100 uptake, a digital grid was placed over tissue sections and correlative histologic sections to discretely measure fluorescence intensity and presence of tumor; a receiver operating characteristic (ROC) curve was then plotted. In the hamster dysplasia model, cheeks were graded according to dysplasia severity. The SBR of BLZ-100 was compared among dysplasia grades. Results In HNSCC xenografts, BLZ-100 demonstrated an overall signal-to-background ratio (SBR) of 2.51 +/− 0.47 SD. The ROC curve demonstrated an area under the curve (AUC) of 0.889; a SBR of 2.5 corresponded to 92% sensitivity and 74% specificity. When this analysis was focused on the tumor and non-tumor interface, the AUC increased to 0.971; a SBR of 2.5 corresponded to 95% sensitivity and 91% specificity. DMBA treatment of hamster cheek pouches generated lesions representing all grades of dysplasia. The SBR of high-grade dysplasia was significantly greater than that of mild-to-moderate dysplasia (2.31 +/− 0.71 SD versus 1.51 +/− 0.34 SD, p=0.006). Conclusions and Relevance BLZ-100 is a sensitive and specific marker of HNSCC, and can distinguish high-risk from low-risk dysplasia. BLZ-100 has the potential to serve as an intraoperative guide for tumor margin excision and identification of pre-malignant lesions. PMID:26892902

  13. Feature space optical coherence tomography based micro-angiography

    PubMed Central

    Zhang, Anqi; Wang, Ruikang K.

    2015-01-01

    Current optical coherence tomography (OCT) based micro-angiography is prone to noise that arises from static background. This work presents a novel feature space based optical micro-angiography (OMAG) method (fsOMAG) that can effectively differentiate flow signal from static background in the feature space. fsOMAG consists of two steps. In the first step a classification map is generated that provides criterion for classification in the second step to extract functional blood flow from experimental data set. The performance of fsOMAG is examined through phantom experiments and in-vivo human retinal imaging, and compared with the existing OMAG. The results indicate its potential for clinical applications. PMID:26137391

  14. Ultrahigh-speed non-invasive widefield angiography

    NASA Astrophysics Data System (ADS)

    Blatter, Cedric; Klein, Thomas; Grajciar, Branislav; Schmoll, Tilman; Wieser, Wolfgang; Andre, Raphael; Huber, Robert; Leitgeb, Rainer A.

    2012-07-01

    Retinal and choroidal vascular imaging is an important diagnostic benefit for ocular diseases such as age-related macular degeneration. The current gold standard for vessel visualization is fluorescence angiography. We present a potential non-invasive alternative to image blood vessels based on functional Fourier domain optical coherence tomography (OCT). For OCT to compete with the field of view and resolution of angiography while maintaining motion artifacts to a minimum, ultrahigh-speed imaging has to be introduced. We employ Fourier domain mode locking swept source technology that offers high quality imaging at an A-scan rate of up to 1.68 MHz. We present retinal angiogram over ˜48 deg acquired in a few seconds in a single recording without the need of image stitching. OCT at 1060 nm allows for high penetration in the choroid and efficient separate characterization of the retinal and choroidal vascularization.

  15. Quantification of microvascular tortuosity during tumor evolution utilizing acoustic angiography

    PubMed Central

    Shelton, Sarah E.; Lee, Yueh Z.; Lee, Mike; Cherin, Emmanuel; Foster, F. Stuart; Aylward, Stephen R.; Dayton, Paul A.

    2016-01-01

    The recent design of ultra-broadband, multi-frequency ultrasound transducers has enabled high sensitivity, high-resolution contrast imaging, with very efficient suppression of tissue background using a technique called acoustic angiography. Here we perform the first application of acoustic angiography to evolving tumors in mice predisposed to develop mammary carcinoma, with the intent of visualizing and quantifying angiogenesis progression associated with tumor growth. Metrics compared include vascular density and two measures of vessel tortuosity quantified from segmentations of vessels traversing and surrounding 24 tumors and abdominal vessels from control mice. Quantitative morphological analysis of tumor vessels demonstrated significantly increased vascular tortuosity abnormalities associated with tumor growth with the distance metric elevated approximately 14% and the sum of angles metric increased 60% in tumor vessels versus controls. Future applications of this imaging approach may provide clinicians a new tool in tumor detection, differentiation, or evaluation, though with limited depth of penetration using the current configuration. PMID:25858001

  16. Towards the use of OCT angiography in clinical dermatology

    NASA Astrophysics Data System (ADS)

    Baran, Utku; Choi, Woo June; Wang, Ruikang K.

    2016-02-01

    Optical coherence tomography (OCT) is a popular imaging technique used in ophthalmology, and on the way to become clinically viable alternative in dermatology due to its capability of acquiring histopathology level images of in vivo tissue, noninvasively. In this study, we demonstrate the capabilities of OCT-based angiography (OMAG) in detecting high-resolution, volumetric structural and microvascular features of in vivo human skin with various conditions using a swept source OCT system that operates on a central wavelength of 1310 nm with an A-line rate of 100 kHz. OMAG images provide detailed in vivo visualization of microvasculature of abnormal human skin conditions from face, chest and belly. Moreover, the progress of wound healing on human skin from arm is monitored during longitudinal wound healing process. The presented results promise the clinical use of OCT angiography in treatment of prevalent cutaneous diseases within human skin, in vivo.

  17. Waiting for coronary angiography: is there a clinically ordered queue?

    PubMed

    Hemingway, H; Crook, A M; Feder, G; Dawson, J R; Timmis, A

    2000-03-18

    Among over 3000 patients undergoing coronary angiography in the absence of a formal queue-management system, we found that a-priori urgency scores were strongly associated with waiting times, prevalence of coronary-artery disease, rate of revascularisation, and mortality. These data challenge the widely held assumption that such waiting lists are not clinically ordered; however, the wide variation in waiting times within urgency categories suggests the need for further improvements in clinical queueing.

  18. National Synchrotron Light Source angiography personnel protection interlock

    SciTech Connect

    Gmuer, N.; Larson, R.; Thomlinson, W.

    1992-06-01

    This document has been written to describe the safety system operation at the NSLS X17B2 beamline Synchrotron Medical Research Facility (SMERF). The angiography exposure process involves scanning a patient up and down through dual fixed-position x-ray beams; exposure is controlled by opening and closing a fast-acting Safety Shutter mechanism at precise times in relation to the up and down motion of the scan chair. The fast-acting Safety Shutter mechanism is the primary radiation-stopping element protecting the patient while the chair is at rest and while it is reversing directions during the scan. Its fail-safe and fast operation is essential for the safety of the patient. Operation of X17B2 as a human subject angiography station necessitates the implementation of a personnel protection interlock system that, in conjunction with the Safety Shutters: permits safe access to the patient exposure area while the synchrotron radiation beam is illuminating the upstream dual energy monochromator; allows a patient to be imaged by the monochromatized beam under the supervision of a Responsible Physician, with scan chair motion and precision shutter actuation regulated by an angiography control computer, while providing a suitable number of safeguards against accidental radiation exposure; has different modes of operation to accommodate equipment set-up, test, and calibration; and patient exposure; and ensures the quick extinction of the beam if a potentially unsafe condition is detected. The interlock system which performs these safety functions is called the Angiography Personnel Protection Interlock (APPI). The APPI Document is organized such that the level of detail changes from a general overview to detailed engineering drawings of the hardware system.

  19. Risks and Complications of Coronary Angiography: A Comprehensive Review

    PubMed Central

    Tavakol, Morteza; Ashraf, Salman; Brener, Sorin J.

    2012-01-01

    Coronary angiography and heart catheterization are invaluable tests for the detection and quantification of coronary artery disease, identification of valvular and other structural abnormalities, and measurement of hemodynamic parameters. The risks and complications associated with these procedures relate to the patient’s concomitant conditions and to the skill and judgment of the operator. In this review, we examine in detail the major complications associated with invasive cardiac procedures and provide the reader with a comprehensive bibliography for advanced reading. PMID:22980117

  20. Acoustic angiography: a new imaging modality for assessing microvasculature architecture.

    PubMed

    Gessner, Ryan C; Frederick, C Brandon; Foster, F Stuart; Dayton, Paul A

    2013-01-01

    The purpose of this paper is to provide the biomedical imaging community with details of a new high resolution contrast imaging approach referred to as "acoustic angiography." Through the use of dual-frequency ultrasound transducer technology, images acquired with this approach possess both high resolution and a high contrast-to-tissue ratio, which enables the visualization of microvascular architecture without significant contribution from background tissues. Additionally, volumetric vessel-tissue integration can be visualized by using b-mode overlays acquired with the same probe. We present a brief technical overview of how the images are acquired, followed by several examples of images of both healthy and diseased tissue volumes. 3D images from alternate modalities often used in preclinical imaging, contrast-enhanced micro-CT and photoacoustics, are also included to provide a perspective on how acoustic angiography has qualitatively similar capabilities to these other techniques. These preliminary images provide visually compelling evidence to suggest that acoustic angiography may serve as a powerful new tool in preclinical and future clinical imaging. PMID:23997762

  1. Body MR angiography in children: how we do it.

    PubMed

    Krishnamurthy, Rajesh; Malone, LaDonna; Lyons, Karen; Ketwaroo, Pamela; Dodd, Nicholas; Ashton, Daniel

    2016-05-01

    Vascular pathology is ubiquitous in children. Common indications for angiographic imaging in the body include congenital anomalies, portal hypertension, assessing resectability of neoplasms, renovascular hypertension, vascular malformations, vasculitis, systemic vein thrombosis, and trauma. MR angiography, with or without the use of intravenous contrast agents, is therefore a mainstay in the repertoire of MR imaging in children. Pediatric contrast-enhanced MR angiography has benefited from several innovations in recent years, including improved hardware options like high-field-strength scanners and integrated high-density coil arrays, new sequences that combine parallel imaging, innovative k-space sampling and Dixon fat suppression with time-resolved imaging, new contrast agents with longer blood-pool residence time, and advanced post-processing solutions like image fusion. This article focuses on the principles of contrast-enhanced MR angiography of the body as it pertains to the physiologies and pathologies encountered in children. It also discusses tools to adapt the MR angiographic technique to the clinical indication, as well as pitfalls of post-processing and interpretation in commonly encountered vascular imaging scenarios in the pediatric body. PMID:27229494

  2. Delayed clopidogrel transit during myocardial infarction evident on angiography.

    PubMed

    Ghobrial, Joanna; Gibson, C Michael; Pinto, Duane S

    2015-05-01

    We describe the case of a patient with non-ST segment elevation myocardial infarction (NSTEMI) where a limitation of oral clopidogrel loading prior to percutaneous coronary intervention (PCI) was directly visualized on angiography. Clopidogrel is a thienopyridine antiplatelet agent used in acute coronary syndromes. It reduces platelet aggregation via inhibition of the P2Y12 receptor. Clopidogrel is an inactive metabolite that is metabolized into the active metabolite by the cytochrome P450 isoenzymes located mostly in the liver and partly in the gastrointestinal system. As such, it requires at least 2 hours to reach maximal effect. A 63-year-old female went to an outside facility where she was diagnosed with NSTEMI and underwent angiography. She was administered 324 mg of aspirin and 600 mg of clopidogrel, and was transferred to our facility. Upon arrival, approximately 1.5 hours after the oral loading dose, the clopidogrel tablets were visualized intact in the stomach during angiography, implying a very low likelihood of adequate absorption or antiplatelet effect. This observation raises the concern that delayed gastrointestinal transit, apart from other metabolic derangements, may be a factor in achieving optimal platelet inhibition using oral agents. PMID:25929306

  3. Compton-backscattering x-ray source for coronary angiography

    SciTech Connect

    Blumberg, L.N.

    1992-01-01

    An X-ray source utilizing Compton-backscattered (CB) photons in a 75-MeV electron storage ring containing an infrared FEL is proposed for producing 33.17-keV X-rays (Iodine K-edge) for coronary angiography. The X-ray intensity into a 4-mrad cone is computed as 7.21 [times] 10[sup 14]/sec for a 500-mA electron beam colliding with 0.2-J/bunch, 3.22-[mu]m photons from an in-ring IR-FEL at the 353.21-MHz rate of a SLAC-PEP 500-kW RF system. The resultant average flux at the patient is 6.4 [times] 10[sup 7] photons/pixel/4-msec aver a 12-cm diameter circle at 3-m from the interaction point for the 0.5 [times]0.5-mm[sup 2] pixel size of the present Si(Li) array of the BNL-SMERF Angiography Facility. This flux is 2.1 times larger than obtains at SMERF at a comparable source-to-patient distance and over an area sufficient to encompass the entire coronary region. However, the X-Ray energy spread due to kinematics alone is 2.63-keV, a factor of 35 larger then SMERF, and presents the major difficulty for the digital subtraction angiography method (DSA) envisioned.

  4. Compton-backscattering x-ray source for coronary angiography

    SciTech Connect

    Blumberg, L.N.

    1992-12-01

    An X-ray source utilizing Compton-backscattered (CB) photons in a 75-MeV electron storage ring containing an infrared FEL is proposed for producing 33.17-keV X-rays (Iodine K-edge) for coronary angiography. The X-ray intensity into a 4-mrad cone is computed as 7.21 {times} 10{sup 14}/sec for a 500-mA electron beam colliding with 0.2-J/bunch, 3.22-{mu}m photons from an in-ring IR-FEL at the 353.21-MHz rate of a SLAC-PEP 500-kW RF system. The resultant average flux at the patient is 6.4 {times} 10{sup 7} photons/pixel/4-msec aver a 12-cm diameter circle at 3-m from the interaction point for the 0.5 {times}0.5-mm{sup 2} pixel size of the present Si(Li) array of the BNL-SMERF Angiography Facility. This flux is 2.1 times larger than obtains at SMERF at a comparable source-to-patient distance and over an area sufficient to encompass the entire coronary region. However, the X-Ray energy spread due to kinematics alone is 2.63-keV, a factor of 35 larger then SMERF, and presents the major difficulty for the digital subtraction angiography method (DSA) envisioned.

  5. Noninvasive coronary artery angiography using electron beam computed tomography

    NASA Astrophysics Data System (ADS)

    Rumberger, John A.; Rensing, Benno J.; Reed, Judd E.; Ritman, Erik L.; Sheedy, Patrick F., II

    1996-04-01

    Electron beam computed tomography (EBCT), also known as ultrafast-CT or cine-CT, uses a unique scanning architecture which allows for multiple high spatial resolution electrocardiographic triggered images of the beating heart. A recent study has demonstrated the feasibility of qualitative comparisons between EBCT derived 3D coronary angiograms and invasive angiography. Stenoses of the proximal portions of the left anterior descending and right coronary arteries were readily identified, but description of atherosclerotic narrowing in the left circumflex artery (and distal epicardial disease) was not possible with any degree of confidence. Although these preliminary studies support the notion that this approach has potential, the images overall were suboptimal for clinical application as an adjunct to invasive angiography. Furthermore, these studies did not examine different methods of EBCT scan acquisition, tomographic slice thicknesses, extent of scan overlap, or other segmentation, thresholding, and interpolation algorithms. Our laboratory has initiated investigation of these aspects and limitations of EBCT coronary angiography. Specific areas of research include defining effects of cardiac orientation; defining the effects of tomographic slice thickness and intensity (gradient) versus positional (shaped based) interpolation; and defining applicability of imaging each of the major epicardial coronary arteries for quantitative definition of vessel size, cross-sectional area, taper, and discrete vessel narrowing.

  6. Ectopic Origin of Coronary Arteries Diagnozed by Coronary Angiography

    PubMed Central

    Krasniqi, Xhevdet; Gorani, Daut; Sejdiu, Basri; Citaku, Hajdin

    2016-01-01

    Introduction: Anomalous origin of coronary arteries from opposite sinus of Valsalva is rare finding. The incidence of anomalous origination of the left coronary artery from right sinus is 0.15% and the right coronary artery from the left sinus is 0.92%. The ectopic origin of left coronary artery or right coronary artery from opposite sinus depending on pathways and considering atherosclerotic changes are manifested with different clinical significance. Case report: We report two cases, the first case the coronary angiography showed the left coronary artery arising from the right coronary sinus, presenting with proximally and distally stenosed left anterior descending artery (LAD), associated with medial and distal stenosed right coronary artery (RCA). The second case the coronary angiography revealed the right coronary artery arising from the left coronary sinus, associated with tortuous medial and distal segments of left anterior descending artery (LAD), without atherosclerotic changes. The first case successfully underwent treatment procedures based on guidelines for revascularization. Conclusion: The coronary angiography of patients with coronary ischemia determines atherosclerotic disease with possibility of the presence of coronary artery anomalies that in cases with ectopic origin from opposite sinus continues to exist as a challenge during treatment in interventional cardiology. PMID:27482140

  7. Body MR angiography in children: how we do it.

    PubMed

    Krishnamurthy, Rajesh; Malone, LaDonna; Lyons, Karen; Ketwaroo, Pamela; Dodd, Nicholas; Ashton, Daniel

    2016-05-01

    Vascular pathology is ubiquitous in children. Common indications for angiographic imaging in the body include congenital anomalies, portal hypertension, assessing resectability of neoplasms, renovascular hypertension, vascular malformations, vasculitis, systemic vein thrombosis, and trauma. MR angiography, with or without the use of intravenous contrast agents, is therefore a mainstay in the repertoire of MR imaging in children. Pediatric contrast-enhanced MR angiography has benefited from several innovations in recent years, including improved hardware options like high-field-strength scanners and integrated high-density coil arrays, new sequences that combine parallel imaging, innovative k-space sampling and Dixon fat suppression with time-resolved imaging, new contrast agents with longer blood-pool residence time, and advanced post-processing solutions like image fusion. This article focuses on the principles of contrast-enhanced MR angiography of the body as it pertains to the physiologies and pathologies encountered in children. It also discusses tools to adapt the MR angiographic technique to the clinical indication, as well as pitfalls of post-processing and interpretation in commonly encountered vascular imaging scenarios in the pediatric body.

  8. Computed tomography angiography in patients with active gastrointestinal bleeding.

    PubMed

    Reis, Fatima Regina Silva; Cardia, Patricia Prando; D'Ippolito, Giuseppe

    2015-01-01

    Gastrointestinal bleeding represents a common medical emergency, with considerable morbidity and mortality rates, and a prompt diagnosis is essential for a better prognosis. In such a context, endoscopy is the main diagnostic tool; however, in cases where the gastrointestinal hemorrhage is massive, the exact bleeding site might go undetected. In addition, a trained professional is not always present to perform the procedure. In an emergency setting, optical colonoscopy presents limitations connected with the absence of bowel preparation, so most of the small bowel cannot be assessed. Scintigraphy cannot accurately demonstrate the anatomic location of the bleeding and is not available at emergency settings. The use of capsule endoscopy is inappropriate in the acute setting, particularly in the emergency department at night, and is a highly expensive method. Digital angiography, despite its high sensitivity, is invasive, presents catheterization-related risks, in addition to its low availability at emergency settings. On the other hand, computed tomography angiography is fast, widely available and minimally invasive, emerging as a promising method in the diagnostic algorithm of these patients, being capable of determining the location and cause of bleeding with high accuracy. Based on a critical literature review and on their own experience, the authors propose a computed tomography angiography protocol to assess the patient with gastrointestinal bleeding.

  9. Impact of emergency angiography in massive lower gastrointestinal bleeding.

    PubMed Central

    Browder, W; Cerise, E J; Litwin, M S

    1986-01-01

    Fifty patients with massive lower gastrointestinal bleeding were initially managed with emergency angiography. The average age was 67.2; mean hematocrit, 23.7; and average transfusion, 7.6 units. Thirty-six patients (72%) had bleeding site located; bleeding sites were distributed throughout the colon. Etiologies of bleeding included diverticular disease (19 patients) and arteriovenous malformations (15 patients). Twenty of 22 (91%) patients receiving selective intra-arterial vasopressin stopped bleeding; however, 50% rebled on cessation of vasopressin. Thirty-five of 50 (70%) patients underwent surgery, with 57% operated on electively after vasopressin therapy. Seventeen patients had segmental colectomy, with no rebleeding. Nine of the 17 patients had diverticular disease in the remaining colon. Operative morbidity in these 35 patients was significantly improved when compared to previously reported patients undergoing emergency subtotal colectomy without angiography (8.6% vs. 37%) (p less than 0.02). Emergency angiography successfully locates the bleeding site, allowing for segmental colectomy. Vasopressin infusion transiently halts bleeding, permitting elective surgery in many instances. PMID:3094466

  10. Murine fundus fluorescein angiography: An alternative approach using a handheld camera.

    PubMed

    Ehrenberg, Moshe; Ehrenberg, Scott; Schwob, Ouri; Benny, Ofra

    2016-07-01

    In today's modern pharmacologic approach to treating sight-threatening retinal vascular disorders, there is an increasing demand for a compact, mobile, lightweight and cost-effective fluorescein fundus camera to document the effects of antiangiogenic drugs on laser-induced choroidal neovascularization (CNV) in mice and other experimental animals. We have adapted the use of the Kowa Genesis Df Camera to perform Fundus Fluorescein Angiography (FFA) in mice. The 1 kg, 28 cm high camera has built-in barrier and exciter filters to allow digital FFA recording to a Compact Flash memory card. Furthermore, this handheld unit has a steady Indirect Lens Holder that firmly attaches to the main unit, that securely holds a 90 diopter lens in position, in order to facilitate appropriate focus and stability, for photographing the delicate central murine fundus. This easily portable fundus fluorescein camera can effectively record exceptional central retinal vascular detail in murine laser-induced CNV, while readily allowing the investigator to adjust the camera's position according to the variable head and eye movements that can randomly occur while the mouse is optimally anesthetized. This movable image recording device, with efficiencies of space, time, cost, energy and personnel, has enabled us to accurately document the alterations in the central choroidal and retinal vasculature following induction of CNV, implemented by argon-green laser photocoagulation and disruption of Bruch's Membrane, in the experimental murine model of exudative macular degeneration.

  11. Does cerebral angiography of cadaveric kidney donors interfere with graft function?

    PubMed

    Weibull, H; Cederholm, C; Almén, T; Bergqvist, D; Takolander, R; Husberg, B

    1987-01-01

    Cerebral angiography is used to diagnose brain death of cadaver kidney donors. Clinical and animal data suggest that angiographic contrast media may potentiate the noxious effect of renal ischemia. In order to find out if cerebral angiography of cadaveric kidney donors prior to nephrectomy interferes with function or survival of the renal grafts, two groups of cadaveric donors were compared. One group had been exposed to contrast medium from cerebral angiography in median 18 hours before nephrectomy and the other had not. There was no difference in graft survival and function between the two groups. In a previous investigation angiography was performed two hours before explantation and in that investigation there was a shorter graft survival in the angiography group than in a control group. A delay of 12 hours is suggested between cerebral angiography and explanation, to decrease the combined harmful effects of contrast media and ischemia on renal grafts.

  12. 3D multislice CT angiography in post-aortic stent grafting: a pictorial essay.

    PubMed

    Sun, Zhonghua

    2006-01-01

    Helical CT angiography has been widely used in both pre- and post-aortic stent grafting and it has been confirmed to be the preferred modality when compared to conventional angiography. The recent development of multislice CT (MSCT) has further enhanced the applications of CT angiography for aortic stent grafting. One of the advantages of MSCT angiography over conventional angiography is that the 3D reconstructions, based on the volumetric CT data, provide additional information during follow-up of aortic stent grafting. While endovascular repair has been increasingly used in clinical practice, the use of 3D MSCT imaging in endovascular repair continues to play an important role. In this pictorial essay, we aimed to discuss the diagnostic performance of 3D MSCT angiography in post aortic stent grafting, including the most commonly used surface shaded display, curvilinear reformation, the maximum intensity projection, volume rendering and virtual endoscopy. The advantages and disadvantages of each 3D reconstruction are also explored.

  13. Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma

    PubMed Central

    Liu, Liang; Jia, Yali; Takusagawa, Hana L.; Pechauer, Alex D.; Edmunds, Beth; Lombardi, Lorinna; Davis, Ellen; Morrison, John C.; Huang, David

    2016-01-01

    IMPORTANCE Vascular factors may have important roles in the pathophysiology of glaucoma. A practical method for the clinical evaluation of ocular perfusion is needed to improve glaucoma management. OBJECTIVE To detect peripapillary retinal perfusion in glaucomatous eyes compared with normal eyes using optical coherence tomography (OCT) angiography. DESIGN, SETTING, AND PARTICIPANTS Prospective observational study performed from July 24, 2013, to April 17, 2014. Participants were recruited and tested at Casey Eye Institute, Oregon Health & Science University. In total, 12 glaucomatous eyes and 12 age-matched normal eyes were analyzed. The optic disc region was imaged twice using a 3 × 3-mm scan by a 70-kHz, 840-nm-wavelength spectral OCT system. The split-spectrum amplitude-decorrelation angiography algorithm was used. Peripapillary flow index was calculated as the mean decorrelation value in the peripapillary region, defined as a 700-μm-wide elliptical annulus around the disc. Peripapillary vessel density was the percentage area occupied by vessels. The data statistical analysis was performed from October 30, 2013, to May 30, 2014. MAIN OUTCOMES AND MEASURES Variability was assessed by the coefficient of variation. The Mann-Whitney test was used to compare the 2 groups of eyes. Correlations between vascular and visual field variables were assessed by linear regression analysis. RESULTS In 12 normal eyes, a dense microvascular network around the disc was visible on OCT angiography. In 12 glaucomatous eyes, this network was visibly attenuated globally and focally. In normal eyes, between-visit reproducibilities of peripapillary flow index and peripapillary vessel density were 4.3% and 2.7% of the coefficient of variation, respectively, while the population variabilities of peripapillary flow index and peripapillary vessel density were 8.2% and 3.0% of the coefficient of variation, respectively. Peripapillary flow index and peripapillary vessel density in

  14. Comparison of effective doses between computed tomography cardiac angiography and conventional angiography at Pantai Hospital, Kuala Lumpur

    NASA Astrophysics Data System (ADS)

    Mohamed, Faizal; Moin, F. H. A.

    2013-05-01

    This research studies two types of cardiac angiography procedures, namely Computed Tomography Cardiac Angiography (CTCA) and Conventional Angiography (CA). The following research was executed to estimate the difference of mean effective doses that the patients received through both procedures. The mean dose-length-product (DLP) from CTCA and mean dose-area-product (DAP) from CA were utilized in calculating the effective doses. The result shows that the mean effective dose for CTCA and CA are 1.71±0.59 mSv and 53.25±14.22 mSv respectively. This proves that the mean effective dose received by patients undergoing CA is higher than patients undergoing CTCA. According to t-test, both procedures differ significantly, with a difference amounting to p<0.0001. The increases of the effective dose that the patients received through CA procedure were influenced by exposure time, the coronary anatomical condition, the operator's experience, and the operation methods.

  15. Data on copper level in the blood of patients with normal and abnormal angiography.

    PubMed

    Amiri, Leila; Movahed, Ali; Iranpour, Dariush; Ostovar, Afshin; Raeisi, Alireza; Keshtkar, Mozhgan; Hajian, Najmeh; Dobaradaran, Sina

    2016-12-01

    In this data article, we measured the levels of copper in the blood of patients undergoing coronary angiography. The samples were taken from patients with cardiovascular disease in Bushehr׳s university hospital, Iran. Patients were divided in two groups: normal angiography and abnormal angiography. After the chemical digestion of samples, the concentration levels of Cu in both groups were determined by using inductively coupled plasma optical spectrometry (ICP-OES). PMID:27622204

  16. Persistent Primitive Trigeminal Artery That Mimics Persistent Primitive Otic Artery on Cerebral Angiography

    PubMed Central

    Lee, Kwangho; Park, Insung; Han, Jongwoo

    2016-01-01

    Persistent primitive trigeminal artery (PPTA) is the most common carotid-basilar anastomosis; on the other hand, persistent primitive otic artery (PPOA) is extremely rare. PPTA is often misdiagnosed as PPOA on cerebral angiography. We present a case of PPTA that mimicked PPOA on cerebral angiography. We further describe the utility of brain computed tomography angiography for differential diagnosis of PPTA from PPOA, together with a review of previous literature. PMID:27790403

  17. Digital subtraction angiography (DSA). Work load and financial implications for a neuroradiology department.

    PubMed

    Kingsley, D P; Butler, P; Rowe, G M; Travis, R C; Wylie, I G

    1989-01-01

    A four year study has been undertaken into the effects on the workload and cost implications of the introduction of digital subtraction angiography (DSA) in a large United Kingdom teaching hospital. The increase in workload has been entirely due to the ability to perform intravenous angiography. DSA is cheaper than conventional angiography if more than 210 cases are undertaken each year. This difference is accounted for by the reduced use of X-ray film. However, intravenous angiography is more expensive because of the use of large volumes of nonionic medium. PMID:2674769

  18. Green Flight Challenge

    NASA Video Gallery

    The CAFE Green Flight Challenge sponsored by Google will be held at the CAFE Foundation Flight Test Center at Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. The Green Flight Challeng...

  19. Blue-green algae

    MedlinePlus

    “Blue-green algae” describes a large and diverse group of simple, plant-like organisms found in salt water and some large fresh water lakes. Blue-green algae products are used for many conditions, but so ...

  20. Dual-Energy CT Angiography in Peripheral Arterial Occlusive Disease

    SciTech Connect

    Brockmann, Carolin Jochum, Susanne; Sadick, Maliha; Huck, Kurt; Ziegler, Peter; Fink, Christian; Schoenberg, Stefan O.; Diehl, Steffen J.

    2009-07-15

    We sought to study the accuracy of dual-energy computed tomographic angiography (DE-CTA) for the assessment of symptomatic peripheral arterial occlusive disease of the lower extremity by using the dual-energy bone removal technique compared with a commercially available conventional bone removal tool. Twenty patients underwent selective digital subtraction angiography and DE-CTA of the pelvis and lower extremities. CTA data were postprocessed with two different applications: conventional bone removal and dual-energy bone removal. All data were reconstructed and evaluated as 3D maximum-intensity projections. Time requirements for reconstruction were documented. Sensitivity, specificity, accuracy, and concordance of DE-CTA regarding degree of stenosis and vessel wall calcification were calculated. A total of 359 vascular segments were analyzed. Compared with digital subtraction angiography, sensitivity, specificity, and accuracy, respectively, of CTA was 97.2%, 94.1%, and 94.7% by the dual-energy bone removal technique. The conventional bone removal tool delivered a sensitivity of 77.1%, a specificity of 70.7%, and an accuracy of 72.0%. Best results for both postprocessing methods were achieved in the vascular segments of the upper leg. In severely calcified segments, sensitivity, specificity, and accuracy stayed above 90% by the dual-energy bone removal technique, whereas the conventional bone removal technique showed a substantial decrease of sensitivity, specificity, and accuracy. DE-CTA is a feasible and accurate diagnostic method in the assessment of symptomatic peripheral arterial occlusive disease. Results obtained by DE-CTA are superior to the conventional bone removal technique and less dependent on vessel wall calcifications.

  1. ECG gated tomographic reconstruction for 3-D rotational coronary angiography

    PubMed Central

    Hu, Yining; Xie, Lizhe; Nunes, Jean Claude; Bellanger, Jean Jacques; Bedossa, Marc; Toumoulin, Christine

    2010-01-01

    A method is proposed for 3-D reconstruction of coronary from a limited number of projections in rotational angiography. A Bayesian maximum a posteriori (MAP) estimation is applied with a Poisson distributed projection to reconstruct the 3D coronary tree at a given instant of the cardiac cycle. Several regularizers are investigated L0-norm, L1 and L2 -norm in order to take into account the sparsity of the data. Evaluations are reported on simulated data obtained from a 3D dynamic sequence acquired on a 64-slice GE LightSpeed CT scan. A performance study is conducted to evaluate the quality of the reconstruction of the structures. PMID:21096844

  2. [Neonatal cerebral venous thrombosis: diagnosis by magnetic resonance angiography].

    PubMed

    Puig, J; Pedraza, S; Méndez, J; Trujillo, A

    2006-01-01

    Neonatal cerebral venous thrombosis (NCVT) is a rare, severe neuropathology of multiple etiology and variable clinical presentation. We describe the case of a 25-day-old infant that presented with a tonic convulsion. Ultrasound examination showed tetraventricular hemorrhage. Magnetic resonance imaging (MRI) showed the presence of acute thrombosis of the deep and superficial venous systems associated to a hemorrhagic infarct of the left thalamus. Coagulation study revealed a deficit of protein C. Thrombosis of deep cerebral veins must be ruled out as a cause of a neonatal convulsive crisis. The presence of a hemorrhagic thalamic lesion supports the diagnosis of NCVT, which must in turn be confirmed by magnetic resonance angiography (MRA).

  3. Peripheral MR Angiography of Klippel-Trenaunay Syndrome

    SciTech Connect

    Fontana, Alessandro; Olivetti, Lucio

    2004-09-15

    Klippel-Trenaunay syndrome (KTS) is a rare congenital vascular disease of unknown etiology that affects one or more limbs. It is characterized clinically by three physical findings (the so-called triad): port-wine stain hemangioma, hypertrophy of the bony and/or soft tissue, and varicose veins. A review of the medical literature in 1999 revealed about 1,000 case studies. We present here the case of a patient with clinical diagnosis of KTS studied using peripheral magnetic resonance angiography.

  4. Digital subtraction angiography in musculoskeletal tumors and other conditions.

    PubMed

    Kolár, J; Zídková, H; Sprindrich, J; Matĕjovský, Z

    1990-01-01

    One hundred and forty consecutive DSA examinations of various musculoskeletal diseases were analyzed with respect to the contributions and/or limits of this modern diagnostic imaging modality. Angiography remains the imaging tool of choice for many benign and malignant orthopedic conditions of bones and soft tissues, mainly when MRI is still not generally available. It remains indispensable for embolization and/or local chemotherapy. DSA has the advantage of being less invasive and it also surpasses analog arteriography in better visualization of vascular patterns hidden in hyperostosis, sclerosis, and metallic shadows. Angiographic investigations, when necessary, should therefore start with DSA. PMID:2317132

  5. Fluorescein angiography: insight and serendipity a half century ago.

    PubMed

    Marmor, Michael F; Ravin, James G

    2011-07-01

    It has been 50 years since fluorescein angiography was developed as a clinical procedure by 2 medical students at Indiana University. The story of its discovery and the recognition of its value to ophthalmology involve a combination of insight and serendipity. Fluorescein had been in use clinically for more than half a century, but it took a pulmonary medicine laboratory to provide the stimulus for the development of flash and barrier filters that would make vascular photography practical. The first article was rejected by the ophthalmology literature, but several clinics heard about it and soon documented the enormous diagnostic value of the procedure. PMID:21746986

  6. Automated choroidal neovascularization detection algorithm for optical coherence tomography angiography

    PubMed Central

    Liu, Li; Gao, Simon S.; Bailey, Steven T.; Huang, David; Li, Dengwang; Jia, Yali

    2015-01-01

    Optical coherence tomography angiography has recently been used to visualize choroidal neovascularization (CNV) in participants with age-related macular degeneration. Identification and quantification of CNV area is important clinically for disease assessment. An automated algorithm for CNV area detection is presented in this article. It relies on denoising and a saliency detection model to overcome issues such as projection artifacts and the heterogeneity of CNV. Qualitative and quantitative evaluations were performed on scans of 7 participants. Results from the algorithm agreed well with manual delineation of CNV area. PMID:26417524

  7. Transvenous Coronary Angiography in Humans Using Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Rubenstein, Edward; Hofstadter, Robert; Zeman, Herbert D.; Thompson, Albert C.; Otis, John N.; Brown, George S.; Giacomini, John C.; Gordon, Helen J.; Kernoff, Robert S.; Harrison, Donald C.; Thomlinson, William

    1986-12-01

    The risks and costs of the present method of visualizing the coronary arteries have limited the use of coronary angiography in long-term serial studies needed to establish the natural history of coronary atherosclerosis and its response to interventions. A less invasive method, in which the contrast agent is administered intravenously, has been developed using synchrotron radiation as the illuminating source. The present report describes the initial results in human subjects. The findings indicate that transvenous coronary angiograms can be acquired in this manner. Further refinements in the x-ray imaging system are expected to result in increased x-ray fluence and improved image quality.

  8. Slovenian experience from diagnostic angiography to interventional radiology

    PubMed Central

    Pavcnik, Dusan

    2014-01-01

    Background The purpose of writing this article is to document the important events and people in the first 50 years of diagnostic angiography and interventional radiology in Slovenia. During this period not only did the name of the institutions and departments change, but also its governance. Conclusions This depicted the important roles different people played at various times in the cardiovascular divisions inside and outside of the diagnostic and interventional radiology. Historical data show that Slovenian radiology has relatively immediately introduced the new methods of interventional radiology in clinical practice. PMID:25435857

  9. Transient Global Amnesia After Cerebral Angiography With Iomeprol

    PubMed Central

    Tiu, Cristina; Terecoasă, Elena Oana; Grecu, Nicolae; Dorobăţ, Bogdan; Marinescu, Andreea Nicoleta; Băjenaru, Ovidiu Alexandru

    2016-01-01

    Abstract Transient global amnesia is now considered a very rare complication of cerebral angiography. Various etiological mechanisms have been suggested to account for this complication, but no consensus has been reached yet. This case report documents one of the few reported cases of cerebral angiography-related transient global amnesia associated with magnetic resonance imaging (MRI) evidence of unilateral hippocampal ischemia, most probably as a consequence of a transient reduction in regional hippocampal blood flow. However, the possibility of a direct neurotoxic effect of the nonionic contrast media Iomeprol on the Cornu ammonis – field 1 neurons cannot be firmly ruled out. We describe the case of a 54-year-old woman admitted to our department for left upper limb weakness with acute onset 8 days before. The brain computed tomography (CT) scan performed at admission revealed subacute ischemic lesions in the right watershed superficial territories and a right thalamic lacunar infarct. Diagnostic digital subtraction cerebral angiography was performed 4 days after admission with the nonionic contrast media Iomeprol. A few minutes after completion of the procedure, the patient developed symptoms suggestive for transient global amnesia. The brain MRI performed 22 hours after the onset of symptoms demonstrated increased signal within the lateral part of the right hippocampus on the diffusion-weighted imaging (DWI) sequences, associated with a corresponding reduction in the apparent diffusion coefficient (ADC) and increased signal on the fluid-attenuated inversion recovery (FLAIR) sequences, consistent with acute hippocampal ischemia and several T2/FLAIR hyperintensities in the right watershed superficial territories and in the right thalamus, corresponding to the lesions already identified on the CT scan performed at admission. A follow-up MRI, performed 2 months later, demonstrated the disappearance of the increased signal within the right hippocampus on the DWI

  10. Susac's syndrome: the value of fundus fluorescein angiography

    PubMed Central

    Khan, Imran Joseph; Allroggen, Holger; Pagliarini, Sergio

    2014-01-01

    A 19-year-old woman presented with a 4-week history of headache, ataxia, vertigo, confusion, intermittent blurred vision in the right eye and intermittent hearing loss. MRI revealed white matter lesions and ‘pepper pot’ lesions of the corpus callosum. The cerebrospinal fluid had raised protein and lymphocytes. Fundal examination revealed multiple peripheral arterial occlusions in the both eyes confirmed with fundus fluorescein angiography (FFA). A diagnosis of Susac's syndrome was made. The patient was initially treated with steroids, followed by azathioprine and intravenous immunoglobulins (IVIg). Clinical improvement was noted, associated with improvement of the retinal circulation on FFA. PMID:25281252

  11. Assessment of the kidneys: magnetic resonance angiography, perfusion and diffusion

    PubMed Central

    2011-01-01

    Renal magnetic resonance (MR) imaging has undergone major improvements in the past several years. This review focuses on the technical basics and clinical applications of MR angiography (MRA) with the goal of enabling readers to acquire high-resolution, high quality renal artery MRA. The current role of contrast agents and their safe use in patients with renal impairment is discussed. In addition, an overview of promising techniques on the horizon for renal MR is provided. The clinical value and specific applications of renal MR are critically discussed. PMID:22085467

  12. Quantitative Digital Subtraction Angiography in Pediatric Moyamoya Disease

    PubMed Central

    2015-01-01

    Moyamoya disease is a unique cerebrovascular disorder characterized by idiopathic progressive stenosis at the terminal portion of the internal carotid artery (ICA) and fine vascular network. The aim of this review is to present the clinical application of quantitative digital subtraction angiography (QDSA) in pediatric moyamoya disease. Using conventional angiographic data and postprocessing software, QDSA provides time-contrast intensity curves and then displays the peak time (Tmax) and area under the curve (AUC). These parameters of QDSA can be used as surrogate markers for the hemodynamic evaluation of disease severity and quantification of postoperative neovascularization in moyamoya disease. PMID:26180611

  13. What Is Green?

    ERIC Educational Resources Information Center

    Pokrandt, Rachel

    2010-01-01

    Green is a question with varying answers and sometimes no answer at all. It is a question of location, resources, people, environment, and money. As green really has no end point, a teacher's goal should be to teach students to question and consider green. In this article, the author provides several useful metrics to help technology teachers…

  14. Public Libraries Going Green

    ERIC Educational Resources Information Center

    Miller, Kathryn

    2010-01-01

    Going green is now a national issue, and patrons expect their library to respond in the same way many corporations have. Libraries are going green with logos on their Web sites, programs for the public, and a host of other initiatives. This is the first book to focus strictly on the library's role in going green, helping you with: (1) Collection…

  15. Show Me the Green

    ERIC Educational Resources Information Center

    Norbury, Keith

    2013-01-01

    Gone are the days when green campus initiatives were a balm to the soul and a drain on the wallet. Today's environmental initiatives are all about saving lots of green--in every sense of the word. The environmental benefits of green campus projects--whether wind turbines or better insulation--are pretty clear. Unfortunately, in today's…

  16. The Green Man

    ERIC Educational Resources Information Center

    Watson-Newlin, Karen

    2010-01-01

    The Jolly Green Giant. Robin Hood. The Bamberg Cathedral. Tales of King Arthur. Ecology. What do they have in common? What legends and ancient myths are shrouded in the tales of the Green Man? Most often perceived as an ancient Celtic symbol as the god of spring and summer, the Green Man disappears and returns year after year, century after…

  17. In the Green

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2011-01-01

    Education officials used to debate whether they could afford to pursue green design and construction. Now the green movement has gained a foothold not just in education, but in society at large, and the prevailing attitude seems to have shifted. Can schools afford "not" to go green? As budgets are slashed repeatedly, education administrators must…

  18. EPA's Green Roof Research

    EPA Science Inventory

    This is a presentation on the basics of green roof technology. The presentation highlights some of the recent ORD research projects on green roofs and provices insight for the end user as to the benefits for green roof technology. It provides links to currently available EPA re...

  19. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye

    PubMed Central

    Jia, Yali; Bailey, Steven T.; Hwang, Thomas S.; McClintic, Scott M.; Pennesi, Mark E.; Flaxel, Christina J.; Lauer, Andreas K.; Wilson, David J.; Hornegger, Joachim; Fujimoto, James G.; Huang, David

    2015-01-01

    Retinal vascular diseases are important causes of vision loss. A detailed evaluation of the vascular abnormalities facilitates diagnosis and treatment in these diseases. Optical coherence tomography (OCT) angiography using the highly efficient split-spectrum amplitude decorrelation angiography algorithm offers an alternative to conventional dye-based retinal angiography. OCT angiography has several advantages, including 3D visualization of retinal and choroidal circulations (including the choriocapillaris) and avoidance of dye injection-related complications. Results from six illustrative cases are reported. In diabetic retinopathy, OCT angiography can detect neovascularization and quantify ischemia. In age-related macular degeneration, choroidal neovascularization can be observed without the obscuration of details caused by dye leakage in conventional angiography. Choriocapillaris dysfunction can be detected in the nonneovascular form of the disease, furthering our understanding of pathogenesis. In choroideremia, OCT's ability to show choroidal and retinal vascular dysfunction separately may be valuable in predicting progression and assessing treatment response. OCT angiography shows promise as a noninvasive alternative to dye-based angiography for highly detailed, in vivo, 3D, quantitative evaluation of retinal vascular abnormalities. PMID:25897021

  20. Should computed tomography angiography supersede invasive coronary angiography for the evaluation of graft patency following coronary artery bypass graft surgery?

    PubMed

    Gabriel, Joseph; Klimach, Stefan; Lang, Peter; Hildick-Smith, David

    2015-08-01

    Invasive coronary angiography (ICA) has long been the established gold standard in assessing graft patency following coronary artery bypass graft (CABG). Over the past decade or so however, improvements in computed tomography angiography (CTA) technology have allowed its emergence as a useful clinical tool in graft assessment. The recent introduction of 64-slice and now 128-slice scanners into widespread distribution, and the development of 320-detector row technology allowing volumetric imaging of the entire heart at single points in time within one cardiac cycle, has increased the potential of CTA to supersede ICA in this capacity. This study sought to examine the evidence surrounding this potential. A best evidence topic was constructed according to a structured protocol. The enquiry: In [patients who have undergone coronary artery bypass graft surgery] is [computed tomography angiography or invasive coronary angiography] superior in terms of [graft patency assessment, stenosis detection, radiation exposure and complication rate]? Four hundred and twenty-four articles were identified from the search strategy. Four additional articles were identified from references of key articles. Seventeen articles selected as best evidence were tabulated. The reliability of CTA as a tool in the detection of graft patency and stenosis has continued to improve with each successive generation of multislice technology. The latest 64- and 128-slice CTA techniques are able to detect graft patency and stenosis with very high sensitivities and specificities comparable with ICA, while remaining non-invasive procedures associated with fewer complications (ICA carries a 0.08% risk of myocardial infarction and 0.7% risk of minor complications in clinically stable patients). Present limitations of the technology include the accurate visualization of distal anastomoses and clip artefacts. In addition, the capacity of diagnostic ICA to be combined simultaneously with percutaneous coronary

  1. Promoting green engineering through green chemistry.

    PubMed

    Kirchhoff, Mary M

    2003-12-01

    The decisions made by chemists in designing chemical products and processes directly impactthe options available to engineers. The physical and chemical properties of a material, for example, dictate the type of reactor that must be used in a given process. The task of the engineer is simplified when chemists design products and processes that reduce or eliminate the use and generation of hazardous substances. Green chemistry provides a foundation on which to build green engineering. This paper highlights green chemistry technologies that minimize the need for engineering safeguards in the areas of feedstocks, reagents, solvents, and syntheses. PMID:14700319

  2. How coronary angiography is used. Clinical determinants of appropriateness.

    PubMed

    Chassin, M R; Kosecoff, J; Solomon, D H; Brook, R H

    1987-11-13

    Using ratings of appropriateness derived from an expert physician panel, we measured how appropriately physicians in 1981 performed coronary angiography in a randomly selected, community-based sample of cases in the Medicare population. We studied large geographic areas (three sites) in three states, representing regions of high and low use. The high-use site had fewer procedures classified as appropriate (72%) than either low-use site (77% and 81%, respectively). Over all sites, 17% of procedures were classified as inappropriate. Patients in the high-use site were older, had less severe angina, and were less intensively medically treated than patients in either of the low-use sites. Patients without angina who had not undergone exercise testing constituted the most common subgroup of inappropriate cases. Although overall differences in appropriateness were not large, practice differences do exist. This analysis of practice differences among study sites provides the clinical basis for understanding the small, but significant, differences in the appropriateness of use of coronary angiography. The finding of 17% inappropriate use may be cause for concern. PMID:3312657

  3. Can 64-row computed tomography replace angiography after coronary bypass?

    PubMed

    Doi, Hirosato; Koshima, Ryuji; Suzuki, Masato; Takahashi, Ken; Yokoyama, Hiroichi; Yoshida, Naoya

    2008-12-01

    Multi-detector (64-row) computed tomography has become an alternative to coronary angiography to diagnose graft occlusion and stenosis after coronary artery bypass. We compared the power of evaluation of multi-detector computed tomography with that of conventional coronary angiography in 60 patients who underwent coronary artery bypass with 135 grafts and 210 graft anastomoses. The diagnostic power of multi-detector computed tomography for graft occlusion was: 100% (2/2) sensitivity, 98.5% (131/133) specificity, 50% (2/4) positive predictive value, and 100% (133/133) negative predictive value; there were no significant differences in rates of occlusion among the different types of graft. The diagnostic power of multi-detector computed tomography for stenosis of the graft anastomosis was: 100% (2/2) sensitivity, 95.1% (194/204) specificity, 16.6% (2/12) positive predictive value, and 100% (194/194) negative predictive value, with no significant differences among grafts. Multi-detector computed tomography permits evaluation of bypass grafts and is much less invasive for the patients. PMID:18984751

  4. Optical Coherence Tomography Angiography of Iris Nevus: A Case Report

    PubMed Central

    Allegrini, Davide; Montesano, Giovanni; Pece, Alfredo

    2016-01-01

    Iris nevus is common: 6% of patients with suspected iris melanoma have lesions other than melanoma, and 36% of them are nevi. Iris nevus turns into melanoma in approximately 8% of cases at a mean of 15 years. This case report provides the first description of an iris tumor examined with iris optical coherence tomography angiography (OCTA) compared to iris fluorescein angiography (IFA). A 60-year-old man with a diagnosis of iris nevus in the left eye was referred to our department for IFA and iris OCTA. The iris vasculature in IFA was visible only in the early phases, but not clearly. OCTA, however, gave visualization of the vascular network and very precisely defined the vessels of the whole lesion, except for the pupillary portion, which was masked by superficial pigment accumulations. IFA and iris OCTA can add information about the vascular architecture compared to slit-lamp biomicroscopy, ultrasound biomicroscopy, and anterior-segment OCT. However, IFA is time-consuming and invasive and can – very occasionally – cause serious adverse reactions. In contrast, OCTA defines the texture of the iris vasculature better. In conclusion, OCTA is a new method, easy to execute, needing no dye injection, and provides useful information on the vascular network of iris lesions. It could therefore be helpful in the diagnosis and follow-up of these lesions. PMID:27790134

  5. Assessment of vessel diameters for MR brain angiography processed images

    NASA Astrophysics Data System (ADS)

    Moraru, Luminita; Obreja, Cristian-Dragos; Moldovanu, Simona

    2015-12-01

    The motivation was to develop an assessment method to measure (in)visible differences between the original and the processed images in MR brain angiography as a method of evaluation of the status of the vessel segments (i.e. the existence of the occlusion or intracerebral vessels damaged as aneurysms). Generally, the image quality is limited, so we improve the performance of the evaluation through digital image processing. The goal is to determine the best processing method that allows an accurate assessment of patients with cerebrovascular diseases. A total of 10 MR brain angiography images were processed by the following techniques: histogram equalization, Wiener filter, linear contrast adjustment, contrastlimited adaptive histogram equalization, bias correction and Marr-Hildreth filter. Each original image and their processed images were analyzed into the stacking procedure so that the same vessel and its corresponding diameter have been measured. Original and processed images were evaluated by measuring the vessel diameter (in pixels) on an established direction and for the precise anatomic location. The vessel diameter is calculated using the plugin ImageJ. Mean diameter measurements differ significantly across the same segment and for different processing techniques. The best results are provided by the Wiener filter and linear contrast adjustment methods and the worst by Marr-Hildreth filter.

  6. [Assessment of vertebrobasilar insufficiency using magnetic resonance angiography].

    PubMed

    Barona, R; Martínez Sanjuán, V; Campos, A; Roch, S; Brisa, A; Comeche, C

    1994-01-01

    We present the protocol for diagnosis of VBI followed by ENT and Radiology Departments of the Valencia University General Hospital, using the 2D-PC magnetic resonance angiography technique (MRA) with variable VENC (30 and 40 cm/s) with a SIGMA 1.5 T Advantage system version 5 x with the corresponding software review 5.2 (General Electric Medical Systems, Milwaukee, WI, USA). After a coronal angiographic projection is obtained in a neutral position on an axial plane of localization, the patient head is set at the maximum left and right rotation and hyperextension allowed by patient and system. In this way, a coronal angiographic sequence is obtained in order to visualize potential compressions, decreases of the flow, arterial loops, etc. MRA is a non-invasive technique that requires no contrast, does not expose the patient to ionizing radiation, and allows to change the position of the patient's head easily. Since no hospitalization is required and contraindications are minimal (e.g., implanted pacemakers...), we believe that MRA constitutes and ideal screening technique to assess the vertebro basilar system. The results obtained and the advantages provided by MRA over Doppler-ultrasound and X-ray angiography are showed. PMID:7811505

  7. Tomographic digital subtraction angiography for lung perfusion estimation in rodents

    SciTech Connect

    Badea, Cristian T.; Hedlund, Laurence W.; De Lin, Ming; Boslego Mackel, Julie S.; Samei, Ehsan; Allan Johnson, G.

    2007-05-15

    In vivo measurements of perfusion present a challenge to existing small animal imaging techniques such as magnetic resonance microscopy, micro computed tomography, micro positron emission tomography, and microSPECT, due to combined requirements for high spatial and temporal resolution. We demonstrate the use of tomographic digital subtraction angiography (TDSA) for estimation of perfusion in small animals. TDSA augments conventional digital subtraction angiography (DSA) by providing three-dimensional spatial information using tomosynthesis algorithms. TDSA is based on the novel paradigm that the same time density curves can be reproduced in a number of consecutive injections of {mu}L volumes of contrast at a series of different angles of rotation. The capabilities of TDSA are established in studies on lung perfusion in rats. Using an imaging system developed in-house, we acquired data for four-dimensional (4D) imaging with temporal resolution of 140 ms, in-plane spatial resolution of 100 {mu}m, and slice thickness on the order of millimeters. Based on a structured experimental approach, we optimized TDSA imaging providing a good trade-off between slice thickness, the number of injections, contrast to noise, and immunity to artifacts. Both DSA and TDSA images were used to create parametric maps of perfusion. TDSA imaging has potential application in a number of areas where functional perfusion measurements in 4D can provide valuable insight into animal models of disease and response to therapeutics.

  8. A storage ring based inverse Compton scattering angiography source?

    SciTech Connect

    Blum, E.B.

    1993-09-01

    Producing the 33.17 keV photons required for coronary angiography with synchrotron radiation requires a combination of a high energy storage ring with an extremely high field wiggler. Such a source may be too big and expensive to be installed in even the largest medical center. Something other than synchrotron radiation may be needed for a practical source. Inverse Compton scattering has been used in the LEGS experiment at NSLS and elsewhere to produce high energy photons. In this process, a head on collision between a low energy photon and a high energy electron transfers energy to the photon which is then emitted in approximately the direction of the incoming electron. For a given electron energy, more higher energy photons can be produced by this method than by synchrotron radiation. This suggests that inverse Compton scattering can possibly be used for a low cost angiography source. The prospects for such a source will be examined in this paper. Unfortunately, the results will show that although it is easy to obtain the required photon energy, an extremely complicated source will be needed to produce the required number of photons.

  9. Simultaneous technetium-99m MIBI angiography and myocardial perfusion imaging

    SciTech Connect

    Baillet, G.Y.; Mena, I.G.; Kuperus, J.H.; Robertson, J.M.; French, W.J.

    1989-01-01

    Resting first-pass radionuclide angiography (FPRNA) was performed with the myocardial perfusion agent technetium-99m MIBI. In 27 patients, it was compared with technetium-99m diethylenetriamine pentaacetic acid FPRNA. A significant correlation was present in left (r = 0.93, p less than 0.001) as well as right (r = 0.92, p less than 0.001) ventricular ejection fraction measured with both radiopharmaceuticals. In 13 patients, MIBI derived segmental wall motion was compared with contrast ventriculography. A high correlation was present (p less than 0.001), and qualitative agreement was found in 38/52 segments. In 19 patients with myocardial infarction a significant correlation was present between MIBI segmental wall motion and perfusion scores (p less than 0.001). In ten patients with a history of myocardial infarction, 18 myocardial segments demonstrated diseased coronary vessels and impaired wall motion at contrast angiography. These segments were all identified by the MIBI wall motion and perfusion study. We conclude that MIBI is a promising agent for simultaneous evaluation of cardiac function and myocardial perfusion at rest.

  10. Digital venous angiography. A prospective evaluation in peripheral arterial trauma.

    PubMed Central

    Fabian, T C; Reiter, C B; Gold, R E; Pate, J W

    1984-01-01

    Digital venous angiography (DVA), a new radiographic technique, was prospectively compared to conventional intra-arterial angiography (CA) in a group of 153 patients with trauma and suspected peripheral arterial injury ( PAI ). Criteria for entry included: large hematoma, proximity to a major vessel, shotgun wounds, blunt injury of the extremities, and fractures or dislocations of areas with high risk of arterial injury. Patients with unequivocal clinical evidence of PAI were excluded. Study patients had both DVA and CA. Sixteen injuries were diagnosed: lacerations (9), transection (1), AV fistulae (2), thromboses (2) and minute intimal flaps (2). All patients with abnormal studies were surgically explored; there were no false-positives. There were no known false-negatives with CA. The intimal flaps were not recognized initially on DVA and their clinical significance is questioned. DVA, compared to CA in PAI , had decreased patient discomfort, cost, and morbidity. It has the potential for study of multiple areas of the body from a single I.V. catheter. DVA can probably replace CA for civilian penetrating wounds. CA may remain the standard for blunt and high velocity injuries. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:6375594

  11. Equilibrium radionuclide gated angiography in patients with tricuspid regurgitation

    SciTech Connect

    Handler, B.; Pavel, D.G.; Pietras, R.; Swiryn, S.; Byrom, E.; Lam, W.; Rosen, K.M.

    1983-01-15

    Equilibrium gated radionuclide angiography was performed in 2 control groups (15 patients with no organic heart disease and 24 patients with organic heart disease but without right- or left-sided valvular regurgitation) and in 9 patients with clinical tricuspid regurgitation. The regurgitant index, or ratio of left to right ventricular stroke counts, was significantly lower in patients with tricuspid regurgitation than in either control group. Time-activity variation over the liver was used to compute a hepatic expansion fraction which was significantly higher in patients with tricuspid regurgitation than in either control group. Fourier analysis of time-activity variation in each pixel was used to generate amplitude and phase images. Only pixels with values for amplitude at least 7% of the maximum in the image were retained in the final display. All patients with tricuspid regurgitation had greater than 100 pixels over the liver automatically retained by the computer. These pixels were of phase comparable to that of the right atrium and approximately 180 degrees out of phase with the right ventricle. In contrast, no patient with no organic heart disease and only 1 of 24 patients with organic heart disease had any pixels retained by the computer. In conclusion, patients with tricuspid regurgitation were characterized on equilibrium gated angiography by an abnormally low regurgitant index (7 of 9 patients) reflecting increased right ventricular stroke volume, increased hepatic expansion fraction (7 of 9 patients), and increased amplitude of count variation over the liver in phase with the right atrium (9 of 9 patients).

  12. Can CT angiography replace conventional bi-planar angiography in the management of severe scapulothoracic dissociation injuries?

    PubMed

    Merchant, Nishant; Scalea, Thomas; Stein, Deborah

    2012-08-01

    Severe scapulothoracic dissociation (SSTD) (Type III or IV; Zelle classification) is often life-threatening and is commonly associated with other devastating injuries. Rapid evaluation, including of the vascular system, is critical to limit the time to definitive therapy. CT angiography (CTA) has evolved as a diagnostic tool, replacing angiography (angio) as it can simultaneously evaluate bony, soft tissue, and vascular injuries. We hypothesized that CTA would be useful in evaluating patients with SSTD. We retrospectively reviewed the trauma registry between June 2002 and June 2010 to identify patients over 18 years of age who sustained SSTD. Patients that were transferred or died before diagnostic imaging were excluded. Comparisons were made between the group that underwent angio before surgery compared with CTA with regards to outcome and length of hospital and intensive care unit stay. Fourteen patients were identified with Type III or IV SSTD over the study period. In the CTA group, mean Injury Severity Score was higher, but time to definitive operative intervention was significantly shorter. There was no difference in amputation rates or mortality. Replacing arteriography with CTA in the preoperative workup of patients with SSTD reduces time to surgery. Despite a greater injury severity in the group in which CTA was used as the primary imaging modality, length of stay, amputation rates, and mortality were no different. CTA can be safely used to evaluate patients with suspected SSTD.

  13. Sac Angiography and Glue Embolization in Emergency Endovascular Aneurysm Repair for Ruptured Abdominal Aortic Aneurysm

    SciTech Connect

    Koike, Yuya Nishimura, Jun-ichi Hase, Soichiro Yamasaki, Motoshige

    2015-04-15

    PurposeThe purpose of this study was to demonstrate a sac angiography technique and evaluate the feasibility of N-butyl cyanoacrylate (NBCA) embolization of the ruptured abdominal aortic aneurysm (AAA) sac in emergency endovascular aneurysm repair (EVAR) in hemodynamically unstable patients.MethodsA retrospective case series of three patients in whom sac angiography was performed during emergency EVAR for ruptured AAA was reviewed. After stent graft deployment, angiography within the sac of aneurysm (sac angiography) was performed by manually injecting 10 ml of contrast material through a catheter to identify the presence and site of active bleeding. In two patients, sac angiography revealed active extravasation of the contrast material, and NBCA embolization with a coaxial catheter system was performed to achieve prompt sealing.ResultsSac angiography was successful in all three patients. In the two patients who underwent NBCA embolization for aneurysm sac bleeding, follow-up computed tomography (CT) images demonstrated the accumulation of NBCA consistent with the bleeding site in preprocedural CT images.ConclusionsEVAR is associated with a potential risk of ongoing bleeding from type II or IV endoleaks into the disrupted aneurysm sac in patients with severe coagulopathy. Therefore, sac angiography and NBCA embolization during emergency EVAR may represent a possible technical improvement in the treatment of ruptured AAA in hemodynamically unstable patients.

  14. Magnetic resonance angiography in perforator flap breast reconstruction

    PubMed Central

    Levine, Joshua L.

    2016-01-01

    Magnetic resonance angiography (MRA) is an extremely useful preoperative imaging test for evaluation of the vasculature of donor tissue to be used in autologous breast reconstruction. MRA has sufficient spacial resolution to reliably visualize 1 mm perforating vessels and to accurately locate vessels in reference to a patient’s anatomic landmarks without exposing patients to ionizing radiation or iodinated contrast. The use of a blood pool contrast agent and the lack of radiation exposure allow multiple studies of multiple anatomic regions in one examination. The following article is a detailed description of our MRA protocol developed with our radiologists with examples that illustrate the utility of MRA in perforator flap breast reconstruction. PMID:27047787

  15. Transvenous coronary angiography in humans with synchrotron radiation

    SciTech Connect

    Thomlinson, W.

    1994-10-01

    The transvenous coronary angiography project at the National Synchrotron Light Source (NSLS) is presently undergoing a significant upgrade to the hardware and software in the synchrotron medical facility. When completed, the project will have reached a level of maturity in the imaging technology which will allow the research team to begin to concentrate on medical research programs. This paper will review the status of the project and imaging technology and will discuss the current upgrades and future advanced technology initiatives. The advantages of using the radiation from a synchrotron, over that from a standard x-ray source, were the motivation for the project. A total of 23 human imaging sessions have been carried out with in the project. The primary goals have been to establish the imaging parameters and protocol necessary to obtain clinically useful images.

  16. Didactics and training in cardiovascular computed tomography angiography.

    PubMed

    Bhojraj, Sanjay D; Al-Mallah, Mouaz H

    2009-01-01

    As the role of cardiovascular computed tomography angiography (CCTA) is further expanded through research, the use of this technology will expand as a result of demand both from medical professionals and the public. To ensure a standardized quality of interpretation of these scans in the face of an increased demand for physicians qualified to interpret these studies, the Society of Cardiovascular Computed Tomography, along with several other professional societies, has proposed a didactic curriculum for the study of CCTA. This review highlights the currently proposed didactic curriculum for the study of CCTA, examines current trends in training for both medical trainees and physicians in practice, and proposes future directions for the study of CCTA. PMID:19203747

  17. Didactics and training in cardiovascular computed tomography angiography.

    PubMed

    Bhojraj, Sanjay D; Al-Mallah, Mouaz H

    2009-01-01

    As the role of cardiovascular computed tomography angiography (CCTA) is further expanded through research, the use of this technology will expand as a result of demand both from medical professionals and the public. To ensure a standardized quality of interpretation of these scans in the face of an increased demand for physicians qualified to interpret these studies, the Society of Cardiovascular Computed Tomography, along with several other professional societies, has proposed a didactic curriculum for the study of CCTA. This review highlights the currently proposed didactic curriculum for the study of CCTA, examines current trends in training for both medical trainees and physicians in practice, and proposes future directions for the study of CCTA.

  18. Gadolinium-enhanced magnetic resonance angiography in brain death

    NASA Astrophysics Data System (ADS)

    Luchtmann, M.; Beuing, O.; Skalej, M.; Kohl, J.; Serowy, S.; Bernarding, J.; Firsching, R.

    2014-01-01

    Confirmatory tests for the diagnosis of brain death in addition to clinical findings may shorten observation time required in some countries and may add certainty to the diagnosis under specific circumstances. The practicability of Gadolinium-enhanced magnetic resonance angiography to confirm cerebral circulatory arrest was assessed after the diagnosis of brain death in 15 patients using a 1.5 Tesla MRI scanner. In all 15 patients extracranial blood flow distal to the external carotid arteries was undisturbed. In 14 patients no contrast medium was noted within intracerebral vessels above the proximal level of the intracerebral arteries. In one patient more distal segments of the anterior and middle cerebral arteries (A3 and M3) were filled with contrast medium. Gadolinium-enhanced MRA may be considered conclusive evidence of cerebral circulatory arrest, when major intracranial vessels fail to fill with contrast medium while extracranial vessels show normal blood flow.

  19. Cardiac computed tomographic angiography and the primary care physician.

    PubMed

    Mikolich, J Ronald

    2012-05-01

    Through advancements in computer processing speed and storage capacity, new cardiac imaging modalities have become clinically feasible and useful. Cardiac computed tomographic angiography, a new diagnostic imaging modality, is capable of assessing coronary artery disease and left ventricular function on a par with invasive coronary arteriography in selected patients who meet appropriate use criteria. This imaging modality is of clinical value in the assessment of patients with chest pain who have an intermediate risk of coronary atherosclerosis. The purpose of the present report is to educate primary care physicians about the basic principles of advanced cardiac imaging techniques and to convey a useful strategy for their appropriate use in the current environment of medical economics.

  20. Fundus fluorescein angiography in fundus flavimaculatus and Stargardts disease.

    PubMed

    Anmarkrud, N

    1979-04-01

    Three siblings who had fundus flavimaculatus and two patients who had Stargardts disease were studied by means of fundus fluorescein angiography. The angiograms revealed in all cases an abolished visibility of the chorioidal circulation. New flecks are usually non-fluorescent. Later on, hyperfluorescent areas are seen at identical places both in the preretinal and retinal phases, strongly indicating a window effect of the retinal layer. The missing chorioidal flush is probably due to a blocking effect of the emitting and exciting light. Some of the retinal flecks may fade away, leaving corresponding areas of hyperfluorescence that usually persist. In some cases, however, a previous fluorescent area may become non-fluorescent. The similar angiographic picture may indicate that fundus flavimaculatus and Stargardts disease are different expressions of the same disease.

  1. [Digital subtraction angiography in otorhinolaryngology--preliminary report].

    PubMed

    Liu, B; Wang, J; Bi, S

    1994-01-01

    The paper presents the preliminary experience with digital subtraction angiography (DSA) in otorhinolaryngology. This series included racemose hemangioma of the auricle in 3 cases, juvenile angiofibroma of nasopharynx in 4 cases, angioma in the retropharyngeal space in 1 case, tympanic body tumor in 1 case, traumatic epistaxis in 1 case, traumatic pseudoaneurysm in 1 case. The site, supply arteries, drainage veins of vascular tumors were shown with DSA. The intraoperative bleeding was reduced significantly by preoperative embolization of supply arteries to vascular tumors. The broken arteries of the traumatic epistaxis and the traumatic pseudoaneurysm were not only discovered but embolized. The indications and complications of DSA and measures for preventing and reducing complications were discussed.

  2. Hepatic perfusion abnormalities during CT angiography: Detection and interpretation

    SciTech Connect

    Freeny, P.C.; Marks, W.M.

    1986-06-01

    Twenty-seven perfusion abnormalities were detected in 17 of 50 patients who underwent computed tomographic angiography (CTA) of the liver. All but one of the perfusion abnormalities occurred in patients with primary or metastatic liver tumors. Perfusion abnormalities were lobar in nine cases, segmental in 11, and subsegmental in seven; 14 were hypoperfusion and 13 were hyperperfusion abnormalities. The causes for the abnormalities included nonperfusion of a replaced hepatic artery (n = 11), cirrhosis and nodular regeneration (n = 3), altered hepatic hemodynamics (e.g., siphoning, laminar flow) caused by tumor (n = 7), contrast media washout from a nonperfused vessel (n = 1), compression of adjacent hepatic parenchyma (n = 1), and unknown (n = 4). Differentiation of perfusion abnormalities from tumor usually can be made by comparing the morphology of the known tumor with the suspected perfusion abnormality, changes of each on delayed CTA scans, and review of initial angiograms and other imaging studies.

  3. [Echocardiographic gating in non-cardiac digital angiography].

    PubMed

    Gattoni, F; Baldini, U; Cairo, F; Nessi, R; Pozzato, C; Uslenghi, C

    1987-03-01

    This paper reports the results of the ECG-gating in non-cardiac digital subtraction angiography (DSA). One hundred and fifteen patients underwent DSA (126 examinations); ECG-gating was applied in 66/126 examinations: images recorded at 70% of R wave were subtracted. Artifacts produced by vascular movements were evaluated in all patients: only 40 examinations, carried out without ECG-gating, showed vascular artifacts. The major advantage of the ECG-gated DSA is the more efficient subtraction because of the better images superimposition: therefore, ECG-gating can be clinically helpful. On the contrary, it could be a problem in arrhythmic or bradycardic patients. ECG-gating is helpful in DSA imaging of the thoracic and abdominal aorta and of the cervical and renal arteries. In the examinations of peripheral vessels of the limbs it is not so efficient as in the trunk or in the neck.

  4. Statistical analysis of motion contrast in optical coherence tomography angiography

    NASA Astrophysics Data System (ADS)

    Cheng, Yuxuan; Guo, Li; Pan, Cong; Lu, Tongtong; Hong, Tianyu; Ding, Zhihua; Li, Peng

    2015-11-01

    Optical coherence tomography angiography (Angio-OCT), mainly based on the temporal dynamics of OCT scattering signals, has found a range of potential applications in clinical and scientific research. Based on the model of random phasor sums, temporal statistics of the complex-valued OCT signals are mathematically described. Statistical distributions of the amplitude differential and complex differential Angio-OCT signals are derived. The theories are validated through the flow phantom and live animal experiments. Using the model developed, the origin of the motion contrast in Angio-OCT is mathematically explained, and the implications in the improvement of motion contrast are further discussed, including threshold determination and its residual classification error, averaging method, and scanning protocol. The proposed mathematical model of Angio-OCT signals can aid in the optimal design of the system and associated algorithms.

  5. Imaging of the aortic valve with MRI and CT angiography.

    PubMed

    Harvey, J J; Hoey, E T D; Ganeshan, A

    2013-12-01

    The aortic valve may be affected by a wide range of congenital and acquired diseases. Echocardiography is the main non-invasive imaging technique for assessing patho-anatomical alterations of the aortic valve and adjacent structures and in many cases is sufficient to establish a diagnosis and/or guide treatment decisions. Recent technological advances in magnetic resonance imaging (MRI) and multidetector computed tomography (MDCT) have enabled these techniques to play a complimentary role in certain clinical scenarios and as such can be useful problem-solving tools. Radiologists should be familiar with the indications, advantages, and limitations of MRI and MDCT in order to advise and direct an appropriate imaging strategy depending upon the clinical scenario. This article reviews the role of MRI and MDCT angiography for assessment of the aortic valve including relevant anatomy, scan acquisition protocols, and post-processing methods. An approach to interpretation and the key imaging features of commonly encountered aortic valvular diseases are discussed.

  6. Fluorine-19 Magnetic Resonance Angiography of the Mouse

    PubMed Central

    van Heeswijk, Ruud B.; Pilloud, Yves; Flögel, Ulrich; Schwitter, Jürg; Stuber, Matthias

    2012-01-01

    Purpose To implement and characterize a fluorine-19 (19F) magnetic resonance imaging (MRI) technique and to test the hypothesis that the 19F MRI signal in steady state after intravenous injection of a perfluoro-15-crown-5 ether (PCE) emulsion may be exploited for angiography in a pre-clinical in vivo animal study. Materials and Methods In vitro at 9.4T, the detection limit of the PCE emulsion at a scan time of 10 min/slice was determined, after which the T1 and T2 of PCE in venous blood were measured. Permission from the local animal use committee was obtained for all animal experiments. 12 µl/g of PCE emulsion was intravenously injected in 11 mice. Gradient echo 1H and 19F images were obtained at identical anatomical levels. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were determined for 33 vessels in both the 19F and 1H images, which was followed by vessel tracking to determine the vessel conspicuity for both modalities. Results In vitro, the detection limit was ∼400 µM, while the 19F T1 and T2 were 1350±40 and 25±2 ms. The 19F MR angiograms selectively visualized the vasculature (and the liver parenchyma over time) while precisely coregistering with the 1H images. Due to the lower SNR of 19F compared to 1H (17±8 vs. 83±49, p<0.001), the 19F CNR was also lower at 15±8 vs. 52±35 (p<0.001). Vessel tracking demonstrated a significantly higher vessel sharpness in the 19F images (66±11 vs. 56±12, p = 0.002). Conclusion 19F magnetic resonance angiography of intravenously administered perfluorocarbon emulsions is feasible for a selective and exclusive visualization of the vasculature in vivo. PMID:22848749

  7. Automated myocardial perfusion from coronary x-ray angiography

    NASA Astrophysics Data System (ADS)

    Storm, Corstiaan J.; Slump, Cornelis H.

    2010-03-01

    The purpose of our study is the evaluation of an algorithm to determine the physiological relevance of a coronary lesion as seen in a coronary angiogram. The aim is to extract as much as possible information from a standard coronary angiogram to decide if an abnormality, percentage of stenosis, as seen in the angiogram, results in physiological impairment of the blood supply of the region nourished by the coronary artery. Coronary angiography, still the golden standard, is used to determine the cause of angina pectoris based on the demonstration of an important stenose in a coronary artery. Dimensions of a lesion such as length and percentage of narrowing can at present easily be calculated by using an automatic computer algorithm such as Quantitative Coronary Angiography (QCA) techniques resulting in just anatomical information ignoring the physiological relevance of the lesion. In our study we analyze myocardial perfusion images in standard coronary angiograms in rest and in artificial hyperemic phases, using a drug e.g. papaverine intracoronary. Setting a Region of Interest (ROI) in the angiogram without overlying major vessels makes it possible to calculate contrast differences as a function of time, so called time-density curves, in the basal and hyperemic phases. In minimizing motion artifacts, end diastolic images are selected ECG based in basal and hyperemic phase in an identical ROI in the same angiographic projection. The development of new algorithms for calculating differences in blood supply in the region as set are presented together with the results of a small clinical case study using the standard angiographic procedure.

  8. The Hunter Pulmonary Angiography Catheter for a Brachiocephalic Vein Approach

    SciTech Connect

    Rosen, Galia Kowalik, Karen J.; Ganguli, Suverano; Hunter, David W.

    2006-12-15

    The purpose of this work was to describe our experience in performing pulmonary angiography using the Hunter pulmonary catheter, manufactured by Cook, Inc., which is a modified 6F pigtail catheter with a 'C-shaped' curve, designed for a brachiocephalic vein approach. One hundred twenty-three patients underwent pulmonary angiograms using the Hunter catheter between August 1997 and January 2002. Operator comments were gathered in 86 (70%) of the cases. The operator was, if possible, the most junior resident on the service. Thirty-nine operators participated in the survey. Efficacy, safety, and ease of use of the catheter were determined by operators' comments and ECG observations during the procedure. Corroborating clinical data were gathered from medical records. In 68 (79%) of the procedures that were commented upon, the operator described insertion into the pulmonary artery (PA) as easy; only 2 (2%) indicated difficulty in accessing the PA. In 41 (63%) of the bilateral angiograms that were commented upon, the operator described accessing the left PA from the right PA as easy; only 6 (9%) rated it as difficult and all were with an older technique in which the catheter was withdrawn to the pulmonary bifurcation without a wire or with only the soft tip of the wire in the pigtail and then rotated to the left main pulmonary artery. Thirty-one of the 41 patients who demonstrated premature ventricular contractions (PVCs) had a previous history of heart disease. Nineteen of the 39 patients who did not have PVCs had a history of heart disease (p = 0.018). The maneuverability and shape of the Hunter catheter make pulmonary angiography an easy procedure, even for operators with minimal experience and limited technical proficiency. PVCs demonstrated a statistically significant correlation with a positive patient history for cardiac disease, rather than being a universal risk.

  9. Bilateral choroidal osteoma with choroidal neovascular membrane treated with bevacizumab in a child.

    PubMed

    Agarwal, Manisha; Kantha, Meha; Mayor, Rahul; Venkatesh, Ramesh; Shroff, Cyrus M

    2014-01-01

    Choroidal osteoma is a rare benign tumor. We report a male child diagnosed with bilateral choroidal osteoma, high myopia and secondary choroidal neovascularization (CNV) membrane in one eye. Co-existence of posterior staphyloma made the clinical diagnosis of choroidal osteoma difficult due to the osteoma filling the depression of the posterior staphyloma. Typical findings on fundus fluorescein angiography, optical coherence tomography, B-scan and indocyanine green angiography confirmed the diagnosis. A review of literature was performed. CNV secondary to choroidal osteoma was treated with intravitreal bevacizumab and it responded well. Regular follow-up is essential for recurrence of CNV and decalcification of the osteoma.

  10. Spectral-Domain Optical Coherence Tomography of Polypoidal Choroidal Vasculopathy Associated With Benign Choroidal Nevus.

    PubMed

    De Salvo, Gabriella; Vaz-Pereira, Sara; Sehmi, Kulwant S; Andrews, Richard M; Sagoo, Mandeep S

    2015-01-01

    Two cases of polypoidal choroidal vasculopathy (PCV) complicating benign choroidal nevus and their tomographic features at spectral-domain optical coherence tomography (SD-OCT) are reported. Two eyes with choroidal nevus and associated subretinal fluid underwent complete ophthalmological examination, SD-OCT, fundus fluorescein angiography, and indocyanine green angiography (ICGA). SD-OCT and ICGA confirmed the diagnosis of PCV in both cases. Ophthalmologists should be aware of this rare combination between choroidal nevus and PCV. If a choroidal nevus presents with subretinal fluid, this does not always herald malignant transformation, and PCV should be ruled out so that the correct treatment can be planned.

  11. Multimodal Imaging of the White Dot Syndromes and Related Diseases

    PubMed Central

    Knickelbein, Jared E; Sen, H Nida

    2016-01-01

    The white dot syndromes encompass a group of rare posterior uveitis conditions that are characterized by outer retinal and/or choroidal hypopigmented lesions that are thought to be inflammatory in nature. The size, shape, and location of lesions in the fundus aid in differentiating these conditions. Multimodal imaging, including modalities such as fundus autofluorescence, optical coherence tomography, fluorescein angiography, and indocyanine green angiography, among others, has become integral in diagnosing and monitoring many of the white dot syndromes. Furthermore, multimodal imaging modalities have provided insights into the pathogenesis and exact sites within the retina and choroid affected by white dot syndromes. PMID:27482471

  12. Combined hamartoma of the retina and retinal pigment epithelium

    PubMed Central

    Xue, Kanmin; Mellington, Faye; Gout, Irina; Rokerya, Sofia; Olurin, Oyinkan Ibironke; El-Amir, Ahmed

    2012-01-01

    We report two cases of combined hamatoma of the retina and retinal pigment epithelium (CHR-RPE), illustrated with ultrasonography, optical coherence tomography, fundus fluorescein angiography and indocyanine green angiography images. CHR-RPE could clinically mimic several other retinal conditions. Failure to distinguish it from serious malignancies such as choroidal melanoma or retinoblastoma has led to unnecessary enucleation in the past. Through these case reports and a review of literature, we show the diagnostic features of CHR-RPE, its key differential diagnoses and the management options. PMID:23162024

  13. Subsecond magnetic resonance angiography and the evaluation of abnormal arteriovasuclar communications

    NASA Astrophysics Data System (ADS)

    Zachariah, Anish B.; Pereles, F. S.; Kaliney, Ryan; Carr, James C.; Collins, Jeremy D.; Wood, Cecil; Finn, John P.

    2003-05-01

    Magnetic resonance (MR) angiography is becoming widely accepted in the diagnosis of vascular diseases. When used for evaluation of arterial stenoses, aneurysm, thrombosis, or occlusion, MR angiography is a robust and accurate technique. Traditional techniques for contrast-enhanced magnetic resonance angiography (MRA) offer the benefit of high spatial resolution in characterizing vascular malformations, but have lacked the temporal resolution to describe dynamic flow events. The purpose of this project is to demonstrate the potential role of a novel technique, sub-second MRA, in the evaluation of abdominal arteriovenous malformation.

  14. EKG-gated digital subtraction angiography in the detection of pulmonary emboli. [Dogs

    SciTech Connect

    Hirji, M.; Gamsu, G.; Webb, W.R.; Brito, A.C.; Kuriyama, K.; Stern, R.G.; Cox, L.

    1984-07-01

    Detection of pulmonary emboli was investigated using electrocardiographically gated (EKG-gated) intravenous digital subtraction angiography (DSA) in 6 anesthetized and paralyzed dogs. Six autologous blood clots were introducted into the internal jugular vein of each dog and both conventional pulmonary angiography and EKG- gated DSA performed in frontal and oblique projections. The authors conclude that DSA can demonstrate individual emboli with good sensitivity and excellent precision. If several emboli are present, KEG-gated DSA should prove highly accurate; however, care must be taken because overinterpretation is more likely with DSA than with conventional pulmonary angiography.

  15. Acoustic angiography: a new high frequency contrast ultrasound technique for biomedical imaging

    NASA Astrophysics Data System (ADS)

    Shelton, Sarah E.; Lindsey, Brooks D.; Gessner, Ryan; Lee, Yueh; Aylward, Stephen; Lee, Hyunggyun; Cherin, Emmanuel; Foster, F. Stuart; Dayton, Paul A.

    2016-05-01

    Acoustic Angiography is a new approach to high-resolution contrast enhanced ultrasound imaging enabled by ultra-broadband transducer designs. The high frequency imaging technique provides signal separation from tissue which does not produce significant harmonics in the same frequency range, as well as high resolution. This approach enables imaging of microvasculature in-vivo with high resolution and signal to noise, producing images that resemble x-ray angiography. Data shows that acoustic angiography can provide important information about the presence of disease based on vascular patterns, and may enable a new paradigm in medical imaging.

  16. Patient Selection for Diagnostic Coronary Angiography and Hospital-Level PCI Appropriateness: Insights from the NCDR®

    PubMed Central

    Bradley, Steven M.; Spertus, John A.; Kennedy, Kevin F.; Nallamothu, Brahmajee K.; Chan, Paul S.; Patel, Manesh R.; Bryson, Chris L.; Malenka, David J.; Rumsfeld, John S.

    2014-01-01

    Importance Diagnostic coronary angiography in asymptomatic patients may lead to inappropriate percutaneous coronary intervention (PCI) due to a diagnostic to therapeutic cascade. Understanding the relationship between patient selection for coronary angiography and PCI appropriateness may inform strategies to minimize inappropriate procedures. Objective To determine if hospitals that frequently perform coronary angiography in asymptomatic patients, a clinical scenario wherein the benefit of angiography is less clear, are more likely to perform inappropriate PCI. Design, Setting and Participants Multicenter observational study of 544 hospitals participating in the CathPCI Registry® between July 2009 and September 2013. Measures Hospital proportion of asymptomatic patients at diagnostic coronary angiography and a hospital's rate of inappropriate PCI, as defined by 2012 Appropriate Use Criteria for coronary revascularization. Results Of 1,225,562 patients who underwent elective coronary angiography, 308,083 (25.1%) were asymptomatic. The hospital proportion of angiograms in asymptomatic patients ranged from 1.0% to 73.6% (median 24.7%, interquartile range 15.9% to 35.9%). By hospital quartiles of asymptomatic patients at angiography, hospitals with higher rates of asymptomatic patients at angiography had higher median rates of inappropriate PCI (14.8% vs. 20.2% vs. 24.0 vs. 29.4% from lowest to highest quartile, P<.001 for trend). This was attributable to more frequent use of PCI in asymptomatic patients at hospitals with higher rates of angiography in asymptomatic patients (inappropriate and asymptomatic PCI; 5.4% vs. 9.9% vs. 14.7% vs. 21.6% from lowest to highest quartile, P<.001 for trend). Hospitals with higher rates of asymptomatic patients at angiography also had lower rates of appropriate PCI (38.6% vs. 33.0% vs. 32.3% vs. 32.9%% from lowest to highest quartile, P<.001 for trend). Conclusions and Relevance In a national sample of hospitals, performing coronary

  17. Pulmonary Angiography and Embolization for Severe Hemoptysis Due to Cavitary Pulmonary Tuberculosis

    SciTech Connect

    Sanyika, Charles; Corr, Peter; Royston, Duncan; Blyth, David F.

    1999-11-15

    Purpose: To identify the role of pulmonary angiography in the diagnosis and treatment of severe hemoptysis due to cavitary pulmonary tuberculosis. Methods: Selective pulmonary angiography was performed on eight patients with severe hemoptysis uncontrolled by previous bronchial and systemic arterial embolization. Results: Three (38%) patients had Rasmussen aneurysms, which were successfully embolized with steel coils. Five patients demonstrated pulmonary arterial hypoperfusion in the diseased lung. Conclusions: We recommend pulmonary angiography in cavitary tuberculous patients with severe hemoptysis who do not respond to systemic arterial embolization. Rasmussen aneurysms are effectively treated by steel coil occlusion.

  18. Spiral Computed Tomographic Angiography of the Renal Arteries: A Prospective Comparison with Intravenous and Intraarterial Digital Subtraction Angiography

    SciTech Connect

    Farres, Maria Teresa; Lammer, Johannes; Schima, Wolfgang; Wagner, Brunhilde; Wildling, Reinhard; Winkelbauer, Friedrich; Thurnher, Siegfried

    1996-03-15

    Purpose: To assess the accuracy of computed tomographic angiography (CTA) in the evaluation of the renal arteries in comparison with intravenous (IVDSA) and intraarterial digital subtraction angiography (IADSA). Methods: In 18 patients, 35 CTAs and DSAs (27 IADSA, 8 IVDSA) of the renal arteries were performed. CTA was done with 2-3 mm collimation, 2-4 mm/sec table speed, after intravenous injection of 80 ml of contrast medium at 4 ml/sec with a scanning delay time of 14-21 sec. No previous circulation time curve was performed. CTA data were reconstructed with maximum intensity projection (MIP) and shaded surface display (SSD). The presence of stenosis was assessed on a three-point rating scale (grade 1-3). The quality of the examinations; visualization of the ostium, the main artery, and its branches; vessel sharpness, linearity, and intraluminal contrast filling were evaluated. We compared CTA with DSA. Results: CTA had 96% sensitivity, 77% specificity, and 89% accuracy in the detection of stenoses > 50%. Due to technical errors two stenoses were erroneously diagnosed as positive but there were no false negative diagnoses. The quality of CTA was good in 56% and moderate in 34% of cases. Visualization of the ostium and main artery was graded as 1.74 (out of 2) points and of the renal branches as 1.02 (out of 2) points. The quality of CTA images was worse than that of IADSA in 52%, equal in 41%, and better in 7% of cases. CTA was equal to IVDSA in 25% and better in 75% of the cases. Conclusion: CTA is an accurate noninvasive method for the evaluation of renal arteries. Examination quality is essential for the diagnosis. CTA is limited in its ability to visualize the branches of the renal artery and accessory arteries. CTA seems to be superior to IVDSA.

  19. Blood Pool Contrast-enhanced Magnetic Resonance Angiography with Correlation to Digital Subtraction Angiography: A Pictorial Review.

    PubMed

    Knuttinen, Martha-Grace; Karow, Jillian; Mar, Winnie; Golden, Margaret; Xie, Karen L

    2014-01-01

    Magnetic resonance angiography (MRA) provides noninvasive visualization of the vascular supply of soft tissue masses and vascular pathology, without harmful radiation. This is important for planning an endovascular intervention, and helps to evaluate the efficiency and effectiveness of the treatment. MRA with conventional extracellular contrast agents relies on accurate contrast bolus timing, limiting the imaging window to first-pass arterial phase. The recently introduced blood pool contrast agent (BPCA), gadofosveset trisodium, reversibly binds to human serum albumin, resulting in increased T1 relaxivity and prolonged intravascular retention time, permitting both first-pass and steady-state phase high-resolution imaging. In our practice, high-quality MRA serves as a detailed "roadmap" for the needed endovascular intervention. Cases of aortoiliac occlusive disease, inferior vena cava thrombus, pelvic congestion syndrome, and lower extremity arteriovenous malformation are discussed in this article. MRA was acquired at 1.5 T with an 8-channel phased array coil after intravenous administration of gadofosveset (0.03 mmol/kg body weight), at the first-pass phase. In the steady-state, serial T1-weighted 3D spoiled gradient echo images were obtained with high resolution. All patients underwent digital subtraction angiography (DSA) and endovascular treatment. MRA and DSA findings of vascular anatomy and pathology are discussed and correlated. BPCA-enhanced MRA provides high-quality first-pass and steady-state vascular imaging. This could increase the diagnostic accuracy and create a detailed map for pre-intervention planning. Understanding the pharmacokinetics of BPCA and being familiar with the indications and technique of MRA are important for diagnosis and endovascular intervention. PMID:25558430

  20. Green Cleaning Label Power

    ERIC Educational Resources Information Center

    Balek, Bill

    2012-01-01

    Green cleaning plays a significant and supportive role in helping education institutions meet their sustainability goals. However, identifying cleaning products, supplies and equipment that truly are environmentally preferable can be daunting. The marketplace is inundated with products and services purporting to be "green" or environmentally…