Sample records for indole alkaloids synthesis

  1. Synthesis of Bisindole Alkaloids from the Apocynaceae Which Contain a Macroline or Sarpagine Unit: A Review

    PubMed Central

    Rahman, Md Toufiqur; Phani Babu Tiruveedhula, Veera V. N.; Cook, James M.

    2016-01-01

    Bisindole natural products consist of two monomeric indole alkaloid units as their obligate constituents. Bisindoles are more potent with respect to their biological activity than their corresponding monomeric units. In addition, the synthesis of bisindoles are far more challenging than the synthesis of monomeric indole alkaloids. Herein is reviewed the enantiospecific total and partial synthesis of bisindole alkaloids isolated primarily from the Alstonia genus of the Apocynaceae family. The monomeric units belong to the sarpagine, ajmaline, macroline, vobasine, and pleiocarpamine series. An up-to-date discussion of their isolation, characterization, biological activity as well as approaches to their partial and total synthesis by means of both synthetic and biosynthetic strategies are presented. PMID:27854259

  2. Unified approach to prenylated indole alkaloids: total syntheses of (–)-17-hydroxy-citrinalin B, (+)-stephacidin A, and (+)-notoamide I† †Electronic supplementary information (ESI) available. CCDC 1400755 and 1400756. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc01977j

    PubMed Central

    Mercado-Marin, Eduardo V.

    2015-01-01

    A unified strategy for the synthesis of congeners of the prenylated indole alkaloids is presented. This strategy has yielded the first synthesis of the natural product (–)-17-hydroxy-citrinalin B as well as syntheses of (+)-stephacidin A and (+)-notoamide I. An enolate addition to an in situ generated isocyanate was utilized in forging a key bicyclo[2.2.2]diazaoctane moiety, and in this way connected the two structural classes of the prenylated indole alkaloids through synthesis. PMID:26417428

  3. Binary stress induces an increase in indole alkaloid biosynthesis in Catharanthus roseus

    PubMed Central

    Zhu, Wei; Yang, Bingxian; Komatsu, Setsuko; Lu, Xiaoping; Li, Ximin; Tian, Jingkui

    2015-01-01

    Catharanthus roseus is an important medicinal plant, which produces a variety of indole alkaloids of significant pharmaceutical relevance. In the present study, we aimed to investigate the potential stress-induced increase of indole alkaloid biosynthesis in C. roseus using proteomic technique. The contents of the detectable alkaloids ajmalicine, vindoline, catharanthine, and strictosidine in C. roseus were significantly increased under binary stress. Proteomic analysis revealed that the abundance of proteins related to tricarboxylic acid cycle and cell wall was largely increased; while, that of proteins related to tetrapyrrole synthesis and photosynthesis was decreased. Of note, 10-hydroxygeraniol oxidoreductase, which is involved in the biosynthesis of indole alkaloid was two-fold more abundant in treated group compared to the control. In addition, mRNA expression levels of genes involved in the indole alkaloid biosynthetic pathway indicated an up-regulation in their transcription in C. roseus under UV-B irradiation. These results suggest that binary stress might negatively affect the process of photosynthesis in C. roseus. In addition, the induction of alkaloid biosynthesis appears to be responsive to binary stress. PMID:26284098

  4. Rh-Catalyzed [3 + 2] Cycloaddition of 1-Sulfonyl-1,2,3-triazoles: Access to the Framework of Aspidosperma and Kopsia Indole Alkaloids.

    PubMed

    Li, Yun; Zhang, Qingyu; Du, Qiucheng; Zhai, Hongbin

    2016-08-19

    A Rh(II)-catalyzed dearomative intramolecular [3 + 2] dipolar cycloaddition involving the indolic C2-C3 carbon-carbon double bond has been developed. The reaction was launched from the triazole moiety within the substrate and proceeded efficiently under mild conditions. A wide range of functional groups could be tolerated. These features render the current reaction a highly useful tool for the synthesis of polycyclic indole alkaloids, as showcased by a rapid assembly of the core structure of Aspidosperma and the related alkaloids.

  5. Marine Natural Product Bis-indole Alkaloid Caulerpin: Chemistry and Biology.

    PubMed

    Lunagariya, Jignesh; Bhadja, Poonam; Zhong, Shenghui; Vekariya, Rohit; Xu, Shihai

    2017-09-27

    Marine bis-indole alkaloids comprise a large and increasingly growing class of secondary metabolites, and continue to deliver a great variety of structural templates. The alkaloids derived from marine resources play a crucial role in medicinal chemistry and as chemical agents. In particular, bis-indole alkaloid caulerpin isolated from marine green algae Caulerpa and a red algae Chondria armata at various places around the world, and tested against several therapeutic areas such as anti-diabetic, antinociceptive, anti-inflammatory, anti-tumor, anti-larvicidal, anti-herpes, anti-tubercular, anti-microbial and immunostimulating activity as well as means of other chemical agents. Herein, we summarized discovery of caulerpin, and its potential medicinal and chemical applications in chronological order with various aspects. Additionally, synthesis of caulerpin, its functional analogues, and structural isomer have also been reviewed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Expedient preparation of nazlinine and a small library of indole alkaloids using flow electrochemistry as an enabling technology.

    PubMed

    Kabeshov, Mikhail A; Musio, Biagia; Murray, Philip R D; Browne, Duncan L; Ley, Steven V

    2014-09-05

    An expedient synthesis of the indole alkaloid nazlinine is reported. Judicious choice of flow electrochemistry as an enabling technology has permitted the rapid generation of a small library of unnatural relatives of this biologically active molecule. Furthermore, by conducting the key electrochemical Shono oxidation in a flow cell, the loading of electrolyte can be significantly reduced to 20 mol % while maintaining a stable, broadly applicable process.

  7. Part 1. Synthetic approaches to indole/imidazole marine alkaloids. Part 2. 1-cyanobenzotriazole as a cyanating agent. Part 3. Synthesis of potential molecular rectifiers

    NASA Astrophysics Data System (ADS)

    Hughes, Terry Vincent

    1999-12-01

    This dissertation consists of four chapters. The first chapter details the progress toward a total synthesis of securine A (1). Securine A is an indole/imidazole containing marine alkaloid which contains a 2,3-disubstituted indole ring and a 4,5- disubstituted imidazole ring with a 12-membered lactam connecting the two. The approach into the securine A ring system utilized the opening of a pyrano[3,4-b]indol-3-one ring system with a modified histamine derivative. Efforts in the synthesis of securine A were not successful, but the synthesis of a similar analogue, compound 53, which contained a 13-membered ring was achieved. Chapter two deals with the total synthesis of the indole/maleimide/imidazole containing marine alkaloids: the didemnimides A-D (84- 87). The total syntheses of didemnimide A-D were successful and utilized a base catalyzed condensation reaction of methyl indolyl-3-glyoxylate (102) and 1-trityl-4-imidazoleacetamide (104). Chapter three details a new and convenient synthesis of 1-cyanobenzotriazole (123) and efforts to use it as a source of +CN in carbon-carbon forming reactions. The synthesis is safer than previously reported methods and allows for 123 to be made in multi-gram scale rather inexpensively. It was demonstrated that 1-cyanobenzotriazole (123) is a good source of +CN in carbon-carbon forming reactions by reacting with a variety of sp3, Sp 2, and sp carbanions. Chapter four details a new synthesis of hexadecylquinolinium tricyanoquinodimethanide (171) which has been shown to be a molecular rectifier. In search of additional molecular rectifiers, this new methodology was applied to the synthesis of Z- β-(N-n -hexadecyl-2-benzothiazolium)-α-cyano-4-styryldicyanomethanide (181) as well as its selenium and tellurium analogues 190 and 200; respectively. Additionally, the synthesis of other T- D+-π-A- types of molecules was explored in search for other molecular rectifiers. However, of all the compounds synthesized herein, only 171 has been shown to rectify.

  8. Bioinspired chemical synthesis of monomeric and dimeric stephacidin A congeners

    NASA Astrophysics Data System (ADS)

    Mukai, Ken; de Sant'ana, Danilo Pereira; Hirooka, Yasuo; Mercado-Marin, Eduardo V.; Stephens, David E.; Kou, Kevin G. M.; Richter, Sven C.; Kelley, Naomi; Sarpong, Richmond

    2018-01-01

    Stephacidin A and its congeners are a collection of secondary metabolites that possess intriguing structural motifs. They stem from unusual biosynthetic sequences that lead to the incorporation of a prenyl or reverse-prenyl group into a bicyclo[2.2.2]diazaoctane framework, a chromene unit or the vestige thereof. To complement biosynthetic studies, which normally play a significant role in unveiling the biosynthetic pathways of natural products, here we demonstrate that chemical synthesis can provide important insights into biosynthesis. We identify a short total synthesis of congeners in the reverse-prenylated indole alkaloid family related to stephacidin A by taking advantage of a direct indole C6 halogenation of the related ketopremalbrancheamide. This novel strategic approach has now made possible the syntheses of several natural products, including malbrancheamides B and C, notoamides F, I and R, aspergamide B, and waikialoid A, which is a heterodimer of avrainvillamide and aspergamide B. Our approach to the preparation of these prenylated and reverse-prenylated indole alkaloids is bioinspired, and may also inform the as-yet undetermined biosynthesis of several congeners.

  9. Bioinspired total synthesis and structural revision of yuremamine, an alkaloid from the entheogenic plant Mimosa tenuiflora.

    PubMed

    Calvert, Matthew B; Sperry, Jonathan

    2015-04-11

    Guided by a biosynthetic hypothesis, a serendipitous total synthesis of yuremamine has resulted in its structural revision from the putative pyrroloindole (1) to the flavonoidal indole (2), which was initially proposed as a biosynthetic intermediate.

  10. Palladium-catalyzed reactions in the synthesis of 3- and 4-substituted indoles. 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hegedus, L.S.; Sestrick, M.R.; Michaelson, E.T.

    1989-08-18

    4-Bromo-1-tosylindole (1) was converted to tricyclic indole enone 11, a potential intermediate in the synthesis of tetracyclic ergot alkaloids, by a series of palladium-catalyzed processes. Attempts to construct the ergot D ring by the hetero-Diels-Alder reaction of enone 11 and 1-azabutadiene 12 produced not the expected (4 + 2) adduct 13 but the benz(cd)indoline derivative 14 resulting from attack of the aza diene at the indole 2-position. The thermodynamic stability of the naphthol nucleus makes enone 11 generally susceptible to attack at the indole 2-position, as evidenced by the attack of hydride and methyl cuprate nucleophiles at this portion formingmore » indolines 16 and 17, respectively.« less

  11. Accumulation of Monoterpenoid Indole Alkaloids in Periwinkle Seedlings ("Catharanthus roseus") as a Model for the Study of Plant-Environment Interactions

    ERIC Educational Resources Information Center

    Miranda-Ham, Maria de Lourdes; Islas-Flores, Ignacio; Vazquez-Flota, Felipe

    2007-01-01

    Alkaloids are part of the chemical arsenal designed to protect plants against an adverse environment. Therefore, their synthesis and accumulation are frequently induced in response to certain environmental conditions and are mediated by chemical signals, which are formed as the first responses to the external stimulus. A set of experiments using…

  12. Co2(CO)8-catalyzed intramolecular hetero-Pauson-Khand reaction of alkynecarbodiimide: synthesis of (+/-)-physostigmine.

    PubMed

    Mukai, Chisato; Yoshida, Tatsunori; Sorimachi, Mao; Odani, Akira

    2006-01-05

    [reaction: see text] Herein we describe a novel Co(2)(CO)(8)-catalyzed intramolecular aza-Pauson-Khand-type reaction of alkynecarbodiimide derivatives affords pyrrolo[2,3-b]indol-2-one ring systems in reasonable yields. This is the first reported Co(2)(CO)(8) successfully applied in the hetero-Pauson-Khand reaction. Significantly, the transformation of one of our pyrrolo[2,3-b]indol-2-one derivatives into the indole alkaloid, (+/-)-physostigmine, was completed in a highly stereoselective manner.

  13. Sarpagine and related alkaloids

    PubMed Central

    Namjoshi, Ojas A.; Cook, James M.

    2016-01-01

    The sarpagine-related macroline and ajmaline alkaloids share a common biosynthetic origin, and bear important structural similarities, as expected. These indole alkaloids are widely dispersed in 25 plant genera, principally in the Apocynaceae family. Very diverse and interesting biological properties have been reported for this group of natural products. Isolation of new sarpagine-related alkaloids as well as the asymmetric synthesis of these structurally complex molecules are of paramount importance to the synthetic and medicinal chemists. A total of 115 newly isolated sarpagine-related macroline and ajmaline alkaloids, along with their physicochemical properties have been included in this chapter. A general and efficient strategy for the synthesis of these monomeric alkaloids, as well as bisindoles has been presented, which involves application of the asymmetric Pictet–Spengler reaction (>98% ee) as a key step because of the ease of scale up of the tetracyclic template. Also included in this chapter are the syntheses of the sarpagine-related alkaloids, published since the year 2000. PMID:26827883

  14. Synthetic study toward the misassigned (±)-tronoharine.

    PubMed

    Zhong, Xue; Li, You; Zhang, Jing; Han, Fu-She

    2015-02-06

    The synthesis of a pentacyclic indole compound corresponding to the core structure of the misassigned indole alkaloid, tronoharine (1), is presented. The key reactions were a formal [3 + 3] cycloaddition of an indol-2-yl carbinol with an azadiene for the construction of the 6/5/6/6 tetracyclic system containing an all-carbon quaternary center and an intramolecular substitution reaction of an amine and a triflate for the creation of the bridged azepine ring. In addition, some other interesting transformations discovered during the synthetic studies are also discussed.

  15. Biogenetically inspired synthesis and skeletal diversification of indole alkaloids.

    PubMed

    Mizoguchi, Haruki; Oikawa, Hideaki; Oguri, Hiroki

    2014-01-01

    To access architecturally complex natural products, chemists usually devise a customized synthetic strategy for constructing a single target skeleton. In contrast, biosynthetic assembly lines often employ divergent intramolecular cyclizations of a polyunsaturated common intermediate to produce diverse arrays of scaffolds. With the aim of integrating such biogenetic strategies, we show the development of an artificial divergent assembly line generating unprecedented numbers of scaffold variations of terpenoid indole alkaloids. This approach not only allows practical access to multipotent intermediates, but also enables systematic diversification of skeletal, stereochemical and functional group properties without structural simplification of naturally occurring alkaloids. Three distinct modes of [4+2] cyclizations and two types of redox-mediated annulations provided divergent access to five skeletally distinct scaffolds involving iboga-, aspidosperma-, andranginine- and ngouniensine-type skeletons and a non-natural variant within six to nine steps from tryptamine. The efficiency of our approach was demonstrated by successful total syntheses of (±)-vincadifformine, (±)-andranginine and (-)-catharanthine.

  16. Enantioselective Synthesis of (-)-Vallesine: Late-Stage C17-Oxidation via Complex Indole Boronation.

    PubMed

    Antropow, Alyssa H; Garcia, Nicholas R; White, Kolby L; Movassaghi, Mohammad

    2018-06-04

    The first enantioselective total synthesis of (-)-vallesine via a strategy that features a late-stage regioselective C17-oxidation followed by a highly stereoselective transannular cyclization is reported. The versatility of this approach is highlighted by the divergent synthesis of the archetypal alkaloid of this family, (+)-aspidospermidine, and an A-ring-oxygenated derivative, (+)-deacetylaspidospermine, the precursor to (-)-vallesine, from a common intermediate.

  17. Biogenetically inspired approach to the Strychnos alkaloids. Concise syntheses of (+/-)-akuammicine and (+/-)-strychnine.

    PubMed

    Ito, M; Clark, C W; Mortimore, M; Goh, J B; Martin, S F

    2001-08-22

    A linear synthesis of the indole alkaloid (+/-)-akuammicine (2) was completed by a novel sequence of reactions requiring only 10 steps from commercially available starting materials. The approach features a tandem vinylogous Mannich addition and an intramolecular hetero Diels-Alder reaction to rapidly assemble the pentacyclic heteroyohimboid derivative 8 from the readily available hydrocarboline 6. Oxidation of the E ring of 8 gave the lactone 9 that was converted into deformylgeissoschizine (11). The subsequent elaboration of 11 into 2 was effected by a biomimetically patterned transformation that involved sequential oxidation and base-induced skeletal reorganization. A variation of these tactics was then applied to the synthesis of the C(18) hydroxylated akuammicine derivative 36. Because 36 had previously been converted into strychnine (1) in four steps, its preparation constitutes a concise, formal synthesis of this complex alkaloid.

  18. Isolation and structure elucidation of a new indole alkaloid from Rauvolfia serpentina hairy root culture: the first naturally occurring alkaloid of the raumacline group.

    PubMed

    Sheludko, Yuri; Gerasimenko, Irina; Kolshorn, Heinz; Stöckigt, Joachim

    2002-05-01

    A new monoterpenoid indole alkaloid, 10-hydroxy- N(alpha)-demethyl-19,20-dehydroraumacline ( 1), was isolated as a mixture of E- and Z-isomers from hairy root culture of Rauvolfia serpentina Benth. ex Kurz (Apocynaceae) and the structure was determined by 1D and 2D NMR analyses. The new indole alkaloid represents the first naturally occurring alkaloid of the raumacline group and its putative biosynthetical pathway is discussed.

  19. Development of the Vinylogous Pictet-Spengler Cyclization and Total Synthesis of (±)-Lundurine A.

    PubMed

    Nash, Aaron; Qi, Xiangbing; Maity, Pradip; Owens, Kyle; Tambar, Uttam K

    2018-04-16

    A novel vinylogous Pictet-Spengler cyclization has been developed for the generation of indole-annulated medium-sized rings. The method enables the synthesis of tetrahydroazocinoindoles with a fully substituted carbon center, a prevalent structural motif in many biologically active alkaloids. The strategy has been applied to the total synthesis of (±)-lundurine A. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Marine Indole Alkaloids

    PubMed Central

    Netz, Natalie; Opatz, Till

    2015-01-01

    Marine indole alkaloids comprise a large and steadily growing group of secondary metabolites. Their diverse biological activities make many compounds of this class attractive starting points for pharmaceutical development. Several marine-derived indoles were found to possess cytotoxic, antineoplastic, antibacterial and antimicrobial activities, in addition to the action on human enzymes and receptors. The newly isolated indole alkaloids of marine origin since the last comprehensive review in 2003 are reported, and biological aspects will be discussed. PMID:26287214

  1. Profiling the indole alkaloids in yohimbe bark with ultra-performance liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    An ultra-high performance liquid chromatography-ion mobility- quadrupole time-of-flight mass spectrometry (UHPLC-IM-QTOF-MS) method was developed for profiling the indole alkaloids in yohimbe bark. Many indole alkaloids with the yohimbine core structure, plus methylated, oxidized, and reduced speci...

  2. Indole alkaloids from leaves and twigs of Rauvolfia verticillata.

    PubMed

    Zhang, Bing-Jie; Peng, Lei; Wu, Zhi-Kun; Bao, Mei-Fen; Liu, Ya-Ping; Cheng, Gui-Guang; Luo, Xiao-Dong; Cai, Xiang-Hai

    2013-01-01

    Seven new indole alkaloids, rauverines A-G (1-7), and 19 known indole alkaloids were isolated from the leaves and twigs of Rauvolfia verticillata. All compounds showed no cytotoxicity against five human cancer cell lines, human myeloid leukemia (HL-60), hepatocellular carcinoma (SMMC-7721), lung cancer (A-549), breast cancer (MCF-7), and colon cancer (SW480) cells.

  3. Indole alkaloid marine natural products: An established source of cancer drug leads with considerable promise for the control of parasitic, neurological and other diseases

    PubMed Central

    Gul, Waseem; Hamann, Mark T.

    2016-01-01

    The marine environment produces natural products from a variety of structural classes exhibiting activity against numerous disease targets. Historically marine natural products have largely been explored as anticancer agents. The indole alkaloids are a class of marine natural products that show unique promise in the development of new drug leads. This report reviews the literature on indole alkaloids of marine origin and also highlights our own research. Specific biological activities of indole alkaloids presented here include: cytotoxicity, antiviral, antiparasitic, anti-inflammatory, serotonin antagonism, Ca-releasing, calmodulin antagonism, and other pharmacological activities. PMID:16236327

  4. Rhodium-Catalyzed Denitrogenative [3+2] Cycloaddition: Access to Functionalized Hydroindolones and the Framework of Montanine-Type Amaryllidaceae Alkaloids.

    PubMed

    Yang, Hongjian; Hou, Shengtai; Tao, Cheng; Liu, Zhao; Wang, Chao; Cheng, Bin; Li, Yun; Zhai, Hongbin

    2017-09-18

    Rhodium-catalyzed denitrogenative [3+2] cycloaddition of 1-sulfonyl-1,2,3-triazoles with cyclic silyl dienol ethers has been developed for the synthesis of functionalized hydroindolones or their corresponding silyl ethers. The present method has been employed to construct synthetically valuable bicyclo[3.3.1]alkenone derivatives and pyrrolidine-ring-containing bicyclic indole compounds. As a further synthetic application, a stereoselective synthesis of 5,11-methanomorphanthridin-3-one, which shares a key skeleton with montanine-type Amaryllidaceae alkaloids has been achieved by using this chemistry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Indole Alkaloids from the Sea Anemone Heteractis aurora and Homarine from Octopus cyanea.

    PubMed

    Shaker, Kamel H; Göhl, Matthias; Müller, Tobias; Seifert, Karlheinz

    2015-11-01

    The two new indole alkaloids 2-amino-1,5-dihydro-5-(1H-indol-3-ylmethyl)-4H-imidazol-4-one (1), 2-amino-5-[(6-bromo-1H-indol-3-yl)methyl]-3,5-dihydro-3-methyl-4H-imidazol-4-one (2), and auramine (3) have been isolated from the sea anemone Heteractis aurora. Both indole alkaloids were synthesized for the confirmation of the structures. Homarine (4), along with uracil (5), hypoxanthine (6), and inosine (7) have been obtained from Octopus cyanea. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  6. An integrated strategy for the systematic characterization and discovery of new indole alkaloids from Uncaria rhynchophylla by UHPLC/DAD/LTQ-Orbitrap-MS.

    PubMed

    Pan, Huiqin; Yang, Wenzhi; Zhang, Yibei; Yang, Min; Feng, Ruihong; Wu, Wanying; Guo, Dean

    2015-08-01

    The exploration of new chemical entities from herbal medicines may provide candidates for the in silico screening of drug leads. However, this significant work is hindered by the presence of multiple classes of plant metabolites and many re-discovered structures. This study presents an integrated strategy that uses ultrahigh-performance liquid chromatography/linear ion-trap quadrupole/Orbitrap mass spectrometry (UHPLC/LTQ-Orbitrap-MS) coupled with in-house library data for the systematic characterization and discovery of new potentially bioactive molecules. Exploration of the indole alkaloids from Uncaria rhynchophylla (UR) is presented as a model study. Initially, the primary characterization of alkaloids was achieved using mass defect filtering and neutral loss filtering. Subsequently, phytochemical isolation obtained 14 alkaloid compounds as reference standards, including a new one identified as 16,17-dihydro-O-demethylhirsuteine by NMR analyses. The direct-infusion fragmentation behaviors of these isolated alkaloids were studied to provide diagnostic structural information facilitating the rapid differentiation and characterization of four different alkaloid subtypes. Ultimately, after combining the experimental results with a survey of an in-house library containing 129 alkaloids isolated from the Uncaria genus, a total of 92 alkaloids (60 free alkaloids and 32 alkaloid O-glycosides) were identified or tentatively characterized, 56 of which are potential new alkaloids for the Uncaria genus. Hydroxylation on ring A, broad variations in the C-15 side chain, new N-oxides, and numerous O-glycosides, represent the novel features of the newly discovered indole alkaloid structures. These results greatly expand our knowledge of UR chemistry and are useful for the computational screening of potentially bioactive molecules from indole alkaloids. Graphical Abstract A four-step integrated strategy for the systematic characterization and efficient discovery of new indole alkaloids from Uncaria rhynchophylla.

  7. General Strategy for Synthesis of C-19 Methyl-Substituted Sarpagine/Macroline/Ajmaline Indole Alkaloids Including Total Synthesis of 19(S),20(R)-Dihydroperaksine, 19(S),20(R)-Dihydroperaksine-17-al, and Peraksine

    PubMed Central

    2015-01-01

    A detailed account of the development of a general strategy for synthesis of the C-19 methyl-substituted alkaloids including total synthesis of 19(S),20(R)-dihydroperaksine-17-al (1), 19(S),20(R)-dihydroperaksine (2), and peraksine (6) is presented. Efforts directed toward the total synthesis of macrosalhine chloride (5) are also reported. Important to success is the sequence of chemical reactions which include a critical haloboration reaction, regioselective hydroboration, and controlled oxidation (to provide sensitive enolizable aldehydes at C-20). In addition, the all-important Pd-catalyzed α-vinylation reaction has been extended to a chiral C-19 alkyl-substituted substrate for the first time. Synthesis of the advanced intermediate 64 completes an improved formal total synthesis of talcarpine (26) and provides a starting point for synthesis of macroline-related alkaloids 27–31. Similarly, extension of this synthetic strategy in the ring A oxygenated series should provide easy access to the northern hemisphere 32b of the bisindoles angustricraline, alstocraline, and foliacraline (Figure 4). PMID:25247616

  8. Profiling the indole alkaloids in yohimbe bark with ultra-performance liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry.

    PubMed

    Sun, Jianghao; Baker, Andrew; Chen, Pei

    2011-09-30

    An ultra-performance liquid chromatography/ion mobility quadrupole time-of-flight mass spectrometry (UPLC/IM-QTOF-MS) method was developed for profiling the indole alkaloids in yohimbe bark. Many indole alkaloids with the yohimbine or ajmalicine core structure, plus methylated, oxidized and reduced species, were characterized. Common fragments and mass differences are described. It was shown that the use of IMS could provide another molecular descriptor, i.e. molecular shape by rotationally averaged collision cross-section; this is of great value for identification of constituents when reference materials are usually not available. Using the combination of high resolution (~40000) accurate mass measurement with time-aligned parallel (TAP) fragmentation, MS(E) (where E represents collision energy), ion mobility mass spectrometry (IMS) and UPLC chromatography, a total 55 indole alkaloids were characterized and a few new indole alkaloids are reported for the first time. Published in 2011 by John Wiley & Sons, Ltd.

  9. New zwitterionic monoterpene indole alkaloids from Uncaria rhynchophylla.

    PubMed

    Guo, Qiang; Yang, Hongshuai; Liu, Xinyu; Si, Xiali; Liang, Hong; Tu, Pengfei; Zhang, Qingying

    2018-01-31

    Four new zwitterionic monoterpene indole alkaloids, rhynchophyllioniums A-D (1-4), together with eight known alkaloids (5-12), were isolated from the hook-bearing stems of Uncaria rhynchophylla. Their structures were elucidated by extensive spectroscopic data analysis of MS, 1D and 2D NMR, and ECD, and the zwitterionic forms and absolute configurations of 1 and 2 were unambiguously confirmed by single crystal X-ray diffraction analysis. All the isolates, including the monoterpene indole alkaloids with free C-22 carboxyl group and those with C-22 carboxyl methyl ester, were proved to be naturally coexisting in the herb by LC-MS analysis. This is the first report of monoterpene indole alkaloids that exist in the form of zwitterion. Additionally, the cytotoxic activities of all isolates against A549, HepG2, and MCF-7 cell lines are reported. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Lolitrem B and Indole Diterpene Alkaloids Produced by Endophytic Fungi of the Genus Epichloë and Their Toxic Effects in Livestock.

    PubMed

    Philippe, Guerre

    2016-02-15

    Different group of alkaloids are produced during the symbiotic development of fungal endophytes of the genus Epichloë in grass. The structure and toxicity of the compounds vary considerably in mammalian herbivores and in crop pests. Alkaloids of the indole-diterpene group, of which lolitrem B is the most toxic, were first characterized in endophyte-infected perennial ryegrass, and are responsible for "ryegrass staggers." Ergot alkaloids, of which ergovaline is the most abundant ergopeptide alkaloid produced, are also found in ryegrass, but generally at a lower rate than lolitrem B. Other alkaloids such as lolines and peramine are toxic for crop pests but have weak toxicological properties in mammals. The purpose of this review is to present indole-diterpene alkaloids produced in endophyte infected ryegrass from the first characterization of ryegrass staggers to the determination of the toxicokinetics of lolitrem B and of their mechanism of action in mammals, focusing on the different factors that could explain the worldwide distribution of the disease. Other indole diterpene alkaloids than lolitrem B that can be found in Epichloë infected ryegrass, and their tremorgenic properties, are presented in the last section of this review.

  11. Is there no end to the total syntheses of strychnine? Lessons to be learned for strategy and tactics in total synthesis**

    PubMed Central

    Cannon, Jeffrey S.; Overman, Larry E.

    2013-01-01

    From the 19th century to the present, the complex indole alkaloid strychnine has engaged the chemical community. In this review, we examine why strychnine has been and remains today an important target for directed synthesis efforts. A selection of the diverse syntheses of strychnine is discussed with the aim of identifying their influence on the evolution of the strategy and tactics of organic synthesis. PMID:22431197

  12. Alkaloids in Marine Algae

    PubMed Central

    Güven, Kasım Cemal; Percot, Aline; Sezik, Ekrem

    2010-01-01

    This paper presents the alkaloids found in green, brown and red marine algae. Algal chemistry has interested many researchers in order to develop new drugs, as algae include compounds with functional groups which are characteristic from this particular source. Among these compounds, alkaloids present special interest because of their pharmacological activities. Alkaloid chemistry has been widely studied in terrestrial plants, but the number of studies in algae is insignificant. In this review, a detailed account of macro algae alkaloids with their structure and pharmacological activities is presented. The alkaloids found in marine algae may be divided into three groups: 1. Phenylethylamine alkaloids, 2. Indole and halogenated indole alkaloids, 3. Other alkaloids. PMID:20390105

  13. A novel and general synthetic pathway to strychnos indole alkaloids: total syntheses of (-)-tubifoline, (-)-dehydrotubifoline, and (-)-strychnine using palladium-catalyzed asymmetric allylic substitution.

    PubMed

    Mori, Miwako; Nakanishi, Masato; Kajishima, Daisuke; Sato, Yoshihiro

    2003-08-13

    A method of palladium-catalyzed asymmetric allylic substitution for synthesizing 2-substituted cyclohexenylamine derivatives was established. Treatment of a 2-silyloxymethylcyclohexenol derivative with ortho-bromo-N-tosylaniline in the presence of Pd(2)dba(3).CHCl(3) and (S)-BINAPO in THF afforded a cyclohexenylamine derivative with 84% ee in 80% yield. The Heck reaction was carried out to produce an indolenine derivative in good yield. Using this method, we synthesized indolenine derivative 7, which was recrystallized from EtOH to give an optically pure compound. From this compound, tetracyclic ketone 13, which should be a useful intermediate for the synthesis of indole alkaloids, could be synthesized. The total syntheses of (-)-dehydrotubifoline, (-)-tubifoline, and (-)-strychnine were achieved from 13. All ring constructions for the syntheses of these natural products were achieved using a palladium catalyst.

  14. Total Synthesis of Strychnine.

    PubMed

    Lee, Geun Seok; Namkoong, Gil; Park, Jisook; Chen, David Y-K

    2017-11-16

    The total synthesis of the flagship Strychnos indole alkaloid, strychnine, has been accomplished. The developed synthetic sequence features a novel vinylogous 1,4-addition, a challenging iodinium salt mediated silyl enol ether arylation, a palladium-catalyzed Heck reaction, and a streamlined late-stage conversion to strychnine. Furthermore, an application of asymmetric counterion-directed catalysis (ACDC) in the context of target-oriented organic synthesis has been rendered access to an optically active material. The synthetic sequence described herein represents the most concise entry to optically active strychnine to date. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Is there no end to the total syntheses of strychnine? Lessons learned in strategy and tactics in total synthesis.

    PubMed

    Cannon, Jeffrey S; Overman, Larry E

    2012-04-27

    From the 19th century to the present, the complex indole alkaloid strychnine has engaged the chemical community. In this Review, we examine why strychnine has been and remains today an important target for directed synthesis efforts. A selection of the diverse syntheses of strychnine is discussed with the aim of identifying their influence on the evolution of the strategy and tactics of organic synthesis. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Indole alkaloids from Rauvolfia bahiensis A.DC. (Apocynaceae).

    PubMed

    Kato, Lucilia; Marques Braga, Raquel; Koch, Ingrid; Sumiko Kinoshita, Luiza

    2002-06-01

    Four indole alkaloids, 12-methoxy-N(a)-methyl-vellosimine, demethoxypurpeline, 12-methoxyaffinisine, and 12-methoxy-vellosimine, in addition to picrinine, vinorine, raucaffrinoline, normacusine B, norseredamine, seredamine, 10-methoxynormacusine B, norpurpeline and purpeline, were isolated from the bark or leaf extracts of Rauvolfia bahiensis.

  17. Comparative study of fourteen alkaloids from Uncaria rhynchophylla hooks and leaves using HPLC-diode array detection-atmospheric pressure chemical ionization/MS method.

    PubMed

    Qu, Jialin; Gong, Tianxing; Ma, Bin; Zhang, Lin; Kano, Yoshihiro; Yuan, Dan

    2012-01-01

    The purpose of the study is to compare alkaloid profile of Uncaria rhynchophylla hooks and leaves. Ten oxindole alkaloids and four glycosidic indole alkaloids were identified using HPLC-diode array detection (DAD) or LC-atmospheric pressure chemical ionization (APCI)-MS method, and a HPLC-UV method for simultaneous quantification of major alkaloids was validated. The hooks are characterized by high levels of four oxindole alkaloids rhynchophylline (R), isorhynchophylline (IR), corynoxeine (C) and isocorynoxeine (IC), while the leaves contained high level of two glycosidic indole alkaloids vincoside lactam (VL) and strictosidine (S). The presented methods have proven its usefulness in chemical characterization of U. rhynchophylla hooks and leaves.

  18. Hybrid Monoterpenoid Indole Alkaloids Obtained as Artifacts from Rauvolfia tetraphylla.

    PubMed

    Gao, Yuan; Zhou, Dong-Sheng; Hai, Ping; Li, Yan; Wang, Fei

    2015-10-01

    Five new hybrid monoterpenoid indole alkaloids bearing an unusual 2,2-dimethyl-4-oxopiperidin-6-yl moiety, namely rauvotetraphyllines F-H (1, 3, 4), 17-epi-rauvotetraphylline F (2) and 21-epi-rauvotetraphylline H (5), were isolated from the aerial parts of Rauvolfia tetraphylla. Their structures were established by extensive spectroscopic analysis. The new alkaloids were evaluated for their cytotoxicity in vitro against five human cancer cell lines.

  19. Hairy root biotechnology of Rauwolfia serpentina: a potent approach for the production of pharmaceutically important terpenoid indole alkaloids.

    PubMed

    Mehrotra, Shakti; Goel, Manoj K; Srivastava, Vikas; Rahman, Laiq Ur

    2015-02-01

    Hairy root cultures of Rauwolfia serpentina induced by Agrobacterium rhizogenes have been investigated extensively for the production of terpenoid indole alkaloids. Various biotechnological developments, such as scaling up in bioreactors, pathway engineering etc., have been explored to improve their metabolite production potential. These hairy roots are competent for regenerating into complete plants and show survival and unaltered biosynthetic potential during storage at low temperature. This review provides a comprehensive account of the hairy root cultures of R. serpentina, their biosynthetic potential and various biotechnological methods used to explore the production of pharmaceutically important terpenoid indole alkaloids. The review also indicates how biotechnological endeavors might improve the future progress of research for production of alkaloids using Rauwolfia hairy roots.

  20. Rauvomines A and B, Two Monoterpenoid Indole Alkaloids from Rauvolfia vomitoria.

    PubMed

    Zeng, Jun; Zhang, Dong-Bo; Zhou, Pan-Pan; Zhang, Qi-Li; Zhao, Lei; Chen, Jian-Jun; Gao, Kun

    2017-08-04

    Two unusual normonoterpenoid indole alkaloids rauvomine A (1) and rauvomine B (2), together with two known compounds peraksine (3) and alstoyunine A (4), were isolated from the aerial parts of Rauvolfia vomitoria. The structures with absolute configurations of 1 and 2 were elucidated by spectroscopic analysis, single-crystal X-ray diffraction, and electronic circular dichroism (ECD) calculations. Compound 2 is a novel C 18 normonoterpenoid indole alkaloid with a substituted cyclopropane ring that forms an unusual 6/5/6/6/3/5 hexcyclic rearranged ring system. The plausible biogenetic pathways of 1 and 2 were proposed. Compound 2 exhibited significant anti-inflammatory activity.

  1. A review on indole alkaloids isolated from Uncaria rhynchophylla and their pharmacological studies.

    PubMed

    Ndagijimana, Andre; Wang, Xiaoming; Pan, Guixiang; Zhang, Fan; Feng, Hong; Olaleye, Olajide

    2013-04-01

    Uncaria rhynchophylla (Miq.) Jacks, Rubiaceae, is one of the original plants of the important Chinese crude drug, Gou-teng, mainly used for the treatment of convulsion, hypertension, epilepsy, eclampsia, and cerebral diseases. The pharmacological activities of this plant are related to the presence of active compounds predominantly indole alkaloids. In this article, we have reviewed some reports about the pharmacological activities of the main indole alkaloids isolated from U. rhynchophylla. This review paper will contribute to the studies on the chemistry, safety and quality control of medicinal preparations containing Uncaria species. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Emulating the logic of monoterpenoid alkaloid biogenesis to access a skeletally diverse chemical library.

    PubMed

    Liu, Song; Scotti, John S; Kozmin, Sergey A

    2013-09-06

    We have developed a synthetic strategy that mimics the diversity-generating power of monoterpenoid indole alkaloid biosynthesis. Our general approach goes beyond diversification of a single natural product-like substructure and enables production of a highly diverse collection of small molecules. The reaction sequence begins with rapid and highly modular assembly of the tetracyclic indoloquinolizidine core, which can be chemoselectively processed into several additional skeletally diverse structural frameworks. The general utility of this approach was demonstrated by parallel synthesis of two representative chemical libraries containing 847 compounds with favorable physicochemical properties to enable its subsequent broad pharmacological evaluation.

  3. Links between Genetic Groups, Indole Alkaloid Profiles and Ecology within the Grass-Parasitic Claviceps purpurea Species Complex.

    PubMed

    Negård, Mariell; Uhlig, Silvio; Kauserud, Håvard; Andersen, Tom; Høiland, Klaus; Vrålstad, Trude

    2015-04-28

    The grass parasitic fungus Claviceps purpurea sensu lato produces sclerotia with toxic indole alkaloids. It constitutes several genetic groups with divergent habitat preferences that recently were delimited into separate proposed species. We aimed to 1) analyze genetic variation of C. purpurea sensu lato in Norway, 2) characterize the associated indole alkaloid profiles, and 3) explore relationships between genetics, alkaloid chemistry and ecology. Approximately 600 sclerotia from 14 different grass species were subjected to various analyses including DNA sequencing and HPLC-MS. Molecular results, supported by chemical and ecological data, revealed one new genetic group (G4) in addition to two of the three known; G1 (C. purpurea sensu stricto) and G2 (C. humidiphila). G3 (C. spartinae) was not found. G4, which was apparently con-specific with the recently described C. arundinis sp. nov, was predominantly found in very wet habitats on Molinia caerulea and infrequently in saline habitats on Leymus arenarius. Its indole-diterpene profile resembled G2, while its ergot alkaloid profile differed from G2 in high amounts of ergosedmam. In contrast to G1, indole-diterpenes were consistently present in G2 and G4. Our study supports and complements the newly proposed species delimitation of the C. purpurea complex, but challenges some species characteristics including host spectrum, habitat preferences and sclerotial floating ability.

  4. Links between Genetic Groups, Indole Alkaloid Profiles and Ecology within the Grass-Parasitic Claviceps purpurea Species Complex

    PubMed Central

    Negård, Mariell; Uhlig, Silvio; Kauserud, Håvard; Andersen, Tom; Høiland, Klaus; Vrålstad, Trude

    2015-01-01

    The grass parasitic fungus Claviceps purpurea sensu lato produces sclerotia with toxic indole alkaloids. It constitutes several genetic groups with divergent habitat preferences that recently were delimited into separate proposed species. We aimed to 1) analyze genetic variation of C. purpurea sensu lato in Norway, 2) characterize the associated indole alkaloid profiles, and 3) explore relationships between genetics, alkaloid chemistry and ecology. Approximately 600 sclerotia from 14 different grass species were subjected to various analyses including DNA sequencing and HPLC-MS. Molecular results, supported by chemical and ecological data, revealed one new genetic group (G4) in addition to two of the three known; G1 (C. purpurea sensu stricto) and G2 (C. humidiphila). G3 (C. spartinae) was not found. G4, which was apparently con-specific with the recently described C. arundinis sp. nov, was predominantly found in very wet habitats on Molinia caerulea and infrequently in saline habitats on Leymus arenarius. Its indole-diterpene profile resembled G2, while its ergot alkaloid profile differed from G2 in high amounts of ergosedmam. In contrast to G1, indole-diterpenes were consistently present in G2 and G4. Our study supports and complements the newly proposed species delimitation of the C. purpurea complex, but challenges some species characteristics including host spectrum, habitat preferences and sclerotial floating ability. PMID:25928134

  5. One bis-indole alkaloid-voacamine from Voacanga africana Stapf: biological activity evaluation of PTP1B in vitro utilizing enzymology method based on SPRi expriment.

    PubMed

    Wang, Yan-Qiu; Li, Hong-Xiang; Liu, Xiao-Chun; Zhao, Jin-Shuang; Liu, Rong-Qiang; Huai, Wen-Ying; Ding, Wei-Jun; Zhang, Tian-E; Deng, Yun

    2018-05-31

    One known bis-indole alkaloid-voacamine was isolated from Voacanga africana Stapf and Surface Plasmon Resonance imaging (SPRi) exprement showed that this alkaloid could be combine with Protein Tyrosine Phosphatase1B (PTP1B). Then the PTP1B activity inhibition experiment display that the compound showed an outstanding promoting activity to PTP1B.

  6. A UPLC-ESI-Q-TOF method for rapid and reliable identification and quantification of major indole alkaloids in Catharanthus roseus.

    PubMed

    Jeong, Won Tae; Lim, Heung Bin

    2018-03-30

    We developed a novel ultra performance liquid chromatography-quadrupole time-of-flight (UPLC-Q-TOF) mass spectrometry method that allows sensitive, rapid, and reliable detection and identification of six representative indole alkaloids (vincristine, vinblastine, ajmalicine, catharanthine, serpentine, and vindoline) that exhibit physiological activity in Catharanthus roseus (C. roseus). The alkaloids were eluted on a C18 column with acetonitrile and water containing 0.1% formic acid and 10 mM ammonium acetate, and separated with good resolution within 13 min. Electrospray ionization-Q-TOF (ESI-Q-TOF) analysis was performed to characterize the molecules and their fragment ions, and the characteristic ions and fragmentation patterns were used as to identify the alkaloids. The proposed analytical method was verified in reference to the ICH guidelines and the results showed excellent linearity (R 2  > 0.9988), limit of detection (1 ng/mL to 10 ng/mL), limit of quantification (3 ng/mL to 30 ng/mL), intra-day and inter-day precisions, and extraction recovery rates (92.8% to 104.1%) for all components. The validated UPLC-Q-TOF method was applied to the analysis of extracts from the root, stem, and leaves of C. roseus, allowing the identification of six alkaloids by comparison of retention times, molecular ions, and fragmentation patterns with those of reference compounds. Sixteen additional indole alkaloids were tentatively identified by comparison of chromatograms to chemical databases and literature reports. The contents of bis-indole alkaloids (vincristine and vinblastine) were high in the aerial parts, while the contents of mono-indole alkaloids (ajmalicine, catharanthine, serpentine, and vindoline) were high in the roots. The present results demonstrate that the proposed UPLC-Q-TOF method can be useful for the investigation of phytochemical constituents of medicinal plants. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Further brominated bis- and tris-indole alkaloids from the deep-water New Caledonian marine sponge Orina Sp.

    PubMed

    Bifulco, G; Bruno, I; Riccio, R; Lavayre, J; Bourdy, G

    1995-08-01

    Two tris-indole alkaloids, (+/-) gelliusines A and B [1], have been isolated for the first time from a marine source, the New Caledonian sponge, Orina sp. (or Gellius sp.), along with five further indole constituents [2-6]. Compound 6 has been identified as 2,2-bis-(6'-bromo-3'-indolyl(-ethylamine, previously isolated from the tunicate Didemnum candidum, but the remaining four indoles [2-5] are novel compounds. These showed anti-serotonin activity and a strong affinity for somatostatin and neuropeptide Y receptors in receptor-binding assays.

  8. Indoles as therapeutics of interest in medicinal chemistry: Bird's eye view.

    PubMed

    Chadha, Navriti; Silakari, Om

    2017-07-07

    Indoles constitute extensively explored heterocyclic ring systems with wide range of applications in pathophysiological conditions that is, cancer, microbial and viral infections, inflammation, depression, migraine, emesis, hypertension, etc. Presence of indole nucleus in amino acid tryptophan makes it prominent in phytoconstituents such as perfumes, neurotransmitters, auxins (plant hormones), indole alkaloids etc. The interesting molecular architecture of indole makes them suitable candidates for the drug development. This review article provides an overview of the chemistry, biology, and toxicology of indoles focusing on their application as drugs. Our effort is to corroborate the information available on the natural indole alkaloids, indole based FDA approved drugs and clinical trial candidates having diverse therapeutic implementations. This compiled information may serve as a benchmark for the alteration of existing ligands to design novel potent molecules with lesser side effects. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. An efficient and target-oriented sample enrichment method for preparative separation of minor alkaloids by pH-zone-refining counter-current chromatography.

    PubMed

    Feng, Rui-Hong; Hou, Jin-Jun; Zhang, Yi-Bei; Pan, Hui-Qin; Yang, Wenzhi; Qi, Peng; Yao, Shuai; Cai, Lu-Ying; Yang, Min; Jiang, Bao-Hong; Liu, Xuan; Wu, Wan-Ying; Guo, De-An

    2015-08-28

    An efficient and target-oriented sample enrichment method was established to increase the content of the minor alkaloids in crude extract by using the corresponding two-phase solvent system applied in pH-zone-refining counter-current chromatography. The enrichment and separation of seven minor indole alkaloids from Uncaria rhynchophylla (Miq.) Miq. ex Havil(UR) were selected as an example to show the advantage of this method. An optimized two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (3:7:1:9, v/v) was used in this study, where triethylamine (TEA) as the retainer and hydrochloric acid (HCl) as the eluter were added at the equimolar of 10mM. Crude alkaloids of UR dissolved in the corresponding upper phase (containing 10mM TEA) were extracted twice with lower phase (containing 10mM TEA) and lower phase (containing 10mM HCl), respectively, the second lower phase extract was subjected to pH-zone-refining CCC separation after alkalization and desalination. Finally, from 10g of crude alkaloids, 4g of refined alkaloids was obtained and the total content of seven target indole alkaloids was increased from 4.64% to 15.78%. Seven indole alkaloids, including 54mg isocorynoxeine, 21mg corynoxeine, 46mg isorhynchophylline, 35mg rhynchophylline, 65mg hirsutine, 51mg hirsuteine and 27mg geissoschizine methylether were all simultaneously separated from 2.5g of refined alkaloids, with the purity of 86.4%, 97.5%, 90.3%, 92.1%, 98.5%, 92.3%, and 92.8%, respectively. The total content and purities of the seven minor indole alkaloids were tested by HPLC and their chemical structures were elucidated by ESI-HRMS and (1)H NMR. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Tulongicin, an Antibacterial Tri-Indole Alkaloid from a Deep-Water Topsentia sp. Sponge.

    PubMed

    Liu, Hong-Bing; Lauro, Gianluigi; O'Connor, Robert D; Lohith, Katheryn; Kelly, Michelle; Colin, Patrick; Bifulco, Giuseppe; Bewley, Carole A

    2017-09-22

    Antibacterial-guided fractionation of an extract of a deep-water Topsentia sp. marine sponge led to the isolation of two new indole alkaloids, tulongicin A (1) and dihydrospongotine C (2), along with two known analogues, spongotine C (3) and dibromodeoxytopsentin (4). Their planar structures were determined by NMR spectroscopy. Their absolute configurations were determined through a combination of experimental and computational analyses. Tulongicin (1) is the first natural product to contain a di(6-Br-1H-indol-3-yl)methyl group linked to an imidazole core. The coexistence of tri-indole 1 and bis-indole alcohol 2 suggests a possible route to 1. All of the compounds showed strong antimicrobial activity against Staphylococcus aureus.

  11. Hamacanthins A and B, new antifungal bis indole alkaloids from the deep-water marine sponge, Hamacantha sp.

    PubMed

    Gunasekera, S P; McCarthy, P J; Kelly-Borges, M

    1994-10-01

    Hamacanthin A [1] and hamacanthin B [2] are two bioactive dihydropyrazinonediylbis(indole) alkaloids isolated from a new species of deep-water marine sponge, Hamacantha sp. The hamacanthins are growth inhibitors of Candida albicans and Cryptococcus neoformans. Isolation and structure elucidation of 1 and 2 by nmr spectroscopy are described.

  12. Targeted Isolation of Monoterpene Indole Alkaloids from Palicourea sessilis.

    PubMed

    Klein-Júnior, Luiz C; Cretton, Sylvian; Allard, Pierre-Marie; Genta-Jouve, Grégory; Passos, Carolina S; Salton, Juliana; Bertelli, Pablo; Pupier, Marion; Jeannerat, Damien; Heyden, Yvan Vander; Gasper, André L; Wolfender, Jean-Luc; Christen, Philippe; Henriques, Amélia T

    2017-11-22

    Phytochemical investigation of the alkaloid extract of Palicourea sessilis by LC-HRMS/MS using molecular networking and an in silico MS/MS fragmentation approach suggested the presence of several new monoterpene indole alkaloids. These compounds were isolated by semipreparative HPLC, and their structures confirmed by means of HRMS, NMR, and ECD measurements as 4-N-methyllyaloside (3), 4-N-methyl-3,4-dehydrostrictosidine (4), 4β-hydroxyisodolichantoside (6), and 4α-hydroxyisodolichantoside (7), as well as the known alkaloids alline (1), N-methyltryptamine (2), isodolichantoside (5), and 5-oxodolichantoside (8). In addition, the acetylcholinesterase inhibitory activity of the compounds was evaluated up to 50 μM.

  13. Gold-Catalyzed Cyclization Leads to a Bridged Tetracyclic Indolenine that Represses β-Lactam Resistance.

    PubMed

    Xu, Wenqing; Wang, Wei; Wang, Xiang

    2015-08-10

    A gold-catalyzed desilylative cyclization was developed for facile synthesis of bridged tetracyclic indolenines, a common motif in many natural indole alkaloids. An antimicrobial screen of the cyclization products identified one compound which selectively potentiates β-lactam antibiotics in methicillin-resistant S. aureus (MRSA), and re-sensitizes a variety of MRSA strains to β-lactams. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. 3-oxo-rhazinilam: a new indole alkaloid from Rauvolfia serpentina x Rhazya stricta hybrid plant cell cultures.

    PubMed

    Gerasimenko, I; Sheludko, Y; Stöckigt, J

    2001-01-01

    A new monoterpenoid indole alkaloid, 3-oxo-rhazinilam (1), was isolated from intergeneric somatic hybrid cell cultures of Rauvolfia serpentina and Rhazya stricta, and the structure was determined by detailed 1D and 2D NMR analysis. It was also proved that 3-oxo-rhazinilam (1) is a natural constituent of the hybrid cells.

  15. Indole alkaloids and other constituents of Rauwolfia serpentina.

    PubMed

    Itoh, Atsuko; Kumashiro, Tomoko; Yamaguchi, Machiko; Nagakura, Naotaka; Mizushina, Yoshiyuki; Nishi, Toyoyuki; Tanahashi, Takao

    2005-06-01

    From the dried roots of Rauwolfia serpentina were isolated five new indole alkaloids, N(b)-methylajmaline (1), N(b)-methylisoajmaline (2), 3-hydroxysarpagine (3), yohimbinic acid (4), isorauhimbinic acid (5), a new iridoid glucoside, 7-epiloganin (6), and a new sucrose derivative, 6'-O-(3,4,5-trimethoxybenzoyl)glomeratose A (7), together with 20 known compounds. The structures of the new compounds were determined by spectroscopic and chemical means. The inhibitory activities of the selected alkaloids on topoisomerase I and II and their cytotoxicity against the human promyelocytic leukemia (HL-60) cell lines were assessed.

  16. Five new indole alkaloids from the leaves of Rauvolfia yunnanensis.

    PubMed

    Geng, Chang-An; Liu, Xi-Kui

    2013-09-01

    Five new indole alkaloids, rauvoloids A-E (1-5), together with two known ones, raucaffrinoline (6) and perakine (7) were isolated from the leaves of Rauvolfia yunnanensis. Their structures were elucidated by extensive spectroscopic methods. Structurally, rauvoloids A (1), B-C (2-3) and D (4) with unusual substitution patterns (no substitution, Cl and (1E)-3-oxo-butenyl, respectively) at C-20, are the first examples of perakine-type alkaloids with C18 and C22 skeletons. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Bio-inspired synthesis yields a tricyclic indoline that selectively resensitizes methicillin-resistant Staphylococcus aureus (MRSA) to β-lactam antibiotics

    PubMed Central

    Podoll, Jessica D.; Liu, Yongxiang; Chang, Le; Walls, Shane; Wang, Wei; Wang, Xiang

    2013-01-01

    The continuous emergence of resistant bacteria has become a major worldwide health threat. The current development of new antibacterials has lagged far behind. To discover reagents to fight against resistant bacteria, we initiated a chemical approach by synthesizing and screening a small molecule library, reminiscent of the polycyclic indole alkaloids. Indole alkaloids are a class of structurally diverse natural products, many of which were isolated from plants that have been used as traditional medicine for millennia. Specifically, we adapted an evolutionarily conserved biosynthetic strategy and developed a concise and unified diversity synthesis pathway. Using this pathway, we synthesized 120 polycyclic indolines that contain 26 distinct skeletons and a wide variety of functional groups. A tricyclic indoline, Of1, was discovered to selectively potentiate the activity of β-lactam antibiotics in multidrug-resistant methicillin-resistant Staphylococcus aureus (MRSA), but not in methicillin-sensitive S. aureus. In addition, we found that Of1 itself does not have antiproliferative activity but can resensitize several MRSA strains to the β-lactam antibiotics that are widely used in the clinic, such as an extended-spectrum β-lactam antibiotic amoxicillin/clavulanic acid and a first-generation cephalosporin cefazolin. These data suggest that Of1 is a unique selective resistance-modifying agent for β-lactam antibiotics, and it may be further developed to fight against resistant bacteria in the clinic. PMID:24019472

  18. Arabidopsis Cytochrome P450 Monooxygenase 71A13 Catalyzes the Conversion of Indole-3-Acetaldoxime in Camalexin Synthesis[W

    PubMed Central

    Nafisi, Majse; Goregaoker, Sameer; Botanga, Christopher J.; Glawischnig, Erich; Olsen, Carl E.; Halkier, Barbara A.; Glazebrook, Jane

    2007-01-01

    Camalexin (3-thiazol-2-yl-indole) is an indole alkaloid phytoalexin produced by Arabidopsis thaliana that is thought to be important for resistance to necrotrophic fungal pathogens, such as Alternaria brassicicola and Botrytis cinerea. It is produced from Trp, which is converted to indole acetaldoxime (IAOx) by the action of cytochrome P450 monooxygenases CYP79B2 and CYP79B3. The remaining biosynthetic steps are unknown except for the last step, which is conversion of dihydrocamalexic acid to camalexin by CYP71B15 (PAD3). This article reports characterization of CYP71A13. Plants carrying cyp71A13 mutations produce greatly reduced amounts of camalexin after infection by Pseudomonas syringae or A. brassicicola and are susceptible to A. brassicicola, as are pad3 and cyp79B2 cyp79B3 mutants. Expression levels of CYP71A13 and PAD3 are coregulated. CYP71A13 expressed in Escherichia coli converted IAOx to indole-3-acetonitrile (IAN). Expression of CYP79B2 and CYP71A13 in Nicotiana benthamiana resulted in conversion of Trp to IAN. Exogenously supplied IAN restored camalexin production in cyp71A13 mutant plants. Together, these results lead to the conclusion that CYP71A13 catalyzes the conversion of IAOx to IAN in camalexin synthesis and provide further support for the role of camalexin in resistance to A. brassicicola. PMID:17573535

  19. Tetracyclic indole alkaloids with antinematode activity from Uncaria rhynchophylla.

    PubMed

    Kong, Fandong; Ma, Qingyun; Huang, Shengzhuo; Yang, Shuang; Fu, Linran; Zhou, Liman; Dai, Haofu; Yu, Zhifang; Zhao, Youxing

    2017-06-01

    A new tetracyclic indole alkaloid, 17-O-methyl-3,4,5,6-tetradehydrogeissoschizine, together with seven known ones, were isolated from the aerial part of Uncaria rhynchophylla. Their structures were unambiguously elucidated by spectroscopic methods and comparing with the literature data. Among them, compounds 1, 3, 4 and 6-8 showed potent to moderate antinematode activities against Panagrellus redivevus at a concentration of 250 μg/mL.

  20. Strategies for the capillary electrophoretic separation of indole alkaloids in Psilocybe semilanceata.

    PubMed

    Pedersen-Bjergaard, S; Rasmussen, K E; Sannes, E

    1998-01-01

    While the hallucinogenic mushrooms Psilocybe semilanceata have previously been analyzed for the indole alkaloids psilocybin and baeocystin by capillary zone electrophoresis (CZE) at pH 11.5, the present work focused on the development of an alternative and complementary capillary electrophoretic method for their identification. Owing to their structural similarity and zwitterionic nature, the compounds were difficult to resolve based on different interactions with cationic or anionic micelles. However, while the attempts with micellar electrokinetic chromatography (MEKC) were unsuccessful, rapid derivatization with propyl chloroformate and reanalysis by CZE at pH 11.5 was effective to support identification of the two indole alkaloids. Psilocin was difficult to analyze by CZE at pH 11.5 owing to comigration with the electroosmotic flow. For this compound, the pH of the running buffer was reduced to 7.2 to effectively enhance the electrophoretic mobility.

  1. Alkaloids from psychotria target sirtuins: in silico and in vitro interaction studies.

    PubMed

    Sacconnay, Lionel; Ryckewaert, Lucie; Dos Santos Passos, Carolina; Guerra, Maria Cristina; Kato, Lucilia; Alves de Oliveira, Cecilia Maria; Henriques, Amélia; Carrupt, Pierre-Alain; Simões-Pires, Claudia; Nurisso, Alessandra

    2015-04-01

    Epigenetic enzymes such as histone deacetylases play a crucial role in the development of ageing-related diseases. Among the 18 histone deacetylase isoforms found in humans, class III histone deacetylases, also known as sirtuins, seem to be promising targets for treating neurodegenerative conditions. Recently, Psychotria alkaloids, mainly monoterpene indoles, have been reported for their inhibitory properties against central nervous system cholinesterase and monoamine oxidase proteins. Given the multifunctional profile of these alkaloids in the central nervous system, and the fact that the indole scaffold has been previously associated with sirtuin inhibition, we hypothesized that these indole derivatives could also interact with sirtuins. In the present study, alkaloids previously isolated from Psychotria spp. were evaluated for their potential interaction with human sirtuin 1 and sirtuin 2 by molecular docking and molecular dynamics simulation approaches. The in silico results allowed for the selection of five potentially active compounds, namely, prunifoleine, 14-oxoprunifoleine, E-vallesiachotamine, Z-vallesiachotamine, and vallesiachotamine lactone. The sirtuin inhibition of these compounds was confirmed in vitro in a dose-response manner, with preliminary information on their pharmacokinetics properties. Georg Thieme Verlag KG Stuttgart · New York.

  2. An unexpected reaction pathway in the synthesis of the ABCE framework of strychnine-type alkaloids - A multidisciplinary study

    NASA Astrophysics Data System (ADS)

    Šoral, Michal; Markus, Jozef; Doháňošová, Jana; Šoralová, Stanislava; Dvoranová, Dana; Chyba, Andrej; Moncol, Ján; Berkeš, Dušan; Liptaj, Tibor

    2017-01-01

    Acid-catalyzed cyclization of spirocyclic 1‧-benzyl-2‧-(prop-2-en-1-yl)spiro[indole-3,3‧-pyrrolidine]-5‧-one (1) was performed. The pentacyclic product of Povarov-like imino-Diels-Alder reaction was isolated in high yield instead of expected tetracyclic aza-Prins intermediate. The unusual exotic alkaloid-type structure of the resulting molecule 2 was unambiguously confirmed by a detailed NMR analysis using a set of 2D NMR spectra including an INADEQUATE experiment. The relative configuration of 2 was predicted from the synthesis mechanism and DFT geometry calculations and independently confirmed using NOESY and residual dipolar coupling (RDC) assisted NMR analysis in stretched crosslinked polystyrene gels. The reversibility of the cycloaddition in aprotic solvents was observed. A new reaction pathway yielding a rare 6-5-5-5 tetracyclic spiroindoline 3 was suggested. The relative configuration within the tetracyclic framework was ultimately proved using Single-crystal X-ray diffraction analysis of compound 4.

  3. Hexacyclic monoterpenoid indole alkaloids from Rauvolfia verticillata.

    PubMed

    Gao, Yuan; Yu, Ai-Lin; Li, Gen-Tao; Hai, Ping; Li, Yan; Liu, Ji-Kai; Wang, Fei

    2015-12-01

    Five new hexacyclic monoterpenoid indole alkaloids, rauvovertine A (1), 17-epi-rauvovertine A (2), rauvovertine B (3), 17-epi-rauvovertine B (4), and rauvovertine C (5) together with 17 known analogues were isolated from the stems of Rauvolfia verticillata. Compounds 1/2 and 3/4 were obtained as C-17 epimeric mixtures due to rapid hemiacetal tautomerism in solution. The structures of 1-5 were established by spectroscopic analysis and with the aid of molecular modeling. The new alkaloids were evaluated for their cytotoxicity in vitro against human tumor HL-60, SMMC-7721, A-549, MCF-7, and SW-480 cell lines. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Assessment of the in vitro and in vivo genotoxicity of extracts and indole monoterpene alkaloid from the roots of Galianthe thalictroides (Rubiaceae).

    PubMed

    Fernandes, L M; Garcez, W S; Mantovani, M S; Figueiredo, P O; Fernandes, C A; Garcez, F R; Guterres, Z R

    2013-09-01

    Roots of Galianthe thalictroides K. Schum. (Rubiaceae) are used in folk medicine in the State of Mato Grosso do Sul, Brazil, for treating and preventing cancer. To gain information about the genotoxicity of extracts (aqueous and EtOH), the CHCl₃ phase resulting from partition of the EtOH extract and the indole monoterpene alkaloid 1 obtained from this plant. The genotoxicity of 1 and extracts was evaluated in vivo through the Drosophila melanogaster wing Somatic Mutation and Recombination Test - SMART, while in vitro cytotoxic (MTT) and Comet assays were performed only with alkaloid 1. The results obtained with the SMART test indicated that the aqueous extract had no genotoxic activity. The EtOH extract was not genotoxic to ST descendants but genotoxic to HB ones. The CHCl₃ phase was genotoxic and cytotoxic. Alkaloid 1 showed significant mutational events with SMART, in the cytotoxicity assay (MTT), it showed a high cytotoxicity for human hepatoma cells (HepG2), whereas for the Comet assay, not showing genotoxic activity. The ethanol extract was shown to be genotoxic to HB descendants in the SMART assay, while the results obtained in this test for the monoterpene indole alkaloid 1 isolated from this extract. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Hypaphorine, an indole alkaloid from Erythrina velutina, induced sleep on normal mice.

    PubMed

    Ozawa, Masaaki; Honda, Kazuki; Nakai, Izumi; Kishida, Akio; Ohsaki, Ayumi

    2008-07-15

    An indole alkaloid (hypaphorine (1)) was isolated from Brazilian medicinal plant, Erythrina velutina (Leguminosae). This compound was investigated for sleep promoting effects in mice, and the results showed that it significantly increased non-rapid eye movement (NREM) sleep time during the first hour after its administration. The NREM sleep time was enhanced by 33% in the experimental mice when compared to that of the controls. This study therefore confirmed its sleep promoting property.

  6. [Alkaloids of Pausinystalia macroceras].

    PubMed

    Leboef, M; Cavé, A; Mangeney, P; Bouquet, A

    1981-04-01

    A study of the alkaloidal content of trunk-barks of Pausinystalia macroceras (K. Schum.) Pierre, Rubiaceae, resulted in the isolation of six alkaloids, five of which are indole alkaloids that belong to the yohimbane and heteroyohimbane groups; among them, yohimbine was found in major amount. Moreover, the levorotatory isomer of calycanthine, a quinoline dimeric tryptophane derived base, has been isolated for the first time. The phytochemical significance of calycanthine and related alkaloids is discussed.

  7. Dragmacidin G, a Bioactive Bis-Indole Alkaloid from a Deep-Water Sponge of the Genus Spongosorites.

    PubMed

    Wright, Amy E; Killday, K Brian; Chakrabarti, Debopam; Guzmán, Esther A; Harmody, Dedra; McCarthy, Peter J; Pitts, Tara; Pomponi, Shirley A; Reed, John K; Roberts, Bracken F; Rodrigues Felix, Carolina; Rohde, Kyle H

    2017-01-11

    A deep-water sponge of the genus Spongosorites has yielded a bis-indole alkaloid which we have named dragmacidin G. Dragmacidin G was first reported by us in the patent literature and has recently been reported by Hitora et al. from a sponge of the genus Lipastrotheya . Dragmacidin G is the first in this series of compounds to have a pyrazine ring linking the two indole rings. It also has a rare N -(2-mercaptoethyl)-guanidine side chain. Dragmacidin G shows a broad spectrum of biological activity including inhibition of methicillin-resistant Staphylococcus aureus , Mycobacterium tuberculosis , Plasmodium falciparum, and a panel of pancreatic cancer cell lines.

  8. Dragmacidin G, a Bioactive Bis-Indole Alkaloid from a Deep-Water Sponge of the Genus Spongosorites

    PubMed Central

    Wright, Amy E.; Killday, K. Brian; Chakrabarti, Debopam; Guzmán, Esther A.; Harmody, Dedra; McCarthy, Peter J.; Pitts, Tara; Pomponi, Shirley A.; Reed, John K.; Roberts, Bracken F.; Rodrigues Felix, Carolina; Rohde, Kyle H.

    2017-01-01

    A deep-water sponge of the genus Spongosorites has yielded a bis-indole alkaloid which we have named dragmacidin G. Dragmacidin G was first reported by us in the patent literature and has recently been reported by Hitora et al. from a sponge of the genus Lipastrotheya. Dragmacidin G is the first in this series of compounds to have a pyrazine ring linking the two indole rings. It also has a rare N-(2-mercaptoethyl)-guanidine side chain. Dragmacidin G shows a broad spectrum of biological activity including inhibition of methicillin-resistant Staphylococcus aureus, Mycobacterium tuberculosis, Plasmodium falciparum, and a panel of pancreatic cancer cell lines. PMID:28085024

  9. (+/-)-Gelliusines A and B, two diastereomeric brominated tris-indole alkaloids from a deep water new caledonian marine sponge (Gellius or Orina sp.).

    PubMed

    Bifulco, G; Bruno, I; Minale, L; Riccio, R; Calignano, A; Debitus, C

    1994-09-01

    Two new diastereomeric brominated tris-indole alkaloids occurring as enantiomeric pairs, (+/-)-gelliusines A [1] and B [2], have been isolated from a deep water New Caledonian sponge (Gellius or Orina sp.), whose crude extract exhibited cytotoxicity against KB cells. Their structures were elucidated by spectroscopic methods including one- and two-dimensional nmr spectroscopy. The major compound, (+/-) gelliusine A [1], which showed very weak cytotoxicity, proved to be active at the serotonin receptor.

  10. Oxidative stress and production of bioactive monoterpene indole alkaloids: biotechnological implications.

    PubMed

    Matsuura, Hélio Nitta; Rau, Mariana Ritter; Fett-Neto, Arthur Germano

    2014-02-01

    Monoterpene indole alkaloids (MIAs) encompass plant natural products with important pharmacological relevance. They include the anti-tumoral MIAs found in Catharanthus roseus and Camptotheca acuminata. The often low yields of bioactive alkaloids in plants has prompted research to identify the factors regulating MIA production. Oxidative stress is a general response associated with biotic and abiotic stresses leading to several secondary responses, including elicitation of MIA production. These changes in secondary metabolism may take place directly or via second messengers, such as Ca(2+) and reactive oxygen species (ROS). H2O2 is the main ROS that participates in MIA biosynthesis. This review analyzes the links between oxidative stress, elicitation of bioactive MIA production and their potential roles in antioxidant defense, as well as exploring the implications to developing biotechnological strategies relevant for alkaloid supply.

  11. [Chemical constituents of Rauvolfia verticillata].

    PubMed

    Hong, Bo; Li, Wen-Jing; Zhao, Chun-Jie

    2012-06-01

    The study on the Rauvolfia verticillata (Lour.) Baill., which belongs to Apocynaceae, was carried out to look for its chemical constituents and pharmacological activity. The isolation and purification were performed by chromatography on silica gel, Sephadex LH-20 and ODS (octadecyl silane) open column. The structures of obtained compounds were elucidated on the basis of physicochemical properties and spectral analysis. Three indole alkaloids and one acridone alkaloid were isolated from chloroform layer extract and identified as ajmalicine B (1), sandwicine (2), raunescine (3) and 7-hydroxynoracronycine (4) separately. Ajmalicine B (1) is a new compound belonging to indole alkaloid. Compound 4 as an acridone alkaloid was a new type compound isolated from Rauvolfia genus for the first time. We also did some biological activity research on the new type compound (4) to explore other pharmacological activities in addition to antihypertensive activity.

  12. Biosynthesis and Regulation of Bioprotective Alkaloids in the Gramineae Endophytic Fungi with Implications for Herbivores Deterrents.

    PubMed

    Luo, Hongping; Xie, Longxiang; Zeng, Jie; Xie, Jianping

    2015-12-01

    Four kinds of bioprotective alkaloids-peramine, loline, ergot alkaloid, indole-diterpenes, produced by grass-fungal endophyte symbioses, are deterrents or toxic to vertebrate and invertebrate herbivores. Ergot alkaloids have pharmacological properties and widely are used clinically. The regulation of alkaloids biosynthesis is under intensive study to improve the yield for better agricultural and medicinal application. In this paper, we summarize the structure, related genes, regulation, and toxicity of alkaloids. We focus on the biosynthesis and the regulation network of alkaloids.

  13. Mass defect filtering-oriented classification and precursor ions list-triggered high-resolution mass spectrometry analysis for the discovery of indole alkaloids from Uncaria sinensis.

    PubMed

    Pan, Huiqin; Yang, Wenzhi; Yao, Changliang; Shen, Yao; Zhang, Yibei; Shi, Xiaojian; Yao, Shuai; Wu, Wanying; Guo, Dean

    2017-09-22

    Discovery of new natural compounds is becoming increasingly challenging because of the interference from those known and abundant components. The aim of this study is to report a dereplication strategy, by integrating mass defect filtering (MDF)-oriented novelty classification and precursor ions list (PIL)-triggered high-resolution mass spectrometry analysis, and to validate it by discovering new indole alkaloids from the medicinal herb Uncaria sinensis. Rapid chromatographic separation was achieved on a Kinetex ® EVO C18 column (<16min). An in-house MDF algorithm, developed based on the informed phytochemistry information and molecular design, could more exactly screen the target alkaloids and divide them into three novelty levels: Known (KN), Unknown-but-Predicted (UP), and Unexpected (UN). A hybrid data acquisition method, namely PIL-triggered collision-induced dissociation-MS 2 and high-energy C-trap dissociation-MS 3 with dynamic exclusion on a linear ion trap/Orbitrap mass spectrometer, facilitated the acquisition of diverse product ions sufficient for the structural elucidation of both indole alkaloids and the N-oxides. Ultimately, 158 potentially new alkaloids, including 10 UP and 108 UN, were rapidly characterized from the stem, leaf, and flower of U. sinensis. Two new alkaloid compounds thereof were successfully isolated and identified by 1D and 2D NMR analyses. The varied ring E and novel alkaloid-acylquinic acid conjugates were first reported from the whole Uncaria genus. Conclusively, it is a practical chemical dereplication strategy that can enhance the efficiency and has the potential to be a routine approach for the discovery of new natural compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. New alkaloids of the sarpagine group from Rauvolfia serpentina hairy root culture.

    PubMed

    Sheludko, Yuri; Gerasimenko, Irina; Kolshorn, Heinz; Stöckigt, Joachim

    2002-07-01

    Three new monoterpenoid indole alkaloids, 19(S),20(R)-dihydroperaksine (1), 19(S),20(R)-dihydroperaksine-17-al (2), and 10-hydroxy-19(S),20(R)-dihydroperaksine (3), along with 16 known alkaloids 4-19 were isolated from hairy root culture of Rauvolfia serpentina, and their structures were elucidated by 1D and 2D NMR analyses. Taking into account the stereochemistry of the new alkaloids and results of preliminary enzymatical studies, the putative biosynthetical relationships between the novel alkaloids are discussed.

  15. Indole-diterpenes and ergot alkaloids in Cynodon dactylon (Bermuda grass) infected with Claviceps cynodontis from an outbreak of tremors in cattle.

    PubMed

    Uhlig, Silvio; Botha, Christo J; Vrålstad, Trude; Rolén, Elin; Miles, Christopher O

    2009-12-09

    Tremorgenic syndromes in mammals are commonly associated with indole-diterpenoid alkaloids of fungal origin. Cattle are sometimes affected by tremors (also called "staggers") when they graze on toxic grass pastures, and Bermuda grass ( Cynodon dactylon , kweek) has been known to be associated with tremors for several decades. This study reports the identification of paspalitrems and paspaline-like indole-diterpenes in the seedheads of Claviceps cynodontis -infected Bermuda grass collected from a pasture that had caused a staggers syndrome in cattle in South Africa and thereby links the condition to specific mycotoxins. The highest concentration (about 150 mg/kg) was found for paspalitrem B. Ergonovine and ergine (lysergic acid amide), together with their C-8 epimers, were found to co-occur with the indole-diterpenes at concentrations of about 10 microg/kg. The indole-diterpene profile of the extract from the ergotized Bermuda grass was similar to that of Claviceps paspali sclerotia. However, the C. paspali sclerotia contained in addition agroclavine and elymoclavine. This is the first study linking tremors associated with grazing of Bermuda grass to specific tremorgenic indole-diterpenoid mycotoxins.

  16. Natural product-inspired cascade synthesis yields modulators of centrosome integrity.

    PubMed

    Dückert, Heiko; Pries, Verena; Khedkar, Vivek; Menninger, Sascha; Bruss, Hanna; Bird, Alexander W; Maliga, Zoltan; Brockmeyer, Andreas; Janning, Petra; Hyman, Anthony; Grimme, Stefan; Schürmann, Markus; Preut, Hans; Hübel, Katja; Ziegler, Slava; Kumar, Kamal; Waldmann, Herbert

    2011-12-25

    In biology-oriented synthesis, the scaffolds of biologically relevant compound classes inspire the synthesis of focused compound collections enriched in bioactivity. This criterion is, in particular, met by the scaffolds of natural products selected in evolution. The synthesis of natural product-inspired compound collections calls for efficient reaction sequences that preferably combine multiple individual transformations in one operation. Here we report the development of a one-pot, twelve-step cascade reaction sequence that includes nine different reactions and two opposing kinds of organocatalysis. The cascade sequence proceeds within 10-30 min and transforms readily available substrates into complex indoloquinolizines that resemble the core tetracyclic scaffold of numerous polycyclic indole alkaloids. Biological investigation of a corresponding focused compound collection revealed modulators of centrosome integrity, termed centrocountins, which caused fragmented and supernumerary centrosomes, chromosome congression defects, multipolar mitotic spindles, acentrosomal spindle poles and multipolar cell division by targeting the centrosome-associated proteins nucleophosmin and Crm1.

  17. Medicinal uses, phytochemistry and pharmacology of the genus Uncaria.

    PubMed

    Zhang, Qian; Zhao, Jiao Jiao; Xu, Jian; Feng, Feng; Qu, Wei

    2015-09-15

    The genus Uncaria belongs to the family Rubiaceae, which mainly distributed in tropical regions, such as Southeast Asia, Africa and Southeast America. Their leaves and hooks have long been thought to have healing powers and are already being tested as a treatment for asthma, cancer, cirrhosis, diabetes, hypertension, stroke and rheumatism. The present review aims to provide systematically reorganized information on the ethnopharmacology, phytochemistry and pharmacology of the genus Uncaria to support for further therapeutic potential of this genus. To better understanding this genus, information on the stereo-chemistry and structure-activity relationships in indole alkaloids is also represented. The literature study of this review is based on various databases search (SCIFinder, Science Direct, CNKI, Wiley online library, Spring Link, Web of Science, PubMed, Wanfang Data, Medalink, Google scholar, ACS, Tropicos, Council of Heads of Australasian Herbaria, The New York Botanical Garden, African Plants Database at Genera Botanical Garden, The Plant List and SEINet) and library search for Biological Abstract and some local books on ethnopharmacology. 19 species of the genus Uncaria are found to be important folk medicines in China, Malaysia, Phillippines, Africa and Southeast America, etc, and have been served for the treatment of asthma, rheumatism, hyperpyrexia, hypertension and headaches, etc. More than 200 compounds have been isolated from Uncaria, including indole alkaloids, triterpenes, flavonoids, phenols, phenylpropanoids, etc. As characteristic constituents, indole alkaloids have been considered as main efficacy component for hypertension, epilepsy, depressant, Parkinson's disease and Alzheimer's disease. In addition, pharmacokinetic and metabolism investigation reveal that the indole alkaloids are likely to be absorbed, metabolized and excreted at early time points. Moreover, the specific inhibition of CYP isozymes can regulate their hydroxylation metabolites at C-10 and C-11. Preliminary investigations on pharmacological properties of the Uncaria species have enlightened their efficacious remedy for hypertension, asthma, cancer, diabetes, rheumatism and neurodegenerative diseases. To ensure the safety and effectiveness in clinical application, research on bioactive compounds, pharmacological mechanisms and toxicity of the genus Uncaria as well as the stereo-chemistry and structure-activity relationships of indole alkaloids seem very important. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Purification, cloning, functional expression and characterization of perakine reductase: the first example from the AKR enzyme family, extending the alkaloidal network of the plant Rauvolfia.

    PubMed

    Sun, Lianli; Ruppert, Martin; Sheludko, Yuri; Warzecha, Heribert; Zhao, Yu; Stöckigt, Joachim

    2008-07-01

    Perakine reductase (PR) catalyzes an NADPH-dependent step in a side-branch of the 10-step biosynthetic pathway of the alkaloid ajmaline. The enzyme was cloned by a "reverse-genetic" approach from cell suspension cultures of the plant Rauvolfia serpentina (Apocynaceae) and functionally expressed in Escherichia coli as the N-terminal His(6)-tagged protein. PR displays a broad substrate acceptance, converting 16 out of 28 tested compounds with reducible carbonyl function which belong to three substrate groups: benzaldehyde, cinnamic aldehyde derivatives and monoterpenoid indole alkaloids. The enzyme has an extraordinary selectivity in the group of alkaloids. Sequence alignments define PR as a new member of the aldo-keto reductase (AKR) super family, exhibiting the conserved catalytic tetrad Asp52, Tyr57, Lys84, His126. Site-directed mutagenesis of each of these functional residues to an alanine residue results in >97.8% loss of enzyme activity, in compounds of each substrate group. PR represents the first example of the large AKR-family which is involved in the biosynthesis of plant monoterpenoid indole alkaloids. In addition to a new esterase, PR significantly extends the Rauvolfia alkaloid network to the novel group of peraksine alkaloids.

  19. Assessing the Regioselectivity of OleD-Catalyzed Glycosylation with a Diverse Set of Acceptors

    PubMed Central

    Zhou, Maoquan; Hamza, Adel; Zhan, Chang-Guo; Thorson, Jon S.

    2013-01-01

    To explore the acceptor regioselectivity of OleD-catalyzed glucosylation, the products of OleD-catalyzed reactions with the six structurally diverse acceptors - flavones (daidzein), isoflavones (flavopiridol), stilbenes (resveratrol), indole alkaloids (10-hydroxycamptothecin), and steroids (2-methoxyestradiol) - were determined. This study highlights the first synthesis of flavopiridol and 2-methoxyestradiol glucosides and confirms the ability of OleD to glucosylate both aromatic and aliphatic nucleophiles. In all cases, molecular dynamics simulations were consistent with the determined product distribution and suggest the potential to develop a virtual screening model to identify additional OleD substrates. PMID:23360118

  20. Molecular Architecture of Strictosidine Glucosidase: The Gateway to the Biosynthesis of the Monoterpenoid Indole Alkaloid Family[W

    PubMed Central

    Barleben, Leif; Panjikar, Santosh; Ruppert, Martin; Koepke, Juergen; Stöckigt, Joachim

    2007-01-01

    Strictosidine β-d-glucosidase (SG) follows strictosidine synthase (STR1) in the production of the reactive intermediate required for the formation of the large family of monoterpenoid indole alkaloids in plants. This family is composed of ∼2000 structurally diverse compounds. SG plays an important role in the plant cell by activating the glucoside strictosidine and allowing it to enter the multiple indole alkaloid pathways. Here, we report detailed three-dimensional information describing both native SG and the complex of its inactive mutant Glu207Gln with the substrate strictosidine, thus providing a structural characterization of substrate binding and identifying the amino acids that occupy the active site surface of the enzyme. Structural analysis and site-directed mutagenesis experiments demonstrate the essential role of Glu-207, Glu-416, His-161, and Trp-388 in catalysis. Comparison of the catalytic pocket of SG with that of other plant glucosidases demonstrates the structural importance of Trp-388. Compared with all other glucosidases of plant, bacterial, and archaeal origin, SG's residue Trp-388 is present in a unique structural conformation that is specific to the SG enzyme. In addition to STR1 and vinorine synthase, SG represents the third structural example of enzymes participating in the biosynthetic pathway of the Rauvolfia alkaloid ajmaline. The data presented here will contribute to deciphering the structure and reaction mechanism of other higher plant glucosidases. PMID:17890378

  1. The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus

    PubMed Central

    Van Moerkercke, Alex; Steensma, Priscille; Schweizer, Fabian; Pollier, Jacob; Gariboldi, Ivo; Payne, Richard; Vanden Bossche, Robin; Miettinen, Karel; Espoz, Javiera; Purnama, Purin Candra; Kellner, Franziska; Seppänen-Laakso, Tuulikki; O’Connor, Sarah E.; Rischer, Heiko; Memelink, Johan; Goossens, Alain

    2015-01-01

    Plants make specialized bioactive metabolites to defend themselves against attackers. The conserved control mechanisms are based on transcriptional activation of the respective plant species-specific biosynthetic pathways by the phytohormone jasmonate. Knowledge of the transcription factors involved, particularly in terpenoid biosynthesis, remains fragmentary. By transcriptome analysis and functional screens in the medicinal plant Catharanthus roseus (Madagascar periwinkle), the unique source of the monoterpenoid indole alkaloid (MIA)-type anticancer drugs vincristine and vinblastine, we identified a jasmonate-regulated basic helix–loop–helix (bHLH) transcription factor from clade IVa inducing the monoterpenoid branch of the MIA pathway. The bHLH iridoid synthesis 1 (BIS1) transcription factor transactivated the expression of all of the genes encoding the enzymes that catalyze the sequential conversion of the ubiquitous terpenoid precursor geranyl diphosphate to the iridoid loganic acid. BIS1 acted in a complementary manner to the previously characterized ethylene response factor Octadecanoid derivative-Responsive Catharanthus APETALA2-domain 3 (ORCA3) that transactivates the expression of several genes encoding the enzymes catalyzing the conversion of loganic acid to the downstream MIAs. In contrast to ORCA3, overexpression of BIS1 was sufficient to boost production of high-value iridoids and MIAs in C. roseus suspension cell cultures. Hence, BIS1 might be a metabolic engineering tool to produce sustainably high-value MIAs in C. roseus plants or cultures. PMID:26080427

  2. Aspidosperma species as sources of antimalarials. Part III. A review of traditional use and antimalarial activity.

    PubMed

    de Paula, Renata Cristina; Dolabela, Maria Fâni; de Oliveira, Alaíde Braga

    2014-03-01

    Several plant species belonging to the genus Aspidosperma are traditionally used in Brazil and other Meso- and South American countries for the treatment of malaria and fevers. These traditional uses were motivation for this review. A literature survey completed for this review has identified scientific bibliographical references to the use of 24 Aspidosperma species to treat malaria/fevers and to 19 species that have had their extracts and/or alkaloids evaluated, with good results, for in vitro and/or in vivo antimalarial activity. Indole alkaloids are typical constituents of Aspidosperma species. However, only 20 out of more than 200 known indole alkaloids isolated from this genus have been assayed for antimalarial activity. These data support the potential of Aspidosperma species as sources of antimalarials and the importance of research aimed at validating their use in the treatment of human malaria. Georg Thieme Verlag KG Stuttgart · New York.

  3. Indole Alkaloids Inhibiting Neural Stem Cell from Uncaria rhynchophylla.

    PubMed

    Wei, Xin; Jiang, Li-Ping; Guo, Ying; Khan, Afsar; Liu, Ya-Ping; Yu, Hao-Fei; Wang, Bei; Ding, Cai-Feng; Zhu, Pei-Feng; Chen, Ying-Ying; Zhao, Yun-Li; Chen, Yong-Bing; Wang, Yi-Fen; Luo, Xiao-Dong

    2017-10-01

    Uncaria rhynchophylla is commonly recognized as a traditional treatment for dizziness, cerebrovascular diseases, and nervous disorders in China. Previously, the neuro-protective activities of the alkaloids from U. rhynchophylla were intensively reported. In current work, three new indole alkaloids (1-3), identified as geissoschizic acid (1), geissoschizic acid N 4 -oxide (2), and 3β-sitsirikine N 4 -oxide (3), as well as 26 known analogues were isolated from U. rhynchophylla. However, in the neural stem cells (NSCs) proliferation assay for all isolated compounds, geissoschizic acid (1), geissoschizic acid N 4 -oxide (2), isocorynoxeine (6), isorhynchophylline (7), (4S)-akuammigine N-oxide (8), and (4S)-rhynchophylline N-oxide (10) showed unexpected inhibitory activities at 10 μM. Unlike previous neuro-protective reports, as a warning or caution, our finding showcased a clue for possible NSCs toxicity and the neural lesions risk of U. rhynchophylla, while the structure-activity relationships of the isolated compounds were discussed also.

  4. [Ibogaine--the substance for treatment of toxicomania. Neurochemical and pharmacological action].

    PubMed

    Kazlauskas, Saulius; Kontrimaviciūte, Violeta; Sveikata, Audrius

    2004-01-01

    The review of scientific literature, concerning the indol alkaloid Ibogaine, which is extracted from the bush Tabernanthe Iboga, is presented in this article. Used as a stimulating factor for hundred of years in non-traditional medicine, this alkaloid could be important for modern pharmacology because of potential anti-addictive properties. The mechanism of action of this alkaloid is closely related to different neurotransmitting systems. Studies with animals allow concluding that Ibogaine or medicines based on this alkaloid can be used for treatment of drug dependencies.

  5. Simultaneous determination of alkaloids and flavonoids from aerial parts of Passiflora species and dietary supplements using UPLC-UV-MS and HPTLC

    USDA-ARS?s Scientific Manuscript database

    A rapid UPLC method was developed for the simultaneous analysis of five indole alkaloids (harmalol, harmol, harmane, harmaline and harmine) and four flavonoids (orientin, isoorientin, vitexin, and isovitexin) from the aerial parts of Passiflora incarnata L. (Passifloracea), different species of Pass...

  6. A New Benzofuran Glycoside and Indole Alkaloids from a Sponge-Associated Rare Actinomycete, Amycolatopsis sp.

    PubMed Central

    Kwon, Yun; Kim, Seong-Hwan; Shin, Yoonho; Bae, Munhyung; Kim, Byung-Yong; Lee, Sang Kook; Oh, Ki-Bong; Shin, Jongheon; Oh, Dong-Chan

    2014-01-01

    Three new secondary metabolites, amycofuran (1), amycocyclopiazonic acid (2), and amycolactam (3), were isolated from the sponge-associated rare actinomycete Amycolatopsis sp. Based on combined spectroscopic analyses, the structures of 1–3 were determined to be a new benzofuran glycoside and new indole alkaloids related to cyclopiazonic acids, a class that has previously only been reported in fungi. The absolute configurations of 1 and 3 were deduced by ECD calculations, whereas that of 2 was determined using the modified Mosher method. Amycolactam (3) displayed significant cytotoxicity against the gastric cancer cell line SNU638 and the colon cancer cell line HCT116. PMID:24759001

  7. Function-Oriented Synthesis of Marine Phidianidine Derivatives as Potential PTP1B Inhibitors with Specific Selectivity.

    PubMed

    Liu, Jin; Chen, Yu; Li, Jing-Ya; Luo, Cheng; Li, Jia; Chen, Kai-Xian; Li, Xu-Wen; Guo, Yue-Wei

    2018-03-20

    Phidianidines A and B are two novel marine indole alkaloids bearing an uncommon 1,2,4-oxadiazole ring and exhibiting various biological activities. Our previous research showed that the synthesized phidianidine analogs had the potential to inhibit the activity of protein tyrosine phosphatase 1B (PTP1B), a validated target for Type II diabetes, which indicates that these analogs are worth further structural modification. Therefore, in this paper, a series of phidianidine derivatives were designed and rapidly synthesized with a function-oriented synthesis (FOS) strategy. Their inhibitory effects on PTP1B and T-cell protein tyrosine phosphatase (TCPTP) were evaluated, and several compounds displayed significant inhibitory potency and specific selectivity over PTP1B. The structure-activity relationship (SAR) and molecular docking analyses are also described.

  8. Function-Oriented Synthesis of Marine Phidianidine Derivatives as Potential PTP1B Inhibitors with Specific Selectivity

    PubMed Central

    Liu, Jin; Chen, Yu; Li, Jing-Ya; Luo, Cheng; Li, Jia; Chen, Kai-Xian; Li, Xu-Wen

    2018-01-01

    Phidianidines A and B are two novel marine indole alkaloids bearing an uncommon 1,2,4-oxadiazole ring and exhibiting various biological activities. Our previous research showed that the synthesized phidianidine analogs had the potential to inhibit the activity of protein tyrosine phosphatase 1B (PTP1B), a validated target for Type II diabetes, which indicates that these analogs are worth further structural modification. Therefore, in this paper, a series of phidianidine derivatives were designed and rapidly synthesized with a function-oriented synthesis (FOS) strategy. Their inhibitory effects on PTP1B and T-cell protein tyrosine phosphatase (TCPTP) were evaluated, and several compounds displayed significant inhibitory potency and specific selectivity over PTP1B. The structure–activity relationship (SAR) and molecular docking analyses are also described. PMID:29558377

  9. Cascade multicomponent synthesis of indoles, pyrazoles, and pyridazinones by functionalization of alkenes.

    PubMed

    Matcha, Kiran; Antonchick, Andrey P

    2014-10-27

    The development of multicomponent reactions for indole synthesis is demanding and has hardly been explored. The present study describes the development of a novel multicomponent, cascade approach for indole synthesis. Various substituted indole derivatives were obtained from simple reagents, such as unfunctionalized alkenes, diazonium salts, and sodium triflinate, by using an established straightforward and regioselective method. The method is based on the radical trifluoromethylation of alkenes as an entry into Fischer indole synthesis. Besides indole synthesis, the application of the multicomponent cascade reaction to the synthesis of pyrazoles and pyridazinones is described. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Alkaloids as Cyclooxygenase Inhibitors in Anticancer Drug Discovery.

    PubMed

    Hashmi, Muhammad Ali; Khan, Afsar; Farooq, Umar; Khan, Sehroon

    2018-01-01

    Cancer is the leading cause of death worldwide and anticancer drug discovery is a very hot area of research at present. There are various factors which control and affect cancer, out of which enzymes like cyclooxygenase-2 (COX-2) play a vital role in the growth of tumor cells. Inhibition of this enzyme is a very useful target for the prevention of various types of cancers. Alkaloids are a diverse group of naturally occurring compounds which have shown great COX-2 inhibitory activity both in vitro and in vivo. In this mini-review, we have discussed different alkaloids with COX-2 inhibitory activities and anticancer potential which may act as leads in modern anticancer drug discovery. Different classes of alkaloids including isoquinoline alkaloids, indole alkaloids, piperidine alkaloids, quinazoline alkaloids, and various miscellaneous alkaloids obtained from natural sources have been discussed in detail in this review. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Virus-induced gene silencing in Rauwolfia species.

    PubMed

    Corbin, Cyrielle; Lafontaine, Florent; Sepúlveda, Liuda Johana; Carqueijeiro, Ines; Courtois, Martine; Lanoue, Arnaud; Dugé de Bernonville, Thomas; Besseau, Sébastien; Glévarec, Gaëlle; Papon, Nicolas; Atehortúa, Lucia; Giglioli-Guivarc'h, Nathalie; Clastre, Marc; St-Pierre, Benoit; Oudin, Audrey; Courdavault, Vincent

    2017-07-01

    Elucidation of the monoterpene indole alkaloid biosynthesis has recently progressed in Apocynaceae through the concomitant development of transcriptomic analyses and reverse genetic approaches performed by virus-induced gene silencing (VIGS). While most of these tools have been primarily adapted for the Madagascar periwinkle (Catharanthus roseus), the VIGS procedure has scarcely been used on other Apocynaceae species. For instance, Rauwolfia sp. constitutes a unique source of specific and valuable monoterpene indole alkaloids such as the hypertensive reserpine but are also well recognized models for studying alkaloid metabolism, and as such would benefit from an efficient VIGS procedure. By taking advantage of a recent modification in the inoculation method of the Tobacco rattle virus vectors via particle bombardment, we demonstrated that the biolistic-mediated VIGS approach can be readily used to silence genes in both Rauwolfia tetraphylla and Rauwolfia serpentina. After establishing the bombardment conditions minimizing injuries to the transformed plantlets, gene downregulation efficiency was evaluated at approximately a 70% expression decrease in both species by silencing the phytoene desaturase encoding gene. Such a gene silencing approach will thus constitute a critical tool to identify and characterize genes involved in alkaloid biosynthesis in both of these prominent Rauwolfia species.

  12. Microwave-assisted synthesis of medicinally relevant indoles.

    PubMed

    Patil, S A; Patil, R; Miller, D D

    2011-01-01

    Indoles represent an important structural class in medicinal chemistry with broad spectrum of biological activities. The synthesis of indoles, therefore, has attracted enormous attention from synthetic chemists. Microwave methods for the preparation of indole analogs have been developed to speed up the synthesis, therefore, microwave assisted organic synthesis (MAOS) in controlled conditions is an invaluable technique for medicinal chemistry. In this review, indole forming classical reactions such as Fischer, Madelung, Bischler-Mohlau, Batcho-Leimgruber, Hemetsberger-Knittel, Graebe-Ullmann, Diels-Alder and Wittig type reactions using microwave radiation has been summarized. In addition, metal mediated cyclizations along with solid phase synthesis of indoles have been discussed. © 2011 Bentham Science Publishers Ltd.

  13. Indole alkaloids of Psychotria as multifunctional cholinesterases and monoamine oxidases inhibitors.

    PubMed

    Passos, Carolina S; Simões-Pires, Claudia A; Nurisso, Alessandra; Soldi, Tatiane C; Kato, Lucilia; de Oliveira, Cecilia M A; de Faria, Emiret O; Marcourt, Laurence; Gottfried, Carmem; Carrupt, Pierre-Alain; Henriques, Amélia T

    2013-02-01

    Thirteen Psychotria alkaloids were evaluated regarding their interactions with acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and monoamine oxidases A and B (MAO-A and MAO-B), which are enzymatic targets related with neurodegenerative diseases. Two quaternary β-carboline alkaloids, prunifoleine and 14-oxoprunifoleine, inhibited AChE, BChE and MAO-A with IC(50) values corresponding to 10 and 3.39 μM for AChE, 100 and 11 μM for BChE, and 7.41 and 6.92 μM for MAO-A, respectively. Both compounds seem to behave as noncompetitive AChE inhibitors and time-dependent MAO-A inhibitors. In addition, the monoterpene indole alkaloids (MIAs) angustine, vallesiachotamine lactone, E-vallesiachotamine and Z-vallesiachotamine inhibited BChE and MAO-A with IC(50) values ranging from 3.47 to 14 μM for BChE inhibition and from 0.85 to 2.14 μM for MAO-A inhibition. Among the tested MIAs, angustine is able to inhibit MAO-A in a reversible and competitive way while the three vallesiachotamine-like alkaloids display a time-dependent inhibition on this target. Docking calculations were performed in order to understand the binding mode between the most active ligands and the selected targets. Taken together, our findings established molecular details of AChE, BChE and MAO-A inhibition by quaternary β-carboline alkaloids and MIAs from Psychotria, suggesting these secondary metabolites are scaffolds for the development of multifunctional compounds against neurodegeneration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Influence of auxins combinations on accumulation of reserpine in the callus of Rauvolfia tetraphylla L.

    PubMed

    Anitha, S; Kumari, B D Ranjitha

    2007-11-01

    Reserpine is a monoterpene indole alkaloid used to treat hypertension because of its hypotensive property and psychiatric disorders because of its tranquilizing effect. Protocol has been standardized to enhance the synthesis of reserpine in leaf derived calli of Rauvolfia tetraphylla L. by adjusting the auxins combinations in the medium consisting of MS nutrient salts and B5 vitamins. Auxins such as naphthalene acetic acid (NAA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) were used in 1-5 microM concentration along with 9 microM concentration of 2,4 dichlorophenoxy acetic acid (2,4-D), which was found suitable for callus induction. The combination of (2,4-D) with NAA had been proved to accumulate maximum amount of reserpine followed by 2,4-D with IBA. The IAA with 2,4-D combination yielded very less amount of reserpine than the other combinations and 9 microM 2,4-D alone. The results suggest that there may be synergetic effect of NAA with 2,4-D and IBA with 2,4-D for increase in the biomass and reserpine accumulation and antagonistic effect of IAA with 2,4-D for the above said factors in the callus.

  15. Studies on the Red Sea Sponge Haliclona sp. for its Chemical and Cytotoxic Properties.

    PubMed

    Al-Massarani, Shaza Mohamed; El-Gamal, Ali Ali; Al-Said, Mansour Sulaiman; Abdel-Kader, Maged S; Ashour, Abdelkader E; Kumar, Ashok; Abdel-Mageed, Wael M; Al-Rehaily, Adnan Jathlan; Ghabbour, Hazem A; Fun, Hoong-Kun

    2016-01-01

    A great number of novel compounds with rich chemical diversity and significant bioactivity have been reported from Red Sea sponges. To isolate, identify, and evaluate the cytotoxic activity of the chemical constituents of a sponge belonging to genus Haliclona collected from the Eastern coast of the Red Sea. The total ethanolic extract of the titled sponge was subjected to intensive chromatographic fractionation and purification guided by cytotoxic bioassay toward various cancer cell lines. The structures of the isolated compounds were elucidated using spectroscopic techniques including one-dimension and two-dimension nuclear magnetic resonance, mass spectrometry, ultraviolet, and infrared data, as well as comparison with the reported spectral data for the known compounds. X-ray single-crystal structure determination was performed to determine the absolute configuration of compound 4. The screening of antiproliferative activity of the compounds was carried on three tumor cell lines, namely the human cervical cancer (HeLa), human hepatocellular carcinoma (HepG2), and human medulloblastoma (Daoy) cells using MTT assay. This investigation resulted in the isolation of a new indole alkaloid, 1-(1H-indol-3-yloxy) propan-2-ol (1), with the previously synthesized pyrrolidine alkaloid, (2R, 3S, 4R, 5R) pyrrolidine-(1-hydroxyethyl)-3,4-diol hydrochloride (4), isolated here from a natural source for the first time. In addition, six known compounds tetillapyrone (2), nortetillapyrone (3), 2-methyl maleimide-5-oxime (5), maleimide-5-oxime (6), 5-(hydroxymethyl) dihydrofuran-2 (3H)-one (7), and ergosta-5,24 (28)-dien-3-ol (8) were also identified. Most of the isolated compounds exhibited weak cytotoxic activity against HepG-2, Daoy, and HeLa cancer cell lines. This is the first report of the occurrence of the indole and pyrrolidine alkaloids, 1-(1H-indol-2-yloxy) propan-2-ol (1), and the - (1-hydroxyethyl)-3,4-diol hydrochloride (4), in the Red Sea Haliclona sp. From the Red Sea Haliclona sp. two alkaloids with indole and pyrrolidine nuclei, 1-(1H-indol-2-yloxy) propan-2-ol-(1) and pyrrolidine-(1-hydroxyethyl)-3,4-diol hydrochloride (4) were isolated and fully characterized; in addition to six known compounds (2, 3, 5-8)The absolute configuration and the three-dimension stereo-molecular structure of compound 4 were determined by X-ray crystallographyThe different extracts and isolated compounds showed weak cytotoxic activity against HepG-2, Daoy, and HeLa cancer cell lines.

  16. In Vitro Activities of Iboga Alkaloid Congeners Coronaridine and 18-Methoxycoronaridine against Leishmania amazonensis

    PubMed Central

    Delorenzi, Jan Carlo; Freire-de-Lima, Leonardo; Gattass, Cerli R.; de Andrade Costa, Deise; He, Liwen; Kuehne, Martin E.; Saraiva, Elvira M. B.

    2002-01-01

    In previous studies, we demonstrated the leishmanicide effect of coronaridine, a natural indole alkaloid isolated from stem bark of Peschiera australis (Delorenzi et al., Antimicrob. Agents Chemother. 45:1349-1354, 2001). In this study we show the leishmanicidal effect of the synthetic coronaridine and its racemic 18-methoxylated analog, 18-methoxycoronaridine. Both alkaloids revealed a potent leishmanicide effect against Leishmania amazonensis, a causative agent of cutaneous and diffuse cutaneous leishmaniasis in the New World. Despite their potent leishmanicide effect, both alkaloids were neither toxic to murine macrophages nor did they modulate their oxidative or cytokine production responses. PMID:12069962

  17. Asymmetric synthesis of N-allylic indoles via regio- and enantioselective allylation of aryl hydrazines

    PubMed Central

    Xu, Kun; Gilles, Thomas; Breit, Bernhard

    2015-01-01

    The asymmetric synthesis of N-allylic indoles is important for natural product synthesis and pharmaceutical research. The regio- and enantioselective N-allylation of indoles is a true challenge due to the favourable C3-allylation. We develop here a new strategy to the asymmetric synthesis of N-allylic indoles via rhodium-catalysed N-selective coupling of aryl hydrazines with allenes followed by Fischer indolization. The exclusive N-selectivities and good to excellent enantioselectivities are achieved applying a rhodium(I)/DTBM-Segphos or rhodium(I)/DTBM-Binap catalyst. This method permits the practical synthesis of valuable chiral N-allylated indoles, and avoids the N- or C-selectivity issue. PMID:26137886

  18. Silencing of a second dimethylallyltryptophan synthase of Penicillium roqueforti reveals a novel clavine alkaloid gene cluster.

    PubMed

    Fernández-Bodega, Ángeles; Álvarez-Álvarez, Rubén; Liras, Paloma; Martín, Juan F

    2017-08-01

    Penicillium roqueforti produces several prenylated indole alkaloids, including roquefortine C and clavine alkaloids. The first step in the biosynthesis of roquefortine C is the prenylation of tryptophan-derived dipeptides by a dimethylallyltryptophan synthase, specific for roquefortine biosynthesis (roquefortine prenyltransferase). A second dimethylallyltryptophan synthase, DmaW2, different from the roquefortine prenyltransferase, has been studied in this article. Silencing the gene encoding this second dimethylallyltryptophan synthase, dmaW2, proved that inactivation of this gene does not prevent the production of roquefortine C, but suppresses the formation of other indole alkaloids. Mass spectrometry studies have identified these compounds as isofumigaclavine A, the pathway final product and prenylated intermediates. The silencing does not affect the production of mycophenolic acid and andrastin A. A bioinformatic study of the genome of P. roqueforti revealed that DmaW2 (renamed IfgA) is a prenyltransferase involved in isofumigaclavine A biosynthesis encoded by a gene located in a six genes cluster (cluster A). A second three genes cluster (cluster B) encodes the so-called yellow enzyme and enzymes for the late steps for the conversion of festuclavine to isofumigaclavine A. The yellow enzyme contains a tyrosine-181 at its active center, as occurs in Neosartorya fumigata, but in contrast to the Clavicipitaceae fungi. A complete isofumigaclavines A and B biosynthetic pathway is proposed based on the finding of these studies on the biosynthesis of clavine alkaloids.

  19. Aspidosperma (Apocynaceae) plant cytotoxicity and activity towards malaria parasites. Part I: Aspidosperma nitidum (Benth) used as a remedy to treat fever and malaria in the Amazon.

    PubMed

    Coutinho, Julia Penna; Aguiar, Anna Caroline Campos; dos Santos, Pierre Alexandre; Lima, Joaquim Corsino; Rocha, Maria Gabrielle Lima; Zani, Carlos Leomar; Alves, Tânia Maria Almeida; Santana, Antônio Euzébio Goulart; Pereira, Maria de Meneses; Krettli, Antoniana Ursine

    2013-12-01

    Infusions of Aspidosperma nitidum (Apocynaceae) wood bark are used to treat fever and malaria in the Amazon Region. Several species of this family are known to possess indole alkaloids and other classes of secondary metabolites, whereas terpenoids, an inositol and the indole alkaloids harmane-3 acid and braznitidumine have been described in A. nitidum . In the present study, extracts from the wood bark, leaves and branches of this species were prepared for assays against malaria parasites and cytotoxicity testing using human hepatoma and normal monkey kidney cells. The wood bark extracts were active against Plasmodium falciparum and showed a low cytotoxicity in vitro, whereas the leaf and branch extracts and the pure alkaloid braznitidumine were inactive. A crude methanol extract was subjected to acid-base fractionation aimed at obtaining alkaloid-rich fractions, which were active at low concentrations against P. falciparum and in mice infected with and sensitive Plasmodium berghei parasites. Our data validate the antimalarial usefulness of A. nitidum wood bark, a remedy that can most likely help to control malaria. However, the molecules responsible for this antimalarial activity have not yet been identified. Considering their high selectivity index, the alkaloid-rich fractions from the plant bark might be useful in the development of new antimalarials.

  20. Quantification of Anti-Addictive Alkaloids Ibogaine and Voacangine in In Vivo- and In Vitro-Grown Plants of Two Mexican Tabernaemontana Species.

    PubMed

    Krengel, Felix; Herrera Santoyo, Josefina; Olivera Flores, Teresa de Jesús; Chávez Ávila, Víctor M; Pérez Flores, Francisco J; Reyes Chilpa, Ricardo

    2016-12-01

    Tabernaemontana alba and Tabernaemontana arborea are Apocynaceae species used in Mexican traditional medicine for which little phytochemical information exists. In this study, preliminary gas chromatography/mass spectrometry analyses of different organs obtained from wild plants of both species identified a total of 10 monoterpenoid indole alkaloids (MIAs) and one simple indole alkaloid, nine of which were reported for the first time in these species. Furthermore, callus cultures were established from T. alba leaf explants and regeneration of whole plants was accomplished via somatic embryogenesis. The anti-addictive MIAs ibogaine and voacangine were then quantified by gas chromatography with flame ionization detection in wild plants of both species, as well as greenhouse-grown plants, in vitro-grown plantlets and embryogenic callus of T. alba. Ibogaine and voacangine were present in most samples taken from the whole plants of both species, with stem and root barks showing the highest concentrations. No alkaloids were detected in callus samples. It was concluded that T. alba and T. arborea are potentially viable sources of ibogaine and voacangine, and that these MIAs can be produced through somatic embryogenesis and whole plant regeneration of T. alba. Approaches to increase MIA yields in whole plants and to achieve alkaloid production directly in cell cultures are discussed. © 2016 Wiley-VHCA AG, Zurich, Switzerland.

  1. An In-Silico Investigation of Phytochemicals as Antiviral Agents Against Dengue Fever.

    PubMed

    Powers, Chelsea N; Setzer, William N

    2016-01-01

    A virtual screening analysis of our library of phytochemical structures with dengue virus protein targets has been carried out using a molecular docking approach. A total of 2194 plant-derived secondary metabolites have been docked. This molecule set comprised of 290 alkaloids (68 indole alkaloids, 153 isoquinoline alkaloids, 5 quinoline alkaloids, 13 piperidine alkaloids, 14 steroidal alkaloids, and 37 miscellaneous alkaloids), 678 terpenoids (47 monoterpenoids, 169 sesquiterpenoids, 265 diterpenoids, 81 steroids, and 96 triterpenoids), 20 aurones, 81 chalcones, 349 flavonoids, 120 isoflavonoids, 74 lignans, 58 stilbenoids, 169 miscellaneous polyphenolic compounds, 100 coumarins, 28 xanthones, 67 quinones, and 160 miscellaneous phytochemicals. Dengue virus protein targets examined included dengue virus protease (NS2B-NS3pro), helicase (NS3 helicase), methyltransferase (MTase), RNA-dependent RNA polymerase (RdRp), and the dengue virus envelope protein. Polyphenolic compounds, flavonoids, chalcones, and other phenolics were the most numerous of the strongly docking ligands for dengue virus protein targets.

  2. Metabolic flux phenotype of tobacco hairy roots engineered for increased geraniol production.

    PubMed

    Masakapalli, Shyam K; Ritala, Anneli; Dong, Lemeng; van der Krol, Alexander R; Oksman-Caldentey, Kirsi-Marja; Ratcliffe, R George; Sweetlove, Lee J

    2014-03-01

    The goal of this study was to characterise the metabolic flux phenotype of transgenic tobacco (Nicotiana tabacum) hairy roots engineered for increased biosynthesis of geraniol, an intermediate of the terpenoid indole alkaloid pathway. Steady state, stable isotope labelling was used to determine flux maps of central carbon metabolism for transgenic lines over-expressing (i) plastid-targeted geraniol synthase (pGES) from Valeriana officinalis, and (ii) pGES in combination with plastid-targeted geranyl pyrophosphate synthase from Arabidopsis thaliana (pGES+pGPPS), as well as for wild type and control-vector-transformed roots. Fluxes were constrained by the redistribution of label from [1-¹³C]-, [2-¹³C]- or [¹³C6]glucose into amino acids, sugars and organic acids at isotopic steady state, and by biomass output fluxes determined from the fractionation of [U-¹⁴C]glucose into insoluble polymers. No significant differences in growth and biomass composition were observed between the lines. The pGES line accumulated significant amounts of geraniol/geraniol glycosides (151±24 ng/mg dry weight) and the de novo synthesis of geraniol in pGES was confirmed by ¹³C labelling analysis. The pGES+pGPPS also accumulated geraniol and geraniol glycosides, but to lower levels than the pGES line. Although there was a distinct impact of the transgenes at the level of geraniol synthesis, other network fluxes were unaffected, reflecting the capacity of central metabolism to meet the relatively modest demand for increased precursors in the transgenic lines. It is concluded that re-engineering of the terpenoid indole alkaloid pathway will only require simultaneous manipulation of the steps producing the pathway precursors that originate in central metabolism in tissues engineered to produce at least an order of magnitude more geraniol than has been achieved so far. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. The TosMIC approach to 3-(oxazol-5-yl) indoles: application to the synthesis of indole-based IMPDH inhibitors.

    PubMed

    Dhar, T G Murali; Shen, Zhongqi; Fleener, Catherine A; Rouleau, Katherine A; Barrish, Joel C; Hollenbaugh, Diane L; Iwanowicz, Edwin J

    2002-11-18

    A modified approach to the synthesis of 3-(oxazolyl-5-yl) indoles is reported. This method was applied to the synthesis of series of novel indole based inhibitors of inosine monophosphate dehydrogenase (IMPDH). The synthesis and the structure-activity relationships (SARs), derived from in vitro studies, for this new series of inhibitors is given.

  4. New Indole Alkaloids from the Bark of Rauvolfia Reflexa and their Cholinesterase Inhibitory Activity.

    PubMed

    Fadaeinasab, Mehran; Basiri, Alireza; Kia, Yalda; Karimian, Hamed; Ali, Hapipah Mohd; Murugaiyah, Vikneswaran

    2015-01-01

    Rauvolfia reflexa is a member of the Apocynaceae family. Plants from the Apocynaceae family have been traditionally used in the treatment of age-related brain disorders Methods and Results: Two new indole alkaloids, rauvolfine C (1) and 3-methyl-10,11-dimethoxy-6-methoxycarbonyl-β-carboline (2), along with five known, macusine B (3), vinorine (4), undulifoline (5), isoresrpiline (6) and rescinnamine (7) were isolated from the bark of Rauvolfia reflexa. Cholinesterase inhibitory assay and molecular docking were performed to get insight of the inhibitory activity and molecular interactions of the compounds. The compounds showed good to moderate cholinesterase inhibitory activity with IC50 values in the range of 8.06 to 73.23 µM. Compound 7 was found to be the most potent inhibitor of both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Compounds 1, 2, 5 and 6 were found to be selective towards BChE, while compounds 3, 4 and 7 were dual inhibitors, having almost equal inhibitory activity on both AChE and BChE. Molecular docking revealed that compounds 6 and 7 interacted differently on AChE and BChE, by means of hydrophobic interactions and hydrogen bonding. In AChE, the indole moiety of both compounds interacted with the residues lining the peripheral anionic site, whereas in BChE, their methoxy groups are primarily responsible for the strong inhibitory activity via interactions with residues at the active site of the enzyme. Two new and five known indole alkaloids were isolated from R. reflexa. Among the compounds, 7 and 6 showed the most potent and promising cholinesterase inhibitory activity, worthy for further investigations. © 2015 S. Karger AG, Basel.

  5. PH-zone-refining counter-current chromatography with a hydrophilic organic/salt-containing two-phase solvent system for preparative separation of polar alkaloids from natural products.

    PubMed

    Zou, Denglang; Du, Yurong; Kuang, Jianyuan; Sun, Shihao; Ma, Jianbin; Jiang, Renwang

    2018-06-08

    This study presents an efficient strategy based on pH-zone-refining counter-current chromatography with a hydrophilic organic/salt-containing two-phase system composed of acetonitrile, sodium chloride and water for preparative separation of polar alkaloids from natural products. Acetonitrile-sodium chloride-water system provides a wider range of polarity for polar alkaloids than classical aqueous two-phase systems. It gets rid of the effect of free hydrogen ion, strong ionic strength, hold low viscosity and the sharp retainer border could be formed easily. So acetonitrile-sodium chloride-water system showed great advantages to pH-zone-refining counter-current chromatography for polar alkaloids. The separation of polar indole alkaloids from toad venom was selected as an example to show the advantage and practicability of this strategy. An optimized acetonitrile-sodium chloride-water (54%:5%:41%, w%) system was applied in this study, where 10 mM triethylamine (TEA) as the retainer and 15 mM hydrochloric acid (HCl) as the eluter were added. As a result, three polar indole alkaloids, including 19 mg of serotonin, 45 mg of 5-Hydroxy-N'-methyl tryptamine, 33 mg of bufotenine were simultaneously separated from 500 mg of 5% ethanol elution fraction of toad venom on macroporous resin chromatography, with the purity of 91.3%, 97.5% and 89.4%, respectively. Their structures were identified by spectroscopic analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Boosting Sensitivity in Liquid Chromatography–Fourier Transform Ion Cyclotron Resonance–Tandem Mass Spectrometry for Product Ion Analysis of Monoterpene Indole Alkaloids

    PubMed Central

    Nakabayashi, Ryo; Tsugawa, Hiroshi; Kitajima, Mariko; Takayama, Hiromitsu; Saito, Kazuki

    2015-01-01

    In metabolomics, the analysis of product ions in tandem mass spectrometry (MS/MS) is noteworthy to chemically assign structural information. However, the development of relevant analytical methods are less advanced. Here, we developed a method to boost sensitivity in liquid chromatography–Fourier transform ion cyclotron resonance–tandem mass spectrometry analysis (MS/MS boost analysis). To verify the MS/MS boost analysis, both quercetin and uniformly labeled 13C quercetin were analyzed, revealing that the origin of the product ions is not the instrument, but the analyzed compounds resulting in sensitive product ions. Next, we applied this method to the analysis of monoterpene indole alkaloids (MIAs). The comparative analyses of MIAs having indole basic skeleton (ajmalicine, catharanthine, hirsuteine, and hirsutine) and oxindole skeleton (formosanine, isoformosanine, pteropodine, isopteropodine, rhynchophylline, isorhynchophylline, and mitraphylline) identified 86 and 73 common monoisotopic ions, respectively. The comparative analyses of the three pairs of stereoisomers showed more than 170 common monoisotopic ions in each pair. This method was also applied to the targeted analysis of MIAs in Catharanthus roseus and Uncaria rhynchophylla to profile indole and oxindole compounds using the product ions. This analysis is suitable for chemically assigning features of the metabolite groups, which contributes to targeted metabolome analysis. PMID:26734034

  7. Total Synthesis of (±)-Cis-Trikentrin B via Intermolecular 6,7-Indole Aryne Cycloaddition and Stille Cross-Coupling.

    PubMed

    Chandrasoma, Nalin; Brown, Neil; Brassfield, Allen; Nerurkar, Alok; Suarez, Susana; Buszek, Keith R

    2013-02-20

    An efficient total synthesis of the annulated indole natural product (±)- cis -trikentrin B was accomplished by means of a regioselectively generated 6,7-indole aryne cycloaddition via selective metal-halogen exchange from a 5,6,7-tribromoindole. The unaffected C-5 bromine was subsequently used for a Stille cross-coupling to install the butenyl side chain and complete the synthesis. This strategy provides rapid access into the trikentrins and the related herbindoles, and represents another application of this methodology to natural products total synthesis. The required 5,6,7-indole aryne precursor was prepared using the Leimgruber-Batcho indole synthesis.

  8. De novo transcriptome sequencing and digital gene expression analysis predict biosynthetic pathway of rhynchophylline and isorhynchophylline from Uncaria rhynchophylla, a non-model plant with potent anti-alzheimer's properties.

    PubMed

    Guo, Qianqian; Ma, Xiaojun; Wei, Shugen; Qiu, Deyou; Wilson, Iain W; Wu, Peng; Tang, Qi; Liu, Lijun; Dong, Shoukun; Zu, Wei

    2014-08-12

    The major medicinal alkaloids isolated from Uncaria rhynchophylla (gouteng in chinese) capsules are rhynchophylline (RIN) and isorhynchophylline (IRN). Extracts containing these terpene indole alkaloids (TIAs) can inhibit the formation and destabilize preformed fibrils of amyloid β protein (a pathological marker of Alzheimer's disease), and have been shown to improve the cognitive function of mice with Alzheimer-like symptoms. The biosynthetic pathways of RIN and IRN are largely unknown. In this study, RNA-sequencing of pooled Uncaria capsules RNA samples taken at three developmental stages that accumulate different amount of RIN and IRN was performed. More than 50 million high-quality reads from a cDNA library were generated and de novo assembled. Sequences for all of the known enzymes involved in TIAs synthesis were identified. Additionally, 193 cytochrome P450 (CYP450), 280 methyltransferase and 144 isomerase genes were identified, that are potential candidates for enzymes involved in RIN and IRN synthesis. Digital gene expression profile (DGE) analysis was performed on the three capsule developmental stages, and based on genes possessing expression profiles consistent with RIN and IRN levels; four CYP450s, three methyltransferases and three isomerases were identified as the candidates most likely to be involved in the later steps of RIN and IRN biosynthesis. A combination of de novo transcriptome assembly and DGE analysis was shown to be a powerful method for identifying genes encoding enzymes potentially involved in the biosynthesis of important secondary metabolites in a non-model plant. The transcriptome data from this study provides an important resource for understanding the formation of major bioactive constituents in the capsule extract from Uncaria, and provides information that may aid in metabolic engineering to increase yields of these important alkaloids.

  9. Indole alkaloids from the Marquesan plant Rauvolfia nukuhivensis and their effects on ion channels.

    PubMed

    Martin, Nicolas J; Ferreiro, Sara F; Barbault, Florent; Nicolas, Mael; Lecellier, Gaël; Paetz, Christian; Gaysinski, Marc; Alonso, Eva; Thomas, Olivier P; Botana, Luis M; Raharivelomanana, Phila

    2015-01-01

    In addition to the already reported nukuhivensiums 1 and 2, 11 indole alkaloids were isolated from the bark of the plant Rauvolfia nukuhivensis, growing in the Marquesas archipelago. The known sandwicine (3), isosandwicine (4), spegatrine (8), lochneram (9), flavopereirine (13) have been found in this plant together with the norsandwicine (5), isonorsandwicine (6), Nb-methylisosandwicine (7), 10-methoxypanarine (10), nortueiaoine (11), tueiaoine (12). The structure elucidation was performed on the basis of a deep exploration of the NMR and HRESIMS data as well as comparison with literature data for similar compounds. Norsandwicine, 10-methoxypanarine, tueiaoine, and more importantly nukuhivensiums, were shown to significantly induce a reduction of IKr amplitude (HERG current). Molecular modelling through docking was performed in order to illustrate this result. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. An In-Silico Investigation of Phytochemicals as Antiviral Agents Against Dengue Fever

    PubMed Central

    Powers, Chelsea N.; Setzer, William N.

    2016-01-01

    Abstract: A virtual screening analysis of our library of phytochemical structures with dengue virus protein targets has been carried out using a molecular docking approach. A total of 2194 plant-derived secondary metabolites have been docked. This molecule set comprised of 290 alkaloids (68 indole alkaloids, 153 isoquinoline alkaloids, 5 quinoline alkaloids, 13 piperidine alkaloids, 14 steroidal alkaloids, and 37 miscellaneous alkaloids), 678 terpenoids (47 monoterpenoids, 169 sesquiterpenoids, 265 diterpenoids, 81 steroids, and 96 triterpenoids), 20 aurones, 81 chalcones, 349 flavonoids, 120 isoflavonoids, 74 lignans, 58 stilbenoids, 169 miscellaneous polyphenolic compounds, 100 coumarins, 28 xanthones, 67 quinones, and 160 miscellaneous phytochemicals. Dengue virus protein targets examined included dengue virus protease (NS2B-NS3pro), helicase (NS3 helicase), methyltransferase (MTase), RNA-dependent RNA polymerase (RdRp), and the dengue virus envelope protein. Polyphenolic compounds, flavonoids, chalcones, and other phenolics were the most numerous of the strongly docking ligands for dengue virus protein targets. PMID:27151482

  11. Two distinct Epichloë species symbiotic with Achnatherum inebrians, drunken horse grass.

    PubMed

    Chen, Li; Li, Xiuzhang; Li, Chunjie; Swoboda, Ginger A; Young, Carolyn A; Sugawara, Koya; Leuchtmann, Adrian; Schardl, Christopher L

    2015-01-01

    Achnatherum inebrians, colloquially known as drunken horse grass, is associated with livestock toxicity in northern China. Epichloë gansuensis (Eg) was described from endophyte isolates from A. inebrians in Sunan County, Gansu Province, whereas a morphologically distinct variety, E. gansuensis var. inebrians (Ei), was described based on two isolates from A. inebrians seeds collected in Urumqi County, Xinjiang Province. Genome sequencing and alkaloid analyses also distinguish these taxa; the Ei isolates produce neurotropic lysergic acid amides (ergot alkaloids), and an Eg isolate produces paxilline (an indole-diterpene alkaloid). To better elucidate the taxonomic diversity of Epichloë spp. symbiotic with A. inebrians, we surveyed eight populations in Xinjiang, Gansu and Inner Mongolia provinces of China and analyzed their genotypes by multiplex PCR for alkaloid biosynthesis genes and mating-type genes. Genotypes consistent with Ei were present in all eight populations, of which they dominated seven. The Ei isolates were all mating type A and tested positive for the ergot alkaloid gene, dmaW. In contrast Eg isolates were all mating type B and had the indole-diterpene gene, idtG. The genome was sequenced from an Ei isolate from seeds collected in Xiahe County, Gansu, and compared to that of the varietal ex type isolate from Urumqi. Alkaloid genes and four different housekeeping genes were nearly identical between the two sequenced Ei isolates and were distinct from a sequenced Eg isolate. Phylogenetic analysis placed Ei, Eg and Epichloë sibirica into respective subclades of a clade that emanated from the base of the Epichloë phylogeny. Given its chemotypic, genotypic, morphological and phylogenetic distinctiveness, its widespread occurrence in rangelands of northern China, and its importance in livestock toxicity, we propose raising Ei to species rank as Epichloë inebrians. © 2015 by The Mycological Society of America.

  12. Mass Spectrometric Characteristics of Prenylated Indole Derivatives from Marine-Derived Penicillium sp. NH-SL.

    PubMed

    Ding, Hui; Ding, Wanjing; Ma, Zhongjun

    2017-03-22

    Two prenylated indole alkaloids were isolated from the ethyl acetate extracts of a marine-derived fungus Penicillium sp. NH-SL and one of them exhibited potent cytotoxic activity against mouse hepa 1c1c7 cells. In order to detect other bioactive analogs, we used liquid chromatogram tandem mass spectrometry (LC-MS/MS) to analyze the mass spectrometric characteristics of the isolated compounds as well as the crude extracts. As a result, three other analogs were detected, and their structures were deduced according to the similar fragmentation patterns. This is the first systematic report on the mass spectrometric characteristics of prenylated indole derivatives.

  13. Precursor feeding studies and molecular characterization of geraniol synthase establish the limiting role of geraniol in monoterpene indole alkaloid biosynthesis in Catharanthus roseus leaves.

    PubMed

    Kumar, Krishna; Kumar, Sarma Rajeev; Dwivedi, Varun; Rai, Avanish; Shukla, Ashutosh K; Shanker, Karuna; Nagegowda, Dinesh A

    2015-10-01

    The monoterpene indole alkaloids (MIAs) are generally derived from strictosidine, which is formed by condensation of the terpene moiety secologanin and the indole moiety tryptamine. There are conflicting reports on the limitation of either terpene or indole moiety in the production of MIAs in Catharanthus roseus cell cultures. Formation of geraniol by geraniol synthase (GES) is the first step in secologanin biosynthesis. In this study, feeding of C. roseus leaves with geraniol, but not tryptophan (precursor for tryptamine), increased the accumulation of the MIAs catharanthine and vindoline, indicating the limitation of geraniol in MIA biosynthesis. This was further validated by molecular and in planta characterization of C. roseus GES (CrGES). CrGES transcripts exhibited leaf and shoot specific expression and were induced by methyl jasmonate. Virus-induced gene silencing (VIGS) of CrGES significantly reduced the MIA content, which was restored to near-WT levels upon geraniol feeding. Moreover, over-expression of CrGES in C. roseus leaves increased MIA content. Further, CrGES exhibited correlation with MIA levels in leaves of different C. roseus cultivars and has significantly lower expression relative to other pathway genes. These results demonstrated that the transcriptional regulation of CrGES and thus, the in planta geraniol availability plays crucial role in MIA biosynthesis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Strategic patent analysis in plant biotechnology: terpenoid indole alkaloid metabolic engineering as a case study.

    PubMed

    Miralpeix, Bruna; Sabalza, Maite; Twyman, Richard M; Capell, Teresa; Christou, Paul

    2014-02-01

    The do-it-yourself patent search is a useful alternative to professional patent analysis particularly in the context of publicly funded projects where funds for IP activities may be limited. As a case study, we analysed patents related to the engineering of terpenoid indole alkaloid (TIA) metabolism in plants. We developed a focused search strategy to remove redundancy and reduce the workload without missing important and relevant patents. This resulted in the identification of approximately 50 key patents associated with TIA metabolic engineering in plants, which could form the basis of a more detailed freedom-to-operate analysis. The structural elements of this search strategy could easily be transferred to other contexts, making it a useful generic model for publicly funded research projects. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Biosynthetic pathways of ergot alkaloids.

    PubMed

    Gerhards, Nina; Neubauer, Lisa; Tudzynski, Paul; Li, Shu-Ming

    2014-12-10

    Ergot alkaloids are nitrogen-containing natural products belonging to indole alkaloids. The best known producers are fungi of the phylum Ascomycota, e.g., Claviceps, Epichloë, Penicillium and Aspergillus species. According to their structures, ergot alkaloids can be divided into three groups: clavines, lysergic acid amides and peptides (ergopeptines). All of them share the first biosynthetic steps, which lead to the formation of the tetracyclic ergoline ring system (except the simplest, tricyclic compound: chanoclavine). Different modifications on the ergoline ring by specific enzymes result in an abundance of bioactive natural products, which are used as pharmaceutical drugs or precursors thereof. From the 1950s through to recent years, most of the biosynthetic pathways have been elucidated. Gene clusters from several ergot alkaloid producers have been identified by genome mining and the functions of many of those genes have been demonstrated by knock-out experiments or biochemical investigations of the overproduced enzymes.

  16. Biosynthetic Pathways of Ergot Alkaloids

    PubMed Central

    Gerhards, Nina; Neubauer, Lisa; Tudzynski, Paul; Li, Shu-Ming

    2014-01-01

    Ergot alkaloids are nitrogen-containing natural products belonging to indole alkaloids. The best known producers are fungi of the phylum Ascomycota, e.g., Claviceps, Epichloë, Penicillium and Aspergillus species. According to their structures, ergot alkaloids can be divided into three groups: clavines, lysergic acid amides and peptides (ergopeptines). All of them share the first biosynthetic steps, which lead to the formation of the tetracyclic ergoline ring system (except the simplest, tricyclic compound: chanoclavine). Different modifications on the ergoline ring by specific enzymes result in an abundance of bioactive natural products, which are used as pharmaceutical drugs or precursors thereof. From the 1950s through to recent years, most of the biosynthetic pathways have been elucidated. Gene clusters from several ergot alkaloid producers have been identified by genome mining and the functions of many of those genes have been demonstrated by knock-out experiments or biochemical investigations of the overproduced enzymes. PMID:25513893

  17. [Content of indole alkaloids and bufadienolides contained in toad medicines].

    PubMed

    Qu, Ting; Gao, Hui-Min; Chen, Liang-Mian; Wang, Zhi-Min; Zhang, Qi-Wei; Cheng, Yi-Yu

    2012-10-01

    To kinds of establish a HPLC method for determining contents of indole alkaloids and bufadienolides contained in toad medicines, and analyze two kinds of components contained in toad venom, toad skin and toad periostracum. As for alkaloids, Nucleosil C18 column was adopted with acetonitrile and water containing 0.5% potassium dihydrogen phosphate (6: 94, adjust pH to 3.2 with phosphate acid) as the mobile phase. The flow rate was 0.8 mL x min(-1), the detection wavelength was 275 nm, and the column temperature was 30 degrees C. As for bufadienolides, Alltima C18 column was adopted with acetonitrile and water containing 0.3% acetic acid (B) as the mobile phase. The gradient process was as follows: a linear gradient from 28% to 54% acetonitrile in the first 15 min, then kept at 54% for additional 20 min. The flow rate was 0.6 mL x min(-1), the detection wavelength was 296 nm, and the column temperature was 30 degrees C. The linear ranges were 0.079 6-0.796 microg for serotonin, 0.097 2-1.945 microg for N-methylserotonin, 0.074 4-0.744 microg for N,N-dimethylserotonin, 0.103-2.05 microg for N,N,N-trimethylserotonin, and 0.067 2-0.672 microg for bufothionine, respectively. The average recoveries of serotonin and N-methylserotonin were 98.6% and 91.3%, respectively. The linear ranges of gamabufotalin, bufotalin, bufalin, cinobufagin and resibufogenin were 0.004 83-0.614, 0.007 9-1.006, 0.007 95-1.016, 0.009 7-1.24 and 0.009 6-1.22 microg, respectively, and their average recoveries were 101.6%, 102.5%, 101.0%, 99.1% and 98.9%, respectively. Toad venom has the highest contents of indole alkaloids and bufadienolides, followed by toad skin, and toad periostracum showed the lowest contents and even no detection result.

  18. Ergot Alkaloids Produced by Endophytic Fungi of the Genus Epichloë

    PubMed Central

    Guerre, Philippe

    2015-01-01

    The development of fungal endophytes of the genus Epichloë in grasses results in the production of different groups of alkaloids, whose mechanism and biological spectrum of toxicity can differ considerably. Ergot alkaloids, when present in endophyte-infected tall fescue, are responsible for “fescue toxicosis” in livestock, whereas indole-diterpene alkaloids, when present in endophyte-infected ryegrass, are responsible for “ryegrass staggers”. In contrast, peramine and loline alkaloids are deterrent and/or toxic to insects. Other toxic effects in livestock associated with the consumption of endophyte-infected grass that contain ergot alkaloids include the “sleepy grass” and “drunken horse grass” diseases. Although ergovaline is the main ergopeptine alkaloid produced in endophyte-infected tall fescue and is recognized as responsible for fescue toxicosis, a number of questions still exist concerning the profile of alkaloid production in tall fescue and the worldwide distribution of tall fescue toxicosis. The purpose of this review is to present ergot alkaloids produced in endophyte-infected grass, the factors of variation of their level in plants, and the diseases observed in the mammalian species as relate to the profiles of alkaloid production. In the final section, interactions between ergot alkaloids and drug-metabolizing enzymes are presented as mechanisms that could contribute to toxicity. PMID:25756954

  19. Mass Spectrometric Characteristics of Prenylated Indole Derivatives from Marine-Derived Penicillium sp. NH-SL

    PubMed Central

    Ding, Hui; Ding, Wanjing; Ma, Zhongjun

    2017-01-01

    Two prenylated indole alkaloids were isolated from the ethyl acetate extracts of a marine-derived fungus Penicillium sp. NH-SL and one of them exhibited potent cytotoxic activity against mouse hepa 1c1c7 cells. In order to detect other bioactive analogs, we used liquid chromatogram tandem mass spectrometry (LC-MS/MS) to analyze the mass spectrometric characteristics of the isolated compounds as well as the crude extracts. As a result, three other analogs were detected, and their structures were deduced according to the similar fragmentation patterns. This is the first systematic report on the mass spectrometric characteristics of prenylated indole derivatives. PMID:28327529

  20. Alkaloids as important scaffolds in therapeutic drugs for the treatments of cancer, tuberculosis, and smoking cessation.

    PubMed

    Kittakoop, Prasat; Mahidol, Chulabhorn; Ruchirawat, Somsak

    2014-01-01

    Alkaloid molecules can act, depending on a type of amine functionality present in alkalods, as either hydrogenacceptor or hydrogen-donor for hydrogen bonding that is critically important for the interaction (binding) between targets (enzymes, proteins and receptors) and drugs (ligands). Because of this unique property, alkaloid scaffolds are therefore present in several drugs and lead compounds. This review highlights alkaloid scaffolds in drugs, particularly those recently approved in 2012; it also covers the scaffolds in leads and drug candidates which are in clinical trials and preclinical pipeline. The review focuses on three therapeutic areas including treatments of cancer, tuberculosis, and tobacco cessation. Alkaloid scaffolds in drugs and leads are inspired by those of naturally occurring alkaloids, and these scaffolds include pyridine, piperidine, quinoline, quinolinone, quinazoline, isoquinoline, indole, indolinone, isoindole, isoxazole, imidazole, indazole, thiazole, pyrazole, oxazolidinone, oxadiazole, and benzazepine. In addition to medicinal chemistry aspects, natural products possessing an individual alkaloid scaffold, as well as the mechanism of action of drugs and leads, are also discussed in this review.

  1. Benzo[g]indoles

    NASA Astrophysics Data System (ADS)

    Pozharskii, A. F.; Kachalkina, S. G.; Gulevskaya, A. V.; Filatova, E. A.

    2017-07-01

    The data on the synthesis and properties of benzo[g]indoles accumulated mainly over a period of the past 15-20 years are integrated. Various variants of pyrrole ring and naphthalene nucleus closure are considered. It is demonstrated that, in addition to the expected similarity between benzo[g]indoles and indoles, there are noticeable differences between them as well, especially where the synthesis of the benzoindole system is concerned. Practical applications of benzo[g]indoles are discussed. The bibliography includes 199 references.

  2. Brönsted Acid-Catalyzed One-Pot Synthesis of Indoles from o-Aminobenzyl Alcohols and Furans

    PubMed Central

    Kuznetsov, Alexey; Makarov, Anton; Rubtsov, Alexandr E.; Butin, Alexander V.; Gevorgyan, Vladimir

    2013-01-01

    Brönsted acid-catalyzed one-pot synthesis of indoles from o-aminobenzyl alcohols and furans has been developed. This method operates via the in situ formation of aminobenzylfuran, followed by its recyclization into the indole core. The method proved to be efficient for substrates possessing different functional groups, including -OMe, -CO2Cy, and -Br. The resulting indoles can easily be transformed into diverse scaffolds, including 2,3- and 1,2-fused indoles, and indole possessing an α,β-unsaturated ketone moiety at the C-2 position. PMID:24255969

  3. Synthesis and antioxidant properties of substituted 2-phenyl-1H-indoles.

    PubMed

    Karaaslan, Cigdem; Kadri, Hachemi; Coban, Tulay; Suzen, Sibel; Westwell, Andrew D

    2013-05-01

    In this study, we report the design, synthesis and antioxidant activity of a series of substituted 2-(4-aminophenyl)-1H-indoles and 2-(methoxyphenyl)-1H-indoles. The new compounds are structurally related to the known indole-based antioxidant lead compound melatonin (MLT), and the antitumour 2-(4-aminophenyl)benzothiazole and 2-(3,4-dimethoxyphenyl)benzothiazole series. Efficient access to the target 2-phenylindoles was achieved via Fischer indole synthesis between substituted phenylhydrazines and acetophenones. 2-(4-Aminophenyl)indoles (such as the 6-fluoro analogue 3b) in particular showed potent antioxidant activity in the DPPH and superoxide radical scavenging assays (80% and 81% inhibition at 1mM concentration of 3b, respectively), at a level comparable with the reference standard MLT (98% and 75% at 1 mM). Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Heterologous expression of a Rauvolfia cDNA encoding strictosidine glucosidase, a biosynthetic key to over 2000 monoterpenoid indole alkaloids.

    PubMed

    Gerasimenko, Irina; Sheludko, Yuri; Ma, Xueyan; Stöckigt, Joachim

    2002-04-01

    Strictosidine glucosidase (SG) is an enzyme that catalyses the second step in the biosynthesis of various classes of monoterpenoid indole alkaloids. Based on the comparison of cDNA sequences of SG from Catharanthus roseus and raucaffricine glucosidase (RG) from Rauvolfia serpentina, primers for RT-PCR were designed and the cDNA encoding SG was cloned from R. serpentina cell suspension cultures. The active enzyme was expressed in Escherichia coli and purified to homogeneity. Analysis of its deduced amino-acid sequence assigned the SG from R. serpentina to family 1 of glycosyl hydrolases. In contrast to the SG from C. roseus, the enzyme from R. serpentina is predicted to lack an uncleavable N-terminal signal sequence, which is believed to direct proteins to the endoplasmic reticulum. The temperature and pH optimum, enzyme kinetic parameters and substrate specificity of the heterologously expressed SG were studied and compared to those of the C. roseus enzyme, revealing some differences between the two glucosidases. In vitro deglucosylation of strictosidine by R. serpentina SG proceeds by the same mechanism as has been shown for the C. roseus enzyme preparation. The reaction gives rise to the end product cathenamine and involves 4,21-dehydrocorynantheine aldehyde as an intermediate. The enzymatic hydrolysis of dolichantoside (Nbeta-methylstrictosidine) leads to several products. One of them was identified as a new compound, 3-isocorreantine A. From the data it can be concluded that the divergence of the biosynthetic pathways leading to different classes of indole alkaloids formed in R. serpentina and C. roseus cell suspension cultures occurs at a later stage than strictosidine deglucosylation.

  5. Characterization and quantitation of yohimbine and its analogs in botanicals and dietary supplements using LC/QTOF-MS and LC/QQQ-MS for determination of the presence of bark extract and yohimbine adulteration.

    PubMed

    Lucas, Derick; Neal-Kababick, James; Zweigenbaum, Jerry

    2015-01-01

    The compound yohimbine HCl has been restricted in Australia and categorized as a scheduled prescription drug in other parts of the world, including the United States where it is monographed as a drug in the U. S. Pharmacopeia. However, the bark of the yohimbe plant and its extract is considered a botanical that can be used as a dietary supplement in some parts of the world. For these reasons, methods to characterize the indole alkaloids of the bark and quantify yohimbine and its analogs are presented using accurate mass LC/quadrupole time-of-flight (QTOF)-MS and triple quadrupole LC/MS, respectively. Samples were extracted with a QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method to characterize and quantify the indole alkaloids. With the LC/QTOF-MS in auto MS/MS mode the indole alkaloids were identified, and the isomeric response of each could be used to determine whether the actual bark or extract was in samples of dietary supplements and not adulteration with yohimbine HCl. Analogs were identified and include yohimbic acid, methyl yohimbine, and hydroxyl yohimbine. Many isomers of each were also detected, but identified only by the number of chromatographic peaks. Quantification of yohimbine and ajmalicine spiked extracts showed recoveries of 99 to 103% with RSD of 3.6% or lower and LODs of less than 100 ppt. Calibration of the two standards gave r(2) = 0.9999 in a range from 0.1 to 100 ppb. Dietary supplements quantified for these two compounds showed a range from not detected to 3x the amounts found in the bark.

  6. Strategies for engineering plant natural products: the iridoid-derived monoterpene indole alkaloids of Catharanthus roseus.

    PubMed

    O'Connor, Sarah E

    2012-01-01

    The manipulation of pathways to make unnatural variants of natural compounds, a process often termed combinatorial biosynthesis, has been robustly successful in prokaryotic systems. The development of approaches to generate new-to-nature compounds from plant-based pathways is, in comparison, much less advanced. Success will depend on the specific chemistry of the pathway, as well as on the suitability of the plant system for transformation and genetic manipulation. As plant pathways are elucidated, and can be heterologously expressed in hosts that are more amenable to genetic manipulation, biosynthetic production of new-to-nature compounds from plant pathways will become more widespread. In this chapter, some of the key strategies that have been developed for metabolic engineering of plant pathways, namely directed biosynthesis, mutasynthesis, and pathway incorporation of engineered enzymes are highlighted. The iridoid-derived monoterpene indole alkaloids from C. roseus, which are the focus of this chapter, provide an excellent system for developing these strategies. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. GluCl a target of indole alkaloid okaramines: a 25 year enigma solved

    NASA Astrophysics Data System (ADS)

    Furutani, Shogo; Nakatani, Yuri; Miura, Yuka; Ihara, Makoto; Kai, Kenji; Hayashi, Hideo; Matsuda, Kazuhiko

    2014-08-01

    In 1989, indole alkaloid okaramines isolated from the fermentation products of Penicillium simplicissimum were shown to be insecticidal, yet the mechanism of their toxicity to insects remains unknown. We therefore examined the action of okaramine B on silkworm larval neurons using patch-clamp electrophysiology. Okaramine B induced inward currents which reversed close to the chloride equilibrium potential and were blocked by fipronil. Thus it was tested on the silkworm RDL (resistant-to-dieldrin) γ-aminobutyric-acid-gated chloride channel (GABACl) and a silkworm L-glutamate-gated chloride channel (GluCl) expressed in Xenopus laevis oocytes. Okaramine B activated GluCl, but not RDL. GluCl activation by okaramines correlated with their insecticidal activity, offering a solution to a long-standing enigma concerning their insecticidal actions. Also, unlike ivermectin, okaramine B was inactive at 10 μM on human α1β2γ2 GABACl and α1β glycine-gated chloride channels and provides a new lead for the development of safe insect control chemicals.

  8. KO(t)Bu-Mediated Coupling of Indoles and [60]Fullerene: Transition-Metal-Free and General Synthesis of 1,2-(3-Indole)(hydro)[60]fullerenes.

    PubMed

    Li, Fei; Haj Elhussin, Imad Elddin; Li, Shengli; Zhou, Hongping; Wu, Jieying; Tian, Yupeng

    2015-11-06

    Direct coupling of indoles with C60 has been achieved for the first time. Transition-metal-free KO(t)Bu-mediated reaction of indoles to [60]fullerene has been developed as a practical and efficient method for the synthesis of various 1,2-(3-indole)(hydro)[60]fullerenes that are otherwise difficult to direct synthesize in an efficient and selective manner. This methodology tolerates sensitive functionalities such as chloro, ester, and nitro on indole and builds molecular complexity rapidly, with most reactions reaching completion in <1 h. A plausible reaction mechanism is proposed to explain the high regioselectivity at the 3-position of the indoles and the formation of 1,2-(3-indole)(hydro)[60]fullerenes.

  9. Alkaloids from the leaves of Uncaria rhynchophylla and their inhibitory activity on NO production in lipopolysaccharide-activated microglia.

    PubMed

    Yuan, Dan; Ma, Bin; Wu, Chunfu; Yang, Jingyu; Zhang, Lijia; Liu, Suiku; Wu, Lijun; Kano, Yoshihiro

    2008-07-01

    Two new isomeric alkaloids, 18,19-dehydrocorynoxinic acid B (1) and 18,19-dehydrocorynoxinic acid (2), were isolated from the CHCl3 extract of the leaves of Uncaria rhynchophylla, together with four known rhynchophylline-type alkaloids, corynoxeine (3), isocorynoxeine (4), rhynchophylline (5), and isorhynchophylline (6), and an indole alkaloid glucoside, vincoside lactam (7). The structures of compounds 1 and 2 were elucidated by spectroscopic methods including UV, IR, HREIMS, 1D and 2D NMR, and CD experiments. The activity assay showed that compounds 3-6, with a C-16 carboxylic ester group, and 7 exhibited inhibitory activity on lipopolysaccharide (LPS)-induced NO release in primary cultured rat cortical microglia (IC 50: 13.7-19.0 microM). However, only weak inhibitory activity was observed for compounds 1 and 2, with a C-16 carboxylic acid group (IC 50: >100 microM).

  10. Aniline Is an Inducer, and Not a Precursor, for Indole Derivatives in Rubrivivax benzoatilyticus JA2

    PubMed Central

    Mohammed, Mujahid; Ch, Sasikala; Ch, Ramana V.

    2014-01-01

    Rubrivivax benzoatilyticus JA2 and other anoxygenic photosynthetic bacteria produce indole derivatives when exposed to aniline, a xenobiotic compound. Though this phenomenon has been reported previously, the role of aniline in the production of indoles is still a biochemical riddle. The present study aims at understanding the specific role of aniline (as precursor or stimulator) in the production of indoles and elucidating the biochemical pathway of indoles in aniline-exposed cells by using stable isotope approaches. Metabolic profiling revealed tryptophan accumulation only in aniline exposed cells along with indole 3-acetic acid (IAA) and indole 3-aldehyde (IAld), the two major catabolites of tryptophan. Deuterium labelled aniline feeding studies revealed that aniline is not a precursor of indoles in strain JA2. Further, production of indoles only in aniline-exposed cells suggests that aniline is an indoles stimulator. In addition, production of indoles depended on the presence of a carbon source, and production enhanced when carbon sources were added to the culture. Isotope labelled fumarate feeding identified, fumarate as the precursor of indole, indicating de novo synthesis of indoles. Glyphosate (shikimate pathway inhibitor) inhibited the indoles production, accumulation of tryptophan, IAA and IAld indicating that indoles synthesis in strain JA2 occurs via the de novo shikimate pathway. The up-regulation of anthranilate synthase gene and induction of anthranilate synthase activity correlated well with tryptophan production in strain JA2. Induction of tryptophan aminotransferase and tryptophan 2-monooxygenase activities corroborated well with IAA levels, suggesting that tryptophan catabolism occurs simultaneously in aniline exposed cells. Our study demonstrates that aniline (stress) stimulates tryptophan/indoles synthesis via the shikimate pathway by possibly modulating the metabolic pathway. PMID:24533057

  11. Aniline is an inducer, and not a precursor, for indole derivatives in Rubrivivax benzoatilyticus JA2.

    PubMed

    Mujahid, Mohammed; Sasikala, Ch; Ramana, Ch V

    2014-01-01

    Rubrivivax benzoatilyticus JA2 and other anoxygenic photosynthetic bacteria produce indole derivatives when exposed to aniline, a xenobiotic compound. Though this phenomenon has been reported previously, the role of aniline in the production of indoles is still a biochemical riddle. The present study aims at understanding the specific role of aniline (as precursor or stimulator) in the production of indoles and elucidating the biochemical pathway of indoles in aniline-exposed cells by using stable isotope approaches. Metabolic profiling revealed tryptophan accumulation only in aniline exposed cells along with indole 3-acetic acid (IAA) and indole 3-aldehyde (IAld), the two major catabolites of tryptophan. Deuterium labelled aniline feeding studies revealed that aniline is not a precursor of indoles in strain JA2. Further, production of indoles only in aniline-exposed cells suggests that aniline is an indoles stimulator. In addition, production of indoles depended on the presence of a carbon source, and production enhanced when carbon sources were added to the culture. Isotope labelled fumarate feeding identified, fumarate as the precursor of indole, indicating de novo synthesis of indoles. Glyphosate (shikimate pathway inhibitor) inhibited the indoles production, accumulation of tryptophan, IAA and IAld indicating that indoles synthesis in strain JA2 occurs via the de novo shikimate pathway. The up-regulation of anthranilate synthase gene and induction of anthranilate synthase activity correlated well with tryptophan production in strain JA2. Induction of tryptophan aminotransferase and tryptophan 2-monooxygenase activities corroborated well with IAA levels, suggesting that tryptophan catabolism occurs simultaneously in aniline exposed cells. Our study demonstrates that aniline (stress) stimulates tryptophan/indoles synthesis via the shikimate pathway by possibly modulating the metabolic pathway.

  12. Molecular Cloning and Functional Analysis of Gene Clusters for the Biosynthesis of Indole-Diterpenes in Penicillium crustosum and P. janthinellum

    PubMed Central

    Nicholson, Matthew J.; Eaton, Carla J.; Stärkel, Cornelia; Tapper, Brian A.; Cox, Murray P.; Scott, Barry

    2015-01-01

    The penitremane and janthitremane families of indole-diterpenes are abundant natural products synthesized by Penicillium crustosum and P. janthinellum. Using a combination of PCR, cosmid library screening, and Illumina sequencing we have identified gene clusters encoding enzymes for the synthesis of these compounds. Targeted deletion of penP in P. crustosum abolished the synthesis of penitrems A, B, D, E, and F, and led to accumulation of paspaline, a key intermediate for paxilline biosynthesis in P. paxilli. Similarly, deletion of janP and janD in P. janthinellum abolished the synthesis of prenyl-elaborated indole-diterpenes, and led to accumulation in the latter of 13-desoxypaxilline, a key intermediate for the synthesis of the structurally related aflatremanes synthesized by Aspergillus flavus. This study helps resolve the genetic basis for the complexity of indole-diterpene natural products found within the Penicillium and Aspergillus species. All indole-diterpene gene clusters identified to date have a core set of genes for the synthesis of paspaline and a suite of genes encoding multi-functional cytochrome P450 monooxygenases, FAD dependent monooxygenases, and prenyl transferases that catalyse various regio- and stereo- specific oxidations that give rise to the diversity of indole-diterpene products synthesized by this group of fungi. PMID:26213965

  13. Interaction of indole-papaverine with DNA in solutions of various ionic strength

    NASA Astrophysics Data System (ADS)

    Travkina, V. I.; Moroshkina, E. B.; Osinnikova, D. N.

    2017-11-01

    Interaction of synthetic alkaloid of isoquinoline series, which is an analogue of the biologically active compound papaverine, was studied by spectral, microcalorimetric, optical and hydrodynamic methods at different ionic strengths of medium. It was found that the investigated compound may interact with DNA in various ways depending on the ratio of ligand - DNA concentrations and ionic strength of solution (μ). When μ = 0.001, indole-papaverine intercalates into the double helix of DNA. The increase of μ resulted in a decrease of the affinity of the compound to DNA and a change its binding method.

  14. An ergot alkaloid biosynthesis gene and clustered hypothetical genes from Aspergillus fumigatus.

    PubMed

    Coyle, Christine M; Panaccione, Daniel G

    2005-06-01

    The ergot alkaloids are a family of indole-derived mycotoxins with a variety of significant biological activities. Aspergillus fumigatus, a common airborne fungus and opportunistic human pathogen, and several fungi in the relatively distant taxon Clavicipitaceae (clavicipitaceous fungi) produce different sets of ergot alkaloids. The ergot alkaloids of these divergent fungi share a four-member ergoline ring but differ in the number, type, and position of the side chains. Several genes required for ergot alkaloid production are known in the clavicipitaceous fungi, and these genes are clustered in the genome of the ergot fungus Claviceps purpurea. We investigated whether the ergot alkaloids of A. fumigatus have a common biosynthetic and genetic origin with those of the clavicipitaceous fungi. A homolog of dmaW, the gene controlling the determinant step in the ergot alkaloid pathway of clavicipitaceous fungi, was identified in the A. fumigatus genome. Knockout of dmaW eliminated all known ergot alkaloids from A. fumigatus, and complementation of the mutation restored ergot alkaloid production. Clustered with dmaW in the A. fumigatus genome are sequences corresponding to five genes previously proposed to encode steps in the ergot alkaloid pathway of C. purpurea, as well as additional sequences whose deduced protein products are consistent with their involvement in the ergot alkaloid pathway. The corresponding genes have similarities in their nucleotide sequences, but the orientations and positions within the cluster of several of these genes differ. The data indicate that the ergot alkaloid biosynthetic capabilities in A. fumigatus and the clavicipitaceous fungi had a common origin.

  15. An Ergot Alkaloid Biosynthesis Gene and Clustered Hypothetical Genes from Aspergillus fumigatus†

    PubMed Central

    Coyle, Christine M.; Panaccione, Daniel G.

    2005-01-01

    The ergot alkaloids are a family of indole-derived mycotoxins with a variety of significant biological activities. Aspergillus fumigatus, a common airborne fungus and opportunistic human pathogen, and several fungi in the relatively distant taxon Clavicipitaceae (clavicipitaceous fungi) produce different sets of ergot alkaloids. The ergot alkaloids of these divergent fungi share a four-member ergoline ring but differ in the number, type, and position of the side chains. Several genes required for ergot alkaloid production are known in the clavicipitaceous fungi, and these genes are clustered in the genome of the ergot fungus Claviceps purpurea. We investigated whether the ergot alkaloids of A. fumigatus have a common biosynthetic and genetic origin with those of the clavicipitaceous fungi. A homolog of dmaW, the gene controlling the determinant step in the ergot alkaloid pathway of clavicipitaceous fungi, was identified in the A. fumigatus genome. Knockout of dmaW eliminated all known ergot alkaloids from A. fumigatus, and complementation of the mutation restored ergot alkaloid production. Clustered with dmaW in the A. fumigatus genome are sequences corresponding to five genes previously proposed to encode steps in the ergot alkaloid pathway of C. purpurea, as well as additional sequences whose deduced protein products are consistent with their involvement in the ergot alkaloid pathway. The corresponding genes have similarities in their nucleotide sequences, but the orientations and positions within the cluster of several of these genes differ. The data indicate that the ergot alkaloid biosynthetic capabilities in A. fumigatus and the clavicipitaceous fungi had a common origin. PMID:15933009

  16. The ergot alkaloid gene cluster: functional analyses and evolutionary aspects.

    PubMed

    Lorenz, Nicole; Haarmann, Thomas; Pazoutová, Sylvie; Jung, Manfred; Tudzynski, Paul

    2009-01-01

    Ergot alkaloids and their derivatives have been traditionally used as therapeutic agents in migraine, blood pressure regulation and help in childbirth and abortion. Their production in submerse culture is a long established biotechnological process. Ergot alkaloids are produced mainly by members of the genus Claviceps, with Claviceps purpurea as best investigated species concerning the biochemistry of ergot alkaloid synthesis (EAS). Genes encoding enzymes involved in EAS have been shown to be clustered; functional analyses of EAS cluster genes have allowed to assign specific functions to several gene products. Various Claviceps species differ with respect to their host specificity and their alkaloid content; comparison of the ergot alkaloid clusters in these species (and of clavine alkaloid clusters in other genera) yields interesting insights into the evolution of cluster structure. This review focuses on recently published and also yet unpublished data on the structure and evolution of the EAS gene cluster and on the function and regulation of cluster genes. These analyses have also significant biotechnological implications: the characterization of non-ribosomal peptide synthetases (NRPS) involved in the synthesis of the peptide moiety of ergopeptines opened interesting perspectives for the synthesis of ergot alkaloids; on the other hand, defined mutants could be generated producing interesting intermediates or only single peptide alkaloids (instead of the alkaloid mixtures usually produced by industrial strains).

  17. An efficient protocol for the synthesis of highly sensitive indole imines utilizing green chemistry: optimization of reaction conditions.

    PubMed

    Nisar, Bushra; Rubab, Syeda Laila; Raza, Abdul Rauf; Tariq, Sobia; Sultan, Ayesha; Tahir, Muhammad Nawaz

    2018-04-11

    Novel and highly sensitive indole-based imines have been synthesized. Their synthesis has been compared employing a variety of protocols. Ultimately, a convenient, economical and high yielding set of conditions employing green chemistry have been designed for their synthesis.

  18. Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer's disease.

    PubMed

    Konrath, Eduardo Luis; Passos, Carolina dos Santos; Klein, Luiz Carlos; Henriques, Amélia T

    2013-12-01

    The inhibition of acetylcholinesterase (AChE), the key enzyme in the breakdown of acetylcholine, is currently the main pharmacological strategy available for Alzheimer's disease (AD). In this sense, many alkaloids isolated from natural sources, such as physostigmine, have been long recognized as acetyl- and butyrylcholinesterase (BChE) inhibitors. Since the approval of galantamine for the treatment of AD patients, the search for new anticholinesterase alkaloids has escalated, leading to promising candidates such as huperzine A. This review aims to summarize recent advances in current knowledge on alkaloids as AChE and BChE inhibitors, highlighting structure-activity relationship (SAR) and docking studies. Natural alkaloids belonging to the steroidal/triterpenoidal, quinolizidine, isoquinoline and indole classes, mainly distributed within Buxaceae, Amaryllidaceae and Lycopodiaceae, are considered important sources of alkaloids with anti-enzymatic properties. Investigations into the possible SARs for some active compounds are based on molecular modelling studies, predicting the mode of interaction of the molecules with amino acid residues in the active site of the enzymes. Following this view, an increasing interest in achieving more potent and effective analogues makes alkaloids good chemical templates for the development of new cholinesterase inhibitors. The anticholinesterase activity of alkaloids, together with their structural diversity and physicochemical properties, makes them good candidate agents for the treatment of AD. © 2013 Royal Pharmaceutical Society.

  19. Synthesis and evaluation of novel N-H and N-substituted indole-2- and 3-carboxamide derivatives as antioxidants agents.

    PubMed

    Olgen, Süreyya; Kiliç, Zuhal; Ada, Ahmet O; Coban, Tulay

    2007-08-01

    We have previously reported on the synthesis of novel indole derivatives where some compounds showed significant antioxidant activity. Here, we report the synthesis of novel N-H and N-substituted indole-2- and 3-carboxamide derivatives and investigated their antioxidant role in order to identify structural characteristics responsible for activity. Although all compounds showed a strong inhibitory (95-100%) effect on superoxide anion (SOD) only compounds 4, 5 and 6 showed simliar potency for the inhibition of lipid peroxidation (81-94%) which revealed that compounds 4, 5 and 6 possessed highly potent antioxidant properties. Substitution in the 1-position of the indole ring caused the significant differences between the activity results regarding lipid peroxidation inhibition.

  20. Correspondence between flowers and leaves in terpenoid indole alkaloid metabolism of the phytoplasma-infected Catharanthus roseus plants.

    PubMed

    Srivastava, Suchi; Pandey, Richa; Kumar, Sushil; Nautiyal, Chandra Shekhar

    2014-11-01

    Several plants of Catharanthus roseus cv 'leafless inflorescence (lli)' showing phenotype of phytoplasma infection were observed for symptoms of early flowering, virescence, phyllody, and apical clustering of branches. Symptomatic plants were studied for the presence/absence and identity of phytoplasma in flowers. Transcription levels of several genes involved in plants' metabolism and development, accumulation of pharmaceutically important terpenoid indole alkaloids in flowers and leaves and variation in the root-associated microbial flora were examined. The expression profile of 12 genes studied was semi-quantitatively similar in control leaves and phytoplasma-infected leaves and flowers, in agreement with the symptoms of virescence and phyllody in phytoplasma-infected plants. The flowers of phytoplasma-infected plants possessed the TIA profile of leaves and accumulated catharanthine, vindoline, and vincristine and vinblastine in higher concentrations than leaves. The roots of the infected plants displayed lower microbial diversity than those of normal plants. In conclusion, phytoplasma affected the biology of C. roseus lli plants multifariously, it reduced the differences between the metabolite accumulates of the leaves and flowers and restrict the microbial diversity of rhizosphere.

  1. Rauvolfia serpentina N-methyltransferases involved in ajmaline and Nβ -methylajmaline biosynthesis belong to a gene family derived from γ-tocopherol C-methyltransferase.

    PubMed

    Cázares-Flores, Paulo; Levac, Dylan; De Luca, Vincenzo

    2016-08-01

    Ajmaline biosynthesis in Rauvolfia serpentina has been one of the most studied monoterpenoid indole alkaloid (MIA) pathways within the plant family Apocynaceae. Detailed molecular and biochemical information on most of the steps involved in the pathway has been generated over the last 30 years. Here we report the identification, molecular cloning and functional expression in Escherichia coli of two R. serpentinacDNAs that are part of a recently discovered γ-tocopherol-like N-methyltransferase (γ-TLMT) family and are involved in indole and side-chain N-methylation of ajmaline. Recombinant proteins showed remarkable substrate specificity for molecules with an ajmalan-type backbone and strict regiospecific N-methylation. Furthermore, N-methyltransferase gene transcripts and enzyme activity were enriched in R. serpentina roots which correlated with accumulation of ajmaline alkaloid. This study elucidates the final step in the ajmaline biosynthetic pathway and describes the enzyme responsible for the formation of Nβ -methylajmaline, an unusual charged MIA found in R. serpentina. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  2. Peculiarity of methoxy group-substituted phenylhydrazones in Fischer indole synthesis

    PubMed Central

    MURAKAMI, Yasuoki

    2012-01-01

    We found that the Fischer indole synthesis of ethyl pyruvate 2-methoxyphenylhydrazone (5) with HCl/EtOH gave an abnormal product, ethyl 6-chloroindole-2-carboxylate (7), as the main product, with a smaller amount of ethyl 7-methoxyindole-2-carboxylate (6) as the normal product. This abnormal reaction was the result of a cyclization on the side with the substituent (methoxy group) of a benzene ring on phenylhydrazone, which was not previously observed. In this initial investigation, we focused on 1) the application of the above-mentioned abnormal Fischer indole synthesis, 2) the details of this reaction of phenylhydrazone with other kinds of substituents, 3) the mechanism of the first step of the Fischer indole synthesis, 4) the abnormal reaction in methoxydiphenylhydrazones, and 5) a synthetic device to avoid an abnormal reaction. The results of these studies are summarized herein. PMID:22241067

  3. Alkaloid Cluster Gene ccsA of the Ergot Fungus Claviceps purpurea Encodes Chanoclavine I Synthase, a Flavin Adenine Dinucleotide-Containing Oxidoreductase Mediating the Transformation of N-Methyl-Dimethylallyltryptophan to Chanoclavine I ▿

    PubMed Central

    Lorenz, Nicole; Olšovská, Jana; Šulc, Miroslav; Tudzynski, Paul

    2010-01-01

    Ergot alkaloids are indole-derived secondary metabolites synthesized by the phytopathogenic ascomycete Claviceps purpurea. In wild-type strains, they are exclusively produced in the sclerotium, a hibernation structure; for biotechnological applications, submerse production strains have been generated by mutagenesis. It was shown previously that the enzymes specific for alkaloid biosynthesis are encoded by a gene cluster of 68.5 kb. This ergot alkaloid cluster consists of 14 genes coregulated and expressed under alkaloid-producing conditions. Although the role of some of the cluster genes in alkaloid biosynthesis could be confirmed by a targeted knockout approach, further functional analyses are needed, especially concerning the early pathway-specific steps up to the production of clavine alkaloids. Therefore, the gene ccsA, originally named easE and preliminarily annotated as coding for a flavin adenine dinucleotide-containing oxidoreductase, was deleted in the C. purpurea strain P1, which is able to synthesize ergot alkaloids in axenic culture. Five independent knockout mutants were analyzed with regard to alkaloid-producing capability. Thin-layer chromatography (TLC), ultrapressure liquid chromatography (UPLC), and mass spectrometry (MS) analyses revealed accumulation of N-methyl-dimethylallyltryptophan (Me-DMAT) and traces of dimethylallyltryptophan (DMAT), the first pathway-specific intermediate. Since other alkaloid intermediates could not be detected, we conclude that deletion of ccsA led to a block in alkaloid biosynthesis beyond Me-DMAT formation. Complementation with a ccsA/gfp fusion construct restored alkaloid biosynthesis. These data indicate that ccsA encodes the chanoclavine I synthase or a component thereof catalyzing the conversion of N-methyl-dimethylallyltryptophan to chanoclavine I. PMID:20118373

  4. Alkaloid cluster gene ccsA of the ergot fungus Claviceps purpurea encodes chanoclavine I synthase, a flavin adenine dinucleotide-containing oxidoreductase mediating the transformation of N-methyl-dimethylallyltryptophan to chanoclavine I.

    PubMed

    Lorenz, Nicole; Olsovská, Jana; Sulc, Miroslav; Tudzynski, Paul

    2010-03-01

    Ergot alkaloids are indole-derived secondary metabolites synthesized by the phytopathogenic ascomycete Claviceps purpurea. In wild-type strains, they are exclusively produced in the sclerotium, a hibernation structure; for biotechnological applications, submerse production strains have been generated by mutagenesis. It was shown previously that the enzymes specific for alkaloid biosynthesis are encoded by a gene cluster of 68.5 kb. This ergot alkaloid cluster consists of 14 genes coregulated and expressed under alkaloid-producing conditions. Although the role of some of the cluster genes in alkaloid biosynthesis could be confirmed by a targeted knockout approach, further functional analyses are needed, especially concerning the early pathway-specific steps up to the production of clavine alkaloids. Therefore, the gene ccsA, originally named easE and preliminarily annotated as coding for a flavin adenine dinucleotide-containing oxidoreductase, was deleted in the C. purpurea strain P1, which is able to synthesize ergot alkaloids in axenic culture. Five independent knockout mutants were analyzed with regard to alkaloid-producing capability. Thin-layer chromatography (TLC), ultrapressure liquid chromatography (UPLC), and mass spectrometry (MS) analyses revealed accumulation of N-methyl-dimethylallyltryptophan (Me-DMAT) and traces of dimethylallyltryptophan (DMAT), the first pathway-specific intermediate. Since other alkaloid intermediates could not be detected, we conclude that deletion of ccsA led to a block in alkaloid biosynthesis beyond Me-DMAT formation. Complementation with a ccsA/gfp fusion construct restored alkaloid biosynthesis. These data indicate that ccsA encodes the chanoclavine I synthase or a component thereof catalyzing the conversion of N-methyl-dimethylallyltryptophan to chanoclavine I.

  5. Palladium-Catalyzed Dynamic Kinetic Asymmetric Transformations of Vinyl Aziridines with Nitrogen Heterocycles: Rapid Access to Biologically Active Pyrroles and Indoles

    PubMed Central

    Trost, Barry M.; Osipov, Maksim; Dong, Guangbin

    2010-01-01

    We report that nitrogen heterocycles can serve as competent nucleophiles in the palladium-catalyzed dynamic kinetic asymmetric alkylation of vinyl aziridines. The resulting alkylated products were obtained with high regio-, chemo-, and enantioselectivity. Both substituted 1H-pyrroles and 1H-indoles were successfully employed to give exclusively the branched N-alkylated products. The synthetic utility of this process was demonstrated by applying this method to the preparation of several medicinal chemistry lead compounds and bromopyrrole alkaloids including longamide B, longamide B methyl ester, hanishin, agesamides A and B, and cyclooroidin. PMID:20949972

  6. PrenDB, a Substrate Prediction Database to Enable Biocatalytic Use of Prenyltransferases.

    PubMed

    Gunera, Jakub; Kindinger, Florian; Li, Shu-Ming; Kolb, Peter

    2017-03-10

    Prenyltransferases of the dimethylallyltryptophan synthase (DMATS) superfamily catalyze the attachment of prenyl or prenyl-like moieties to diverse acceptor compounds. These acceptor molecules are generally aromatic in nature and mostly indole or indole-like. Their catalytic transformation represents a major skeletal diversification step in the biosynthesis of secondary metabolites, including the indole alkaloids. DMATS enzymes thus contribute significantly to the biological and pharmacological diversity of small molecule metabolites. Understanding the substrate specificity of these enzymes could create opportunities for their biocatalytic use in preparing complex synthetic scaffolds. However, there has been no framework to achieve this in a rational way. Here, we report a chemoinformatic pipeline to enable prenyltransferase substrate prediction. We systematically catalogued 32 unique prenyltransferases and 167 unique substrates to create possible reaction matrices and compiled these data into a browsable database named PrenDB. We then used a newly developed algorithm based on molecular fragmentation to automatically extract reactive chemical epitopes. The analysis of the collected data sheds light on the thus far explored substrate space of DMATS enzymes. To assess the predictive performance of our virtual reaction extraction tool, 38 potential substrates were tested as prenyl acceptors in assays with three prenyltransferases, and we were able to detect turnover in >55% of the cases. The database, PrenDB (www.kolblab.org/prendb.php), enables the prediction of potential substrates for chemoenzymatic synthesis through substructure similarity and virtual chemical transformation techniques. It aims at making prenyltransferases and their highly regio- and stereoselective reactions accessible to the research community for integration in synthetic work flows. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Concise Syntheses of bis-Strychnos Alkaloids (-)-Sungucine, (-)-Isosungucine, and (-)-Strychnogucine B from (-)-Strychnine.

    PubMed

    Zhao, Senzhi; Teijaro, Christiana N; Chen, Heng; Sirasani, Gopal; Vaddypally, Shivaiah; Zdilla, Michael J; Dobereiner, Graham E; Andrade, Rodrigo B

    2016-08-08

    The first chemical syntheses of complex, bis-Strychnos alkaloids (-)-sungucine (1), (-)-isosungucine (2), and (-)-strychnogucine B (3) from (-)-strychnine (4) is reported. Key steps included (1) the Polonovski-Potier activation of strychnine N-oxide; (2) a biomimetic Mannich coupling to forge the signature C23-C5' bond that joins two monoterpene indole monomers; and (3) a sequential HBr/NaBH3 CN-mediated reduction to fashion the ethylidene moieties in 1-3. DFT calculations were employed to rationalize the regiochemical course of reactions involving strychnine congeners. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Heterologous expression, purification, crystallization and preliminary X-ray analysis of raucaffricine glucosidase, a plant enzyme specifically involved in Rauvolfia alkaloid biosynthesis.

    PubMed

    Ruppert, Martin; Panjikar, Santosh; Barleben, Leif; Stöckigt, Joachim

    2006-03-01

    Raucaffricine glucosidase (RG) is an enzyme that is specifically involved in the biosynthesis of indole alkaloids from the plant Rauvolfia serpentina. After heterologous expression in Escherichia coli cells, crystals of RG were obtained by the hanging-drop vapour-diffusion technique at 293 K with 0.3 M ammonium sulfate, 0.1 M sodium acetate pH 4.6 buffer and 11% PEG 4000 as precipitant. Crystals belong to space group I222 and diffract to 2.30 A, with unit-cell parameters a = 102.8, b = 127.3, c = 215.8 A.

  9. High-Throughput Sequencing and De Novo Assembly of the Isatis indigotica Transcriptome

    PubMed Central

    Tang, Xiaoqing; Xiao, Yunhua; Lv, Tingting; Wang, Fangquan; Zhu, QianHao; Zheng, Tianqing; Yang, Jie

    2014-01-01

    Background Isatis indigotica, the source of the traditional Chinese medicine Radix isatidis (Ban-Lan-Gen), is an extremely important economical crop in China. To facilitate biological, biochemical and molecular research on the medicinal chemicals in I. indigotica, here we report the first I. indigotica transcriptome generated by RNA sequencing (RNA-seq). Results RNA-seq library was created using RNA extracted from a mixed sample including leaf and root. A total of 33,238 unigenes were assembled from more than 28 million of high quality short reads. The quality of the assembly was experimentally examined by cDNA sequencing of seven randomly selected unigenes. Based on blast search 28,184 unigenes had a hit in at least one of the protein and nucleotide databases used in this study, and 8 unigenes were found to be associated with biosynthesis of indole and its derivatives. According to Gene Ontology classification, 22,365 unigenes were categorized into 48 functional groups. Furthermore, Clusters of Orthologous Group and Swiss-Port annotation were assigned for 7,707 and 18,679 unigenes, respectively. Analysis of repeat motifs identified 6,400 simple sequence repeat markers in 4,509 unigenes. Conclusion Our data provide a comprehensive sequence resource for molecular study of I. indigotica. Our results will facilitate studies on the functions of genes involved in the indole alkaloid biosynthesis pathway and on metabolism of nitrogen and indole alkaloids in I. indigotica and its related species. PMID:25259890

  10. Comparison of three chromatographic techniques for the detection of mitragynine and other indole and oxindole alkaloids in mitragyna speciosa (Kratom) plants

    USDA-ARS?s Scientific Manuscript database

    Leaves of the Southeast Asian plant Mitragyna speciosa (kratom) are used to suppress pain and mitigate opioid withdrawal syndromes. The potential threat of abuse and ready availability of this uncontrolled psychoactive plant material in the U.S. have led to the need for improved analytical technique...

  11. Regio- and stereoselectivities in plant cell biotransformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamada, H.

    1995-12-01

    The ability of plant cultured cells to convert foreign substrates into more useful substances is of considerable interest. Therefore I have studied biotransformation of foreign substrate by plant cell suspension cultures. In this presentation, I report regio- and stereoselectivities in biotransformation of steroids and indole alkaloids and taxol by plant (tobacco, periwinkle, moss, orchid) cell suspension cultures.

  12. Post-genome research on the biosynthesis of ergot alkaloids.

    PubMed

    Li, Shu-Ming; Unsöld, Inge A

    2006-10-01

    Genome sequencing provides new opportunities and challenges for identifying genes for the biosynthesis of secondary metabolites. A putative biosynthetic gene cluster of fumigaclavine C, an ergot alkaloid of the clavine type, was identified in the genome sequence of ASPERGILLUS FUMIGATUS by a bioinformatic approach. This cluster spans 22 kb of genomic DNA and comprises at least 11 open reading frames (ORFs). Seven of them are orthologous to genes from the biosynthetic gene cluster of ergot alkaloids in CLAVICEPS PURPUREA. Experimental evidence of the identified cluster was provided by heterologous expression and biochemical characterization of two ORFs, FgaPT1 and FgaPT2, in the cluster of A. FUMIGATUS, which show remarkable similarities to dimethylallyltryptophan synthase from C. PURPUREA and function as prenyltransferases. FgaPT2 converts L-tryptophan to dimethylallyltryptophan and thereby catalyzes the first step of ergot alkaloid biosynthesis, whilst FgaPT1 catalyzes the last step of the fumigaclavine C biosynthesis, i. e., the prenylation of fumigaclavine A at C-2 position of the indole nucleus. In addition to information obtained from the gene cluster of ergot alkaloids from C. PURPUREA, the identification of the biosynthetic gene cluster of fumigaclavine C in A. FUMIGATUS opens an alternative way to study the biosynthesis of ergot alkaloids in fungi.

  13. Cyclobutane-Containing Alkaloids: Origin, Synthesis, and Biological Activities

    PubMed Central

    Sergeiko, Anastasia; Poroikov, Vladimir V; Hanuš, Lumir O; Dembitsky, Valery M

    2008-01-01

    Present review describes research on novel natural cyclobutane-containing alkaloids isolated from terrestrial and marine species. More than 60 biological active compounds have been confirmed to have antimicrobial, antibacterial, antitumor, and other activities. The structures, synthesis, origins, and biological activities of a selection of cyclobutane-containing alkaloids are reviewed. With the computer program PASS some additional biological activities are also predicted, which point toward new possible applications of these compounds. This review emphasizes the role of cyclobutane-containing alkaloids as an important source of leads for drug discovery. PMID:19696873

  14. Recent Advances in the Synthesis of Morphine and Related Alkaloids

    NASA Astrophysics Data System (ADS)

    Chida, Noritaka

    Morphine, an alkaloid isolated from the opium poppy, has been widely used as an analgesic, and has been a fascinating synthetic target of organic chemists. After the first total synthesis reported in 1952, a number of synthetic studies toward morphine have been reported, and findings obtained in such studies have greatly contributed to the progress of synthetic organic chemistry as well as medicinal chemistry. This review provides an overview of recent studies toward the total synthesis of morphine and related alkaloids. Work reported in the literature since 2004 will be reviewed.

  15. Physiological Effects of Ergot Alkaloid and Indole-Diterpene Consumption on Sheep under Hot and Thermoneutral Ambient Temperature Conditions.

    PubMed

    Henry, Michelle L E; Kemp, Stuart; Dunshea, Frank R; Leury, Brian J

    2016-06-02

    A controlled feeding study was undertaken to determine the physiological and production effects of consuming perennial ryegrass alkaloids (fed via seed) under extreme heat in sheep. Twenty-four Merino ewe weaners (6 months; initial BW 30.8 ± 1.0 kg) were selected and the treatment period lasted 21 days following a 14 day acclimatisation period. Two levels of two factors were used. The first factor was alkaloid, fed at a nil (NilAlk) or moderate level (Alk; 80 μg/kg LW ergovaline and 20.5 μg/kg·LW lolitrem B). The second factor was ambient temperature applied at two levels; thermoneutral (TN; constant 21-22 °C) or heat (Heat; 9:00 AM-5:00 PM at 38 °C; 5:00 PM-9:00 AM at 21-22 °C), resulting in four treatments, NilAlk TN, NilAlk Heat, Alk TN and Alk Heat. Alkaloid consumption reduced dry matter intake ( p = 0.008), and tended to reduce liveweight ( p = 0.07). Rectal temperature and respiration rate were increased by both alkaloid and heat ( p < 0.05 for all). Respiration rate increased to severe levels when alkaloid and heat were combined, indicating the short term effects which may be occurring in perennial ryegrass toxicosis (PRGT) areas during severe weather conditions, a novel finding. When alkaloid ingestion and heat were administered separately, similar physiological responses occurred, indicating alkaloid ingestion causes a similar heat stress response to 38 °C heat.

  16. Novel indole-based inhibitors of IMPDH: introduction of hydrogen bond acceptors at indole C-3.

    PubMed

    Watterson, Scott H; Dhar, T G Murali; Ballentine, Shelley K; Shen, Zhongqi; Barrish, Joel C; Cheney, Daniel; Fleener, Catherine A; Rouleau, Katherine A; Townsend, Robert; Hollenbaugh, Diane L; Iwanowicz, Edwin J

    2003-04-07

    The development of a series of novel indole-based inhibitors of 5'-inosine monophosphate dehydrogenase (IMPDH) is described. Various hydrogen bond acceptors at C-3 of the indole were explored. The synthesis and the structure-activity relationships (SARs) derived from in vitro studies are outlined.

  17. The seco-iridoid pathway from Catharanthus roseus

    PubMed Central

    Miettinen, Karel; Dong, Lemeng; Navrot, Nicolas; Schneider, Thomas; Burlat, Vincent; Pollier, Jacob; Woittiez, Lotte; van der Krol, Sander; Lugan, Raphaël; Ilc, Tina; Verpoorte, Robert; Oksman-Caldentey, Kirsi-Marja; Martinoia, Enrico; Bouwmeester, Harro; Goossens, Alain; Memelink, Johan; Werck-Reichhart, Danièle

    2014-01-01

    The (seco)iridoids and their derivatives, the monoterpenoid indole alkaloids (MIAs), form two large families of plant-derived bioactive compounds with a wide spectrum of high-value pharmacological and insect-repellent activities. Vinblastine and vincristine, MIAs used as anticancer drugs, are produced by Catharanthus roseus in extremely low levels, leading to high market prices and poor availability. Their biotechnological production is hampered by the fragmentary knowledge of their biosynthesis. Here we report the discovery of the last four missing steps of the (seco)iridoid biosynthesis pathway. Expression of the eight genes encoding this pathway, together with two genes boosting precursor formation and two downstream alkaloid biosynthesis genes, in an alternative plant host, allows the heterologous production of the complex MIA strictosidine. This confirms the functionality of all enzymes of the pathway and highlights their utility for synthetic biology programmes towards a sustainable biotechnological production of valuable (seco)iridoids and alkaloids with pharmaceutical and agricultural applications. PMID:24710322

  18. Synthesis of the C(18) -norditerpenoid alkaloid neofinaconitine: a lesson in convergent synthesis planning.

    PubMed

    Liu, Xiao-Yu; Chen, David Y-K

    2014-01-20

    Hexacyclic framework: The total synthesis of the complex C18 -norditerpenoid alkaloid neofinaconitine has been achieved by a convergent approach. This remarkable synthesis featured two Diels-Alder cycloadditions and subsequent Mannich-type N-acyliminium and radical cyclizations to establish the unique hexacyclic core structure of the target molecule. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Prospecting for Novel Plant-Derived Molecules of Rauvolfia serpentina as Inhibitors of Aldose Reductase, a Potent Drug Target for Diabetes and Its Complications

    PubMed Central

    Pathania, Shivalika; Randhawa, Vinay; Bagler, Ganesh

    2013-01-01

    Aldose Reductase (AR) is implicated in the development of secondary complications of diabetes, providing an interesting target for therapeutic intervention. Extracts of Rauvolfia serpentina, a medicinal plant endemic to the Himalayan mountain range, have been known to be effective in alleviating diabetes and its complications. In this study, we aim to prospect for novel plant-derived inhibitors from R. serpentina and to understand structural basis of their interactions. An extensive library of R. serpentina molecules was compiled and computationally screened for inhibitory action against AR. The stability of complexes, with docked leads, was verified using molecular dynamics simulations. Two structurally distinct plant-derived leads were identified as inhibitors: indobine and indobinine. Further, using these two leads as templates, 16 more leads were identified through ligand-based screening of their structural analogs, from a small molecules database. Thus, we obtained plant-derived indole alkaloids, and their structural analogs, as potential AR inhibitors from a manually curated dataset of R. serpentina molecules. Indole alkaloids reported herein, as a novel structural class unreported hitherto, may provide better insights for designing potential AR inhibitors with improved efficacy and fewer side effects. PMID:23613832

  20. The Structure of Rauvolfia serpentina Strictosidine Synthase Is a Novel Six-Bladed β-Propeller Fold in Plant Proteins[W

    PubMed Central

    Ma, Xueyan; Panjikar, Santosh; Koepke, Juergen; Loris, Elke; Stöckigt, Joachim

    2006-01-01

    The enzyme strictosidine synthase (STR1) from the Indian medicinal plant Rauvolfia serpentina is of primary importance for the biosynthetic pathway of the indole alkaloid ajmaline. Moreover, STR1 initiates all biosynthetic pathways leading to the entire monoterpenoid indole alkaloid family representing an enormous structural variety of ∼2000 compounds in higher plants. The crystal structures of STR1 in complex with its natural substrates tryptamine and secologanin provide structural understanding of the observed substrate preference and identify residues lining the active site surface that contact the substrates. STR1 catalyzes a Pictet-Spengler–type reaction and represents a novel six-bladed β-propeller fold in plant proteins. Structure-based sequence alignment revealed a common repetitive sequence motif (three hydrophobic residues are followed by a small residue and a hydrophilic residue), indicating a possible evolutionary relationship between STR1 and several sequence-unrelated six-bladed β-propeller structures. Structural analysis and site-directed mutagenesis experiments demonstrate the essential role of Glu-309 in catalysis. The data will aid in deciphering the details of the reaction mechanism of STR1 as well as other members of this enzyme family. PMID:16531499

  1. The structure of Rauvolfia serpentina strictosidine synthase is a novel six-bladed beta-propeller fold in plant proteins.

    PubMed

    Ma, Xueyan; Panjikar, Santosh; Koepke, Juergen; Loris, Elke; Stöckigt, Joachim

    2006-04-01

    The enzyme strictosidine synthase (STR1) from the Indian medicinal plant Rauvolfia serpentina is of primary importance for the biosynthetic pathway of the indole alkaloid ajmaline. Moreover, STR1 initiates all biosynthetic pathways leading to the entire monoterpenoid indole alkaloid family representing an enormous structural variety of approximately 2000 compounds in higher plants. The crystal structures of STR1 in complex with its natural substrates tryptamine and secologanin provide structural understanding of the observed substrate preference and identify residues lining the active site surface that contact the substrates. STR1 catalyzes a Pictet-Spengler-type reaction and represents a novel six-bladed beta-propeller fold in plant proteins. Structure-based sequence alignment revealed a common repetitive sequence motif (three hydrophobic residues are followed by a small residue and a hydrophilic residue), indicating a possible evolutionary relationship between STR1 and several sequence-unrelated six-bladed beta-propeller structures. Structural analysis and site-directed mutagenesis experiments demonstrate the essential role of Glu-309 in catalysis. The data will aid in deciphering the details of the reaction mechanism of STR1 as well as other members of this enzyme family.

  2. Prospecting for novel plant-derived molecules of Rauvolfia serpentina as inhibitors of Aldose Reductase, a potent drug target for diabetes and its complications.

    PubMed

    Pathania, Shivalika; Randhawa, Vinay; Bagler, Ganesh

    2013-01-01

    Aldose Reductase (AR) is implicated in the development of secondary complications of diabetes, providing an interesting target for therapeutic intervention. Extracts of Rauvolfia serpentina, a medicinal plant endemic to the Himalayan mountain range, have been known to be effective in alleviating diabetes and its complications. In this study, we aim to prospect for novel plant-derived inhibitors from R. serpentina and to understand structural basis of their interactions. An extensive library of R. serpentina molecules was compiled and computationally screened for inhibitory action against AR. The stability of complexes, with docked leads, was verified using molecular dynamics simulations. Two structurally distinct plant-derived leads were identified as inhibitors: indobine and indobinine. Further, using these two leads as templates, 16 more leads were identified through ligand-based screening of their structural analogs, from a small molecules database. Thus, we obtained plant-derived indole alkaloids, and their structural analogs, as potential AR inhibitors from a manually curated dataset of R. serpentina molecules. Indole alkaloids reported herein, as a novel structural class unreported hitherto, may provide better insights for designing potential AR inhibitors with improved efficacy and fewer side effects.

  3. A novel cinnamyl alcohol dehydrogenase (CAD)-like reductase contributes to the structural diversity of monoterpenoid indole alkaloids in Rauvolfia.

    PubMed

    Geissler, Marcus; Burghard, Marie; Volk, Jascha; Staniek, Agata; Warzecha, Heribert

    2016-03-01

    Based on findings described herein, we contend that the reduction of vomilenine en route to antiarrhythmic ajmaline in planta might proceed via an alternative, novel sequence of biosynthetic steps. In the genus Rauvolfia, monoterpenoid indole alkaloids (MIAs) are formed via complex biosynthetic sequences. Despite the wealth of information about the biochemistry and molecular genetics underlying these processes, many reaction steps involving oxygenases and oxidoreductases are still elusive. Here, we describe molecular cloning and characterization of three cinnamyl alcohol dehydrogenase (CAD)-like reductases from Rauvolfia serpentina cell culture and R. tetraphylla roots. Functional analysis of the recombinant proteins, with a set of MIAs as potential substrates, led to identification of one of the enzymes as a CAD, putatively involved in lignin formation. The two remaining reductases comprise isoenzymes derived from orthologous genes of the investigated alternative Rauvolfia species. Their catalytic activity consists of specific conversion of vomilenine to 19,20-dihydrovomilenine, thus proving their exclusive involvement in MIA biosynthesis. The obtained data suggest the existence of a previously unknown bypass in the biosynthetic route to ajmaline further expanding structural diversity within the MIA family of specialized plant metabolites.

  4. Determination of indole alkaloids and highly volatile compounds in Rauvolfia verticillata by HPLC-UV and GC-MS.

    PubMed

    Hong, Bo; Li, Wenjing; Song, Aihua; Zhao, Chunjie

    2013-01-01

    Rauvolfia verticillata (Lour.) Baill. (also called Luofumu in Chinese) is commonly used in traditional Chinese medicine for lowering blood pressure. In this study, a high-performance liquid chromatography assay using ultraviolet detection is described for the simultaneous measurement of the five bioactive indole alkaloids (sarpagine, yohimbine, ajmaline, ajmalicine and reserpine) in Rauvolfia. The detection of all five compounds was conducted at 280 nm. In quantitative analysis, the five compounds showed good regressions (R(2) > 0.9988) within the test ranges, and the recovery of the method was in the range of 90.4-101.4%. In addition, a simple gas chromatography mass method using a DB-1 silica capillary column (30 m × 0.25 mm i.d., 0.25 µm) is described for the identification of the highly volatile compounds in Rauvolfia. In qualitative analysis, more than 39 compounds were assayed and identified using the mass function and the National Institute of Standards and Technology database search system. The results demonstrated that the combination of quantitative and qualitative analyses offered an efficient way to evaluate the quality and consistency of Rauvolfia verticillata.

  5. Trichloroacetimidates as Alkylating Reagents and Their Application in the Synthesis of Pyrroloindoline Natural Products and Synthesis of Small Molecule Inhibitors of Src Homology 2 Domain-Containing Inositol Phosphatase (SHIP)

    NASA Astrophysics Data System (ADS)

    Adhikari, Arijit A.

    Trichloroacetimidates are known to be excellent alkylating agents when activated by a catalytic amount of a Bronsted or Lewis acid. Work described herein involved taking advantage of the favorable reactivity of trichloroacetimidates to establish several different synthetic protocols, including the application of these reagents in the synthesis of pyrroloindoline based natural products, 3,3'-disubstituted indolenines and benzylic trichloroacetamides. Initial investigations on the utilization of the reactivity of trichloroacetimidates found that diphenylmethyl trichloroacetimidate, which is a precursor to a highly stabilized carbocation, undergoes facile displacement with carboxylic acids providing the ester product without the need of any exogenous catalyst. Both hindered and unhindered carboxylic acids were esterified with high yields, with no preference for aromatic or aliphatic carboxylic acids. Carboxylic acids with unprotected hydroxyl groups or beta-lactam rings were esterified efficiently. Substrates that are highly prone to elimination or retro-aldol were also esterified in high yields. Carboxylic acids with highly enolizable alpha-stereocenters were esterified without any racemization. Mechanistic studies indicate that the carboxylic acid substrate itself is acidic enough to be effective at promoting the esterification reaction. During our studies on esterification with imidates it was found that these imidates also showed a tendency to undergo rearrangement to the corresponding trichloroacetamides. Two different sets of conditions, thermal and Lewis acid catalyzed, were established which provided these rearranged products with high yields. Various benzylic trichloroacetimidates were shown to undergo these transformations under the established conditions. Based on the observations discussed in this work a cationic mechanism is proposed. After the preliminary studies on alkylation of benzylic trichloroacetimidate with different nucleophiles, this chemistry was applied towards the synthesis of natural products and their analogs. The pyrroloindoline ring system is found in many alkaloids and cyclic peptides which mainly differ in the substitution at the C3a position. To provide rapid access to these natural products a diversity-oriented strategy was established via displacement of C3a-trichloroacetimidate pyrroloindoline. Carbon, oxygen, sulfur and nitrogen nucleophiles were all shown to undergo substitution reactions with these trichloroacetimidates in the presence of a Lewis acid catalyst. In order to demonstrate the utility of this new method it was applied towards the synthesis of arundinine and a formal synthesis of psychotriasine. Current investigations involve the application of this method towards the synthesis of a complex pyrroloindoline natural product kapakahine C and the progress made therein has been discussed. The reactivity of trichloroacetimidates was also investigated for the selective C3-alkylation of 2,3-disubstituted indoles to provide indolenines. Indolenines serve as useful intermediates in the synthesis of many complex alkaloids. Different benzylic and allylic trichloroacetimidates were shown to provide 3,3'-disubstituted indolenines with high yields in the presence of catalytic amounts of Lewis acids. Various substituted indoles were evaluated under these reaction conditions. This methodology was also applied towards the synthesis of the core tetracyclic ring system found in communesin natural products. In addition to the above work, synthesis of small molecule inhibitors of Src Homology 2 Domain-Containing Inositol Phosphatase (SHIP) has also been described. Aberrations in the phosphoinositide 3-kinase (PI3K) cellular signaling pathway can lead to diseased cellular states like cancer. Herein we have reported stereoselective synthesis of two quinoline based small molecule SHIP inhibitors. The lead compounds and their analogs were tested for their activities against SHIP by Malachite green assay and the discoveries made therein are discussed. In addition to this synthesis of a tryptamine based SHIP inhibitor has also been reported.

  6. Heterologous expression, purification, crystallization and preliminary X-ray analysis of raucaffricine glucosidase, a plant enzyme specifically involved in Rauvolfia alkaloid biosynthesis

    PubMed Central

    Ruppert, Martin; Panjikar, Santosh; Barleben, Leif; Stöckigt, Joachim

    2006-01-01

    Raucaffricine glucosidase (RG) is an enzyme that is specifically involved in the biosynthesis of indole alkaloids from the plant Rauvolfia serpentina. After heterologous expression in Escherichia coli cells, crystals of RG were obtained by the hanging-drop vapour-diffusion technique at 293 K with 0.3 M ammonium sulfate, 0.1 M sodium acetate pH 4.6 buffer and 11% PEG 4000 as precipitant. Crystals belong to space group I222 and diffract to 2.30 Å, with unit-cell parameters a = 102.8, b = 127.3, c = 215.8 Å. PMID:16511316

  7. Natural products with hypoglycemic, hypotensive, hypocholesterolemic, antiatherosclerotic and antithrombotic activities.

    PubMed

    Wang, H X; Ng, T B

    1999-01-01

    This article reviews compounds of botanical origin which are capable of lowering plasma levels of glucose and cholesterol and blood pressure, as well as compounds inhibiting atherosclerosis and thrombosis. Hypoglycemic natural products comprise flavonoids, xanthones, triterpenoids, alkaloids, glycosides, alkyldisulfides, aminobutyric acid derivatives, guanidine, polysaccharides and peptides. Hypotensive compounds include flavonoids, diterpenes, alkaloids, glycosides, polysaccharides and proteins. Among natural products with hypocholesterolemic activity are beta-carotene, lycopene, cycloartenol, beta-sitosterol, sitostanol, saponin, soybean protein, indoles, dietary fiber, propionate, mevinolin (beta-hydroxy-beta-methylglutaryl coenzyme A reductase inhibitor) and polysaccharides. Heparins, flavonoids, tocotrienols, beta-hydroxy-beta-methylglutaryl coenzyme A reductase inhibitors (statins), garlic compounds and fungal proteases exert antithrombotic action. Statins and garlic compounds also possess antiatherosclerotic activity.

  8. Immunochemical Analysis of Paxilline and Ergot Alkaloid Mycotoxins in Grass Seeds and Plants.

    PubMed

    Bauer, Julia I; Gross, Madeleine; Cramer, Benedikt; Humpf, Hans-Ulrich; Hamscher, Gerd; Usleber, Ewald

    2018-01-10

    Limited availability of toxin standards for lolitrem B and ergovaline impedes routine control of grasses for endophyte toxins. This study aimed at assessing the applicability of an enzyme immunoassay (EIA) for the indole-diterpene mycotoxin paxilline, in combination with a generic EIA for ergot alkaloids, as alternative parameters for screening purposes. Analysis of grass seeds and model pastures of four different grass species showed that both EIAs yielded highly positive results for paxilline and ergot alkaloids in perennial ryegrass seeds. Furthermore, evidence for natural occurrence of paxilline in grass in Germany was obtained. High performance liquid chromatography-tandem mass spectrometry analysis qualitatively confirmed the paxilline EIA results but showed that paxilline analogues 1'-O-acetylpaxilline and 13-desoxypaxilline were the predominant compounds in seeds and grass. In the absence of easily accessible reference standards for specific analysis of some major endophyte toxins, analysis of paxilline and ergot alkaloids by EIA may be suitable substitute parameters. The major advantage of this approach is its ease of use and speed, providing an analytical tool which could enhance routine screening for endophyte toxins in pasture.

  9. Unexpected regioselective carbon-hydrogen bond activation/cyclization of indolyl aldehydes or ketones with alkynes to benzo-fused oxindoles.

    PubMed

    Liu, Xingyan; Li, Gaocan; Song, Feijie; You, Jingsong

    2014-09-25

    Rhodium-catalyzed carbon-hydrogen bond activation has attracted great interest in the construction of carbon-carbon and carbon-heteroatom bonds. In recent years, transition metal-mediated oxygen transposition through a 'dehydration-rehydration' process has been considered as a promising strategy towards oxygen-functionalized compounds. Here we describe an unexpected rhodium-catalyzed regioselective carbon-hydrogen bond activation/cyclization of easily available indolyl aldehydes or ketones with alkynes to afford benzo-fused oxindoles, involving the sequential carbonyl-assisted carbon-hydrogen activation of the indole ring at the 4-position, [4+2] cyclization, aromatization via dehydration, nucleophilic addition of water to iminium and oxidation. Isotopic labelling experiments disclose the occurrence of apparent oxygen transposition via dehydration-rehydration from the indolyl-3-carbonyl group to the 2-position of pyrrole to forge a new carbonyl bond. The tandem reaction has been used as the key step for the concise synthesis of priolines, a type of alkaloid isolated from the roots of Salvia prionitis.

  10. Efficient one-pot synthesis of indol-3-yl-glycines via uncatalyzed Friedel-Crafts reaction in water.

    PubMed

    Ghandi, Mehdi; Taheri, Abuzar

    2009-03-05

    The three component reaction of primary aliphatic amines, glyoxalic acid and indole or N-methylindole in water at ambient temperature affords indol-3-yl or N-methylindol-3-yl-glycine in almost quantitative yields.

  11. Bioactivity guided isolation of antipsychotic constituents from the leaves of Rauwolfia tetraphylla L.

    PubMed

    Gupta, Shikha; Khanna, Vinay Kumar; Maurya, Anupam; Bawankule, Dnyaneshwar Umrao; Shukla, Rajendra Kumar; Pal, Anirban; Srivastava, Santosh Kumar

    2012-09-01

    This study was undertaken to ascertain the antipsychotic properties of Rauwolfia tetraphylla L. leaves and to isolate and characterize the antipsychotic constituents. Among the MeOH extract and some alkaloidal fractions at different pHs, the alkaloidal CHCl(3) fraction at pH-9 (2C) showed the highest antipsychotic activity against dopaminergic (DA-D(2)) and serotonergic (5-HT(2A)) receptors in-vitro and amphetamine induced hyperactive mouse model in-vivo. The activity guided isolation of CHCl(3) fraction (2C) afforded six indole alkaloids: 10-methoxytetrahydroalstonine (1), isoreserpiline (2), an isomeric mixture of 11-demethoxyreserpiline (3) and 10-demethoxyreserpiline (4), α-yohimbine (5) and reserpiline (6). Given orally, alkaloids 3-6 showed significant antipsychotic activity in a dose dependent manner. None of the extract, alkaloidal fractions or alkaloids showed any extra pyramidal symptoms at the tested doses. It was also observed that MeOH extract was behaving similar to other clinically used novel atypical antipsychotics in having 5-HT(2A) occupancy greater than the DA-D(2) receptor at the tested doses. Further toxicity and safety evaluation studies of MeOH extracts of R. tetraphylla leaves at different doses (10, 100, 300 and 2000 mg/kg) on female Swiss albino mice showed that MeOH extract is non toxic. The isolated alkaloids, 3-6 could serve as a promising lead structure for drug development of treating psychotic conditions in human. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Heteromeric and homomeric geranyl diphosphate synthases from Catharanthus roseus and their role in monoterpene indole alkaloid biosynthesis.

    PubMed

    Rai, Avanish; Smita, Shachi S; Singh, Anup Kumar; Shanker, Karuna; Nagegowda, Dinesh A

    2013-09-01

    Catharanthus roseus is the sole source of two most important monoterpene indole alkaloid (MIA) anti-cancer agents: vinblastine and vincristine. MIAs possess a terpene and an indole moiety derived from terpenoid and shikimate pathways, respectively. Geranyl diphosphate (GPP), the entry point to the formation of terpene moiety, is a product of the condensation of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) by GPP synthase (GPPS). Here, we report three genes encoding proteins with sequence similarity to large subunit (CrGPPS.LSU) and small subunit (CrGPPS.SSU) of heteromeric GPPSs, and a homomeric GPPSs. CrGPPS.LSU is a bifunctional enzyme producing both GPP and geranyl geranyl diphosphate (GGPP), CrGPPS.SSU is inactive, whereas CrGPPS is a homomeric enzyme forming GPP. Co-expression of both subunits in Escherichia coli resulted in heteromeric enzyme with enhanced activity producing only GPP. While CrGPPS.LSU and CrGPPS showed higher expression in older and younger leaves, respectively, CrGPPS.SSU showed an increasing trend and decreased gradually. Methyl jasmonate (MeJA) treatment of leaves significantly induced the expression of only CrGPPS.SSU. GFP localization indicated that CrGPPS.SSU is plastidial whereas CrGPPS is mitochondrial. Transient overexpression of AmGPPS.SSU in C. roseus leaves resulted in increased vindoline, immediate monomeric precursor of vinblastine and vincristine. Although C. roseus has both heteromeric and homomeric GPPS enzymes, our results implicate the involvement of only heteromeric GPPS with CrGPPS.SSU regulating the GPP flux for MIA biosynthesis.

  13. The ORCA2 transcription factor plays a key role in regulation of the terpenoid indole alkaloid pathway

    PubMed Central

    2013-01-01

    Background The terpenoid indole alkaloid (TIA) pathway leads to the production of pharmaceutically important drugs, such as the anticancer compounds vinblastine and vincristine. Unfortunately, these drugs are produced in trace amounts, causing them to be very costly. To increase production of these drugs, an improved understanding of the TIA regulatory pathway is needed. Towards this end, transgenic Catharanthus roseus hairy roots that overexpress the ORCA2 TIA transcriptional activator were generated and characterized. Results Transcriptional profiling experiments revealed that overexpression of ORCA2 results in altered expression of key genes from the indole and terpenoid pathways, which produce precursors for the TIA pathway, and from the TIA pathway itself. In addition, metabolite-profiling experiments revealed that overexpression of ORCA2 significantly affects the levels of several TIA metabolites. ORCA2 overexpression also causes significant increases in transcript levels of several TIA regulators, including TIA transcriptional repressors. Conclusions Results presented here indicate that ORCA2 plays a critical role in regulation of TIA metabolism. ORCA2 regulates expression of key genes from both feeder pathways, as well as the genes (STR and SGD) encoding the enzymes that catalyze the first two steps in TIA biosynthesis. ORCA2 may play an especially important role in regulation of the downstream branches of the TIA pathway, as it regulates four out of five genes characterized from this part of the pathway. Regulation of TIA transcriptional repressors by ORCA2 may provide a mechanism whereby increases in TIA metabolite levels in response to external stimuli are transient and limited in magnitude. PMID:24099172

  14. Differential Network Analysis Reveals Evolutionary Complexity in Secondary Metabolism of Rauvolfia serpentina over Catharanthus roseus

    PubMed Central

    Pathania, Shivalika; Bagler, Ganesh; Ahuja, Paramvir S.

    2016-01-01

    Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Toward these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These genes may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of R. serpentina, and key genes that contribute toward diversification of specific metabolites. PMID:27588023

  15. Differential Network Analysis Reveals Evolutionary Complexity in Secondary Metabolism of Rauvolfia serpentina over Catharanthus roseus.

    PubMed

    Pathania, Shivalika; Bagler, Ganesh; Ahuja, Paramvir S

    2016-01-01

    Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Toward these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These genes may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of R. serpentina, and key genes that contribute toward diversification of specific metabolites.

  16. Medicinally important secondary metabolites in recombinant microorganisms or plants: progress in alkaloid biosynthesis.

    PubMed

    Schäfer, Holger; Wink, Michael

    2009-12-01

    Plants produce a high diversity of natural products or secondary metabolites which are important for the communication of plants with other organisms. A prominent function is the protection against herbivores and/or microbial pathogens. Some natural products are also involved in defence against abiotic stress, e.g. UV-B exposure. Many of the secondary metabolites have interesting biological properties and quite a number are of medicinal importance. Because the production of the valuable natural products, such as the anticancer drugs paclitaxel, vinblastine or camptothecin in plants is a costly process, biotechnological alternatives to produce these alkaloids more economically become increasingly important. This review provides an overview of the state of art to produce alkaloids in recombinant microorganisms, such as bacteria or yeast. Some progress has been made in metabolic engineering usually employing a single recombinant alkaloid gene. More importantly, for benzylisoquinoline, monoterpene indole and diterpene alkaloids (taxanes) as well as some terpenoids and phenolics the proof of concept for production of complex alkaloids in recombinant Escherichia coli and yeast has already been achieved. In a long-term perspective, it will probably be possible to generate gene cassettes for complete pathways, which could then be used for production of valuable natural products in bioreactors or for metabolic engineering of crop plants. This will improve their resistance against herbivores and/or microbial pathogens.

  17. Vinylation of nitro-substituted indoles, quinolinones, and anilides with grignard reagents.

    PubMed

    Egris, Riccardo; Villacampa, Mercedes; Menéndez, J Carlos

    2009-10-19

    The reaction of vinyl Grignard reagents with o-methoxynitroarenes containing an electron-releasing substituent para to the nitro group proceeds through a pathway that is different from the initially expected Bartoli indole synthesis. Thus, instead of giving fused indole derivatives, these reactions provide a very mild and efficient new procedure for the synthesis of synthetically relevant aromatic systems containing an o-nitrovinyl moiety, such as 5-nitro-4-vinylindoles, 6-nitro-7-vinylindoles, 6-nitro-5-vinyl-2(1H)quinolinones, and 4-nitro-3-vinylanilines.

  18. Synthesis of Thieno[3,2-b]indoles via Halogen Dance and Ligand-Controlled One-Pot Sequential Coupling Reaction.

    PubMed

    Hayashi, Yuki; Okano, Kentaro; Mori, Atsunori

    2018-02-16

    A two-pot synthesis of thieno[3,2-b]indole from 2,5-dibromothiophene is described. A halogen dance of 2,5-dibromothiophene was performed with LDA, and subsequent Negishi coupling was performed with 2-iodoaniline derivatives to provide the corresponding coupling products. The resulting two bromo groups have different reactivities, which were utilized for the one-pot Suzuki-Miyaura coupling/intramolecular Buchwald-Hartwig amination to produce thieno[3,2-b]indole via an assisted tandem catalysis that involved in situ ligand exchange.

  19. Development of a Terpenoid Alkaloid-like Compound Library Based on the Humulene Skeleton.

    PubMed

    Kikuchi, Haruhisa; Nishimura, Takehiro; Kwon, Eunsang; Kawai, Junya; Oshima, Yoshiteru

    2016-10-24

    Many natural terpenoid alkaloid conjugates show biological activity because their structures contain both sp 3 -rich terpenoid scaffolds and nitrogen-containing alkaloid scaffolds. However, their biosynthesis utilizes a limited set of compounds as sources of the terpenoid moiety. The production of terpenoid alkaloids containing various types of terpenoid moiety may provide useful, chemically diverse compound libraries for drug discovery. Herein, we report the construction of a library of terpenoid alkaloid-like compounds based on Lewis-acid-catalyzed transannulation of humulene diepoxide and subsequent sequential olefin metathesis. Cheminformatic analysis quantitatively showed that the synthesized terpenoid alkaloid-like compound library has a high level of three-dimensional-shape diversity. Extensive pharmacological screening of the library has led to the identification of promising compounds for the development of antihypolipidemic drugs. Therefore, the synthesis of terpenoid alkaloid-like compound libraries based on humulene is well suited to drug discovery. Synthesis of terpenoid alkaloid-like compounds based on several natural terpenoids is an effective strategy for producing chemically diverse libraries. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Chemical Constituents of Plants from the Genus Psychotria.

    PubMed

    Yang, Hongmei; Zhang, Hongmei; Yang, Caiqiong; Chen, Yegao

    2016-07-01

    Psychotria is a genus of ca. 1500 species in the family Rubiaceae. Up to now, 41 species of the Psychotria genus have been chemically investigated, and 159 compounds, including alkaloids of indole, quinoline and benzoquinolizidine type, terpenoids, steroids, phenolics and aliphatic compounds have been isolated. These compounds show potent bioactivities, such as antimicrobial, antiviral, and antiparasitic activities. © 2016 Wiley-VHCA AG, Zürich.

  1. Metabolic Profiling of Dendrobium officinale in Response to Precursors and Methyl Jasmonate

    PubMed Central

    Jiao, Chunyan; Song, Cheng; Zheng, Siyan; Zhu, Yingpeng; Jin, Qing; Cai, Yongping; Lin, Yi

    2018-01-01

    Alkaloids are the main active ingredients in the medicinal plant Dendrobium officinale. Based on the published genomic and transcriptomic data, a proposed terpenoid indole alkaloid (TIA) biosynthesis pathway may be present in D. officinale. In this study, protocorm-like bodies (PLBs) with a high-yielding production of alkaloids were obtained by the optimization of tryptophan, secologanin and methyl jasmonate (MeJA) treatment. The results showed that the total alkaloid content was 2.05 times greater than that of the control group when the PLBs were fed with 9 µM tryptophan, 6 µM secologanin and 100 µM MeJA after 36 days. HPLC analysis showed that strictosidine synthase (STR) activity also increased in the treated plants. A total of 78 metabolites were identified using gas chromatography-mass spectrometry (GC-MS) in combination with liquid chromatography-mass spectrometry (LC-MS) methods; 29 differential metabolites were identified according to the multivariate statistical analysis. Among them, carapanaubine, a kind of TIA, exhibited dramatically increased levels. In addition, a possible underlying process of the metabolic flux from related metabolism to the TIA biosynthetic pathway was enhanced. These results provide a comprehensive view of the metabolic changes related to alkaloid biosynthesis, especially TIA biosynthesis, in response to tryptophan, secologanin and MeJA treatment. PMID:29510516

  2. Modulation of benzylisoquinoline alkaloid biosynthesis by heterologous expression of CjWRKY1 in Eschscholzia californica cells

    PubMed Central

    Shimada, Tomoe; Motomura, Yukiya; Sato, Fumihiko

    2017-01-01

    Transcription factors control many processes in plants and have high potentials to manipulate specialized metabolic pathways. Transcriptional regulation of the biosynthesis of monoterpenoid indole alkaloids (MIAs), nicotine alkaloids, and benzylisoquinoline alkaloids (BIAs) has been characterized using Catharanthus roseus, Nicotiana and Coptis plants. However, metabolic engineering in which specific transcription factors are used in alkaloid biosynthesis is limited. In this study, we characterized the effects of ectopic expression of CjWRKY1, which is a transcriptional activator with many targets in BIA biosynthesis in Coptis japonica (Ranunculaceae) and Eschscholzia californica (California poppy, Papaveraceae). Heterologous expression of CjWRKY1 in cultured California poppy cells induced increases in transcripts of several genes encoding BIA biosynthetic enzymes. Metabolite analyses indicated that the overexpression of the CjWRKY1 gene also induced increases in the accumulation of BIAs such as sanguinarine, chelerythrine, chelirubine, protopine, allocryptopine, and 10-hydroxychelerythrine in the culture medium. Previous characterization of EcbHLH1 and current results indicated that both transcription factors, WRKY1 and bHLH1, are substantially involved in the regulation of BIA biosynthesis. We discuss the function of CjWRKY1 in E. californica cells and its potential for metabolic engineering in BIA biosynthesis. PMID:29077729

  3. Indole diterpenoid natural products as the inspiration for new synthetic methods and strategies.

    PubMed

    Corsello, Michael A; Kim, Junyong; Garg, Neil K

    2017-09-01

    Indole terpenoids comprise a large class of natural products with diverse structural topologies and a broad range of biological activities. Accordingly, indole terpenoids have and continue to serve as attractive targets for chemical synthesis. Many synthetic efforts over the past few years have focused on a subclass of this family, the indole diterpenoids. This minireview showcases the role indole diterpenoids have played in inspiring the recent development of clever synthetic strategies, and new chemical reactions.

  4. Palladium-catalyzed one-pot three- or four-component coupling of aryl iodides, alkynes, and amines through C-N bond cleavage: efficient synthesis of indole derivatives.

    PubMed

    Hao, Wei; Geng, Weizhi; Zhang, Wen-Xiong; Xi, Zhenfeng

    2014-02-24

    An efficient synthesis of N-substituted indole derivatives was realized by combining the Pd-catalyzed one-pot multicomponent coupling approach with cleavage of the C(sp(3))-N bonds. Three or four components of aryl iodides, alkynes, and amines were involved in this coupling process. The cyclopentadiene-phosphine ligand showed high efficiency. A variety of aryl iodides, including cyclic and acyclic tertiary amino aryl iodides, and substituted 1-bromo-2-iodobenzene derivatives could be used. Both symmetric and unsymmetric alkynes substituted with alkyl, aryl, or trimethylsilyl groups could be applied. Cyclic secondary amines such as piperidine, morpholine, 4-methylpiperidine, 1-methylpiperazine, 2-methylpiperidine, and acyclic amines including secondary and primary amines all showed good reactivity. Further application of the resulting indole derivatives was demonstrated by the synthesis of benzosilolo[2,3-b]indole. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Estimation of yohimbine base in complex mixtures by quantitative HPTLC application.

    PubMed

    Adel-Kader, Maged Saad; Alwahebi, Naif Wahebi Hamadan; Alam, Prawez

    2017-01-01

    The indole alkaloid Yohimbine has been used for over two centuries in the treatment of erectly dysfunction. Several formulations containing yohimbine salts, yohimbe bark power or extract are marketed worldwide. Determination of the amount of yohimbine in such formulation is a challenging task due to their complex nature. Extraction followed by acid-base purification resulted in a relatively pure alkaloids containing fractions. The exact amounts of yohimbine free base in different formulations were determined by densitometric HPTLC validated methods using silica gel TLC plates. Standard curve for yohimbine was generated using yohimbine hydrochloride subjected to the same acid-base treatment as the used samples. All formulations found to contain yohimbine though some with less concentration than the labeled amount.

  6. Geissoschizine methyl ether, a corynanthean-type indole alkaloid from Uncaria rhynchophylla as a potential acetylcholinesterase inhibitor.

    PubMed

    Yang, Zhong-Duo; Duan, Dong-Zhu; Du, Juan; Yang, Ming-Jun; Li, Shuo; Yao, Xiao-Jun

    2012-01-01

    Geissoschizine methyl ether (1), a newly discovered strong acetylcholinesterase (AChE) inhibitor, along with six weakly active alkaloids, vallesiachotamine (2), hisuteine (3), hirsutine (4), isorhynchophylline (5), cisocorynoxeine (6) and corynoxeine (7) have been isolated from Uncaria rhynchophylla. Geissoschizine methyl ether (1) inhibited 50% of AChE activity at concentrations of 3.7 ± 0.3 µg mL(-1) while the IC(50) value of physostigmine as a standard was 0.013 ± 0.002 µg mL(-1). The mode of AChE inhibition by 1 was reversible and non-competitive. In addition, molecular modelling was performed to explore the binding mode of inhibitor 1 at the active site of AChE.

  7. Metabolomics Characterization of Two Apocynaceae Plants, Catharanthus roseus and Vinca minor, Using GC-MS and LC-MS Methods in Combination.

    PubMed

    Chen, Qi; Lu, Xueyan; Guo, Xiaorui; Guo, Qingxi; Li, Dewen

    2017-06-17

    Catharanthus roseus ( C. roseus ) and Vinca minor ( V. minor ) are two common important medical plants belonging to the family Apocynaceae. In this study, we used non-targeted GC-MS and targeted LC-MS metabolomics to dissect the metabolic profile of two plants with comparable phenotypic and metabolic differences. A total of 58 significantly different metabolites were present in different quantities according to PCA and PLS-DA score plots of the GC-MS analysis. The 58 identified compounds comprised 16 sugars, eight amino acids, nine alcohols and 18 organic acids. We subjected these metabolites into KEGG pathway enrichment analysis and highlighted 27 metabolic pathways, concentrated on the TCA cycle, glycometabolism, oligosaccharides, and polyol and lipid transporter (RFOS). Among the primary metabolites, trehalose, raffinose, digalacturonic acid and gallic acid were revealed to be the most significant marker compounds between the two plants, presumably contributing to species-specific phenotypic and metabolic discrepancy. The profiling of nine typical alkaloids in both plants using LC-MS method highlighted higher levels of crucial terpenoid indole alkaloid (TIA) intermediates of loganin, serpentine, and tabersonine in V. minor than in C. roseus . The possible underlying process of the metabolic flux from primary metabolism pathways to TIA synthesis was discussed and proposed. Generally speaking, this work provides a full-scale comparison of primary and secondary metabolites between two medical plants and a metabolic explanation of their TIA accumulation and phenotype differences.

  8. New insights into ergot alkaloid biosynthesis in Claviceps purpurea: an agroclavine synthase EasG catalyses, via a non-enzymatic adduct with reduced glutathione, the conversion of chanoclavine-I aldehyde to agroclavine.

    PubMed

    Matuschek, Marco; Wallwey, Christiane; Xie, Xiulan; Li, Shu-Ming

    2011-06-07

    Ergot alkaloids are indole derivatives with diverse structures and biological activities. They are produced by a wide range of fungi with Claviceps purpurea as the most important producer for medical use. Chanoclavine-I aldehyde is proposed as a branch point via festuclavine or pyroclavine to clavine-type alkaloids in Trichocomaceae and via agroclavine to ergoamides and ergopeptines in Clavicipitaceae. Here we report the conversion of chanoclavine-I aldehyde to agroclavine by EasG from Claviceps purpurea, a homologue of the festuclavine synthase FgaFS in Aspergillus fumigatus, in the presence of reduced glutathione and NADPH. EasG comprises 290 amino acids with a molecular mass of about 31.9 kDa. The soluble monomeric His(6)-EasG was purified after overproduction in E. coli by affinity chromatography and used for enzyme assays. The structure of agroclavine was unequivocally elucidated by NMR and MS analyses.

  9. Chemical constituents from roots of Taraxacum formosanum.

    PubMed

    Leu, Yann-Lii; Wang, Yu-Li; Huang, Shih-Chin; Shi, Li-Shian

    2005-07-01

    Two new compounds, taraxafolide (1) and (+)-taraxafolin-B (2) together with eighteen known compounds, which include one sesquiterpene, thirteen benzenoids, two indole alkaloids, one pyridine derivative and steroid mixtures were isolated and characterized from the fresh roots of Taraxacum formosanum. Structures of new compounds were determined by spectral analysis. (+)-Taraxafolin-B had the bioactive caffeic acid moiety, but its activity was weaker than alpha-tocopherol in DPPH radicals scavenging activity assay.

  10. Easy access to fully functionalized chiral tetrahydro-β-carboline alkaloids.

    PubMed

    Arai, Takayoshi; Wasai, Makiko; Yokoyama, Naota

    2011-04-15

    A four-step synthetic route to fully substituted chiral tetrahydro-β-carbolines (THBCs) is described. Starting from the (R,S,S)-Friedel-Crafts/Henry adduct obtained from three-component coupling of an indole, nitroalkene, and aldehyde catalyzed by imidazoline-aminophenol-CuOTf, the (1S,3S,4R)-THBCs were readily synthesized in a three-step operation including reduction of the nitro-functionality and Pictet-Spengler cyclization.

  11. Aeruginascin, a trimethylammonium analogue of psilocybin from the hallucinogenic mushroom Inocybe aeruginascens.

    PubMed

    Jensen, Niels; Gartz, Jochen; Laatsch, Hartmut

    2006-06-01

    The hallucinogenic mushroom Inocybe aeruginascens contains several typical Psilocybe alkaloids including psilocybin. We have now elucidated the structure of a further indole derivative named aeruginascin as the quaternary ammonium compound N, N, N-trimethyl-4-phosphoryloxytryptamine. Aeruginascin is closely related to the frog skin toxin bufotenidine (5-HTQ), a potent 5-HT3 receptor agonist, and has been found exclusively in Inocybe aeruginascens so far.

  12. Correlations among experimental and theoretical NMR data to determine the absolute stereochemistry of darcyribeirine, a pentacyclic indole alkaloid isolated from Rauvolfia grandiflora

    NASA Astrophysics Data System (ADS)

    Cancelieri, Náuvia Maria; Ferreira, Thiago Resende; Vieira, Ivo José Curcino; Braz-Filho, Raimundo; Piló-Veloso, Dorila; Alcântara, Antônio Flávio de Carvalho

    2015-10-01

    Darcyribeirine (1) is a pentacyclic indole alkaloid isolated from Rauvolfia grandiflora. Stereochemistry of 1 was previously proposed based on 1D (coupling constant data) and 2D (NOESY correlations) NMR techniques, having been established a configuration 3R, 15S, and 20R (isomer 1a). Stereoisomers of 1 (i.e., 1a-1h) can be grouped into four sets of enantiomers. Carbon chemical shifts and hydrogen coupling constants were calculated using BLYP/6-31G* theory level for the eight isomers of 1. Calculated NMR data of 1a-1h were correlated with the corresponding experimental data of 1. The best correlations between theoretical and experimental carbon chemical shift data were obtained for the set of enantiomers 1e/1f to structures in the gaseous phase and considering solvent effects (using PCM and explicit models). Similar results were obtained when the same procedure was performed to correlations between theoretical and experimental coupling constant data. Finally, optical rotation calculations indicate 1e as its absolute stereochemistry. Orbital population analysis indicates that the hydrogen bonding between N-H of 1e and DMSO is due to contributions of its frontier unoccupied molecular orbitals, mainly LUMO+1, LUMO+2, and LUMO+3.

  13. Effects of hirsutine, an antihypertensive indole alkaloid from Uncaria rhynchophylla, on intracellular calcium in rat thoracic aorta.

    PubMed

    Horie, S; Yano, S; Aimi, N; Sakai, S; Watanabe, K

    1992-01-01

    The effects of hirsutine, an indole alkaloid from Uncaria rhynchophylla (MIQ.) Jackson, on cytosolic Ca2+ level ([Ca2+]cyt) were studied by using fura-2-Ca2+ fluorescence in smooth muscle of the isolated rat aorta. Noradrenaline and high K+ solution produced a sustained increase in [Ca2+]cyt. Application of hirsutine after the increases in [Ca2+]cyt induced by noradrenaline and high K+ notably decreased [Ca2+]cyt, suggesting that hirsutine inhibits Ca2+ influx mainly through a voltage-dependent Ca2+ channel. Furthermore, the effect of hirsutine on intracellular Ca2+ store was studied by using contractile responses to caffeine under the Ca(2+)-free nutrient condition in the rat aorta. When hirsutine was added at 30 microM before caffeine treatment, the agent slightly but significantly reduced the caffeine-induced contraction. When added during Ca2+ loading, hirsutine definitely augmented the contractile response to caffeine. These results suggest that hirsutine inhibits Ca2+ release from the Ca2+ store and increases Ca2+ uptake into the Ca2+ store, leading to a reduction of intracellular Ca2+ level. It is concluded that hirsutine reduces intracellular Ca2+ level through its effect on the Ca2+ store as well as through its effect on the voltage-dependent Ca2+ channel.

  14. Hirsutine, an indole alkaloid of Uncaria rhynchophylla, inhibits inflammation-mediated neurotoxicity and microglial activation.

    PubMed

    Jung, Hwan Yong; Nam, Kyong Nyon; Woo, Byung-Choel; Kim, Kyoo-Pil; Kim, Sung-Ok; Lee, Eunjoo H

    2013-01-01

    Chronic microglial activation endangers neuronal survival through the release of various pro-inflammatory and neurotoxic factors. As such, negative regulators of microglial activation have been considered as potential therapeutic candidates to reduce the risk of neurodegeneration associated with inflammation. Uncaria rhynchophylla (U. rhynchophylla) is a traditional oriental herb that has been used for treatment of disorders of the cardiovascular and central nervous systems. Hirsutine (HS), one of the major indole alkaloids of U. rhynchophylla, has demonstrated neuroprotective potential. The aim of the present study was to examine the efficacy of HS in the repression of inflammation-induced neurotoxicity and microglial cell activation. In organotypic hippocampal slice cultures, HS blocked lipopolysaccharide (LPS)-related hippocampal cell death and production of nitric oxide (NO), prostaglandin (PG) E2 and interleukin-1β. HS was demonstrated to effectively inhibit LPS-induced NO release from cultured rat brain microglia. The compound reduced the LPS-stimulated production of PGE2 and intracellular reactive oxygen species. HS significantly decreased LPS-induced phosphorylation of the mitogen-activated protein kinases and Akt signaling proteins. In conclusion, HS reduces the production of various neurotoxic factors in activated microglial cells and possesses neuroprotective activity in a model of inflammation-induced neurotoxicity.

  15. Hirsutine, an Indole Alkaloid of Uncaria rhynchophylla, Inhibits Late Step in Dengue Virus Lifecycle.

    PubMed

    Hishiki, Takayuki; Kato, Fumihiro; Tajima, Shigeru; Toume, Kazufumi; Umezaki, Masahito; Takasaki, Tomohiko; Miura, Tomoyuki

    2017-01-01

    Dengue virus (DENV) is transmitted to humans by Aedes mosquitoes and is a public health issue worldwide. No antiviral drugs specific for treating dengue infection are currently available. To identify novel DENV inhibitors, we analyzed a library of 95 compounds and 120 extracts derived from crude drugs (herbal medicines). In the primary screening, A549 cells infected with DENV-1 were cultured in the presence of each compound and extract at a final concentration of 10 μM (compound) and 100 μg/mL (extract), and reduction of viral focus formation was assessed. Next, we eliminated compounds and extracts which were cytotoxic using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Hirsutine, an indole alkaloid of Uncaria rhynchophylla , was identified as a potent anti-DENV compound exhibiting high efficacy and low cytotoxicity. Hirsutine showed antiviral activity against all DENV serotypes. Time-of-drug-addition and time-of-drug-elimination assays indicated that hirsutine inhibits the viral particle assembly, budding, or release step but not the viral translation and replication steps in the DENV lifecycle. A subgenomic replicon system was used to confirm that hirsutine does not restrict viral genome RNA replication. Hirsutine is a novel DENV inhibitor and potential candidate for treating dengue fever.

  16. Hirsutine, an Indole Alkaloid of Uncaria rhynchophylla, Inhibits Late Step in Dengue Virus Lifecycle

    PubMed Central

    Hishiki, Takayuki; Kato, Fumihiro; Tajima, Shigeru; Toume, Kazufumi; Umezaki, Masahito; Takasaki, Tomohiko; Miura, Tomoyuki

    2017-01-01

    Dengue virus (DENV) is transmitted to humans by Aedes mosquitoes and is a public health issue worldwide. No antiviral drugs specific for treating dengue infection are currently available. To identify novel DENV inhibitors, we analyzed a library of 95 compounds and 120 extracts derived from crude drugs (herbal medicines). In the primary screening, A549 cells infected with DENV-1 were cultured in the presence of each compound and extract at a final concentration of 10 μM (compound) and 100 μg/mL (extract), and reduction of viral focus formation was assessed. Next, we eliminated compounds and extracts which were cytotoxic using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Hirsutine, an indole alkaloid of Uncaria rhynchophylla, was identified as a potent anti-DENV compound exhibiting high efficacy and low cytotoxicity. Hirsutine showed antiviral activity against all DENV serotypes. Time-of-drug-addition and time-of-drug-elimination assays indicated that hirsutine inhibits the viral particle assembly, budding, or release step but not the viral translation and replication steps in the DENV lifecycle. A subgenomic replicon system was used to confirm that hirsutine does not restrict viral genome RNA replication. Hirsutine is a novel DENV inhibitor and potential candidate for treating dengue fever. PMID:28912773

  17. Ruthenium(II)-Catalyzed C-H Activation of Imidamides and Divergent Couplings with Diazo Compounds: Substrate-Controlled Synthesis of Indoles and 3H-Indoles.

    PubMed

    Li, Yunyun; Qi, Zisong; Wang, He; Yang, Xifa; Li, Xingwei

    2016-09-19

    Indoles are an important structural motif that is commonly found in biologically active molecules. In this work, conditions for divergent couplings between imidamides and acceptor-acceptor diazo compounds were developed that afforded NH indoles and 3H-indoles under ruthenium catalysis. The coupling of α-diazoketoesters afforded NH indoles by cleavage of the C(N2 )-C(acyl) bond whereas α-diazomalonates gave 3H-indoles by C-N bond cleavage. This reaction constitutes the first intermolecular coupling of diazo substrates with arenes by ruthenium-catalyzed C-H activation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Gas chromatographic analysis of dimethyltryptamine and beta-carboline alkaloids in ayahuasca, an Amazonian psychoactive plant beverage.

    PubMed

    Pires, Ana Paula Salum; De Oliveira, Carolina Dizioli Rodrigues; Moura, Sidnei; Dörr, Felipe Augusto; Silva, Wagner Abreu E; Yonamine, Mauricio

    2009-01-01

    Ayahuasca is obtained by infusing the pounded stems of Banisteriopsis caapi in combination with the leaves of Psychotria viridis. P. viridis is rich in the psychedelic indole N,N-dimethyltryptamine, whereas B. caapi contains substantial amounts of beta-carboline alkaloids, mainly harmine, harmaline and tetrahydroharmine, which are monoamine-oxidase inhibitors. Because of differences in composition in ayahuasca preparations, a method to measure their main active constituents is needed. To develop a gas chromatographic method for the simultaneous determination of dimethyltryptamine and the main beta-carbolines found in ayahuasca preparations. The alkaloids were extracted by means of solid phase extraction (C(18)) and detected by gas chromatography with nitrogen/phosphorous detector. The lower limit of quantification (LLOQ) was 0.02 mg/mL for all analytes. The calibration curves were linear over a concentration range of 0.02-4.0 mg/mL (r(2 )> 0.99). The method was also precise (RSD < 10%). A simple gas chromatographic method to determine the main alkaloids found in ayahuasca was developed and validated. The method can be useful to estimate administered doses in animals and humans for further pharmacological and toxicological investigations of ayahuasca. Copyright (c) 2009 John Wiley & Sons, Ltd.

  19. A New Route to Azafluoranthene Natural Products via Direct Arylation

    PubMed Central

    Ponnala, Shashikanth; Harding, Wayne W.

    2013-01-01

    Microwave-assisted direct arylation was successfully employed in the synthesis of azafluoranthene alkaloids for the first time. Direct arylation reactions on a diverse set of phenyltetrahydroisoquinolines produces the indeno[1,2,3-ij]isoquinoline nucleus en route to a high yielding azafluoranthene synthesis. The method was used as a key step in the efficient preparation of the natural products rufescine and triclisine. As demonstrated herein, this synthetic approach should be generally applicable to the preparation of natural and un-natural azafluoranthene alkaloids as well as “azafluoranthene-like” isoquinoline alkaloids. PMID:23503080

  20. Bioinspired enantioselective synthesis of crinine-type alkaloids via iridium-catalyzed asymmetric hydrogenation of enones† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc02112g Click here for additional data file.

    PubMed Central

    Zuo, Xiao-Dong; Guo, Shu-Min; Yang, Rui

    2017-01-01

    A bioinspired enantioselective synthesis of crinine-type alkaloids has been developed by iridium-catalyzed asymmetric hydrogenation of racemic cycloenones. The method features a biomimetic stereodivergent resolution of the substrates bearing a remote arylated quaternary stereocenter. Using this protocol, 24 crinine-type alkaloids and 8 analogues were synthesized in a concise and rapid way with high yield and high enantioselectivity. PMID:28989653

  1. Identification, characterization and distribution of monoterpene indole alkaloids in Rauwolfia species by Orbitrap Velos Pro mass spectrometer.

    PubMed

    Kumar, Sunil; Singh, Awantika; Bajpai, Vikas; Kumar, Brijesh

    2016-01-25

    Monoterpene indole alkaloids (MIAs) are medicinally important class of compounds abundant in the roots of Rauwolfia species (Apocynaceae). MIAs such as yohimbine (aphrodisiac agent) and reserpine (antihypertensive, tranquilizer) are the official drugs included in Model List of Essential Drugs of World Health Organization (WHO). Therefore, we have attempt to identify and characterize the MIAs in the crude extracts of six Rauwolfia species using ultrahigh-performance liquid chromatography coupled with Orbitrap Velos Pro hybrid mass spectrometer. The identity of the MIAs were construed using the high resolution tandem mass spectrometry (HRMS/MS) spectra of standard compounds 'yohimbine' and 'reserpine' in higher energy collisional dissociation (HCD) and collision-induced dissociation (CID) modes. The diagnostic fragment ions found in HCD mode was highly affected by variation of normalized collision energy (NCE) and gave few product ions ('C-F') while CID produced intense and more diagnostic product ions ('A-F'). Consequently, CID-MS/MS mode provided significantly more structural information about basic skeleton and therefore the recommended mode for analysis of MIAs. Furthermore, six diagnostic fragmentation pathways were established by multi-stage mass analysis (MS(n) (n=5)) analysis which gave information regarding the substitution. Fragment ions 'A-F' revealed the number and position of substituents on indole and terpene moieties. The proposed diagnostic fragmentation pathways have been successfully applied for identification and characterization of MIAs in crude root extracts of six Rauwolfia species. Ten bioactive reserpine class of MIAs were tentatively identified and characterized on the basis of chromatographic and mass spectrometric features as well as HRMS/MS an MS(n) (n=4) analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Marine Inspired 2-(5-Halo-1H-indol-3-yl)-N,N-dimethylethanamines as Modulators of Serotonin Receptors: An Example Illustrating the Power of Bromine as Part of the Uniquely Marine Chemical Space.

    PubMed

    Ibrahim, Mohamed A; El-Alfy, Abir T; Ezel, Kelly; Radwan, Mohamed O; Shilabin, Abbas G; Kochanowska-Karamyan, Anna J; Abd-Alla, Howaida I; Otsuka, Masami; Hamann, Mark T

    2017-08-09

    In previous studies, we have isolated several marine indole alkaloids and evaluated them in the forced swim test (FST) and locomotor activity test, revealing their potential as antidepressant and sedative drug leads. Amongst the reported metabolites to display such activities was 5-bromo- N , N -dimethyltryptamine. Owing to the importance of the judicious introduction of halogens into drug candidates, we synthesized two series built on a 2-(1 H -indol-3-yl)- N , N -dimethylethanamine scaffold with different halogen substitutions. The synthesized compounds were evaluated for their in vitro and in vivo antidepressant and sedative activities using the mouse forced swim and locomotor activity tests. Receptor binding studies of these compounds to serotonin (5-HT) receptors were conducted. Amongst the prepared compounds, 2-(1 H -indol-3-yl)- N , N -dimethyl-2-oxoacetamide ( 1a ), 2-(5-bromo-1 H -indol-3-yl)- N , N -dimethyl-2-oxoacetamide ( 1d ), 2-(1 H -indol-3-yl)- N , N -dimethylethanamine ( 2a ), 2-(5-chloro-1 H -indol-3-yl)- N , N -dimethylethanamine ( 2c ), 2-(5-bromo-1 H -indol-3-yl)- N , N -dimethylethanamine ( 2d ), and 2-(5-iodo-1 H -indol-3-yl)- N , N -dimethylethanamine ( 2e ) have been shown to possess significant antidepressant-like action, while compounds 2c , 2d , and 2e exhibited potent sedative activity. Compounds 2a , 2c , 2d , and 2e showed nanomolar affinities to serotonin receptors 5-HT 1A and 5-HT₇. The in vitro data indicates that the antidepressant action exerted by these compounds in vivo is mediated, at least in part, via interaction with serotonin receptors. The data presented here shows the valuable role that bromine plays in providing novel chemical space and electrostatic interactions. Bromine is ubiquitous in the marine environment and a common element of marine natural products.

  3. Indentification of vincamine indole alkaloids producing endophytic fungi isolated from Nerium indicum, Apocynaceae.

    PubMed

    Na, Ren; Jiajia, Liu; Dongliang, Yang; Yingzi, Peng; Juan, Hong; Xiong, Liu; Nana, Zhao; Jing, Zhou; Yitian, Luo

    2016-11-01

    Vincamine, a monoterpenoid indole alkaloid which had been marketed as nootropic drugs for the treatment of cerebral insufficiencies, is widely found in plants of the Apocynaceae family. Nerium indicum is a plant belonging to the Apocynaceae family. So, the purpose of this research was designed to investigate the vincamine alkaloids producing endophytic fungi from Nerium indicum, Apocynaceae. 11 strains of endophytic fungi, isolated from the stems and roots of the plant, were grouped into 5 genera on the basis of morphological characteristics. All fungal isolates were fermented and their extracts were preliminary screened by Dragendorff's reagent and thin layer chromatography (TLC). One isolated strain CH1, isolated from the stems of Nerium indicum, had the same Rf value (about 0.56) as authentic vincamine. The extracts of strain CH1 were further analyzed by high performance liquid chromatography (HPLC) and liquid chromatograph-mass spectrometry (LC-MS), and the results showed that the strain CH1 could produce vincamine and vincamine analogues. The acetylcholinesterase (AchE) inhibitory activity assays using Ellman's method revealed that the metabolites of strain CH1 had significant AchE inhibitory activity with an IC50 value of 5.16μg/mL. The isolate CH1 was identified as Geomyces sp. based on morphological and molecular identification, and has been deposited in the China Center for Type Culture Collection (CCTCCM 2014676). This study first reported the natural compounds tabersonine and ethyl-vincamine from endophytic fungi CH1, Geomyces sp. In conclusion, the fungal endophytes from Nerium indicum can be used as alternative source for the production of vincamine and vincamine analogues. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Secondary Metabolites from Plants Inhibiting ABC Transporters and Reversing Resistance of Cancer Cells and Microbes to Cytotoxic and Antimicrobial Agents

    PubMed Central

    Wink, Michael; Ashour, Mohamed L.; El-Readi, Mahmoud Zaki

    2012-01-01

    Fungal, bacterial, and cancer cells can develop resistance against antifungal, antibacterial, or anticancer agents. Mechanisms of resistance are complex and often multifactorial. Mechanisms include: (1) Activation of ATP-binding cassette (ABC) transporters, such as P-gp, which pump out lipophilic compounds that have entered a cell, (2) Activation of cytochrome p450 oxidases which can oxidize lipophilic agents to make them more hydrophilic and accessible for conjugation reaction with glucuronic acid, sulfate, or amino acids, and (3) Activation of glutathione transferase, which can conjugate xenobiotics. This review summarizes the evidence that secondary metabolites (SM) of plants, such as alkaloids, phenolics, and terpenoids can interfere with ABC transporters in cancer cells, parasites, bacteria, and fungi. Among the active natural products several lipophilic terpenoids [monoterpenes, diterpenes, triterpenes (including saponins), steroids (including cardiac glycosides), and tetraterpenes] but also some alkaloids (isoquinoline, protoberberine, quinoline, indole, monoterpene indole, and steroidal alkaloids) function probably as competitive inhibitors of P-gp, multiple resistance-associated protein 1, and Breast cancer resistance protein in cancer cells, or efflux pumps in bacteria (NorA) and fungi. More polar phenolics (phenolic acids, flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, tannins, anthraquinones, and naphthoquinones) directly inhibit proteins forming several hydrogen and ionic bonds and thus disturbing the 3D structure of the transporters. The natural products may be interesting in medicine or agriculture as they can enhance the activity of active chemotherapeutics or pesticides or even reverse multidrug resistance, at least partially, of adapted and resistant cells. If these SM are applied in combination with a cytotoxic or antimicrobial agent, they may reverse resistance in a synergistic fashion. PMID:22536197

  5. Characteristic Chromatogram: A Method of Discriminate and Quantitative Analysis for Quality Evaluation of Uncaria Stem with Hooks.

    PubMed

    Hou, Jinjun; Feng, Ruihong; Zhang, Yibei; Pan, Huiqin; Yao, Shuai; Han, Sumei; Feng, Zijin; Cai, Luying; Wu, Wanying; Guo, De-An

    2018-04-01

    It remains a challenge to establish new monographs for herbal drugs derived from multiple botanical sources. Specifically, the difficulty involves discriminating and quantifying these herbs with components whose levels vary markedly among different samples. Using Uncaria stem with hooks as an example, a characteristic chromatogram was proposed to discriminate its five botanical origins and to quantify its characteristic components in the chromatogram. The characteristic chromatogram with respect to the components of Uncaria stem with hooks with the five botanical origins was established using 0.02% diethylamine and acetonitrile as the mobile phase. The total analysis time was 50 min and the detection wavelength was 245 nm. Using the same chromatogram parameters, the single standard to determine multicomponents method was validated to simultaneously quantify nine indole alkaloids, including vincosamide, 3 α -dihydrocadambine, isocorynoxeine, corynoxeine, isorhynchophylline, rhynchophylline, hirsuteine, hirsutine, and geissoschizine methyl ether. The results showed that only the Uncaria stem with hooks from Uncaria rhynchophylla , the most widely used in the herbal market, showed the presence of these nine alkaloids. The conversion factors were 1.27, 2.32, 0.98, 1.04, 1.00, 1.02, 1.26, 1.33, and 1.25, respectively. The limits of quantitation were lower than 700 ng/mL. The total contents of 31 batches of Uncaria stem with hooks were in the range of 0.1 - 0.6%, except for Uncaria hirsuta Havil and Uncaria sinensis (Oliv.) Havil. The results also showed that the total content of indole alkaloids tended to decrease with an increase in the hook diameter. This showed that the characteristic chromatogram is practical for controlling the quality of traditional Chinese medicines with multiple botanical origins. Georg Thieme Verlag KG Stuttgart · New York.

  6. Terpenoid-Alkaloids: Their Biosynthetic Twist of Fate and Total Synthesis.

    PubMed

    Cherney, Emily C; Baran, Phil S

    2011-04-01

    Terpenes and alkaloids are ever-growing classes of natural products that provide new molecular structures which inspire chemists and possess a broad range of biological activity. Terpenoid-alkaloids originate from the same prenyl units that construct terpene skeletons. However, during biosynthesis, a nitrogen atom (or atoms) is introduced in the form of β-aminoethanol, ethylamine, or methylamine. Nitrogen incorporation can occur either before, during, or after the cyclase phase. The outcome of this unique biosynthesis is the formation of natural products containing unprecedented structures. These complex structural motifs expose current limitations in organic chemistry, thus providing opportunities for invention. This review focuses on total syntheses of terpenoid-alkaloids and unique issues presented by this class of natural products. More specifically, it examines how these syntheses relate to the way terpenoid-alkaloids are made in Nature. Developments in chemistry that have facilitated these syntheses are emphasized, as well as chemical technology needed to conquer those that evade synthesis.

  7. Facile Iodine-Catalyzed Michael Addition of Indoles to α,α′-Bis(arylmethylene)cyclopentanones: An Efficient Synthesis of E-2-(3-Indolylphenylmethyl)-5-phenylmethylenecyclopentanones

    PubMed Central

    Pal, Rammohan; Das Gupta, Arpita; Mallik, Asok K.

    2012-01-01

    Iodine-catalyzed reaction of indoles with α,α′-bis(arylmethylene)cyclopentanones afforded one diastereomer of the corresponding Michael adducts, namely, E-2-(3-indolylphenylmethyl)-5-phenylmethylenecyclopentanones, in a good yield. The products form a new group of indole derivatives. PMID:24052849

  8. On the synthesis of protopine alkaloids.

    PubMed

    Wada, Yasuhiro; Kaga, Harumi; Uchiito, Shiho; Kumazawa, Eri; Tomiki, Miho; Onozaki, Yu; Kurono, Nobuhito; Tokuda, Masao; Ohkuma, Takeshi; Orito, Kazuhiko

    2007-09-14

    For the synthesis of protopine alkaloids, we studied a reaction sequence based on a ring enlargement of indeno[2,1-a][3]benzazepines by a singlet oxygen oxygenation, followed by conversion of an amide carbonyl group of the resultant 10-membered keto-lactam to a methylene group, which is the last step for completion of the synthesis. The key substances, indeno[2,1-a][3]benzazepines, were prepared by Bischler-Napieralski cyclization of alkoxy-substituted 1-(2-bromobenzyl)-3-benzazepin-2-ones. Steric effects of the substituents in this synthesis were examined.

  9. Extending the versatility of the Hemetsberger-Knittel indole synthesis through microwave and flow chemistry.

    PubMed

    Ranasinghe, Nadeesha; Jones, Graham B

    2013-03-15

    Microwave, flow and combination methodologies have been applied to the synthesis of a number of substituted indoles. Based on the Hemetsberger-Knittel (HK) process, modifications allow formation of products rapidly and in high yield. Adapting the methodology allows formation of 2-unsubstituted indoles and derivatives, and a route to analogs of the antitumor agent PLX-4032 is demonstrated. The utility of the HK substrates is further demonstrated through bioconjugation and subsequent ring closure and via Huisgen type [3+2] cycloaddition chemistry, allowing formation of peptide adducts which can be subsequently labeled with fluorine tags. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. In-silico Investigation of Antitrypanosomal Phytochemicals from Nigerian Medicinal Plants

    PubMed Central

    Setzer, William N.; Ogungbe, Ifedayo V.

    2012-01-01

    Background Human African trypanosomiasis (HAT), a parasitic protozoal disease, is caused primarily by two subspecies of Trypanosoma brucei. HAT is a re-emerging disease and currently threatens millions of people in sub-Saharan Africa. Many affected people live in remote areas with limited access to health services and, therefore, rely on traditional herbal medicines for treatment. Methods A molecular docking study has been carried out on phytochemical agents that have been previously isolated and characterized from Nigerian medicinal plants, either known to be used ethnopharmacologically to treat parasitic infections or known to have in-vitro antitrypanosomal activity. A total of 386 compounds from 19 species of medicinal plants were investigated using in-silico molecular docking with validated Trypanosoma brucei protein targets that were available from the Protein Data Bank (PDB): Adenosine kinase (TbAK), pteridine reductase 1 (TbPTR1), dihydrofolate reductase (TbDHFR), trypanothione reductase (TbTR), cathepsin B (TbCatB), heat shock protein 90 (TbHSP90), sterol 14α-demethylase (TbCYP51), nucleoside hydrolase (TbNH), triose phosphate isomerase (TbTIM), nucleoside 2-deoxyribosyltransferase (TbNDRT), UDP-galactose 4′ epimerase (TbUDPGE), and ornithine decarboxylase (TbODC). Results This study revealed that triterpenoid and steroid ligands were largely selective for sterol 14α-demethylase; anthraquinones, xanthones, and berberine alkaloids docked strongly to pteridine reductase 1 (TbPTR1); chromenes, pyrazole and pyridine alkaloids preferred docking to triose phosphate isomerase (TbTIM); and numerous indole alkaloids showed notable docking energies with UDP-galactose 4′ epimerase (TbUDPGE). Polyphenolic compounds such as flavonoid gallates or flavonoid glycosides tended to be promiscuous docking agents, giving strong docking energies with most proteins. Conclusions This in-silico molecular docking study has identified potential biomolecular targets of phytochemical components of antitrypanosomal plants and has determined which phytochemical classes and structural manifolds likely target trypanosomal enzymes. The results could provide the framework for synthetic modification of bioactive phytochemicals, de novo synthesis of structural motifs, and lead to further phytochemical investigations. PMID:22848767

  11. Enantioselective Synthesis of 2-Amino-1,1-diarylalkanes Bearing a Carbocyclic Ring Substituted Indole through Asymmetric Catalytic Reaction of Hydroxyindoles with Nitroalkenes.

    PubMed

    Vila, Carlos; Rostoll-Berenguer, Jaume; Sánchez-García, Rubén; Blay, Gonzalo; Fernández, Isabel; Muñoz, M Carmen; Pedro, José R

    2018-06-07

    An asymmetric catalytic reaction of hydroxyindoles with nitroalkenes leading to the Friedel-Crafts alkylation in the carbocyclic ring of indole is presented. The method is based on the activating/directing effects of the hydroxy group situated in the carbocyclic ring of the indole providing nitroalkylated indoles functionalizated at the C-4, C-5, and C-7 positions with high yield, regio-, and enantioselectivity. The optically enriched nitroalkanes were transformed efficiently in optically enriched 2-amino-1,1-diarylalkanes bearing a carbocyclic ring substituted indole.

  12. Synthesis of heterocycles: Indolo (2,1-a) isoquinolines, renewables, and aptamer ligands for cellular imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beasley, Jonathan

    2013-01-01

    In this thesis, we explore both total syntheses and methodologies of several aromatic heterocyclic molecules. Extensions of the Kraus indole synthesis toward 2-substituted and 2,3-disubstituted indoles, as well as biologically attractive indolo[2,1-a]isoquinolines are described. Recent renewable efforts directed to commodity maleic acid and the first reported furan-based ionic liquids are described. Our total synthesis of mRNA aptamer ligand PDC-Gly, and its dye coupled forms, plus aminoglycoside dye coupled ligands used in molecular imaging, are described.

  13. Multicatalytic asymmetric synthesis of complex tetrahydrocarbazoles via a Diels-Alder/benzoin reaction sequence.

    PubMed

    Liu, Yankai; Nappi, Manuel; Escudero-Adán, Eduardo C; Melchiorre, Paolo

    2012-03-02

    Expanding upon the recently developed aminocatalytic asymmetric indole-2,3-quinodimethane strategy, a straightforward synthesis of structurally and stereochemically complex tetrahydrocarbazoles has been devised. The chemistry's complexity-generating power was further harnessed by designing a multicatalytic, one-pot Diels-Alder/benzoin reaction sequence to stereoselectively access trans-fused tetracyclic indole-based compounds having four stereogenic centers with very high fidelity. © 2012 American Chemical Society

  14. Solvent-Free Addition of Indole to Aldehydes: Unexpected Synthesis of Novel 1-[1-(1H-Indol-3-yl) Alkyl]-1H-Indoles and Preliminary Evaluation of Their Cytotoxicity in Hepatocarcinoma Cells.

    PubMed

    Tocco, Graziella; Zedda, Gloria; Casu, Mariano; Simbula, Gabriella; Begala, Michela

    2017-10-17

    New 1-[1-(1 H -indol-3-yl) alkyl]-1 H -indoles, surprisingly, have been obtained from the addition of indole to a variety of aldehydes under neat conditions. CaO, present in excess, was fundamental for carrying out the reaction with paraformaldehyde. Under the same reaction conditions, aromatic and heteroaromatic aldehydes afforded only classical bis (indolyl) aryl indoles. In this paper, the role of CaO, together with the regiochemistry and the mechanism of the reaction, are discussed in detail. The effect of some selected 3,3'- and 1,3'-diindolyl methane derivatives on cell proliferation of the hepatoma cell line FaO was also evaluated.

  15. Total synthesis of the cyclopeptide alkaloid abyssenine A. Application of inter- and intramolecular copper-mediated coupling reactions in organic synthesis.

    PubMed

    Toumi, Mathieu; Couty, François; Evano, Gwilherm

    2007-11-23

    The first total synthesis of the 15-membered ring cyclopeptide alkaloid abyssenine A 1 has been achieved with a longest linear sequence of 15 steps. Central to the synthetic approach was an efficient copper-mediated Ullmann coupling/Claisen rearrangement sequence allowing for both ipso and ortho functionalization of aromatic iodide 4. This sequence was used for the synthesis of the aromatic core. The synthetic utility of copper-catalyzed coupling reactions was further demonstrated to install the enamide with a concomitant straightforward macrocyclization starting from acyclic alpha-amido-omega-vinyl iodide 13.

  16. Gold(III) chloride catalyzed regioselective synthesis of pyrano[3,4-b]indol-1(9H)-ones and evaluation of anticancer potential towards human cervix adenocarcinoma.

    PubMed

    Praveen, Chandrasekaran; Ayyanar, Asairajan; Perumal, Paramasivan Thirumalai

    2011-07-15

    A highly regioselective synthesis of pyrano[3,4-b]indol-1(9H)-ones via gold(III) chloride catalyzed cycloisomerization of 3-ethynyl-indole-2-carboxylic acid was achieved in good to excellent yields. These compounds were screened for their in vitro cytotoxicity against human cervical (HeLa) cell lines. Out of ten compounds, three compounds (7d, 7e and 7j) showed comparable proliferation inhibitory activity against the standard drug cisplatin. Compound 7d was found to be the most efficacious with IC(50) value of 0.22μM. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Isomerization of 1-O-indol-3-ylacetyl-beta-D-glucose. Enzymatic hydrolysis of 1-O, 4-O, and 6-O-indol-3-ylacetyl-beta-D-glucose and the enzymatic synthesis of indole-3-acetyl glycerol by a hormone metabolizing complex

    NASA Technical Reports Server (NTRS)

    Kowalczyk, S.; Bandurski, R. S.

    1990-01-01

    The first compound in the series of reactions leading to the ester conjugates of indole-3-acetic acid (IAA) in kernels of Zea mays sweet corn is the acyl alkyl acetal, 1-O-indol-3-ylacetyl-beta-D-glucose (1-O-IAGlu). The enzyme catalyzing the synthesis of this compound is UDP-glucose:indol-3-ylacetate glucosyl-transferase (IAGlu synthase). The IAA moiety of the high energy compound 1-O-IAGlu may be enzymatically transferred to myo-inositol or to glycerol or the 1-O-IAGlu may be enzymatically hydrolyzed. Alternatively, nonenzymatic acyl migration may occur to yield the 2-O, 4-O, and 6-O esters of IAA and glucose. The 4-O and 6-O esters may then be enzymatically hydrolyzed to yield free IAA and glucose. This work reports new enzymatic activities, the transfer of IAA from 1-O-IAGlu to glycerol, and the enzyme-catalyzed hydrolysis of 4-O and 6-O-IAGlu. Data is also presented on the rate of non-enzymatic acyl migration of IAA from the 1-O to the 4-O and 6-O positions of glucose. We also report that enzymes catalyzing the synthesis of 1-O-IAGlu and the hydrolysis of 1-O, 4-O, and 6-O-IAGlu fractionate as a hormone metabolizing complex. The association of synthetic and hydrolytic capabilities in enzymes which cofractionate may have physiological significance.

  18. The nuclear genome of Rhazya stricta and the evolution of alkaloid diversity in a medically relevant clade of Apocynaceae

    PubMed Central

    Sabir, Jamal S. M.; Jansen, Robert K.; Arasappan, Dhivya; Calderon, Virginie; Noutahi, Emmanuel; Zheng, Chunfang; Park, Seongjun; Sabir, Meshaal J.; Baeshen, Mohammed N.; Hajrah, Nahid H.; Khiyami, Mohammad A.; Baeshen, Nabih A.; Obaid, Abdullah Y.; Al-Malki, Abdulrahman L.; Sankoff, David; El-Mabrouk, Nadia; Ruhlman, Tracey A.

    2016-01-01

    Alkaloid accumulation in plants is activated in response to stress, is limited in distribution and specific alkaloid repertoires are variable across taxa. Rauvolfioideae (Apocynaceae, Gentianales) represents a major center of structural expansion in the monoterpenoid indole alkaloids (MIAs) yielding thousands of unique molecules including highly valuable chemotherapeutics. The paucity of genome-level data for Apocynaceae precludes a deeper understanding of MIA pathway evolution hindering the elucidation of remaining pathway enzymes and the improvement of MIA availability in planta or in vitro. We sequenced the nuclear genome of Rhazya stricta (Apocynaceae, Rauvolfioideae) and present this high quality assembly in comparison with that of coffee (Rubiaceae, Coffea canephora, Gentianales) and others to investigate the evolution of genome-scale features. The annotated Rhazya genome was used to develop the community resource, RhaCyc, a metabolic pathway database. Gene family trees were constructed to identify homologs of MIA pathway genes and to examine their evolutionary history. We found that, unlike Coffea, the Rhazya lineage has experienced many structural rearrangements. Gene tree analyses suggest recent, lineage-specific expansion and diversification among homologs encoding MIA pathway genes in Gentianales and provide candidate sequences with the potential to close gaps in characterized pathways and support prospecting for new MIA production avenues. PMID:27653669

  19. The nuclear genome of Rhazya stricta and the evolution of alkaloid diversity in a medically relevant clade of Apocynaceae.

    PubMed

    Sabir, Jamal S M; Jansen, Robert K; Arasappan, Dhivya; Calderon, Virginie; Noutahi, Emmanuel; Zheng, Chunfang; Park, Seongjun; Sabir, Meshaal J; Baeshen, Mohammed N; Hajrah, Nahid H; Khiyami, Mohammad A; Baeshen, Nabih A; Obaid, Abdullah Y; Al-Malki, Abdulrahman L; Sankoff, David; El-Mabrouk, Nadia; Ruhlman, Tracey A

    2016-09-22

    Alkaloid accumulation in plants is activated in response to stress, is limited in distribution and specific alkaloid repertoires are variable across taxa. Rauvolfioideae (Apocynaceae, Gentianales) represents a major center of structural expansion in the monoterpenoid indole alkaloids (MIAs) yielding thousands of unique molecules including highly valuable chemotherapeutics. The paucity of genome-level data for Apocynaceae precludes a deeper understanding of MIA pathway evolution hindering the elucidation of remaining pathway enzymes and the improvement of MIA availability in planta or in vitro. We sequenced the nuclear genome of Rhazya stricta (Apocynaceae, Rauvolfioideae) and present this high quality assembly in comparison with that of coffee (Rubiaceae, Coffea canephora, Gentianales) and others to investigate the evolution of genome-scale features. The annotated Rhazya genome was used to develop the community resource, RhaCyc, a metabolic pathway database. Gene family trees were constructed to identify homologs of MIA pathway genes and to examine their evolutionary history. We found that, unlike Coffea, the Rhazya lineage has experienced many structural rearrangements. Gene tree analyses suggest recent, lineage-specific expansion and diversification among homologs encoding MIA pathway genes in Gentianales and provide candidate sequences with the potential to close gaps in characterized pathways and support prospecting for new MIA production avenues.

  20. Iridium-catalyzed direct synthesis of tryptamine derivatives from indoles: exploiting n-protected β-amino alcohols as alkylating agents.

    PubMed

    Bartolucci, Silvia; Mari, Michele; Bedini, Annalida; Piersanti, Giovanni; Spadoni, Gilberto

    2015-03-20

    The selective C3-alkylation of indoles with N-protected ethanolamines involving the "borrowing hydrogen" strategy is described. This method provides convenient and sustainable access to several tryptamine derivatives.

  1. Inactivation of the indole-diterpene biosynthetic gene cluster of Claviceps paspali by Agrobacterium-mediated gene replacement.

    PubMed

    Kozák, László; Szilágyi, Zoltán; Vágó, Barbara; Kakuk, Annamária; Tóth, László; Molnár, István; Pócsi, István

    2018-04-01

    The hypocrealean fungus Claviceps paspali is a parasite of wild grasses. This fungus is widely utilized in the pharmaceutical industry for the manufacture of ergot alkaloids, but also produces tremorgenic and neurotoxic indole-diterpene (IDT) secondary metabolites such as paspalitrems A and B. IDTs cause significant losses in agriculture and represent health hazards that threaten food security. Conversely, IDTs may also be utilized as lead compounds for pharmaceutical drug discovery. Current protoplast-mediated transformation protocols of C. paspali are inadequate as they suffer from inefficiencies in protoplast regeneration, a low frequency of DNA integration, and a low mitotic stability of the nascent transformants. We adapted and optimized Agrobacterium tumefaciens-mediated transformation (ATMT) for C. paspali and validated this method with the straightforward creation of a mutant strain of this fungus featuring a targeted replacement of key genes in the putative IDT biosynthetic gene cluster. Complete abrogation of IDT production in isolates of the mutant strain proved the predicted involvement of the target genes in the biosynthesis of IDTs. The mutant isolates continued to produce ergot alkaloids undisturbed, indicating that equivalent mutants generated in industrial ergot producers may have a better safety profile as they are devoid of IDT-type mycotoxins. Meanwhile, ATMT optimized for Claviceps spp. may open the door for the facile genetic engineering of these industrially and ecologically important organisms.

  2. Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis

    PubMed Central

    Pandey, Shiv S.; Singh, Sucheta; Babu, C. S. Vivek; Shanker, Karuna; Srivastava, N. K.; Shukla, Ashutosh K.; Kalra, Alok

    2016-01-01

    Not much is known about the mechanism of endophyte-mediated induction of secondary metabolite production in Catharanthus roseus. In the present study two fungal endophytes, Curvularia sp. CATDLF5 and Choanephora infundibulifera CATDLF6 were isolated from the leaves of the plant that were found to enhance vindoline content by 229–403%. The isolated endophytes did not affect the primary metabolism of the plant as the maximum quantum efficiency of PSII, net CO2 assimilation, plant biomass and starch content of endophyte-inoculated plants was similar to endophyte-free control plants. Expression of terpenoid indole alkaloid (TIA) pathway genes, geraniol 10-hydroxylase (G10H), tryptophan decarboxylase (TDC), strictosidine synthase (STR), 16-hydoxytabersonine-O-methyltransferase (16OMT), desacetoxyvindoline-4-hydroxylase (D4H), deacetylvindoline-4-O-acetyltransferase (DAT) were upregulated in endophyte-inoculated plants. Endophyte inoculation upregulated the expression of the gene for transcriptional activator octadecanoid-responsive Catharanthus AP2-domain protein (ORCA3) and downregulated the expression of Cys2/His2-type zinc finger protein family transcriptional repressors (ZCTs). The gene for the vacuolar class III peroxidase (PRX1), responsible for coupling vindoline and catharanthine, was upregulated in endophyte-inoculated plants. These endophytes may enhance vindoline production by modulating the expression of key structural and regulatory genes of vindoline biosynthesis without affecting the primary metabolism of the host plant. PMID:27220774

  3. Tetraethylene glycol promoted two-step, one-pot rapid synthesis of indole-3-[1- 11C]acetic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sojeong; Qu, Wenchao; Alexoff, David L.

    2014-12-12

    An operationally friendly, two-step, one-pot process has been developed for the rapid synthesis of carbon-11 labeled indole-3-acetic acid ([ 11]IAA or [ 11]auxin). By replacing an aprotic polar solvent with tetraethylene glycol, nucleophilic [ 11]cyanation and alkaline hydrolysis reactions were performed consecutively in a single pot without a time-consuming intermediate purification step. The entire production time for this updated procedure is 55 min, which dramatically simplifies the entire synthesis and reduces the starting radioactivity required for a whole plant imaging study.

  4. Synthesis of carbon-11-labeled bivalent β-carbolines as new PET agents for imaging of cholinesterase in Alzheimer's disease.

    PubMed

    Wang, Min; Zheng, David X; Gao, Mingzhang; Hutchins, Gary D; Zheng, Qi-Huang

    2011-04-01

    Carbon-11-labeled bivalent β-carbolines, 9,9'-(pentane-1,5-diyl)bis(2-[(11)C]methyl-9H-pyrido[3,4-b]indol-2-ium)iodide ([(11)C]2a), 9,9'-(nonane-1,9-diyl)bis(2-[(11)C]methyl-9H-pyrido[3,4-b]indol-2-ium)iodide ([(11)C]2b), 9,9'-(dodecane-1,12-diyl)bis(2-[(11)C]methyl-9H-pyrido[3,4-b]indol-2-ium)iodide ([(11)C]2c) and 1,9-bis(2-[(11)C]methyl-3,4-dihydro-1H-pyrido[3,4-b]indol-9(2H)-yl)nonane ([(11)C]3), were prepared by N-[(11)C]methylation of their corresponding amine precursors using [(11)C]CH(3)I and isolated by either a simplified solid-phase extraction (SPE) method or HPLC in 40-60% radiochemical yields based on [(11)C]CO(2) and decay corrected to end of bombardment (EOB). The overall synthesis time from EOB was 20-30min, the radiochemical purity was >99%, and the specific activity at end of synthesis (EOS) was 185-370 GBq/μmol. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Structure-activity relationship of antiparasitic and cytotoxic indoloquinoline alkaloids, and their tricyclic and bicyclic analogues.

    PubMed

    Van Baelen, Gitte; Hostyn, Steven; Dhooghe, Liene; Tapolcsányi, Pál; Mátyus, Péter; Lemière, Guy; Dommisse, Roger; Kaiser, Marcel; Brun, Reto; Cos, Paul; Maes, Louis; Hajós, György; Riedl, Zsuzsanna; Nagy, Ildikó; Maes, Bert U W; Pieters, Luc

    2009-10-15

    Based on the indoloquinoline alkaloids cryptolepine (1), neocryptolepine (2), isocryptolepine (3) and isoneocryptolepine (4), used as lead compounds for new antimalarial agents, a series of tricyclic and bicyclic analogues, including carbolines, azaindoles, pyrroloquinolines and pyrroloisoquinolines was synthesized and biologically evaluated. None of the bicyclic compounds was significantly active against the chloroquine-resistant strain Plasmodium falciparum K1, in contrast to the tricyclic derivatives. The tricyclic compound 2-methyl-2H-pyrido[3,4-b]indole (9), or 2-methyl-beta-carboline, showed the best in vitro activity, with an IC(50) value of 0.45 microM against P. falciparum K1, without apparent cytotoxicity against L6 cells (SI>1000). However, this compound was not active in the Plasmodium berghei mouse model. Structure-activity relationships are discussed and compared with related naturally occurring compounds.

  6. Envisaging the Regulation of Alkaloid Biosynthesis and Associated Growth Kinetics in Hairy Roots of Vinca minor Through the Function of Artificial Neural Network.

    PubMed

    Verma, Priyanka; Anjum, Shahin; Khan, Shamshad Ahmad; Roy, Sudeep; Odstrcilik, Jan; Mathur, Ajay Kumar

    2016-03-01

    Artificial neural network based modeling is a generic approach to understand and correlate different complex parameters of biological systems for improving the desired output. In addition, some new inferences can also be predicted in a shorter time with less cost and labor. As terpenoid indole alkaloid pathway in Vinca minor is very less investigated or elucidated, a strategy of elicitation with hydroxylase and acetyltransferase along with incorporation of various precursors from primary shikimate and secoiridoid pools via simultaneous employment of cyclooxygenase inhibitor was performed in the hairy roots of V. minor. This led to the increment in biomass accumulation, total alkaloid concentration, and vincamine production in selected treatments. The resultant experimental values were correlated with algorithm approaches of artificial neural network that assisted in finding the yield of vincamine, alkaloids, and growth kinetics using number of elicits. The inputs were the hydroxylase/acetyltransferase elicitors and cyclooxygenase inhibitor along with various precursors from shikimate and secoiridoid pools and the outputs were growth index (GI), alkaloids, and vincamine. The approach incorporates two MATLAB codes; GRNN and FFBPNN. Growth kinetic studies revealed that shikimate and tryptophan supplementation triggers biomass accumulation (GI = 440.2 to 540.5); while maximum alkaloid (3.7 % dry wt.) and vincamine production (0.017 ± 0.001 % dry wt.) was obtained on supplementation of secologanin along with tryptophan, naproxen, hydrogen peroxide, and acetic anhydride. The study shows that experimental and predicted values strongly correlate each other. The correlation coefficient for growth index (GI), alkaloids, and vincamine was found to be 0.9997, 0.9980, 0.9511 in GRNN and 0.9725, 0.9444, 0.9422 in FFBPNN, respectively. GRNN provided greater similarity between the target and predicted dataset in comparison to FFBPNN. The findings can provide future insights to calculate growth index, alkaloids, and vincamine in combination to different elicits.

  7. Simultaneous quantitative analyses of indole and oxindole alkaloids of Uncaria Hook in rat plasma and brain after oral administration of the traditional Japanese medicine Yokukansan using high-performance liquid chromatography with tandem mass spectrometry.

    PubMed

    Kushida, Hirotaka; Fukutake, Miwako; Tabuchi, Masahiro; Katsuhara, Takao; Nishimura, Hiroaki; Ikarashi, Yasushi; Kanitani, Masanao; Kase, Yoshio

    2013-12-01

    Uncaria Hook (UH) alkaloids are involved in the beneficial effects of Yokukansan. However, the pharmacokinetics of UH alkaloids after oral administration of Yokukansan has not yet been sufficiently investigated. Therefore, we developed and validated a sensitive and specific high-performance liquid chromatography with tandem mass spectrometry (LC/MS/MS) method for the simultaneous quantitation of seven UH alkaloids (corynoxeine, isocorynoxeine, rhynchophylline, isorhynchophylline, hirsutine, hirsuteine and geissoschizine methyl ether) in rat plasma and brain. After protein precipitation with acetonitrile, chromatographic separation was performed using an Ascentis Express RP-amide column, with gradient elution with 0.2% formic acid and acetonitrile at 0.3 mL/min. All analytes in the plasma and brain showed good linearity over a wide concentration range (r > 0.995). Intra-day and inter-day variations of each constituent were 8.6 and 8.0% or less in the plasma, and 14.9 and 15.0% or less in the brain, respectively. The validated LC/MS/MS method was applied in the pharmacokinetic studies of UH alkaloids after oral administration of Yokukansan to rats. In the plasma, rhynchophylline, hirsutine, hirsuteine and geissoschizine methyl ether were detected, but only geissoschizine methyl ether was detected in the brain. These results suggest that geissoschizine methyl ether is an important constituent of the pharmacological effects of Yokukansan. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Silencing of tryptamine biosynthesis for production of nonnatural alkaloids in plant culture.

    PubMed

    Runguphan, Weerawat; Maresh, Justin J; O'Connor, Sarah E

    2009-08-18

    Natural products have long served as both a source and inspiration for pharmaceuticals. Modifying the structure of a natural product often improves the biological activity of the compound. Metabolic engineering strategies to ferment "unnatural" products have been enormously successful in microbial organisms. However, despite the importance of plant derived natural products, metabolic engineering strategies to yield unnatural products from complex, lengthy plant pathways have not been widely explored. Here, we show that RNA mediated suppression of tryptamine biosynthesis in Catharanthus roseus hairy root culture eliminates all production of monoterpene indole alkaloids, a class of natural products derived from two starting substrates, tryptamine and secologanin. To exploit this chemically silent background, we introduced an unnatural tryptamine analog to the production media and demonstrated that the silenced plant culture could produce a variety of novel products derived from this unnatural starting substrate. The novel alkaloids were not contaminated by the presence of the natural alkaloids normally present in C. roseus. Suppression of tryptamine biosynthesis therefore did not appear to adversely affect expression of downstream biosynthetic enzymes. Targeted suppression of substrate biosynthesis therefore appears to be a viable strategy for programming a plant alkaloid pathway to more effectively produce desirable unnatural products. Moreover, although tryptamine is widely found among plants, this silenced line demonstrates that tryptamine does not play an essential role in growth or development in C. roseus root culture. Silencing the biosynthesis of an early starting substrate enhances our ability to harness the rich diversity of plant based natural products.

  9. A Concise Synthesis of the Erythrina Alkaloid 3–Demethoxyerythratidinone via Combined Rhodium Catalysis

    PubMed Central

    Joo, Jung Min; David, Ramoncito A.; Yuan, Yu; Lee, Chulbom

    2010-01-01

    The total synthesis of the erythrina alkaloid 3–demethoxyerythratidinone has been achieved via a strategy based on combined rhodium catalysis. The catalytic tandem cyclization effected by the interplay of alkynyl and vinylidene rhodium species allows for efficient access to the A and B rings of the tetracyclic erythrinane skeleton in a single step. The synthesis also features rapid preparation of the requisite precursor for the double ring closure and thus has been completed in only 7 total steps in 41% overall yield. PMID:21090648

  10. Genome Sequence of an Efficient Indole-Degrading Bacterium, Cupriavidus sp. Strain IDO, with Potential Polyhydroxyalkanoate Production Applications.

    PubMed

    Ma, Qiao; Qu, Yuanyuan; Zhang, Zhaojing; Li, Pengpeng; Tang, Hongzhi

    2015-03-12

    Cupriavidus sp. strain IDO has been shown to efficiently transform indole, and the genus of Cupriavidus has been described as a promising cell factory for polyhydroxyalkanoate synthesis from low-cost wastes. Here, we report the draft genome sequence of strain IDO, which may provide useful genetic information on indole metabolism and polyhydroxyalkanoate production. Copyright © 2015 Ma et al.

  11. Synthesis of 4-aminophenyl substituted indole derivatives for the instrumental analysis and molecular docking evaluation studies

    NASA Astrophysics Data System (ADS)

    Singh, Navneet; Kumar, Keshav

    2017-07-01

    The Indole has been known to maintain celebrity status since so many decades and has been a centre point at the spectrum of pharmacological research. The present work stimulates an idea of generating a pool of library of lead compounds. The data collected can be used for the mapping of biologically active compounds. The reported derivatives of 4-aminophenyl substituted Indole were prepared by the methods of Fischer Indole synthesis and Vilsemeier reaction followed by screening for instrumental analysis and molecular docking studies. The synthesized compounds 4-(1-(2-phenylhydrazono)ethyl)aniline, 1, 4-(1H-indol-2-yl)aniline, 2 and 2-(4-aminophenyl)-1H-indole-3-carbaldehyde, 3 were found to have remarkable yield and instrumental data analysis and also showed remarkable docked characteristic. The molecular docking studies revealed that ligand (amino acids) of comp. 1, 2 and 3 had been docked successfully on the binding site of the 3JUS protein selected from PDB with H bonding. The molecular docking data showed that compound 1, would possess remarkable biological activity and compd. 2 and 3 would possess mild to moderate biological activity. Thus this research work paves the way to synthesize new derivatives and thus to develop new compounds in future with accurate prediction.

  12. Refractory priapism associated with ingestion of yohimbe extract.

    PubMed

    Myers, Amy; Barrueto, Fermin

    2009-12-01

    Extracts of the bark of the central African tree Pausinystalia yohimbe contain yohimbine, an indole alkaloid, which is used to treat erectile dysfunction. The reported side effects of over-the-counter preparations of yohimbine include gastrointestinal upset, anxiety, increased blood pressure, headache, agitation, rash, tachycardia, and frequent urination. In this report, we describe a severe case of intractable priapism associated with the ingestion of yohimbe extract. Management required insertion of a proximal cavernosal spongiosum shunt (Quackles shunt) in the operating room.

  13. Yohimbine-induced cutaneous drug eruption, progressive renal failure, and lupus-like syndrome.

    PubMed

    Sandler, B; Aronson, P

    1993-04-01

    Yohimbine is an indole alkaloid obtained from the yohimbe tree, a common tree in West Africa. We describe a forty-two-year black man in whom a generalized erythrodermic skin eruption, progressive renal failure, and lupus-like syndrome developed following treatment with the drug, yohimbine. A literature review failed to reveal any reported association of these side effects. We review current information on yohimbine's use in male impotence, reported side effects, and its role as a drug allergen.

  14. Synthetic studies of the zoanthamine alkaloids: the total syntheses of norzoanthamine and zoanthamine.

    PubMed

    Yoshimura, Fumihiko; Sasaki, Minoru; Hattori, Izumi; Komatsu, Kei; Sakai, Mio; Tanino, Keiji; Miyashita, Masaaki

    2009-07-06

    The zoanthamine alkaloids, a type of heptacyclic marine alkaloid isolated from colonial zoanthids of the genus Zoanthus sp., have distinctive biological and pharmacological properties in addition to their unique chemical structures with stereochemical complexity. Namely, norzoanthamine (1) can suppress the loss of bone weight and strength in ovariectomized mice and has been expected as a promising candidate for a new type of antiosteoporotic drug, while zoanthamine (2) has exhibited potent inhibitory activity toward phorbol myristate-induced inflammation in addition to powerful analgesic effects. Recently, norzoanthamine derivatives were demonstrated to inhibit strongly the growth of P-388 murine leukemia cell lines, in addition to their potent antiplatelet activities on human platelet aggregation. Their distinctive biological properties, combined with novel chemical structures, make this family of alkaloids extremely attractive targets for chemical synthesis. However, the chemical synthesis of the zoanthamine alkaloids has been impeded owing to their densely functionalized complex stereostructures. In this paper, we report the first and highly efficient total syntheses of norzoanthamine (1) and zoanthamine (2) in full detail, which involve stereoselective synthesis of the requisite triene (18) for an intramolecular Diels-Alder reaction via the sequential three-component coupling reactions, the key intramolecular Diels-Alder reaction, and subsequent crucial bis-aminoacetalization as the key steps. Ultimately, we achieved the total synthesis of norzoanthamine (1) in 41 steps with an overall yield of 3.5 % (an average of 92 % yield each step) and that of zoanthamine (2) in 43 steps with an overall yield of 2.2 % (an average of 91 % yield each step) starting from (R)-5-methylcyclohexenone (3), respectively.

  15. Design and synthesis of a novel series of [1-(4-hydroxy-benzyl)-1H-indol-5-yloxy]-acetic acid compounds as potent, selective, thyroid hormone receptor β agonists.

    PubMed

    Burkholder, Timothy P; Cunningham, Brian E; Clayton, Joshua R; Lander, Peter A; Brown, Matthew L; Doti, Robert A; Durst, Gregory L; Montrose-Rafizadeh, Chahrzad; King, Constance; Osborne, Harold E; Amos, Robert M; Zink, Richard W; Stramm, Lawrence E; Burris, Thomas P; Cardona, Guemalli; Konkol, Debra L; Reidy, Charles; Christe, Michael E; Genin, Michael J

    2015-04-01

    The design, synthesis, and structure activity relationships for a novel series of indoles as potent, selective, thyroid hormone receptor β (TRβ) agonists is described. Compounds with >50× binding selectivity for TRβ over TRα were generated and evaluation of compound 1c from this series in a model of dyslipidemia demonstrated positive effects on plasma lipid endpoints in vivo. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Characterization of Epichloë coenophiala within the U.S.: are all tall fescue endophytes created equal?

    NASA Astrophysics Data System (ADS)

    Young, Carolyn; Charlton, Nikki; Takach, Johanna; Swoboda, Ginger; Trammell, Michael; Huhman, David; Hopkins, Andrew

    2014-11-01

    Tall fescue (Lolium arundinaceum) is a valuable and broadly adapted forage grass that occupies approximately 14 million hectares across the United States. A native to Europe, tall fescue was likely introduced into the U.S. around the late 1800’s. Much of the success of tall fescue can be attributed to Epichloë coenophiala (formerly Neotyphodium coenophialum) a seed borne symbiont that aids in host persistence. Epichloë species are capable of producing a range of alkaloids (ergot alkaloids, indole-diterpenes, lolines and peramine) that provide protection to the plant host from herbivory. Unfortunately, most tall fescue within the U.S., commonly referred to as KY31, harbors the endophyte E. coenophiala that causes toxicity to grazing livestock due to the production of ergot alkaloids. Molecular analyses of tall fescue endophytes have identified four independent associations, representing tall fescue with E. coenophiala, Epichloë sp. FaTG-2, Epichloë sp. FaTG-3 or Epichloë sp. FaTG-4. Each of these Epichloë species can be further distinguished based on genetic variation that equates to differences in the alkaloid gene loci. Tall fescue samples were evaluated using markers to SSR and alkaloid biosynthesis genes to determine endophyte strain variation present within continental U.S. Samples represented seed and tillers from the Suiter farm (Menifee County, KY), which is considered the originating site of KY31, as well as plant samples collected from 14 states, breeder’s seed and plant introduction lines (National Plant Germplasm System, NPGS). This study revealed two prominent E. coenophiala genotypes based on presence of alkaloid biosynthesis genes and SSR markers and provides insight into endophyte variation within continental U.S. across historical and current tall fescue samples.

  17. Camptotheca acuminata 10-hydroxycamptothecin O-methyltransferase: an alkaloid biosynthetic enzyme coopted from flavonoid metabolism.

    PubMed

    Salim, Vonny; Jones, A Daniel; DellaPenna, Dean

    2018-04-22

    The medicinal plant Camptotheca acuminata accumulates camptothecin, 10-hydroxycamptothecin, and 10-methoxycamptothecin as its major bioactive monoterpene indole alkaloids. Here, we describe identification and functional characterization of 10-hydroxycamptothecin O-methyltransferase (Ca10OMT), a member of the Diverse subclade of Class II OMTs. Ca10OMT is highly active toward both its alkaloid substrate and a wide range of flavonoids in vitro and in this way contrasts with other alkaloid OMTs in the subclade that only utilize alkaloid substrates. Ca10OMT shows a strong preference for the A-ring 7-OH of flavonoids, which is structurally equivalent to the 10-OH of 10-hydroxycamptothecin. The substrates of other alkaloid OMTs in the subclade bear little similarity to flavonoids, but the 3-D positioning of the 7-OH, A- and C-rings of flavonoids is nearly identical to the 10-OH, A- and B-rings of 10-hydroxycamptothecin. This structural similarity likely explains the retention of flavonoid OMT activity by Ca10OMT and also why kaempferol and quercetin aglycones are potent inhibitors of its 10-hydroxycamptothecin activity. The catalytic promiscuity and strong inhibition of Ca10OMT by flavonoid aglycones in vitro prompted us to investigate the potential physiological roles of the enzyme in vivo. Based on its regioselectivity, kinetic parameters and absence of 7-OMT flavonoids in vivo, we conclude that the major and likely only substrate of Ca10OMT in vivo is 10-hydroxycamptothecin. This is likely accomplished by Ca10OMT being kept spatially separated at the tissue levels from potentially inhibitory flavonoid aglycones, and flavonoid aglycones being rapidly glycosylated to non-inhibitory flavonoid glycosides. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. In vitro vasodilator mechanisms of the indole alkaloids rhynchophylline and isorhynchophylline, isolated from the hook of Uncaria rhynchophylla (Miquel).

    PubMed

    Zhang, Wen-Bo; Chen, Chang-Xun; Sim, Si-Mui; Kwan, Chiu-Yin

    2004-02-01

    Rhynchophylline (Rhy) and isorhynchophylline (Isorhy), indole alkaloids from Uncaria hooks, reportedly exert hypotensive and vasodilatory effects, but the mechanism of action is unclear. We therefore investigated the relaxant effects of these two isomeric alkaloids in rat arteries in vitro, in particular in respect of the various functional Ca2+ pathways. Both Rhy and Isorhy relaxed aortic rings precontracted with phenylephrine (PE, 1 microM) in a dose-dependent manner (3-300 microM). Removal of endothelium and preincubation with L-NAME (300 microM) slightly inhibited but did not prevent the relaxant response. These results indicate that Rhy and Isorhy act largely in an endothelium-independent manner. Unlike nicardipine, both alkaloids not only inhibited the contraction induced by 60 mM KCl (IC50 20-30 microM), but also that induced by PE and U46619, albeit to a lesser extent (IC50 100 and 200 microM, respectively). These results suggest that Rhy and Isorhy may act via multiple Ca2+ pathways. In contrast to their inhibitory effects on KCl-induced and receptor-mediated contractions, where both isomers were comparably potent, Rhy was more potent than Isorhy at higher concentrations (>100 microM) in inhibiting both caffeine (25 mM)- and cyclopiazonic acid (CPA, 30 microM)-induced contractions. Similar results observed with caffeine in Ca2+-containing medium were also observed in Ca2+-free medium. However, 0.1-0.3 microM nicardipine (which completely inhibited KCl-induced contraction) had no significant inhibitory effect on CPA-induced contractions. Taken together, these results indicate discrimination between these two isomers with respect to Ca2+-induced Ca2+ release and non-L-type Ca2+ channel, but not for IP3-induced Ca2+ release and L-type Ca2+ channels. Similar relaxant responses to KCl- and caffeine-induced contractions were seen when these two alkaloids were tested on the smaller mesenteric and renal arteries. In conclusion, the vasodilatory effects of Rhy and Isorhy are largely endothelium independent and are mediated by L-type Ca2+ channels. At higher concentrations, they also affect other Ca2+-handling pathways, although to a lesser extent. While there is no discrimination between the two isomers with respect to the contraction induced by KCl or agonists (PE and U46619), differential effects between Rhy and Isorhy were seen on caffeine- and CPA-induced contractions.

  19. Enzymic Synthesis of Indole-3-Acetyl-1-O-β-d-Glucose 1

    PubMed Central

    Leznicki, Antoni J.; Bandurski, Robert S.

    1988-01-01

    The first enzyme-catalyzed reaction leading from indole-3-acetic acid (IAA) to the myo-inositol esters of IAA is the synthesis of indole-3-acetyl-1-O-β-d-glucose from uridine-5′-diphosphoglucose (UDPG) and IAA. The reaction is catalyzed by the enzyme, UDPG-indol-3-ylacetyl glucosyl transferase (IAA-glucose-synthase). This work reports methods for the assay of the enzyme and for the extraction and partial purification of the enzyme from kernels of Zea mays sweet corn. The enzyme has an apparent molecular weight of 46,500 an isoelectric point of 5.5, and its pH optimum lies between 7.3 and 7.6. The enzyme is stable to storage at zero degrees but loses activity during column chromatographic procedures which can be restored only fractionally by addition of column eluates. The data suggest either multiple unknown cofactors or conformational changes leading to activity loss. Images Fig. 4 PMID:11537438

  20. Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. I. Partial purification and characterization of the enzyme from Zea mays

    NASA Technical Reports Server (NTRS)

    Leznicki, A. J.; Bandurski, R. S.

    1988-01-01

    The first enzyme-catalyzed reaction leading from indole-3-acetic acid (IAA) to the myo-inositol esters of IAA is the synthesis of indole-3-acetyl-1-O-beta-D-glucose from uridine-5'-diphosphoglucose (UDPG) and IAA. The reaction is catalyzed by the enzyme, UDPG-indol-3-ylacetyl glucosyl transferase (IAA-glucose-synthase). This work reports methods for the assay of the enzyme and for the extraction and partial purification of the enzyme from kernels of Zea mays sweet corn. The enzyme has an apparent molecular weight of 46,500 an isoelectric point of 5.5, and its pH optimum lies between 7.3 and 7.6. The enzyme is stable to storage at zero degrees but loses activity during column chromatographic procedures which can be restored only fractionally by addition of column eluates. The data suggest either multiple unknown cofactors or conformational changes leading to activity loss.

  1. Reaction of Donor-Acceptor Cyclobutanes with Indoles: A General Protocol for the Formal Total Synthesis of (±)-Strychnine and the Total Synthesis of (±)-Akuammicine.

    PubMed

    Feng, Liang-Wen; Ren, Hai; Xiong, Hu; Wang, Pan; Wang, Lijia; Tang, Yong

    2017-03-06

    A ligand-promoted catalytic [4+2] annulation reaction using indole derivatives and donor-acceptor (D-A) cyclobutanes is reported, thus providing an efficient and atom-economical access to versatile cyclohexa-fused indolines with excellent levels of diastereoselectivity and a broad substrate scope. In the presence of a chiral SaBOX ligand, excellent enantioselectivity was realized with up to 94 % ee. This novel synthetic method is applied as a general protocol for the total synthesis of (±)-akuammicine and the formal total synthesis of (±)-strychnine from the same common-core scaffold. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ergot alkaloid intoxication in perennial ryegrass (Lolium perenne): an emerging animal health concern in Ireland?

    PubMed

    Canty, Mary J; Fogarty, Ursula; Sheridan, Michael K; Ensley, Steve M; Schrunk, Dwayne E; More, Simon J

    2014-01-01

    Four primary mycotoxicosis have been reported in livestock caused by fungal infections of grasses or cereals by members of the Clavicipitaceae family. Ergotism (generally associated with grasses, rye, triticale and other grains) and fescue toxicosis (associated with tall fescue grass, Festuca arundinacea) are both caused by ergot alkaloids, and referred to as 'ergot alkaloid intoxication'. Ryegrass staggers (associated with perennial ryegrass Lolium perenne) is due to intoxication with an indole-diperpene, Lolitrem B, and metabolites. Fescue-associated oedema, recently described in Australia, may be associated with a pyrrolizidine alkaloid, N-acetyl norloline. Ergotism, caused by the fungus Claviceps purpurea, is visible and infects the outside of the plant seed. Fescue toxicosis and ryegrass staggers are caused by Neotyphodium coenophalium and N. lolii, respectively. Fescue-associated oedema has been associated with tall fescue varieties infected with a specific strain of N. coenophialum (AR542, Max P or Max Q). The name Neotyphodium refers to asexual derivatives of Epichloë spp., which have collectively been termed the epichloë fungi. These fungi exist symbiotically within the grass and are invisible to the naked eye. The primary toxicological effect of ergot alkaloid involves vasoconstriction and/or hypoprolactinaemia. Ingestion of ergot alkaloid by livestock can cause a range of effects, including poor weight gain, reduced fertility, hyperthermia, convulsions, gangrene of the extremities, and death. To date there are no published reports, either internationally or nationally, reporting ergot alkaloid intoxication specifically associated with perennial ryegrass endophytes. However, unpublished reports from the Irish Equine Centre have identified a potential emerging problem of ergot alkaloid intoxication with respect to equines and bovines, on primarily perennial ryegrass-based diets. Ergovaline has been isolated in varying concentrations in the herbage of a small number of equine and bovine farms where poor animal health and performance had been reported. Additionally, in some circumstances changes to the diet, where animals were fed primarily herbage, were sufficient to reverse adverse effects. Pending additional information, these results suggest that Irish farm advisors and veterinarians should be aware of the potential adverse role on animal health and performance of ergot alkaloids from perennial ryegrass infected with endophytic fungi.

  3. Ergot alkaloid intoxication in perennial ryegrass (Lolium perenne): an emerging animal health concern in Ireland?

    PubMed Central

    2014-01-01

    Four primary mycotoxicosis have been reported in livestock caused by fungal infections of grasses or cereals by members of the Clavicipitaceae family. Ergotism (generally associated with grasses, rye, triticale and other grains) and fescue toxicosis (associated with tall fescue grass, Festuca arundinacea) are both caused by ergot alkaloids, and referred to as ‘ergot alkaloid intoxication’. Ryegrass staggers (associated with perennial ryegrass Lolium perenne) is due to intoxication with an indole-diperpene, Lolitrem B, and metabolites. Fescue-associated oedema, recently described in Australia, may be associated with a pyrrolizidine alkaloid, N-acetyl norloline. Ergotism, caused by the fungus Claviceps purpurea, is visible and infects the outside of the plant seed. Fescue toxicosis and ryegrass staggers are caused by Neotyphodium coenophalium and N. lolii, respectively. Fescue-associated oedema has been associated with tall fescue varieties infected with a specific strain of N. coenophialum (AR542, Max P or Max Q). The name Neotyphodium refers to asexual derivatives of Epichloë spp., which have collectively been termed the epichloë fungi. These fungi exist symbiotically within the grass and are invisible to the naked eye. The primary toxicological effect of ergot alkaloid involves vasoconstriction and/or hypoprolactinaemia. Ingestion of ergot alkaloid by livestock can cause a range of effects, including poor weight gain, reduced fertility, hyperthermia, convulsions, gangrene of the extremities, and death. To date there are no published reports, either internationally or nationally, reporting ergot alkaloid intoxication specifically associated with perennial ryegrass endophytes. However, unpublished reports from the Irish Equine Centre have identified a potential emerging problem of ergot alkaloid intoxication with respect to equines and bovines, on primarily perennial ryegrass-based diets. Ergovaline has been isolated in varying concentrations in the herbage of a small number of equine and bovine farms where poor animal health and performance had been reported. Additionally, in some circumstances changes to the diet, where animals were fed primarily herbage, were sufficient to reverse adverse effects. Pending additional information, these results suggest that Irish farm advisors and veterinarians should be aware of the potential adverse role on animal health and performance of ergot alkaloids from perennial ryegrass infected with endophytic fungi. PMID:25295161

  4. A microwave assisted intramolecular-furan-Diels-Alder approach to 4-substituted indoles.

    PubMed

    Petronijevic, Filip; Timmons, Cody; Cuzzupe, Anthony; Wipf, Peter

    2009-01-07

    The key steps of a versatile new protocol for the convergent synthesis of 3,4-disubstituted indoles are the addition of an alpha-lithiated alkylaminofuran to a carbonyl compound, a microwave-accelerated intramolecular Diels-Alder cycloaddition and an in situ double aromatization reaction.

  5. Cytotoxicity, genotoxicity and mechanism of action (via gene expression analysis) of the indole alkaloid aspidospermine (antiparasitic) extracted from Aspidosperma polyneuron in HepG2 cells.

    PubMed

    Coatti, Giuliana Castello; Marcarini, Juliana Cristina; Sartori, Daniele; Fidelis, Queli Cristina; Ferreira, Dalva Trevisan; Mantovani, Mário Sérgio

    2016-08-01

    Aspidospermine is an indole alkaloid with biological properties associated with combating parasites included in the genera Plasmodium, Leishmania and Trypanossoma. The present study evaluated the cytotoxicity (resazurin test), genotoxicity (comet assay) and mechanism of action (gene expression analysis via qRT-PCR) of this alkaloid in human HepG2 cells. The results demonstrated that treatment with aspidospermine was both cytotoxic (starting at 75 μM) and genotoxic (starting at 50 μM). There was no significant modulation of the expression of the following genes: GSTP1 and GPX1 (xenobiotic metabolism); CAT (oxidative stress); TP53 and CCNA2 (cell cycle); HSPA5, ERN1, EIF2AK3 and TRAF2 (endoplasmic reticulum stress); CASP8, CASP9, CASP3, CASP7, BCL-2, BCL-XL BAX and BAX (apoptosis); and PCBP4, ERCC4, OGG1, RAD21 and MLH1 (DNA repair). At a concentration of 50 μM (non-cytotoxic, but genotoxic), there was a significant increase in the expression of CYP1A1 (xenobiotic metabolism) and APC (cell cycle), and at a concentration of 100 μM, a significant increase in the expression of CYP1A1 (xenobiotic metabolism), GADD153 (endoplasmic reticulum stress) and SOD (oxidative stress) was detected, with repression of the expression of GR (xenobiotic metabolism and oxidative stress). The results of treatment with aspidospermine at a 100 μM concentration (the dose indicated in the literature to achieve 89 % reduction of the growth of L. amazonensis) suggest that increased oxidative stress and an unfolded protein response (UPR) occurred in HepG2 cells. For the therapeutic use of aspidospermine (antiparasitic), chemical alteration of the molecule to achieve a lower cytotoxicity/genotoxicity in host cells is recommended.

  6. Monoamine oxidase inhibition by monoterpene indole alkaloids and fractions obtained from Psychotria suterella and Psychotria laciniata.

    PubMed

    Dos Santos Passos, Carolina; Soldi, Tatiane Cristina; Torres Abib, Renata; Anders Apel, Miriam; Simões-Pires, Cláudia; Marcourt, Laurence; Gottfried, Carmem; Henriques, Amélia Teresinha

    2013-06-01

    Alkaloid fractions of Psychotria suterella (SAE) and Psychotria laciniata (LAE) as well as two monoterpene indole alkaloids (MIAs) isolated from these fractions were evaluated against monoamine oxidases (MAO-A and -B) obtained from rat brain mitochondria. SAE and LAE were analysed by HPLC-PDA and UHPLC/HR-TOF-MS leading to the identification of the compounds 1, 2, 3 and 4, whose identity was confirmed by NMR analyses. Furthermore, SAE and LAE were submitted to the enzymatic assays, showing a strong activity against MAO-A, characterized by IC(50) values of 1.37 ± 1.05 and 2.02 ± 1.08 μg/mL, respectively. Both extracts were also able to inhibit MAO-B, but in higher concentrations. In a next step, SAE and LAE were fractionated by RP-MPLC affording three and four major fractions, respectively. The RP-MPLC fractions were subsequently tested against MAO-A and -B. The RP-MPLC fractions SAE-F3 and LAE-F4 displayed a strong inhibition against MAO-A with IC(50) values of 0.57 ± 1.12 and 1.05 ± 1.15 μg/mL, respectively. The MIAs 1 and 2 also inhibited MAO-A (IC(50) of 50.04 ± 1.09 and 132.5 ± 1.33 μg/mL, respectively) and -B (IC(50) of 306.6 ± 1.40 and 162.8 ± 1.26 μg/mL, respectively), but in higher concentrations when compared with the fractions. This is the first work describing the effects of MIAs found in neotropical species of Psychotria on MAO activity. The results suggest that species belonging to this genus could consist of an interesting source in the search for new MAO inhibitors.

  7. Serotonin Receptor Binding Characteristics of Geissoschizine Methyl Ether, an Indole Alkaloid in Uncaria Hook

    PubMed Central

    Ikarashi, Yasushi; Sekiguchi, Kyoji; Mizoguchi, Kazushige

    2018-01-01

    Background: Geissoschizine methyl ether (GM) is one of the indole alkaloids in Uncaria hook, and an active ingredient of yokukansan (YKS) that improves behavioral and psychological symp-toms of dementia (BPSD) in patients with several types of dementia. The pharmacological action of GM has been related to various serotonin (5-HT) receptor subtypes. Objective: The aim of this article is to review the binding characteristics of GM to the 5-HT receptor sub-types in the brains using our own data and previous findings. Methods: Competitive receptor-binding and agonist/antagonist activity assays for several 5-HT receptor subtypes were performed. Moreover, the articles describing pharmacokinetics and brain distribution of GM were searched in PubMed. Results: GM bound the following 5-HT receptor subtypes: 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT4, 5-HT5A, 5-HT6, and 5-HT7. Among these receptors, GM had partial agonistic activity for 5-HT1A receptors and antagonistic activity for 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT7 receptors. Also, GM was me-tabolized by various CYP isoforms, mainly CYP3A4. Parent/unchanged GM was detected in both the blood and brain of rats after oral administration of YKS. In the brains, GM was presumed to bind to 5-HT1A, 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT7 receptors on neuron-like large cells mainly in the frontal cor-tex. Conclusion: These results suggest that GM is a pharmacologically important alkaloid that regulates vari-ous serotonergic activities or functions by binding to multiple 5-HT receptor subtypes. Thus, this review provides recent 5-HT receptor-related evidence that GM is partly responsible for pharmacological effects of YKS. PMID:28322152

  8. Synthesis of Structurally Diverse 2,3-Fused Indoles via Microwave-Assisted AgSbF6-Catalysed Intramolecular Difunctionalization of o-Alkynylanilines

    PubMed Central

    Huang, Yuanqiong; Yang, Yan; Song, Hongjian; Liu, Yuxiu; Wang, Qingmin

    2015-01-01

    2,3-Fused indoles are found in numerous natural products and drug molecules. Although several elegant methods for the synthesis of this structural motif have been reported, long reaction times and harsh conditions are sometimes required, and the yields tend to be low. Herein, we report a microwave method for straightforward access to various types of 2,3-fused indoles via AgSbF6-catalysed intramolecular difunctionalization of o-alkynylanilines. AgSbF6 played a role in both the hydroamination step and the imine-formation step. This method, which exhibited excellent chemoselectivity (no ring-fused 1,2-dihydroquinolines were formed), was used for formal syntheses of the natural products conolidine and ervaticine and the antihistamine drug latrepirdine. PMID:26310858

  9. Evolution of a short route to strychnine by using the samarium-diiodide-induced cascade cyclization as a key step.

    PubMed

    Beemelmanns, Christine; Reissig, Hans-Ulrich

    2015-06-01

    This comprehensive report accounts the development of a highly diastereoselective samarium diiodide-induced cascade reaction of substituted indolyl ketones. The complexity-generating transformation with SmI2 allows the diastereoselective generation of three stereogenic centers including one quaternary center in one step. The obtained tetra- or pentacyclic dihydroindole derivatives are structural motifs of many monoterpene indole alkaloids, and their subsequent transformations gave way to one of the shortest approaches towards strychnine (14 % overall yield in ten steps, or 10 % overall yield in eight steps). During the course of this report we discuss the influence of substituents on the cyclization step, plausible mechanistic scenarios for the SmI2 -induced cascade reaction, diastereoselective reductive amination, and regioselective dehydratization protocols towards the pentacyclic core structure of strychnos alkaloids. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A new alkaloid from Portulaca oleracea L. and its antiacetylcholinesterase activity.

    PubMed

    Xiu, Fen; Li, Xuetao; Zhang, Wenjie; He, Fan; Ying, Xixiang; Stien, Didier

    2018-04-18

    A new alkaloid, (10E, 12E)-9-ureidooctadeca-10, 12-dienoic acid, named oleraurea (1) and 10 known compounds, p-hydroxybenzaldehyde (2), p-hydroxybenzoic acid (3), p-hydroxyacetophenone (4), benzamide (5), (E)-p-coumaramide (6), (E)-ferulamide (7), soyalkaloid A (8), β-carboline-3-carboxylic acid (9), 2, 3, 4, 9-tetrahydro-1H-pyrido [3, 4-b] indole-3-carboxylic acid (10), (1S, 3S)-1-methyl-1, 2, 3, 4-tetrahydro-β-carboline-3-carboxylic acid (11) were obtained from Portulaca oleracea L., in which, compounds 4, 5, 8-11 were isolated from the plant for the first time. The structure of the compound 1 was identified using spectroscopic methods including 1D and 2D NMR, HR-ESI-TOF-MS. The compounds 1, 5-11 presented anticholinesterase activities, but the P. oleracea extract (POE) presented very low anticholinesterase activity.

  11. Synthesis of carbon-11-labeled 5-HT6R antagonists as new candidate PET radioligands for imaging of Alzheimer's disease.

    PubMed

    Wang, Xiaohong; Dong, Fugui; Miao, Caihong; Li, Wei; Wang, Min; Gao, Mingzhang; Zheng, Qi-Huang; Xu, Zhidong

    2018-06-01

    Carbon-11-labeled serotonin (5-hydroxytryptamine) 6 receptor (5-HT 6 R) antagonists, 1-[(2-bromophenyl)sulfonyl]-5-[ 11 C]methoxy-3-[(4-methyl-1-piperazinyl)methyl]-1H-indole (O-[ 11 C]2a) and 1-[(2-bromophenyl)sulfonyl]-5-methoxy-3-[(4-[ 11 C]methyl-1-piperazinyl)methyl]-1H-indole (N-[ 11 C]2a), 5-[ 11 C]methoxy-3-((4-methylpiperazin-1-yl)methyl)-1-(phenylsulfonyl)-1H-indole (O-[ 11 C]2b) and 5-methoxy-3-((4-[ 11 C]methylpiperazin-1-yl)methyl)-1-(phenylsulfonyl)-1H-indole (N-[ 11 C]2b), 1-((4-isopropylphenyl)sulfonyl)-5-[ 11 C]methoxy-3-((4-methylpiperazin-1-yl)methyl)-1H-indole (O-[ 11 C]2c) and 1-((4-isopropylphenyl)sulfonyl)-5-methoxy-3-((4-[ 11 C]methylpiperazin-1-yl)methyl)-1H-indole (N-[ 11 C]2c), 1-((4-fluorophenyl)sulfonyl)-5-[ 11 C]methoxy-3-((4-methylpiperazin-1-yl)methyl)-1H-indole (O-[ 11 C]2d) and 1-((4-fluorophenyl)sulfonyl)-5-methoxy-3-((4-[ 11 C]methylpiperazin-1-yl)methyl)-1H-indole (N-[ 11 C]2d), were prepared from their O- or N-desmethylated precursors with [ 11 C]CH 3 OTf through O- or N-[ 11 C]methylation and isolated by HPLC combined with SPE in 40-50% radiochemical yield, based on [ 11 C]CO 2 and decay corrected to end of bombardment (EOB). The radiochemical purity was >99%, and the molar activity (MA) at EOB was 370-740 GBq/μmol with a total synthesis time of ∼40-min from EOB. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. HPTLC method for the simultaneous determination of four indole alkaloids in Rauwolfia tetraphylla: a study of organic/green solvent and continuous/pulse sonication.

    PubMed

    Gupta, Shikha; Shanker, Karuna; Srivastava, Santosh K

    2012-07-01

    A new validated high-performance thin-layer chromatographic (HPTLC) method has been developed for the simultaneous quantitation of four antipsychotic indole alkaloids (IAs), reserpiline (RP, 1), α-yohimbine (YH, 2), isoreserpiline (IRP, 3) and 10-methoxy tetrahydroalstonine (MTHA, 4) as markers in the leaves of Rauwolfia tetraphylla. Extraction efficiency of the targeted IAs from the leaf matrix with organic and ecofriendly (green) solvents using percolation, ultrasonication and microwave techniques were studied. Non-ionic surfactants, viz. Triton X-100, Triton X-114 and Genapol X-80 were used for extraction and no back-extraction or liquid chromatographic steps were used to remove the targeted IAs from the surfactant-rich extractant phase. The optimized cloud point extraction was found a potentially useful methodology for the preconcentration of the targeted IAs. The separation was achieved on silica gel 60F(254) HPTLC plates using hexane-ethylacetate-methanol (5:4:1, v/v/v) as mobile phase. The quantitation of IAs (1-4) was carried out using the densitometric reflection/absorption mode at 520 nm after post chromatographic derivatization using Dragendorff's reagent. The method was validated for peak purity, precision, accuracy, robustness, limit of detection (LOD) and quantitation (LOQ). Method specificity was confirmed using retention factor (R(f)) and visible spectral (post chromatographic scan) correlation of marker compounds in the samples and standard tracks. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Evaluation of tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) hairy roots for the production of geraniol, the first committed step in terpenoid indole alkaloid pathway.

    PubMed

    Ritala, Anneli; Dong, Lemeng; Imseng, Nicole; Seppänen-Laakso, Tuulikki; Vasilev, Nikolay; van der Krol, Sander; Rischer, Heiko; Maaheimo, Hannu; Virkki, Arho; Brändli, Johanna; Schillberg, Stefan; Eibl, Regine; Bouwmeester, Harro; Oksman-Caldentey, Kirsi-Marja

    2014-04-20

    The terpenoid indole alkaloids are one of the major classes of plant-derived natural products and are well known for their many applications in the pharmaceutical, fragrance and cosmetics industries. Hairy root cultures are useful for the production of plant secondary metabolites because of their genetic and biochemical stability and their rapid growth in hormone-free media. Tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) hairy roots, which do not produce geraniol naturally, were engineered to express a plastid-targeted geraniol synthase gene originally isolated from Valeriana officinalis L. (VoGES). A SPME-GC-MS screening tool was developed for the rapid evaluation of production clones. The GC-MS analysis revealed that the free geraniol content in 20 hairy root clones expressing VoGES was an average of 13.7 μg/g dry weight (DW) and a maximum of 31.3 μg/g DW. More detailed metabolic analysis revealed that geraniol derivatives were present in six major glycoside forms, namely the hexose and/or pentose conjugates of geraniol and hydroxygeraniol, resulting in total geraniol levels of up to 204.3 μg/g DW following deglycosylation. A benchtop-scale process was developed in a 20-L wave-mixed bioreactor eventually yielding hundreds of grams of biomass and milligram quantities of geraniol per cultivation bag. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Dereplication-guided isolation of a new indole alkaloid triglycoside from the hooks of Uncaria rhynchophylla by LC with ion trap time-of-flight MS.

    PubMed

    Zhang, Jian-Gang; Huang, Xiao-Yan; Ma, Yun-Bao; Zhang, Xue-Mei; Chen, Ji-Jun; Geng, Chang-An

    2018-04-01

    Uncaria rhynchophylla (Gou-Teng) as the monarch herb of many formulae (Fufang), e.g. "Tian-Ma-Gou-Teng-Yin," "Ling-Jiao-Gou-Teng-Yin," and "Yi-Gan-San", is a famous traditional Chinese medicine documented in the Chinese pharmacopoeia for mental and cardiovascular diseases. In the traditional Chinese medicine system, only the hook-bearing stems are used as the crude materials for Gou-Teng, and the hooks are always considered more effective than the stems. Focusing on the mono-herb and its active constituents from combinatorial formulae is the core idea of reductionism of traditional Chinese medicine theory. Detailed liquid chromatography with mass spectrometry analysis on the hooks of U. rhynchophylla was performed to profile the chemical constituents based on tandem mass spectrometry fragmentation and UV absorption. Under the guidance of liquid chromatography with ion trap/time-of-flight mass spectrometry, one new indole alkaloid triglycoside (1), together with five known compounds 2-6 as the main constituents, were isolated from the hooks of U. rhynchophylla by various column chromatography methods. Compound 1 showed moderate activity on MT 1 and MT 2 melatonin receptors with agonistic rates of 79.6 and 46.3% at the concentration of 1 mM. This dereplication strategy can be equally applicable to rapidly disclose the active constituents of other Chinese herbs through targeted purification. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Metabolites of hirsuteine and hirsutine, the major indole alkaloids of Uncaria rhynchophylla, in rats.

    PubMed

    Nakazawa, Takahiro; Banba, Koh-ichi; Hata, Kazumasa; Nihei, Yutaka; Hoshikawa, Ayumi; Ohsawa, Keisuke

    2006-08-01

    The metabolic fate of hirsuteine (HT) and hirsutine (HS), the major indole alkaloids of Uncaria rhynchophylla, was investigated using rats. On HPLC analysis, urine from rats orally administered HT were found to contain two metabolites (HT1 and HT2) together with unchanged HT. Similarly HS also was metabolized to two compounds (HS1 and HS2). Metabolite structures were determined to be 11-hydroxyhirsuteine-11-O-beta-D-glucuronide (HT1), 11-hydroxyhirsuteine (HT2), 11-hydroxyhirsutine-11-O-beta-D-glucuronide (HS1) and 11-hydroxyhirsutine (HS2), based on spectroscopic and chemical data. HT1 and HS1 were also detected in bile from rats administered HT and HS, respectively. Total cumulative urinary excretion within 72 h of oral administration was approximately 14% and 26% of the HT and HS doses, respectively, while total cumulative biliary excretion was 35% and 46%, respectively. HT and HS 11-hydroxylation were catalyzed by rat liver microsomes. This 11-hydroxylation activity was inhibited by addition of SKF-525A (a nonselective CYP inhibitor) or cimetidine (a CYP2C inhibitor). These results indicate that orally administered HT and HS are converted to 11-hydroxy metabolites in rats, and that the metabolites are predominantly excreted in bile rather than urine following glucuronidation. Furthermore, the results suggest that CYP2C enzymes are involved, at least in part, in the specific 11-hydroxylation of HT and HS.

  16. Total synthesis of (-)-strychnine.

    PubMed

    Kaburagi, Yosuke; Tokuyama, Hidetoshi; Fukuyama, Tohru

    2004-08-25

    Total synthesis of (-)-strychnine is described. Notable features of our synthesis include (1) palladium-catalyzed coupling of the indole and vinyl epoxide moieties, (2) synthesis of the nine-membered cyclic amine derivative from the diol precursor in a one-pot procedure, and (3) transannular cyclization of the nine-membered cyclic amine.

  17. Synthesis of potential radioprotective components from Chinese herb drug Rhizoma Chuanxiong (rhizome of Ligusticum chuanxiong Hort. , umbelliferae)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, X.

    1993-01-01

    The ethanolic extracts of some Chinese traditional herb drugs, reported by Hong-Fu Wang et al. in China, could inhibit platelet aggregation as well as protect against radiation damage in mice, rat and rabbits. The inhibitory effects of the extracts of five Chinese drugs on the rate of platelet aggregation were observed in both in vitro and in vivo tests, averaging 23--53% in vitro and 46--69% in vivo. Antiradiation tests on mice vs. 7.5--8.0 Gy of [gamma]-radiation, using the herb drug extracts as protective agents, showed increasing survival rates by 8--50%. Based on Hong-Fu Wang's report, a search for the activemore » constituents of these herb drugs in inhibiting platelet aggregation and protecting animals against radiation damage was started. In this research program, a Chinese traditional drug, Rhizoma Chuanxiong (rhizome of Ligusticum chuanxiong Hort.) was chosen. Three types of chemicals present in Rhizoma Chuanxiong, appeared promising for testing: 1-(5-hydroxymethyl-2-furyl)-9H-pyrido-(3,4-b)indole, 4-hydroxyl-3-butylidenephthalide and 5-hydroxyl-3-butylidenephthalide, and 4-hydroxyl-3-methoxycinnamyl 4-hydroxyl-3-methoxycinnamate. A total of 56 compounds of these derivatives has been synthesized and 30 were synthesized for the first time. The structure elucidation of these compounds was based on IR, [sup 1]H NMR and elemental analysis. From this research program, a very mild dehydrogenation method was developed. It was by using 2,3-dichloro-5,6-dicyanobenzoquinone in acetonitrile at ice bath temperature to dehydrogenate 1-(5-hydroxymethyl-2-furyl)-1,2,3,4-tetrahydro-9H-pyrido-(3,4-b)indole into 1-(5-hydroxymethyl-2-furyl)-9H-pyrido-(3,4-b)indole. This project showed for the first time that harmanoid alkaloids have the activity of inhibition of plate aggregation by 4 to 23 times that of aspirin. These results aid in establishing a relation between radiation protection in animals and prevention of platelet hyperaggregation.« less

  18. Vindogentianine, a hypoglycemic alkaloid from Catharanthus roseus (L.) G. Don (Apocynaceae).

    PubMed

    Tiong, Soon Huat; Looi, Chung Yeng; Arya, Aditya; Wong, Won Fen; Hazni, Hazrina; Mustafa, Mohd Rais; Awang, Khalijah

    2015-04-01

    Vindogentianine, a new indole alkaloid together with six known alkaloids, vindoline, vindolidine, vindolicine, vindolinine, perivine and serpentine were isolated from leaf extract (DA) of Catharanthus roseus (L.) G. Don. Their structures were elucidated by spectroscopic methods; NMR, MS, UV and IR. Vindogentianine is a dimer containing a vindoline moiety coupled to a gentianine moiety. After 24h incubation, vindogentianine exhibited no cytotoxic effect in C2C12 mouse myoblast and β-TC6 mouse pancreatic cells (IC50>50μg/mL). Real-time cell proliferation monitoring also indicated vindogentianine had little or no effect on C2C12 mouse myoblast cell growth at the highest dose tested (200μg/mL), without inducing cell death. Vindogentianine exhibited potential hypoglycemic activity in β-TC6 and C2C12 cells by inducing higher glucose uptake and significant in vitro PTP-1B inhibition. However, in vitro α-amylase and α-glucosidase inhibition assay showed low inhibition under treatment of vindogentianine. This suggests that hypoglycemic activity of vindogentianine may be due to the enhancement of glucose uptake and PTP-1B inhibition, implying its therapeutic potential against type 2 diabetes. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. [Vasodilative effects of indole alkaloids obtained from domestic plants, Uncaria rhynchophylla Miq. and Amsonia elliptica Roem. et Schult].

    PubMed

    Ozaki, Y

    1990-02-01

    Vasodilative effects of hirsutine (HS) and hirsuteine (HST) which were isolated from the domestic plant Uncaria rhynchophylla Miq. and beta-yohimbine (beta-Y) which was isolated from the domestic plant Amsonia elliptica Roem. et Schult. were carried out. In the hind-limb artery of anesthetized dogs, intra-arterial administration of HS, HST and beta-Y caused a vasodilatation. The vasodilative potency of HS was somewhat stronger than that of HST, and the potency of both alkaloids was approximately equal to that of papaverine. The vasodilative effect of beta-Y was similar to that of yohimbine, which is considered to be derived from its alpha-adrenoceptor blocking effect, and the potency of both alkaloids was approximately the same, while the effect of beta-Y was stronger than that of papaverine. In the coronary artery, HS showed a vasodilatation and its potency was weaker than that of papaverine. Also, HS showed the same effect in the cerebral artery, and the potency of HS was approximately the same as that of papaverine. These results suggest that the mode of the vasodilative effect induced by HS may partly differ from that of papaverine.

  20. Ag(I)-Promoted Dehydroxylation and Site-Selective 1,7-Disulfonylation of Diaryl(1 H-indol-2-yl)methanols.

    PubMed

    Zhou, Yu; Cao, Wen-Bin; Zhang, Ling-Ling; Xu, Xiao-Ping; Ji, Shun-Jun

    2018-06-01

    A novel dehydroxylation and site-selective 1,7-disulfonylation reaction of diaryl(1 H-indol-2-yl)methanols with sodium sulfinates was described. The protocol provided an efficient strategy for the synthesis of disulfonylated 2-(diarylmethyl)indoles by exploring a range of substrates. The mechanistic studies revealed that silver nitrate served as both a Lewis acid and an oxidant for the sequential 1,7-disulfonylation process leading to the formation of final products.

  1. Synthesis and activity of phenyl derivatives containing 5,6-dimethylthieno[2,3-d]pyrimidin-4(1H)-one or 4H-pyrimido[5,4-b]indol-4-one heterocyclic system as potential nonsteroidal anti-inflammatory drugs.

    PubMed

    Santagati, Andrea; Granata, Giuseppe; Santagati, Maria; Cutuli, Vincenza; Mangano, Nunzio Guido; Caruso, Antonina

    2002-01-01

    The synthesis, the analgesic and anti-inflammatory activities of two series of phenyl derivatives containing 5,6-dimethyl-thieno[2,3-d]pyrimidin-4(1H)-one and 4H-pyrimido[5,4-b]indol-4-one system, respectively, are reported. Two of these derivatives, 6A and 9B, showed interesting activities. The results of the pharmacological assays are discussed.

  2. Rh(III)-Catalyzed Synthesis of N-Unprotected Indoles from Imidamides and Diazo Ketoesters via C-H Activation and C-C/C-N Bond Cleavage.

    PubMed

    Qi, Zisong; Yu, Songjie; Li, Xingwei

    2016-02-19

    The synthesis of N-unprotected indoles has been realized via Rh(III)-catalyzed C-H activation/annulation of imidamides with α-diazo β-ketoesters. The reaction occurs with the release of an amide coproduct, which originates from both the imidamide and the diazo as a result of C═N cleavage of the imidamide and C-C(acyl) cleavage of the diazo. A rhodacyclic intermediate has been isolated and a plausible mechanism has been proposed.

  3. Rhodium enalcarbenoids: direct synthesis of indoles by rhodium(II)-catalyzed [4+2] benzannulation of pyrroles.

    PubMed

    Dawande, Sudam Ganpat; Kanchupalli, Vinaykumar; Kalepu, Jagadeesh; Chennamsetti, Haribabu; Lad, Bapurao Sudam; Katukojvala, Sreenivas

    2014-04-14

    Disclosed herein is the design of an unprecedented electrophilic rhodium enalcarbenoid which results from rhodium(II)-catalyzed decomposition of a new class of enaldiazo compounds. The synthetic utility of these enalcarbenoids has been successfully demonstrated in the first transition-metal-catalyzed [4+2] benzannulation of pyrroles, thus leading to substituted indoles. The new benzannulation has been applied to the efficient synthesis of the natural product leiocarpone as well as a potent adipocyte fatty-acid binding protein inhibitor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Solid-phase synthesis and chemical space analysis of a 190-membered alkaloid/terpenoid-like library

    PubMed Central

    Moura-Letts, Gustavo; DiBlasi, Christine M.; Bauer, Renato A.; Tan, Derek S.

    2011-01-01

    Alkaloid and terpenoid natural products display an extensive array of chemical frameworks and biological activities. However such scaffolds remain underrepresented in current screening collections and are, thus, attractive targets for the synthesis of natural product-based libraries that access underexploited regions of chemical space. Recently, we reported a systematic approach to the stereoselective synthesis of multiple alkaloid/terpenoid-like scaffolds using transition metal-mediated cycloaddition and cyclization reactions of enyne and diyne substrates assembled on a tert-butylsulfinamide lynchpin. We report herein the synthesis of a 190-membered library of alkaloid/terpenoid-like molecules using this synthetic approach. Translation to solid-phase synthesis was facilitated by the use of a tert-butyldiarylsilyl (TBDAS) linker that closely mimics the tert-butyldiphenysilyl protecting group used in the original solution-phase route development work. Unexpected differences in stereoselectivity and regioselectivity were observed in some reactions when carried out on solid support. Further, the sulfinamide moiety could be hydrolyzed or oxidized efficiently without compromising the TBDAS linker to provide additional amine and sulfonamide functionalities. Principal component analysis of the structural and physicochemical properties of these molecules confirmed that they access regions of chemical space that overlap with bona fide natural products and are distinct from areas addressed by conventional synthetic drugs and drug-like molecules. The influences of scaffolds and substituents were also evaluated, with both found to have significant impacts on location in chemical space and three-dimensional shape. Broad biological evaluation of this library will provide valuable insights into the abilities of natural product-based libraries to access similarly underexploited regions of biological space. PMID:21451137

  5. Electrophilicity: the "dark-side" of indole chemistry.

    PubMed

    Bandini, Marco

    2013-08-28

    Indole is by far one of the most popular heterocyclic scaffolds in nature. The intriguing and challenging molecular architectures of polycyclic, naturally occurring indolyl compounds constitute a continuous stimulus for development in organic synthesis. The field had a formidable boom across the new millennium when catalysis started revolutionizing the chemistry of indole, providing always more convincing and sustainable solutions to the selective "decoration" of this pharmacophore. A common guideline of these approaches relies on the intrinsic overexpression of electron density of the indole core. Despite less diffusion, the "dark-side" of indole reactivity, electrophilicity, has been also elegantly documented with direct applications towards the realization of specific interatomic connections that would be difficult to obtain by means of conventional indole reactivity. The present Perspective article summarizes the major findings that brought the research area from the pioneering findings of the 60s to the state of the art.

  6. A novel toxic alkaloid from poison hemlock (Conium maculatum L., Apiaceae): identification, synthesis and antinociceptive activity.

    PubMed

    Radulović, Niko; Dorđević, Nevenka; Denić, Marija; Pinheiro, Mariana Martins Gomes; Fernandes, Patricia Dias; Boylan, Fabio

    2012-02-01

    2-Pentylpiperidine, named conmaculatin, a novel volatile alkaloid related to coniine was identified from the renowned toxic weed Conium maculatum L. (Apiaceae). The structure of conmaculatin was corroborated by synthesis (8 steps starting from cyclohexanol, overall yield 12%). Conmaculatin's strong peripheral and central antinociceptive activity in mice was observed in a narrow dose range (10-20mg/kg). It was found to be lethal in doses higher than 20mg/kg. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. A convenient allylsilane-N-acyliminium route toward indolizidine and quinolizidine alkaloids

    PubMed Central

    Remuson, Roland

    2007-01-01

    This review relates all the results that we obtained in the field of the total synthesis of indolizidine and quinolizidine alkaloids using a strategy of the addition of an allylsilane on an N-acyliminium ion. In this paper, we describe the synthesis of racemic indolizidine 167B and chiral indolizidines: (-)-indolizidines 167B, 195B, 223AB, (+)-monomorine, (-)-(3R,5S,8aS)-3-butyl-5-propylindolizidine and (-)-dendroprimine. Next, we relate the synthesis that we have developed in the quinolizidines field: (±)-myrtine and epimyrtine, (±)-lasubines I and II and chiral quinolizidines: (+)-myrtine, (-)-epimyrtine, (-)-lasubines I and II and (+)-subcosine II. PMID:17910752

  8. Phosphorylated Derivatives of Alkaloids and Nitrogen-containing Heterocycles — Cholinesterase Inhibitors

    NASA Astrophysics Data System (ADS)

    Sadykov, Abid S.; Dalimov, D. N.; Godovikov, Nikolai N.

    1983-10-01

    The review deals with the synthesis and anticholinesterase activities of phosphorylated derivatives of certain alkaloids and nitrogen-containing heterocycles. It is shown that the conformational properties of the alkaloid and nitrogen-containing heterocycle residues in the composition of the organophosphorus inhibitor (OPI) molecule play an important role in the inhibition of the catalytic activity of cholinesterases. The type of inhibition of cholinesterases also varies as a function of chemical structure. The bibliography includes 45 references.

  9. Metal-Free Multiple Carbon-Carbon and Carbon-Hydrogen Bond Activations via Charge-Switching Mechanism in Unstrained Diindolylmethanes.

    PubMed

    Challa, Chandrasekhar; Varughese, Sunil; Suresh, Cherumuttathu H; Lankalapalli, Ravi S

    2017-08-18

    A transformation of the unstrained phenol substituted 3,3'-diindolylmethanes (DIPMs) to 2,3'-diindolylketones (DIKs) by double C-C single bond cleavage with associated rearrangements, triggered by phenyliodine(III) diacetate (PIDA), is reported. Density functional theory studies reveal a mechanism involving multiple "charge-switching" steps by synergistic involvement of the two indole units with overall low activation energy. The indole 'charge-switching' mechanism in DIPMs was further extended toward synthesis of a natural product motif cyclohepta[b]indole from biaryl appended DIBM.

  10. 3-methyl-2-phenyl-1-substituted-indole derivatives as indomethacin analogs: design, synthesis and biological evaluation as potential anti-inflammatory and analgesic agents.

    PubMed

    Abdellatif, Khaled R A; Lamie, Phoebe F; Omar, Hany A

    2016-01-01

    In a new group of 3-methyl-2-phenyl-1-substituted-indole derivatives (10a-f), the indomethacin analogs were prepared via the Fisher indole synthesis reaction of propiophenone with appropriately substituted phenylhydrazine hydrochloride. This is followed by the insertion of the appropriate benzyl or benzoyl fragment. All the synthesized compounds were evaluated for their anti-inflammatory (in vitro and in vivo) and analgesic activities. The methanesulphonyl derivatives 10d, e and f showed the highest anti-inflammatory (in vitro and in vivo) and analgesic activities. In addition, molecular docking studies were performed on compounds 10a-f and the results were in agreement with that obtained from the in vitro COX inhibition assays. The significant anti-inflammatory and analgesic activities exhibited by 10d and 10e warrant continued preclinical development as potential anti-inflammatory and analgesic agents.

  11. Network-analysis-guided synthesis of weisaconitine D and liljestrandinine

    NASA Astrophysics Data System (ADS)

    Marth, C. J.; Gallego, G. M.; Lee, J. C.; Lebold, T. P.; Kulyk, S.; Kou, K. G. M.; Qin, J.; Lilien, R.; Sarpong, R.

    2015-12-01

    General strategies for the chemical synthesis of organic compounds, especially of architecturally complex natural products, are not easily identified. Here we present a method to establish a strategy for such syntheses, which uses network analysis. This approach has led to the identification of a versatile synthetic intermediate that facilitated syntheses of the diterpenoid alkaloids weisaconitine D and liljestrandinine, and the core of gomandonine. We also developed a web-based graphing program that allows network analysis to be easily performed on molecules with complex frameworks. The diterpenoid alkaloids comprise some of the most architecturally complex and functional-group-dense secondary metabolites isolated. Consequently, they present a substantial challenge for chemical synthesis. The synthesis approach described here is a notable departure from other single-target-focused strategies adopted for the syntheses of related structures. Specifically, it affords not only the targeted natural products, but also intermediates and derivatives in the three subfamilies of diterpenoid alkaloids (C-18, C-19 and C-20), and so provides a unified synthetic strategy for these natural products. This work validates the utility of network analysis as a starting point for identifying strategies for the syntheses of architecturally complex secondary metabolites.

  12. Metabolism and disposition of N,N-dimethyltryptamine and harmala alkaloids after oral administration of ayahuasca.

    PubMed

    Riba, Jordi; McIlhenny, Ethan H; Valle, Marta; Bouso, José Carlos; Barker, Steven A

    2012-01-01

    Ayahuasca is an Amazonian psychotropic plant tea obtained from Banisteriopsis caapi, which contains β-carboline alkaloids, chiefly harmine, harmaline and tetrahydroharmine. The tea usually incorporates the leaves of Psychotria viridis or Diplopterys cabrerana, which are rich in N,N-dimethyltryptamine (DMT), a psychedelic 5-HT(2A/1A/2C) agonist. The β-carbolines reversibly inhibit monoamine-oxidase (MAO), effectively preventing oxidative deamination of the orally labile DMT and allowing its absorption and access to the central nervous system. Despite increased use of the tea worldwide, the metabolism and excretion of DMT and the β-carbolines has not been studied systematically in humans following ingestion of ayahuasca. In the present work, we used an analytical method involving high performance liquid chromatography (HPLC)/electrospray ionization (ESI)/selected reaction monitoring (SRM)/tandem mass spectrometry(MS/MS) to characterize the metabolism and disposition of ayahuasca alkaloids in humans. Twenty-four-hour urine samples were obtained from 10 healthy male volunteers following administration of an oral dose of encapsulated freeze-dried ayahuasca (1.0 mg DMT/kg body weight). Results showed that less than 1% of the administered DMT dose was excreted unchanged. Around 50% was recovered as indole-3-acetic acid but also as DMT-N-oxide (10%) and other MAO-independent compounds. Recovery of DMT plus metabolites reached 68%. Harmol, harmalol, and tetrahydroharmol conjugates were abundant in urine. However, recoveries of each harmala alkaloid plus its O-demethylated metabolite varied greatly between 9 and 65%. The present results show the existence in humans of alternative metabolic routes for DMT other than biotransformation by MAO. Also that O-demethylation plus conjugation is an important but probably not the only metabolic route for the harmala alkaloids in humans. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Determination of phytochemicals, antioxidant activity and total phenolic content in Andrographis paniculata using chromatographic methods.

    PubMed

    Kurzawa, Marzanna; Filipiak-Szok, Anna; Kłodzińska, Ewa; Szłyk, Edward

    2015-07-15

    Antioxidant activity, total phenolics content and selected phytochemicals (alkaloids and andrographolides) were determined in Andrographis paniculata and in dietary supplements containing this plant. Antioxidant activity was measured by FRAP, CUPRAC and DPPH procedures and ranged from 503.36 to 6164.09μmol TE/100g d.m. depending on methods, part of plant and kind of dietary supplement. The total phenolics (175.13-1723.79mg GAE/100g) and andrographolides content (19.44-85.13mg/g) in the studied samples were correlated with antioxidant activities determined by CUPRAC, FRAP and DPPH (r>0.95, p<0.05 level). Purine alkaloids: caffeine, theobromine, theophylline and indole alkaloids: harmine, harmane, harmol, yohimbine, brucine and strychnine were detected in the studied samples by different chromatographic techniques (HPLC-DAD, LC-MS/MS, GC-MS). The total alkaloids content in APs-roots and APs-leaves varies from 50.71±0.36mg/g d.m. to 78.71±0.48mg/g d.m., respectively, whereas for dietary supplements (Pn and DK) TAC was found between 19.52±0.15mg/g and 22.18±0.15mg/g d.m.. The highest concentration of andrographolides was found in A. paniculata leaves, whereas the lowest in dietary supplement Pn. Moreover principal component analysis, cluster analysis and one-way ANOVA follow by Duncan's tests were also performed. Copyright © 2015. Published by Elsevier B.V.

  14. Large-scale separation of antipsychotic alkaloids from Rauwolfia tetraphylla L. by pH-zone-refining fast centrifugal partition chromatography.

    PubMed

    Maurya, Anupam; Gupta, Shikha; Srivastava, Santosh K

    2013-01-01

    pH-zone-refining centrifugal partition chromatography was successively applied in the large-scale separation of close R(f) antipsychotic indole alkaloids directly from CHCl(3) fraction of Rauwolfia tetraphylla leaves. Two experiments with increasing mass from 500 mg to 3 g of crude alkaloid extracts (1C) of R. tetraphylla were carried out in normal-displacement mode using a two-phase solvent system composed of methyl tert-butyl ether/ACN/water (4:1:5, v/v/v) where HCl (12 mM) was added to the lower aqueous stationary phase as a retainer and triethylamine (5 mM) to the organic mobile phase as an eluter. The two centrifugal partition chromatography separations afforded a total of 162.6 mg of 10-methoxytetrahydroalstonine (1) and 296.5 mg of isoreserpiline (2) in 97% and 95.5% purity, respectively, along with a 400.9 mg mixture of α-yohimbine and reserpiline (3 and 4). Further, this mixture was resolved over medium pressure LC using TLC grade silica gel H (average particle size 10 μm), which afforded 160.4 mg of α-yohimbine (3) and 150.2 mg of reserpiline (4) in >95% purities. The purity of the isolated antipsychotic alkaloids was analyzed by high-performance LC and their structures were characterized on the basis of their 1D, 2D NMR and electrospray ionization-mass spectroscopic data. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Auxin Produced by the Indole-3-Pyruvic Acid Pathway Regulates Development and Gemmae Dormancy in the Liverwort Marchantia polymorpha[OPEN

    PubMed Central

    Eklund, D. Magnus; Ishizaki, Kimitsune; Flores-Sandoval, Eduardo; Kikuchi, Saya; Takebayashi, Yumiko; Tsukamoto, Shigeyuki; Hirakawa, Yuki; Nonomura, Maiko; Kato, Hirotaka; Kouno, Masaru; Bhalerao, Rishikesh P.; Lagercrantz, Ulf; Kasahara, Hiroyuki; Kohchi, Takayuki; Bowman, John L.

    2015-01-01

    The plant hormone auxin (indole-3-acetic acid [IAA]) has previously been suggested to regulate diverse forms of dormancy in both seed plants and liverworts. Here, we use loss- and gain-of-function alleles for auxin synthesis- and signaling-related genes, as well as pharmacological approaches, to study how auxin regulates development and dormancy in the gametophyte generation of the liverwort Marchantia polymorpha. We found that M. polymorpha possess the smallest known toolkit for the indole-3-pyruvic acid (IPyA) pathway in any land plant and that this auxin synthesis pathway mainly is active in meristematic regions of the thallus. Previously a Trp-independent auxin synthesis pathway has been suggested to produce a majority of IAA in bryophytes. Our results indicate that the Trp-dependent IPyA pathway produces IAA that is essential for proper development of the gametophyte thallus of M. polymorpha. Furthermore, we show that dormancy of gemmae is positively regulated by auxin synthesized by the IPyA pathway in the apex of the thallus. Our results indicate that auxin synthesis, transport, and signaling, in addition to its role in growth and development, have a critical role in regulation of gemmae dormancy in M. polymorpha. PMID:26036256

  16. Viability of a [2 + 2 + 1] Hetero-Pauson-Khand Cycloaddition Strategy toward Securinega Alkaloids: Synthesis of the BCD-Ring Core of Securinine and Related Alkaloids.

    PubMed

    Chirkin, Egor; Michel, Sylvie; Porée, François-Hugues

    2015-07-02

    Preliminary results related to the development of [2 + 2 + 1]-oxa-hetero-Pauson-Khand cycloaddition strategy toward the Securinega alkaloids are reported. The critical tricyclic BCD-ring core was assembled in only nine linear steps from cheap 4-hydroxy-l-proline. The study provides valuable insight into the scope of a rare hetero-Pauson-Khand reaction, a powerful tool for the rapid construction of butenolide-containing natural products.

  17. A Picrinine N-Methyltransferase Belongs to a New Family of γ-Tocopherol-Like Methyltransferases Found in Medicinal Plants That Make Biologically Active Monoterpenoid Indole Alkaloids1[OPEN

    PubMed Central

    Levac, Dylan; Cázares, Paulo; Yu, Fang

    2016-01-01

    Members of the Apocynaceae plant family produce a large number of monoterpenoid indole alkaloids (MIAs) with different substitution patterns that are responsible for their various biological activities. A novel N-methyltransferase involved in the vindoline pathway in Catharanthus roseus showing distinct similarity to γ-tocopherol C-methyltransferases was used in a bioinformatic screen of transcriptomes from Vinca minor, Rauvolfia serpentina, and C. roseus to identify 10 γ-tocopherol-like N-methyltransferases from a large annotated transcriptome database of different MIA-producing plant species (www.phytometasyn.ca). The biochemical function of two members of this group cloned from V. minor (VmPiNMT) and R. serpentina (RsPiNMT) have been characterized by screening their biochemical activities against potential MIA substrates harvested from the leaf surfaces of MIA-accumulating plants. The approach was validated by identifying the MIA picrinine from leaf surfaces of Amsonia hubrichtii as a substrate of VmPiNMT and RsPiNMT. Recombinant proteins were shown to have high substrate specificity and affinity for picrinine, converting it to N-methylpicrinine (ervincine). Developmental studies with V. minor and R. serpentina showed that RsPiNMT and VmPiNMT gene expression and biochemical activities were highest in younger leaf tissues. The assembly of at least 150 known N-methylated MIAs within members of the Apocynaceae family may have occurred as a result of the evolution of the γ-tocopherol-like N-methyltransferase family from γ-tocopherol methyltransferases. PMID:26848097

  18. Structural characterization of monoterpene indole alkaloids in ethanolic extracts of Rauwolfia species by liquid chromatography with quadrupole time-of-flight mass spectrometry.

    PubMed

    Kumar, Sunil; Singh, Awantika; Bajpai, Vikas; Srivastava, Mukesh; Singh, Bhim Pratap; Kumar, Brijesh

    2016-12-01

    Rauwolfia species (Apocynaceae) are medicinal plants well known worldwide due to its potent bioactive monoterpene indole alkaloids (MIAs) such as reserpine, ajmalicine, ajmaline, serpentine and yohimbine. Reserpine, ajmalicine and ajmaline are powerful antihypertensive, tranquilizing agents used in hypertension. Yohimbine is an aphrodisiac used in dietary supplements. As there is no report on the comparative and comprehensive phytochemical investigation of the roots of Rauwolfia species, we have developed an efficient and reliable liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for ethanolic root extract of Rauwolfia species to elucidate the fragmentation pathways for dereplication of bioactive MIAs using high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (HPLC-ESI-QTOF-MS/MS) in positive ion mode. We identified and established diagnostic fragment ions and fragmentation pathways using reserpine, ajmalicine, ajmaline, serpentine and yohimbine. The MS/MS spectra of reserpine, ajmalicine, and ajmaline showed C -ring-cleavage whereas E -ring cleavage was observed in serpentine via Retro Diels Alder (RDA). A total of 47 bioactive MIAs were identified and characterized on the basis of their molecular formula, exact mass measurements and MS/MS analysis. Reserpine, ajmalicine, ajmaline, serpentine and yohimbine were unambiguously identified by comparison with their authentic standards and other 42 MIAs were tentatively identified and characterized from the roots of Rauwolfia hookeri, Rauwolfia micrantha, Rauwolfia serpentina, Rauwolfia verticillata, Rauwolfia tetraphylla and Rauwolfia vomitoria . Application of LC-MS followed by principal component analysis (PCA) has been successfully used to discriminate among six Rauwolfia species.

  19. Antibacterial activities and antioxidant capacity of Aloe vera

    PubMed Central

    2013-01-01

    Background The aim of this study was to identify, quantify, and compare the phytochemical contents, antioxidant capacities, and antibacterial activities of Aloe vera lyophilized leaf gel (LGE) and 95% ethanol leaf gel extracts (ELGE) using GC-MS and spectrophotometric methods. Results Analytically, 95% ethanol is less effective than ethyl acetate/diethyl ether or hexane (in the case of fatty acids) extractions in separating phytochemicals for characterization purposes. However, although fewer compounds are extracted in the ELGE, they are approximately 345 times more concentrated as compared to the LGE, hence justifying ELGE use in biological efficacy studies in vivo. Individual phytochemicals identified included various phenolic acids/polyphenols, phytosterols, fatty acids, indoles, alkanes, pyrimidines, alkaloids, organic acids, aldehydes, dicarboxylic acids, ketones, and alcohols. Due to the presence of the antioxidant polyphenols, indoles, and alkaloids, the A. vera leaf gel shows antioxidant capacity as confirmed by ORAC and FRAP analyses. Both analytical methods used show the non-flavonoid polyphenols to contribute to the majority of the total polyphenol content. Three different solvents such as aqueous, ethanol, and acetone were used to extract the bioactive compounds from the leaves of A. vera to screen the antibacterial activity selected human clinical pathogens by agar diffusion method. The maximum antibacterial activities were observed in acetone extracts (12 ± 0.45, 20 ± 0.35, 20 ± 0.57, and 15 ± 0.38 nm) other than aqueous and ethanol extracts. Conclusion Due to its phytochemical composition, A. vera leaf gel may show promise in alleviating symptoms associated with/or prevention of cardiovascular diseases, cancer, neurodegeneration, and diabetes. PMID:23870710

  20. Indirubin, a bis-indole alkaloid binds to tubulin and exhibits antimitotic activity against HeLa cells in synergism with vinblastine.

    PubMed

    Mohan, Lakshmi; Raghav, Darpan; Ashraf, Shabeeba M; Sebastian, Jomon; Rathinasamy, Krishnan

    2018-06-05

    Indirubin, a bis-indole alkaloid used in traditional Chinese medicine has shown remarkable anticancer activity against chronic myelocytic leukemia. The present work was aimed to decipher the underlying molecular mechanisms responsible for its anticancer attributes. Our findings suggest that indirubin inhibited the proliferation of HeLa cells with an IC 50 of 40 μM and induced a mitotic block. At concentrations higher than its IC 50 , indirubin exerted a moderate depolymerizing effect on the interphase microtubular network and spindle microtubules in HeLa cells. Studies with goat brain tubulin indicated that indirubin bound to tubulin at a single site with a dissociation constant of 26 ± 3 μM and inhibited the in vitro polymerization of tubulin into microtubules in the presence of glutamate as well as microtubule-associated proteins. Molecular docking analysis and molecular dynamics simulation studies indicate that indirubin stably binds to tubulin at the interface of the α-β tubulin heterodimer. Further, indirubin stabilized the binding of colchicine on tubulin and promoted the cysteine residue modification by 5,5'-dithiobis-2-nitrobenzoic acid, indicating towards alteration of tubulin conformation upon binding. In addition, we found that indirubin synergistically enhanced the anti-mitotic and anti-proliferative activity of vinblastine, a known microtubule-targeted agent. Collectively our studies indicate that perturbation of microtubule polymerization dynamics could be one of the possible mechanisms behind the anti-cancer activities of indirubin. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. Mechanism of hERG channel block by the psychoactive indole alkaloid ibogaine.

    PubMed

    Thurner, Patrick; Stary-Weinzinger, Anna; Gafar, Hend; Gawali, Vaibhavkumar S; Kudlacek, Oliver; Zezula, Juergen; Hilber, Karlheinz; Boehm, Stefan; Sandtner, Walter; Koenig, Xaver

    2014-02-01

    Ibogaine is a psychoactive indole alkaloid. Its use as an antiaddictive agent has been accompanied by QT prolongation and cardiac arrhythmias, which are most likely caused by human ether a go-go-related gene (hERG) potassium channel inhibition. Therefore, we studied in detail the interaction of ibogaine with hERG channels heterologously expressed in mammalian kidney tsA-201 cells. Currents through hERG channels were blocked regardless of whether ibogaine was applied via the extracellular or intracellular solution. The extent of inhibition was determined by the relative pH values. Block occurred during activation of the channels and was not observed for resting channels. With increasing depolarizations, ibogaine block grew and developed faster. Steady-state activation and inactivation of the channel were shifted to more negative potentials. Deactivation was slowed, whereas inactivation was accelerated. Mutations in the binding site reported for other hERG channel blockers (Y652A and F656A) reduced the potency of ibogaine, whereas an inactivation-deficient double mutant (G628C/S631C) was as sensitive as wild-type channels. Molecular drug docking indicated binding within the inner cavity of the channel independently of the protonation of ibogaine. Experimental current traces were fit to a kinetic model of hERG channel gating, revealing preferential binding of ibogaine to the open and inactivated state. Taken together, these findings show that ibogaine blocks hERG channels from the cytosolic side either in its charged form alone or in company with its uncharged form and alters the currents by changing the relative contribution of channel states over time.

  2. Total synthesis of the Daphniphyllum alkaloid daphenylline

    NASA Astrophysics Data System (ADS)

    Lu, Zhaoyong; Li, Yong; Deng, Jun; Li, Ang

    2013-08-01

    The Daphniphyllum alkaloids are a large class of natural products isolated from a genus of evergreen plants widely used in Chinese herbal medicine. They display a remarkable range of biological activities, including anticancer, antioxidant, and vasorelaxation properties as well as elevation of nerve growth factor. Daphenylline is a structurally unique member among the predominately aliphatic Daphniphyllum alkaloids, and contains a tetrasubstituted arene moiety mounted on a sterically compact hexacyclic scaffold. Herein, we describe the first total synthesis of daphenylline. A gold-catalysed 6-exo-dig cyclization reaction and a subsequent intramolecular Michael addition reaction, inspired by Dixon's seminal work, were exploited to construct the bridged 6,6,5-tricyclic motif of the natural product at an early stage, and the aromatic moiety was forged through a photoinduced olefin isomerization/6π-electrocyclization cascade followed by an oxidative aromatization process.

  3. Tailor Made Synthesis of T-Shaped and π-STACKED Dimers in the Gas Phase: Concept for Efficient Drug Design and Material Synthesis

    NASA Astrophysics Data System (ADS)

    Kumar, Sumit; Das, Aloke

    2013-06-01

    Non-covalent interactions play a key role in governing the specific functional structures of biomolecules as well as materials. Thus molecular level understanding of these intermolecular interactions can help in efficient drug design and material synthesis. It has been found from X-ray crystallography that pure hydrocarbon solids (i.e. benzene, hexaflurobenzene) have mostly slanted T-shaped (herringbone) packing arrangement whereas mixed solid hydrocarbon crystals (i.e. solid formed from mixtures of benzene and hexafluorobenzene) exhibit preferentially parallel displaced (PD) π-stacked arrangement. Gas phase spectroscopy of the dimeric complexes of the building blocks of solid pure benzene and mixed benzene-hexafluorobenzene adducts exhibit similar structural motifs observed in the corresponding crystal strcutures. In this talk, I will discuss about the jet-cooled dimeric complexes of indole with hexafluorobenzene and p-xylene in the gas phase using Resonant two photon ionzation and IR-UV double resonance spectroscopy combined with quantum chemistry calculations. In stead of studying benzene...p-xylene and benzene...hexafluorobenzene dimers, we have studied corresponding indole complexes because N-H group is much more sensitive IR probe compared to C-H group. We have observed that indole...hexafluorobenzene dimer has parallel displaced (PD) π-stacked structure whereas indole...p-xylene has slanted T-shaped structure. We have shown here selective switching of dimeric structure from T-shaped to π-stacked by changing the substituent from electron donating (-CH3) to electron withdrawing group (fluorine) in one of the complexing partners. Thus, our results demonstrate that efficient engineering of the non-covalent interactions can lead to efficient drug design and material synthesis.

  4. Synthesis of 2-Amino-3-hydroxy-3H-indoles via Palladium-Catalyzed One-Pot Reaction of Isonitriles, Oxygen, and N-Tosylhydrazones Derived from 2-Acylanilines.

    PubMed

    Chu, Haoke; Dai, Qiang; Jiang, Yan; Cheng, Jiang

    2017-08-04

    A cyanide-free one-pot procedure was developed to access 2-amino-3-hydroxy-3H-indoles, which involved: (1) in situ formation of ketenimines by the reaction of N'-(1-(2-aminophenyl)ethylidene)-p-tosylhydrazones with isonitriles; (2) the intramolecular nucleophilic attack of ketenimines by the amino in phenyl furnishing the ring closure leading to 2-aminoindoles; (3) the oxidation of 2-aminoindoles by O 2 leading to 2-amino-3-hydroxy-3H-indoles. This strategy represents not only a key compliment to the sporadic synthetic methods toward 2-amino-3-hydroxy-3H-indoles but also progress in N-tosylhydrazone, isonitrile, and ketenimine chemistry.

  5. Study of magnetization switching for MRAM based memory technologies

    NASA Astrophysics Data System (ADS)

    Pham, Huy

    Amphibian alkaloids are attractive targets for synthesis due to their biological activity. An important class of amphibian alkaloids is the 2,5-disubstituted pyrrolidine-based family of compounds. There are many synthetic approaches for the preparation of the trans-2,5-disubstituted pyrrolidines, but methods for the construction of the cis-2,5-pyrrolidines are limited. Therefore, it was desired to develop an enantioselective approach for the preparation of cis-2,5-disubsituted pyrrolidines. (+)-Tropin-2-one derived from cocaine was used as starting material to exploit the inherent stereochemistry for construction of the cis-pyrrolidine ring. This permitted the unequivocal assignment of the absolute configuration of the target pyrrolidine. The structurally simple pyrrolidine alkaloid, 225H, was selected as a target to develop a general synthetic approach. The enantioselective synthesis of 225H was achieved in nine steps and good overall yield. The search for potent cannabinoid receptor partial agonist ligands as potential marijuana addiction therapeutic agents has led to an investigation of the synthesis of diaryl ether hybrid analogues of BAY 59-3074. A series of 2-(3-alkyl-5-hydroxyphenoxy)-6-(trifluoromethyl)benzonitriles, 3-(2-cyano-3-(trifluoromethyl)phenoxy)phenylalkanoates, and (3-(benzyloxy)phenoxy)-6-(trifluoromethyl)benzonitriles were synthesized and evaluated in vitro for CB1 affinity. The olivetol diaryl ether analogue was the most potent ligand of the alkyl series, but the diaryl ester analogues exhibited modest affinity for CB1 receptors. The most potent compound of the series was the 2-(3-(benzyloxy)phenoxy)-6-(trifluoromethyl)benzonitrile. Keywords. amphibian alkaloids, enantioselective synthesis, pyrrolidine, cannabinoid receptor, marijuana.

  6. Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. II. Metabolic characteristics of the enzyme

    NASA Technical Reports Server (NTRS)

    Leznicki, A. J.; Bandurski, R. S.

    1988-01-01

    The synthesis of indole-3-acetyl-1-O-beta-D-glucose from indole-3-acetic acid (IAA) and uridine diphosphoglucose (UDPG) has been shown to be a reversible reaction with the equilibrium away from ester formation and toward formation of IAA. The enzyme occurs primarily in the liquid endosperm of the corn kernel but some activity occurs in the embryo. It is relatively specific showing no glucose ester formation with oxindole-3-acetic acid or 7-hydroxy-oxindole-3-acetic acid, and low activity with phenylpropene acids, such as rho-coumaric acid. The enzyme is also specific for the nucleotide sugar showing no activity with UDPGalactose or UDPXylose. The enzyme is inhibited by inorganic pyrophosphate, by phosphate esters and by phospholipids, particularly phosphatidyl ethanolamine. The enzyme is inhibited by zeatin, by 2,4-dichlorophenoxy-acetic acid, by IAA-myo-inositol and IAA-glucan, but not by zeatin riboside, and only weakly by gibberellic acid, abscisic acid and kinetin. The reaction is slightly stimulated by both calcium and calmodulin and, in some cases, by thiol compounds. The role of this enzyme in the homeostatic control of indole-3-acetic acid levels in Zea mays is discussed.

  7. Enzymic Synthesis of Indole-3-Acetyl-1-O-β-d-Glucose 1

    PubMed Central

    Leznicki, Antoni J.; Bandurski, Robert S.

    1988-01-01

    The synthesis of indole-3-acetyl-1-O-β-d-glucose from indole-3-acetic acid (IAA) and uridine diphosphoglucose (UDPG) has been shown to be a reversible reaction with the equilibrium away from ester formation and toward formation of IAA. The enzyme occurs primarily in the liquid endosperm of the corn kernel but some activity occurs in the embryo. It is relatively specific showing no glucose ester formation with oxindole-3-acetic acid or 7-hydroxy-oxindole-3-acetic acid, and low activity with phenylpropene acids, such as ρ-coumaric acid. The enzyme is also specific for the nucleotide sugar showing no activity with UDPGalactose or UDPXylose. The enzyme is inhibited by inorganic pyrophosphate, by phosphate esters and by phospholipids, particularly phosphatidyl ethanolamine. The enzyme is inhibited by zeatin, by 2,4-dichlorophenoxy-acetic acid, by IAA-myo-inositol and IAA-glucan, but not by zeatin riboside, and only weakly by gibberellic acid, abscisic acid, and kinetin. The reaction is slightly stimulated by both calcium and calmodulin and, in some cases, by thiol compounds. The role of this enzyme in the homeostatic control of indole-3-acetic acid levels in Zea mays is discussed. PMID:11537439

  8. Antioxidative properties of harmane and beta-carboline alkaloids.

    PubMed

    Tse, S Y; Mak, I T; Dickens, B F

    1991-07-15

    beta-Carboline alkaloids are derived as a result of condensation between indoleamine (e.g. tryptamine) and short-chain carboxylic acid (e.g. pyruvic acid) or aldehyde (e.g. acetaldehyde), a reaction that occurs readily at room temperature. These compounds have been found endogenously in human and animal tissues and may be formed as a byproduct of secondary metabolism: their endogenous functions however, are not well understood. Indoles and tryptophan derivatives exhibit antioxidative actions by scavenging free radicals and forming resonance stabilized indolyl radicals. Harmane and related compounds exhibited concentration-dependent inhibition of lipid peroxidation (measured as thiobarbiturate reactive products) in a hepatic microsomal preparation incubated with either enzymatic dependent (Fe3+ ADP/NADPH) or non-enzymatic dependent (Fe3+ ADP/dihydroxyfumarate) oxygen radical producing systems. Alkaloids with hydroxyl substitution and a partially desaturated pyridyl ring were found to have the highest antioxidative potencies. Substitution of a hydroxyl group by a methoxyl group at the 6-position resulted in a decrease of greater than 10-fold in the antioxidative activities. Harmane showed high efficacy in an enzymatic system but low efficacy in a non-enzymatic system. The antioxidative effects of harmane in the former system may be attributed to its ability to inhibit oxidative enzymes in the microsomal system. These results suggest that beta-carbolines may also serve as endogenous antioxidants.

  9. Long-term stability in biomass and production of terpene indole alkaloids by hairy root culture of Rauvolfia serpentina and cost approximation to endorse commercial realism.

    PubMed

    Pandey, Pallavi; Kaur, Ranjeet; Singh, Sailendra; Chattopadhyay, Sunil Kumar; Srivastava, Santosh Kumar; Banerjee, Suchitra

    2014-07-01

    The effect of 6 years of cultivation and use of table-sugar (TS) on the biomass/terpene alkaloid productivities and rol gene expression were studied in a hairy root (HR) clone of Rauvolfia serpentina. The media cost could be reduced >94 % by replacing sucrose (SUC) with TS—an unexplored avenue for HR cultivation. The overall productivities increased over long-term cultivation with sugar proving superior to SUC for biomass (24.4 ± 2.11 g/l DW after 40 days to 17.31 % higher) and reserpine (0.094 ± 0.008 % DW after 60 days to 193.8 % more) production. The latter however revealed comparatively better yields concerning ajmaline (0.507 ± 0.048 % DW after 60 days to 61.98 % higher) and yohimbine (0.628 ± 0.062 % DW after 60 days to 38.32 % higher), respectively. PCR amplification of rol genes confirmed long-term expression stability.

  10. A comprehensive metabolite profiling of Isatis tinctoria leaf extracts.

    PubMed

    Mohn, Tobias; Plitzko, Inken; Hamburger, Matthias

    2009-05-01

    A broad-based characterisation of a pharmacologically active dichloromethane extract from Isatis tinctoria leaves was carried out. For a comprehensive picture we also included the polar constituents of I. tinctoria (MeOH extract) and for comparative purposes, the taxonomically closely related plant I. indigotica. Diode array detector, evaporative light scattering detector, atmospheric pressure chemical ionisation and electrospray ionisation mass spectrometry, and electrospray ionisation time-of-flight mass spectrometry detectors were used in parallel to ensure a wide coverage of secondary metabolites with highly diverging analytical properties. Off-line microprobe nuclear magnetic resonance spectroscopy after peak purification by semi-preparative high-pressure liquid chromatography served for structure elucidation of some minor constituents. More than 65 compounds belonging to various structural classes such as alkaloids, flavonoids, fatty acids, porphyrins, lignans, carotenoids, glucosinolates and cyclohexenones were unambiguously identified, and tentative structures were proposed for additional compounds. Numerous compounds were identified for the first time in the genus Isatis, and an indolic alkaloid was discovered.

  11. Analysis of the extracts of Isatis tinctoria by new analytical approaches of HPLC, MS and NMR.

    PubMed

    Zhou, Jue; Qu, Fan

    2011-01-01

    The methods of extraction, separation and analysis of alkaloids and indole glucosinolates (GLs) ofIsatis tinctoria were reviewed. Different analytical approaches such as High-pressure Liquid Chromatography (HPLC), Liquid Chromatography with Electrospray Ionization Mass Spectrometry (LC/ESI/MS), Electrospray Ionization Time-Of-Flight Mass Spectrometry (ESI-TOF-MS), and Nuclear Magnetic Resonance (NMR) were used to validate and identity of these constituents. These methods provide rapid separation, identification and quantitative measurements of alkaloids and GLs of Isatis tinctoria. By connection with different detectors to HPLC such as PDA, ELSD, ESI- and APCI-MS in positive and negative ion modes, complicated compounds could be detected with at least two independent detection modes. The molecular formula can be derived in a second step of ESI-TOF-MS data. But for some constituents, UV and MS cannot provide sufficient structure identification. After peak purification, NMR by semi-preparative HPLC can be used as a complementary method.

  12. Nauclea latifolia: biological activity and alkaloid phytochemistry of a West African tree.

    PubMed

    Boucherle, Benjamin; Haudecoeur, Romain; Queiroz, Emerson Ferreira; De Waard, Michel; Wolfender, Jean-Luc; Robins, Richard J; Boumendjel, Ahcène

    2016-09-25

    Covering up to 2016Nauclea latifolia (syn. Sarcocephalus latifolius, Rubiaceae), commonly called the African pincushion tree, is a plant widely used in folk medicine in different regions of Africa for treating a variety of illnesses, including malaria, epilepsy and pain. N. latifolia has not only drawn the interest of traditional healers but also of phytochemists, who have identified a range of bioactive indole alkaloids in its tissue. More recently, following up on the traditional use of extracts in pain management, a bio-guided purification from the roots of the tree led to the identification of the active ingredient as tramadol, available as a synthetic analgesic since the 1970s. The discovery of this compound as a natural phytochemical was highlighted worldwide. This review focuses on the correlation between extracted compounds and pharmacological activities, paying special attention to infectious diseases and neurologically-related disorders. A critical analysis of the data reported so far on the natural origin of tramadol and its proposed biosynthesis is also presented.

  13. Indole synthesis by conjugate addition of anilines to activated acetylenes and an unusual ligand-free copper(II)-mediated intramolecular cross-coupling.

    PubMed

    Gao, Detian; Back, Thomas G

    2012-11-12

    A versatile new synthesis of indoles was achieved by the conjugate addition of N-formyl-2-haloanilines to acetylenic sulfones, ketones, and esters followed by a copper-catalyzed intramolecular C-arylation. The conjugate addition step was conducted under exceptionally mild conditions at room temperature in basic, aqueous DMF. Surprisingly, the C-arylation was performed most effectively by employing copper(II) acetate as the catalyst in the absence of external ligands, without the need for protection from air or water. An unusual feature of this process, for the case of acetylenic ketones, is the ability of the initial conjugate-addition product to serve as a ligand for the catalyst, which enables it to participate in the catalysis of its further transformation to the final indole product. Mechanistic studies, including EPR experiments, indicated that copper(II) is reduced to the active copper(I) species by the formate ion that is produced by the base-catalyzed hydrolysis of DMF. This process also served to recycle any copper(II) that was produced by the adventitious oxidation of copper(I), thereby preventing deactivation of the catalyst. Several examples of reactions involving acetylenic sulfones attached to a modified Merrifield resin demonstrated the feasibility of solid-phase synthesis of indoles by using this protocol, and tricyclic products were obtained in one pot by employing acetylenic sulfones that contain chloroalkyl substituents. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis and pharmacological evaluation of indole-based sigma receptor ligands

    PubMed Central

    Mésangeau, Christophe; Amata, Emanuele; Alsharif, Walid; Seminerio, Michael J.; Robson, Matthew J.; Matsumoto, Rae R.; Poupaert, Jacques H.; McCurdy, Christopher R.

    2011-01-01

    A series of novel indole-based analogues were prepared and their affinities for sigma receptors were determined using in vitro radioligand binding assays. The results of this study identified several compounds with nanomolar sigma-2 affinity and significant selectivity over sigma-1 receptors. In particular, 2-(4-(3-(4-fluorophenyl)indol-1-yl)butyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (9f) was found to display high affinity at sigma-2 receptors with good selectivity (σ-1/σ-2 = 395). The pharmacological binding profile for this compound was established with other relevant nonsigma sites. PMID:21899931

  15. Ruthenium-Catalyzed Cascade Annulation of Indole with Propargyl Alcohols.

    PubMed

    Kaufmann, Julia; Jäckel, Elisabeth; Haak, Edgar

    2018-05-14

    Cascade transformations forming multiple bonds and one-pot procedures provide rapid access to natural-product-like scaffolds from simple precursors. These atom-economic processes are valuable tools in organic synthesis and drug discovery. Herein, we report on ruthenium-catalyzed cascade annulations of indole with readily available propargyl alcohols. These provide rapid access to diverse carbazoles, cyclohepta[b]indoles, and further fused polycycles with high selectivity. A bifunctional ruthenium complex featuring a redox-coupled cyclopentadienone ligand acts as a common catalyst for the different cascade processes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Design, synthesis and biological evaluation of 7-nitro-1H-indole-2-carboxylic acid derivatives as allosteric inhibitors of fructose-1,6-bisphosphatase.

    PubMed

    Bie, Jianbo; Liu, Shuainan; Zhou, Jie; Xu, Bailing; Shen, Zhufang

    2014-03-15

    A series of novel indole derivatives was synthesized as inhibitors of fructose-1,6-bisphosphatase (FBPase). Extensive structure-activity relationships were conducted and led to a potent FBPase inhibitor 3.9 with an IC₅₀ of 0.99 μM. The binding mode of this series of indoles was predicted using CDOCKER algorithm. The results of this research will shed light on the further design and optimization of novel small molecules as FBPase inhibitors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Applications of organocatalytic asymmetric synthesis to drug prototypes--dual action and selective inhibitors of n-nitric oxide synthase with activity against the 5-HT1D/1B subreceptors.

    PubMed

    Hanessian, Stephen; Stoffman, Eli; Mi, Xueling; Renton, Paul

    2011-03-04

    The scope of MacMillan's organocatalytic asymmetric conjugate addition reaction of indoles and electron-rich aromatics to α,β-unsaturated aldehydes has been extended to the use of 3-amino crotonaldehydes as substrates. The aromatics used include indoles as well as an aniline and a furan. The scope and effect of the groups on nitrogen (R, R') has also been studied. The method has been applied to the concise synthesis of an advanced precursor to S-(+)-1, a drug prototype for the treatment of migraine headaches.

  18. Syntheses of strychnine, norfluorocurarine, dehydrodesacetylretuline, and valparicine enabled by intramolecular cycloadditions of Zincke aldehydes.

    PubMed

    Martin, David B C; Nguyen, Lucas Q; Vanderwal, Christopher D

    2012-01-06

    A full account of the development of the base-mediated intramolecular Diels-Alder cycloadditions of tryptamine-derived Zincke aldehydes is described. This important complexity-generating transformation provides the tetracyclic core of many indole monoterpene alkaloids in only three steps from commercially available starting materials and played a key role in short syntheses of norfluorocurarine (five steps), dehydrodesacetylretuline (six steps), valparicine (seven steps), and strychnine (six steps). Reasonable mechanistic possibilities for this reaction, a surprisingly facile dimerization of the products, and an unexpected cycloreversion to regenerate Zincke aldehydes under specific conditions are also discussed.

  19. Crystallization and preliminary X-ray crystallographic analysis of strictosidine synthase from Rauvolfia: the first member of a novel enzyme family.

    PubMed

    Ma, Xueyan; Koepke, Juergen; Fritzsch, Günter; Diem, Ralf; Kutchan, Toni M; Michel, Hartmut; Stöckigt, Joachim

    2004-10-01

    Strictosidine synthase is a central enzyme involved in the biosynthesis of almost all plant monoterpenoid indole alkaloids. Strictosidine synthase from Rauvolfia serpentina was heterologously expressed in Escherichia coli. Crystals of the purified recombinant enzyme have been obtained by the hanging-drop technique at 303 K with potassium sodium tartrate tetrahydrate as precipitant. The crystals belong to the space group R3 with cell dimensions of a=b=150.3 A and c=122.4 A. Under cryoconditions (120 K), the crystals diffract to about 2.95 A.

  20. Two-step iron(0)-mediated N-demethylation of N-methyl alkaloids.

    PubMed

    Kok, Gaik B; Pye, Cory C; Singer, Robert D; Scammells, Peter J

    2010-07-16

    A mild and simple two-step Fe(0)-mediated N-demethylation of a number of tertiary N-methyl alkaloids is described. The tertiary N-methylamine is first oxidized to the corresponding N-oxide, which is isolated as the hydrochloride salt. Subsequent treatment of the N-oxide hydrochloride with iron powder readily provides the N-demethylated amine. Representative substrates include a number of opiate and tropane alkaloids. Key intermediates in the synthesis of semisynthetic 14-hydroxy pharmaceutical opiates such as oxycodone and oxymorphone are also readily N-demethylated using this method.

  1. 1-(1H-indol-3-yl)ethanamine derivatives as potent Staphylococcus aureus NorA efflux pump inhibitors.

    PubMed

    Hequet, Arnaud; Burchak, Olga N; Jeanty, Matthieu; Guinchard, Xavier; Le Pihive, Emmanuelle; Maigre, Laure; Bouhours, Pascale; Schneider, Dominique; Maurin, Max; Paris, Jean-Marc; Denis, Jean-Noël; Jolivalt, Claude

    2014-07-01

    The synthesis of 37 1-(1H-indol-3-yl)ethanamine derivatives, including 12 new compounds, was achieved through a series of simple and efficient chemical modifications. These indole derivatives displayed modest or no intrinsic anti-staphylococcal activity. By contrast, several of the compounds restored, in a concentration-dependent manner, the antibacterial activity of ciprofloxacin against Staphylococcus aureus strains that were resistant to fluoroquinolones due to overexpression of the NorA efflux pump. Structure-activity relationships studies revealed that the indolic aldonitrones halogenated at position 5 of the indole core were the most efficient inhibitors of the S. aureus NorA efflux pump. Among the compounds, (Z)-N-benzylidene-2-(tert-butoxycarbonylamino)-1-(5-iodo-1H-indol-3-yl)ethanamine oxide led to a fourfold decrease of the ciprofloxacin minimum inhibitory concentration against the SA-1199B strain when used at a concentration of 0.5 mg L(-1) . To the best of our knowledge, this activity is the highest reported to date for an indolic NorA inhibitor. In addition, a new antibacterial compound, tert-butyl (2-(3-hydroxyureido)-2-(1H-indol-3-yl)ethyl)carbamate, which is not toxic for human cells, was also found. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Indole synthesis by palladium-catalyzed tandem allylic isomerization - furan Diels-Alder reaction.

    PubMed

    Xu, Jie; Wipf, Peter

    2017-08-30

    A Pd(0)-catalyzed elimination of an allylic acetate generates a π-allyl complex that is postulated to initiate a novel intramolecular Diels-Alder cycloaddition to a tethered furan (IMDAF). Under the reaction conditions, this convergent, microwave-accelerated cascade process provides substituted indoles in moderate to good yields after Pd-hydride elimination, aromatization by dehydration, and in situ N-Boc cleavage.

  3. Substrate-controlled Rh(II)-catalyzed single-electron-transfer (SET): divergent synthesis of fused indoles.

    PubMed

    Chen, Kai; Zhu, Zi-Zhong; Liu, Jia-Xin; Tang, Xiang-Ying; Wei, Yin; Shi, Min

    2016-01-07

    Rh(II)-catalyzed diversified ring expansions controlled by single-electron-transfer (SET) have been disclosed in this communication, producing a series of indole-fused azetidines and 1H-carbazoles or related derivatives in moderate to good yields via Rh2(III,II) nitrene radical intermediates. The direction of ring expansion branches according to different ring sizes of methylenecycloalkanes.

  4. A Root-Expressed l-Phenylalanine:4-Hydroxyphenylpyruvate Aminotransferase Is Required for Tropane Alkaloid Biosynthesis in Atropa belladonna[C][W

    PubMed Central

    Bedewitz, Matthew A.; Góngora-Castillo, Elsa; Uebler, Joseph B.; Gonzales-Vigil, Eliana; Wiegert-Rininger, Krystle E.; Childs, Kevin L.; Hamilton, John P.; Vaillancourt, Brieanne; Yeo, Yun-Soo; Chappell, Joseph; DellaPenna, Dean; Jones, A. Daniel; Buell, C. Robin; Barry, Cornelius S.

    2014-01-01

    The tropane alkaloids, hyoscyamine and scopolamine, are medicinal compounds that are the active components of several therapeutics. Hyoscyamine and scopolamine are synthesized in the roots of specific genera of the Solanaceae in a multistep pathway that is only partially elucidated. To facilitate greater understanding of tropane alkaloid biosynthesis, a de novo transcriptome assembly was developed for Deadly Nightshade (Atropa belladonna). Littorine is a key intermediate in hyoscyamine and scopolamine biosynthesis that is produced by the condensation of tropine and phenyllactic acid. Phenyllactic acid is derived from phenylalanine via its transamination to phenylpyruvate, and mining of the transcriptome identified a phylogenetically distinct aromatic amino acid aminotransferase (ArAT), designated Ab-ArAT4, that is coexpressed with known tropane alkaloid biosynthesis genes in the roots of A. belladonna. Silencing of Ab-ArAT4 disrupted synthesis of hyoscyamine and scopolamine through reduction of phenyllactic acid levels. Recombinant Ab-ArAT4 preferentially catalyzes the first step in phenyllactic acid synthesis, the transamination of phenylalanine to phenylpyruvate. However, rather than utilizing the typical keto-acid cosubstrates, 2-oxoglutarate, pyruvate, and oxaloacetate, Ab-ArAT4 possesses strong substrate preference and highest activity with the aromatic keto-acid, 4-hydroxyphenylpyruvate. Thus, Ab-ArAT4 operates at the interface between primary and specialized metabolism, contributing to both tropane alkaloid biosynthesis and the direct conversion of phenylalanine to tyrosine. PMID:25228340

  5. Horizontal acquisition of toxic alkaloid synthesis in a clade of plant associated fungi.

    PubMed

    Marcet-Houben, Marina; Gabaldón, Toni

    2016-01-01

    Clavicipitaceae is a fungal group that comprises species that closely interact with plants as pathogens, parasites or symbionts. A key factor in these interactions is the ability of these fungi to synthesize toxic alkaloid compounds that contribute to the protection of the plant host against herbivores. Some of these compounds such as ergot alkaloids are toxic to humans and have caused important epidemics throughout history. The gene clusters encoding the proteins responsible for the synthesis of ergot alkaloids and lolines in Clavicipitaceae have been elucidated. Notably, homologs to these gene clusters can be found in distantly related species such as Aspergillus fumigatus and Penicillium expansum, which diverged from Clavicipitaceae more than 400 million years ago. We here use a phylogenetic approach to analyze the evolution of these gene clusters. We found that the gene clusters conferring the ability to synthesize ergot alkaloids and loline emerged first in Eurotiomycetes and were then likely transferred horizontally to Clavicipitaceae. Horizontal gene transfer is known to play a role in shaping the distribution of secondary metabolism clusters across distantly related fungal species. We propose that HGT events have played an important role in the capability of Clavicipitaceae to produce two key secondary metabolites that have enhanced the ability of these species to protect their plant hosts, therefore favoring their interactions. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. An efficient and practical synthesis of [2- 11C]indole via superfast nucleophilic [ 11C]cyanation and RANEY® Nickel catalyzed reductive cyclization

    DOE PAGES

    So Jeong Lee; Fowler, Joanna S.; Alexoff, David; ...

    2015-09-21

    We developed a rapid method for the synthesis of carbon-11 radiolabeled indole using a sub-nanomolar quantity of no-carrier-added [ 11C]cyanide as radio-precursor. Based upon a reported synthesis of 2-(2-nitrophenyl)acetonitrile (2), a highly reactive substrate 2-nitrobenzyl bromide (1) was evaluated for nucleophilic [ 11C]cyanation. Additionally, related reaction conditions were explored with the goal of obtaining of highly reactive 2-(2-nitrophenyl)-[1- 11C]acetonitrile ([ 11C]-2) while inhibiting its rapid conversion to 2,3-bis(2-nitrophenyl)-[1- 11C]propanenitrile ([ 11C]-3). Next, a Raney Nickel catalyzed reductive cyclization method was utilized for synthesizing the desired [2- 11C]indole with hydrazinium monoformate as the active reducing agent. Extensive and iterative screening ofmore » basicity, temperature and stoichiometry was required to overcome the large stoichiometry bias that favored 2-nitrobenzylbromide (1) over [ 11C]cyanide, which both caused further alkylation of the desired nitrile and poisoned the Raney Nickel catalyst. The result is an efficient two-step, streamlined method to reliably synthesize [2- 11C]indole with an entire radiochemical yield of 21 ± 2.2% (n = 5, ranging from 18 – 24%). The radiochemical purity of the final product was > 98% and specific activity was 176 ± 24.8 GBq/μmol (n = 5, ranging from 141 – 204 GBq/μmol). The total radiosynthesis time including product purification by semi-preparative HPLC was 50 – 55 min from end of cyclotron bombardment.« less

  7. An efficient and practical synthesis of [2- 11C]indole via superfast nucleophilic [ 11C]cyanation and RANEY® Nickel catalyzed reductive cyclization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    So Jeong Lee; Fowler, Joanna S.; Alexoff, David

    We developed a rapid method for the synthesis of carbon-11 radiolabeled indole using a sub-nanomolar quantity of no-carrier-added [ 11C]cyanide as radio-precursor. Based upon a reported synthesis of 2-(2-nitrophenyl)acetonitrile (2), a highly reactive substrate 2-nitrobenzyl bromide (1) was evaluated for nucleophilic [ 11C]cyanation. Additionally, related reaction conditions were explored with the goal of obtaining of highly reactive 2-(2-nitrophenyl)-[1- 11C]acetonitrile ([ 11C]-2) while inhibiting its rapid conversion to 2,3-bis(2-nitrophenyl)-[1- 11C]propanenitrile ([ 11C]-3). Next, a Raney Nickel catalyzed reductive cyclization method was utilized for synthesizing the desired [2- 11C]indole with hydrazinium monoformate as the active reducing agent. Extensive and iterative screening ofmore » basicity, temperature and stoichiometry was required to overcome the large stoichiometry bias that favored 2-nitrobenzylbromide (1) over [ 11C]cyanide, which both caused further alkylation of the desired nitrile and poisoned the Raney Nickel catalyst. The result is an efficient two-step, streamlined method to reliably synthesize [2- 11C]indole with an entire radiochemical yield of 21 ± 2.2% (n = 5, ranging from 18 – 24%). The radiochemical purity of the final product was > 98% and specific activity was 176 ± 24.8 GBq/μmol (n = 5, ranging from 141 – 204 GBq/μmol). The total radiosynthesis time including product purification by semi-preparative HPLC was 50 – 55 min from end of cyclotron bombardment.« less

  8. Synthesis of Spiro Indole-2-Ones Using Three Component Reaction of N-Alkylisatins and Triphenylphosphonium Intermediates.

    PubMed

    Moradi, Ali Varasteh

    2017-01-01

    A simple and efficient procedure is achieved for the synthesis of indole-2-one derivatives via three-component reaction of N-alkylisatin, activated acetylenic compounds and alkyl bromide in the presence of triphenylphosphine in water under two conditions; room temperature and microwave irradiation. All chemicals used in this work were prepared from Fluka (Buchs, Switzerland) and were used without further purification. N-alkylisatin were synthesized in the laboratory in the procedure that is reported in the literature. Electrothermal 9100 apparatus is employed for measuring of melting points of products. Elemental analyses for C, H, and N were performed with Heraeus CHN-O-Rapid analyzer. Mass spectra were recorded on a FINNIGAN-MAT 8430 spectrometer operating at an ionization potential of 70 eV. Measurement of IR spectra was performed by Shimadzu IR-460 spectrometer. 1H, and 13C NMR spectra were evaluated with a BRUKER DRX- 500 AVANCE spectrometer at 500.1 and 125.8 MHz, respectively. The results were demonstrated that simple mixing of N-alkylisatin, dialkyl acetylenedicarboxylate and alkyl bromides in the presence of triphenylphosphine by using of microwave condition is the efficient method for preparation of indole derivatives in good yields. In the optimized reaction conditions, water is solvent and temperature of the mixture of reaction is 80 oC. In this study, the reaction of activated acetylenic compounds with N-alkylisatin and alkyl bromide in the presence of triphenylphosphine is investigated which is led to a facile synthesis of some functionalized indoles. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Biocatalytic organic synthesis of optically pure (S)-scoulerine and berbine and benzylisoquinoline alkaloids.

    PubMed

    Schrittwieser, Joerg H; Resch, Verena; Wallner, Silvia; Lienhart, Wolf-Dieter; Sattler, Johann H; Resch, Jasmin; Macheroux, Peter; Kroutil, Wolfgang

    2011-08-19

    A chemoenzymatic approach for the asymmetric total synthesis of the title compounds is described that employs an enantioselective oxidative C-C bond formation catalyzed by berberine bridge enzyme (BBE) in the asymmetric key step. This unique reaction yielded enantiomerically pure (R)-benzylisoquinoline derivatives and (S)-berbines such as the natural product (S)-scoulerine, a sedative and muscle relaxing agent. The racemic substrates rac-1 required for the biotransformation were prepared in 4-8 linear steps using either a Bischler-Napieralski cyclization or a C1-Cα alkylation approach. The chemoenzymatic synthesis was applied to the preparation of fourteen enantiomerically pure alkaloids, including the natural products (S)-scoulerine and (R)-reticuline, and gave overall yields of up to 20% over 5-9 linear steps.

  10. Development of Transcriptomic Resources for Interrogating the Biosynthesis of Monoterpene Indole Alkaloids in Medicinal Plant Species

    PubMed Central

    Góngora-Castillo, Elsa; Childs, Kevin L.; Fedewa, Greg; Hamilton, John P.; Liscombe, David K.; Magallanes-Lundback, Maria; Mandadi, Kranthi K.; Nims, Ezekiel; Runguphan, Weerawat; Vaillancourt, Brieanne; Varbanova-Herde, Marina; DellaPenna, Dean; McKnight, Thomas D.; O’Connor, Sarah; Buell, C. Robin

    2012-01-01

    The natural diversity of plant metabolism has long been a source for human medicines. One group of plant-derived compounds, the monoterpene indole alkaloids (MIAs), includes well-documented therapeutic agents used in the treatment of cancer (vinblastine, vincristine, camptothecin), hypertension (reserpine, ajmalicine), malaria (quinine), and as analgesics (7-hydroxymitragynine). Our understanding of the biochemical pathways that synthesize these commercially relevant compounds is incomplete due in part to a lack of molecular, genetic, and genomic resources for the identification of the genes involved in these specialized metabolic pathways. To address these limitations, we generated large-scale transcriptome sequence and expression profiles for three species of Asterids that produce medicinally important MIAs: Camptotheca acuminata, Catharanthus roseus, and Rauvolfia serpentina. Using next generation sequencing technology, we sampled the transcriptomes of these species across a diverse set of developmental tissues, and in the case of C. roseus, in cultured cells and roots following elicitor treatment. Through an iterative assembly process, we generated robust transcriptome assemblies for all three species with a substantial number of the assembled transcripts being full or near-full length. The majority of transcripts had a related sequence in either UniRef100, the Arabidopsis thaliana predicted proteome, or the Pfam protein domain database; however, we also identified transcripts that lacked similarity with entries in either database and thereby lack a known function. Representation of known genes within the MIA biosynthetic pathway was robust. As a diverse set of tissues and treatments were surveyed, expression abundances of transcripts in the three species could be estimated to reveal transcripts associated with development and response to elicitor treatment. Together, these transcriptomes and expression abundance matrices provide a rich resource for understanding plant specialized metabolism, and promotes realization of innovative production systems for plant-derived pharmaceuticals. PMID:23300689

  11. Original mechanisms of antipsychotic action by the indole alkaloid alstonine (Picralima nitida).

    PubMed

    Linck, Viviane M; Ganzella, Marcelo; Herrmann, Ana P; Okunji, Christopher O; Souza, Diogo O; Antonelli, Marta C; Elisabetsky, Elaine

    2015-01-15

    Alstonine is the major component of plant based remedies that traditional psychiatrists use in Nigeria. Alstonine is an indole alkaloid that has an antipsychotic experimental profile comparable with that of clozapine and is compatible with the alleged effects in mental patients. Representing a desirable innovation in the pharmacodynamics of antipsychotic medications, the evidence indicates that alstonine does not bind to D2 dopamine receptors (D2R) and differentially regulates dopamine in the cortical and limbic areas. The purpose of this study was to further investigate the effects of alstonine on D2R binding in specific brain regions using quantitative autoradiography (QAR) and its effects on dopamine (DA) uptake in mouse striatal synaptosomes. The effects of alstonine on D2R binding were determined in the nucleus accumbens and caudate-putamen using QAR in mice treated with alstonine doses that have antipsychotic effects. The effects of alstonine [3H]DA uptake were assessed in synaptosomes prepared from striatal tissue obtained from mice treated acutely or for 7 days with alstonine. Alstonine did not change the D2R binding densities in the studied regions. DA uptake was increased after acute (but not after 7 days) treatment with alstonine. Consistent with the alstonine behavioral profile, these results indicate that alstonine indirectly modulates DA receptors, specifically by modulating DA uptake. This unique mechanism for DA transmission modulation contributes to the antipsychotic-like effects of alstonine and is compatible with its behavioral profile in mice and alleged effects in patients. These results may represent an innovation in the antipsychotic development field. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. Toxic indole alkaloids avrainvillamide and stephacidin B produced by a biocide tolerant indoor mold Aspergillus westerdijkiae.

    PubMed

    Mikkola, Raimo; Andersson, Maria A; Hautaniemi, Maria; Salkinoja-Salonen, Mirja S

    2015-06-01

    Toxic Aspergillus westerdijkiae were present in house dust and indoor air fall-out from a residence and a kindergarten where the occupants suffered from building related ill health. The A. westerdijkiae isolates produced indole alkaloids avrainvillamide (445 Da) and its dimer stephacidin B (890 Da). It grew and sporulated in presence of high concentrations of boron or polyguanidine (PHMB, PHMG) based antimicrobial biocides used to remediate mold infested buildings. The boar sperm cells were used as sensor cells to purify toxins from HPLC fractions of the fungal biomass. Submicromolar concentrations (EC50 0.3-0.4 μM) blocked boar spermatozoan motility and killed porcine kidney tubular epithelial cells (PK-15). Plate grown hyphal mass of the A. westerdijkiae isolates contained 300-750 ng of avrainvillamide and 30-300 ng of stephacidin B per mg (wet weight). The toxins induced rapid (30 min) loss of boar sperm motility, followed (24 h) by loss of mitochondrial membrane potential (ΔΨm). Apoptotic cell death was observed in PK-15 cell monolayers, prior to cessation of glucose uptake or loss of ΔΨm. Avrainvillamide and stephacidin B were 100-fold more potent towards the porcine cells than the mycotoxins stephacidin A, ochratoxin A, sterigmatocystin and citrinin. The high toxicity of stephacidin B indicates a role of nitrone group in the mechanism of toxicity. Avrainvillamide and stephacidin B represent a new class of toxins with possible a threat to human health in buildings. Furthermore, the use of biocides highly enhanced the growth of toxigenic A. westerdijkiae. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Transcriptional Regulation and Transport of Terpenoid Indole Alkaloid in Catharanthus roseus: Exploration of New Research Directions

    PubMed Central

    Liu, Jiaqi; Cai, Junjun; Wang, Rui; Yang, Shihai

    2016-01-01

    As one of the model medicinal plants for exploration of biochemical pathways and molecular biological questions on complex metabolic pathways, Catharanthus roseus synthesizes more than 100 terpenoid indole alkaloids (TIAs) used for clinical treatment of various diseases and for new drug discovery. Given that extensive studies have revealed the major metabolic pathways and the spatial-temporal biosynthesis of TIA in C. roseus plant, little is known about subcellular and inter-cellular trafficking or long-distance transport of TIA end products or intermediates, as well as their regulation. While these transport processes are indispensable for multi-organelle, -tissue and -cell biosynthesis, storage and their functions, great efforts have been made to explore these dynamic cellular processes. Progress has been made in past decades on transcriptional regulation of TIA biosynthesis by transcription factors as either activators or repressors; recent studies also revealed several transporters involved in subcellular and inter-cellular TIA trafficking. However, many details and the regulatory network for controlling the tissue-or cell-specific biosynthesis, transport and storage of serpentine and ajmalicine in root, catharanthine in leaf and root, vindoline specifically in leaf and vinblastine and vincristine only in green leaf and their biosynthetic intermediates remain to be determined. This review is to summarize the progress made in biosynthesis, transcriptional regulation and transport of TIAs. Based on analysis of organelle, tissue and cell-type specific biosynthesis and progresses in transport and trafficking of similar natural products, the transporters that might be involved in transport of TIAs and their synthetic intermediates are discussed; according to transcriptome analysis and bioinformatic approaches, the transcription factors that might be involved in TIA biosynthesis are analyzed. Further discussion is made on a broad context of transcriptional and transport regulation in order to guide our future research. PMID:28036025

  14. Indole Alkaloids from Chaetomium globosum.

    PubMed

    Xu, Guo-Bo; He, Gu; Bai, Huan-Huan; Yang, Tao; Zhang, Guo-Lin; Wu, Lin-Wei; Li, Guo-You

    2015-07-24

    Two new indole alkaloids chaetocochin J (1) and chaetoglobinol A (8), along with chetomin (2), chetoseminudin A (3), cochliodinol (9), and semicochliodinol (10), were isolated from the rice culture of the fungus Chaetomium globosum. Their structures were elucidated by spectral analysis. Three new epipolythiodioxopiperazines, chaetocochins G-I (5-7), were identified by the combination of UPLC and mass spectrometric analysis. Chaetocochin I contained two sulfur bridges, one formed by three sulfur atoms between C-3 and C-11a, and the other formed by four sulfur atoms between C-3' and C-6'. Chaetocochin I was readily transformed into chetomin (2), chetoseminudin A (3), chaetocochin D (4), chaetocochin G (5), and chaetocochin H (6) by losing sulfur atoms. Compounds 1-3, and 8 exhibited antibacterial activities against Bacillus subtilis with MICs of 25, 0.78, 0.78, and 50 μg/mL, respectively, but not against Gram-negative bacterium (Escherichia coli). Compounds 2 and 8 were inactive against Candida albicans, Fusarium graminearum, Fusarium vasinfectum, Saccharomyces cerevisiae, and Aspergillus niger even at the high concentrations of 200 and 100 μg/mL, respectively. Compound 8 showed free radical scavenging capacity against the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical (ABTS(+•)), with IC50 values of 143.6 and 45.2 μM, respectively. The free radical scavenging capacity rates of compounds 1-3 on the DPPH and ABTS(+•) were less than 20% at the test concentrations (89.9-108.3 μM). The superoxide anion radical scavenging assay indicated that compounds 1-3, and 8 showed 14.8% (90.9 μM), 18.1% (90.9 μM), 51.5% (88.3 μM), and 30.4% (61.3 μM) superoxide anion radical scavenging capacity, respectively.

  15. The use of chemometrics to study multifunctional indole alkaloids from Psychotria nemorosa (Palicourea comb. nov.). Part II: Indication of peaks related to the inhibition of butyrylcholinesterase and monoamine oxidase-A.

    PubMed

    Klein-Júnior, Luiz C; Viaene, Johan; Tuenter, Emmy; Salton, Juliana; Gasper, André L; Apers, Sandra; Andries, Jan P M; Pieters, Luc; Henriques, Amélia T; Vander Heyden, Yvan

    2016-09-09

    Psychotria nemorosa is chemically characterized by indole alkaloids and displays significant inhibitory activity on butyrylcholinesterase (BChE) and monoamine oxidase-A (MAO-A), both enzymes related to neurodegenerative disorders. In the present study, 43 samples of P. nemorosa leaves were extracted and fractionated in accordance to previously optimized methods (see Part I). These fractions were analyzed by means of UPLC-DAD and assayed for their BChE and MAO-A inhibitory potencies. The chromatographic fingerprint data was first aligned using correlation optimized warping and Principal Component Analysis to explore the data structure was performed. Multivariate calibration techniques, namely Partial Least Squares (PLS1), PLS2 and Orthogonal Projections to Latent Structure (O-PLS1), were evaluated for modelling the activities as a function of the fingerprints. Since the best results were obtained with O-PLS1 model (RMSECV=9.3 and 3.3 for BChE and MAO-A, respectively), the regression coefficients of the model were analyzed and plotted relative to the original fingerprints. Four peaks were indicated as multifunctional compounds, with the capacity to impair both BChE and MAO-A activities. In order to confirm these results, a semi-prep HPLC technique was used and a fraction containing the four peaks was purified and evaluated in vitro. It was observed that the fraction exhibited an IC50 of 2.12μgmL(-1) for BChE and 1.07μgmL(-1) for MAO-A. These results reinforce the prediction obtained by O-PLS1 modelling. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Fischer Indole Synthesis in the Gas Phase, the Solution Phase, and at the Electrospray Droplet Interface.

    PubMed

    Bain, Ryan M; Ayrton, Stephen T; Cooks, R Graham

    2017-07-01

    Previous reports have shown that reactions occurring in the microdroplets formed during electrospray ionization can, under the right conditions, exhibit significantly greater rates than the corresponding bulk solution-phase reactions. The observed acceleration under electrospray ionization could result from a solution-phase, a gas-phase, or an interfacial reaction. This study shows that a gas-phase ion/molecule (or ion/ion) reaction is not responsible for the observed rate enhancement in the particular case of the Fischer indole synthesis. The results show that the accelerated reaction proceeds in the microdroplets, and evidence is provided that an interfacial process is involved. Graphical Abstract .

  17. Structure, synthesis and biological properties of the pentacyclic guanidinium alkaloids.

    PubMed

    Shi, Yunlong; Moazami, Yasamin; Pierce, Joshua G

    2017-06-01

    The pentacyclic guanidinium alkaloids (PGAs) are a family of marine natural products that possess a polycyclic guanidine-containing core and a long alkyl chain tethered spermidine-derived tail that is rarely observed in other natural products. These natural products exhibit potent activities on a wide range of organisms and therefore have attracted the attention of many synthetic chemists; however, the structure-activity relationships and mechanisms of action of PGAs remain largely elusive. Herein we summarize the structure, synthesis, toxicity and mechanisms of action of PGAs and highlight their potential as chemical probes and/or therapeutic leads. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Synthesis and conformational study of 3,4-carbocyclic bridged indole melatonin and serotonin analogues.

    PubMed

    Bedini, Annalida; Di Giacomo, Barbara; Gatti, Giuseppe; Spadoni, Gilberto

    2005-08-01

    Tetrahydrobenz[cd]indole, has been usually assumed to be a rigid scaffold of arylethylamines of pharmaceutical interest, such as melatonin and serotonin. A series of molecules containing this scaffold has been synthesized and their conformation in solution has been determined by 1H NMR. The values of the coupling constants show that the carbocycle fused with the indole ring is a mixture of the two conformers with substituent in equatorial or axial orientation. The molar fraction of the conformers appears to be sensibly affected by the bulkiness of the C-2 indole substituent. A pseudo-axial orientation of the C-3 alkylamido side chain is important for melatonin ligands to access the binding site and exhibit potent in vitro affinity, as illustrated for melatonin ligand 1 (pK(i)=9.32).

  19. Applications of Iridium-Catalyzed Asymmetric Allylic Substitution Reactions in Target-Oriented Synthesis.

    PubMed

    Qu, Jianping; Helmchen, Günter

    2017-10-17

    Metal catalyzed allylic substitution is a cornerstone of organometallic and synthetic chemistry. Enantioselective versions have been developed with catalysts derived from transition metals, most notably molybdenum, nickel, ruthenium, rhodium, iridium, palladium, and copper. The palladium- and the iridium-catalyzed versions have turned out to be particularly versatile in organic synthesis because of the very broad scope of the nucleophile and great functional group compatibility. Assets of the iridium-catalyzed reaction are the formation of branched, chiral products from simple monosubstituted allylic substrates, high degrees of regio- and enantioselectivity, and use of modular, readily available chiral ligands. The possibility to use carbon, nitrogen, oxygen, and sulfur compounds as well as fluoride as nucleophiles allows a wide range of chiral building blocks to be prepared. Our Account begins with the presentation of fundamental reaction schemes and chiral ligands. We will focus our discussion on reactions promoted by phosphoramidite ligands, though numerous chiral ligands have been employed. The subsequent section presents a brief overview of reaction mechanism and experimental conditions. Two versions of the iridium-catalyzed allylic substitution have emerged. In type 1 reactions (introduced in 1997), linear allylic esters are commonly used as substrates under basic reaction conditions. In type 2 reactions (introduced in 2007), environmentally friendly branched allylic alcohols can be reacted under acidic conditions; occasionally, derivatives of allylic alcohols have also been applied. A unique feature of the type 2 reactions is that highly electrophilic allylic intermediates can be brought to reaction with weakly activated alkenes. The subsequent text is ordered according to the strategies followed to transform allylic substitution products to desired targets, most of which are natural products or drugs. Syntheses starting with an intermolecular allylic substitution are discussed first. Some fairly complex targets, for example, the potent nitric oxide inhibitor (-)-nyasol and the drug (-)-protrifenbute, have been synthesized via less than five steps from simple starting materials. Most targets discussed are cyclic compounds. Intermolecular allylic substitution with subsequent ring closing metathesis is a powerful strategy for their synthesis. Highlights are stereodivergent syntheses of Δ 9 -tetrahydrocannabinols (THC), wherein iridium- and organocatalysis are combined (dual catalysis). The combination of allylic alkylation with a Diels-Alder reaction was utilized to synthesize the ketide apiosporic acid and the drug fesoterodine (Toviaz). Sequential allylic amination, hydroboration and Suzuki-Miyaura coupling generates enones suitable for conjugate addition reactions; this strategy was employed in syntheses of a variety of alkaloids, for example, the poison frog alkaloid (+)-cis-195A (pumiliotoxin C). Intramolecular substitutions offer interesting possibilities to build up stereochemical complexity via short synthetic routes. For example, in diastereoselective cyclizations of chiral compounds, substrate control can be overruled by catalyst control in order to generate cis- and trans-isomers selectively from a given precursor. This approach was used to prepare a variety of piperidine and pyrrolidine alkaloids. Finally, complex polycyclic structures, including the structurally unusual indolosesquiterpenoid mycoleptodiscin A, have been generated diastereo- and enantioselectively from olefins by polyene cyclizations and from electron-rich arenes, such as indoles, in dearomatization reactions.

  20. Unravelling the Diversity of the Cyclopiazonic Acid Family of Mycotoxins in Aspergillus flavus by UHPLC Triple-TOF HRMS

    PubMed Central

    Uka, Valdet; Moore, Geromy G.; Arroyo-Manzanares, Natalia; Nebija, Dashnor; De Saeger, Sarah; Diana Di Mavungu, José

    2017-01-01

    Cyclopiazonic acid (α-cyclopiazonic acid, α-CPA) is an indole-hydrindane-tetramic acid neurotoxin produced by various fungal species, including the notorious food and feed contaminant Aspergillus flavus. Despite its discovery in A. flavus cultures approximately 40 years ago, its contribution to the A. flavus mycotoxin burden is consistently minimized by our focus on the more potent carcinogenic aflatoxins also produced by this fungus. Here, we report the screening and identification of several CPA-type alkaloids not previously found in A. flavus cultures. Our identifications of these CPA-type alkaloids are based on a dereplication strategy involving accurate mass high resolution mass spectrometry data and a careful study of the α-CPA fragmentation pattern. In total, 22 CPA-type alkaloids were identified in extracts from the A. flavus strains examined. Of these metabolites, 13 have been previously reported in other fungi, though this is the first report of their existence in A. flavus. Two of our metabolite discoveries, 11,12-dehydro α-CPA and 3-hydroxy-2-oxo CPA, have never been reported for any organism. The conspicuous presence of CPA and its numerous derivatives in A. flavus cultures raises concerns about the long-term and cumulative toxicological effects of these fungal secondary metabolites and their contributions to the entire A. flavus mycotoxin problem. PMID:28098779

  1. Identification of metabolites of vindoline in rats using ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry.

    PubMed

    Zhang, Yuqian; Sun, Yupeng; Mu, Xiyan; Yuan, Lin; Wang, Qiao; Zhang, Lantong

    2017-08-15

    Vindoline (VDL) is an indole alkaloid, possessing hypoglycemic and vasodilator effects, and it is also the prodrug of many vinca alkaloids. In this paper, we analyzed in vivo (including plasma, urine, bile and faeces) and in vitro metabolic profile of VDL in rat with ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS). The chromatographic separation was performed on a C 18 column with a mobile phase consisted of 3mM ammonium acetate buffer and acetonitrile at a flow rate of 300μL/min. The mass spectral analysis was conducted in a positive electrospray ionization mode, and on-line data acquisition method multiple mass defect filter (MMDF) combined with dynamic background subtraction (DBS) were used in the biological samples analysis to trace all the potential metabolites of VDL. Twenty-five metabolites of VDL were detected by comparing with the blank sample, of which there were 2 sulfate conjugates. These data suggested that the biotransformation of VDL was deacetylation, oxidation, deoxidization, methylation, dealkylation and sulfate conjugation. This study provides useful information for further study of the pharmacology and mechanism of VDL, meanwhile, the research method can be widely applied to speculate structural features of the metabolites of other vinca alkaloids. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Exploring the chemodiversity and biological activities of the secondary metabolites from the marine fungus Neosartorya pseudofischeri.

    PubMed

    Liang, Wan-Ling; Le, Xiu; Li, Hou-Jin; Yang, Xiang-Ling; Chen, Jun-Xiong; Xu, Jun; Liu, Huan-Liang; Wang, Lai-You; Wang, Kun-Teng; Hu, Kun-Chao; Yang, De-Po; Lan, Wen-Jian

    2014-11-24

    The production of fungal metabolites can be remarkably influenced by various cultivation parameters. To explore the biosynthetic potentials of the marine fungus, Neosartorya pseudofischeri, which was isolated from the inner tissue of starfish Acanthaster planci, glycerol-peptone-yeast extract (GlyPY) and glucose-peptone-yeast extract (GluPY) media were used to culture this fungus. When cultured in GlyPY medium, this fungus produced two novel diketopiperazines, neosartins A and B (1 and 2), together with six biogenetically-related known diketopiperazines,1,2,3,4-tetrahydro-2, 3-dimethyl-1,4-dioxopyrazino[1,2-a]indole (3), 1,2,3,4-tetrahydro-2-methyl-3-methylen e-1,4-dioxopyrazino[1,2-a]indole (4), 1,2,3,4-tetrahydro-2-methyl-1,3,4-trioxopyrazino[1,2-a] indole (5), 6-acetylbis(methylthio)gliotoxin (10), bisdethiobis(methylthio)gliotoxin (11), didehydrobisdethiobis(methylthio)gliotoxin (12) and N-methyl-1H-indole-2-carboxamide (6). However, a novel tetracyclic-fused alkaloid, neosartin C (14), a meroterpenoid, pyripyropene A (15), gliotoxin (7) and five known gliotoxin analogues, acetylgliotoxin (8), reduced gliotoxin (9), 6-acetylbis(methylthio)gliotoxin (10), bisdethiobis(methylthio) gliotoxin (11) and bis-N-norgliovictin (13), were obtained when grown in glucose-containing medium (GluPY medium). This is the first report of compounds 3, 4, 6, 9, 10 and 12 as naturally occurring. Their structures were determined mainly by MS, 1D and 2D NMR data. The possible biosynthetic pathways of gliotoxin-related analogues and neosartin C were proposed. The antibacterial activity of compounds 2-14 and the cytotoxic activity of compounds 4, 5 and 7-13 were evaluated. Their structure-activity relationships are also preliminarily discussed.

  3. Synthesis and biological evaluation of some 4-(1H-indol-3-yl)-6-phenyl-1,2,3,4-tetrahydropyrimidin-2-ones/thiones as potent anti-inflammatory agents.

    PubMed

    Amir, Mohammad; Javed, Sadique Akhtar; Kumar, Harish

    2008-12-01

    Twelve new 4-(1H-indol-3-yl)-6-phenyl-1,2,3,4-tetrahydropyrimidin-2-ones/thiones (7-18) have been synthesized by reacting 1-aryl-3-(1H-indol-3-yl)-2-propen-1-one with urea and thiourea in ethanolic potassium hydroxide. Their structures have been confirmed by IR, 1H NMR and mass spectral data. The compounds were tested for their anti-inflammatory activity. Test results revealed that compounds showed 49.5 to 70.7% anti-inflammatory activity where-as the standard drug ibuprofen showed 86.4% activity at the same oral dose. Four compounds, 4-(1H-indol-3-yl)-6-(4-chlorophenyl)-1,2,3,4-tetrahydropyrimidin-2-one (8), 4-(1H-indol-3-yl)-6-(4-methylphenyl)-1,2,3,4-tetrahydropyrimidin-2-one (10), 4-(1H-indol-3-yl)-6-(4-chlorophenyl)-1,2,3,4-tetrahydropyrimidin-2-thione (14), 4-(1H-indol-3-yl)-6-(4-methylphenyl)-1,2,3,4-tetrahydropyrimidin-2-thione (16), that showed significant anti-inflammatory activity were selected to study their ulcerogenic and lipid peroxidation activities. All tested compounds showed significant reduction in the ulcerogenic potential and lipid peroxidation compared to the standard drug ibuprofen.

  4. Aberrant Synthesis of Indole-3-Acetic Acid in Saccharomyces cerevisiae Triggers Morphogenic Transition, a Virulence Trait of Pathogenic Fungi

    PubMed Central

    Rao, Reeta Prusty; Hunter, Ally; Kashpur, Olga; Normanly, Jennifer

    2010-01-01

    Many plant-associated microbes synthesize the auxin indole-3-acetic acid (IAA), and several IAA biosynthetic pathways have been identified in microbes and plants. Saccharomyces cerevisiae has previously been shown to respond to IAA by inducing pseudohyphal growth. We observed that IAA also induced hyphal growth in the human pathogen Candida albicans and thus may function as a secondary metabolite signal that regulates virulence traits such as hyphal transition in pathogenic fungi. Aldehyde dehydrogenase (Ald) is required for IAA synthesis from a tryptophan (Trp) precursor in Ustilago maydis. Mutant S. cerevisiae with deletions in two ALD genes are unable to convert radiolabeled Trp to IAA, yet produce IAA in the absence of exogenous Trp and at levels higher than wild type. These data suggest that yeast may have multiple pathways for IAA synthesis, one of which is not dependent on Trp. PMID:20233857

  5. Enzymic synthesis of γ-coniceine in Conium maculatum chloroplasts and mitochondria.

    PubMed

    Roberts, M F

    1981-08-01

    Further studies of the transaminase responsible for the first committed step in alkaloid formation in Conium maculatum have shown the L-alanine: 5-ketooctanal transaminase to occur in both the mitochondria and chloroplast. Experiments suggest that these enzymes are the isoenzymes Transaminase A and B respectively previously isolated by the author. It is suggested that the chloroplast enzyme is normally responsible for alkaloid production.

  6. Synthesis of Some Novel Fused Pyrimido[4″,5″:5',6']-[1,2,4]triazino[3',4':3,4] [1,2,4]triazino[5,6-b]indoles with Expected Anticancer Activity.

    PubMed

    Ali, Rania S; Saad, Hosam A

    2018-03-19

    Our current goal is the synthesis of polyheterocyclic compounds starting from 3-amino-[1,2,4]triazino[5,6- b ]indole 1 and studying their anticancer activity to determine whether increasing of the size of the molecules increases the anticancer activity or not. 1-Amino[1,2,4]triazino[3',4':3,4]-[1,2,4]triazino[5,6- b ]indole-2-carbonitrile ( 4 ) was prepared by the diazotization of 3-amino[1,2,4]-triazino[5,6- b ]indole 1 followed by coupling with malononitrile in basic medium then cyclization under reflux to get 4 . Also, new fused pyrimido[4″,5″:5',6'][1,2,4]triazino-[3',4':3,4][1,2,4]triazino[5,6- b ]indole derivative 6 was prepared and used to obtain polycyclic heterocyclic systems. Confirmation of the synthesized compounds' structures was carried out using elemental analyses and spectral data (IR, ¹H-NMR and 13 C-NMR and mass spectra). The anticancer activity of some of the synthesized compounds was tested against HepG2, HCT-116 and MCF-7 cell lines. The anticancer screening results showed that some derivatives display good activity which was more potent than that of the reference drug used. Molecular docking was used to predict the binding between some of the synthesized compounds and the prostate cancer 2q7k hormone and breast ‎cancer 3hb5 receptors.

  7. The content of Psilocybin in Norwegian Psilocybe semilanceata.

    PubMed

    Christiansen, A L; Rasmussen, K E; Høiland, K

    1981-07-01

    Psilocybe semilanceata contains hallucinogenic indole alkaloids and has been used as a narcotic drug in Norway. The content of psilocybin, the major constituent in Norwegian P. semilanceata, has been investigated as well as its habitats and its distribution throughout the country. The mushroom is growing on grassy sites in most parts of Norway from the middle of August to the middle of October. The psilocybin content in dried mushrooms varied considerably, from 0.17 to 1.96%. The highest concentrations in percent was found among the smaller mushrooms whereas the content in mg was highest in larger mushrooms. The content of psilocybin makes P. semilanceata to a potent hallucinogenic drug.

  8. Chemistry and Biology of the Pyrrole-Imidazole Alkaloids.

    PubMed

    Lindel, Thomas

    More than a decade after our last review on the chemistry of the pyrrole-imidazole alkaloids, it was time to analyze once more the developments in that field. The comprehensive article focusses on the total syntheses of pyrrole-imidazole alkaloids that have appeared since 2005. The classic monomeric pyrrole-imidazole alkaloids have all been synthesized, sometimes primarily to demonstrate the usefulness of a new method, as in the case of the related molecules agelastatin A and cyclooroidin with more than 15 syntheses altogether. The phakellin skeleton has been made more than 10 times, too, with a focus on the target structure itself. Thus, some of the pyrrole-imidazole alkaloids are now available in gram amounts, and the supply problem has been solved. The total synthesis of the dimeric pyrrole-imidazole alkaloids is still mostly in its pioneering phase with two routes to palau'amine and massadine discovered and three routes to the axinellamines and ageliferin. In addition, the review summarizes recent discoveries regarding the biological activity of the pyrrole-imidazole alkaloids. Regarding the biosynthesis of sceptrin, a pathway is proposed that starts from nagelamide I and proceeds via two electrocyclizations and reduction. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. A root-expressed L-phenylalanine:4-hydroxyphenylpyruvate aminotransferase is required for tropane alkaloid biosynthesis in Atropa belladonna.

    PubMed

    Bedewitz, Matthew A; Góngora-Castillo, Elsa; Uebler, Joseph B; Gonzales-Vigil, Eliana; Wiegert-Rininger, Krystle E; Childs, Kevin L; Hamilton, John P; Vaillancourt, Brieanne; Yeo, Yun-Soo; Chappell, Joseph; DellaPenna, Dean; Jones, A Daniel; Buell, C Robin; Barry, Cornelius S

    2014-09-01

    The tropane alkaloids, hyoscyamine and scopolamine, are medicinal compounds that are the active components of several therapeutics. Hyoscyamine and scopolamine are synthesized in the roots of specific genera of the Solanaceae in a multistep pathway that is only partially elucidated. To facilitate greater understanding of tropane alkaloid biosynthesis, a de novo transcriptome assembly was developed for Deadly Nightshade (Atropa belladonna). Littorine is a key intermediate in hyoscyamine and scopolamine biosynthesis that is produced by the condensation of tropine and phenyllactic acid. Phenyllactic acid is derived from phenylalanine via its transamination to phenylpyruvate, and mining of the transcriptome identified a phylogenetically distinct aromatic amino acid aminotransferase (ArAT), designated Ab-ArAT4, that is coexpressed with known tropane alkaloid biosynthesis genes in the roots of A. belladonna. Silencing of Ab-ArAT4 disrupted synthesis of hyoscyamine and scopolamine through reduction of phenyllactic acid levels. Recombinant Ab-ArAT4 preferentially catalyzes the first step in phenyllactic acid synthesis, the transamination of phenylalanine to phenylpyruvate. However, rather than utilizing the typical keto-acid cosubstrates, 2-oxoglutarate, pyruvate, and oxaloacetate, Ab-ArAT4 possesses strong substrate preference and highest activity with the aromatic keto-acid, 4-hydroxyphenylpyruvate. Thus, Ab-ArAT4 operates at the interface between primary and specialized metabolism, contributing to both tropane alkaloid biosynthesis and the direct conversion of phenylalanine to tyrosine. © 2014 American Society of Plant Biologists. All rights reserved.

  10. Design and synthesis of novel 2-(indol-5-yl)thiazole derivatives as xanthine oxidase inhibitors.

    PubMed

    Song, Jeong Uk; Choi, Sung Pil; Kim, Tae Hun; Jung, Cheol-Kyu; Lee, Joo-Youn; Jung, Sang-Hun; Kim, Geun Tae

    2015-03-15

    Xanthine oxidase (XO) inhibitors have been widely used for the treatment of gout. Indole rings are frequently used as active scaffold in designing inhibitors for enzymes. Herein, we describe the structure-activity relationship for novel xanthine oxidase inhibitors based on indole scaffold. A series of novel tri-substituted 2-(indol-5-yl)thiazole derivatives were synthesized, and their in vitro inhibitory activities against xanthine oxidase and in vivo efficacy lowering uric acid level in blood were measured. Among them, 2-(3-cyano-2-isopropylindol-5-yl)-4-methylthiazole-5-carboxylic acid exhibits the most potent XO inhibitory activity (IC50 value: 3.5nM) and the excellent plasma uric acid lowering activity. Study of structure activity relationship indicated that hydrophobic moiety (e.g., isopropyl) at 1-position and electron withdrawing group (e.g., CN) at 3-position of indole ring and small hydrophobic group (CH3) at 4-position of the thiazole ring enhanced the XO inhibitory activity. Hydrophobic substitution such as isopropyl at 1-position of the indole moiety without any substitution at 2-position has an essential role for enhancing bioavailability and therefore for high in vivo efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. [Auxin synthesis by the higher fungus Lentinus edodes (Berk.) Sing in the presence of low concentrations of indole compounds].

    PubMed

    Tsivileva, O M; Loshchinina, E A; Makarov, O E; Nikitina, V E

    2012-01-01

    The auxin formation in a submerged culture of the xylotrophic basidiomycete Lentinus edodes (Berk.) Sing (Lentinula edodes (Berk.) Pegler) (shiitake) is studied. Biologically active substances of an indole nature are identified, "the effect of small doses" of which lies in not only the stimulation of growth of the mycelium (indole-3-acetic acid, 2 x 10(-7)-2 x 10(-4) g/l), but also in the induction of tryptophan-independent paths of auxin biosynthesis. The above-mentioned path is realized in the presence of exogenous indole (1 x 10(-3)-1 x 10(-4) g/l), as well as while inducing the biosynthesis of indole-3-acetic acid by its microadditives (1 x 10(-5)-1 x 10(-8) g/l), and is accompanied by the formation of anthranilic acid (up to 1.5 mg/l). Induction of the generative development stage ofshiitake by indole derivatives is revealed. It was found that among the studied compounds only indoleacetamide at a concentration of an order of x 10(-4) g/l in the culture fluid of L. edodes had a pronounced stimulatory effect on the formation of shiitake's brown mycelial film.

  12. The structure of dimethylallyl tryptophan synthase reveals a common architecture of aromatic prenyltransferases in fungi and bacteria

    PubMed Central

    Metzger, Ute; Schall, Christoph; Zocher, Georg; Unsöld, Inge; Stec, Edyta; Li, Shu-Ming; Heide, Lutz; Stehle, Thilo

    2009-01-01

    Ergot alkaloids are toxins and important pharmaceuticals that are produced biotechnologically on an industrial scale. The first committed step of ergot alkaloid biosynthesis is catalyzed by dimethylallyl tryptophan synthase (DMATS; EC 2.5.1.34). Orthologs of DMATS are found in many fungal genomes. We report here the x-ray structure of DMATS, determined at a resolution of 1.76 Å. A complex of DMATS from Aspergillus fumigatus with its aromatic substrate L-tryptophan and with an analogue of its isoprenoid substrate dimethylallyl diphosphate reveals the structural basis of this enzyme-catalyzed Friedel-Crafts reaction, which shows strict regiospecificity for position 4 of the indole nucleus of tryptophan as well as unusual independence of the presence of Mg2+ ions. The 3D structure of DMATS belongs to a rare β/α barrel fold, called prenyltransferase barrel, that was recently discovered in a small group of bacterial enzymes with no sequence similarity to DMATS. These bacterial enzymes catalyze the prenylation of aromatic substrates in the biosynthesis of secondary metabolites (i.e., a reaction similar to that of DMATS). PMID:19706516

  13. Secondary metabolites from three Florida sponges with antidepressant activity.

    PubMed

    Kochanowska, Anna J; Rao, Karumanchi V; Childress, Suzanne; El-Alfy, Abir; Matsumoto, Rae R; Kelly, Michelle; Stewart, Gina S; Sufka, Kenneth J; Hamann, Mark T

    2008-02-01

    Brominated indole alkaloids are a common class of metabolites reported from sponges of the order Verongida. Herein we report the isolation, structure determination, and activity of metabolites from three Florida sponges, namely, Verongula rigida (order Verongida, family Aplysinidae), Smenospongia aurea, and S. cerebriformis (order Dictyoceratida, family Thorectidae). All three species were investigated chemically, revealing similarities in secondary metabolites. Brominated compounds, as well as sesquiterpene quinones and hydroquinones, were identified from both V. rigida and S. aurea despite their apparent taxonomic differences at the ordinal level. Similar metabolites found in these distinct sponge species of two different genera provide evidence for a microbial origin of the metabolites. Isolated compounds were evaluated in the Porsolt forced swim test (FST) and the chick anxiety-depression continuum model. Among the isolated compounds, 5,6-dibromo- N,N-dimethyltryptamine ( 1) exhibited significant antidepressant-like action in the rodent FST model, while 5-bromo- N,N-dimethyltryptamine ( 2) caused significant reduction of locomotor activity indicative of a potential sedative action. The current study provides ample evidence that marine natural products with the diversity of brominated marine alkaloids will provide potential leads for antidepressant and anxiolytic drugs.

  14. Effect of Chromium on Antioxidant Potential of Catharanthus roseus Varieties and Production of Their Anticancer Alkaloids: Vincristine and Vinblastine

    PubMed Central

    Tandon, Pramod Kumar; Khatoon, Sayyada

    2014-01-01

    Catharanthus roseus (L.) G. Don, a medicinal plant, has a very important place in the traditional as well as modern pharmaceutical industry. Two common varieties of this plant rosea and alba are named so because of pink and white coloured flowers, respectively. This plant comprises of about 130 terpenoid indole alkaloids and two of them, vincristine and vinblastine, are common anticancer drugs. The effect of chromium (Cr) on enzymatic and non-enzymatic antioxidant components and on secondary metabolites vincristine and vinblastine was studied under pot culture conditions of both varieties of C. roseus. Antioxidant responses of these varieties were analyzed under 0, 10, 50, and 100 μM chromium (Cr) level in order to investigate the plant's protective mechanisms against Cr induced oxidative stress. The results indicated that Cr affects all the studied parameters and decreases growth performance. However, vincristine and vinblastine contents were increased under Cr stress. Results are quite encouraging, as this plant shows good antioxidant potential and increased the level of active constituents under Cr stress. PMID:24734252

  15. Total Synthesis of Acremoauxin A and Oxazinin 3: Scope and Mechanism of Direct Indole and Pyrrole Couplings Adjacent to Carbonyl Compounds

    PubMed Central

    Richter, Jeremy M.; Whitefield, Brandon W.; Maimone, Thomas J.; Lin, David W.; Castroviejo, M. Pilar; Baran, Phil S.

    2008-01-01

    Full details are provided for a recently invented method to couple indoles and pyrroles to carbonyl compounds. The reaction is ideally suited for structurally complex substrates and exhibits high levels of chemoselectivity (functional group tolerability), regioselectivity (coupling occurs exclusively at C–3 of indole or C–2 of pyrrole), stereoselectivity (substrate control), and practicality (amenable to scale-up). In addition, quaternary stereocenters are easily and predictably generated. The reaction has been applied to a number of synthetic problems including total syntheses of members of the hapalindole family of natural products, ketorolac, acremoauxin A, and oxazinin 3. Mechanistically, this coupling protocol appears to operate by a single electron transfer process requiring generation of an electron-deficient radical adjacent to a carbonyl which is then intercepted by an indole or pyrrole anion. PMID:17900115

  16. Synthesis of N4-(Substituted phenyl)-N4-alkyl/desalkyl-9H-pyrimido[4,5-b]indole-2,4-diamines and Identification of New Microtubule Disrupting Compounds that are Effective against Multidrug Resistant Cells1

    PubMed Central

    Gangjee, Aleem; Zaware, Nilesh; Devambatla, Ravi Kumar Vyas; Raghavan, Sudhir; Westbrook, Cara D.; Dybdal-Hargreaves, Nicholas F.; Hamel, Ernest; Mooberry, Susan L.

    2013-01-01

    A series of fourteen N4-(substituted phenyl)-N4-methyl/desmethyl-9H-pyrimido[4,5-b]indole-2,4-diamines was synthesized as potential microtubule targeting agents. The synthesis involved a Fisher indole cyclization of 2-amino-6-hydrazinylpyrimidin-4(3H)-one with cyclohexanone, followed by oxidation, chlorination and displacement with appropriate anilines. Compounds 6, 14 and 15 had low nanomolar potency against MDA-MB-435 tumor cells and depolymerized microtubules. Compound 6 additionally had nanomolar GI50 values against 57 of the NCI 60-tumor panel cell lines. Mechanistic studies showed that 6 inhibited tubulin polymerization and [3H]colchicine binding to tubulin. The most potent compounds were all effective in cells expressing P-glycoprotein or the βIII isotype of tubulin, which have been associated with clinical drug reisistence. Modeling studies provided the potential interactions of 6, 14 and 15 within the colchicine site. PMID:23332369

  17. A stereoselective synthesis of (+)-physoperuvine using a tandem aza-Claisen rearrangement and ring closing metathesis reaction.

    PubMed

    Zaed, Ahmed M; Swift, Michael D; Sutherland, Andrew

    2009-07-07

    A stereoselective synthesis of (+)-physoperuvine, a tropane alkaloid from Physalis peruviana Linne has been developed using a one-pot tandem aza-Claisen rearrangement and ring closing metathesis reaction to form the key amino-substituted cycloheptene ring.

  18. Exceptionally strong hydrogels through self-assembly of an indole-capped dipeptide.

    PubMed

    Martin, Adam D; Robinson, Andrew B; Mason, Alexander F; Wojciechowski, Jonathan P; Thordarson, Pall

    2014-12-21

    The synthesis of a new hydrogelator with an indole capping group, 1, is reported. 1 forms exceptionally strong hydrogels in a variety of environments, with values for the storage modulus G' amongst the highest reported for supramolecular hydrogels. These gels exhibit strong bundling characteristics, which gives the high values for G' observed. Cell viability studies show that at low concentrations, 1 is biocompatible, however upon self-assembly at higher concentrations, cytotoxic effects are observed.

  19. Modulation of Ergot Alkaloids in a Grass-Endophyte Symbiosis by Alteration of mRNA Concentrations of an Ergot Alkaloid Synthesis Gene.

    PubMed

    Mulinti, Prashanthi; Florea, Simona; Schardl, Christopher L; Panaccione, Daniel G

    2016-06-22

    The profile of ergot alkaloids in perennial ryegrass (Lolium perenne) containing the endophytic fungus Epichloë typhina × festucae includes high concentrations of the early pathway metabolites ergotryptamine and chanoclavine-I in addition to the pathway end-product ergovaline. Because these alkaloids differ in activity, we investigated strategies to alter their relative concentrations. An RNAi-based approach reduced the concentration of mRNA from the gene easA, which encodes an enzyme required for a ring closure that separates ergotryptamine and chanoclavine-I from ergovaline. Lower easA mRNA concentrations correlated with lower concentrations of ergovaline and higher concentrations of ergotryptamine and chanoclavine-I. Overexpression of easA led to higher concentrations of ergovaline in leaf blades but not in pseudostems; concentrations of the early pathway metabolites were not altered in overexpression strains. The data indicate that altering the concentration of mRNA from a single gene can change alkaloid flux, but the magnitude of the change was limited and variable.

  20. Bright and photostable cyanine-styryl chromophores with green and red fluorescence colour for DNA staining

    NASA Astrophysics Data System (ADS)

    Bohländer, Peggy R.; Wagenknecht, Hans-Achim

    2015-12-01

    The synthesis and optical characterisation of a series of green- and red-emitting cyanine and cyanine-styryl dyes is presented that were developed based on the cyanine-indole-quinolinium and based on the thiazole red type structure. For the green emitting fluorophores the quinolinium part was replaced by a pyridinium group. The bridge to the indole group was attached either to the 2-position or to the 4-position of the pyridinium moiety. For the red-emitting dyes the connection to the indole moiety is at the 4-position of the quinolinium part. In each set of dyes a methyl group at the indole-NH and/or a phenyl group at the 2-position of the indole part were introduced to tune the optical properties and photostability. Additionally, two dyes were modified with a cyano group to tune the photophysical properties and to enhance the photostabilities. The developed dyes show good photostabilities and bright green or red fluorescence intensities in the presence of DNA. Thus, these dyes represent important and promising candidates for fluorescent molecular imaging of nucleic acids inside living cells.

  1. Exogenous Indole Regulates Lipopeptide Biosynthesis in Antarctic Bacillus amyloliquefaciens Pc3.

    PubMed

    Ding, Lianshuai; Zhang, Song; Guo, Wenbin; Chen, Xinhua

    2018-05-28

    Bacillus amyloliquefaciens Pc3 was isolated from Antarctic seawater with antifungal activity. In order to investigate the metabolic regulation mechanism in the biosynthesis of lipopeptides in B. amyloliquefaciens Pc3, GC/MS-based metabolomics was used when exogenous indole was added. The intracellular metabolite profiles showed decreased asparagine, aspartic acid, glutamine, glutamic acid, threonine, valine, isoleucine, hexadecanoic acid, and octadecanoic acid in the indole-treated groups, which were involved in the biosynthesis of lipopeptides. B. amyloliquefaciens Pc3 exhibited a growth promotion, bacterial total protein increase, and lipopeptide biosynthesis inhibition upon the addition of indole. Besides this, real-time PCR analysis further revealed that the transcription of lipopeptide biosynthesis genes ituD, fenA , and srfA-A were downregulated by indole with 22.4-, 21.98-, and 26.0-fold, respectively. It therefore was speculated that as the metabolic flux of most of the amino acids and fatty acids were transferred to the synthesis of proteins and biomass, lipopeptide biosynthesis was weakened owing to the lack of precursor amino acids and fatty acids.

  2. Approaches to N-Methylwelwitindolinone C Isothiocyanate: Facile Synthesis of the Tetracyclic Core

    PubMed Central

    Heidebrecht, Richard W.; Gulledge, Brian; Martin, Stephen F.

    2010-01-01

    The synthesis of a functionalized, tetracyclic core of N-methylwelwitindolinone C isothiocyanate is reported. The approach features a convergent coupling between an indole iminium ion and a highly functionalized vinylogous silyl ketene acetal followed by an intramolecular palladium-catalyzed cyclization that proceeds via an enolate arylation. PMID:20446675

  3. Synthesis and biological activities of new furo[3,4-b]carbazoles: potential topoisomerase II inhibitors.

    PubMed

    Hajbi, Youssef; Neagoie, Cléopatra; Biannic, Bérenger; Chilloux, Aurélie; Vedrenne, Emeline; Baldeyrou, Brigitte; Bailly, Christian; Mérour, Jean-Yves; Rosca, Sorin; Routier, Sylvain; Lansiaux, Amélie

    2010-11-01

    New 1,5-dihydro-4-(substituted phenyl)-3H-furo[3,4-b]carbazol-3-ones were synthesised via a key step Diels-Alder reaction under microwave irradiation. 3-Formylindole was successfully used in a 6-step synthesis to obtain those complex heterocycles. The Diels-Alder reaction generating the carbazole ring was optimised under thermal conditions or microwave irradiation. After cleavage of functional groups, DNA binding, topoisomerase inhibition and cytotoxic properties of the new-formed furocarbazoles were investigated. These carbazoles do not present a strong interaction with the DNA, and do not modify the relaxation of the DNA in the presence of topoisomerase I or II except for one promising compound. This compound is a potent topoisomerase II inhibitor, and its cellular activity is not moderated compared to etoposide. The synthesis of these molecules allowed the generalisation of the method using indole and 5-OBn indole and several benzaldehydes. The synthesis of these molecules produced chemical structures endowed with promising cytotoxic and topoisomerase II inhibition activities. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  4. Optimization of yeast-based production of medicinal protoberberine alkaloids.

    PubMed

    Galanie, Stephanie; Smolke, Christina D

    2015-09-16

    Protoberberine alkaloids are bioactive molecules abundant in plant preparations for traditional medicines. Yeast engineered to express biosynthetic pathways for fermentative production of these compounds will further enable investigation of the medicinal properties of these molecules and development of alkaloid-based drugs with improved efficacy and safety. Here, we describe the optimization of a biosynthetic pathway in Saccharomyces cerevisiae for conversion of rac-norlaudanosoline to the protoberberine alkaloid (S)-canadine. This yeast strain is engineered to express seven heterologous enzymes, resulting in protoberberine alkaloid production from a simple benzylisoquinoline alkaloid precursor. The seven enzymes include three membrane-bound enzymes: the flavin-dependent oxidase berberine bridge enzyme, the cytochrome P450 canadine synthase, and a cytochrome P450 reductase. A number of strategies were implemented to improve flux through the pathway, including enzyme variant screening, genetic copy number variation, and culture optimization, that led to an over 70-fold increase in canadine titer up to 1.8 mg/L. Increased canadine titers enable extension of the pathway to produce berberine, a major constituent of several traditional medicines, for the first time in a microbial host. We also demonstrate that this strain is viable at pilot scale. By applying metabolic engineering and synthetic biology strategies for increased conversion of simple benzylisoquinoline alkaloids to complex protoberberine alkaloids, this work will facilitate chemoenzymatic synthesis or de novo biosynthesis of these and other high-value compounds using a microbial cell factory.

  5. The response regulator Npun_F1278 is essential for scytonemin biosynthesis in the cyanobacterium Nostoc punctiforme ATCC 29133.

    PubMed

    Naurin, Sejuti; Bennett, Janine; Videau, Patrick; Philmus, Benjamin; Soule, Tanya

    2016-08-01

    Following exposure to long-wavelength ultraviolet radiation (UVA), some cyanobacteria produce the indole-alkaloid sunscreen scytonemin. The genomic region associated with scytonemin biosynthesis in the cyanobacterium Nostoc punctiforme includes 18 cotranscribed genes. A two-component regulatory system (Npun_F1277/Npun_F1278) directly upstream from the biosynthetic genes was identified through comparative genomics and is likely involved in scytonemin regulation. In this study, the response regulator (RR), Npun_F1278, was evaluated for its ability to regulate scytonemin biosynthesis using a mutant strain of N. punctiforme deficient in this gene, hereafter strain Δ1278. Following UVA radiation, the typical stimulus to initiate scytonemin biosynthesis, Δ1278 was incapable of producing scytonemin. A phenotypic characterization of Δ1278 suggests that aside from the ability to produce scytonemin, the deletion of the Npun_F1278 gene does not affect the cellular morphology, cellular differentiation capability, or lipid-soluble pigment complement of Δ1278 compared to the wildtype. The mutant, however, had a slower specific growth rate under white light and produced ~2.5-fold more phycocyanin per cell under UVA than the wildtype. Since Δ1278 does not produce scytonemin, this study demonstrates that the RR gene, Npun_F1278, is essential for scytonemin biosynthesis in N. punctiforme. While most of the evaluated effects of this gene appear to be specific for scytonemin, this regulator may also influence the overall health of the cell and phycobiliprotein synthesis, directly or indirectly. This is the first study to identify a regulatory gene involved in the biosynthesis of the sunscreen scytonemin and posits a link between cell growth, pigment synthesis, and sunscreen production. © 2016 Phycological Society of America.

  6. Solvent-free cross-dehydrogenative coupling reactions under high speed ball-milling conditions applied to the synthesis of functionalized tetrahydroisoquinolines.

    PubMed

    Su, Weike; Yu, Jingbo; Li, Zhenhua; Jiang, Zhijiang

    2011-11-04

    Solvent-free reaction using a high-speed ball milling technique has been first applied to cross-dehydrogenative coupling (CDC) reactions between tetrahydroisoquinolines and three types of pronucleophiles such as nitroalkanes, alkynes, and indoles. All coupling products were obtained in good yields at short reaction times (no more than 40 min). When alkynes and indoles were used as pronucleophile, the reactions can be catalyzed efficiently by recoverable copper balls without any additional metal catalyst.

  7. Synthesis of Benzo[a]carbazoles and an Indolo[2,3-a]carbazole from 3-Aryltetramic Acids.

    PubMed

    Truax, Nathanyal J; Banales Mejia, Fernando; Kwansare, Deborah O; Lafferty, Megan M; Kean, Maeve H; Pelkey, Erin T

    2016-08-05

    A simple and flexible approach to 3-pyrrolin-2-one fused carbazoles is disclosed. The key step involves the BF3-mediated electrophilic substitution of indoles with N-alkyl-substituted 3-aryltetramic acids, which provides access to indole-substituted 3-pyrrolin-2-ones. Scholl-type oxidative cyclizations of these materials led to the formation of the corresponding 3-pyrrolin-2-one-fused benzo[a]carbazoles and indolo[2,3-a]carbazoles. This work represents the first synthesis of the benzo[a]pyrrolo[3,4-c]carbazol-3(8H)-one ring system, while the indolo[2,3-a]pyrrolo[3,4-c]carbazol-5-one ring system is found in a number of biologically active compounds including the protein kinase C (PKC) inhibitor, staurosporine.

  8. Soluble polymer supported divergent synthesis of tetracyclic benzene-fused pyrazino/diazepino indoles: an advanced synthetic approach to bioactive scaffolds.

    PubMed

    Lin, Po-Tsung; Salunke, Deepak B; Chen, Li-Hsun; Sun, Chung-Ming

    2011-04-21

    The synthesis of indoline substituted nitrobenzene on a PEG support and its further elaboration to structurally diverse benzene-fused pyrazino/diazepino indoles is disclosed. A reagent based diversification approach coupled with Pictet-Spengler type condensation reactions furnished these fused polycyclic scaffolds. Microwave irradiation was used as a means of rate acceleration for soluble polymer-supported reactions. The efficiency of these fused heterocyclic molecules to inhibit the vascular endothelial growth factor receptor 3 (VEGFR-3) was examined in vitro using kinase receptor activation enzyme-linked immunosorbant assay (KIRA-ELISA). Based on the preliminary results obtained, a small set of potential drug candidates were identified as novel leads in this therapeutic area to be further explored as anti-metastatic agents.

  9. Asymmetric catalytic cascade reactions for constructing diverse scaffolds and complex molecules.

    PubMed

    Wang, Yao; Lu, Hong; Xu, Peng-Fei

    2015-07-21

    With the increasing concerns about chemical pollution and sustainability of resources, among the significant challenges facing synthetic chemists are the development and application of elegant and efficient methods that enable the concise synthesis of natural products, drugs, and related compounds in a step-, atom- and redox-economic manner. One of the most effective ways to reach this goal is to implement reaction cascades that allow multiple bond-forming events to occur in a single vessel. This Account documents our progress on the rational design and strategic application of asymmetric catalytic cascade reactions in constructing diverse scaffolds and synthesizing complex chiral molecules. Our research is aimed at developing robust cascade reactions for the systematic synthesis of a range of interesting molecules that contain structural motifs prevalent in natural products, pharmaceuticals, and biological probes. The strategies employed to achieve this goal can be classified into three categories: bifunctional base/Brønsted acid catalysis, covalent aminocatalysis/N-heterocyclic carbene catalysis, and asymmetric organocatalytic relay cascades. By the use of rationally designed substrates with properly reactive sites, chiral oxindole, chroman, tetrahydroquinoline, tetrahydrothiophene, and cyclohexane scaffolds were successfully assembled under bifunctional base/Brønsted acid catalysis from simple and readily available substances such as imines and nitroolefins. We found that some of these reactions are highly efficient since catalyst loadings as low as 1 mol % can promote the multistep sequences affording complex architectures with high stereoselectivities and yields. Furthermore, one of the bifunctional base/Brønsted acid-catalyzed cascade reactions for the synthesis of chiral cyclohexanes has been used as a key step in the construction of the tetracyclic core of lycorine-type alkaloids and the formal synthesis of α-lycorane. Guided by the principles of covalent aminocatalysis and N-heterocyclic carbene catalysis, we synthesized chiral piperidine, indole, and cyclobutane derivatives. The synthesis of chiral cyclobutanes and pyrroloindolones showed unprecedented reactivity of substrates and catalysts. The development of the strategy of asymmetric organocatalytic relay cascades has provided a useful tool for the controlled synthesis of specific diastereomers in complex molecules. This Account gives a panoramic view and the logic of our research on the design, development, and applications of asymmetric catalytic cascade reactions that will potentially provide useful insights into exploring new reactions.

  10. Synthesis and Pharmacology of 1-Alkyl-3-(1-naphthoyl)indoles: Steric and Electronic Effects of 4- and 8-Halogenated Naphthoyl Substituents.

    PubMed Central

    Wiley, Jenny L.; Smith, Valerie J.; Chen, Jianhong; Martin, Billy R.; Huffman, John W.

    2012-01-01

    To develop SAR at both the cannabinoid CB1 and CB2 receptors for 3-(1-naphthoyl)indoles bearing moderately electron withdrawing substituents at C-4 of the naphthoyl moiety, 1-propyl and 1-pentyl-3-(4-fluoro, chloro, bromo and iodo-1-naphthoyl) derivatives were prepared. To study the steric and electronic effects of substituents at the 8-position of the naphthoyl group, the 3-(4-chloro, bromo and iodo-1-naphthoyl)indoles were also synthesized. The affinities of both groups of compounds for the CB1 and CB2 receptors were determined and several of them were evaluated in vivo in the mouse. The effects of these substituents on receptor affinities and in vivo activity are discussed and structure-activity relationships are presented. Although many of these compounds are selective for the CB2 receptor, only three JWH-423, 1-propyl-3-(4-iodo-1-naphthoyl)indole, JWH-422, 2-methyl-1-propyl-3-(4-iodo-1-naphthoyl)indole, the 2-methyl analog of JWH-423 and JWH-417, 1-pentyl-3-(8-iodo-1-naphthoyl)indole, possess the desirable combination of low CB1 affinity and good CB2 affinity. PMID:22341572

  11. Enantioselective Synthesis of All-Carbon Quaternary Centers Structurally Related to Amaryllidaceae Alkaloids.

    PubMed

    Mikušek, Jiří; Jansa, Petr; Jagtap, Pratap R; Vašíček, Tomáš; Císařová, Ivana; Matoušová, Eliška

    2018-05-18

    Enantioselective synthesis of all-carbon quaternary centers remains a considerable challenge for synthetic organic chemists. Here, we report a two-step protocol to synthesize such centers including tandem cyclization/Suzuki cross-coupling followed by halocarbocyclization. During this process, two rings, three new C-C bonds and a stereochemically defined all-carbon quaternary center are formed. The absolute configuration of this center is controlled by the stereochemistry of the adjacent stereocenter, which derives from an appropriate enantioenriched starting material. Using this method, we synthesized polycyclic compounds structurally similar to Amaryllidaceae alkaloids in high enantiomeric excesses. Because these products resemble naturally occurring compounds, our protocol can be used to synthesize various potentially bioactive compounds. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. How polyamine synthesis inhibitors and cinnamic acid affect tropane alkaloid production.

    PubMed

    Marconi, Patricia L; Alvarez, María A; Pitta-Alvarez, Sandra I

    2007-01-01

    Hairy roots of Brugmansia candida produce the tropane alkaloids scopolamine and hyoscyamine. In an attempt to divert the carbon flux from competing pathways and thus enhance productivity, the polyamine biosynthesis inhibitors cyclohexylamine (CHA) and methylglyoxal-bis-guanylhydrazone (MGBG) and the phenylalanine-ammonia-lyase inhibitor cinnamic acid were used. CHA decreased the specific productivity of both alkaloids but increased significantly the release of scopolamine (approx 500%) when it was added in the mid-exponential phase. However, when CHA was added for only 48 h during the exponential phase, the specific productivity of both alkaloids increased (approx 200%), favoring scopolamine. Treatment with MGBG was detrimental to growth but promoted release into the medium of both alkaloids. However, when it was added for 48 h during the exponential phase, MGBG increased the specific productivity (approx 200%) and release (250- 1800%) of both alkaloids. Cinnamic acid alone also favored release but not specific productivity. When a combination of CHA or MGBG with cinnamic acid was used, the results obtained were approximately the same as with each polyamine biosynthesis inhibitor alone, although to a lesser extent. Regarding root morphology, CHA inhibited growth of primary roots and ramification. However, it had a positive effect on elongation of lateral roots.

  13. Synthesis of indolizidinone analogues of cytotoxic alkaloids: monocyclic precursors are also active.

    PubMed

    Boto, Alicia; Miguélez, Javier; Marín, Raquel; Díaz, Mario

    2012-05-15

    Readily available proline derivatives can be transformed in just two steps into analogues of cytotoxic phenanthroindolizidine alkaloids. The key step uses a sequential radical scission-oxidation-alkylation process, which yields 2-substituted pyrrolidine amides. A second process effects the cyclization to give the desired alkaloid analogues, which possess an indolizidine core. The major and minor isomers (dr 3:2 to 3:1) can be easily separated, allowing their use to study structure-activity relationships (SAR). The process is versatile and allows the introduction of aryl and heteroaryl groups (including biphenyl, halogenated phenyl, and pyrrole rings). Some of these alkaloid analogues displayed a selective cytotoxic activity against tumorogenic human neuronal and mammary cancer cells, and one derivative caused around 80% cell death in both tumor lines at micromolar doses. The cytotoxicity of some monocyclic precursors was also studied, being comparable or superior to the bicyclic derivatives. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Synthesis and evaluation of new antimalarial analogues of quinoline alkaloids derived from Cinchona ledgeriana Moens ex Trimen.

    PubMed

    Park, Byeoung-Soo; Kim, Dae-Young; Rosenthal, Philip J; Huh, Sun-Chul; Lee, Belinda J; Park, Eun -u; Kim, Sung-Min; Kim, Jang-Eok; Kim, Mi-Hee; Huh, Tae-Lin; Choi, Young-Jae; Suh, Ki-Hyung; Choi, Won-Sik; Lee, Sung-Eun

    2002-05-20

    In the course of attempts to develop antimalarial drugs, we have designed and synthesized a series of quinoline alkaloide derivatives. Three of them, N-(4-methoxy-3,5-di-tert-butylbenzyl)cinchonidinium bromide (OSL-5), O-benzyl-N-(3,5-di-tert-butyl-4-methoxybenzyl)cinchonidinium bromide (OSL-7), and N-(3,5-di-tert-butyl-4-methoxybenzyl)quininium bromide (OSL-14) show potent activity against Plasmodium falciparum.

  15. Diurnal Profiles of Melatonin Synthesis-Related Indoles, Catecholamines and Their Metabolites in the Duck Pineal Organ

    PubMed Central

    Lewczuk, Bogdan; Ziółkowska, Natalia; Prusik, Magdalena; Przybylska-Gornowicz, Barbara

    2014-01-01

    This study characterizes the diurnal profiles of ten melatonin synthesis-related indoles, the quantitative relations between these compounds, and daily variations in the contents of catecholamines and their metabolites in the domestic duck pineal organ. Fourteen-week-old birds, which were reared under a 12L:12D cycle, were killed at two-hour intervals. The indole contents were measured using HPLC with fluorescence detection, whereas the levels of catecholamines and their metabolites were measured using HPLC with electrochemical detection. All indole contents, except for tryptophan, showed significant diurnal variations. The 5-hydroxytryptophan level was approximately two-fold higher during the scotophase than during the photophase. The serotonin content increased during the first half of the photophase, remained elevated for approximately 10 h and then rapidly decreased in the middle of the scotophase. N-acetylserotonin showed the most prominent changes, with a more than 15-fold increase at night. The melatonin cycle demonstrated only an approximately 5-fold difference between the peak and nadir. The 5-methoxytryptamine content was markedly elevated during the scotophase. The 5-hydroxyindole acetic acid, 5-hydroxytryptophol, 5-methoxyindole acetic acid and 5-methoxytryptophol profiles were analogous to the serotonin rhythm. The norepinephrine and dopamine contents showed no significant changes. The DOPA, DOPAC and homovanillic acid levels were higher during the scotophase than during the photophase. Vanillylmandelic acid showed the opposite rhythm, with an elevated level during the daytime. PMID:25032843

  16. Staphylococcal enterotoxin A gene-carrying Staphylococcus aureus isolated from foods and its control by crude alkaloid from papaya leaves.

    PubMed

    Handayani, Lita; Faridah, Didah Nur; Kusumaningrum, Harsi D

    2014-11-01

    Staphylococcus aureus is a known pathogen causing intoxication by producing enterotoxins in food. Staphylococcal enterotoxin A is one of the enterotoxins commonly implicated in staphylococcal food poisoning. The ability of crude alkaloid extract from papaya leaves to inhibit the growth of S. aureus and staphylococcal enterotoxin A synthesis was investigated. Staphylococcal enterotoxin A gene-carrying S. aureus was isolated from raw milk and ready-to-eat foods. Crude alkaloid was extracted from ground, dried papaya leaves using ultrasonic-assisted extraction, and a MIC of the alkaloid was determined by the broth macrodilution method. Furthermore, S. aureus isolate was exposed to the crude alkaloid extract at one- and twofold MIC, and the expression of sea was subsequently analyzed using a quantitative reverse transcription real-time PCR. Ten isolates of S. aureus were obtained, and nine of those isolates were sea carriers. The yield of crude alkaloid extract was 0.48 to 1.82% per dry weight of papaya leaves. A MIC of crude alkaloid to S. aureus was 0.25 mg/ml. After exposure to the alkaloid at 0.25 and 0.5 mg/ml for 2 h, a significant increase in cycle threshold values of sea was observed. The sea was expressed 29 and 41 times less when S. aureus was exposed to crude alkaloid at one- and twofold MIC, respectively. This study revealed that crude alkaloid of papaya leaves could control staphylococcal enterotoxin A gene-carrying S. aureus by suppressing the expression of sea, in addition to the ability to inhibit the growth of S. aureus. The expression of sea was successfully quantified.

  17. Synthesis of new substituted azetidinoyl and thiazolidinoyl-1,3,4-thiadiazino (6,5-b) indoles as promising anti-inflammatory agents.

    PubMed

    Bhati, Sudhir Kumar; Kumar, Ashok

    2008-11-01

    Various N-({5-[(arylmethylene)amino]-1,3,4-thiadiazol-2-yl}methyl) [1,3,4] thiadiazino[6,5-b]indol-3-amine (6a-6h), 2-aryl-3-{5-[([1,3,4] thiadiazino[6,5-b]indol-3-ylamino)methyl]-1,3,4-thiadiazol-2-yl}-1,3-thiazolidin-4-one (7a-7h), and 3-chloro-4-aryl-1-{5-[{[1,3,4]thiadiazino[6,5-b]indol-3-ylamino]methyl]-1,3,4-thiadiazol-2-yl}azetidin-2-one (8a-8h) have been synthesized in the present study. The structure of these newly synthesized compounds were confirmed by their analytical and spectral data. These compounds were also evaluated for their anti-inflammatory, ulcerogenic and analgesic activities. Compound 8g has shown most active anti-inflammatory and analgesic activities with better ulcerogenic activity than phenylbutazone, while this compound was found to be associated with lesser degree of anti-inflammatory and analgesic activities as compared to indomethacin.

  18. Synthesis and evaluation of 5-(arylthio)-9H-pyrimido[4,5-b]indole-2,4-diamines as receptor tyrosine kinase and thymidylate synthase inhibitors and as antitumor agents.

    PubMed

    Zaware, Nilesh; Kisliuk, Roy; Bastian, Anja; Ihnat, Michael A; Gangjee, Aleem

    2017-04-01

    In an effort to optimize the structural requirements for combined cytostatic and cytotoxic effects in single agents, a series of 5-(arylthio)-9H-pyrimido[4,5-b]indole-2,4-diamines 3-7 were synthesized and evaluated as inhibitors of receptor tyrosine kinases (RTKs) as well as thymidylate synthase (TS). The synthesis of these compounds involved the nucleophilic displacement of the common intermediate 5-bromo/5-chloro-9H-pyrimido[4,5-b]indole-2,4-diamine with appropriate aryl thiols. A novel four step synthetic scheme to the common intermediate was developed which is more efficient relative to the previously reported six-step sequence. Biological evaluation of these compounds indicated dual activity in RTKs and human TS (hTS). In the VEGFR-2 assay, compound 5 was equipotent to the standard compound semaxanib and was better than standard TS inhibitor pemetrexed, in the hTS assay. Compounds 3, 6 and 7 were nanomolar inhibitors of hTS and were several fold better than pemetrexed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Radioimmunoassay of lysergic acid diethylamide (LSD) in serum and urine by using antisera of different specificities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratcliffe, W.A.; Fletcher, S.M.; Moffat, A.C.

    We raised high-titre antisera to two LSD-bovine serum albumin conjugates, one linked via the indole nitrogen, the other via the amide side-chain. The antisera were specific for different parts of the LSD molecule, as demonstrated by cross-reactivity studies with LSD, its metabolites, ergot alkaloids, and closely related compounds. The antisera were used to develop a double-antibody radioimmunoassay with a detection limit of about 0.4 ..mu..g of LSD per liter of unextracted urine or serum. We saw no nonspecific interference by urine, serum, or from a series of commonly used drugs. There was good correlation between immunoassay values obtained with themore » two antisera (r = 0.91). However, the antiserum linked via the indole nitrogen gave consistently higher results for samples from persons who had taken LSD, owing to greater cross-reactivity with LSD metabolites. Radioimmunoassay by use of two such antisera is a more specific screening procedure for LSD abuse than has been available previously. In addition, antisera cross-reacting with LSD metabolites allow measurement of these compounds, for which there is no satisfactory method at the concentrations found in biological fluids in man.« less

  20. Deletion and Gene Expression Analyses Define the Paxilline Biosynthetic Gene Cluster in Penicillium paxilli

    PubMed Central

    Scott, Barry; Young, Carolyn A.; Saikia, Sanjay; McMillan, Lisa K.; Monahan, Brendon J.; Koulman, Albert; Astin, Jonathan; Eaton, Carla J.; Bryant, Andrea; Wrenn, Ruth E.; Finch, Sarah C.; Tapper, Brian A.; Parker, Emily J.; Jameson, Geoffrey B.

    2013-01-01

    The indole-diterpene paxilline is an abundant secondary metabolite synthesized by Penicillium paxilli. In total, 21 genes have been identified at the PAX locus of which six have been previously confirmed to have a functional role in paxilline biosynthesis. A combination of bioinformatics, gene expression and targeted gene replacement analyses were used to define the boundaries of the PAX gene cluster. Targeted gene replacement identified seven genes, paxG, paxA, paxM, paxB, paxC, paxP and paxQ that were all required for paxilline production, with one additional gene, paxD, required for regular prenylation of the indole ring post paxilline synthesis. The two putative transcription factors, PP104 and PP105, were not co-regulated with the pax genes and based on targeted gene replacement, including the double knockout, did not have a role in paxilline production. The relationship of indole dimethylallyl transferases involved in prenylation of indole-diterpenes such as paxilline or lolitrem B, can be found as two disparate clades, not supported by prenylation type (e.g., regular or reverse). This paper provides insight into the P. paxilli indole-diterpene locus and reviews the recent advances identified in paxilline biosynthesis. PMID:23949005

  1. From indole to pyrrole, furan, thiophene and pyridine: Search for novel small molecule inhibitors of bacterial transcription initiation complex formation.

    PubMed

    Thach, Oscar; Mielczarek, Marcin; Ma, Cong; Kutty, Samuel K; Yang, Xiao; Black, David StC; Griffith, Renate; Lewis, Peter J; Kumar, Naresh

    2016-03-15

    The search for small molecules capable of inhibiting transcription initiation in bacteria has resulted in the synthesis of N,N'-disubstituted hydrazines and imine-carbohydrazides comprised of indole, pyridine, pyrrole, furan and thiophene using the respective trichloroacetyl derivatives, carbohydrazides and aldehydes. Replacement of the indole moiety by smaller heterocycles linked by CONHNC linkers afforded a broad variety of compounds efficiently targeting the RNA polymerase-σ(70)/σ(A) interaction as determined by ELISA and exhibiting increased inhibition of the growth of Escherichia coli compared to Bacillus subtilis in culture. The structural features of the synthesized transcription initiation inhibitors needed for antibacterial activity were identified employing molecular modelling and structure-activity relationship (SAR) studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Cytotoxicity of the indole alkaloid reserpine from Rauwolfia serpentina against drug-resistant tumor cells.

    PubMed

    Abdelfatah, Sara A A; Efferth, Thomas

    2015-02-15

    The antihypertensive reserpine is an indole alkaloid from Rauwolfia serpentina and exerts also profound activity against cancer cells in vitro and in vivo. The present investigation was undertaken to investigate possible modes of action to explain its activity toward drug-resistant tumor cells. Sensitive and drug-resistant tumor cell lines overexpressing P-glycoprotein (ABCB1/MDR1), breast cancer resistance protein (ABCG2/BCRP), mutation-activated epidermal growth factor receptor (EGFR), wild-type and p53-knockout cells as well as the NCI panel of cell lines from different tumor origin were analyzed. Reserpine's cytotoxicity was investigated by resazurin and sulforhodamine assays, flow cytometry, and COMPARE and hierarchical cluster analyses of transcriptome-wide microarray-based RNA expressions. P-glycoprotein- or BCRP overexpressing tumor cells did not reveal cross-resistance to reserpine. EGFR-overexpressing cells were collateral sensitive and p53- Knockout cells cross-resistant to this drug compared to their wild-type parental cell lines. Reserpine increased the uptake of doxorubicin in P-glycoprotein-overexpressing cells, indicating that reserpine inhibited the efflux function of P-glycoprotein. Using molecular docking, we found that reserpine bound with even higher binding energy to P-glycoprotein and EGFR than the control drugs verapamil (P-glycoprotein inhibitor) and erlotinib (EGFR inhibitor). COMPARE and cluster analyses of microarray data showed that the mRNA expression of a panel of genes predicted the sensitivity or resistance of the NCI tumor cell line panel with statistical significance. The genes belonged to diverse pathways and biological functions, e.g. cell survival and apoptosis, EGFR activation, regulation of angiogenesis, cell mobility, cell adhesion, immunological functions, mTOR signaling, and Wnt signaling. The lack of cross-resistance to most resistance mechanisms and the collateral sensitivity in EGFR-transfectants compared to wild-type cells speak for a promising role of reserpine in cancer chemotherapy. Reserpine deserves further consideration for cancer therapy in the clinical setting. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Functional expression of a putative geraniol 8-hydroxylase by reconstitution of bacterially expressed plant CYP76F45 and NADPH-cytochrome P450 reductase CPR I from Croton stellatopilosus Ohba.

    PubMed

    Sintupachee, Siriluk; Promden, Worrawat; Ngamrojanavanich, Nattaya; Sitthithaworn, Worapan; De-Eknamkul, Wanchai

    2015-10-01

    While attempting to isolate the enzyme geranylgeraniol 18-hydroxylase, which is involved in plaunotol biosynthesis in Croton stellatopilosus (Cs), the cDNAs for a cytochrome P450 monooxygenase(designated as CYP76F45) and an NADPH-cytochrome P450 reductase (designated as CPR I based on its classification) were isolated from the leaf. The CYP76F45 and CsCPR I genes have open reading frames (ORFs) encoding 507- and 711-amino acid proteins with predicted relative molecular weights of 56.7 and 79.0 kDa,respectively. Amino acid sequence comparison showed that both CYP76F45 (63–73%) and CsCPR I (79–83%) share relatively high sequence identities with homologous proteins in other plant species.Phylogenetic tree analysis confirmed that CYP76F45 belongs to the CYP76 family and that CsCPR I belongs to Class I of dicotyledonous CPRs, with both being closely related to Ricinus communis genes. Functional characterization of both enzymes, each expressed separately in Escherichia coli as recombinant proteins,showed that only simultaneous incubation of the membrane bound proteins with the substrate geraniol (GOH) and the coenzyme NADPH could form 8-hydroxygeraniol. The enzyme mixture could also utilize acyclic sesquiterpene farnesol (FOH) with a comparable substrate preference ratio (GOH:FOH) of 54:46. The levelsof the CYP76F45 and CsCPR I transcripts in the shoots, leaves and twigs of C. stellatopilosus were correlated with the levels of a major monoterpenoid indole alkaloid, identified tentatively as 19-Evallesamine,that accumulated in these plant parts. These results suggested that CYP76F45 and CPR I function as the enzyme geraniol-8-hydroxylase (G8H), which is likely to be involved in the biosynthesis of the indole alkaloid in C. stellatopilosus [corrected]. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Anticancer effects of brominated indole alkaloid Eudistomin H from marine ascidian Eudistoma viride against cervical cancer cells (HeLa).

    PubMed

    Rajesh, Rajaian Pushpabai; Annappan, Murugan

    2015-01-01

    Marine invertebrates called ascidians are prolific producers of bioactive substances. The ascidian Eudistoma viride, distributed along the Southeast coast of India, was investigated for its in vitro cytotoxic activity against human cervical carcinoma (HeLa) cells by the MTT assay. The crude methanolic extract of E. viride, with an IC50 of 53 μg/ml, was dose-dependently cytotoxic. It was more potent at 100 μg/ml than cyclohexamide (1 μg/ml), reducing cell viability to 9.2%. Among nine fractions separated by chromatography, ECF-8 exhibited prominent cytoxic activity at 10 μg/ml. The HPLC fraction EHF-21 of ECF-8 was remarkably dose- and time-dependently cytotoxic, with 39.8% viable cells at 1 μg/ml compared to 51% in cyclohexamide-treated cells at the same concentration; the IC50 was 0.49 μg/ml. Hoechst staining of HeLa cells treated with EHF-21 at 0.5 μg/ml revealed apoptotic events such an cell shrinkage, membrane blebbing, chromatin condensation and formation of apoptotic bodies. Cell size and granularity study showed changes in light scatter, indicating the characteristic feature of cells dying by apoptosis. The cell-cycle analysis of HeLa cells treated with fraction EHF-21 at 1 μg/ml showed the marked arrest of cells in G0/G1, S and G2/M phases and an increase in the sub G0/G1 population indicated an increase in the apoptotic cell population. The statistical analysis of the sub-G1 region showed a dose-dependent induction of apoptosis. DNA fragmentation was also observed in HeLa cells treated with EHF-21. The active EHF-21 fraction, a brominated indole alkaloid Eudistomin H, led to apoptotic death of HeLa cells. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  5. Scale-Up of Agrobacterium rhizogenes-Mediated Hairy Root Cultures of Rauwolfia serpentina: A Persuasive Approach for Stable Reserpine Production.

    PubMed

    Mehrotra, Shakti; Srivastava, Vikas; Goel, Manoj K; Kukreja, Arun K

    2016-01-01

    Roots of Rauwolfia serpentina, also known as "Sarpagandha" possess high pharmaceutical value due to the presence of reserpine and other medicinally important terpene indole alkaloids. Ever increasing commercial demand of R. serpentina roots is the major reason behind the unsystematic harvesting and fast decline of the species from its natural environment. Considering Agrobacterium rhizogenes-mediated hairy root cultures as an alternative source for the production of plant-based secondary metabolites, the present optimized protocol offers a commercially feasible method for the production of reserpine, the most potent alkaloid from R. serpentina roots. This end-to-end protocol presents the establishment of hairy root culture from the leaf explants of R. serpentina through the infection of A. rhizogenes strain A4 in liquid B5 culture medium and its up-scaling in a 5 L bench top, mechanically agitated bioreactor. The transformed nature of roots was confirmed through PCR-based rol A gene amplification in genomic DNA of putative hairy roots. The extraction and quantification of reserpine in bioreactor grown roots has been done using monolithic reverse phase high-performance liquid chromatography (HPLC).

  6. Secondary Metabolites from Three Florida Sponges with Antidepressant Activity

    PubMed Central

    Kochanowska, Anna J.; Rao, Karumanchi V.; Childress, Suzanne; El-Alfy, Abir; Matsumoto, Rae R.; Kelly, Michelle; Stewart, Gina S.; Sufka, Kenneth J.; Hamann, Mark T.

    2016-01-01

    Brominated indole alkaloids are a common class of metabolites reported from sponges of the order Verongida. Herein we report the isolation, structure determination, and activity of metabolites from three Florida sponges, namely, Verongula rigida (order Verongida, family Aplysinidae), Smenospongia aurea, and S. cerebriformis (order Dictyoceratida, family Thorectidae). All three species were investigated chemically, revealing similarities in secondary metabolites. Brominated compounds, as well as sesquiterpene quinones and hydroquinones, were identified from both V. rigida and S. aurea despite their apparent taxonomic differences at the ordinal level. Similar metabolites found in these distinct sponge species of two different genera provide evidence for a microbial origin of the metabolites. Isolated compounds were evaluated in the Porsolt forced swim test (FST) and the chick anxiety–depression continuum model. Among the isolated compounds, 5,6-dibromo-N,N-dimethyltryptamine (1) exhibited significant antidepressant-like action in the rodent FST model, while 5-bromo-N,N-dimethyltryptamine (2) caused significant reduction of locomotor activity indicative of a potential sedative action. The current study provides ample evidence that marine natural products with the diversity of brominated marine alkaloids will provide potential leads for antidepressant and anxiolytic drugs. PMID:18217716

  7. Monoterpene bisindole alkaloids, from the African medicinal plant Tabernaemontana elegans, induce apoptosis in HCT116 human colon carcinoma cells.

    PubMed

    Mansoor, Tayyab A; Borralho, Pedro M; Dewanjee, Saikat; Mulhovo, Silva; Rodrigues, Cecília M P; Ferreira, Maria-José U

    2013-09-16

    Tabernaemontana elegans is a medicinal plant used in African traditional medicine to treat several ailments including cancer. The aims of the present study were to identify anti-cancer compounds, namely apoptosis inducers, from Tabernaemontana elegans, and hence to validate its usage in traditional medicine. Six alkaloids, including four monomeric indole (1-3, and 6) and two bisindole (4 and 5) alkaloids, were isolated from the methanolic extract of Tabernaemontana elegans roots. The structures of these compounds were characterized by 1D and 2D NMR spectroscopic and mass spectrometric data. Compounds 1-6 along with compound 7, previously isolated from the leaves of the same species, were evaluated for in vitro cytotoxicity against HCT116 human colon carcinoma cells by the MTS metabolism assay. The cytotoxicity of the most promising compounds was corroborated by Guava-ViaCount flow cytometry assays. Selected compounds were next studied for apoptosis induction activity in HCT116 cells, by evaluation of nuclear morphology following Hoechst staining, and by caspase-3 like activity assays. Among the tested compounds (1-7), the bisindole alkaloids tabernaelegantine C (4) and tabernaelegantinine B (5) were found to be cytotoxic to HCT116 cells at 20 µM, with compound 5 being more cytotoxic than the positive control 5-Fluorouracil (5-FU), at a similar dose. In fact, even at 0.5 µM, compound 5 was more potent than 5-FU. Compounds 4 and 5 induced characteristic patterns of apoptosis in HCT116 cancer cells including, cell shrinkage, condensation, fragmentation of the nucleus, blebbing of the plasma membrane and chromatin condensation. Further, general caspase-3-like activity was increased in cells exposed to compounds 4 and 5, corroborating the nuclear morphology evaluation assays. Bisindole alkaloids tabernaelegantine C (4) and tabernaelegantinine B (5) were characterized as potent apoptosis inducers in HCT116 human colon carcinoma cells and as possible lead/scaffolds for the development of anti-cancer drugs. This study substantiates the usage of Tabernaemontana elegans in traditional medicine to treat cancer. © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Heterobimetallic Pd-Sn catalysis: a Suzuki, tandem ring-closing sequence toward indeno[2,1-b]thiophenes and indeno[2,1-b]indoles.

    PubMed

    Das, Debjit; Pratihar, Sanjay; Roy, Sujit

    2012-09-21

    Indeno[2,1-b]thiophene and indeno[1,2-b]indole motifs have been obtained in moderate to good yields from easily available substituted boronic acids, 2-bromo aryl/vinyl aldehydes, and nucleophiles such as arenes/heteroarenes and others using a catalytic combination of bimetallic "Pd-Sn" and AgPF(6). This formal three-component coupling involves a Suzuki reaction followed by nucleophile assisted tandem ring closure. The sequential synthesis of substituted heterocycle-fused indenes, benzofluorene, and fluorenes was also accomplished.

  9. Active and Recyclable Catalytic Synthesis of Indoles by Reductive Cyclization of 2-(2-Nitroaryl)acetonitriles in the Presence of Co-Rh Heterobimetallic Nanoparticles with Atmospheric Hydrogen under Mild Conditions.

    PubMed

    Choi, Isaac; Chung, Hyunho; Park, Jang Won; Chung, Young Keun

    2016-11-04

    A cobalt-rhodium heterobimetallic nanoparticle-catalyzed reductive cyclization of 2-(2-nitroaryl)acetonitriles to indoles has been achieved. The tandem reaction proceeds without any additives under the mild conditions (1 atm H 2 and 25 °C). This procedure could be scaled up to the gram scale. The catalytic system is significantly stable under these reaction conditions and could be reused more than ten times without loss of catalytic activity.

  10. Chiral Brønsted Base-Promoted Nitroalkane Alkylation: Enantioselective Synthesis of sec-Alkyl-3-Substituted Indoles

    PubMed Central

    Dobish, Mark C.; Johnston, Jeffrey N.

    2010-01-01

    A Brønsted base-catalyzed reaction of nitroalkanes with alkyl electrophiles provides indole heterocycles substituted at C3 bearing a sec-alkyl group with good enantioselectivity (up to 90% ee). Denitration by hydrogenolysis provides a product with equally high ee. An indolenine intermediate is implicated in the addition step, and surprisingly, water cosolvent was found to have a beneficial effect in this step, leading to a one-pot protocol for elimination/enantioselective addition using PBAM, a bis(amidine) chiral nonracemic base. PMID:21090654

  11. Nucleophilic addition of Grignard reagents to 3-acylindoles: stereoselective synthesis of highly substituted indoline scaffolds.

    PubMed

    Wang, Lu; Shao, Yushang; Liu, Yuanhong

    2012-08-03

    3-Acylindoles undergo nucleophilic-type reactions with Grignard reagents to efficiently afford either cis- or trans-substituted indolines, depending on the different quenching procedures. The enolate intermediate could be trapped by aryl acyl chlorides to provide indolines bearing a quaternary carbon center with high stereoselectivity. In contrast, the use of benzyl bromide as an electrophile results in the fragmentation of the indole ring. The indoline products could be easily transformed into indoles through oxidation with DDQ in a one-pot manner.

  12. Synthesis of some N-substituted indole derivatives and their biological activities.

    PubMed

    el-Diwani, H; Nakkady, S S; Hishmat, O H; el-Shabrawy, O A; Mahmoud, S S

    1992-03-01

    Acylation of 2,3-diphenyl-5-methoxy-indole using ethyl chloroformate or chloroacetyl chloride in dimethylformamide and sodium hydride yielded the N-substituted derivatives 1 and 2, respectively. While Friedel-Crafts acylation using chloroacetyl chloride afforded di-4,6-chloroacetyl derivative 3, the reaction of the N-chloroacetyl derivative 2 with amines, hydrazines, urea, semicarbazide hydrochloride, thiophenol, benzimidazole-2-thiol, thiosemicarbazide, 2-mercaptoethanol and thioglycolic acid was studied. Several of the compounds were tested for their effect on arterial blood pressure, antiinflammatory and ulcerogenic activities.

  13. Studies toward the synthesis of palhinine lycopodium alkaloids: a Morita-Baylis-Hillman/intramolecular Diels-Alder approach.

    PubMed

    Sizemore, Nicholas; Rychnovsky, Scott D

    2014-02-07

    A synthetic route to the isotwistane core of palhinine lycopodium alkaloids is described. A Morita-Baylis-Hillman/intramolecular Diels-Alder (IMDA) strategy sets the vicinal all-carbon quaternary centers present in this family of natural products. The regioselectivity of the IMDA reaction is dictated by the conditions employed for silyl enol ether formation, with one set of conditions providing the core of cardionine and alternate conditions generating the desired isotwistane core of isopalhinine.

  14. Design of a thermally controlled sequence of triazolinedione-based click and transclick reactions† †Electronic supplementary information (ESI) available: Additional figures, experimental details, synthesis and analysis of all the model compounds and polymers, computational methods and relevant theoretical data. See DOI: 10.1039/c7sc00119c Click here for additional data file.

    PubMed Central

    Houck, Hannes A.; De Bruycker, Kevin; Billiet, Stijn; Dhanis, Bastiaan; Goossens, Hannelore; Catak, Saron; Van Speybroeck, Veronique

    2017-01-01

    The reaction of triazolinediones (TADs) and indoles is of particular interest for polymer chemistry applications, as it is a very fast and irreversible additive-free process at room temperature, but can be turned into a dynamic covalent bond forming process at elevated temperatures, giving a reliable bond exchange or ‘transclick’ reaction. In this paper, we report an in-depth study aimed at controlling the TAD–indole reversible click reactions through rational design of modified indole reaction partners. This has resulted in the identification of a novel class of easily accessible indole derivatives that give dynamic TAD-adduct formation at significantly lower temperatures. We further demonstrate that these new substrates can be used to design a directed cascade of click reactions of a functionalized TAD moiety from an initial indole reaction partner to a second indole, and finally to an irreversible reaction partner. This controlled sequence of click and transclick reactions of a single TAD reagent between three different substrates has been demonstrated both on small molecule and macromolecular level, and the factors that control the reversibility profiles have been rationalized and guided by mechanistic considerations supported by theoretical calculations. PMID:28507685

  15. Total synthesis of (+/-)-strychnine via a [4 + 2]-cycloaddition/rearrangement cascade.

    PubMed

    Zhang, Hongjun; Boonsombat, Jutatip; Padwa, Albert

    2007-01-18

    A new strategy for the synthesis of the Strychnos alkaloid (+/-)-strychnine has been developed and is based on an intramolecular [4 + 2]-cycloaddition/rearrangement cascade of an indolyl-substituted amidofuran. The critical D-ring was assembled by an intramolecular palladium-catalyzed enolate-driven cross-coupling of an N-tethered vinyl iodide. [reaction: see text].

  16. Total Synthesis of (±)-Strychnine via a [4+2]-Cycloaddition/Rearrangement Cascade

    PubMed Central

    Zhang, Hongjun; Boonsombat, Jutatip

    2008-01-01

    A new strategy for the synthesis of the Strychnos alkaloid (±)-strychnine has been developed and is based on an intramolecular [4+2]-cycloaddition/rearrangement cascade of an indolyl substituted amidofuran. The critical D-ring was assembled by an intramolecular palladium catalyzed enolate-driven cross-coupling of an N-tethered vinyl iodide. PMID:17217284

  17. An old yellow enzyme gene controls the branch point between Aspergillus fumigatus and Claviceps purpurea ergot alkaloid pathways.

    PubMed

    Coyle, Christine M; Cheng, Johnathan Z; O'Connor, Sarah E; Panaccione, Daniel G

    2010-06-01

    Ergot fungi in the genus Claviceps and several related fungal groups in the family Clavicipitaceae produce toxic ergot alkaloids. These fungi produce a variety of ergot alkaloids, including clavines as well as lysergic acid derivatives. Ergot alkaloids are also produced by the distantly related, opportunistic human pathogen Aspergillus fumigatus. However, this fungus produces festuclavine and fumigaclavines A, B, and C, which collectively differ from clavines of clavicipitaceous fungi in saturation of the last assembled of four rings in the ergoline ring structure. The two lineages are hypothesized to share early steps of the ergot alkaloid pathway before diverging at some point after the synthesis of the tricyclic intermediate chanoclavine-I. Disruption of easA, a gene predicted to encode a flavin-dependent oxidoreductase of the old yellow enzyme class, in A. fumigatus led to accumulation of chanoclavine-I and chanoclavine-I-aldehyde. Complementation of the A. fumigatus easA mutant with a wild-type allele from the same fungus restored the wild-type profile of ergot alkaloids. These data demonstrate that the product of A. fumigatus easA is required for incorporation of chanoclavine-I-aldehyde into more-complex ergot alkaloids, presumably by reducing the double bond conjugated to the aldehyde group, thus facilitating ring closure. Augmentation of the A. fumigatus easA mutant with a homologue of easA from Claviceps purpurea resulted in accumulation of ergot alkaloids typical of clavicipitaceous fungi (agroclavine, setoclavine, and its diastereoisomer isosetoclavine). These data indicate that functional differences in the easA-encoded old yellow enzymes of A. fumigatus and C. purpurea result in divergence of their respective ergot alkaloid pathways.

  18. An Old Yellow Enzyme Gene Controls the Branch Point between Aspergillus fumigatus and Claviceps purpurea Ergot Alkaloid Pathways▿

    PubMed Central

    Coyle, Christine M.; Cheng, Johnathan Z.; O'Connor, Sarah E.; Panaccione, Daniel G.

    2010-01-01

    Ergot fungi in the genus Claviceps and several related fungal groups in the family Clavicipitaceae produce toxic ergot alkaloids. These fungi produce a variety of ergot alkaloids, including clavines as well as lysergic acid derivatives. Ergot alkaloids are also produced by the distantly related, opportunistic human pathogen Aspergillus fumigatus. However, this fungus produces festuclavine and fumigaclavines A, B, and C, which collectively differ from clavines of clavicipitaceous fungi in saturation of the last assembled of four rings in the ergoline ring structure. The two lineages are hypothesized to share early steps of the ergot alkaloid pathway before diverging at some point after the synthesis of the tricyclic intermediate chanoclavine-I. Disruption of easA, a gene predicted to encode a flavin-dependent oxidoreductase of the old yellow enzyme class, in A. fumigatus led to accumulation of chanoclavine-I and chanoclavine-I-aldehyde. Complementation of the A. fumigatus easA mutant with a wild-type allele from the same fungus restored the wild-type profile of ergot alkaloids. These data demonstrate that the product of A. fumigatus easA is required for incorporation of chanoclavine-I-aldehyde into more-complex ergot alkaloids, presumably by reducing the double bond conjugated to the aldehyde group, thus facilitating ring closure. Augmentation of the A. fumigatus easA mutant with a homologue of easA from Claviceps purpurea resulted in accumulation of ergot alkaloids typical of clavicipitaceous fungi (agroclavine, setoclavine, and its diastereoisomer isosetoclavine). These data indicate that functional differences in the easA-encoded old yellow enzymes of A. fumigatus and C. purpurea result in divergence of their respective ergot alkaloid pathways. PMID:20435769

  19. Design, synthesis and anticonvulsant activity of some new 6,8-halo-substituted-2h-[1,2,4]triazino[5,6-b]indole-3(5h)-one/-thione and 6,8-halo-substituted 5-methyl-2h-[1,2,4]triazino[5,6-b]indol-3(5h)-one/-thione

    PubMed Central

    Kumar, Rajeev; Singh, Tejendra; Singh, Hariram; Jain, Sandeep; Roy, R. K.

    2014-01-01

    A new series of 6,8-halo-substituted-2H-[1,2,4]triazino[5,6-b]indole-3(5H)-one/-thione and 6,8-halo-substituted 5-methyl-2H-[1,2,4]triazino[5,6-b]indol-3(5H)-one/-thione (5a-5l) were designed and synthesized keeping in view of the structural requirement of pharmacophore. The above compounds were characterized by thin layer chromatography and spectral analysis. Anticonvulsant activity of the synthesized compounds was evaluated by the maximal electroshock (MES) test. Neurotoxicity and CNS depressant effects were evaluated by the rotarod motor impairment and Porsolt’s force swim tests, respectively. A computational study was carried out, for calculation of pharmacophore pattern, prediction of pharmacokinetic properties and toxicity properties. The above study revealed that the compounds 8-chloro-2H-[1,2,4]triazino[5,6-b]indol-3(5H)-one (5e), 6,8-dibromo-2H-[1,2,4]triazino[5,6-b]indol-3(5H)-one (5i) and 6,8-dibromo-5-methyl-2H-[1,2,4]triazino[5,6-b]indol-3(5H)-one (5k) possess excellent anticonvulsant activity in the series with little CNS depressant effect and no neurotoxicity as compared to standard drugs phenytoin and carbamazepine. PMID:26417257

  20. Potent and broad-spectrum antibacterial activity of indole-based bisamidine antibiotics: synthesis and SAR of novel analogs of MBX 1066 and MBX 1090

    PubMed Central

    Williams, John D.; Nguyen, Son T.; Gu, Shen; Ding, Xiaoyuan; Butler, Michelle M.; Tashjian, Tommy F.; Opperman, Timothy J.; Panchal, Rekha G.; Bavari, Sina; Peet, Norton P.; Moir, Donald T.; Bowlin, Terry L.

    2013-01-01

    The prevalence of drug-resistant bacteria in the clinic has propelled a concerted effort to find new classes of antibiotics that will circumvent current modes of resistance. We have previously described a set of bisamidine antibiotics that contains a core composed of two indoles and a central linker. The first compounds of the series, MBX 1066 and MBX 1090, have potent antibacterial properties against a wide range of Gram-positive and Gram-negative bacteria. We have conducted a systematic exploration of the amidine functionalities, the central linker, and substituents at the indole 3-position to determine the factors involved in potent antibacterial activity. Some of the newly synthesized compounds have even more potent and broad-spectrum activity than MBX 1066 and MBX 1090. PMID:24239389

  1. Biosynthetic approaches to creating bioactive fungal metabolites: Pathway engineering and activation of secondary metabolism.

    PubMed

    Motoyama, Takayuki; Osada, Hiroyuki

    2016-12-15

    The diversity of natural products is greater than that of combinatorial chemistry compounds and is similar to that of drugs. Compounds rich in sp 3 carbons, such as natural products, typically exhibit high structural complexity and high specificity to molecular targets. Microorganisms can synthesize such sp 3 carbon-rich compounds and can be used as excellent factories for making bioactive compounds. Here, we mainly focus on pathway engineering of two sp 3 carbon-rich bioactive indole alkaloids, fumitremorgin C and terpendole E. We also demonstrate the importance of activation of secondary metabolism by focusing on tenuazonic acid, a bioactive tetramic acid compound, as an example. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Flexible synthesis of poison-frog alkaloids of the 5,8-disubstituted indolizidine-class. II: Synthesis of (-)-209B, (-)-231C, (-)-233D, (-)-235B", (-)-221I, and an epimer of 193E and pharmacological effects at neuronal nicotinic acetylcholine receptors.

    PubMed

    Kobayashi, Soushi; Toyooka, Naoki; Zhou, Dejun; Tsuneki, Hiroshi; Wada, Tsutomu; Sasaoka, Toshiyasu; Sakai, Hideki; Nemoto, Hideo; Garraffo, H Martin; Spande, Thomas F; Daly, John W

    2007-01-01

    The 5,8-disubstituted indolizidines constitute the largest class of poison-frog alkaloids. Some alkaloids have been shown to act as noncompetitive blockers at nicotinic acetylcholine receptors but the proposed structures and the biological activities of most of the 5,8-disubstituted indolizidines have not been determined because of limited supplies of the natural products. We have therefore conducted experiments to confirm proposed structures and determine biological activities using synthetic compounds. Recently, we reported that one of this class of alkaloids, (-)-235B', acts as a noncompetitive antagonist for α4β2 nicotinic receptors, and its sensitivity is comparable to that of the classical competitive antagonist for this receptor, dihydro-β-erythroidine. The enantioselective syntheses of (-)-209B, (-)-231C, (-)-233D, (-)-235B", (-)-221I, and what proved to be an epimer of natural 193E, starting from common chiral lactams have been achieved. When we performed electrophysiological recordings to examine the effects of the synthetic alkaloids on two major subtypes of nicotinic receptors (α4β2 and α7) expressed in Xenopus laevis oocytes, (-)-231C effectively blocked α4β2 receptor responses (IC(50 )value, 1.5 μM) with a 7.0-fold higher potency than for blockade of α7 receptor responses. In contrast, synthetic (-)-221I and (-)-epi-193E were more potent in blocking α7 receptor responses (IC(50 )value, 4.4 μM and 9.1 μM, respectively) than α4β2 receptor responses (5.3-fold and 2.0-fold, respectively). We achieved the total synthesis of (-)-209B, (-)-231C, (-)-233D, (-)-235B", (-)-221I, and an epimer of 193E starting from common chiral lactams, and the absolute stereochemistry of natural (-)-233D was determined. Furthermore, the relative stereochemistry of (-)-231C and (-)-221I was also determined. The present asymmetric synthesis of the proposed structure for 193E revealed that the C-8 configuration of natural 193E should be revised. The selectivity for α4β2 and α7 nicotinic receptors differed markedly for the 5,8-disubstituted indolizidines tested, and thus it appears that the nature of the side chains in these indolizidines is crucial with regard to subtype-selectivity.

  3. Synthesis and biological evaluations of a series of thaxtomin analogues.

    PubMed

    Zhang, Hongbo; Wang, Qingpeng; Ning, Xin; Hang, Hang; Ma, Jing; Yang, Xiande; Lu, Xiaolin; Zhang, Jiabao; Li, Yonghong; Niu, Congwei; Song, Haoran; Wang, Xin; Wang, Peng George

    2015-04-15

    Thaxtomins are a unique family of phytotoxins with unique 4-nitroindole and diketopiperazine fragments possessing potential herbicidal activities. This work presents the total synthesis of natural product thaxtomin C and its analogues. The extensive structure-activity relationship study screens four effective compounds, including thaxtomin A and thaxtomin C. It is indicated that 4-nitro indole fragment is essential for phytotoxicity, while benzyl and m-hydroxybenzyl substituents on the diketopiperazine ring are favorable for the efficacy. The N-methylations on indole and diketopiperazine show weak influence on the herbicidal activities. The four selected compounds show effective herbicidal activities against Brassica campestris, Amaranthus retroflexus, and Abutilon theophrasti, which are comparable or better than dichlobenil, even at a dosage of 187.5 g ha(-1). Moreover, these four compounds show good crop-selective properties to different crops and exhibit moderate protoporphyrinogen oxidase (PPO) enzyme inhibition. The antifungal results indicate that thaxtomin C displays inhibition to a wide range of fungi.

  4. Synthesis, crystal structure and effect of indeno[1,2-b]indole derivatives on prostate cancer in vitro. Potential effect against MMP-9.

    PubMed

    Lobo, Gricela; Monasterios, Melina; Rodrigues, Juan; Gamboa, Neira; Capparelli, Mario V; Martínez-Cuevas, Javier; Lein, Michael; Jung, Klaus; Abramjuk, Claudia; Charris, Jaime

    2015-01-01

    A highly regiospecific synthesis of a series of indenoindoles is reported, together with X-ray studies and their activity against human prostate cancer cells PC-3 and LNCaP in vitro. The most effective compound 7,7-dimethyl-5-[(3,4-dichlorophenyl)]-(4bRS,9bRS)-dihydroxy-4b,5,6,7,8,9bhexahydro-indeno[1,2-b]indole-9,10-dione 7q reduced the viability in both cell lines in a time and dose-dependent manner. Inhibitory effects were also observed on the adhesion, migration, and invasion of the prostate cancer cells as well as on clonogenic possibly by inhibition of MMP-9 activity. Molecular docking of 7q and 6k into MMP-9 human active site was also performed to determine the probable binding mode. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. 4,4,4-trifluoro-3-(indole-3-)butyric acid promotes root elongation in Lactuca sativa independent of ethylene synthesis and pH

    NASA Technical Reports Server (NTRS)

    Zhang, Nenggang; Hasenstein, Karl H.

    2002-01-01

    We studied the mode of action of 4,4,4-trifluoro-3- (indole-3-) butyric acid (TFIBA), a recently described root growth stimulator, on primary root growth of Lactuca sativa L. seedlings. TFIBA (100 micromoles) promoted elongation of primary roots by 40% in 72 h but inhibited hypocotyl growth by 35%. TFIBA induced root growth was independent of pH. TFIBA did not affect ethylene production, but reduced the inhibitory effect of ethylene on root elongation. TFIBA promoted root growth even in the presence of the ethylene biosynthesis inhibitor L-alpha-(2-aminoethoxyvinyl)glycine. TFIBA and the ethylene-binding inhibitor silver thiosulphate (STS) had a similar effect on root elongation. The results indicate that TFIBA-stimulated root elongation was neither pH-dependent nor related to inhibition of ethylene synthesis, but was possibly related to ethylene action.

  6. Structure guided inhibitor designing of CDK2 and discovery of potential leads against cancer.

    PubMed

    Kumar, Arun V A; Mohan, Keshav; Riyaz, Syed

    2013-09-01

    On the basis of stereo specific information obtained from crystal structures of CDK2, indole and chromene analogues were designed by suitably substituting the pharmacophores on their moiety and docked with target protein for calculating binding affinities. The binding affinities are represented in glide score. (5E)-5-[(1-methyl-1H-indol-3-yl)methylidene]-2,4,6-trioxotetrahydro-2H-pyrimidin-1-ide (I1), (5E)-5-(1H-indol-3-ylmethylidene)-2,4,6-trioxotetrahydro-2H-pyrimidin-1-ide (I2) and 2-amino-4-(4-methyl phenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (C9) were selected for synthesis and biological testing based on vital interactions. (5E)-5-(1H-indol-3-ylmethylidene)-2,4,6-trioxotetrahydro-2H-pyrimidin-1-ide(I2) and 2-amino-4-(4-methyl phenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (C9) were proved to be active against MCF-7 and HeLa cell lines.

  7. Synthesis of Antiproliferative Cephalotaxus Esters and Their Evaluation against Several Human Hematopoietic and Solid Tumor Cell Lines: Uncovering Differential Susceptibilities to Multidrug Resistance

    PubMed Central

    Eckelbarger, Joseph D.; Wilmot, Jeremy T.; Epperson, Matthew T.; Thakur, Chandar S.; Shum, David; Antczak, Christophe; Tarassishin, Leonid; Djaballah, Hakim; Gin, David Y.

    2008-01-01

    Deoxyharringtonine (2), homoharringtonine (3), homodeoxyharringtonine (4), and anhydroharringtonine (5) are reported to be among the most potent members of the antileukemia alkaloids isolated from the Cephalotaxus genus. Convergent syntheses of these four natural products are described, each involving novel synthetic methods and strategies. These syntheses enabled evaluation of several advanced natural and non-natural compounds against an array of human hematopoietic and solid tumor cells. Potent cytotoxicity was observed in several cell lines previously not challenged with these alkaloids. Variations in the structure of the ester chain within this family of alkaloids confer differing activity profiles against vincristine-resistant HL-60/RV+, signalling new avenues for molecular design of these natural products to combat multi-drug resistance. PMID:18366032

  8. Concise synthesis of the hasubanan alkaloid (±)-cepharatine A using a Suzuki coupling reaction to effect o,p-phenolic coupling.

    PubMed

    Magnus, Philip; Seipp, Charles

    2013-09-20

    Suzuki coupling of 10 and 11 resulted in 9, which was O-alkylated to provide 12. Treatment of 12 with CsF in DMF resulted in the formation of the completed core structure 13 in a single step. Reductive amination of 13 completed the synthesis of (±)-cepharatine A, 4.

  9. Organocatalytic sequential alpha-amination-Horner-Wadsworth-Emmons olefination of aldehydes: enantioselective synthesis of gamma-amino-alpha,beta-unsaturated esters.

    PubMed

    Kotkar, Shriram P; Chavan, Vilas B; Sudalai, Arumugam

    2007-03-15

    A novel and highly enantioselective method for the synthesis of gamma-amino-alpha,beta-unsaturated esters via tandem alpha-amination-Horner-Wadsworth-Emmons (HWE) olefination of aldehydes is described. The one-pot assembly has been demonstrated for the construction of functionalized chiral 2-pyrrolidones, subunits present in several alkaloids. [structure: see text

  10. An efficient microwave assisted synthesis of novel class of Rhodanine derivatives as potential HIV-1 and JSP-1 inhibitors.

    PubMed

    Kamila, Sukanta; Ankati, Haribabu; Biehl, Edward R

    2011-08-24

    (Z)-5-(2-(1H-Indol-3-yl)-2-oxoethylidene)-3-phenyl-2-thioxothiazolidin-4-one (7a-q) derivatives have been synthesized by the condensation reaction of 3-phenyl-2-thioxothiazolidin-4-ones (3a-h) with suitably substituted 2-(1H-indol-3-yl)-2-oxoacetaldehyde (6a-d) under microwave condition. The thioxothiazolidine-4-ones were prepared from corresponding aromatic amines (1a-e) and di-(carboxymethyl)-trithiocarbonyl (2). The aldehydes (6a-h) were synthesized from the corresponding acidchlorides (5a-d) using HSnBu(3).

  11. An efficient microwave assisted synthesis of novel class of Rhodanine derivatives as potential HIV-1 and JSP-1 inhibitors

    PubMed Central

    Kamila, Sukanta; Ankati, Haribabu; Biehl, Edward R.

    2011-01-01

    (Z)-5-(2-(1H-Indol-3-yl)-2-oxoethylidene)-3-phenyl-2-thioxothiazolidin-4-one (7a-q) derivatives have been synthesized by the condensation reaction of 3-phenyl-2-thioxothiazolidin-4-ones (3a-h) with suitably substituted 2-(1H-indol-3-yl)-2-oxoacetaldehyde (6a-d) under microwave condition. The thioxothiazolidine-4-ones were prepared from corresponding aromatic amines (1a-e) and di-(carboxymethyl)-trithiocarbonyl (2). The aldehydes (6a-h) were synthesized from the corresponding acidchlorides (5a-d) using HSnBu3. PMID:21804651

  12. DMSO/Tf2O-mediated cross-coupling of tryptamine with substituted aniline to access C3a-N1'-linked pyrroloindoline alkaloids.

    PubMed

    Tayu, Masanori; Ishizaki, Takako; Higuchi, Kazuhiro; Kawasaki, Tomomi

    2015-04-07

    The cross-coupling of tryptamine with substituted aniline to access C3a-nitrogen-linked pyrroloindolines has been developed via the consecutive cyclization of tryptamine with DMSO/Tf2O and the substitution of 3a-pyrroloindolylthionium intermediate with aniline. The use of 2,3-dihydrotryptamine instead of aniline enabled easy access to 3a-(1-indolyl)pyrroloindoline and the concise synthesis of C3a-N1'-linked pyrroloindoline alkaloid (±)-psychotriasine was accomplished.

  13. Concise Synthesis of (-)-Hodgkinsine, (-)-Calycosidine, (-)-Hodgkinsine B, (-)-Quadrigemine C, and (-)-Psycholeine via Convergent and Directed Modular Assembly of Cyclotryptamines.

    PubMed

    Lindovska, Petra; Movassaghi, Mohammad

    2017-12-06

    The enantioselective total synthesis of (-)-hodgkinsine, (-)-calycosidine, (-)-hodgkinsine B, (-)-quadrigemine C, and (-)-psycholeine through a diazene-directed assembly of cyclotryptamine fragments is described. Our synthetic strategy enables multiple and directed assembly of intact cyclotryptamine subunits for convergent synthesis of highly complex bis- and tris-diazene intermediates. Photoextrusion of dinitrogen from these intermediates enables completely stereoselective formation of all C3a-C3a' and C3a-C7' carbon-carbon bonds and all the associated quaternary stereogenic centers. In a representative example, photoextrusion of three dinitrogen molecules from an advanced intermediate in a single-step led to completely controlled introduction of four quaternary stereogenic centers and guided the assembly of four cyclotryptamine monomers en route to (-)-quadrigemine C. The synthesis of these complex diazenes was made possible through a new methodology for synthesis of aryl-alkyl diazenes using electronically attenuated hydrazine-nucleophiles for a silver-promoted addition to C3a-bromocyclotryptamines. The application of Rh- and Ir-catalyzed C-H amination reactions in complex settings were used to gain rapid access to C3a- and C7-functionalized cyclotryptamine monomers, respectively, used for diazene synthesis. This convergent and modular assembly of intact cyclotryptamines offers the first solution to access these alkaloids through completely stereoselective union of monomers at challenging linkages and the associated quaternary stereocenters as illustrated in our synthesis of five members of the oligocyclotryptamine family of alkaloids.

  14. Cloning and characterization of indole synthase (INS) and a putative tryptophan synthase α-subunit (TSA) genes from Polygonum tinctorium.

    PubMed

    Jin, Zhehao; Kim, Jin-Hee; Park, Sang Un; Kim, Soo-Un

    2016-12-01

    Two cDNAs for indole-3-glycerol phosphate lyase homolog were cloned from Polygonum tinctorium. One encoded cytosolic indole synthase possibly in indigoid synthesis, whereas the other encoded a putative tryptophan synthase α-subunit. Indigo is an old natural blue dye produced by plants such as Polygonum tinctorium. Key step in plant indigoid biosynthesis is production of indole by indole-3-glycerol phosphate lyase (IGL). Two tryptophan synthase α-subunit (TSA) homologs, PtIGL-short and -long, were isolated by RACE PCR from P. tinctorium. The genome of the plant contained two genes coding for IGL. The short and the long forms, respectively, encoded 273 and 316 amino acid residue-long proteins. The short form complemented E. coli ΔtnaA ΔtrpA mutant on tryptophan-depleted agar plate signifying production of free indole, and thus was named indole synthase gene (PtINS). The long form, either intact or without the transit peptide sequence, did not complement the mutant and was tentatively named PtTSA. PtTSA was delivered into chloroplast as predicted by 42-residue-long targeting sequence, whereas PtINS was localized in cytosol. Genomic structure analysis suggested that a TSA duplicate acquired splicing sites during the course of evolution toward PtINS so that the targeting sequence-containing pre-mRNA segment was deleted as an intron. PtINS had about two to fivefolds higher transcript level than that of PtTSA, and treatment of 2,1,3-benzothiadiazole caused the relative transcript level of PtINS over PtTSA was significantly enhanced in the plant. The results indicate participation of PtINS in indigoid production.

  15. SYNTHESIS AND BIOLOGICAL EVALUATION OF N-(SUBSTITUTED PHENYL)-2-(5H-[1,2,4]TRIAZINO[5,6-b]INDOL-3-YLSULFANYL)ACETAMIDES AS ANTIMICROBIAL, ANTIDEPRESSANT AND ANTICONVULSANT AGENTS.

    PubMed

    Shruthi, N; Poojary, Boja; Kumar, Vasantha; Prathibha, A; Hussain, Mumtaz Mohammed; Revanasiddappa, B C; Joshi, Himanshu

    2015-01-01

    A new series of N-Aryl-2-(5H-[1,2,4]triazino[5,6-b]indol-3-ylsulfanyl)acetamides were synthesized by condensation of tricyclic compound 2,5-dihydro-3H-[1,2,4]triazino[5,6-b]indole-3-thione with chloro N-phenylacetamides. The tricyclic compound was obtained by condensation of Isatin with thiosemicarbazide. Chloro N-phenylacetamides were obtained from different substituted anilines. Their structures were characterized by IR, 1H NMR, LC-MS and elemental analyses. Newly synthesized compounds were screened for antimicrobial, antidepressant and anticonvulsant activities. Preliminary results indicated that most of the compounds showed lesser MIC value than the standard drug used when tested for antimicrobial activity. Some of the compounds were endowed with very good antidepressant and anticonvulsant activity.

  16. Design, synthesis and cytotoxicity of pyrano[4,3-b]indol-1(5H)-ones: A hybrid pharmacophore approach via gold catalyzed cyclization.

    PubMed

    Praveen, Chandrasekar; Ananth, D Babu

    2016-05-15

    Reported herein is the gold(III)-catalyzed 6-endo-dig cycloisomerization of 2-alkynyl-indole-3-carboxylic acids to form pyrano[4,3-b]indol-1(5H)-ones, which are pharmaceutically important structural motifs. The hitherto unknown substrates required for this methodology were conveniently synthesized in five steps with good overall yields. The utility of this new cycloisomerization is demonstrated by the excellent regioselectivity obtained using a range of substrates. The mildness of the method allowed functional group compatibility towards hydroxyl tether, displaying exquisite chemoselectivity. All the synthesized compounds were screened for their tumor cell growth inhibitory activity against human cervix adenocarcinoma (HeLa). Compound 7d emerged as the most active (IC50=0.69μM) among the tested series compared to the standard cis-platin (IC50=0.08μM). Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Biogenetically-Inspired Total Synthesis of Epidithiodiketopiperazines and Related Alkaloids

    PubMed Central

    2015-01-01

    Conspectus Natural products chemistry has historically been the prime arena for the discovery of new chemical transformations and the fountain of insights into key biological processes. It remains a fervent incubator of progress in the fields of chemistry and biology and an exchange mediating the flow of ideas between these allied fields of science. It is with this ethos that our group has taken an interest in and pursued the synthesis of a complex family of natural products termed the dimeric epipolythiodiketopiperazine (ETP) alkaloids. We present here an Account of the highly complex target molecules to which we pegged our ambitions, our systematic and relentless efforts toward those goals, the chemistry we developed in their pursuit, and the insight we have gained for their translational potential as potent anticancer molecules. The dimeric ETP alkaloids are fungal metabolites that feature a highly complex molecular architecture comprising a densely functionalized core structure with many stereogenic centers, six of which are fully substituted, and a pair of vicinal quaternary carbon stereocenters, decorated on polycyclic architectures in addition to the unique ETP motif that has been recognized as acid-, base-, and redox-sensitive. A cyclo-dipeptide consisting of an essential tryptophan residue and a highly variable ancillary amino acid lies at the core of these structures; investigation of the transformations that take this simplistic core to the complex alkaloids lies at the heart of our research program. The dimeric epidithiodiketopiperazine alkaloids have largely resisted synthesis on account of their complexity since the 1970s when the founding members of this class, chaetocin A (HauserD. et al. Helv. Chim. Acta1970, 53, 10615448218) and verticillin A (KatagiriK. et al. J. Antibiot.1970, 23, 4205465723), were first isolated. This was despite their potent cytotoxic and bacteriostatic activities, which were well appreciated at the time of their discovery. In the past decade, an increasing number of studies have uncovered powerful new biological processes that these molecules can uniquely effect, such as the inhibition of histone methyltransferases by chaetocin A (GreinerD. et al. Nat. Chem. Biol.2005, 1, 14316408017). In fact, the complete collection of hexahydropyrroloindoline alkaloids features a diverse range of potent biological properties including cytotoxic, antitumor, antileukemic, antiviral, antibiotic, and antinematodal activities (JiangC.-S.; GuoY.-W.Mini-Rev. Med. Chem.2011, 11, 72821651467). This mélange of activities is reflective of their structural diversity. Under the precepts of retrobiosynthetic analysis, we have accomplished the syntheses of more than a dozen natural products, including members of the bionectin, calycanthaceous, chaetocin, gliocladin, naseseazine, and verticillin alkaloids. More importantly, these molecules have acted as venerable venues for the development of new strategies to address structural challenges including, but not limited to, C3–C3′ vicinal quaternary centers, heterodimeric linkages, C3–Csp2 linkages, diketopiperazine oxidation, stereoselective thiolation, homologue-specific polysulfidation, and C12-hydroxyl incorporation. Synthesis of these natural products has resulted in the structural confirmation, and sometimes revision such as the case of (+)-naseseazines A and B, as well as access to many plausible biogenetically relevant intermediates and new synthetic ETP derivatives. Furthermore, our studies have paved the way for the formulation of a comprehensive SAR profile and the identification of lead compounds with in vitro subnanomolar IC50’s against a broad range of cancer types. PMID:25843276

  18. An improved synthesis, spectroscopic (FT-IR, NMR) study and DFT computational analysis (IR, NMR, UV-Vis, MEP diagrams, NBO, NLO, FMO) of the 1,5-methanoazocino[4,3-b]indole core structure

    NASA Astrophysics Data System (ADS)

    Uludağ, Nesimi; Serdaroğlu, Goncagül

    2018-03-01

    This study examines the synthesis of azocino[4,3-b]indole structure, which constitutes the tetracyclic framework of uleine, dasycarpidoneand tubifolidineas well as ABDE substructure of the strychnosalkaloid family. It has been synthesized by Fischer indolization of 2 and through the cylization of 4 by 2,3-dichlor-5-6-dicyanobenzoquinone (DDQ). 1H and 1C NMR chemical shifts have been predicted with GIAO approach and the calculated chemical shifts show very good agreement with observed shifts. FT-IR spectroscopy is important for the analysis of functional groups of synthesized compounds and we also supported FT-IR vibrational analysis with computational IR analysis. The vibrational spectral analysis was performed at B3LYP level of the theory in both the gas and the water phases and it was compared with the observed IR values for the important functional groups. The DFT calculations have been conducted to determine the most stable structure of the 1,2,3,4,5,6,7-Hexahydro-1,5-methanoazocino [4,3-b] indole (5). The Frontier Molecular Orbital Analysis, quantum chemical parameters, physicochemical properties have been predicted by using the same theory of level in both gas phase and the water phase, at 631 + g** and 6311++g** basis sets. TD- DFT calculations have been performed to predict the UV- Vis spectral analysis for this synthesized molecule. The Natural Bond Orbital (NBO) analysis have been performed at B3LYP level of theory to elucidate the intra-molecular interactions such as electron delocalization and conjugative interactions. NLO calculations were conducted to obtain the electric dipole moment and polarizability of the title compound.

  19. Functional analysis of the gene controlling hydroxylation of festuclavine in the ergot alkaloid pathway of Neosartorya fumigata

    PubMed Central

    Bilovol, Yulia; Panaccione, Daniel G.

    2016-01-01

    Bioactive ergot alkaloids produced by several species of fungi are important molecules in agriculture and medicine. Much of the ergot alkaloid pathway has been elucidated, but a few steps, including the gene controlling hydroxylation of festuclavine to fumigaclavine B, remain unsolved. Festuclavine is a key intermediate in the fumigaclavine branch of the ergot alkaloid pathway of the opportunistic pathogen Neosartorya fumigata and also in the dihydrolysergic acid-based ergot alkaloid pathway of certain Claviceps species. Based on several lines of evidence, the N. fumigata gene easM is a logical candidate to encode the festuclavine-hydroxylating enzyme. To test this hypothesis we disrupted easM function by replacing part of its coding sequences with a hygromycin resistance gene and transforming N. fumigata with this construct. High pressure liquid chromatography analysis demonstrated that easM deletion mutants were blocked in the ergot alkaloid pathway at festuclavine, and downstream products were eliminated. An additional alkaloid, proposed to be a prenylated form of festuclavine on the basis of mass spectral data, also accumulated to higher concentrations in the easM knockout. Complementation with the wild-type allele of easM gene restored the ability of the fungus to produce downstream compounds. These results indicate that easM encodes an enzyme required for fumigaclavine B synthesis likely by hydroxylating festuclavine. The festuclavine-accumulating strain of N. fumigata may facilitate future investigations of the biosynthesis of dihydrolysergic acid derivatives, which are derived from festuclavine and are the basis for several important drugs. PMID:26972831

  20. Functional analysis of the gene controlling hydroxylation of festuclavine in the ergot alkaloid pathway of Neosartorya fumigata.

    PubMed

    Bilovol, Yulia; Panaccione, Daniel G

    2016-11-01

    Bioactive ergot alkaloids produced by several species of fungi are important molecules in agriculture and medicine. Much of the ergot alkaloid pathway has been elucidated, but a few steps, including the gene controlling hydroxylation of festuclavine to fumigaclavine B, remain unsolved. Festuclavine is a key intermediate in the fumigaclavine branch of the ergot alkaloid pathway of the opportunistic pathogen Neosartorya fumigata and also in the dihydrolysergic acid-based ergot alkaloid pathway of certain Claviceps species. Based on several lines of evidence, the N. fumigata gene easM is a logical candidate to encode the festuclavine-hydroxylating enzyme. To test this hypothesis we disrupted easM function by replacing part of its coding sequences with a hygromycin resistance gene and transforming N. fumigata with this construct. High-pressure liquid chromatography analysis demonstrated that easM deletion mutants were blocked in the ergot alkaloid pathway at festuclavine, and downstream products were eliminated. An additional alkaloid, proposed to be a prenylated form of festuclavine on the basis of mass spectral data, also accumulated to higher concentrations in the easM knockout. Complementation with the wild-type allele of easM gene restored the ability of the fungus to produce downstream compounds. These results indicate that easM encodes an enzyme required for fumigaclavine B synthesis likely by hydroxylating festuclavine. The festuclavine-accumulating strain of N. fumigata may facilitate future investigations of the biosynthesis of dihydrolysergic acid derivatives, which are derived from festuclavine and are the basis for several important drugs.

  1. Synthesis and Anticancer Activity of Epipolythiodiketopiperazine Alkaloids

    PubMed Central

    Boyer, Nicolas; Morrison, Karen C.; Kim, Justin; Hergenrother, Paul J.; Movassaghi, Mohammad

    2013-01-01

    The epipolythiodiketopiperazine (ETP) alkaloids are a highly complex class of natural products with potent anticancer activity. Herein, we report the application of a flexible and scalable synthesis, allowing the construction of dozens of ETP derivatives. The evaluation of these compounds against cancer cell lines in culture allows for the first expansive structure–activity relationship (SAR) to be defined for monomeric and dimeric ETP-containing natural products and their synthetic cognates. Many ETP derivatives demonstrate potent anticancer activity across a broad range of cancer cell lines, and kill cancer cellsviainduction of apoptosis. Several traits thatbode well for the translational potential of the ETP class of natural products includeconcise and efficient synthetic access, potent induction of apoptotic cell death, activity against a wide range of cancer types, and a broad tolerance for modifications at multiple sitesthat should facilitate small-molecule drug development, mechanistic studies, and evaluation in vivo. PMID:23914293

  2. Pityriazepin and other potent AhR ligands isolated from Malassezia furfur yeast

    PubMed Central

    Mexia, Nikitia; Gaitanis, George; Velegraki, Aristea; Soshilov, Anatoly; Denison, Michael S.; Magiatis, Prokopios

    2015-01-01

    Malassezia furfur yeast strains isolated from diseased human skin preferentially biosynthesize indole alkaloids which can be detected in human skin and are highly potent activators of the aryl hydrocarbon receptor (AhR) and AhR-dependent gene expression. Chemical analysis of an EtOAc extract of a M. furfur strain obtained from diseased human skin and grown on L-tryptophan agar revealed several known AhR active tryptophan metabolites along with a previously unidentified compound, pityriazepin. While its structure resembled that of the known alkaloid pityriacitrin, the comprised pyridine ring had been transformed into an azepinone. The indoloazepinone scaffold of pityriazepin is extremely rare in nature and has only been reported once previously. Pityriazepin, like the other isolated compounds, was found to be a potent activator of the AhR-dependent reporter gene assays in recombinant cell lines derived from four different species, although significant species differences in relative potency was observed. The ability of pityriazepin to competitively bind to the AhR and directly stimulate AhR DNA binding classified it as a new naturally-occurring potent AhR agonist. Malassezia furfur produces an expanded collection of extremely potent naturally occurring AhR agonists, which produce their biological effects in a species-specific manner.1 PMID:25721496

  3. In vitro anticancer properties and biological evaluation of novel natural alkaloid jerantinine B.

    PubMed

    Qazzaz, Mohannad E; Raja, Vijay J; Lim, Kuan-Hon; Kam, Toh-Seok; Lee, Jong Bong; Gershkovich, Pavel; Bradshaw, Tracey D

    2016-01-28

    Natural products play a pivotal role in medicine especially in the cancer arena. Many drugs that are currently used in cancer chemotherapy originated from or were inspired by nature. Jerantinine B (JB) is one of seven novel Aspidosperma indole alkaloids isolated from the leaf extract of Tabernaemontana corymbosa. Preliminary antiproliferative assays revealed that JB and JB acetate significantly inhibited growth and colony formation, accompanied by time- and dose-dependent apoptosis induction in human cancer cell lines. JB significantly arrested cells at the G2/M cell cycle phase, potently inhibiting tubulin polymerisation. Polo-like kinase 1 (PLK1; an early trigger for the G2/M transition) was also dose-dependently inhibited by JB (IC50 1.5 µM). Furthermore, JB provoked significant increases in reactive oxygen species (ROS). Annexin V+ cell populations, dose-dependent accumulation of cleaved-PARP and caspase 3/7 activation, and reduced Bcl-2 and Mcl-1 expression confirm apoptosis induction. Preclinical in silico biopharmaceutical assessment of JB calculated rapid absorption and bioavailability >70%. Doses of 8-16 mg/kg JB were predicted to maintain unbound plasma concentrations >GI50 values in mice during efficacy studies. These findings advocate continued development of JB as a potential chemotherapeutic agent. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Ibogaine and the inhibition of acetylcholinesterase.

    PubMed

    Alper, Kenneth; Reith, Maarten E A; Sershen, Henry

    2012-02-15

    Ibogaine is a psychoactive monoterpine indole alkaloid extracted from the root bark of Tabernanthe iboga Baill. that is used globally in medical and nonmedical settings to treat drug and alcohol addiction, and is of interest as an ethnopharmacological prototype for experimental investigation and pharmaceutical development. The question of whether ibogaine inhibits acetylcholinesterase (AChE) is of pharmacological and toxicological significance. AChE activity was evaluated utilizing reaction with Ellman's reagent with physostigmine as a control. Ibogaine inhibited AChE with an IC(50) of 520±40 μM. Ibogaine's inhibition of AChE is physiologically negligible, and does not appear to account for observations of functional effects in animals and humans that might otherwise suggest the possible involvement of pathways linked to muscarinic acetylcholine transmission. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Design, synthesis, antiviral activity and mode of action of phenanthrene-containing N-heterocyclic compounds inspired by the phenanthroindolizidine alkaloid antofine.

    PubMed

    Yu, Xiuling; Wei, Peng; Wang, Ziwen; Liu, Yuxiu; Wang, Lizhong; Wang, Qingmin

    2016-02-01

    The phenanthroindolizidine alkaloid antofine and its analogues have excellent antiviral activity against tobacco mosaic virus (TMV). To simplify the structure and the synthesis of the phenanthroindolizidine alkaloid, a series of phenanthrene-containing N-heterocyclic compounds (compounds 1 to 33) were designed and synthesised, based on the intermolecular interaction of antofine and TMV RNA, and systematically evaluated for their anti-TMV activity. Most of these compounds exhibited good to reasonable anti-TMV activity. The optimum compounds 5, 12 and 21 displayed higher activity than the lead compound antofine and commercial ribavirin. Compound 12 was chosen for field trials of antiviral efficacy against TMV, and was found to exhibit better activity than control plant virus inhibitors. Compounds 5 and 12 were chosen for mode of action studies. The changes in fluorescence intensity of compounds 5 and 12 on separated TMV RNA showed that these small molecules can also bind to TMV RNA, but the mode is very different from that of antofine. The compounds combining phenanthrene and an N-heterocyclic ring could maintain the anti-TMV activity of phenanthroindolizidines, but their modes of action are different from that of antofine. The present study lays a good foundation for us to find more efficient anti-plant virus reagents. © 2015 Society of Chemical Industry.

  6. Effects of down-regulating ornithine decarboxylase upon putrescine-associated metabolism and growth in Nicotiana tabacum L.

    PubMed Central

    Dalton, Heidi L.; Blomstedt, Cecilia K.; Neale, Alan D.; Gleadow, Ros; DeBoer, Kathleen D.; Hamill, John D.

    2016-01-01

    Transgenic plants of Nicotiana tabacum L. homozygous for an RNAi construct designed to silence ornithine decarboxylase (ODC) had significantly lower concentrations of nicotine and nornicotine, but significantly higher concentrations of anatabine, compared with vector-only controls. Silencing of ODC also led to significantly reduced concentrations of polyamines (putrescine, spermidine and spermine), tyramine and phenolamides (caffeoylputrescine and dicaffeoylspermidine) with concomitant increases in concentrations of amino acids ornithine, arginine, aspartate, glutamate and glutamine. Root transcript levels of S-adenosyl methionine decarboxylase, S-adenosyl methionine synthase and spermidine synthase (polyamine synthesis enzymes) were reduced compared with vector controls, whilst transcript levels of arginine decarboxylase (putrescine synthesis), putrescine methyltransferase (nicotine production) and multi-drug and toxic compound extrusion (alkaloid transport) proteins were elevated. In contrast, expression of two other key proteins required for alkaloid synthesis, quinolinic acid phosphoribosyltransferase (nicotinic acid production) and a PIP-family oxidoreductase (nicotinic acid condensation reactions), were diminished in roots of odc-RNAi plants relative to vector-only controls. Transcriptional and biochemical differences associated with polyamine and alkaloid metabolism were exacerbated in odc-RNAi plants in response to different forms of shoot damage. In general, apex removal had a greater effect than leaf wounding alone, with a combination of these injury treatments producing synergistic responses in some cases. Reduced expression of ODC appeared to have negative effects upon plant growth and vigour with some leaves of odc-RNAi lines being brittle and bleached compared with vector-only controls. Together, results of this study demonstrate that ornithine decarboxylase has important roles in facilitating both primary and secondary metabolism in Nicotiana. PMID:27126795

  7. Cytotoxicity and genotoxicity of coronaridine from Tabernaemontana catharinensis A.DC in a human laryngeal epithelial carcinoma cell line (Hep-2)

    PubMed Central

    Rizo, Walace Fraga; Ferreira, Luis Eduardo; Colnaghi, Vanessa; Martins, Juliana Simões; Franchi, Leonardo Pereira; Takahashi, Catarina Satie; Beleboni, Rene Oliveira; Marins, Mozart; Pereira, Paulo Sérgio; Fachin, Ana Lúcia

    2013-01-01

    Cancer has become a major public health problem worldwide and the number of deaths due to this disease is increasing almost exponentially. In the constant search for new treatments, natural products of plant origin have provided a variety of new compounds to be explored as antitumor agents. Tabernaemontana catharinensis is a medicinal plant that produces alkaloids with expressive antitumor activity, such as heyneanine, coronaridine and voacangine. The aim of present study was firstly to screen the cytotoxic activity of the indole alkaloids heyneanine, coronaridine and voacangine against HeLa (human cervix tumor), 3T3 (normal mouse embryo fibroblasts), Hep-2 (human laryngeal epithelial carcinoma) and B-16 (murine skin) cell lines by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide); and secondly to analyze the apoptotic activity, cell membrane damage and genotoxicity of the compound that showed the best cytotoxic activity against the tumor cell lines tested. Coronaridine was the one that exhibited greater cytotoxic activity in the laryngeal carcinoma cell line Hep-2 (IC50 = 54.47 μg/mL) than the other alkaloids tested (voacangine IC50 = 159.33 g/mL, and heyneanine IC50 = 689.45 μg/mL). Coronaridine induced apoptosis in cell lines 3T3 and Hep-2, even at high concentrations. The evaluation of genotoxicity by comet assay showed further that coronaridine caused minimal DNA damage in the Hep-2 tumor cell line, and the LDH test showed that it did not affect the plasma membrane. These results suggest that further investigation of coronaridine as an antitumor agent has merit. PMID:23569415

  8. Coupling Deep Transcriptome Analysis with Untargeted Metabolic Profiling in Ophiorrhiza pumila to Further the Understanding of the Biosynthesis of the Anti-Cancer Alkaloid Camptothecin and Anthraquinones

    PubMed Central

    Yamazaki, Mami; Mochida, Keiichi; Asano, Takashi; Nakabayashi, Ryo; Chiba, Motoaki; Udomson, Nirin; Yamazaki, Yasuyo; Goodenowe, Dayan B.; Sankawa, Ushio; Yoshida, Takuhiro; Toyoda, Atsushi; Totoki, Yasushi; Sakaki, Yoshiyuki; Góngora-Castillo, Elsa; Buell, C. Robin; Sakurai, Tetsuya; Saito, Kazuki

    2013-01-01

    The Rubiaceae species, Ophiorrhiza pumila, accumulates camptothecin, an anti-cancer alkaloid with a potent DNA topoisomerase I inhibitory activity, as well as anthraquinones that are derived from the combination of the isochorismate and hemiterpenoid pathways. The biosynthesis of these secondary products is active in O. pumila hairy roots yet very low in cell suspension culture. Deep transcriptome analysis was conducted in O. pumila hairy roots and cell suspension cultures using the Illumina platform, yielding a total of 2 Gb of sequence for each sample. We generated a hybrid transcriptome assembly of O. pumila using the Illumina-derived short read sequences and conventional Sanger-derived expressed sequence tag clones derived from a full-length cDNA library constructed using RNA from hairy roots. Among 35,608 non-redundant unigenes, 3,649 were preferentially expressed in hairy roots compared with cell suspension culture. Candidate genes involved in the biosynthetic pathway for the monoterpenoid indole alkaloid camptothecin were identified; specifically, genes involved in post-strictosamide biosynthetic events and genes involved in the biosynthesis of anthraquinones and chlorogenic acid. Untargeted metabolomic analysis by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) indicated that most of the proposed intermediates in the camptothecin biosynthetic pathway accumulated in hairy roots in a preferential manner compared with cell suspension culture. In addition, a number of anthraquinones and chlorogenic acid preferentially accumulated in hairy roots compared with cell suspension culture. These results suggest that deep transcriptome and metabolome data sets can facilitate the identification of genes and intermediates involved in the biosynthesis of secondary products including camptothecin in O. pumila. PMID:23503598

  9. The use of chemometrics to study multifunctional indole alkaloids from Psychotria nemorosa (Palicourea comb. nov.). Part I: Extraction and fractionation optimization based on metabolic profiling.

    PubMed

    Klein-Júnior, Luiz C; Viaene, Johan; Salton, Juliana; Koetz, Mariana; Gasper, André L; Henriques, Amélia T; Vander Heyden, Yvan

    2016-09-09

    Extraction methods evaluation to access plants metabolome is usually performed visually, lacking a truthful method of data handling. In the present study the major aim was developing reliable time- and solvent-saving extraction and fractionation methods to access alkaloid profiling of Psychotria nemorosa leaves. Ultrasound assisted extraction was selected as extraction method. Determined from a Fractional Factorial Design (FFD) approach, yield, sum of peak areas, and peak numbers were rather meaningless responses. However, Euclidean distance calculations between the UPLC-DAD metabolic profiles and the blank injection evidenced the extracts are highly diverse. Coupled with the calculation and plotting of effects per time point, it was possible to indicate thermolabile peaks. After screening, time and temperature were selected for optimization, while plant:solvent ratio was set at 1:50 (m/v), number of extractions at one and particle size at ≤180μm. From Central Composite Design (CCD) results modeling heights of important peaks, previously indicated by the FFD metabolic profile analysis, time was set at 65min and temperature at 45°C, thus avoiding degradation. For the fractionation step, a solid phase extraction method was optimized by a Box-Behnken Design (BBD) approach using the sum of peak areas as response. Sample concentration was consequently set at 150mg/mL, % acetonitrile in dichloromethane at 40% as eluting solvent, and eluting volume at 30mL. Summarized, the Euclidean distance and the metabolite profiles provided significant responses for accessing P. nemorosa alkaloids, allowing developing reliable extraction and fractionation methods, avoiding degradation and decreasing the required time and solvent volume. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Antifungal and antiviral products of marine organisms

    PubMed Central

    Cheung, Randy Chi Fai; Pan, Wen Liang; Chan, Yau Sang; Yin, Cui Ming; Dan, Xiu Li; Wang, He Xiang; Fang, Evandro Fei; Lam, Sze Kwan; Ngai, Patrick Hung Kui; Xia, Li Xin; Liu, Fang; Ye, Xiu Yun; Zhang, Guo Qing; Liu, Qing Hong; Sha, Ou; Lin, Peng; Ki, Chan; Bekhit, Adnan A; Bekhit, Alaa El-Din; Wan, David Chi Cheong

    2017-01-01

    Marine organisms including bacteria, fungi, algae, sponges, echinoderms, mollusks, and cephalochordates produce a variety of products with antifungal activity including bacterial chitinases, lipopeptides, and lactones; fungal (−)-sclerotiorin and peptaibols, purpurides B and C, berkedrimane B and purpuride; algal gambieric acids A and B, phlorotannins; 3,5-dibromo-2-(3,5-dibromo-2-methoxyphenoxy)phenol, spongistatin 1, eurysterols A and B, nortetillapyrone, bromotyrosine alkaloids, bis-indole alkaloid, ageloxime B and (−)-ageloxime D, haliscosamine, hamigeran G, hippolachnin A from sponges; echinoderm triterpene glycosides and alkene sulfates; molluscan kahalalide F and a 1485-Da peptide with a sequence SRSELIVHQR; and cepalochordate chitotriosidase and a 5026.9-Da antifungal peptide. The antiviral compounds from marine organisms include bacterial polysaccharide and furan-2-yl acetate; fungal macrolide, purpurester A, purpurquinone B, isoindolone derivatives, alterporriol Q, tetrahydroaltersolanol C and asperterrestide A, algal diterpenes, xylogalactofucan, alginic acid, glycolipid sulfoquinovosyldiacylglycerol, sulfated polysaccharide p-KG03, meroditerpenoids, methyl ester derivative of vatomaric acid, lectins, polysaccharides, tannins, cnidarian zoanthoxanthin alkaloids, norditerpenoid and capilloquinol; crustacean antilipopolysaccharide factors, molluscan hemocyanin; echinoderm triterpenoid glycosides; tunicate didemnin B, tamandarins A and B and; tilapia hepcidin 1–5 (TH 1–5), seabream SauMx1, SauMx2, and SauMx3, and orange-spotted grouper β-defensin. Although the mechanisms of antifungal and antiviral activities of only some of the afore-mentioned compounds have been elucidated, the possibility to use those known to have distinctly different mechanisms, good bioavailability, and minimal toxicity in combination therapy remains to be investigated. It is also worthwhile to test the marine antimicrobials for possible synergism with existing drugs. The prospects of employing them in clinical practice are promising in view of the wealth of these compounds from marine organisms. The compounds may also be used in agriculture and the food industry. PMID:24562325

  11. Alkaloids and leishmania donovani UDP-galactopyarnose mutase: Anovel approach in drug designing against Visceral leishmaniasis.

    PubMed

    Srivastava, Ankita; Chandra, Deepak

    2017-06-05

    The unsatisfactory treatment options for Visceral Leishmaniasis (VL), needs identification of new drug targets. Among natural products, Alkaloids have been proved to be highly effective against number of diseases. In Leishmania UDP-galactopyranose mutase (UGM) is a critical enzyme required for cell wall synthesis and thus a drug target for structure based drug designing against L. donovani. To build the homology model of UDP galactopyranse mutase and investigate the interaction of selected alkaloids with this modeled UDP galactopyranose mutase by molecular docking. Since there is no crystal structure record has been found with this protein, a homology modeling was performed and a three dimensional structure of L. donovani UGM was created using MODELLER v9.9, structure quality was validated using PROCHECK and QMEAN programs which confirms that the structure is reliable. Further Molecular docking was performed with previously reported 15 alkaloids. It was found that Protopine shows a binding energy of -12.39Kcal/mole, binds at Flavin adenine dinucleotide (FAD) biding site. Concluding that Protopine, an alkaloid could interrupt the functional aspect of L. donovani UGM and thus may be useful for drug designing studies. These finding would contribute to the understanding of effect of drug on the parasite. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Synthesis and antimicrobial activity of new 1-[(tetrazol-5-yl)methyl] indole derivatives, their 1,2,4-triazole thioglycosides and acyclic analogs.

    PubMed

    El-Sayed, Weal A; Abdel Megeid, Randa E; Abbas, Hebat-Allah S

    2011-07-01

    New 1-[(tetrazol-5-yl)methyl]indole derivatives, their acyclic nucleoside analogs and the corresponding glycoside derivatives were synthesized. Furthermore, the [)(1,2,4-triazol-3-yl)methyl])-2H-tetrazole derivative as well as the corresponding thioglucoside were prepared. The synthesized compounds were tested for their antimicrobial activity against Aspergillus Niger, Penicillium sp, Candida albican, Bacillus subtilis, Streptococcus lacti, Escherichia coli, Pseudomonas sp., and streptomyces sp. Compounds 3, 5 and 19b exhibited potent antibacterial activity and compounds 4, 5 and 10 exhibited high activities against the tested fungi compared with fusidic acid.

  13. Isostrychnine synthesis mediated by hypervalent iodine reagent.

    PubMed

    Jacquemot, Guillaume; Maertens, Gaëtan; Canesi, Sylvain

    2015-05-18

    Althought there are several reported synthetic routes to strychnine, one of the most widely recognized alkaloids, we report an unexplored route with an oxidative dearomatizing process mediated by hypervalent iodine as the key step. The new syntheses of isostrychnine and strychnine have been achieved from an readily available phenol in nine and ten steps. In addition to the key step, these syntheses involve an aza Michael-ether-enol tandem transformation, two heck type cyclizations, a reductive isomerization, and a double reductive amination in cascade leading to the alkaloid main core. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis and Antiproliferative Activity of 2,5-bis(3′-Indolyl)pyrroles, Analogues of the Marine Alkaloid Nortopsentin

    PubMed Central

    Carbone, Anna; Parrino, Barbara; Barraja, Paola; Spanò, Virginia; Cirrincione, Girolamo; Diana, Patrizia; Maier, Armin; Kelter, Gerhard; Fiebig, Heinz-Herbert

    2013-01-01

    2,5-bis(3′-Indolyl)pyrroles, analogues of the marine alkaloid nortopsentin, were conveniently prepared through a three step procedure in good overall yields. Derivatives 1a and 1b exhibited concentration-dependent antitumor activity towards a panel of 42 human tumor cell lines with mean IC50 values of 1.54 μM and 0.67 μM, respectively. Investigating human tumor xenografts in an ex-vivo clonogenic assay revealed selective antitumor activity, whereas sensitive tumor models were scattered among various tumor histotypes. PMID:23455514

  15. Towards the Shell Biorefinery: Sustainable Synthesis of the Anticancer Alkaloid Proximicin A from Chitin.

    PubMed

    Sadiq, Alejandro D; Chen, Xi; Yan, Ning; Sperry, Jonathan

    2018-02-09

    A shell biorefinery would involve fractionation of crustacean shells and incorporation of the components into value-added products, particularly those that contain nitrogen. In a proof-of-concept study that validates this concept, the anticancer alkaloid proximicin A has been synthesized from the chitin-derived platform chemical 3-acetamido-5-acetylfuran (3A5AF). This study accentuates the leading role chitin is likely to play in the sustainable production of nitrogen-containing fine chemicals that are not directly attainable from lignocellulose. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis of diazatricyclic core of Madangamines from cis-perhydroisoquinolines.

    PubMed

    Quirante, Josefina; Paloma, Laura; Diaba, Faïza; Vila, Xavier; Bonjoch, Josep

    2008-01-18

    Synthesis of the tricyclic core of madangamine alkaloids has been achieved in a 10-step sequence starting from a 4-(aminomethyl)anisole derivative. A Birch reduction and acylation with cyanoacetic acid followed by an intramolecular Michael process renders a polyfunctionalized cis-perhydroisoquinoline. A diastereoselective allylation and reduction of amide, nitrile, and ketone groups leads to a bicyclic alcohol, which undergoes aminocyclization through the nosyl derivative to the diazatricyclic ring.

  17. Asymmetric Synthesis of 1,2,9,9a-Tetrahydrocyclopropa[c]benzo[e]indol-4-one (CBI)

    PubMed Central

    Lajiness, James P.; Boger, Dale L.

    2011-01-01

    A short, asymmetric synthesis of the 1,2,9,9a-tetrahydrocyclopropa[c]benzo[e]indol-4-one (CBI) analogue of the CC-1065 and duocarmycin DNA alkylation subunits is described. Treatment of iodo-epoxide 5, prepared by late-stage alkylation of 4 with (S)-glycidal-3-nosylate, with EtMgBr at room temperature directly provides the optically pure alcohol 6 in 87% yield (99% ee) derived from selective metal–halogen exchange and subsequent regioselective intramolecular 6-endo-tet cyclization. The use of MeMgBr or i-PrMgBr also provides the product in high yields (82–87%), but requires larger amounts of the Grignard reagent to effect metal–halogen exchange and cyclization. Direct transannular spirocyclization of 7 following O-debenzylation of 6 provides N-Boc-CBI. This approach represents the most efficient (9-steps, 31% overall) and effective (99% ee) route to the optically pure CBI alkylation subunit yet described. PMID:21192653

  18. Simultaneous Determination of Bioactive Monoterpene Indole Alkaloids in Ethanolic Extract of Seven Rauvolfia Species using UHPLC with Hybrid Triple Quadrupole Linear Ion Trap Mass Spectrometry.

    PubMed

    Kumar, Sunil; Singh, Awantika; Bajpai, Vikas; Srivastava, Mukesh; Singh, Bhim Pratap; Ojha, Sanjeev; Kumar, Brijesh

    2016-09-01

    Rauvolfia serpentina is an endangered plant species due to its over-exploitation. It has highly commercial and economic importance due to the presence of bioactive monoterpene indole alkaloids (MIAs) such as ajmaline, yohimbine, ajmalicine, serpentine and reserpine. To develop a validated, rapid, sensitive and selective ultra-high-performance liquid chromatography coupled with hybrid triple quadrupole-linear ion trap mass spectrometry (UHPLC-QqQLIT -MS/MS) method in the multiple reaction monitoring (MRM) mode for simultaneous determination of bioactive MIAs in ethanolic extract of seven Rauvolfia species and herbal formulations. The separation of MIAs was achieved on an ACQUITY UPLC BEH™ C18 column (1.7 μm, 2.1 mm × 50 mm) using a gradient mobile phase (0.1% aqueous formic acid and acetonitrile) at flow rate 0.3 μL/min in 7 min. The validated method showed good linearity (r(2)  ≥ 0.9999), limit of detection (LOD) (0.06-0.15 ng/mL), limit of quantitation (LOQ) (0.18-0.44 ng/mL), precisions [intraday: relative standard deviation (RSD) ≤ 2.24%, interday: RSD ≤ 2.74%], stability (RSD ≤ 1.53%) and overall recovery (RSD ≤ 2.23%). The validated method was applied to quantitate MIAs. Root of Rauvolfia vomitoria showed a high content of ajmaline (48.43 mg/g), serpentine (87.77 mg/g) whereas high quantities of yohimbine (100.21 mg/g) and ajmalicine (120.51 mg/g) were detected in R. tetraphylla. High content of reserpine was detected in R. micrantha (35.18 mg/g) and R. serpentina (32.38 mg/g). The encouraging results of this study may lead to easy selection of suitable Rauvolfia species according to the abundance of MIAs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Ergot cluster-encoded catalase is required for synthesis of chanoclavine-I in Aspergillus fumigatus.

    PubMed

    Goetz, Kerry E; Coyle, Christine M; Cheng, Johnathan Z; O'Connor, Sarah E; Panaccione, Daniel G

    2011-06-01

    Genes required for ergot alkaloid biosynthesis are clustered in the genomes of several fungi. Several conserved ergot cluster genes have been hypothesized, and in some cases demonstrated, to encode early steps of the pathway shared among fungi that ultimately make different ergot alkaloid end products. The deduced amino acid sequence of one of these conserved genes (easC) indicates a catalase as the product, but a role for a catalase in the ergot alkaloid pathway has not been established. We disrupted easC of Aspergillus fumigatus by homologous recombination with a truncated copy of that gene. The resulting mutant (ΔeasC) failed to produce the ergot alkaloids typically observed in A. fumigatus, including chanoclavine-I, festuclavine, and fumigaclavines B, A, and C. The ΔeasC mutant instead accumulated N-methyl-4-dimethylallyltryptophan (N-Me-DMAT), an intermediate recently shown to accumulate in Claviceps purpurea strains mutated at ccsA (called easE in A. fumigatus) (Lorenz et al. Appl Environ Microbiol 76:1822-1830, 2010). A ΔeasE disruption mutant of A. fumigatus also failed to accumulate chanoclavine-I and downstream ergot alkaloids and, instead, accumulated N-Me-DMAT. Feeding chanoclavine-I to the ΔeasC mutant restored ergot alkaloid production. Complementation of either ΔeasC or ΔeasE mutants with the respective wild-type allele also restored ergot alkaloid production. The easC gene was expressed in Escherichia coli, and the protein product displayed in vitro catalase activity with H(2)O(2) but did not act, in isolation, on N-Me-DMAT as substrate. The data indicate that the products of both easC (catalase) and easE (FAD-dependent oxidoreductase) are required for conversion of N-Me-DMAT to chanoclavine-I.

  20. Inhibition of hematopoietic prostaglandin D2 Synthase (H-PGDS) by an alkaloid extract from Combretum molle

    PubMed Central

    2014-01-01

    Background Hematopoietic prostaglandin D2 synthase (H-PGDS, GST Sigma) is a member of the glutathione S-transferase super family of enzymes that catalyses the conjugation of electrophilic substances with reduced glutathione. The enzyme catalyses the conversion of PGH2 to PGD2 which mediates inflammatory responses. The inhibition of H-PGDS is of importance in alleviating damage to tissues due to unwarranted synthesis of PGD2. Combretum molle has been used in African ethno medicinal practices and has been shown to reduce fever and pain. The effect of C. molle alkaloid extract on H-PGDS was thus, investigated. Methods H-PGDS was expressed in Escherichia coli XL1-Blue cells and purified using nickel immobilized metal affinity chromatography. The effect of C. molle alkaloid extract on H-PGDS activity was determined with 1-chloro-2, 4-dinitrobenzene (CDNB) as substrate. The effect of C. molle alkaloid extract with time on H-PGDS was determined. The mechanism of inhibition was then investigated using CDNB and glutathione (GSH) as substrates. Results A specific activity of 24 μmol/mg/min was obtained after H-PGDS had been purified. The alkaloid extract exhibited a 70% inhibition on H-PGDS with an IC50 of 13.7 μg/ml. C. molle alkaloid extract showed an uncompetitive inhibition of H-PGDS with Ki = 41 μg/ml towards GSH, and non-competitive inhibition towards CDNB with Ki = 7.7 μg/ml and Ki′ = 9.2 μg/ml. Conclusion The data shows that C. molle alkaloid extract is a potent inhibitor of H-PGDS. This study thus supports the traditional use of the plant for inflammation. PMID:24996417

  1. Inhibition of hematopoietic prostaglandin D2 synthase (H-PGDS) by an alkaloid extract from Combretum molle.

    PubMed

    Moyo, Rejoice; Chimponda, Theresa; Mukanganyama, Stanley

    2014-07-05

    Hematopoietic prostaglandin D2 synthase (H-PGDS, GST Sigma) is a member of the glutathione S-transferase super family of enzymes that catalyses the conjugation of electrophilic substances with reduced glutathione. The enzyme catalyses the conversion of PGH2 to PGD2 which mediates inflammatory responses. The inhibition of H-PGDS is of importance in alleviating damage to tissues due to unwarranted synthesis of PGD2. Combretum molle has been used in African ethno medicinal practices and has been shown to reduce fever and pain. The effect of C. molle alkaloid extract on H-PGDS was thus, investigated. H-PGDS was expressed in Escherichia coli XL1-Blue cells and purified using nickel immobilized metal affinity chromatography. The effect of C. molle alkaloid extract on H-PGDS activity was determined with 1-chloro-2, 4-dinitrobenzene (CDNB) as substrate. The effect of C. molle alkaloid extract with time on H-PGDS was determined. The mechanism of inhibition was then investigated using CDNB and glutathione (GSH) as substrates. A specific activity of 24 μmol/mg/min was obtained after H-PGDS had been purified. The alkaloid extract exhibited a 70% inhibition on H-PGDS with an IC50 of 13.7 μg/ml. C. molle alkaloid extract showed an uncompetitive inhibition of H-PGDS with Ki = 41 μg/ml towards GSH, and non-competitive inhibition towards CDNB with Ki = 7.7 μg/ml and Ki' = 9.2 μg/ml. The data shows that C. molle alkaloid extract is a potent inhibitor of H-PGDS. This study thus supports the traditional use of the plant for inflammation.

  2. An Eco-Friendly Improved Protocol for the Synthesis of Bis(3-indolyl)methanes Using Poly(4-vinylpyridinium)hydrogen Sulfate as Efficient, Heterogeneous, and Recyclable Solid Acid Catalyst

    PubMed Central

    Banothu, Janardhan; Gali, Rajitha; Velpula, Ravibabu; Bavantula, Rajitha; Crooks, Peter A.

    2013-01-01

    Highly efficient and eco-friendly protocol for the synthesis of bis(3-indolyl)methanes by the electrophilic substitution reaction of indole with aldehydes catalyzed by poly(4-vinylpyridinium)hydrogen sulfate was described. Excellent yields, shorter reaction times, simple work-up procedure, avoiding hazardous organic solvents, and reusability of the catalyst are the most obvious advantages of this method. PMID:24052864

  3. Dienamine and Friedel-Crafts one-pot synthesis, and antitumor evaluation of diheteroarylalkanals.

    PubMed

    Frías, María; Padrón, José M; Alemán, José

    2015-05-26

    An asymmetric synthesis of diheteroarylalkanals through one-pot dienamine and Friedel-Crafts reaction is presented. The reaction tolerates a large variety of substituents at different positions of the starting aldehyde and also in the indole nucleophile, and a range of diheterocyclic alkanals can be achieved. Furthermore, we have studied the antiproliferative activity of these new compounds in representative cancer tumor cell lines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Biosynthetic pathway of the phytohormone auxin in insects and screening of its inhibitors.

    PubMed

    Suzuki, Hiroyoshi; Yokokura, Junpei; Ito, Tsukasa; Arai, Ryoma; Yokoyama, Chiaki; Toshima, Hiroaki; Nagata, Shinji; Asami, Tadao; Suzuki, Yoshihito

    2014-10-01

    Insect galls are abnormal plant tissues induced by galling insects. The galls are used for food and habitation, and the phytohormone auxin, produced by the insects, may be involved in their formation. We found that the silkworm, a non-galling insect, also produces an active form of auxin, indole-3-acetic acid (IAA), by de novo synthesis from tryptophan (Trp). A detailed metabolic analysis of IAA using IAA synthetic enzymes from silkworms indicated an IAA biosynthetic pathway composed of a three-step conversion: Trp → indole-3-acetaldoxime → indole-3-acetaldehyde (IAAld) → IAA, of which the first step is limiting IAA production. This pathway was shown to also operate in gall-inducing sawfly. Screening of a chemical library identified two compounds that showed strong inhibitory activities on the conversion step IAAld → IAA. The inhibitors can be efficiently used to demonstrate the importance of insect-synthesized auxin in gall formation in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Indole-3-Carbonitriles as DYRK1A Inhibitors by Fragment-Based Drug Design.

    PubMed

    Meine, Rosanna; Becker, Walter; Falke, Hannes; Preu, Lutz; Loaëc, Nadège; Meijer, Laurent; Kunick, Conrad

    2018-01-24

    Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a potential drug target because of its role in the development of Down syndrome and Alzheimer's disease. The selective DYRK1A inhibitor 10-iodo-11 H -indolo[3,2- c ]quinoline-6-carboxylic acid (KuFal194), a large, flat and lipophilic molecule, suffers from poor water solubility, limiting its use as chemical probe in cellular assays and animal models. Based on the structure of KuFal194, 7-chloro-1 H -indole-3-carbonitrile was selected as fragment template for the development of smaller and less lipophilic DYRK1A inhibitors. By modification of this fragment, a series of indole-3-carbonitriles was designed and evaluated as potential DYRK1A ligands by molecular docking studies. Synthesis and in vitro assays on DYRK1A and related protein kinases identified novel double-digit nanomolar inhibitors with submicromolar activity in cell culture assays.

  6. Alpha-tryptophan synthase of Isatis tinctoria: gene cloning and expression.

    PubMed

    Salvini, M; Boccardi, T M; Sani, E; Bernardi, R; Tozzi, S; Pugliesi, C; Durante, M

    2008-07-01

    Indole producing reaction is a crux in the regulation of metabolite flow through the pathways and the coordination of primary and secondary product biosynthesis in plants. Indole is yielded transiently from indole-3-glycerol phosphate and immediately condensed with serine to give tryptophan, by the enzyme tryptophan synthase (TS). There is evidence that plant TS, like the bacterial complex, functions as an alpha beta heteromer. In few species, e.g. maize, are known enzymes, related with the TS alpha-subunit (TSA), able to catalyse reaction producing indole, which is free to enter the secondary metabolite pathways. In this contest, we searched for TSA and TSA related genes in Isatis tinctoria, a species producing the natural blue dye indigo. The It-TSA cDNA and the full-length exons/introns genomic region were isolated. The phylogenetic analysis indicates that It-TSA is more closely related to Arabidopsis thaliana At-T14E10.210 TSA (95.7% identity at the amino acid level) with respect to A. thaliana At-T10P11.11 TSA1-like (63%), Zea mays indole-3-glycerol phosphate lyase (54%), Z. mays TSA (53%), and Z. mays indole synthase (50%). The It-TSA cDNA was also able to complement an Escherichia coli trpA mutant. To examine the involvement of It-TSA in the biosynthesis of secondary metabolism compounds, It-TSA expression was tested in seedling grown under different light conditions. Semi-quantitative RT-PCR showed an increase in the steady-state level of It-TSA mRNA, paralleled by an increase of indigo and its precursor isatan B. Our results appear to indicate an involvement for It-TSA in indigo precursor synthesis and/or tryptophan biosynthesis.

  7. Enantioselective Synthesis of SNAP-7941

    PubMed Central

    Goss, Jennifer M.; Schaus, Scott E.

    2009-01-01

    An enantioselective synthesis of SNAP-7941, a potent melanin concentrating hormone receptor antagonist, was achieved using two organocatalytic methods. The first method utilized to synthesize the enantioenriched dihydropyrimidone core was the Cinchona alkaloid-catalyzed Mannich reaction of β-keto esters to acyl imines and the second was chiral phosphoric acid-catalyzed Biginelli reaction. Completion of the synthesis was accomplished via selective urea formation at the N3 position of the dihydropyrimidone with the 3-(4-phenylpiperidin-1-yl)propyl amine side chain fragment. The synthesis of SNAP-7921 highlights the utility of asymmetric organocatalytic methods in the construction of an important class of chiral heterocycles. PMID:18767801

  8. A microwave assisted intramolecular-furan-Diels–Alder approach to 4-substituted indoles†

    PubMed Central

    Petronijevic, Filip; Timmons, Cody; Cuzzupe, Anthony; Wipf, Peter

    2009-01-01

    The key steps of a versatile new protocol for the convergent synthesis of 3,4-disubstituted indoles are the addition of an α-lithiated alkylaminofuran to a carbonyl compound, a microwave-accelerated intramolecular Diels–Alder cycloaddition and an in situ double aromatization reaction. PMID:19082013

  9. Ibogaine, an anti-addictive drug: pharmacology and time to go further in development. A narrative review.

    PubMed

    Maciulaitis, R; Kontrimaviciute, V; Bressolle, F M M; Briedis, V

    2008-03-01

    Ibogaine is an indole alkaloid derived from the bark of the root of the African shrub Tabernanthe iboga. Psychoactive properties of ibogaine have been known for decades. More recently, based on experimental data from animals and anectodal reports in human, it has been found that this drug has anti-addictive effects. Several patents were published between 1969 and 1995. The pharmacology of ibogaine is quite complex, affecting many different neurotransmitter systems simultaneously. However, the pharmacological targets underlying the physiological and psychological actions of ibogaine are not completely understood. Ibogaine is rapidly metabolized in the body in noribogaine. The purpose of this article was to review data from the literature concerning physicochemical properties, bio-analytical methods, and pharmacology of ibogaine; this article will be focused on the use of this drug as anti-addictive agent.

  10. Deciphering the route to cyclic monoterpenes in Chrysomelina leaf beetles: source of new biocatalysts for industrial application?

    PubMed

    Burse, Antje; Boland, Wilhelm

    2017-09-26

    The drastic growth of the population on our planet requires the efficient and sustainable use of our natural resources. Enzymes are indispensable tools for a wide range of industries producing food, pharmaceuticals, pesticides, or biofuels. Because insects constitute one of the most species-rich classes of organisms colonizing almost every ecological niche on earth, they have developed extraordinary metabolic abilities to survive in various and sometimes extreme habitats. Despite this metabolic diversity, insect enzymes have only recently generated interest in industrial applications because only a few metabolic pathways have been sufficiently characterized. Here, we address the biosynthetic route to iridoids (cyclic monoterpenes), a group of secondary metabolites used by some members of the leaf beetle subtribe Chrysomelina as defensive compounds against their enemies. The ability to produce iridoids de novo has also convergently evolved in plants. From plant sources, numerous pharmacologically relevant structures have already been described. In addition, in plants, iridoids serve as building blocks for monoterpenoid indole alkaloids with broad therapeutic applications. As the commercial synthesis of iridoid-based drugs often relies on a semisynthetic approach involving biocatalysts, the discovery of enzymes from the insect iridoid route can account for a valuable resource and economic alternative to the previously used enzymes from the metabolism of plants. Hence, this review illustrates the recent discoveries made on the steps of the iridoid pathway in Chrysomelina leaf beetles. The findings are also placed in the context of the studied counterparts in plants and are further discussed regarding their use in technological approaches.

  11. A General, Concise Strategy that Enables Collective Total Syntheses of over 50 Protoberberine and Five Aporhoeadane Alkaloids within Four to Eight Steps.

    PubMed

    Zhou, Shiqiang; Tong, Rongbiao

    2016-05-17

    A concise, catalytic, and general strategy that allowed efficient total syntheses of 22 natural 13-methylprotoberberines within four steps for each molecule is reported. This synthesis represents the most efficient and shortest route to date, featuring three catalytic processes: CuI-catalyzed redox-A(3) reaction, Pd-catalyzed reductive carbocyclization, and PtO2 -catalyzed hydrogenation. Importantly, this new strategy to the tetracyclic framework has also been applied to the collective concise syntheses of >30 natural protoberberines (without 13-methyl group) and five aporhoeadane alkaloids. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Inhibitors of the serotonin transporter protein (SERT): the design and synthesis of biotinylated derivatives of 3-(1,2,3,6-tetrahydro-pyridin-4-yl)-1H-indoles. High-affinity serotonergic ligands for conjugation with quantum dots.

    PubMed

    Tomlinson, Ian D; Mason, John N; Blakely, Randy D; Rosenthal, Sandra J

    2005-12-01

    There is a growing demand for compounds with specificity for the serotonin transporter protein (SERT) that can be conjugated to cadmium selenide/zinc sulfide core shell nanocrystals. This letter describes the design and synthesis of two different biotinylated SERT antagonists that can be attached to streptavidin-coated cadmium selenide/zinc sulfide core shell nanocrystals.

  13. Arbidol: a quarter-century after. Past, present and future of the original Russian antiviral

    NASA Astrophysics Data System (ADS)

    Balakin, K. V.; Filosa, R.; Lavrenov, S. N.; Mkrtchayn, A. S.; Nawrozkij, M. B.; Novakov, I. A.

    2018-06-01

    The present review is concerned with the synthesis and structure–activity relationship studies of Arbidol and its structural analogues. The latter are roughly divided into several unequal parts: indole- and benzofuran-based compounds, benzimidazole and imidazopyridine bioisosteres and ring-expanded quinoline derivatives. Much attention is focused on various types of antiviral activity of the above-mentioned Arbidol congeners, as well as of the parent compound itself. Features of Arbidol synthesis and metabolic changes are also discussed. The bibliography includes 166 references.

  14. Cross-Aldol Reaction of Activated Carbonyls with Nitrosocarbonyl Intermediates: Stereoselective Synthesis toward α-Hydroxy-β-amino Esters and Amides.

    PubMed

    Mallik, Sumitava; Bhajammanavar, Vinod; Ramakrishna, Isai; Baidya, Mahiuddin

    2017-07-21

    A practical and flexible strategy toward α-hydroxy-β-amino esters and amides, which are important biological motifs, based on an organocatalytic cross-aldol reaction of in situ-generated nitrosocarbonyl intermediates followed by hydrogenation is presented. The protocol features operational simplicity, high yields, a wide substrate scope, and high regio- and diastereoselectivity profiles. The utility of this method was showcased through the synthesis of bestatin analogues and indole formation.

  15. Iodine-catalyzed sp³ C-H bond activation by selenium dioxide: synthesis of diindolylmethanes and di(3-indolyl)selanides.

    PubMed

    Naidu, P Seetham; Majumder, Swarup; Bhuyan, Pulak J

    2015-11-01

    An efficient reaction protocol was developed for the synthesis of several diindolylmethane derivatives via the [Formula: see text] C-H bond activation of aryl methyl ketones by [Formula: see text] and indoles in the presence of catalytic amounts of [Formula: see text] at 80 [Formula: see text] using dioxane as solvent. Unexpectedly, an interesting class of di(3-indolyl)selenide compounds was isolated when the reaction was carried out at room temperature.

  16. Rhodium-catalyzed redox-neutral coupling of phenidones with alkynes.

    PubMed

    Fan, Zhoulong; Lu, Heng; Li, Wei; Geng, Kaijun; Zhang, Ao

    2017-07-21

    A switchable synthesis of N-substituted indole derivatives from phenidones via rhodium-catalyzed redox-neutral C-H activation has been achieved. In this protocol, we firstly disclosed that the reactivity of Rh(iii) catalysis could be enhanced through employing palladium acetate as an additive. Some representative features include external oxidant-free, applicable to terminal alkynes, short reaction time and operational simplicity. The utility of this method is further showcased by the economical synthesis of potent anticancer PARP-1 inhibitors.

  17. Gold(I)-catalyzed tandem cyclization approach to tetracyclic indolines.

    PubMed

    Liu, Yongxiang; Xu, Wenqing; Wang, Xiang

    2010-04-02

    Two highly stereoselective cationic gold(I)-catalyzed tandem cyclization reactions of alkynylindoles are described. These reactions demonstrated a novel and general strategy to rapidly construct highly functionalized polycyclic indolines. This approach was successfully employed for a formal synthesis of the akuammiline alkaloid minfiensine.

  18. Chemo-enzymatic synthesis of physiologically modified avenanthramides

    USDA-ARS?s Scientific Manuscript database

    Avenanthramides are a group of phenolic alkaloids produced, among food crops, uniquely by oats. These metabolites function as phytoalexins in vegetative tissue and they are produced in the grain where their function is unknown. In vitro the avenanthramides inhibit the activation of nuclear factor ka...

  19. A Short Review on the Synthetic Strategies of Duocarmycin Analogs that are Powerful DNA Alkylating Agents.

    PubMed

    Patil, Pravin C; Satam, Vijay; Lee, Moses

    2015-01-01

    The duocarmycins and CC-1065 are members of a class of DNA minor groove, AT-sequence selective, and adenine-N3 alkylating agents, isolated from Streptomyces sp. that exhibit extremely potent cytotoxicity against the growth of cancer cells grown in culture. Initial synthesis and structural modification of the cyclopropa[c] pyrrolo[3,2-e]indole (CPI) DNA-alkylating motif as well as the indole non-covalent binding region in the 1980s have led to several compounds that entered clinical trials as potential anticancer drugs. However, due to significant systemic toxicity none of the analogs have passed clinical evaluation. As a result, the intensity in the design, synthesis, and development of novel analogs of the duocarmycins has continued. Accordingly, in this review, which covers a period from the 1990s through the present time, the design and synthesis of duocarmycin SA are described along with the synthesis of novel and highly cytotoxic analogs that lack the chiral center. Examples of achiral analogs of duocarmycin SA described in this review include seco-DUMSA (39 and 40), seco-amino-CBI-TMI (13, Centanamycin), and seco-hydroxy-CBI-TMI (14). In addition, another novel class of biologically active duocarmycin SA analogs that contained the seco-iso-cyclopropylfurano[2,3-e]indoline (seco-iso-CFI) and seco-cyclopropyltetrahydrofurano[2,3-f]quinoline (seco-CFQ) DNA alkylating submit was also designed and synthesized. The synthesis of seco-iso-CFI-TMI (10, Tafuramycin A) and seco-CFQ-TMI (11, Tafuramycin B) is included in this review.

  20. Total synthesis of complestatin: development of a Pd(0)-mediated indole annulation for macrocyclization.

    PubMed

    Shimamura, Hiroyuki; Breazzano, Steven P; Garfunkle, Joie; Kimball, F Scott; Trzupek, John D; Boger, Dale L

    2010-06-09

    Full details of the initial development and continued examination of a powerful intramolecular palladium(0)-mediated indole annulation for macrocyclization closure of the strained 16-membered biaryl ring system found in complestatin (1, chloropeptin II) and the definition of factors impacting its intrinsic atropodiastereoselectivity are described. Its examination and use in an alternative, second-generation total synthesis of complestatin are detailed in which the order of the macrocyclization reactions was reversed from our first-generation total synthesis. In this approach and with the ABCD biaryl ether ring system in place, the key Larock cyclization was conducted with substrate 36 (containing four phenols, five secondary amides, one carbamate, and four labile aryl chlorides) and provided the product 37 (56%) exclusively as a single atropisomer (>20:1, detection limits) possessing the natural (R)-configuration. In this instance, the complexity of the substrate and the reverse macrocyclization order did not diminish the atropodiastereoselectivity; rather, it provided an improvement over the 4:1 selectivity that was observed with the analogous substrate used to provide the isolated DEF ring system in our first-generation approach. Just as significant, the atroposelectivity represents a complete reversal of the diasteroselectivity observed with analogous macrocyclizations conducted using a Suzuki biaryl coupling.

  1. Vinca drug components accumulate exclusively in leaf exudates of Madagascar periwinkle

    PubMed Central

    Roepke, Jonathan; Salim, Vonny; Wu, Maggie; Thamm, Antje M. K.; Murata, Jun; Ploss, Kerstin; Boland, Wilhelm; De Luca, Vincenzo

    2010-01-01

    The monoterpenoid indole alkaloids (MIAs) of Madagascar periwinkle (Catharanthus roseus) continue to be the most important source of natural drugs in chemotherapy treatments for a range of human cancers. These anticancer drugs are derived from the coupling of catharanthine and vindoline to yield powerful dimeric MIAs that prevent cell division. However the precise mechanisms for their assembly within plants remain obscure. Here we report that the complex development-, environment-, organ-, and cell-specific controls involved in expression of MIA pathways are coupled to secretory mechanisms that keep catharanthine and vindoline separated from each other in living plants. Although the entire production of catharanthine and vindoline occurs in young developing leaves, catharanthine accumulates in leaf wax exudates of leaves, whereas vindoline is found within leaf cells. The spatial separation of these two MIAs provides a biological explanation for the low levels of dimeric anticancer drugs found in the plant that result in their high cost of commercial production. The ability of catharanthine to inhibit the growth of fungal zoospores at physiological concentrations found on the leaf surface of Catharanthus leaves, as well as its insect toxicity, provide an additional biological role for its secretion. We anticipate that this discovery will trigger a broad search for plants that secrete alkaloids, the biological mechanisms involved in their secretion to the plant surface, and the ecological roles played by them. PMID:20696903

  2. Synthesis of 4-hydroxy-1-methylindole and benzo[b]thiophen-4-ol based unnatural flavonoids as new class of antimicrobial agents.

    PubMed

    Yadav, Prem P; Gupta, Prasoon; Chaturvedi, A K; Shukla, P K; Maurya, Rakesh

    2005-03-01

    Synthesis of nitrogen and sulfur heterocyclic mimics of furanoflavonoids have been achieved for the first time. Synthesized flavonoid alkaloids and thiophenyl flavonoids have been screened for antifungal and antibacterial activities. All the test compounds barring 25 exhibited antifungal activity. The compound 19 was the best and showed comparable MICs to the known compound karanjin. Compounds 5, 12, 14 and 22 also showed comparable MIC to karanjin.

  3. The t-Butylsulfinamide Lynchpin in Transition Metal-Mediated Multiscaffold Library Synthesis

    PubMed Central

    Bauer, Renato A.; DiBlasi, Christine M.; Tan, Derek S.

    2010-01-01

    A unified synthetic approach to diverse polycyclic scaffolds has been developed using transition metal-mediated cycloaddition and cyclization reactions of enynes and diynes. The t-butylsulfinamide group has been identified as a particularly versatile lynchpin in these reactions, with a reactivity profile uniquely suited for efficient, stereoselective substrate synthesis and downstream transformations. This approach provides ten distinct, functionalized scaffold classes related to common core structures in alkaloid and terpenoid natural products. PMID:20356070

  4. Structure-Activity Relationships of 33 Piperidines as Toxicants Against Female Adults of Aedes aegypti (Diptera: Culicidae)

    DTIC Science & Technology

    2007-03-01

    alkaloid piperine and 12 syn- thetic derivatives have been evaluated against epimas- tigote and amastigote forms of the protozoan parasite Trypanosoma...O. Kris- tiansen, P. Maienfisch, A. Pascual, and A. Rindlisbacher. 2001. Synthesis and structure-activity relationships of benzophenone hydrazone...Am. J. Trop. Med. Hyg. 22: 124Ð 129. Creemer, L. C., H. A. Kirst, J.W. Paschal, and T. V.Worden. 2000. Synthesis and insecticidal activity of spinosyn

  5. PhI(OAc)2-mediated one-pot oxidative decarboxylation and aromatization of tetrahydro-β-carbolines: synthesis of norharmane, harmane, eudistomin U and eudistomin I.

    PubMed

    Kamal, Ahmed; Tangella, Yellaiah; Manasa, Kesari Lakshmi; Sathish, Manda; Srinivasulu, Vunnam; Chetna, Jadala; Alarifi, Abdullah

    2015-08-28

    Iodobenzene diacetate was employed as a mild and efficient reagent for one-pot oxidative decarboxylation of tetrahydro-β-carboline acids and dehydrogenation of tetrahydro-β-carbolines to access the corresponding aromatic β-carbolines. To the best of our knowledge this is the first synthesis of β-carbolines via a one-pot oxidative decarboxylation at ambient temperature. The utility of this protocol has been demonstrated in the synthesis of β-carboline alkaloids norharmane (2o), harmane (2p), eudistomin U (9) and eudistomin I (12).

  6. A new general access to either type of Securinega alkaloids: synthesis of securinine and (-)-allonorsecurinine.

    PubMed

    Alibés, Ramon; Ballbé, Marta; Busqué, Félix; de March, Pedro; Elias, Laia; Figueredo, Marta; Font, Josep

    2004-05-27

    The syntheses of securinine and (-)-allonorsecurinine have been achieved starting from easily available alpha-amino acid derivatives and using as key steps a RCM and a Heck reaction for the formation of rings D and C, respectively. [reaction: see text

  7. Gene transcript profiles of the TIA biosynthetic pathway in response to ethylene and copper reveal their interactive role in modulating TIA biosynthesis in Catharanthus roseus.

    PubMed

    Pan, Ya-Jie; Liu, Jia; Guo, Xiao-Rui; Zu, Yuan-Gang; Tang, Zhong-Hua

    2015-05-01

    Research on transcriptional regulation of terpenoid indole alkaloid (TIA) biosynthesis of the medicinal plant, Catharanthus roseus, has largely been focused on gene function and not clustering analysis of multiple genes at the transcript level. Here, more than ten key genes encoding key enzyme of alkaloid synthesis in TIA biosynthetic pathways were chosen to investigate the integrative responses to exogenous elicitor ethylene and copper (Cu) at both transcriptional and metabolic levels. The ethylene-induced gene transcripts in leaves and roots, respectively, were subjected to principal component analysis (PCA) and the results showed the overall expression of TIA pathway genes indicated as the Q value followed a standard normal distribution after ethylene treatments. Peak gene expression was at 15-30 μM of ethephon, and the pre-mature leaf had a higher Q value than the immature or mature leaf and root. Treatment with elicitor Cu found that Cu up-regulated overall TIA gene expression more in roots than in leaves. The combined effects of Cu and ethephon on TIA gene expression were stronger than their separate effects. It has been documented that TIA gene expression is tightly regulated by the transcriptional factor (TF) ethylene responsive factor (ERF) and mitogen-activated protein kinase (MAPK) cascade. The loading plot combination with correlation analysis for the genes of C. roseus showed that expression of the MPK gene correlated with strictosidine synthase (STR) and strictosidine b-D-glucosidase(SGD). In addition, ERF expression correlated with expression of secologanin synthase (SLS) and tryptophan decarboxylase (TDC), specifically in roots, whereas MPK and myelocytomatosis oncogene (MYC) correlated with STR and SGD genes. In conclusion, the ERF regulates the upstream pathway genes in response to heavy metal Cu mainly in C. roseus roots, while the MPK mainly participates in regulating the STR gene in response to ethylene in pre-mature leaf. Interestingly, the change in TIA accumulation does not correlate with expression of the associated genes. Our previous research found significant accumulation of vinblastine in response to high concentration of ethylene and Cu suggesting the involvement of posttranscriptional and posttranslational mechanisms in a spatial and temporal manner. In this study, meta-analysis reveals ERF and MPK form a positive feedback loop connecting two pathways actively involved in response of TIA pathway genes to ethylene and copper in C. roseus.

  8. Fe3O4@SiO2@KIT-6 as an Efficient and Reusable Catalyst for the Synthesis of Novel Derivatives of 3,3'-((Aryl-1-phenyl-1H-pyrazol-4- yl)methylene)bis (1H-indole).

    PubMed

    Nikpassand, Mohammad; Fekri, Leila Zare; Nabatzadeh, Mozhdeh

    2017-01-01

    Korea advanced institute of science and technology cubic ordered mesoporous silica (KIT-6 mesoporous) silica coated magnetite nanoparticles, is an effective, ecobenign and recyclable catalyst for the electrophilic substitution reactions of indoles with various synthetized aldehydes to afford the corresponding novel diindolylmethanes in high yields and short reaction times. The catalyst can be recovered and reused without loss of activity. The work-up of the reaction consists of a simple separation, followed by concentration of the crude product and purification. The present methodology offers several advantages such as aqueous media, excellent yields, simple procedure, mild conditions and reduced environmental consequences. All of synthesized compounds are new and were characterized by IR, NMR and elemental analyses. A mixture of synthetized pyrazolecarbaldehydes [24] (2.0mmol), indole (4.0mmol) and Fe3O4@SiO2@KIT-6 (0.04mmol) and H2O (10mL) were stirred at room temperature for the required reaction time according to Table 2. After completion of the reaction, the product was solved in CHCl3 (3×10 mL) and insoluble catalyst was removed by filtration in the presence of an efficient magnetic bar. The organic phase including the product and CHCl3 was evaporated under vacuum. The resulting crude material was purified by recrystallization from EtOH to afford pure products. As part of our on interest for the development of efficient and environmentally friendly procedures for the synthesis of heterocyclic and pharmaceutical compounds, an efficient, facile and aqueous media was introduced for the synthesis of novel derivatives of diindolylmethanes containing pyrazole moiety. A variety of synthetized aldehyde compounds reacted smoothly with indoles to produce diindolylmethanes under these reaction conditions. The electron deficiency and the nature of the substituents on the aromatic ring show some effects on this conversion. All the reactions were run with catalytic amounts of catalysts. The best results gained with 0.04mmol of Fe3O4@SiO2@KIT-6 as a strong Lewis acid at room temperature in aqueous media. In conclusion, we have investigated the synthesized KIT-6 mesoporous silica coated magnetite nanoparticles (MMNPs) as a mild and efficient catalyst for the synthesis of novel diindolylmethanes coupled with pyrazole moiety in aqua media. The simplicity, easy workup together with the use of inexpensive, environmentally friendly and reusable catalyst, is the notable features of this catalytic procedure. To the best of our knowledge, this is the first report for the synthesis of a new library of diindolylmethane compound bearing pyrazole moiety that enhance the biological and pharmacological activity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. [Biosynthesis of indigo and indirubin by whole-cell catalyst designed by combination of protein engineering and metabolic engineering].

    PubMed

    Li, Yang; Zhu, Junge; Wang, Jianjun; Xia, Huanzhang; Wu, Sheng

    2016-01-01

    The phenylacetone monooxygenase, isolated from Thermobifida fusca, mainly catalyzes Baeyer-Villiger oxidation reaction towards aromatic compounds. Met446 plays a vital role in catalytic promiscuity, based on the structure and function of phenylacetone monooxygenase. Mutation in Met446 locus can offer enzyme new catalytic feature to activate C-H bond, oxidizing indole to finally generate indigo and indirubin, but the yield was only 1.89 mg/L. In order to further improve the biosynthesis efficiency of the whole-cell catalyst, metabolic engineering was applied to change glucose metabolism pathway of Escherichia coli. Blocking glucose isomerase gene pgi led to pentose phosphate pathway instead of the glycolytic pathway to become the major metabolic pathways of glucose, which provided more cofactor NADPH needed in enzymatic oxidation of indole. Engineering the host E. coli led to synthesis of indigo and indirubin efficiency further increased to 25 mg/L. Combination of protein and metabolic engineering to design efficient whole-cell catalysts not only improves the synthesis of indigo and indirubin, but also provides a novel strategy for whole-cell catalyst development.

  10. Enantioselective total synthesis of (-)-strychnine using the catalytic asymmetric Michael reaction and tandem cyclization.

    PubMed

    Ohshima, Takashi; Xu, Youjun; Takita, Ryo; Shimizu, Satoshi; Zhong, Dafang; Shibasaki, Masakatsu

    2002-12-11

    The enantioselective total synthesis of (-)-strychnine was accomplished through the use of the highly practical catalytic asymmetric Michael reaction (0.1 mol % of (R)-ALB, more than kilogram scale, without chromatography, 91% yield and >99% ee) as well as a tandem cyclization that simultaneously constructed B- and D-rings (>77% yield). Moreover, newly developed reaction conditions for thionium ion cyclization, NaBH3CN reduction of the imine moiety in the presence of Lewis acid to prevent ring opening reaction, and chemoselective reduction of the thioether (desulfurization) in the presence of exocyclic olefin were pivotal to complete the synthesis. The described chemistry paves the way for the synthesis of more advanced Strychnos alkaloids.

  11. Synthesis and solid-state characterisation of 4-substituted methylidene oxindoles

    PubMed Central

    2013-01-01

    Background 4-substituted methylidene oxindoles are pharmacologically important. Detailed analysis and comparison of all the interactions present in crystal structures is necessary to understand how these structures arise. The XPac procedure allows comparison of complete crystal structures of related families of compounds to identify assemblies that are mainly the result of close-packing as well as networks of directed interactions. Results Five 4-substituted methylidene oxindoles have been synthesized by the Knoevenagel condensation of oxindole with para-substituted aromatic aldehydes and were characterized in the solid state by x-ray crystallography. Hence, the structures of (3E)-3-(4-Bromobenzylidene)-1,3-dihydro-2H-indol-2-one, 3a, (3E)-3-(4-Chlorobenzylidene)-1,3-dihydro-2H-indol-2-one, 3b, (3E)-3-(4-Methoxybenzylidene)-1,3-dihydro-2H-indol-2-one, 3c, (3E)-3-(4-Methylbenzylidene)-1,3-dihydro-2H-indol-2-one, 3d and (3E)-3-(4-Nitrobenzylidene)-1,3-dihydro-2H-indol-2-one, 3e, were elucidated using single crystal X-ray crystallography. Conclusions A hydrogen bonded dimer molecular assembly or supramolecular construct was identified in all the crystal structures examined along with a further four 1D supramolecular constructs which were common to at least two of the family of structures studied. The 1D supramolecular constructs indicate that once the obvious strong interaction is satisfied to form hydrogen bonded dimer it is the conventionally weaker interactions, such as steric bulk and edge-to-face interactions which compete to influence the final structure formation. PMID:24517531

  12. Influence of tryptophan and related compounds on ergot alkaloid formation in Claviceps purpurea (FR.) Tul.

    PubMed

    Erge, D; Schumann, B; Gröger, D

    1984-01-01

    L-Tryptophan did not exert any influence on peptide alkaloid formation in an ergotamine and in an ergosine-accumulating C. purpurea strain. A different picture was observed in a series of related C. purpurea strains. Tryptophan showed a slight stimulatory effect on the ergotoxine producer Pepty 695/S. A blocked mutant of it, designated as Pepty 695/ch which was able to accumulate secoclavines gave similar results. In a high-yielding elymoclavine strain Pepty 695/e, the progeny of the former one, tryptophan up to a concentration of 25 mM stimulated remarkably clavine biosynthesis. Furthermore, tryptophan could overcome the block of synthesis by inorganic phosphate. Increased specific activities of chanoclavine cyclase but not DMAT synthetase were observed in cultures of strain Pepty 695/e supplemented with tryptophan. 5-Methyltryptophan and bioisosteres of tryptophan were ineffective in alkaloid stimulation. These results are compared with those obtained with the grass ergot strain SD 58 and discussed with the relation to other induction phenomena.

  13. Discovery of Ecopladib, an indole inhibitor of cytosolic phospholipase A2alpha.

    PubMed

    Lee, Katherine L; Foley, Megan A; Chen, Lihren; Behnke, Mark L; Lovering, Frank E; Kirincich, Steven J; Wang, Weiheng; Shim, Jaechul; Tam, Steve; Shen, Marina W H; Khor, Soopeang; Xu, Xin; Goodwin, Debra G; Ramarao, Manjunath K; Nickerson-Nutter, Cheryl; Donahue, Frances; Ku, M Sherry; Clark, James D; McKew, John C

    2007-03-22

    The synthesis and structure-activity relationship of a series of indole inhibitors of cytosolic phospholipase A2alpha (cPLA2alpha, type IVA phospholipase) are described. Inhibitors of cPLA2alpha are predicted to be efficacious in treating asthma as well as the signs and symptoms of osteoarthritis, rheumatoid arthritis, and pain. The introduction of a benzyl sulfonamide substituent at C2 was found to impart improved potency of these inhibitors, and the SAR of these sulfonamide analogues is disclosed. Compound 123 (Ecopladib) is a sub-micromolar inhibitor of cPLA2alpha in the GLU micelle and rat whole blood assays. Compound 123 displayed oral efficacy in the rat carrageenan air pouch and rat carrageenan-induced paw edema models.

  14. Access to 6a-Alkyl Aporphines: Synthesis of (±)-N-Methylguattescidine.

    PubMed

    Ku, Angela F; Cuny, Gregory D

    2016-10-21

    (-)-N-Methylguattescidine (3) is an alkaloid recently isolated from Fissistigma latifolium and assigned as a rare example of a 6a-alkyl aporphine. Herein, we report the synthesis of (±)-3 and the des-hydroxyl derivative 4 using our previously reported ortho-phenol arylation methodology mediated by the XPhos precatalyst as a key synthetic step. In addition, substituents on the aryl halide portion of the ortho-phenol arylation substrates significantly influenced the formation of an oxidized side product.

  15. Novel FeII and CoII Complexes of Natural Product Tryptanthrin: Synthesis and Binding with G-Quadruplex DNA

    PubMed Central

    Zhong, Yi-ning; Zhang, Yan; Gu, Yun-qiong; Wu, Shi-yun; Shen, Wen-ying

    2016-01-01

    Tryptanthrin is one of the most important members of indoloquinoline alkaloids. We obtained this alkaloid from Isatis. Two novel FeII and CoII complexes of tryptanthrin were first synthesized. Single-crystal X-ray diffraction analyses show that these complexes display distorted four-coordinated tetrahedron geometry via two heterocyclic nitrogen and oxygen atoms from tryptanthrin ligand. Binding with G-quadruplex DNA properties revealed that both complexes were found to exhibit significant interaction with G-quadruplex DNA. This study may potentially serve as the basis of future rational design of metal-based drugs from natural products that target the G-quadruplex DNA. PMID:27698647

  16. Direct Synthesis of Protoberberine Alkaloids by Rh-Catalyzed C-H Bond Activation as the Key Step.

    PubMed

    Jayakumar, Jayachandran; Cheng, Chien-Hong

    2016-01-26

    A one-pot reaction of substituted benzaldehydes with alkyne-amines by a Rh-catalyzed C-H activation and annulation to afford various natural and unnatural protoberberine alkaloids is reported. This reaction provides a convenient route for the generation of a compound library of protoberberine salts, which recently have attracted great attention because of their diverse biological activities. In addition, pyridinium salt derivatives can also be formed in good yields from α,β-unsaturated aldehydes and amino-alkynes. This reaction proceeds with excellent regioselectivity and good functional group compatibility under mild reaction conditions by using O2 as the oxidant. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Expression, purification, crystallization and preliminary X-ray analysis of perakine reductase, a new member of the aldo-keto reductase enzyme superfamily from higher plants

    PubMed Central

    Rosenthal, Cindy; Mueller, Uwe; Panjikar, Santosh; Sun, Lianli; Ruppert, Martin; Zhao, Yu; Stöckigt, Joachim

    2006-01-01

    Perakine reductase (PR) is a novel member of the aldo-keto reductase enzyme superfamily from higher plants. PR from the plant Rauvolfia serpentina is involved in the biosynthesis of monoterpenoid indole alkaloids by performing NADPH-dependent reduction of perakine, yielding raucaffrinoline. However, PR can also reduce cinnamic aldehyde and some of its derivatives. After heterologous expression of a triple mutant of PR in Escherichia coli, crystals of the purified and methylated enzyme were obtained by the hanging-drop vapour-diffusion technique at 293 K with 100 mM sodium citrate pH 5.6 and 27% PEG 4000 as precipitant. Crystals belong to space group C2221 and diffract to 2.0 Å, with unit-cell parameters a = 58.9, b = 93.0, c = 143.4 Å. PMID:17142919

  18. Antitubercular sterols from Thalia multiflora Horkel ex Koernicke.

    PubMed

    Gutierrez-Lugo, Maria-Teresa; Wang, Yuehong; Franzblau, Scott G; Suarez, Enrique; Timmermann, Barbara N

    2005-10-01

    Bioassay guided isolation of an antitubercular extract of the aerial parts of Thalia multiflora led to the isolation of nine stigmast-5-ene and stigmasta-5,22-dien steroids, four isorhamnetin and quercetin flavonoid glycosides, two ceramides, an indole alkaloid and two simple phenolic compounds. Stigmast-5-en-3beta-ol-7-one (2), stigmast-4-ene-6beta-ol-3-one (3), stigmast-5,22-dien-3beta-ol-7-one (7) and stigmast-4,22-dien-6beta-ol-3-one (8) were found to be the most active compounds with MIC values of 1.98 +/- 0.02, 4.2 +/- 0.17, 1.0 +/- 0.06 and 2.2 +/- 0.3 microg/mL, respectively. Compounds 2, 3, 7 and 8 were not cytotoxic to Vero cells at 102 microg/mL. This investigation constitutes the first report of a chemical study of a species of the genus Thalia.

  19. In vitro inhibition of Plasmodium falciparum by substances isolated from Amazonian antimalarial plants.

    PubMed

    de Andrade-Neto, Valter F; Pohlit, Adrian M; Pinto, Ana Cristina S; Silva, Ellen Cristina C; Nogueira, Karla L; Melo, Márcia R S; Henrique, Marycleuma C; Amorim, Rodrigo C N; Silva, Luis Francisco R; Costa, Mônica R F; Nunomura, Rita C S; Nunomura, Sergio M; Alecrim, Wilson D; Alecrim, M das Graças C; Chaves, F Célio M; Vieira, Pedro Paulo R

    2007-06-01

    In the present study, a quassinoid, neosergeolide, isolated from the roots and stems of Picrolemma sprucei (Simaroubaceae), the indole alkaloids ellipticine and aspidocarpine, isolated from the bark of Aspidosperma vargasii and A. desmanthum (Apocynaceae), respectively, and 4-nerolidylcatechol, isolated from the roots of Pothomorphe peltata (Piperaceae), all presented significant in vitro inhibition (more active than quinine and chloroquine) of the multi-drug resistant K1 strain of Plasmodium falciparum. Neosergeolide presented activity in the nanomolar range. This is the first report on the antimalarial activity of these known, natural compounds. This is also the first report on the isolation of aspidocarpine from A. desmanthum. These compounds are good candidates for pre-clinical tests as novel lead structures with the aim of finding new antimalarial prototypes and lend support to the traditional use of the plants from which these compounds are derived.

  20. Neuropharmacology of N,N-Dimethyltryptamine

    PubMed Central

    Carbonaro, Theresa M.; Gatch, Michael B.

    2016-01-01

    N,N-Dimethyltryptamine (DMT) is an indole alkaloid widely found in plants and animals. It is best known for producing brief and intense psychedelic effects when ingested. Increasing evidence suggests that endogenous DMT plays important roles for a number of processes in the periphery and central nervous system, and may act as a neurotransmitter. This paper reviews the current literature of both the recreational use of DMT and its potential roles as an endogenous neurotransmitter. Pharmacokinetics, mechanisms of action in the periphery and central nervous system, clinical uses and adverse effects are also reviewed. DMT appears to have limited neurotoxicity and other adverse effects except for intense cardiovascular effects when administered intravenously in large doses. Because of its role in nervous system signaling, DMT may be a useful experimental tool in exploring how brain works, and may also be a useful clinical tool for treatment of anxiety and psychosis. PMID:27126737

  1. Structural insights into cholinesterases inhibition by harmane β-carbolinium derivatives: a kinetics-molecular modeling approach.

    PubMed

    Torres, Juliana M; Lira, Aline F; Silva, Daniel R; Guzzo, Lucas M; Sant'Anna, Carlos M R; Kümmerle, Arthur E; Rumjanek, Victor M

    2012-09-01

    The natural indole alkaloids, the β-carbolines, are often associated with cholinesterase inhibition, especially their quaternary salts, which frequently have higher activity than the free bases. Due to lack of information explaining this fact in the literature, the cholinesterase inhibition by the natural product harmane and its two β-carbolinium synthetic derivative salts (N-methyl and N-ethyl) was explored, together with a combination of kinetics and a molecular modeling approach. The results, mainly for the β-carbolinium salts, demonstrated a noncompetitive inhibition profile, ruling out previous findings which associated cholinesterase inhibition by β-carbolinium salts to a possible mimicking of the choline moiety of the natural substrate, acetylcholine. Molecular modeling studies corroborate this kind of inhibition through analyses of inhibitor/enzyme and inhibitor/substrate/enzyme complexes of both enzymes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Neuropharmacology of N,N-dimethyltryptamine.

    PubMed

    Carbonaro, Theresa M; Gatch, Michael B

    2016-09-01

    N,N-dimethyltryptamine (DMT) is an indole alkaloid widely found in plants and animals. It is best known for producing brief and intense psychedelic effects when ingested. Increasing evidence suggests that endogenous DMT plays important roles for a number of processes in the periphery and central nervous system, and may act as a neurotransmitter. This paper reviews the current literature of both the recreational use of DMT and its potential roles as an endogenous neurotransmitter. Pharmacokinetics, mechanisms of action in the periphery and central nervous system, clinical uses and adverse effects are also reviewed. DMT appears to have limited neurotoxicity and other adverse effects except for intense cardiovascular effects when administered intravenously in large doses. Because of its role in nervous system signaling, DMT may be a useful experimental tool in exploring how the brain works, and may also be a useful clinical tool for treatment of anxiety and psychosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The anti-addiction drug ibogaine and the heart: a delicate relation.

    PubMed

    Koenig, Xaver; Hilber, Karlheinz

    2015-01-29

    The plant indole alkaloid ibogaine has shown promising anti-addictive properties in animal studies. Ibogaine is also anti-addictive in humans as the drug alleviates drug craving and impedes relapse of drug use. Although not licensed as therapeutic drug and despite safety concerns, ibogaine is currently used as an anti-addiction medication in alternative medicine in dozens of clinics worldwide. In recent years, alarming reports of life-threatening complications and sudden death cases, temporally associated with the administration of ibogaine, have been accumulating. These adverse reactions were hypothesised to be associated with ibogaine's propensity to induce cardiac arrhythmias. The aim of this review is to recapitulate the current knowledge about ibogaine's effects on the heart and the cardiovascular system, and to assess the cardiac risks associated with the use of this drug in anti- addiction therapy. The actions of 18-methoxycoronaridine (18-MC), a less toxic ibogaine congener with anti-addictive properties, are also considered.

  4. Internet-purchased ibogaine toxicity confirmed with serum, urine, and product content levels.

    PubMed

    O'Connell, Charles W; Gerona, Roy R; Friesen, Matthew W; Ly, Binh T

    2015-07-01

    Ibogaine, a psychotropic indole alkaloid, is gaining popularity among medical subcultures for its purported anti addictive properties. Its use has been associated with altered mental status, ataxia, gastrointestinal distress, ventricular arrhythmias, and sudden and unexplained deaths.Its pharmacokinetics in toxic states is not well understood. Case report:A 33-year-old man overdosed on ibogaine in an attempt to quit his use of heroin. He developed altered state of consciousness, tremor, ataxia,nausea, vomiting, and transient QT interval prolongation, which all remitted as he cleared the substance. Ibogaine was confirmed in his urine and serum with a peak serum concentration of 377 ng/mL. Nonlinear elimination kinetics and a formula match to its active metabolite noriobgaine were observed as well. This case presents the unique description of serial serum concentrations as well as urine and product-confirmed ibogaine toxicity with transient toxin-related QT interval prolongation.

  5. Cu(3)(BTC)(2) as a viable heterogeneous solid catalyst for Friedel-Crafts alkylation of indoles with nitroalkenes.

    PubMed

    Nagaraj, Anbu; Amarajothi, Dhakshinamoorthy

    2017-05-15

    In the present work, Friedel-Crafts alkylation reaction of indole with β-nitrostyrene is examined using a readily available copper based metal-organic frameworks (MOFs) namely, Cu 3 (BTC) 2 (BTC: 1,3,5-benzenetricarboxylic acid) as solid catalyst under mild reaction conditions. Among the various catalysts screened for this reaction, Cu 3 (BTC) 2 exhibits higher activity under the optimized reaction conditions. Besides the absence of leaching of active sites, it is also observed that the catalyst can be reused for four cycles with a minimal decrease in its activity. Cu 3 (BTC) 2 is used as a catalyst to synthesise a series of heterocyclic compounds with different indole and β-nitrostyrene derivatives in moderate to high yields. The present catalytic system shows comparable activity against to recent reports but the advantage of Cu 3 (BTC) 2 is that it does not require any post-functionalization and above all it can be readily synthesised, thus contributing to the synthesis of heterocyclic compounds with high biological interest. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Pyrroloindolone synthesis via a Cp*Co(III)-catalyzed redox-neutral directed C-H alkenylation/annulation sequence.

    PubMed

    Ikemoto, Hideya; Yoshino, Tatsuhiko; Sakata, Ken; Matsunaga, Shigeki; Kanai, Motomu

    2014-04-09

    A unique synthetic utility of a Cp*Co(III) catalyst in comparison with related Cp*Rh(III) catalysts is described. A C2-selective indole alkenylation/annulation sequence proceeded smoothly with catalytic amount of a [Cp*Co(III)(C6H6)](PF6)2 complex and KOAc. Intramolecular addition of an alkenyl-Cp*Co species to a carbamoyl moiety gave pyrroloindolones in 58-89% yield in one pot. Clear difference was observed between the catalytic activity of the Cp*Co(III) complex and those of Cp*Rh(III) complexes, highlighting the unique nucleophilic activity of the organocobalt species. The Cp*Co(III) catalysis was also suitable for simple alkenylation process of N-carbamoyl indoles, and broad range of alkynes, including terminal alkynes, were applicable to give C2-alkenylated indoles in 50-99% yield. Mechanistic studies on C-H activation step under Cp*Co(III) catalysis with the aid of an acetate unit as well as evaluation of the difference between organo-Co(III) species and organo-Rh(III) species are also described.

  7. Synthesis of the Strychnos Alkaloid (-)-Strychnopivotine and Confirmation of its Absolute Configuration.

    PubMed

    Maertens, Gaëtan; Canesi, Sylvain

    2016-05-17

    The first enantioselective synthesis of (-)-strychnopivotine from a known and inexpensive phenol has been achieved in 15 steps. The strategy is based on a new diastereoselective aza-Michael-enol-ether cascade desymmetrization of a dienone, guided by a removable lactic acid-derived chiral auxiliary. Synthesis involves a phenol dearomatization, a conjugated silicon addition, a stereoselective double reductive amination, and two Heck-type carbopalladations as key steps. The absolute configuration of the natural compound, which, to date, has been uncertain, was confirmed by using circular dichroism (CD) spectroscopy and X-ray analyses. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Quantitative analysis of substituted N,N-dimethyl-tryptamines in the presence of natural type XII alkaloids.

    PubMed

    Ivanova, Bojidarka; Spiteller, Michael

    2012-10-01

    This paper reports the qualitative and quantitative analysis (QA) of mixtures of hallucinogens, N,N-dimethyltryptamine (DMT) (1), 5-methoxy- (la) and 5-hydroxy-N,N-dimethyltryptamine (1b) in the presence of beta-carbolines (indole alkaloids of type XII) ((2), (3) and (5)}. The validated electronic absorption spectroscopic (EAs) protocol achieved a concentration limit of detection (LOD) of 7.2.10(-7) mol/L {concentration limit of quantification (LOQ) of 24.10(-7) mol/L) using bands (lambda max within 260+/-0.23-262+/-0.33 nm. Metrology, including accuracy, measurement repeatability, measurement precision, trueness of measurement, and reproducibility of the measurements are presented using N,N-dimethyltryptamine (DMA) as standard. The analytical quantities of mixtures of alkaloids 4, 6 and 7 are: lambda max 317+/-0.45, 338+/-0.69 and 430+/-0.09 for 4 (LOD, 8.6.10(-7) mol/L; LOQ, 28.66(6), mol/L), as well as 528+/-0.75 nm for 6 and 7 (LOD, 8.2.10(-7) mol/L; LOQ, 27.33(3), mol/L), respectively. The partially validated protocols by high performance liquid chromatography (HPLC), electrospray ionization (ESI), mass spectrometry (MS), both in single and tandem operation (MS/MS) mode, as well as matrix/assisted laser desorption/ionization (MALDI) MS are elaborated. The Raman spectroscopic (RS) protocol for analysis of psychoactive substances, characterized by strong fluorescence RS profile was developed, with the detection limits being discussed. The known synergistic effect leading to increase the psychoactive and hallucinogenic properties and the reported acute poisoning cases from 1-7, make the present study emergent, since as well the current lack of analytical data and the herein metrology obtained contributed to the elaboration of highly selective and precise analytical protocols, which would be of interest in the field of criminal forensic analysis.

  9. Oligo-carrageenan kappa-induced reducing redox status and activation of TRR/TRX system increase the level of indole-3-acetic acid, gibberellin A3 and trans-zeatin in Eucalyptus globulus trees.

    PubMed

    González, Alberto; Contreras, Rodrigo A; Zúiga, Gustavo; Moenne, Alejandra

    2014-08-20

    Eucalyptus globulus trees treated with oligo-carrageenan (OC) kappa showed an increase in NADPH, ascorbate and glutathione levels and activation of the thioredoxin reductase (TRR)/thioredoxin (TRX) system which enhance photosynthesis, basal metabolism and growth. In order to analyze whether the reducing redox status and the activation of thioredoxin reductase (TRR)/thioredoxin (TRX) increased the level of growth-promoting hormones, trees were treated with water (control), with OC kappa, or with inhibitors of ascorbate synthesis, lycorine, glutathione synthesis, buthionine sulfoximine (BSO), NADPH synthesis, CHS-828, and thioredoxin reductase activity, auranofine, and with OC kappa, and cultivated for four additional months. Eucalyptus trees treated with OC kappa showed an increase in the levels of the auxin indole 3-acetic acid (IAA), gibberellin A3 (GA3) and the cytokinin trans-zeatin (t-Z) as well as a decrease in the level of the brassinosteroid epi-brassinolide (EB). In addition, treatment with lycorine, BSO, CHS-828 and auranofine inhibited the increase in IAA, GA3 and t-Z as well as the decrease in EB levels. Thus, the reducing redox status and the activation of TRR/TRX system induced by OC kappa increased the levels of IAA, GA3 and t-Z levels determining, at least in part, the stimulation of growth in Eucalyptus trees.

  10. Concise total syntheses of (+/-)-strychnine and (+/-)-akuammicine.

    PubMed

    Sirasani, Gopal; Paul, Tapas; Dougherty, William; Kassel, Scott; Andrade, Rodrigo B

    2010-05-21

    Concise total syntheses of Strychnos alkaloids strychnine (1) and akuammicine (2) have been realized in 13 and 6 operations, respectively. Key steps include (1) the vinylogous Mannich reaction; (2) a novel, sequential one-pot spirocyclization/intramolecular aza-Baylis-Hillman reaction; and (3) a Heck cyclization. The synthesis of 1 proceeds via the Wieland-Gumlich aldehyde (26).

  11. Percy Julian, Robert Robinson, and the Identity of Eserethole

    ERIC Educational Resources Information Center

    Ault, Addison

    2008-01-01

    The Nova production "Percy Julian--Forgotten Genius" included the very public disagreement between Percy Julian, an unknown American chemist, and Robert Robinson, possibly the best known organic chemist of the day, as to the identity of "eserethole", the key intermediate for the synthesis of the alkaloid physostigmine. The Nova production,…

  12. Antiedematogenic activity of the indole derivative N-salicyloyltryptamine in animal models.

    PubMed

    Sousa-Neto, Benedito P; Gomes, Bruno S; Cunha, Francisco V M; Arcanjo, Daniel D R; Gutierrez, Stanley J C; Souza, Maria F V; Almeida, Fernanda R C; Oliveira, Francisco A

    2018-01-01

    The N-salicyloyltryptamine (NST) is an indole derivative compound analogue to the alkaloid N-benzoyltryptamine. In the present study, the antiedematogenic activity of NST was investigated in animal models. Firstly, the acute toxicity for NST was assessed according to the OECD Guideline no. 423. The potential NST-induced antiedematogenic activity was evaluated by carrageenan-induced paw edema in rats, as well as by dextran-, compound 48/80-, histamine-, serotonin-, capsaicine-, and prostaglandin E2-induced paw edema in mice. The effect of NST on compound 48/80-induced ex vivo mast cell degranulation on mice mesenteric bed was investigated. No death or alteration of behavioral parameters was observed after administration of NST (2000 mg/kg, i.p.) during the observation time of 14 days. The NST (100 and 200 mg/kg, i.p.) inhibited the carrageenan-induced edema from the 1st to the 5th hour (**p<0.01; ***p<0.001). The edematogenic activity induced by dextran, compound 48/80, histamine, serotonin, capsaicin, and prostaglandin E2 was inhibited by NST (100 mg/kg, i.p.) throughout the observation period (**p<0.01; ***p<0.001). The pretreatment with NST (50, 100 or 200 mg/kg, i.p) attenuates the compound 48/80-induced mast cell degranulation (**p<0.01; ***p<0.001). Thus, the inhibition of both mast cell degranulation and release of endogenous mediators are probably involved in the NST-induced antiedematogenic effect.

  13. De Novo Assembly and Characterization of Fruit Transcriptome in Black Pepper (Piper nigrum)

    PubMed Central

    Hu, Lisong; Hao, Chaoyun; Fan, Rui; Wu, Baoduo; Tan, Lehe; Wu, Huasong

    2015-01-01

    Black pepper is one of the most popular and oldest spices in the world and valued for its pungent constituent alkaloids. Pinerine is the main bioactive compound in pepper alkaloids, which perform unique physiological functions. However, the mechanisms of piperine synthesis are poorly understood. This study is the first to describe the fruit transcriptome of black pepper by sequencing on Illumina HiSeq 2000 platform. A total of 56,281,710 raw reads were obtained and assembled. From these raw reads, 44,061 unigenes with an average length of 1,345 nt were generated. During functional annotation, 40,537 unigenes were annotated in Gene Ontology categories, Kyoto Encyclopedia of Genes and Genomes pathways, Swiss-Prot database, and Nucleotide Collection (NR/NT) database. In addition, 8,196 simple sequence repeats (SSRs) were detected. In a detailed analysis of the transcriptome, housekeeping genes for quantitative polymerase chain reaction internal control, polymorphic SSRs, and lysine/ornithine metabolism-related genes were identified. These results validated the availability of our database. Our study could provide useful data for further research on piperine synthesis in black pepper. PMID:26121657

  14. De Novo Assembly and Characterization of Fruit Transcriptome in Black Pepper (Piper nigrum).

    PubMed

    Hu, Lisong; Hao, Chaoyun; Fan, Rui; Wu, Baoduo; Tan, Lehe; Wu, Huasong

    2015-01-01

    Black pepper is one of the most popular and oldest spices in the world and valued for its pungent constituent alkaloids. Pinerine is the main bioactive compound in pepper alkaloids, which perform unique physiological functions. However, the mechanisms of piperine synthesis are poorly understood. This study is the first to describe the fruit transcriptome of black pepper by sequencing on Illumina HiSeq 2000 platform. A total of 56,281,710 raw reads were obtained and assembled. From these raw reads, 44,061 unigenes with an average length of 1,345 nt were generated. During functional annotation, 40,537 unigenes were annotated in Gene Ontology categories, Kyoto Encyclopedia of Genes and Genomes pathways, Swiss-Prot database, and Nucleotide Collection (NR/NT) database. In addition, 8,196 simple sequence repeats (SSRs) were detected. In a detailed analysis of the transcriptome, housekeeping genes for quantitative polymerase chain reaction internal control, polymorphic SSRs, and lysine/ornithine metabolism-related genes were identified. These results validated the availability of our database. Our study could provide useful data for further research on piperine synthesis in black pepper.

  15. Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae.

    PubMed

    Zhao, Jianzhi; Li, Chen; Zhang, Yan; Shen, Yu; Hou, Jin; Bao, Xiaoming

    2017-01-31

    Microbial production of monoterpenes provides a promising substitute for traditional chemical-based methods, but their production is lagging compared with sesquiterpenes. Geraniol, a valuable monoterpene alcohol, is widely used in cosmetic, perfume, pharmaceutical and it is also a potential gasoline alternative. Previously, we constructed a geraniol production strain by engineering the mevalonate pathway together with the expression of a high-activity geraniol synthase. In this study, we further improved the geraniol production through reducing the endogenous metabolism of geraniol and controlling the precursor geranyl diphosphate flux distribution. The deletion of OYE2 (encoding an NADPH oxidoreductase) or ATF1 (encoding an alcohol acetyltransferase) both involving endogenous conversion of geraniol to other terpenoids, improved geraniol production by 1.7-fold or 1.6-fold in batch fermentation, respectively. In addition, we found that direct down-regulation of ERG20 expression, the branch point regulating geranyl diphosphate flux, does not improve geraniol production. Therefore, we explored dynamic control of ERG20 expression to redistribute the precursor geranyl diphosphate flux and achieved a 3.4-fold increase in geraniol production after optimizing carbon source feeding. Furthermore, the combination of dynamic control of ERG20 expression and OYE2 deletion in LEU2 prototrophic strain increased geraniol production up to 1.69 g/L with pure ethanol feeding in fed-batch fermentation, which is the highest reported production in engineered yeast. An efficient geraniol production platform was established by reducing the endogenous metabolism of geraniol and by controlling the flux distribution of the precursor geranyl diphosphate. The present work also provides a production basis to synthesis geraniol-derived chemicals, such as monoterpene indole alkaloids.

  16. Total synthesis of dihydrolysergic acid and dihydrolysergol: development of a divergent synthetic strategy applicable to rapid assembly of D-ring analogs.

    PubMed

    Lee, Kiyoun; Poudel, Yam B; Glinkerman, Christopher M; Boger, Dale L

    2015-09-02

    The total syntheses of dihydrolysergic acid and dihydrolysergol are detailed based on a Pd(0)-catalyzed intramolecular Larock indole cyclization for the preparation of the embedded tricyclic indole (ABC ring system) and a subsequent powerful inverse electron demand Diels-Alder reaction of 5-carbomethoxy-1,2,3-triazine with a ketone-derived enamine for the introduction of a functionalized pyridine, serving as the precursor for a remarkably diastereoselective reduction to the N -methylpiperidine D-ring. By design, the use of the same ketone-derived enamine and a set of related complementary heterocyclic azadiene [4 + 2] cycloaddition reactions permitted the late stage divergent preparation of a series of alternative heterocyclic derivatives not readily accessible by more conventional approaches.

  17. The biology and chemistry of the zoanthamine alkaloids.

    PubMed

    Behenna, Douglas C; Stockdill, Jennifer L; Stoltz, Brian M

    2008-01-01

    Marine natural products have long played an important role in natural products chemistry and drug discovery. Mirroring the rich variety and complicated interactions of the marine environment, the substances isolated from sea creatures tend to be incredibly diverse in both molecular structure and biological activity. The natural products isolated from the polyps of marine zoanthids are no exception. The zoanthamine alkaloids, the first of which were isolated over 20 years ago, are of particular interest to the synthetic community because they feature a novel structural framework and exhibit a broad range of biological activities. In this Review, we summarize the major contributions to understanding the zoanthamine natural products with regard to their isolation and structure determination, as well as studies on their biological activity and total synthesis.

  18. [Simultaneous determination of seven constituents in Euodiae Fructus and two related species by HPLC].

    PubMed

    Yin, Yuan-Yuan; Yan, Li-Hua; Zhang, Qi-Wei; Zhang, Yong-Xin; Lin, Li-Mei; Zhang, Shan-Shan; Wang, Zhi-Min

    2014-07-01

    This study is to develop a HPLC method for quality evaluation of Euodiae Fructus and related species by simultaneous determination limonin, indole alkaloids (14-fomyldihydroxyrutaecarpine, evodiamine, rutaecarpine), and quinolone alkaloids [1-methyl-2-undecyl-4 (1H)-quinolone, evocarpine, dihydroevocarpine] in the fruits of five Evodia species. Samples were analyzed on a YMC C18 column (4.6 mm x 250 mm, 5 microm) eluted with mobile phases of acetonitrile (A), tetrahydrofuran (B), and a buffer solution of 5 mmol x L(-1) ammonium acetate (pH 3.8) (C) in a linear gradient mode. The column temperature was 30 degrees C and the flow rate was 1.0 mL x min(-1). The PDA detector wavelengths were set at 220 and 250 nm. The seven compounds were well separated and showed good linearity (r = 0.999 9) within the concentration ranges tested. The mean recoveries were between 96.7%-102.4% (RSD 1.4%-3.1%). Through the validation, the method was proved to be accurate and repeatable. All the seven constituents were detected in the fruits of five species, but the contents of them varied widely in different samples. The total contents of seven constituents in 16 batches of Euodiae Fructus were 9.46-69.9 mg x g(-1), and the mean content was 28.2 mg x g(-1). The total content of seven constituents in E. compacta and E. fargesii was 25.8, 7.69 mg x g(-1), respectively.

  19. Ibogaine for treating drug dependence. What is a safe dose?

    PubMed

    Schep, L J; Slaughter, R J; Galea, S; Newcombe, D

    2016-09-01

    The indole alkaloid ibogaine, present in the root bark of the West African rain forest shrub Tabernanthe iboga, has been adopted in the West as a treatment for drug dependence. Treatment of patients requires large doses of the alkaloid to cause hallucinations, an alleged integral part of the patient's treatment regime. However, case reports and case series continue to describe evidences of ataxia, gastrointestinal distress, ventricular arrhythmias and sudden and unexplained deaths of patients undergoing treatment for drug dependence. High doses of ibogaine act on several classes of neurological receptors and transporters to achieve pharmacological responses associated with drug aversion; limited toxicology research suggests that intraperitoneal doses used to successfully treat rodents, for example, have also been shown to cause neuronal injury (purkinje cells) in the rat cerebellum. Limited research suggests lethality in rodents by the oral route can be achieved at approximately 263mg/kg body weight. To consider an appropriate and safe initial dose for humans, necessary safety factors need to be applied to the animal data; these would include factors such as intra- and inter-species variability and for susceptible people in a population (such as drug users). A calculated initial dose to treat patients could be approximated at 0.87mg/kg body weight, substantially lower than those presently being administered to treat drug users. Morbidities and mortalities will continue to occur unless practitioners reconsider doses being administered to their susceptible patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Chemical and biological comparison of different sections of Uncaria rhynchophylla (Gou-Teng).

    PubMed

    Zhang, Jian-Gang; Geng, Chang-An; Huang, Xiao-Yan; Chen, Xing-Long; Ma, Yun-Bao; Zhang, Xue-Mei; Chen, Ji-Jun

    2017-02-01

    Uncaria rhynchophylla (Gou-Teng in Chinese) is officially documented in Chinese pharmacopoeia as one of the authentic sources for the crude drug of Gou-Teng which has long been used for mental and cardiovascular diseases. Indole alkaloids are the characteristic constituents responsible for the desired hypotensive effect; however, the psychiatric active constituents of Gou-Teng are still unclear. According to traditional Chinese medicine theory, only the hook-bearing stems of U. rhynchophylla are used as the crude materials for Gou-Teng, while its leaves and fruits are scarcely used. The present study aimed to compare the metabolic fingerprints of different parts (hooks, stems, leaves and fruits) of U. rhynchophylla by LC-DAD-MS/MS analysis and further evaluate their psychiatric activities on HEK293 cell line in vitro. A total of 38 constituents including 26 alkaloids, six flavonoids, two triterpenoids, two chlorogenic acid analogs and two other compounds were characterized. The different parts of U. rhynchophylla can be well differentiated from their chemical profiles. Leaves displayed the most potent activity on both MT 1 and MT 2 receptors, with agonistic rates of 39.7% and 97.6%. For 5-HT 1A and 5-HT 2C receptors, hooks showed the strongest activity with agonistic rates of 92.6% and 83.1%, respectively. This investigation provided valuable information for understanding the chemical divergence between different parts of U. rhynchophylla, and their substantial bases for psychiatric purposes.

  1. Divergent Synthesis of Solanidine and 22-epi-Solanidine.

    PubMed

    Hou, Ling-Li; Shi, Yong; Zhang, Zhi-Dan; Wu, Jing-Jing; Yang, Qing-Xiong; Tian, Wei-Sheng

    2017-07-21

    A divergent synthesis of solanidine and 22-epi-solanidine, two 25S natural steroidal alkaloids, from 25R-configured diosgenin acetate, is described. Initially, solanidine was synthesized through a series of transformations including a cascade ring-switching process of furostan-26-acid, an epimerization of C25 controlled by the conformation of six-membered lactone ring, an intramolecular Schmidt reaction, and an imine reduction/intramolecular aminolysis process. To address the epimerization issue during Schmidt reaction, an improved synthesis was developed, which also led to a synthesis of 22-epi-solanidine. In this synthesis, selective transformation of azido lactone to azido diol and amino diol was realized through a reduction relay tactic. The azido diol was transformed to solanidine via an intramolecular Schmidt reaction/N-alkylation/reduction process and to 22-epi-solanidine via an intramolecular double N-alkylation process.

  2. Synthesis of densely functionalized enantiopure indolizidines by ring-closing metathesis (RCM) of hydroxylamines from carbohydrate-derived nitrones

    PubMed Central

    Bonanni, Marco; Marradi, Marco; Cardona, Francesca; Cicchi, Stefano; Goti, Andrea

    2007-01-01

    Background Indolizidine alkaloids widely occur in nature and display interesting biological activity. This is the reason for which their total synthesis as well as the synthesis of non-natural analogues still attracts the attention of many research groups. To establish new straightforward accesses to these molecules is therefore highly desirable. Results The ring closing metathesis (RCM) of enantiopure hydroxylamines bearing suitable unsaturated groups cleanly afforded piperidine derivatives in good yields. Further cyclization and deprotection of the hydroxy groups gave novel highly functionalized indolizidines. The synthesis of a pyrroloazepine analogue is also described. Conclusion We have developed a new straightforward methodology for the synthesis of densely functionalized indolizidines and pyrroloazepine analogues in 6 steps and 30–60% overall yields from enantiopure hydroxylamines obtained straightforwardly from carbohydrate-derived nitrones. PMID:18076753

  3. Single Agents with Designed Combination Chemotherapy Potential: Synthesis and Evaluation of Substituted Pyrimido[4,5-b]indoles as Receptor Tyrosine Kinase and Thymidylate Synthase Inhibitors and as Antitumor Agents

    PubMed Central

    Gangjee, Aleem; Zaware, Nilesh; Raghavan, Sudhir; Ihnat, Michael; Shenoy, Satyendra; Kisliuk, Roy L.

    2010-01-01

    Combinations of antiangiogenic agents (AAs) with cytotoxic agents have shown significant promise and several such clinical trials are currently underway. We have designed, synthesized and evaluated two compounds that each inhibit vascular endothelial growth factor receptor-2 (VEGFR-2) and platelet derived growth factor receptor-beta (PDGFR-β) for antiangiogenic effects and also inhibit human thymidylate synthase (hTS) for cytotoxic effects in single agents. The synthesis of these compounds involved the nucleophilic displacement of the common intermediate 5-chloro-9H-pyrimido[4,5-b]indole-2,4-diamine with appropriate benzenethiols. The inhibitory potency of both these single agents against VEGFR-2, PDGFR-β and hTS is better than or close to standards. In a COLO-205 xenograft mouse model one of the analogs significantly decreased tumor growth (TGI = 76% at 35 mg/kg), liver metastases and tumor blood vessels compared to a standard drug and to control and thus demonstrated potent tumor growth inhibition, inhibition of metastasis and antiangiogenic effects in vivo. These compounds afford combination chemotherapeutic potential in single agents. PMID:20092323

  4. Efficient synthesis of optically active 4-nitro-cyclohexanones via bifunctional thiourea-base catalyzed double-Michael addition of nitromethane to dienones.

    PubMed

    Wu, Bin; Liu, Guo-Gui; Li, Mei-Qiu; Zhang, Yong; Zhang, Shao-Yun; Qiu, Jun-Ru; Xu, Xiao-Ping; Ji, Shun-Jun; Wang, Xing-Wang

    2011-04-07

    Thiourea-modified cinchona alkaloids as bifunctional catalysts and a base could catalyze a stepwise [5+1] cyclization of divinyl ketones with nitromethane via double Michael additions, furnishing optically active 4-nitro-cyclohexanones with good yields, excellent diastereoselectivities (>20 : 1) and high enantiomeric ratios (up to 97 : 3).

  5. Synthesis of (+)-dumetorine and congeners by using flow chemistry technologies.

    PubMed

    Riva, Elena; Rencurosi, Anna; Gagliardi, Stefania; Passarella, Daniele; Martinelli, Marisa

    2011-05-23

    An efficient total synthesis of the natural alkaloid (+)-dumetorine by using flow technology is described. The process entailed five separate steps starting from the enantiopure (S)-2-(piperidin-2-yl)ethanol 4 with 29% overall yield. Most of the reactions were carried out by exploiting solvent superheating and by using packed columns of immobilized reagents or scavengers to minimize handling. New protocols for performing classical reactions under continuous flow are disclosed: the ring-closing metathesis reaction with a novel polyethylene glycol-supported Hoveyda catalyst and the unprecedented flow deprotection/Eschweiler-Clarke methylation sequence. The new protocols developed for the synthesis of (+)-dumetorine were applied to the synthesis of its simplified natural congeners (-)-sedamine and (+)-sedridine. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Design, synthesis, and biological evaluation of (2E)-(2-oxo-1, 2-dihydro-3H-indol-3-ylidene)acetate derivatives as anti-proliferative agents through ROS-induced cell apoptosis.

    PubMed

    Song, Zhuang; Chen, Cai-Ping; Liu, Jun; Wen, Xiaoan; Sun, Hongbin; Yuan, Haoliang

    2016-11-29

    A novel class of (2E)-(2-oxo-1, 2-dihydro-3H-indol-3-ylidene)acetate derivatives were designed and synthesized as potent anti-proliferative agents. Most of these compounds showed potent anti-proliferative activity against some tumor cell lines, including SK-BR-3, MDA-MB-231, HCT-116, SW480, Ovcar-3, HL-60, Saos-2 and HepG2. Compounds 8c and 11h were identified as the most potent ones, while HL-60, HCT116 and MDA-MB-231 were the most sensitive cell lines. Mechanistic study revealed that compound 8c enhanced reactive oxygen species level by inhibiting TrxR and then induced apoptosis by activating apoptosis proteins, bax and cleaved-caspase 3 in HCT116 cells. Preliminary SAR analysis indicated that modifications of the double bond and ester group made great effects on the anti-proliferative activity. Our findings suggested that it was worth further studies on the antitumor potency of (2E)-(2-oxo-1, 2-dihydro-3H-indol-3-ylidene)acetates. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Synthesis, biological activity and molecular modeling study of new Schiff bases incorporated with indole moiety.

    PubMed

    Halawa, Ahmed H; El-Gilil, Shimaa Mohamed Abd; Bedair, Ahmed H; Shaaban, Mohamed; Frese, Marcel; Sewald, Norbert; Eliwa, Essam M; El-Agrody, Ahmed M

    2017-10-26

    A new series of heterocyclic Schiff bases 2-9 containing indole moiety were synthesized by facile and efficient condensation of indole-3/2/5-carboxaldehyde (1a/1b/1c) with different aromatic and heterocyclic primary amines using conventional and/or microwave irradiation methods. The structures of the obtained compounds were assigned by sophisticated spectroscopic and spectrometric techniques (1D-NMR, 2D-NMR and MS). The synthesized compounds were screened for their cytotoxicity and antibacterial activities. In vitro cytotoxicity screening revealed that compound 5 exhibited moderate activity against KB-3-1 cell line (IC50=57.7 μM) while 5-indolylimino derivative 7 indicated close to the activity (IC50=19.6 μM) in comparison with the positive control (+)-Griseofulvin (IC50=19.2 μM), while the tested compounds 5, 6b, 7 and 9 revealed good or moderate antibacterial activity. In addition, molecular docking study of Schiff bases 2-9 was performed by Molecular Operating Environment (MOE 2014.09) program on the matrix metalloproteinase-8 (MMP-8) (Protein Data Bank (PDB) ID: 1MNC) in an attempt to explore their mode of action as anticancer drugs.

  8. Synthesis and evaluation of functionalized indoles as antimycobacterial and anticancer agents.

    PubMed

    Cihan-Üstündağ, Gökçe; Capan, Gültaze

    2012-08-01

    A new series of 5-fluoro-N(2)-(cyclohexylidene)-3-phenyl-1H-indole-2-carbohydrazides (6a-6e) and their cyclization products 5-fluoro-N-(3-oxo-1-thia-4-azaspiro [4.5]dec-4-yl)-3-phenyl-1H-indole-2-carboxamides (7a-7e, 8a-8e) have been synthesized and evaluated for in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv using the Microplate Alamar Blue Assay (MABA). Compounds showed moderate to good inhibitory activity at 6.25 μg/mL. Among them, 7b, 7d, 8b, and 8d were the most potent analogs with an inhibition range of 91-95 %. Additionally, compounds 6a, 7a, 7e, 8a, and 8e were subjected to the National Cancer Institute's (NCI) in vitro disease-oriented antitumor screening to be evaluated for antitumor activity. 8e, the most potent compound examined, displayed broad spectrum antiproliferative activity with particular selectivity against four leukemia cell lines (CCRF-CEM, HL-60 (TB), K-562, and RPMI-8226) with log (10) GI (50) values between -5.68 and -6.09.

  9. Synthesis and Antiplasmodial Evaluation of Analogues Based on the Tricyclic Core of Thiaplakortones A-D.

    PubMed

    Schwartz, Brett D; Coster, Mark J; Skinner-Adams, Tina S; Andrews, Katherine T; White, Jonathan M; Davis, Rohan A

    2015-09-15

    Six regioisomers associated with the tricyclic core of thiaplakortones A-D have been synthesized. Reaction of 1H-indole-4,7-dione and 1-tosyl-1H-indole-4,7-dione with 2-aminoethanesulfinic acid afforded a regioisomeric series, which was subsequently deprotected and oxidized to yield the tricyclic core scaffolds present in the thiaplakortones. All compounds were fully characterized using NMR and MS data. A single crystal X-ray structure was obtained on one of the N-tosyl derivatives. All compounds were screened for in vitro antiplasmodial activity against chloroquine-sensitive (3D7) and multidrug-resistant (Dd2) Plasmodium falciparum parasite lines. Several analogues displayed potent inhibition of P. falciparum growth (IC50 < 500 nM) but only moderate selectivity for P. falciparum versus human neonatal foreskin fibroblast cells.

  10. Ultrasound-promoted two-step synthesis of 3-arylselenylindoles and 3-arylthioindoles as novel combretastatin A-4 analogues

    NASA Astrophysics Data System (ADS)

    Wen, Zhiyong; Li, Xiaona; Zuo, Daiying; Lang, Binyue; Wu, Yang; Jiang, Mingyang; Ma, Huizhuo; Bao, Kai; Wu, Yingliang; Zhang, Weige

    2016-04-01

    A series of 3-(3‧-hydroxy-4‧-methoxyphenyl)selenyl-5,6,7-trimethoxy-1H-indoles and 3-(3‧-hydroxy-4‧-methoxyphenyl)thio-5,6,7-trimethoxy-1H-indoles were obtained as a new class of combretastatin A-4 (CA-4) analogues via a convenient ultrasound (US)-assisted two-step process involving 3-selenenylation/sulfenylation followed by O-deallylation. With the assistance of US irradiation, both the reaction rates and yields of selenenylation, sulfenylation and O-deallylation could be significantly improved. A comparison of the reaction rates of O-deallylation and ester reduction demonstrated that O-deallylation was more sensitive to US irradiation. Finally, these products were evaluated for their antiproliferative activities, and most of them showed moderate to potent activities against three human cancer cell lines in vitro.

  11. Synthesis, spectroscopic investigations, DFT studies, molecular docking and antimicrobial potential of certain new indole-isatin molecular hybrids: Experimental and theoretical approaches

    NASA Astrophysics Data System (ADS)

    Almutairi, Maha S.; Zakaria, Azza S.; Ignasius, P. Primsa; Al-Wabli, Reem I.; Joe, Isaac Hubert; Attia, Mohamed I.

    2018-02-01

    Indole-isatin molecular hybrids 5a-i have been synthesized and characterized by different spectroscopic methods to be evaluated as new antimicrobial agents against a panel of Gram positive bacteria, Gram negative bacteria, and moulds. Compound 5h was selected as a representative example of the prepared compounds 5a-i to perform computational investigations. Its vibrational properties have been studied using FT-IR and FT-Raman with the aid of density functional theory approach. The natural bond orbital analysis as well as HOMO and LUMO molecular orbitals investigations of compound 5h were carried out to explore its possible intermolecular delocalization or hyperconjugation and its possible interactions with the target protein. Molecular docking of compound 5h predicted its binding mode with the fungal target protein.

  12. Strongly Acidic Auxin Indole-3-Methanesulfonic Acid

    PubMed Central

    Cohen, Jerry D.; Baldi, Bruce G.; Bialek, Krystyna

    1985-01-01

    A radiochemical synthesis is described for [14C]indole-3-methanesulfonic acid (IMS), a strongly acidic auxin analog. Techniques were developed for fractionation and purification of IMS using normal and reverse phase chromatography. In addition, the utility of both Fourier transform infrared spectrometry and fast atom bombardment mass spectrometry for analysis of IMS has been demonstrated. IMS was shown to be an active auxin, stimulating soybean hypocotyl elongation, bean first internode curvature, and ethylene production. IMS uptake by thin sections of soybean hypocotyl was essentially independent of solution pH and, when applied at a 100 micromolar concentration, IMS exhibited a basipetal polarity in its transport in both corn coleoptile and soybean hypocotyl sections. [14C]IMS should, therefore, be a useful compound to study fundamental processes related to the movement of auxins in plant tissues and organelles. PMID:16664007

  13. Synthesis of polycyclic spiroindolines by highly diastereoselective interrupted Ugi cascade reactions of 3-(2-isocyanoethyl)indoles.

    PubMed

    Saya, Jordy M; Oppelaar, Barry; Cioc, Răzvan C; van der Heijden, Gydo; Vande Velde, Christophe M L; Orru, Romano V A; Ruijter, Eelco

    2016-10-13

    We report a highly diastereoselective interrupted Ugi reaction to construct a broad range of structurally congested and stereochemically complex spiroindolines from tryptamine-derived isocyanides. The reaction is facilitated by using fluorinated alcohols (TFE or HFIP) as solvents and tolerates a broad range of amines, aldehydes and 2-isocyanoethylindoles to give polycyclic products in moderate to excellent yields.

  14. Novel 5-aryl-1,3-dihydro-indole-2-thiones. potent, orally active progesterone receptor agonists.

    PubMed

    Fensome, Andrew; Koko, Marci; Wrobel, Jay; Zhang, Puwen; Zhang, Zhiming; Cohen, Jeffrey; Lundeen, Scott; Rudnick, Kelly; Zhu, Yuan; Winneker, Richard

    2003-04-07

    During the course of our studies on 3,3-disubstituted-5-aryloxindoles derived progesterone receptor (PR) antagonists we discovered that changing the amide funtionality to a thio-amide resulted in compounds displaying potent PR agonist activity. In this communication, the synthesis, structure activity relationships (SAR) and in vivo activity of various 5-arylthio-oxindoles will be discussed.

  15. Geographic variation in alkaloid production in Conium maculatum populations experiencing differential herbivory by Agonopterix alstroemeriana.

    PubMed

    Castells, Eva; Berhow, Mark A; Vaughn, Steven F; Berenbaum, May R

    2005-08-01

    Conium maculatum, a Eurasian weed naturalized in North America, contains high concentrations of piperidine alkaloids that act as chemical defenses against herbivores. C. maculatum was largely free from herbivory in the United States, until approximately 30 yr ago, when it was reassociated via accidental introduction with a monophagous European herbivore, the oecophorid caterpillar Agonopterix alstroemeriana. At present, A. alstroemeriana is found in a continuum of reassociation time and intensities with C. maculatum across the continent; in the Pacific Northwest, A. alstroemeriana can cause severe damage, resulting in some cases in complete defoliation. Studies in biological control and invasion biology have yet to determine whether plants reassociated with a significant herbivore from the area of indigeneity increase their chemical defense investment in areas of introduction. In this study, we compared three locations in the United States (New York, Washington, and Illinois) where C. maculatum experiences different levels of herbivory by A. alstroemeriana to determine the association between the intensity of the interaction, as measured by damage, and chemical defense production. Total alkaloid production in C. maculatum was positively correlated with A. alstroemeriana herbivory levels: plants from New York and Washington, with higher herbivory levels, invested two and four times more N to alkaloid synthesis than did plants from Illinois. Individual plants with lower concentrations of alkaloids from a single location in Illinois experienced more damage by A. alstroemeriana, indicative of a preference on the part of the insect for plants with less chemical defense. These results suggest that A. alstroemeriana may act either as a selective agent or inducing agent for C. maculatum and increase its toxicity in its introduced range.

  16. Cyclopropanes and hypervalent iodine reagents: high energy compounds for applications in synthesis and catalysis.

    PubMed

    Fernández González, Davinia; De Simone, Filippo; Brand, Jonathan P; Nicolai, Stefano; Waser, Jérôme

    2011-01-01

    One of the major challenges faced by organic chemistry is the efficient synthesis of increasingly complex molecules. Since October 2007, the Laboratory of Catalysis and Organic Synthesis (LCSO) at EPFL has been working on the development of catalytic reactions based on the Umpolung of the innate reactivity of functional groups. Electrophilic acetylene synthons have been developed using the exceptional properties of ethynyl benziodoxolone (EBX) hypervalent iodine reagents for the alkynylation of heterocycles and olefins. The obtained acetylenes are important building blocks for organic chemistry, material sciences and chemical biology. The ring-strain energy of donor-acceptor cyclopropanes was then used in the first catalytic formal homo-Nazarov cyclization. In the case of aminocyclopropanes, the method could be applied in the synthesis of the alkaloids aspidospermidine and goniomitine. The developed methods are expected to have a broad potential for the synthesis and functionalization of complex organic molecules, including carbocycles and heterocycles.

  17. Merging gold and organocatalysis: a facile asymmetric synthesis of annulated pyrroles.

    PubMed

    Hack, Daniel; Loh, Charles C J; Hartmann, Jan M; Raabe, Gerhard; Enders, Dieter

    2014-04-01

    The combination of cinchona-alkaloid-derived primary amine and Au(I) -phosphine catalysts allowed the selective C-H functionalization of two adjacent carbon atoms of pyrroles under mild reaction conditions. This sequential dual activation provides seven-membered-ring-annulated pyrrole derivatives in excellent yields and enantioselectivities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Engineering microbial factories for synthesis of value-added products

    PubMed Central

    Du, Jing; Shao, Zengyi; Zhao, Huimin

    2011-01-01

    Microorganisms have become an increasingly important platform for the production of drugs, chemicals, and biofuels from renewable resources. Advances in protein engineering, metabolic engineering, and synthetic biology enable redesigning microbial cellular networks and fine-tuning physiological capabilities, thus generating industrially viable strains for the production of natural and unnatural value-added compounds. In this review, we describe the recent progress on engineering microbial factories for synthesis of valued-added products including alkaloids, terpenoids, flavonoids, polyketides, non-ribosomal peptides, biofuels, and chemicals. Related topics on lignocellulose degradation, sugar utilization, and microbial tolerance improvement will also be discussed. PMID:21526386

  19. 11-Step Total Synthesis of Araiosamines

    PubMed Central

    2016-01-01

    A concise route to a small family of exotic marine alkaloids known as the araiosamines has been developed, and their absolute configuration has been assigned. The dense array of functionality, high polarity, and rich stereochemistry coupled with equilibrating topologies present an unusual challenge for chemical synthesis and an opportunity for innovation. Key steps involve the use of a new reagent for guanidine installation, a remarkably selective C–H functionalization, and a surprisingly simple final step that intersects a presumed biosynthetic intermediate. Synthetic araiosamines were shown to exhibit potency against Gram-positive and -negative bacteria despite a contrary report of no activity. PMID:27748593

  20. Synthesis of (-)-pseudotabersonine, (-)-pseudovincadifformine, and (+)-coronaridine enabled by photoredox catalysis in flow.

    PubMed

    Beatty, Joel W; Stephenson, Corey R J

    2014-07-23

    Natural product modification with photoredox catalysis allows for mild, chemoselective access to a wide array of related structures in complex areas of chemical space, providing the possibility for novel structural motifs as well as useful quantities of less abundant congeners. While amine additives have been used extensively as stoichiometric electron donors for photocatalysis, the controlled modification of amine substrates through single-electron oxidation is ideal for the synthesis and modification of alkaloids. Here, we report the conversion of the amine (+)-catharanthine into the natural products (-)-pseudotabersonine, (-)-pseudovincadifformine, and (+)-coronaridine utilizing visible light photoredox catalysis.

Top