Sample records for indoor air formaldehyde

  1. 24 CFR 3280.309 - Health Notice on formaldehyde emissions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... efficiency standards may allow formaldehyde and other contaminants to accumulate in the indoor air. Additional ventilation to dilute the indoor air may be obtained from a passive or mechanical ventilation... offered with this home. High indoor temperatures and humidity raise formaldehyde levels. When a home is to...

  2. Children's exposure to indoor air in urban nurseries--Part II: Gaseous pollutants' assessment.

    PubMed

    Branco, P T B S; Nunes, R A O; Alvim-Ferraz, M C M; Martins, F G; Sousa, S I V

    2015-10-01

    This study, Part II of the larger study "Children's exposure to indoor air in urban nurseries", aimed to: (i) evaluate nursery schools' indoor concentrations of several air pollutants in class and lunch rooms; and (ii) analyse them according to guidelines and references. Indoor continuous measurements were performed, and outdoor concentrations were obtained to determine indoor/outdoor ratios. The influence of outdoor air seemed to be determinant on carbon monoxide (CO), nitrogen dioxide (NO2) and ozone (O3) indoor concentrations. The peak concentrations of formaldehyde and volatile organic compounds (VOC) registered (highest concentrations of 204 and 2320 µg m(-3) respectively), indicated the presence of specific indoor sources of these pollutants, namely materials emitting formaldehyde and products emitting VOC associated to cleaning and children's specific activities (like paints and glues). For formaldehyde, baseline constant concentrations along the day were also found in some of the studied rooms, which enhances the importance of detailing the study of children's short and long-term exposure to this indoor air pollutant. While CO, NO2 and O3 never exceeded the national and international reference values for IAQ and health protection, exceedances were found for formaldehyde and VOC. For this reason, a health risk assessment approach could be interesting for future research to assess children's health risks of exposure to formaldehyde and to VOC concentrations in nursery schools. Changing cleaning schedules and materials emitting formaldehyde, and more efficient ventilation while using products emitting VOC, with the correct amount and distribution of fresh air, would decrease children's exposure. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Carbonyl levels in indoor and outdoor air in Mexico City and Xalapa, Mexico.

    PubMed

    Báez, Armando; Padilla, Hugo; García, Rocío; Torres, Ma del Carmen; Rosas, Irma; Belmont, Raúl

    2003-01-20

    Carbonyl compounds in air were measured at two houses, three museums, and two offices. All sites lacked air-conditioning systems. Although indoor and outdoor air was measured simultaneously at each site, the sites themselves were sampled in different dates. Mean concentrations were higher in indoor air. Outdoor means concentrations of acetone were the highest in all sites, ranging from 12 to 60 microg m(-3). In general, formaldehyde and acetaldehyde had similar mean concentrations, ranging from 4 to 32 and 6 to 28 microg m(-3), respectively. Formaldehyde and acetone mean indoor concentrations were the highest, ranging from 11 to 97 and 17 to 89 microg m(-3), respectively, followed by acetaldehyde with 5 to 47 microg m(-3). Formaldehyde and acetaldehyde had the highest mean concentration in the offices where there were smokers. Propionaldehyde and butyraldehyde concentrations did not show definite differences between indoor and outdoor air. In general, the highest outdoor and indoor hourly concentrations were observed from 10:00 to 15:00 h. Mean indoor/outdoor ratios of carbonyls exceeded 1. Formaldehyde and acetaldehyde risks were higher in smoking environments. Copyright 2002 Elsevier Science B.V.

  4. FIAM-pwp-Formaldehyde Indoor Air Model – Pressed Wood Products

    EPA Pesticide Factsheets

    The Formaldehyde Indoor Air Model-pressed wood products (FIAM-pwp) user guide contains information on the equations and defaults used to estimate exposure from formaldehye emitted from pressed wood products.

  5. Indoor Air Quality and Asthma

    PubMed Central

    Holm, Stewart

    2017-01-01

    Numerous contaminants in indoor air and their potential to cause or exacerbate asthma continue to be a subject of public health concern. Many agents are causally associated with or can exacerbate asthma, particularly in children. For formaldehyde, an established respiratory irritant based on numerous studies, the evidence for an association with asthma is still considered only limited or suggestive. However, there is no evidence that indicates increased sensitivity to sensory irritation to formaldehyde in people often regarded as susceptible such as asthmatics. Acrolein, but not formaldehyde, was significantly associated with asthma in a large cohort of children. This prompted an evaluation of this highly irritating chemical that had never previously been considered in the context of the indoor air/childhood asthma issue. Because acrolein is more potent than formaldehyde as a respiratory irritant and ubiquitous in indoor air, it is plausible that previous studies on potential risk factors and childhood asthma may be confounded by formaldehyde acting as an unrecognized proxy for acrolein. PMID:28250718

  6. Developing a Reference Material for Formaldehyde Emissions Testing; Final Report

    EPA Science Inventory

    Exposure to formaldehyde has been shown to produce broad and potentially severe adverse human health effects. With ubiquitous formaldehyde sources in the indoor environment, formaldehyde concentrations in indoor air are usually higher than outdoors, ranging from 10 to 4000 μg/m3....

  7. Effects of Indoor Air Pollutants on Atopic Dermatitis.

    PubMed

    Kim, JaKyoung; Kim, HyungJin; Lim, DaeHyun; Lee, Young-Kyu; Kim, Jeong Hee

    2016-12-09

    The increasing prevalence of atopic dermatitis (AD) is associated with variations in indoor environments. In Korea, many inner walls of homes are covered with wallpaper: such walls emit indoor air pollutants, including volatile organic compounds (VOCs) and formaldehyde. This randomized, double-blind study investigated the effects of wallpaper on indoor air quality and AD. Thirty-one children (aged three to eight years) with moderate AD were assigned to environmentally-friendly (EF) and polyvinyl chloride (PVC) wallpaper groups. Indoor air concentrations of VOCs, natural VOCs (NVOCs), formaldehyde, and total suspended bacteria were measured before and two (W₂) and eight weeks (W₈) after wallpapering. Scoring Atopic Dermatitis (SCORAD) evaluations and blood tests were performed during the same period. The EF wallpaper and PVC wallpaper groups showed similar trends in the changes in total VOCs (TVOC) and formaldehyde content in the indoor air. However, the EF wallpaper group showed more improvement on the SCORAD at W₂ and W₈ than the PVC wallpaper group. The SCORAD index was positively correlated with several indoor air pollutants. Further, the SCORAD index and NVOC % were negatively correlated. Improved SCORAD index and effects of wallpapering on indoor air quality improvements occurred within a short period of time in both groups. We believe that NVOCs in indoor air after EF wallpapering have a beneficial effect on health.

  8. Portable formaldehyde monitoring device using porous glass sensor and its applications in indoor air quality studies.

    PubMed

    Maruo, Yasuko Yamada; Nakamura, Jiro

    2011-09-30

    We have developed a portable device for formaldehyde monitoring with both high sensitivity and high temporal resolution, and carried out indoor air formaldehyde concentration analysis. The absorbance difference of the sensor element was measured in the monitoring device at regular intervals of, for example, one hour or 30 min, and the result was converted into the formaldehyde concentration. This was possible because we found that the lutidine derivative that was formed as a yellow product of the reaction between 1-phenyl-1,3-butandione and formaldehyde was stable in porous glass for at least six months. We estimated the reaction rate and to be 0.049 min(-1) and the reaction occurred quickly enough for us to monitor hourly changes in the formaldehyde concentration. The detection limit was 5 μg m(-3) h. We achieved hourly formaldehyde monitoring using the developed device under several indoor conditions, and estimated the air exchange rate and formaldehyde adsorption rate, which we adopted as a new term in the mass balance equation for formaldehyde, in one office. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Effect of an ozone-generating air-purifying device on reducing concentrations of formaldehyde in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esswein, E.J.; Boeniger, M.F.

    1994-02-01

    Formaldehyde, an air contaminant found in many indoor air investigations, poses distinct occupational exposure hazards in certain job categories (e.g., mortuary science) but is also of concern when found or suspected in office buildings and homes. A variety of air-purifying devices (APDs) are currently available or marketed for application to reduce or remove concentrations of a variety of indoor air pollutants through the use of ozone as a chemical oxidant. An investigation was conducted to determine if concentrations of formaldehyde similar to those found in industrial hygiene evaluations of funeral homes could be reduced with the use of an ozone-generatingmore » APD. An ozone-generating APD was placed in an exposure chamber and formaldehyde-containing embalming solution was allowed to evaporate naturally, creating peak and mean chamber concentrations of 2.5 and 1.3 ppm, respectively. Continuous-reading instruments were used to sample for formaldehyde and ozone. Active sampling methods were also used to sample simultaneously for formaldehyde and a possible reactant product, formic acid. Triplicate measurements were made in each of three evaluations: formaldehyde alone, ozone alone, and formaldehyde and ozone combined. Concentrations of formaldehyde were virtually identical with and without 0.5 ppm ozone. No reduction in formaldehyde concentration was found during a 90-minute evaluation using ozone at this concentration with peak and average concentrations of approximately 2.5 and 1.3 ppm formaldehyde, respectively. The results of this investigation suggest that the use of ozone is ineffective in reducing concentrations of formaldehyde. Because ozone has demonstrated health hazards, and is a regulated air contaminant in both the occupational and ambient environment, the use of ozone as an air purification agent in indoor air does not seem warranted. 25 refs., 5 figs., 4 tabs.« less

  10. Developing a Reference Material for Diffusion-Controlled Formaldehyde Emissions Testing

    EPA Science Inventory

    Emissions of formaldehyde from building materials can contaminate indoor air and create significant risks to human health. The need to control formaldehyde emissions from indoor materials is made more urgent by the prevailing drive to improve building energy by decreasing ventil...

  11. Effects of Indoor Air Pollutants on Atopic Dermatitis

    PubMed Central

    Kim, JaKyoung; Kim, HyungJin; Lim, DaeHyun; Lee, Young-Kyu; Kim, Jeong Hee

    2016-01-01

    The increasing prevalence of atopic dermatitis (AD) is associated with variations in indoor environments. In Korea, many inner walls of homes are covered with wallpaper: such walls emit indoor air pollutants, including volatile organic compounds (VOCs) and formaldehyde. This randomized, double-blind study investigated the effects of wallpaper on indoor air quality and AD. Thirty-one children (aged three to eight years) with moderate AD were assigned to environmentally-friendly (EF) and polyvinyl chloride (PVC) wallpaper groups. Indoor air concentrations of VOCs, natural VOCs (NVOCs), formaldehyde, and total suspended bacteria were measured before and two (W2) and eight weeks (W8) after wallpapering. Scoring Atopic Dermatitis (SCORAD) evaluations and blood tests were performed during the same period. The EF wallpaper and PVC wallpaper groups showed similar trends in the changes in total VOCs (TVOC) and formaldehyde content in the indoor air. However, the EF wallpaper group showed more improvement on the SCORAD at W2 and W8 than the PVC wallpaper group. The SCORAD index was positively correlated with several indoor air pollutants. Further, the SCORAD index and NVOC % were negatively correlated. Improved SCORAD index and effects of wallpapering on indoor air quality improvements occurred within a short period of time in both groups. We believe that NVOCs in indoor air after EF wallpapering have a beneficial effect on health. PMID:27941696

  12. Indoor Levels of Formaldehyde and Other Pollutants and Relationship to Air Exchange Rates and Human Activities

    NASA Astrophysics Data System (ADS)

    Huangfu, Y.; O'Keeffe, P.; Kirk, M.; Walden, V. P.; Lamb, B. K.; Jobson, B. T.

    2017-12-01

    This paper reports results on an indoor air quality study conducted on six homes in summer and winter, contrasting indoor and outdoor concentrations of O3, CO, CO2, NOx, PM2.5, and selected volatile organic hydrocarbons measured by PTR-MS. Data were collected as 1 minute averages. Air exchange rates of the homes were determined by CO2 tracer release. Smart home sensors, recording human activity level in various places in the home, and window and doors openings, were utilized to better understand the link between human activity and indoor air pollution. From our study, averaged air exchange rates of the homes ranged from 0.2 to 1.2 hour-1 and were greatly affected by the ventilation system type and window and door openings. In general, a negative correlation between air exchange rate and indoor VOCs levels was observed, with large variation of pollutant levels between the homes. For most of the VOCs measured in the house, including formaldehyde and acetaldehyde, summer levels were much higher than winter levels. In some homes formaldehyde levels displayed a time of day variation that was linked to changes in indoor temperature. During a wildfire period in the summer of 2015, outdoor levels of PM2.5, formaldehyde, and benzene dramatically increased, significantly impacting indoor levels due to infiltration. Human activities, such as cooking, can significantly change the levels of most of the compounds measured in the house and the levels can be significantly elevated for short periods of time, with peak levels can be several orders higher compared with typical levels. The data suggest that an outcome of state energy codes that require new homes to be energy efficient, and as a consequence built with lower air exchange rates, will be unacceptable levels of air toxics, notably formaldehyde.

  13. Gender, airborne chemical monitoring, and physical work environment are related to indoor air symptoms among nonindustrial workers in the Klang Valley, Malaysia

    PubMed Central

    Syazwan, Aizat Ismail; Hafizan, Juahir; Baharudin, Mohd Rafee; Azman, Ahmad Zaid Fattah; Izwyn, Zulkapri; Zulfadhli, Ismail; Syahidatussyakirah, Katis

    2013-01-01

    Objectives: The purpose of this study was to analyze the relationship of airborne chemicals and the physical work environment risk element on the indoor air symptoms of nonindustrial workers. Design: A cross-sectional study consisting of 200 office workers. A random selection of 200 buildings was analyzed for exposure and indoor air symptoms based on a pilot study in the Klang Valley, Malaysia. Methods: A set of modified published questionnaires by the Department of Occupational Safety and Health (DOSH), Malaysia and a previous study (MM040NA questionnaire) pertaining to indoor air symptoms was used in the evaluation process of the indoor air symptoms. Statistical analyses involving logistic regression and linear regression were used to determine the relationship between exposure and indoor air symptoms for use in the development of an indoor risk matrix. Results: The results indicate that some indoor air pollutants (carbon monoxide, formaldehyde, total volatile organic compound, and dust) are related to indoor air symptoms of men and women. Temperature and relative humidity showed a positive association with complaints related to the perceived indoor environmental condition (drafts and inconsistency of temperature). Men predominantly reported general symptoms when stratification of gender involved exposure to formaldehyde. Women reported high levels of complaints related to mucosal and general symptoms from exposure to the dust level indoors. Conclusion: Exposure to pollutants (total volatile organic compounds, carbon monoxide, and formaldehyde) and physical stressors (air temperature and relative humidity) influence reported symptoms of office workers. These parameters should be focused upon and graded as one of the important elements in the grading procedure when qualitatively evaluating the indoor environment. PMID:23526736

  14. Gender, airborne chemical monitoring, and physical work environment are related to indoor air symptoms among nonindustrial workers in the Klang Valley, Malaysia.

    PubMed

    Syazwan, Aizat Ismail; Hafizan, Juahir; Baharudin, Mohd Rafee; Azman, Ahmad Zaid Fattah; Izwyn, Zulkapri; Zulfadhli, Ismail; Syahidatussyakirah, Katis

    2013-01-01

    The purpose of this study was to analyze the relationship of airborne chemicals and the physical work environment risk element on the indoor air symptoms of nonindustrial workers. A cross-sectional study consisting of 200 office workers. A random selection of 200 buildings was analyzed for exposure and indoor air symptoms based on a pilot study in the Klang Valley, Malaysia. A set of modified published questionnaires by the Department of Occupational Safety and Health (DOSH), Malaysia and a previous study (MM040NA questionnaire) pertaining to indoor air symptoms was used in the evaluation process of the indoor air symptoms. Statistical analyses involving logistic regression and linear regression were used to determine the relationship between exposure and indoor air symptoms for use in the development of an indoor risk matrix. The results indicate that some indoor air pollutants (carbon monoxide, formaldehyde, total volatile organic compound, and dust) are related to indoor air symptoms of men and women. Temperature and relative humidity showed a positive association with complaints related to the perceived indoor environmental condition (drafts and inconsistency of temperature). Men predominantly reported general symptoms when stratification of gender involved exposure to formaldehyde. Women reported high levels of complaints related to mucosal and general symptoms from exposure to the dust level indoors. Exposure to pollutants (total volatile organic compounds, carbon monoxide, and formaldehyde) and physical stressors (air temperature and relative humidity) influence reported symptoms of office workers. These parameters should be focused upon and graded as one of the important elements in the grading procedure when qualitatively evaluating the indoor environment.

  15. Phytoremediation of VOCs from indoor air by ornamental potted plants: A pilot study using a palm species under the controlled environment.

    PubMed

    Teiri, Hakimeh; Pourzamani, Hamidreza; Hajizadeh, Yaghoub

    2018-04-01

    Volatile organic compounds (VOCs) in indoor air have recently raised public concern due to their adverse health effects. One of hazardous VOC is Formaldehyde which can cause sensory irritation and induce nasopharyngeal cancer. The aim of this study was to investigate potted plant-soil system ability in formaldehyde removal from indoor air. We applied one of common interior plant from the palm species, Chamaedorea elegans, inside a chamber under the controlled environment. Entire plant, growing media and roots contribution in formaldehyde were evaluated by continuously introduction of different concentrations of formaldehyde into the chamber (0.66-16.4 mg m -3 ) each over a 48-h period. Our findings showed that the plant efficiently removed formaldehyde from polluted air by 65-100%, depending on the inlet concentrations, for a long time exposure. A maximum elimination capacity of 1.47 mg/m 2 . h was achieved with an inlet formaldehyde concentration of 14.6 mg m -3 . The removal ratio of areal part to pot soil and roots was 2.45:1 (71%: 29%). The plants could remove more formaldehyde in light rather than dark environment. Concentrations up to 16.4 mg m -3 were not high enough to affect the plants growth. However, a trivial decrease in chlorophyll content, carotenoid and water content of the treated plants was observed compared to the control plants. Thus, the palm species tested here showed high tolerance and good potential of formaldehyde removal from interior environments. Therefore, phytoremediation of VOCs from indoor air by the ornamental potted plants is an effective method which can be economically applicable in homes and offices. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Simultaneous removal of formaldehyde and benzene in indoor air with a combination of sorption- and decomposition-type air filters.

    PubMed

    Sekine, Yoshika; Fukuda, Mitsuru; Takao, Yosuke; Ozano, Takahiro; Sakuramoto, Hikaru; Wang, Kuan Wei

    2011-12-01

    Urgent measures for indoor air pollution caused by volatile organic compounds are required in urban areas of China. Considering indoor air concentration levels and hazardous properties, formaldehyde and benzene should be given priority for pollution control in China. The authors proposed the use of air-cleaning devices, including stand-alone room air cleaners and in-duct devices. This study aimed to find the best combination of sorption and decomposition filters for the simultaneous removal of formaldehyde and benzene, employing four types of air filter units: an activated charcoal filter (ACF), an ACF impregnated with a trapping agent for acidic gases (ACID), a MnO2 filter (MDF) for oxidative decomposition of formaldehyde at room temperature and a photocatalyst filter (PHOTO) coupled with a parallel beam ultraviolet (UV) irradiation device. The performance of the combined systems under air flow rates of 35-165 m3 h(-1) was evaluated in a test chamber (2 m3) with a constant gas generation system. The experimental results and data analysis using a kinetic approach showed the combined system of ACF, PHOTO and MDF significantly reduced both concentrations of formaldehyde and benzene in air without any unpleasant odours caused by the UV-induced photocatalytic reaction. The system was then evaluated in a full-size laboratory (22 m3). This test proved the practical performance of the system even at full scale, and also suggested that the filters should be arranged in the order of PHOTO/ACF/MDF from upstream to downstream. The proposed system has the potential of being used for improving indoor air quality of houses and buildings in China.

  17. Indoor aldehydes concentration and emission rate of formaldehyde in libraries and private reading rooms

    NASA Astrophysics Data System (ADS)

    Kim, Jeonghoon; Kim, Seojin; Lee, Kiyoung; Yoon, Dongwon; Lee, Jiryang; Ju, DaeYoung

    2013-06-01

    Aldehydes are of particularly interest due to their potential adverse impact on human health. Formaldehyde is one of the most abundant indoor pollutants. To improve indoor air quality, identifying and removing the major emission sources of formaldehyde would be desirable. The purposes of this study were to determine aldehyde concentrations in libraries and reading rooms and to identify emission sources of formaldehyde in private reading rooms. Indoor aldehyde concentrations were quantified at 66 facilities, including public libraries, children's libraries, public reading rooms, and private reading rooms, in the Seoul metropolitan area. Emission fluxes of formaldehyde from the surfaces of desks, chairs, floors, walls, and ceilings in 19 private reading rooms were measured using a passive emission colorimetric sensor. Indoor aldehyde (formaldehyde, acetaldehyde, propioaldehyde, benzaldehyde, and hexaldehyde) levels were significantly higher than outdoor levels. Indoor formaldehyde geometric mean concentrations in private reading rooms (119.3 μg m-3) were significantly higher than in public libraries (29.2 μg m-3), children's libraries (29.3 μg m-3), and public reading rooms (40.8 μg m-3). Indoor formaldehyde levels were associated with relative humidity. In private reading rooms, the emission rates from desks (255.5 ± 214.8 μg h-1) and walls (231.7 ± 192.3 μg h-1) were significantly higher than that from chairs (79.6 ± 88.5 μg h-1). Desks (31%) and walls (29%) were the major emission sources of formaldehyde in 14 facilities in which measurements exceeded the indoor standard of 100 μg m-3. The age of interior materials was a significant factor for indoor formaldehyde emission flux. Controlling the emission rates of desks and walls is recommended to improve formaldehyde concentrations in private reading rooms.

  18. Health Risk Assessment of Inhalation Exposure to Formaldehyde and Benzene in Newly Remodeled Buildings, Beijing

    PubMed Central

    Huang, Lihui; Mo, Jinhan; Sundell, Jan; Fan, Zhihua; Zhang, Yinping

    2013-01-01

    Objective To assess health risks associated with inhalation exposure to formaldehyde and benzene mainly emitted from building and decoration materials in newly remodeled indoor spaces in Beijing. Methods We tested the formaldehyde and benzene concentrations in indoor air of 410 dwellings and 451 offices remodeled within the past year, in which the occupants had health concerns about indoor air quality. To assess non-carcinogenic health risks, we compared the data to the health guidelines in China and USA, respectively. To assess carcinogenic health risks, we first modeled indoor personal exposure to formaldehyde and benzene using the concentration data, and then estimated the associated cancer risks by multiplying the indoor personal exposure by the Inhalation Unit Risk values (IURs) provided by the U.S. EPA Integrated Risk Information System (U.S. EPA IRIS) and the California Office of Environmental Health Hazard Assessment (OEHHA), respectively. Results (1) The indoor formaldehyde concentrations of 85% dwellings and 67% offices were above the acute Reference Exposure Level (REL) recommended by the OEHHA and the concentrations of all tested buildings were above the chronic REL recommended by the OEHHA; (2) The indoor benzene concentrations of 12% dwellings and 32% offices exceeded the reference concentration (RfC) recommended by the U.S. EPA IRIS; (3) The median cancer risks from indoor exposure to formaldehyde and benzene were 1,150 and 106 per million (based on U.S. EPA IRIS IURs), 531 and 394 per million (based on OEHHA IURs). Conclusions In the tested buildings, formaldehyde exposure may pose acute and chronic non-carcinogenic health risks to the occupants, whereas benzene exposure may pose chronic non-carcinogenic risks to the occupants. Exposure to both compounds is associated with significant carcinogenic risks. Improvement in ventilation, establishment of volatile organic compounds (VOCs) emission labeling systems for decorating and refurbishing materials are recommended to reduce indoor VOCs exposure. PMID:24244522

  19. Influence of indoor formaldehyde pollution on respiratory system health in the urban area of Shenyang, China.

    PubMed

    Zhai, L; Zhao, J; Xu, B; Deng, Y; Xu, Z

    2013-03-01

    The decoration of interior spaces can lead to dangerous levels of indoor formaldehyde pollution. Exposure to indoor air pollution may be responsible for nearly 2 million deaths per year in developing countries. To assess the prevalence of indoor formaldehyde pollution caused by decoration and resultant respiratory system symptoms exhibited in exposed adults and children, due to indoor formaldehyde pollution caused by decoration. Survey sites were chosen and indoor formaldehyde concentrations determined according to the standard of formaldehyde in GB50325-2001. Logistic regression models were used to derive odds ratios (ORs) and 95% confidence intervals (95% CIs) after adjusting for potential confounders for this survey. Formaldehyde concentration was above the standard in 64% of Shenyang City. Some adults surveyed complained of common respiratory system disorders, including coughing (11.8%), nasal irritation (39.2%), Heterosmia (14.51%), and throat irritation (25.27%); 12% of children suffered from asthma. The analysis identified formaldehyde pollution and ventilation frequency as risk factors for respiratory system disorders in both adults (OR=2.603, [95% CI: 1.770-3.828], OR=1.604, [95% CI: 1.146-2.244], respectively) and children (OR=4.250, [2.064-8.753], OR=1.831, [1.006-3.333], respectively). The prevalence of common respiratory system disorders was related both to formaldehyde pollution and insufficient ventilation after decorating.

  20. A review of the impacts of tobacco heating system on indoor air quality versus conventional pollution sources.

    PubMed

    Kaunelienė, Violeta; Meišutovič-Akhtarieva, Marija; Martuzevičius, Dainius

    2018-05-08

    With the introduction of novel and potentially less polluting nicotine containing products to the market, the impacts of their usage to indoor air quality as opposed to conventional pollution sources must be reviewed and considered. This review study aimed to comparatively analyse changes in indoor air quality as the consequence of tobacco heating system (THS) generated pollution against general indoor air quality in various micro-environments, especially with combustion-based pollution sources present. Indoor concentrations of formaldehyde, acetaldehyde, benzene, toluene, nicotine and PM 2.5 were reviewed and compared; concentrations of other harmful and potentially harmful substances (HPHCs) were discussed. Generally, the usage of THS has been associated with lower or comparable indoor air pollutant concentrations compared against other conventional indoor sources or environments, in most cases distinguishable above background, thus potentially being associated with health effects at prolonged exposures as any other artificial air pollution source. In the controlled environment the use of THS (as well as an electronic cigarette) resulted in the lowest concentrations of formaldehyde, benzene, toluene, PM 2.5, among majority researched pollution sources (conventional cigarettes, waterpipe, incense, mosquito coils). The exposure to significantly higher pollution levels of benzene, toluene, and formaldehyde occurred in public environments, especially transport micro-environments. Such low levels of conventionally-assessed indoor pollutants resulting from the use of new nicotine containing products raise challenges for epidemiological studies of second-hand exposure to THS aerosol in real-life environments. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Asthmatic symptoms and volatile organic compounds, formaldehyde, and carbon dioxide in dwellings.

    PubMed Central

    Norbäck, D; Björnsson, E; Janson, C; Widström, J; Boman, G

    1995-01-01

    OBJECTIVES--As a part of the worldwide European Community respiratory health survey, possible relations between symptoms of asthma, building characteristics, and indoor concentration of volatile organic compounds (VOCs) in dwellings were studied. METHODS--The study comprised 88 subjects, aged 20-45 years, from the general population in Uppsala, a mid-Swedish urban community, selected by stratified random sampling. Room temperature, air humidity, respirable dust, carbon dioxide (CO2), VOCs, formaldehyde, and house dust mites were measured in the homes of the subjects. They underwent a structured interview, spirometry, peak expiratory flow (PEF) measurements at home, methacholine provocation test for bronchial hyperresponsiveness, and skin prick tests. In addition, serum concentration of eosinophilic cationic protein (S-ECP), blood eosinophil count, and total immunoglobulin E (S-IgE) were measured. RESULTS--Symptoms related to asthma were more common in dwellings with house dust mites, and visible signs of dampness or microbial growth in the building. Significant relations were also found between nocturnal breathlessness and presence of wall to wall carpets, and indoor concentration of CO2, formaldehyde, and VOCs. The formaldehyde concentration exceeded the Swedish limit value for dwellings (100 micrograms/m3) in one building, and CO2 exceeded the recommended limit value of 1000 ppm in 26% of the dwellings, showing insufficient outdoor air supply. Bronchial hyperresponsiveness was related to indoor concentration of limonene, the most prevalent terpene. Variability in PEF was related to two other terpenes; alpha-pinen and delta-karen. CONCLUSION--Our results suggest that indoor VOCs and formaldehyde may cause asthma-like symptoms. There is a need to increase the outdoor air supply in many dwelling, and wall to wall carpeting and dampness in the building should be avoided. Improved indoor environment can also be achieved by selecting building materials, building construction, and indoor activities on the principle that the emission of volatile organic compounds should be as low as reasonably achievable, to minimise symptoms related to asthma due to indoor air pollution. PMID:7627316

  2. Solid phase microextraction method development for measuring Henry's Law constants of formaldehyde in aqueous solutions

    EPA Science Inventory

    Formaldehyde (HCHO) has been of special concern as an indoor air pollutant because of its existence in a wide range of products and its adverse health effects. The air-water partitioning behavior of volatile organic compounds (VOCs) such as formaldehyde is an important process th...

  3. The effects of an energy efficiency retrofit on indoor air quality.

    PubMed

    Frey, S E; Destaillats, H; Cohn, S; Ahrentzen, S; Fraser, M P

    2015-04-01

    To investigate the impacts of an energy efficiency retrofit, indoor air quality and resident health were evaluated at a low-income senior housing apartment complex in Phoenix, Arizona, before and after a green energy building renovation. Indoor and outdoor air quality sampling was carried out simultaneously with a questionnaire to characterize personal habits and general health of residents. Measured indoor formaldehyde levels before the building retrofit routinely exceeded reference exposure limits, but in the long-term follow-up sampling, indoor formaldehyde decreased for the entire study population by a statistically significant margin. Indoor PM levels were dominated by fine particles and showed a statistically significant decrease in the long-term follow-up sampling within certain resident subpopulations (i.e. residents who report smoking and residents who had lived longer at the apartment complex). © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Indoor air quality in primary schools in Kecioren, Ankara.

    PubMed

    Babayiğit, Mustafa Alparslan; Bakir, Bilal; Tekbaş, Omer Faruk; Oğur, Recai; Kiliç, Abdullah; Ulus, Serdar

    2014-01-01

    To increase the awareness of environmental risk factors by determining the indoor air quality status of primary schools. Indoor air quality parameters in 172 classrooms of 31 primary schools in Kecioren, Ankara, were examined for the purpose of assessing the levels of air pollutants (CO, CO2, SO2, NO2, and formaldehyde) within primary schools. Schools near heavy traffic had a statistically significant mean average of CO and SO2 (P < 0.05). The classrooms that had more than 35 students had higher and statistically significant averages of CO2, SO2, NO2, and formaldehyde compared to classrooms that had fewer than 35 students (P < 0.05). Of all classrooms, 29% had 100 CFU/100 mL and higher concentrations of microorganisms, which were not pathogens. Indoor air quality management should continually be maintained in primary schools for the prevention and control of acute and chronic diseases, particularly considering biological and chemical pollution.

  5. Identifying an indoor air exposure limit for formaldehyde considering both irritation and cancer hazards

    PubMed Central

    Golden, Robert

    2011-01-01

    Formaldehyde is a well-studied chemical and effects from inhalation exposures have been extensively characterized in numerous controlled studies with human volunteers, including asthmatics and other sensitive individuals, which provide a rich database on exposure concentrations that can reliably produce the symptoms of sensory irritation. Although individuals can differ in their sensitivity to odor and eye irritation, the majority of authoritative reviews of the formaldehyde literature have concluded that an air concentration of 0.3 ppm will provide protection from eye irritation for virtually everyone. A weight of evidence-based formaldehyde exposure limit of 0.1 ppm (100 ppb) is recommended as an indoor air level for all individuals for odor detection and sensory irritation. It has recently been suggested by the International Agency for Research on Cancer (IARC), the National Toxicology Program (NTP), and the US Environmental Protection Agency (US EPA) that formaldehyde is causally associated with nasopharyngeal cancer (NPC) and leukemia. This has led US EPA to conclude that irritation is not the most sensitive toxic endpoint and that carcinogenicity should dictate how to establish exposure limits for formaldehyde. In this review, a number of lines of reasoning and substantial scientific evidence are described and discussed, which leads to a conclusion that neither point of contact nor systemic effects of any type, including NPC or leukemia, are causally associated with exposure to formaldehyde. This conclusion supports the view that the equivocal epidemiology studies that suggest otherwise are almost certainly flawed by identified or yet to be unidentified confounding variables. Thus, this assessment concludes that a formaldehyde indoor air limit of 0.1 ppm should protect even particularly susceptible individuals from both irritation effects and any potential cancer hazard. PMID:21635194

  6. Formaldehyde levels in traditional and portable classrooms: A pilot investigation

    PubMed Central

    2015-01-01

    This pilot study assessed formaldehyde levels in portable classrooms (PCs) and traditional classrooms (TCs) and explored factors influencing indoor air quality (e.g., carbon dioxide (CO2), temperature, and relative humidity). In a cross-sectional design, we evaluated formaldehyde levels in day and overnight indoor air samples from nine PCs renovated within three years previously and three TCs in a school district in metropolitan Atlanta, Georgia. Formaldehyde levels ranged from 0.0068 to 0.038 ppm. In both type of classrooms, overnight formaldehyde median levels (PCs = 0.018 ppm; TCs = 0.019 ppm) were higher than day formaldehyde median levels (PCs = 0.011 ppm; TCs = 0.016 ppm). CO2 levels measured 470–790 parts per million (ppm) at 7AM and 470–1800 ppm at 4PM. Afternoon medians were higher in TCs (1,400 ppm ) than in PCs (780 ppm). Consistent with previous studies, formaldehyde levels were similar among PCs and TCs. Reducing CO2 levels by improving ventilation is recommended for classrooms. PMID:27197349

  7. Formaldehyde's Impact on Indoor Air Quality

    EPA Pesticide Factsheets

    Formaldehyde is an important chemical used widely by industry to manufacture building materials and numerous household products. It is also a by-product of combustion and certain other natural processes.

  8. Indoor Air Quality in Schools (IAQ): The Importance of Monitoring Carbon Dioxide Levels.

    ERIC Educational Resources Information Center

    Sundersingh, David; Bearg, David W.

    This article highlights indoor air quality and exposure to pollutants at school. Typical air pollutants within schools include environmental tobacco smoke, formaldehyde, volatile organic compounds, nitrogen oxides, carbon monoxide, carbon dioxide, allergens, pathogens, radon, pesticides, lead, and dust. Inadequate ventilation, inefficient…

  9. A Study of Interior Landscape Plants for Indoor Air Pollution Abatement

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Douglas, Willard L.; Bounds, Keith

    1989-01-01

    Previously, preliminary data on the ability of a group of common indoor plants to remove organic chemical from indoor air was presented. The group of plants chosen for this study was determined by joint agreement between NASA and the Associated Landscape Contractors of America. The chemicals chosen for study were benzene, trichloroethylene, and formaldehyde. The results show that plants can play a major role in removal of organic chemicals from indoor air.

  10. Measurements of carbonyls in a 13-story building.

    PubMed

    Báez, Armando P; Padilla, Hugo G; García, Rocío M; Belmont, Raúl D; Torres, Maria del Carmen B

    2004-01-01

    Formaldehyde and acetaldehyde are emitted by many mobile and stationary sources and secondary aldehydes are intermediates in the photo-oxidation of organic compounds in the atmosphere. These aldehydes are emitted indoors by many materials such as furniture, carpets, heating and cooling systems, an by smoking. Carbonyls, mainly formaldehyde and acetaldehyde, have been studied because of their adverse health effects. In addition, formaldehyde is a suspected carcinogen. Therefore, the concentrations of formaldehyde and acetaldehyde were determined to assess the inhalation exposure doses to carbonyls for people who work in a 13-story building and in order to evaluate the cancer hazard. Carbonyl compounds in indoor and outdoor air were measured at a 13-story building located in Mexico City. The mezzanine, fifth and tenth floors, and the third level-parking garage were selected for sampling. Samples were collected in two sampling periods, the first from April 20 to 29, 1998 and the second from December 1 to 20, 1998. Carbonyls were sampled by means of DNHP-coated cartridges at a flow rate of 1 l min(-1) from 9:00 to 19:00 hours, during 2-hour time intervals and analyzed by HPLC with hours, during 2-hour time intervals and analyzed by HPLC with UV/VIS detection. Mean carbonyl concentrations were highest in the 3rd level-parking garage, with the formaldehyde concentration being the highest ranging from 108 to 418 microg m(-3). In working areas, the highest carbonyl arithmetic mean concentrations (AM) were observed on the 5th floor. Acetone and formaldehyde concentrations were highest in April ranging from 161 to 348 microg m(-3) (AM = 226) and from 157 to 270 microg m(-3) (AM = 221), respectively. Propionaldehyde and butyraldehyde were present in smaller concentrations ranging from 2 to 25 and 1 to 28 microg m(-3), respectively, considering all the samples. Mean indoor/outdoor ratios of carbonyls ranged from 1.8 to 9.6. A reduction of inhalation exposure doses of 41% and 45% was observed in the fifth floor air after the air conditioning systems had been repaired. Formaldehyde and acetaldehyde concentrations were higher in smoking environments. Indoor carbonyl concentrations were significantly greater than outdoor concentrations. Tobacco smoke seems to be the main indoor source of formaldehyde. After the air conditioning system was maintained and repaired (as was recommended), an important reduction in the emission of formaldehyde and acetaldehyde was achieved on all floors, except for the 3rd level parking garage, thereby reducing the inhalation exposure doses. The results obtained in this research demonstrated that maintenance of air conditioning systems must be carried out regularly in order to avoid possible adverse effects on health. Additionally, it is mandatory that isolated smoking areas, with air extraction systems, be installed in every public building.

  11. Simulation study on the impact of air distribution on formaldehyde pollutant distribution in room

    NASA Astrophysics Data System (ADS)

    Wu, Jingtao; Wang, Jun; Cheng, Zhu

    2017-01-01

    In this paper, physical and mathematical model of a room was established based on the Airpak software. The velocity distribution, air age distribution, formaldehyde concentration distribution and Predicted Mean Vote(PMV), Predicted Percentage Dissatisfied(PPD) distribution in the ward of a hospital were simulated. In addition, the air volume was doubled, the change of indoor pollutant concentration distribution was simulated. And further, the change of air age was simulated. Through the simulation, it can help arrange the position of the air supply port, so it is very necessary to increase the comfort of the staff in the room. Finally, through the simulation of pollutant concentration distribution, it can be seen that when concentration of indoor pollutants was high, the supply air flow rate should be increased appropriately. Indoor pollutant will be discharged as soon as possible, which is very beneficial to human body health.

  12. The influence of photocatalytic interior paints on indoor air quality

    NASA Astrophysics Data System (ADS)

    Auvinen, Joonas; Wirtanen, Leif

    2008-06-01

    A clean indoor air is important for the well-being and health of people. Lately, new photocatalytic paints have been launched on the market, which are claimed to have air-purifying effects. Photocatalysis initiates radical reactions. Radicals are formed when a photocatalyst (e.g. TiO2) is subjected to radiation. Typical radicals are the hydroxyl radical (radOH) and the superoxide radical (radO2-). Radicals cause chain reactions, which degrade and decompose organic compounds. The end products of these chain reactions are water and carbon dioxide, if the reactions are fully completed (mineralization). If mineralization does not take place, then a great number of side products can be formed, whose properties are not well understood. The side products of photocatalytic reactions can be permanent and stabile. The decomposition of indoor air impurities on the surface of photocatalytic paints is not obvious. The ability of photocatalytic indoor paints to reduce chemical indoor air impurities is the key issue of this study. Six different paints with different binder systems, such as lime, polyorganic siloxane, silica sol-gel and organic binders, were examined. The experiments were divided into three topics: degradation of an organic binder, photocatalytic decomposition of formaldehyde, and a volatile organic compound (VOC) mixture consisting of five different indoor air VOCs. All tests were carried out in an environmental test chamber under dynamic conditions. The test results indicate that many indoor pollutants are generated under normal- and UVA-light. Typical compounds formed include formaldehyde, acetone, acetaldehyde, etc. A clear decrease of formaldehyde or the VOC mixture concentration was not observed. All possibly generated compounds could not be collected or analyzed in this research project, but the measurements show that photocatalytic reactions do not generate only carbon dioxide and water. Photocatalytic decomposition of indoor air impurities can, however, produce many side products, which may be stabile and harmful.

  13. Formaldehyde and acetaldehyde exposure mitigation in US residences: In-home measurements of ventilation control and source control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hult, Erin L.; Willem, Henry; Price, Phillip N.

    2014-10-01

    Measurements were taken in new US residences to assess the extent to which ventilation and source control can mitigate formaldehyde exposure. Increasing ventilation consistently lowered indoor formaldehyde concentrations. However, at a reference air exchange rate of 0.35 h -1, increasing ventilation was up to 60% less effective than would be predicted if the emission rate were constant. This is consistent with formaldehyde emission rates decreasing as air concentrations increase, as observed in chamber studies. In contrast, measurements suggest acetaldehyde emission was independent of ventilation rate. To evaluate the effectiveness of source control, formaldehyde concentrations were measured in Leadership in Energymore » and Environmental Design (LEED) certified/Indoor airPLUS homes constructed with materials certified to have low emission rates of volatile organic compounds (VOC). At a reference air exchange rate of 0.35 h -1, and adjusting for home age, temperature and relative humidity, formaldehyde concentrations in homes built with low-VOC materials were 42% lower on average than in reference new homes with conventional building materials. Without adjustment, concentrations were 27% lower in the low-VOC homes. The mean and standard deviation of formaldehyde concentration were 33 μg m-3 and 22 μg m -3 for low-VOC homes and 45 μg m -3 and 30 μg m -3 for conventional.« less

  14. Indoor air quality in hairdressing salons in Taipei.

    PubMed

    Chang, C-J; Cheng, S-F; Chang, P-T; Tsai, S-W

    2018-01-01

    To improve indoor air quality and to protect public health, Taiwan has enacted the "Indoor Air Quality Act (IAQ Act)" in 2012. For the general public, the indoor air quality in hair salons is important because it is a popular location that people will often visit for hair treatments. However, only a few exposure assessments regarding air pollutants have previously been performed in hair salons. To assess the air quality of hairdressing environments in Taipei, ten hairdressing salons were included for a walk-through survey in this study. In addition, the airborne concentrations of formaldehyde, volatile organic compounds (VOCs), CO 2 , and phthalate esters were also determined in 5 salons. Charcoal, XAD-2, and OVS-Tenax tubes were used for the air sampling, while the samples were analyzed with gas chromatography/mass spectrometer. It was found that the products used in hair salons contained various chemicals. In fact, from the walk-through survey, a total of 387 different ingredients were found on 129 hair product labels. The hair salons were not well ventilated, with CO 2 levels of 600 to 3576 ppm. The formaldehyde concentrations determined in this study ranged from 12.40 to 1.04 × 10 3  μg m -3 , and the maximum level was above the permissible exposure limit (PEL) of US Occupational Safety and Health Administration (US OSHA). Additionally, 83% of the samples were with levels higher than the standard regulated by Taiwan's IAQ Act. The concentrations of VOCs and phthalate esters were below the occupational exposure limits (OELs), but higher than what was found in general residential environments. The hair products were considered as the major source of air pollutants because significantly higher concentrations were found around the working areas. The number of perming treatments, the number of workers, and the frequency of using formaldehyde releasing products, were found to be associated with the levels of formaldehyde. This study indicates that efforts are needed to improve the indoor air quality in hairdressing salons in Taipei. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. The effect of the indoor environment on the fate of organic chemicals in the urban landscape.

    PubMed

    Cousins, Anna Palm

    2012-11-01

    To assess the effect of the indoor environment on the urban fate of organic chemicals, an 8-compartment indoor-inclusive steady state multimedia chemical fate model was developed. The model includes typical urban compartments (air, soil, water, sediment, and urban film) and a novel module representing a generic indoor environment. The model was parameterized to the municipality of Stockholm, Sweden and applied to four organic chemicals with different physical-chemical characteristics and use patterns: formaldehyde, 2,4,6-tribromophenol, di-ethylhexylphthalate and decabromodiphenyl ether. The results show that emissions to indoor air may increase the steady state mass and residence time in the urban environment by a factor of 1.1 to 22 for the four chemicals, compared to if emissions are assigned to outdoor air. This is due to the nested nature of the indoor environment, which creates a physical barrier that prevents chemicals from leaving the urban system with outflowing air. For DEHP and BDE 209, the additional partitioning to indoor surfaces results in a greater importance of the indoor removal pathways from surfaces. The outdoor environmental concentrations of these chemicals are predicted to be lower if emitted to indoor air than if emitted to outdoor air because of the additional indoor removal pathways of dust and indoor film, leading to loss of chemical from the system. For formaldehyde and 2,4,6-TBP outdoor environmental concentrations are not affected by whether the release occurs indoors or outdoors because of the limited partitioning to indoor surfaces. A sensitivity analysis revealed that there appears to be a relationship between logK(OA) and the impact of the ventilation rate on the urban fate of organic chemicals. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Sensitive indoor air monitoring of formaldehyde and other carbonyl compounds using the 2,4-dinitrophenylhydrazine method.

    PubMed

    Sandner, F; Dott, W; Hollender, J

    2001-03-01

    The toxic potential of formaldehyde and other aliphatic/aromatic carbonyl compounds requires the determination of even low amounts of these compounds in indoor air. The existing DFG-method for workplace monitoring using adsorption at 2,4-dinitrophenylhydrazine (DNPH)-coated sorbents followed by HPLC-UV/DAD analysis of the extract was modified in order to decrease detection limits. The improvement included an increase in volume and rate of the air sampling, testing applicability of different adsorption materials and a decrease of the extraction volume of the hydrazones. 13 DNPH-derivatives could be separated well on a RP18-column followed by UV/DAD-detection at 365 nm. Recovery rates of 70-100% were determined (apart from acetone with 19%) using dynamically produced artifical carbonyl atmospheres. Detection limits of 0.05-0.4 microgram/m3 were reached by this method which are sufficient for indoor air monitoring.

  17. Hollow latex particles functionalized with chitosan for the removal of formaldehyde from indoor air.

    PubMed

    Nuasaen, Sukanya; Opaprakasit, Pakorn; Tangboriboonrat, Pramuan

    2014-01-30

    Chitosan and polyethyleneimine (PEI) functionalized hollow latex (HL) particles were conveniently fabricated by coating poly(methyl methacrylate-co-divinyl benzene-co-acrylic acid) (P(MMA/DVB/AA)) HL particles with 5 wt% chitosan or 14 wt% PEI. The materials were used as formaldehyde adsorbent, where their adsorbent activity was examined by Fourier Transform Infrared (FTIR) spectroscopy. The nucleophilic addition of amines to carbonyls generated a carbinolamine intermediate with a characteristic band at 1,020 cm(-1) and Schiff base product at 1650 cm(-1), whose intensity increased with prolonged formaldehyde exposure times. The major products observed in HL-chitosan were carbinolamine and Schiff base, whereas a small amount of Schiff base was obtained in HL-PEI particles, confirming a chemical bond formation without re-emission of formaldehyde. Compared to HL-PEI, HL-chitosan possesses higher formaldehyde adsorption efficiency. Besides providing opacity and whiteness, the multilayer HL-chitosan particles can effectively remove indoor air pollutants, i.e., formaldehyde gas, and, hence, would be useful in special coating applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Measurements of benzene and formaldehyde in a medium sized urban environment. Indoor/outdoor health risk implications on special population groups.

    PubMed

    Pilidis, Georgios A; Karakitsios, Spyros P; Kassomenos, Pavlos A; Kazos, Elias A; Stalikas, Constantine D

    2009-03-01

    In the present study, the results of a measurement campaign aiming to assess cancer risk among two special groups of population: policemen and laboratory technicians exposed to the toxic substances, benzene and formaldehyde are presented. The exposure is compared to general population risk. The results show that policemen working outdoor (traffic regulation, patrol on foot or in vehicles, etc.) are exposed at a significantly higher benzene concentration (3-5 times) than the general population, while the exposure to carbonyls is in general lower. The laboratory technicians appear to be highly exposed to formaldehyde while no significant variation of benzene exposure in comparison to the general population is recorded. The assessment revealed that laboratory technicians and policemen run a 20% and 1% higher cancer risk respectively compared to the general population. Indoor working place air quality is more significant in assessing cancer risk in these two categories of professionals, due to the higher Inhalation Unit Risk (IUR) of formaldehyde compared to benzene. Since the origin of the danger to laboratory technicians is clear (use of chemicals necessary for the experiments), in policemen the presence of carbonyls in indoor air concentrations due to smoking or used materials constitute a danger equal to the exposure to traffic originated air pollutants.

  19. Measurement of indoor formaldehyde concentrations with a passive sampler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillett, R.W.; Kreibich, H.; Ayers, G.P.

    2000-05-15

    An existing Ferm-type passive sampler technique has been further developed to measure concentrations of formaldehyde gas in indoor air. Formaldehyde forms a derivative after reaction with a filter coated with 2,4-dinitrophenylhydrazine (2,4-DNPH). The formaldehyde 2,4-dinitrophenylhydrazine derivative (formaldehyde-2,4-DNPH) is extracted from the filter, and the concentration is determined by high-performance liquid chromatography. The technique has been validated against an active sampling method, and the agreement is close when the appropriate laminar boundary layer depth is applied to the passive measurement. For this technique an exposure period of 3 days is equivalent to a limit of detection of formaldehyde of 3.4 ppbvmore » and a limit of quantification of 7.6 ppbv. To test the performance of the passive samplers ambient formaldehyde measurements were carried out inside homes and in a range of workplace environments.« less

  20. Contribution of ozone to airborne aldehyde formation in Paris homes.

    PubMed

    Rancière, Fanny; Dassonville, Claire; Roda, Célina; Laurent, Anne-Marie; Le Moullec, Yvon; Momas, Isabelle

    2011-09-15

    Indoor aldehydes may result from ozone-initiated chemistry, mainly documented by experimental studies. As part of an environmental investigation included in the PARIS birth cohort, the aim of this study was to examine ozone contribution to airborne aldehyde formation in Paris homes. Formaldehyde, acetaldehyde and hexaldehyde levels, as well as styrene, nitrogen dioxide and nicotine concentrations, comfort parameters and carbon dioxide levels, were measured twice during the first year of life of the babies. Ambient ozone concentrations were collected from the closest background station of the regional air monitoring network. Traffic-related nitrogen oxide concentrations in front of the dwellings were estimated by an air pollution dispersion model. Home characteristics and families' way of life were described by questionnaires. Stepwise multiple linear regression models were used to link aldehyde levels with ambient ozone concentrations and a few aldehyde precursors involved in oxidation reactions, adjusting for other indoor aldehyde sources, comfort parameters and traffic-related nitrogen oxides. A 4 and 11% increase in formaldehyde and hexaldehyde levels was pointed out when 8-hour ozone concentrations increased by 20 μg/m(3). The influence of potential precursors such as indoor styrene level and frequent use of air fresheners, containing unsaturated volatile organic compounds as terpenes, was also found. Thus, our results suggest that ambient ozone can significantly impact indoor air quality, especially with regard to formaldehyde and hexaldehyde levels. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Indoor air pollution: Acute adverse health effects and host susceptibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zummo, S.M.; Karol, M.H.

    1996-01-01

    Increased awareness of the poor quality of indoor air compared with outdoor air has resulted in a significant amount of research on the adverse health effects and mechanisms of action of indoor air pollutants. Common indoor air agents are identified, along with resultant adverse health effects, mechanisms of action, and likely susceptible populations. Indoor air pollutants range from biological agents (such as dust mites) to chemical irritants (such as nitrogen dioxide, carbon monoxide, sulfur dioxide, formaldehyde, and isocyanates). These agents may exert their effects through allergic as well as nonallergic mechanisms. While the public does not generally perceive poor indoormore » air quality as a significant health risk, increasing reports of illness related to indoor air and an expanding base of knowledge on the health effects of indoor air pollution are likely to continue pushing the issue to the forefront.« less

  2. Relationships between socioeconomic and lifestyle factors and indoor air quality in French dwellings.

    PubMed

    Brown, Terry; Dassonville, Claire; Derbez, Mickael; Ramalho, Olivier; Kirchner, Severine; Crump, Derrick; Mandin, Corinne

    2015-07-01

    To date, few studies have analyzed the relationships between socioeconomic status (SES) and indoor air quality (IAQ). The aim of this study was to examine the relationships between socioeconomic and other factors and indoor air pollutant levels in French homes. The indoor air concentrations of thirty chemical, biological and physical parameters were measured over one week in a sample of 567 dwellings representative of the French housing stock between September 2003 and December 2005. Information on SES (household structure, educational attainment, income, and occupation), building characteristics, and occupants' habits and activities (smoking, cooking, cleaning, etc.) were collected through administered questionnaires. Separate stepwise linear regression models were fitted to log-transformed concentrations on SES and other factors. Logistic regression was performed on fungal contamination data. Households with lower income were more likely to have higher indoor concentrations of formaldehyde, but lower perchloroethylene indoor concentrations. Formaldehyde indoor concentrations were also associated with newly built buildings. Smoking was associated with increasing acetaldehyde and PM2.5 levels and the risk of a positive fungal contamination index. BTEX levels were also associated with occupant density and having an attached garage. The major predictors for fungal contamination were dampness and absolute humidity. These results, obtained from a large sample of dwellings, show for the first time in France the relationships between SES factors and indoor air pollutants, and believe they should be considered alongside occupant activities and building characteristics when study IAQ in homes. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  3. Impact of simulated climate and building features on the penetration of toxic gases from the ambient into the indoor environment

    EPA Science Inventory

    This research is a combination of experimental results and analysis of formaldehyde penetration across a residential building envelope with the objective of developing an understanding of the factors that govern indoor air concentrations of air toxics and to provide linkages betw...

  4. Gypsum Wallboard as a sink for formaldehyde

    EPA Science Inventory

    Formaldehyde (HCHO) has been of special concern as an indoor air pollutant because of its presence in a wide range of consumer products and its adverse health effects. Materials acting as HCHO sinks, such as painted gypsum wallboard, can become emission sources. However, adsorpti...

  5. Chemical Characterization of the Indoor Air Quality of a University Hospital: Penetration of Outdoor Air Pollutants.

    PubMed

    Scheepers, Paul T J; Van Wel, Luuk; Beckmann, Gwendolyn; Anzion, Rob B M

    2017-05-08

    For healthcare centers, local outdoor sources of air pollution represent a potential threat to indoor air quality (IAQ). The aim of this study was to study the impact of local outdoor sources of air pollution on the IAQ of a university hospital. IAQ was characterized at thirteen indoor and two outdoor locations and source samples were collected from a helicopter and an emergency power supply. Volatile organic compounds (VOC), acrolein, formaldehyde, nitrogen dioxide (NO₂), respirable particulate matter (PM-4.0 and PM-2.5) and their respective benz(a)pyrene contents were determined over a period of two weeks. Time-weighted average concentrations of NO₂ (4.9-17.4 μg/m³) and formaldehyde (2.5-6.4 μg/m³) were similar on all indoor and outdoor locations. The median concentration VOC in indoor air was 119 μg/m³ (range: 33.1-2450 μg/m³) and was fivefold higher in laboratories (316 μg/m³) compared to offices (57.0 μg/m³). PM-4.0 and benzo(a)pyrene concentration were lower in buildings serviced by a >99.95% efficiency particle filter, compared to buildings using a standard 80-90% efficiency filter ( p < 0.01). No indications were found that support a significant contribution of known local sources such as fuels or combustion engines to any of the IAQ parameters measured in this study. Chemical IAQ was primarily driven by known indoor sources and activities.

  6. Indoor air quality in green-renovated vs. non-green low-income homes of children living in a temperate region of US (Ohio).

    PubMed

    Coombs, Kanistha C; Chew, Ginger L; Schaffer, Christopher; Ryan, Patrick H; Brokamp, Cole; Grinshpun, Sergey A; Adamkiewicz, Gary; Chillrud, Steve; Hedman, Curtis; Colton, Meryl; Ross, Jamie; Reponen, Tiina

    2016-06-01

    Green eco-friendly housing includes approaches to reduce indoor air pollutant sources and to increase energy efficiency. Although sealing/tightening buildings can save energy and reduce the penetration of outdoor pollutants, an adverse outcome can be increased buildup of pollutants with indoor sources. The objective of this study was to determine the differences in the indoor air quality (IAQ) between green and non-green homes in low-income housing complexes. In one housing complex, apartments were renovated using green principles (n=28). Home visits were conducted immediately after the renovation, and subsequently at 6 months and at 12 months following the renovation. Of these homes, eight homes had pre-renovation home visits; this allowed pre- and post-renovation comparisons within the same homes. Parallel visits were conducted in non-green (control) apartments (n=14) in a nearby low-income housing complex. The IAQ assessments included PM2.5, black carbon, ultrafine particles, sulfur, total volatile organic compounds (VOCs), formaldehyde, and air exchange rate. Data were analyzed using linear mixed-effects models. None of the indoor pollutant concentrations were significantly different between green and non-green homes. However, we found differences when comparing the concentrations before and after renovation. Measured immediately after renovation, indoor black carbon concentrations were significantly lower averaging 682 ng/m(3) in post-renovation vs. 2364 ng/m(3) in pre-renovation home visits (p=0.01). In contrast, formaldehyde concentrations were significantly higher in post-renovated (0.03 ppm) than in pre-renovated homes (0.01 ppm) (p=0.004). Questionnaire data showed that opening of windows occurred less frequently in homes immediately post-renovation compared to pre-renovation; this factor likely affected the levels of indoor black carbon (from outdoor sources) and formaldehyde (from indoor sources) more than the renovation status itself. To reduce IAQ problems and potentially improve health, careful selection of indoor building materials and ensuring sufficient ventilation are important for green building designs. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Characteristics of carbonyls: Concentrations and source strengths for indoor and outdoor residential microenvironments in China

    NASA Astrophysics Data System (ADS)

    Wang, B.; Lee, S. C.; Ho, K. F.

    Indoor and outdoor carbonyl concentrations were measured simultaneously in 12 urban dwellings in Beijing, Shanghai, Guangzhou, and Xi'an, China in summer (from July to September in 2004) and winter (from December 2004 to February 2005). Formaldehyde was the most abundant indoor carbonyls species, while formaldehyde, acetaldehyde and acetone were found to be the most abundant outdoor carbonyls species. The average formaldehyde concentrations in summer indoor air varied widely between cities, ranging from a low of 19.3 μg m -3 in Xi'an to a high of 92.8 μg m -3 in Beijing. The results showed that the dwellings with tobacco smoke, incense burning or poor ventilation had significantly higher indoor concentrations of certain carbonyls. It was noticed that although one half of the dwellings in this study installed with low emission building materials or furniture, the carbonyls levels were still significantly high. It was also noted that in winter both the indoor and outdoor acetone concentrations in two dwellings in Guangzhou were significantly high, which were mainly caused by the usage of acetone as industrial solvent in many paint manufacturing and other industries located around Guangzhou and relatively longer lifetime of acetone for removal by photolysis and OH reaction than other carbonyls species. The indoor carbonyls levels in Chinese dwellings were higher than that in dwellings in the other countries. The levels of indoor and ambient carbonyls showed great seasonal differences. Six carbonyls species were carried out the estimation of indoor source strengths. Formaldehyde had the largest indoor source strength, with an average of 5.25 mg h -1 in summer and 1.98 mg h -1 in winter, respectively. However, propionaldehyde, crotonaldehyde and benzaldehyde had the weakest indoor sources.

  8. Ventilation, indoor air quality, and health in homes undergoing weatherization.

    PubMed

    Francisco, P W; Jacobs, D E; Targos, L; Dixon, S L; Breysse, J; Rose, W; Cali, S

    2017-03-01

    Ventilation standards, health, and indoor air quality have not been adequately examined for residential weatherization. This randomized trial showed how ASHRAE 62-1989 (n=39 houses) and ASHRAE 62.2-2010 (n=42 houses) influenced ventilation rates, moisture balance, indoor air quality, and self-reported physical and mental health outcomes. Average total airflow was nearly twice as high for ASHRAE 62.2-2010 (79 vs. 39 cfm). Volatile organic compounds, formaldehyde and carbon dioxide were all significantly reduced for the newer standard and first-floor radon was marginally lower, but for the older standard, only formaldehyde significantly decreased. Humidity in the ASHRAE 62.2-2010 group was only about half that of the ASHRAE 62-1989 group using the moisture balance metric. Radon was higher in the basement but lower on the first floor for ASHRAE 62.2-2010. Children in each group had fewer headaches, eczema, and skin allergies after weatherization and adults had improvements in psychological distress. Indoor air quality and health improve when weatherization is accompanied by an ASHRAE residential ventilation standard, and the 2010 ASHRAE standard has greater improvements in certain outcomes compared to the 1989 standard. Weatherization, home repair, and energy conservation projects should use the newer ASHRAE standard to improve indoor air quality and health. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. A healthy home environment?

    PubMed

    Manuel, J

    1999-07-01

    Over the past seven years, the U.S. Environmental Protection Agency has consistently ranked indoor air pollution among the top five risks to public health. One of the most dangerous indoor air pollutants is carbon monoxide (CO). CO can be lethal, but perhaps more important, many people suffer ill health from chronic, often undetected exposure to low levels of this gas, resulting in fatigue, headache, dizziness, nausea, and vomiting. Another dangerous pollutant is volatile organic compounds (VOCs), which come from sources including building products, cleaning agents, and paints. One VOC, formaldehyde, can act as an irritant to the conjunctiva and upper and lower respiratory tract. Formaldehyde is also known to cause nasal cancer in test animals.

  10. A healthy home environment?

    PubMed Central

    Manuel, J

    1999-01-01

    Over the past seven years, the U.S. Environmental Protection Agency has consistently ranked indoor air pollution among the top five risks to public health. One of the most dangerous indoor air pollutants is carbon monoxide (CO). CO can be lethal, but perhaps more important, many people suffer ill health from chronic, often undetected exposure to low levels of this gas, resulting in fatigue, headache, dizziness, nausea, and vomiting. Another dangerous pollutant is volatile organic compounds (VOCs), which come from sources including building products, cleaning agents, and paints. One VOC, formaldehyde, can act as an irritant to the conjunctiva and upper and lower respiratory tract. Formaldehyde is also known to cause nasal cancer in test animals. PMID:10379013

  11. Inhalation toxicity of indoor air pollutants in Drosophila melanogaster using integrated transcriptomics and computational behavior analyses

    NASA Astrophysics Data System (ADS)

    Eom, Hyun-Jeong; Liu, Yuedan; Kwak, Gyu-Suk; Heo, Muyoung; Song, Kyung Seuk; Chung, Yun Doo; Chon, Tae-Soo; Choi, Jinhee

    2017-06-01

    We conducted an inhalation toxicity test on the alternative animal model, Drosophila melanogaster, to investigate potential hazards of indoor air pollution. The inhalation toxicity of toluene and formaldehyde was investigated using comprehensive transcriptomics and computational behavior analyses. The ingenuity pathway analysis (IPA) based on microarray data suggests the involvement of pathways related to immune response, stress response, and metabolism in formaldehyde and toluene exposure based on hub molecules. We conducted a toxicity test using mutants of the representative genes in these pathways to explore the toxicological consequences of alterations of these pathways. Furthermore, extensive computational behavior analysis showed that exposure to either toluene or formaldehyde reduced most of the behavioral parameters of both wild-type and mutants. Interestingly, behavioral alteration caused by toluene or formaldehyde exposure was most severe in the p38b mutant, suggesting that the defects in the p38 pathway underlie behavioral alteration. Overall, the results indicate that exposure to toluene and formaldehyde via inhalation causes severe toxicity in Drosophila, by inducing significant alterations in gene expression and behavior, suggesting that Drosophila can be used as a potential alternative model in inhalation toxicity screening.

  12. Inhalation toxicity of indoor air pollutants in Drosophila melanogaster using integrated transcriptomics and computational behavior analyses

    PubMed Central

    Eom, Hyun-Jeong; Liu, Yuedan; Kwak, Gyu-Suk; Heo, Muyoung; Song, Kyung Seuk; Chung, Yun Doo; Chon, Tae-Soo; Choi, Jinhee

    2017-01-01

    We conducted an inhalation toxicity test on the alternative animal model, Drosophila melanogaster, to investigate potential hazards of indoor air pollution. The inhalation toxicity of toluene and formaldehyde was investigated using comprehensive transcriptomics and computational behavior analyses. The ingenuity pathway analysis (IPA) based on microarray data suggests the involvement of pathways related to immune response, stress response, and metabolism in formaldehyde and toluene exposure based on hub molecules. We conducted a toxicity test using mutants of the representative genes in these pathways to explore the toxicological consequences of alterations of these pathways. Furthermore, extensive computational behavior analysis showed that exposure to either toluene or formaldehyde reduced most of the behavioral parameters of both wild-type and mutants. Interestingly, behavioral alteration caused by toluene or formaldehyde exposure was most severe in the p38b mutant, suggesting that the defects in the p38 pathway underlie behavioral alteration. Overall, the results indicate that exposure to toluene and formaldehyde via inhalation causes severe toxicity in Drosophila, by inducing significant alterations in gene expression and behavior, suggesting that Drosophila can be used as a potential alternative model in inhalation toxicity screening. PMID:28621308

  13. Evaluation of Ultra-Violet Photocatalytic Oxidation (UVPCO) forIndoor Air Applications: Conversion of Volatile Organic Compounds at LowPart-per-Billion Concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

    2005-09-30

    Efficient removal of indoor generated airborne particles and volatile organic compounds (VOCs) in office buildings and other large buildings may allow for a reduction in outdoor air supply rates with concomitant energy savings while still maintaining acceptable indoor air quality in these buildings. Ultra-Violet Photocatalytic Oxidation (UVPCO) air cleaners have the potential to achieve the necessary reductions in indoor VOC concentrations at relatively low cost. In this study, laboratory experiments were conducted with a scaled, prototype UVPCO device designed for use in a duct system. The experimental UVPCO contained two 30 by 30-cm honeycomb monoliths coated with titanium dioxide andmore » 3% by weight tungsten oxide. The monoliths were irradiated with 12 UVC lamps arranged in four banks. The UVPCO was challenged with four mixtures of VOCs typical of mixtures encountered in indoor air. A synthetic office mixture contained 27 VOCs commonly measured in office buildings. A cleaning product mixture contained three cleaning products with high market shares. A building product mixture was created by combining sources including painted wallboard, composite wood products, carpet systems, and vinyl flooring. A fourth mixture contained formaldehyde and acetaldehyde. Steady-state concentrations were produced in a classroom laboratory or a 20-m{sup 3} environmental chamber. Air was drawn through the UVPCO, and single pass conversion efficiencies were measured from replicate air samples collected upstream and downstream of the reactor section. Concentrations of the mixtures were manipulated, with concentrations of individual VOCs mostly maintained below 10 ppb. Device flow rates were varied between 165 and 580 m{sup 3}/h. Production of formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid as reaction products was investigated. Conversion efficiency data were generated for 48 individual VOCs or groups of closely related compounds. Alcohols and glycol ethers were the most reactive chemical classes with conversion efficiencies often near or above 70% at the low flow rate and near 40% at the high flow rate. Ketones and terpene hydrocarbons were somewhat less reactive. The relative VOC conversion rates are generally favorable for treatment of indoor air since many contemporary products used in buildings employ oxygenated solvents. A commercial UVPCO device likely would be installed in the supply air stream of a building and operated to treat both outdoor and recirculated air. Assuming a recirculation rate comparable to three times the normal outdoor air supply rate, simple mass-balance modeling suggests that a device with similar characteristics to the study unit has sufficient conversion efficiencies for most VOCs to compensate for a 50% reduction in outdoor air supply without substantially impacting indoor VOC concentrations. Formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid were produced in these experiments as reaction byproducts. No other significant byproducts were observed. A coupled steady-state mass balance model is presented and applied to VOC data from a study of a single office building. For the operating assumptions described above, the model estimated a three-fold increase in indoor formaldehyde and acetaldehyde concentrations. The outcome of this limited assessment suggests that evaluation of the potential effects of the operation of a UVPCO device on indoor concentrations of these contaminants is warranted. Other suggested studies include determining VOC conversion efficiencies in actual buildings and evaluating changes in VOC conversion efficiency as monoliths age with long-term operation.« less

  14. Chemical Characterization of the Indoor Air Quality of a University Hospital: Penetration of Outdoor Air Pollutants

    PubMed Central

    Scheepers, Paul T. J.; Van Wel, Luuk; Beckmann, Gwendolyn; Anzion, Rob B. M.

    2017-01-01

    For healthcare centers, local outdoor sources of air pollution represent a potential threat to indoor air quality (IAQ). The aim of this study was to study the impact of local outdoor sources of air pollution on the IAQ of a university hospital. IAQ was characterized at thirteen indoor and two outdoor locations and source samples were collected from a helicopter and an emergency power supply. Volatile organic compounds (VOC), acrolein, formaldehyde, nitrogen dioxide (NO2), respirable particulate matter (PM-4.0 and PM-2.5) and their respective benz(a)pyrene contents were determined over a period of two weeks. Time-weighted average concentrations of NO2 (4.9–17.4 μg/m3) and formaldehyde (2.5–6.4 μg/m3) were similar on all indoor and outdoor locations. The median concentration VOC in indoor air was 119 μg/m3 (range: 33.1–2450 μg/m3) and was fivefold higher in laboratories (316 μg/m3) compared to offices (57.0 μg/m3). PM-4.0 and benzo(a)pyrene concentration were lower in buildings serviced by a >99.95% efficiency particle filter, compared to buildings using a standard 80–90% efficiency filter (p < 0.01). No indications were found that support a significant contribution of known local sources such as fuels or combustion engines to any of the IAQ parameters measured in this study. Chemical IAQ was primarily driven by known indoor sources and activities. PMID:28481324

  15. Formaldehyde emissions from ventilation filters under different relative humidity conditions.

    PubMed

    Sidheswaran, Meera; Chen, Wenhao; Chang, Agatha; Miller, Robert; Cohn, Sebastian; Sullivan, Douglas; Fisk, William J; Kumagai, Kazukiyo; Destaillats, Hugo

    2013-05-21

    Formaldehyde emissions from fiberglass and polyester filters used in building heating, ventilation, and air conditioning (HVAC) systems were measured in bench-scale tests using 10 and 17 cm(2) coupons over 24 to 720 h periods. Experiments were performed at room temperature and four different relative humidity settings (20, 50, 65, and 80% RH). Two different air flow velocities across the filters were explored: 0.013 and 0.5 m/s. Fiberglass filters emitted between 20 and 1000 times more formaldehyde than polyester filters under similar RH and airflow conditions. Emissions increased markedly with increasing humidity, up to 10 mg/h-m(2) at 80% RH. Formaldehyde emissions from fiberglass filters coated with tackifiers (impaction oils) were lower than those from uncoated fiberglass media, suggesting that hydrolysis of other polymeric constituents of the filter matrix, such as adhesives or binders was likely the main formaldehyde source. These laboratory results were further validated by performing a small field study in an unoccupied office. At 80% RH, indoor formaldehyde concentrations increased by 48-64%, from 9-12 μg/m(3) to 12-20 μg/m(3), when synthetic filters were replaced with fiberglass filtration media in the HVAC units. Better understanding of the reaction mechanisms and assessing their overall contributions to indoor formaldehyde levels will allow for efficient control of this pollution source.

  16. [Attempt to reduce the formaldehyde concentration by blowing cooled fresh air down in to the breathing zone of medical students from an admission port on the ceiling during gross anatomy class].

    PubMed

    Takayanagi, Masaaki; Sakai, Makoto; Ishikawa, Youichi; Murakami, Kunio; Kimura, Akihiko; Kakuta, Sachiko; Sato, Fumi

    2008-09-01

    Cadavers in gross anatomy laboratories at most medical schools are conventionally embalmed in formaldehyde solution, which is carcinogenic to humans. Medical students and instructors are thus exposed to formaldehyde vapors emitted from cadavers during dissection. To reduce high formaldehyde concentrations in the breathing zone above cadavers being examined by anatomy medical students provisionally, dissection beds were located under existing admission ports on the ceiling to supply cooled fresh air from the admission port blowing downward on to the cadaver. In all cases, compared to normal condition, the downward flow of cooled fresh air from an admission port reduced formaldehyde concentrations by 0.09-0.98 ppm and reduced to 12.6-65.4% in the air above a cadaver in the breathing zone of students. The formaldehyde concentrations above cadavers under admission ports were not more than the formaldehyde concentrations between beds representing the indoor formaldehyde concentrations. Although the application of an existing admission port on the ceiling in this study did not remove formaldehyde, the downflow of cooled fresh air using this system reduced the formaldehyde concentration in the air above cadavers being attended by anatomy students during dissections. These results suggest the need for reducing formaldehyde levels in gross anatomy laboratories using fundamental countermeasures in order to satisfy the guidelines of 0.08 ppm established by the World Health Organization and the Japan Ministry of Health, Labor and Welfare.

  17. The IVAIRE project--a randomized controlled study of the impact of ventilation on indoor air quality and the respiratory symptoms of asthmatic children in single family homes.

    PubMed

    Lajoie, P; Aubin, D; Gingras, V; Daigneault, P; Ducharme, F; Gauvin, D; Fugler, D; Leclerc, J-M; Won, D; Courteau, M; Gingras, S; Héroux, M-È; Yang, W; Schleibinger, H

    2015-12-01

    A randomized controlled trial was carried out to measure the impact of an intervention on ventilation, indoor air contaminants, and asthma symptoms of children. Eighty-three asthmatic children living in low-ventilated homes were followed over 2 years. Several environmental parameters were measured during the summer, fall, and winter. The children were randomized after Year 1 (43 Intervention; 40 Control). The intervention included the installation of either a Heat Recovery Ventilator (HRV) or Energy Recovery Ventilator (ERV). During the fall and winter seasons, there was a significant increase in the mean ventilation rate in the homes of the intervention group. A statistically significant reduction in mean formaldehyde, airborne mold spores, toluene, styrene, limonene, and α-pinene concentrations was observed in the intervention group. There was no significant group difference in change in the number of days with symptoms per 14 days. However, there was a significant decrease in the proportion of children who experienced any wheezing (≥1 episode) and those with ≥4 episodes in the 12-month period in the intervention group. This study indicates that improved ventilation reduces air contaminants and may prevent wheezing. Due to lack of power, a bigger study is needed. Positive findings from this study include the fact that, upon recruitment, most of the single family homes with asthmatic children were already equipped with a mechanical ventilation system and had relatively good indoor air quality. However, the 8-h indoor guideline for formaldehyde (50 μg/m3) was frequently exceeded and the ventilation rates were low in most of the homes, even those with a ventilation system. Both ERVs and HRVs were equally effective at increasing air exchange rates above 0.30 ACH and at preventing formaldehyde concentrations from exceeding the 50 μg/m3 guideline during the fall and winter seasons. Furthermore, the ERVs were effective at preventing excessively low relative humidities in the homes. Based on observed difference of risk, intervention to increase ventilation in five sample homes and children would prevent 1 home to exceed the indoor air long-term formaldehyde guideline and prevent 1 asthmatic child experiencing at least one episode of wheezing over a year. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Development and application of an integrated indoor air quality audit to an international hotel building in Taiwan.

    PubMed

    Kuo, Nae-Wen; Chiang, Hsin-Chen; Chiang, Che-Ming

    2008-12-01

    Indoor air quality (IAQ) has begun to surface as an important issue that affects the comfort and health of people; however, there is little research concerned about the IAQ monitoring of hotels up to now. Hotels are designed to provide comfortable spaces for guests. However, most complaints related to uncomfortable thermal environment and inadequate indoor air quality appear. In addition, microbial pollution can affect the health of tourists such as the Legionnaire's disease and SARS problems. This study is aimed to establish the comprehensive IAQ audit approach for hotel buildings with portable equipment, and one five-star international hotel in Taiwan was selected to exam this integrated approach. Finally, four major problems are identified after the comprehensive IAQ audit. They are: (1) low room temperature (21.8 degrees C), (2) insufficient air exchange rate (<1.5 h(-1)), (3) formaldehyde contamination (>0.02 ppm), and (4) the microbial pollution (total bacteria: 2,624-3,799 CFU/m(3)). The high level of formaldehyde may be due to the emission from the detergent and cleaning agents used for housekeeping.

  19. Healthy Zero Energy Buildings (HZEB) Program - Cross-Sectional Study of Contaminant Levels, Source, Strengths, and Ventilation Rates in Retail Stores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Wanyu R.; Sidheswaran, Meera; Cohn, Sebastian

    2014-02-01

    This field study measured ventilation rates and indoor air quality parameters in 21 visits to retail stores in California. The data was collected to guide the development of new, science-based commercial building ventilation rate standards that balance the dual objectives of increasing energy efficiency and maintaining acceptable indoor air quality. Data collection occurred between September 2011 and March 2013. Three types of stores participated in this study: grocery stores, furniture/hardware stores, and apparel stores. Ventilation rates and indoor air contaminant concentrations were measured on a weekday, typically between 9 am and 6 pm. Ventilation rates measured using a tracer gasmore » decay method exceeded the minimum requirement of California’s Title 24 Standard in all but one store. Even though there was adequate ventilation according to Title 24, concentrations of formaldehyde, acetaldehyde, and acrolein exceeded the most stringent chronic health guidelines. Other indoor air contaminants measured included carbon dioxide (CO{sub 2}), carbon monoxide (CO), ozone (O{sub 3}), and particulate matter (PM). Concentrations of CO{sub 2} were kept low by adequate ventilation, and were assumed low also because the sampling occurred on a weekday when retail stores were less busy. CO concentrations were also low. The indoor-outdoor ratios of O{sub 3} showed that the first-order loss rate may vary by store trade types and also by ventilation mode (mechanical versus natural). Analysis of fine and ultrafine PM measurements showed that a substantial portion of the particle mass in grocery stores with cooking-related emissions was in particles less than 0.3 μm. Stores without cooking as an indoor source had PM size distributions that were more similar indoors and outdoors. The whole-building emission rates of volatile organic compounds (VOCs) and PM were estimated from the measured ventilation rates and indoor and outdoor contaminant concentrations. Mass balance models were then used to determine the ventilation rates, filtration strategies, or source reductions needed to maintain indoor contaminant concentrations below reference levels. Several scenarios of potential concern were considered: (i) formaldehyde levels in furniture/hardware stores, (ii) contaminants associated with cooking (e.g., PM, acrolein, and acetaldehyde) in grocery stores, and (iii) outdoor contaminants (e.g., PM and O{sub 3}) impacting stores that use natural ventilation. Estimated formaldehyde emission rates suggest that retail stores would need to ventilate at levels far exceeding the current Title 24 requirement to lower indoor concentrations below California’s stringent formaldehyde reference level. Given the high costs of providing ventilation but only modest chronic health benefit is expected, effective source control is an attractive alternative, as demonstrated by some retail stores in this study. Predictions showed that grocery stores need MERV 13 air filters, instead of MERV 8 filters that are more commonly used, to maintain indoor PM at levels that meet the chronic health standards for PM. Exposure to acrolein is a potential health concern in grocery stores, and should be addressed by increasing the use of kitchen range hoods or improving their contaminant removal efficiency. In stores that rely on natural ventilation, indoor PM can be a health concern if the stores are located in areas with high outdoor PM. This concern may be addressed by switching to mechanical ventilation when the outdoor air quality is poor, while continuing natural ventilation when outdoor air quality is good.« less

  20. Indoor air quality and health in two office buildings with different ventilation systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hedge, A.; Sterling, T.D.; Sterling, E.M.

    1989-01-01

    Measurements of indoor air pollutants were taken in (1) an air conditioned and (2) an adjacent, naturally ventilated office of a public sector organization. Self-administered questionnaires on the work environment and health were distributed to all workers. No differences in concentrations of carbon monoxide, carbon dioxide, ozone, and total oxidants were found between buildings. Concentrations of formaldehyde, volatile organic compounds, and respirable particulates were higher in the air conditioned offices. Symptoms of sleepiness, nasal irritation, concentration difficulties, cold/flu-like symptoms, and eye focusing problems were significantly more prevalent in the air conditioned offices. In the air conditioned offices, most symptoms weremore » significantly more prevalent among women than men. Passive smoking was associated with symptom prevalence, but alcohol, tea, and coffee consumption was unrelated. No significant correlations between pollutant concentrations and symptom prevalence were found, however, recalled reports of leaving work early because of feeling ill were significantly correlated with formaldehyde levels in the air conditioned building.« less

  1. A passive sampler for airborne formaldehyde

    NASA Astrophysics Data System (ADS)

    Grosjean, Daniel; Williams, Edwin L.

    A simple, inexpensive passive sampler is described that is capable of reliable measurements of formaldehyde at the parts per billion (ppb) levels relevant to indoor and outdoor air quality. The passive sampler consists of a modified dual filter holder in which the upper stage serves as the diffusion barrier, the lower stage includes a 2,4-dinitrophenylhydrazine (DNPH)-coated filter which collects formaldehyde, and the space between the two stages serve as the diffusion gap. The measured sampling rate, 18.8 ± 1.8 ml min -1, was determined in experiments involving sampling of ppb levels of formaldehyde with the passive sampler and with DNPH-coated C 18 cartridges and agrees well with the value of 19.4 ± 2.0 ml min -1 calculated from theory. The measured sampling rate was independent of formaldehyde concentration (16-156 ppb) and sampling duration (1.5-72 h). The precision of the measurements for colocated passive samplers averaged 8.6% in purified and indoor air (office and museums) and 10.2% in photochemically polluted outdoor air. With a 1.2-μm pore size Teflon filter as the diffusion barrier, the detection limit is 32 ppb h, e.g. 4 ppb in an 8-h sample, 1.3 ppb in a 24-h sample, and so on. Perceived advantages and limitations of the sampler are discussed including flexibility, cost effectiveness and possible negative bias at high ambient levels of ozone.

  2. Foliage Plants for Improving Indoor Air Quality

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.

    1988-01-01

    NASA's research with foliage houseplants during the past 10 years has produced a new concept in indoor air quality improvement. This new and exciting technology is quite simple. Both plant leaves and roots are utilized in removing trace levels of toxic vapors from inside tightly sealed buildings. Low levels of chemicals such as carbon monoxide and formaldehyde can be removed from indoor environments by plant leaves alone, while higher concentrations of numerous toxic chemicals can be removed by filtering indoor air through the plant roots surrounded by activated carbon. The activated carbon absorbs large quantities of the toxic chemicals and retains them until the plant roots and associated microorganisms degrade and assimilate these chemicals.

  3. Characterization of indoor air quality and resident health in an Arizona senior housing apartment building.

    PubMed

    Frey, Sarah E; Destaillats, Hugo; Cohn, Sebastian; Ahrentzen, Sherry; Fraser, Matthew P

    2014-11-01

    A survey of key indoor air quality (IAQ) parameters and resident health was carried out in 72 apartments within a single low-income senior housing building in Phoenix, Arizona. Air sampling was carried out simultaneously with a questionnaire on personal habits and general health of residents. Mean PM10 concentrations are 66 +/- 16, 58 +/- 13, and 24 +/- 3 microg/m3 and mean PM2.5 concentrations are 62 +/- 16, 53 +/- 13, and 20 +/- 2 microg/m3 for the living room, kitchen, and outdoor balcony, respectively. Median PM10 concentrations are 17, 18 and 17 microg/m3 and median PM25 concentrations are 13, 14, and 13 microg/m3, respectively. The initial results indicate that increased indoor particle concentrations coincide with residents who report smoking cigarettes. Indoor formaldehyde concentrations revealed median levels of 36.9, 38.8, and 4.3 ppb in the living room, kitchen, and balcony, respectively. Results show that 36% of living room samples and 44% of kitchen samples exceeded the Health Canada REL for chronic exposure to formaldehyde (40 ppb). Associations between occupants' behavior self-reported health conditions, and IAQ are evaluated.

  4. Indoor Air Quality Investigations on Particulate Matter, Carbonyls, and Tobacco Specific Nitrosamines

    NASA Astrophysics Data System (ADS)

    Frey, Sarah E.

    Americans spend upwards of 90% of their time indoors, hence indoor air quality (IAQ) and the impact of IAQ on human health is a major public health concern. IAQ can be negatively impacted by outdoor pollution infiltrating indoors, the emission of indoor pollutants, indoor atmospheric chemistry and poor ventilation. Energy saving measures like retrofits to seal the building envelope to prevent the leakage of heated or cooled air will impact IAQ. However, existing studies have been inconclusive as to whether increased energy efficiency is leading to detrimental IAQ. In this work, field campaigns were conducted in apartment homes in Phoenix, Arizona to evaluate IAQ as it relates to particulate matter (PM), carbonyls, and tobacco specific nitrosamines (TSNA). To investigate the impacts of an energy efficiency retrofit on IAQ, indoor and outdoor air quality sampling was carried out at Sunnyslope Manor, a city-subsidized senior living apartment complex. Measured indoor formaldehyde levels before the building retrofit exceeded reference exposure limits, but in the long term follow-up sampling, indoor formaldehyde decreased for the entire study population by a statistically significant margin. Indoor PM levels were dominated by fine particles and showed a statistically significant decrease in the long term follow-up sampling within certain resident subpopulations (i.e. residents who reported smoking and residents who had lived longer at the apartment complex). Additionally, indoor glyoxal and methylglyoxal exceeded outdoor concentrations, with methylglyoxal being more prevalent pre-retrofit than glyoxal, suggesting different chemical pathways are involved. Indoor concentrations reported are larger than previous studies. TSNAs, specifically N'-nitrosonornicotine (NNN), 4-(methyl-nitrosamino)-4-(3-pyridyl)-butanal (NNA) and 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK) were evaluated post-retrofit at Sunnyslope Manor. Of the units tested, 86% of the smoking units and 46% of the non-smoking units had traces of at least one of the nitrosamines.

  5. The influence of α-Al2O3 addition on microstructure, mechanical and formaldehyde adsorption properties of fly ash-based geopolymer products.

    PubMed

    Huang, Yi; Han, Minfang

    2011-10-15

    Fly ash-based geopolymer with α-Al(2)O(3) addition were synthesized and used to remove formaldehyde from indoor air. The microstructure, mechanical and formaldehyde adsorption properties of the geopolymer products obtained were investigated. The results showed that α-Al(2)O(3) addition with appropriate amount (such as 5 wt%) increased the geopolymerization extent, resulting in the increase of surface area and compressive strength. In addition, the improvement of structural ordering level for geopolymer sample with 5 wt% α-Al(2)O(3) addition was found through FTIR analysis. By contrast, excessive addition (such as 10 wt%) had the opposite effect. The test of formaldehyde adsorption capacity confirmed that fly ash-based geopolymer product exhibited much better property of adsorbing indoor formaldehyde physically and chemically than fly ash itself. The surface area was an important but not unique factor influencing the adsorption capacity of geopolymers. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Impact of regulation on indoor volatile organic compounds in new unoccupied apartment in Korea

    NASA Astrophysics Data System (ADS)

    Lim, Soogil; Lee, Kiyoung; Seo, Sooyun; Jang, Seongki

    2011-02-01

    The Indoor Air Quality (IAQ) Control in Public Use Facilities Act in Korea, which came into effect on January 1, 2006, set standards of indoor environmental concentrations for benzene, toluene, ethylbenzene, xylenes, styrene, and formaldehyde. This study aimed to determine the impact of the Act on levels of volatile organic compounds (VOCs) and to identify factors associated with indoor VOCs levels. VOCs and formaldehyde levels were measured in 228 new, unoccupied apartments from 2005 to 2007. In 2005, the mean total VOC (TVOC) concentration in 108 unoccupied apartments was 1606 μg m -3. After 2006, mean TVOC concentration in 120 unoccupied apartments was 645 μg m -3, significantly lower than the 2005 level. In 2005, the percentages of apartments exceeding standards were 14% for xylenes, 5% for ethylbenzene, 3% for toluene, and 1% for formaldehyde. After 2006, no apartment exceeded standards. When other building characteristics were controlled, the concentrations of TVOC, toluene, ethylbenzene, xylenes, and formaldehyde after 2006 were significantly lower than 2005 levels. However, benzene and styrene levels did not change. The reduction in VOCs levels was significantly associated with flooring materials, adhesive, and paint. These findings demonstrate that regulation can reduce VOC concentrations in new apartments through the use of low-emission building materials.

  7. Contaminant levels, source strengths, and ventilation rates in California retail stores.

    PubMed

    Chan, W R; Cohn, S; Sidheswaran, M; Sullivan, D P; Fisk, W J

    2015-08-01

    This field study measured ventilation rates and indoor air quality in 21 visits to retail stores in California. Three types of stores, such as grocery, furniture/hardware stores, and apparel, were sampled. Ventilation rates measured using a tracer gas decay method exceeded the minimum requirement of California's Title 24 Standard in all but one store. Concentrations of volatile organic compounds (VOCs), ozone, and carbon dioxide measured indoors and outdoors were analyzed. Even though there was adequate ventilation according to standard, concentrations of formaldehyde and acetaldehyde exceeded the most stringent chronic health guidelines in many of the sampled stores. The whole-building emission rates of VOCs were estimated from the measured ventilation rates and the concentrations measured indoor and outdoor. Estimated formaldehyde emission rates suggest that retail stores would need to ventilate at levels far exceeding the current Title 24 requirement to lower indoor concentrations below California's stringent formaldehyde reference level. Given the high costs of providing ventilation, effective source control is an attractive alternative. Field measurements suggest that California retail stores were well ventilated relative to the minimum ventilation rate requirement specified in the Building Energy Efficiency Standards Title 24. Concentrations of formaldehyde found in retail stores were low relative to levels found in homes but exceeded the most stringent chronic health guideline. Looking ahead, California is mandating zero energy commercial buildings by 2030. To reduce the energy use from building ventilation while maintaining or even lowering formaldehyde in retail stores, effective formaldehyde source control measures are vitally important. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  8. Carbonyl species characteristics during the evaporation of essential oils

    NASA Astrophysics Data System (ADS)

    Chiang, Hsiu-Mei; Chiu, Hua-Hsien; Lai, Yen-Ming; Chen, Ching-Yen; Chiang, Hung-Lung

    2010-06-01

    Carbonyls emitted from essential oils can affect the air quality when they are used in indoors, especially under poor ventilation conditions. Lavender, lemon, rose, rosemary, and tea tree oils were selected as typical and popular essential oils to investigate in terms of composition, thermal characteristics and fifteen carbonyl constituents. Based on thermogravimetric (TG) analysis, the activation energy was 7.6-8.3 kcal mol -1, the reaction order was in the range of 0.6-0.7 and the frequency factor was 360-2838 min -1. Formaldehyde, acetaldehyde, acetone, and propionaldehyde were the dominant carbonyl compounds, and their concentrations were 0.034-0.170 ppm. The emission factors of carbonyl compounds were 2.10-3.70 mg g -1, and acetone, propionaldehyde, acetaldehyde, and formaldehyde accounted for a high portion of the emission factor of carbonyl compounds in essential oil exhaust. Some unhealthy carbonyl species such as formaldehyde and valeraldehyde, were measured at low-temperature during the vaporization of essential oils, indicating a potential effect on indoor air quality and human health.

  9. EPHECT III: Health risk assessment of exposure to household consumer products.

    PubMed

    Trantallidi, M; Dimitroulopoulou, C; Wolkoff, P; Kephalopoulos, S; Carrer, P

    2015-12-01

    In the framework of the EU EPHECT project (Emissions, Exposure Patterns and Health Effects of Consumer Products in the EU), irritative and respiratory effects were assessed in relation to acute (30-min) and long-term (24-h) inhalation exposure to key and emerging indoor air pollutants emitted during household use of selected consumer products. A detailed Health Risk Assessment (HRA) was performed for five selected pollutants of respiratory health relevance, namely acrolein, formaldehyde, naphthalene, d-limonene and α-pinene. For each pollutant, the Critical Exposure Limit (CEL) was compared to indoor air concentrations and exposure estimates for the use of 15 selected consumer products by two population groups (housekeepers and retired people) in the four geographical regions of Europe (North, West, South, East), which were derived previously based on microenvironmental modelling. For the present HRA, health-based CELs were derived for certain compounds in case indoor air quality guidelines were not available by the World Health Organization for end-points relevant to the current study. For each pollutant, the highest indoor air concentrations in each microenvironment and exposure estimates across home microenvironments during the day were lower than the corresponding acute and long-term CELs. However, considerable contributions, especially to acute exposures, were obtained in some cases, such as formaldehyde emissions resulting from single product use of a floor cleaning agent (82% CEL), a candle (10% CEL) and an electric air freshener (17% CEL). Regarding multiple product use, the case of 30-min formaldehyde exposure reaching 34% CEL when eight product classes were used across home microenvironments, i.e. all-purpose/kitchen/floor cleaning agents, furniture/floor polish, combustible/electric air fresheners, and perfume, needs to be highlighted. Such estimated values should be evaluated with caution, as these may be attributed to the exposure scenarios specifically constructed for the present study, following a 'most-representative worst-case scenario' approach for exposure and health risk assessment. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Determination of sub-part-per-million levels of formaldehyde in air using active or passive sampling on 2,4-dinitrophenylhydrazine-coated glass fiber filters and high-performance liquid chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, J.O.; Andersson, K.; Lindahl, R.

    1985-05-01

    Formaldehyde is sampled from air with the use of a standard miniature glass fiber filter impregnated with 2,4-dinitrophenylhydrazine and phosphoric acid. The formaldehyde hydrazone is desorbed from the filter with acetonitrile and determined by high-performance liquid chromatography using UV detection at 365 nm. Recovery of gas-phase-generated formaldehyde as hydrazone from a 13-mm impregnated filter is 80-100% in the range 0.3-30 ..mu..g of formaldehyde. This corresponds to 0.1-10 mg/m/sup 3/ in a 3-L air sample. When the filter sampling system is used in the active mode, air can be sampled at a rate of up to 1 L/min, affording an overallmore » sensitivity of about 1 ..mu..g/m/sup 3/ based on a 60-L air sample. Results are given from measurements of formaldehyde in indoor air. The DNP-coated filters were also evaluated for passive sampling. In this case 37-mm standard glass fibers were used and the sampling rate was 55-65 mL/min in two types of dosimeters. The diffusion samplers are especially useful for personal exposure monitoring in the work environment. 24 references, 2 figures, 4 tables.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodgson, A.T.; Apte, M.G.; Shendell, D.G.

    Detailed studies of a new manufactured house and four new industrialized relocatable school classrooms were conducted to determine the emission sources of formaldehyde and other VOCs and to identify and implement source reduction practices. Procedures were developed to generate VOC emission factors that allowed reasonably accurate predictions of indoor air VOC concentrations. Based on the identified sources of formaldehyde and other aldehydes, practices were developed to reduce the concentrations of these compounds in new house construction. An alternate ceiling panel reduced formaldehyde concentrations in the classrooms. Overall, the classrooms had relatively low VOC concentrations.

  12. Exposure to major volatile organic compounds and carbonyls in European indoor environments and associated health risk.

    PubMed

    Sarigiannis, Dimosthenis A; Karakitsios, Spyros P; Gotti, Alberto; Liakos, Ioannis L; Katsoyiannis, Athanasios

    2011-05-01

    This paper summarizes recent data on the occurrence of major organic compounds (benzene, toluene, xylenes, styrene, acetaldehyde, formaldehyde, naphthalene, limonene, α-pinene and ammonia, classified by the European Commission's INDEX strategy report as the priority pollutants to be regulated) and evaluates accordingly cancer and non-cancer risks posed by indoor exposure in dwellings and public buildings in European Union (EU) countries. The review process indicated that significant differences in indoor air quality exist within and among the countries where data were available, indicating corresponding differences in sources and emission strength of airborne chemicals, identified or not. Conservative exposure limits were not exceeded for non-carcinogenic effects, except for formaldehyde; for carcinogenic agents the estimated risks were up to three orders of magnitude higher than the one (10(-6)) proposed as acceptable by risk management bodies. However, the risk assessment evaluation process faces crucial difficulties, either due to the relative paucity of indoor air quality measurements in many EU countries, or by the lack of sampling consistency in the already existing studies, indicating the need for additional measurements of indoor air quality following a harmonized sampling and analytical protocol. Additionally, uncertainties embodied in the cancer potency factors and exposure limit values impose further difficulties in substance prioritization and risk management. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Human exposure to airborne aldehydes in Chinese medicine clinics during moxibustion therapy and its impact on risks to health.

    PubMed

    Hsu, Yi-Chyun; Chao, How-Ran; Shih, Shun-I

    2015-01-01

    Many air toxicants, and especially aldehydes, are generated by moxibustion, which means burning Artemisia argyi. Our goal was to investigate indoor-air aldehyde emissions in Chinese medicine clinics (CMCs) during moxibustion to further evaluate the potential health risks, including cancer risk and non-cancer risk, to the medical staff and adult patients. First, the indoor-air-quality in 60 public sites, including 15 CMCs, was investigated. Four CMCs with frequent use of moxibustion were selected from the 15 CMCs to gather the indoor airborne aldehydes in the waiting and therapy rooms. The mean values of formaldehyde and acetaldehyde in the CMCs' indoor air were 654 and 4230 μg m(-3), respectively, in the therapy rooms, and 155 and 850 μg m(-3), respectively, in the waiting rooms. The average lifetime cancer risks (Rs) and non-cancer risks (hazard quotients: HQs) of airborne formaldehyde and acetaldehyde among the CMC medical staff exceeded the acceptable criteria (R < 1.00 × 10(-3) and HQ < 1.00) for occupational workers. The patients' Rs and HQs were also slightly higher than the critical values (R = 1.00 × 10(-6) and HQ = 1.00). Our results indicate that airborne aldehydes pose a significant threat to the health of medical staff, and slightly affected the patients' health, during moxibustion in the CMCs.

  14. Photocatalytic surface reactions on indoor wall paint.

    PubMed

    Salthammer, T; Fuhrmann, F

    2007-09-15

    The reduction of indoor air pollutants by air cleaning systems has received considerable interest, and a number of techniques are now available. So far, the method of photocatalysis was mainly applied by use of titanium dioxide (TiO2) in flow reactors under UV light of high intensity. Nowadays, indoor wall paints are equipped with modified TiO2 to work as a catalyst under indoor daylight or artificial light. In chamber experiments carried out under indoor related conditions itwas shown thatthe method works for nitrogen dioxide with air exchange and for formaldehyde without air exchange at high concentrations. In further experiments with volatile organic compounds (VOCs), a small effect was found for terpenoids with high kOH rate constants. For other VOCs and carbon monoxide there was no degradation at all or the surface acted as a reversible sink. Secondary emissions from the reaction of paint constituents were observed on exposure to light. From the results it is concluded that recipes of photocatalytic wall paints need to be optimized for better efficiency under indoor conditions.

  15. Removal of formaldehyde from air using functionalized silica supports.

    PubMed

    Ewlad-Ahmed, Abdunaser M; Morris, Michael A; Patwardhan, Siddharth V; Gibson, Lorraine T

    2012-12-18

    This paper demonstrates the use of functionalized meso-silica materials (MCM-41 or SBA-15) as adsorbents for formaldehyde (H₂CO) vapor from contaminated air. Additionally new green nanosilica (GNs) materials were prepared via a bioinspired synthesis route and were assessed for removal of H₂CO from contaminated indoor air. These exciting new materials were prepared via rapid, 15 min, environmentally friendly synthesis routes avoiding any secondary pollution. They provided an excellent platform for functionalization and extraction of H₂CO demonstrating similar performance to the conventional meso-silica materials. To the authors' knowledge this is the first reported practical application of this material type. Prior to trapping, all materials were functionalized with amino-propyl groups which led to chemisorption of H₂CO; removing it permanently from air. No retention of H₂CO was achieved with nonfunctionalized material and it was observed that best extraction performance required a dynamic adsorption setup when compared to passive application. These results demonstrate the first application of GNs as potential adsorbents and functionalized meso-silica for use in remediation of air pollution in indoor air.

  16. Predictors of Indoor Air Concentrations in Smoking and Non-Smoking Residences

    PubMed Central

    Héroux, Marie-Eve; Clark, Nina; Van Ryswyk, Keith; Mallick, Ranjeeta; Gilbert, Nicolas L.; Harrison, Ian; Rispler, Kathleen; Wang, Daniel; Anastassopoulos, Angelos; Guay, Mireille; MacNeill, Morgan; Wheeler, Amanda J.

    2010-01-01

    Indoor concentrations of air pollutants (benzene, toluene, formaldehyde, acetaldehyde, acrolein, nitrogen dioxide, particulate matter, elemental carbon and ozone) were measured in residences in Regina, Saskatchewan, Canada. Data were collected in 106 homes in winter and 111 homes in summer of 2007, with 71 homes participating in both seasons. In addition, data for relative humidity, temperature, air exchange rates, housing characteristics and occupants’ activities during sampling were collected. Multiple linear regression analysis was used to construct season-specific models for the air pollutants. Where smoking was a major contributor to indoor concentrations, separate models were constructed for all homes and for those homes with no cigarette smoke exposure. The housing characteristics and occupants’ activities investigated in this study explained between 11% and 53% of the variability in indoor air pollutant concentrations, with ventilation, age of home and attached garage being important predictors for many pollutants. PMID:20948949

  17. Indoor Air Quality in the Metro System in North Taiwan.

    PubMed

    Chen, Ying-Yi; Sung, Fung-Chang; Chen, Mei-Lien; Mao, I-Fang; Lu, Chung-Yen

    2016-12-02

    Indoor air pollution is an increasing health concern, especially in enclosed environments such as underground subway stations because of increased global usage by urban populations. This study measured the indoor air quality of underground platforms at 10 metro stations of the Taipei Rapid Transit system (TRTS) in Taiwan, including humidity, temperature, carbon monoxide (CO), carbon dioxide (CO₂), formaldehyde (HCHO), total volatile organic compounds (TVOCs), ozone (O₃), airborne particulate matter (PM 10 and PM 2.5 ), bacteria and fungi. Results showed that the CO₂, CO and HCHO levels met the stipulated standards as regulated by Taiwan's Indoor Air Quality Management Act (TIAQMA). However, elevated PM 10 and PM 2.5 levels were measured at most stations. TVOCs and bacterial concentrations at some stations measured in summer were higher than the regulated standards stipulated by Taiwan's Environmental Protection Administration. Further studies should be conducted to reduce particulate matters, TVOCs and bacteria in the air of subway stations.

  18. Effectiveness of photocatalytic filter for removing volatile organic compounds in the heating, ventilation, and air conditioning system.

    PubMed

    Yu, Kuo-Pin; Lee, Grace Whei-May; Huang, Wei-Ming; Wu, Chih-Cheng; Lou, Chia-ling; Yang, Shinhao

    2006-05-01

    Nowadays, the heating, ventilation, and air conditioning (HVAC) system has been an important facility for maintaining indoor air quality. However, the primary function of typical HVAC systems is to control the temperature and humidity of the supply air. Most indoor air pollutants, such as volatile organic compounds (VOCs), cannot be removed by typical HVAC systems. Thus, some air handling units for removing VOCs should be added in typical HVAC systems. Among all of the air cleaning techniques used to remove indoor VOCs, photocatalytic oxidation is an attractive alternative technique for indoor air purification and deodorization. The objective of this research is to investigate the VOC removal efficiency of the photocatalytic filter in a HVAC system. Toluene and formaldehyde were chosen as the target pollutants. The experiments were conducted in a stainless steel chamber equipped with a simplified HVAC system. A mechanical filter coated with Degussa P25 titania photocatalyst and two commercial photocatalytic filters were used as the photocatalytic filters in this simplified HVAC system. The total air change rates were controlled at 0.5, 0.75, 1, 1.25, and 1.5 hr(-1), and the relative humidity (RH) was controlled at 30%, 50%, and 70%. The ultraviolet lamp used was a 4-W, ultraviolet-C (central wavelength at 254 nm) strip light bulb. The first-order decay constant of toluene and formaldehyde found in this study ranged from 0.381 to 1.01 hr(-1) under different total air change rates, from 0.34 to 0.433 hr(-1) under different RH, and from 0.381 to 0.433 hr(-1) for different photocatalytic filters.

  19. Reflections on the history of indoor air science, focusing on the last 50 years.

    PubMed

    Sundell, J

    2017-07-01

    The scientific articles and Indoor Air conference publications of the indoor air sciences (IAS) during the last 50 years are summarized. In total 7524 presentations, from 79 countries, have been made at Indoor Air conferences held between 1978 (49 presentations) and 2014 (1049 presentations). In the Web of Science, 26 992 articles on indoor air research (with the word "indoor" as a search term) have been found (as of 1 Jan 2016) of which 70% were published during the last 10 years. The modern scientific history started in the 1970s with a question: "did indoor air pose a threat to health as did outdoor air?" Soon it was recognized that indoor air is more important, from a health point of view, than outdoor air. Topics of concern were first radon, environmental tobacco smoke, and lung cancer, followed by volatile organic compounds, formaldehyde and sick building syndrome, house dust-mites, asthma and allergies, Legionnaires disease, and other airborne infections. Later emerged dampness/mold-associated allergies and today's concern with "modern exposures-modern diseases." Ventilation, thermal comfort, indoor air chemistry, semi-volatile organic compounds, building simulation by computational fluid dynamics, and fine particulate matter are common topics today. From their beginning in Denmark and Sweden, then in the USA, the indoor air sciences now show increasing activity in East and Southeast Asia. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Performance of ultraviolet photocatalytic oxidation for indoor air cleaning applications.

    PubMed

    Hodgson, A T; Destaillats, H; Sullivan, D P; Fisk, W J

    2007-08-01

    Ultraviolet photocatalytic oxidation (UVPCO) systems for removal of volatile organic compounds (VOCs) from air are being considered for use in office buildings. Here, we report an experimental evaluation of a UVPCO device with tungsten oxide modified titanium dioxide (TiO2) as the photocatalyst. The device was challenged with complex VOC mixtures. One mixture contained 27 VOCs characteristic of office buildings and another comprised 10 VOCs emitted by cleaning products, in both cases at realistic concentrations (low ppb range). VOC conversion efficiencies varied widely, usually exceeded 20%, and were as high as approximately 80% at about 0.03 s residence time. Conversion efficiency generally diminished with increased airflow rate, and followed the order: alcohols and glycol ethers > aldehydes, ketones, and terpene hydrocarbons > aromatic and alkane hydrocarbons > halogenated aliphatic hydrocarbons. Conversion efficiencies correlated with the Henry's law constant more closely than with other physicochemical parameters. An empirical model based on the Henry's law constant and the gas-phase reaction rate with hydroxyl radical provided reasonable estimates of pseudo-first order photocatalytic reaction rates. Formaldehyde, acetaldehyde, acetone, formic acid and acetic acid were produced by the device due to incomplete mineralization of common VOCs. Formaldehyde outlet/inlet concentration ratios were in the range 1.9-7.2. Implementation of air cleaning technologies for both VOCs and particles in office buildings may improve indoor air quality, or enable indoor air quality levels to be maintained with reduced outdoor air supply and concomitant energy savings. One promising air cleaning technology is ultraviolet photocatalytic oxidation (UVPCO) air cleaning. For the prototype device evaluated here with realistic mixtures of VOCs, conversion efficiencies typically exceeded the minimum required to counteract predicted VOC concentration increases from a 50% reduction in ventilation. However, the device resulted in the net generation of formaldehyde and acetaldehyde from the partial oxidation of ubiquitous VOCs. Further development of the technology is needed to eliminate these hazardous air pollutants before such a UVPCO device can be deployed in buildings.

  1. Identifying Sources of Volatile Organic Compounds and Aldehydes in a High Performance Building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, Anna C.; Russell, Marion; Lee, Wen-Yee

    The developers of the Paharpur Business Center (PBC) and Software Technology Incubator Park in New Delhi, India offer an environmentally sustainable building with a strong emphasis on energy conservation, waste minimization and superior indoor air quality (IAQ). To achieve the IAQ goal, the building utilizes a series of air cleaning technologies for treating the air entering the building. These technologies include an initial water wash followed by ultraviolet light treatment and biolfiltration using a greenhouse located on the roof and numerous plants distributed throughout the building. Even with the extensive treatment of makeup air and room air in the PBC,more » a recent study found that the concentrations of common volatile organic compounds and aldehydes appear to rise incrementally as the air passes through the building from the supply to the exhaust. This finding highlights the need to consider the minimization of chemical sources in buildings in combination with the use of advanced air cleaning technologies when seeking to achieve superior IAQ. The goal of this project was to identify potential source materials for indoor chemicals in the PBC. Samples of building materials, including wood paneling (polished and unpolished), drywall, and plastic from a hydroponic drum that was part of the air cleaning system, were collected from the building for testing. All materials were collected from the PBC building and shipped to the Lawrence Berkeley National Laboratory (LBNL) for testing. The materials were pre-conditioned for two different time periods before measuring material and chemical specific emission factors for a range of VOCs and Aldehydes. Of the six materials tested, we found that the highest emitter of formaldehyde was new plywood paneling. Although polish and paint contribute to some VOC emissions, the main influence of the polish was in altering the capacity of the surface to accumulate formaldehyde. Neither the new nor aged polish contributed significantly to formaldehyde emissions. The VOC emission stream (excluding formaldehyde) was composed of up to 18 different chemicals and the total VOC emissions ranged in magnitude from 7 mu g/m2/h (old wood with old polish) to>500 mu g/m2/h (painted drywall). The formaldehyde emissions from drywall and old wood with either new or old polish were ~;;15 mu g/m2/h while the new wood material emitted>100 mu g/m2/h. However, when the projected surface area of each material in the building was considered, the new wood, old wood and painted drywall material all contributed substantially to the indoor formaldehyde loading while the coatings contributed primarily to the VOCs.« less

  2. Impact of the formaldehyde concentration in the air on the sink effect of a coating material

    NASA Astrophysics Data System (ADS)

    Tiffonnet, Anne-Lise; Tourreilles, Céline; Duforestel, Thierry

    2018-02-01

    This study aims to characterize, from a numerical modelling, the sorption behaviour of a material (a plasticised flooring material) when it is exposed to a pollutant commonly encountered in indoor environments (formaldehyde). It deals with the influence of the pollutant concentration in the room air on the sink effect of the material. The numerical simulations are based on a macroscopic modelling using experimental test results obtained elsewhere. The consequences on the room inertia are also discussed, and analogies between mass transfer and heat transfer are highlighted.

  3. Cancer Risk Disparities between Hispanic and Non-Hispanic White Populations: The Role of Exposure to Indoor Air Pollution

    PubMed Central

    Hun, Diana E.; Siegel, Jeffrey A.; Morandi, Maria T.; Stock, Thomas H.; Corsi, Richard L.

    2009-01-01

    Background Hispanics are the fastest growing minority group in the United States; however, minimal information is available on their cancer risks from exposures to hazardous air pollutants (HAPs) and how these risks compare to risks to non-Hispanic whites. Methods We estimated the personal exposure and cancer risk of Hispanic and white adults who participated in the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study. We evaluated 12 of the sampled volatile organic compounds and carbonyls and identified the HAPs of most concern and their possible sources. Furthermore, we examined sociodemographic factors and building characteristics. Results Cumulative cancer risks (CCRs) estimated for Hispanics (median = 519 × 10−6, 90th percentile = 3,968 × 10−6) and for whites (median = 443 × 10−6, 90th percentile = 751 × 10−6) were much greater than the U.S. Environmental Protection Agency (EPA) benchmark of 10−6. Cumulative risks were dominated by formaldehyde and p-dichlorobenzene (p-DCB) and, to a lesser extent, by acetaldehyde, chloroform, and benzene. Exposure to all of these compounds except benzene was primarily due to indoor residential sources. Hispanics had statistically higher CCRs than did whites (p ≤ 0.05) because of differences in exposure to p-DCB, chloroform, and benzene. Formaldehyde was the largest contributor to CCR for 69% of Hispanics and 88% of whites. Cancer risks for pollutants emitted indoors increased in houses with lower ventilation rates. Conclusions Hispanics appear to be disproportionately affected by certain HAPs from indoor and outdoor sources. Policies that aim to reduce risk from exposure to HAPs for the entire population and population subgroups should consider indoor air pollution. PMID:20049213

  4. Cancer risk disparities between hispanic and non-hispanic white populations: the role of exposure to indoor air pollution.

    PubMed

    Hun, Diana E; Siegel, Jeffrey A; Morandi, Maria T; Stock, Thomas H; Corsi, Richard L

    2009-12-01

    Hispanics are the fastest growing minority group in the United States; however, minimal information is available on their cancer risks from exposures to hazardous air pollutants (HAPs) and how these risks compare to risks to non-Hispanic whites. We estimated the personal exposure and cancer risk of Hispanic and white adults who participated in the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study. We evaluated 12 of the sampled volatile organic compounds and carbonyls and identified the HAPs of most concern and their possible sources. Furthermore, we examined sociodemographic factors and building characteristics. Cumulative cancer risks (CCRs) estimated for Hispanics (median = 519 x 10(-6), 90th percentile = 3,968 x 10(-6)) and for whites (median = 443 x 10(-6), 90th percentile = 751 x 10(-6)) were much greater than the U.S. Environmental Protection Agency (EPA) benchmark of 10(-6). Cumulative risks were dominated by formaldehyde and p-dichlorobenzene (p-DCB) and, to a lesser extent, by acetaldehyde, chloroform, and benzene. Exposure to all of these compounds except benzene was primarily due to indoor residential sources. Hispanics had statistically higher CCRs than did whites (p

  5. Household indoor air quality and its associations with childhood asthma in Shanghai, China: On-site inspected methods and preliminary results.

    PubMed

    Huang, Chen; Wang, Xueying; Liu, Wei; Cai, Jiao; Shen, Li; Zou, Zhijun; Lu, Rongchun; Chang, Jing; Wei, Xiaoyang; Sun, Chanjuan; Zhao, Zhuohui; Sun, Yuexia; Sundell, Jan

    2016-11-01

    Few studies were conducted for associations of home environment with childhood health by on-site inspection in China. During 2013-2014, we conducted a case-control study with home inspection among 454 children (186 asthma children and 268 non-asthma children) in Shanghai, China. In this paper, we detailedly described the inspected methods and analyzed the preliminarily collected data. Except in winter, most residences meet the national standard for indoor temperature and relative humidity. Most living rooms had ≤1000ppm CO 2 , whereas over half of the child's bedrooms had slightly >1000ppm CO 2 during night. Most residences had notably lower than 2500cfu/m 3 airborne culturable fungi and ≤100μg/m 3 formaldehyde. More than 70% of the child's bedrooms had ≤75μg/m 3 PM 2.5 and ≤150μg/m 3 PM 10 . Indoor and outdoor concentrations of particulate matters had strong linear correlations (r=0.891-0.922; p-value <0.001). Most differences between cases and controls were not significant with respect to CO 2 , culturable fungi, formaldehyde, and particulate matters. Before and after adjusted for potential confounders, indoor averaged concentration of CO 2 and particulate matters generally had negative associations with childhood history of doctor-diagnosed asthma in spring, summer, and autumn. Only in winter, indoor CO 2 concentration was significantly associated with the increased odds of childhood asthma. Our results indicated that air quality among most residences in Shanghai could meet the national standard for indoor air quality in warm seasons; but household air quality and ventilation status in winter should be greatly improved. We suspected that those "unexpected" negative associations could exist due to changes in lifestyle behaviors regarding indoor air quality after the child being diagnosed asthma by a doctor. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Inter-comparison of air pollutant concentrations in different indoor environments in Hong Kong

    NASA Astrophysics Data System (ADS)

    Lee, Shun-Cheng; Guo, Hai; Li, Wai-Ming; Chan, Lo-Yin

    Indoor air quality in selected indoor environments in Hong Kong such as homes, offices, schools, shopping malls and restaurants were investigated. Average CO 2 levels and total bacteria counts in air-conditioned classrooms, shopping malls and restaurants were comparatively higher than those measured in occupied offices and homes. Elevated CO 2 levels exceeding 1000 ppm and total bacteria counts resulted from high occupancy combined with inadequate ventilation. Average PM 10 levels were usually higher indoors than outdoors in homes, shopping malls and restaurants. The highest indoor PM 10 levels were observed at investigated restaurants due to the presence of cigarette smoking and extensive use of gas stoves for cooking. The restaurants and shopping malls investigated had higher formaldehyde levels than other indoor environments when building material, smoking and internal renovation work were present. Volatile organic compounds (VOCs) in both indoor and outdoor environments mainly resulted from vehicle exhaust emissions. It was observed that interior decoration work and the use of industrial solvents in an indoor environment could significantly increase the indoor levels of VOCs.

  7. A gas sensor array for the simultaneous detection of multiple VOCs.

    PubMed

    Zhang, Yumin; Zhao, Jianhong; Du, Tengfei; Zhu, Zhongqi; Zhang, Jin; Liu, Qingju

    2017-05-16

    Air quality around the globe is declining and public health is seriously threatened by indoor air pollution. Typically, indoor air pollutants are composed of a series of volatile organic compounds (VOCs) that are generally harmful to the human body, especially VOCs with low molecular weights (less than 100 Da). Moreover, in some situations, more than one type of VOC is present; thus, a device that can detect one or more VOCs simultaneously would be most beneficial. Here, we synthesized a sensor array with 4 units to detect 4 VOCs: acetone (unit 1), benzene (unit 2), methanol (unit 3) and formaldehyde (unit 4) simultaneously. All units were simultaneously exposed to 2.5 ppm of all four VOCs. The sensitivity of unit 1 was 14.67 for acetone and less than 2.54 for the other VOCs. The sensitivities of units 2, 3 and 4 to benzene, methanol and formaldehyde were 2 18.64, 20.98 and 17.26, respectively, and less than 4.01 for the other VOCs. These results indicated that the sensor array exhibited good selectivity and could be used for the real-time monitoring of indoor air quality. Thus, this device will be useful in situations requiring the simultaneous detection of multiple VOCs.

  8. Impact of operating wood-burning fireplace ovens on indoor air quality.

    PubMed

    Salthammer, Tunga; Schripp, Tobias; Wientzek, Sebastian; Wensing, Michael

    2014-05-01

    The use of combustion heat sources like wood-burning fireplaces has regained popularity in the past years due to increasing energy costs. While the outdoor emissions from wood ovens are strictly regulated in Germany, the indoor release of combustion products is rarely considered. Seven wood burning fireplaces were tested in private homes between November 2012 and March 2013. The indoor air quality was monitored before, during and after operation. The following parameters were measured: ultra-fine particles (5.6-560 nm), fine particles (0.3-20 μm), PM2.5, NOx, CO, CO2, formaldehyde, acetaldehyde, volatile organic compounds (VOCs) and benzo[a]pyrene (BaP). Most ovens were significant sources of particulate matter. In some cases, an increase of benzene and BaP concentrations was observed in the indoor air. The results illustrate that wood-burning fireplaces are potential sources of indoor air contaminants, especially ultra-fine particles. Under the aspect of lowering indoor air exchange rates and increasing the use of fuels with a net zero-carbon footprint, indoor combustion sources are an important topic for the future. With regards to consumer safety, product development and inspection should consider indoor air quality in addition to the present fire protection requirements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Controlling Indoor Air Pollution from Moxibustion

    PubMed Central

    Lu, Chung-Yen; Kang, Sy-Yuan; Liu, Shu-Hui; Mai, Cheng-Wei; Tseng, Chao-Heng

    2016-01-01

    Indoor air quality (IAQ) control of hospitals plays a critical role in protecting both hospital staffs and patients, particularly those who are highly susceptible to the adverse effects of indoor noxious hazards. However, moxibustion in outpatient departments (OPDs) of traditional Chinese medicine (TCM) may be a source of indoor air pollution in hospitals. Some studies have investigated indoor air pollution during moxibustion in Chinese medicine clinics (CMCs) and moxibustion rooms, demonstrating elevated air pollutants that pose a threat to the health of medical staff and patients. Our study investigated the indoor air pollutants of indoor carbon dioxide (CO2), carbon monoxide (CO), formaldehyde (HCHO), total volatile organic compounds (TVOCs), airborne particulate matter with a diameter of ≤10 µm (PM10) and ≤2.5 µm (PM2.5) during moxibustion in an acupuncture and moxibustion room of the OPD in a hospital in Taipei. To evaluate the different control strategies for indoor air pollution from moxibution, a comparison of air pollutants during moxibution among the methods of using alternative old moxa wools, local exhaust ventilation and an air cleaner was conducted. In this study, burning alternative old moxa wools for moxibustion obviously reduced all gaseous pollutants except for aerosols comparing burning fresh moxa wools. Using local exhaust ventilation reduced most of the aerosols after burning moxa. We also found that using an air cleaner was inefficient for controlling indoor air pollutants, particularly gaseous pollutants. Therefore, combining replacing alternative old moxa wools and local exhaust ventilation could be a suitable design for controlling indoor air pollution during moxibustion therapy. PMID:27331817

  10. Controlling Indoor Air Pollution from Moxibustion.

    PubMed

    Lu, Chung-Yen; Kang, Sy-Yuan; Liu, Shu-Hui; Mai, Cheng-Wei; Tseng, Chao-Heng

    2016-06-20

    Indoor air quality (IAQ) control of hospitals plays a critical role in protecting both hospital staffs and patients, particularly those who are highly susceptible to the adverse effects of indoor noxious hazards. However, moxibustion in outpatient departments (OPDs) of traditional Chinese medicine (TCM) may be a source of indoor air pollution in hospitals. Some studies have investigated indoor air pollution during moxibustion in Chinese medicine clinics (CMCs) and moxibustion rooms, demonstrating elevated air pollutants that pose a threat to the health of medical staff and patients. Our study investigated the indoor air pollutants of indoor carbon dioxide (CO₂), carbon monoxide (CO), formaldehyde (HCHO), total volatile organic compounds (TVOCs), airborne particulate matter with a diameter of ≤10 µm (PM10) and ≤2.5 µm (PM2.5) during moxibustion in an acupuncture and moxibustion room of the OPD in a hospital in Taipei. To evaluate the different control strategies for indoor air pollution from moxibution, a comparison of air pollutants during moxibution among the methods of using alternative old moxa wools, local exhaust ventilation and an air cleaner was conducted. In this study, burning alternative old moxa wools for moxibustion obviously reduced all gaseous pollutants except for aerosols comparing burning fresh moxa wools. Using local exhaust ventilation reduced most of the aerosols after burning moxa. We also found that using an air cleaner was inefficient for controlling indoor air pollutants, particularly gaseous pollutants. Therefore, combining replacing alternative old moxa wools and local exhaust ventilation could be a suitable design for controlling indoor air pollution during moxibustion therapy.

  11. FORMALDEHYDE GAS INACTIVATION OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACE MATERIALS.

    EPA Science Inventory

    Research evaluated the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface material using formaldehyde gas. Spores were dried on seven types of indoor surfaces and exposed to 1100 ppm formaldehyde gas for 10 hr. Fo...

  12. [Effect of large-scale repair work on indoor formaldehyde levels upon and subjective symptoms in, medical students during gross anatomy dissection course].

    PubMed

    Mori, Mihoko; Hoshiko, Michiko; Hara, Kunio; Ishitake, Tatsuya; Saga, Tsuyoshi; Yamaki, Koichi

    2012-01-01

    To examine the effect of large-scale repair work on indoor formaldehyde (FA) levels and subjective symptoms in medical students during a gross anatomy dissection course. We measured the indoor FA levels, room air temperature, and room humidity during a gross anatomy dissection course. In addition, the prevalence of subjective symptoms, keeping allergy state, and wearing personal protective equipment were surveyed in two groups of students using a self-administered questionnaire. The mean indoor FA levels before and after repair work were 1.22 ppm and 0.14 ppm, respectively. The mean indoor FA level significantly decreased after repair work. The prevalences of most subjective symptoms before the anatomy practice were similar before and after the repair work. However, the prevalences of most subjective symptoms during the anatomy practice were lower after the repair work. The mean indoor FA levels and prevalences of subjective symptoms decreased after the repair work. We have to continuously monitor indoor FA levels, carry out private countermeasures to minimize exposure to FA, and maintain equipment for ventilation to be able to conduct practice in a comfortable environment.

  13. Influence of combined dust reducing carpet and compact air filtration unit on the indoor air quality of a classroom.

    PubMed

    Scheepers, Paul T J; de Hartog, Jeroen J; Reijnaerts, Judith; Beckmann, Gwendolyn; Anzion, Rob; Poels, Katrien; Godderis, Lode

    2015-02-01

    Primary schools mostly rely on natural ventilation but also have an interest in affordable technology to improve indoor air quality (IAQ). Laboratory tests show promising results for dust reducing carpets and compact air filtration systems but there is no information available on the performance of these interventions in actual operating classrooms. An exploratory study was performed to evaluate a combination of the two systems in a primary school. Measurements of PM-10 and PM-2.5 were performed by filter sampling and aerosol spectrometry. Other IAQ parameters included black smoke (BS), volatile organic compounds (VOC), nitrogen dioxide (NO2) and formaldehyde. Both interventions were introduced in one classroom during one week, using another classroom as a reference. In a second week the interventions were moved to the other classroom, using the first as a reference (cross-over design). In three remaining weeks the classrooms were compared without interventions. Indoor IAQ parameters were compared to the corresponding outdoor parameters using the indoor/outdoor (I/O) ratio. When the classrooms were occupied (teaching hours) interventions resulted in 27-43% reductions of PM-10, PM-2.5 and BS values. During the weekends the systems reduced these levels by 51-87%. Evaluations using the change in I/O ratios gave comparable results. Levels of VOC, NO2 and formaldehyde were rather low and a contribution of the interventions to the improvement of these gas phase IAQ parameters was inconclusive.

  14. Indoor air quality in green vs conventional multifamily low-income housing.

    PubMed

    Colton, Meryl D; MacNaughton, Piers; Vallarino, Jose; Kane, John; Bennett-Fripp, Mae; Spengler, John D; Adamkiewicz, Gary

    2014-07-15

    Indoor air quality is an important predictor of health, especially in low-income populations. It is unclear how recent trends in "green" building affect the indoor exposure profile. In two successive years, we conducted environmental sampling, home inspections, and health questionnaires with families in green and conventional (control) apartments in two public housing developments. A subset of participants was followed as they moved from conventional to green or conventional to conventional housing. We measured particulate matter less than 2.5 μm aerodynamic diameter (PM2.5), formaldehyde, nitrogen dioxide (NO2), nicotine, carbon dioxide (CO2), and air exchange rate (AER) over a seven-day sampling period coincident with survey administration. In multivariate models, we observed 57%, 65%, and 93% lower concentrations of PM2.5, NO2, and nicotine (respectively) in green vs control homes (p=0.032, p<0.001, p=0.003, respectively), as well as fewer reports of mold, pests, inadequate ventilation, and stuffiness. Differences in formaldehyde and CO2 were not statistically significant. AER was marginally lower in green buildings (p=0.109). Participants in green homes experienced 47% fewer sick building syndrome symptoms (p<0.010). We observed significant decreases in multiple indoor exposures and improved health outcomes among participants who moved into green housing, suggesting multilevel housing interventions have the potential to improve long-term resident health.

  15. Evaluation of pollutant source strengths and control strategies in an innovative residential high-rise building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-31

    Describes a study undertaken to assess the indoor air quality in the Clos St-Andre, a 78-unit residential complex in downtown Montreal, through the implementation of a monitoring protocol in three of the building`s suites; and to examine the relationships between mechanical ventilation, material emissions, occupant lifestyle, and indoor air pollutant concentrations. The monitoring protocol consisted of tracer gas, air exchange testing, material emission testing, airtightness testing, and the monitoring of air temperature, relative humidity, carbon dioxide, carbon monoxide, formaldehyde, and total volatile organic carbon in the suites. Trends in pollutant concentrations over time in the post-construction period are noted.

  16. Quantification of atmospheric formaldehyde by infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hoffnagle, John; Fleck, Derek; Rella, Chris; Kim-Hak, David

    2017-04-01

    Formaldehyde is a toxic, carcinogenic compound that can contaminate ambient air as a result of combustion or outgassing of commercial products such as adhesives used to fabricate plywood and to affix indoor carpeting. Like many small molecules, formaldehyde has an infrared absorption spectrum exhibiting bands of ro-vibrational transitions that are well resolved at low pressure and therefore well suited for optical analysis of formaldehyde concentration. We describe progress in applying cavity ring-down spectroscopy of the 2v5 band (the first overtone of the asymmetric C-H stretch, origin at 1770 nm) to the quantitative analysis of formaldehyde concentration in ambient air. Preliminary results suggest that a sensitivity of 1-2 ppb in a measurement interval of a few seconds, and 0.1-0.2 ppb in a few minutes, should be achievable with a compact, robust, and field-deployable instrument. Finally, we note that recent satellites monitoring snapshots of formaldehyde columns give insights into global formaldehyde production, migration and lifetime. The ability to monitor formaldehyde with a small and portable analyzer has the potential to aid in validation of these snapshots and to provide complementary data to show vertical dispersions with high spatial accuracy.

  17. Assessment of the impact of oxidation processes on indoor air pollution using the new time-resolved INCA-Indoor model

    NASA Astrophysics Data System (ADS)

    Mendez, Maxence; Blond, Nadège; Blondeau, Patrice; Schoemaecker, Coralie; Hauglustaine, Didier A.

    2015-12-01

    INCA-Indoor, a new indoor air quality (IAQ) model, has been developed to simulate the concentrations of volatile organic compounds (VOC) and oxidants considering indoor air specific processes such as: emission, ventilation, surface interactions (sorption, deposition, uptake). Based on the detailed version of SAPRC-07 chemical mechanism, INCA-Indoor is able to analyze the contribution of the production and loss pathways of key chemical species (VOCs, oxidants, radical species). The potential of this model has been tested through three complementary analyses: a comparison with the most detailed IAQ model found in the literature, focusing on oxidant species; realistic scenarios covering a large range of conditions, involving variable OH sources like HONO; and the investigation of alkenes ozonolysis under a large range of indoor conditions that can increase OH and HO2 concentrations. Simulations have been run changing nitrous acid (HONO) concentrations, NOx levels, photolysis rates and ventilation rates, showing that HONO can be the main source of indoor OH. Cleaning events using products containing D-limonene have been simulated at different periods of the day. These scenarios show that HOX concentrations can significantly increase in specific conditions. An assessment of the impact of indoor chemistry on the potential formation of secondary species such as formaldehyde (HCHO) and acetaldehyde (CH3CHO) has been carried out under various room configuration scenarios and a study of the HOx budget for different realistic scenarios has been performed. It has been shown that, under the simulation conditions, formaldehyde can be affected by oxidant concentrations via chemical production which can account for more than 10% of the total production, representing 6.5 ppb/h. On the other hand, acetaldehyde production is affected more by oxidation processes. When the photolysis rates are high, chemical processes are responsible for about 50% of the total production of acetaldehyde (9 ppb/h).

  18. Indoor climate and air quality . Review of current and future topics in the field of ISB study group 10

    NASA Astrophysics Data System (ADS)

    Höppe, P.; Martinac, Ivo

    In industrialized countries about 90% of the time is spent indoors. The ambient parameters affecting indoor thermal comfort are air temperature and humidity, air velocity, and radiant heat exchange within an enclosure. In assessing the thermal environment, one needs to consider all ambient parameters, the insulating properties of the occupants' clothing, and the activity level of the occupants by means of heat balance models of the human body. Apart from thermal parameters, air quality (measured and perceived) is also of importance for well-being and health in indoor environments. Pollutant levels are influenced by both outdoor concentrations and by indoor emissions. Indoor levels can thus be lower (e.g. in the case of ozone and SO2) or higher (e.g. for CO2 and formaldehyde) than outdoor levels. Emissions from cooking play an important role, especially in developing countries. The humidity of the ambient air has a wide range of effects on the energy and water balance of the body as well as on elasticity, air quality perception, build-up of electrostatic charge and the formation or mould. However, its effect on the indoor climate is often overestimated. While air-handling systems are commonly used for achieving comfortable indoor climates, their use has also been linked to a variety of problems, some of which have received attention within the context of ''sick building syndrome''.

  19. Indoor climate and air quality. Review of current and future topics in the field of ISB study group 10.

    PubMed

    Höppe, P; Martinac, I

    1998-08-01

    In industrialized countries about 90% of the time is spent indoors. The ambient parameters affecting indoor thermal comfort are air temperature and humidity, air velocity, and radiant heat exchange within an enclosure. In assessing the thermal environment, one needs to consider all ambient parameters, the insulating properties of the occupants' clothing, and the activity level of the occupants by means of heat balance models of the human body. Apart from thermal parameters, air quality (measured and perceived) is also of importance for well-being and health in indoor environments. Pollutant levels are influenced by both outdoor concentrations and by indoor emissions. Indoor levels can thus be lower (e.g. in the case of ozone and SO2) or higher (e.g. for CO2 and formaldehyde) than outdoor levels. Emissions from cooking play an important role, especially in developing countries. The humidity of the ambient air has a wide range of effects on the energy and water balance of the body as well as on elasticity, air quality perception, build-up of electrostatic charge and the formation or mould. However, its effect on the indoor climate is often overestimated. While air-handling systems are commonly used for achieving comfortable indoor climates, their use has also been linked to a variety of problems, some of which have received attention within the context of "sick building syndrome".

  20. Indoor Air Quality in the Metro System in North Taiwan

    PubMed Central

    Chen, Ying-Yi; Sung, Fung-Chang; Chen, Mei-Lien; Mao, I-Fang; Lu, Chung-Yen

    2016-01-01

    Indoor air pollution is an increasing health concern, especially in enclosed environments such as underground subway stations because of increased global usage by urban populations. This study measured the indoor air quality of underground platforms at 10 metro stations of the Taipei Rapid Transit system (TRTS) in Taiwan, including humidity, temperature, carbon monoxide (CO), carbon dioxide (CO2), formaldehyde (HCHO), total volatile organic compounds (TVOCs), ozone (O3), airborne particulate matter (PM10 and PM2.5), bacteria and fungi. Results showed that the CO2, CO and HCHO levels met the stipulated standards as regulated by Taiwan’s Indoor Air Quality Management Act (TIAQMA). However, elevated PM10 and PM2.5 levels were measured at most stations. TVOCs and bacterial concentrations at some stations measured in summer were higher than the regulated standards stipulated by Taiwan’s Environmental Protection Administration. Further studies should be conducted to reduce particulate matters, TVOCs and bacteria in the air of subway stations. PMID:27918460

  1. Assessment and predictor determination of indoor aldehyde levels in Paris newborn babies' homes.

    PubMed

    Dassonville, C; Demattei, C; Laurent, A-M; Le Moullec, Y; Seta, N; Momas, I

    2009-08-01

    Exposure to indoor chemical air pollutants expected to be potentially involved in allergic respiratory diseases in infants is poorly documented. A specific environmental investigation included in a birth cohort study was carried out to first assess indoor airborne aldehyde levels, using passive devices and their variability within 1 year (1, 6, 9 and 12 months) in the bedroom of 196 Paris infants, and second, to identify predictors for aldehyde concentrations using interviewer administered questionnaires about housing factors. Comfort parameters and carbon dioxide levels were measured simultaneously. Aldehydes were detected in almost all dwellings and geometric mean levels (geometric standard deviation) at the first visit were respectively for formaldehyde, acetaldehyde, hexanal, and pentanal 19.4 (1.7) microg/m(3), 8.9 (1.8) microg/m(3), 25.3 (3.1) microg/m(3), 3.7 (2.3) microg/m(3), consistent with earlier published results. Generalized Estimating Equation multivariate analyses showed that, apart from comfort parameters, aeration and season, the main indoor aldehyde sources were either continuous (building materials and coverings especially when they were new) or discontinuous (smoking, use of air fresheners and cleaning products, DIY etc...). Finally, the data collected by questionnaires should be sufficient to enable us to classify each infant in our cohort study according to his/her degree of exposure to the main aldehydes. This analysis contributed to document indoor aldehyde levels in Parisian homes and to identify factors determining these levels. In the major part of newborn babies' homes, indoor formaldehyde levels were above the guideline value of 10 microg/m(3) proposed by the French Agency for Environmental and Occupational Health Safety for long-term exposure. Given this result, it is essential to study the health impact of exposure to aldehydes especially formaldehyde on the incidence of respiratory and allergic symptoms, particularly during the first months of life.

  2. The Effect of Golden Pothos in Reducing the Level of Volatile Organic Compounds in a Simulated Spacecraft Cabin

    NASA Technical Reports Server (NTRS)

    Ursprung, Matthew; Amiri, Azita; Kayatin, Matthew; Perry, Jay

    2016-01-01

    The impact of Golden Pothos on indoor air quality was studied against a simulated spacecraft trace contaminant load model, consistent with the International Space Station (ISS), containing volatile organic compounds (VOCs) and formaldehyde. Previous research provides inconclusive results on the efficacy of plant VOC removal which this projects seeks to rectify through a better experimental design. This work develops a passive system for removing common VOC's from spacecraft and household indoor air and decreasing the necessity for active cabin trace contaminant removal systems.

  3. Ventilation in homes infested by house-dust mites.

    PubMed

    Sundell, J; Wickman, M; Pershagen, G; Nordvall, S L

    1995-02-01

    Thirty single-family homes with either high (> or = 2000 ng/g) or low (< or = 1000 ng/g) house-dust mite (HDM) allergen levels in mattress dust were examined for ventilation, thermal climate, and air quality (formaldehyde and total volatile organic compounds (TVOC). Elevated concentrations of HDM allergen in mattress and floor dust were associated with the difference in absolute humidity between indoor and outdoor air, as well as with low air-change rates of the home, particularly the bedroom. No correlation was found between concentration of TVOC or formaldehyde in bedroom air and HDM allergen concentration. In regions with a cold winter climate, the air-change rate of the home and the infiltration of outdoor air into the bedroom appear to be important for the infestation of HDM.

  4. Experimental investigation of the formaldehyde removal mechanisms in a dynamic botanical filtration system for indoor air purification.

    PubMed

    Wang, Zhiqiang; Pei, Jingjing; Zhang, Jensen S

    2014-09-15

    Botanical filtration has been proved to be effective for indoor gas pollutant removal. To understand the roles of different transport, storage and removal mechanism by a dynamic botanical air filter, a series of experimental investigations were designed and conducted in this paper. Golden Pothos (Epipremnum aureum) plants was selected for test, and its original soil or activated/pebbles root bed was used in different test cases. It was found that flowing air through the root bed with microbes dynamically was essential to obtain meaningful formaldehyde removal efficiency. For static potted plant as normally place in rooms, the clean air delivery rate (CADR), which is often used to quantify the air cleaning ability of portable air cleaners, was only ∼ 5.1m(3)/h per m(2) bed, while when dynamically with air flow through the bed, the CADR increased to ∼ 233 m(3)/h per m(2) bed. The calculated CADR due to microbial activity is ∼ 108 m(3)/h per m(2) bed. Moisture in the root bed also played an important role, both for maintaining a favorable living condition for microbes and for absorbing water-soluble compounds such as formaldehyde. The role of the plant was to introduce and maintain a favorable microbe community which effectively degraded the volatile organic compounds adsorbed or absorbed by the root bed. The presence of the plant increased the removal efficiency by a factor of two based on the results from the bench-scale root bed experiments. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Formaldehyde exposure in gross anatomy laboratory of Suranaree University of Technology: a comparison of area and personal sampling.

    PubMed

    Saowakon, Naruwan; Ngernsoungnern, Piyada; Watcharavitoon, Pornpun; Ngernsoungnern, Apichart; Kosanlavit, Rachain

    2015-12-01

    Cadavers are usually preserved by embalming solution which is composed of formaldehyde (FA), phenol, and glycerol. Therefore, medical students and instructors have a higher risk of exposure to FA inhalation from cadavers during dissection. Therefore, the objective of this study was to evaluate the FA exposure in indoor air and breathing zone of medical students and instructors during dissection classes in order to investigate the relationship between them. The indoor air and personal air samples in breathing zone were collected three times during anatomy dissection classes (in January, August, and October of 2014) with sorbent tubes, which were analyzed by high-performance liquid chromatography (HPLC). The air cleaner machines were determined by weight measurement. Pulmonary function tests and irritation effects were also investigated. The mean of FA concentrations ranged from 0.117 to 0.415 ppm in the indoor air and from 0.126 to 1.176 ppm in the breathing zone of students and instructors. All the personal exposure data obtained exceeded the threshold limit of NIOSH and WHO agencies. The air cleaner machines were not significant difference. The pulmonary function of instructors showed a decrease during attention of classes and statistically significant decreasing in the instructors more than those of the students. Clinical symptoms that were observed in nose and eyes were irritations with general fatigue. We suggested that the modified exhaust ventilation and a locally ventilated dissection work table were considered for reducing FA levels in the gross anatomy dissection room.

  6. TVOC and formaldehyde emission behaviors from flooring materials bonded with environmental-friendly MF/PVAc hybrid resins.

    PubMed

    Kim, Sumin; Kim, Jin-A; An, Jae-Yoon; Kim, Hyun-Joong; Kim, Shin Do; Park, Jin Chul

    2007-10-01

    Polyvinyl acetate (PVAc) was added as a replacement for melamine-formaldehyde (MF) resin in the formaldehyde-based resin system to reduce formaldehyde and volatile organic compound (VOC) emissions from the adhesives used between plywoods and fancy veneers. A variety of techniques, including 20-l chamber, field and laboratory emission cell (FLEC), VOC analyzer and standard formaldehyde emission test (desiccator method), were used to determine the formaldehyde and VOC emissions from engineered flooring bonded with five different MF resin and PVAc blends at MF/PVAc ratios of 100:0, 70:30, 50:50, 30:70 and 0:100. Although urea-formaldehyde (UF) resin had the highest formaldehyde emission, the emission as determined by desiccator method was reduced by exchanging with MF resin. Furthermore, the formaldehyde emission level was decreased with increasing addition of PVAc as the replacement for MF resin. UF resin in the case of beech was over 5.0 mg/l, which exceeded E2 (1.5-5.0 mg/l) grade. However, MF30:PVAc70 was

  7. Partially-irreversible sorption of formaldehyde in five polymers

    NASA Astrophysics Data System (ADS)

    Ye, Wei; Cox, Steven S.; Zhao, Xiaomin; Frazier, Charles E.; Little, John C.

    2014-12-01

    Due to its environmental ubiquity and concern over its potential toxicity, the mass-transfer characteristics of formaldehyde are of critical importance to indoor air quality research. Previous studies have suggested that formaldehyde mass transfer in polymer is partially irreversible. In this study, mechanisms that could cause the observed irreversibility were investigated. Polycarbonate and four other polymeric matrices were selected and subjected to formaldehyde sorption/desorption cycles. Mass transfer of formaldehyde was partially irreversible in all cases, and three potential mechanisms were evaluated. First, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analysis was used to investigate possible formaldehyde polymerization on polymer surfaces. ATR-FTIR showed no detectable paraformaldehyde or formaldehyde on the film surfaces that had been exposed to formaldehyde and air. ATR-FTIR did detect aliphatic acids suggesting oxidation had occurred on film surfaces as a result of exposure to formaldehyde. However, additional study suggested that air is not the primary cause for irreversibility. Second, statistical physics theory was tested as a possible explanation. According to this theory, reversible and irreversible sorption could be taking place simultaneously. The irreversible fraction should be constant during sorption and the fraction could be determined by performing a complete sorption/desorption test. The sorption/desorption data was consistent with this theory. Third, chemisorption was considered as another possible cause for irreversibility. Extraction/fluorimetry testing of post-sorption and post-desorption polymer films showed measurable quantities of formaldehyde suggesting that some of the chemisorbed formaldehyde was reversible at the higher extraction temperature. Further quantitative study on chemical reaction products is needed.

  8. A pilot study using scripted ventilation conditions to identify key factors affecting indoor pollutant concentration and air exchange rate in a residence.

    PubMed

    Johnson, Ted; Myers, Jeffrey; Kelly, Thomas; Wisbith, Anthony; Ollison, Will

    2004-01-01

    A pilot study was conducted using an occupied, single-family test house in Columbus, OH, to determine whether a script-based protocol could be used to obtain data useful in identifying the key factors affecting air-exchange rate (AER) and the relationship between indoor and outdoor concentrations of selected traffic-related air pollutants. The test script called for hourly changes to elements of the test house considered likely to influence air flow and AER, including the position (open or closed) of each window and door and the operation (on/off) of the furnace, air conditioner, and ceiling fans. The script was implemented over a 3-day period (January 30-February 1, 2002) during which technicians collected hourly-average data for AER, indoor, and outdoor air concentrations for six pollutants (benzene, formaldehyde (HCHO), polycyclic aromatic hydrocarbons (PAH), carbon monoxide (CO), nitric oxide (NO), and nitrogen oxides (NO(x))), and selected meteorological variables. Consistent with expectations, AER tended to increase with the number of open exterior windows and doors. The 39 AER values measured during the study when all exterior doors and windows were closed varied from 0.36 to 2.29 h(-1) with a geometric mean (GM) of 0.77 h(-1) and a geometric standard deviation (GSD) of 1.435. The 27 AER values measured when at least one exterior door or window was opened varied from 0.50 to 15.8 h(-1) with a GM of 1.98 h(-1) and a GSD of 1.902. AER was also affected by temperature and wind speed, most noticeably when exterior windows and doors were closed. Results of a series of stepwise linear regression analyses suggest that (1) outdoor pollutant concentration and (2) indoor pollutant concentration during the preceding hour were the "variables of choice" for predicting indoor pollutant concentration in the test house under the conditions of this study. Depending on the pollutant and ventilation conditions, one or more of the following variables produced a small, but significant increase in the explained variance (R(2)-value) of the regression equations: AER, number and location of apertures, wind speed, air-conditioning operation, indoor temperature, outdoor temperature, and relative humidity. The indoor concentrations of CO, PAH, NO, and NO(x) were highly correlated with the corresponding outdoor concentrations. The indoor benzene concentrations showed only moderate correlation with outdoor benzene levels, possibly due to a weak indoor source. Indoor formaldehyde concentrations always exceeded outdoor levels, and the correlation between indoor and outdoor concentrations was not statistically significant, indicating the presence of a strong indoor source.

  9. [Current data on atmospheric pollutions].

    PubMed

    Festy, B; Petit-Coviaux, F; Le Moullec, Y

    1991-01-01

    Atmospheric pollutions (AP) are very important for human health and ecological equilibrium. They may be natural or anthropogenic and in this later case they can appear outdoor or indoor. Urban air pollution is the most known form of AP. Its main sources are industries, individual and collective heating and now mainly automobile traffic in most cities. Classical AP indicators are SO2, particles, NOx, CO and Pb measured in networks. Important factors of AP are amounts of pollutants emitted and local climatic and meteorological characteristics. Health effects of AP peaks and of AP background levels are not well known. But generally, mean AP levels of SO2 and particles decreased in the last years in most towns as the consequence of collective actions on the three main sources of AP and on fuels, emission and immission levels; but more is wanted about motor-cars. Progress are necessary for limitation of three major ecological risks: "acid-rain" (SO2 and NOx derivatives, ozone,...) which participates in lake and forest attacks; "green house" effects whose air CO2 concentration increase is the main responsible, and stratospheric ozone depletion mainly due to freons (CFC); the consequences of these two last phenomena are not well known but ecological and health risk exist. Besides, indoor air pollution (IAP) is very important because we live more than 20 h a day indoor. IAP may be occupational (a lot of chemical or biological agents) or not. In the later case air pollutants are very various: CO, NOx and particles from heating or cooking, formaldehyde from wood glue, plywood or urea-formol foams, radon and derivatives in some granitic countries, odd jobs products, cosmetics, aero-allergens of chemical or biological origins, microbes,... Environmental tobacco smoke (ETS) is also an important pollutant complex. Risks of IAP are real or potential: acute risk is obvious for CO, aero-allergens, formaldehyde, NOx,...); irritations are produced by ETS, formaldehyde, solvants,...; long term or potential risks are of concern for asbest, radon,... A complex and bad known pathology is described in a lot of modern buildings as the "Sick Building Syndrom". Indoor air quality is very dependant of the quality of ventilation and possible air treatment. It may be considered in all urban epidemiological studies about air pollution.

  10. California's program: Indoor air problems aren't amenable to regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wesolowski, J.

    In 1982, California's legislature established an Indoor Air Quality Program (CIAQP) in the Department of Health Services to carry out research on the nature and extent of the indoor air problem (excluding industrial worksites), to find appropriate mitigation measures, and to promote and coordinate the efforts of other state agencies. Since indoor air problems usually are not amenable to regulatory solutions, regulatory authority was not included in the mandate. The program conducts research into a wide range of contaminants--radon, asbestos, formaldehyde, carbon monoxide, volatile organic compounds, environmental tobacco smoke (ETS), as well as into biological aerosols that cause such diseasesmore » as Legionnaires disease, tuberculosis, allergies, and asthma. Studies are also carried out to better understand the Sick Building Syndrome. The research includes field surveys to determine the exposure of the population to specific contaminants and experiments in the laboratory to develop protocols for reducing exposures. The research emphasizes measurement of exposure--concentration multiplied by the time a person is exposed--as opposed to measurement of concentration only.« less

  11. Assessment of indoor air quality in office buildings across Europe - The OFFICAIR study.

    PubMed

    Mandin, Corinne; Trantallidi, Marilena; Cattaneo, Andrea; Canha, Nuno; Mihucz, Victor G; Szigeti, Tamás; Mabilia, Rosanna; Perreca, Erica; Spinazzè, Andrea; Fossati, Serena; De Kluizenaar, Yvonne; Cornelissen, Eric; Sakellaris, Ioannis; Saraga, Dikaia; Hänninen, Otto; De Oliveira Fernandes, Eduardo; Ventura, Gabriela; Wolkoff, Peder; Carrer, Paolo; Bartzis, John

    2017-02-01

    The European project OFFICAIR aimed to broaden the existing knowledge regarding indoor air quality (IAQ) in modern office buildings, i.e., recently built or refurbished buildings. Thirty-seven office buildings participated in the summer campaign (2012), and thirty-five participated in the winter campaign (2012-2013). Four rooms were investigated per building. The target pollutants were twelve volatile organic compounds, seven aldehydes, ozone, nitrogen dioxide and particulate matter with aerodynamic diameter <2.5μm (PM 2.5 ). Compared to other studies in office buildings, the benzene, toluene, ethylbenzene, and xylene concentrations were lower in OFFICAIR buildings, while the α-pinene and d-limonene concentrations were higher, and the aldehyde, nitrogen dioxide and PM 2.5 concentrations were of the same order of magnitude. When comparing summer and winter, significantly higher concentrations were measured in summer for formaldehyde and ozone, and in winter for benzene, α-pinene, d-limonene, and nitrogen dioxide. The terpene and 2-ethylhexanol concentrations showed heterogeneity within buildings regardless of the season. Considering the average of the summer and winter concentrations, the acetaldehyde and hexanal concentrations tended to increase by 4-5% on average with every floor level increase, and the nitrogen dioxide concentration tended to decrease by 3% on average with every floor level increase. A preliminary evaluation of IAQ in terms of potential irritative and respiratory health effects was performed. The 5-day median and maximum indoor air concentrations of formaldehyde and ozone did not exceed their respective WHO air quality guidelines, and those of acrolein, α-pinene, and d-limonene were lower than their estimated thresholds for irritative and respiratory effects. PM 2.5 indoor concentrations were higher than the 24-h and annual WHO ambient air quality guidelines. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Results of the California Healthy Homes Indoor Air Quality Study of 2011-2013: impact of natural gas appliances on air pollutant concentrations.

    PubMed

    Mullen, N A; Li, J; Russell, M L; Spears, M; Less, B D; Singer, B C

    2016-04-01

    This study was conducted to assess the current impact of natural gas appliances on air quality in California homes. Data were collected via telephone interviews and measurements inside and outside of 352 homes. Passive samplers measured time-resolved CO and time-integrated NOX , NO2 , formaldehyde, and acetaldehyde over ~6-day periods in November 2011 - April 2012 and October 2012 - March 2013. The fraction of indoor NOX and NO2 attributable to indoor sources was estimated. NOX , NO2 , and highest 1-h CO were higher in homes that cooked with gas and increased with amount of gas cooking. NOX and NO2 were higher in homes with cooktop pilot burners, relative to gas cooking without pilots. Homes with a pilot burner on a floor or wall furnace had higher kitchen and bedroom NOX and NO2 compared to homes without a furnace pilot. When scaled to account for varying home size and mixing volume, indoor-attributed bedroom and kitchen NOX and kitchen NO2 were not higher in homes with wall or floor furnace pilot burners, although bedroom NO2 was higher. In homes that cooked 4 h or more with gas, self-reported use of kitchen exhaust was associated with lower NOX , NO2 , and highest 1-h CO. Gas appliances were not associated with higher concentrations of formaldehyde or acetaldehyde. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Results of the California Healthy Homes Indoor Air Quality Study of 2011-2013: Impact of natural gas appliances on air pollutant concentrations

    DOE PAGES

    Mullen, Nasim A.; Li, Jina; Russell, Marion L.; ...

    2015-03-17

    This study was conducted to assess the current impact of natural gas appliances on air quality in California homes. Data were collected via telephone interviews and measurements inside and outside of 352 homes. Passive samplers measured time-resolved CO and time-integrated NO X, NO 2, formaldehyde, and acetaldehyde over ~6d periods in November 2011 - April 2012 and October 2012 - March 2013. The fraction of indoor NO X and NO 2 attributable to indoor sources was estimated. NO X, NO 2 and highest 1-h CO were higher in homes that cooked with gas and increased with amount of gas cooking.more » NO X and NO 2 were higher in homes with cooktop pilot burners, relative to gas cooking without pilots. Homes with a pilot burner on a floor or wall furnace had higher kitchen and bedroom NO X and NO 2 compared to homes without a furnace pilot. When scaled to account for varying home size and mixing volume, indoor-attributed bedroom and kitchen NO X and kitchen NO 2 were not higher in homes with wall or floor furnace pilot burners, though bedroom NO 2 was higher. In homes that cooked 4 h or more with gas, self-reported use of kitchen exhaust was associated with lower NO X, NO 2 and highest 1-h CO. Gas appliances were not associated with higher concentrations of formaldehyde or acetaldehyde.« less

  14. Results of the California Healthy Homes Indoor Air Quality Study of 2011-2013: Impact of natural gas appliances on air pollutant concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullen, Nasim A.; Li, Jina; Russell, Marion L.

    This study was conducted to assess the current impact of natural gas appliances on air quality in California homes. Data were collected via telephone interviews and measurements inside and outside of 352 homes. Passive samplers measured time-resolved CO and time-integrated NO X, NO 2, formaldehyde, and acetaldehyde over ~6d periods in November 2011 - April 2012 and October 2012 - March 2013. The fraction of indoor NO X and NO 2 attributable to indoor sources was estimated. NO X, NO 2 and highest 1-h CO were higher in homes that cooked with gas and increased with amount of gas cooking.more » NO X and NO 2 were higher in homes with cooktop pilot burners, relative to gas cooking without pilots. Homes with a pilot burner on a floor or wall furnace had higher kitchen and bedroom NO X and NO 2 compared to homes without a furnace pilot. When scaled to account for varying home size and mixing volume, indoor-attributed bedroom and kitchen NO X and kitchen NO 2 were not higher in homes with wall or floor furnace pilot burners, though bedroom NO 2 was higher. In homes that cooked 4 h or more with gas, self-reported use of kitchen exhaust was associated with lower NO X, NO 2 and highest 1-h CO. Gas appliances were not associated with higher concentrations of formaldehyde or acetaldehyde.« less

  15. The Structural Insulated Panel SIP Hut: Preliminary Evaluation of Energy Efficiency and Indoor Air Quality

    DTIC Science & Technology

    2015-08-19

    laboratory analysis using EPA TO-15, and collection of gas samples in sorbent tubes for later analysis of aldehydes using NIOSH Method 2016. Total VOCs...measurement can be a general qualitative indicator of IAQ problems; formaldehyde and other aldehydes are common organic gases emitted from OSB; and...table in the middle of the hut. 5.1.2.3 Formaldehyde and other aldehydes Aldehydes were measured using both Dräger-tubes and by NIOSH Method 2016. The

  16. Sorption and reemission of formaldehyde by gypsum wallboard. Report for June 1990-August 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, J.C.S.

    1993-01-01

    The paper gives results of an analysis of the sorption and desorption of formaldehyde by unpainted wallboard, using a mass transfer model based on the Langmuir sorption isotherm. The sorption and desorption rate constants are determined by short-term experimental data. Long-term sorption and desorption curves are developed by the mass transfer model without any adjustable parameters. Compared with other empirically developed models, the mass transfer model has more extensive applicability and provides an elucidation of the sorption and desorption mechanism that empirical models cannot. The mass transfer model is also more feasible and accurate than empirical models for applications suchmore » as scale-up and exposure assessment. For a typical indoor environment, the model predicts that gypsum wallboard is a much stronger sink for formaldehyde than for other indoor air pollutants such as tetrachloroethylene and ethylbenzene. The strong sink effects are reflected by the high equilibrium capacity and slow decay of the desorption curve.« less

  17. Formaldehyde gas inactivation of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials.

    PubMed

    Rogers, J V; Choi, Y W; Richter, W R; Rudnicki, D C; Joseph, D W; Sabourin, C L K; Taylor, M L; Chang, J C S

    2007-10-01

    To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using formaldehyde gas. B. anthracis, B. subtilis, and G. stearothermophilus spores were dried on seven types of indoor surfaces and exposed to approx. 1100 ppm formaldehyde gas for 10 h. Formaldehyde exposure significantly decreased viable B. anthracis, B. subtilis, and G. stearothermophilus spores on all test materials. Significant differences were observed when comparing the reduction in viable spores of B. anthracis with B. subtilis (galvanized metal and painted wallboard paper) and G. stearothermophilus (industrial carpet and painted wallboard paper). Formaldehyde gas inactivated>or=50% of the biological indicators and spore strips (approx. 1x10(6) CFU) when analyzed after 1 and 7 days. Formaldehyde gas significantly reduced the number of viable spores on both porous and nonporous materials in which the two surrogates exhibited similar log reductions to that of B. anthracis on most test materials. These results provide new comparative information for the decontamination of B. anthracis spores with surrogates on indoor surfaces using formaldehyde gas.

  18. Needle-array to Plate DBD Plasma Using Sine AC and Nanosecond Pulse Excitations for Purpose of Improving Indoor Air Quality

    PubMed Central

    Zhang, Li; Yang, Dezheng; Wang, Wenchun; Wang, Sen; Yuan, Hao; Zhao, Zilu; Sang, Chaofeng; Jia, Li

    2016-01-01

    In this study, needle-array to plate electrode configuration was employed to generate an atmospheric air diffuse discharge using both nanosecond pulse and sine AC voltage as excitation voltage for the purpose of improving indoor air quality. Different types of voltage sources and electrode configurations are employed to optimize electrical field distribution and improve discharge stability. Discharge images, electrical characteristics, optical emission spectra, and plasma gas temperatures in both sine AC discharge and nanosecond pulse discharge were compared and the discharge stability during long operating time were discussed. Compared with the discharge excited by sine AC voltage, the nanosecond pulsed discharge is more homogenous and stable, besides, the plasma gas temperature of nanosecond pulse discharge is much lower. Using packed-bed structure, where γ- Al2O3 pellets are filled in the electrode gap, has obvious efficacy in the production of homogenous discharge. Furthermore, both sine AC discharge and nanosecond pulse discharge were used for removing formaldehyde from flowing air. It shows that nanosecond pulse discharge has a significant advantage in energy cost. And the main physiochemical processes for the generation of active species and the degradation of formaldehyde were discussed. PMID:27125663

  19. Building America Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts, Tyler, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ?Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, andmore » filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy.« less

  20. Irritants and allergens at school in relation to furnishings and cleaning.

    PubMed

    Smedje, G; Norbäck, D

    2001-06-01

    In order to study the influence of furnishings and cleaning on the indoor air quality at school, 181 randomly chosen classrooms were investigated. The amounts of open shelves, textiles and other fittings were noted, data were gathered on cleaning routines, and a number of pollutants were measured in the classrooms. In classrooms with more fabrics there was more settled dust and the concentration of formaldehyde was higher. Classrooms with more open shelves had more formaldehyde, and more pet allergens in settled dust, and classrooms with a white board, instead of a chalk board, were less dusty. Classrooms mainly cleaned through wet mopping had more airborne viable bacteria but less settled dust than classrooms mainly cleaned by dry methods. In rooms where the desks and curtains were more often cleaned, the concentrations of cat and dog allergen in settled dust were lower. It is concluded that furnishings and textiles in the classroom act as significant reservoirs of irritants and allergens and have an impact on the indoor air quality at school.

  1. Setting up the criteria and credit-awarding scheme for building interior material selection to achieve better indoor air quality.

    PubMed

    Niu, J L; Burnett, J

    2001-06-01

    Methods, standards, and regulations that are aimed to reduce indoor air pollution from building materials are critically reviewed. These are classified as content control and emission control. Methods and standards can be found in both of these two classes. In the regulation domain, only content control is enforced in some countries and some regions, and asbestos is the only building material that is banned for building use. The controlled pollutants include heavy metals, radon, formaldehyde, and volatile organic compounds (VOCs). Emission rate control based upon environment chamber testing is very much in the nature of voluntary product labeling and ranking, and this mainly targets formaldehyde and VOC emissions. It is suggested that radon emission from building materials should be subject to similar emission rate control. A comprehensive set criteria and credit-awarding scheme that encourages the use of low-emission building material is synthesized, and how this scheme can be practiced in building design is proposed and discussed.

  2. Quantification of Atmospheric Formaldehyde by Near-Infrared Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rella, C.; Hoffnagle, J.; Fleck, D.; Kim-Hak, D.

    2017-12-01

    Formaldehyde is an important species in atmospheric chemistry, especially in urban environments, where it is a decay product of methane and volatile hydrocarbons. It is also a toxic, carcinogenic compound that can contaminate ambient air from incomplete combustion, or outgassing of commercial products such as adhesives used to fabricate plywood or to affix indoor carpeting. Formaldehyde has a clearly resolved ro-vibrational absorption spectrum that is well-suited to optical analysis of formaldehyde concentration. We describe an instrument based on cavity ring-down spectroscopy for the quantitative analysis of formaldehyde concentration in ambient air. The instrument has a precision (1-sigma) of about 1 ppb at a measurement rate of 1 second, and provides measurements of less than 100 ppt with averaging. The instrument provides stable measurements (drift < 1 ppb) over long periods of time (days). The instrument has been ruggedized for mobile applications, and with a fast response time of a couple of seconds, it is suitable for ground-based vehicle deployments for fenceline monitoring of formaldehyde emissions. In addition, we report on ambient atmospheric measurements at a 10m urban tower, which demonstrate the suitability of the instrument for applications in atmospheric chemistry.

  3. Calibrated energy simulations of potential energy savings in actual retail buildings

    NASA Astrophysics Data System (ADS)

    Alhafi, Zuhaira

    Retail stores are commercial buildings with high energy consumption due to their typically large volumes and long hours of operation. This dissertation assesses heating, ventilating and air conditioning saving strategies based on energy simulations with input parameters from actual retail buildings. The dissertation hypothesis is that "Retail store buildings will save a significant amount of energy by (1) modifying ventilation rates, and/or (2) resetting set point temperatures. These strategies have shown to be beneficial in previous studies. As presented in the literature review, potential energy savings ranged from 0.5% to 30% without compromising indoor thermal comfort and indoor air quality. The retail store buildings can be ventilated at rates significantly lower than rates called for in the ASHRAE Standard 62.1-2010 while maintaining acceptable indoor air quality. Therefore, two dissertation objectives are addressed: (1) Investigate opportunities to reduce ventilation rates that do not compromise indoor air quality in retail stores located in Central Pennsylvania, (2) Investigate opportunities to increase (in summer) and decrease (in winter) set point temperatures that do not compromise thermal comfort. This study conducted experimental measurements of ventilation rates required to maintain acceptable air quality and indoor environmental conditions requirements for two retail stores using ASHRAE Standard 62.1_2012. More specifically, among other parameters, occupancy density, indoor and outdoor pollutant concentrations, and indoor temperatures were measured continuously for one week interval. One of these retail stores were tested four times for a yearlong time period. Pollutants monitored were formaldehyde, carbon dioxide, particle size distributions and concentrations, as well as total volatile organic compounds. As a part of the base protocol, the number of occupants in each store was hourly counted during the test, and the results reveal that the occupant densities were approximately 20% to 30% of that called by ASHRAE 62.1. Formaldehyde was the most important contaminant of concern in retail stores investigated. Both stores exceeded the most conservative health guideline for formaldehyde (OEHHA TWA REL = 7.3 ppb). This study found that source removal and reducing the emission rate, as demonstrated in retail stores sampled in this study, is a viable strategy to meet the health guideline. Total volatile compound were present in retail stores at low concentrations well below health guidelines suggested by Molhave (1700microg /m 2) and Bridges (1000 microg /m2). Based on these results and through mass--balance modeling, different ventilation rate reduction scenarios were proposed, and for these scenarios the differences in energy consumption were estimated. Findings of all phases of this desertion have contributed to understanding (a) the trade-off between energy savings and ventilation rates that do not compromise indoor air quality, and (b) the trade-off between energy savings and resets of indoor air temperature that do not compromise thermal comfort. Two models for retail stores were built and calibrated and validated against actual utility bills. Energy simulation results indicated that by lowering the ventilation rates from measured and minimum references would reduce natural gas energy use by estimated values of 6% to 19%. Also, this study found that the electrical cooling energy consumption was not significantly sensitive to different ventilation rates. However, increasing indoor air temperature by 3°C in summer had a significant effect on the energy savings. In winter, both energy savings strategies, ventilation reduction and decrease in set points, had a significant effect on natural gas consumption. Specially, when the indoor air temperature 21°C was decreased to 19.4°C with the same amount of ventilation rate of Molhaves guideline for both cases. Interestingly, the temperature of 23.8°C (75°F), which is the lowest value of ASHRAE 55 thermal comfort for sedentary people (cashiers) and the highest value for thermal comfort adjustments due to activity level (customers and workers) that are calculated by using empirical equation, was the optimum temperature for sedentary and active people in Retail store buildings.

  4. Technology Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Rudd and D. Bergey

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, andmore » filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs.« less

  5. Volatile organic compounds in fourteen U.S. retail stores.

    PubMed

    Nirlo, E L; Crain, N; Corsi, R L; Siegel, J A

    2014-10-01

    Retail buildings have a potential for both short-term (customer) and long-term (occupational) exposure to indoor pollutants. However, little is known about volatile organic compound (VOC) concentrations in the retail sector and influencing factors, such as ventilation, in-store activities, and store type. We measured VOC concentrations and ventilation rates in 14 retail stores in Texas and Pennsylvania. With the exception of formaldehyde and acetaldehyde, VOCs were present in retail stores at concentrations well below health guidelines. Indoor formaldehyde concentrations ranged from 4.6 ppb to 67 ppb. The two mid-sized grocery stores in the sample had the highest levels of ethanol and acetaldehyde, with concentrations up to 2.6 ppm and 92 ppb, respectively, possibly due to the preparation of dough and baking activities. Indoor-to-outdoor concentration ratios indicated that indoor sources were the main contributors to indoor VOC concentrations for the majority of compounds. There was no strong correlation between ventilation and VOC concentrations across all stores. However, increasing the air exchange rates at two stores led to lower indoor VOC concentrations, suggesting that ventilation can be used to reduce concentrations for some specific stores. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Indoor air quality at nine shopping malls in Hong Kong.

    PubMed

    Li, W M; Lee, S C; Chan, L Y

    2001-06-12

    Hong Kong is one of the most attractive shopping paradises in the world. Many local people and international tourists favor to spend their time in shopping malls in Hong Kong. Good indoor air quality is, therefore, very essential to shoppers. In order to characterize the indoor air quality in shopping malls, nine shopping malls in Hong Kong were selected for this study. The indoor air pollutants included carbon dioxide (CO2), carbon monoxide (CO), total hydrocarbons (THC), formaldehyde (HCHO), respirable particulate matter (PM10) and total bacteria count (TBC). More than 40% of the shopping malls had 1-h average CO2 levels above the 1000 ppm of the ASHRAE standard on both weekdays and weekends. Also, they had average weekday PM10 concentrations that exceeded the Hong Kong Indoor Air Quality Objective (HKIAQO). The highest indoor PM10 level at a mall was 380 microg/m3. Of the malls surveyed, 30% had indoor airborne bacteria levels above 1000 cfu/m3 set by the HKIAQO. The elevated indoor CO2 and bacteria levels could result from high occupancy combined with insufficient ventilation. The increased PM10 levels could be probably attributed to illegal smoking inside these establishments. In comparison, the shopping malls that contained internal public transport drop-off areas, where vehicles were parked with idling engines and had major entry doors close to heavy traffic roads had higher CO and PM10 indoor levels. In addition, the extensive use of cooking stoves without adequate ventilation inside food courts could increase indoor CO2, CO and PM10 levels.

  7. Can ornamental potted plants remove volatile organic compounds from indoor air? A review.

    PubMed

    Dela Cruz, Majbrit; Christensen, Jan H; Thomsen, Jane Dyrhauge; Müller, Renate

    2014-12-01

    Volatile organic compounds (VOCs) are found in indoor air, and many of these can affect human health (e.g. formaldehyde and benzene are carcinogenic). Plants affect the levels of VOCs in indoor environments, thus they represent a potential green solution for improving indoor air quality that at the same time can improve human health. This article reviews scientific studies of plants' ability to remove VOCs from indoor air. The focus of the review is on pathways of VOC removal by the plants and factors affecting the efficiency and rate of VOC removal by plants. Laboratory based studies indicate that plant induced removal of VOCs is a combination of direct (e.g. absorption) and indirect (e.g. biotransformation by microorganisms) mechanisms. They also demonstrate that plants' rate of reducing the level of VOCs is influenced by a number of factors such as plant species, light intensity and VOC concentration. For instance, an increase in light intensity has in some studies been shown to lead to an increase in removal of a pollutant. Studies conducted in real-life settings such as offices and homes are few and show mixed results.

  8. Measurement and health risk assessment of PM2.5, flame retardants, carbonyls and black carbon in indoor and outdoor air in kindergartens in Hong Kong.

    PubMed

    Deng, Wen-Jing; Zheng, Hai-Long; Tsui, Anita K Y; Chen, Xun-Wen

    2016-11-01

    Indoor air pollution is closely related to children's health. Polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DP) transmitted through indoor PM 2.5 and dust, along with carbonyl compounds and black carbon (BC) aerosol were analysed in five Hong Kong kindergartens. The results showed that 60% of the median PM 2.5 levels (1.3×10 1 to 2.9×10 1 μg/m 3 for indoor; 9.5 to 8.8×10 1 μg/m 3 for outdoor) in the five kindergartens were higher than the guidelines set by the World Health Organization (2.5×10 1 μg/m 3 ). Indoor PM 2.5 mass concentrations were correlated with outdoor PM 2.5 in four of the kindergartens. The PBDEs (0.10-0.64ng/m 3 in PM 2.5 ; 0.30-2.0×10 2 ng/g in dust) and DP (0.05-0.10ng/m 3 in PM 2.5 ; 1.3-8.7ng/g in dust) were detected in 100% of the PM 2.5 and dust samples. Fire retardant levels in the air were not correlated with the levels of dust in this study. The median BC concentrations varied by >7-fold from 8.8×10 2 ng/m -3 to 6.7×10 3 ng/m -3 and cooking events might have caused BC concentrations to rise both indoors and outdoors. The total concentrations of 16 carbonyls ranged from 4.7×10 1 μg/m 3 to 9.3×10 1 μg/m 3 indoors and from 1.9×10 1 μg/m 3 to 4.3×10 1 μg/m 3 outdoors, whilst formaldehyde was the most abundant air carbonyl. Indoor carbonyl concentrations were correlated with outdoor carbonyls in three kindergartens. The health risk assessment showed that hazard indexes (HIs) HIs of non-cancer risks from PBDEs and DPs were all lower than 0.08, whilst non-cancer HIs of carbonyl compounds ranged from 0.77 to 1.85 indoors and from 0.50 to 0.97 outdoors. The human intake of PBDEs and DP through inhalation of PM 2.5 accounted for 78% to 92% of the total intake. The cancer hazard quotients (HQs) of formaldehyde ranged from 4.5E-05 to 2.1E-04 indoors and from 1.9E-05 to 6.2E-05 outdoors. In general, the indoor air pollution in the five Hong Kong kindergartens might present adverse effects to children, although different schools showed distinct pollution levels, so indoor air quality might be improved through artificial measures. The data will be useful to developing a feasible management protocol for indoor environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effects of moisture controlled charcoal on indoor thermal and air environments

    NASA Astrophysics Data System (ADS)

    Matsumoto, Hiroshi; Yokogoshi, Midori; Nabeshima, Yuki

    2017-10-01

    It is crucial to remove and control indoor moisture in Japan, especially in hot and humid summers, in order to improve thermal comfort and save energy in buildings. Charcoal for moisture control made from the waste of wood material has attracted attention among many control strategies to control indoor moisture, and it is beginning to be used in houses. However, the basic characteristics of the charcoal to control moisture and remove chemical compounds in indoor air have not been investigated sufficiently. The objective of this study is to clarify the effect of moisture control charcoal on indoor thermal and air environments by a long-term field measurement using two housing scale models with/without charcoal in Toyohashi, Japan. The comparative experiments to investigate the effect of the charcoal on air temperature and humidity for two models with/without charcoal were conducted from 2015 to 2016. Also, the removal performance of volatile organic compound (VOCs) was investigated in the summer of 2015. Four bags of packed charcoal were set on the floor in the attic for one model during the experiment. As a result of the experiments, a significant effect of moisture control was observed in hot and humid season, and the efficient effect of moisture adsorption was obtained by the periodic humidification experiment using a humidifier. Furthermore, the charcoal showed a remarkable performance of VOC removal from indoor air by the injection experiment of formaldehyde.

  10. Indoor environmental quality in French dwellings and building characteristics

    NASA Astrophysics Data System (ADS)

    Langer, Sarka; Ramalho, Olivier; Derbez, Mickaël; Ribéron, Jacques; Kirchner, Severine; Mandin, Corinne

    2016-03-01

    A national survey on indoor environmental quality covering 567 residences in mainland France was performed during 2003-2005. The measured parameters were temperature, relative humidity, CO2, and the indoor air pollutants: fourteen individual volatile organic compounds (VOC), four aldehydes and particulate matter PM10 and PM2.5. The measured indoor concentrations were analyzed for correlations with the building characteristics: type of dwelling, period of construction, dwelling location, type of ventilation system, building material, attached garage and retrofitting. The median night time air exchange rate (AER) for all dwellings was 0.44 h-1. The night time AER was higher in apartments (median = 0.49 h-1) than in single-family houses (median = 0.41 h-1). Concentration of formaldehyde was approximately 30% higher in dwellings built after 1990 compared with older ones; it was higher in dwellings with mechanical ventilation and in concrete buildings. The VOC concentrations depended on the building characteristics to various extents. The sampling season influenced the majority of the indoor climate parameters and the concentrations of the air pollutants to a higher degree than the building characteristics. Multivariate linear regression models revealed that the indoor-outdoor difference in specific humidity, a proxy for number of occupants and their indoor activities, remained a significant predictor for most gaseous and particulate air pollutants. The other strong predictors were outdoor concentration, smoking, attached garage and AER (in descending order).

  11. Personal formaldehyde exposure level in the gross anatomy dissecting room at College of Medicine King Saud University Riyadh.

    PubMed

    Vohra, Muhammad Saeed

    2011-03-01

    This study was conducted to correlate the personal formaldehyde (FA) exposure levels of instructors and students with the indoor FA concentrations in gross anatomy laboratory at King Saud University. The personal FA levels of instructors and students are higher than the indoor FA concentration in the gross anatomy laboratory. The gross anatomy laboratory at college of medicine, King Saud University Riyadh, was observed for indoor FA concentration and the personal exposure levels of instructors and the medical students during the 4th, 10th and 14th weeks of the dissection sessions. All air samples were collected by the diffusive sampling device and analyzed by using high performance liquid chromatography (HPLC). The personal exposure level of FA was higher than the indoor concentration, and the personal exposure levels of instructors were higher than that of the students. The concentration of FA was also higher in the center of the room than the corners and near the doors. Both the indoor FA concentrations and personal FA exposure levels are higher near the dissecting table than at locations away from it during the gross anatomy laboratory sessions. Thus, the instructors and students are exposed to the higher concentration of FA than the general population.

  12. Characterization and source profiling of volatile organic compounds in indoor air of private residences in Selangor State, Malaysia.

    PubMed

    Sakai, Nobumitsu; Yamamoto, Shuta; Matsui, Yasuto; Khan, Md Firoz; Latif, Mohd Talib; Ali Mohd, Mustafa; Yoneda, Minoru

    2017-05-15

    Volatile Organic Compounds (VOCs) in indoor air were investigated at 39 private residences in Selangor State, Malaysia to characterize the indoor air quality and to identify pollution sources. Twenty-two VOCs including isomers (14 aldehydes, 5 aromatic hydrocarbons, acetone, trichloroethylene and tetrachloroethylene) were collected by 2 passive samplers for 24h and quantitated using high performance liquid chromatography and gas chromatography mass spectrometry. Source profiling based on benzene/toluene ratio as well as statistical analysis (cluster analysis, bivariate correlation analysis and principal component analysis) was performed to identify pollution sources of the detected VOCs. The VOCs concentrations were compared with regulatory limits of air quality guidelines in WHO/EU, the US, Canada and Japan to clarify the potential health risks to the residents. The 39 residences were classified into 2 groups and 2 ungrouped residences based on the dendrogram in the cluster analysis. Group 1 (n=30) had mainly toluene (6.87±2.19μg/m 3 ), formaldehyde (16.0±10.1μg/m 3 ), acetaldehyde (5.35±4.57μg/m 3 ) and acetone (11.1±5.95μg/m 3 ) at background levels. Group 2 (n=7) had significantly high values of formaldehyde (99.3±10.7μg/m 3 ) and acetone (35.8±12.6μg/m 3 ), and a tendency to have higher values of acetaldehyde (23.7±13.5μg/m 3 ), butyraldehyde (3.35±0.41μg/m 3 ) and isovaleraldehyde (2.30±0.39μg/m 3 ). The 2 ungrouped residences showed particularly high concentrations of BTX (benzene, toluene and xylene: 235μg/m 3 in total) or acetone (133μg/m 3 ). The geometric mean value of formaldehyde (19.2μg/m 3 ) exceeded an 8-hour regulatory limit in Canada (9μg/m 3 ), while those in other compounds did not exceed any regulatory limits, although a few residences exceeded at least one regulatory limit of benzene or acetaldehyde. Thus, the VOCs in the private residences were effectively characterized from the limited number of monitoring, and the potential health risks of the VOCs exposure, particularly formaldehyde, should be considered in the study area. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Indoor air quality in Portuguese archives: a snapshot on exposure levels.

    PubMed

    Pinheiro, A C; Viegas, C; Viegas, S; Veríssimo, C; Brandão, J; Macedo, M F

    2012-01-01

    Indoor air quality recently entered legislation in Portugal. Several parameters must be evaluated and kept within limits in order to obtain a certification for air quality and energy consumption. Certification parameters were analyzed in two Portuguese archives in order to assess indoor air quality both for people attending or working on these premises and for maintenance of a written heritage that must be retained for future generations. Carbon monoxide (CO) and carbon dioxide (CO₂), formaldehyde, and fungal counts were kept within stipulated limits. Relative humidity (RH), volatile organic compounds (VOC), particulate matter (PM₁₀), and ozone (O₃) showed values above legislated levels and justified the implementation of corrective measures. In terms of conservation, studies on the limit values are still needed, but according to the available international guidelines, some of the analyzed parameters such as PM₁₀, O₃, and RH were also above desirable values. Corrective measures were proposed to these institutions. Although this study was only of a short duration, it proved valuable in assessing potential eventual problems and constitutes the first Portuguese indoor air quality assessment taking into consideration both aspects of an archive such as human health and heritage safekeeping.

  14. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR COLLECTION OF FIXED SITE INDOOR AND OUTDOOR FORMALDEHYDE PASSIVE SAMPLES (UA-F-13.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the methods used to sample residential indoor and outdoor atmospheres for the presence of formaldehyde using the PF-1 passive formaldehyde sampler. The PF-1 passive sampler is used as a fixed location monitor to determine time integrated ex...

  15. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudd, Armin; Bergey, Daniel

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the sourcemore » of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.« less

  16. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudd, Armin; Bergey, Daniel

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, themore » ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.« less

  17. Influence of precision of emission characteristic parameters on model prediction error of VOCs/formaldehyde from dry building material.

    PubMed

    Wei, Wenjuan; Xiong, Jianyin; Zhang, Yinping

    2013-01-01

    Mass transfer models are useful in predicting the emissions of volatile organic compounds (VOCs) and formaldehyde from building materials in indoor environments. They are also useful for human exposure evaluation and in sustainable building design. The measurement errors in the emission characteristic parameters in these mass transfer models, i.e., the initial emittable concentration (C 0), the diffusion coefficient (D), and the partition coefficient (K), can result in errors in predicting indoor VOC and formaldehyde concentrations. These errors have not yet been quantitatively well analyzed in the literature. This paper addresses this by using modelling to assess these errors for some typical building conditions. The error in C 0, as measured in environmental chambers and applied to a reference living room in Beijing, has the largest influence on the model prediction error in indoor VOC and formaldehyde concentration, while the error in K has the least effect. A correlation between the errors in D, K, and C 0 and the error in the indoor VOC and formaldehyde concentration prediction is then derived for engineering applications. In addition, the influence of temperature on the model prediction of emissions is investigated. It shows the impact of temperature fluctuations on the prediction errors in indoor VOC and formaldehyde concentrations to be less than 7% at 23±0.5°C and less than 30% at 23±2°C.

  18. [Indoor air pollution by volatile organic compounds in large buildings: pollution levels and remaining issues after revision of the Act on Maintenance of Sanitation in Buildings in 2002].

    PubMed

    Sakai, Kiyoshi; Kamijima, Michihiro; Shibata, Eiji; Ohno, Hiroyuki; Nakajima, Tamie

    2010-09-01

    This study aimed to clarify indoor air pollution levels of volatile organic compounds (VOCs), especially 2-ethyl-1-hexanol (2E1H) in large buildings after revising of the Act on Maintenance of Sanitation in Buildings in 2002. We measured indoor air VOC concentrations in 57 (97%) out of a total of 61 large buildings completed within one year in half of the area of Nagoya, Japan, from 2003 through 2007. Airborne concentrations of 13 carbonyl compounds were determined with diffusion samplers and high-performance liquid chromatography, and of the other 32 VOCs with diffusion samplers and gas chromatography with a mass spectrometer. Formaldehyde was detected in all samples of indoor air but the concentrations were lower than the indoor air quality standard value set in Japan (100 microg/m3). Geometric mean concentrations of the other major VOCs, namely toluene, xylene, ethylbenzene, styrene, p-dichlorobenzene and acetaldehyde were also low. 2E1H was found to be one of the predominating VOCs in indoor air of large buildings. A few rooms in a small number of buildings surveyed showed high concentrations of 2E1H, while low concentrations were observed in most rooms of those buildings as well as in other buildings. It was estimated that about 310 buildings had high indoor air pollution levels of 2E1H, with increase during the 5 years from 2003 in Japan. Indoor air pollution levels of VOCs in new large buildings are generally good, although a few rooms in a small number of buildings showed high concentrations in 2E1H, a possible causative chemical in sick building symptoms. Therefore, 2E1H needs particular attention as an important indoor air pollutant.

  19. Indoor air quality in preschools (3- to 5-year-old children) in the Northeast of Portugal during spring-summer season: pollutants and comfort parameters.

    PubMed

    Oliveira, Marta; Slezakova, Klara; Delerue-Matos, Cristina; Pereira, Maria do Carmo; Morais, Simone

    2017-01-01

    Indoor air quality at schools (elementary, primary) has been the subject of many studies; however, there are still relative few data regarding preschool (3- to 5-year-old children) environments. This investigation determined the concentrations of particulate matter (PM) 2.5 , total volatile organic compounds (TVOC), formaldehyde, carbon monoxide (CO), and ozone (O 3 ) as well as the levels of carbon dioxide (CO 2 ), temperature, and relative humidity (RH) in the indoor and outdoor air of two preschools situated in different geographical regions of Portugal. The indoor concentrations of TVOC, CO, O 3 , and CO 2 were predominantly higher at the end of school day compared to early morning periods. The TVOC and CO 2 concentrations were higher indoors than outdoors suggesting predominantly an indoor origin. Outdoor air infiltrations were the major contributing source of CO and O 3 to indoor air in both preschools. The concentrations of all pollutants were within the limits defined by national regulations and international organizations, except for TVOC that exceeded 8-12-fold higher than the recommendation of 0.2 mg/m 3 proposed by European Commission. The levels of CO 2 were below the protective guideline of 2250 mg/m 3 (Portuguese legislation); however, the observed ranges exceeded the Portuguese margin of tolerance (2925 mg/m 3 ) at the end of school days, indicating the impact of occupancy rates particularly at one of the preschools. Regarding comfort parameters, temperature exerted a significant influence on O 3 concentrations, while RH values were significantly correlated with TVOC levels in indoor air of preschools, particularly during the late afternoon periods.

  20. Indoor air pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gold, D.R.

    1992-06-01

    This article summarizes the health effects of indoor air pollutants and the modalities available to control them. The pollutants discussed include active and passive exposure to tobacco smoke; combustion products of carbon monoxide; nitrogen dioxide; products of biofuels, including wood and coal; biologic agents leading to immune responses, such as house dust mites, cockroaches, fungi, animal dander, and urine; biologic agents associated with infection such as Legionella and tuberculosis; formaldehyde; and volatile organic compounds. An approach to assessing building-related illness and tight building' syndrome is presented. Finally, the article reviews recent data on hospital-related asthma and exposures to potential respiratorymore » hazards such as antineoplastic agents, anesthetic gases, and ethylene oxide.88 references.« less

  1. Chemical exposures in recently renovated low-income housing: Influence of building materials and occupant activities.

    PubMed

    Dodson, Robin E; Udesky, Julia O; Colton, Meryl D; McCauley, Martha; Camann, David E; Yau, Alice Y; Adamkiewicz, Gary; Rudel, Ruthann A

    2017-12-01

    Health disparities in low-income communities may be linked to residential exposures to chemicals infiltrating from the outdoors and characteristics of and sources in the home. Indoor sources comprise those introduced by the occupant as well as releases from building materials. To examine the impact of renovation on indoor pollutants levels and to classify chemicals by predominant indoor sources, we collected indoor air and surface wipes from newly renovated "green" low-income housing units in Boston before and after occupancy. We targeted nearly 100 semivolatile organic compounds (SVOCs) and volatile organic compounds (VOCs), including phthalates, flame retardants, fragrance chemicals, pesticides, antimicrobials, petroleum chemicals, chlorinated solvents, and formaldehyde, as well as particulate matter. All homes had indoor air concentrations that exceeded available risk-based screening levels for at least one chemical. We categorized chemicals as primarily influenced by the occupant or as having building-related sources. While building-related chemicals observed in this study may be specific to the particular housing development, occupant-related findings might be generalizable to similar communities. Among 58 detected chemicals, we distinguished 25 as primarily occupant-related, including fragrance chemicals 6-acetyl-1,1,2,4,4,7-hexamethyltetralin (AHTN) and 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[g]-2-benzopyran (HHCB). The pre- to post-occupancy patterns of the remaining chemicals suggested important contributions from building materials for some, including dibutyl phthalate and xylene, whereas others, such as diethyl phthalate and formaldehyde, appeared to have both building and occupant sources. Chemical classification by source informs multi-level exposure reduction strategies in low-income housing. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Laser-Based and Ultra-Portable Gas Sensor for Indoor and Outdoor Formaldehyde (HCHO) Monitoring

    NASA Astrophysics Data System (ADS)

    Shutter, J. D.; Allen, N.; Paul, J.; Thiebaud, J.; So, S.; Scherer, J. J.; Keutsch, F. N.

    2017-12-01

    While used as a key tracer of oxidative chemistry in the atmosphere, formaldehyde (HCHO) is also a known human carcinogen and is listed and regulated by the United States EPA as a hazardous air pollutant. Combustion processes and photochemical oxidation of volatile organic compounds (VOCs) are the major outdoor sources of HCHO, and building materials and household products are ubiquitous sources of indoor HCHO. Due to the ease with which humans can be exposed to HCHO, it is imperative to monitor levels of both indoor and outdoor HCHO exposure in both short and long-term studies.High-quality direct and indirect methods of quantifying HCHO mixing ratios exist, but instrument size and user-friendliness can make them cumbersome or impractical for certain types of indoor and long-term outdoor measurements. In this study, we present urban HCHO measurements by using a new, commercially-available, ppbv-level accurate HCHO gas sensor (Aeris Technologies' MIRA Pico VOC Laser-Based Gas Analyzer) that is highly portable (29 cm x 20 cm x 10 cm), lightweight (3 kg), easy-to-use, and has low power (15 W) consumption. Using an ultra-compact multipass cell, an absorption path length of 13 m is achieved, resulting in a sensor capable of achieving ppbv/s sensitivity levels with no significant spectral interferences.To demonstrate the utility of the gas sensor for emissions measurements, a GPS was attached to the sensor's housing in order to map mobile HCHO measurements in real-time around the Boston, Massachusetts, metro area. Furthermore, the sensor was placed in residential and industrial environments to show its usefulness for indoor and outdoor pollution measurements. Lastly, we show the feasibility of using the HCHO sensor (or a network of them) in long-term monitoring stations for hazardous air pollutants.

  3. Emissions of indoor air pollutants from six user scenarios in a model room

    NASA Astrophysics Data System (ADS)

    Höllbacher, Eva; Ters, Thomas; Rieder-Gradinger, Cornelia; Srebotnik, Ewald

    2017-02-01

    In this study six common user scenarios putatively influencing indoor air quality were performed in a model room constructed according to the specifications of the European Reference Room given in the new horizontal prestandard prEN 16516 to gain further information about the influence of user activities on indoor air quality. These scenarios included the use of cleaning agent, an electric air freshener, an ethanol fireplace and cosmetics as well as cigarette smoking and peeling of oranges. Four common indoor air pollutants were monitored: volatile organic compounds (VOC), particulate matter (PM), carbonyl compounds and CO2. The development of all pollutants was determined during and after the test performance. For each measured pollutant, well-defined maximum values could be assigned to one or more of the individual user scenarios. The highest VOC concentration was measured during orange-peeling reaching a maximum value of 3547 μg m-3. Carbonyl compounds and PM were strongly elevated while cigarette smoking. Here, a maximum formaldehyde concentration of 76 μg m-3 and PM concentration of 378 μg m-3 were measured. CO2 was only slightly affected by most of the tests except the use of the ethanol fireplace where a maximum concentration of 1612 ppm was reached. Generally, the user scenarios resulted in a distinct increase of several indoor pollutants that usually decreased rapidly after the removal of the source.

  4. Influence of Precision of Emission Characteristic Parameters on Model Prediction Error of VOCs/Formaldehyde from Dry Building Material

    PubMed Central

    Wei, Wenjuan; Xiong, Jianyin; Zhang, Yinping

    2013-01-01

    Mass transfer models are useful in predicting the emissions of volatile organic compounds (VOCs) and formaldehyde from building materials in indoor environments. They are also useful for human exposure evaluation and in sustainable building design. The measurement errors in the emission characteristic parameters in these mass transfer models, i.e., the initial emittable concentration (C 0), the diffusion coefficient (D), and the partition coefficient (K), can result in errors in predicting indoor VOC and formaldehyde concentrations. These errors have not yet been quantitatively well analyzed in the literature. This paper addresses this by using modelling to assess these errors for some typical building conditions. The error in C 0, as measured in environmental chambers and applied to a reference living room in Beijing, has the largest influence on the model prediction error in indoor VOC and formaldehyde concentration, while the error in K has the least effect. A correlation between the errors in D, K, and C 0 and the error in the indoor VOC and formaldehyde concentration prediction is then derived for engineering applications. In addition, the influence of temperature on the model prediction of emissions is investigated. It shows the impact of temperature fluctuations on the prediction errors in indoor VOC and formaldehyde concentrations to be less than 7% at 23±0.5°C and less than 30% at 23±2°C. PMID:24312497

  5. The detection of formaldehyde using microelectromechanical acoustic resonator with multiwalled carbon nanotubes-polyethyleneimine composite coating

    NASA Astrophysics Data System (ADS)

    Wang, Jingjing; Zhan, Da; Wang, Ke; Hang, Weiwei

    2018-01-01

    A micro-scale gas sensor based on mass-sensitive film bulk acoustic resonator is demonstrated for the detection of trace formaldehyde at room temperature. The composites mixed with multiwalled carbon nanotubes and polyethyleneimine (MWNTs-PEI) were coated on the resonator surface as the sensitive layer to specifically absorb formaldehyde molecules using a facile spray process. The influence of spraying processes on the formaldehyde sensing properties were investigated. Different response behaviors were determined by both the chemical absorption between formaldehyde molecules and the amine functional groups on PEI and the increase of absorption surface came from the nanostructure. The combination of high frequency of the film bulk acoustic resonator (~4.3 GHz) and the specific absorbability of MWNTs-PEI composites provided a high sensitivity in the detections of trace formaldehyde. The obtained ultra-low limit of detection was as low as 60 ppb with linear response, quick response/recovery time, good reproducibility and selectivity. The proposed sensor shows potential as a portable and convenient gas-sensing system for monitoring the low-level concentration of indoor air pollution.

  6. [Influence of Moxa Smoke on Indoor Air Quality and Strategies for Its Control].

    PubMed

    Yu, Chang; Wu, Qiao-Feng; Tang, Yong; Yu, Shu-Guang

    2018-02-25

    Moxibustion is an effective therapy for treatment of a lot of clinical problems, but the ignited moxa-induced smoke containing harmful substances may bring about indoor air pollution to affect both patients' and medical workers' health. However, there is no standards about controlling indoor air quality (IAQ) for moxibustion rooms in China. In the present study, the authors reviewed newly-published articles about some substances released from moxa smoke as inhalable particles (PM 10 and PM 2.5), formaldehyde, benzene, methylbenzene, xylene, bene[α]pyrene, total volatile organic compounds, CO, CO 2 , NO, SO 2 , NH 3 , O 3 , etc. some of which affect IAQ. On this account, the authors put forward some strategies for controlling IAQ in moxibustion clinics including setting united safe standards, enhancing ventilation, controlling moxibustion material quality and strengthening scientific research on the safety of moxa smoke control, fully playing the superiority of moxibustion therapy and reducing its unfavorable aspects in clinical practice in the future.

  7. Middle ear effusion in children and the indoor environment: an epidemiological study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iversen, M.; Birch, L.; Lundqvist, G.R.

    Very low air infiltration rates have been found in new Danish day-care institutions built according to the energy conservation measures enforced in the Building Regulations. Complaints from staff in institutions have been numerous, e.g., mainly eyes and upper airways problems. Formaldehyde has been recognized as a causal factor in some cases. Extensive retrofitting has occurred in Denmark for energy conservation reasons. This will lower the air infiltration rates in dwellings and possibly create higher levels of pollutants produced indoors. A prospective study of 337 children was carried out during a 3-month period. The purpose of the study was to evaluatemore » the importance of indoor environmental factors in homes and day-care institutions for the incidence of middle ear effusion (MEE). The indoor environmental factors measured in institutions were carbon dioxide, temperature, and relative humidity. Conditions in the homes were assessed by a questionnaire. Middle ear effusion was measured by tympanometry. No relationship was found between indoor environmental factors and MEE, with the exception of parental smoking at home, which increased the frequency of MEE in children.« less

  8. Indoor air quality (IAQ) evaluation of a Novel Tobacco Vapor (NTV) product.

    PubMed

    Ichitsubo, Hirokazu; Kotaki, Misato

    2018-02-01

    The impact of using a Novel Tobacco Vapor (NTV) product on indoor air quality (IAQ) was simulated using an environmentally-controlled chamber. Three environmental simulations were examined; two non-smoking areas (conference room and dining room) and one ventilated smoking area (smoking lounge). IAQ was evaluated by (i) measuring constituents in the mainstream NTV product emissions, (ii) and by determining classical environmental tobacco smoke (ETS) and representative air quality markers. Analysis of the mainstream emissions revealed that vapor from the NTV product is chemically simpler than cigarette smoke. ETS markers (RSP, UVPM, FPM, solanesol, nicotine, 3-ethenylpyridine), volatile organic compound (toluene), carbon monoxide, propylene glycol, glycerol, and triacetin were below the limit of detection or the limit of quantification in both the non-smoking and smoking environments after using the NTV product. The concentrations of ammonia, carbonyls (formaldehyde, acetaldehyde, and acetone), and total volatile organic compounds were the same levels found in the chamber without NTV use. There was no significant increase in the levels of formaldehyde, acetone or ammonia in exhaled breath following NTV use. In summary, under the simulations tested, the NTV product had no measurable effect on the IAQ, in either non-smoking or smoking areas. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. A pilot study of indoor air quality in screen golf courses.

    PubMed

    Goung, Sun-Ju Nam; Yang, Jinho; Kim, Yoon Shin; Lee, Cheol Min

    2015-05-01

    The aims of this study were to provide basic data for determining policies on air quality for multi-user facilities, including the legal enrollment of the indoor air quality regulation as designated by the Ministry of Environment, and to establish control plans. To this end, concentrations of ten pollutants (PM10, carbon monoxide (CO), carbon dioxide (CO2), nitrogen dioxide (NO2), formaldehyde (HCHO), total volatile organic compounds (TVOCs), radon (Rn), oxone (O3), total bacteria counts (TBC), and asbestos) in addition to nicotine, a smoking index material used to determine the impact of smoking on the air quality, were investigated in indoor game rooms and lobbies of 64 screen golf courses. The average concentration of none of the ten pollutants in the game rooms and lobbies of screen golf courses was found to exceed the limit set by the law. There were, however, pollutant concentrations exceeding limits in some screen golf courses, in order to establish a control plan for the indoor air quality of screen golf courses, a study on the emission sources of each pollutant was conducted. The major emission sources were found to be facility users' activities such as smoking and the use of combustion appliances, building materials, and finishing materials.

  10. Bio-template-assisted synthesis of hierarchically hollow SiO2 microtubes and their enhanced formaldehyde adsorption performance

    NASA Astrophysics Data System (ADS)

    Le, Yao; Guo, Daipeng; Cheng, Bei; Yu, Jiaguo

    2013-06-01

    The indoor air quality is crucial for human health, taking into account that people often spend more than 80% of their time in houses, offices and cars. Formaldehyde (HCHO) is a major pollutant and long-term exposure to HCHO may cause health problems such as nasal tumors and skin irritation. In this work, for the first time, hierarchically hollow silica microtubes (HHSM) were synthesized by a simple sol-gel and calcination method using cetyltrimethyl ammonium bromide (CTAB) and bio-template poplar catkin (PC) as co-templates and the PC/SiO2 weight ratio R was varied from 0, 0.1, 0.3 and 1. The prepared samples were further modified with tetraethylenepentamine (TEPA) and characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), differential thermal analysis (DTA), thermal gravimetric analysis (TGA), and N2 physisorption techniques. This was followed by formaldehyde adsorption tests at ambient temperature. The results showed that all the prepared HHSM samples contained small mesopores with peak pore size at ca. 2.5 nm and large several tens of nanometer-sized pores on the tube wall. The R exhibited an obvious influence on specific surface areas and the sample prepared at R = 0.3 exhibited highest specific surface area (896 m2/g). All the TEPA-modified samples exhibited enhanced formaldehyde adsorption performance. The maximum HCHO adsorption capacity (20.65 mg/g adsorbent) was achieved on the sample prepared at R = 0.3 and modified by 50 wt.% TEPA. The present study will provide new insight for the utilization of bio-template used for the fabrication of inorganic hollow tubes with high HCHO adsorption performance for indoor air purification.

  11. Indoor air pollutants and health in the United Arab Emirates.

    PubMed

    Yeatts, Karin B; El-Sadig, Mohamed; Leith, David; Kalsbeek, William; Al-Maskari, Fatma; Couper, David; Funk, William E; Zoubeidi, Taoufik; Chan, Ronna L; Trent, Chris B; Davidson, Christopher A; Boundy, Maryanne G; Kassab, Maamoon M; Hasan, Mohamed Y; Rusyn, Ivan; Gibson, Jacqueline MacDonald; Olshan, Andrew F

    2012-05-01

    Comprehensive global data on the health effects of indoor air pollutants are lacking. There are few large population-based multi-air pollutant health assessments. Further, little is known about indoor air health risks in the Middle East, especially in countries undergoing rapid economic development. To provide multifactorial indoor air exposure and health data, we conducted a population-based study of indoor air pollution and health in the United Arab Emirates (UAE). We conducted a cross-sectional study in a population-based sample of 628 households in the UAE. Indoor air pollutants [sulfur dioxide (SO2), nitrogen dioxide (NO2), hydrogen sulfide (H2S), formaldehyde (HCHO), carbon monoxide (CO), and particulate matter] were measured using passive samplers over a 7-day period. Health information was collected from 1,590 household members via in-person interviews. Participants in households with quantified SO2, NO2, and H2S (i.e., with measured concentrations above the limit of quantification) were twice as likely to report doctor-diagnosed asthma. Participants in homes with quantified SO2 were more likely to report wheezing symptoms {ever wheezing, prevalence odds ratio [POR] 1.79 [95% confidence interval (CI) 1.05, 3.05]; speech-limiting wheeze, POR 3.53 (95% CI: 1.06, 11.74)}. NO2 and H2S were similarly associated with wheezing symptoms. Quantified HCHO was associated with neurologic symptoms (difficulty concentrating POR 1.47; 95% CI: 1.02, 2.13). Burning incense daily was associated with increased headaches (POR 1.87; 95% CI: 1.09, 3.21), difficulty concentrating (POR 3.08; 95% CI: 1.70, 5.58), and forgetfulness (POR 2.68: 95% CI: 1.47, 4.89). This study provides new information regarding potential health risks from pollutants commonly found in indoor environments in the UAE and other countries. Multipollutant exposure and health assessments in cohort studies are needed to better characterize health effects of indoor air pollutants.

  12. Indoor Air Pollutants and Health in the United Arab Emirates

    PubMed Central

    El-Sadig, Mohamed; Leith, David; Kalsbeek, William; Al-Maskari, Fatma; Couper, David; Funk, William E.; Zoubeidi, Taoufik; Chan, Ronna L.; Trent, Chris B.; Davidson, Christopher A.; Boundy, Maryanne G.; Kassab, Maamoon M.; Hasan, Mohamed Y.; Rusyn, Ivan; Gibson, Jacqueline MacDonald; Olshan, Andrew F.

    2012-01-01

    Background: Comprehensive global data on the health effects of indoor air pollutants are lacking. There are few large population-based multi–air pollutant health assessments. Further, little is known about indoor air health risks in the Middle East, especially in countries undergoing rapid economic development. Objectives: To provide multifactorial indoor air exposure and health data, we conducted a population-based study of indoor air pollution and health in the United Arab Emirates (UAE). Methods: We conducted a cross-sectional study in a population-based sample of 628 households in the UAE. Indoor air pollutants [sulfur dioxide (SO2), nitrogen dioxide (NO2), hydrogen sulfide (H2S), formaldehyde (HCHO), carbon monoxide (CO), and particulate matter] were measured using passive samplers over a 7-day period. Health information was collected from 1,590 household members via in-person interviews. Results: Participants in households with quantified SO2, NO2, and H2S (i.e., with measured concentrations above the limit of quantification) were twice as likely to report doctor-diagnosed asthma. Participants in homes with quantified SO2 were more likely to report wheezing symptoms {ever wheezing, prevalence odds ratio [POR] 1.79 [95% confidence interval (CI) 1.05, 3.05]; speech-limiting wheeze, POR 3.53 (95% CI: 1.06, 11.74)}. NO2 and H2S were similarly associated with wheezing symptoms. Quantified HCHO was associated with neurologic symptoms (difficulty concentrating POR 1.47; 95% CI: 1.02, 2.13). Burning incense daily was associated with increased headaches (POR 1.87; 95% CI: 1.09, 3.21), difficulty concentrating (POR 3.08; 95% CI: 1.70, 5.58), and forgetfulness (POR 2.68: 95% CI: 1.47, 4.89). Conclusions: This study provides new information regarding potential health risks from pollutants commonly found in indoor environments in the UAE and other countries. Multipollutant exposure and health assessments in cohort studies are needed to better characterize health effects of indoor air pollutants. PMID:22357138

  13. Indoor air-assessment: Indoor concentrations of environmental carcinogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gold, K.W.; Naugle, D.F.; Berry, M.A.

    1991-01-01

    In the report, indoor concentration data are presented for the following general categories of air pollutants: radon-222, environmental tobacco smoke (ETS), asbestos, gas phase organic compounds, formaldehyde, polycyclic aromatic hydrocarbons (PAH), pesticides, and inorganic compounds. These pollutants are either known or suspect carcinogens (i.e., radon-222, asbestos) or more complex mixtures or classes of compounds which contain known or suspect carcinogens. Concentration data for individual carcinogenic compounds in complex mixtures are usually far from complete. The data presented for complex mixtures often include compounds which are not carcinogenic or for which data are insufficient to evaluate carcinogenicity. Their inclusion is justified,more » however, by the possibility that further work may show them to be carcinogens, cocarcinogens, initiators or promotors, or that they may be employed as markers (e.g., nicotine, acrolein) for the estimation of exposure to complex mixtures.« less

  14. Health-hazard evaluation report no. HETA-87-404-1893, Park County Courthouse, Fairplay, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.A.

    1988-05-01

    In response to a request from employees at the Park County Courthouse, Fairplay, Colorado, an evaluation was made of indoor air quality at the facility, with specific reference to symptoms of headaches, ringing in the ears, worsening eyesight, and sinus problems. Six people worked at the building which had been constructed 2 years earlier. Air samples were taken at the facility and analyzed for formaldehyde by visible spectroscopy. Formaldehyde levels were measured at 0.03 to 0.06 parts per million (ppm), with a mean of 0.05ppm in the offices and courtrooms. As a result of recommendations, the building was made amore » no smoking area, and outside air vents were connected to the furnaces. At a followup visit, carbon dioxide levels were about 250ppm throughout the building, reaching a maximum of 400ppm at 9:30 in the morning, when 29 people were present in the building. Relative humidity ranged from 14 to 18%. The author concludes that there was no hazard due to exposure to formaldehyde, and that adequate amounts of fresh air were supplied throughout the building. The author recommends increasing the relative humidity to about 40% to alleviate upper respiratory irritation caused by dry air during the heating season.« less

  15. Determination of formaldehyde levels in 100 furniture workshops in Ankara.

    PubMed

    Vaizoğlu, Songül Acar; Aycan, Sefer; Akin, Levent; Koçdor, Pelin; Pamukçu, Gül; Muhsinoğlu, Orkun; Ozer, Feyza; Evci, E Didem; Güler, Cağatay

    2005-10-01

    One of the airborne pollutants in wood products industry is formaldehyde, which may pose some health effects. Therefore this study is conducted to determine formaldehyde levels in 100 furniture-manufacturing workshops in Ankara and also to determine the symptoms, which may be related with formaldehyde exposure among the workers. Indoor formaldehyde levels ranged from 0.02 ppm to 2.22 ppm with a mean of 0.6 +/- 0.3 ppm. Outdoor formaldehyde levels also ranged from 0.0 ppm to 0.08 ppm with a mean of 0.03 +/- 0.03 ppm. Formaldehyde levels were higher in workplaces located at basement than in workplaces located at or above ground level (p < 0.01). An association was found between indoor formaldehyde levels and the types of fuel used (p < 0.05). The levels were higher in workplaces where only sawdust was used for heating, than in workplaces where wood, coal, and sawdust are used (p = 0.02). An association was found between runny nose and indoor formaldehyde levels (p = 0.03). Formaldehyde levels were lower in workplaces where employees had no symptoms than in those where employees had 4 or more symptoms (p = 0.02). Of 229 employees 57 subjects (24.9%) work under the formaldehyde levels of 0.75 ppm and above. Thus, approximately one fourth of the employees in workplaces are working in environments with formaldehyde levels exceeding those permitted by Occupational Safety and Health Administration (OSHA). The employees working in small-scale furniture workshops are at risk of formaldehyde exposure. Measures, such as improved ventilation, have to be taken in these workplaces, in order to decrease the formaldehyde levels.

  16. Indoor air in schools and lung function of Austrian school children.

    PubMed

    Wallner, Peter; Kundi, Michael; Moshammer, Hanns; Piegler, Kathrin; Hohenblum, Philipp; Scharf, Sigrid; Fröhlich, Marina; Damberger, Bernhard; Tappler, Peter; Hutter, Hans-Peter

    2012-07-01

    The Children's Environment and Health Action Plan for Europe (CEHAPE) of WHO focuses (inter alia) on improving indoor environments where children spend most of their time. At present, only little is known about air pollution in schools and its effect on the lung function of school children. Our project was set up as an Austrian contribution to CEHAPE. In a cross-sectional approach, differences in indoor pollution in nine elementary all-day schools were assessed and 34 of these pollutants were analyzed for a relationship with respiratory health determined by spirometry using a linear regression model. Overall 596 children (aged 6-10 years) were eligible for the study. Spirometry was performed in 433 children. Socio-economic status, area of living (urban/rural), and smoking at home were included in the model as potential confounders with school-related average concentration of air pollutants as the variable of primary interest. A negative association with flow volumes (MEF(75)) was found for formaldehyde in air samples, benzylbutylphthalate and the sum of polybrominated diphenylethers in school dust. FVC and FEV(1) were negatively associated with ethylbenzene and xylenes in air samples and tris(1,3-dichlor-2-propyl)-phosphate on particulates. Although, in general, the quality of school indoor air was not worse than that reported for homes, effects on the respiratory health of children cannot be excluded. A multi-faceted strategy to improve the school environment is needed.

  17. Aldehyde measurements in indoor environments in Strasbourg (France)

    NASA Astrophysics Data System (ADS)

    Marchand, C.; Bulliot, B.; Le Calvé, S.; Mirabel, Ph.

    Formaldehyde and acetaldehyde concentrations have been measured in indoor environments of various public spaces (railway station, airport, shopping center, libraries, underground parking garage, etc.) of Strasbourg area (east of France). In addition, formaldehyde, acetaldehyde propionaldehyde and hexanal concentrations have been measured in 22 private homes in the same area. In most of the sampling sites, indoor and outdoor formaldehyde and acetaldehyde concentrations were measured simultaneously. Gaseous aldehydes levels were quantified by a conventional DNHP-derivatization method followed by liquid chromatography coupled to UV detection. Outdoor formaldehyde and acetaldehyde concentrations were both in the range 1-10 μg m -3, the highest values being measured at the airport and railway station. Indoor concentrations were strongly dependant upon the sampling sites. In homes, the average concentrations were 37 μg m -3 (living rooms) and 46 μg m -3 (bedrooms) for formaldehyde, 15 μg m -3 (living rooms) and 18 μg m -3 (bedrooms) for acetaldehyde, 1.2 μg m -3 (living rooms) and 1.6 μg m -3 (bedrooms) for propionaldehyde, 9 μg m -3 (living rooms) and 10 μg m -3 (bedrooms) for hexanal. However, concentrations as high as 123, 80 and 47 μg m -3 have been found for formaldehyde, acetaldehyde and hexanal respectively. In public spaces, the highest formaldehyde concentration (62 μg m -3) was found in a library and the highest concentration of acetaldehyde (26 μg m -3) in the hall of a shopping center. Additional measurements of formaldehyde and acetaldehyde were made inside a car both at rest or in a fluid or heavy traffic as well as in a room where cigarettes were smoked. Our data have been discussed and compared with those of previous studies.

  18. Optimization of Ventilation Energy Demands and Indoor Air Quality in High-Performance Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hun, Diana E; Jackson, Mark C; Shrestha, Som S

    2014-01-01

    High-performance homes require that ventilation energy demands and indoor air quality (IAQ) be simultaneously optimized. We attempted to bridge these two areas by conducting tests in a research house located in Oak Ridge, TN, that was 20 months old, energy-efficient (i.e., expected to consume 50% less energy than a house built per the 2006 IRC), tightly-built (i.e., natural ventilation rate ~0.02 h-1), unoccupied, and unfurnished. We identified air pollutants of concern in the test home that could generally serve as indicators of IAQ, and conduced field experiments and computer simulations to determine the effectiveness and energy required by various techniquesmore » that lessened the concentration of these contaminants. Formaldehyde was selected as the main pollutant of concern among the contaminants that were sampled in the initial survey because it was the only compound that showed concentrations that were greater than the recommended exposure levels. Field data indicate that concentrations were higher during the summer primarily because emissions from sources rise with increases in temperature. Furthermore, supply ventilation and gas-phase filtration were effective means to reduce formaldehyde concentrations; however, exhaust ventilation had minimal influence on this pollutant. Results from simulations suggest that formaldehyde concentrations obtained while ventilating per ASHRAE 62.2-2010 could be decreased by about 20% from May through September through three strategies: 1) increasing ASHRAE supply ventilation by a factor of two, 2) reducing the thermostat setpoint from 76 to 74 F, or 3) running a gas-phase filtration system while decreasing supply ventilation per ASHRAE by half. In the mixed-humid climate of Oak Ridge, these strategies caused increases in electricity cost of ~$5 to ~$15/month depending on outdoor conditions.« less

  19. Selective permeation of moisture and VOCs through polymer membranes used in total heat exchangers for indoor air ventilation.

    PubMed

    Zhang, L-Z; Zhang, X-R; Miao, Q-Z; Pei, L-X

    2012-08-01

    Fresh air ventilation is central to indoor environmental control. Total heat exchangers can be key equipment for energy conservation in ventilation. Membranes have been used for total heat exchangers for more than a decade. Much effort has been spent to achieve water vapor permeability of various membranes; however, relatively little attention has been paid to the selectivity of moisture compared with volatile organic compounds (VOCs) through such membranes. In this investigation, the most commonly used membranes, both hydrophilic and hydrophobic ones, are tested for their permeability for moisture and five VOCs (acetic acid, formaldehyde, acetaldehyde, toluene, and ethane). The selectivity of moisture vs. VOCs in these membranes is then evaluated. With a solution-diffusion model, the solubility and diffusivity of moisture and VOCs in these membranes are calculated. The resulting data could provide some reference for future material selection. Total heat exchangers are important equipment for fresh air ventilation with energy conservation. However, their implications for indoor air quality in terms of volatile organic compound permeation have not been known. The data in this article help us to clarify the impacts on indoor VOC levels of membrane-based heat exchangers. Guidelines for material selection can be obtained for future use total heat exchangers for building ventilation. © 2011 John Wiley & Sons A/S.

  20. Study of the indoor decontamination using nanocoated woven polyester fabric

    NASA Astrophysics Data System (ADS)

    Memon, Hafeezullah; Kumari, Naveeta; Jatoi, Abdul Wahab; Khoso, Nazakat Ali

    2017-11-01

    This research primarily deals with the photocatalytic degradation of methanol in indoor air using nanocoated indoor textiles used for curtains as household textiles. The woven polyester was coated by titanium dioxide by sol gel method, using silicon-based binder. The characterization of the coating has been done using scanning electron microscopy (SEM) image analysis, energy dispersive analysis using X-ray (EDAX) and Fourier transform infrared spectroscopy (FTIR). The DIY instrument providing the similar environment as of indoor was designed to assess the performance of the degradation of formaldehyde under UV light. The photocatalytic degradation rate was measured using the absorption value of the solutions obtained in the result of liquid chromatography of test solution and reagent solution. Different amount of dosages (1-3 %) and different time period of coatings (half hour to 3 h) have been evaluated for optimization.

  1. Ventilation Control of Volatile Organic Compounds in New U.S. Homes: Results of a Controlled Field Study in Nine Residential Units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willem, Henry; Hult, Erin L.; Hotchi, Toshifumi

    2013-01-01

    In order to optimize strategies to remove airborne contaminants in residences, it is necessary to determine how contaminant concentrations respond to changes in the air exchange rate. The impact of air exchange rate on the indoor concentrations of 39 target volatile organic compounds (VOCs) was assessed by measuring air exchange rates and VOC concentrations at three ventilation settings in nine residences. Active sampling methods were used for VOC concentration measurements, and passive perfluorocarbon tracer gas emitters with active sampling were used to determine the overall air exchange rate corresponding to the VOC measurements at each ventilation setting. The concentration levelsmore » and emission rates of the target VOCs varied by as much as two orders of magnitude across sites. Aldehyde and terpene compounds were typically the chemical classes with highest concentrations, followed by alkanes, aromatics, and siloxanes. For each home, VOC concentrations tended to decrease as the air exchange rate was increased, however, measurement uncertainty was significant. The indoor concentration was inversely proportional to air exchange rate for most compounds. For a subset of compounds including formaldehyde, however, the indoor concentration exhibited a non-linear dependence on the timescale for air exchange« less

  2. Ventilation Control of Volatile Organic Compounds in New U.S. Homes: Results of a Controlled Field Study in Nine Residential Units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willem, Henry; Hult, Erin L.; Hotchi, Toshifumi

    2013-01-23

    In order to optimize strategies to remove airborne contaminants in residences, it is necessary to determine how contaminant concentrations respond to changes in the air exchange rate. The impact of air exchange rate on the indoor concentrations of 39 target volatile organic compounds (VOCs) was assessed by measuring air exchange rates and VOC concentrations at three ventilation settings in nine residences. Active sampling methods were used for VOC concentration measurements, and passive perfluorocarbon tracer gas emitters with active sampling were used to determine the overall air exchange rate corresponding to the VOC measurements at each ventilation setting. The concentration levelsmore » and emission rates of the target VOCs varied by as much as two orders of magnitude across sites. Aldehyde and terpene compounds were typically the chemical classes with highest concentrations, followed by alkanes, aromatics, and siloxanes. For each home, VOC concentrations tended to decrease as the air exchange rate was increased, however, measurement uncertainty was significant. The indoor concentration was inversely proportional to air exchange rate for most compounds. For a subset of compounds including formaldehyde, however, the indoor concentration exhibited a non-linear dependence on the timescale for air exchange.« less

  3. The MERMAID study: indoor and outdoor average pollutant concentrations in 10 low-energy school buildings in France.

    PubMed

    Verriele, M; Schoemaecker, C; Hanoune, B; Leclerc, N; Germain, S; Gaudion, V; Locoge, N

    2016-10-01

    Indoor air quality was characterized in 10 recently built energy-efficient French schools during two periods of 4.5 days. Carbon dioxide time-resolved measurements during occupancy clearly highlight the key role of the ventilation rate (scheduled or occupancy indexed), especially in this type of building, which was tightly sealed and equipped with a dual-flow ventilation system to provide air refreshment. Volatile organic compounds (VOCs) and inorganic gases (ozone and NO2 ) were measured indoors and outdoors by passive techniques during the occupied and the unoccupied periods. Over 150 VOC species were identified. Among them, 27 species were selected for quantification, based on their occurrence. High concentrations were found for acetone, 2-butanone, formaldehyde, toluene, and hexaldehyde. However, these concentrations are lower than those previously observed in conventional school buildings. The indoor/outdoor and unoccupied/occupied ratios are informative regarding emission sources. Except for benzene, ozone, and NO2 , all the pollutants in these buildings have an indoor source. Occupancy is associated with increased levels of acetone, 2-butanone, pentanal, butyl acetate, and alkanes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. A review of the health effects of energy conserving materials.

    PubMed Central

    Levin, L; Purdom, P W

    1983-01-01

    The energy conservation movement has promoted both greater use of insulating materials and the reduction of heat losses by sealing air leaks. The release of volatile or airborne materials from the installation of these building materials under these conditions has resulted in an exacerbated indoor air pollution with the potential for certain health and safety hazards. Consequently, a comparative review of the health and safety hazards, exposure standards, and regulatory action associated with the more commonly used insulating materials with particular respect to current energy conservation measures was undertaken. The materials reviewed included asbestos, urea-formaldehyde foam, polyvinyl chloride, cellulosic insulations, fibrous glass, mineral wool, and vermiculite. Although no longer used, the past installation of asbestos in a friable form is the greatest potential health hazard. The exposure to formaldehyde gas from its release from urea-formaldehyde foam has elicited subjective complaints of sensory irritation and unresolved controversy and regulatory action regarding its toxicity to humans. Lesser health problems have been associated with the more widely used fibrous glass and mineral or rock wools. PMID:6342431

  5. Impact of kerosene space heaters on indoor air quality.

    PubMed

    Hanoune, B; Carteret, M

    2015-09-01

    In recent years, the use of kerosene space heaters as additional or principal heat source has been increasing, because these heaters allow a continuous control on the energy cost. These devices are unvented, and all combustion products are released into the room where the heaters are operated. The indoor air quality of seven private homes using wick-type or electronic injection-type kerosene space heaters was investigated. Concentrations of CO, CO2, NOx, formaldehyde and particulate matter (0.02-10 μm) were measured, using time-resolved instruments when available. All heaters tested are significant sources of submicron particles, NOx and CO2. The average NO2 and CO2 concentrations are determined by the duration of use of the kerosene heaters. These results stress the need to regulate the use of unvented combustion appliances to decrease the exposure of people to air contaminants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Geriatric study in Europe on health effects of air quality in nursing homes (GERIE study) profile: objectives, study protocol and descriptive data.

    PubMed

    Annesi-Maesano, Isabella; Norback, Dan; Zielinski, Jan; Bernard, Alfred; Gratziou, Cristina; Sigsgaard, Torben; Sestini, Piersante; Viegi, Giovanni

    2013-11-21

    Indoor air pollution (IAP) constitutes a major global public health problem requiring increasing efforts in research and policymaking that may have special significance for elderly that are likely to spend most of their day indoors and appear to be particularly susceptible to adverse effects of chemical pollutants and bio-contaminants. Yet, evidence existing on the effects of IAP in elderly is scanty. The Geriatric study in Europe on health effects of air quality in nursing homes (GERIE) study aimed to assess health effects of major indoor air pollutants and thermal conditions in elderly (> 70 years) living stably in nursing homes (NH) across Europe. Respiratory effects were particularly considered as airways and lung constitute the first target of air pollutants. We describe here the rationale and the methods of the GERIE Study. 8 nursing homes were randomly selected in 7 European countries. Twenty individuals were randomly selected in each nursing home. Major indoor and outdoor air chemical pollutants (PM10, PM2.5, PM0.1, formaldehyde, NO2; O3, VOC, CO2) and bio-contaminants (moulds, allergens) were assessed objectively with standardized procedures. Major health status indicators were assessed through a standardized questionnaire, non-invasive clinical tests and blood and urine biomarkers as well as saliva for ADN. The GERIE study has given the opportunity to publish two reviews on respiratory health effects of indoor and outdoor air pollution in elderly. In addition it has provided the inventory of air quality and thermal conditions in 50 nursing homes across Europe and data on respiratory health status in 600 elderly aged 82 years in mean. Major future results will include the relationships between NH environment and health in elderly. The main long-term purpose of the GERIE study is to improve the health of elderly who permanently reside in nursing homes or of those who are exposed to indoor air pollution because of reduced mobility.

  7. Insights from two industrial hygiene pilot e-cigarette passive vaping studies.

    PubMed

    Maloney, John C; Thompson, Michael K; Oldham, Michael J; Stiff, Charles L; Lilly, Patrick D; Patskan, George J; Shafer, Kenneth H; Sarkar, Mohamadi A

    2016-01-01

    While several reports have been published using research methods of estimating exposure risk to e-cigarette vapors in nonusers, only two have directly measured indoor air concentrations from vaping using validated industrial hygiene sampling methodology. Our first study was designed to measure indoor air concentrations of nicotine, menthol, propylene glycol, glycerol, and total particulates during the use of multiple e-cigarettes in a well-characterized room over a period of time. Our second study was a repeat of the first study, and it also evaluated levels of formaldehyde. Measurements were collected using active sampling, near real-time and direct measurement techniques. Air sampling incorporated industrial hygiene sampling methodology using analytical methods established by the National Institute of Occupational Safety and Health and the Occupational Safety and Health Administration. Active samples were collected over a 12-hr period, for 4 days. Background measurements were taken in the same room the day before and the day after vaping. Panelists (n = 185 Study 1; n = 145 Study 2) used menthol and non-menthol MarkTen prototype e-cigarettes. Vaping sessions (six, 1-hr) included 3 prototypes, with total number of puffs ranging from 36-216 per session. Results of the active samples were below the limit of quantitation of the analytical methods. Near real-time data were below the lowest concentration on the established calibration curves. Data from this study indicate that the majority of chemical constituents sampled were below quantifiable levels. Formaldehyde was detected at consistent levels during all sampling periods. These two studies found that indoor vaping of MarkTen prototype e-cigarette does not produce chemical constituents at quantifiable levels or background levels using standard industrial hygiene collection techniques and analytical methods.

  8. Re-evaluation of the WHO (2010) formaldehyde indoor air quality guideline for cancer risk assessment.

    PubMed

    Nielsen, Gunnar Damgård; Larsen, Søren Thor; Wolkoff, Peder

    2017-01-01

    In 2010, the World Health Organization (WHO) established an indoor air quality guideline for short- and long-term exposures to formaldehyde (FA) of 0.1 mg/m 3 (0.08 ppm) for all 30-min periods at lifelong exposure. This guideline was supported by studies from 2010 to 2013. Since 2013, new key studies have been published and key cancer cohorts have been updated, which we have evaluated and compared with the WHO guideline. FA is genotoxic, causing DNA adduct formation, and has a clastogenic effect; exposure-response relationships were nonlinear. Relevant genetic polymorphisms were not identified. Normal indoor air FA concentrations do not pass beyond the respiratory epithelium, and therefore FA's direct effects are limited to portal-of-entry effects. However, systemic effects have been observed in rats and mice, which may be due to secondary effects as airway inflammation and (sensory) irritation of eyes and the upper airways, which inter alia decreases respiratory ventilation. Both secondary effects are prevented at the guideline level. Nasopharyngeal cancer and leukaemia were observed inconsistently among studies; new updates of the US National Cancer Institute (NCI) cohort confirmed that the relative risk was not increased with mean FA exposures below 1 ppm and peak exposures below 4 ppm. Hodgkin's lymphoma, not observed in the other studies reviewed and not considered FA dependent, was increased in the NCI cohort at a mean concentration ≥0.6 mg/m 3 and at peak exposures ≥2.5 mg/m 3 ; both levels are above the WHO guideline. Overall, the credibility of the WHO guideline has not been challenged by new studies.

  9. Cabin air quality: indoor pollutants and climate during intercontinental flights with and without tobacco smoking.

    PubMed

    Lindgren, T; Norbäck, D

    2002-12-01

    The aim was to determine cabin air quality and in-flight exposure for cabin attendants of specific pollutants during intercontinental flights. Measurements of air humidity, temperature, carbon dioxide (CO2), respirable particles, ozone (O3), nitrogen dioxide (NO2) and formaldehyde were performed during 26 intercontinental flights with Boeing 767-300 with and without tobacco smoking onboard. The mean temperature in cabin was 22.2 degrees C (range 17.4-26.8 degrees C), and mean relative air humidity was 6% (range 1-27%). The CO2 concentration during cruises was below the recommended limit of 1000 ppm during 96% of measured time. Mean indoor concentration of NO2 and O3, were 14.1 and 19.2 micrograms/m3, with maximum values of 37 and 66 micrograms/m3, respectively. The concentration of formaldehyde was below the detection limit (< 5 micrograms/m3), in most samples (77%), and the maximum value was 15 micrograms/m3. The mean concentration of respirable particles in the rear part of the aircraft (AFT galley area) was much higher (49 micrograms/m3) during smoking as compared with non-smoking conditions (3 micrograms/m3) (P < 0.001), with maximum values of 253 and 7 micrograms/m3. In conclusion, air humidity is very low on intercontinental flights, and the large variation of temperature shows a need for better temperature control. Tobacco smoking onboard leads to a significant pollution of respirable particles, particularly in the rear part of the cabin. The result supports the view that despite the high air exchange rate and efficient air filtration, smoking in commercial aircraft leads to a significant pollution and should be prohibited.

  10. Ventilating Air-Conditioner

    NASA Technical Reports Server (NTRS)

    Dinh, Khanh

    1994-01-01

    Air-conditioner provides ventilation designed to be used alone or incorporated into cooling or heating system operates efficiently only by recirculating stale air within building. Energy needed to operate overall ventilating cooling or heating system slightly greater than operating nonventilating cooling or heating system. Helps to preserve energy efficiency while satisfying need for increased forced ventilation to prevent accumulation of undesired gases like radon and formaldehyde. Provides fresh treated air to variety of confined spaces: hospital surgeries, laboratories, clean rooms, and printing shops and other places where solvents used. In mobile homes and portable classrooms, eliminates irritant chemicals exuded by carpets, panels, and other materials, ensuring healthy indoor environment for occupants.

  11. House-plant placement for indoor air purification and health benefits on asthmatics.

    PubMed

    Kim, Ho-Hyun; Yang, Ji-Yeon; Lee, Jae-Young; Park, Jung-Won; Kim, Kwang-Jin; Lim, Byung-Seo; Lee, Geon-Woo; Lee, Si-Eun; Shin, Dong-Chun; Lim, Young-Wook

    2014-01-01

    Some plants were placed in indoor locations frequented by asthmatics in order to evaluate the quality of indoor air and examine the health benefits to asthmatics. The present study classified the participants into two groups: households of continuation and households of withdrawal by a quasi-experimental design. The households of continuation spent the two observation terms with indoor plants, whereas the households of withdrawal passed the former observation terms with indoor plants and went through the latter observation term without any indoor plants. The household of continuation showed a continual decrease in the indoor concentrations of volatile organic compounds (VOCs) during the entire observation period, but the household of withdrawal performed an increase in the indoor concentrations of VOCs, except formaldehyde and toluene during the latter observation term after the decrease during the former observation term. Peak expiratory flow rate (PEFR) increased in the households of continuation with the value of 13.9 L/min in the morning and 20.6 L/ min in the evening, but decreased in the households of withdrawal with the value of -24.7 L/min in the morning and -30.2 L/min in the evening in the first experimental season. All of the households exhibited a decrease in the value of PEFR in the second experimental season. Limitations to the generalizability of findings regarding the presence of plants indoors can be seen as a more general expression of such a benefit of human-environment relations.

  12. House-plant placement for indoor air purification and health benefits on asthmatics

    PubMed Central

    Kim, Ho-Hyun; Yang, Ji-Yeon; Lee, Jae-Young; Park, Jung-Won; Kim, Kwang-Jin; Lim, Byung-Seo; Lee, Geon-Woo; Lee, Si-Eun; Shin, Dong-Chun; Lim, Young-Wook

    2014-01-01

    Objectives Some plants were placed in indoor locations frequented by asthmatics in order to evaluate the quality of indoor air and examine the health benefits to asthmatics. Methods The present study classified the participants into two groups: households of continuation and households of withdrawal by a quasi-experimental design. The households of continuation spent the two observation terms with indoor plants, whereas the households of withdrawal passed the former observation terms with indoor plants and went through the latter observation term without any indoor plants. Results The household of continuation showed a continual decrease in the indoor concentrations of volatile organic compounds (VOCs) during the entire observation period, but the household of withdrawal performed an increase in the indoor concentrations of VOCs, except formaldehyde and toluene during the latter observation term after the decrease during the former observation term. Peak expiratory flow rate (PEFR) increased in the households of continuation with the value of 13.9 L/min in the morning and 20.6 L/ min in the evening, but decreased in the households of withdrawal with the value of -24.7 L/min in the morning and -30.2 L/min in the evening in the first experimental season. All of the households exhibited a decrease in the value of PEFR in the second experimental season. Conclusions Limitations to the generalizability of findings regarding the presence of plants indoors can be seen as a more general expression of such a benefit of human-environment relations. PMID:25384387

  13. Indoor Residential Chemical Exposures as Risk Factors for Asthmaand Allergy in Infants and Children: a Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendell, M.J.

    2006-03-01

    Most research into effects of residential indoor air exposures on asthma and allergies has focused on exposures to biologic allergens, moisture and mold, endotoxin, or combustion byproducts. This paper briefly reviews reported findings on associations of asthma or allergy in infants or children with risk factors related to indoor chemical emissions from residential materials or surface coatings. Associations, some strong (e.g., odds ratios up to 13), were reported. The most frequently identified risk factors were formaldehyde, aromatic organic compounds such as toluene and benzene, plastic materials and plasticizers, and recent painting. Exposures and consequent effects from indoor sources may bemore » exacerbated by decreased ventilation. Identified risk factors may be proxies for correlated exposures. Findings suggest the frequent occurrence of important but preventable effects on asthma and allergy in infants and children worldwide from modern residential building materials and coatings.« less

  14. Emissions from Electronic Cigarettes: Assessing Vapers' Intake of Toxic Compounds, Secondhand Exposures, and the Associated Health Impacts.

    PubMed

    Logue, Jennifer M; Sleiman, Mohamad; Montesinos, V Nahuel; Russell, Marion L; Litter, Marta I; Benowitz, Neal L; Gundel, Lara A; Destaillats, Hugo

    2017-08-15

    E-cigarettes likely represent a lower risk to health than traditional combustion cigarettes, but they are not innocuous. Recently reported emission rates of potentially harmful compounds were used to assess intake and predict health impacts for vapers and bystanders exposed passively. Vapers' toxicant intake was calculated for scenarios in which different e-liquids were used with various vaporizers, battery power settings and vaping regimes. For a high rate of 250 puff day -1 using a typical vaping regime and popular tank devices with battery voltages from 3.8 to 4.8 V, users were predicted to inhale formaldehyde (up to 49 mg day -1 ), acrolein (up to 10 mg day -1 ) and diacetyl (up to 0.5 mg day -1 ), at levels that exceeded U.S. occupational limits. Formaldehyde intake from 100 daily puffs was higher than the amount inhaled by a smoker consuming 10 conventional cigarettes per day. Secondhand exposures were predicted for two typical indoor scenarios: a home and a bar. Contributions from vaping to air pollutant concentrations in the home did not exceed the California OEHHA 8-h reference exposure levels (RELs), except when a high emitting device was used at 4.8 V. In that extreme scenario, the contributions from vaping amounted to as much as 12 μg m -3 formaldehyde and 2.6 μg m -3 acrolein. Pollutant concentrations in bars were modeled using indoor volumes, air exchange rates and the number of hourly users reported in the literature for U.S. bars in which smoking was allowed. Predicted contributions to indoor air levels were higher than those in the residential scenario. Formaldehyde (on average 135 μg m -3 ) and acrolein (28 μg m -3 ) exceeded the acute 1-h exposure REL for the highest emitting vaporizer/voltage combination. Predictions for these compounds also exceeded the 8-h REL in several bars when less intense vaping conditions were considered. Benzene concentrations in a few bars approached the 8-h REL, and diacetyl levels were close to the lower limit for occupational exposures. The integrated health damage from passive vaping was derived by computing disability-adjusted life years (DALYs) lost due to exposure to secondhand vapor. Acrolein was the dominant contributor to the aggregate harm. DALYs for the various device/voltage combinations were lower than-or comparable to-those estimated for exposures to secondhand and thirdhand tobacco smoke.

  15. Exposures to multiple air toxics in New York City.

    PubMed Central

    Kinney, Patrick L; Chillrud, Steven N; Ramstrom, Sonja; Ross, James; Spengler, John D

    2002-01-01

    Efforts to assess health risks associated with exposures to multiple urban air toxics have been hampered by the lack of exposure data for people living in urban areas. The TEACH (Toxic Exposure Assessment, a Columbia/Harvard) study was designed to characterize levels of and factors influencing personal exposures to urban air toxics among high school students living in inner-city neighborhoods of New York City and Los Angeles, California. This present article reports methods and data for the New York City phase of TEACH, focusing on the relationships between personal, indoor, and outdoor concentrations in winter and summer among a group of 46 high school students from the A. Philip Randolph Academy, a public high school located in the West Central Harlem section of New York City. Air pollutants monitored included a suite of 17 volatile organic compounds (VOCs) and aldehydes, particulate matter with a mass median aerodynamic diameter

  16. Exposures to multiple air toxics in New York City.

    PubMed

    Kinney, Patrick L; Chillrud, Steven N; Ramstrom, Sonja; Ross, James; Spengler, John D

    2002-08-01

    Efforts to assess health risks associated with exposures to multiple urban air toxics have been hampered by the lack of exposure data for people living in urban areas. The TEACH (Toxic Exposure Assessment, a Columbia/Harvard) study was designed to characterize levels of and factors influencing personal exposures to urban air toxics among high school students living in inner-city neighborhoods of New York City and Los Angeles, California. This present article reports methods and data for the New York City phase of TEACH, focusing on the relationships between personal, indoor, and outdoor concentrations in winter and summer among a group of 46 high school students from the A. Philip Randolph Academy, a public high school located in the West Central Harlem section of New York City. Air pollutants monitored included a suite of 17 volatile organic compounds (VOCs) and aldehydes, particulate matter with a mass median aerodynamic diameter

  17. Development of real-time monitors for gaseous formaldehyde. Final report, 1 December 1988-30 September 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, T.J.; Barnes, R.H.

    1990-11-01

    Two new methods for real-time measurement of gaseous formaldehyde have been developed. One is a spectroscopic method based on direct fluorescence detection of gaseous formaldehyde following excitation with UV light. This method has been developed to the prototype stage by modifications of a commercial fluorescence SO2 detector to convert it to formaldehyde detection. The prototype spectroscopic formaldehyde monitor exhibits a detection limit of <30 ppbv, with a time response of about one minute. The second method is based on derivatization of formaldehyde in aqueous solution to form a fluorescent product. The detection of fluorescent product was made more sensitive bymore » using intense 254 nm light from a mercury lamp for excitation, thereby allowing use of a simple and efficient glass coil scrubber for collection of gaseous formaldehyde. The wet chemical formaldehyde monitor incorportating these improvements exhibits a detection limit for gaseous formaldehyde of 0.2 ppbv and for aqueous formaldehyde of 0.2 micromolar with time response of about one minute, following a lag time of 2 minutes. Both instruments were tested in the laboratory with gaseous formaldehyde standards, and the aqueous scrubbing/analysis method was field tested by continuous operation over a 10-day period in which outdoor and indoor air were sampled for alternate half-hour periods. A comparison of real-time (aqueous scrubbing/analysis) and integrated measurements, using dinitrophenylhydrazine (DNPH) impingers, showed close agreement between the real-time and DNPH data, even at concentrations as low as 1 ppbv.« less

  18. Role of Transient Receptor Potential Ion Channels and Evoked Levels of Neuropeptides in a Formaldehyde-Induced Model of Asthma in Balb/c Mice

    PubMed Central

    Wu, Yang; You, Huihui; Ma, Ping; Li, Li; Yuan, Ye; Li, Jinquan; Ye, Xin; Liu, Xudong; Yao, Hanchao; Chen, Ruchong; Lai, Kefang; Yang, Xu

    2013-01-01

    Objective Asthma is a complex pulmonary inflammatory disease characterized by the hyper-responsiveness, remodeling and inflammation of airways. Formaldehyde is a common indoor air pollutant that can cause asthma in people experiencing long-term exposure. The irritant effect and adjuvant effect are the two possible pathways of formaldehyde promoted asthma. Methodology/Principal Findings To explore the neural mechanisms and adjuvant effect of formaldehyde, 48 Balb/c mice in six experimental groups were exposed to (a) vehicle control; (b) ovalbumin; (c) formaldehyde (3.0 mg/m3); (d) ovalbumin+formaldehyde (3.0 mg/m3); (e) ovalbumin+formaldehyde (3.0 mg/m3)+HC-030031 (transient receptor potential ankyrin 1 antagonist); (f) ovalbumin+formaldehyde (3.0 mg/m3)+ capsazepine (transient receptor potential vanilloid 1 antagonist). Experiments were conducted after 4 weeks of combined exposure and 1-week challenge with aerosolized ovalbumin. Airway hyper-responsiveness, pulmonary tissue damage, eosinophil infiltration, and increased levels of interleukin-4, interleukin-6, interleukin-1β, immunoglobulin E, substance P and calcitonin gene-related peptide in lung tissues were found in the ovalbumin+formaldehyde (3.0 mg/m3) group compared with the values seen in ovalbumin -only immunized mice. Except for interleukin-1β levels, other changes in the levels of biomarker could be inhibited by HC-030031 and capsazepine. Conclusions/Significance Formaldehyde might be a key risk factor for the rise in asthma cases. Transient receptor potential ion channels and neuropeptides have important roles in formaldehyde promoted-asthma. PMID:23671638

  19. The effect of an ion generator on indoor air quality in a residential room.

    PubMed

    Waring, M S; Siegel, J A

    2011-08-01

    Ion generators charge particles with a corona prior to their removal on collector plates or indoor surfaces and also emit ozone, which can react with terpenes to yield secondary organic aerosol, carbonyls, carboxylic acids, and free radicals. This study characterized the indoor air quality implications of operating an ion generator in a 27 m(3) residential room, with four different test room configurations. Two room configurations had carpet overlaying the original flooring of stained/sealed concrete, and for one configuration with and without carpet, a plug-in air freshener was used as a terpene source. Measurements included airborne sampling of particulate matter (0.015-20 μm), terpenes and C(1) -C(4) and C(6) -C(10) aldehydes, ozone concentrations, and air exchange rates. When the heating, ventilating, and air-conditioning system was not operating (room air exchange rate = ∼0.5/h), the use of the ion generator in the presence of the air freshener led to a net increase in ultrafine particles (<0.1 μm). Also, increased concentrations of ozone were observed regardless of air freshener presence, as well as increases in formaldehyde and nonanal, albeit within measurement uncertainty in some cases. Thus, it may be prudent to limit ion generator use indoors until evidence of safety can be ascertained. Portable ion generators are intended to clean the air of particles, but they may emit ozone as a byproduct of their operation, which has the potential to degrade indoor air quality. This study showed that under certain conditions in a residential room, the use of a portable ion generator can increase concentrations of ozone and, to a lesser degree, potentially aldehydes. Also, if operated in the presence of a plug-in air freshener that emits terpenes, its use can increase concentrations of secondary organic aerosol in the ultrafine size range. © 2010 John Wiley & Sons A/S.

  20. Evaluation of a diffusive sampler for measurement of carbonyl compounds in air

    NASA Astrophysics Data System (ADS)

    Uchiyama, Shigehisa; Aoyagi, Shohei; Ando, Masanori

    A diffusive sampling device (DSD-DNPH) has been developed for collection of ppb levels of 21 carbonyl compounds in indoor air. It is comprised of silica gel coated with 2,4-dinitrophenylhydrazine (DNPH) as the absorbent, a porous sintered polyethylene tube (PSP-diffusion filter) which acts as a diffusive membrane, and a small polypropylene syringe (PP-reservoir) which is used for the elution of the analytes from the absorbent. As the diffusive membrane comprises the entire cylindrical surface of the tube, it allows 'radial' exposure from all sides. A side-by-side comparison was made with active samplers, demonstrating good correlation (formaldehyde r2=0.992). The sampling rate (71.9 ml min -1) of formaldehyde was determined from comparison with an active sampling method and the sampling rates of other carbonyl compounds were calculated from their diffusion coefficients. These calculated sampling rates agreed with the experimental values. Little influence of wind velocity on the sampler was observed. The relative standard deviations for formaldehyde and acetaldehyde concentrations were 5.5% and 8.6%, respectively, with face velocity from 0 to 5.0 m/s. The DSD-DNPH enables the estimation of time-weighted average concentration of carbonyl compounds. Concentrations of formaldehyde estimated by the 7-day sampling method were nearly equal to the mean value calculated from the 24-hour sampling method measured over 7 days. This confirmed that the concentration of formaldehyde could be precisely monitored by 7-day continuous sampling.

  1. Wavelength-Resolved Photon Fluxes of Indoor Light Sources: Implications for HOx Production

    NASA Astrophysics Data System (ADS)

    Kowal, S.; Kahan, T.

    2017-12-01

    Only a handful of studies have considered photolytic reactions indoors because photon fluxes at short wavelengths are generally considered to be negligible. We have measured wavelength resolved photon fluxes from indoor light sources including incandescent, halogen, compact fluorescent (CFL), and light emitting diodes (LED). In addition, fluorescent tubes, used in many offices and industrial buildings, and sunlight through windows were measured. The measured photon fluxes were used to calculate photolysis rate constants for potential indoor hydroxyl and peroxy radical (OH and HO2, "HOx") precursors: acetaldehyde (CH3CHO), formaldehyde (HCHO), hydrogen peroxide (H2O2), nitrous acid (HONO) and ozone (O3). Rate constants in conjunction with typical indoor concentrations were used to predict HOx production rates under various lighting conditions. Our results illustrate that all light sources except LEDs emit light at high enough energy to photolyze HOx precursors. Under typical lighting conditions only fluorescent tubes and sunlight will initiate significant photochemical HOx formation, and HONO and HCHO will be the only molecules that will have a strong influence on HOx levels indoors. Data from our experiments can be used in indoor air models to better predict HOx levels indoors.

  2. Assessment of exposure to indoor air contaminants from combustion sources: methodology and application.

    PubMed

    Leaderer, B P; Zagraniski, R T; Berwick, M; Stolwijk, J A

    1986-08-01

    A methodology for assessing indoor air pollutant exposures is presented, with specific application to unvented combustion by-products. This paper describes the method as applied to a study of acute respiratory illness associated with the use of unvented kerosene space heaters in 333 residences in the New Haven, Connecticut, area from September 1982 to April 1983. The protocol serves as a prototype for a nested design of exposure assessment which could be applied to large-scale field studies of indoor air contaminant levels. Questionnaires, secondary records, and several methods of air monitoring offer a reliable method of estimating environmental exposures for assessing associations with health effects at a reasonable cost. Indoor to outdoor ratios of NO2 concentrations were found to be 0.58 +/- 0.31 for residences without known sources of NO2. Levels of NO2 were found to be comparable for homes with a kerosene heater only and those with a gas cooking stove only. Homes with a kerosene heater and a gas stove had average two-week NO2 levels approximately double those with only one source. Presence of tobacco smokers had a small but significant impact on indoor NO2 levels. Two-week average levels of indoor NO2 were found to be excellent predictors of total personal NO2 exposure for a small sample of adults. Residences with kerosene space heaters had SO2 levels corresponding to the number of hours of heater use and the sulfur content of the fuel. Formaldehyde levels were found to be low and not related to unvented combustion sources. NO2, SO2, and CO2 levels measured in some of the residences were found to exceed those levels specified in current national health standards.

  3. Indoor air quality in green buildings: A case-study in a residential high-rise building in the northeastern United States.

    PubMed

    Xiong, Youyou; Krogmann, Uta; Mainelis, Gediminas; Rodenburg, Lisa A; Andrews, Clinton J

    2015-01-01

    Improved indoor air quality (IAQ) is one of the critical components of green building design. Green building tax credit (e.g., New York State Green Building Tax Credit (GBTC)) and certification programs (e.g., Leadership in Energy & Environmental Design (LEED)) require indoor air quality measures and compliance with allowable maximum concentrations of common indoor air pollutants. It is not yet entirely clear whether compliance with these programs results in improved IAQ and ultimately human health. As a case in point, annual indoor air quality measurements were conducted in a residential green high-rise building for five consecutive years by an industrial hygiene contractor to comply with the building's GBTC requirements. The implementation of green design measures resulted in better IAQ compared to data in references of conventional homes for some parameters, but could not be confirmed for others. Relative humidity and carbon dioxide were satisfactory according to existing standards. Formaldehyde levels during four out of five years were below the most recent proposed exposure limits found in the literature. To some degree, particulate matter (PM) levels were lower than that in studies from conventional residential buildings. Concentrations of Volatile Organic Compounds (VOCs) with known permissible exposure limits were below levels known to cause chronic health effects, but their concentrations were inconclusive regarding cancer health effects due to relatively high detection limits. Although measured indoor air parameters met all IAQ maximum allowable concentrations in GBTC and applicable LEED requirements at the time of sampling, we argue that these measurements were not sufficient to assess IAQ comprehensively because more sensitive sampling/analytical methods for PM and VOCs are needed; in addition, there is a need for a formal process to ensure rigor and adequacy of sampling and analysis methods. Also, we suggest that a comprehensive IAQ assessment should include mixed mode thermal comfort models, semi-volatile organic compounds, assessment of new chemicals, and permissible exposure levels of many known indoor VOCs and bioaerosols. Plus, the relationship between energy consumption and IAQ, and tenant education on health effects of indoor pollutants and their sources may need more attention in IAQ investigations in green buildings.

  4. Indoor air quality, air exchange rates, and radioactivity in new built temporary houses following the Great East Japan Earthquake in Minamisoma, Fukushima.

    PubMed

    Shinohara, N; Tokumura, M; Kazama, M; Yoshino, H; Ochiai, S; Mizukoshi, A

    2013-08-01

    This study measured air exchange rates, indoor concentrations of aldehydes and volatile organic compounds (VOCs), and radioactivity levels at 19 temporary houses in different temporary housing estate constructed in Minamisoma City following the Great East Japan Earthquake. The 19 surveyed houses represented all of the companies assigned to construct temporary houses in that Minamisoma City. Data were collected shortly after construction and before occupation, from August 2011 to January 2012. Mean air exchange rates in the temporary houses were 0.28/h, with no variation according to housing types and construction date. Mean indoor concentrations of formaldehyde, acetaldehyde, toluene, ethylbenzene, m/p-xylene, o-xylene, styrene, p-dichlorobenzene, tetradecane, and total VOCs (TVOCs) were 29.2, 72.7, 14.6, 6.35, 3.05, 1.81, 7.29, 14.3, 8.32, and 901 μg/m(3), respectively. The levels of acetaldehyde and TVOCs exceeded the indoor guideline (48 μg/m(3)) and interim target (400 μg/m(3)) in more than half of the 31 rooms tested. In addition to guideline chemicals, terpenes (α-pinene and d-limonene) and acetic esters (butyl acetate and ethyl acetate) were often detected in these houses. The indoor radiation levels measured by a Geiger-Müller tube (Mean: 0.22 μSv/h) were lower than those recorded outdoors (Mean: 0.42 μSv/h), although the shielding effect of the houses was less than for other types of buildings. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Formaldehyde exposures from tobacco smoke: a review.

    PubMed Central

    Godish, T

    1989-01-01

    Reports of formaldehyde levels in mainstream, sidestream, and environmental tobacco smoke from nine studies are reviewed. Considerable disparity exists between formaldehyde production rates determined from mainstream-sidestream studies and those reporting levels in environmental tobacco smoke. Tobacco smoke does not appear to increase vapor-phase formaldehyde levels significantly in indoor environments, but formaldehyde exposure in mainstream smoke may pose a risk of upper respiratory system cancer and increase the risk of cancer in smokers. PMID:2665532

  6. Houseplants, Indoor Air Pollutants, and Allergic Reactions

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.

    1986-01-01

    The technology of using houseplant leaves for reducing volatile organics inside closed facilities has been demonstrated with formaldehyde and benzene. Philodendrons are among the most effective plants tested to date. Philodendron domesticum had demonstrated the ability to remove formaldehyde from small experimental chambers at a rate of 4.31 micro-g/sq cm leaf surface area with initial starting concentrations of 22 ppm. At initial starting concentrations of 2.3 ppm a formaldehyde removal rate of 0.57 micro-g/sq cm was achieved during a 24 hour test. Aleo vera demonstrated a much higher formaldehyde efficiency removal rate than Philodendron domesticum at low formaldehyde concentrations. During a 24 hour exposure period 5 ppm of formaldehyde were reduced to 0.5 ppm demonstrating a removal efficiency rate of 3.27 micro-g/sq cm. Removal efficiency rates can be expected to decrease with concentration levels because fewer molecules of chemicals come in contact with the leaf surface area. Several centimeters of small washed gravel should be used to cover the surface of pot plants when large numbers of plants are kept in the home. The reason for this is to reduce the exposed area of damp potting soil which encourages the growth of molds (fungi). The leaves of Philodendron domesticum and golden pothos (Scindapsus aureus) have also demonstrated their ability to remove benzene and carbon monoxide from closed chambers. A combination of activated carbon and plant roots have demonstrated the greatest potential for removing large volumes of volatile organics along with smoke and possible radon from closed systems. Although fewer plants are required for this concept a mechanical blower motor must be used to pull or push the air through the carbon-root filter. NASA studies on motor sizes and bioregeneration rates should be completed by 1988.

  7. Study on Decomposition of Indoor Air Contaminants by Pulsed Atmospheric Microplasma

    PubMed Central

    Shimizu, Kazuo; Kuwabara, Tomoya; Blajan, Marius

    2012-01-01

    Decomposition of formaldehyde (HCHO) by a microplasma reactor in order to improve Indoor Air Quality (IAQ) was achieved. HCHO was removed from air using one pass through reactor treatment (5 L/min). From an initial concentration of HCHO of 0.7 ppm about 96% was removed in one pass treatment using a discharge power of 0.3 W provided by a high voltage amplifier and a Marx Generator with MOSFET switches as pulsed power supplies. Moreover microplasma driven by the Marx Generator did not generate NOx as detected by a chemiluminescence NOx analyzer. In the case of large volume treatment the removal ratio of HCHO (initial concentration: 0.5 ppm) after 60 minutes was 51% at 1.2 kV when using HV amplifier considering also a 41% natural decay ratio of HCHO. The removal ratio was 54% at 1.2 kV when a Marx Generator energized the electrodes with a 44% natural decay ratio after 60 minutes of treatment. PMID:23202173

  8. Hazardous airborne carbonyls emissions in industrial workplaces in China.

    PubMed

    Ho, Steven Sai Hang; Ip, Ho Sai Simon; Ho, Kin Fai; Ng, Louisa Pan Ting; Chan, Chi Sing; Dai, Wen Ting; Cao, Jun Ji

    2013-07-01

    A pilot hazardous airborne carbonyls study was carried out in Hong Kong and the Mainland of China. Workplace air samples in 14 factories of various types of manufacturing and industrial operations were collected and analyzed for a panel of 21 carbonyl compounds. The factories can be classified into five general categories, including food processing, electroplating, textile dyeing, chemical manufacturer, and petroleum refinery. Formaldehyde was invariably the most abundant carbonyl compound among all the workplace air samples, accounting for 22.0-44.0% of the total measured amount of carbonyls on a molar basis. Acetone was also found to be an abundant carbonyl in workplace settings; among the selected industrial sectors, chemical manufacturers' workplaces had the highest percentage (an average of 42.6%) of acetone in the total amount of carbonyls measured in air. Benzaldehyde accounted for an average of 20.5% of the total amount of detected carbonyls in electroplating factories, but its contribution was minor in other industrial workplaces. Long-chain aliphatic carbonyls (C6-C10) accounted for a large portion (37.2%) of the total carbonyls in food-processing factories. Glyoxal and methylglyoxal existed at variable levels in the selected workplaces, ranging from 0.2% to 5.5%. The mixing ratio of formaldehyde ranged from 8.6 to 101.2 ppbv in the sampled workplaces. The observed amount of formaldehyde in two paint and wax manufacturers and food-processing factories exceeded the World Health Organization (WHO) air quality guideline of 81.8 ppbv. Carcinogenic risks of chronic exposure to formaldehyde and acetaldehyde by the workers were evaluated. The lifetime cancer hazard risks associated with formaldehyde exposure to male and female workers ranged from 2.01 x 10(-5) to 2.37 x 10(-4) and 2.68 x 10(-5) to 3.16 x 10(-4), respectively. Such elevated risk values suggest that the negative health impact of formaldehyde exposure represents a valid concern, and proper actions should be taken to protect workers from such risks. Many carbonyl species (e.g., formaldehyde, acetaldehyde, and acrolein) are air toxins and they pose public healt risks. The scope of this investigation covers 21 types of carbonyls based on samples collected from 14 different workplaces. Findings of the study will not only provide a comprehensive assessment of indoor air quality with regard to workers' healthy and safety, but also establish a theoretical foundation for future formulation of intervention strategies to reduce occupational carbonyl exposures. No similar study has been carried out either in Hong Kong or the Mainland of China.

  9. Ambient measurement of ammonia and formaldehyde: Open path vs. extractive approach.

    NASA Astrophysics Data System (ADS)

    Rajamäki, Timo

    2017-04-01

    Ammonia NH3 and formaldehyde CH2O are some of the most critical chemicals for air quality. Reliable online measurement of these gases is one of the key operations for air quality and safety monitoring, in indoor, outdoor and process applications alike. Ammonia and formaldehyde are reactive compounds and they are harmful, even in very low ppb level concentrations. This means challenges for measurement system in all of its critical aspects: sampling, calibration and sensitivity. We are applying techniques so far successfully used to measure reactive inorganic compounds like ammonia NH3 and hydrogen fluoride HF to tackle these challenges. Now a novel setup based on direct laser absorption with cavity enhancement employing fundamental vibration level excitations of ammonia and formaldehyde molecules is constructed in connection with new mechanics and algorithms optimized for gas exchange and sampling in the case of these reactive molecules easily sticking to surfaces. An aberration corrected multipass sample cell in vacuum pressure is used in parallel with an open path multipass setup. The CH2O and NH3 calibration gases necessary for system calibration are dynamically generated using traceable standards and components. We compare these two approaches with special emphasis on the system's response time, robustness, sensitivity, usability in field conditions, maintenance need and long term stability. A further coal is to enable the use of the same setups also for simultaneous measurement of other reactive compounds often encountered in air quality monitoring. This would make possible more comprehensive and also economic monitoring of these compounds with a single device.

  10. Room chamber assessment of the pollutant emission properties of (nominally) low-emission unflued gas heaters.

    PubMed

    Brown, Stephen K; Mahoney, K John; Cheng, Min

    2004-01-01

    Pollutant emissions from unflued gas heaters were assessed in CSIRO's Room Dynamic Environmental Chamber. This paper describes the chamber assessment procedure and presents findings for major commercial heaters that are nominally "low-emission". The chamber was operated at controlled conditions of temperature, humidity, ventilation and air mixing, representative of those encountered in typical indoor environments. A fixed rate of heat removal from the chamber air ensured that the heaters operated at constant heating rates, typically approximately 6 MJ/h which simulated operation of a heater after warm-up in an insulated dwelling in south-east Australia. The pollutants assessed were nitrogen dioxide, carbon monoxide, formaldehyde, VOCs and respirable suspended particulates. One type of heater was lower emitting for nitrogen dioxide, but emitted greater amounts of carbon monoxide and formaldehyde (the latter becoming significant to indoor air quality). When operated with low line pressure or slight misalignment of the gas burner, this heater became a hazardous source of these pollutants. Emissions from the heaters changed little after continuous operation for up to 2 months. Unflued gas heaters have been popular as primary heating sources in Australian homes for many years due to their ease of installation and energy efficiency, with approximately 600,000 now installed in housing and schools. However, with concerns over potential health impacts to occupants, manufacturers have reduced the nitrogen dioxide emissions from unflued gas heaters in Australia over recent years. They have done so with a target level for nitrogen dioxide in indoor air of 300 p.p.b. This is somewhat higher than the ambient air (and WHO) guideline of 110 p.p.b. Several studies of child respiratory health show an impact of unflued gas combustion products. A full characterization of the combustion products is needed under conditions that simulate heater operation in practice-this study was undertaken to provide such characterization. Key findings are that the focus needs to be on total gas emissions (not just nitrogen dioxide), and that heater installation can be very sensitive to small faults which lead to very high levels of toxic pollutants. These findings have influenced current government proposals for emission limits for these heaters.

  11. [Evaluation of volatile organic compounds (VOCs) emitted from household products by small chamber test method].

    PubMed

    Tanaka-Kagawa, Toshiko; Jinno, Hideto; Obama, Tomoko; Miyagawa, Makoto; Yoshikawa, Jun; Komatsu, Kazuhiro; Tokunaga, Hiroshi

    2007-01-01

    Identification and removal/replacement of sources of indoor air pollutants, such as volatile organic compounds (VOCs) and aldehydes, are most effective measures to reduce indoor chemical exposures. For instance, formaldehyde emissions from building materials have been successfully decreased by the restrictions on interior finishing materials under the amended Building Standard Low in Japan. This study was performed to estimate quantitatively influence of household products on indoor air quality. VOC emissions were investigated for 51 products including interior materials, bedclothes, stationeries, toys and printed matters by the small chamber test method (JIS A 1901) under the standard conditions of 28 degrees C, 50% relative humidity and 0.5 times/h ventilation. Total VOC (TVOC) emissions from the tablecloth and gloves, both of which were made of polyvinyl chloride, showed the highest emission rates; over 2000 microg/(m2 x h) after 1 day, and then rapidly decreased to less than 500 microg/(m2 x h) in a week. Among stationeries/toys for schoolchildren and infants, jigsaw puzzle and play mat exhibited higher TVOC emission rates (38 and 24 microg/(m2 x h) after 1 day, respectively). As for VOCs emitted from printed matters, high boiling-point compounds (higher than that of n-tridecane) were typically identified along with toluene, xylenes and ethylbenzene. These results revealed that VOC emissions from household products may influence significantly indoor air quality.

  12. A mechanistic study of limonene oxidation products and pathways following cleaning activities

    NASA Astrophysics Data System (ADS)

    Carslaw, Nicola

    2013-12-01

    Indoor air pollution has caused increasing concern since the 1970s, when the advent of stricter energy efficiency measures lead to increased reports of building related symptoms. Cleaning activities have been linked to adverse health effects indoors, although it is unclear which of the components of cleaning products cause these reported health effects. This paper uses a detailed chemical model for indoor air chemistry, to identify the species formed at the highest concentrations following use of a limonene-based cleaning product. The explicit nature of the chemical mechanism also permits the key pathways to their formation to be identified. The results show that the key species in terms of gas-phase concentration are multi-functional carbonyl species including limonaldehyde, 4-acetyl-1-methyl-1-cyclohexene and other dicarbonyl species. The particle-phase was dominated by peroxide species. The predicted gas-phase concentrations for three limonene-oxidation products were compared to recently published human reference values, but found not to be high enough to cause concern for typical indoor conditions, or under high indoor ozone conditions. However, cleaning products contain a range of terpenes other than limonene, which could also produce some of the secondary products identified here, as well as more common species such as formaldehyde, glyoxal and hydrogen peroxide. A mechanistic pathway analysis shows that the secondary products formed through limonene oxidation indoors depend critically on the competition between ozone and hydroxyl radicals, such that indoor pollutant concentrations and composition could vary widely in different locations for a nominally similar residence and indoor activities. Future studies should focus on aiming to measure multi-functional carbonyl species indoors to help validate models, whilst human reference values are needed for many more relevant species indoors.

  13. Characteristics of carbonyl compounds in public vehicles of Beijing city: Concentrations, sources, and personal exposures

    NASA Astrophysics Data System (ADS)

    Pang, Xiaobing; Mu, Yujing

    The characteristics of carbonyl compounds (carbonyls) including concentrations, major sources, and personal exposure were investigated for 29 vehicles including taxi, bus and subway in Beijing. It was found that the taxis (Xiali, TA) and buses (Huanghe, BA) fueled by gasoline with longer service years had the higher indoor carbonyl levels (178±42.7 and 188±31.6 μg m -3) while subways energized by electricity without exhaust and the jingwa buses (BB) driven in the suburb had the lower levels with total concentrations of 98.5±26.3 and 92.1±20.3 μg m -3, respectively. Outdoor carbonyls of taxi cars and buses were nearly at the same level with their total concentrations varying from 80 to 110 μg m -3. The level of outdoor subways carbonyls was equal with the ambient air levels. Exhaust leakage, indoor material emissions, photochemical formation, and infiltration of outdoor air were considered to be the major sources to in-vehicle carbonyls. Personal exposures and cancer risk to formaldehyde and acetaldehyde were calculated for professional bus and taxi drivers, respectively. Taxi drivers had the highest cancer risk with personal exposure to formaldehyde and acetaldehyde of 212 and 243 μg day -1, respectively. The public concern should pay considerable attention to professional drivers' health.

  14. Characterization of PM 2.5 and selected gas-phase compounds at multiple indoor and outdoor sites in Mira Loma, California

    NASA Astrophysics Data System (ADS)

    Sawant, Aniket A.; Na, Kwangsam; Zhu, Xiaona; Cocker, Kathalena; Butt, Sheraz; Song, Chen; Cocker, David R.

    Fine particulate matter (PM 2.5) and gas-phase carbonyls are categories of atmospheric pollutants that have components known to adversely affect human health. This work describes the chemical characterization of PM 2.5 and 13 carbonyl compounds measured inside 20 residences and 7 schoolrooms in Mira Loma, western Riverside County, California. Median PM 2.5 concentrations were 32.2 and 13.2 μg m -3, while median total carbonyl concentrations were 50.8 and 62.9 μg m -3 inside the residences and schoolrooms, respectively. Organic carbon was typically the largest contributor to indoor PM 2.5 concentrations, while formaldehyde, acetaldehyde and acetone were the largest contributors to gas-phase carbonyl concentrations. Indoor/outdoor ratios for PM 2.5 were greater for residences than for schoolrooms, while the reverse was true for these ratios for gas-phase carbonyls. These results are likely due to effective PM 2.5 removal by filtration on the HVAC and the presence of more significant indoor carbonyl sources within the schoolrooms. Regression analysis of indoor and outdoor pollutant concentrations showed that for PM 2.5, sulfate and nitrate were the best- and worst-correlated species, respectively. This suggests that nitrate is a poor tracer for outdoor-to-indoor PM 2.5 transfer. In addition, no significant correlations were observed for any of the carbonyl compounds measured. This further suggests the presence of indoor carbonyl sources inside the schoolrooms, and that indoor air quality especially in terms of carbonyl concentrations may be substantially poorer than outdoor air quality.

  15. Plants Clean Air and Water for Indoor Environments

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Wolverton Environmental Services Inc., founded by longtime government environmental scientist B.C. "Bill" Wolverton, is an environmental consulting firm that gives customers access to the results of his decades of cutting-edge bioremediation research. Findings about how to use plants to improve indoor air quality have been published in dozens of NASA technical papers and in the book, "How to Grow Fresh Air: 50 Houseplants That Purify Your Home or Office." The book has now been translated into 12 languages and has been on the shelves of bookstores for nearly 10 years. A companion book, "Growing Clean Water: Nature's Solution to Water Pollution," explains how plants can clean waste water. Other discoveries include that the more air that is allowed to circulate through the roots of the plants, the more effective they are at cleaning polluted air; and that plants play a psychological role in welfare in that people recover from illness faster in the presence of plants. Wolverton Environmental is also working in partnership with Syracuse University, to engineer systems consisting of modular wicking filters tied into duct work and water supplies, essentially tying plant-based filters into heating, ventilation, and air conditioning (HVAC) systems. Also, the company has recently begun to assess the ability of the EcoPlanter to remove formaldehyde from interior environments. Wolverton Environmental is also in talks with designers of the new Stennis Visitor's Center, who are interested in using its designs for indoor air-quality filters

  16. Environmental site assessments and audits: Building inspection requirements

    NASA Astrophysics Data System (ADS)

    Lange, John H.; Kaiser, Genevieve; Thomulka, Kenneth W.

    1994-01-01

    Environmental site assessment criteria were originally developed by organizations that focused, almost exclusively, on surface, subsurface, and pollution source contamination. Many of the hazards associated with indoor environments and building structures were traditionally not considered when evaluating sources and entities of environmental pollution. Since a large number of building materials are potentially hazardous, careful evaluation is necessary. Until recently, little information on building inspection requirements of environmental problems has been published. Traditionally, asbestos has been the main component of concern. The ever-changing environmental standards have dramatically expanded the scope of building surveys. Indoor environmental concerns, for example, currently include formaldehyde, lead-based paint, polychlorinated biphenyls, radon, and indoor air pollution. Environmental regulations are being expanded and developed that specifically include building structures. These regulatory standards are being triggered by an increased awareness of health effects from indoor exposure, fires, spills, and other accidents that have resulted in injury, death, and financial loss. This article discusses various aspects of assessments for building structures.

  17. Henry’s Law Constant and Overall Mass Transfer Coefficient for Formaldehyde Emission from Small Water Pools under Simulated Indoor Environmental Conditions

    EPA Science Inventory

    The Henry’s law constant (HLC) and the overall mass transfer coefficient are both important parameters for modeling formaldehyde emissions from aqueous solutions. In this work, the apparent HLCs for aqueous formaldehyde solutions were determined in the concentration range from 0....

  18. Indoor air pollutants, ventilation rate determinants and potential control strategies in Chinese dwellings: A literature review.

    PubMed

    Ye, Wei; Zhang, Xu; Gao, Jun; Cao, Guangyu; Zhou, Xiang; Su, Xing

    2017-05-15

    After nearly twenty years of rapid modernization and urbanization in China, huge achievements have transformed the daily lives of the Chinese people. However, unprecedented environmental consequences in both indoor and outdoor environments have accompanied this progress and have triggered public awareness and demands for improved living standards, especially in residential environments. Indoor pollution data measured for >7000 dwellings (approximately 1/3 were newly decorated and were tested for volatile organic compound (VOC) measurements, while the rest were tested for particles, phthalates and other semi-volatile organic compounds (SVOCs), moisture/mold, inorganic gases and radon) in China within the last ten years were reviewed, summarized and compared with indoor concentration recommendations based on sensory or health end-points. Ubiquitous pollutants that exceed the concentration recommendations, including particulate matter, formaldehyde, benzene and other VOCs, moisture/mold, inorganic gases and radon, were found, indicating a common indoor air quality (IAQ) issue in Chinese dwellings. With very little prevention, oral, inhalation and dermal exposure to those pollutants at unhealthy concentration levels is almost inevitable. CO 2 , VOCs, humidity and radon can serve as ventilation determinants, each with different ventilation demands and strategies, at typical occupant densities in China; and particle reduction should be a prerequisite for determining ventilation requirements. Two directional ventilation modes would have profound impacts on improving IAQ for Chinese residences are: 1) natural (or window) ventilation with an air cleaner and 2) mechanical ventilation with an air filtration unit, these two modes were reviewed and compared for their applicability and advantages and disadvantages for reducing human exposure to indoor air pollutants. In general, mode 2 can more reliably ensure good IAQ for occupants; while mode 1 is more applicable due to its low cost and low energy consumption. However, besides a roadmap, substantial efforts are still needed to develop affordable, applicable and general ventilation solutions to improve the IAQ of residential buildings in China. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Future Aspects

    NASA Astrophysics Data System (ADS)

    Pilato, Louis

    There are some disturbing signs that appear on the horizon as phenolic resins enter their second century of existence. The large area of wood adhesives application (~60% of the total volume of phenolic resins in North America) is under intense pressure due to many factors that are contributing to continuing reduction in the sales volume of wood adhesives. These factors include the known slow cure speed of phenolic resins compared to Urea Formaldehyde (UF), Melamine Formaldehyde (MF), or Methylene Diphenyl Isocyanate (MDI); installation of new machinery/ equipment with fast continuous lines; continued decrease in plywood consumption at the expense of Oriented Strand Board (OSB) where phenolic resin is the preferred adhesive for plywood; further reduction in formaldehyde emissions through California Air Resources Board (CARB) Phase I and Phase II; uncertainty of whether formaldehyde will be identified as a human carcinogen pending the anticipated 2009 study; and the environmental movement to reduce or eliminate formaldehyde-containing resins in wood and thermal insulation consumer products (U.S. Green Building Council and other Environmental groups like the Sierra Club). Consumers are being urged by environmental organizations to purchase composite wood products with lower formaldehyde emission levels or none at all. This is illustrated by examining the news media reports after the Hurricane Katrina in 2005. The home trailers provided by the Federal Emergency Management Agency (FEMA) that were used for Louisiana and Mississippi residents after Katrina hurricane as temporary housing further accelerated concerns over formaldehyde emissions since higher than typical indoor exposure levels of formaldehyde in travel trailers and mobile homes were determined for the FEMA trailers.

  20. The effect of ventilation on indoor exposure to semivolatile organic compounds.

    PubMed

    Liu, C; Zhang, Y; Benning, J L; Little, J C

    2015-06-01

    A mechanistic model was developed to examine how natural ventilation influences residential indoor exposure to semivolatile organic compounds (SVOCs) via inhalation, dermal sorption, and dust ingestion. The effect of ventilation on indoor particle mass concentration and mass transfer at source/sink surfaces, and the enhancing effect of particles on mass transfer at source/sink surfaces are included. When air exchange rate increases from 0.6/h to 1.8/h, the steady-state SVOC (gas-phase plus particle phase with log KOA varying from 9 to 13) concentration in the idealized model decreases by about 60%. In contrast, for the same change in ventilation, the simulated indoor formaldehyde (representing volatile organic compounds) gas-phase concentration decreases by about 70%. The effect of ventilation on exposure via each pathway has a relatively insignificant association with the KOA of the SVOCs: a change of KOA from 10(9) to 10(13) results in a change of only 2-30%. Sensitivity analysis identifies the deposition rate of PM2.5 as a primary factor influencing the relationship between ventilation and exposure for SVOCs with log KOA = 13. The relationship between ventilation rate and air speed near surfaces needs to be further substantiated. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Changes in indoor pollutants since the 1950s

    NASA Astrophysics Data System (ADS)

    Weschler, Charles J.

    Over the past half-century there have been major changes in building materials and consumer products used indoors. Composite-wood, synthetic carpets, polymeric flooring, foam cushioning, plastic items and scented cleaning agents have become ubiquitous. The same is true for mechanical and electrical appliances such as washer/dryers, TVs and computers. These materials and products emit an array of chemicals including solvents, unreacted monomers, and additives. The consequent changes in emission profiles for indoor pollutants have been accompanied by modifications in building operations. Residences and non-residences are less ventilated than they were decades ago. Air-conditioned buildings are more numerous, especially in certain parts of the world. Most of these recirculate a high fraction of their air. The personal habits of building occupants, including the fraction who smoke indoors, have also changed. Taken together, these changes have altered the kind and concentrations of chemicals that occupants are exposed to in their homes, workplaces and schools. Since the 1950s, levels of certain indoor pollutants (e.g., formaldehyde, aromatic and chlorinated solvents, chlorinated pesticides, PCBs) have increased and then decreased. Levels of other indoor pollutants have increased and remain high (e.g., phthalate esters, brominated flame-retardants, nonionic surfactants and their degradation products). Many of the chemicals presently found in indoor environments, as well as in the blood and urine of occupants, were not present 50 years ago. Given the public's exposure to such species, there would be exceptional value in monitoring networks that provided cross-sectional and longitudinal information regarding pollutants found in representative buildings.

  2. Risk assessment of population inhalation exposure to volatile organic compounds and carbonyls in urban China.

    PubMed

    Du, Zhengjian; Mo, Jinhan; Zhang, Yinping

    2014-12-01

    Over the past three decades, China has experienced rapid urbanization. The risks to its urban population posed by inhalation exposure to hazardous air pollutants (HAPs) have not been well characterized. Here, we summarize recent measurements of 16 highly prevalent HAPs in urban China and compile their distribution inputs. Based on activity patterns of urban Chinese working adults, we derive personal exposures. Using a probabilistic risk assessment method, we determine cancer and non-cancer risks for working females and males. We also assess the uncertainty associated with risk estimates using Monte Carlo simulation, accounting for variations in HAP concentrations, cancer potency factors (CPFs) and inhalation rates. Average total lifetime cancer risks attributable to HAPs are 2.27×10(-4) (2.27 additional cases per 10,000 people exposed) and 2.93×10(-4) for Chinese urban working females and males, respectively. Formaldehyde, 1,4-dichlorobenzene, benzene and 1,3-butadiene are the major risk contributors yielding the highest median cancer risk estimates, >1×10(-5). About 70% of the risk is due to exposures occurring in homes. Outdoor sources contribute most to the risk of benzene, ethylbenzene and carbon tetrachloride, while indoor sources dominate for all other compounds. Chronic exposure limits are not exceeded for non-carcinogenic effects, except for formaldehyde. Risks are overestimated if variation is not accounted for. Sensitivity analyses demonstrate that the major contributors to total variance are range of inhalation rates, CPFs of formaldehyde, 1,4-dichlorobenzene, benzene and 1,3-butadiene, and indoor home concentrations of formaldehyde and benzene. Despite uncertainty, risks exceeding the acceptable benchmark of 1×10(-6) suggest actions to reduce exposures. Future efforts should be directed toward large-scale measurements of air pollutant concentrations, refinement of CPFs and investigation of population exposure parameters. The present study is a first effort to estimate carcinogenic and non-carcinogenic risks of inhalation exposure to HAPs for the large working populations of Chinese cites. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Occupant Perceptions and a Health Outcome in Retail Stores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Mingjie; Kim, Yang-Seon; Srebric, Jelena

    Indoor Environmental Quality (IEQ) in commercial buildings, such as retail stores, can affect employee satisfaction, productivity, and health. This study administered an IEQ survey to retail employees and found correlations between measured IEQ parameters and the survey responses. The survey included 611 employees in 14 retail stores located in Pennsylvania (climate zone 5A) and Texas (climate zone 2A). The survey questionnaire featured ratings of different aspects of IEQ, including thermal comfort, lighting and noise level, indoor smells, overall cleanness, and environmental quality. Simultaneously with the survey, on-site physical measurements were taken to collect data of relative humidity levels, air exchangemore » rates, dry bulb temperatures, and contaminant concentrations. This data was analyzed using multinomial logit regression with independent variables being the measured IEQ parameters, employees’ gender, and age. This study found that employee perception of stuffy smells is related to formaldehyde and PM10 concentrations. Furthermore, the survey also asked the employees to report an annual frequency of common colds as a health indicator. The regression analysis showed that the cold frequency statistically correlates with the measured air exchange rates, outdoor temperatures, and indoor PM concentrations. Overall, the air exchange rate is the most influential parameter on the employee perception of the overall environmental quality and self-reported health outcome.« less

  4. Indoor Emissions from the Household Combustion of Coal

    Cancer.gov

    Learn about the lung cancer risk associated with burning coal inside your home. Indoor emissions from the household combustion of coal contain harmful chemicals such as benzene, carbon monoxide, and formaldehyde.

  5. Comparison of the impact of the Tobacco Heating System 2.2 and a cigarette on indoor air quality.

    PubMed

    Mitova, Maya I; Campelos, Pedro B; Goujon-Ginglinger, Catherine G; Maeder, Serge; Mottier, Nicolas; Rouget, Emmanuel G R; Tharin, Manuel; Tricker, Anthony R

    2016-10-01

    The impact of the Tobacco Heating System 2.2 (THS 2.2) on indoor air quality was evaluated in an environmentally controlled room using ventilation conditions recommended for simulating "Office", "Residential" and "Hospitality" environments and was compared with smoking a lit-end cigarette (Marlboro Gold) under identical experimental conditions. The concentrations of eighteen indoor air constituents (respirable suspended particles (RSP) < 2.5 μm in diameter), ultraviolet particulate matter (UVPM), fluorescent particulate matter (FPM), solanesol, 3-ethenylpyridine, nicotine, 1,3-butadiene, acrylonitrile, benzene, isoprene, toluene, acetaldehyde, acrolein, crotonaldehyde, formaldehyde, carbon monoxide, nitrogen oxide, and combined oxides of nitrogen) were measured. In simulations evaluating THS 2.2, the concentrations of most studied analytes did not exceed the background concentrations determined when non-smoking panelists were present in the environmentally controlled room under equivalent conditions. Only acetaldehyde and nicotine concentrations were increased above background concentrations in the "Office" (3.65 and 1.10 μg/m(3)), "Residential" (5.09 and 1.81 μg/m(3)) and "Hospitality" (1.40 and 0.66 μg/m(3)) simulations, respectively. Smoking Marlboro Gold resulted in greater increases in the concentrations of acetaldehyde (58.8, 83.8 and 33.1 μg/m(3)) and nicotine (34.7, 29.1 and 34.6 μg/m(3)) as well as all other measured indoor air constituents in the "Office", "Residential" and "Hospitality" simulations, respectively. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Epidemiologic investigation to identify chronic health effects of ambient air pollutants in Southern California. Phase 2. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, J.M.

    The Phase II cross-sectional study was conducted to provide early information on the possible chronic effects of air pollution in Southern California children and to determine, if effects are found, which pollutant (or pollutants) is responsible. Annual questionnaires were completed on these children which covered health history (including history of wheezing, asthma, bronchitis, pneumonia and other respiratory conditions), residential history, housing characteristics (such as heating and air conditioning practices), and history of exposure to other possibly harmful agents, such as tobacco smoke (both active and passive smoking). In addition, the usual physical and outdoor/indoor activity of each subject was ascertained.more » The lung function of each subject was assessed annually to determine ventilatory capacity. School absenses were recorded to determine frequency and severity of respiratory illnesses. After the development and deployment of the instrumentation, monitoring for air pollutants was conducted for the twelve communities, the schools and a sample of the subject`s residences. Ozone, PM{sub 10}, PM{sub 2.5}, NO{sub 2}, and acid vapor concentrations were determined at the community level, and indoor ozone concentrations were measured at schools. A sample of homes was measured for indoor ozone, PM{sub 10}, PM{sub 2.5}, acid and formaldehyde. The information from the questionnaire on residential history allowed for the construction of an estimated life-time exposure level for the different pollutants based on existing data. The information collected at schools and homes allowed for adjustments for exposures based on whether the subjects were indoors or outdoors.« less

  7. Photocatalytic air purifiers for indoor air: European standard and pilot room experiments.

    PubMed

    Costarramone, N; Cantau, C; Desauziers, V; Pécheyran, C; Pigot, T; Lacombe, S

    2017-05-01

    At the European level (CEN/TC386), some efforts are currently devoted to new standards for comparing the efficiency of commercial photocatalytic material/devices in various application fields. Concerning prototype or commercial indoor photocatalytic air purifiers designed for volatile organic compounds (VOC) abatement, the methodology is based on a laboratory airtight chamber. The photocatalytic function is demonstrated by the mineralization of a mixture of five VOCs. Experimental data were obtained for four selected commercial devices and three commercial materials: drop of VOC concentration, but also identification of secondary species (with special attention to formaldehyde), mineralization rates, and Clean Air Delivery Rate (CADR). With two efficient air purifiers, these laboratory experiments were compared to the results in two experimental rooms (35-40 m 3 ) where air pollution was introduced through wooden floor and furniture. The systems' ageing was also studied. The safety of the commercial products was also assessed by the determination of nanoparticle release. Standardized tests are useful to rank photocatalytic air purifiers and passive materials and to discard inefficient ones. A good correlation between the standard experiments and the experimental room experiments was found, even if in the latter case, the concentration of lower weight VOCs drops less quickly than that of heavier VOCs.

  8. Effect of endophytic Bacillus cereus ERBP inoculation into non-native host: Potentials and challenges for airborne formaldehyde removal.

    PubMed

    Khaksar, Gholamreza; Treesubsuntorn, Chairat; Thiravetyan, Paitip

    2016-10-01

    Phytoremediation could be a cost-effective, environmentally friendly approach for the treatment of indoor air. However, some drawbacks still dispute the expediency of phytotechnology. Our objectives were to investigate the competency of plant growth-promoting (PGP) endophytic Bacillus cereus ERBP (endophyte root blue pea), isolated from the root of Clitoria ternatea, to colonize and stabilize within Zamioculcas zamiifolia and Euphorbia milii as non-native hosts without causing any disease or stress symptoms. Moreover, the impact of B. cereus ERBP on the natural shoot endophytic community and for the airborne formaldehyde removal capability of non-native hosts was assessed. Non-native Z. zamiifolia was effectively inoculated with B. cereus ERBP through soil as the most efficient method of endophyte inoculation. Denaturing gradient gel electrophoresis profiling of the shoot endophytic community verified the colonization and stability of B. cereus ERBP within its non-native host during a 20-d fumigation period without interfering with the natural shoot endophytic diversity of Z. zamiifolia. B. cereus ERBP conferred full protection to its non-native host against formaldehyde phytotoxicity and enhanced airborne formaldehyde removal of Z. zamiifolia whereas non-inoculated plants suffered from formaldehyde phytotoxicity because their natural shoot endophytic community was detrimentally affected by formaldehyde. In contrast, B. cereus ERBP inoculation into non-native E. milii deteriorated airborne formaldehyde removal of the non-native host (compared to a non-inoculated one) as B. cereus ERBP interfered with natural shoot endophytic community of E. milii, which caused stress symptoms and stimulated ethylene biosynthesis. Non-native host inoculation with PGP B. cereus ERBP could bear potentials and challenges for airborne formaldehyde removal. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. The ORNL Indoor Air Quality Study: Re-cap, Context, and Assessment on Radon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonn, Bruce Edward; Rose, Erin M.; Ternes, Mark P.

    As part of the retrospective evaluation of the U.S. Department of Energy s low-income Weatherization Assistance Program that was led by Oak Ridge National Laboratory (ORNL), an assessment of the impacts of weatherization on indoor air quality (IAQ) was conducted. This assessment included nearly 500 treatment and control homes across the country. Homes were monitored for carbon monoxide, radon, formaldehyde, temperature and humidity pre- and post-weatherization. This report focuses on the topic of radon and addresses issues not thoroughly discussed in the original IAQ report. The size, scope and rigor of the radon component of the IAQ study are comparedmore » to previous studies that assessed the impacts of weatherization on indoor radon levels. It is found that the ORNL study is by far the most extensive study conducted to date, though the ORNL results are consistent with the findings of the other studies. However, the study does have limitations related to its reliance on short-term measurements of radon and inability to attribute changes in radon levels in homes post-weatherization to specific weatherization measures individually or in combination.« less

  10. Symptoms of respiratory illness in young children and the use of wood-burning stoves for indoor heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honicky, R.E.; Osborne, J.S.; Akpom, C.A.

    1985-03-01

    The occurrence of symptoms of respiratory illness among preschool children living in homes heated by wood-burning stoves was examined by conducting an historical prospective study (n . 62) with an internal control group (matched for age, sex, and town of residence). Exposures of subjects were not significantly different (P greater than .05) with respect to parental smoking, urea-formaldehyde foam insulation, and use of humidifiers. The control group made significantly greater use of gas stoves for cooking whereas the study group made greater use of electric stoves for cooking and of air filters (P less than .05). Only one home usedmore » a kerosene space heater. During the winter of 1982, moderate and severe symptoms in all categories were significantly greater for the study group compared with the control group (P less than .001). These differences could not be accounted for by medical histories (eg, allergies, asthma), demographic or socioeconomic characteristics, or by exposure to sources of indoor air pollution other than wood-burning stoves. Present findings suggest that indoor heating with wood-burning stoves may be a significant etiologic factor in the occurrence of symptoms of respiratory illness in young children.« less

  11. A systematic indoor air quality audit approach for public buildings.

    PubMed

    Asadi, Ehsan; da Silva, Manuel C Gameiro; Costa, J J

    2013-01-01

    Good indoor air quality (IAQ) in buildings provides a comfortable and healthy environment for the occupants to work, learn, study, etc. Therefore, it is important to ascertain the IAQ status in the buildings. This study is aimed to establish and demonstrate the comprehensive IAQ audit approach for public buildings, based on Portugal national laws. Four public buildings in Portugal are used to demonstrate the IAQ audit application. The systematic approach involves the measurement of physical parameters (temperature, relative humidity, and concentration of the suspended particulate matter), monitoring of the concentrations of selected chemical indicators [carbon dioxide (CO(2)), carbon monoxide, formaldehyde, ozone, and total volatile organic compounds], and the measurements of biological indicators (bacteria and fungi). In addition, air exchange rates are measured by the concentration decay method using metabolic CO(2) as the tracer gas. The comprehensive audits indicated some situations of common IAQ problems in buildings, namely: (1) insufficient ventilation rate, (2) too high particle concentration; and (3) poor filtration effectiveness and hygienic conditions in most of the air handling units. Accordingly, a set of recommendations for the improvement of IAQ conditions were advised to the building owner/managers.

  12. The Effect of Environmentally Friendly Wallpaper and Flooring Material on Indoor Air Quality and Atopic Dermatitis: A Pilot Study

    PubMed Central

    Na, Jung Im; Byun, Sang Young; Jeong, Mi Young; Park, Kyoung Chan

    2014-01-01

    Background Formaldehyde (FA) and other volatile organic compounds (VOCs) are considered among the main causes of atopic aggravation. Their main sources include wallpapers, paints, adhesives, and flooring materials. Objective To assess the effects of environmentally friendly wallpaper and flooring material on indoor air quality and atopic dermatitis severity. Methods Thirty patients with atopic dermatitis were enrolled in this study. To improve air quality, the wallpaper and flooring in the homes of the subjects were replaced with plant- or silica-based materials. The indoor air concentration of FA and the total VOCs (TVOCs) were measured before remodeling and 2, 6, and 10 weeks thereafter. Pruritus and the severity of atopic eczema were evaluated by using a questionnaire and the eczema area and severity index (EASI) score before and at 4, 8, and 12 weeks after remodeling. The subjects were instructed to continue their therapy for atopic dermatitis. Results The houses of 24 subjects were remodeled; all subjects completed the study. The concentration of FA in ambient air significantly decreased within 2 weeks after remodeling. The TVOC level showed a decrease at week 2 but increased again at weeks 6 and 10. The reduction of pruritus and EASI score was statistically significant in patients whose baseline EASI score was >3. Conclusion Replacing the wallpaper and flooring of houses with environmentally friendly material reduced FA in ambient air and improved pruritus and the severity of atopic eczema. The improvement of pruritus and eczema was statistically significant in patients whose baseline EASI score was >3. PMID:25473219

  13. Biochemical gas sensor (bio-sniffer) for ultrahigh-sensitive gaseous formaldehyde monitoring.

    PubMed

    Kudo, Hiroyuki; Suzuki, Yuki; Gessei, Tomoko; Takahashi, Daishi; Arakawa, Takahiro; Mitsubayashi, Kohji

    2010-10-15

    An ultrahigh-sensitive fiber-optic biochemical gas sensor (bio-sniffer) for continuous monitoring of indoor formaldehyde was constructed and tested. The bio-sniffer measures gaseous formaldehyde as fluorescence of nicotinamide adenine dinucleotide (NADH), which is the product of formaldehyde dehydrogenase (FALDH) reaction. The bio-sniffer device was constructed by attaching a flow cell with a FALDH immobilized membrane onto a fiber-optic NADH measurement system. The NADH measurement system utilizes an ultraviolet-light emitting diode (UV-LED) with peak emission of 335 nm as an excitation light source. The excitation light was introduced to an optical fiber probe, and fluorescence emission of neighboring NADH, which was produced by applying formaldehyde vapor to the FALDH membrane, was concentrically measured with a photomultiplier tube. Assessment of the bio-sniffer was carried out using a standard gas generator. Response, calibration range and selectivity to other chemical substances were investigated. Circulating phosphate buffer, which contained NAD+, available for continuous monitoring of formaldehyde vapor. The calibration range of the bio-sniffer was 2.5 ppb to 10 ppm, which covers the guideline value of the World Health Organization (80 ppb). High selectivity to other gaseous substances due to specific activity of FALDH was also confirmed. Considering its high sensitivity, a possible application of the bio-sniffer is continuous indoor formaldehyde monitoring to provide healthy residential atmosphere. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Assessment of tobacco heating product THP1.0. Part 4: Characterisation of indoor air quality and odour.

    PubMed

    Forster, Mark; McAughey, John; Prasad, Krishna; Mavropoulou, Eleni; Proctor, Christopher

    2018-03-01

    The tobacco heating product THP1.0, which heats but does not burn tobacco, was tested as part of a modified-risk tobacco product assessment framework for its impacts on indoor air quality and residual tobacco smoke odour. THP1.0 heats the tobacco to less than 240 °C ± 5 °C during puffs. An environmentally controlled room was used to simulate ventilation conditions corresponding to residential, office and hospitality environments. An analysis of known tobacco smoke constituents, included CO, CO 2 , NO, NO 2 , nicotine, glycerol, 3-ethenyl pyridine, sixteen polycyclic aromatic hydrocarbons, eight volatile organic compounds, four carbonyls, four tobacco-specific nitrosamines and total aerosol particulate matter. Significant emissions reductions in comparison to conventional cigarettes were measured for THP1.0. Levels of nicotine, acetaldehyde, formaldehyde and particulate matter emitted from THP1.0 exceeded ambient air measurements, but were more than 90% reduced relative to cigarette smoke emissions within the laboratory conditions defined Residual tobacco smoke odour was assessed by trained sensory panels after exposure of cloth, hair and skin to both mainstream and environmental emissions from the test products. Residual tobacco smoke odour was significantly lower from THP1.0 than from a conventional cigarette. These data show that using THP1.0 has the potential to result in considerably reduced environmental emissions that affect indoor air quality relative to conventional cigarettes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Effect of fiber material on ozone removal and carbonyl production from carpets

    NASA Astrophysics Data System (ADS)

    Abbass, Omed A.; Sailor, David J.; Gall, Elliott T.

    2017-01-01

    Indoor air quality is affected by indoor materials such as carpets that may act as sources and/or sinks of gas-phase air pollutants. Heterogeneous reactions of ozone with carpets may result in potentially harmful products. In this study, indoor residential carpets of varying fiber types were tested to evaluate their ability to remove ozone, and to assess their role in the production of carbonyls when exposed to elevated levels of ozone. Tests were conducted with six types of new unused carpets. Two sets of experiments were conducted, the first measured ozone removal and ozone deposition velocities, and the second measured primary carbonyl production and secondary production as a result of exposure to ozone. The tests were conducted using glass chambers with volume of 52 L each. Air exchange rates for all tests were 3 h-1. The ozone removal tests show that, for the conditions tested, the polyester carpet sample had the lowest ozone removal (40%), while wool carpet had the greatest ozone removal (65%). Most carpet samples showed higher secondary than primary carbonyl emissions, with carpets containing polypropylene fibers being a notable exception. Carpets with polyester fibers had both the highest primary and secondary emissions of formaldehyde among all samples tested. While it is difficult to make blanket conclusions about the relative air quality merits of various carpet fiber options, it is clear that ozone removal percentages and emissions of volatile organic compounds can vary drastically as a function of fiber type.

  16. Secondary Pollutants from Ozone Reaction with Ventilation Filters and Degradation of Filter Media Additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Destaillats, Hugo; Chen, Wenhao; Apte, Michael

    Prior research suggests that chemical processes taking place on the surface of particle filters employed in buildings may lead to the formation of harmful secondary byproducts. We investigated ozone reactions with fiberglass, polyester, cotton/polyester and polyolefin filter media, as well as hydrolysis of filter media additives. Studies were carried out on unused media, and on filters that were installed for 3 months in buildings at two different locations in the San Francisco Bay Area. Specimens from each filter media were exposed to {approx}150 ppbv ozone in a flow tube under a constant flow of dry or humidified air (50percent RH).more » Ozone breakthrough was recorded for each sample over periods of {approx}1000 min; the ozone uptake rate was calculated for an initial transient period and for steady-state conditions. While ozone uptake was observed in all cases, we did not observe significant differences in the uptake rate and capacity for the various types of filter media tested. Most experiments were performed at an airflow rate of 1.3 L/min (face velocity = 0.013 m/s), and a few tests were also run at higher rates (8 to 10 L/min). Formaldehyde and acetaldehyde, two oxidation byproducts, were quantified downstream of each sample. Those aldehydes (m/z 31 and 45) and other volatile byproducts (m/z 57, 59, 61 and 101) were also detected in real-time using Proton-Transfer Reaction - Mass Spectrometry (PTR-MS). Low-ppbv byproduct emissions were consistently higher under humidified air than under dry conditions, and were higher when the filters were loaded with particles, as compared with unused filters. No significant differences were observed when ozone reacted over various types of filter media. Fiberglass filters heavily coated with impaction oil (tackifier) showed higher formaldehyde emissions than other samples. Those emissions were particularly high in the case of used filters, and were observed even in the absence of ozone, suggesting that hydrolysis of additives, rather than ozonolysis, is the main formaldehyde source in those filters. Emission rates of formaldehyde and acetaldehyde were not found to be large enough to substantially increase indoor concentrations in typical building scenarios. Nevertheless, ozone reactions on HVAC filters cannot be ignored as a source of low levels of indoor irritants.« less

  17. Malondialdehyde-Deoxyguanosine Adduct Formation in Workers of Pathology Wards. The Role of Air Formaldehyde Exposure

    PubMed Central

    Romanazzi, Valeria; Munnia, Armelle; Piro, Sara; Allione, Alessandra; Ricceri, Fulvio; Guarrera, Simonetta; Pignata, Cristina; Matullo, Giuseppe; Wang, Poguang; Giese, Roger W.; Peluso, Marco

    2010-01-01

    Background Formaldehyde is a ubiquitous pollutant to which humans are exposed. Pathologists can experience high formaldehyde exposure levels. Formaldehyde – among other properties – induce oxidative stress and free radicals, which react with DNA and lipids, leading to oxidative damage and lipid peroxidation, respectively. We measured the levels of air-formaldehyde exposure in a group of Italian pathologists and controls. We analyzed the effect of formaldehyde exposure on leukocyte malondialdehyde-deoxyguanosine adducts (M1-dG), a biomarker of oxidative stress and lipid peroxidation. We studied the relationship between air-formaldehyde and M1-dG adducts. Methods Air-formaldehyde levels were measured by personal air samplers. M1-dG adducts were analyzed by 32P-postlabelling assay. Results Reduction rooms pathologists were significantly exposed to air-formaldehyde in respect to controls and to the pathologists working in other laboratory areas (p<0.001). A significant difference for M1-dG adducts between exposed pathologists and controls was found (p=0.045). The effect becomes stronger when the evaluation of air-formaldehyde exposure was based on personal samplers (p=0.018). Increased M1dG adduct levels were only found in individuals exposed to air-formaldehyde concentrations higher than 66 μg/m3. When the exposed workers and controls were subgrouped according to smoking, M1-dG tended to increase in all the subjects but a significant association between M1-dG and air-formaldehyde was only found in not smokers (p= 0.009). Air formaldehyde played a role positive but not significant (r = 0.355, p = 0.075, Pearson correlation) in the formation of M1-dG, only in not smokers. Conclusions Working in the reduction rooms and to be exposed to air-formaldehyde concentrations higher than 66 μg/m3 is associated with increased levels of M1-dG adducts. PMID:20707408

  18. Airborne exposures to monoethanolamine, glycol ethers, and benzyl alcohol during professional cleaning: a pilot study.

    PubMed

    Melchior Gerster, Fabian; Brenna Hopf, Nancy; Pierre Wild, Pascal; Vernez, David

    2014-08-01

    A growing body of epidemiologic evidence suggests an association between exposure to cleaning products and respiratory dysfunction. Due to the lack of quantitative assessments of respiratory exposures to airborne irritants and sensitizers among professional cleaners, the culpable substances have yet to be identified. Focusing on previously identified irritants, our aims were to determine (i) airborne concentrations of monoethanolamine (MEA), glycol ethers, and benzyl alcohol (BA) during different cleaning tasks performed by professional cleaning workers and assess their determinants; and (ii) air concentrations of formaldehyde, a known indoor air contaminant. Personal air samples were collected in 12 cleaning companies, and analyzed by conventional methods. Nearly all air concentrations [MEA (n = 68), glycol ethers (n = 79), BA (n = 15), and formaldehyde (n = 45)] were far below (<1/10) of the corresponding Swiss occupational exposure limits (OEL), except for ethylene glycol mono-n-butyl ether (EGBE). For butoxypropanol and BA, no OELs exist. Although only detected once, EGBE air concentrations (n = 4) were high (49.48-58.72mg m(-3)), and close to the Swiss OEL (49mg m(-3)). When substances were not noted as present in safety data sheets of cleaning products used but were measured, air concentrations showed no presence of MEA, while the glycol ethers were often present, and formaldehyde was universally detected. Exposure to MEA was affected by its amount used (P = 0.036), and spraying (P = 0.000) and exposure to butoxypropanol was affected by spraying (P = 0.007) and cross-ventilation (P = 0.000). Professional cleaners were found to be exposed to multiple airborne irritants at low concentrations, thus these substances should be considered in investigations of respiratory dysfunctions in the cleaning industry; especially in specialized cleaning tasks such as intensive floor cleaning. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  19. Ecological Risks in Residential Premises Arising from Thermal Insulation by Pouring

    NASA Astrophysics Data System (ADS)

    Timofeeva, S. S.; Timofeev, S. S.

    2017-11-01

    The residents of modern megacities are exposed to environmental risks arising both directly in the urban environment and their own dwellings. Modern polymeric building materials are the sources of toxic substances release into the air that have a significant impact on the population health. The objective of the work is the ecological and hygienic study of the air in the apartments of Irkutsk after repair work on the roof and walls insulation using the technology of pouring and calculation of the potential environmental risk for the residents. The object of the research was the indoor air in one of the houses in Irkutsk tested for formaldehyde and other toxic substances. After putting the house into operation, some defects were found - the freezing of the walls of the building attic part. During the repair work, the mansard part of the building was heat-insulated by the pouring method using the composite material “Poroplast CF 02”. High concentrations of formaldehyde and styrene were detected in the apartments exceeding the MPC in 4-8 times. The hazard ratio for inhalation exposure to harmful substances exceeds the safety level by 10 times. Consequently, there is a high probability of obtaining acute and chronic poisoning and developing cancer.

  20. EPHECT II: Exposure assessment to household consumer products.

    PubMed

    Dimitroulopoulou, C; Trantallidi, M; Carrer, P; Efthimiou, G C; Bartzis, J G

    2015-12-01

    Within the framework of the EPHECT project (Emissions, exposure patterns and health effects of consumer products in the EU), irritative and respiratory health effects were assessed in relation to acute and long-term exposure to key and emerging indoor air pollutants emitted during household use of selected consumer products. In this context, inhalation exposure assessment was carried out for six selected 'target' compounds (acrolein, formaldehyde, benzene, naphthalene, d-limonene and α-pinene). This paper presents the methodology and the outcomes from the micro-environmental modelling of the 'target' pollutants following single or multiple use of selected consumer products and the subsequent exposure assessment. The results indicate that emissions from consumer products of benzene and α-pinene were not considered to contribute significantly to the EU indoor background levels, in contrast to some cases of formaldehyde and d-limonene emissions in Eastern Europe (mainly from cleaning products). The group of housekeepers in East Europe appears to experience the highest exposures to acrolein, formaldehyde and benzene, followed by the group of the retired people in North, who experiences the highest exposures to naphthalene and α-pinene. High exposure may be attributed to the scenarios developed within this project, which follow a 'most-representative worst-case scenario' strategy for exposure and health risk assessment. Despite the above limitations, this is the first comprehensive study that provides exposure estimates for 8 population groups across Europe exposed to 6 priority pollutants, as a result of the use of 15 consumer product classes in households, while accounting for regional differences in uses, use scenarios and ventilation conditions of each region. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  1. Ag-Modified In2O3/ZnO Nanobundles with High Formaldehyde Gas-Sensing Performance

    PubMed Central

    Fang, Fang; Bai, Lu; Song, Dongsheng; Yang, Hongping; Sun, Xiaoming; Sun, Hongyu; Zhu, Jing

    2015-01-01

    Ag-modified In2O3/ZnO bundles with micro/nano porous structures have been designed and synthesized with by hydrothermal method continuing with dehydration process. Each bundle consists of nanoparticles, where nanogaps of 10–30 nm are present between the nanoparticles, leading to a porous structure. This porous structure brings high surface area and fast gas diffusion, enhancing the gas sensitivity. Consequently, the HCHO gas-sensing performance of the Ag-modified In2O3/ZnO bundles have been tested, with the formaldehyde-detection limit of 100 ppb (parts per billion) and the response and recover times as short as 6 s and 3 s, respectively, at 300 °C and the detection limit of 100 ppb, response time of 12 s and recover times of 6 s at 100 °C. The HCHO sensing detect limitation matches the health standard limitation on the concentration of formaldehyde for indoor air. Moreover, the strategy to synthesize the nanobundles is just two-step heating and easy to scale up. Therefore, the Ag-modified In2O3/ZnO bundles are ready for industrialization and practical applications. PMID:26287205

  2. Using a Ventilation Controller to Optimize Residential Passive Ventilation For Energy and Indoor Air Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, William; Walker, Iain

    One way to reduce the energy impact of providing residential ventilation is to use passive and hybrid systems. However, these passive and hybrid (sometimes called mixed-mode) systems must still meet chronic and acute health standards for ventilation. This study uses a computer simulation approach to examine the energy and indoor air quality (IAQ) implications of passive and hybrid ventilation systems, in 16 California climate zones. Both uncontrolled and flow controlled passive stacks are assessed. A new hybrid ventilation system is outlined that uses an intelligent ventilation controller to minimise energy use, while ensuring chronic and acute IAQ standards are met.more » ASHRAE Standard 62.2-2010 – the United States standard for residential ventilation - is used as the chronic standard, and exposure limits for PM 2.5, formaldehyde and NO 2 are used as the acute standards.The results show that controlled passive ventilation and hybrid ventilation can be used in homes to provide equivalent IAQ to continuous mechanical ventilation, for less use of energy.« less

  3. Effects of combined exposure to formaldehyde and benzene on immune cells in the blood and spleen in Balb/c mice.

    PubMed

    Wen, Huaxiao; Yuan, Langyue; Wei, Chenxi; Zhao, Yun; Qian, Yan; Ma, Ping; Ding, Shumao; Yang, Xu; Wang, Xianliang

    2016-07-01

    Formaldehyde and benzene are the two major indoor air pollutants due to their prevalence and toxicity. This study aimed to explore the toxic effect on the spleen and relevant immune responses of Balb/c mice caused by exposure to a combination of formaldehyde and benzene. Balb/c mice were divided randomly into five groups (n=9/group): blank control group (Ctrl); solvent ([corn] Oil) control; formaldehyde only (FA, 3mg/m(3)); benzene only (BZ, 150mg/kg BW); and, formaldehyde+benzene group (FA+BZ). Exposures were performed for 8h/day, 5 day/week, for 2 weeks. Tail blood was collected after the final exposure; 24-h later, the mice were euthanized to permit assessment of a variety of immune endpoints. The endpoints' three areas were: (1) in living mice, body weight and delayed-type hypersensitivity (DTH) responses; (2) in blood, immune cell counts and serum antibody levels (serum hemagglutination); and, (3) in spleen samples, reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), caspase-3 (cell apoptosis) levels and lymphocyte proliferation. In this study we fund (1) BZ and FA+BZ exposure can lead to the reduction in the number of some immune cells in peripheral blood; (2) Formaldehyde has certain synergistic effects on benzene-induced cytotoxicity in peripheral blood, (3) FA, BZ and FA+BZ exposure can lead to ROS and GSH depletion in spleen cells, and spleen cell apoptosis (caspase-3 increased) may be one of the downstream events, decreased splenic lymphocyte proliferation; and (4) the FA+BZ combined exposure can lead to the decreased body weight, serum antibody level (by serum hemagglutination assay). Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A statistical model for characterizing common air pollutants in air-conditioned offices

    NASA Astrophysics Data System (ADS)

    Wong, L. T.; Mui, K. W.; Hui, P. S.

    Maintaining acceptable indoor air quality (IAQ) for a healthy environment is of primary concern, policymakers have developed different strategies to address the performance of it based on proper assessment methodologies and monitoring plans. It could be cost prohibitive to sample all toxic pollutants in a building. In search of a more manageable number of parameters for cost-effective IAQ assessment, this study investigated the probable correlations among the 12 indoor environmental parameters listed in the IAQ certification scheme of the Hong Kong Environment Protection Department (HKEPD) in 422 Hong Kong offices. These 12 parameters consists of nine indoor air pollutants: carbon dioxide (CO 2), carbon monoxide (CO), respirable suspended particulates (RSP), nitrogen dioxide (NO 2), ozone (O 3), formaldehyde (HCHO), total volatile organic compounds (TVOC), radon (Rn), airborne bacteria count (ABC); and three thermal comfort parameters: temperature ( T), relative humidity (RH) and air velocity ( V). The relative importance of the correlations derived, from largest to smallest loadings, was ABC, Rn, CO, RH, RSP, CO 2, TVOC, O 3, T, V, NO 2 and HCHO. Together with the mathematical expressions derived, an alternative sampling protocol for IAQ assessment with the three 'most representative and independent' parameters namely RSP, CO 2 and TVOC measured in an office environment was proposed. The model validity was verified with on site measurements from 43 other offices in Hong Kong. The measured CO 2, RSP and TVOC concentrations were used to predict the probable levels of the other nine parameters and good agreement was found between the predictions and measurements. This simplified protocol provides an easy tool for performing IAQ monitoring in workplaces and will be useful for determining appropriate mitigation measures to finally honor the certification scheme in a cost-effective way.

  5. Hazard Assessment of Chemical Air Contaminants Measured in Residences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logue, J.M.; McKone, T.E.; Sherman, M. H.

    2010-05-10

    Identifying air pollutants that pose a potential hazard indoors can facilitate exposure mitigation. In this study, we compiled summary results from 77 published studies reporting measurements of chemical pollutants in residences in the United States and in countries with similar lifestyles. These data were used to calculate representative mid-range and upper bound concentrations relevant to chronic exposures for 267 pollutants and representative peak concentrations relevant to acute exposures for 5 activity-associated pollutants. Representative concentrations are compared to available chronic and acute health standards for 97 pollutants. Fifteen pollutants appear to exceed chronic health standards in a large fraction of homes.more » Nine other pollutants are identified as potential chronic health hazards in a substantial minority of homes and an additional nine are identified as potential hazards in a very small percentage of homes. Nine pollutants are identified as priority hazards based on the robustness of measured concentration data and the fraction of residences that appear to be impacted: acetaldehyde; acrolein; benzene; 1,3-butadiene; 1,4-dichlorobenzene; formaldehyde; naphthalene; nitrogen dioxide; and PM{sub 2.5}. Activity-based emissions are shown to pose potential acute health hazards for PM{sub 2.5}, formaldehyde, CO, chloroform, and NO{sub 2}.« less

  6. Evaluation of ozone generation and indoor organic compounds removal by air cleaners based on chamber tests

    NASA Astrophysics Data System (ADS)

    Yu, Kuo-Pin; Lee, Grace Whei-May; Hsieh, Ching-Pei; Lin, Chi-Chi

    2011-01-01

    Ozone can cause many health problems, including exacerbation of asthma, throat irritation, cough, chest ache, shortness of breath, and respiratory infections. Air cleaners are one of the sources of indoor ozone, and thus the evaluation of ozone generated by air cleaners is desired significant issue. Most evaluation methods proposed are based on chamber tests. However, the adsorption and desorption of ozone on the wall of test chamber and the deposition of ozone resulted from the surface reaction can influence the evaluation results. In this study, we developed a mass balance model that took the adsorption, desorption and deposition of ozone into consideration to evaluate the effective ozone emission rates of six selected air cleaners. The experiments were conducted in a stainless steel chamber with a volume of 11.3 m 3 at 25 °C and 60% relative humidity. The adsorption, desorption and deposition rate constants of ozone obtained by fitting the model to the experimental data were k a = 0.149 ± 0.052 m h -1, k d = 0.013 ± 0.007 h -1, and k r = 0.050 ± 0.020 h -1, respectively. The effective ozone emission rates of Air Cleaners No. 1, 2, and 3 ranged between 13,400-24,500 μg h -1, 7190-10,400 μg h -1, and 4880-6560 μg h -1, respectively, which were more stable than those of No.4, 5, and 6. The effective ozone emission rates of Air Cleaners No. 4, 5, and 6 increased with the time of operation which might be relevant to the decrease of ozone removal by the "aging" filter installed in these cleaners. The removal of toluene and formaldehyde by these six air cleaners were also evaluated and the clean air delivery rates (CADRs) of these two pollutants ranged from non-detectable to 0.42 ± 0.08 m 3 h -1, and from non-detectable to 0.75 ± 0.07 m 3 h -1, respectively. The CADRs showed an insignificant relationship with the effective ozone emission rates. Thus, the removal of toluene and formaldehyde might be resulted from the adsorption on the filters and the decomposition by the high-voltage electric discharge or the ionization that generated ozone.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutton, Spencer M.; Chan, Wanyu R.; Mendell, Mark J.

    California's building efficiency standards (Title 24) mandate minimum prescribed ventilation rates (VRs) for commercial buildings. Title 24 standards currently include a prescriptive procedure similar to ASHRAE’s prescriptive “ventilation rate procedure”, but does not include an alternative procedure, akin to ASHRAE’s non-prescriptive “indoor air quality procedure” (IAQP). The IAQP determines minimum VRs based on objectively and subjectively evaluated indoor air quality (IAQ). The first primary goal of this study was to determine, in a set of California retail stores, the adequacy of Title 24 VRs and observed current measured VRs in providing the level of IAQ specified through an IAQP process,more » The second primary goal was to evaluate whether several VRs implemented experimentally in a big box store would achieve adequate IAQ, assessed objectively and subjectively. For the first goal, a list of contaminants of concern (CoCs) and reference exposure levels (RELs) were selected for evaluating IAQ. Ventilation rates and indoor and outdoor CoC concentrations were measured in 13 stores, including one “big box” store. Mass balance models were employed to calculate indoor contaminant source strengths for CoCs in each store. Using these source strengths and typical outdoor air contaminant concentrations, mass balance models were again used to calculate for each store the “IAQP” VR that would maintain indoor CoC concentrations below selected RELs. These IAQP VRs were compared to the observed VRs and to the Title 24- prescribed VRs. For the second goal, a VR intervention study was performed in the big box store to determine how objectively assessed indoor contaminant levels and subjectively assessed IAQ varied with VR. The three intervention study VRs included an approximation of the store’s current VR [0.24 air changes per hour (ACH)], the Title 24-prescribed VR [0.69 ACH], and the calculated IAQPbased VR [1.51 ACH]). Calculations of IAQP-based VRs showed that for the big box store and 11 of the 12 other stores, neither current measured VRs nor the Title 24-prescribed VRs would be sufficient to maintain indoor concentrations of all CoCs below RELs. In the intervention study, with the IAQP-based VR applied in the big box store, all CoCs were controlled below RELs (within margins of error). Also, at all three VRs in this store, the percentage of subjects reporting acceptable air quality exceeded an 80% criterion of acceptability. The IAQP allows consideration of outdoor air ventilation as just one of several possible tools for achieving adequate IAQ. In two of the 13 surveyed buildings, applying the IAQP to allow lower VRs could have saved energy whilst still maintaining acceptable indoor air quality. In the remaining 11 buildings, saving energy through lower VRs would require combination with other strategies, either reducing indoor sources of CoCs such as formaldehyde, or use of gas phase air cleaning technologies. Based on the findings from applying the IAQP calculations to retail stores and the IAQP-based intervention study, recommendations are made regarding the potential introduction of a comparable procedure in Title 24.« less

  8. Consumer inhalation exposure to formaldehyde from the use of personal care products/cosmetics.

    PubMed

    Lefebvre, Marc-André; Meuling, Wim J A; Engel, Roel; Coroama, Manuela C; Renner, Gerald; Pape, Wolfgang; Nohynek, Gerhard J

    2012-06-01

    We measured consumer exposure to formaldehyde (FA) from personal care products (PCP) containing FA-releasing preservatives. Six study subjects applied facial moisturiser, foundation, shower gel, shampoo, deodorant, hair conditioner, hair styling gel or body lotion at the 90th percentile amount of EU PCP consumer use. FA air concentrations were measured in the empty room, in the presence of study subjects prior to PCP use, and for one hour (breathing zone, area monitoring) after PCP use. The mean FA air concentration in the empty bathroom was 1.32 ± 0.67 μg/m³, in the presence of subjects it was 2.33 ± 0.86 μg/m³). Except for body lotion and hair conditioner (6.2 ± 0.1.9 or 4.5 ± 0.1.5 μg/m³, respectively), mean 1-h FA air concentrations after PCP use were similar to background. Peak FA air concentrations, ranging from baseline values (2.2 μg/m³; shower gel) to 11.5 μg/m³ (body lotion), occurred during 0-5 to 5-10 min after PCP use. Despite of exaggerated exposure conditions, FA air levels were a fraction of those considered to be safe (120 μg/m³), occurring in indoor air (22-124 μg/m³) or expired human breath (1.4-87 μg/m³). Overall, our data yielded evidence that inhalation of FA from the use of PCP containing FA-releasers poses no risk to human health. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. An Undergraduate Field Experiment for Measuring Exposure to Environmental Tobacco Smoke in Indoor Environments

    NASA Astrophysics Data System (ADS)

    Marsella, Adam M.; Huang, Jiping; Ellis, David A.; Mabury, Scott A.

    1999-12-01

    An undergraduate field experiment is described for the measurement of nicotine and various carbonyl compounds arising from environmental tobacco smoke. Students are introduced to practical techniques in HPLC-UV and GC-NPD. Also introduced are current methods in personal air sampling using small and portable field sampling pumps. Carbonyls (formaldehyde, acetaldehyde, acrolein, and acetone) are sampled with silica solid-phase extraction cartridges impregnated with 2,4-dinitrophenylhydrazine, eluted, and analyzed by HPLC-UV (360-380 nm). Nicotine is sampled using XAD-2 cartridges, extracted, and analyzed by GC-NPD. Students gain an appreciation for the problems associated with measuring ubiquitous pollutants such as formaldehyde, as well as the issue of chromatographic peak resolution when trying to resolve closely eluting peaks. By allowing the students to formulate their own hypothesis and sampling scheme, critical thinking and problem solving are developed in addition to analysis skills. As an experiment in analytical environmental chemistry, this laboratory introduces the application of field sampling and analysis techniques to the undergraduate lab.

  10. Co3O4 nanorod-supported Pt with enhanced performance for catalytic HCHO oxidation at room temperature

    NASA Astrophysics Data System (ADS)

    Yan, Zhaoxiong; Xu, Zhihua; Cheng, Bei; Jiang, Chuanjia

    2017-05-01

    Formaldehyde (HCHO) removal from air at room (ambient) temperature by effective catalysts is of significance for improving indoor air quality, and catalysts with high efficiency and good recyclability are highly desirable. In this study, platinum (Pt) supported on nanorod-shaped Co3O4 (Pt/Co3O4) was prepared by calcination of microwave-assisted synthesized Co3O4 precursor followed by NaBH4-reduction of Pt precursor. The as-prepared Co3O4 exhibited a morphology of nanorods with lengths of 400-700 nm and diameters of approximately 40-50 nm, which were self-assembled by nanoparticles. The Pt/Co3O4 catalyst exhibited a superior catalytic performance for HCHO oxidation at room temperature compared to Pt supported on commercial Co3O4 (Pt/Co3O4-c) and Pt supported on commercial TiO2 (Pt/TiO2), which is mainly due to the high oxygen mobility resulting from its distinct nanorod morphology, strong metal-support interaction between Pt and Co3O4, and the intrinsic redox nature of the Co3O4 support. This study provides new insights into the fabrication of high-performance catalysts for indoor air purification.

  11. Adsorption Properties of Lignin-derived Activated Carbon Fibers (LACF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contescu, Cristian I.; Gallego, Nidia C.; Thibaud-Erkey, Catherine

    The object of this CRADA project between Oak Ridge National Laboratory (ORNL) and United Technologies Research Center (UTRC) is the characterization of lignin-derived activated carbon fibers (LACF) and determination of their adsorption properties for volatile organic compounds (VOC). Carbon fibers from lignin raw materials were manufactured at Oak Ridge National Laboratory (ORNL) using the technology previously developed at ORNL. These fibers were physically activated at ORNL using various activation conditions, and their surface area and pore-size distribution were characterized by gas adsorption. Based on these properties, ORNL did down-select five differently activated LACF materials that were delivered to UTRC formore » measurement of VOC adsorption properties. UTRC used standard techniques based on breakthrough curves to measure and determine the adsorption properties of indoor air pollutants (IAP) - namely formaldehyde and carbon dioxide - and to verify the extent of saturated fiber regenerability by thermal treatments. The results are summarized as follows: (1) ORNL demonstrated that physical activation of lignin-derived carbon fibers can be tailored to obtain LACF with surface areas and pore size distributions matching the properties of activated carbon fibers obtained from more expensive, fossil-fuel precursors; (2) UTRC investigated the LACF potential for use in air cleaning applications currently pursued by UTRC, such as building ventilation, and demonstrated their regenerability for CO2 and formaldehyde, (3) Both partners agree that LACF have potential for possible use in air cleaning applications.« less

  12. Healthy Efficient New Gas Homes (HENGH) Pilot Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Wanyu R.; Maddalena, Randy L; Stratton, Chris

    The Healthy Efficient New Gas Homes (HENGH) is a field study that will collect data on ventilation systems and indoor air quality (IAQ) in new California homes that were built to 2008 Title 24 standards. A pilot test was performed to help inform the most time and cost effective approaches to measuring IAQ in the 100 test homes that will be recruited for this study. Two occupied, single-family detached homes built to 2008 Title 24 participated in the pilot test. One of the test homes uses exhaust-only ventilation provided by a continuous exhaust fan in the laundry room. The othermore » home uses supply air for ventilation. Measurements of IAQ were collected for two weeks. Time-resolved concentrations of particulate matter (PM), nitrogen dioxide (NO2), carbon dioxide (CO2), carbon monoxide (CO), and formaldehyde were measured. Measurements of IAQ also included time-integrated concentrations of volatile organic compounds (VOCs), volatile aldehydes, and NO2. Three perfluorocarbon tracers (PFTs) were used to estimate the dilution rate of an indoor emitted air contaminant in the two pilot test homes. Diagnostic tests were performed to measure envelope air leakage, duct leakage, and airflow of range hood, exhaust fans, and clothes dryer vent when accessible. Occupant activities, such as cooking, use of range hood and exhaust fans, were monitored using various data loggers. This document describes results of the pilot test.« less

  13. Assessment of indoor environmental quality in existing multi-family buildings in North-East Europe.

    PubMed

    Du, Liuliu; Prasauskas, Tadas; Leivo, Virpi; Turunen, Mari; Pekkonen, Maria; Kiviste, Mihkel; Aaltonen, Anu; Martuzevicius, Dainius; Haverinen-Shaughnessy, Ulla

    2015-06-01

    Sixteen existing multi-family buildings (94 apartments) in Finland and 20 (96 apartments) in Lithuania were investigated prior to their renovation in order to develop and test out a common protocol for the indoor environmental quality (IEQ) assessment, and to assess the potential for improving IEQ along with energy efficiency. Baseline data on buildings, as well as data on temperature (T), relative humidity (RH), carbon dioxide (CO2), carbon monoxide (CO), particulate matter (PM), nitrogen dioxide (NO2), formaldehyde, volatile organic compounds (VOCs), radon, and microbial content in settled dust were collected from each apartment. In addition, questionnaire data regarding housing quality and health were collected from the occupants. The results indicated that most measured IEQ parameters were within recommended limits. However, different baselines in each country were observed especially for parameters related to thermal conditions and ventilation. Different baselines were also observed for the respondents' satisfaction with their residence and indoor air quality, as well as their behavior related to indoor environment. In this paper, we present some evidence for the potential in improving IEQ along with energy efficiency in the current building stock, followed by discussion of possible IEQ indicators and development of the assessment protocol. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Indoor environmental quality in a 'low allergen' school and three standard primary schools in Western Australia.

    PubMed

    Zhang, G; Spickett, J; Rumchev, K; Lee, A H; Stick, S

    2006-02-01

    To investigate indoor environmental quality in classrooms, assessments were undertaken in a 'low allergen' school and three standard primary schools in Western Australia. Dust allergens, air pollutants and physical parameters were monitored in the four schools at four times (summer school term, autumn holiday, winter school term and winter holiday) in 2002. The levels of particulate matter (PM(10)) and volatile organic compounds were similar between the four primary schools. Although slightly decreased levels of dust-mite and cat allergens were observed in the 'low allergen' school, the reductions were not statistically significant and the allergen levels in all schools were much lower than the recommended sensitizing thresholds. However, significantly lower levels of relative humidity and formaldehyde level during summer-term were recorded in the 'low allergen' school. In conclusion, the evidence here suggests that the 'low allergen' school did not significantly improve the indoor environmental quality in classrooms. Practical Implications School is an important environment for children in terms of exposure to pollutants and allergens. By assessing the levels of key pollutants and allergens in a low allergen school and three standard primary schools in Western Australia, this study provides useful information for implementation of healthy building design that can improve the indoor environment in schools.

  15. Effects of pollution from personal computers on perceived air quality, SBS symptoms and productivity in offices.

    PubMed

    Bakó-Biró, Z; Wargocki, P; Weschler, C J; Fanger, P O

    2004-06-01

    In groups of six, 30 female subjects were exposed for 4.8 h in a low-polluting office to each of two conditions--the presence or absence of 3-month-old personal computers (PCs). These PCs were placed behind a screen so that they were not visible to the subjects. Throughout the exposure the outdoor air supply was maintained at 10 l/s per person. Under each of the two conditions the subjects performed simulated office work using old low-polluting PCs. They also evaluated the air quality and reported Sick Building Syndrome (SBS) symptoms. The PCs were found to be strong indoor pollution sources, even after they had been in service for 3 months. The sensory pollution load of each PC was 3.4 olf, more than three times the pollution of a standard person. The presence of PCs increased the percentage of people dissatisfied with the perceived air quality from 13 to 41% and increased by 9% the time required for text processing. Chemical analyses were performed to determine the pollutants emitted by the PCs. The most significant chemicals detected included phenol, toluene, 2-ethylhexanol, formaldehyde, and styrene. The identified compounds were, however, insufficient in concentration and kind to explain the observed adverse effects. This suggests that chemicals other than those detected, so-called 'stealth chemicals', may contribute to the negative effects. PCs are an important, but hitherto overlooked, source of pollution indoors. They can decrease the perceived air quality, increase SBS symptoms and decrease office productivity. The ventilation rate in an office with a 3-month-old PC would need to be increased several times to achieve the same perceived air quality as in a low-polluting office with the PC absent. Pollution from PCs has an important negative impact on the air quality, not only in offices but also in many other spaces, including homes. PCs may have played a role in previously published studies on SBS and perceived air quality, where PCs were overlooked as a possible pollution source in the indoor environment. The fact that the chemicals identified in the office air and in the chamber experiments were insufficient to explain the adverse effects observed during human exposures illustrates the inadequacy of the analytical chemical methods commonly used in indoor air quality investigations. For certain chemicals the human senses are much more sensitive than the chemical methods routinely used in indoor air quality investigations. The adverse effects of PC-generated air pollutants could be reduced by modifications in the manufacturing process, increased ventilation, localized PC exhaust, or personalized ventilation systems.

  16. [Study on the acquiring data time and intervals for measuring performance of air cleaner on formaldehyde].

    PubMed

    Tang, Zhigang; Wang, Guifang; Xu, Dongqun; Han, Keqin; Li, Yunpu; Zhang, Aijun; Dong, Xiaoyan

    2004-09-01

    The measuring time and measuring intervals to evaluate different type of air cleaner performance to remove formaldehyde were provided. The natural decay measurement and formaldehyde removal measurement were conducted in 1.5 m3 and 30 m3 test chamber. The natural decay rate was determined by acquiring formaldehyde concentration data at 15 minute intervals for 2.5 hours. The measured decay rate was determined by acquiring formaldehyde concentration data at 5 minute intervals for 1.2 hours. When the wind power of air cleaner is smaller than 30 m3/h or measuring performance of no wind power air clearing product, the 1.5 m3 test chamber can be used. Both the natural decay rate and the measured decay rate are determined by acquiring formaldehyde concentration data at 8 minute intervals for 64 minutes. There were different measuring time and measuring intervals to evaluate different type of air cleaner performance to remove formaldehyde.

  17. The effects of evaporating essential oils on indoor air quality

    NASA Astrophysics Data System (ADS)

    Su, Huey-Jen; Chao, Chung-Jen; Chang, Ho-Yuan; Wu, Pei-Chih

    Essential oils, predominantly comprised of a group of aromatic chemicals, have attracted increasing attention as they are introduced into indoor environments through various forms of consumer products via different venues. Our study aimed to characterize the profiles and concentrations of emitted volatile organic compounds (VOCs) when evaporating essential oils indoors. Three popular essential oils in the market, lavender, eucalyptus, and tea tree, based on a nation-wide questionnaire survey, were tested. Specific aromatic compounds of interest were sampled during evaporating the essential oils, and analyzed by GC-MS. Indoor carbon monoxide (CO), carbon dioxide (CO 2), total volatile organic compounds (TVOCs), and particulate matters (PM 10) were measured by real-time, continuous monitors, and duplicate samples for airborne fungi and bacteria were collected in different periods of the evaporation. Indoor CO (average concentration 1.48 vs. 0.47 ppm at test vs. background), CO 2 (543.21 vs. 435.47 ppm), and TVOCs (0.74 vs. 0.48 ppm) levels have increased significantly after evaporating essential oils, but not the PM 10 (2.45 vs. 2.42 ppm). The anti-microbial activity on airborne microbes, an effect claimed by the use of many essential oils, could only be found at the first 30-60 min after the evaporation began as the highest levels of volatile components in these essential oils appeared to emit into the air, especially in the case of tea tree oil. High emissions of linalool (0.092-0.787 mg m -3), eucalyptol (0.007-0.856 mg m -3), D-limonene (0.004-0.153 mg m -3), ρ-cymene (0.019-0.141 mg m -3), and terpinene-4-ol-1 (0.029-0.978 mg m -3), all from the family of terpenes, were observed, and warranted for further examination for their health implications, especially for their potential contribution to the increasing indoor levels of secondary pollutants such as formaldehyde and secondary organic aerosols (SOAs) in the presence of ozone.

  18. Occupational exposure of aldehydes resulting from the storage of wood pellets.

    PubMed

    Rahman, Mohammad Arifur; Rossner, Alan; Hopke, Philip K

    2017-06-01

    An exposure assessment was conducted to investigate the potential for harmful concentrations of airborne short chain aldehydes emitted from recently stored wood pellets. Wood pellets can emit a number of airborne aldehydes include acetaldehyde, formaldehyde, propionaldehyde, butyraldehyde, valeraldehyde, and hexanal. Exposure limits have been set for these compounds since they can result in significant irritation of the upper respiratory system at elevated concentrations. Formaldehyde is a recognized human carcinogen and acetaldehyde is an animal carcinogen. Thus, air sampling was performed in a wood pellet warehouse at a pellet mill, two residential homes with bulk wood pellet storage bins, and in controlled laboratory experiments to evaluate the risk to occupants. Using NIOSH method 2539, sampling was conducted in five locations in the warehouse from April-June 2016 when it contained varying quantities of bagged pellets as well as two homes with ten ton bulk storage bins. The aldehyde concentrations were found to increase with the amount of stored pellets. Airborne concentrations of formaldehyde were as high as 0.45 ppm in the warehouse exceeding the NIOSH REL-C, and ACGIH TLV-C occupational exposure limits (OELs). The concentrations of aldehydes measured in the residential bins were also elevated indicating emissions may raise indoor air quality concerns for occupants. While individual exposures are of concern the combined irritant effect of all the aldehydes is a further raise the concerns for building occupants. To minimize exposure and the risk of adverse health effects to a building's occupants in storage areas with large quantities of pellets, adequate ventilation must be designed into storage areas.

  19. Cleaning products and air fresheners: exposure to primary and secondary air pollutants

    NASA Astrophysics Data System (ADS)

    Nazaroff, William W.; Weschler, Charles J.

    Building occupants, including cleaning personnel, are exposed to a wide variety of airborne chemicals when cleaning agents and air fresheners are used in buildings. Certain of these chemicals are listed by the state of California as toxic air contaminants (TACs) and a subset of these are regulated by the US federal government as hazardous air pollutants (HAPs). California's Proposition 65 list of species recognized as carcinogens or reproductive toxicants also includes constituents of certain cleaning products and air fresheners. In addition, many cleaning agents and air fresheners contain chemicals that can react with other air contaminants to yield potentially harmful secondary products. For example, terpenes can react rapidly with ozone in indoor air generating many secondary pollutants, including TACs such as formaldehyde. Furthermore, ozone-terpene reactions produce the hydroxyl radical, which reacts rapidly with organics, leading to the formation of other potentially toxic air pollutants. Indoor reactive chemistry involving the nitrate radical and cleaning-product constituents is also of concern, since it produces organic nitrates as well as some of the same oxidation products generated by ozone and hydroxyl radicals. Few studies have directly addressed the indoor concentrations of TACs that might result from primary emissions or secondary pollutant formation following the use of cleaning agents and air fresheners. In this paper, we combine direct empirical evidence with the basic principles of indoor pollutant behavior and with information from relevant studies, to analyze and critically assess air pollutant exposures resulting from the use of cleaning products and air fresheners. Attention is focused on compounds that are listed as HAPs, TACs or Proposition 65 carcinogens/reproductive toxicants and compounds that can readily react to generate secondary pollutants. The toxicity of many of these secondary pollutants has yet to be evaluated. The inhalation intake of airborne organic compounds from cleaning product use is estimated to be of the order of 10 mg d -1 person -1 in California. More than two dozen research articles present evidence of adverse health effects from inhalation exposure associated with cleaning or cleaning products. Exposure to primary and secondary pollutants depends on the complex interplay of many sets of factors and processes, including cleaning product composition, usage, building occupancy, emission dynamics, transport and mixing, building ventilation, sorptive interactions with building surfaces, and reactive chemistry. Current understanding is sufficient to describe the influence of these variables qualitatively in most cases and quantitatively in a few.

  20. Safety in the Chemical Laboratory: Atmospheric Formaldehyde Levels in an Academic Laboratory.

    ERIC Educational Resources Information Center

    Clausz, John C.; And Others

    1984-01-01

    Determined whether improved ventilation and use of "formaldehyde-free" biological specimens could reduce the levels of formaldehyde in air to which students and faculty would be exposed. Both methods were found to be effective in reducing formaldehyde levels in air. (JN)

  1. Formaldehyde Exposures in a University Anatomy Laboratory

    NASA Astrophysics Data System (ADS)

    Winkler, Kyle William

    Air sampling studies were conducted within a university anatomical laboratory during the embalmment of a cadaver in order to determine if dangerous concentrations of formaldehyde existed. Three air sampling studies were conducted in the anatomical laboratory on three separate days that a cadaver was being embalmed. Samples were collected and analyzed using the Occupational Safety and Health Administration (OSHA) Sampling and Analytical Methods: Method 52. Each air sampling study sampled for short term exposure limit (STEL) and time weighted mean (TWA) breathing zone formaldehyde concentrations as well as area TWA formaldehyde concentrations. A personal aldehyde monitor was also used in each air sampling study to sample for breathing zone formaldehyde concentrations. Measured TWA mean exposures to formaldehyde ranged from 0.15--1.3 parts per million (ppm), STEL formaldehyde exposures ranged from 0.019--0.64 ppm, and eight-hour TWAs ranged from 0.03 to 3.6 ppm. All 8-hour TWA formaldehyde concentrations sampled in the anatomy laboratory during an embalmment were less than the permissible exposure limit (PEL) required by OSHA.

  2. Formaldehyde removal from air by a biodegradation system.

    PubMed

    Xu, Zhongjun; Hou, Haiping

    2010-07-01

    A biodegradation system was used for the treatment of formaldehyde-polluted air. Air pressure dropped 12 mm water in the trickling biofilter during the experiment of about 4 months. In the range 20-300 mg m(-3) influent formaldehyde, this biodegradation system obtained 4.0-40.0 mg h(-1) degradation capacity, with 100%-66.7% degradation efficiency. The amount of formaldehyde degraded by the trickling biofilter was more than that by the activated sludge bioreactor below 200 mg m(-3) influent gaseous formaldehyde while the amount by the trickling biofilter was less than that by the activated sludge bioreactor over 200 mg m(-3) influent gaseous formaldehyde.

  3. New research on bioregenerative air/water purification systems

    NASA Technical Reports Server (NTRS)

    Johnson, Anne H.; Ellender, R. D.; Watkins, Paul J.

    1991-01-01

    For the past several years, air and water purification systems have been developed and used. This technology is based on the combined activities of plants and microorganisms as they function in a natural environment. More recently, researchers have begun to address the problems associated with indoor air pollution. Various common houseplants are currently being evaluated for their abilities to reduce concentrations of volatile organic compounds (VOCS) such as formaldehyde and benzene. With development of the Space Exploration Initiative, missions will increase in duration, and problems with resupply necessitates implementation of regenerative technology. Aspects of bioregenerative technology have been included in a habitat known as the BioHome. The ultimate goal is to use this technology in conjunction with physicochemical systems for air and water purification within closed systems. This study continued the risk assessment of bioregenerative technology with emphasis on biological hazards. In an effort to evaluate the risk for human infection, analyses were directed at enumeration of fecal streptococci and enteric viruses with the BioHome waste water treatment system.

  4. Efficient decomposition of formaldehyde at room temperature over Pt/honeycomb ceramics with ultra-low Pt content.

    PubMed

    Nie, Longhui; Zheng, Yingqiu; Yu, Jiaguo

    2014-09-14

    Pt/honeycomb ceramic (Pt/HC) catalysts with ultra-low Pt content (0.005-0.055 wt%) were for the first time prepared by an impregnation of honeycomb ceramics with Pt precursor and NaBH4-reduction combined method. The microstructures, morphologies and textural properties of the resulting samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The obtained Pt/HC catalysts were used for catalytic oxidative decomposition of formaldehyde (HCHO) at room temperature. It was found that the as-prepared Pt/HC catalysts can efficiently decompose HCHO in air into CO2 and H2O at room temperature. The catalytic activity of the Pt/HC catalysts increases with increasing the Pt loading in the range of 0.005-0.013 wt%, and the further increase of the Pt loading does not obviously improve catalytic activity. From the viewpoint of cost and catalytic performance, 0.013 wt% Pt loading is the optimal Pt loading amount, and the Pt/HC catalyst with 0.013 wt% Pt loading also exhibited good catalytic stability. Considering practical applications, this work will provide new insights into the low-cost and large-scale fabrication of advanced catalytic materials for indoor air purification.

  5. Indoor Air in Beauty Salons and Occupational Health Exposure of Cosmetologists to Chemical Substances

    PubMed Central

    Tsigonia, Alexandra; Lagoudi, Argyro; Chandrinou, Stavroula; Linos, Athena; Evlogias, Nikos; Alexopoulos, Evangelos C.

    2010-01-01

    The indoor environment in four beauty salons located in Athens (Greece) was examined in order to investigate the occupational health exposure of cosmetologists to various chemical products typically used in their work. Chemical substances chosen for investigation were volatile organic compounds (VOCs), formaldehyde, ozone and carbon dioxide. Total VOCs levels measured showed significant variation (100–1,450 μg m−3) depending on the products used and the number of treatments carried out, as well as ventilation. The main VOCs found in the salons were aromatics (toluene, xylene), esters and ketones (ethyl acetate, acetone, etc.) which are used as solvents in various beauty products; terpenes (pinene, limonene, camphor, menthenol) which have a particular odor and others like camphor which have specific properties. Ozone concentrations measured in all salons were quite low (0.1 and 13.3 μg m−3) and formaldehyde concentrations detected were lower than the detection limit of the method in all salons (<0.05 ppm). Carbon dioxide levels ranged between 402 and 1,268 ppm, depending on the number of people present in the salons during measurements and ventilation. Cosmetologists may be exposed to high concentrations of a mixture of volatile organic compounds although these levels could be decreased significantly by following certain practices such as good ventilation of the areas, closing the packages of the beauty products when not in use and finally selecting safer beauty products without strong odor. PMID:20195448

  6. Self-Powered Electrostatic Filter with Enhanced Photocatalytic Degradation of Formaldehyde Based on Built-in Triboelectric Nanogenerators.

    PubMed

    Feng, Yawei; Ling, Lili; Nie, Jinhui; Han, Kai; Chen, Xiangyu; Bian, Zhenfeng; Li, Hexing; Wang, Zhong Lin

    2017-12-26

    Recently, atmospheric pollution caused by particulate matter or volatile organic compounds (VOCs) has become a serious issue to threaten human health. Consequently, it is highly desirable to develop an efficient purifying technique with simple structure and low cost. In this study, by combining a triboelectric nanogenerator (TENG) and a photocatalysis technique, we demonstrated a concept of a self-powered filtering method for removing pollutants from indoor atmosphere. The photocatalyst P25 or Pt/P25 was embedded on the surface of polymer-coated stainless steel wires, and such steel wires were woven into a filtering network. A strong electric field can be induced on this filtering network by TENG, while both electrostatic adsorption effect and TENG-enhanced photocatalytic effect can be achieved. Rhodamine B (RhB) steam was selected as the pollutant for demonstration. The absorbed RhB on the filter network with TENG in 1 min was almost the same amount of absorption achieved in 15 min without using TENG. Meanwhile, the degradation of RhB was increased over 50% under the drive of TENG. Furthermore, such a device was applied for the degradation of formaldehyde, where degradation efficiency was doubled under the drive of TENG. This work extended the application for the TENG in self-powered electrochemistry, design and concept of which can be possibly applied in the field of haze governance, indoor air cleaning, and photocatalytic pollution removal for environmental protection.

  7. Passive emission colorimetric sensor (PECS) for measuring emission rates of formaldehyde based on an enzymatic reaction and reflectance photometry.

    PubMed

    Shinohara, Naohide; Kajiwara, Tomohisa; Ohnishi, Masato; Kodama, Kenichi; Yanagisawa, Yukio

    2008-06-15

    A coin-sized passive emission colorimetric sensor (PECS) based on an enzymatic reaction and a portable reflectance photometry device were developed to determine the emission rates of formaldehyde from building materials and other materials found indoors in only 30 minutes on-site. The color change of the PECS linearly correlated to the concentration of formaldehyde aqueous solutions up to 28 microg/mL. The correlation between the emission rates measured by using the PECS and those measured by using a desiccator method or by using a chamber method was fitted with a linear function and a power function, and the determination coefficients were more than 0.98. The reproducible results indicate that the emission rates could be obtained with the correlation equations from the data measured by using the PECS and the portable reflectance photometry device. Limits of detection (LODs) were 0.051 mg/L for the desiccator method and 3.1 microg/m2/h for the chamber method. Thus, it was confirmed that the emission rates of formaldehyde from the building materials classified as F four-star (< 0.3 mg/L (desiccator method) or < 5.0 microg/m2/h (chamber method)), based on Japanese Industrial Standards (JIS), could be measured with the PECS. The measurement with PECS was confirmed to be precise (RSD < 10%). Other chemicals emitted from indoor materials, such as methanol, ethanol, acetone, toluene, and xylene, interfered little with the measurement of formaldehyde emission rates by using the PECS.

  8. Effect of temperature and humidity on formaldehyde emissions in temporary housing units.

    PubMed

    Parthasarathy, Srinandini; Maddalena, Randy L; Russell, Marion L; Apte, Michael G

    2011-06-01

    The effect of temperature and humidity on formaldehyde emissions from samples collected from temporary housing units (THUs) was studied. The THUs were supplied by the U.S. Federal Emergency Management Administration (FEMA) to families that lost their homes in Louisiana and Mississippi during the Hurricane Katrina and Rita disasters. On the basis of a previous study, four of the composite wood surface materials that dominated contributions to indoor formaldehyde were selected to analyze the effects of temperature and humidity on the emission factors. Humidity equilibration experiments were carried out on two of the samples to determine how long the samples take to equilibrate with the surrounding environmental conditions. Small chamber experiments were then conducted to measure emission factors for the four surface materials at various temperature and humidity conditions. The samples were analyzed for formaldehyde via high-performance liquid chromatography. The experiments showed that increases in temperature or humidity contributed to an increase in emission factors. A linear regression model was built using the natural log of the percent relative humidity (RH) and inverse of temperature (in K) as independent variables and the natural log of emission factors as the dependent variable. The coefficients for the inverse of temperature and log RH with log emission factor were found to be statistically significant for all of the samples at the 95% confidence level. This study should assist in retrospectively estimating indoor formaldehyde exposure of occupants of THUs.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arundel, A.V.; Sterling, E.M.; Biggin, J.H.

    A review of the health effects of relative humidity in indoor environments suggests that relative humidity can affect the incidence of respiratory infections and allergies. Experimental studies on airborne-transmitted infectious bacteria and viruses have shown that the survival or infectivity of these organisms is minimized by exposure to relative humidities between 40 and 70%. Nine epidemiological studies examined the relationship between the number of respiratory infections or absenteeism and the relative humidity of the office, residence, or school. The incidence of absenteeism or respiratory infections was found to be lower among people working or living in environments with mid-range versusmore » low or high relative humidities. The indoor size of allergenic mite and fungal populations is directly dependent upon the relative humidity. Mite populations are minimized when the relative humidity is below 50% and reach a maximum size at 80% relative humidity. Most species of fungi cannot grow unless the relative humidity exceeds 60%. Relative humidity also affects the rate of offgassing of formaldehyde from indoor building materials, the rate of formation of acids and salts from sulfur and nitrogen dioxide, and the rate of formation of ozone. The influence of relative humidity on the abundance of allergens, pathogens, and noxious chemicals suggests that indoor relative humidity levels should be considered as a factor of indoor air quality. The majority of adverse health effects caused by relative humidity would be minimized by maintaining indoor levels between 40 and 60%. This would require humidification during winter in areas with cold winter climates. Humidification should preferably use evaporative or steam humidifiers, as cool mist humidifiers can disseminate aerosols contaminated with allergens.« less

  10. Indirect health effects of relative humidity in indoor environments.

    PubMed Central

    Arundel, A V; Sterling, E M; Biggin, J H; Sterling, T D

    1986-01-01

    A review of the health effects of relative humidity in indoor environments suggests that relative humidity can affect the incidence of respiratory infections and allergies. Experimental studies on airborne-transmitted infectious bacteria and viruses have shown that the survival or infectivity of these organisms is minimized by exposure to relative humidities between 40 and 70%. Nine epidemiological studies examined the relationship between the number of respiratory infections or absenteeism and the relative humidity of the office, residence, or school. The incidence of absenteeism or respiratory infections was found to be lower among people working or living in environments with mid-range versus low or high relative humidities. The indoor size of allergenic mite and fungal populations is directly dependent upon the relative humidity. Mite populations are minimized when the relative humidity is below 50% and reach a maximum size at 80% relative humidity. Most species of fungi cannot grow unless the relative humidity exceeds 60%. Relative humidity also affects the rate of offgassing of formaldehyde from indoor building materials, the rate of formation of acids and salts from sulfur and nitrogen dioxide, and the rate of formation of ozone. The influence of relative humidity on the abundance of allergens, pathogens, and noxious chemicals suggests that indoor relative humidity levels should be considered as a factor of indoor air quality. The majority of adverse health effects caused by relative humidity would be minimized by maintaining indoor levels between 40 and 60%. This would require humidification during winter in areas with cold winter climates. Humidification should preferably use evaporative or steam humidifiers, as cool mist humidifiers can disseminate aerosols contaminated with allergens. PMID:3709462

  11. Formaldehyde preparation methods for pressure and temperature dependent laser-induced fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Burkert, A.; Müller, D.; Rieger, S.; Schmidl, G.; Triebel, W.; Paa, W.

    2015-12-01

    Formaldehyde is an excellent tracer for the early phase of ignition of hydrocarbon fuels and can be used, e.g., for characterization of single droplet ignition. However, due to its fast thermal decomposition at elevated temperatures and pressures, the determination of concentration fields from laser-induced fluorescence (LIF) measurements is difficult. In this paper, we address LIF measurements of this important combustion intermediate using a calibration cell. Here, formaldehyde is created from evaporation of paraformaldehyde. We discuss three setups for preparation of formaldehyde/air mixtures with respect to their usability for well-defined heating of formaldehyde/air mixtures. The "basic setup" uses a resist heater around the measurement cell for investigation of formaldehyde near vacuum conditions or formaldehyde/air samples after sequential admixing of air. The second setup, described for the first time in detail here, takes advantage of a constant flow formaldehyde/air regime which uses preheated air to reduce the necessary time for gas heating. We used the constant flow system to measure new pressure dependent LIF excitation spectra in the 343 nm spectral region (414 absorption band of formaldehyde). The third setup, based on a novel concept for fast gas heating via excitation of SF6 (chemically inert gas) using a TEA (transverse excitation at atmospheric pressure) CO2 laser, allows to further minimize both gas heating time and thermal decomposition. Here, an admixture of CO2 is served for real time temperature measurement based on Raman scattering. The applicability of the fast laser heating system has been demonstrated with gas mixtures of SF6 + air, SF6 + N2, as well as SF6 + N2 + CO2 at 1 bar total pressure.

  12. Simultaneous Detection and Removal of Formaldehyde at Room Temperature: Janus Au@ZnO@ZIF-8 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Dawei; Li, Zhiwei; Zhou, Jian; Fang, Hong; He, Xiang; Jena, Puru; Zeng, Jing-Bin; Wang, Wei-Ning

    2018-03-01

    The detection and removal of volatile organic compounds (VOCs) are of great importance to reduce the risk of indoor air quality concerns. This study reports the rational synthesis of a dual-functional Janus nanostructure and its feasibility for simultaneous detection and removal of VOCs. The Janus nanostructure was synthesized via an anisotropic growth method, composed of plasmonic nanoparticles, semiconductors, and metal organic frameworks (e.g., Au@ZnO@ZIF-8). It exhibits excellent selective detection to formaldehyde (HCHO, as a representative VOC) at room temperature over a wide range of concentrations (from 0.25 to 100 ppm), even in the presence of water and toluene molecules as interferences. In addition, HCHO was also found to be partially oxidized into non-toxic formic acid simultaneously with detection. The mechanism underlying this technology was unraveled by both experimental measurements and theoretical calculations: ZnO maintains the conductivity, while ZIF-8 improves the selective gas adsorption; the plasmonic effect of Au nanorods enhances the visible-light-driven photocatalysis of ZnO at room temperature. [Figure not available: see fulltext.

  13. Simultaneous Detection and Removal of Formaldehyde at Room Temperature: Janus Au@ZnO@ZIF-8 Nanoparticles

    DOE PAGES

    Wang, Dawei; Li, Zhiwei; Zhou, Jian; ...

    2017-10-09

    The detection and removal of volatile organic compounds (VOCs) are of great importance to reduce the risk of indoor air quality concerns. Our study reports the rational synthesis of a dual-functional Janus nanostructure and its feasibility for simultaneous detection and removal of VOCs. The Janus nanostructure was synthesized via an anisotropic growth method, composed of plasmonic nanoparticles, semiconductors, and metal organic frameworks (e.g., Au@ZnO@ZIF-8). It exhibits excellent selective detection to formaldehyde (HCHO, as a representative VOC) at room temperature over a wide range of concentrations (from0.25 to 100 ppm), even in the presence of water and toluene molecules as interferences.more » Additionally, HCHOwas also found to be partially oxidized into non-toxic formic acid simultaneously with detection. The mechanism underlying this technology was unraveled by both experimental measurements and theoretical calculations: ZnO maintains the conductivity, while ZIF-8 improves the selective gas adsorption; the plasmonic effect of Au nanorods enhances the visible-light-driven photocatalysis of ZnO at room temperature.« less

  14. Simultaneous Detection and Removal of Formaldehyde at Room Temperature: Janus Au@ZnO@ZIF-8 Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dawei; Li, Zhiwei; Zhou, Jian

    The detection and removal of volatile organic compounds (VOCs) are of great importance to reduce the risk of indoor air quality concerns. Our study reports the rational synthesis of a dual-functional Janus nanostructure and its feasibility for simultaneous detection and removal of VOCs. The Janus nanostructure was synthesized via an anisotropic growth method, composed of plasmonic nanoparticles, semiconductors, and metal organic frameworks (e.g., Au@ZnO@ZIF-8). It exhibits excellent selective detection to formaldehyde (HCHO, as a representative VOC) at room temperature over a wide range of concentrations (from0.25 to 100 ppm), even in the presence of water and toluene molecules as interferences.more » Additionally, HCHOwas also found to be partially oxidized into non-toxic formic acid simultaneously with detection. The mechanism underlying this technology was unraveled by both experimental measurements and theoretical calculations: ZnO maintains the conductivity, while ZIF-8 improves the selective gas adsorption; the plasmonic effect of Au nanorods enhances the visible-light-driven photocatalysis of ZnO at room temperature.« less

  15. Approaches for assessing health risks from complex mixtures in indoor air: a panel overview.

    PubMed Central

    Henry, C J; Fishbein, L; Meggs, W J; Ashford, N A; Schulte, P A; Anderson, H; Osborne, J S; Sepkovic, D W

    1991-01-01

    Critical to a more definitive human health assessment of the potential health risks from exposure to complex mixtures in indoor air is the need for a more definitive clinical measure and etiology of the health effects of complex mixtures. This panel overview highlights six of the eight presentations of the conference panel discussion and features a number of the major topical areas of indoor air concern. W. G. Meggs assessed clinical research priorities with primary focus on the role of volatile organic chemicals in human health, recognizing the areas where definitive data are lacking. By recognizing many types of chemical sensitivity, it may be possible to design studies that can illuminate the mechanisms by which chemical exposure may cause disease. The critically important topic of multiple chemical sensitivity was discussed by N. A. Ashford, who identified four high risk groups and defined the demographics of these groups. P. A. Schulte addressed the issue of biological markers of susceptibility with specific considerations of both methodological and societal aspects that may be operative in the ability to detect innate or inborne differences between individuals and populations. Three case studies were reviewed. H. Anderson discussed the past and present priorities from a public health perspective, focusing on those issues dealing with exposures to environmental tobacco smoke and formaldehyde off-gassing from materials used in mobile home construction. J. J. Osborne described several case studies involving wood smoke exposure to children, with emphasis on the significantly greater occurrence of chronic respiratory symptoms and acute chest illness for children from homes heated with woodburning stoves.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1821367

  16. The tropospheric distribution of formaldehyde

    NASA Astrophysics Data System (ADS)

    Lowe, D. C.; Schmidt, U.; Ehhalt, D. H.

    1981-12-01

    A measurement technique for determining the very low formaldehyde concentrations in clean air is described. The method is based on the standard derivation of formaldehyde with 2,4-dinitrophenylhydrazine. The derivative is separated, using high performance liquid chromatography, and detected at 254 nm with a conventional UV absorption detector. The sampling and analysis technique was used to measure tropospheric mixing ratios at various places in Europe and New Zealand as well as during a cruise in the North and South Atlantic. The results of the measurements show that formaldehyde mixing ratios in clean air are very low. In clean maritime air no significant difference in the formaldehyde mixing ratio between the hemispheres is observed.

  17. Chamber studies on nonvented decorative fireplaces using liquid or gelled ethanol fuel.

    PubMed

    Schripp, Tobias; Salthammer, Tunga; Wientzek, Sebastian; Wensing, Michael

    2014-03-18

    Decorative ethanol fireplaces are becoming more and more commonly used in many different countries. These fireplaces are constructed such that they have no fume extraction system, and so all of the gases from combustion, volatile organic compounds, and particulate emissions are released into the room. In order to determine the release behavior and the chemical composition of the emissions, a variety of combinations of ethanol fireplaces and fuels were examined in a 48 m(3) emission test chamber under typical living room environmental conditions. Four ethanol fireplaces with 8 different fuels (3 liquid samples, 5 gel-type samples) were tested. The ventilation conditions were set up corresponding to the manufacturers' recommendations and DIN 4734-1. The air concentrations in the chamber were evaluated based on guideline values for indoor air. Of the combustion gases examined, the quantity of carbon dioxide and nitrogen dioxide in particular were close to or even above the guideline values in many cases. A release of components of the fuel (e.g., the denaturing substances) was also detected in the chamber air. In two experiments, a benzene concentration of over 12 ppb and an increased formaldehyde concentration (>0.1 ppm) were identified in the chamber air. The ethanol fireplaces were--irrespective of the type of fuel used--strong sources of fine and ultrafine particles. Overall, ethanol fireplaces have a considerable influence on the quality of the indoor air due to the lack of ventilation. This aspect should--in addition to fire protection--be properly considered when using such devices.

  18. Indoor Environmental Contaminants in Schools

    EPA Pesticide Factsheets

    A wide range of environmental contaminants can affect the health and safety of a school environment. This page covers the basics on issues your school may face, including asbestos, chemicals, formaldehyde, lead, mercury, PCBs and radon.

  19. ASHRAE and residential ventilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, Max H.

    In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality createsmore » health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the logical place to provide leadership. This leadership has been demonstrated most recently by the publication of the first nationally recognized standard on ventilation in homes, ASHRAE Standard 62.2-2003, which builds on work that has been part of ASHRAE for many years and will presumably continue. Homeowners and occupants, which includes virtually all of us, will benefit from the application of Standard 62.2 and use of the top ten list. This activity is exactly the kind of benefit to society that the founders of ASHRAE envisioned and is consistent with ASHRAE's mission and vision. ASHRAE members should be proud of their Society for taking leadership in residential ventilation.« less

  20. Controlling formaldehyde emissions with boiler ash.

    PubMed

    Cowan, Jennifer; Abu-Daabes, Malyuba; Banerjee, Sujit

    2005-07-01

    Fluidized wood ash reduces formaldehyde in air from about 20 to <1 ppmv. Methanol is removed to a much lower extent. The efficiency of formaldehyde reduction increases with increasing moisture content of the ash. Sorption of formaldehyde to ash can be substantially accounted for by partitioning to the water contained in the ash followed by rate-controlling binding to the ash solids. Adsorption occurs at temperatures of up to 165 degrees C; oxidation predominates thereafter. It is proposed that formaldehyde could be stripped from an air stream in a fluidized bed containing ash, which could then be returned to a boiler to incinerate the formaldehyde.

  1. Formaldehyde: a candidate toxic air contaminant. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frye, B.; Parker, T.

    1988-03-01

    Formaldehyde (HCHO) is a gas widely used in adhesives and resins, textiles, embalming fluids, fungicides, air fresheners, and cosmetics. It is directly emitted into the ambient outdoor air from vehicular and stationary sources, and is also produced in the atmosphere from other substances by photochemical smog processes. The International Agency for Research on Cancer (IARC) has determined that there is sufficient evidence for carcinogenicity of formaldehyde to animals, and limited evidence for carcinogenicity to humans. EPA classifies formaldehyde as a probable human carcinogen with a one in a million risk concentration of 0.08 ppb.

  2. Epidemiologic evidence for asthma and exposure to air toxics: linkages between occupational, indoor, and community air pollution research.

    PubMed Central

    Delfino, Ralph J

    2002-01-01

    Outdoor ambient air pollutant exposures in communities are relevant to the acute exacerbation and possibly the onset of asthma. However, the complexity of pollutant mixtures and etiologic heterogeneity of asthma has made it difficult to identify causal components in those mixtures. Occupational exposures associated with asthma may yield clues to causal components in ambient air pollution because such exposures are often identifiable as single-chemical agents (e.g., metal compounds). However, translating occupational to community exposure-response relationships is limited. Of the air toxics found to cause occupational asthma, only formaldehyde has been frequently investigated in epidemiologic studies of allergic respiratory responses to indoor air, where general consistency can be shown despite lower ambient exposures. The specific volatile organic compounds (VOCs) identified in association with occupational asthma are generally not the same as those in studies showing respiratory effects of VOC mixtures on nonoccupational adult and pediatric asthma. In addition, experimental evidence indicates that airborne polycyclic aromatic hydrocarbon (PAH) exposures linked to diesel exhaust particles (DEPs) have proinflammatory effects on airways, but there is insufficient supporting evidence from the occupational literature of effects of DEPs on asthma or lung function. In contrast, nonoccupational epidemiologic studies have frequently shown associations between allergic responses or asthma with exposures to ambient air pollutant mixtures with PAH components, including black smoke, high home or school traffic density (particularly truck traffic), and environmental tobacco smoke. Other particle-phase and gaseous co-pollutants are likely causal in these associations as well. Epidemiologic research on the relationship of both asthma onset and exacerbation to air pollution is needed to disentangle effects of air toxics from monitored criteria air pollutants such as particle mass. Community studies should focus on air toxics expected to have adverse respiratory effects based on biological mechanisms, particularly irritant and immunological pathways to asthma onset and exacerbation. PMID:12194890

  3. Determination of ultra-trace formaldehyde in air using ammonium sulfate as derivatization reagent and capillary electrophoresis coupled with on-line electrochemiluminescence detection.

    PubMed

    Deng, Biyang; Liu, Yang; Yin, Huihui; Ning, Xi; Lu, Hua; Ye, Li; Xu, Quanxiu

    2012-03-15

    The reaction between formaldehyde and ammonium ion to produce hexamethylenetetramine is well known. The reaction conditions are very easily controlled in situ and the experiment operation is very simple. However, such derivatization reaction for trace formaldehyde determination using capillary electrophoresis (CE) electrochemiluminescence (ECL) has not been reported before. In this study, the application of ammoniun sulfate as derivatization reagent to in-situ determination of formaldehyde in air was reported. Based on ECL enhancement of tris(2,2'-bipyridyl)ruthenium(II) with hexamethylenetetramine, a novel approach for the determination of ultra-trace formaldehyde in air using CE coupled with on-line ECL of tris(2,2'-bipyridyl)ruthenium(II) has been developed. The parameters affecting separation and detection such as detection potential, concentration and pH of phosphate buffer, and electrokinetic voltage, were investigated. Under the optimal conditions, the linear concentration range of formaldehyde in air was from 0.48 μg/m(3) to 96 mg/m(3) (linear range covering 5 orders of magnitude). The limit of detection (3σ) was 0.15 μg/m(3). The relative standard deviations of peak height and migration time for six consecutive injection of 1 ng/mL formaldehyde derivative were 0.9% and 0.8%, respectively. The recoveries of formaldehyde in air were between 99.3% and 101%. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Measurements of formaldehyde and acetaldehyde in the urban ambient air

    NASA Astrophysics Data System (ADS)

    Salas, Louis J.; Singh, Hanwant B.

    Acetaldehyde and formaldehyde were measured in urban ambient air by analyzing their 2,4-dinitrophenylhydrazine derivatives with reverse-phase, high-performance liquid chromatography (HPLC). A series of nine short term field experiments were performed in eight cities. Concurrent formaldehyde measurements using the chromotropic-acid procedure show reasonable agreement (±30 %) between the two methods. Average summertime ambient urban formaldehyde (HCHO) concentrations of 10-20 ppb (10 -9v/v) are significantly higher than the average acetaldehyde (CH 3CHO) concentrations of 1-2 ppb. There is evidence of much reduced formaldehyde levels in winter months. Exceptionally high, absolute (8.5 ppb av.) and relative ( HCHO/CH 3CHO ~ 2 ) acetaldehyde concentrations are measured in the South Coast Air Basin of California.

  5. Laboratory Measurements of Photolytic Parameters for Formaldehyde.

    DTIC Science & Technology

    1980-11-01

    dynamic dilution methods. Compressed air stored in steel cylinders, carefully selected to contain carbon monoxide and hydrogen at mixing ratios of...in air has been investi- gated in the laboratory at two temperatures: 300 and 220 K. Quantum yields for the formation of CO and H2 were determined at...procedures in the case of pure formaldehyde gave consistent results. (b) Quantum Yields Mixtures of formaldehyde in air were photolyzed in a

  6. Emission of formaldehyde by particleboard : effect of ventilation rate and loading on air-contamination levels

    Treesearch

    George E. Myers; Muneo Nagaoka

    1981-01-01

    Dynamic tests for determining the formaldehyde emission behavior of UF-bonded boards involve the measurement of formaldehyde concentration in the air within a vessel which contains a specified board loading L (m2 of board area per m3 of vessel free volume) and is being ventilated at a specified air exchange rate N (hr.-1). Such tests constitute a primary...

  7. Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature.

    PubMed

    Mendell, M J; Heath, G A

    2005-02-01

    To assess whether school environments can adversely affect academic performance, we review scientific evidence relating indoor pollutants and thermal conditions, in schools or other indoor environments, to human performance or attendance. We critically review evidence for direct associations between these aspects of indoor environmental quality (IEQ) and performance or attendance. Secondarily, we summarize, without critique, evidence on indirect connections potentially linking IEQ to performance or attendance. Regarding direct associations, little strongly designed research was available. Persuasive evidence links higher indoor concentrations of NO(2) to reduced school attendance, and suggestive evidence links low ventilation rates to reduced performance. Regarding indirect associations, many studies link indoor dampness and microbiologic pollutants (primarily in homes) to asthma exacerbations and respiratory infections, which in turn have been related to reduced performance and attendance. Also, much evidence links poor IEQ (e.g. low ventilation rate, excess moisture, or formaldehyde) with adverse health effects in children and adults and documents dampness problems and inadequate ventilation as common in schools. Overall, evidence suggests that poor IEQ in schools is common and adversely influences the performance and attendance of students, primarily through health effects from indoor pollutants. Evidence is available to justify (i) immediate actions to assess and improve IEQ in schools and (ii) focused research to guide IEQ improvements in schools. There is more justification now for improving IEQ in schools to reduce health risks to students than to reduce performance or attendance risks. However, as IEQ-performance links are likely to operate largely through effects of IEQ on health, IEQ improvements that benefit the health of students are likely to have performance and attendance benefits as well. Immediate actions are warranted in schools to prevent dampness problems, inadequate ventilation, and excess indoor exposures to substances such as NO(2) and formaldehyde. Also, siting of new schools in areas with lower outdoor pollutant levels is preferable.

  8. Long-term stability measurements of low concentration Volatile Organic Compound gas mixtures

    NASA Astrophysics Data System (ADS)

    Allen, Nick; Amico di Meane, Elena; Brewer, Paul; Ferracci, Valerio; Corbel, Marivon; Worton, David

    2017-04-01

    VOCs (Volatile Organic Compounds) are a class of compounds with significant influence on the atmosphere due to their large anthropogenic and biogenic emission sources. VOC emissions have a significant impact on the atmospheric hydroxyl budget and nitrogen reservoir species, while also contributing indirectly to the production of tropospheric ozone and secondary organic aerosol. However, the global budget of many of these species are poorly constrained. Moreover, the World Meteorological Organization's (WMO) Global Atmosphere Watch (GAW) have set challenging data quality objectives for atmospheric monitoring programmes for these classes of traceable VOCs, despite the lack of available stable gas standards. The Key-VOCs Joint Research Project is an ongoing three-year collaboration with the aim of improving the measurement infrastructure of important atmospheric VOCs by providing traceable and comparable reference gas standards and by validating new measurement systems in support of the air monitoring networks. It focuses on VOC compounds that are regulated by European legislation, that are relevant for indoor air monitoring and for air quality and climate monitoring programmes like the VOC programme established by the WMO GAW and the European Monitoring and Evaluation Programme (EMEP). These VOCs include formaldehyde, oxy[genated]-VOCs (acetone, ethanol and methanol) and terpenes (a-pinene, 1,8-cineole, δ-3-carene and R-limonene). Here we present the results of a novel long term stability study for low concentration formaldehyde, oxy-VOC and terpenes gas mixtures produced by the Key-VOCs consortium with discussion regarding the implementation of improved preparation techniques and the use of novel cylinder passivation chemistries to guarantee mixture stability.

  9. Measurement of volatile organic compounds emitted in libraries and archives: an inferential indicator of paper decay?

    PubMed Central

    2012-01-01

    Background A sampling campaign of indoor air was conducted to assess the typical concentration of indoor air pollutants in 8 National Libraries and Archives across the U.K. and Ireland. At each site, two locations were chosen that contained various objects in the collection (paper, parchment, microfilm, photographic material etc.) and one location was chosen to act as a sampling reference location (placed in a corridor or entrance hallway). Results Of the locations surveyed, no measurable levels of sulfur dioxide were detected and low formaldehyde vapour (< 18 μg m-3) was measured throughout. Acetic and formic acids were measured in all locations with, for the most part, higher acetic acid levels in areas with objects compared to reference locations. A large variety of volatile organic compounds (VOCs) was measured in all locations, in variable concentrations, however furfural was the only VOC to be identified consistently at higher concentration in locations with paper-based collections, compared to those locations without objects. To cross-reference the sampling data with VOCs emitted directly from books, further studies were conducted to assess emissions from paper using solid phase microextraction (SPME) fibres and a newly developed method of analysis; collection of VOCs onto a polydimethylsiloxane (PDMS) elastomer strip. Conclusions In this study acetic acid and furfural levels were consistently higher in concentration when measured in locations which contained paper-based items. It is therefore suggested that both acetic acid and furfural (possibly also trimethylbenzenes, ethyltoluene, decane and camphor) may be present in the indoor atmosphere as a result of cellulose degradation and together may act as an inferential non-invasive marker for the deterioration of paper. Direct VOC sampling was successfully achieved using SPME fibres and analytes found in the indoor air were also identified as emissive by-products from paper. Finally a new non-invasive, method of VOC collection using PDMS strips was shown to be an effective, economical and efficient way of examining VOC emissions directly from the pages of a book and confirmed that toluene, furfural, benzaldehyde, ethylhexanol, nonanal and decanal were the most concentrated VOCs emitted directly from paper measured in this study. PMID:22587759

  10. Indoor air quality, ventilation and respiratory health in elderly residents living in nursing homes in Europe.

    PubMed

    Bentayeb, Malek; Norback, Dan; Bednarek, Micha; Bernard, Alfred; Cai, Guihong; Cerrai, Sonia; Eleftheriou, Konstantinos Kostas; Gratziou, Christina; Holst, Gitte Juel; Lavaud, François; Nasilowski, Jacek; Sestini, Piersante; Sarno, Giuseppe; Sigsgaard, Torben; Wieslander, Gunilla; Zielinski, Jan; Viegi, Giovanni; Annesi-Maesano, Isabella

    2015-05-01

    Few data exist on respiratory effects of indoor air quality and comfort parameters in the elderly. In the context of the GERIE study, we investigated for the first time the relationships of these factors to respiratory morbidity among elderly people permanently living in nursing homes in seven European countries. 600 elderly people from 50 nursing homes underwent a medical examination and completed a standardised questionnaire. Air quality and comfort parameters were objectively assessed in situ in the nursing home. Mean concentrations of air pollutants did not exceed the existing standards. Forced expiratory volume in 1 s/forced vital capacity ratio was highly significantly related to elevated levels of particles with a 50% cut-off aerodynamic diameter of <0.1 µm (PM0.1) (adjusted OR 8.16, 95% CI 2.24-29.3) and nitrogen dioxide (aOR 3.74, 95% CI 1.06-13.1). Excess risks for usual breathlessness and cough were found with elevated PM10 (aOR 1.53 (95% CI 1.15-2.07) and aOR 1.73 (95% CI 1.17-10.3), respectively) and nitrogen dioxide (aOR 1.58 (95% CI 1.15-2.20) and aOR 1.56 (95% CI 1.03-2.41), respectively). Excess risks for wheeze in the past year were found with PM0.1 (aOR 2.82, 95% CI 1.15-7.02) and for chronic obstructive pulmonary disease and exhaled carbon monoxide with formaldehyde (aOR 3.49 (95% CI 1.17-10.3) and aOR 1.25 (95% CI 1.02-1.55), respectively). Breathlessness and cough were associated with higher carbon dioxide. Relative humidity was inversely related to wheeze in the past year and usual cough. Elderly subjects aged ≥80 years were at higher risk. Pollutant effects were more pronounced in the case of poor ventilation. Even at low levels, indoor air quality affected respiratory health in elderly people permanently living in nursing homes, with frailty increasing with age. The effects were modulated by ventilation. Copyright ©ERS 2015.

  11. A new system to reduce formaldehyde levels improves safety conditions during gross veterinary anatomy learning.

    PubMed

    Nacher, Víctor; Llombart, Cristina; Carretero, Ana; Navarro, Marc; Ysern, Pere; Calero, Sebastián; Fígols, Enric; Ruberte, Jesús

    2007-01-01

    Dissection is a very useful method of learning veterinary anatomy. However, formaldehyde, which is widely used to preserve cadavers, is an irritant, and it has recently been classified as a carcinogen. In 1997, the Instituto Nacional de Seguridad e Higiene en el Trabajo [National Institute of Workplace Security and Hygiene] found that the levels of formaldehyde in our dissection room were above the threshold limit values. Unfortunately, no optimal substitute for formaldehyde is currently available. Therefore, we designed a new ventilation system that combines slow propulsion of fresh air from above the dissection table and rapid aspiration of polluted air from the perimeter. Formaldehyde measurements performed in 2004, after the introduction of this new system into our dissection laboratory, showed a dramatic reduction (about tenfold, or 0.03 ppm). A suitable propelling/aspirating air system successfully reduces the concentration of formaldehyde in the dissection room, significantly improving safety conditions for students, instructors, and technical staff during gross anatomy learning.

  12. A practical approach to estimate emission rates of indoor air pollutants due to the use of personal combustible products based on small-chamber studies.

    PubMed

    Szulejko, Jan E; Kim, Ki-Hyun

    2016-02-01

    As emission rates of airborne pollutants are commonly measured from combusting substances placed inside small chambers, those values need to be re-evaluated for the possible significance under practical conditions. Here, a simple numerical procedure is investigated to extrapolate the chamber-based emission rates of formaldehyde that can be released from various combustible sources including e-cigarettes, conventional cigarettes, or scented candles to their concentration levels in a small room with relatively poor ventilation. This simple procedure relies on a mass balance approach by considering the masses of pollutants emitted from source and lost through ventilation under the assumption that mixing occurs instantaneously in the room without chemical reactions or surface sorption. The results of our study provide valuable insights into re-evaluation procedure of chamber data to allow comparison between extrapolated and recommended values to judge the safe use of various combustible products in confined spaces. If two scented candles with a formaldehyde emission rate of 310 µg h(-1) each were lit for 4 h in a small 20 m(3) room with an air change rate of 0.5 h(-1), then the 4-h (candle lit) and 8-h (up to 8 h after candle lighting) TWA [FA] were determined to be 28.5 and 23.5 ppb, respectively. This is clearly above the 8-h NIOSH recommended exposure limit (REL) time weighted average of 16 ppb. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. At seeming safe concentrations, synergistic effects of PM2.5 and formaldehyde co-exposure induces Alzheimer-like changes in mouse brain.

    PubMed

    Liu, Xudong; Zhang, Yuchao; Luo, Chen; Kang, Jun; Li, Jinquan; Wang, Kun; Ma, Ping; Yang, Xu

    2017-11-17

    Alzheimer's disease (AD) is a serious, common, global disease, yet its etiology and pathogenesis are incompletely understood. Air pollution is a multi-pollutants co-exposure system, which may affect brain. The indoor environment is where exposure to both air particulate matter (<2.5 μm in diameter) (PM 2.5 ) and formaldehyde (FA) can occur simultaneously. Whether exposure to such a multi-pollutant (PM 2.5 plus FA) mixture contributes to the development of AD, and whether there is a difference between exposure to PM 2.5 or FA alone needs to be investigated. To determine the objective, C57BL/6J mice were exposed daily to PM 2.5 (0.193 mg/Kg/day), FA (0.155 mg/Kg/day) or multi-pullutants (0.193 mg/Kg/day PM 2.5 plus 0.155 mg/Kg/day FA) for one week. AD-like changes and upstream events were investigated after exposure. The results showed that exposure to PM 2.5 or FA alone in this study had little or no adverse effects on the mouse brain. However, some AD-like pathologies were detected after multi-pullutants co-exposure. This work suggested PM 2.5 plus FA co-exposure has more potential to induce AD-like pathologies than exposure alone. Oxidative stress and inflammation may be involved into the toxic mechanisms. Synergistic effects of co-exposure may induce the hygienic or safety standards of each pollutant not safe.

  14. A real-time monitoring and assessment method for calculation of total amounts of indoor air pollutants emitted in subway stations.

    PubMed

    Oh, TaeSeok; Kim, MinJeong; Lim, JungJin; Kang, OnYu; Shetty, K Vidya; SankaraRao, B; Yoo, ChangKyoo; Park, Jae Hyung; Kim, Jeong Tai

    2012-05-01

    Subway systems are considered as main public transportation facility in developed countries. Time spent by people in indoors, such as underground spaces, subway stations, and indoor buildings, has gradually increased in the recent past. Especially, operators or old persons who stay in indoor environments more than 15 hr per day usually influenced a greater extent by indoor air pollutants. Hence, regulations on indoor air pollutants are needed to ensure good health of people. Therefore, in this study, a new cumulative calculation method for the estimation of total amounts of indoor air pollutants emitted inside the subway station is proposed by taking cumulative amounts of indoor air pollutants based on integration concept. Minimum concentration of individual air pollutants which naturally exist in indoor space is referred as base concentration of air pollutants and can be found from the data collected. After subtracting the value of base concentration from data point of each data set of indoor air pollutant, the primary quantity of emitted air pollutant is calculated. After integration is carried out with these values, adding the base concentration to the integration quantity gives the total amount of indoor air pollutant emitted. Moreover the values of new index for cumulative indoor air quality obtained for 1 day are calculated using the values of cumulative air quality index (CAI). Cumulative comprehensive indoor air quality index (CCIAI) is also proposed to compare the values of cumulative concentrations of indoor air pollutants. From the results, it is clear that the cumulative assessment approach of indoor air quality (IAQ) is useful for monitoring the values of total amounts of indoor air pollutants emitted, in case of exposure to indoor air pollutants for a long time. Also, the values of CCIAI are influenced more by the values of concentration of NO2, which is released due to the use of air conditioners and combustion of the fuel. The results obtained in this study confirm that the proposed method can be applied to monitor total amounts of indoor air pollutants emitted, inside apartments and hospitals as well. Nowadays, subway systems are considered as main public transportation facility in developed countries. Time spent by people in indoors, such as underground spaces, subway stations, and indoor buildings, has gradually increased in the recent past. Especially, operators or old persons who stay in the indoor environments more than 15 hr per day usually influenced a greater extent by indoor air pollutants. Hence, regulations on indoor air pollutants are needed to ensure good health of people. Therefore, this paper presents a new methodology for monitoring and assessing total amounts of indoor air pollutants emitted inside underground spaces and subway stations. A new methodology for the calculation of cumulative amounts of indoor air pollutants based on integration concept is proposed. The results suggest that the cumulative assessment approach of IAQ is useful for monitoring the values of total amounts of indoor air pollutants, if indoor air pollutants accumulated for a long time, especially NO2 pollutants. The results obtained here confirm that the proposed method can be applied to monitor total amounts of indoor air pollutants emitted, inside apartments and hospitals as well.

  15. Selective Detection of Formaldehyde Gas Using a Cd-Doped TiO2-SnO2 Sensor

    PubMed Central

    Zeng, Wen; Liu, Tianmo; Wang, Zhongchang; Tsukimoto, Susumu; Saito, Mitsuhiro; Ikuhara, Yuichi

    2009-01-01

    We report the microstructure and gas-sensing properties of a nonequilibrium TiO2-SnO2 solid solution prepared by the sol-gel method. In particular, we focus on the effect of Cd doping on the sensing behavior of the TiO2-SnO2 sensor. Of all volatile organic compound gases examined, the sensor with Cd doping exhibits exclusive selectivity as well as high sensitivity to formaldehyde, a main harmful indoor gas. The key gas-sensing quantities, maximum sensitivity, optimal working temperature, and response and recovery time, are found to meet the basic industrial needs. This makes the Cd-doped TiO2-SnO2 composite a promising sensor material for detecting the formaldehyde gas. PMID:22291551

  16. Physical parameters effect on ozone-initiated formation of indoor secondary organic aerosols with emissions from cleaning products.

    PubMed

    Huang, Yu; Ho, Kin Fai; Ho, Steven Sai Hang; Lee, Shun Cheng; Yau, P S; Cheng, Yan

    2011-09-15

    The effect of air exchange rate (ACH), temperature (T), and relative humidity (RH) on the formation of indoor secondary organic aerosols (SOAs) through ozonolysis of biogenic organic compounds (BVOCs) emitted from floor cleaner was investigated in this study. The total particle count (with D(p) of 6-225 nm) was up to 1.2 × 10(3)#cm(-3) with ACH of 1.08 h(-1), and it became much more significant with ACH of 0.36 h(-1) (1.1 × 10(4)#cm(-3)). This suggests that a higher ventilation rate can effectively dilute indoor BVOCs, resulting in a less ultrafine particle formation. The total particle count increased when temperature changed from 15 to 23 °C but it decreased when the temperature further increased to 30 °C. It could be explained that high temperature restrained the condensation of formed semi-volatile compounds resulting in low yields of SOAs. When the RH was at 50% and 80%, SOA formation (1.1-1.2 × 10(4)#cm(-3)) was the more efficient compared with that at RH of 30% (5.9 × 10(3)#cm(-3)), suggesting higher RH facilitating the initial nucleation processes. Oxidation generated secondary carbonyl compounds were also quantified. Acetone was the most abundant carbonyl compound. The formation mechanisms of formaldehyde and acetone were proposed. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Indoor secondary pollutants from cleaning product and air freshener use in the presence of ozone

    NASA Astrophysics Data System (ADS)

    Singer, Brett C.; Coleman, Beverly K.; Destaillats, Hugo; Hodgson, Alfred T.; Lunden, Melissa M.; Weschler, Charles J.; Nazaroff, William W.

    This study investigated the formation of secondary pollutants resulting from household product use in the presence of ozone. Experiments were conducted in a 50-m 3 chamber simulating a residential room. The chamber was operated at conditions relevant to US residences in polluted areas during warm-weather seasons: an air exchange rate of 1.0 h -1 and an inlet ozone concentration of approximately 120 ppb, when included. Three products were used in separate experiments. An orange oil-based degreaser and a pine oil-based general-purpose cleaner were used for surface cleaning applications. A plug-in scented-oil air freshener (AFR) was operated for several days. Cleaning products were applied realistically with quantities scaled to simulate residential use rates. Concentrations of organic gases and secondary organic aerosol from the terpene-containing consumer products were measured with and without ozone introduction. In the absence of reactive chemicals, the chamber ozone level was approximately 60 ppb. Ozone was substantially consumed following cleaning product use, mainly by homogeneous reaction. For the AFR, ozone consumption was weaker and heterogeneous reaction with sorbed AFR-constituent VOCs was of similar magnitude to homogeneous reaction with continuously emitted constituents. Formaldehyde generation resulted from product use with ozone present, increasing indoor levels by the order of 10 ppb. Cleaning product use in the presence of ozone generated substantial fine particle concentrations (more than 100 μg m -3) in some experiments. Ozone consumption and elevated hydroxyl radical concentrations persisted for 10-12 h following brief cleaning events, indicating that secondary pollutant production can persist for extended periods.

  18. Production of sugarcane bagasse-based activated carbon for formaldehyde gas removal from potted plants exposure chamber.

    PubMed

    Mohamed, Elham F; El-Hashemy, Mohammed A; Abdel-Latif, Nasser M; Shetaya, Waleed H

    2015-12-01

    Agricultural wastes such as rice straw, sugar beet, and sugarcane bagasse have become a critical environmental issue due to growing agriculture demand. This study aimed to investigate the valorization possibility of sugarcane bagasse waste for activated carbon preparation. It also aimed to fully characterize the prepared activated carbon (BET surface area) via scanning electron microscope (SEM) and in terms of surface functional groups to give a basic understanding of its structure and to study the adsorption capacity of the sugarcane bagasse-based activated carbon using aqueous methylene blue (MB). The second main objective was to evaluate the performance of sugarcane bagasse-based activated carbon for indoor volatile organic compounds removal using the formaldehyde gas (HCHO) as reference model in two potted plants chambers. The first chamber was labeled the polluted chamber (containing formaldehyde gas without activated carbon) and the second was taken as the treated chamber (containing formaldehyde gas with activated carbon). The results indicated that the sugarcane bagasse-based activated carbon has a moderate BET surface area (557 m2/g) with total mesoporous volume and microporous volume of 0.310 and 0.273 cm3/g, respectively. The prepared activated carbon had remarkable adsorption capacity for MB. Formaldehyde removal rate was then found to be more than 67% in the treated chamber with the sugarcane bagasse-based activated carbon. The plants' responses for this application as dry weight, chlorophyll contents, and protein concentration were also investigated. Preparation of activated carbon from sugarcane bagasse (SCBAC) is a promising approach to produce cheap and efficient adsorbent for gas pollutants removal. It may be also a solution for the agricultural wastes problems in big cities, particularly in Egypt. MB adsorption tests suggest that the SCBAC have high adsorption capacity. Formaldehyde gas removal in the plant chambers indicates that the SCBAC have potential to recover volatile gases. The results confirmed that the activated carbon produced from sugarcane bagasse waste raw materials can be used as an applicable adsorbent for treating a variety of gas pollutants from the indoor environment.

  19. Formaldehyde Emissions from Urea-Formaldehyde- and no-added-formaldehyde-Bonded particleboard as Influenced by Temperature and Relative Humidity

    Treesearch

    Charles R. Frihart; James M. Wescott; Timothy L. Chaffee; Kyle M. Gonner

    2012-01-01

    It is well documented that temperature and humidity can influence formaldehyde emissions from composite panels that are produced using urea-formaldehyde (UF)–type adhesives. This work investigates the effect of temperature and humidity on newer commercial California Air Resources Board (CARB) phase II–compliant particleboard produced with UF-type adhesives. These...

  20. Current Indoor Air Quality in Japan.

    PubMed

    Jinno, Hideto

    2016-01-01

    People spend more than two thirds of their daily time indoors. Hence, maintaining a healthy indoor environment is indispensable for the prevention of building related illness. In Japan, guidelines for indoor air quality have been established for 13 volatile/semi-volatile organic compounds (VOCs/SVOCs). These guidelines are now under revision by the Committee on Sick House Syndrome: Indoor Air Pollution. In order to gain information on the current indoor air pollutants and their levels, we carried out a nation-wide survey of VOCs and aldehydes in indoor residential air during 2012-2013. In this review, I concisely summarized the current indoor air quality of Japan.

  1. Health and Wellbeing of Occupants in Highly Energy Efficient Buildings: A Field Study.

    PubMed

    Wallner, Peter; Tappler, Peter; Munoz, Ute; Damberger, Bernhard; Wanka, Anna; Kundi, Michael; Hutter, Hans-Peter

    2017-03-19

    Passive houses and other highly energy-efficient buildings need mechanical ventilation. However, ventilation systems in such houses are regarded with a certain degree of skepticism by parts of the public due to alleged negative health effects. Within a quasi-experimental field study, we investigated if occupants of two types of buildings (mechanical vs. natural ventilation) experience different health, wellbeing and housing satisfaction outcomes and if associations with indoor air quality exist. We investigated 123 modern homes (test group: with mechanical ventilation; control group: naturally ventilated) built in the years 2010 to 2012 in the same geographic area and price range. Interviews of occupants based on standardized questionnaires and measurements of indoor air quality parameters were conducted twice (three months after moving in and one year later). In total, 575 interviews were performed (respondents' mean age 37.9 ± 9 years in the test group, 37.7 ± 9 years in the control group). Occupants of the test group rated their overall health status and that of their children not significantly higher than occupants of the control group at both time points. Adult occupants of the test group reported dry eyes statistically significantly more frequently compared to the control group (19.4% vs. 12.5%). Inhabitants of energy-efficient, mechanically ventilated homes rated the quality of indoor air and climate significantly higher. Self-reported health improved more frequently in the mechanically ventilated new homes ( p = 0.005). Almost no other significant differences between housing types and measuring time points were observed concerning health and wellbeing or housing satisfaction. Associations between vegetative symptoms (dizziness, nausea, headaches) and formaldehyde concentrations as well as between CO₂ levels and perceived stale air were observed. However, both associations were independent of the type of ventilation. In summary, occupants of the mechanically ventilated homes rated their health status slightly higher and their health improved significantly more frequently than in occupants of the control group. As humidity in homes with mechanical ventilation was lower, it seems plausible that the inhabitants reported dry eyes more frequently.

  2. Indoor environmental and air quality characteristics, building-related health symptoms, and worker productivity in a federal government building complex.

    PubMed

    Lukcso, David; Guidotti, Tee Lamont; Franklin, Donald E; Burt, Allan

    2016-01-01

    Building Health Sciences, Inc. (BHS), investigated environmental conditions by many modalities in 71 discreet areas of 12 buildings in a government building complex that had experienced persistent occupant complaints despite correction of deficiencies following a prior survey. An online health survey was completed by 7,637 building occupants (49% response rate), a subset of whom voluntarily wore personal sampling apparatus and underwent medical evaluation. Building environmental measures were within current standards and guidelines, with few outliers. Four environmental factors were consistently associated with group-level building-related health complaints: physical comfort/discomfort, odor, job stress, and glare. Several other factors were frequently commented on by participants, including cleanliness, renovation and construction activities, and noise. Low relative humidity was significantly associated with lower respiratory and "sick building syndrome"-type symptoms. No other environmental conditions (including formaldehyde, PM10 [particulate matter with an aerodynamic diameter <10 μm], or mold levels, which were tested by 7 parameters) correlated directly with individual health symptoms. Indicators of atopy or allergy (sinusitis, allergies, and asthma), when present singly, in combinations of 2 conditions, or together, were hierarchically associated with the following: increased absence, increased presenteeism (presence at work but at reduced capacity), and increase in reported symptom-days, including symptoms not related to respiratory disease. We found that in buildings without unusual hazards and with environmental and air quality indicators within the range of acceptable indoor air quality standards, there is an identifiable population of occupants with a high prevalence of asthma and allergic disease who disproportionately report discomfort and lost productivity due to symptoms and that in "normal" buildings these outcome indicators are more closely associated with host factors than with environmental conditions. We concluded from the experience of this study that building-related health complaints should be investigated at the work-area level and not at a building-wide level. An occupant-centric medical evaluation should guide environmental investigations, especially when screening results of building indoor environmental and air quality measurements show that the building and its work areas are within regulatory standards and industry guidelines.

  3. Three-dimensional vapor intrusion modeling approach that combines wind and stack effects on indoor, atmospheric, and subsurface domains.

    PubMed

    Shirazi, Elham; Pennell, Kelly G

    2017-12-13

    Vapor intrusion (IV) exposure risks are difficult to characterize due to the role of atmospheric, building and subsurface processes. This study presents a three-dimensional VI model that extends the common subsurface fate and transport equations to incorporate wind and stack effects on indoor air pressure, building air exchange rate (AER) and indoor contaminant concentration to improve VI exposure risk estimates. The model incorporates three modeling programs: (1) COMSOL Multiphysics to model subsurface fate and transport processes, (2) CFD0 to model atmospheric air flow around the building, and (3) CONTAM to model indoor air quality. The combined VI model predicts AER values, zonal indoor air pressures and zonal indoor air contaminant concentrations as a function of wind speed, wind direction and outdoor and indoor temperature. Steady state modeling results for a single-story building with a basement demonstrate that wind speed, wind direction and opening locations in a building play important roles in changing the AER, indoor air pressure, and indoor air contaminant concentration. Calculated indoor air pressures ranged from approximately -10 Pa to +4 Pa depending on weather conditions and building characteristics. AER values, mass entry rates and indoor air concentrations vary depending on weather conditions and building characteristics. The presented modeling approach can be used to investigate the relationship between building features, AER, building pressures, soil gas concentrations, indoor air concentrations and VI exposure risks.

  4. 41 CFR 102-80.25 - What are Federal agencies' responsibilities concerning the management of indoor air quality?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... agencies' responsibilities concerning the management of indoor air quality? 102-80.25 Section 102-80.25... Environmental Management Indoor Air Quality § 102-80.25 What are Federal agencies' responsibilities concerning the management of indoor air quality? Federal agencies must assess indoor air quality of buildings as...

  5. 41 CFR 102-80.25 - What are Federal agencies' responsibilities concerning the management of indoor air quality?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... agencies' responsibilities concerning the management of indoor air quality? 102-80.25 Section 102-80.25... Environmental Management Indoor Air Quality § 102-80.25 What are Federal agencies' responsibilities concerning the management of indoor air quality? Federal agencies must assess indoor air quality of buildings as...

  6. A rapid and accurate method, ventilated chamber C-history method, of measuring the emission characteristic parameters of formaldehyde/VOCs in building materials.

    PubMed

    Huang, Shaodan; Xiong, Jianyin; Zhang, Yinping

    2013-10-15

    The indoor pollution caused by formaldehyde and volatile organic compounds (VOCs) emitted from building materials poses an adverse effect on people's health. It is necessary to understand and control the behaviors of the emission sources. Based on detailed mass transfer analysis on the emission process in a ventilated chamber, this paper proposes a novel method of measuring the three emission characteristic parameters, i.e., the initial emittable concentration, the diffusion coefficient and the partition coefficient. A linear correlation between the logarithm of dimensionless concentration and time is derived. The three parameters can then be calculated from the intercept and slope of the correlation. Compared with the closed chamber C-history method, the test is performed under ventilated condition thus some commonly-used measurement instruments (e.g., GC/MS, HPLC) can be applied. While compared with other methods, the present method can rapidly and accurately measure the three parameters, with experimental time less than 12h and R(2) ranging from 0.96 to 0.99 for the cases studied. Independent experiment was carried out to validate the developed method, and good agreement was observed between the simulations based on the determined parameters and experiments. The present method should prove useful for quick characterization of formaldehyde/VOC emissions from indoor materials. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. PHOTOCHEMICAL REACTIONS AMONG FORMALDEHYDE, CHLORINE, AND NITROGEN DIOXIDE IN AIR

    EPA Science Inventory

    Photochemical reactions among chlorine, nitrogen dioxide, and formaldehyde were studied, using parts-per-million concentrations in 1 atm of air. The reactant mixtures were irradiated by ultraviolet fluorescent lamps and simultaneously analyzed by the Fourier transform infrared te...

  8. 24 CFR 3280.406 - Air chamber test method for certification and qualification of formaldehyde emission levels.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... particleboard is produced or surface-finished, whichever is later, the panels must be dead-stacked or air-tight... with the Standard Test Method for Determining Formaldehyde Levels from Wood Products Under Defined Test...

  9. School policies and practices that improve indoor air quality.

    PubMed

    Everett Jones, Sherry; Smith, Alisa M; Wheeler, Lani S; McManus, Tim

    2010-06-01

    To determine whether schools with a formal indoor air quality management program were more likely than schools without a formal program to have policies and practices that promote superior indoor air quality. This study analyzed school-level data from the 2006 School Health Policies and Programs Study, a national study of school health programs and policies at the state, district, and school levels. Using chi-square analyses, the rates of policies and practices that promote indoor air quality were compared between schools with and schools without a formal indoor air quality program. The findings of this study show that 51.4% of schools had a formal indoor air quality management program, and that those schools were significantly more likely than were schools without a program to have policies and use strategies to promote superior indoor air quality. These findings suggest that schools with a formal indoor air quality program are more likely support policies and engage in practices that promote superior indoor air quality.

  10. Indoor-outdoor relationships of PM2.5 in four residential dwellings in winter in the Yangtze River Delta, China.

    PubMed

    Wang, Fang; Meng, Dan; Li, Xiuwei; Tan, Junjie

    2016-08-01

    Indoor and outdoor air PM2.5 concentrations in four residential dwellings characterized with different building envelope air tightness levels and HVAC-filter configurations in Yangtze River Delta (YRD) were measured during winter periods in 2014-2015. Steady-state models for indoor PM2.5 were developed for each of the tested dwellings, based on mass balance equation. The indoor air PM2.5 concentrations in the four tested apartments were significantly different. The lowest geometric mean values of indoor air PM2.5 concentrations, I/O ratios, and infiltration factor were observed in D3 with high air tightness and without HVAC-filter system (26.0 μg/m(3), 0.197, and 0.167, respectively), while the highest geometric mean values of indoor air PM2.5 concentrations, I/O ratios, and infiltration factor were observed in D1 (64.9 μg/m(3), 0.876, and 0.867, respectively). For apartment D1 with normal air tightness and without any HVAC-filter system, indoor air PM2.5 concentrations were significantly correlated with outdoor PM2.5 concentrations, especially in severe ambient pollution days, when closed windows can only play a very weak role on the decline of indoor PM2.5 concentrations. With the enhancement of building air tightness, the indoor air PM2.5 concentrations can be decreased effectively and don't vary as much in response to fluctuations in ambient concentrations. For buildings with normal air tightness, the use of HVAC-filter combinations will decrease the indoor PM2.5 significantly. However, for buildings with enhanced air tightness, the only use of fresh makeup air supply system with filter may increase the indoor PM2.5 concentrations. The improvement of filter efficiency for both fresh makeup air and indoor recirculated air are very important. However, purifiers for indoor recirculated air were highly recommended for all buildings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Measurement of formaldehyde concentrations in a subatmospheric steam-formaldehyde autoclave.

    PubMed Central

    Marcos, D; Wiseman, D

    1979-01-01

    A method has been developed for measuring formaldehyde concentrations in a subatmospheric steam-formaldehyde autoclave. Data obtained using this method indicate that the concentration of formaldehyde in the chamber atmosphere is not homogeneous and that it decreases rapidly with time. The penetration of formaldehyde vapour into narrow tubes has also been investigated and was shown to be dependent on the length-to-bore ratio of the tubes. The formaldehyde concentration within the tubes could be increased by using a lower vacuum in the air removal stage at the beginning of the cycle. PMID:572833

  12. Formaldehyde Concentration Dynamics of the International Space Station Cabin Atmosphere

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    2005-01-01

    Formaldehyde presents a significant challenge to maintaining cabin air quality on board crewed spacecraft. Generation sources include offgassing from a variety of non-metallic materials as well as human metabolism. Because generation sources are pervasive and human health can be affected by continual exposure to low concentrations, toxicology and air quality control engineering experts jointly identified formaldehyde as a key compound to be monitored as part the International Space Station's (ISS) environmental health monitoring and maintenance program. Data acquired from in-flight air quality monitoring methods are the basis for assessing the cabin environment's suitability for long-term habitation and monitoring the performance of passive and active controls that are in place to minimize crew exposure. Formaldehyde concentration trends and dynamics served in the ISS cabin atmosphere are reviewed implications to present and future flight operations discussed.

  13. Mobile phones as monitors of personal exposure to air pollution: Is this the future?

    PubMed

    Nyarku, Mawutorli; Mazaheri, Mandana; Jayaratne, Rohan; Dunbabin, Matthew; Rahman, Md Mahmudur; Uhde, Erik; Morawska, Lidia

    2018-01-01

    Mobile phones have a large spectrum of applications, aiding in risk prevention and improving health and wellbeing of their owners. So far, however, they have not been used for direct assessment of personal exposure to air pollution. In this study, we comprehensively evaluated the first, and the only available, mobile phone-BROAD Life-equipped with air pollution sensors (PM2.5 and VOC), to answer the question whether this technology is a viable option in the quest of reducing the burden of disease to air pollution. We tested its performance, applicability and suitability for the purpose by subjecting it to varied concentrations of different types of aerosol particles (cigarette smoke, petrol exhaust and concrete dust) and formaldehyde under controlled laboratory conditions, as well as to ambient particles during field measurements. Six reference instruments were used in the study: AEROTRAK Optical Particle Counter (OPC model number 9306), DustTrak, Aerodynamic Particle Counter (APS), Scanning Mobility Particle Sizer (SMPS), Tapered Element Oscillating Microbalance (TEOM) and Formaldehyde Analyser. Overall, we found that the phone's response was linear at higher particle number concentrations in the chamber, above 5 and 10 μg m-3, for combustion and concrete dust particles, respectively, and for higher formaldehyde concentrations, making it potentially suitable for applications in polluted environments. At lower ambient concentrations of particles around 10 ug m-3 and 20 μg m-3 for PM2.5 and PM10, respectively, the phone's response was below its noise level, suggesting that it is not suitable for ambient monitoring under relatively clean urban conditions. This mobile phone has a number of limitations that may hinder its use in personal exposure and for continuous monitoring. Despite these limitations, it may be used for comparative assessments, for example when comparing outcomes of intervention measures or local impacts of air pollution sources. It should be kept in mind, however, that a mobile phone measuring air quality alone cannot as such 'reduce the burden of disease to air pollution, as knowing ambient concentrations is only one of the building block in this quest. As long as individuals cannot avoid exposure e.g. in urban areas, knowing concentrations is not sufficient to reduce potential adverse effects. Yet, there are many situations and microenvironments, which individuals could avoid knowing the concentrations and also being aware of the risk caused by exposure to them. This includes for example to proximity to vehicle emissions, either for social purposes (e.g. street cafes) or exercising (e.g. walking or jogging along busy roads)or indoor environments affected by combustion emissions (smoking, candle burning, open fire).

  14. Mobile phones as monitors of personal exposure to air pollution: Is this the future?

    PubMed Central

    Nyarku, Mawutorli; Mazaheri, Mandana; Jayaratne, Rohan; Dunbabin, Matthew; Rahman, Md Mahmudur; Uhde, Erik

    2018-01-01

    Mobile phones have a large spectrum of applications, aiding in risk prevention and improving health and wellbeing of their owners. So far, however, they have not been used for direct assessment of personal exposure to air pollution. In this study, we comprehensively evaluated the first, and the only available, mobile phone—BROAD Life—equipped with air pollution sensors (PM2.5 and VOC), to answer the question whether this technology is a viable option in the quest of reducing the burden of disease to air pollution. We tested its performance, applicability and suitability for the purpose by subjecting it to varied concentrations of different types of aerosol particles (cigarette smoke, petrol exhaust and concrete dust) and formaldehyde under controlled laboratory conditions, as well as to ambient particles during field measurements. Six reference instruments were used in the study: AEROTRAK Optical Particle Counter (OPC model number 9306), DustTrak, Aerodynamic Particle Counter (APS), Scanning Mobility Particle Sizer (SMPS), Tapered Element Oscillating Microbalance (TEOM) and Formaldehyde Analyser. Overall, we found that the phone’s response was linear at higher particle number concentrations in the chamber, above 5 and 10 μg m-3, for combustion and concrete dust particles, respectively, and for higher formaldehyde concentrations, making it potentially suitable for applications in polluted environments. At lower ambient concentrations of particles around 10 ug m-3 and 20 μg m-3 for PM2.5 and PM10, respectively, the phone’s response was below its noise level, suggesting that it is not suitable for ambient monitoring under relatively clean urban conditions. This mobile phone has a number of limitations that may hinder its use in personal exposure and for continuous monitoring. Despite these limitations, it may be used for comparative assessments, for example when comparing outcomes of intervention measures or local impacts of air pollution sources. It should be kept in mind, however, that a mobile phone measuring air quality alone cannot as such 'reduce the burden of disease to air pollution, as knowing ambient concentrations is only one of the building block in this quest. As long as individuals cannot avoid exposure e.g. in urban areas, knowing concentrations is not sufficient to reduce potential adverse effects. Yet, there are many situations and microenvironments, which individuals could avoid knowing the concentrations and also being aware of the risk caused by exposure to them. This includes for example to proximity to vehicle emissions, either for social purposes (e.g. street cafes) or exercising (e.g. walking or jogging along busy roads)or indoor environments affected by combustion emissions (smoking, candle burning, open fire). PMID:29474387

  15. Air Quality and Indoor Environmental Exposures: Clinical Impacts

    EPA Science Inventory

    Indoor air quality (IAQ) is a term which refers to the air quality within and around buildings and homes as it relates to the health and comfort of the occupants. Many ambient (outdoor) air pollutants readily permeate indoor spaces. Because indoor air can be considerably more pol...

  16. Emerging developments in the standardized chemical characterization of indoor air quality.

    PubMed

    Nehr, Sascha; Hösen, Elisabeth; Tanabe, Shin-Ichi

    2017-01-01

    Despite the fact that the special characteristics of indoor air pollution make closed environments quite different from outdoor environments, the conceptual ideas for assessing air quality indoors and outdoors are similar. Therefore, the elaboration of International Standards for air quality characterization in view of controlling indoor air quality should resort to this common basis. In this short review we describe the possibilities of standardization of tools dedicated to indoor air quality characterization with a focus on the tools permitting to study the indoor air chemistry. The link between indoor exposure and health as well as the critical processes driving the indoor air quality are introduced. Available International Standards for the assessment of indoor air quality are depicted. The standards comprise requirements for the sampling on site, the analytical procedures, and the determination of material emissions. To date, these standardized procedures assure that indoor air, settled dust and material samples are analyzed in a comparable manner. However, existing International Standards exclusively specify conventional, event-driven target-screening using discontinuous measurement methods for long-lived pollutants. Therefore, this review draws a parallel between physico-chemical processes in indoor and outdoor environments. The achievements in atmospheric sciences also improve our understanding of indoor environments. The community of atmospheric scientists can be both ideal and supporter for researchers in the area of indoor air quality characterization. This short review concludes with propositions for future standardization activities for the chemical characterization of indoor air quality. Future standardization efforts should focus on: (i) the elaboration of standardized measurement methods and measurement strategies for online monitoring of long-lived and short-lived pollutants, (ii) the assessment of the potential and the limitations of non-target screening, (iii) the paradigm shift from event-driven investigations to systematic approaches to characterize indoor environments, and (iv) the development of tools for policy implementation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Indoor airPLUS Videos, Podcasts, Webinars and Interviews

    EPA Pesticide Factsheets

    The Webinar presentations will help you discover how Indoor airPLUS homes are designed to improve indoor air quality and increase energy efficiency and learn about the key design and construction features included in Indoor airPLUS homes.

  18. CONTINUOUS FORMALDEHYDE MEASUREMENT SYSTEM BASED ON MODIFIED FOURIER TRANSFORM INFRARED SPECTROSCOPY

    EPA Science Inventory

    EPA is developing advanced open-path and cell-based optical techniques for time-resolved measurement of priority hazardous air pollutants such as formaldehyde (HCHO). Due to its high National Air Toxics Assessment risk factor, there is increasing interest in continuous measuremen...

  19. Indoor Secondary Pollutants from Household Product Emissions inthe Presence of Ozone: A Bench-Scale Chamber Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Destaillats, Hugo; Lunden, Melissa M.; Singer, Brett C.

    2005-10-01

    Ozone-driven chemistry is a major source of indoor secondary pollutants of health concern. This study investigates secondary air pollutants formed from reactions between constituents of household products and ozone. Gas-phase product emissions were introduced along with ozone at constant rates into a 198-L Teflon-lined reaction chamber. Gas-phase concentrations of reactive terpenoids and oxidation products were measured. Formaldehyde was a predominant oxidation byproduct for the three studied products, with yields under most conditions of 20-30% with respect to ozone consumed. Acetaldehyde, acetone, glycolaldehyde, formic acid and acetic acid were each also detected for two or three of the products. Immediately uponmore » mixing of reactants, a scanning mobility particle sizer detected particle nucleation events that were followed by a significant degree of ultrafine particle growth. The production of secondary gaseous pollutants and particles depended primarily on the ozone level and was influenced by other parameters such as the air-exchange rate. Hydroxyl radical concentrations in the range 0.04-200 x 10{sup 5} molecules cm{sup -3} were measured. OH concentrations were observed to vary strongly with residual ozone level in the chamber, which was in the range 1-25 ppb, as is consistent with expectations from a simplified kinetic model. In a separate test, we exposed the dry residue of two products to ozone in the chamber and observed the formation of gas-phase and particle-phase secondary oxidation products.« less

  20. Indoor secondary pollutants from household product emissions in the presence of ozone: A bench-scale chamber study.

    PubMed

    Destaillats, Hugo; Lunden, Melissa M; Singer, Brett C; Coleman, Beverly K; Hodgson, Alfred T; Weschler, Charles J; Nazaroff, William W

    2006-07-15

    Ozone-driven chemistry is a source of indoor secondary pollutants of potential health concern. This study investigates secondary air pollutants formed from reactions between constituents of household products and ozone. Gas-phase product emissions were introduced along with ozone at constant rates into a 198-L Teflon-lined reaction chamber. Gas-phase concentrations of reactive terpenoids and oxidation products were measured. Formaldehyde was a predominant oxidation byproduct for the three studied products, with yields for most conditions of 20-30% with respect to ozone consumed. Acetaldehyde, acetone, glycolaldehyde, formic acid, and acetic acid were each also detected for two or three of the products. Immediately upon mixing of reactants, a scanning mobility particle sizer detected particle nucleation events that were followed by a significant degree of secondary particle growth. The production of secondary gaseous pollutants and particles depended primarily on the ozone level and was influenced by other parameters such as the air-exchange rate. Hydroxyl radical concentrations in the range 0.04-200 x 10(5) molecules cm(-3) were determined by an indirect method. OH concentrations were observed to vary strongly with residual ozone level in the chamber, which was in the range 1-25 ppb, as is consistent with expectations from a simplified kinetic model. In a separate chamber study, we exposed the dry residue of two products to ozone and observed the formation of gas-phase and particle-phase secondary oxidation products.

  1. Parent's Guide to School Indoor Air Quality. Revised

    ERIC Educational Resources Information Center

    Healthy Schools Network, Inc., 2012

    2012-01-01

    Air pollution is air pollution, indoors or out. Good indoor air quality (IAQ) contributes to a favorable learning environment for students, protects health, and supports the productivity of school personnel. In schools in poor repair, leaky roofs and crumbling walls have caused additional indoor air quality problems, including contamination with…

  2. Exposure to formaldehyde in health care: an evaluation of the white blood count differential.

    PubMed

    Sancini, Angela; Rosati, Maria Valeria; De Sio, Simone; Casale, Teodorico; Caciari, Tiziana; Samperi, Ilaria; Sacco, Carmina; Fortunato, Bruna Rita; Pimpinella, Benedetta; Andreozzi, Giorgia; Tomei, Gianfranco; Tomei, Francesco

    2014-01-01

    The aim of our study is to estimate if the occupational exposure to formaldehyde can cause alterations of leukocytes plasma values in health care workers employed in a big hospital compared to a control group. We studied employees in operating rooms and laboratories of Pathological Anatomy, Molecular Biology, Molecular Neurobiology, Parasitology and Experimental Oncology (exposed to formaldehyde) and employees of the Department of Internal Medicine (not exposed). The sample studied was composed of 86 workers exposed to formaldehyde and 86 workers not exposed. All subjects underwent a clinical-anamnaestic examination and for all subjects were measured the following values: total white blood cells, lymphocytes, monocytes and granulocytes (eosinophils, basophils, neutrophils). Statistical analysis of data was based on calculation of the mean, standard deviation and the distribution into classes according to the nature of each variable. Differences were considered significant when p was < 0.05. The mean and the distribution of values of the white blood cells, lymphocytes, monocytes and eosinophils were significantly higher in male subjects exposed to formaldehyde compared to not-exposed. Not significant differences were found in female subjects exposed compared to not exposed. The results underline the importance of a careful risk assessment of workers exposed to formaldehyde and the use of appropriate preventive measures. The health care trained and informed about the risks he is exposed to should observe good standards of behavior and, where it is not possible to use alternative materials, the indoor concentrations of formaldehyde should never exceed occupational limit values.

  3. Reducing indoor residential exposures to outdoor pollutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, Max H.; Matson, Nance E.

    2003-07-01

    The basic strategy for providing indoor air quality in residences is to dilute indoor sources with outdoor air. This strategy assumes that the outdoor air does not have pollutants at harmful levels or that the outdoor air is, at least, less polluted than the indoor air. When this is not the case, different strategies need to be employed to ensure adequate air quality in the indoor environment. These strategies include ventilation systems, filtration and other measures. These strategies can be used for several types of outdoor pollution, including smog, particulates and toxic air pollutants. This report reviews the impacts thatmore » typical outdoor air pollutants can have on the indoor environment and provides design and operational guidance for mitigating them. Poor quality air cannot be used for diluting indoor contaminants, but more generally it can become an indoor contaminant itself. This paper discusses strategies that use the building as protection against potentially hazardous outdoor pollutants, including widespread pollutants, accidental events, and potential attacks.« less

  4. Indoor Air Quality in Schools: Understanding the Problem and Finding the Solution.

    ERIC Educational Resources Information Center

    Bacci, Geoff

    2002-01-01

    Describes issues and solutions involving indoor air quality in school. Includes indoor air quality action plans, the role of the environmental consultant, and resources available to help school districts develop an indoor air quality action plan. (PKP)

  5. Contribution of indoor and outdoor nitrogen dioxide to indoor air quality of wayside shops.

    PubMed

    Shuai, Jianfei; Yang, Wonho; Ahn, Hogi; Kim, Sunshin; Lee, Seokyong; Yoon, Sung-Uk

    2013-06-01

    Indoor nitrogen dioxide (NO₂) concentration is an important factor for personal exposure despite the wide distribution of its sources. Exposure to NO₂ may produce adverse health effects. The aims of this study were to characterize the indoor air quality of wayside shops using multiple NO₂ measurements, and to estimate the contribution of outdoor NO₂ sources such as vehicle emission to indoor air quality. Daily indoor and outdoor NO₂ concentrations were measured for 21 consecutive days in wayside shops (5 convenience stores, 5 coffee shops, and 5 restaurants). Contributions of outdoor NO₂ sources to indoor air quality were calculated with penetration factors and source strength factors by indoor mass balance model in winter and summer, respectively. Most wayside shops had significant differences in indoor and outdoor NO₂ concentrations both in winter and in summer. Indoor NO₂ concentrations in restaurants were twice more than those in convenience stores and coffee shops in winter. While outdoor NO₂ contributions in indoor convenience stores and coffee shops were dominant, indoor NO₂ contributions were dominant in restaurants. These could be explained that indoor NO₂ sources such as gas range and smoking mainly affect indoor concentrations comparing to outdoor sources such as vehicle emission. The indoor mass balance model by multiple measurements suggests that quantitative contribution of outdoor air on indoor air quality might be estimated without measurements of ventilation, indoor generation and decay rate.

  6. Fundamentals of Indoor Air Quality in Buildings

    EPA Pesticide Factsheets

    This module provides the fundamentals to understanding indoor air quality. It provides a rudimentary framework for understanding how indoor and outdoor sources of pollution affect the indoor air quality of buildings.

  7. A Breath of Fresh Air: Addressing Indoor Air Quality

    ERIC Educational Resources Information Center

    Palliser, Janna

    2011-01-01

    Indoor air pollution refers to "chemical, biological, and physical contamination of indoor air," which may result in adverse health effects (OECD 2003). The causes, sources, and types of indoor air pollutants will be addressed in this article, as well as health effects and how to reduce exposure. Learning more about potential pollutants in home…

  8. Immediate impact of smoke-free laws on indoor air quality.

    PubMed

    Lee, Kiyoung; Hahn, Ellen J; Riker, Carol; Head, Sara; Seithers, Peggy

    2007-09-01

    Smoke-free laws significantly impact indoor air quality. However, the temporal effects of these laws on indoor air pollution have not been determined. This paper assesses the temporal impact of one smoke-free law on indoor air quality. This quasi-experimental study compared the indoor air quality of nine hospitality venues and one bingo hall in Georgetown, Kentucky, before and after implementation of a 100% smoke-free workplace law. We made real-time measurements of particulate matter with 2.5 microm aerodynamic diameter or smaller (PM2.5). Among the nine Georgetown hospitality venues, the average indoor PM2.5 concentration was 84 microg/m3 before the law took effect. The average indoor PM2.5 concentrations in nine compliant venues significantly decreased to 18 microg/m3 one week after the law took effect. Three venues having 82 microg/m3 before the law had significantly lower levels from the first day the law was implemented, and the low level was maintained. Compliance with the law is critical to achieving clean indoor air. Indoor air pollution in the bingo hall was not reduced until the establishment decided to comply with the law. The smoke-free law showed immediate impact on indoor air quality.

  9. High-Collection-Efficiency Fluorescence Detection Cell

    NASA Technical Reports Server (NTRS)

    Hanisco, Thomas; Cazorla, Maria; Swanson, Andrew

    2013-01-01

    A new fluorescence cell has been developed for the laser induced fluorescence (LIF) detection of formaldehyde. The cell is used to sample a flow of air that contains trace concentrations of formaldehyde. The cell provides a hermetically sealed volume in which a flow of air containing formaldehyde can be illuminated by a laser. The cell includes the optics for transmitting the laser beam that is used to excite the formaldehyde and for collecting the resulting fluorescence. The novelty of the cell is its small size and simple design that provides a more robust and cheaper alternative to the state of the art. Despite its simplicity, the cell provides the same sensitivity to detection as larger, more complicated cells.

  10. CHARACTERIZATION AND REDUCTION OF FORMALDEHYDE EMISSIONS FROM A LOW-VOC LATEX PAINT

    EPA Science Inventory

    The paper discusses the measurment and analysis of the patterns of formaldehyde emission from a low volatile organic compound (VOC) latex paint applied to gypsum board, using small environmental chamber tests. The formaldehyde emissions resulted in sharp increase of chamber air...

  11. Managing Formaldehyde indoor pollution in anatomy pathology departments.

    PubMed

    d'Ettorre, Gabriele; Criscuolo, Mario; Mazzotta, Mauro

    2017-01-01

    Nearly eleven years have passed since the International Agency for Research on Cancer classified Formaldehyde (FA) as a known human carcinogen (group 1), yet the safety of anatomy pathology workers who are currently exposed to FA is still a matter of concern. The purpose of this study was to evaluate the literature to discover which topics have been focused on and what the latest developments are in managing FA indoor pollution in anatomy pathology departments. which topics have been focused on and what the latest developments in managing FA indoor pollution in anatomy pathology departments. For the purpose of this review, we searched for publications in PubMed and Web of Science using selected keywords. The articles were reviewed and categorized into one or more of the following three categories based on subject matter: exposure levels exposure controls and alternatives. Our search resulted in a total of 31 publications that matched our inclusion criteria. The topics discussed, in order of frequency (from highest to lowest), were: "exposure controls", "exposure levels" and "alternatives". The most frequently suggested intervention was to improve local exhaust ventilation systems to minimize FA levels in gross anatomy laboratories. We found a lack of evidence-based improvement interventions that aimed to control exposure to FA. According to this finding, and pending a valid chemical substitute for FA, we suggest the need for more in-depth studies targeting measures to minimize exposures to FA in pathology departments.

  12. Enhanced effect of water vapor on complete oxidation of formaldehyde in air with ozone over MnOx catalysts at room temperature.

    PubMed

    Zhao, De-Zhi; Shi, Chuan; Li, Xiao-Song; Zhu, Ai-Min; Jang, Ben W-L

    2012-11-15

    At room temperature, the enhanced effect of water vapor on ozone catalytic oxidation (OZCO) of formaldehyde to CO2 over MnOx catalysts and the reaction stability was reported. In a dry air stream, only below 20% of formaldehyde could be oxidized into CO2 by O3. In humid air streams (RH≥55%), ∼100% of formaldehyde were oxidized into CO2 by O3 and the reaction stability was significantly enhanced. Meanwhile, in situ Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectra of OZCO of HCHO demonstrate that the amount of both monodentate and bidentate carbonate species on MnOx, in the dry stream, increased gradually with time on stream (TOS). However, in the humid stream, almost no accumulation of carbonate species on the catalysts was observed. To clarify the enhanced mechanism, formaldehyde surface reactions and CO2 adsorption/desorption on the fresh, O3 and O3+H2O treated MnOx catalysts were examined comparatively. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Enhancing indoor air quality –The air filter advantage

    PubMed Central

    Vijayan, Vannan Kandi; Paramesh, Haralappa; Salvi, Sundeep Santosh; Dalal, Alpa Anil Kumar

    2015-01-01

    Air pollution has become the world's single biggest environmental health risk, linked to around 7 million deaths in 2012 according to a recent World Health Organisation (WHO) report. The new data further reveals a stronger link between, indoor and outdoor air pollution exposure and cardiovascular diseases, such as strokes and ischemic heart disease, as well as between air pollution and cancer. The role of air pollution in the development of respiratory diseases, including acute respiratory infections and chronic obstructive pulmonary diseases, is well known. While both indoor and outdoor pollution affect health, recent statistics on the impact of household indoor pollutants (HAP) is alarming. The WHO factsheet on HAP and health states that 3.8 million premature deaths annually - including stroke, ischemic heart disease, chronic obstructive pulmonary disease (COPD) and lung cancer are attributed to exposure to household air pollution. Use of air cleaners and filters are one of the suggested strategies to improve indoor air quality. This review discusses the impact of air pollutants with special focus on indoor air pollutants and the benefits of air filters in improving indoor air quality. PMID:26628762

  14. Enhancing indoor air quality -The air filter advantage.

    PubMed

    Vijayan, Vannan Kandi; Paramesh, Haralappa; Salvi, Sundeep Santosh; Dalal, Alpa Anil Kumar

    2015-01-01

    Air pollution has become the world's single biggest environmental health risk, linked to around 7 million deaths in 2012 according to a recent World Health Organisation (WHO) report. The new data further reveals a stronger link between, indoor and outdoor air pollution exposure and cardiovascular diseases, such as strokes and ischemic heart disease, as well as between air pollution and cancer. The role of air pollution in the development of respiratory diseases, including acute respiratory infections and chronic obstructive pulmonary diseases, is well known. While both indoor and outdoor pollution affect health, recent statistics on the impact of household indoor pollutants (HAP) is alarming. The WHO factsheet on HAP and health states that 3.8 million premature deaths annually - including stroke, ischemic heart disease, chronic obstructive pulmonary disease (COPD) and lung cancer are attributed to exposure to household air pollution. Use of air cleaners and filters are one of the suggested strategies to improve indoor air quality. This review discusses the impact of air pollutants with special focus on indoor air pollutants and the benefits of air filters in improving indoor air quality.

  15. Sensitivity of Ambient Atmospheric Formaldehyde and Ozone to Precursor Species and Source Types Across the United States

    EPA Science Inventory

    Formaldehyde (HCHO) is an important air pollutant from both an atmospheric chemistry and human health standpoint. This study uses an instrumented photochemical Air Quality Model, CMAQ-DDM, to identify the sensitivity of HCHO concentrations across the United States (U.S.) to major...

  16. Psychosocial dimensions of solving an indoor air problem.

    PubMed

    Lahtinen, Marjaana; Huuhtanen, Pekka; Kähkönen, Erkki; Reijula, Kari

    2002-03-01

    This investigation focuses on the psychological and social dimensions of managing and solving indoor air problems. The data were collected in nine workplaces by interviews (n = 85) and questionnaires (n = 375). Indoor air problems in office environments have traditionally utilized industrial hygiene or technical expertise. However, indoor air problems at workplaces are often more complex issues to solve. Technical questions are inter-related with the dynamics of the work community, and the cooperation and interaction skills of the parties involved in the solving process are also put to the test. In the present study, the interviewees were very critical of the process of solving the indoor air problem. The responsibility for coordinating the problem-managing process was generally considered vague, as were the roles and functions of the various parties. Communication problems occurred and rumors about the indoor air problem circulated widely. Conflicts were common, complicating the process in several ways. The research focused on examining different ways of managing and resolving an indoor air problem. In addition, reference material on the causal factors of the indoor air problem was also acquired. The study supported the hypothesis that psychosocial factors play a significant role in indoor air problems.

  17. Indoor Environment in Residential Prefabricated Buildings

    NASA Astrophysics Data System (ADS)

    Kraus, Michal; Juhásová Šenitková, Ingrid

    2017-10-01

    The contribution presents results of the experimental measurement of indoor air quality in residential prefabricated buildings. People spend about 90% of their life in the indoor environment of buildings. Hygrothermal parameters and indoor air quality are the essential component that define the quality of the indoor environment. The results of case study characterize the quality of the indoor environment of the ordinary occupants in housing unit of residential prefabricated building. A current problem of revitalized prefabricated buildings is inadequate air exchange and related thereto to poor indoor air quality. The experimental measurements were carried out just before and at the beginning of the heating season (from 1st October to 30th November 2016). Heating season was launched in the middle of experimental measurement. The wireless indoor sensor Elgato Eve Room was used for measurements. The obtained values of indoor air temperature [°C], relative humidity [%] and indoor air quality [ppm] are describe and analysis in this study. The results of the study indicate that the values of temperature and indoor air quality meet optimal levels during the experiment with nuances. The mean air temperature in the indoor environment is 22.43 °C. The temperature of the indoor environment is held at the optimum level (18-24 °C) for 94.50% time of the experimental measurements. In addition, the indoor air quality in the context of the content of harmful volatile organic compounds (VOCs) has been excellent for almost 91% time of the total experiment. However, the values of relative humidity were less than the optimum value nearly 40% of the total observed time. The mean 10-minutes values of relative humidity during the heating season is about 10% lower than the mean 10-minutes relative humidity before the heating season.

  18. Exposure and health impact evaluation based on simultaneous measurement of indoor and ambient PM2.5 in Haidian, Beijing.

    PubMed

    Qi, Meng; Zhu, Xi; Du, Wei; Chen, Yilin; Chen, Yuanchen; Huang, Tianbo; Pan, Xuelian; Zhong, Qirui; Sun, Xu; Zeng, Eddy Y; Xing, Baoshan; Tao, Shu

    2017-01-01

    Because people spend most of their time indoors, the characterization of indoor air quality is important for exposure assessment. Unfortunately, indoor air data are scarce, leading to a major data gap in risk assessment. In this study, PM 2.5 concentrations in both indoor and outdoor air were simultaneously measured using on-line particulate counters in 13 households in Haidian, Beijing for both heating and non-heating seasons. A bimodal distribution of PM 2.5 concentrations suggests rapid transitions between polluted and non-polluted situations. The PM 2.5 concentrations in indoor and outdoor air varied synchronously, with the indoor variation lagging. The lag time in the heating season was longer than that in the non-heating season. The particle sizes in indoor air were smaller than those in ambient air in the heating season and vice versa in the non-heating season. PM 2.5 concentrations in indoor air were generally lower than those in ambient air except when ambient concentrations dropped sharply to very low levels or there were internal emissions from cooking or other activities. The effectiveness of an air cleaner to reduce indoor PM 2.5 concentrations was demonstrated. Non-linear regression models were developed to predict indoor air PM 2.5 concentrations based on ambient data with lag time incorporated. The models were applied to estimate the overall population exposure to PM 2.5 and the health consequences in Haidian. The health impacts would be significantly overestimated without the indoor exposure being taken into consideration, and this bias would increase as the ambient air quality improved in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. CHARACTERIZATION AND REDUCTION OF FORMALDEHYDE EMISSIONS FROM A LOW-VOC LATEX PAINT

    EPA Science Inventory

    The patterns of formaldehyde emission from a low volatile organic compound (VOC) latex paint applied to gypsum board were measured and analyzed by small environmental chamber tests. It was found that the formaldehyde emissions resulted in sharp increase of chamber air formaldehy...

  20. Factors controlling volatile organic compounds in dwellings in Melbourne, Australia.

    PubMed

    Cheng, M; Galbally, I E; Molloy, S B; Selleck, P W; Keywood, M D; Lawson, S J; Powell, J C; Gillett, R W; Dunne, E

    2016-04-01

    This study characterized indoor volatile organic compounds (VOCs) and investigated the effects of the dwelling characteristics, building materials, occupant activities, and environmental conditions on indoor VOC concentrations in 40 dwellings located in Melbourne, Australia, in 2008 and 2009. A total of 97 VOCs were identified. Nine VOCs, n-butane, 2-methylbutane, toluene, formaldehyde, acetaldehyde, d-limonene, ethanol, 2-propanol, and acetic acid, accounted for 68% of the sum of all VOCs. The median indoor concentrations of all VOCs were greater than those measured outdoors. The occupant density was positively associated with indoor VOC concentrations via occupant activities, including respiration and combustion. Terpenes were associated with the use of household cleaning and laundry products. A petroleum-like indoor VOC signature of alkanes and aromatics was associated with the proximity of major roads. The indoor VOC concentrations were negatively correlated (P < 0.05) with ventilation. Levels of VOCs in these Australian dwellings were lower than those from previous studies in North America and Europe, probably due to a combination of an ongoing temporal decrease in indoor VOC concentrations and the leakier nature of Australian dwellings. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Indoor Air vs. Indoor Construction: A New Beginning.

    ERIC Educational Resources Information Center

    Manicone, Santo

    2000-01-01

    Identifies the steps that can be taken to lessen the impact of indoor air pollution created from indoor renovation projects, including project management tips to help contractors avoid creating unnecessary air pollution. Final comments address air pollution control when installing new furniture, smoking restrictions, occupant relations, and the…

  2. Development and analysis of air quality modeling simulations for hazardous air pollutants

    NASA Astrophysics Data System (ADS)

    Luecken, D. J.; Hutzell, W. T.; Gipson, G. L.

    The concentrations of five hazardous air pollutants were simulated using the community multi-scale air quality (CMAQ) modeling system. Annual simulations were performed over the continental United States for the entire year of 2001 to support human exposure estimates. Results are shown for formaldehyde, acetaldehyde, benzene, 1,3-butadiene and acrolein. Photochemical production in the atmosphere is predicted to dominate ambient formaldehyde and acetaldehyde concentrations, and to account for a significant fraction of ambient acrolein concentrations. Spatial and temporal variations are large throughout the domain over the year. Predicted concentrations are compared with observations for formaldehyde, acetaldehyde, benzene and 1,3-butadiene. Although the modeling results indicate an overall slight tendency towards underprediction, they reproduce episodic and seasonal behavior of pollutant concentrations at many monitors with good skill.

  3. Formaldehyde Surface Distributions and Variability in the Mexico City Basin

    NASA Astrophysics Data System (ADS)

    Junkermann, W.; Mohr, C.; Steinbrecher, R.; Ruiz Suarez, L.

    2007-05-01

    Formaldehyde ambient air mole fractions were measured throughout the dry season in March at three different locations in the Mexico City basin. The continuously running instruments were operated at Tenago del Aire, a site located in the Chalco valley in the southern venting area of the basin, at the Intituto Mexicano del Petroleo (IMP) in the northern part of the city and about 30 km north of the city at the campus of the Universidad Tecnològica de Tecamac (UTTEC). The technique used is the Hantzsch technology with a time resolution of 2 minutes and a detection limit of 100 ppt. Daily maxima peaked at 35 ppb formaldehyde in the city and about 15 to 20 ppb at the other sites. During night formaldehyde levels dropped to about 5 ppb or less. It is evident that the observed spatial and temporal variability in near surface formaldehyde distributions is strongly affected by local and regional advection processes.

  4. Effects of traffic-related outdoor air pollution on respiratory illness and mortality in children, taking into account indoor air pollution, in Indonesia.

    PubMed

    Kashima, Saori; Yorifuji, Takashi; Tsuda, Toshihide; Ibrahim, Juliani; Doi, Hiroyuki

    2010-03-01

    To evaluate the effects of outdoor air pollution, taking into account indoor air pollution, in Indonesia. The subjects were 15,242 children from 2002 to 2003 Indonesia Demographic and Health Survey. The odds ratios and their confidence intervals for adverse health effects were estimated. Proximity increased the prevalence of acute respiratory infection both in urban and rural areas after adjusting for indoor air pollution. In urban areas, the prevalence of acute upper respiratory infection increased by 1.012 (95% confidence intervals: 1.005 to 1.019) per 2 km proximity to a major road. Adjusted odds ratios tended to be higher in the high indoor air pollution group. Exposure to traffic-related outdoor air pollution would increase adverse health effects after adjusting for indoor air pollution. Furthermore, indoor air pollution could exacerbate the effects of outdoor air pollution.

  5. Indoor Air Quality in Schools: Clean Air Is Good Business.

    ERIC Educational Resources Information Center

    Guarneiri, Michele A.

    2003-01-01

    Describes the effect of poor indoor air quality (IAQ) on student health, the cost of safeguarding good IAQ, the cause of poor IAQ in schools, how to tell whether a school has an IAQ problem, and how the U.S. Environmental Protection Agency can help schools improve indoor air quality though the use of their free "Indoor Air Quality Tools for…

  6. Relative and contextual contribution of different sources to the composition and abundance of indoor air bacteria in residences.

    PubMed

    Miletto, Marzia; Lindow, Steven E

    2015-12-10

    The study of the microbial communities in the built environment is of critical importance as humans spend the majority of their time indoors. While the microorganisms in living spaces, especially those in the air, can impact health and well-being, little is known of their identity and the processes that determine their assembly. We investigated the source-sink relationships of airborne bacteria in 29 homes in the San Francisco Bay Area. Samples taken in the sites expected to be source habitats for indoor air microbes were analyzed by 16S rRNA-based pyrosequencing and quantitative PCR. The community composition was related to the characteristics of the household collected at the time of sampling, including the number of residents and pets, activity levels, frequency of cooking and vacuum cleaning, extent of natural ventilation, and abundance and type of vegetation surrounding the building. Indoor air harbored a diverse bacterial community dominated by Diaphorobacter sp., Propionibacterium sp., Sphingomonas sp., and Alicyclobacillus sp. Source-sink analysis suggested that outdoor air was the primary source of indoor air microbes in most homes. Bacterial phylogenetic diversity and relative abundance in indoor air did not differ statistically from that in outdoor air. Moreover, the abundance of bacteria in outdoor air was positively correlated with that in indoor air, as would be expected if outdoor air was the main contributor to the bacterial community in indoor bioaerosols. The number of residents, presence of pets, and local tap water also influenced the diversity and size of indoor air microbes. The bacterial load in air increased with the number of residents, activity, and frequency of natural ventilation, and the proportion of bacteria putatively derived from skin increased with the number of residents. Vacuum cleaning increased the signature of pet- and floor-derived bacteria in indoor air, while the frequency of natural ventilation decreased the relative abundance of tap water-derived microorganisms in air. Indoor air in residences harbors a diverse bacterial community originating from both outdoor and indoor sources and is strongly influenced by household characteristics.

  7. Assessment of indoor air problems at work with a questionnaire

    PubMed Central

    Reijula, K; Sundman-Digert, C

    2004-01-01

    Aims: To assess the extent of indoor air problems in office environments in Finland. Methods: Complaints and symptoms related to the indoor environment experienced by office workers were collected from 122 workplaces in 1996–99 by using the modified Indoor Air Questionnaire established by the Finnish Institute of Occupational Health. Altogether 11 154 employees took part in the survey. Results: The most common problems were dry air (35% of the respondents), stuffy air (34%), dust or dirt in the indoor environment (25%), and draught (22%). The most common work related symptoms were irritated, stuffy, or runny nose (20%), itching, burning, or irritation of the eyes (17%), and fatigue (16%). Women reported indoor air problems and work related symptoms more often than men. Allergic persons and smokers reported indoor air problems more often, and experienced work related symptoms more often than non-allergic persons and non-smokers. Conclusions: The complaints and work related symptoms associated with indoor air problems were common in office workers. The present questionnaire is a suitable tool for the occupational health personnel in investigating indoor air problems and the data of the survey can be used as a reference when the results of a survey at work are being analysed. PMID:14691270

  8. Volatile organic compounds concentrations during the construction process in newly-built timber-frame houses: source identification and emission kinetics.

    PubMed

    Plaisance, H; Vignau-Laulhere, J; Mocho, P; Sauvat, N; Raulin, K; Desauziers, V

    2017-05-24

    Building and furniture materials are known to be major sources of volatile organic compounds (VOCs) indoors. During the construction process, an introduced material can have a more or less long-term impact on the indoor air quality according to the building characteristics. In this study, field measurements were carried out at six construction stages in three energy-efficient timber-frame houses. Data analysis focused on the ten most abundant compounds found among an initial list of fifteen target VOCs, namely formaldehyde, acetaldehyde, hexanal, toluene, m/p-xylenes, ethylbenzene, styrene, α-pinene, 3-carene and d-limonene. The chemical compositions and concentration variation patterns were recorded. The results showed a high pollution count, with m/p-xylenes and ethylbenzene concentrations ranging from 1900 to 5100 μg m -3 occurring at the time of the structural work (representing more than 88% of the sum of the target VOCs). Emission tests done on a large number of materials used in the construction revealed that this pollution is due to the emissions from the polyurethane adhesive mastic used as a sealing material. The emission kinetics of polyurethane adhesive mastic was assessed alone and also within a material assembly reconstituting a room wall. The results showed that the superposition of materials led to a slowing down of the VOC emission process from polyurethane adhesive mastic, which explains the concentration decays recorded in houses during the construction process. At the final construction stage, the concentration levels were low for all compounds (the sums of the target VOCs were between 18 and 32 μg m -3 ), with the aldehydes (formaldehyde, acetaldehyde and hexanal) now becoming the major fraction in the chemical composition in the last stages of construction (representing 50-70% of the sum of the target VOCs). This is in agreement with the fact that the sources of aldehydes are the most numerous among the materials and have rather slow emission kinetics.

  9. Effect of dry-cleaned clothes on tetrachloroethylene levels in indoor air, personal air, and breath for residents of several New Jersey homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, K.W.; Pellizzari, E.D.; Perritt, R.L.

    1991-10-01

    Several volatile organic compounds, including tetrachloroethylene, have been found to be nearly ubiquitous in residential indoor environments during previous TEAM studies. Eleven homes in New Jersey were monitored over three or five days to examine the effect of bringing freshly dry-cleaned clothes into the home on indoor air levels and personal exposures to tetrachloroethylene. Indoor air, personal air, and breath concentrations were measured over multiple 12-hrs periods before and after dry-cleaned clothes were introduced into nine of the homes. No dry-cleaned clothes were introduced into the two remaining homes. Outdoor air tetrachloroethylene concentrations were measured at six of the elevenmore » homes. Indoor/outdoor concentration ratios and source strengths were calculated at the six homes with outdoor measurements. Elevated indoor air levels and human exposures to tetrachloroethylene were measured at seven of the nine homes with dry-cleaned clothes. Indoor air concentrations reached 300 micrograms/m3 in one home and elevated indoor levels persisted for at least 48 hrs in all seven homes. Indoor/outdoor tetrachloroethylene concentration ratios exceeded 100 for the four homes with both dry-cleaned clothes and outdoor measurements. Maximum source strengths ranged from 16 to 69 mg/hr in these homes and did not directly correspond to the number of dry-cleaned garments brought into the home. Breath levels of tetrachloroethylene increased two to six-fold for participants living in seven homes with increased indoor air levels. Indoor air, personal air, and breath tetrachloroethylene concentrations were significantly related (0.05 level) to the number of garments introduced divided by the home volume.« less

  10. Modeling population exposures to outdoor sources of hazardous air pollutants.

    PubMed

    Ozkaynak, Halûk; Palma, Ted; Touma, Jawad S; Thurman, James

    2008-01-01

    Accurate assessment of human exposures is an important part of environmental health effects research. However, most air pollution epidemiology studies rely upon imperfect surrogates of personal exposures, such as information based on available central-site outdoor concentration monitoring or modeling data. In this paper, we examine the limitations of using outdoor concentration predictions instead of modeled personal exposures for over 30 gaseous and particulate hazardous air pollutants (HAPs) in the US. The analysis uses the results from an air quality dispersion model (the ASPEN or Assessment System for Population Exposure Nationwide model) and an inhalation exposure model (the HAPEM or Hazardous Air Pollutant Exposure Model, Version 5), applied by the US. Environmental protection Agency during the 1999 National Air Toxic Assessment (NATA) in the US. Our results show that the total predicted chronic exposure concentrations of outdoor HAPs from all sources are lower than the modeled ambient concentrations by about 20% on average for most gaseous HAPs and by about 60% on average for most particulate HAPs (mainly, due to the exclusion of indoor sources from our modeling analysis and lower infiltration of particles indoors). On the other hand, the HAPEM/ASPEN concentration ratio averages for onroad mobile source exposures were found to be greater than 1 (around 1.20) for most mobile-source related HAPs (e.g. 1, 3-butadiene, acetaldehyde, benzene, formaldehyde) reflecting the importance of near-roadway and commuting environments on personal exposures to HAPs. The distribution of the ratios of personal to ambient concentrations was found to be skewed for a number of the VOCs and reactive HAPs associated with major source emissions, indicating the importance of personal mobility factors. We conclude that the increase in personal exposures from the corresponding predicted ambient levels tends to occur near locations where there are either major emission sources of HAPs or when individuals are exposed to either on- or nonroad sources of HAPs during their daily activities. These findings underscore the importance of applying exposure-modeling methods, which incorporate information on time-activity, commuting, and exposure factors data, for the purposes of assigning exposures in air pollution health studies.

  11. Size and seasonal distributions of airborne bioaerosols in commuting trains

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Fen; Wang, Che-Hsu; Hsu, Kai-Lin

    2010-11-01

    Aerobiological studies in commuting trains in northern Taiwan were carried out from August, 2007 until July, 2008. Two six-stage (>7 μm, 4.7˜7 μm, 3.3˜4.7 μm, 2.1˜3.3 μm, 1.1˜2.1 μm, 0.65˜1.1 μm) cascade impactors of 400 orifices were used to collect viable bacteria and fungi, respectively. The levels of carbon monoxide (CO), carbon dioxide (CO 2), formaldehyde (HCHO), temperature, and relative humidity in the commuting trains were also recorded during the sampling period. Results show that bacterial concentrations ranged from 25 to 1530 CFU m -3, and averaged 417 CFU m -3. The fungal concentrations ranged from 45 to 1906 CFU m -3, and averaged 413 CFU m -3. Additionally, the highest fractions occurred in the fifth stage (1.1˜2.1 μm) for both bacteria and fungi. The respirable fractions, Rb and Rf, for bacteria and fungi were 62.8% and 81.4%, respectively, which are higher than those in other studies. Furthermore, the bacterial concentration reached its highest level in autumn, and its lowest level in winter. However, the fungal concentration was highest in spring and lowest in winter. Though the total bacterial or fungal concentration did not exceed the recommendation standard in Taiwan, the relatively high respirable fraction in commuting trains probably implies a higher adverse health risk for sensitive commuters. This study further conducted multiple regression analysis to determine the relationship of various stage fractions of airborne bacteria and fungi with indoor air pollutants (CO and HCHO) and environmental parameters (CO 2, temperature, and relative humidity). The correlation coefficients of multiple regression analysis for total bacteria and fungi concentrations with indoor air pollutants and environmental parameters were 0.707 ( p < 0.00376) and 0.612 ( p < 0.00471), respectively. There are currently no formally regulated laws for indoor air quality (IAQ) in Taiwan, and this preliminary study can provide references to the Taiwan government on IAQ management.

  12. Gypsum-wallboard formaldehyde-sorption model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silberstein, S.

    1989-11-01

    Gypsum wallboard was shown to absorb formaldehyde in a prototype house and in a measuring chamber, as reported previously by researchers at Oak Ridge National Laboratory (ORNL). Also as reported previously, formaldehyde concentrations attained equilibrium in two phases in response to a change in the air exchange rate or to the removal of the formaldehyde source. A rapid initial phase was followed by a slow phase lasting several days. A formaldehyde sorption model that accounts for the biphasic concentration pattern is presented here. Experiments for testing the predictability of the model are proposed.

  13. [Main indoor air pollutants and their health impacts].

    PubMed

    Xu, Zhen; Jin, Yinlong

    2003-05-01

    The quality of indoor air is a very important factor that may directly affect human health. There are many sources as well as a variety of indoor air pollutants. Therefore, the health impact is complicated, affecting different organs and systems of human being such as respiratory and immune system. The main indoor air pollutants are the combustion products from smoking, cooking and heating, the chemical pollutants from renovation materials and the biological contaminants. The kinds, sources and health impacts of these pollutants that affect the indoor air quality are reviewed in this paper.

  14. A review of semi-volatile organic compounds (SVOCs) in the indoor environment: occurrence in consumer products, indoor air and dust.

    PubMed

    Lucattini, Luisa; Poma, Giulia; Covaci, Adrian; de Boer, Jacob; Lamoree, Marja H; Leonards, Pim E G

    2018-06-01

    As many people spend a large part of their life indoors, the quality of the indoor environment is important. Data on contaminants such as flame retardants, pesticides and plasticizers are available for indoor air and dust but are scarce for consumer products such as computers, televisions, furniture, carpets, etc. This review presents information on semi-volatile organic compounds (SVOCs) in consumer products in an attempt to link the information available for chemicals in indoor air and dust with their indoor sources. A number of 256 papers were selected and divided among SVOCs found in consumer products (n = 57), indoor dust (n = 104) and air (n = 95). Concentrations of SVOCs in consumer products, indoor dust and air are reported (e.g. PFASs max: 13.9 μg/g in textiles, 5.8 μg/kg in building materials, 121 ng/g in house dust and 6.4 ng/m 3 in indoor air). Most of the studies show common aims, such as human exposure and risk assessment. The main micro-environments investigated (houses, offices and schools) reflect the relevance of indoor air quality. Most of the studies show a lack of data on concentrations of chemicals in consumer goods and often only the presence of chemicals is reported. At the moment this is the largest obstacle linking chemicals in products to chemicals detected in indoor air and dust. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. The use of modern technologies in carbon dioxide monitoring

    NASA Astrophysics Data System (ADS)

    Komínek, Petr; Weyr, Jan; Hirš, Jiří

    2017-12-01

    Indoor environment has huge influence on person's health and overall comfort. It is of great importance that we realize how essential indoor air quality is, considering we spend on average as much as 90% of our time indoors. There are many factors that affect indoor air quality: specifically, inside air temperature, relative humidity, and odors to name the most important factors. One of the key factors indicating indoor air quality is carbon dioxide (CO2) level. The CO2 levels, measured in prefab apartment buildings, indicates substantial indoor air quality issues. Therefore, a proper education of the occupants is of utmost importance. Also, great care should be directed towards technical and technological solutions that would ensure meeting the normative indoor environment criteria, especially indoor air CO2 levels. Thanks to the implementation of new emerging autonomous technologies, such as Internet of Things (IoT), monitoring in real-time is enhanced. An area where IoT plays a major role is in the monitoring of indoor environment. IoT technology (e.g. smart meters and sensors) provide awareness of information about the quality of indoor environment. There is a huge potential for influencing behaviour of the users. Through the web application, it is possible to educate people and ensure fresh air supply.

  16. Study on the Influence of Building Materials on Indoor Pollutants and Pollution Sources

    NASA Astrophysics Data System (ADS)

    Wang, Yao

    2018-01-01

    The paper summarizes the achievements and problems of indoor air quality research at home and abroad. The pollutants and pollution sources in the room are analyzed systematically. The types of building materials and pollutants are also discussed. The physical and chemical properties and health effects of main pollutants were analyzed and studied. According to the principle of mass balance, the basic mathematical model of indoor air quality is established. Considering the release rate of pollutants and indoor ventilation, a mathematical model for predicting the concentration of indoor air pollutants is derived. The model can be used to analyze and describe the variation of pollutant concentration in indoor air, and to predict and calculate the concentration of pollutants in indoor air at a certain time. The results show that the mathematical model established in this study can be used to analyze and predict the variation law of pollutant concentration in indoor air. The evaluation model can be used to evaluate the impact of indoor air quality and evaluation of current situation. Especially in the process of building and interior decoration, through pre-evaluation, it can provide reliable design parameters for selecting building materials and determining ventilation volume.

  17. Polluted air--outdoors and indoors.

    PubMed

    Myers, I; Maynard, R L

    2005-09-01

    Many air pollutants which are considered important in ambient (outdoor) air are also found, sometimes at higher levels, in indoor air. With demanding standards having been set for many of these pollutants, both in the workplace and ambient air, consideration of the problems posed by indoor pollution is gaining pace. Studies on exposure to pollutants found in the indoor domestic environment are increasing and are contributing to an already significant compilation of datasets. Improvement in monitoring techniques has helped this process. Documented reports of fatalities from carbon monoxide poisonings are still worrying. However, studies on health effects of non-fatal, long term, low dose, indoor exposure to carbon monoxide and other pollutants, are still inconclusive and too infrequently documented. Of particular concern are the levels of air pollutants found in the domestic indoor environment in developing countries, despite simple interventions such as vented stoves having shown their value. Exposure to biomass smoke is still a level that would be considered unacceptable on health grounds in developed countries. As in the occupational environment, steps need to be taken to control the risks from exposure to the harmful constituents of indoor air in the home. However, the difficulty regarding regulation of the domestic indoor environment is its inherent privacy. Monitoring levels of pollutants in the home and ensuring regulations are adhered to, would likely prove difficult, especially when individual behaviour patterns and activities have the greatest influence on pollutant levels in indoor air. To this end, the Department of Health is developing guidance on indoor air pollution to encourage the reduction of pollutant levels in indoor domestic air. The importance of the effects of domestic indoor air on health and its contribution to the health of the worker are increasingly appreciated. Occupational physicians, by training and interest, are well placed to extend their interests into the environmental field and to focus on this important area.

  18. [Schools, office buildings, leisure settings: diversity of indoor air quality issues. Global review on indoor air quality in these settings].

    PubMed

    Mandin, C; Derbez, M; Kirchner, S

    2012-07-01

    This review provides a global overview of indoor air quality issues in schools, office buildings and recreational settings. It presents the most recent scientific publications and the on-going work conducted in France in the frame of the indoor air quality Observatory. Monitoring campaigns on indoor air quality in schools have been carried out in the recent years in Europe. However, few studies have specifically addressed the role of exposure in these buildings on children's health. Indoor air quality in office buildings has been little studied so far. However, some specificities, such as emissions from electronic devices, frequent cleaning, impossibility to open windows in high-rise buildings, for example, should be examined and their role on the health and comfort studied. Finally, even if the time spent in recreational settings is short, the quality of indoor air should also be considered because of specific pollution. This is the case of indoor swimming pools (exposure to chlorination byproducts) and ice-rinks (exposure to exhaust from machines used to smooth the ice). Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  19. Behavioural change, indoor air pollution and child respiratory health in developing countries: a review.

    PubMed

    Barnes, Brendon R

    2014-04-25

    Indoor air pollution caused by the indoor burning of solid biomass fuels has been associated with Acute Respiratory Infections such as pneumonia amongst children of less than five years of age. Behavioural change interventions have been identified as a potential strategy to reduce child indoor air pollution exposure, yet very little is known about the impact of behavioural change interventions to reduce indoor air pollution. Even less is known about how behaviour change theory has been incorporated into indoor air pollution behaviour change interventions. A review of published studies spanning 1983-2013 suggests that behavioural change strategies have the potential to reduce indoor air pollution exposure by 20%-98% in laboratory settings and 31%-94% in field settings. However, the evidence is: (1) based on studies that are methodologically weak; and (2) have little or no underlying theory. The paper concludes with a call for more rigorous studies to evaluate the role of behavioural change strategies (with or without improved technologies) to reduce indoor air pollution exposure in developing countries as well as interventions that draw more strongly on existing behavioural change theory and practice.

  20. Ultrathin Bi2WO6 nanosheet decorated with Pt nanoparticles for efficient formaldehyde removal at room temperature

    NASA Astrophysics Data System (ADS)

    Sun, Dong; Le, Yao; Jiang, Chuanjia; Cheng, Bei

    2018-05-01

    Two-dimensional (2D) ultrathin bismuth tungstate (Bi2WO6) nanosheets (BWO-NS) with a thickness of approximately 4.0 nm were synthesized by a one-step hydrothermal method, and decorated with platinum (Pt) nanoparticles (NPs) via an impregnation/borohydride-reduction approach. The as-prepared ultrathin Pt-BWO-NS exhibited superior catalytic activity for removing gaseous formaldehyde (HCHO) at ambient temperature, in comparison with bulk counterpart with Bi2WO6 sheet thickness of tens of nanometers. The ultrathin structure endowed the Pt-BWO-NS sample with larger specific surface area, which can provide abundant surface active sites for HCHO adsorption and facilitate the homogeneous dispersion of Pt NPs. X-ray photoelectron spectroscopy and hydrogen temperature-programmed reduction analyses revealed the interaction between the Bi2WO6 support and Pt species, which is crucial for activating surface oxygen atoms to participate in the catalytic HCHO oxidation process. By conducting in situ diffuse reflectance infrared Fourier transform spectroscopy under different atmospheres, i.e., gaseous HCHO in nitrogen or oxygen (O2), the reaction mechanism and the role of O2 were elucidated, with dioxymethylene, formate and linearly adsorbed carbon monoxide identified as the main reaction intermediates. This study may provide new enlightenment on fabricating novel 2D nanomaterials for efficient indoor air purification and potentially other environmental applications.

  1. Monitoring firefighter exposure to air toxins at prescribed burns of forest and range biomass.

    Treesearch

    Timothy E. Reinhardt

    1991-01-01

    A variety of potent air toxins are in the smoke produced by burning forest and range biomass. Preliminary data on flrefighter exposures to carbon monoxide and formaldehyde at four prescribed burns of Western United States natural fuels are presented. Formaldehyde may be correlated to carbon monoxide emissions. The firefighters' exposures to these compounds...

  2. Modeling indoor air pollution of outdoor origin in homes of SAPALDIA subjects in Switzerland.

    PubMed

    Meier, Reto; Schindler, Christian; Eeftens, Marloes; Aguilera, Inmaculada; Ducret-Stich, Regina E; Ineichen, Alex; Davey, Mark; Phuleria, Harish C; Probst-Hensch, Nicole; Tsai, Ming-Yi; Künzli, Nino

    2015-09-01

    Given the shrinking spatial contrasts in outdoor air pollution in Switzerland and the trends toward tightly insulated buildings, the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) needs to understand to what extent outdoor air pollution remains a determinant for residential indoor exposure. The objectives of this paper are to identify determining factors for indoor air pollution concentrations of particulate matter (PM), ultrafine particles in the size range from 15 to 300nm, black smoke measured as light absorbance of PM (PMabsorbance) and nitrogen dioxide (NO2) and to develop predictive indoor models for SAPALDIA. Multivariable regression models were developed based on indoor and outdoor measurements among homes of selected SAPALDIA participants in three urban (Basel, Geneva, Lugano) and one rural region (Wald ZH) in Switzerland, various home characteristics and reported indoor sources such as cooking. Outdoor levels of air pollutants were important predictors for indoor air pollutants, except for the coarse particle fraction. The fractions of outdoor concentrations infiltrating indoors were between 30% and 66%, the highest one was observed for PMabsorbance. A modifying effect of open windows was found for NO2 and the ultrafine particle number concentration. Cooking was associated with increased particle and NO2 levels. This study shows that outdoor air pollution remains an important determinant of residential indoor air pollution in Switzerland. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source.

    PubMed

    Meadow, J F; Altrichter, A E; Kembel, S W; Kline, J; Mhuireach, G; Moriyama, M; Northcutt, D; O'Connor, T K; Womack, A M; Brown, G Z; Green, J L; Bohannan, B J M

    2014-02-01

    Architects and engineers are beginning to consider a new dimension of indoor air: the structure and composition of airborne microbial communities. A first step in this emerging field is to understand the forces that shape the diversity of bioaerosols across space and time within the built environment. In an effort to elucidate the relative influences of three likely drivers of indoor bioaerosol diversity - variation in outdoor bioaerosols, ventilation strategy, and occupancy load - we conducted an intensive temporal study of indoor airborne bacterial communities in a high-traffic university building with a hybrid HVAC (mechanically and naturally ventilated) system. Indoor air communities closely tracked outdoor air communities, but human-associated bacterial genera were more than twice as abundant in indoor air compared with outdoor air. Ventilation had a demonstrated effect on indoor airborne bacterial community composition; changes in outdoor air communities were detected inside following a time lag associated with differing ventilation strategies relevant to modern building design. Our results indicate that both occupancy patterns and ventilation strategies are important for understanding airborne microbial community dynamics in the built environment. © 2013 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  4. Improving the indoor air quality of respiratory type of medical facility by zeolite filtering.

    PubMed

    Shen, Jyun-Hong; Wang, Yeoung-Sheng; Lin, Jhan-Ping; Wu, Sheng-Hung; Horng, Jao-Jia

    2014-01-01

    This study investigated the indoor air quality (IAQ) conditions of carbon dioxide (CO2), carbon monoxide (CO), ozone (O3), formaldehyde (HCHO), total volatile organic compounds (TVOCs), and bio-aerosols (bacteria and fungi) in a respiratory type of medical facility in Chia-Yi County in southern Taiwan. Among those IAQ conditions, the concentrations of CO, O3, and HCHO exceeded the regulation values of the Taiwan Environmental Protection Administration (EPA) mostly in the morning. The concentrations of bacteria and fungi did not exceed the regulation values but still posed potential health and environment problems for workers, patients, and visitors. Therefore, self-made silver-coated zeolite (AgZ) was used as a filter material in air cleaners to remove bio-aerosols in the respiratory care ward (RCW), and the removals were still effective after 120 hr. The cumulative bio-aerosol removals for bacteria and fungi were 900 and 1,088 colony-forming units (CFU) g(-1) after 24 hr and were above 3,100 and 2,700 CFU g(-1) after 120 hr. From the research results, it is suggested that AgZ filtering could be used as a feasible engineering measure for hospitals to control their bacteria and fungi parameters in IAQ management. Hospitals should maintain their environmental management and monitoring programs and use different engineering measures to improve different IAQ parameters. This study investigated the IAQ conditions in the field at a hospital in Chia-Yi County in southern Taiwan. Although concentrations of most parameters were still within the regulation values, the concentrations of CO, O3, and HCHO were partially exceeded. We propose a method using an air cleaner with silver-coated zeolite (AgZ) as a possible engineering measure, and there were effective reductions of bacteria and fungi to lower levels with antibacterial effects after 120 hr. Furthermore, this study implies that hospitals should continuously maintain environmental monitoring programs and adopt optimal engineering measures for different needs.

  5. Plants for Sustainable Improvement of Indoor Air Quality.

    PubMed

    Brilli, Federico; Fares, Silvano; Ghirardo, Andrea; de Visser, Pieter; Calatayud, Vicent; Muñoz, Amalia; Annesi-Maesano, Isabella; Sebastiani, Federico; Alivernini, Alessandro; Varriale, Vincenzo; Menghini, Flavio

    2018-06-01

    Indoor pollution poses a serious threat to human health. Plants represent a sustainable but underexploited solution to enhance indoor air quality. However, the current selection of plants suitable for indoors fails to consider the physiological processes and mechanisms involved in phytoremediation. Therefore, the capacity of plants to remove indoor air pollutants through stomatal uptake (absorption) and non-stomatal deposition (adsorption) remains largely unknown. Moreover, the effects of the indoor plant-associated microbiome still need to be fully analyzed. Here, we discuss how a combination of the enhanced phytoremediation capacity of plants together with cutting-edge air-cleaning and smart sensor technologies can improve indoor life while reducing energy consumption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Monitoring of formaldehyde in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balmat, J.L.; Meadows, G.W.

    1985-10-01

    Any one of several monitoring methods, depending on requirement and circumstance, can be used to measure employee exposure to formaldehyde. Ordinarily, monitoring at DuPont is performed by sampling with impingers containing 1% aqueous sodium bisulfite or with silica gel tubes. The collected formaldehyde is measured spectrophotometrically after reaction with chromotropic acid. Results from studies on a selected number of formaldehyde monitoring methods reveal that reliable methods are available for area and personnel monitoring over both short term and long term. Accurate results are obtained from short-term monitoring (15 min at 1 L/min) with impingers of formaldehyde concentrations as low asmore » 0.14 ppm. The current studies show that long-term monitoring (8 hr at 0.5 L/min) can be performed accurately at concentrations as low as 0.05 ppm. Accurate results also are obtained from short-term monitoring (15 min at 500 mL/min) with silica gel tubes of concentrations as low as 0.11 ppm formaldehyde. Passive monitors provide the most convenient means of obtaining 8-hour time-weighted average (TWA) data. The Pro-Tek Formaldehyde Badge was demonstrated to reliably monitor formaldehyde concentrations varying from 0-0.5 ppm or 0-3 ppm. Investigation of the Lion Formaldemeter disclosed that instantaneous and accurate (+/- 5%) measurement of formaldehyde in air can be made over a concentration range of 0.3-5 ppm in the absence of other substances that are oxidizable in its fuel cell detector.« less

  7. Indoor Air Pollution

    MedlinePlus

    ... is known as sick building syndrome. Usually indoor air quality problems only cause discomfort. Most people feel better ... and getting rid of pollutants can improve the quality of your indoor air. Environmental Protection Agency

  8. Indoor air quality in Latino homes in Boulder, Colorado

    NASA Astrophysics Data System (ADS)

    Escobedo, Luis E.; Champion, Wyatt M.; Li, Ning; Montoya, Lupita D.

    2014-08-01

    Indoor concentrations of airborne pollutants can be several times higher than those found outdoors, often due to poor ventilation, overcrowding, and the contribution of indoor sources within a home. Americans spend most of their time indoors where exposure to poor indoor air quality (IAQ) can result in diminished respiratory and cardiovascular health. This study measured the indoor air quality in 30 homes of a low-income Latino community in Boulder, Colorado during the summer of 2012. Participants were administered a survey, which included questions on their health conditions and indoor air pollution sources like cigarette smoke, heating fuel, and building materials. Twenty-four hour samples of fine particulate matter (PM2.5) from the indoor air were collected in each home; ambient PM2.5 samples were collected each day as well. Concurrent air samples were collected onto 47 mm Teflo and Tissuquartz filter at each location. Teflo filters were analyzed gravimetrically to measure PM2.5 and their extracts were used to determine levels of proteins and endotoxins in the fine fraction. The Tissuquartz filters were analyzed for elemental and organic carbon content (EC/OC). Results indicated that the indoor air contained higher concentrations of PM2.5 than the ambient air, and that the levels of OC were much higher than EC in both indoor and outdoor samples. This community showed no smoking in their homes and kept furry pets indoors at very low rates; therefore, cooking is likely the primary source of indoor PM. For responders with significant exposure to PM, it appeared to be primarily from occupational environments or childhood exposure abroad. Our findings indicate that for immigrant communities such as this, it is important to consider not only their housing conditions but also the relevant prior exposures when conducting health assessments.

  9. Indoor air quality investigation and health risk assessment at correctional institutions.

    PubMed

    Ofungwu, Joseph

    2005-04-01

    A comprehensive indoor air-quality (IAQ) investigation was conducted at a state correctional facility in New Jersey, USA with a lengthy history of IAQ problems. The IAQ investigation comprised preliminary indoor air screening using direct readout instrumentation, indoor air/surface wipe sampling and laboratory analysis, as well as a heating, ventilation, and air-conditioning system evaluation, and a building envelope survey. In addition to air sampling, a human health risk assessment was performed to evaluate the potential for exposure to site-related air contaminants with respect to the inmate and worker populations. The risk assessment results for the prison facility indicated the potential for significant health risks for the inmate population, possibly reflecting the effects of their confinement and extended exposure to indoor air contaminants, as compared to the prison guard and worker population. Based on the results of the risk assessment, several mitigation measures are recommended to minimize prison population health risks and improve indoor air quality at prison facilities.

  10. Evaluation of indoor air composition time variation in air-tight occupied spaces during night periods

    NASA Astrophysics Data System (ADS)

    Markov, Detelin

    2012-11-01

    This paper presents an easy-to-understand procedure for prediction of indoor air composition time variation in air-tight occupied spaces during the night periods. The mathematical model is based on the assumptions for homogeneity and perfect mixing of the indoor air, the ideal gas model for non-reacting gas mixtures, mass conservation equations for the entire system and for each species, a model for prediction of basal metabolic rate of humans as well as a model for prediction of O2 consumption rate and both CO2 and H2O generation rates by breathing. Time variation of indoor air composition is predicted at constant indoor air temperature for three scenarios based on the analytical solution of the mathematical model. The results achieved reveal both the most probable scenario for indoor air time variation in air-tight occupied spaces as well as the cause for morning tiredness after having a sleep in a modern energy efficient space.

  11. Indoor Air Quality: Is Increased Ventilation the Answer?

    ERIC Educational Resources Information Center

    Hansen, Shirley

    1989-01-01

    Explains how indoor air quality is affected by pollutants in the air and also by temperature, humidity, and ventilation. Increased ventilation alone seldom solves the "sick building syndrome." Lists ways to improve indoor air quality and optimize energy efficiency. (MLF)

  12. Care for Your Air: A Guide to Indoor Air Quality

    EPA Pesticide Factsheets

    Understand indoor air in homes, schools, and offices. Most of us spend much of our time indoors. The air that we breathe in our homes, in schools, and in offices can put us at risk for health problems.

  13. Mitigation of building-related polychlorinated biphenyls in indoor air of a school

    PubMed Central

    2012-01-01

    Background Sealants and other building materials sold in the U.S. from 1958 - 1971 were commonly manufactured with polychlorinated biphenyls (PCBs) at percent quantities by weight. Volatilization of PCBs from construction materials has been reported to produce PCB levels in indoor air that exceed health protective guideline values. The discovery of PCBs in indoor air of schools can produce numerous complications including disruption of normal operations and potential risks to health. Understanding the dynamics of building-related PCBs in indoor air is needed to identify effective strategies for managing potential exposures and risks. This paper reports on the efficacy of selected engineering controls implemented to mitigate concentrations of PCBs in indoor air. Methods Three interventions (ventilation, contact encapsulation, and physical barriers) were evaluated in an elementary school with PCB-containing caulk and elevated PCB concentrations in indoor air. Fluorescent light ballasts did not contain PCBs. Following implementation of the final intervention, measurements obtained over 14 months were used to assess the efficacy of the mitigation methods over time as well as temporal variability of PCBs in indoor air. Results Controlling for air exchange rates and temperature, the interventions produced statistically significant (p < 0.05) reductions in concentrations of PCBs in indoor air of the school. The mitigation measures remained effective over the course of the entire follow-up period. After all interventions were implemented, PCB levels in indoor air were associated with indoor temperature. In a "broken-stick" regression model with a node at 20°C, temperature explained 79% of the variability of indoor PCB concentrations over time (p < 0.001). Conclusions Increasing outdoor air ventilation, encapsulating caulk, and constructing a physical barrier over the encapsulated material were shown to be effective at reducing exposure concentrations of PCBs in indoor air of a school and also preventing direct contact with PCB caulk. In-place management methods such as these avoid the disruption and higher costs of demolition, disposal and reconstruction required when PCB-containing building materials are removed from a school. Because of the influence of temperature on indoor air PCB levels, risk assessment results based on short-term measurements, e.g., a single day or season, may be erroneous and could lead to sub-optimal allocation of resources. PMID:22490055

  14. [Measurement of Chemical Compounds in Indoor and Outdoor Air in Chiba City Using Diffusive Sampling Devices].

    PubMed

    Sakamoto, Hironari; Uchiyama, Shigehisa; Kihara, Akiko; Tsutake, Toyoshige; Bekki, Kanae; Inaba, Yohei; Nakagome, Hideki; Kunugita, Naoki

    2015-01-01

    Indoor air quality (IAQ) is a major concern, because people on average spend the vast majority of their time indoors and they are repeatedly exposed to indoor air pollutants. In this study, to assess indoor air quality in Chiba City, gaseous chemical compounds were surveyed using four types of diffusive sampler. Gaseous chemical compounds such as carbonyls, volatile organic compounds (VOC), acid gases, basic gases, and ozone were measured in indoor and outdoor air of 50 houses throughout Chiba City in winter and summer. Four types of diffusive sampler were used in this study: DSD-BPE/DNPH packed with 2,4-dinitrophenyl hydrazine and trans-1,2-bis(2-pyridyl)ethylene-coated silica for ozone and carbonyls; VOC-SD packed with Carboxen 564 particles for volatile organic compounds; DSD-TEA packed with triethanolamine-impregnated silica for acid gases; and DSD-NH3 packed with phosphoric acid-impregnated silica for basic gases. Almost all compounds in indoor air were detected at higher concentrations in summer than in winter. However, the nitrogen dioxide concentration in indoor air particularly increased only in winter, which well correlated with the formic acid concentration (correlation coefficient=0.974). The compound with the highest concentrations in indoor air was p-dichlorobenzene, with recorded levels of 13,000 μg m(-3) in summer and 1,100 μg m(-3) in winter in indoor air. p-Dichlorobenzene in summer and nitrogen dioxide in winter are detected at markedly high concentrations. Pollution control and continuous monitoring of IAQ are indispensable for human health.

  15. Air Quality Monitoring During Construction and Initial Occupation of a New Building.

    PubMed

    Valicenti, John A; Wenger, Jarrell

    1997-08-01

    Air quality monitoring was conducted during the late construction and early occupation stages of the College of DuPage Student Resource Center (SRC) addition from April 24,1995, to July 20,1995. Chemical contaminants monitored included combustibles; cleaning solvents; and human, furniture, and carpeting effluents. Carbon dioxide, carbon monoxide, ethanol, propane, 3-pentanone, methyl cyclohexane, methyl formate, tetrahydrofuran, methyl methacrylate, and cyclohexane were used as calibration standards for continuous infrared absorption measurements. Indoor water content, outdoor relative humidity, indoor and outdoor temperatures, and indoor airborne particulate matter were measured. After most construction and indoor painting and carpeting were completed, a two-week air-out was performed using a continuous supply of fresh air, without recirculated air. This resulted in a low "case study" level of contaminants. Contaminant levels increased significantly after furniture and people move-ins and student use. Contaminant level changes were observed during typical indoor construction days, before and after a power outage-caused loss of ventilation, and in the presence of carpentry machines. A "naive" sensory panel contributed its "perception" of air quality, and anair quality survey was conducted among new building employees. No significant or consistent effects of indoor contaminants or indoor temperature upon indoor perception were noted. An inverse relationship between indoor air quality perceptions and the outdoor Temperature-Humidity Index was found.

  16. Controlling Indoor Air Pollution.

    ERIC Educational Resources Information Center

    Nero, Anthony V, Jr.

    1988-01-01

    Discusses the health risks posed by indoor air pollutants, such as airborne combustion products, toxic chemicals, and radioactivity. Questions as to how indoor air might be regulated. Calls for new approaches to environmental protection. (TW)

  17. Evaluation and guidelines for using polyurethane foam (PUF) passive air samplers in double-dome chambers to assess semi-volatile organic compounds (SVOCs) in non-industrial indoor environments.

    PubMed

    Bohlin, Pernilla; Audy, Ondřej; Škrdlíková, Lenka; Kukučka, Petr; Vojta, Šimon; Přibylová, Petra; Prokeš, Roman; Čupr, Pavel; Klánová, Jana

    2014-11-01

    Indoor air pollution has been recognized as an important risk factor for human health, especially in areas where people tend to spend most of their time indoors. Many semi-volatile organic compounds (SVOCs) have primarily indoor sources and are present in orders of magnitude higher concentrations indoors than outdoors. Despite this, awareness of SVOCs in indoor air and assessment of the link between indoor concentrations and human health have lagged behind those of outdoor air. This is partially related to challenges associated with indoor sampling of SVOCs. Passive air samplers (PASs), which are widely accepted in established outdoor air monitoring networks, have been used to fill the knowledge gaps on indoor SVOCs distribution. However, their applicability for indoor environments and the assessment of human health risks lack sufficient experimental data. To address this issue, we performed an indoor calibration study of polyurethane foam (PUF) PAS deployed in a double-dome chamber, covering both legacy and new SVOC classes. PUF-PAS and a continuous low-volume active air sampler (AAS) were co-deployed for a calibration period of twelve weeks. Based on the results from this evaluation, PUF-PAS in a double-bowl chamber is recommended for indoor sampling and health risk assessment of gas phase SVOCs, including novel brominated flame retardants (nBFR) providing sufficient exposure time is applied. Data for particle associated SVOCs suffered from significant uncertainties caused by low level of detection and low precision in this study. A more open chamber design for indoor studies may allow for higher sampling rates (RS) and better performance for the particle associated SVOCs.

  18. Parents' Guide to School Indoor Air Quality.

    ERIC Educational Resources Information Center

    Healthy Schools Network, Inc., Albany, NY.

    This parents' guide presents articles on school indoor air pollution, children's health and the symptoms of indoor air pollution, and how schools can improve their air quality. Also included are tips on what to do if the school ignores air quality problems, and some examples of what school districts should be doing to improve their air quality.…

  19. [European community guidelines and standards in indoor air quality: what proposals for Italy].

    PubMed

    Settimo, Gaetano; D'Alessandro, Daniela

    2014-01-01

    Indoor air quality is an issue on which to focus because of the increasing number of exposed population and in view of the strong public feeling on this issue. This paper reports the rules of EU and several European countries about indoor air quality, focusing on the initiatives performed in Italy to respond to WHO recommendations. Several EU countries have introduced in their legislation rules relating to indoor air quality. At the moment, in Italy, a reference rule has not been issued. For this reason, up to date main informations concerning some guidelines or reference values in indoor air, to be used for a first comparison, are those obtained by the scientific literature, or by the guidelines issued by other European countries or, for analogy, by other standard values such as limit or reference values regarding outdoor air. Even the EU, while reaffirming the priority of energy efficiency measures, recommends healthier indoor environments and the development of a specific European strategy on the issue of indoor air quality. The National Study Group on indoor pollution of the Italian National Health Institute (ISS), is working for the development of shared technical and scientific documents, in order to provide greater uniformity of actions at national level, waiting for a legal framework for indoor air quality, in the light of the indication already produced by the WHO.

  20. Formaldehyde and TVOC emission behavior of laminate flooring by structure of laminate flooring and heating condition.

    PubMed

    An, Jae-Yoon; Kim, Sumin; Kim, Hyun-Joong

    2011-03-15

    Formaldehyde was measured with a desiccator, a 20 L chamber and the FLEC method. The formaldehyde emission rate from laminate was the highest at 32 °C using the desiccator, which then decreased with time. The formaldehyde emission using the 20 L small chamber and FLEC showed a similar tendency. There was a strong correlation between the formaldehyde and total volatile organic compounds (TVOCs) with both types of floorings using the two different methods. The formaldehyde emission rate and TVOC results were higher when tested using the FLEC method than with the 20 L small chamber method. The emission rate was affected by the joint edge length in laminate flooring. Toluene, ethylbenzene and xylene were the main VOCs emitted from laminate flooring, and there were more unidentified VOCs emitted than identified VOCs. The samples heated with a floor heating system emitted more formaldehyde than those heated using an air circulation system due to the temperature difference between the bottom panel and flooring. The TVOC emission level of the samples was higher when an air circulation system was used than when a floor heating system was used due to the high ventilation rate. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Fungal pollution of indoor environments and its management.

    PubMed

    Haleem Khan, A A; Mohan Karuppayil, S

    2012-10-01

    Indoor environments play important roles in human health. The health hazards posed by polluted indoor environments include allergy, infections and toxicity. Life style changes have resulted in a shift from open air environments to air tight, energy efficient, environments, in which people spend a substantial portion of their time. Most indoor air pollution comes from the hazardous non biological agents and biological agents. Fungi are ubiquitous in distribution and are a serious threat to public health in indoor environments. In this communication, we have reviewed the current status on biotic indoor air pollution, role of fungi as biological contaminants and their impact on human health.

  2. Fungal pollution of indoor environments and its management

    PubMed Central

    Haleem Khan, A.A.; Mohan Karuppayil, S.

    2012-01-01

    Indoor environments play important roles in human health. The health hazards posed by polluted indoor environments include allergy, infections and toxicity. Life style changes have resulted in a shift from open air environments to air tight, energy efficient, environments, in which people spend a substantial portion of their time. Most indoor air pollution comes from the hazardous non biological agents and biological agents. Fungi are ubiquitous in distribution and are a serious threat to public health in indoor environments. In this communication, we have reviewed the current status on biotic indoor air pollution, role of fungi as biological contaminants and their impact on human health. PMID:23961203

  3. Publications and Resources About Indoor airPLUS

    EPA Pesticide Factsheets

    Presented are useful materials to help you build homes that meet Indoor airPLUS specifications and to promote Indoor airPLUS qualified homes. These materials are FREE of charge and are available in PDF.

  4. Indoor Air Quality Building Education and Assessment Model Forms

    EPA Pesticide Factsheets

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM) is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  5. Federal Interagency Committee on Indoor Air Quality

    EPA Pesticide Factsheets

    The Federal Interagency Committee on Indoor Air Quality (CIAQ), which meets three times a year, was established by Congress to coordinate the activities of the Federal Government on issues relating to Indoor Air Quality.

  6. Indoor airPLUS Sales and Marketing Resources

    EPA Pesticide Factsheets

    Presented are useful materials to help you build homes that meet Indoor airPLUS specifications and to promote Indoor airPLUS qualified homes. These materials are FREE of charge and are available in PDF.

  7. Indoor airPLUS Web Linking Guidelines

    EPA Pesticide Factsheets

    As an Indoor airPLUS partner, your organization is listed on the EPA Indoor airPLUS Partner List. Your listing can also include a link to your organization's website when you meet the following requirements.

  8. Prediction of Indoor Air Exposure from Outdoor Air Quality Using an Artificial Neural Network Model for Inner City Commercial Buildings.

    PubMed

    Challoner, Avril; Pilla, Francesco; Gill, Laurence

    2015-12-01

    NO₂ and particulate matter are the air pollutants of most concern in Ireland, with possible links to the higher respiratory and cardiovascular mortality and morbidity rates found in the country compared to the rest of Europe. Currently, air quality limits in Europe only cover outdoor environments yet the quality of indoor air is an essential determinant of a person's well-being, especially since the average person spends more than 90% of their time indoors. The modelling conducted in this research aims to provide a framework for epidemiological studies by the use of publically available data from fixed outdoor monitoring stations to predict indoor air quality more accurately. Predictions are made using two modelling techniques, the Personal-exposure Activity Location Model (PALM), to predict outdoor air quality at a particular building, and Artificial Neural Networks, to model the indoor/outdoor relationship of the building. This joint approach has been used to predict indoor air concentrations for three inner city commercial buildings in Dublin, where parallel indoor and outdoor diurnal monitoring had been carried out on site. This modelling methodology has been shown to provide reasonable predictions of average NO₂ indoor air quality compared to the monitored data, but did not perform well in the prediction of indoor PM2.5 concentrations. Hence, this approach could be used to determine NO₂ exposures more rigorously of those who work and/or live in the city centre, which can then be linked to potential health impacts.

  9. Behavioural Change, Indoor Air Pollution and Child Respiratory Health in Developing Countries: A Review

    PubMed Central

    Barnes, Brendon R.

    2014-01-01

    Indoor air pollution caused by the indoor burning of solid biomass fuels has been associated with Acute Respiratory Infections such as pneumonia amongst children of less than five years of age. Behavioural change interventions have been identified as a potential strategy to reduce child indoor air pollution exposure, yet very little is known about the impact of behavioural change interventions to reduce indoor air pollution. Even less is known about how behaviour change theory has been incorporated into indoor air pollution behaviour change interventions. A review of published studies spanning 1983–2013 suggests that behavioural change strategies have the potential to reduce indoor air pollution exposure by 20%–98% in laboratory settings and 31%–94% in field settings. However, the evidence is: (1) based on studies that are methodologically weak; and (2) have little or no underlying theory. The paper concludes with a call for more rigorous studies to evaluate the role of behavioural change strategies (with or without improved technologies) to reduce indoor air pollution exposure in developing countries as well as interventions that draw more strongly on existing behavioural change theory and practice. PMID:24776723

  10. Plant leaves as indoor air passive samplers for volatile organic compounds (VOCs).

    PubMed

    Wetzel, Todd A; Doucette, William J

    2015-03-01

    Volatile organic compounds (VOCs) enter indoor environments through internal and external sources. Indoor air concentrations of VOCs vary greatly but are generally higher than outdoors. Plants have been promoted as indoor air purifiers for decades, but reports of their effectiveness differ. However, while air-purifying applications may be questionable, the waxy cuticle coating on leaves may provide a simple, cost-effective approach to sampling indoor air for VOCs. To investigate the potential use of plants as indoor air VOC samplers, a static headspace approach was used to examine the relationship between leaf and air concentrations, leaf lipid contents and octanol-air partition coefficients (Koa) for six VOCs and four plant species. The relationship between leaf and air concentrations was further examined in an actual residence after the introduction of several chlorinated VOC emission sources. Leaf-air concentration factors (LACFs), calculated from linear regressions of the laboratory headspace data, were found to increase as the solvent extractable leaf lipid content and Koa value of the VOC increased. In the studies conducted in the residence, leaf concentrations paralleled the changing air concentrations, indicating a relatively rapid air to leaf VOC exchange. Overall, the data from the laboratory and residential studies illustrate the potential for plant leaves to be used as cost effective, real-time indoor air VOC samplers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Controlling Pollutants and Sources: Indoor Air Quality Design Tools for Schools

    EPA Pesticide Factsheets

    To protect indoor environmental quality the designer should understand indoor air quality problems and seek to eliminate potential sources of contamination that originate from outdoors as well as indoors.

  12. Indoor air quality: A psychosocial perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boxer, P.A.

    1990-05-01

    The incidence of indoor air quality problems has increased dramatically over the past decade. Investigation of these problems has yielded a definitive cause in only one third of the cases. Psychosocial factors may play a key role in the development and propagation of symptoms attributed to poor indoor air quality. Guidelines for managing indoor air quality problems from the organizational perspective are based upon psychosocial principles and elements of risk perception.

  13. Assessment of the Indoor Odour Impact in a Naturally Ventilated Room

    PubMed Central

    Eusebio, Lidia; Derudi, Marco; Capelli, Laura; Nano, Giuseppe; Sironi, Selena

    2017-01-01

    Indoor air quality influences people’s lives, potentially affecting their health and comfort. Nowadays, ventilation is the only technique commonly used for regulating indoor air quality. CO2 is the reference species considered in order to calculate the air exchange rates of indoor environments. Indeed, regarding air quality, the presence of pleasant or unpleasant odours can strongly influence the environmental comfort. In this paper, a case study of indoor air quality monitoring is reported. The indoor field tests were conducted measuring both CO2 concentration, using a photoacoustic multi-gas analyzer, and odour trends, using an electronic nose, in order to analyze and compare the information acquired. The indoor air monitoring campaign was run for a period of 20 working days into a university room. The work was focused on the determination of both CO2 and odour emission factors (OEF) emitted by the human activity and on the evaluation of the odour impact in a naturally ventilated room. The results highlighted that an air monitoring and recycling system based only on CO2 concentration and temperature measurements might be insufficient to ensure a good indoor air quality, whereas its performances could be improved by integrating the existing systems with an electronic nose for odour detection. PMID:28379190

  14. An indoor air quality assessment for vulnerable populations exposed to volcanic vog from Kilauea Volcano.

    PubMed

    Longo, Bernadette M; Yang, Wei; Green, Joshua B; Longo, Anthony A; Harris, Merylin; Bibilone, Renwick

    2010-01-01

    The Ka'u District of Hawaii is exposed to sulfurous air pollution called vog from the ongoing eruption of Kilauea Volcano. Increased volcanic activity in 2008 prompted an indoor air quality assessment of the district's hospital and schools. All indoor sulfur dioxide concentrations were above the World Health Organization's average 24-hour recommendation. Indoor penetration ratios were up to 94% of ambient levels and dependent upon building construction or the use of air-conditioning. Health-promotion efforts for vulnerable populations at the hospital and schools are under way to improve indoor air quality and respond to those affected by vog exposure.

  15. Reducing indoor air pollution by air conditioning is associated with improvements in cardiovascular health among the general population.

    PubMed

    Lin, Lian-Yu; Chuang, Hsiao-Chi; Liu, I-Jung; Chen, Hua-Wei; Chuang, Kai-Jen

    2013-10-01

    Indoor air pollution is associated with cardiovascular effects, however, little is known about the effects of improving indoor air quality on cardiovascular health. The aim of this study was to explore whether improving indoor air quality through air conditioning can improve cardiovascular health in human subjects. We recruited a panel of 300 healthy subjects from Taipei, aged 20 and over, to participate in six home visits each, to measure a variety of cardiovascular endpoints, including high sensitivity-C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG), fibrinogen in plasma and heart rate variability (HRV). Indoor particles and total volatile organic compounds (VOCs) were measured simultaneously at the participant's home during each visit. Three exposure conditions were investigated in this study: participants were requested to keep their windows open during the first two visits, close their windows during the next two visits, and close the windows and turn on their air conditioners during the last two visits. We used linear mixed-effects models to associate the cardiovascular endpoints with individual indoor air pollutants. The results showed that increases in hs-CRP, 8-OHdG and fibrinogen, and decreases in HRV indices were associated with increased levels of indoor particles and total VOCs in single-pollutant and two-pollutant models. The effects of indoor particles and total VOCs on cardiovascular endpoints were greatest during visits with the windows open. During visits with the air conditioners turned on, no significant changes in cardiovascular endpoints were observed. In conclusion, indoor air pollution is associated with inflammation, oxidative stress, blood coagulation and autonomic dysfunction. Reductions in indoor air pollution and subsequent improvements in cardiovascular health can be achieved by closing windows and turning on air conditioners at home. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Indoor Air Quality Building Education and Assessment Model

    EPA Pesticide Factsheets

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM), released in 2002, is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  17. Links Related to the Indoor Air Quality Building Education and Assessment Model

    EPA Pesticide Factsheets

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM) is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  18. Bibliography for the Indoor Air Quality Building Education and Assessment Model

    EPA Pesticide Factsheets

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM) is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  19. Mold and Indoor Air Quality in Schools

    MedlinePlus

    ... Centers Mold Contact Us Share Mold and Indoor Air Quality in Schools Mold and Moisture in Schools Webinar ... premier resource on this issue is the Indoor Air Quality Tools for Schools kit. Our schools-related resources ...

  20. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios

    PubMed Central

    Shen, Rui; Suuberg, Eric M.

    2016-01-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures. PMID:28090133

  1. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios.

    PubMed

    Shen, Rui; Suuberg, Eric M

    2016-02-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures.

  2. Air Quality and Indoor Environmental Exposures: Clinical ...

    EPA Pesticide Factsheets

    Indoor air quality (IAQ) is a term which refers to the air quality within and around buildings and homes as it relates to the health and comfort of the occupants. Many ambient (outdoor) air pollutants readily permeate indoor spaces. Because indoor air can be considerably more polluted than ambient air, the USEPA lists poor IAQ as a major environmental concern. In the sections that follow, health effects associated with commonly encountered ambient air pollutants and indoor contaminants will be broken down by agent class. In some cases, exposure may be acute, with one or more pets (and owners) experiencing signs within a relatively short period. However, most exposures are episodic or chronic, making it difficult to definitively link poor IAQ to respiratory or other adverse health outcomes. Age or underlying immunologic, cardiac, or respiratory disease may further complicate the clinical picture, as those patients may be more sensitive to (and affected by) lower concentrations than prove problematic for healthy housemates. Because pets, like their owners, spend most of their lives indoors, we will discuss how certain home conditions can worsen indoor air quality and will briefly discuss measures to improve IAQ for owners and their pets. In this overview presentation, health effects associated with commonly encountered ambient air pollutants and indoor contaminants will be broken down by agent class. Because pets, like their owners, spend most of their lives indoo

  3. The effect of clothing care activities on textile formaldehyde content.

    PubMed

    Novick, Rachel M; Nelson, Mindy L; McKinley, Meg A; Anderson, Grace L; Keenan, James J

    2013-01-01

    Textiles are commonly treated with formaldehyde-based residues that may potentially induce allergic contact dermatitis in sensitive individuals. This study examined the initial formaldehyde content in clothing and resulting changes due to care activities. Twenty clothing articles were examined and 17 of them did not have detectable levels of formaldehyde. One shirt contained a formaldehyde concentration of 3172 ppm, and two pairs of pants had formaldehyde concentrations of 1391 ppm and 86 ppm. The two highest results represent formaldehyde levels that are up to 40-fold greater than international textile regulations. The two items with the greatest formaldehyde content were washed and dried in a manner similar to that used by consumers, including hand and machine washing in hot or cold water followed by air or machine drying. The washing and drying procedures reduced formaldehyde levels to between 26 and 72% of untreated controls. Differences in the temperature or type of washing and drying did not result in a clear trend in the subsequent formaldehyde content. In addition, samples were hot ironed, which did not affect the formaldehyde content as significantly. Understanding the formaldehyde content in clothing and its potential reduction through care activities may be useful for manufacturers and formaldehyde-sensitive individuals.

  4. Nature of, and the formaldehyde off-gassing characteristics of, urea-formaldehyde foam insulation (UFFI). Final report to the Canadian Department of Consumer and Corporate Affairs: Product Safety Branch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gammage, R.B.

    1981-07-30

    This report is divisible into the following four sections that pertain to the nature, application, and performance of urea-formaldehyde (UF) resins and foams in regard to their formaldehyde outgassing characteristics: elements of basic chemistry that affect hydrolysis and stability; pertinent experimental findings of several studies on the release of formaldehyde from urea-formaldehyde foam insulation (UFFI); studies that model the diffusion of formaldehyde through drywall and correlate the rate of formaldehyde emission with the air exchange rate and the concentration of formaldehyde; and, viability of materials and equipment for the controlled production of UFFI. Results indicate that UFFI is a complexmore » and intrinsically unstable material that releases formaldehyde over long-time periods. Even the best foams available in the US, prepared from low formaldehyde resins according to eight different manufacturers' specifications, have abundant potential for long-term or chronic release of formaldehyde. At the present time it is not possible to state that UFFI is a material whose long-term formaldehyde release characteristics can be adequately controlled or predicted.« less

  5. Passive sampler for formaldehyde in air using 2,4-dinitrophenylhydrazine-coated glass fiber filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, J.O.; Lindahl, R.; Andersson, K.

    1986-12-01

    A method utilizing diffusive sampling of formaldehyde in air has been developed. A glass fiber filter, impregnated with 2,4-dinitrophenylhydrazine (DNPH) and phosphoric acid and mounted into a modified aerosol-sampling cassette, is used for sampling by controlled diffusion. The formaldehyde hydrazone formed is desorbed and determined by high-performance liquid chromatography with UV detection. The sampling rate of the sampler was determined to 61 mL/min, with a standard deviation of 5%. The sampling rate is independent of formaldehyde concentrations between 0.1 and 5 mg/m/sup 3/ and sampling times between 15 min and 8 h. The sensitivity of the diffusive method is approximatelymore » 0.005 mg/m/sup 3/ (5 ppm) in an 8-h sample, and the reproducibility is better than 3%.« less

  6. THE EFFECTS OF BUILDING FEATURES ON INDOOR AIR AND POLLUTANT MOVEMENTS

    EPA Science Inventory

    The paper discusses full-scale residential building tests to determine the effects of building features on indoor air and pollutant movement. It was found that the activated heating and air-conditioning (HAC) system served as a conductor that enhanced the indoor air movement and ...

  7. Indoor Air Pollution in Non Ac Passenger Bus

    NASA Astrophysics Data System (ADS)

    El Husna, Iksiroh; Unzilatirrizqi, Rizal D. Yan El; Karyanto, Yudi; Sunoko, Henna R.

    2018-02-01

    Passenger buses have been one of favorite means of transportation in Indonesia due to its affordability and flexibility. Intensity of human activities during the trip in the buses have a potential of causing indoor air pollution (polusi udara dalam ruang; PUDR). The indoor air pollution has an impact of 1000-time bigger than outdoor air pollution (polusi udara luar ruang; PULR) on lung. This study aimed to find out indoor air pollution rate of non air conditioned buses using an approach to biological agent pollutant source. The study applied an analysis restricted to microorganisms persistence as one of the sources of the indoor air pollution. The media were placed in different parts of the non AC buses. This study revealed that fungs were found in the non AC buses. They became contaminants and developed pathogenic bacteria that caused air pollution.

  8. Safety Profile of TiO2-Based Photocatalytic Nanofabrics for Indoor Formaldehyde Degradation

    PubMed Central

    Cui, Guixin; Xin, Yan; Jiang, Xin; Dong, Mengqi; Li, Junling; Wang, Peng; Zhai, Shumei; Dong, Yongchun; Jia, Jianbo; Yan, Bing

    2015-01-01

    Anatase TiO2 nanoparticles (TNPs) are synthesized using the sol-gel method and loaded onto the surface of polyester-cotton (65/35) fabrics. The nanofabrics degrade formaldehyde at an efficiency of 77% in eight hours with visible light irradiation or 97% with UV light. The loaded TNPs display very little release from nanofabrics (~0.0%) during a standard fastness to rubbing test. Assuming TNPs may fall off nanofabrics during their life cycles, we also examine the possible toxicity of TNPs to human cells. We found that up to a concentration of 220 μg/mL, they do not affect viability of human acute monocytic leukemia cell line THP-1 macrophages and human liver and kidney cells. PMID:26610470

  9. Strength of smoke-free air laws and indoor air quality.

    PubMed

    Lee, Kiyoung; Hahn, Ellen J; Robertson, Heather E; Lee, Seongjik; Vogel, Suzann L; Travers, Mark J

    2009-04-01

    Smoke-free air laws have been implemented in many Kentucky communities to protect the public from the harmful effects of secondhand smoke exposure. The impact of different strengths of smoke-free air laws on indoor air quality was assessed. Indoor air quality in hospitality venues was assessed in seven communities before and after comprehensive smoke-free air laws and in two communities only after partial smoke-free air laws. One community was measured three times: before any smoke-free air law, after the initial partial law, and after the law was strengthened to cover all workplaces and public places with few exemptions. Real-time measurements of particulate matters with 2.5 mum aerodynamic diameter or smaller (PM(2.5)) were obtained. When comprehensive smoke-free air laws were implemented, indoor PM(2.5) concentrations decreased significantly from 161 to 20 microg/m3. In one community that implemented a comprehensive smoke-free law after initially passing a partial law, indoor PM(2.5) concentrations were 304 microg/m3 before the law, 338 microg/m3 after the partial law, and 9 microg/m3 after the comprehensive law. The study clearly demonstrated that partial smoke-free air laws do not improve indoor air quality. A significant linear trend indicated that PM(2.5) levels in the establishments decreased with fewer numbers of burning cigarettes. Only comprehensive smoke-free air laws are effective in reducing indoor air pollution from secondhand tobacco smoke.

  10. Strength of smoke-free air laws and indoor air quality

    PubMed Central

    Hahn, Ellen J.; Robertson, Heather E.; Vogel, Suzann L.; Travers, Mark J.

    2009-01-01

    Introduction: Smoke-free air laws have been implemented in many Kentucky communities to protect the public from the harmful effects of secondhand smoke exposure. The impact of different strengths of smoke-free air laws on indoor air quality was assessed. Methods: Indoor air quality in hospitality venues was assessed in seven communities before and after comprehensive smoke-free air laws and in two communities only after partial smoke-free air laws. One community was measured three times: before any smoke-free air law, after the initial partial law, and after the law was strengthened to cover all workplaces and public places with few exemptions. Real-time measurements of particulate matters with 2.5 μm aerodynamic diameter or smaller (PM2.5) were obtained. Results: When comprehensive smoke-free air laws were implemented, indoor PM2.5 concentrations decreased significantly from 161 to 20 μg/m3. In one community that implemented a comprehensive smoke-free law after initially passing a partial law, indoor PM2.5 concentrations were 304 μg/m3 before the law, 338 μg/m3 after the partial law, and 9 μg/m3 after the comprehensive law. Discussion: The study clearly demonstrated that partial smoke-free air laws do not improve indoor air quality. A significant linear trend indicated that PM2.5 levels in the establishments decreased with fewer numbers of burning cigarettes. Only comprehensive smoke-free air laws are effective in reducing indoor air pollution from secondhand tobacco smoke. PMID:19346510

  11. Become an Indoor airPLUS Verifier

    EPA Pesticide Factsheets

    With the Indoor airPLUS Program, 3rd-party verifiers help ensure that EPA's high standards, based on leading building science, are applied by the builder during home design and construction to meet the Indoor airPLUS Construction Specifications.

  12. WSN based indoor air quality monitoring in classrooms

    NASA Astrophysics Data System (ADS)

    Wang, S. K.; Chew, S. P.; Jusoh, M. T.; Khairunissa, A.; Leong, K. Y.; Azid, A. A.

    2017-03-01

    Indoor air quality monitoring is essential as the human health is directly affected by indoor air quality. This paper presents the investigations of the impact of undergraduate students' concentration during lecture due to the indoor air quality in classroom. Three environmental parameters such as temperature, relative humidity and concentration of carbon dioxide are measured using wireless sensor network based air quality monitoring system. This simple yet reliable system is incorporated with DHT-11 and MG-811 sensors. Two classrooms were selected to install the monitoring system. The level of indoor air quality were measured and students' concentration was assessed using intelligent test during normal lecturing section. The test showed significant correlation between the collected environmental parameters and the students' level of performances in their study.

  13. An Experiment with Air Purifiers in Delhi during Winter 2015-2016

    PubMed Central

    Vyas, Sangita

    2016-01-01

    Particulate pollution has important consequences for human health, and is an issue of global concern. Outdoor air pollution has become a cause for alarm in India in particular because recent data suggest that ambient pollution levels in Indian cities are some of the highest in the world. We study the number of particles between 0.5μm and 2.5μm indoors while using affordable air purifiers in the highly polluted city of Delhi. Though substantial reductions in indoor number concentrations are observed during air purifier use, indoor air quality while using an air purifier is frequently worse than in cities with moderate pollution, and often worse than levels observed even in polluted cities. When outdoor pollution levels are higher, on average, indoor pollution levels while using an air purifier are also higher. Moreover, the ratio of indoor air quality during air purifier use to two comparison measures of air quality without an air purifier are also positively correlated with outdoor pollution levels, suggesting that as ambient air quality worsens there are diminishing returns to improvements in indoor air quality during air purifier use. The findings of this study indicate that although the most affordable air purifiers currently available are associated with significant improvements in the indoor environment, they are not a replacement for public action in regions like Delhi. Although private solutions may serve as a stopgap, reducing ambient air pollution must be a public health and policy priority in any region where air pollution is as high as Delhi’s during the winter. PMID:27978542

  14. Indoor Air Quality Manual.

    ERIC Educational Resources Information Center

    Baldwin Union Free School District, NY.

    This manual identifies ways to improve a school's indoor air quality (IAQ) and discusses practical actions that can be carried out by school staff in managing air quality. The manual includes discussions of the many sources contributing to school indoor air pollution and the preventive planning for each including renovation and repair work,…

  15. Exploring the consequences of climate change for indoor air quality

    NASA Astrophysics Data System (ADS)

    Nazaroff, William W.

    2013-03-01

    Climate change will affect the concentrations of air pollutants in buildings. The resulting shifts in human exposure may influence public health. Changes can be anticipated because of altered outdoor pollution and also owing to changes in buildings effected in response to changing climate. Three classes of factors govern indoor pollutant levels in occupied spaces: (a) properties of pollutants; (b) building factors, such as the ventilation rate; and (c) occupant behavior. Diversity of indoor conditions influences the public health significance of climate change. Potentially vulnerable subpopulations include not only the young and the infirm but also those who lack resources to respond effectively to changing conditions. Indoor air pollutant levels reflect the sum of contributions from indoor sources and from outdoor pollutants that enter with ventilation air. Pollutant classes with important indoor sources include the byproducts of combustion, radon, and volatile and semivolatile organic compounds. Outdoor pollutants of special concern include particulate matter and ozone. To ensure good indoor air quality it is important first to avoid high indoor emission rates for all pollutants and second to ensure adequate ventilation. A third factor is the use of air filtration or air cleaning to achieve further improvements where warranted. Reprinted with permission from Climate Change, the Indoor Environment, and Health (2011) by the National Academy of Sciences, Courtesy of the National Academies Press, Washington, DC.

  16. Cleaning products and air fresheners: emissions and resulting concentrations of glycol ethers and terpenoids.

    PubMed

    Singer, B C; Destaillats, H; Hodgson, A T; Nazaroff, W W

    2006-06-01

    Experiments were conducted to quantify emissions and concentrations of glycol ethers and terpenoids from cleaning product and air freshener use in a 50-m3 room ventilated at approximately 0.5/h. Five cleaning products were applied full-strength (FS); three were additionally used in dilute solution. FS application of pine-oil cleaner (POC) yielded 1-h concentrations of 10-1300 microg/m3 for individual terpenoids, including alpha-terpinene (90-120), d-limonene (1000-1100), terpinolene (900-1300), and alpha-terpineol (260-700). One-hour concentrations of 2-butoxyethanol and/or d-limonene were 300-6000 microg/m3 after FS use of other products. During FS application including rinsing with sponge and wiping with towels, fractional emissions (mass volatilized/dispensed) of 2-butoxyethanol and d-limonene were 50-100% with towels retained, and approximately 25-50% when towels were removed after cleaning. Lower fractions (2-11%) resulted from dilute use. Fractional emissions of terpenes from FS use of POC were approximately 35-70% with towels retained, and 20-50% with towels removed. During floor cleaning with dilute solution of POC, 7-12% of dispensed terpenes were emitted. Terpene alcohols were emitted at lower fractions: 7-30% (FS, towels retained), 2-9% (FS, towels removed), and 2-5% (dilute). During air-freshener use, d-limonene, dihydromyrcenol, linalool, linalyl acetate, and beta-citronellol) were emitted at 35-180 mg/day over 3 days while air concentrations averaged 30-160 microg/m3. While effective cleaning can improve the healthfulness of indoor environments, this work shows that use of some consumer cleaning agents can yield high levels of volatile organic compounds, including glycol ethers--which are regulated toxic air contaminants--and terpenes that can react with ozone to form a variety of secondary pollutants including formaldehyde and ultrafine particles. Persons involved in cleaning, especially those who clean occupationally or often, might encounter excessive exposures to these pollutants owing to cleaning product emissions. Mitigation options include screening of product ingredients and increased ventilation during and after cleaning. Certain practices, such as the use of some products in dilute solution vs. full-strength and the prompt removal of cleaning supplies from occupied spaces, can reduce emissions and exposures to 2-butoxyethanol and other volatile constituents. Also, it may be prudent to limit use of products containing ozone-reactive constituents when indoor ozone concentrations are elevated either because of high ambient ozone levels or because of the indoor use of ozone-generating equipment.

  17. Indoor air quality of houses located in the urban environment of Agra, India.

    PubMed

    Taneja, Ajay; Saini, Renuka; Masih, Amit

    2008-10-01

    Increased concern over the adverse health effects of air pollution has highlighted the need for air-pollution measurements, especially in urban areas, where many sources of air pollutants are normally monitored outdoors as part of obligations under the National Air Quality Strategies. Very little is known about air pollution indoors. In fact, the largest exposure to health-damaging indoor pollution probably occurs in the developing world, not in households, schools, and offices of developed countries where most research and control efforts have been focused to date. As a result much of the health impacts from air pollution worldwide seem to occur among the poorest and most vulnerable populations. The authors in their earlier studies have confirmed the importance of ambient air in determining the quality of air indoors. In this study an observation of air quality indoors and outdoors of domestic homes located in an urban environment from October 2004 to December 2005 in Agra, north central India, is performed. The purpose of this study was to characterize the indoor/outdoor (I/O) relationship of airborne pollutants and recognize their probable source in all three seasons, that is, winter, summer, and rainy season. Concentrations of SO(2), NO(2), CO(2), Cl(2), H(2)S, NH(3), RSPM, and PAH were monitored simultaneously and I/O ratios were calculated. In order to investigate the effect of seasonality on indoor and ambient air quality, winter to summer and winter to monsoon average ratios were calculated. It is apparent that there is a general pattern of increasing levels from monsoon to summer to winter, and similarly from outdoor to indoor air. Regressions analysis had been done to further investigate the influence of outdoor air-pollutant concentrations on indoor concentrations. The most probable categories of sources for these pollutants have been identified by using principal-component analysis. Indoor air pollution is a complex function of energy housing and behavioral factors. On the basis of this study and observations, some interventions are also suggested.

  18. Prediction of Indoor Air Exposure from Outdoor Air Quality Using an Artificial Neural Network Model for Inner City Commercial Buildings

    PubMed Central

    Challoner, Avril; Pilla, Francesco; Gill, Laurence

    2015-01-01

    NO2 and particulate matter are the air pollutants of most concern in Ireland, with possible links to the higher respiratory and cardiovascular mortality and morbidity rates found in the country compared to the rest of Europe. Currently, air quality limits in Europe only cover outdoor environments yet the quality of indoor air is an essential determinant of a person’s well-being, especially since the average person spends more than 90% of their time indoors. The modelling conducted in this research aims to provide a framework for epidemiological studies by the use of publically available data from fixed outdoor monitoring stations to predict indoor air quality more accurately. Predictions are made using two modelling techniques, the Personal-exposure Activity Location Model (PALM), to predict outdoor air quality at a particular building, and Artificial Neural Networks, to model the indoor/outdoor relationship of the building. This joint approach has been used to predict indoor air concentrations for three inner city commercial buildings in Dublin, where parallel indoor and outdoor diurnal monitoring had been carried out on site. This modelling methodology has been shown to provide reasonable predictions of average NO2 indoor air quality compared to the monitored data, but did not perform well in the prediction of indoor PM2.5 concentrations. Hence, this approach could be used to determine NO2 exposures more rigorously of those who work and/or live in the city centre, which can then be linked to potential health impacts. PMID:26633448

  19. Improving indoor air quality through botanical air filtration in energy efficient residences

    NASA Astrophysics Data System (ADS)

    Newkirk, Daniel W.

    According to the U.S. EPA, the average American spends 90% of their time indoors where pollutants are two to five times more prevalent than outside. The consequences of these pollutants are estimated to cost the U.S. 125 billion dollars in lost health and productivity. Background literature suggests botanical air filtration may be able to solve this problem by leveraging the natural ability of plants to purify indoor air. By improving indoor air quality, energy consumption can also be reduced by bringing in less outside air to dilute contaminants within the space. A botanical air filter, called the Biowall, was designed and grown aeroponically in a sealed environmental chamber. Precise measurements of air temperature, air humidity, air quality and energy consumption were made under various lighting levels, plant species and watering strategies to optimize its performance. It was found to reduce indoor air pollutants 60 percent and has the potential to reduce heating and cooling energy consumption by 20 to 30 percent.

  20. Improving indoor air quality and thermal comfort in office building by using combination filters

    NASA Astrophysics Data System (ADS)

    Kabrein, H.; Yusof, M. Z. M.; Hariri, A.; Leman, A. M.; Afandi, A.

    2017-09-01

    Poor indoor air quality and thermal comfort condition in the workspace affected the occupants’ health and work productivity, especially when adapting the recirculation of air in heating ventilation and air-conditioning (HVAC) system. The recirculation of air was implemented in this study by mixing the circulated returned indoor air with the outdoor fresh air. The aims of this study are to assess the indoor thermal comfort and indoor air quality (IAQ) in the office buildings, equipped with combination filters. The air filtration technique consisting minimum efficiency reporting value (MERV) filter and activated carbon fiber (ACF) filter, located before the fan coil units. The findings of the study show that the technique of mixing recirculation air with the fresh air through the combination filters met the recommended thermal comfort condition in the workspace. Furthermore, the result of the post-occupancy evaluation (POE) and the environmental measurements comply with the ASHRAE 55 standard. In addition, the level of CO2 concentration continued to decrease during the period of the measurement.

  1. 2,4 - dinitrophenylhydrazine - coated silica gel cartridge method for determination of formaldehyde in air: Identification of an ozone interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnts, R.R.; Tejada, S.B.

    1989-01-01

    Two versions of the 2,4-dinitrophenylhydrazine method, a coated silica gel cartridge (solid) and acetonitrile impinger (solvent based), were used simultaneously to sample varied concentrations of ozone (0-770 ppb) and formaldehyde (20-140 ppb). Ozone was found to be a negative interference in the determination of formaldehyde by the 2,4-dinitrophenylhydrazine-coated silica gel cartridge method. At 120 ppb of ozone, formaldehyde at 40 ppb was under-reported by the cartridge method by 34% and at 300 ppb of ozone, formaldehyde measurements were 61% low. Greater losses were seen at higher ozone concentrations. Impinger sampling (2,4-DNPH in acetonitrile) showed no formaldehyde losses due to ozone.

  2. The effect of natural ventilation strategy on indoor air quality in schools.

    PubMed

    Stabile, Luca; Dell'Isola, Marco; Russi, Aldo; Massimo, Angelamaria; Buonanno, Giorgio

    2017-10-01

    In order to reduce children's exposure to pollutants in classrooms a proper ventilation strategy need to be adopted. Such strategy is even more important in naturally ventilated schools where the air exchange rate is only based on the manual airing of classrooms. The present work aimed to evaluate the effect of the manual airing strategy on indoor air quality in Italian classrooms. For this aim, schools located in the Central Italy were investigated. Indoor air quality was studied in terms of CO 2 , particle number and PM concentrations and compared to corresponding outdoor levels. In particular two experimental analyses were performed: i) a comparison between heating and non heating season in different schools; ii) an evaluation of the effect of scheduled airing periods on the dilution of indoor-generated pollutants and the penetration of outdoor-generated ones. In particular, different airing procedures, i.e. different window opening periods (5 to 20min per hour) were imposed and controlled through contacts installed on classroom windows and doors. Results revealed that the airing strategy differently affect the several pollutants detected in indoors depending on their size, origin and dynamics. Longer airing periods may result in reduced indoor CO 2 concentrations and, similarly, other gaseous indoor-generated pollutants. Simultaneously, higher ultrafine particle (and other vehicular-related pollutants) levels in indoors were measured due to infiltration from outdoors. Finally, a negligible effect of the manual airing on PM levels in classroom was detected. Therefore, a simultaneous reduction in concentration levels for all the pollutant metrics in classrooms cannot be obtained just relying upon air permeability of the building envelope and manual airing of the classrooms. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Effect of chimneys on indoor air concentrations of PM 10 and benzo[a]pyrene in Xuan Wei, China

    NASA Astrophysics Data System (ADS)

    Tian, Linwei; Lan, Qing; Yang, Dong; He, Xingzhou; Yu, Ignatius T. S.; Hammond, S. Katharine

    This paper reports the effect of chimneys in reducing indoor air pollution in a lung cancer epidemic area of rural China. Household indoor air pollution concentrations were measured during unvented burning (chimneys blocked) and vented burning (chimneys open) of bituminous coal in Xuan Wei, China. Concentrations of particulate matter with an aerodynamic diameter of 10 μm or less (PM 10) and of benzo[a]pyrene (BaP) were measured in 43 homes during normal activities. The use of chimneys led to significant decreases in indoor air concentrations of particulate matter with an aerodynamic diameter of 10 μm or less (PM 10) by 66% and of benzo[a]pyrene (BaP) by 84%. The average BaP content of PM 10 also decreased by 55% with the installation of a chimney. The reduction of indoor pollution levels by the installation of a chimney supports the epidemiology findings on the health benefits of stove improvement. However, even in the presence of a chimney, the indoor air concentrations for both PM 10 and BaP still exceeded the indoor air quality standards of China. Movement up the energy ladder to cleaner liquid or gaseous fuels is probably the only sustainable indoor air pollution control measure.

  4. New insight into the distribution pattern, levels, and risk diagnosis of FRs in indoor and outdoor air at low- and high-altitude zones of Pakistan: Implications for sources and exposure.

    PubMed

    Khan, Muhammad Usman; Besis, Athanasios; Li, Jun; Zhang, Gan; Malik, Riffat Naseem

    2017-10-01

    Data regarding flame retardants (FRs) in indoor and outdoor air and their exposure to population are scarce and especially unknown in the case of Pakistan. The current study was designed to probe FR concentrations and distribution pattern in indoor and outdoor air at different altitudinal zones (DAZs) of Pakistan with special emphasis on their risk to the exposed population. In this study, passive air samplers for the purpose of FR deposition were deployed in indoor and outdoor air at the industrial, rural, and background/colder zones/sites. All the indoor and outdoor air samples collected from DAZs were analyzed for the target FRs (9.30-472.30 pg/m 3 ), showing a decreasing trend as follows: ∑NBFRs > ∑PBDEs > ∑DP. However, significant correlations among FRs in the indoor and outdoor air at DAZs signified a similar source of FR origin that is used in different consumer goods. Furthermore, air mass trajectories revealed that movement of air over industrial area sources influenced concentrations of FRs at rural sites. The FR concentrations, estimated daily intake (EDI) and the hazard quotient (HQ), were recorded to be higher in toddlers than those in adults. In addition, indoor air samples showed higher FR levels, EDI and HQ, than outdoor air samples. An elevated FR concentrations and their prevalent exposure risks were recorded in the industrial zones followed by rural and background zones. The HQ for BDE-47 and BDE-99 in the indoor and outdoor air samples at different industrial and rural sites were recorded to be >1 in toddlers and adults, this further warrants a health risk in the population. However, FR investigation in indoor and outdoor air samples will provide a baseline data in Pakistan to take further steps by the government and agencies for its implementations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Clearing the Air: Asthma and Indoor Air Exposure (Highlights)

    EPA Pesticide Factsheets

    The National Academy of Sciences Institute of Medicine issued this report in 2000 describing the role of indoor environmental pollutants in the development and exacerbation of asthma. The report concludes that exposure to indoor pollutants is an important contributor to the asthma problem in this nation. Asthma sufferers should consult with their doctor about reducing their exposure indoor air pollutants.

  6. A randomized double-blind crossover study of indoor air filtration and acute changes in cardiorespiratory health in a First Nations community.

    PubMed

    Weichenthal, S; Mallach, G; Kulka, R; Black, A; Wheeler, A; You, H; St-Jean, M; Kwiatkowski, R; Sharp, D

    2013-06-01

    Few studies have examined indoor air quality in First Nations communities and its impact on cardiorespiratory health. To address this need, we conducted a crossover study on a First Nations reserve in Manitoba, Canada, including 37 residents in 20 homes. Each home received an electrostatic air filter and a placebo filter for 1 week in random order, and lung function, blood pressure, and endothelial function measures were collected at the beginning and end of each week. Indoor air pollutants were monitored throughout the study period. Indoor PM2.5 decreased substantially during air filter weeks relative to placebo (mean difference: 37 μg/m(3) , 95% CI: 10, 64) but remained approximately five times greater than outdoor concentrations owing to a high prevalence of indoor smoking. On average, air filter use was associated with a 217-ml (95% CI: 23, 410) increase in forced expiratory volume in 1 s, a 7.9-mm Hg (95% CI: -17, 0.82) decrease in systolic blood pressure, and a 4.5-mm Hg (95% CI: -11, 2.4) decrease in diastolic blood pressure. Consistent inverse associations were also observed between indoor PM2.5 and lung function. In general, our findings suggest that reducing indoor PM2.5 may contribute to improved lung function in First Nations communities. Indoor air quality is known to contribute to adverse cardiorespiratory health, but few studies have examined indoor air quality in First Nations communities. Our findings suggest that indoor PM2.5 may contribute to reduced lung function and that portable air filters may help to alleviate these effects by effectively reducing indoor levels of particulate matter. © Her Majesty the Queen in Right of Canada 2012. Reproduced with the permission of the Minister of Health Canada.

  7. Results of a long-term study of vapor intrusion at four large buildings at the NASA Ames Research Center.

    PubMed

    Brenner, David

    2010-06-01

    Most of the published empirical data on indoor air concentrations resulting from vapor intrusion of contaminants from underlying groundwater are for residential structures. The National Aeronautics and Space Administration (NASA) Research Park site, located in Moffett Field, CA, and comprised of 213 acres, is being planned for redevelopment as a collaborative research and educational campus with associated facilities. Groundwater contaminated with hydrocarbon and halogenated hydrocarbon volatile organic compounds (VOCs) is the primary environmental medium of concern at the site. Over a 15-month period, approximately 1000 indoor, outdoor ambient, and outdoor ambient background samples were collected from four buildings designated as historical landmarks using Summa canisters and analyzed by the U.S. Environmental Protection Agency TO-15 selective ion mode. Both 24-hr and sequential 8-hr samples were collected. Comparison of daily sampling results relative to daily background results indicates that the measured trichloroethylene (TCE) concentrations were primarily due to the subsurface vapor intrusion pathway, although there is likely some contribution due to infiltration of TCE from the outdoor ambient background concentrations. Analysis of the cis-1,2-dichloroethylene concentrations relative to TCE concentrations with respect to indoor air concentrations and the background air support this hypothesis; however, this indicates that relative contributions of the vapor intrusion and infiltration pathways vary with each building. Indoor TCE concentrations were also compared with indoor benzene and background benzene concentrations. These data indicate significant correlation between background benzene concentrations and the concentration of benzene in the indoor air, indicating benzene was present in the indoor air primarily through infiltration of outdoor air into the indoor space. By comparison, measured TCE indoor air concentrations showed a significantly different relationship to background concentrations. Analysis of the results show that indoor air samples can be used to definitively define the source of the TCE present in the indoor air space of large industrial buildings.

  8. Method, system and apparatus for monitoring and adjusting the quality of indoor air

    DOEpatents

    Hartenstein, Steven D.; Tremblay, Paul L.; Fryer, Michael O.; Hohorst, Frederick A.

    2004-03-23

    A system, method and apparatus is provided for monitoring and adjusting the quality of indoor air. A sensor array senses an air sample from the indoor air and analyzes the air sample to obtain signatures representative of contaminants in the air sample. When the level or type of contaminant poses a threat or hazard to the occupants, the present invention takes corrective actions which may include introducing additional fresh air. The corrective actions taken are intended to promote overall health of personnel, prevent personnel from being overexposed to hazardous contaminants and minimize the cost of operating the HVAC system. The identification of the contaminants is performed by comparing the signatures provided by the sensor array with a database of known signatures. Upon identification, the system takes corrective actions based on the level of contaminant present. The present invention is capable of learning the identity of previously unknown contaminants, which increases its ability to identify contaminants in the future. Indoor air quality is assured by monitoring the contaminants not only in the indoor air, but also in the outdoor air and the air which is to be recirculated. The present invention is easily adaptable to new and existing HVAC systems. In sum, the present invention is able to monitor and adjust the quality of indoor air in real time by sensing the level and type of contaminants present in indoor air, outdoor and recirculated air, providing an intelligent decision about the quality of the air, and minimizing the cost of operating an HVAC system.

  9. Assessment of microbiological indoor air quality in an Italian office building equipped with an HVAC system.

    PubMed

    Bonetta, Sa; Bonetta, Si; Mosso, S; Sampò, S; Carraro, E

    2010-02-01

    The purpose of this study was to evaluate the level and composition of bacteria and fungi in the indoor air of an Italian office building equipped with a heating, ventilation and air conditioning (HVAC) system. Airborne bacteria and fungi were collected in three open-space offices during different seasons. The microbial levels in the outdoor air, supply air diffusers, fan coil air flow and air treatment unit humidification water tank were used to evaluate the influence of the HVAC system on indoor air quality (IAQ). A medium-low level of bacterial contamination (50-500 CFU/m(3)) was found in indoor air. Staphylococcus and Micrococcus were the most commonly found genera, probably due to human presence. A high fungal concentration was measured due to a flood that occurred during the winter. The indoor seasonal distribution of fungal genera was related to the fungal outdoor distribution. Significant seasonal and daily variation in airborne microorganisms was found, underlining a relationship with the frequency of HVAC system switching on/off. The results of this monitoring highlight the role of the HVAC system on IAQ and could be useful to better characterise bacterial and fungal population in the indoor air of office buildings.

  10. Air-Sense: indoor environment monitoring evaluation system based on ZigBee network

    NASA Astrophysics Data System (ADS)

    Huang, Yang; Hu, Liang; Yang, Disheng; Liu, Hengchang

    2017-08-01

    In the modern life, people spend most of their time indoors. However, indoor environmental quality problems have always been affecting people’s social activities. In general, indoor environmental quality is also related to our indoor activities. Since most of the organic irritants and volatile gases are colorless, odorless and too tiny to be seen, because we have been unconsciously overlooked indoor environment quality. Consequently, our body suffer a great health problem. In this work, we propose Air-Sense system which utilizes the platform of ZigBee Network to collect and detect the real-time indoor environment quality. What’s more, Air-Sense system can also provide data analysis, and visualizing the results of the indoor environment to the user.

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION FOR INDOOR AIR PRODUCTS

    EPA Science Inventory

    The paper discusses environmental technology verification (ETV) for indoor air products. RTI is developing the framework for a verification testing program for indoor air products, as part of EPA's ETV program. RTI is establishing test protocols for products that fit into three...

  12. ENVIRONMENTAL TECHNOLOGY VERIFICATION AND INDOOR AIR

    EPA Science Inventory

    The paper discusses environmental technology verification and indoor air. RTI has responsibility for a pilot program for indoor air products as part of the U.S. EPA's Environmental Technology Verification (ETV) program. The program objective is to further the development of sel...

  13. TESTS OF INDOOR AIR QUALITY SINKS

    EPA Science Inventory

    Experiments were conducted in a room-size test chamber to determine the sink effects of selected materials on indoor air concentrations of p-dichlorobenzene (PDCB). hese effects might alter pollutant behavior from that predicted using similar indoor air quality models, by reducin...

  14. MANAGING EXPOSURE TO INDOOR AIR POLLUTANTS IN RESIDENTIAL AND OFFICE ENVIRONMENTS

    EPA Science Inventory

    The paper discusses the factors to be considered in managing indoor air pollutants in residential and office environments to reduce occupant exposures. Techniques for managing indoor air pollution sources include: source elimination, substitution, modification, and pretreatment a...

  15. MODELING INDOOR CONCENTRATIONS AND EXPOSURE

    EPA Science Inventory

    The paper discusses the use of an indoor air quality model, EXPOSURE, to predict pollutant concentrations and exposures. The effects of indoor air pollutants depend on the concentrations of the pollutants and the exposure of individuals to the pollutants. The air pollutant concen...

  16. Reductions in commuter exposure to volatile organic compounds in Mexico City due to the environmental program ProAire2002-2010.

    PubMed

    Shinohara, Naohide; Ángeles, Felipe; Basaldud, Roberto; Cardenas, Beatriz; Wakamatsu, Shinji

    2017-05-01

    We investigated commuter exposure to volatile organic compounds in the metropolitan area of Mexico City in 2011 in private car, microbus, bus, metro, metrobus, and trolley bus. A similar survey was conducted in 2002 before initiation of the ProAire2002-2010 program aimed at reducing air pollution. Formaldehyde, acetaldehyde, benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene were sampled while traveling during the morning rush hour in May 2011. Compared with the 2002 survey, in-vehicle concentrations were substantially lower in 2011, except for formaldehyde in microbuses (35% higher than in 2002). The reductions were 17-42% (except microbuses), 25-44%, 41-61%, 43-61%, 71-79%, 80-91%, and 79-93% for formaldehyde, acetaldehyde, benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene, respectively. These reductions are considered to be the outcome of some of the actions in the ProAire2002-2010 program. In some microbuses, use of liquid petroleum gas may have increased in-vehicle formaldehyde concentrations. The reduction in predicted excess cancer incidence of commuters because of ProAire2002-2010 was estimated to be 1.4 cases/yr. In addition, if every microbus commuter changed their transport mode to bus, metro, or metrobus in the future, the estimated excess cancer incidence of commuters could be further decreased from 6.4 to 0.88-2.2 cases/year.

  17. CFD simulation research on residential indoor air quality.

    PubMed

    Yang, Li; Ye, Miao; He, Bao-Jie

    2014-02-15

    Nowadays people are excessively depending on air conditioning to create a comfortable indoor environment, but it could cause some health problems in a long run. In this paper, wind velocity field, temperature field and air age field in a bedroom with wall-hanging air conditioning running in summer are analyzed by CFD numerical simulation technology. The results show that wall-hanging air conditioning system can undertake indoor heat load and conduct good indoor thermal comfort. In terms of wind velocity, air speed in activity area where people sit and stand is moderate, most of which cannot feel wind flow and meet the summer indoor wind comfort requirement. However, for air quality, there are local areas without ventilation and toxic gases not discharged in time. Therefore it is necessary to take effective measures to improve air quality. Compared with the traditional measurement method, CFD software has many advantages in simulating indoor environment, so it is hopeful for humans to create a more comfortable, healthy living environment by CFD in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. An Assessment of Indoor Air Quality before, during and after Unrestricted Use of E-Cigarettes in a Small Room

    PubMed Central

    O’Connell, Grant; Colard, Stéphane; Cahours, Xavier; Pritchard, John D.

    2015-01-01

    Airborne chemicals in the indoor environment arise from a wide variety of sources such as burning fuels and cooking, construction materials and furniture, environmental tobacco smoke as well as outdoor sources. To understand the contribution of exhaled e-cigarette aerosol to the pre-existing chemicals in the ambient air, an indoor air quality study was conducted to measure volatile organic compounds (including nicotine and low molecular weight carbonyls), polycyclic aromatic hydrocarbons, tobacco-specific nitrosamines and trace metal levels in the air before, during and after e-cigarette use in a typical small office meeting room. Measurements were compared with human Health Criteria Values, such as indoor air quality guidelines or workplace exposure limits where established, to provide a context for potential bystander exposures. In this study, the data suggest that any additional chemicals present in indoor air from the exhaled e-cigarette aerosol, are unlikely to present an air quality issue to bystanders at the levels measured when compared to the regulatory standards that are used for workplaces or general indoor air quality. PMID:25955526

  19. An Assessment of Indoor Air Quality before, during and after Unrestricted Use of E-Cigarettes in a Small Room.

    PubMed

    O'Connell, Grant; Colard, Stéphane; Cahours, Xavier; Pritchard, John D

    2015-05-06

    Airborne chemicals in the indoor environment arise from a wide variety of sources such as burning fuels and cooking, construction materials and furniture, environmental tobacco smoke as well as outdoor sources. To understand the contribution of exhaled e-cigarette aerosol to the pre-existing chemicals in the ambient air, an indoor air quality study was conducted to measure volatile organic compounds (including nicotine and low molecular weight carbonyls), polycyclic aromatic hydrocarbons, tobacco-specific nitrosamines and trace metal levels in the air before, during and after e-cigarette use in a typical small office meeting room. Measurements were compared with human Health Criteria Values, such as indoor air quality guidelines or workplace exposure limits where established, to provide a context for potential bystander exposures. In this study, the data suggest that any additional chemicals present in indoor air from the exhaled e-cigarette aerosol, are unlikely to present an air quality issue to bystanders at the levels measured when compared to the regulatory standards that are used for workplaces or general indoor air quality.

  20. A review of polychlorinated biphenyls (PCBs) pollution in indoor air environment.

    PubMed

    Dai, Qizhou; Min, Xia; Weng, Mili

    2016-10-01

    Polychlorinated biphenyls (PCBs) were widely used in industrial production due to the unique physical and chemical properties. As a kind of persistent organic pollutants, the PCBs would lead to environment pollution and cause serious problems for human health. Thus, they have been banned since the 1980s due to the environment pollution in the past years. Indoor air is the most direct and important environment medium to human beings; thus, the PCBs pollution research in indoor air is important for the protection of human health. This paper introduces the industrial application and potential harm of PCBs, summarizes the sampling, extracting, and analytical methods of environment monitoring, and compares the indoor air levels of urban areas with those of industrial areas in different countries according to various reports. This paper can provide a basic summary for PCBs pollution control in the indoor air environment. The review of PCBs pollution in indoor air in China is still limited. In this paper, we introduce the industrial application and potential harm of PCBs, summarize the sampling, extracting, and analytical methods of environment monitoring, and compare the indoor air levels of urban areas with industrial areas in different countries according to various reports.

  1. [Indoor volatile organic compounds: concentrations, sources, variation factors].

    PubMed

    Palot, A; Charpin-Kadouch, C; Ercoli, J; Charpin, D

    2008-06-01

    Volatile organic compounds (V.O.C.) are part of urban air pollution and are also generated indoors from cleaning and maintenance products. VOC measurements are, on average, 10 times higher within homes than outside. Results of the national survey led by the Observatoire National de la Qualité de l'Air Intérieur demonstrated that up to 25% of French homes have very high or high concentrations of VOC. Indoor levels depend mainly on indoor sources. Aldehydes are included in many everyday life products. VOC originate from various household decorating and cleaning products. Some products are less detrimental to the environment and health and have special labelling. Indoor VOC levels also depend on the rate of air exchange and on household characteristics such as indoor temperature and humidity, age of the building, presence of smokers, and communication with a garage. The public may participate in maintaining good indoor air quality and the authorities should also improve regulations. VOC are part of everyday air pollution. Their sources and concentrations should be better monitored.

  2. A case study on identification of airborne organic compounds and time courses of their concentrations in the cabin of a new car for private use.

    PubMed

    Yoshida, Toshiaki; Matsunaga, Ichiro

    2006-01-01

    The cabin of an automobile can be considered to be a part of the living environment because many people spend long periods of time during business, shopping, recreation or travel activities. However, little is known about the interior air contamination due to organic compounds diffusing from the interior materials used in the interior of automobiles. In the present study, the compounds in the interior air of a new car were identified, and the time courses of their concentrations were examined for over 3 years after the delivery (July, 1999). A total of 162 organic compounds, involving many aliphatic hydrocarbons and aromatic hydrocarbons, were identified. High concentrations of n-nonane (458 microg/m(3) on the day following delivery), n-decane (1301 microg/m(3)), n-undecane (1616 microg/m(3)), n-dodecane (716 microg/m(3)), n-tridecane (320 microg/m(3)), 1-hexadecene (768 microg/m(3)), ethylbenzene (361 microg/m(3)), xylene (4003 microg/m(3)) and 2,2'-azobis(isobutyronitrile) (429 microg/m(3)) were detected, and the sum of the concentrations determined for all compounds excluding formaldehyde (TVOC) was approximately 14 mg/m(3) on the day after the delivery. The concentrations of most compounds decreased with time, but increased with a rise of the interior temperature. The TVOC concentration in the next summer (July, 2000) was approximately one-tenth of the initial concentration. During the 3-year study period, the TVOC concentrations in summer exceeded the indoor guideline value (300 mug/m(3)) proposed by [Seifert B. Volatile organic compounds. In: Maroni M, Seifert B, Lindvall T, editors. Indoor air quality. A comprehensive reference book. Air quality monographs, vol. 3. Netherlands: Elsevier Science; 1995. p. 819-21]. The interior temperature and days lapsed after delivery were the main factors affecting the interior concentrations of most compounds according to multiple linear regression analysis. The results of this study offer useful fundamental data for investigations on air pollution in automotive cabins due to the organic compounds diffusing from the interior materials.

  3. INDOOR AIR QUALITY AND INHALATION EXPOSURE - SIMULATION TOOL KIT

    EPA Science Inventory

    A Microsoft Windows-based indoor air quality (IAQ) simulation software package is presented. Named Simulation Tool Kit for Indoor Air Quality and Inhalation Exposure, or IAQX for short, this package complements and supplements existing IAQ simulation programs and is desi...

  4. Indoor Air Quality in Schools

    EPA Pesticide Factsheets

    This web site will educate the public about indoor environmental issues specific to educational facilities and the importance of developing and sustaining comprehensive indoor air quality management programs.

  5. Pilot Implementation of a Field Study Design to Evaluate the Impact of Source Control Measures on Indoor Air Quality in High Performance Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widder, Sarah H.; Chamness, Michele A.; Petersen, Joseph M.

    2014-10-01

    To improve the indoor air quality in new, high performance homes, a variety of standards and rating programs have been introduced to identify building materials that are designed to have lower emission rates of key contaminants of concern and a number of building materials are being introduced that are certified to these standards. For example, the U.S. Department of Energy (DOE) Zero Energy Ready Home program requires certification under the U.S. Environmental Protection Agency (EPA) Indoor airPLUS (IaP) label, which requires the use of PS1 or PS2 certified plywood and OSB; low-formaldehyde emitting wood products; low- or no-VOC paints andmore » coatings as certified by Green Seal Standard GS-11, GreenGuard, SCS Indoor Advantage Gold Standard, MPI Green Performance Standard, or another third party rating program; and Green Label-certified carpet and carpet cushions. However, little is known regarding the efficacy of the IAP requirements in measurably reducing contaminant exposures in homes. The goal of this project is to develop a robust experimental approach and collect preliminary data to support the evaluation of indoor air quality (IAQ) measures linked to IAP-approved low-emitting materials and finishes in new residential homes. To this end, the research team of Pacific Northwest National Laboratory (PNNL) and Lawrence Berkeley National Laboratory (LBNL) developed a detailed experimental plan to measure IAQ constituents and other parameters, over time, in new homes constructed with materials compliant with IAP’s low-emitting material and ventilation requirements (i.e., section 6.1, 6.2, 6.3, and 7.2) and similar homes constructed to the state building code with conventional materials. The IAQ in IAP and conventional homes of similar age, location, and construction style is quantified as the differences in the speciated VOC and aldehyde concentrations, normalized to dilution rates. The experimental plan consists of methods to evaluate the difference between low-emitting and “conventional” materials as installed in newly constructed residential homes using both (1) highly controlled, short-term active samples to precisely characterize the building-related chemical emissions and building contents and (2) a week-long passive sample designed to capture the impact of occupant behavior and related activities on measured IAQ contaminant levels indoors. The combination of detailed short-term measurements with the home under controlled/consistent conditions during pre- and post-occupancy and the week-long passive sampling data provide the opportunity to begin to separate the different emission sources and help isolate and quantify variability in the monitored homes. Between April and August 2014, the research team performed pre-occupancy and post-occupancy sampling in one conventional home and two homes built with low-emitting materials that were generally consistent with EPA’s Indoor airPLUS guidelines. However, for a number of reasons, the full experimental plan was not implemented. The project was intended to continue for up to three years to asses long-term changes in IAQ but the project was limited to one calendar year. As a result, several of the primary research questions related to seasonal impacts and the long-term trends in IAQ could not be addressed. In addition, there were several unexpected issues related to recruiting, availability of home types, and difficulty coordinating with builders/realtors/homeowners. Several field monitoring issues also came up that provide “lessons learned” that led to improvements to the original monitoring plan. The project produced a good experimental plan that is expected to be be useful for future efforts collecting data to support answering these same or similar research questions.« less

  6. Development of a modeling approach to estimate indoor-to-outdoor sulfur ratios and predict indoor PM2.5 and black carbon concentrations for Eastern Massachusetts households

    PubMed Central

    Tang, Chia Hsi; Garshick, Eric; Grady, Stephanie; Coull, Brent; Schwartz, Joel; Koutrakis, Petros

    2018-01-01

    The effects of indoor air pollution on human health have drawn increasing attention among the scientific community as individuals spend most of their time indoors. However, indoor air sampling is labor-intensive and costly, which limits the ability to study the adverse health effects related to indoor air pollutants. To overcome this challenge, many researchers have attempted to predict indoor exposures based on outdoor pollutant concentrations, home characteristics, and weather parameters. Typically, these models require knowledge of the infiltration factor, which indicates the fraction of ambient particles that penetrates indoors. For estimating indoor fine particulate matter (PM2.5) exposure, a common approach is to use the indoor-to-outdoor sulfur ratio (Sindoor/Soutdoor) as a proxy of the infiltration factor. The objective of this study was to develop a robust model that estimates Sindoor/Soutdoor for individual households that can be incorporated into models to predict indoor PM2.5 and black carbon (BC) concentrations. Overall, our model adequately estimated Sindoor/Soutdoor with an out-of-sample by home-season R2 of 0.89. Estimated Sindoor/Soutdoor reflected behaviors that influence particle infiltration, including window opening, use of forced air heating, and air purifier. Sulfur ratio-adjusted models predicted indoor PM2.5 and BC with high precision, with out-of-sample R2 values of 0.79 and 0.76, respectively. PMID:29064481

  7. Monitoring firefighter exposure to air toxins at prescribed burns of forest and range biomass. Forest Service research paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinhardt, T.E.

    1991-10-01

    A variety of potent air toxins are in the smoke produced by burning forest and range biomass. Preliminary data on firefighter exposures to carbon monoxide and formaldehyde at four prescribed burns of Western United States natural fuels are presented. Formaldehyde may be correlated to carbon monoxide emissions. The firefighters' exposures to these compounds relative to workplace standards are discussed.

  8. Changes in airborne fungi from the outdoors to indoor air; large HVAC systems in nonproblem buildings in two different climates.

    PubMed

    Kemp, P C; Neumeister-Kemp, H G; Esposito, B; Lysek, G; Murray, F

    2003-01-01

    Little is known about the changes in occurrence and distribution of airborne fungi as they are transported in the airstream from the outdoor air through the heating, ventilation, and air conditioning (HVAC) system to the indoor air. To better understand this, airborne fungi were analyzed in the HVAC systems of two large office buildings in different climate zones. Fungal samples were taken in each of the walk-in chambers of the HVAC systems using a six-stage Andersen Sampler with malt extract agar. Results showed that fungal species changed with different locations in the HVAC systems. The outdoor air intake produced the greatest filtration effect for both the counts and species of outdoor air fungi. The colony forming unit (CFU) counts and species diversity was further reduced in the air directly after the filters. The cooling coils also had a substantial filtration effect. However, in room air the CFU counts were double and the mixture of fungal species was different from the air leaving the HVAC system at the supply air outlet in most locations. Diffusion of outdoor air fungi to the indoors did not explain the changes in the mixture of airborne fungi from the outdoor air to the indoor air, and some of the fungi present in the indoor air did not appear to be transported indoors by the HVAC systems.

  9. On the use of a risk ladder: Linking public perception of risks associated with indoor air with cognitive elements and attitudes toward risk reduction

    NASA Astrophysics Data System (ADS)

    Moschandreas, D. J.; Chang, P. E.

    In recent years a number of building managers have invested small amounts of money to measure indoor air quality in offices and other non-industrial buildings. Their objective is to reduce the number of occupant complaints, and not necessarily to reduce the risk associated with such complaints. Clearly, reduction of the risk would require greater investment of funds and effort. This paper focuses on individuals and the amount of money they are willing to invest in order to reduce risks associated with indoor air pollution in their home. Psychologists assert that lay judgement of risks are influenced by cognitive biases and attitudes. This study investigates the possibility that cognitive elements and general attitudes influence not only the perceived risk associated with exposures to indoor air pollutants, but also the willingness of individuals to invest in order to reduce the risk. A three-stage study was performed to determine some of the factors that influence public decisions to control the quality of the air inside their home. The study is focused on the design of a risk ladder, and the survey of 400 randomly selected individuals in the Chicago metropolitan area. The survey was designed to determine if demographics, smoking, education, or income influence the desire of individuals to invest in order to reduce indoor air pollution. The following conclusions were reached: (i) public awareness of indoor air pollution is high; (ii) media campaigns on indoor air pollution affect the determination of the specific pollutant the public perceives as important, but do not influence the public's desire to invest larger amounts of money to reduce risks from exposures to air pollutants in the residential environment; (iii) the public is not willing to spend large amounts of money to reduce indoor residential air pollution; (iv) education does not affect the level of awareness regarding indoor air pollution, but it increases the willingness to invest in an effort to reduce indoor air pollution; and (v) smoking status does not affect any of the above.

  10. Indoor air pollution and preventions in college libraries

    NASA Astrophysics Data System (ADS)

    Yang, Zengzhang

    2017-05-01

    The college library is a place where it gets the comparatively high density of students often staying long time with it. Therefore, the indoor air quality will affect directly reading effect and physical health of teachers and students in colleges and universities. The paper analyzes the influenced factors in indoor air pollution of the library from the selection of green-environmental decorating materials and furniture, good ventilation maintaining, electromagnetic radiation reducing, regular disinfection, indoor green building and awareness of health and environmental protection strengthening etc. six aspects to put forward the ideas for preventions of indoor air pollution and construction of the green low-carbon library.

  11. Health effects from indoor air pollution: case studies.

    PubMed

    White, L E; Clarkson, J R; Chang, S N

    1987-01-01

    In recent years there has been a growing awareness of the health effects associated with the presence of contaminants in indoor air. Numerous agents can accumulate in public buildings, homes and automobiles as a result of ongoing activities that normally occur in these closed spaces. Ventilation is a major factor in the control of indoor air pollutants since proper movement of air can prevent or minimize the build up of compounds in buildings. The recent emphasis on energy conservation has lead to measures which economize on energy for heating and air conditioning, but which also trap pollutants within a building. Three cases of indoor air pollution were investigated. A typical investigation of indoor air pollutant problems includes the following: interviews with building occupants; history of the building with regard to maintenance, pesticide treatment, etc.; a survey of the building and ventilation; and when warranted, sampling and analysis of air. Each case presented is unique in that atypical situations caused agents to accumulate in a building or section of a building. The indoor air problems in these cases were solved by identifying and removing the source of the offending agent and/or improving the ventilation in the building.

  12. Effects of indoor air purification by an air cleaning system (Koala technology) on semen parameters in male factor infertility: results of a pilot study.

    PubMed

    Paradisi, R; Vanella, S; Barzanti, R; Cani, C; Battaglia, C; Seracchioli, R; Venturoli, S

    2009-06-01

    A number of studies indicated a clear decline in semen quality in the past 30-50 years and there is accumulating evidence that this decline might result from exposure to high levels of air pollution. To examine the impact of environment on male reproductive ability, we undertook for the first time a pilot study on semen quality of infertile men exposed to purification of indoor air. Ten subjects with a history of unexplained male infertility and poor semen quality were exposed for at least 1 year to a cleaning indoor air system (Koala technology). The key feature of this air purifier is the unique innovative multiple filtering system. The treatment of total purification of indoor air showed neither improvements in semen parameters nor variation in reproductive hormones (P = N.S.), but induced an evident increase (P < 0.03 and more) in seminal leucocytic concentrations. Within the limits due to the small sample of subjects recruited, the sole purification of indoor air does not seem enough to improve semen quality, although the increase in leucocytic concentrations could indicate an activation of the role of immunosurveillance in a purified indoor air environment.

  13. Brominated flame retardants (BFRs) in indoor and outdoor air in a community in Guangzhou, a megacity of southern China.

    PubMed

    Ding, Nan; Wang, Tao; Chen, She-Jun; Yu, Mei; Zhu, Zhi-Cheng; Tian, Mi; Luo, Xiao-Jun; Mai, Bi-Xian

    2016-05-01

    Indoor environments contribute a significant portion of human exposure to brominated flame retardants (BFRs) because of their extensive use in various household products. This study investigates the occurrence of a number of BFRs in the indoor and outdoor air in a megacity in southern China, in which little information on indoor BFRs contamination is available. The estimated total PBDE concentrations ranged from 1.43 to 57 pg/m(3) indoors and from 1.21 to 1522 pg/m(3) outdoors. The indoor concentrations of lower brominated PBDEs that are mainly derived from the technical penta- and octa-BDE mixtures were higher than or comparable to the outdoors, while the indoor levels of DecaBDEs and decabromodiphenyl ethane (DBDPE) were apparently lower than the outdoors. The seasonal variations of BFR concentrations indicated that evaporation from old indoor products is the primary source of Penta- and OctaBDEs in the air, whereas most DecaBDEs and DBDPE concentrations showing weak temperature-dependence are largely released from industrial activities. The PBDE congener profiles in the air were generally similar, which were dominated by BDE209, 28, and 47; whereas the appreciable indoor-outdoor differences in the compositions are possibly due to emission sources, photochemical degradation, or congener-specific transport of BFRs in the indoor and outdoor air. Significant correlations between the indoor and outdoor BFRs were observed suggesting the exchange of BFRs between the two compartments, which are more noticeable for PentaBDEs and DecaBDEs with strong indoor and outdoor emission sources, respectively. This study provides significant insights into the sources of BFRs in urban air in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisk, William J.; Destaillats, H.; Apte, M.G.

    Heating, ventilating, and cooling classrooms in California consume substantial electrical energy. Indoor air quality (IAQ) in classrooms affects studenthealth and performance. In addition to airborne pollutants that are emitted directly by indoor sources and those generated outdoors, secondary pollutants can be formed indoors by chemical reaction of ozone with other chemicals and materials. Filters are used in nearly all classroom heating, ventilation and air?conditioning (HVAC) systems to maintain energy-efficient HVAC performance and improve indoor air quality; however, recent evidence indicates that ozone reactions with filters may, in fact, be a source of secondary pollutants. This project quantitatively evaluated ozone depositionmore » in HVAC filters and byproduct formation, and provided a preliminary assessment of the extent towhich filter systems are degrading indoor air quality. The preliminary information obtained will contribute to the design of subsequent research efforts and the identification of energy efficient solutions that improve indoor air quality in classrooms and the health and performance of students.« less

  15. Indoor air quality in Brazilian universities.

    PubMed

    Jurado, Sonia R; Bankoff, Antônia D P; Sanchez, Andrea

    2014-07-11

    This study evaluated the indoor air quality in Brazilian universities by comparing thirty air-conditioned (AC) (n = 15) and naturally ventilated (NV) (n = 15) classrooms. The parameters of interest were indoor carbon dioxide (CO2), temperature, relative humidity (RH), wind speed, viable mold, and airborne dust levels. The NV rooms had larger concentration of mold than the AC rooms (1001.30 ± 125.16 and 367.00 ± 88.13 cfu/m3, respectively). The average indoor airborne dust concentration exceeded the Brazilian standards (<80 µg/m3) in both NV and AC classrooms. The levels of CO2 in the AC rooms were significantly different from the NV rooms (1433.62 ± 252.80 and 520.12 ± 37.25 ppm, respectively). The indoor air quality in Brazilian university classrooms affects the health of students. Therefore, indoor air pollution needs to be considered as an important public health problem.

  16. Indoor Air Quality in Brazilian Universities

    PubMed Central

    Jurado, Sonia R.; Bankoff, Antônia D. P.; Sanchez, Andrea

    2014-01-01

    This study evaluated the indoor air quality in Brazilian universities by comparing thirty air-conditioned (AC) (n = 15) and naturally ventilated (NV) (n = 15) classrooms. The parameters of interest were indoor carbon dioxide (CO2), temperature, relative humidity (RH), wind speed, viable mold, and airborne dust levels. The NV rooms had larger concentration of mold than the AC rooms (1001.30 ± 125.16 and 367.00 ± 88.13 cfu/m3, respectively). The average indoor airborne dust concentration exceeded the Brazilian standards (<80 μg/m3) in both NV and AC classrooms. The levels of CO2 in the AC rooms were significantly different from the NV rooms (1433.62 ± 252.80 and 520.12 ± 37.25 ppm, respectively). The indoor air quality in Brazilian university classrooms affects the health of students. Therefore, indoor air pollution needs to be considered as an important public health problem. PMID:25019268

  17. Indoor Air Quality Science and Technology

    EPA Pesticide Factsheets

    Understand indoor air in homes, schools, and offices. Most of us spend much of our time indoors. The air that we breathe in our homes, in schools, and in offices can put us at risk for health problems. Some pollutants can be chemicals, gases, and living or

  18. Impact of surface ozone interactions on indoor air chemistry: A modeling study.

    PubMed

    Kruza, M; Lewis, A C; Morrison, G C; Carslaw, N

    2017-09-01

    An INdoor air Detailed Chemical Model was developed to investigate the impact of ozone reactions with indoor surfaces (including occupants), on indoor air chemistry in simulated apartments subject to ambient air pollution. The results are consistent with experimental studies showing that approximately 80% of ozone indoors is lost through deposition to surfaces. The human body removes ozone most effectively from indoor air per square meter of surface, but the most significant surfaces for C 6 -C 10 aldehyde formation are soft furniture and painted walls owing to their large internal surfaces. Mixing ratios of between 8 and 11 ppb of C 6 -C 10 aldehydes are predicted to form in apartments in various locations in summer, the highest values are when ozone concentrations are enhanced outdoors. The most important aldehyde formed indoors is predicted to be nonanal (5-7 ppb), driven by oxidation-derived emissions from painted walls. In addition, ozone-derived emissions from human skin were estimated for a small bedroom at nighttime with concentrations of nonanal, decanal, and 4-oxopentanal predicted to be 0.5, 0.7, and 0.7 ppb, respectively. A detailed chemical analysis shows that ozone-derived surface aldehyde emissions from materials and people change chemical processing indoors, through enhanced formation of nitrated organic compounds and decreased levels of oxidants. © 2017 The Authors. Indoor Air Published by John Wiley & Sons Ltd.

  19. Identification and quantification of indoor air pollutant sources within a residential academic campus.

    PubMed

    Suryawanshi, Shalini; Chauhan, Amit Singh; Verma, Ritika; Gupta, Tarun

    2016-11-01

    There is a growing concern regarding the adverse health effects due to indoor air pollution in developing countries including India. Hence, it becomes important to study the causes and sources of indoor air pollutants. This study presents the indoor concentrations of PM0.6 (particles with aerodynamic diameter less than 0.6μm) and identifies sources leading to indoor air pollution. Indoor air samples were collected at IIT Kanpur campus. Ninety-eight PM0.6 samples were collected during November 2013 to September 2014. PM0.6 concentration was measured using a single stage impactor type PM0.6 sampler. The average PM0.6 concentration indoor was about 94.44μg/m(3). Samples collected were then analysed for metal concentrations using ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometer). Eight metals Ba, Ca, Cr, Cu, Fe, Mg, Ni and Pb were quantified from PM samples using ICP-OES. Positive Matrix Factorization (PMF) was used for source apportionment of indoor air pollution. PMF is a factor analysis tool which helps in resolving the profile and contribution of the sources from an unknown mixture. Five possible sources of indoor pollutants were identified by factor analysis - (1) Coal combustion (21.8%) (2) Tobacco smoking (9.8%) (3) Wall dust (25.7%) (4) Soil particles (17.5%) (5) Wooden furniture/paper products (25.2%). Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Innovative ventilation system for animal anatomy laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacey, D.R.; Smith, D.C.

    1997-04-01

    A unique ventilation system was designed and built to reduce formaldehyde fumes in the large animal anatomy lab at the Vet Medical Center at Cornell University. The laboratory includes four rooms totaling 5,500 ft{sup 2}. The main room has 2,300 ft{sup 2} and houses the laboratory where up to 60 students dissect as many as 12 horses at a time. Other rooms are a cold storage locker, an animal preparation room and a smaller lab for specialized instruction. The large animal anatomy laboratory has a history of air quality complaints despite a fairly high ventilation rate of over 10 airmore » changes/hour. The horses are embalmed, creating a voluminous source of formaldehyde and phenol vapors. Budget constraints and increasingly stringent exposure limits for formaldehyde presented a great challenge to design a ventilation system that yields acceptable air quality. The design solution included two innovative elements: air-to-air heat recovery, and focused ventilation.« less

  1. Formaldehyde exposure affects growth and metabolism of common bean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mutters, R.G.; Madore, M.; Bytnerowicz, A.

    Recent state and federal directives have slated a substantial increase in the use of methanol as an alternative to gasoline in both fleet and private vehicles in the coming decade. The incomplete combustion of methanol produces formaldehyde vapor, and catalytic converter technology that completely oxidizes formaldehyde has yet to be developed. The approach of this study was to use a range of methanol concentrations encompassing levels currently found or that may occur in the future in the ambient air of some heavily polluted areas to test the potential phytotoxicity of formaldehyde. The study had the following objectives: (1) design andmore » build a formaldehyde vapor generator with sufficient capacity for long-term plant fumigations; (2) determine growth response of common bean to formaldehyde; (3) evaluate physiological and biochemical changes of bean plants associated with formaldehyde exposures. 20 refs., 2 figs., 2 tabs.« less

  2. Monitoring Indoor Air Quality for Enhanced Occupational Health.

    PubMed

    Pitarma, Rui; Marques, Gonçalo; Ferreira, Bárbara Roque

    2017-02-01

    Indoor environments are characterized by several pollutant sources. Because people spend more than 90% of their time in indoor environments, several studies have pointed out the impact of indoor air quality on the etiopathogenesis of a wide number of non-specific symptoms which characterizes the "Sick Building Syndrome", involving the skin, the upper and lower respiratory tract, the eyes and the nervous system, as well as many building related diseases. Thus, indoor air quality (IAQ) is recognized as an important factor to be controlled for the occupants' health and comfort. The majority of the monitoring systems presently available is very expensive and only allow to collect random samples. This work describes the system (iAQ), a low-cost indoor air quality monitoring wireless sensor network system, developed using Arduino, XBee modules and micro sensors, for storage and availability of monitoring data on a web portal in real time. Five micro sensors of environmental parameters (air temperature, humidity, carbon monoxide, carbon dioxide and luminosity) were used. Other sensors can be added for monitoring specific pollutants. The results reveal that the system can provide an effective indoor air quality assessment to prevent exposure risk. In fact, the indoor air quality may be extremely different compared to what is expected for a quality living environment. Systems like this would have benefit as public health interventions to reduce the burden of symptoms and diseases related to "sick buildings".

  3. A 14-year longitudinal study of the impact of clean indoor air legislation on state smoking prevalence, USA, 1997-2010.

    PubMed

    Becker, Craig M; Lee, Joseph G L; Hudson, Suzanne; Hoover, Jeanne; Civils, Donald

    2017-06-01

    While clean indoor air legislation at the state level is an evidence-based recommendation, only limited evidence exists regarding the impact of clean indoor air policies on state smoking prevalence. Using state smoking prevalence data from 1997 to 2010, a repeated measures observational analysis assessed the association between clean indoor air policies (i.e., workplace, restaurant, and bar) and state smoking prevalence while controlling for state cigarette taxes and year. The impacts from the number of previous years with any clean indoor air policy, the number of policies in effect during the current year, and the number of policies in effect the previous year were analyzed. Findings indicate a smoking prevalence predicted decrease of 0.13 percentage points (p=0.03) for each additional year one or more clean indoor air policies were in effect, a predicted decrease of 0.12 percentage points (p=0.09) for each policy in effect in the current year, and a predicted decrease of 0.22 percentage points (p=0.01) for each policy in effect in the previous year on the subsequent year. Clean indoor air policies show measurable associations with reductions in smoking prevalence within a year of implementation above and beyond taxes and time trends. Further efforts are needed to diffuse clean indoor air policies across states and provinces that have not yet adopted such policies. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Development of indoor environmental index: Air quality index and thermal comfort index

    NASA Astrophysics Data System (ADS)

    Saad, S. M.; Shakaff, A. Y. M.; Saad, A. R. M.; Yusof, A. M.; Andrew, A. M.; Zakaria, A.; Adom, A. H.

    2017-03-01

    In this paper, index for indoor air quality (also known as IAQI) and thermal comfort index (TCI) have been developed. The IAQI was actually modified from previous outdoor air quality index (AQI) designed by the United States Environmental Protection Agency (US EPA). In order to measure the index, a real-time monitoring system to monitor indoor air quality level was developed. The proposed system consists of three parts: sensor module cloud, base station and service-oriented client. The sensor module cloud (SMC) contains collections of sensor modules that measures the air quality data and transmit the captured data to base station through wireless. Each sensor modules includes an integrated sensor array that can measure indoor air parameters like Carbon Dioxide, Carbon Monoxide, Ozone, Nitrogen Dioxide, Oxygen, Volatile Organic Compound and Particulate Matter. Temperature and humidity were also being measured in order to determine comfort condition in indoor environment. The result from several experiments show that the system is able to measure the air quality presented in IAQI and TCI in many indoor environment settings like air-conditioner, chemical present and cigarette smoke that may impact the air quality. It also shows that the air quality are changing dramatically, thus real-time monitoring system is essential.

  5. Ambient and household air pollution: complex triggers of disease

    PubMed Central

    Farmer, Stephen A.; Nelin, Timothy D.; Falvo, Michael J.

    2014-01-01

    Concentrations of outdoor air pollution are on the rise, particularly due to rapid urbanization worldwide. Alternatively, poor ventilation, cigarette smoke, and other toxic chemicals contribute to rising concentrations of indoor air pollution. The World Health Organization recently reported that deaths attributable to indoor and outdoor air pollutant exposure are more than double what was originally documented. Epidemiological, clinical, and animal data have demonstrated a clear connection between rising concentrations of air pollution (both indoor and outdoor) and a host of adverse health effects. During the past five years, animal, clinical, and epidemiological studies have explored the adverse health effects associated with exposure to both indoor and outdoor air pollutants throughout the various stages of life. This review provides a summary of the detrimental effects of air pollution through examination of current animal, clinical, and epidemiological studies and exposure during three different periods: maternal (in utero), early life, and adulthood. Additionally, we recommend future lines of research while suggesting conceivable strategies to curb exposure to indoor and outdoor air pollutants. PMID:24929855

  6. Perceived indoor air quality and its relationship to air pollutants in French dwellings.

    PubMed

    Langer, S; Ramalho, O; Le Ponner, E; Derbez, M; Kirchner, S; Mandin, C

    2017-11-01

    Perception of indoor air quality (PIAQ) was evaluated in a nationwide survey of 567 French dwellings, and this survey was combined with measurements of gaseous and particulate matter (PM 10 and PM 2.5 ) indoor air pollutants and indoor climate parameters. The perception was assessed on a nine-grade scale by both the occupants of the dwellings and the inspectors who performed the measurements. The occupants perceived the air quality in their homes as more pleasant than the inspectors. The inspectors perceived the air quality as more unpleasant in dwellings in which the residents smoked indoors. Significant associations between PIAQ and indoor air pollutant concentrations were observed for both the inspectors and, to a lesser extent, the occupants. Introducing confounding parameters, such as building and personal characteristics, into a multivariate model suppressed most of the observed bivariate correlations and identified the tenure status of the occupants and their occupation as the parameters that most influenced their PIAQ. For the inspectors, perceived air quality was affected by the presence of smokers, the season, the type of ventilation, retrofitting, and the concentrations of acetaldehyde and acrolein. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Cooperative Agreement Funding for Indoor Air Quality

    EPA Pesticide Factsheets

    The Indoor Environments Division has created partnership with public and private sector entities to help encourage the public to take action to minimize their risk and mitigate indoor air quality problems.

  8. Indoor Air Quality and Ice Arenas

    EPA Pesticide Factsheets

    All recreational facilities including ice arenas should use good ventilation practices especially where children are present. It is critical that indoor air quality is protected particularly when using fuel-burning equipment indoors.

  9. Quantifying the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building.

    PubMed

    Tong, Zheming; Chen, Yujiao; Malkawi, Ali; Adamkiewicz, Gary; Spengler, John D

    2016-01-01

    Improper natural ventilation practices may deteriorate indoor air quality when in close proximity to roadways, although the intention is often to reduce energy consumption. In this study, we employed a CFD-based air quality model to quantify the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building. Our study found that the building envelope restricts dispersion and dilution of particulate matter. The indoor concentration in the baseline condition located 10m away from the roadway is roughly 16-21% greater than that at the edge of the roadway. The indoor flow recirculation creates a well-mixed zone with little variation in fine particle concentration (i.e., 253nm). For ultrafine particles (<100nm), a noticeable decrease in particle concentrations indoors with increasing distance from the road is observed due to Brownian and turbulent diffusion. In addition, the indoor concentration strongly depends on the distance between the roadway and building, particle size, wind condition, and window size and location. A break-even point is observed at D'~2.1 (normalized distance from the roadway by the width of the road). The indoor particle concentration is greater than that at the highway where D'<2.1, and vice versa. For new building planning, the distance from the roadway and the ambient wind condition need to be considered at the early design stage whereas the size and location of the window openings, the interior layout, and the placement of fresh air intakes are important to the indoor air quality of existing buildings adjacent to roadways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Analysis of Indoor Air Pollution of Decoration and Control Measures

    NASA Astrophysics Data System (ADS)

    Yan, Li

    2017-05-01

    Nowadays, the human health is closely related to quality of indoor air. This article analyzes the main types of pollution to indoor air and their harms to human health, and on this basis, it sets forth the prevention measures comprehensively and proposes advices to normalize industry standards.

  11. SIMULATION TOOL KIT FOR INDOOR AIR QUALITY AND INHALATION EXPOSURE (IAQX) VERSION 1.0 USER'S GUIDE

    EPA Science Inventory

    The User's Guide describes a Microsoft Windows-based indoor air quality (IAQ) simulation software package designed Simulation Tool Kit for Indoor Air Quality and Inhalation Exposure, or IAQX for short. This software complements and supplements existing IAQ simulation programs and...

  12. Indoor Air Quality: Maryland Public Schools.

    ERIC Educational Resources Information Center

    Maryland State Dept. of Education, College Park. Office of Administration and Finance.

    Less than adequate indoor air quality in schools can lead to a higher risk of health problems, an increase in student and teacher absenteeism, diminished learning, and even hazardous conditions. An indoor air quality program that addresses the planning, design, maintenance, and operation of public school buildings should be implemented at the…

  13. HVAC SYSTEMS AS A TOOL IN CONTROLLING INDOOR AIR QUALITY: A LITERATURE REVIEW

    EPA Science Inventory

    The report gives results of a review of literature on the use of heating, ventilating, and air-conditioning (HVAC) systems to control indoor air quality (IAQ). Although significant progress has been made in reducing the energy consumption of HVAC systems, their effect on indoor a...

  14. Background Indoor Air Concentrations of Volatile Organic Compounds in North American Residences (1990 – 2005): A Compilation of Statistics for Assessing Vapor Intrusion

    EPA Pesticide Factsheets

    This technical report presents a summary of indoor air studies that measured background concentrations of VOCs in the indoor air of thousands of North American residences and an evaluation and compilation of their reported statistical information.

  15. Testing Selected Behaviors to Reduce Indoor Air Pollution Exposure in Young Children

    ERIC Educational Resources Information Center

    Barnes, B. R.; Mathee, A.; Krieger, L.; Shafritz, L.; Favin, M.; Sherburne, L.

    2004-01-01

    Indoor air pollution is responsible for the deaths and illness of millions of young children in developing countries. This study investigated the acceptability (willingness to try) and feasibility (ability to perform) of four indoor air pollution reduction behaviors (improve stove maintenance practices, child location practices, ventilation…

  16. Windsor, Ontario Exposure Assessment Study: Design and Methods Validation of Personal, Indoor and Outdoor Air Pollution Monitoring

    EPA Science Inventory

    The Windsor, Ontario Exposure Assessment Study evaluated the contribution of ambient air pollutants to personal and indoor exposures of adults and asthmatic children living in Windsor, Ontario, Canada. In addition, the role of personal, indoor, and outdoor air pollution exposures...

  17. [Sources analysis and contribution identification of polycyclic aromatic hydrocarbons in indoor and outdoor air of Hangzhou].

    PubMed

    Liu, Y; Zhu, L; Wang, J; Shen, X; Chen, X

    2001-11-01

    Twelve polycyclic aromatic hydrocarbons (PAHs) were measured in eight homes in Hangzhou during the summer and autumn in 1999. The sources of PAHs and the contributions of the sources to the total concentration of PAHs in the indoor air were identified by the combination of correlation analysis, factor analysis and multiple regression, and the equations between the concentrations of PAHs in indoor and outdoor air and factors were got. It was indicated that the factors of PAHs in the indoor air were domestic cuisine, the volatility of the mothball, cigarette smoke and heating, the waste gas from vehicles. In the smokers' home, cigarette smoke was the most important factor, and it contributed 25.8% of BaP to the indoor air of smokers' home.

  18. The Use of Sensory Analysis Techniques to Assess the Quality of Indoor Air.

    PubMed

    Lewkowska, Paulina; Dymerski, Tomasz; Gębicki, Jacek; Namieśnik, Jacek

    2017-01-02

    The quality of indoor air is one of the significant elements that influences people's well-being and health inside buildings. Emissions of pollutants, which may cause odor nuisance, are the main reason for people's complaints regarding the quality of indoor air. As a result, it is necessary to perform tests aimed at identifying the sources of odors inside buildings. The article contains basic information on the characteristics of the sources of indoor air pollution and the influence of the odor detection threshold on people's health and comfort. An attempt was also made to classify and use sensory analysis techniques to perform tests of the quality of indoor air, which would enable identification of sensory experience and would allow for indication of the degree of their intensity.

  19. Political factors affecting the enactment of state-level clean indoor air laws.

    PubMed

    Tung, Gregory Jackson; Vernick, Jon S; Stuart, Elizabeth A; Webster, Daniel W

    2014-06-01

    We examined the effects of key political institutional factors on the advancement of state-level clean indoor air laws. We performed an observational study of state-level clean indoor air law enactment among all 50 US states from 1993 to 2010 by using extended Cox hazard models to assess risk of enacting a relevant law. During the 18-year period from 1993 to 2010, 28 states passed a law covering workplaces, 33 states passed a law covering restaurants, 29 states passed a law covering bars, and 16 states passed a law covering gaming facilities. States with term limits had a 2.15 times greater hazard (95% confidence interval [CI] = 1.27, 3.65; P = .005) of enacting clean indoor air laws. The presence of state-level preemption of local clean indoor air laws was associated with a 3.26 times greater hazard (95% CI = 1.11, 9.53; P = .031) of state-level policy enactment. In the presence of preemption, increased legislative professionalism was strongly associated (hazard ratio = 3.28; 95% CI = 1.10, 9.75; P = .033) with clean indoor air law enactment. Political institutional factors do influence state-level clean indoor air law enactment and may be relevant to other public health policy areas.

  20. The effect of ozone on nicotine desorption from model surfaces:evidence for heterogeneous chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Destaillats, Hugo; Singer, Brett C.; Lee, Sharon K.

    Assessment of secondhand tobacco smoke exposure using nicotine as a tracer or biomarker is affected by sorption of the alkaloid to indoor surfaces and by its long-term re-emission into the gas phase. However, surface chemical interactions of nicotine have not been sufficiently characterized. Here, the reaction of ozone with nicotine sorbed to Teflon and cotton surfaces was investigated in an environmental chamber by monitoring nicotine desorption over a week following equilibration in dry or humid air (65-70 % RH). The Teflon and cotton surfaces had N{sub 2}-BET surface areas of 0.19 and 1.17 m{sup 2} g{sup -1}, and water massmore » uptakes (at 70 % RH) of 0 and 7.1 % respectively. Compared with dry air baseline levels in the absence of O{sub 3}, gas phase nicotine concentrations decrease, by 2 orders of magnitude for Teflon after 50 h at 20-45 ppb O{sub 3}, and by a factor of 10 for cotton after 100 h with 13-15 ppb O{sub 3}. The ratios of pseudo first-order rate constants for surface reaction (r) to long-term desorption (k) were r/k = 3.5 and 2.0 for Teflon and cotton surfaces, respectively. These results show that surface oxidation was competitive with desorption. Hence, oxidative losses could significantly reduce long-term re-emissions of nicotine from indoor surfaces. Formaldehyde, N-methylformamide, nicotinaldehyde and cotinine were identified as oxidation products, indicating that the pyrrolidinic N was the site of electrophilic attack by O{sub 3}. The presence of water vapor had no effect on the nicotine-O{sub 3} reaction on Teflon surfaces. By contrast, nicotine desorption from cotton in humid air was unaffected by the presence of ozone. These observations are consistent with complete inhibition of ozone-nicotine surface reactions in an aqueous surface film present in cotton but not in Teflon surfaces.« less

  1. High strength air-dried aerogels

    DOEpatents

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  2. Changes to indoor air quality as a result of relocating families from slums to public housing

    NASA Astrophysics Data System (ADS)

    Burgos, Soledad; Ruiz, Pablo; Koifman, Rosalina

    2013-05-01

    One largely unstudied benefit of relocating families from slums to public housing is the potential improvement in indoor air quality (IAQ). We compared families that moved from slums to public housing with those that remained living in slums in Santiago, Chile in terms of fine particulate matter (PM2.5) as main indicator of change. A cross-sectional study of 98 relocated families and 71 still living in slums was carried out, obtaining indoor and outdoor samples by a Personal Environmental Monitor. Home characteristics, including indoor air pollution sources were collected through questionnaires. Multivariate regression models included the intervention (public housing or slum), indoor pollution sources, outdoor PM2.5 and family characteristics as predictors. Indoor PM2.5 concentrations were higher in slums (77.8 μg m-3 [SD = 35.7 μg m-3]) than in public housing (55.7 μg m-3 [SD = 34.6 μg m-3], p < 0.001). Differences between indoor and outdoor PM2.5 were significant only in the slum houses. The multivariate analysis showed that housing intervention significantly decreased indoor PM2.5 (10.4 μg m-3) after adjusting by the other predictors. Outdoor PM2.5 was the main predictor of indoor PM2.5. Other significant factors were water heating fuels and indoor smoking. Having infants 1-23 months was associated with a lowering of indoor PM2.5. Our results suggest that a public housing program that moves families from slums to public housing improves indoor air quality directly and also indirectly through air pollution sources.

  3. Indoor air quality in homes, offices and restaurants in Korean urban areas—indoor/outdoor relationships

    NASA Astrophysics Data System (ADS)

    Baek, Sung-Ok; Kim, Yoon-Shin; Perry, Roger

    Air quality monitoring was carried out to collect data on the levels of various indoor and ambient air constituents in two cities in Korea (Seoul and Taegu). Sampling was conducted simultaneously indoors and outdoors at six residences, six offices and six restaurants in each city during summer 1994 and winter 1994-1995. Measured pollutants were respirable suspended particulate matter (RSP), carbon monoxide (CO), carbon dioxide (CO 2), nitrogen dioxide (NO 2), and a range of volatile organic compounds (VOCs). In addition, in order to evaluate the effect of smoking on indoor air quality, analyses of parameters associated with environmental tobacco smoke (ETS) were undertaken, which are nicotine, ultraviolet (UVPM), fluorescence (FPM) and solanesol particulate matter (SolPM). The results of this study have confirmed the importance of ambient air in determining the quality of air indoors in two major Korean cities. The majority of VOCs measured in both indoor and outdoor environments were derived from outdoor sources, probably motor vehicles. Benzene and other VOC concentrations were much higher during the winter months than the summer months and were not significantly greater in the smoking sites examined. Heating and cooking practices, coupled with generally inadequate ventilation, also were shown to influence indoor air quality. In smoking sites, ETS appears to be a minor contributor to VOC levels as no statistically significant relationships were identified with ETS components and VOCs, whereas very strong correlations were found between indoor and outdoor levels of vehicle-related pollutants. The average contribution of ETS to total RSP concentrations was estimated to range from 10 to 20%.

  4. Managing Indoor Air Quality in Schools.

    ERIC Educational Resources Information Center

    Woolums, Jennifer

    This publication examines the causes and effects of poor indoor air quality and provides information for reducing exposure to indoor contaminants in schools. It discusses the various indoor pollutants found in schools, including dust, chemical agents, gases, and volatile organic compounds; where they are found in schools; and their health effects…

  5. AIR CLEANING FOR ACCEPTABLE INDOOR AIR QUALITY

    EPA Science Inventory

    The paper discusses air cleaning for acceptable indoor air quality. ir cleaning has performed an important role in heating, ventilation, and air-conditioning systems for many years. raditionally, general ventilation air-filtration equipment has been used to protect cooling coils ...

  6. Health-hazard evaluation report HETA 83-418-1449, Randolph County Register of Deeds Office, Asheboro, North Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hickey, J.L.; Williams, T.M.

    1984-04-01

    In response to a request from employees of Randolph County Courthouse, a health hazard evaluation was made of the Register of Deeds Office (SIC-9199, SIC-9390), Asheboro, North Carolina. Employees at this site had complained of sinus headaches, colds that hung on, and burning eyes. Some complained of headaches or sinus problems whenever they worked for some time in the office. Symptoms were most pronounced in winter and when the air conditioner was on. Five general air samples collected showed formaldehyde (50000) concentrations ranging from 0.19 to 0.69 parts per million (ppm). Air samples showed 0.34ppm formaldehyde inside built in woodedmore » office cabinets and 0.05ppm in general office air. Temperature was 75 to 77 degrees-F and relative humidity was 40 to 50%. Three air samples analyzed for 23 common organic vapors showed only trace amounts of all except benzene (71432) for which the concentration ranged from 0.38 to 0.54ppm. Bulk samples of sprayed on beam insulating material in the return air plenum were analyzed for asbestos and found to contain none. Water seals of floor drains in three restrooms were empty, permitting sewer gas to enter the building. The authors conclude that no definite cause of workers symptoms was found, although formaldehyde levels were high enough to affect sensitive individuals. Due to the carcinogenic nature of formaldehyde and benzene, and since safe levels for exposure have not been determined, the authors recommend measures for lowering the exposure to these compounds even further.« less

  7. The hydroxyl radical (OH) in indoor air: Sources and implications

    NASA Astrophysics Data System (ADS)

    Gligorovski, Sasho; Wortham, Henri; Kleffmann, Jörg

    2014-12-01

    Considering that people spend on average 80-90% of their life indoors, indoor air quality is of major importance for human health. In addition to specific indoor sources and entrainment from the outside atmosphere, harmful pollutants can be also formed indoors by in-situ secondary chemistry. While the first two processes have been well studied in the past, our understanding of indoor oxidation processes is still in its infancy compared to the ambient atmosphere.

  8. Impacts of air cleaners on indoor air quality in residences impacted by wood smoke.

    PubMed

    Wheeler, Amanda J; Gibson, Mark D; MacNeill, Morgan; Ward, Tony J; Wallace, Lance A; Kuchta, James; Seaboyer, Matt; Dabek-Zlotorzynska, Ewa; Guernsey, Judith Read; Stieb, David M

    2014-10-21

    Residential wood combustion is an important source of ambient air pollution, accounting for over 25% of fine particulate matter (PM2.5) emissions in Canada. In addition to these ambient contributions, wood smoke pollutants can enter the indoor environment directly when loading or stoking stoves, resulting in a high potential for human exposure. A study of the effectiveness of air cleaners at reducing wood smoke-associated PM2.5 of indoor and outdoor origin was conducted in 31 homes during winter 2009-10. Day 1, the residents' wood burning appliance operated as usual with no air cleaner. Days 2 and 3, the wood burning appliance was not operational and the air cleaner was randomly chosen to operate in "filtration" or "placebo filtration" mode. When the air cleaner was operating, total indoor PM2.5 levels were significantly lower than on placebo filtration days (p = 0.0001) resulting in a median reduction of 52%. There was also a reduction in the median PM2.5 infiltration factor from 0.56 to 0.26 between these 2 days, suggesting the air cleaner was responsible for increased PM2.5 deposition on filtration days. Our findings suggest that the use of an air cleaner reduces exposure to indoor PM2.5 resulting from both indoor and ambient wood smoke sources.

  9. Breathe Deeply.

    ERIC Educational Resources Information Center

    Milshtein, Amy

    2000-01-01

    Discusses the special indoor air quality issues confronting school gyms, locker rooms, and pools; and explores ways to keep the indoor environment healthy. Included are discussions of mold and fungus control and air issues stemming from indoor pools. (GR)

  10. Semivolatile Endocrine-Disrupting Compounds in Paired Indoor and Outdoor Air in Two Northern California Communities

    PubMed Central

    2010-01-01

    Interest in the health effects of potential endocrine-disrupting compounds (EDCs) that are high production volume chemicals used in consumer products has made exposure assessment and source identification a priority. We collected paired indoor and outdoor air samples in 40 nonsmoking homes in urban, industrial Richmond, CA, and 10 in rural Bolinas, CA. Samples were analyzed by GC-MS for 104 analytes, including phthalates (11), alkylphenols (3), parabens (3), polybrominated diphenyl ether (PBDE) flame retardants (3), polychlorinated biphenyls (PCBs) (3), polycyclic aromatic hydrocarbons (PAHs) (24), pesticides (38), and phenolic compounds (19). We detected 39 analytes in outdoor air and 63 in indoor air. For many of the phenolic compounds, alkylphenols, phthalates, and PBDEs, these represent some of the first outdoor measures and the first analysis of the relative importance of indoor and outdoor sources in paired samples. Data demonstrate higher indoor concentrations for 32 analytes, suggesting primarily indoor sources, as compared with only 2 that were higher outdoors. Outdoor air concentrations were higher in Richmond than Bolinas for 3 phthalates, 10 PAHs, and o-phenylphenol, while indoor air levels were more similar between communities, except that differences observed outdoors were also seen indoors. Indoor concentrations of the most ubiquitous chemicals were generally correlated with each other (4-t-butylphenol, o-phenylphenol, nonylphenol, several phthalates, and methyl phenanthrenes; Kendall correlation coefficients 0.2−0.6, p < 0.05), indicating possible shared sources and highlighting the importance of considering mixtures in health studies. PMID:20681565

  11. Detection of fluorotelomer alcohols in indoor environments and their relevance for human exposure.

    PubMed

    Schlummer, Martin; Gruber, Ludwig; Fiedler, Dominik; Kizlauskas, Markus; Müller, Josef

    2013-07-01

    Fluorotelomer alcohols (FTOH) are important precursors of perfluorinated carboxylic acids (PFCA). These neutral and volatile compounds are frequently found in indoor air and may contribute to the overall human exposure to per- and polyfluorinated alkyl substances (PFAS). In this study air samples of ten workplace environments and a car interior were analysed. In addition, extracts and emissions from selected outdoor textiles were analysed in order to establish their potential contribution to the indoor levels of the above-mentioned compounds. Concentrations of FTOHs measured in air ranged from 0.15 to 46.8, 0.25 to 286, and 0.11 to 57.5ng/m(3) for 6:2, 8:2 and 10:2 FTOHs, respectively. The highest concentrations in air were identified in shops selling outdoor clothing, indicating outdoor textiles to be a relevant source of FTOH in indoor workplace environments. Total amounts of FTOH in materials of outdoor textiles accounted for <0.8-7.6, 12.1-180.9 and 4.65-105.7μg/dm(2) for 6:2, 8:2 and 10:2 FTOHs, respectively. Emission from selected textiles revealed emission rates of up to 494ng/h. The measured data show that a) FTOHs are present in indoor textiles (e.g. carpets), b) they are released at ambient temperatures and c) indoor air of shops selling outdoor textiles contains the highest levels of FTOH. Exposure of humans to perfluorooctanoic acid (PFOA) through absorption of FTOH and subsequent degradation is discussed on the basis of indoor air levels. Calculation of indoor air-related exposure using the median of the measured air levels revealed that exposure is on the same order of magnitude as the recently reported dietary intakes for a background-exposed population. On the basis of the 95th percentile, indoor air exposure to PFOA was estimated to exceed dietary exposure. However, indoor air-related intakes of FTOH are far below the tolerable daily intake (TDI) of PFOA, indicating that there is no risk to health, even when assuming an unrealistic complete degradation of FTOH into PFOA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Assessment of indoor air quality at an electronic cigarette (Vaping) convention.

    PubMed

    Chen, Rui; Aherrera, Angela; Isichei, Chineye; Olmedo, Pablo; Jarmul, Stephanie; Cohen, Joanna E; Navas-Acien, Ana; Rule, Ana M

    2017-12-29

    E-cigarette (vaping) conventions are public events promoting electronic cigarettes, in which indoor use of e-cigarettes is allowed. The large concentration of people using e-cigarettes and poor air ventilation can result in indoor air pollution. In order to estimate this worst-case exposure to e-cigarettes, we evaluated indoor air quality in a vaping convention in Maryland (MD), USA. Real-time concentrations of particulate matter (PM 10 ) and real-time total volatile organic compounds (TVOCs), CO 2 and NO 2 concentrations were measured. Integrated samples of air nicotine and PM 10 concentrations were also collected. The number of attendees was estimated to range from 75 to 600 at any single observation time. The estimated 24-h time-weighted average (TWA) PM 10 was 1800 μg/m 3 , 12-fold higher than the EPA 24-h regulation (150 μg/m 3 ). Median (range) indoor TVOCs concentration was 0.13 (0.04-0.3) ppm. PM 10 and TVOC concentrations were highly correlated with CO 2 concentrations, indicating the high number of people using e-cigarettes and poor indoor air quality. Air nicotine concentration was 125 μg/m 3 , equivalent to concentrations measured in bars and nightclubs. E-cigarette aerosol in a vaping convention that congregates many e-cigarette users is a major source of PM 10 , air nicotine and VOCs, impairing indoor air quality. These findings also raise occupational concerns for e-cigarette vendors and other venue staff workers.

  13. Indoor air quality in urban nurseries at Porto city: Particulate matter assessment

    NASA Astrophysics Data System (ADS)

    Branco, P. T. B. S.; Alvim-Ferraz, M. C. M.; Martins, F. G.; Sousa, S. I. V.

    2014-02-01

    Indoor air quality in nurseries is an interesting case of study mainly due to children's high vulnerability to exposure to air pollution (with special attention to younger ones), and because nursery is the public environment where young children spend most of their time. Particulate matter (PM) constitutes one of the air pollutants with greater interest. In fact, it can cause acute effects on children's health, as well as may contribute to the prevalence of chronic respiratory diseases like asthma. Thus, the main objectives of this study were: i) to evaluate indoor concentrations of particulate matter (PM1, PM2.5, PM10 and PMTotal) on different indoor microenvironments in urban nurseries of Porto city; and ii) to analyse those concentrations according to guidelines and references for indoor air quality and children's health. Indoor PM measurements were performed in several class and lunch rooms in three nurseries on weekdays and weekends. Outdoor PM10 concentrations were also obtained to determine I/O ratios. PM concentrations were often found high in the studied classrooms, especially for the finer fractions, reaching maxima hourly mean concentrations of 145 μg m-3 for PM1 and 158 μg m-3 PM2.5, being often above the limits recommended by WHO, reaching 80% of exceedances for PM2.5, which is concerning in terms of exposure effects on children's health. Mean I/O ratios were always above 1 and most times above 2 showing that indoor sources (re-suspension phenomena due to children's activities, cleaning and cooking) were clearly the main contributors to indoor PM concentrations when compared with the outdoor influence. Though, poor ventilation to outdoors in classrooms affected indoor air quality by increasing the PM accumulation. So, enhancing air renovation rate and performing cleaning activities after the occupancy period could be good practices to reduce PM indoor air concentrations in nurseries and, consequently, to improve children's health and welfare.

  14. Characteristics of indoor radon and its progeny in a Japanese dwelling while using air appliances.

    PubMed

    Pornnumpa, C; Tokonami, S; Sorimachi, A; Kranrod, C

    2015-11-01

    Characteristics of radon and its progeny were investigated in different air conditions by turning four types of indoor air appliances on and off in a two-story concrete Japanese dwelling. The four appliances were air conditioner, air cleaner, gas heater and cooker hood. The measurements were done using two devices: (1) a Si-based semiconductor detector for continuous measurement of indoor radon concentration and (2) a ZnS(Ag) scintillation counting system for equilibrium-equivalent radon concentration. Throughout the entire experiment, the cooker hood was the most effective in decreasing indoor radon concentration over a long period of time and the less effective was the air conditioner, while the air cleaner and gas heater did not affect the concentration of radon. However, the results measured in each air condition will differ according to the lifestyles and activities of the inhabitants. In this study, indoor radon and its progeny in a Japanese dwelling will be characterised by the different air conditions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Indoor air pollution and cognitive function among older Mexican adults.

    PubMed

    Saenz, Joseph L; Wong, Rebeca; Ailshire, Jennifer A

    2018-01-01

    A growing body of research suggests exposure to high levels of outdoor air pollution may negatively affect cognitive functioning in older adults, but less is known about the link between indoor sources of air pollution and cognitive functioning. We examine the association between exposure to indoor air pollution and cognitive function among older adults in Mexico, a developing country where combustion of biomass for domestic energy remains common. Data come from the 2012 Wave of the Mexican Health and Aging Study. The analytic sample consists of 13 023 Mexican adults over age 50. Indoor air pollution is assessed by the reported use of wood or coal as the household's primary cooking fuel. Cognitive function is measured with assessments of verbal learning, verbal recall, attention, orientation and verbal fluency. Ordinary least squares regression is used to examine cross-sectional differences in cognitive function according to indoor air pollution exposure while accounting for demographic, household, health and economic characteristics. Approximately 16% of the sample reported using wood or coal as their primary cooking fuel, but this was far more common among those residing in the most rural areas (53%). Exposure to indoor air pollution was associated with poorer cognitive performance across all assessments, with the exception of verbal recall, even in fully adjusted models. Indoor air pollution may be an important factor for the cognitive health of older Mexican adults. Public health efforts should continue to develop interventions to reduce exposure to indoor air pollution in rural Mexico. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Indoor Air Quality and Student Performance [and Case Studies].

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Radiation and Indoor Air.

    This report examines how indoor air quality (IAQ) affects a child's ability to learn and provides several case studies of schools that have successfully addressed their indoor air problems, the lessons learned from that experience, and what long-term practices and policies emerged from the effort. The report covers the effects from…

  17. Indoor Air Quality: A Guide for Educators.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento.

    Indoor air quality is a major concern for educators involved in the development of new school facilities, or the remodeling and maintenance of existing ones. This guide addresses the issue of air quality, the health concerns involved, and procedures for minimizing the impact of pollutants in the school environment. It defines common indoor air…

  18. School Policies and Practices that Improve Indoor Air Quality

    ERIC Educational Resources Information Center

    Jones, Sherry Everett; Smith, Alisa M.; Wheeler, Lani S.; McManus, Tim

    2010-01-01

    Background: To determine whether schools with a formal indoor air quality management program were more likely than schools without a formal program to have policies and practices that promote superior indoor air quality. Methods: This study analyzed school-level data from the 2006 School Health Policies and Programs Study, a national study of…

  19. New Courses: Unlock the Mysteries of Productivity, Air Quality, and the Indoor Environment in Schools.

    ERIC Educational Resources Information Center

    Raiford, Regina

    2001-01-01

    Discusses the relationship between indoor air quality and productivity and a three-year research project to measure productivity within an educational setting. Also discusses research showing the impact of good indoor air quality on increasing productivity. Ten ways to manage asthma in a school environment are highlighted. (GR)

  20. Reference Guide. Indoor Air Quality Tools for Schools

    ERIC Educational Resources Information Center

    US Environmental Protection Agency, 2009

    2009-01-01

    Understanding the importance of good indoor air quality (IAQ) in schools is the backbone of developing an effective Indoor Air Quality (IAQ) program. Poor IAQ can lead to a large variety of health problems and potentially affect comfort, concentration, and staff/student performance. In recognition of tight school budgets, this guidance is designed…

  1. INDOOR AIR QUALITY AND FURNITURE PROCUREMENT IN EPA'S NEW RESEARCH TRIANGLE CAMPUS

    EPA Science Inventory

    The paper discusses various aspects of the EPA's new 1.2 million square foot building in Research Triangle Park that pertain to indoor air, with a particular focus on the process EPA used to select furniture to meet its indoor air guidelines. In keeping with its mission of protec...

  2. Good practices in managing work-related indoor air problems: a psychosocial perspective.

    PubMed

    Lahtinen, Marjaana; Huuhtanen, Pekka; Vähämäki, Kari; Kähkönen, Erkki; Mussalo-Rauhamaa, Helena; Reijula, Kari

    2004-07-01

    Indoor air problems at workplaces are often exceedingly complex. Technical questions are interrelated with the dynamics of the work community, and the cooperation and interaction skills of the parties involved in the problem solving process are also put to the test. The objective of our study was to analyze the process of managing and solving indoor air problems from a psychosocial perspective. This collective case study was based on data from questionnaires, interviews and various documentary materials. Technical inspections of the buildings and indoor air measurements were also carried out. The following four factors best differentiated successful cases from impeded cases: extensive multiprofessional collaboration and participative action, systematic action and perseverance, investment in information and communication, and process thinking and learning. The study also proposed a theoretical model for the role of the psychosocial work environment in indoor air problems. The expertise related to social and human aspects of problem solving plays a significant role in solving indoor air problems. Failures to properly handle these aspects may lead to resources being wasted and result in a problematic situation becoming stagnant or worse. Copyright 2004 Wiley-Liss, Inc.

  3. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1983-01-01

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  4. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1977-01-01

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  5. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1983-06-21

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  6. [Indoor air studies of mould fungus contamination of homes of selected patients with bronchial asthma (with special regard to evaluation problems)].

    PubMed

    Senkpiel, K; Kurowski, V; Ohgke, H

    1996-02-01

    Investigations of indoor air of the homes of seven patients with asthma bronchiale who showed up with positive reactions following intracutaneous application of fungal allergens revealed that their places of residence were contaminated by fungal and bacterial spores. The number of colony forming units of mesophilic fungal spores of the indoor air ranged from 100 to 1000 CFU/m3 and this was much higher than the mould flora of the outdoor air determined simultaneously. The major fungi species found by the indoor investigation were: Penicillium sp. > Aspergillus sp. > Cladosporium sp., Mucor sp., Chrysonilia sp., Verticillium sp. > Geotrichum sp., Trichoderma sp. In two cases Thermoactinomyces species could be detected in the indoor air. The main cause of fungal contamination were moist building materials on room walls, insufficient air ventilation, bad maintenance of the circulating air-machines and insufficient room hygiene (e.g. biological garbage in the kitchen).

  7. Electronic cigarettes and indoor air quality: a review of studies using human volunteers.

    PubMed

    Zainol Abidin, Najihah; Zainal Abidin, Emilia; Zulkifli, Aziemah; Karuppiah, Karmegam; Syed Ismail, Sharifah Norkhadijah; Amer Nordin, Amer Siddiq

    2017-09-26

    This paper is primarily aimed to review articles on electronic cigarettes (e-cigarettes) focusing on indoor air quality (IAQ) assessment that were conducted using human volunteers under natural settings that mimic actual vaping scenarios. Such studies may give a better representation of the actual potential exposure towards e-cigarettes emissions in indoor settings. A systematic literature search was conducted using PubMed search engine database. Search terms such as "electronic cigarette", "e-cigarette", "electronic nicotine delivery system", and "indoor air quality" were used to identify the relevant articles to be included in this review. Articles that involved human volunteers who were asked to vape in natural settings or settings that mimic the actual vaping scenario were chosen to be reviewed. The search yielded a total of 15 published articles. Eleven articles were excluded due to 1) unavailability of its full-text (n=1), 2) did not involve human volunteers (n=5) and 3) did not involve an IAQ study (n=5). Four articles were critically reviewed in this paper. From the four selected articles, two of the papers focused on the determination of nicotine level released by e-cigarettes whereas the other two covered IAQ parameters namely; particulate matters (PM), propylene glycols, formaldehyde, metals and polycyclic aromatic hydrocarbons (PAHs). Only two of the studies involved determination of biomarkers of exposure. The level of chemical contents released varied between studies. The differences in the brands of e-cigarette used, number of vapers recruited and the sensitivity of the methodologies employed in these studies may be the possible causes for such differences. However, studies using human volunteers conducted in a natural setting are more relevant to portray the actual exposure to vapors among e-cigarettes users and non-users compared to studies using a smoking machine/an exposure chamber. This is because such studies take into account the behavior of consumers and individual retention of nicotine. Such method will therefore avoid the possibility of overestimation in terms of exposures toward e-cigarettes users and non-users. There are limited e-cigarette studies on the impact of IAQ performed using human volunteers in natural settings. The available studies however, provided inconsistent scientific evidence on the actual exposure towards the vapor contents as unstandardized methodology were used in conducting such research. Therefore, there is a need to conduct IAQ studies in natural settings by using a standardized protocol in terms of the number of vapers recruited, the size of the indoor settings, the methods used in detecting and quantifying the contents and levels of emissions and the sensitivity of the equipment used in analyzing the contents. This will help in better utilization of the findings from such studies for the use of risk assessment of the exposures towards e-cigarette emissions. There is also a need to emphasize that it is the onus of the manufacturers in providing and proving scientifically sound safety claims for their products prior to commercializing it in the market.

  8. Determination of 14C/ 12C of acetaldehyde in indoor air by compound specific radiocarbon analysis

    NASA Astrophysics Data System (ADS)

    Kato, Yoshimi; Shinohara, Naohide; Yoshinaga, Jun; Uchida, Masao; Matsuda, Ayuri; Yoneda, Minoru; Shibata, Yasuyuki

    A method of compound-specific radiocarbon analysis (CSRA) for acetaldehyde in indoor air was established for the source apportionment purpose and the methodology was applied to indoor air samples. Acetaldehyde in indoor air samples was collected using the conventional 2,4-dinitrophenylhydrazine (DNPH) derivatization method. Typically 24-h air sampling at 5-10 L min -1 allowed collection of adequate amount of acetaldehyde for radiocarbon analysis by accelerator mass spectrometry (AMS). The 14C abundance of acetaldehyde in indoor air was measured by AMS after solvent extraction of derivatized acetaldehyde and sequential purification by a preparative liquid chromatography system and a preparative capillary gas chromatography system. The recovery and purity of the derivatized acetaldehyde was satisfactory for 14C analysis by AMS. 14C abundance of acetaldehyde was calculated by considering that of derivatizing agent DNPH. Our preliminary survey showed that percent modern carbon (pMC) values of acetaldehyde isolated from indoor air sampled in newly built, unoccupied housings ( n=5) in the suburb of Tokyo ranged from 49.4 to 67.0. This result indicated that contribution of anthropogenic source was greater than previously expected.

  9. The identification of Volatile Organic Compound's emission sources in indoor air of living spaces, offices and laboratories

    NASA Astrophysics Data System (ADS)

    Kultys, Beata

    2018-01-01

    Indoor air quality is important because people spend most of their time in closed rooms. If volatile organic compounds (VOCs) are present at elevated concentrations, they may cause a deterioration in human well-being or health. The identification of indoor emission sources is carried out by comparison indoor and outdoor air composition. The aim of the study was to determinate the concentration of VOCs in indoor air, where there was a risk of elevated levels due to the kind of work type carried out or the users complained about the symptoms of a sick building followed by an appropriate interpretation of the results to determine whether the source of the emission in the tested room occurs. The air from residential, office and laboratory was tested in this study. The identification of emission sources was based on comparison of indoor and outdoor VOCs concentration and their correlation coefficients. The concentration of VOCs in all the rooms were higher or at a similar level to that of the air sampled at the same time outside the building. Human activity, in particular repair works and experiments with organic solvents, has the greatest impact on deterioration of air quality.

  10. Accumulative effects of indoor air pollution exposure on leukocyte telomere length among non-smokers.

    PubMed

    Lin, Nan; Mu, Xinlin; Wang, Guilian; Ren, Yu'ang; Su, Shu; Li, Zhiwen; Wang, Bin; Tao, Shu

    2017-08-01

    Indoor air pollution is an important environmental factor that contributes to the burden of various diseases. Long-term exposure to ambient air pollution is associated with telomere shortening. However, the association between chronic indoor air pollution from household fuel combustion and leukocyte telomere length has not been studied. In our study, 137 cancer-free non-smokers were recruited. Their exposure levels to indoor air pollution from 1985 to 2014 were assessed using a face-to-face interview questionnaire, and leukocyte telomere length (LTL) was measured using a monochrome multiplex quantitative PCR method. Accumulative exposure to solid fuel usage for cooking was negatively correlated with LTL. The LTL of residents who were exposed to solid fuel combustion for three decades (LTL = 0.70 ± 0.17) was significantly shorter than that of other populations. In addition, education and occupation were related to both exposure to solid fuel and LTL. Sociodemographic factors may play a mediating role in the correlation between leukocyte telomere length and environmental exposure to indoor air pollution. In conclusion, long-term exposure to indoor air pollution may cause LTL dysfunction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Indoor Air Quality in Central Appalachia Homes Impacted by Wood and Coal Use

    PubMed Central

    Paulin, Laura M.; Williams, D’Ann; Oberweiser, Charles; Diette, Gregory B.; Breysse, Patrick N.; McCormack, Meredith M.; Matsui, Elizabeth C.; Peng, Roger; Metts, Tricia A.; Hansel, Nadia N.

    2016-01-01

    Though the high prevalence of biomass fuel use in the developing world is widely known, the use of burning biomass for cooking and heating in the developed world is under-recognized. Combustion materials including coal and wood are also used for heating in some areas of the United States. We conducted a pilot study to assess the feasibility of conducting indoor environmental monitoring in rural Appalachia. We sought to explore the type of biomass being used for home heating and its impact upon indoor air quality in non-heating and heating seasons. Residential indoor air monitoring for particulate matter (PM) and nitrogen dioxide (NO2) was conducted in Lee County, Virginia. Homes had evidence of poor indoor air quality with high concentrations of indoor PM and a large burden of cigarette smoking. Further characterization of indoor combustion material use in this region to determine the health impacts associated with such exposures is warranted. PMID:27738549

  12. Fabrication of Simple Indoor Air Haze Purifier using Domestic Discarded Substances and Its Haze Removal Performance

    NASA Astrophysics Data System (ADS)

    Wang, Zhou; Cao, Haoshu; Zhao, Shuang

    2018-01-01

    Based on the concept of circular economy, discarded plastic bottles stuffed with discarded cotton, clothing and sofa cushion were used as pre-filter to remove big particles (dust and coal dust) in air and 4 L tap water in discarded plastic bottle was worked as an absorbing medium to dissolve the water soluble ions in air (SO4 2-, NO3-, NH4+, Cl- and Ca2+). Moreover, the internet control design was used in this homemade indoor air haze purifier to achieve the performance of remote control and intelligent management. The experimental results showed that this indoor air haze purifier can effectively reduce the level of indoor air haze and the air quality after 20 minutes treatment is higher than that of two commercial well-known air haze purifier

  13. Environmental Issues in Managing Asthma

    PubMed Central

    Diette, Gregory B; McCormack, Meredith C; Hansel, Nadia N; Breysse, Patrick N; Matsui, Elizabeth C

    2008-01-01

    Management of asthma requires attention to environmental exposures both indoors and outdoors. Americans spend most of their time indoors, where they have a greater ability to modify their environment. The indoor environment contains both pollutants (eg, particulate matter, nitrogen dioxide, secondhand smoke, and ozone) and allergens from furred pets, dust mites, cockroaches, rodents, and molds. Indoor particulate matter consists of particles generated from indoor sources such as cooking and cleaning activities, and particles that penetrate from the outdoors. Nitrogen dioxide sources include gas stoves, furnaces, and fireplaces. Indoor particulate matter and nitrogen dioxide are linked to asthma morbidity. The indoor ozone concentration is mainly influenced by the outdoor ozone concentration. The health effects of indoor ozone exposure have not been well studied. In contrast, there is substantial evidence of detrimental health effects from secondhand smoke. Guideline recommendations are not specific for optimizing indoor air quality. The 2007 National Asthma Education and Prevention Program asthma guidelines recommend eliminating indoor smoking and improving the ventilation. Though the guidelines state that there is insufficient evidence to recommend air cleaners, air cleaners and reducing activities that generate indoor pollutants may be sound practical approaches for improving the health of individuals with asthma. The guidelines are more specific about allergen avoidance; they recommend identifying allergens to which the individual is immunoglobin E sensitized and employing a multifaceted, comprehensive strategy to reduce exposure. Outdoor air pollutants that impact asthma include particulate matter, ozone, nitrogen dioxide, and sulfur dioxide, and guidelines recommend that individuals with asthma avoid exertion outdoors when these pollutants are elevated. Outdoor allergens include tree, grass, and weed pollens, which vary in concentration by season. Recommendations to reduce exposure include staying indoors, keeping windows and doors closed, using air conditioning and perhaps high-efficiency particulate arrestor (HEPA) air filters, and thorough daily washing to remove allergens from one’s person. PMID:18426614

  14. The impact of wood stove technology upgrades on indoor residential air quality

    NASA Astrophysics Data System (ADS)

    Allen, Ryan W.; Leckie, Sara; Millar, Gail; Brauer, Michael

    2009-12-01

    Fine particulate matter (PM 2.5) air pollution has been linked to adverse health impacts, and combustion sources including residential wood-burning may play an important role in some regions. Recent evidence suggests that indoor air quality may improve in homes where older, non-certified wood stoves are exchanged for lower emissions EPA-certified alternatives. As part of a wood stove exchange program in northern British Columbia, Canada, we sampled outdoor and indoor air at 15 homes during 6-day sampling sessions both before and after non-certified wood stoves were exchanged. During each sampling session two consecutive 3-day PM 2.5 samples were collected onto Teflon filters, which were weighed and analyzed for the wood smoke tracer levoglucosan. Residential PM 2.5 infiltration efficiencies ( Finf) were estimated from continuous light scattering measurements made with nephelometers, and estimates of Finf were used to calculate the outdoor- and indoor-generated contributions to indoor air. There was not a consistent relationship between stove technology and outdoor or indoor concentrations of PM 2.5 or levoglucosan. Mean Finf estimates were low and similar during pre- and post-exchange periods (0.32 ± 0.17 and 0.33 ± 0.17, respectively). Indoor sources contributed the majority (˜65%) of the indoor PM 2.5 concentrations, independent of stove technology, although low indoor-outdoor levoglucosan ratios (median ≤ 0.19) and low indoor PM 2.5-levoglucosan correlations ( r ≤ 0.19) suggested that wood smoke was not a major indoor PM 2.5 source in most of these homes. In summary, despite the potential for extensive wood stove exchange programs to reduce outdoor PM 2.5 concentrations in wood smoke-impacted communities, we did not find a consistent relationship between stove technology upgrades and indoor air quality improvements in homes where stoves were exchanged.

  15. PM 2.5, soot and NO 2 indoor-outdoor relationships at homes, pre-schools and schools in Stockholm, Sweden

    NASA Astrophysics Data System (ADS)

    Wichmann, J.; Lind, T.; Nilsson, M. A.-M.; Bellander, T.

    2010-11-01

    In developed nations people spend about 90% of their time indoors. The relationship between indoor and outdoor air pollution levels is important for the understanding of the health effects of outdoor air pollution. Although other studies describe both the outdoor and indoor atmospheric environment, few excluded a priori major indoor sources, measured the air exchange rate, included more than one micro-environment and included the presence of human activity. PM 2.5, soot, NO 2 and the air exchange rate were measured during winter and summer indoors and outdoors at 18 homes (mostly apartments) of 18 children (6-11-years-old) and also at the six schools and 10 pre-schools that the children attended. The three types of indoor environments were free of environmental tobacco smoke and gas appliances, as the aim was to asses to what extent PM 2.5, soot and NO 2 infiltrate from outdoors to indoors. The median indoor and outdoor PM 2.5 levels were 8.4 μg m -3 and 9.3 μg m -3, respectively. The median indoor levels for soot and NO 2 were 0.66 m -1 × 10 -5 and 10.0 μg m -3, respectively. The respective outdoor levels were 0.96 m -1 × 10 -5 and 12.4 μg m -3. The median indoor/outdoor (I/O) ratios were 0.93, 0.76 and 0.92 for PM 2.5, soot and NO 2, respectively. Their infiltration factors were influenced by the micro-environment, ventilation type and air exchange rate, with aggregated values of 0.25, 0.55 and 0.64, respectively. Indoor and outdoor NO 2 levels were strongly associated ( R2 = 0.71), followed by soot ( R2 = 0.50) and PM 2.5 ( R2 = 0.16). In Stockholm, the three major indoor environments occupied by children offer little protection against combustion-related particles and gases in the outdoor air. Outdoor PM 2.5 seems to infiltrate less, but indoor sources compensate.

  16. Regulation characteristics of oxide generation and formaldehyde removal by using volume DBD reactor

    NASA Astrophysics Data System (ADS)

    Bingyan, CHEN; Xiangxiang, GAO; Ke, CHEN; Changyu, LIU; Qinshu, LI; Wei, SU; Yongfeng, JIANG; Xiang, HE; Changping, ZHU; Juntao, FEI

    2018-02-01

    Discharge plasmas in air can be accompanied by ultraviolet (UV) radiation and electron impact, which can produce large numbers of reactive species such as hydroxyl radical (OH·), oxygen radical (O·), ozone (O3), and nitrogen oxides (NO x ), etc. The composition and dosage of reactive species usually play an important role in the case of volatile organic compounds (VOCs) treatment with the discharge plasmas. In this paper, we propose a volume discharge setup used to purify formaldehyde in air, which is configured by a plate-to-plate dielectric barrier discharge (DBD) channel and excited by an AC high voltage source. The results show that the relative spectral-intensity from DBD cell without formaldehyde is stronger than the case with formaldehyde. The energy efficiency ratios (EERs) of both oxides yield and formaldehyde removal can be regulated by the gas flow velocity in DBD channel, and the most desirable processing effect is the gas flow velocity within the range from 2.50 to 3.33 m s-1. Moreover, the EERs of both the generated dosages of oxides (O3 and NO2) and the amount of removed formaldehyde can also be regulated by both of the applied voltage and power density loaded on the DBD cell. Additionally, the EERs of both oxides generation and formaldehyde removal present as a function of normal distribution with increasing the applied power density, and the peak of the function is appeared in the range from 273.5 to 400.0 W l-1. This work clearly demonstrates the regulation characteristic of both the formaldehyde removal and oxides yield by using volume DBD, and it is helpful in the applications of VOCs removal by using discharge plasma.

  17. Indoor Air Problems and Hoarseness in Children.

    PubMed

    Kallvik, Emma; Putus, Tuula; Simberg, Susanna

    2016-01-01

    A well-functioning voice is becoming increasingly important because voice-demanding professions are increasing. The largest proportion of voice disorders is caused by factors in the environment. Moisture damage is common and can initiate microbial growth and/or diffusion of chemicals from building materials. Indoor air problems due to moisture damage are associated with a number of health symptoms, for example, rhinitis, cough, and asthma symptoms. The purpose of this study was to investigate if children attending a day care center, preschool, or school with indoor air problems due to moisture damage were hoarse more often than the children in a control group. Information was collected through electronic and paper questionnaires from the parents of 6- to 9-year-old children (n = 1857) attending 57 different day care centers, preschools, or schools with or without indoor air problems due to moisture damage. The results showed a significant correlation between the degree of indoor air problem due to moisture damage and the frequency of hoarseness. Significant predictors for the child being hoarse every week or more often were dry cough, phlegm cough, and nasal congestion. The results indicate that these symptoms and exposure to indoor air problems due to moisture damage should be included in voice anamnesis. Furthermore, efforts should be made to remediate indoor air problems due to moisture damage and to treat health symptoms. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  18. Applying Outdoor Environment to Develop Health, Comfort, and Energy Saving in the Office in Hot-Humid Climate

    PubMed Central

    Chen, Rong; Sung, Wen-Pei; Chang, Hung-Chang; Chi, Yi-Rou

    2013-01-01

    A human life demand set to emerge in the future is the achievement of sustainability by maintaining a comfortable indoor environment without excessive reliance on energy-consuming air conditioners. The major research processes in this study are: (1) measuring indoor air quality and thermal comfort to evaluate the comfort of an indoor environment; (2) implementing questionnaire survey analysis to explore people's environmental self-perceptions and conducting a meta-analysis of the measurement results for air quality and physical aspects; and (3) constructing an indoor monitoring and management system. The experimental and analysis results of this research reveal that most of the office occupants preferred a cooler environment with a lower temperature. Additionally, because the summers in Taiwan are humid and hot, the occupants of an indoor space tend to feel uncomfortable because of the high humidity and poor indoor air quality. Therefore, Variable Air Volume (VAV), two air intakes, and exhaust plant are installed to improve indoor environment. After improvement, a lower temperature (approximately 21.2–23.9°C) indirectly reduces humidity, thereby making the occupants comfortable. Increasing air velocity to 0.1 ~ 0.15 m/s, the carbon dioxide concentrations decrease below the requirement of the WHO. Ninety-five percent of the workers corresponded to the standard comfort zone after this improvement. PMID:24311976

  19. Indoor Environmental Quality in Mechanically Ventilated, Energy-Efficient Buildings vs. Conventional Buildings.

    PubMed

    Wallner, Peter; Munoz, Ute; Tappler, Peter; Wanka, Anna; Kundi, Michael; Shelton, Janie F; Hutter, Hans-Peter

    2015-11-06

    Energy-efficient buildings need mechanical ventilation. However, there are concerns that inadequate mechanical ventilation may lead to impaired indoor air quality. Using a semi-experimental field study, we investigated if exposure of occupants of two types of buildings (mechanical vs. natural ventilation) differs with regard to indoor air pollutants and climate factors. We investigated living and bedrooms in 123 buildings (62 highly energy-efficient and 61 conventional buildings) built in the years 2010 to 2012 in Austria (mainly Vienna and Lower Austria). Measurements of indoor parameters (climate, chemical pollutants and biological contaminants) were conducted twice. In total, more than 3000 measurements were performed. Almost all indoor air quality and room climate parameters showed significantly better results in mechanically ventilated homes compared to those relying on ventilation from open windows and/or doors. This study does not support the hypothesis that occupants in mechanically ventilated low energy houses are exposed to lower indoor air quality.

  20. Impact of indoor surface material on perceived air quality.

    PubMed

    Senitkova, I

    2014-03-01

    The material combination impact on perceived indoor air quality for various surface interior materials is presented in this paper. The chemical analysis and sensory assessments identifies health adverse of indoor air pollutants (TVOCs). In this study, emissions and odors from different common indoor surface materials were investigated in glass test chamber under standardized conditions. Chemical measurements (TVOC concentration) and sensory assessments (odor intensity, air acceptability) were done after building materials exposure to standardized conditions. The results of the chemical and sensory assessment of individual materials and their combinations are compared and discussed within the paper. The using possibility of individual material surface sorption ability was investigated. The knowledge of targeted sorption effects can be used in the interior design phase. The results demonstrate the various sorption abilities of various indoor materials as well as the various sorption abilities of the same indoor material in various combinations. Copyright © 2013 Elsevier B.V. All rights reserved.

Top